
Lecture 1: Weil conjectures and motivation

September 15, 2014

1 The Zeta function of a curve

We begin by motivating and introducing the Weil conjectures, which was
bothy historically fundamental for the development of Etale cohomology,
and also constitutes one of its greatest successes.

It has long been known that there is a strong analogy between rings of
integers in number fields, and smooth projective curves over finite fields. As
such, let us begin with the usual Riemann Zeta functions. The Riemann
zeta function is most commonly defined as follows:

for <(s) > 1, ζ(s) =
∞∑
n=1

1

ns
. (1)

Using the unique factorization theorem, we can also rewrite the above
sum as a product:

for <(s) > 1, ζ(s) =
∏
p

(1− p−s)−1 (2)

The Riemann Zeta function enjoys the following properties:

• While only defined initially for <(s) > 1, ζ(s) can be mermorphicaly
continued to the entire complex plane, with only a simple pole at s = 1.

• There is a functional equation satisfied by ζ(s), given by

ζ(s)Γ(
s

2
)π

−s
2 = ζ(1− s)γ(

1− s
2

)πs−12.

• (Riemann Hypothesis: Only conjectural!) The zeroes of ζ(s) all lie on
the line <(s) = 1

2 , with the exception of the ‘trivial’ zeroes that occur
at the negative even integers.
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Remark. The above suggests that the function ξ(s) = ζ(s)Γ( s2)π
−s
2 is more

natural to work with then the Zeta function, as it satisfies a nicer functional
equation ξ(s) = ξ(1 − s) and eliminates the ‘trivial’ zeroes. The reason for
this is that it is natural to consider the ‘Archimedean prime’ at ∞ in the

product formula (2), and it turns out that Γ( s2)π
−s
2 is the natural factor at

that prime. We will not go into the justification of this heuristic, which can
be found within Arakelov theory or the theory of automorphic forms.

To try and make an analogy with finite fields, we think geometrically.
Thus we form the scheme spec Z. The closed points of spec Z are precisely
given by the prime ideals of Z, which are in bijection with the primes. Thus,
the closed points are simply spec Fp ←↩ spec Z, and the prime numbers p
are simply the sizes of the residue fields spec Fp.

Now, we are ready to formulate a geometric analogue. Let q be a prime
power, and X a smooth, projective curve over Fq. What do the closed points
of X look like? Well, each closed point x ∈ X has residue field some finite
field of the form Fqn . Let us write deg(x) = n and N(x) for qn, the size of
the residue field k(x) at X. Thus, we make the following definition:

ζ(X, s) :=
∏
x∈X

(1−N(x)−s)−1. (3)

We see that this definition is exactly analogous to (2). What about
the representation as a sum as in (1)? The analogous notion of an integer
here is that of a positive divisor, which on a curve is just a finite formal
sum of points with non-negative coefficients. For D =

∑
i aixi, we define

N(D) =
∏

iN(xi)
ai . Expanding the product as with the Zeta function, we

get

ζ(X, s) =
∑
D

N(D)−s.

Since we are now in the world of geometry, we can also rewrite the Zeta
function in a third way, by counting points in field extension; that is, using
the quantities X(Fqn).

Specifically, if deg(x) = d, then x contributes d points to X(Fqn) if d|n,
and no points otherwise. Geometrically, one can think of it as follows: a
point y ∈ X(Fqn) is a map y : spec Fqn → X. The image of y is some point
x ∈ X, and thus we can factor the map as spec Fqn → spec k(x)spec X.
Now, a map from spec Fqn to spec k(x) is—by definition—an embedding of
fields k(x) ↪→ Fqn , and since all finite field extensions are Galois, there are
either N(x) such extensions if d|n or 0 otherwise.
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Using the power series expansion for log, we can now write

log ζ(X, s) =
∑
x∈X

∞∑
d=1

N(x)−ds

d

=
∞∑
n=1

∑
N(x)|n

N(x)q−ns

n

=
∞∑
n=1

X(Fqn)

n
q−ns

Exponentiating, we have

Z(X, s) = exp

( ∞∑
n=1

X(Fqn)

n
q−ns

)
. (4)

So the Zeta function also records the number of points of a variety in
extension field, and these are extraordinarily interesting.

Let us do an example. Consider the case of X = P1/Fq. We see that
X(Fqn) = qn + 1, since we have qn elements (1 : t) with t ∈ Fqn together
with the point ‘at infinity’ (0 : 1). Thus, using (4) we calculate

Z(X, s) = exp

( ∞∑
n=1

qn + 1

n
q−ns

)

= exp

( ∞∑
n=1

qn(1−s)

n

)
· exp

( ∞∑
n=1

q−ns

n

)
= (1− q1−s)−1(1− q−s)−1.

For X a curve of higher genus, it is no longer so easy to count points.
One might wonder how to even proceed with computing the Zeta function.
It turns out the Riemann-Roch formua can help. Recall equation (2). Now
a divisor D gives us a line bundle `(D).Moreover, given a line bundle `, it
has H0(X, `)− 1 many sections, and up to the action of F×q they each give
a different divisor giving rise to `. Thus, writing Pic(Fqn) for the set of line
bundles of degree n, we can rewrite
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Z(X, s) =
∑
n≥0

q−ns
∑

`∈Pic(Fq)

H0(X, `)− 1

q − 1
.

Moreover, by the Riemann-Roch theorem, if n ≥ 2gX−1 thenH0(X, `) =
qn−g+1. Thus, we can write the above as

Z(X, s) =
P (q−s)

(1− q−s)(1− q1−s)

where P (T ) is a polynomial of degree 2gX . Moreover, it turns out that
Z(X, s) satisfies a functional equation Z(X, s) = ±Z(X, 1−s)q(1−gX)(1/2−s),
and by a theorem of Weil, all the roots of P (T ) have absolute value q1/2,
which translates to the zeroes of Z(X, s) all being on the line <(s) = 1

2 ; that
is, the Riemann hypothesis holds!

At this point, it is natural to ask what happens if we go to higher di-
mensions. So suppose X is a smooth, projective variety over Fq. Then we
can define the Zeta function of X exactly as in (3). Moreover, by the same
analysis, this will be identical to the representation in (4)1.The one hiccup
is that divisors are no longer collections of points, and so the representation
(2) is no longer applicable2.

As an example, one can compute the zeta function in the case X = Pn

to be

Z(X, s) =
1

(1− q−s)(1− q1−s) . . . (1− qn−s)
.

2 Statement of the Weil Conjectures

At this point we are ready to state the Weil conjectures. These were Made
after Weil after he computed a plethora of examples - a feat in itself, as
computing points over finite fields is note easy.

Theorem 2.1. (Weil Conjectures) Suppose X is a smooth projective variety
of dimension n over Fq. Then the Zeta function of X satisfies the following
properties:

1. (Rationality) The Zeta function Z(X, s) is a rational function of q−s.

1To avoid confusion, let me clarify that this equality has nothing to do with either the
smoothness or the projectivity assumption.

2Of course, we can just replace the word ‘divisor’ with ‘0-cycle’ and it will hold. How-
ever, the Riemann-Roch theorem is no longer applicable, and so this representation is less
useful.
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2. (Functional equation) there is an integer E such that Z(X,n − s) =
±qE(n/2−s)Z(X, s).

3. (Riemann Hypothesis) The Zeta function can be written as an alter-
nating product

Z(X, s) =
P1(q

−s)P3(q
−s) . . . P2n−1(q

−s)

P0(q−s)P2(q−s) . . . P2n(q−s)

where each Pi(T ) is an integral polynomial all of whose roots have
absolute value q−m/2. Moreover, P0(T ) = 1−T and P2n(T ) = 1−qnT .

4. (Betti Numbers) Suppose X is a ”good reduction” of a characteristic
zero variety. That is, there is a smooth projective morphism X̃ → Y
such that the base change w.r.t one of the spec Fq-valued points of Y
is X, and the base change to one of the spec C-valued points of Y is
a smooth projective complex variety X0. Then the degree of the i’th
polynomial Pi is the i’th betti number of the space of the topological
space Y (C).

Note in particular the Riemann Hypothesis - called such because it places
the zeroes and poles of Z(X, s) on nice vertical lines in the complex plane.
The weil conjectures, as we sketch next section, led to the development of
Etale cohomology, as (4) above suggests that a certain cohomology theory
is lurking in the background, and Grothendieck realized that a suitable
cohomology theory would be very useful in proving the Weil conjectures.
We should mention that the rationality of the Zeta function was first proven
by Dwork before the development of Etale cohomology, though his proof did
not give nearly as much information.

3 Cohomology of manifolds and Grothendieck’s
Dream

Let’s recall how ‘ordinary’ topological Cech cohomology works, and then
we’ll see why an appropriate analogue would be useful in proving the Weil
conjectures.

So suppose M is an n-dimensional compact real manifold, and T is a
triangulation of M into simplices. Let Ti be the i-dimensional simplices in
T .Let Ci denote the set of maps from Ti to Q. Finally, let dm be the map
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Cm → Cm+1 defined as follows:

dm(φ)(v0, v1, . . . , vm) =

m∑
i=0

(−1)iφ(v0, . . . , vi−1, vi+1, . . . , vm).

Then it is easy to verify that di+1di = 0, and so we get a complex

C0
d1−→ C1

d2−→ C2 . . .
dn−1−−−→ Cn.

Then we define the Cech Cohomology groups to beH i(M,Q) := ker di/imdi+1.
It is true (though not obvious) that given any two triangulations of M , their
cohomology groups can be naturally identified. Moreover, we have the fol-
lowing wonderful properties:

• The groups H i(M,Q) are finite dimensional. Moreover, if M is a com-
plex algebraic algebraic variety, then Hj(M,Q) = 0 for j > 2 dimCM .

• (Functoriality) For any continuous map φ : M → N , we have induced
maps φi : H i(M,Q)→ H i(N,Q) compatible with compositions.

• (Poincare Duality) The groups H i(M,Q) and Hn−i(M,Q) are canon-
ically dual. Moreover, Hn(M,Q) is one dimensional, and there is a
natural perfect pairing H i(M,Q)×Hn−i(M,Q)→ Hn(M,Q).

• (Lefschetz trace formua) Suppose φ : M → M is a continuous map
with only simple,3 isolated fixed points. Then

#{fixed points of φ} =

n∑
i=0

(−1)itr(φi).

Now, suppose for a second that we had a way to define a cohomology
theory for proper,smooth varieties X over finite fields satisfying some version
of the above properties. The reason this is useful, is that if X is a variety over
Fq, then we have a natural map X → X known as the Absolute Frobenius
morphism. If X = spec A then this is induced by the map of rings A → A
given by4 a→ aq, and otherwise its defined by gluing5. Then it is not hard
to see that the fixed points of Fm on X(Fq) are exactly X(Fqm). So we

3This is a bit technical to define. But if M is a smooth manifold then its enough to
say that the graph of φ in M ×M is transverse to the diagonal

4Verify this is a map of rings!
5Check that this glues!
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could hope that some version of the Lefschetz Trace formula would imply
that

#X(Fqm) =

2 dimX∑
i=0

(−q)itrF|Hi(X,Q).

Combining this with the formal identity of matrices

− log det(1− TM) =
∞∑
i=1

trM i

i

we would deduce that

Z(X, s) =
2 dimX∏
i=0

det(1− q−sF|Hi(X,Q)).

This would imply the rationality of the Zeta function immediately. More-
over, one can see that an appropriate version of Poincare Duality would
yield the functional equation, and the compatibility with reduction from
characteristic 0 would follow from some sort of compatibility with regular
cohomology.

This also strongly suggests that the sought for polynomials in (3) of 2.1
are Pi(T ) = det(1− TF )|Hi(X,Q) and reformulates the Riemann Hypothesis
as saying that the eigenvalues of F on the i’th cohomology group are of size
qi/2 - this is the only part of the Weil conjectures that would not follow
‘formally’ from the Weil conjectures, but it still provides some insight into
whats going on6.This sketch is what we will justify using Etale Cohomology.
It turns out that we cannot have our coefficient group be Q — we need to
use a profinite group such as Ql— but the basic ideas remain the same.

As a final comment, we point out that in trying to define a cohomology
theory to satisfy all of the above, the Zariski topology is grossly inadequate.
For instance, the Zariski topology on any two curves is identical(prove this)!

6And is essential to Deligne’s eventual resolution of the Riemann Hypothesis
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