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Abstract
We determine the average number of 3-torsion elements in the ray class groups of fixed (integral)

conductor c of quadratic fields ordered by absolute discriminant, generalizing Davenport and Heilbronn’s
theorem on class groups. A consequence of this result is that a positive proportion of such ray class
groups of quadratic fields have trivial 3-torsion subgroup whenever the conductor c is taken to be a
squarefree integer having very few prime factors none of which are congruent to 1 mod 3. Additionally,
we compute the second main term for the number of 3-torsion elements in ray class groups with fixed
conductor of quadratic fields ordered by discriminant.

1 Introduction

In 1971, Davenport-Heilbronn [8] determined that the mean number of 3-torsion elements in the class groups
of real (respectively, imaginary) quadratic fields ordered by absolute discriminant is 4

3 (resp., 2). In this
paper, we determine the average number of 3-torsion elements in ray class groups of fixed integral conductor
of quadratic fields ordered by their discriminant. More precisely, we prove the following theorem.

Theorem 1. Fix a positive integer c, and let m denote the number of primes p | c such that p ≡ 1 mod 3.

(a) The average size of the 3-torsion subgroups in the ray class groups of conductor c of real quadratic
fields K ordered by discriminant is:

lim
X→∞

∑
[K:Q]=2

0<Disc(K)<X

#Cl3(K, c)

∑
[K:Q]=2

0<Disc(K)<X

1
=



3m ·
(

1 +
1

3
·
∏
p|c

1 +
p

p+ 1

)
if 3 - c,

3m ·
(

1 +
2

7
·
∏
p|c

1 +
p

p+ 1

)
if 3 || c, and

3m+1 ·
(

1 +
5

7
·
∏
p|c

1 +
p

p+ 1

)
if 9 | c.

(b) The average size of the 3-torsion subgroups in the ray class groups of conductor c of imaginary quadratic
fields K ordered by discriminant is:

lim
X→∞

∑
[K:Q]=2

−X<Disc(K)<0

#Cl3(K, c)

∑
[K:Q]=2

−X<Disc(K)<0

1
=



3m ·
(

1 +
∏
p|c

1 +
p

p+ 1

)
if 3 - c,

3m ·
(

1 +
6

7
·
∏
p|c

1 +
p

p+ 1

)
if 3 || c, and

3m+1 ·
(

1 +
15

7
·
∏
p|c

1 +
p

p+ 1

)
if 9 | c.
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Above, we denote by Cl3(K, c) the 3-torsion subgroup of the ray class group of conductor c of a quadratic
field K. Thus, the case c = 1 in Theorem 1 recovers Davenport-Heilbronn’s theorem on the average number
of 3-torsion elements in the class groups of real and imaginary quadratic fields [8, Theorem 3].

The Cohen-Lenstra heuristics [6], which conjecture asymptotics for the distribution of torsion in class
groups of quadratic fields ordered by discriminant, were inspired by the constants appearing in [8] as well
as computations. The analogous distributions for p-torsion subgroups in ray class groups of quadratic fields
can be predicted; for example, we expect that the average size of p-torsion subgroups in the ray class groups
of conductor c coprime to p of real quadratic fields ordered by discriminant is

p#{`|c: `≡1 mod p} ·

1 +
1

p
·
∏
`|c

`≡±1(p)

(
1 +

p− 1

2
· `

`+ 1

) ,

where ` runs over primes dividing c. Such a generalization of the Cohen-Lenstra heuristics predicting the
full distribution for ray class groups of families of fixed degree fields would give a more explicit and tangible
description of the maximal abelian extension over number fields other than Q and imaginary quadratic fields.

While the mean values in Theorem 1 do depend on the conductor c, if we instead average over quadratic
fields with discriminant coprime to the conductor, we obtain different constants that only depend on the
number of primes dividing c. Note that when averaging over a family of quadratic fields defined by prescribed
splitting conditions at a finite set of primes, the average size of the 3-torsion subgroups in ray class groups
only changes when the set of primes includes prime factors of c. This gives the expected generalization of
the case when c = 1, in which the mean values do not depend on the family one averages over (see Corollary
4 in [4]).

Theorem 2. Fix a positive integer c with n distinct prime factors, and let m denote the number of distinct
primes p | c that are congruent to 1 mod 3. When quadratic fields are ordered by their absolute discriminant:

(a) The average number of 3-torsion elements in the ray class groups of conductor c of real quadratic fields
with discriminant coprime to c is:

lim
X→∞

∑
[K:Q]=2

(Disc(K),c)=1
0<Disc(K)<X

#Cl3(K, c)

∑
[K:Q]=2

(Disc(K),c)=1
0<Disc(K)<X

1
=



3m ·
(

1 +
2n

3

)
if 3 - c,

3m ·
(

1 +
2n−1

3

)
if 3 || c, and

3m+1 ·
(
1 + 2n−1

)
if 9 | c.

(b) The average number of 3-torsion elements in the ray class groups of conductor c of imaginary quadratic
fields with discriminant coprime to c is:

lim
X→∞

∑
[K:Q]=2

(Disc(K),c)=1
−X<Disc(K)<0

#Cl3(K, c)

∑
[K:Q]=2

(Disc(K),c)=1
−X<Disc(K)<0

1
=


3m · (1 + 2n) if 3 - c,

3m ·
(
1 + 2n−1

)
if 3 || c, and

3m+1 ·
(
1 + 3 · 2n−1

)
if 9 | c.

More generally, we find that the mean size of the 3-torsion subgroup in ray class groups of conductor c
of quadratic fields defined by prescribing splitting conditions at a finite set of primes only depends on the
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specific primes p dividing c that are allowed to ramify in the family of quadratic fields and the number of
primes p | c that are required to remain unramified in the family (see Theorem 5.1).

The averages obtained in [8] implied that a positive proportion of real (respectively, imaginary) quadratic
fields have class number indivisible by 3 when ordered by discriminant, and this result was slightly refined
by Nakagawa-Horie [15] in order to prove that there are infinitely many hyperelliptic curves over Q of a
given genus with no integral points. In joint work with Bhargava, we prove the following (as a consequence
of Corollary 4 in [4]):

Theorem 3 ([4]). Let S+ ∪ S0 ∪ S− be a disjoint union of finite sets of primes. There are infinitely many
real (respectively, imaginary) quadratic fields K with class number indivisible by 3 such that K is ramified
at each prime of S0, inert at each prime of S−, and split at each prime of S+.

This result and its generalizations (see [18] in conjunction with [1]) have been utilized to imply uncon-
ditional versions of modularity lifting theorems in the residually reducible case [16]. Furthermore, they are
required in proving the nonvanishing of critical values of L-functions for positive proportions of quadratic
twist families of elliptic curves with rational p-torsion points [17] and have applications to proving cases of
the weak Goldfeld conjecture [12].

In this article, we show that the mean values in Theorem 1 also imply that a positive proportion of
quadratic fields have trivial 3-torsion subgroups in their ray class groups for certain conductors c, generalizing
Theorem 3.

Corollary 4. Assume c is equal to an odd prime number not congruent to 1 mod 3 (in the real quadratic
case, also consider those conductors c that are a product of two distinct primes that are not congruent to
1 mod 3). Additionally, let S+ ∪ S− ∪ S0 be a disjoint union of finite sets of prime numbers, none of which
contain the primes dividing c. There are infinitely many real (respectively, imaginary) quadratic fields K
that are split at each prime in S+, inert at each prime in S−, ramified at each prime in S0, and have trivial
3-torsion subgroups in their ray class groups of conductor c.

Finally, we may apply the methods of [3] to compute the second main term for the mean number of
3-torsion elements in ray class groups of quadratic fields ordered by absolute discriminant. More precisely,
we prove the following refinement of Theorem 1. Let Cl3(K2, c) denote the 3-torsion subgroup of the ray
class group of conductor c for the quadratic field K2.

Theorem 5. For any positive integer c coprime to 3, let m denote the number of distinct primes dividing c
that are congruent to 1 mod 3. When quadratic fields are ordered by absolute discriminant:∑

0<Disc(K2)<X

#Cl3(K2, c) = 3m ·

(
1 +

1

3
·
∏
p|c

(
1 +

p

p+ 1

)
·

∑
0<Disc(K2)<X

1

+

√
3ζ(2/3)Γ(1/3)(2π)1/3

15Γ(2/3)ζ(2)
·
∏
p

(
1− p1/3 + 1

p(p+ 1)

)
·
∏
p|c

(
1 +

p(1− p1/3)

1− p(p+1)
p1/3+1

)
·X5/6

)
+ Oε(X

5/6−1/48+ε), and∑
−X<Disc(K2)<0

#Cl3(K2, c) = 3m ·

(
1 +

∏
p|c

(
1 +

p

p+ 1

)
·

∑
−X<Disc(K2)<0

1

+
ζ(2/3)Γ(1/3)(2π)1/3

5Γ(2/3)ζ(2)
·
∏
p

(
1− p1/3 + 1

p(p+ 1)

)
·
∏
p|c

(
1 +

p(1− p1/3)

1− p(p+1)
p1/3+1

)
·X5/6

)
+ Oε(X

5/6−1/48+ε).

To derive the result for 3-torsion ideal classes in class groups of quadratic fields, Davenport and Heilbronn
first provide asymptotic formulae for the number of cubic fields having bounded discriminant and sieve to
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count the nowhere totally ramified cubic fields. These are degree 3 extensions K3 of Q in which any rational
prime p that ramifies is of the form (p) = p2

1p2 where p1 and p2 are two distinct primes of K3. They prove
that the number of nowhere totally ramified cubic fields having bounded discriminant determines the number
of 3-torsion ideal classes in quadratic fields with the same bound on their discriminant, and so they deduce
the above theorem.

To prove Theorems 1, 2 and 5, we first prove a new parametrization theorem that determines the number
of 3-torsion elements of ray class groups of quadratic fields with bounded discriminant in terms of the
number of appropriate (pairs of) cubic fields with related bounds on their discriminants. We then employ
a generalization of Davenport and Heilbronn’s asymptotics for cubic fields given in [3] by simplifying the
asymptotic count of the relevant pairs of cubic fields. It is important to note that Theorem 1 would not
follow from the original asymptotics given in [8].

We begin this article by fixing an conductor c and a quadratic field K2 in Section 2 in order to compare
the number of 3-torsion ideal classes in the ray class group of K2 of conductor c to the number of pairs of
cubic fields whose discriminants satisfy certain c2-divisibility conditions (see Theorem 2.5). We additionally
study the action of Gal(K2/Q) on this 3-torsion subgroup in order to relate the number of 3-torsion ideal
classes with a fixed action of Gal(K2/Q) to certain singleton cubic fields whose discriminants satisfy similar
c2-divisibility conditions. In Section 3, we recall and employ results of [3] that compute the density of
discriminants of cubic fields satisfying certain acceptable local specifications. This allows us to determine
in Section 4 the mean size of the 3-torsion subgroups in an eigenspace of the ray class groups of quadratic
fields K2 for the nontrivial action of Gal(K2/Q). We are then able to conclude Theorems 1 and 2 as well as
Corollary 4 in Section 5 by studying the 3-torsion elements in ray class groups of quadratic fields K2 that are
fixed by Gal(K2/Q). Finally, in Section 6 we prove Theorem 5 by computing the second main term for the
average number of 3-torsion elements in ray class groups of fixed conductor of quadratic fields with bounded
discriminant, building on work of [3].

2 Parametrization of 3-torsion elements in ray class groups of
quadratic fields

We begin by describing a bijection between index-3 subgroups of ray class groups of quadratic fields and
certain pairs of cubic fields. This will allow us to determine the number of 3-torsion elements in ray class
groups of fixed conductor of quadratic fields using a generalization given in [3] of Davenport-Heilbronn’s
asymptotic formulae on the density of discriminants of cubic fields.

2.1 Ray class groups and fields

First, we recall the definition of the ray class group of a number field K. Because we will eventually range
over all quadratic fields, we only consider ray class groups whose finite part of the modulus is integral (so
that it can be fixed independently of the quadratic field). Additionally, because ramification at infinity only
affects the size of the 2-torsion subgroup in the (narrow) ray class groups, we work with ray class groups
with trivial infinite part of the modulus. Under these restrictions, we refer to the rational positive generator
of the modulus as the conductor.

Fix c ∈ Z, and let Ic(OK) denote the subgroup of fractional ideals ofOK generated by prime ideals coprime
to cOK . Additionally, let P1,c(OK) denote the subgroup of principal ideals (α) such that α ≡ 1 mod cOK .
We then define the ray class group of conductor c as the quotient

Cl(K, c) := Ic(OK)/P1,c(OK). (1)

In this notation, the ideal class group of a field K is denoted Cl(K, 1). Additionally, let Clp(K, c) denote the
p-torsion subgroup of Cl(K, c) for any prime p.
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There is another (equivalent) definition of Cl(K, c) as a quotient of the ideles. More precisely, let A×K
denote the ideles of K, and for any OK-prime p | c, define

Wc(p) = 1 + m
c(p)
p ,

where mp is the maximal ideal of OKp
and c(p) denotes the largest power of p which contains cOK . Let

Wc =
∏
p|c

Wc(p)×
∏
p-c

O×Kp
.

We can then define
Cl(K, c) := A×K/K

× ·Wc. (2)

The fact that these two definitions are equivalent can be found, e.g. in Milne [13].

Let K(c) denote the ray class field of conductor c of K, which is characterized as the unique abelian
extension of K such that the Artin map provides an isomorphism between Cl(K, c) and Gal(K(c)/K). It is
well-known that every finite abelian extension is contained in some ray class field. The conductor of a finite
abelian extension L/K is defined to be the conductor of the smallest ray class field of K that L lies in (note
that if c | c′, then K(c) ⊂ K(c′)). Additionally, it is true that any prime p of OK that ramifies in L must
divide c.

The importance of the conductor of a finite abelian extension is that it determines exactly which primes
ramify. We next show that conductors of cubic cyclic extensions over a quadratic field are squarefree away
from 3 and never divisible by 27.

Lemma 2.1. Fix a integer c ∈ Z with prime factorization c = 3k ·
∏n
j=1 p

kj
j .

(a) If k = 0, any cubic cyclic extension of a quadratic field K that is unramified away from primes dividing
c is contained in the ray class field K

(∏n
j=1 pj

)
.

(b) If k > 0, any cubic cyclic extension of a quadratic field K that is unramified away from the primes
dividing c contained in the ray class field K

(
9 ·
∏n
j=1 pj

)
.

Proof. Part (6) of Theorem 9.2.6 in [5] implies that the conductor f of a cubic extension L over K is
squarefree away from 3. We deduce part (a) by noting that f |

∏n
j=1 pj since L cannot ramify at any prime

which is coprime to c.

If 3 | f and p is a prime ideal of K above 3, then (O×Kp
)3 contains 1 + 9OKp

= (1 + 3OKp
)3. Using the

definition Cl(K, f) = A×K/K×Wf , there is an index-3 subgroup of A×K corresponding to the extension L.
Since any such index-3 subgroup of A×K will contain the cubes (O×Kp

)3, we deduce that 9 | f , but 27 - f , and

we can then combine this fact with part (a) to deduce part (b).

Lemma 2.1 implies that the minimality restriction on conductors of cubic extensions of quadratic fields
requires that such conductors are integers c which are squarefree away from 3 and additionally, 27 - c. We
next study the relationship between conductors and discriminants of cubic extensions.

Lemma 2.2. (a) Let K be a quadratic field. If L is a non-Galois cubic field such that the compositum
LK is Galois over Q, then Disc(L) = Disc(K)f2, where f is equal to the conductor of LK over K.

(b) If L is a Galois cubic field and Disc(L) = f2
0 , then f0 = 3e · p1 · . . . · pm where e = 0 or 2 and each pi

denotes a distinct prime satisfying pi ≡ 1 mod 3 for all i. Additionally, L ⊂ Q(f0).

Proof. Part (a) follows from Theorem 9.2.6(4) in [5]. Part (b) follows from class field theory (see [7]).

Next, we explicitly determine cubic fields that lie inside the normal closure (over Q) of a cubic cyclic
extension of a quadratic field K. We show that the quantity of such cubic fields can be used to compute the
number of the 3-torsion elements in the ray class groups of K.
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2.2 Index-3 subgroups of ray class groups of quadratic fields

For the remainder of the section, fix a conductor c as described by Lemma 2.1, i.e. let c be a positive integer
which is squarefree away from 3, and 27 - c. We describe the relationship between index-3 subgroups of
Cl(K2, c) for a quadratic field K2 and certain pairs of cubic field. To do so, we must first introduce some
notation. Call an integer d ∈ Z fundamental if it is the discriminant of some quadratic field.

Definition 2.3. We say that a pair of fields (K+,K−) is c-valid if:

• K+ = Q or a Galois cubic field with Disc(K+) | c2, and

• K− = Q or a non-Galois cubic field with Disc(K−) = df2 where d ∈ Z is fundamental and f | c.

Two c-valid pairs (K+,K−) and (M+,M−) are isomorphic if both K+ ∼= M+ and K− ∼= M−.

To see an explicit example, let c = 7, and take K+ = Q(ζ7 + ζ−1
7 ), where ζ7 denotes a 7th root of unity. If θ

denotes a root of f(x) = x3 − x2 + 5x+ 1, then K− = Q(θ) totally ramifies at 7. Since Disc(K+) = 49 and
Disc(K−) = −3 · 22 · 72, it follows that (K+,K−) is a 7-valid pair.

The only 1-valid pairs have K+ = Q, and K− = Q or has discriminant equal to the discriminant of a
quadratic field. It is straightforward to check that such cubic fields K− cannot be totally ramified at any
prime.

Below, we give names to certain special classes of c-valid pairs.

Definition 2.4. Let c be a positive integer which is squarefree away from 3, and 27 - c.

(a) The pair (Q,Q) is the trivial c-valid pair for any c.

(b) For any cyclic cubic field K3 satisfying Disc(K3) | c2, (K3,Q) is a c-valid pair. We refer to K3 as a
(cyclic) c-valid cubic field.

(c) For any non-cyclic cubic field K3 whose discriminant can be written as df2 where f | c and d is a
fundamental, (Q,K3) is a c-valid pair. We refer to K3 as a (non-cyclic) c-valid cubic field.

We now state the main result of this section, which describes a correspondence between c-valid pairs and
index-3 subgroups of Cl(K2, c). This will allow us to later determine the size of Cl3(K2, c) in terms of c-valid
cubic fields.

Theorem 2.5. Let c be a positive integer which is squarefree away from 3, and additionally, 27 - c. There
is a natural bijection between pairs (K2, G) consisting of a quadratic field K2 along with an index-3 subgroup
G of Cl(K2, c) and isomorphism classes of non-trivial c-valid pairs.

When c = 1 and Cl3(K2) = Cl3(K2, 1), Theorem 2.5 is simply the bijection used in [8] between nowhere
totally ramified cubic fields and index-3 subgroups of the class groups of quadratic fields (see also [3]). We
prove this generalization by studying prime ramification in (cubic) subfields contained within the Galois
closure of an arbitrary cubic cyclic extension K6 over K2. These cubic subfields turn out to be c-valid iff K6

is unramified away from c.

The goal for the remainder of this section is to prove Theorem 2.5. We first discuss the Galois theory of
an arbitrary cubic cyclic extension of a quadratic number field.

2.3 Cubic cyclic extensions of quadratic fields

In order to prove Theorem 2.5, we first show that for a fixed quadratic field, any cubic cyclic extension of
conductor c is determined by a (unique up to isomorphism) non-trivial c-valid pair. To find a candidate for
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this c-valid pair, we look within the normal closure (over Q) of such sextic fields. For any number field K,

let K̃ denote its normal closure over Q.

Fix a quadratic extension K2/Q. If K6/K2 is a cyclic cubic extension, then the Galois group Gal(K̃6/Q)
is equal to S3, C6, or S3×C3, which are the transitive subgroups with order at least 6 in the wreath product

Gal(K6/K2) o Gal(K2/Q) ∼= (C3 × C3) o C2
∼= S3 × C3. (3)

Note that in the first two cases, K6 is already Galois. We have the following field diagram when K6 6= K̃6.

K̃6

K+K2 K6 K−K2

K+ K−

K2

Q

3 3
3

2 2

3 3
3

2

3 3

Figure 1: Some subfields of K̃6 when Gal(K6/Q) ∼= S3 × C3

When K6 is not Galois, denote the subfield of K̃6 fixed by C2 × C3 ⊂ S3 × C3 as K−, and the subfield
fixed by S3 as K+. We then have that Gal(K+/Q) = C3, and Gal(K̃−/Q) = S3 with K̃− = K−K2. It

follows that K̃6 = K̃+K−. We have thus proven the following lemma stating that K+ and K− determine
K6 and vice versa.

Lemma 2.6. Let K6 denote a cubic cyclic extension over a quadratic field K2. If K6 is not Galois over Q,
then

Gal(K̃6/Q) ∼= S3 × C3.

Additionally, there exists a unique pair of (isomorphism classes of) cubic subfields K+ and K−, where K+

is cyclic and K− is not Galois such that the normal closure of K+K− is equal to K̃6. In particular, we can
explicitly write

K̃6 = K+K2K
−.

This lemma implies that any degree-18 field with Galois group over Q equal to S3×C3 is either determined
by a degree 6 non-Galois subfield that is cyclic over a quadratic subextension or equivalently, by the fixed
field of C2 × C3 and the fixed field of S3. We will use this to prove that the pair of fields denoted in Figure
1 by K+ and K− make a c-valid pair whenever K6 is unramified away from c.

2.4 Ramification in fields with Galois group S3 × C3

We next show that a pair of cubic fields associated to a cubic cyclic extension of conductor c over a fixed
quadratic field by Lemma 2.6 is indeed c-valid. We do so by understanding how ramification in the sextic field
determines ramification in the pair and vice versa. We begin by reviewing properties of the discriminants of
subfields within a Galois sextic field.

Lemma 2.7. Fix a quadratic field K2. Any c-valid cubic field K such that K2K is Galois over Q satisfies:
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(a) Disc(K)2 | Disc(K2K);

(b) NmK(Disc(K2K/K)) | Disc(K2)3;

(c) Disc(K2K) | c4 ·Disc(K2)3.

Proof. There are two different ways we can calculate the discriminant of K2K using the field towers
K2K/K2/Q and K2K/K/Q:

NmK2(Disc(K2K/K2)) ·Disc(K2)3 = Disc(K2K) = NmK(Disc(K2K/K)) ·Disc(K)2. (4)

(a) By the second equality in (4), we conclude that Disc(K)2 | Disc(K2K).

(b) Let [β1, β2] denote an integral basis of OK2
, and define the 2 × 2 matrix M = [σi(βj)]i,j where σi run

through elements of Gal(K2K/K). First, we know that det(M)2 = Disc(K2), and second, we have that
[β1, β2] is a K-basis for K2K. This implies that det(M)2 ∈ Disc(K2K/K), and hence

Disc(K2K/K) | Disc(K2)

as OK-ideals. Part (b) then follows by taking norms.

(c) The extension K2K/K2 is abelian, and by Theorem 9.2.6 of [5], it has an integral conductor f . It is
related to the relative discriminant by Disc(K2K/K2) = (fOK2

)2. If K is non-Galois, then Disc(K) = df2

by Lemma 2.2(a), and so f | c. If K is Galois, then Disc(K) = f2 where f | c.
From (4), we have that

Disc(K2K) = NmK2(f2) ·Disc(K2)3.

Since f | c, we obtain Disc(K2K) | NmK2(c2) ·Disc(K2)3, which implies that

Disc(K2K) | c4 ·Disc(K2)3.

Proposition 2.8. Fix a quadratic field K2. Any cubic cyclic extension K6 over K2 of conductor c that is not

Galois over Q has a c-valid pair (K+,K−) contained within the normal closure K̃6 satisfying K̃+K− = K̃6.
It is unique up to isomorphism.

Proof. Given a cubic cyclic extension K6 over K2 of conductor c, the candidate c-valid pair (K+,K−)

associated to K6 comes from Lemma 2.6 and Figure 1. It remains to show that Disc(K+) | c2 and Disc(K−)
Disc(K2) |

c2. To do so, we study the relationship between total ramification in K+ or K− and ramification in K6/K2.

We begin with K−. By Lemma 2.2(a), the conductor of K−K2/K2 is equal to f where Disc(K−) =
Disc(K2)f2. Combined with Lemma 2.7, we obtain Disc(K2)2f4 | c4 Disc(K2)3, and so

f4 | c4 ·Disc(K2).

Recall that Disc(K2) is squarefree away from 2, and 24 - Disc(K2) for any quadratic field, so we conclude
that f | c.

We now turn to K+. Lemma 2.7 implies that

Disc(K+)2 | c4 Disc(K2)3.

In this case, Disc(K+) = f2
0 for some integer f0, and so we obtain

f4
0 | c4 ·Disc(K2)3.

If Disc(K2) is odd, then it is squarefree by Lemma 2.2(b). This implies f0 | c.
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If Disc(K2) is even, but 2 - f0, then we also conclude f0 | c. If 2 | f0, assume for the sake of contradiction

that 2 - c. Then K̃6 is unramified over K2 at the primes above 2. This implies that the ramification degree

of K̃6/Q is at most 2 for p = 2, and thus the ramification degree is at most 2 in K+. Since K+ is cyclic of
degree 3, 2 is thus unramified in K+, which contradicts 2 | f0 since Disc(K+) = f2

0 . Thus, 2 | c, and since
4 - f0 by Lemma 2.2(b), we obtain f0 | c.

2.5 Proof of Theorem 2.5

We finally return to Theorem 2.5 and give a proof. We begin by giving an explicit description of the map. Let
c be as in the statement of Theorem 2.5. If (K2, G) is a quadratic field along with an index-3 subgroup G of
Cl(K2, c), then let K6 denote the fixed field in K2(c) for the subgroup G so that Gal(K6/K2) = Cl(K2, c)/G.
We then have:

• If K6 is Galois over Q and Gal(K6/Q) = C6, then (K2, G) corresponds to (K3,Q), where K3 is the
cubic subfield of K6;

• If K6 is Galois over Q and Gal(K6/Q) = S3, then (K2, G) corresponds to (Q,K3), where K3 is the
cubic subfield of K6;

• If K6 is not Galois over Q, then (K2, G) corresponds to (K+,K−) as constructed in Lemma 2.6.

If K6 is Galois, then its cubic subfield K3 can only totally ramify at primes dividing c. Indeed, this is
clear when Gal(K6/Q) = C6. When Gal(K6/Q) = S3, a prime p ramifies in the extension K6/K2 if and

only if p2 | Disc(K3)
Disc(K2) . Thus, K3 is a c-valid cubic field in either case.

When K6 is not Galois, Proposition 2.8 implies that the above map sends (K2, G) to a c-valid pair
(K+,K−). To prove the other direction, we begin with a c-valid pair (K+,K−) and construct a cubic cyclic
extension over K2 of conductor dividing c. Then, the Galois group of K2(c) over this cubic cyclic extension
will be equal to G.

Recall that the compositum K+K2K
− is Galois over Q of degree 6 or 18. If it is degree 6, then (K+,K−)

is in fact a non-trivial c-valid cubic field, i.e., exactly one of K± is equal to Q. Thus, we take K6 to be
the compositum K+K2K

−. In this case, it remains to show that K6 has conductor dividing c over K2, i.e.
K6 ⊂ K2(c). If K− = Q, then by assumption Disc(K+) = f2

0 where f0 | c; thus, K+ ⊂ Q(f0) ⊂ Q(c), so

K6 = K+K2 ⊂ K2(c). If K+ = Q, then Disc(K−) = Disc(K2)f2 where f | c, and so K−K2 = K̃− is a cubic
extension of K2 contained in K2(f) ⊂ K2(c) by Lemma 2.2(a).

If K+K2K
− is degree 18, it has Galois group equal to S3 × C3, and we define K6 to be the fixed field of

any non-normal C3 ⊂ S3 × C3. It remains to show that K6 has conductor dividing c as an extension over
K2. We do so by proving that K2K

− and K2K
+ have conductor dividing c over K2.

Lemma 2.2(a) implies that K2K
− has conductor f where Disc(K−) = Disc(K2) · f2, and f | c. Addition-

ally, if Disc(K+) = f2
0 , suppose p is a prime such that p - f0. Then p cannot ramify in K+, which implies

that K+K2/K2 is unramified above p. By Lemma 2.1, we conclude that K2K
+/K2 has conductor dividing

∏
p|f0

p if 3 - f0, or

9 ·
∏

36=p|f0

p if 3 | f0.

If 3 - f0, then f0 is squarefree by Lemma 2.2(b), and so the conductor of K2K
+ over K2 divides c since

f0 | c. If 3 | f0, note that 9 || f0; thus, we altogether obtain that K2K
+ and K2K

− both have conductor

dividing c. Since K̃6 = K+K2K
−, it must have conductor dividing c as an extension over K2, and so K6 as

a subextension must also have conductor dividing c.
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It is easy to check that two non-isomorphic c-valid pairs (K+,K−) correspond to distinct non-isomorphic
cubic cyclic extensions of K2 of conductor c, and thus, they correspond to distinct index 3-subgroups of
Cl(K2, c). �

Using the fact that the number of order-3 subgroups is equal to the number of index-3 subgroups in a
finite abelian group, we directly relate the number of non-trivial c-valid pairs to the number of 3-torsion
elements in ray class groups of conductor c.

Corollary 2.9. If c is a positive integer which is squarefree away from 3 and 27 - c, then

#Cl3(K2, c) = 2 ·#
{

non-trivial c-valid pairs of fields (K+,K−)
s.t. K− = Q or has quadratic resolvent K2

}
+ 1.

Recall that the quadratic resolvent of a non-Galois cubic field K3 is the quadratic subfield of the normal

closure K̃3. If K3 has quadratic resolvent K2, then Disc(K2) | Disc(K3) and Disc(K3)
Disc(K2) is equal to the square

of the conductor of Gal(K̃3/K2) by Lemma 2.2(b).

2.6 The action of Gal(K2/Q) on Cl3(K2, c)

We next consider the action of Gal(K2/Q) on Cl3(K2, c). The number of c-valid cubic fields on the right-
hand side of the equality in Corollary 2.9 is related to the sizes of eigenspaces for the action of Gal(K2/Q).
Note that Cl3(K2, c) is a Gal(K2/Q)-module of odd order, and thus we have two well-defined submodules of
Cl3(K2, c):

Cl+3 (K2, c) := {[I] ∈ Cl3(K2, c) : σ(I) = I}, and

Cl−3 (K2, c) := {[I] ∈ Cl3(K2, c) : σ(I) = J where [I]−1 = [J ]}.

We then have Cl3(K2, c) = Cl+3 (K2, c)⊕ Cl−3 (K2, c), and thus

#Cl3(K2, c) = #Cl+3 (K2, c) ·#Cl−3 (K2, c). (5)

Proposition 2.10. Fix a quadratic field K2, and let c be a positive integer which is squarefree away from
3, and 27 - c. Then:

(a) #Cl+3 (K2, c) = 2 ·# {Cyclic c-valid cubic fields K+}+ 1;

(b) #Cl−3 (K2, c) = 2 ·# {Non-cyclic c-valid cubic fields K− with quadratic resolvent K2}+ 1.

Proof. The second part follows from Lemma 1.10 of [14] and Proposition 35 of [4]. To prove the first
part, consider some cyclic cubic field K+ unramified away from c. By class field theory and the proof of
Proposition 2.5, K+K2/K2 corresponds to a index-3 subgroup H of Cl(K2, c)

(3), the 3-Sylow subgroup of
Cl(K2, c). Since K+K2 is Galois over Q, H has an action of Gal(K2/Q). Artin reciprocity implies that

σ(K+K2) = K+K2 ⇒ σ(H) = H.

Thus, we write H = H+ ⊕ H−, where H± := {[I] ∈ H : σ([I]) = [I]±}. Let Cl±(K2, c)
(3) be defined

analogously. Since H is index 3, it is clear that H+ = Cl+(K2, c)
(3) or H− = Cl−(K2, c)

(3).

We now show that H− = Cl−(K2, c)
(3), so that Cl(K2, c)

(3)/H ∼= Cl+(K2, c)
(3)/H+. For any lift σ̃ of σ to

Gal(K+K2/K2), Artin reciprocity implies the action of conjugation on Gal(K+K2/K2) by σ̃ corresponds to
acting by σ on Cl(K2, c)

(3)/H. Since Gal(K+K2/K2) is isomorphic to C6, σ acts trivially on Cl(K2, c)
(3)/H

so H− = Cl−(K2, c)
(3). We then have that the number of index-3 subgroups of Cl+(K2, c)

(3) is the same as
the number of order-3 subgroups, which are generated by nontrivial elements of Cl+3 (K2, c). Since powers of
an element generate the same subgroup we then deduce the first part.
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We additionally remark that for any quadratic field K2, Cl+3 (K2, c) = Cl3(Q, c), independent of K2. This
is a crucial fact that greatly simplifies the computation for the average size of ray class groups of conductor
c when K2 is allowed to vary. We next compute asymptotics for both Cl±3 (K2, c) by counting the relevant
c-valid cubic fields as given in Proposition 2.10.

3 Counting c-valid cubic fields

The results of the previous section allow us to determine the number of 3-torsion elements in ray class
groups of quadratic fields simply in terms of c-valid cubic fields instead of c-valid pairs. We first compute
the size of Cl+3 (K2, c) for any quadratic field K2 by enumerating the number of cyclic c-valid cubic fields. In
order to obtain asymptotics for the size of Cl−3 (K2, c), we then employ the results of [3] building on those
of [8] for computing the number of cubic fields with bounded discriminant that satisfy certain ramification
restrictions.

3.1 The size of the 3-torsion subgroup in ray class groups of Q

As before, let K2 be a quadratic field. In this section, we prove that the number of Gal(K2/Q)-stable
elements in the 3-torsion subgroups of the ray class group of conductor c depends only on the number of
distinct primes congruent to 1 mod 3 that divide c. More precisely,

Proposition 3.1. Let K2 be a quadratic field, and let c be a positive integer. Let the number of distinct
prime factors pi | c such that pi ≡ 1 mod 3 be denoted by m. Then

#Cl+3 (K2, c) =

{
3m if 9 - c, and

3m+1 if 9 | c,

independent of the quadratic field K2.

Proof. By Proposition 2.10(a), we can enumerate elements of Cl+3 (K2, c) by counting cyclic c-valid cubic
fields, i.e., normal cubic extensions of Q with discriminant dividing c2. If K+ is such a cyclic field of degree
3, by Lemma 2.2(b), the conductor of K+ is equal to c0 = 3e · p1 · . . . · pm where e = 0 or 2, and pi denotes
distinct primes satisfying pi ≡ 1 mod 3 for all i. Furthermore, if e = 0, then there are 2m−1 cubic cyclic
fields of conductor c0, and if e = 2, then there are 2m cubic cyclic fields of conductor c0 (see [7]). We must
therefore enumerate cyclic c-valid cubic fields with discriminant c20 where c0 is as above.

If 9 - c, let c = 3e · pk11 · . . . · pkmm · q
km+1

m+1 · . . . · qknn where each pi is a distinct prime congruent to 1 mod 3,
qj are distinct primes congruent to 2 mod 3, and e = 0 or 1. In conjunction with Proposition 2.10(a), we
obtain

#Cl+3 (K2, c) = 1 + 2 ·

 m∑
j=1

(
m

j

)
2j−1

 = 3m.

Similarly, if e ≥ 2, we deduce

#Cl+3 (K2, c) = 1 + 2 ·

m+1∑
j=1

(
m+ 1

j

)
2j

 = 3m+1.
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3.2 The asymptotic number of non-cyclic c-valid cubic fields

We want to next determine the asymptotics for the number of cubic fields that are totally ramified at a
certain fixed set of primes. Let Kfull denote the set of isomorphism classes of cubic fields, and for any subset
K ⊆ Kfull, define for i = 0 or 1:

N
(i)
3 (K, X) := #{K3 ∈ K | 0 < (−1)i Disc(K3) < X}.

Theorem 3.2. Let S denote a set of primes, and let ni = # Aut(R3−2i ⊕ Ci) for i = 0 or 1.

(a) Let KS denote the set of isomorphism classes of cubic fields that are totally ramified exactly at the
primes p ∈ S.

lim
X→∞

N
(i)
3 (KS , X)

X
=

3

niπ2
·
∏
p∈S

1

p(p+ 1)

(b) If 3 ∈ S, let K(3)
S denote the set of isomorphism classes of cubic fields that are totally ramified exactly

at p ∈ S and have discriminant that is not divisible by 81.

lim
X→∞

N
(i)
3 (K(3)

S , X)

X
=

2

niπ2
·
∏
p∈S

1

p(p+ 1)

(c) If 3 ∈ S, let K(9)
S denote the set of isomorphism classes of cubic fields that are totally ramified exactly

at p ∈ S and have discriminant divisible by 81.

lim
X→∞

N
(i)
3 (K(9)

S , X)

X
=

1

niπ2
·
∏
p∈S

1

p(p+ 1)
.

(d) Let S′ be a set of primes containing S. Let KS,S′ denote the set of isomorphism classes of cubic fields
that are totally ramified exactly at p ∈ S and unramified at p ∈ S′ r S.

lim
X→∞

N
(i)
3 (KS,S′ , X)

X
=

3

niπ2
·
∏

p∈S′rS

p

p+ 1
·
∏
p∈S

1

p(p+ 1)
.

(e) Let S′ be a set of primes containing S. If 3 ∈ S, let K(9)
S,S′ denote the set of isomorphism classes of

cubic fields K3 that are totally ramified exactly at p ∈ S, unramified at p ∈ S′ r S, and 81 || Disc(K3).

lim
X→∞

N
(i)
3 (K(9)

S,S′ , X)

X
=

1

niπ2
· 2

3
·
∏

p∈S′rS

p

p+ 1
·
∏
p∈S

1

p(p+ 1)
.

Proof. For any prime p, let Σtr
p denote the set of all isomorphism classes of maximal cubic étale algebras

over Zp that are totally ramified. Let Σur
p denote the set of all isomorphism classes of maximal cubic étale

algebras over Zp that are unramified. Additionally, let Σntr
p denote the set of all isomorphism classes of

maximal cubic étale algebras over Zp that are not totally ramified. When p = 3, let Σ
(3)
3 denote the subset of

Σtr
3 whose discriminant over Z3 is not divisible by 81, and let Σ

(9)
3 denote the subset of Σtr

3 whose discriminant

is divisible by 81. Finally, let Σ
(81)
3 denote the subset of Σtr

3 whose discriminant is equal to 81.

We now describe collections Σ = (Σp)p of local specifications at each prime p which exactly determine the

(maximal orders of) cubic fields contained in KS , K(3)
S , K(9)

S , KS,S′ , and K(9)
S,S′ , respectively. In each case,

Σ is an acceptable collection of local specifications as defined in [3]. Indeed, we can equivalently define the

family of cubic fields (a) KS , (b) K(3)
S , (c) K(9)

S , (d) KS,S′ , or (e) K(9)
S,S′ as containing exactly the fraction

fields of all maximal orders R for which R⊗ Zp ∈ Σp for all p where:
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(a) Σp =

{
Σntr
p if p /∈ S,

Σtr
p if p ∈ S;

(b) Σp =


Σntr
p if p /∈ S,

Σtr
p if p ∈ S r {3},

Σ
(3)
3 if p = 3;

(c) Σp =


Σntr
p if p /∈ S,

Σtr
p if p ∈ S r {3},

Σ
(9)
3 if p = 3;

(d) Σp =


Σntr
p if p /∈ S0,

Σtr
p if p ∈ S,

Σur
p if p ∈ S′ r S;

(e) Σp =


Σntr
p if p /∈ S0,

Σtr
p if p ∈ S r {3},

Σur
p if p ∈ S′ r S,

Σ
(81)
3 if p = 3.

Let N
(i)
3 (Σ, X), the number of (isomorphism classes) of maximal cubic rings R such that R⊗Zp ∈ Σp for

all p with 0 < (−1)i Disc(R) < X. We asymptotically compute N
(i)
3 (Σ, X) using Theorem 7 in [3], which

determines the main term in terms of a mass formula whenever Σ is defined by an acceptable collection of
local conditions. More precisely, they prove

lim
X→∞

N
(i)
3 (Σ, X)

X
=

1

2ni
·
∏
p

p− 1

p
·
∑
R∈Σp

1

Discp(R)
· 1

# Aut(R)

 , (6)

where Discp(R) denotes the discriminant of R over Zp as a power of p. We compute (or combine Lemmas
18, 19, and 32 in [3] to deduce):

∑
R∈Σp

1

Discp(R)
· 1

# Aut(R)
=


p+1
p if Σp = Σntr

p ,
1
p2 if Σp = Σtr

p ,

1 if Σp = Σur
p ;

∑
R∈Σ3

1

Disc3(R)
· 1

# Aut(R)
=


2
27 if Σ3 = Σ

(3)
3 ,

1
27 if Σ3 = Σ

(9)
3 ,

2
81 if Σ3 = Σ

(81)
3 .

In conjunction with (6), we thus obtain the desired asymptotes in Theorem 3.2. As an example, we give the
calculation below in case (e):

lim
X→∞

N
(i)
3 (K(9)

S,S′ , X)

X
=

1

2ni
· 4

243
·
∏
p/∈S′

p2 − 1

p2
·
∏

p∈S′rS

p− 1

p
·
∏

36=p∈S

p− 1

p3

=
2

3niπ2
·
∏

p∈S′rS

p

p+ 1
·
∏
p∈S

1

p(p+ 1)
.

3.3 Prescribing splitting conditions on the quadratic resolvents of c-valid cubic
fields

Now, let S = (S+, S−, S0) be three disjoint sets of primes. We will next consider families K3(S) consisting
of all cubic fields whose quadratic resolvent field is in K2(S). (Recall that K2(S) consists of all quadratic
fields that split at the primes in S+, remain inert at the primes in S−, and ramify at the primes in S0.)

Theorem 3.3. Let S denote a set of primes not containing 3, and let ni = # Aut(R3−2i ⊕Ci) for i = 0 or
1. Additionally, let S = (S+, S−, S0) be three disjoint sets of primes such that:

• S+ ∩ S only contains primes congruent to 1 mod 3 .
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• S− ∩ S only contains primes congruent to 2 mod 3.

As before, let KS denote the set of isomorphism classes of cubic fields that are totally ramified exactly at the
primes p ∈ S. If KS3 (S) = KS ∩ K3(S), then we have:

lim
X→∞

N
(i)
3 (KS3 (S), X)

X
=

3

niπ2
·
∏
p∈S

1

p(p+ 1)
·
∏
p∈S0

1

p+ 1
·

∏
p∈S±r(S∩S±)

p

2(p+ 1)

Proof. For any prime p, let:

1. Σmr
p denote the set of all (isomorphism classes of) maximal cubic étale algebras over Zp that are

minimally ramified, i.e., they decompose as Zp ⊕ Q where Q is a totally ramified quadratic étale
algebra over Zp;

2. Σ+
p consist of the ring of integers of the unique unramified extension of degree 3 over Qp as well as the

algebra Zp ⊕ Zp ⊕ Zp;

3. Σ−p = {Zp ⊕ Zp2} where Zp2 denotes the ring of integers of Qp2 , the unique unramified extension of
degree 2 over Qp.

4. Σtr+
p consists of maximal cubic algebras over Zp that are totally ramified and whose quadratic resolvent

algebra is contained in Qp ⊕Qp.

5. Σtr−
p consists of maximal cubic algebras over Zp that are totally ramified and whose quadratic resolvent

is contained in Qp2 .

As before, denote the set of all (isomorphism classes of) maximal cubic étale algebras over Zp that are totally
ramified as Σtr

p = Σtr+
p ∪Σtr−

p , denote the set of all unramified cubic étale algebras over Zp as Σur
p = Σ+

p ∪Σ−p ,
and denote the set of all cubic étale algebras over Zp that are not totally ramified as Σntr

p = Σur
p ∪ Σmr

p .

If Σ = (Σp)p denotes the acceptable collection of local specifications defining KS3 (S), then we have:

Σp =



Σntr
p if p /∈ S+ ∪ S− ∪ S0 ∪ S,

Σtr
p if p ∈ S r (S ∩ (S+ ∪ S−)),

Σmr
p if p ∈ S0,

Σ±p if p ∈ S± r (S ∩ S±),

Σtr±
p if p ∈ S ∩ S±.

It is straightforward to determine that

∑
R∈Σp

1

Discp(R)
· 1

|Aut(R)|
=


1
p if Σp = Σmr

p ,
1
2 if Σp = Σ±p ,
1
p2 if Σp = Σtr+

p and p ≡ 1 mod 3.
1
p2 if Σp = Σtr−

p and p ≡ 2 mod 3.

Using (6) and the computations following it, we conclude the theorem:

lim
X→∞

N
(i)
3 (KS3 (S), X)

X
=

1

2ni
·

∏
p/∈S±∪S0∪S

p2 − 1

p2
·
∏
p∈S

p− 1

p3
·
∏
p∈S0

p− 1

p2
·

∏
p∈S±r(S∩S±)

p− 1

2p

=
3

niπ2
·
∏
p∈S

1

p(p+ 1)
·
∏
p∈S0

1

p+ 1
·

∏
p∈S±r(S∩S±)

p

2(p+ 1)
.

(Above, we have abused notation slightly by letting S± = S+ ∪ S−.)
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4 The mean size of Cl−3 (K2, c) over families of quadratic fields K2

In this section, we begin by computing the average number of 3-torsion elements in the minus eigenspace
of their ray class groups of fixed conductor c in families of quadratic fields ordered by discriminant. We
then determine the mean size of Cl−3 (K2, c) over certain subfamilies of quadratic fields K2, namely those
defined by local specifications at a finite number of primes. We first vary over the quadratic fields whose
discriminants are coprime to the choice of conductor c and obtain a different average that only depends
on the number of primes dividing c. We then average over quadratic fields that have prescribed splitting
conditions at a finite number of primes.

4.1 The average number of 3-torsion elements in the minus eigenspaces of the
ray class groups of quadratic fields

For shorthand, let

Avg(i)(Cl−3 (c)) := lim
X→∞

∑
0<(−1)i Disc(K2)<X

#Cl−3,(K2, c)∑
0<(−1)i Disc(K2)<X

1
.

Proposition 4.1. Fix a positive integer c, and recall that n0 = 6 and n1 = 2. Then

(a) If 3 - c, then Avg(i)(Cl−3 (c)) = 1 +
2

ni
·
∏
p|c

(
1 +

p

p+ 1

)
;

(b) If 3 || c, then Avg(i)(Cl−3 (c)) = 1 +
12

7ni
·
∏
p|c

(
1 +

p

p+ 1

)
;

(c) If 9 | c, then Avg(i)(Cl−3 (c)) = 1 +
30

7ni
·
∏
p|c

(
1 +

p

p+ 1

)
.

Proof. Let Sc denote the set of primes dividing c, and recall that the density of fundamental discriminants
is:

lim
X→∞

∑
0<(−1)i Disc(K2)<X

1

X
=

3

π2
. (7)

(a) Assume 3 - c. Recall that a c-valid cubic field K3 has discriminant Disc(K3) = df2 where d is the
discriminant of its quadratic resolvent field and f | c. Furthermore, it follows (for example, from Proposition
8.4.1(1) of [5]) that a prime p totally ramifies in K3 if and only if p | f . Proposition 2.10 in conjunction with
(7) therefore implies:

Avg(i)(Cl−3 (c)) = 1 + 2 · π
2

3
· lim
X→∞

∑
S⊆Sc

N
(i)
3 (KS , X ·

∏
p∈S p

2)

X
,
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where Sc is equal to the set of primes dividing c. By Theorem 3.2(a), we conclude that

Avg(i)(Cl−3 (c)) = 1 + 2 · π
2

3
·
∑
S⊆Sc

∏
p∈S

p2 · 3

niπ2
·
∏
p∈S

1

p(p+ 1)


= 1 +

2

ni
·
∏
p∈Sc

(
1 +

p

p+ 1

)
.

This proves (a). We skip the proof of (b) as it is very similar to the proof of (c).

(c) Assume 9 | c. By Proposition 2.10 and (7) (in conjunction with Proposition 8.4.1(1) of [5]), we have
that

Avg(i)(Cl−3 (c)) = 1 +
2π2

3
·

 lim
X→∞

∑
S⊆Scr{3}

N
(i)
3 (KS , X ·

∏
p∈S

p2) + N
(i)
3 (K(3)

S∪{3}, X ·
∏

p∈S∪{3}

p2)

X

+ lim
X→∞

∑
S⊆Scr{3}

N
(i)
3 (K(9)

S∪{3}, 9X ·
∏

p∈S∪{3}

p2)

X

 ,

where Sc again denotes the set of primes dividing c. Theorem 3.2(a) and (c) then imply that Avg(i)(Cl−3 (c))
is equal to

1 + 2 · π
2

3
·

∑
S⊆Scr{3}

 3

niπ2
·
∏
p∈S

p

p+ 1
+

2

niπ2
·
∏

p∈S∪{3}

p

p+ 1
+

9

niπ2
·
∏

p∈S∪{3}

p

p+ 1


= 1 +

30

7ni
·
∏
p∈Sc

(
1 +

p

p+ 1

)
.

4.2 The asymptotic number of quadratic fields in certain acceptable families

In order to vary the family of quadratic fields we average over, we must first determine the asymptotics of
these families. We first describe the asymptotic number of discriminants of quadratic fields that are relatively
prime to a fixed integer.

Lemma 4.2. Let c be a positive integer.

lim
X→∞

∑
(Disc(K2),c)=1

0<(−1)i Disc(K2)<X

1

X
=

3

π2
·
∏
p|c

p

p+ 1
.

Proof. By Proposition 2.2 and (4.2) in [2], we have that the number of real (resp. imaginary) quadratic
fields that are unramified away from c is asymptotically equal to

1

2
·
∏
p-c

(
p− 1

p
·
(

1 +
1

p

))
·
∏
p|c

(
p− 1

p
· 1
)
·X =

3

π2
·

∏
p|c

p

p+ 1

 ·X.
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Next, we determine the asymptotic number of quadratic fields with prescribed splitting at a finite number
of primes.

Lemma 4.3. Let S = (S+, S−, S0) be disjoint sets of primes, and let K2(S) denote the set of isomorphism
classes of quadratic fields K2 such that any prime p ∈ S+ splits in K2, any prime p ∈ S− remains inert in
K2, and any prime p ∈ S0 ramifies in K2. We then have:

lim
X→∞

∑
K2∈K2(S)

0<(−1)i Disc(K2)<X

1

X
=

3

π2
·
∏
p∈S0

1

p+ 1
·
∏
p∈S±

p

2(p+ 1)
,

where S± = S+ ∪ S−.

Proof. Similarly, by Proposition 2.2 and (4.2) in [2], we have that the asymptotic number of real (resp.
imaginary) quadratic fields in K2(S) with (absolute) discriminant bounded by X is

1

2
·
∏
p/∈S

(
p− 1

p
·
(

1 +
1

p

))
·
∏
p∈S±

(
p− 1

p
· 1

2

)
·
∏
p∈S0

(
p− 1

p
· 1

p

)
·X =

3

π2
·
∏
p∈S0

1

p+ 1
·
∏
p∈S±

p

2(p+ 1)
·X

4.3 Averaging #Cl−3 (K2, c) over quadratic fields unramified at c

We vary over only those quadratic fields whose discriminants are coprime to the choice of fixed conductor.

For shorthand, let

Avg(i)
c (Cl−3 (c)) := lim

X→∞

∑
(Disc(K2),c)=1

0<(−1)i Disc(K2)<X

#Cl−3 (K2, c)

∑
(Disc(K2),c)=1

0<(−1)i Disc(K2)<X

1
.

Proposition 4.4. Fix a positive integer c, and let n denote the number of distinct primes dividing c. Recall
that n0 = 6 and n1 = 2. Then

(a) If 3 - c, then Avg(i)
c (Cl−3 (c)) = 1 + 2 · 2n

ni
;

(b) If 3 || c, then Avg(i)
c (Cl−3 (c)) = 1 +

2n

ni
;

(c) If 9 | c, then Avg(i)
c (Cl−3 (c)) = 1 + 3 · 2n

ni
.

Proof. Let Sc denote the set of primes dividing c.
(a) Assume 3 - c. Proposition 2.10 combined with Lemma 4.2 implies that

Avg(i)
c (Cl−3 (c)) = 1 +

2π2

3
·

∏
p|c

p+ 1

p

 · lim
X→∞

∑
S⊆Sc

N
(i)
3 (KS,Sc

, X ·
∏
p∈S p

2)

X
.
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By Theorem 3.2(d), we conclude that

Avg(i)
c (Cl−3 (c)) = 1 +

2π2

3
·
∏
p|c

p+ 1

p
·
∑
S⊆Sc

 3

niπ2
·
∏
p∈S

p

p+ 1
·
∏

p∈ScrS

p

p+ 1


= 1 +

2n+1

ni
.

(b) Note that for non-Galois cubic fields K3 that are totally ramified at 3, Disc(K3) is exactly divisible
by 33, 34, or 35, and in order for the quadratic resolvent K2 of K3 to have discriminant relatively prime to
3, then Disc(K3) = Disc(K2)f2 where either 3 - f or 9 || f . Thus, if 3 || c, any quadratic field K2 that is
unramified at 3 satisfies

Cl−(K2, c) = Cl−(K2,
c
3 ).

Thus, Proposition 2.10, Lemma 4.2, and Theorem 3.2(d) together imply that

Avg(i)
c (Cl−3 (c)) = 1 +

2π2

3
·

∏
p|c

p+ 1

p

 · lim
X→∞

∑
S⊆Scr{3}

N
(i)
3 (KS,Sc

, X ·
∏
p∈S p

2)

X

= 1 +
2n

ni
.

(c) If 9 | c, by Proposition 2.10 and Lemma 4.2, we have

Avg(i)
c (Cl−3 (c)) = 1 +

2π2

3
·

∏
p|c

p+ 1

p

 ·
 lim
X→∞

∑
S⊆Scr{3}

N
(i)
3 (KS,Sc

, X ·
∏
p∈S p

2)

X

+ lim
X→∞

∑
S⊆Scr{3}

N
(i)
3 (K(9)

S∪{3},Sc
, 9X ·

∏
p∈S∪{3}

p2)

X

 .

Finally, by Theorem 3.2(d) and (e), we conclude that

Avg(i)
c (Cl−3 (c)) = 1 + 3 · 2n

ni
.

4.4 Averaging #Cl−3 (K2, c) over quadratic fields with prescribed splitting at a
finite number of primes

Next, we vary over quadratic fields in K2(S). Let S = (S+, S−, S0) be disjoint sets of primes, and recall
that K2(S) denotes the set of isomorphism classes of quadratic fields K2 such that any prime p ∈ S+ splits
in K2, any prime p ∈ S− remains inert in K2, and any prime p ∈ S0 ramifies in K2. Recall that we set
S± = S+ ∪ S−.
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For shorthand, let

Avg
(i)
S (Cl−3 (c)) := lim

X→∞

∑
K2∈K2(S)

0<(−1)i Disc(K2)<X

#Cl−3 (K2, c)

∑
K2∈K2(S)

0<(−1)i Disc(K2)<X

1
.

Proposition 4.5. Fix a positive integer c coprime to 3, and let S = (S+, S−, S0) be disjoint sets of primes

such that any prime p | c is not contained in S0. If Sgood
+ (respectively, Sgood

− ) denote the subset consisting
of all primes p in S+ (resp., in S−) that are congruent to 1 mod 3 (resp., 2 mod 3) and p | c. We then have

Avg
(i)
S (Cl−3 (c)) = 1 +

2

ni
· 3#(Sgood

+ ∪Sgood
− ) ·

∏
p|c
p/∈S±

(
1 +

p

p+ 1

)

Proof. In order to determine Avg
(i)
S (Cl−3 (c)), by Proposition 2.10, we must compute the asymptotic number

of non-cyclic c-valid cubic fields whose quadratic resolvent field is in K2(S). If p ∈ S+ and so K2 ∈ K2(S)
splits at p, then in any non-cyclic c-valid cubic field K3 with quadratic resolvent K2, p remains inert in K3,
p splits completely, or p is totally ramified. Additionally, if p ∈ S−, then pOK3 either decomposes into a
product of exactly two distinct prime ideals or totally ramifies. Finally, we recall that a prime p totally
ramifies in K3 with discriminant Disc(K2)f2 if and only if p | f .

Let Sc denote the set of primes dividing c, and recall that by assumption, Sc ∩ S0 = ∅. Additionally, let
Sgood
c denote the set of all primes p | c such that if p ∈ S+ (respectively, if p ∈ S−), then p is congruent to

1 mod 3 (resp., to 2 mod 3), and set cgood =
∏
p∈Sgood

c
p. Proposition 2.10 combined with Lemma 4.3 implies

that

Avg
(i)
S (Cl−3 (cgood)) = 1 +

2π2

3
·

 ∏
p∈S±

2(p+ 1)

p

 ·
∏
p∈S0

p+ 1

 · lim
X→∞

∑
S⊆Sgood

c

N
(i)
3 (KS3 (S), X ·

∏
p∈S p

2)

X
.

By Theorem 3.2(a), we conclude that Avg
(i)
S (Cl−3 (cgood)) is equal to

1 +
2π2

3
·

 ∏
p∈S±

2(p+ 1)

p

 · ∑
S⊆Sgood

c

 3

niπ2
·
∏
p∈S

p

p+ 1
·

∏
p∈S±r(S∩S±)

p

2(p+ 1)


= 1 +

2

ni
·
∑

S⊆Sgood
c

 ∏
p∈Sr(S∩S±)

p

p+ 1
·
∏

p∈S∩S±

2


= 1 +

2

ni
· 3#(Sgood

c ∩S±) ·
∏

p∈Sgood
c r(Sgood

c ∩S±)

(
1 +

p

p+ 1

)
.

We finish the proof by verifying that Avg
(i)
S (Cl−3 (cgood)) = Avg

(i)
S (Cl−3 (c)). Indeed, the 3-torsion subgroups

of ray class groups of conductor c
cgood

are trivial for quadratic fields in K2(S). If a prime p | c and p - cgood,

then either p ∈ S+ and p ≡ 2 mod 3 or p ∈ S− and p ≡ 1 mod 3. In both of these cases, there are no cubic
extensions of a quadratic field in K2(S) that are totally ramified at p.
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Remark 4.6. Let c be a positive integer exactly divisible by 3. If S = (S+, S−, S0) is as in Proposition 4.5,
but we further assume 3 /∈ S+ ∪ S−, then

Avg
(i)
S (Cl−3 (c)) = 1 +

12

7ni
· 3#(Sgood

+ ∪Sgood
− ) ·

∏
p|c
p/∈S±

(
1 +

p

p+ 1

)
,

where Sgood
± are as in Proposition 4.5.

5 Proofs of Theorems 1-2 and Corollary 4

We put together the results of the previous sections in order to conclude Theorems 1 and 2, as well as
Corollary 4. For Theorem 1, we will first allow K2 to vary over all quadratic fields of bounded discriminant
and use the combination of Propositions 2.10, 3.1, and 4.1. Afterwards, we only vary over the discriminants
of quadratic fields that are coprime to the fixed conductor, and we combine Propositions 2.10, 3.1, and 4.4
in order to conclude Theorem 2. Corollary 4 is then derived from a generalization of Theorem 1.

5.1 Proof of Theorem 1

We combine Propositions 4.1 and 3.1 of the previous sections to prove Theorem 1. Let c be an integer, and
assume that there are m primes dividing c that are congruent to 1 mod 3. Define k to satisfy 3k || c, and
recall that Cl+3 (K2, c) only depends on m and k. It is independent of the choice of quadratic field, so in
particular, we have by Proposition 3.1,

lim
X→∞

∑
0<(−1)i Disc(K2)<X

#Cl3(K2, c)∑
0<(−1)i Disc(K2)<X

1
= #Cl+3 (K2, c) · lim

X→∞

∑
0<(−1)i Disc(K2)<X

#Cl−3 (K2, c)∑
0<(−1)i Disc(K2)<X

1
.

We conclude by Propositions 3.1 and 4.1 in conjunction with (5) that

lim
X→∞

∑
0<(−1)i Disc(K2)<X

#Cl3(K2, c)∑
0<(−1)i Disc(K2)<X

1
=



3m ·

1 +
2

ni
·
∏
p|c

(
1 +

p

p+ 1

) if k = 0;

3m ·

1 +
12

7ni
·
∏
p|c

(
1 +

p

p+ 1

) if k = 1;

3m+1 ·

1 +
30

7ni
·
∏
p|c

(
1 +

p

p+ 1

) if k ≥ 2.

(8)

5.2 Proof of Theorem 2

In order to compute the average number of 3-torsion elements in ray class groups of fixed conductor of
quadratic fields with discriminant that is both bounded and coprime to the choice of conductor, we combine
Propositions 3.1 and 4.4. Let c be an integer, and assume that there are n distinct primes dividing c, m of
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which are congruent to 1 mod 3. Define k to satisfy 3k || c. By Proposition 3.1 and (5),

lim
X→∞

∑
(Disc(K2),c)=1

0<(−1)i Disc(K2)<X

#Cl3(K2, c)

∑
(Disc(K2),c)=1

0<(−1)i Disc(K2)<X

1
= #Cl+3 (K2, c) · lim

X→∞

∑
(Disc(K2),c)=1

0<(−1)i Disc(K2)<X

#Cl−3 (K2, c)

∑
(Disc(K2),c)=1

0<(−1)i Disc(K2)<X

1
.

Combining with Proposition 4.4, we obtain

lim
X→∞

∑
(Disc(K2),c)=1

0<(−1)i Disc(K2)<X

#Cl3(K2, c)

∑
(Disc(K2),c)=1

0<(−1)i Disc(K2)<X

1
=



3m ·
(

1 +
2n+1

ni

)
if k = 0,

3m ·
(

1 +
2n

ni

)
if k = 1, and

3m+1 ·
(

1 + 3 · 2n

ni

)
if k ≥ 2.

(9)

5.3 Generalizing Theorem 1(a) and the proof of Corollary 4

Before turning to the proof of Corollary 4, we first generalize Theorem 1(a) when (6, c) = 1.

Theorem 5.1. Let c be an integer coprime to 3, and let S = (S+, S−, S0) be a disjoint set of primes such
that no prime p | c is contained in S0. Let m denote the number of primes p | c that are congruent to

1 mod 3, and let Sgood
+ (respectively, Sgood

− ) denote the subset of primes p | c that are contained in S+ (resp.,
S−) and congruent to 1 mod 3 (resp., 2 mod 3).

(a) The average size of the 3-torsion subgroups in ray class groups of conductor c of real quadratic fields
that are split at primes in S+, inert at primes in S−, and ramified at primes in S0 is

3m ·

1 + 3#(Sgood
+ ∪Sgood

− )−1 ·
∏
p|c

p/∈S+∪S−

(
1 +

p

p+ 1

)
when these quadratic fields are ordered by their discriminant.

(b) The average size of the 3-torsion subgroups in ray class groups of conductor c of imaginary quadratic
fields that are split at primes in S+, inert at primes in S−, and ramified at primes in S0 is

3m ·

1 + 3#(Sgood
+ ∪Sgood

− ) ·
∏
p|c

p/∈S+∪S−

(
1 +

p

p+ 1

)
when these quadratic fields are ordered by their discriminant.

Proof. In order to compute the average number of 3-torsion elements in ray class groups of fixed conductor
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of quadratic fields with prescribed splitting, we combine Propositions 3.1 and 4.5 using (5). We obtain:

lim
X→∞

∑
K2∈K2(S)

0<(−1)i Disc(K2)<X

#Cl3(K2, c)

∑
K2∈K2(S)

0<(−1)i Disc(K2)<X

1
= #Cl+3 (K2, c) · lim

X→∞

∑
K2∈K2(S)

0<(−1)i Disc(K2)<X

#Cl−3 (K2, c)

∑
K2∈K2(S)

0<(−1)i Disc(K2)<X

1

= 3m ·

1 +
2

ni
· 3#(Sgood

+ ∪Sgood
− )

∏
p|c

p/∈S+∪S−

(
1 +

p

p+ 1

) .

The above theorem (along with Remark 4.6) directly implies that as long as S is disjoint from S+ ∪ S−,
the mean size of the 3-torsion subgroups in ray class groups of conductor c are independent of the family
K2(S) of quadratic fields one averages over. More precisely:

Corollary 5.2. Let c be an integer such that 9 - c, and let S = (S+, S−, S0) be a disjoint set of primes such
that no prime p | c is contained in S+ ∪S− ∪S0. If m denotes the number of primes p | c that are congruent
to 1 mod 3, then the average size of the 3-torsion subgroups in ray class groups of conductor c of quadratic
fields with i pairs of complex embeddings that are split at primes in S+, inert at primes in S−, and ramifies
in S0 is equal to

3m ·

1 +
2

ni
·
∏
p|c

(
1 +

p

p+ 1

) if 3 - c,

3m ·

1 +
12

7ni
·
∏
p|c

(
1 +

p

p+ 1

) if 3 | c.

when these quadratic fields are ordered by discriminant.

This allows for the generalization of Theorem 3 given in Corollary 4, whose proof we turn to next.

Proof of Corollary 4. We use Corollary 5.2 to compute lower bounds for the proportion Pi(S, c) of quadratic
fields in K2(S) with i pairs of complex embeddings whose ray class groups of conductor c have trivial 3-torsion
subgroup.

We assume (3, c) = 1. If m denotes the distinct number of primes dividing c that are congruent to
1 mod 3, we have by Theorem 5.1,

3m ·

1 +
2

ni
·
∏
p|c

(
1 +

p

p+ 1

) ≥ 1 · Pi(S, c) + 3 · (1− Pi(S, c)).

Hence, Pi(S, c) > 0 if and only if m = 0 and

ni >
∏
p|c

(
1 +

p

p+ 1

)
.

Thus, we conclude automatically that for any conductor c of the form c = p where p ≡ 2 mod 3, a positive
proportion of real (resp. imaginary) quadratic fields have trivial 3-torsion subgroup in their ray class groups
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of conductor c. Additionally, for any conductor c of the form c = p1p2 where pi ≡ 2 mod 3, we see that
a positive proportion of real quadratic fields have trivial 3-torsion subgroup in their ray class groups of
conductor c.

If 3 || c, and m denotes the distinct number of primes dividing c that are congruent to 1 mod 3, we
similarly have that P (i, c) > 0 if and only if m = 0 and

7ni
6

>
∏
p|c

(
1 +

p

p+ 1

)
.

Thus, for real quadratic fields, if c is a product of 3 and a prime p which is congruent to 2 mod 3, a positive
proportion of real quadratic fields have trivial 3-torsion subgroup in their ray class groups of conductor c.
Additionally, a positive proportion of imaginary quadratic fields have trivial 3-torsion subgroup in their ray
class groups of conductor 3. �

Remark 5.3. Similarly, one can show that if 3 - c, at least 50% of real quadratic fields have trivial 3-torsion
subgroup in their ray class groups of prime conductor c ≡ 2 mod 3. If 3 || c, at least 50% of real quadratic
fields have trivial 3-torsion subgroup in their ray class groups of conductor 3 or 3p where p ≡ 2 mod 3.

6 Second main term and the proof of Theorem 5

To compute the second main term for the mean number of 3-torsion elements in ray class groups of quadratic
fields of bounded discriminant, we use a refinement of Theorem 3.2. For any set of primes S not containing
3, recall that KS denotes the set of isomorphism classes of cubic fields that are totally ramified exactly at
the primes p ∈ S. We first introduce some notation from [3]. For a free Zp-module M , define MPrim ⊂ M
by MPrim := M r {pM}. Also, for any element x in a cubic order, let i(x) := [R : Zp[x]]. As in the proof of
Theorem 3.2, let ΣS denote the set of all isomorphism classes of rings of integers of cubic fields in KS . Then,

ΣS is strongly acceptable as defined in [3]. Thus, if N
(i)
3 (ΣS , X) denotes the number of cubic orders R ∈ ΣS

satisfying 0 < (−1)i Disc(R) < X, Theorem 7 of [3] determines the asymptotic count with two main terms:

N
(i)
3 (ΣS ;X) =

1

2ni
·
∏
p

(p− 1

p
·
∑
R∈Σp

1

Discp(R)
· 1

# Aut(R)

)
·X

+
c
(i)
2

ζ(2)
·
∏
p

(
(1− p−1/3) ·

∑
R∈Σp

1

Discp(R)
· 1

# Aut(R)

∫
(R/Zp)Prim

i(x)2/3dx
)
·X5/6

+ Oε(X
5/6−1/48+ε),

(10)
where dx assigns measure 1 to (R/Zp)Prim, and additionally,

c
(i)
2 =


√

3ζ(2/3)Γ(1/3)(2π)1/3

30Γ(2/3)
if i = 0,

ζ(2/3)Γ(1/3)(2π)1/3

10Γ(2/3)
if i = 1;

and Σp =

{
Σntr
p if p /∈ S,

Σtr
p if p ∈ S.

(Recall that for any prime p, Σtr
p denotes the set of all isomorphism classes of maximal cubic orders over Zp

that are totally ramified, and Σntr
p denotes the set of all isomorphism classes of maximal cubic orders over

Zp that are not totally ramified.)
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In order to compute the second main term’s constant, we combine Table 1, Lemma 28, and Lemma 37 in
[3] to determine

∑
R∈Σp

1

Discp(R)
· 1

# Aut(R)

∫
(R/Z)Prim

i(x)2/3dx =


1

p(p+ 1)
+

1

p4/3(p+ 1)
if p ∈ S, and

p1/3

p1/3 − 1
− p2/3 + p1/3

p(p+ 1)(p1/3 − 1)
if p /∈ S.

We then calculate that
∏
p

(
1− p−1/3

)
·
∏
R∈Σp

1

Discp(R)
· 1

# Aut(R)

∫
(R/Z)Prim

i(x)2/3dx is equal to

∏
p

(
1− p−1/3

)( p1/3

p1/3 − 1
− p2/3 + p1/3

p(p+ 1)(p1/3 − 1)

)
·
∏
p∈S

1

p(p+ 1)
+

1

p4/3(p+ 1)

p1/3

p1/3 − 1
− p2/3 + p1/3

p(p+ 1)(p1/3 − 1)

=
∏
p

(
1− p−1/3

)
·
(
p1/3p(p+ 1)− p2/3 − p1/3

p(p+ 1)(p1/3 − 1)

)
·
∏
p∈S

p2/3 − 1

p8/3 + p5/3 − p− p2/3

=
∏
p

1− p1/3 + 1

p(p+ 1)
·
∏
p∈S

1

p(p+ 1)
· 1− p−2/3

1− p1/3 + 1

p(p+ 1)

.

We can thus conclude the following refinement of Theorem 3.2.

Theorem 6.1. Let S denote a set of primes not containing 3, and let ni = |Aut(R3−2i ⊕ Ci)| for i = 0 or
1. Let KS denote the set of isomorphism classes of cubic fields that are totally ramified exactly at the primes
p ∈ S.

N
(i)
3 (KS , X) =

3

niπ2
·
∏
p∈S

1

p(p+ 1)
·X

+
c
(i)
2

ζ(2)
·
∏
p

(
1− p1/3 + 1

p(p+ 1)

)∏
p∈S

 1

p(p+ 1)
· 1− p−2/3

1− p1/3+1
p(p+1)

 ·X5/6

+ Oε(X
5/6−1/48+ε),

where

c
(i)
2 =


√

3ζ(2/3)Γ(1/3)(2π)1/3

30Γ(2/3)
if i = 0, and

ζ(2/3)Γ(1/3)(2π)1/3

10Γ(2/3)
if i = 1.

We are now ready to prove Theorem 5. Let c be a positive integer coprime to 3, and let Sc denote the
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set of primes dividing c. Proposition 2.10 combined with Theorem 6.1 implies that∑
0<(−1)i Disc(K2)<X

#Cl−3 (K2, c) = 1 + 2 ·
∑
S⊆Sc

N
(i)
3 (KS , X ·

∏
p∈S

p2)

= 1 + 2 ·

 3

niπ2
·
∑
S⊆Sc

∏
p∈S

1

p(p+ 1)
·X ·

∏
p∈S

p2

+
c
(i)
2

ζ(2)
·
∏
p

(
1− p1/3 + 1

p(p+ 1)

)
·
∏
p∈S

(
1

p(p+ 1)
· 1− p−2/3

1− p1/3+1
p(p+1)

)
·X5/6 ·

∏
p∈S

p5/3

+ Oε(X
5/6−1/48+ε)

)]
.

Simplifying, we conclude

∑
0<(−1)i Disc(K2)<X

#Cl−3 (K2, c) = 1 + 2 ·

 1

ni
·
∏
p∈S

(
1 +

p

p+ 1

)
·

∑
0<(−1)i Disc(K2)<X

1

+
c
(i)
2

ζ(2)
·
∏
p

(
1− p1/3 + 1

p(p+ 1)

)
·
∏
p∈S

(
1 +

p(1− p1/3)

1− p(p+1)
p1/3+1

)
·X5/6

]
+ Oε(X

5/6−1/48+ε).

Combining with Proposition 3.1 and (5), we deduce Theorem 5.

Acknowledgements

The author would like to thank Manjul Bhargava for suggesting this problem and answering many questions.
She would also like to thank Carlo Pagano, Arul Shankar, and Jacob Tsimerman for helpful discussions. The
author was supported by a National Defense Science & Engineering Fellowship and NSF Grant DMS-1502834.

References

[1] O. Beckwith, Indivisibility of class numbers of imaginary quadratic fields. Preprint available at https:
//arxiv.org/abs/1612.04443.

[2] M. Bhargava, Mass formulae for extensions of local fields, and conjectures on the density of number
field discriminants, Int. Math. Res. Not., (17) 2007, 20 pp.

[3] M. Bhargava, A. Shankar, J. Tsimerman, On the Davenport–Heilbronn theorems and second order
terms, Invent. Math. (193) 2013, pp. 439-499.

[4] M. Bhargava and I. Varma, The mean number of 3-torsion elements in the class groups and ideal
groups of quadratic orders, Proc. Roy. Soc. London (112) 2016, pp. 235-266.

[5] H. Cohen, Advanced topics in computational number theory, Springer-Verlag, New York, 2000.

[6] H. Cohen and H. W. Lenstra, Heuristics on class groups of number fields, Lecture Notes in Math.
(1068) 1983, pp. 33–62.

[7] H. Cohn, The density of abelian cubic fields, Proc. Amer. Math. Soc. (5), 1954, pp. 476-477.

25

https://arxiv.org/abs/1612.04443
https://arxiv.org/abs/1612.04443


[8] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Roy. Soc.
London (1551) 1971, pp. 405-420.

[9] B. Delone and D. Faddeev, The theory of irrationalities of the third degree, AMS Translations of
Mathematical Monographs (10) 1964.

[10] W. Gan, B. Gross, and G. Savin, Fourier coefficients of modular forms on G2, Duke Math. J. (115)
2002, pp. 105-169.

[11] H. Hasse, Arithmetische Theorie der kubischen Zahlkörder auf klassenkörpertheoretischer Grundlage,
Math. Z. (31) 1930, pp. 565 - 582.

[12] D. Kriz and C. Li Heegner points at Eisenstein primes and twists of elliptic curves. Preprint available
at https://arxiv.org/pdf/1609.06687.pdf.

[13] J. Milne, Class Field Theory, Lecture Notes (available at www.jmilne.org) 2013.

[14] J. Nakagawa, On the relations among the class numbers of binary cubic forms, Invent. Math. (134)
1998, pp. 101-138.

[15] J. Nakagawa, and K. Horie, Elliptic curves with no rational points, Proc. American Math. Soc., (104)
1988, pp. 20-24.

[16] C. Skinner and A. Wiles, Residually reducible representations and modular forms, Inst. Hautes Études
Sci. Publ. Math., (89) 1999, pp. 5-126.

[17] V. Vatsal, Canonical periods and congruence formulae, Duke Math. J., (98) 1999, pp. 397-419.

[18] A. Wiles, On class groups of imaginary quadratic fields, J. Lond. Math. Soc. 2, (92) 2015, pp. 411-426.

26

https://arxiv.org/pdf/1609.06687.pdf

