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Preface

This book is intended both for number theorists and more generally for
working algebraists, though some sections (notably §15) are likely to be
of interest only to the former. It is largely an account of mainstream
theory; but for example Chapter 3 and §20 should be seen as illustrative
applications.

An algebraic number field is by definition a finite extension of Q, and
algebraic number theory was initially defined as the study of the properties
of algebraic number fields. Like any empire, its borders have subsequently
grown. The higher reaches of algebraic number theory are now one of the
crown jewels of mathematics. But algebraic number theory is not merely
interesting in itself. It has become an important tool over a wide range
of pure mathematics; and many of the ideas involved generalize, for ex-
ample to algebraic geometry. Some applications to Diophantine equations
can be found among the exercises, but there has not been room for other
applications.

Algebraic number theory was originally developed to attack Fermat's
Last Theorem — the assertion that xn + yn = zn has no non-trivial
integer solutions for n > 2. It provided proofs that many values of n are
impossible; some of the simpler arguments are in §13. But it did not provide
a proof for all n, though recently the theorem has been proved by Andrew
Wiles, assisted by Richard Taylor, by much more sophisticated methods
(which still use a great deal of algebraic number theory). There are still
respectable mathematicians seeking a more elementary proof, and this is
not a ridiculous quest; but even if a more elementary proof is found, it is
almost bound to be highly sophisticated.

There are two obvious ways of approaching algebraic number theory,
one by means of ideals and the other by means of valuations. Each has its
advantages, and it is desirable to be familiar with both. They are covered

vii
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viii Pre/ace

in Chapters 1 and 2 respectively. In this. book I have chosen to put the
main emphasis on ideals, but properties which really relate to local fields
(whether or not the latter are made explicit) are usually best handled
by means of valuations. Chapter 3 then applies the general theory to
particular kinds of number field. The first two chapters (perhaps omitting
§9), together with the easier parts of Chapter 3 and the first half of the
Appendix, would form a satisfactory and self-contained one-term graduate
course.

Though §9 is more advanced than the rest of Chapter 2, its logical home
is there; it is needed in Chapters 4 and 5, and introduces language which is
widely used across number theory. The somewhat peripheral §12 depends
on the results stated in §14 and proved in §15 of Chapter 4, as do parts
of §13.1, and thus they are not in the correct logical order; but there are
advantages in collecting all the information on special kinds of number field
in a single chapter.

There are important results which, though not in appearance analytic,
can as far as we know only be proved by analytic methods. Indeed it has
been said: 'The zeta function knows everything about the number field; we
just have to prevail on it to tell us.' Some of what it has already told us
can be found in Chapter 4.

The more advanced parts of the algebraic theory are generally known as
class field theory; most of the proofs involve Galois cohomology, either
openly or in disguise. Anyone who writes a book on algebraic number
theory is faced with a dilemma when he comes to class field theory. Most
authors stop short of it; but working algebraists ought to know the main
results of class field theory, though few of them need to understand the
rather convoluted proofs. I would think it wrong to make no mention
of class field theory; but to have included the proofs and the necessary
background material would have doubled the length of the book without
doubling its value. In consequence §§17 and 18 present an exposition of
class field theory without proofs. In §19 we deduce the general reciprocity
theorems, which are the simplest major applications of class field theory. In
addition, §20 contains a proof of the Kronecker-Weber Theorem that every
abelian extension of the rationals is cyclotomic; it is this result which made
the general structure of classical class field theory plausible long before it
was proved. The proof of the Kronecker-Weber Theorem is also rather
convoluted, but it illustrates most of the ideas in the first two chapters.

The reader needs to know the standard results about field extensions
of finite degree, including the relevant Galois theory. The properties of
finitely generated abelian groups and lattices, and of norms and traces, are
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Preface ix

described in §A1.1 and §A1.2j most readers will already know these results,
but those who do not will need to start by reading these two subsections.
The existence of Haar measure and the Haar integral (described without
proofs in §A1.3) is a fact which all working mathematicians should know,
though again they have no need to study the proofs. Indeed, the main use
of the general theory is to provide motivation and guidancej in any particu-
lar case one can expect to be able to define explicitly an integral having the
required properties, and thereby evade any appeal to the general theory.
The status of §A2 is rather different. The Galois theory of infinite exten-
sions is not actually needed anywhere in this bookj but anyone who uses
the results in Chapter 5 may need to consider field extensions of infinite de-
gree. The remaining subsections of §A2 cover (without proofs) characters,
duality and Fourier transforms on locally compact abelian groupSj these
are prerequisites for §15, but also for much of advanced number theory.

The book concludes with a substantial collection of exercises. Others
can be found in the textj see the index. The latter are results which are
too peripheral to justify the provision of a detailed proof but which may be
interesting or useful to the reader. Each of them is provided with 'stepping-
stones': intermediate results which are individually not too difficult and
which should enable the reader to construct a complete proof.
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Numbers and Ideals

1 The ring of integers
Unless otherwise stated, throughout this book K and k will be algebraic
number fields, even though some results hold more generally. The ring of
integers of k (yet to be defined) will be denoted by 0 or Ok; the ring of
integers of K will be D or .OK' What are the properties which one would
like the integers of k to have? Some obvious ones are the following:-

1. Ok is a commutative ring.
2. Ok n Q = Z, so that the integers which are rational are just the rational

integers.
3. Ok ®z Q = k, so that each a in k can be written as c/3 where c is in Q

and /3 is an integer in k.
4. If a is in Q, the algebraic closure of Q, the property that a is an integer

only depends on a and not on the field in which we are working;
in other words,

Ok = k n {integers of Q}.

5. If a and a' are conjugate over Q and a is an integer, then so is a'.

There is a largest subring of k satisfying these conditions, but no smallest
one; so we shall choose Ok to be the largest such subring. It follows from 1,
2 and 5 that if a is an integer then its monic irreducible polynomial over Q
has coefficients in Z. We shall say that a in Q is an algebraic integer if
it satisfies one of the three equivalent conditions in the following theorem.

Theorem 1 Let a be an element of Q; then the following conditions on a
are equivalent:
(i) Z[a] is a finitely generated Z-module;
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2 1 Numbers and Ideals

(ii) a is a root of a monic polynomial with coefficients in Z;
(iii) the monic minimal polynomial for a over Q has coefficients in Z.

Proof It is trivial that (iii)=>(ii). To prove (ii)=>(i), let m be the degree of
the monic polynomial given by (ii); then am is in the Z-module generated
by 1,a,... , a m - I , whence at' is in the same module for all /z > m. To
prove (i)=>(ii) choose elements !t(a),... , fn(a) which span the Z-module
Z[a], where the f,,(X) are in Z[X]. For any N > 0 there is a relation

, , (a) = 0

where the b" are in Z, and if N is greater than the degree of any of the f"
this is the monic equation required.

It remains to prove (ii)=>(iii). Let f(X) with coefficients in Z be the
monic polynomial for a given by (ii), and let g(X) be the monic minimal
polynomial for a over Q. There is a monic polynomial h(X) with coef-
ficients in Q such that f(X) = g(X)h(X). If (iii) were false then there
would be a prime p which divided the denominator of at least one of the
coefficients of g(X). Let pU with u > 0 be the greatest power of p which
divides any of the denominators of the coefficients of g(X) and let pV with
v ~ 0 be the greatest power of p which divides any of the denominators of
the coefficients of h(X). Let F p denote the finite field of p elements. In

pu+vf(X) = {pUg(X)}{pVh(X)}

all the coefficients have denominators prime to p; reducing mod p we obtain
an expression for 0 as the product of two non-zero polynomials in Fp[X].
This is impossible; hence (iii) must be true. 0

With this definition requirements 2 to 5 are trivial. To prove 1, let a, f3 be
algebraic integers, so that there are corresponding polynomials satisfying
(ii) with degrees m, n respectively. Thus 1, a, . . . , a m - I span the Z-module
Z[a] and similarly for f3; hence the at'f3" with 0~J . t<m, 0 ~v <n span
the Z-module Z[A,F3]. Since it is finitely generated, so are its submodules
Z[A ± f31 and Z[af3]; so a ± f3 and af3 are integers.

Lemma 1Ifkis identified with Qn where [k : Q] = n, then Ok is a lattice
in k.

Proof Let al,' ". , an be a base for k as a Q-vector space. We can find
mv ^ 0 in Z such that the f3" = m"a" are in Ok; so Ok spans k. For any l"
in Q write e = El"a". If Ok is not discrete in k then there are arbitrarily
small l b . . . ,in such that e is non-zero and in Ok; hence normk/Qe is in
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1 The ring of integers 3

Z, and it is non-zero because it is the product of conjugates of e. But
norme = t/J(i1,... , in) where 0 is a homogeneous polynomial of degree n
with coefficients in Qj so we can choose the tv so small that It/JI < 1. 0

More generally, an order in k is defined to be any subring of Ok which
contains 1 and has finite index in Ok considered as a Z-module. Equiva-
lently, an order is a subring of Ok which satisfies the analogues of 1, 2 and
3. It is easy to write down some orders in kj for example, if n = [k : Q]
and a is any integer in k such that k = Q(a), then the Z-module spanned
by 1, a,... , a n - 1 is an order in k.

Let Rl C R2 be commutative rings with a 1. We shall say that Rl is
integrally closed in R2 if a in R2, all /?„ in RI and

together imply that a is in RI.

Lemma 2 The ring of integers in Q is integrally closed in Q.

Proof We argue as in the proof of 1 on page 1. In the notation above, the
Z-module Z[(3I,... ,{3n] is finitely generated because it is contained in the
ring of integers of Q({3I, ' ". ,{3n)j suppose the finite set S spans it. In an
obvious notation S, Sa,..., S a n - I span Z[a, {31,... , 0n}; hence the latter
is finitely generated and so is its submodule Z[A]. 0

The identification of k with Qn which we used in Lemma 1 does not
enable us to compute a meaningful measure for k/Ok, because there is no
natural measure on the Qn in Lemma 1 which is not derived from Ok. But
there is an identification of k ®Q R which does achieve this. Let av run
through the n embeddings k —+ e . Of these, there are rl embeddings into
R and r2 pairs of complex conjugate embeddings whose images are not in
R. Here rl + 2r2 = nj and rl,r2 will almost always have these meanings.
Denote temporarily by u : k —+ e n the map given byai-> (p\a,... , una:)
and by V the R-vector space uk ®Q Rj since u",k C R if av is real, and
(u", x u",)k is contained in a space R2 if av,0V are complex conjugate,
dim V ~ n. But Ok —+ UOk is an isomorphism because it has trivial kernel,
so UOk is a free Z-module on n generatorsj and UOk is discrete in e n and
hence in V, for the same reason as in the proof of Lemma 1. So UOk is a
lattice in V, and dim V = n.

The inclusion V c e n induces a canonical measure of volume in V. The
measure of V/uo is finite and non-zerOj it tells one how sparse the integers
of k are. With a suitable choice of the canonical measure on V, the volume
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4 1 Numbers and Ideals

of V/uo is I det MI, where all... , a n are a base for Ok and M is the matrix
of the u I-'av• Unfortunately detM is only defined up to sign, and is not
necessarily in either R or k; so instead we consider

dk = (det(M))2 = det( tMM) = det(Trk/Q (al-'av)).

This is called the absolute discriminant of k. Observe that M has r2
pairs of complex conjugate rows, so its determinant is ir~ times a real
number; thus the sign of dk is ( - 1 t 2 .

More generally, let f3I, • • . , f3n in Ok be linearly independent over Z, and
let m be the index in Ok of the Z-module generated by f31,•.• , f3n. If

)) (1)

then a comparison of the last two displayed equations gives 1l.2 = m2dk.
Conversely, if we start from linearly independent integers f31,.., f3n and
try to find a base for Ok, the fact that dk is an integer restricts us to finitely
many possible m.

We can further generalize (1) by considering K D k with [K : k] = n.
Let a},... ,a n be a base for K as a k-vector space, and write

Then l l ,fc is non-zero. For otherwise there would be a non-zero column
vector 'ell... , en) killed by the matrix (TrK/k(al-'av)), where the ev are in
k. Set 7 = E evav; t h e n Tr(al-''Y) = 0 f°r e a c h IL and therefore Tr(a'Y) = 0
for each a in K. But this cannot be true for a = 'Y-1

• This argument, and
the two lemmas which follow, are valid for any field k of characteristic o.

The following result will be needed in §8.

Lemma 3 Let K,k be algebmic number fields with K c k; then every
k-linear map K —+ k is given by a n TrK/k(f3a) for some f3 in K.

Proof Call this map 4>f3. The k-linear map from K to the dual space of K
given by f3 >-* (ftp has trivial kernel. The two spaces involved have the same
dimension as k-vector spaces, so the map is an isomorphism. 0

The following result, which will be needed in §13.1, is known as Hilbert's
Theorem 90; in highbrow language it states that a certain cohomology
group is trivial.

Lemma 4 Let K/k be a Galois extension whose Galois group Gal(K/k)
is cyclic with genemtor u. If a in K is such that normK/ka = 1 then
a = f3/uf3 for some 0 in K; and we can take f3 t() be integml.
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1 The ring of integers 5

Proof Let [K : k] = n and for any 7 in K consider

/3 = 7 -a +(77-a-era+ ••• + {an~l^)(a • • • <rn~la);

then a . u/3 = /3. If /3 = 0 for every 7 then ak/k(-Yll... , 'Yn) = 0 for any
71, . . . , 'Yn in K, and this we know to be false. We can make 0 integral by
multiplying it by a suitable element of Ok. 0

One curious property of the absolute discriminant is the following.

Theorem 2 (Stickelberger) We have dk == 0 or 1mod4.

Proof Write n = [k : Q], let on,... ,an be a base for Ok, and write

all ir

where 7R denotes a permutation of 1,... , n. We have det M = A — 2B and
therefore dk = A2 + 4{B2 — AB). Both A and B are algebraic integers,
and A is rational by Galois theory; hence B2 — AB is also rational and is
therefore a rational integer. Hence dk == A2 == 0 or 1 mod 4. 0

The relation between k and Ok which we have been discussing is a special
case of a much more general one. The results which we need are not much
harder to prove in the general case, provided one takes the assertions in
the right (somewhat unnatural) order. Until the end of this section, we
therefore consider any pair of commutative rings R ~ 0 having a common
identity element 1. (In the applications 0 will be an integral domain and
R a field; but we do not need to assume as much as this.) For any a in R
consider the following three statements:

(i) oral is finitely generated as an o-submodule;
(i)' oral is contained in a ring ROo c R which is finitely generated as an

o-submodule;
(ii) a is a root of a monic polynomial with coefficients in o.

I claim that these statements are equivalent. Clearly (i) implies (i)', and
(ii) implies (i) as in the proof of Theorem 1. So assume that (i)' holds
and that ft,... ,/3n span ROo as an o-module. We have a/31S = £} 7Mi/A, for
some 7M1/ in 0; so a is a root of det{xI — r) = 0 where r is the matrix of
the 7^^. This is just (ii).

Denote by .0 the set of all a in R satisfying any of these conditions. An
argument like that which follows the proof of Theorem 1 shows that .0 is
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6 1 Numbers and Ideals

a ring with 0 C D C R. Similarly an argument like that in the proof of
Lemma 2 shows that O is integrally closed in R. If 0 is an integral domain,
let k be its quotient field and assume RD k. In this case a is in .0 if and
only if

(iii) the monic minimal polynomial for a over k has coefficients in D D k.

Since .0 is integrally closed in R, (iii) implies that a is in .0. Conversely, if
(ii) holds then a satisfies some monic equation f(X) = 0 with coefficients
in 0; hence so does on where 0 is any embedding k(a) —> k. Thus each oa
is in the integral closure of 0 in k. Whatever the characteristic, the monic
minimal polynomial for a over k has the form

g(X)=II(X-oa)N

a

for some N > 0; and the coefficients of g(X) lie both in k and in the
integral closure of 0 in k, so they lie in .0 n k. Note that we need not have
o = .0 n k; if for example 0 = Z [ A l and R = Q then a = !( l + H ) is
in .0 because it satisfies a2 — a + 1 = 0, and in fact . 0nk = Z[aJ.

The unnatural looking criterion (i)' in the preceding discussion has been
included because an o-submodule of a finitely generated o-module need not
be finitely generated. (See Exercise 1.6.) This is frequently inconvenient;
so if. 0 is a commutative ring with a 1 we say that an o-module M is
Noetherian if every o-submodule of M (including M itself) is finitely
generated, and we say that 0 itself is Noetherian if 0 is a Noetherian
o-module — in other words, if every ideal of 0 is finitely generated. Any
o-submodule of a Noetherian module 0 is Noetherian; but a subring of a
Noetherian ring need not be Noetherian.

We say that an o-module M satisfies the ascending chain condition if
every increasing sequence Ml C M2 C • •• of o-submodules of M stabilizes
— that is, if the sequence is eventually constant.

Lemma 5 The three following conditions are equivalent:

(i) M is Noetherian;
(ii) M satisfies the ascending chain condition;
(iii) every non-empty family of o-submodules of M contains maximal ele-

ments.

Proof (i)~(ii). Suppose that Ml C M2 C • • • is an increasing sequence of
o-submodules of Mj then M# = UMn is an o-submodule of M. Hence it
is generated by a finite set S of elements of M#. If MN contains all the
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1 The ring of integers 7

elements of S, then MU c MN; so the increasing sequence is constant from
MN on.

(ii)=}(iii). If (iii) were false we could construct a strictly increasing se-
quence Ml C M2 C • • • of o-submodules of M. For suppose we have chosen
Ml, . . . , Mn. The o-submodules of M which contain Mn form a non-empty
family, and this family contains no maximal elements; so we can choose an
Mn+1 which strictly contains Mn. This contradicts (ii).

(iii)=>(i). Suppose that M contains an o-submodule N which is not
finitely generated. Let S be the set of all finitely generated o-submodules
of N, let Mo be an element of S and let ~ be an element of N not in
Mo. Then Mo is not maximal in S because S contains the strictly larger
o-submodule of N generated by Mo and ~. D

Lemma 6 Let L,M,N be o-modules such that the sequence

0 -> L -> M -> N -> 0

is exact. Then M is Noetherian if and only if L and N are.

Proof If M is Noetherian then L is a submodule of M and therefore also
Noetherian; and if Nl is a submodule of N then its inverse image in M is
finitely generated and hence so is Nl.

Conversely, if L and N are Noetherian let <j> : L —- M and 1/J : M —- N
be the maps in the exact sequence. Let Ml C M2 C . . . be an increasing
sequence of o-submodules of M. The increasing sequences {</>(£) n Mv}
and {tP(Mv)} consist of o-submodules of <t>(L) ~ L and N respectively, so
they both stabilize — say by the n-th term. If now v > n then

say, and Mv/L* ~ 1/J(Mv) = 1/J(Mn) ~ Mn/L*; so Mv = Mn and the
sequence {Mv} also stabilizes by the n-th term. D

Theorem 3 If 0 is Noetherian then an o-module is Noetherian if and only
if it is finitely genemted.

Proof It follows from Lemma 6 by induction that the direct sum of finitely
many copies of 0 is Noetherian. But any finitely generated o-module is a
homomorphic image of such a direct sum; so it too is Noetherian. D

To study Noetherian modules over a non-Noetherian ring would be eccen-
tric, so Theorem 3 reduces us to the study of Noetherian rings. Let 0 —• 0'
be a surjective homomorphism of rings and assume that 0 is Noetherian.
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8 1 Numbers and Ideals

Then 0' is a Noetherian o-module, by Theorem 3, so all its ideals are finitely
generated as o-modules. Hence they are finitely generated as o'-modules; so
0' is Noetherian. In other words, the homomorphic image of a Noetherian
ring is Noetherian.

Let D be a ring containing 0; we shall say that .0 is finitely generated
over 0 as a ring if .o = o[a1,... ,an] for some elements al,... ,an in .0.

Theorem 4 (Hilbert Basis Theorem) If 0 is Noetherian and .o is
finitely generated over 0 as a ring, then O is Noetherian.

Proof We prove first that if X is transcendental over 0 (that is, if X is not
a root of any polynomial with coefficients in 0) then o[X] is Noetherian.
For let J be an ideal in o[X]. The set M of leading coefficients of elements
of J is an o-ideal. Let B be a finite set which spans M as an o-module
and for each element of B choose a polynomial in J with that element as
its leading coefficient. Let S be the set of these polynomials, and let N
be the largest of their degrees. For each n with 0 ~ n < N let Mn be
the o-ideal of the coefficients of xn in polynomials in J of degree at most
n, and let Bn be a finite set which spans Mn. For each element of Bn
choose a polynomial in J of degree at most n with that element as the
coefficient of xn, and let Sn be the set of these polynomials. I claim that
J is spanned as an o[X]-module by the set SU which is the union of S arid
the Sn with 0 ~ n < N. For if not, among the elements of J which do not
lie in the o[X]-module spanned by SU, let f(X) be one of lowest degree. If
degf(X) ~ N, let the leading coefficient of f(X) be a = L.f3",a", where
the 0ft are in 0 and the QM are elements of B. Let f",(X) be the element of
S whose leading coefficient is aw Then

is an element of J which has degree less than that of f(X), so it is in the
o[X]-module spanned by SU

o Hence so is f, which is a contradiction. If
degf(X) = n < N then a similar argument works, using the elements of
Sn instead of those of S.

If Xl,... ,Xm are independent transcendentals over 0, it follows by in-
duction that 0[X1,... ,Xm] is Noetherian. Finally, if D = 0[a1,... ,am]
is any finitely generated ring over 0 then it is the image of 0[X1,... , Xm]
under a suitable homomorphism; so it too is Noetherian. 0

If we know some Noetherian rings, Theorem 4 enables us to generate
many more. But any principal ideal domain is Noetherian; in particular Z
and all fields are Noetherian. For our purposes what matters is that Ok is
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2 Ideals and factorization 9

Noetherian whenever k is an algebraic number field, because Ok is finitely
generated over Z by Lemma 1.

2 Ideals and factorization
Let Ok be the ring of integers of k. Unfortunately we do not in general have
unique factorization in Ok; for the standard example see Exercise 1.2. Of
the various ideas that have been introduced to alleviate this situation, two
have turned out to be valuable: these are ideals (described in this section)
and valuations (described in Chapter 2).

Of the key theorems about ideals in Ok, Theorems 5, 6 and 7 below are
usually proved in a more general setting — that of Dedekind domains. The
disadvantage of this approach is that it involves one very opaque proof —
in our case, that of Theorem 5. In the exercise at the end of this section
the reader will find a simpler approach, but one whose validity is confined
to algebraic number fields.

A Dedekind domain is an integral domain 0 with a 1 such that

(i) 0 is Noetherian and integrally closed in its field of fractions,
(ii) every non-zero prime ideal of 0 is maximal.

Denote the quotient field of 0 by k. The following lemma shows that we
cannot get rid of non-principal ideals by replacing 0 by a smaller ring having
the same quotient field k. We can do so by replacing 0 by a slightly larger
ring R (see Exercise 1.10) and this is sometimes useful; but there is a price
to be paid. In particular, we cannot expect R to satisfy the criteria at the
beginning of §1.

Lemma 7 Any principal ideal domain is Dedekind.

Proof Let 0 be a principal ideal domain, and therefore Noetherian. Suppose
that {3 in k is integral over 0 and write {3 = ad0.2 with 0.1,0.2 in o. We
can assume that (at,0.2) = (1); for if (0.1,0.2) = (-y) with 7 not a unit,
we can divide a\ and 0.2 by 'Y. If /?" + cl{3n-l + • ' " + Cn = 0 where
the cv are in 0 then a" + c l a f - l a 2 + • • • + Cna~ = O. It follows that
(0.2) = (0.1,0.2) D (oti,at2)n = (1), so that 0.2 is a unit and {3 is in o.
Now let (a) be a non-zero prime ideal of 0 and let ({3) be a maximal ideal
containing (a). Thus a is in ({3) and hence equal to /3j for some 7 in o.
But (a) is prime, so one of/?,7 must be in (a). If {3 is in (a) then ((3) C (a)
so that (a) is maximal; but if 7 = a6 then a = {3a8 whence {38 = 1, and
then ({3) = 1 which is forbidden. 0

)'����*��!��!���(��((%'���+++���"�&�����$&���$&��(�&"'���((%'����$��$&�����������������������������
�$+#!$������&$"��((%'���+++���"�&�����$&���$&����#�*�&'�(,�$���$&$#($��$#������%�������(����
	�
���')� ��(�($�(�����"�&������$&��(�&"'�$�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.002
https://www.cambridge.org/core


10 1 Numbers and Ideals

By a fractional ideal a we mean a finitely generated o-submodule of k.
(To avoid ambiguity, an ideal in 0 sometimes has to be called an integral
ideal.) If a l , . . . ,am span a as an o-module and aM = 0lShlS with ' Y I S '
in 0, then 70 C 0 where 7 = n'Yw Hence any fractional ideal has the form
cb, the set of cf3 where c is a fixed element of k and f3 runs through the
elements of some ideal b. Conversely, any such set cb is a fractional ideal.
All the obvious rules extend from ideals to fractional ideals.

Theorem 5 The non-zero fractional ideals of a Dedekind domain form a
multiplicative group.

Proof The only difficulty is to prove the existence of inverses. The proof
proceeds through a sequence of assertions.

• If a is a non-zero ideal then 1'11'2 ' • • Pm C 0 for some prime ideals Pw

Suppose the assertion is falsej then because 0 is Noetherian we can choose
a maximal among the ideals which do not have this property. Since a is
not itself prime, we can choose f31,/32 in 0 but not in a such that f31f32 is in
Cl. Write blS = (0, /?M); then each blS strictly contains Cl, so by maximality
it contains a product of prime ideals, and hence so does o D bib2-

• Every non-zero prime ideal p is invertible.

Let p~ be the o-module of elements a in k such that ap C OJ we shall show
that p~ is the inverse of p which we are looking for. Choose {3 ^ 0 in pj
then {3p- C o is an o-module and hence an idealj so p~ is a fractional ideal.
Since p~ D 0, we have 0 D p~p D p; and because p is maximal, we must
have equality in one inclusion or the other. If we have equality in the first
inclusion, p~ is the inverse of p which we are looking forj so we assume
that p = p~p and derive a contradiction. Choose m minimal so that there
exists a product

11'2'"PmC(f3)C1',

where 0 is as before. One of the pM, say PI, must be contained in p and
thus equal to pj for otherwise for each \i we could choose aM in PIS but not
in 1', and n an would not be in p. By the minimality of m, 1'2 ' " • Pm <f. ({3)
and hence there exists 7 in 1'2 ' " • Pm but not in (f3). Now 'Yp C ({3), so that
S = 7//? is in p~ but not in o. Thus Sp C p~p = pj and if {(31,... ,{3n}
spans p as an o-module then 80^ = E 7̂ ,̂ /?„ for some 7 ^ in o. This implies
det(6I — r) = 0 where r is the matrix of the j ^ ; and since 0 is integrally
closed in k it follows that 0 is an integer, which is a contradiction.
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2 Ideals and factorization 11

• Every non-zero integral ideal is invertible.

If not, there would be a maximal non-invertible ideal a. Among the ideals
containing a there is one which is maximal and therefore prime; denote it
by p. Thus a c p-1a Co. If a = p-1a then an argument like that for
the previous displayed statement shows that 1'-1 C 0, which would imply
o = 1'1'-1 C p. So a # p-1a. By maximality p-1a has an inverse b, and
bp-1 is an inverse for a.

Finally, any fractional ideal ca has an inverse c-1a-1
• D

Corollary For any non-zero ideals alla2 the four assertions a1 C a2,
l C o, a l la2 D 0 and a21a1 are equivalent.

Theorem 6 Let 0 be a Dedekind domain. Any non-zero integral ideal a in
o can be written as a product

« = Pl"'Pm (2)
where the p^ are prime ideals, and this expression is unique up to the order
of the factors.

Proof If there are non-zero a with no decomposition (2), we can assume
that a is maximal among them. There exists a maximal ideal p D o, so
p- 1a is an integral ideal strictly containing aj for p- 1a = a would imply
1'-1 = 0 o n multiplying by a-1. Hence p- 1a is a product of prime ideals,
and if we multiply this product by p we get a product for a.

Suppose that there are two essentially different factorizations of some ll.
Among such ideals a and their factorizations let

0 = P l •••Pm = q 1 . . . q n

be the formula with the least value of m. We cannot have m = 0, because
then a = (1) and so also n = O. If 1'1 were not among the qv, we could
for each v find av in qv but not in 1'1 and I1av would be in 0 but not
in I'll which gives a contradiction. So we can remove a factor 1'1 in both
expressions for a, and m is not minimal. D

Corollary Let 0 be a Dedekind domain with quotient field k. Any non-zero
fractional ideal a ink can be written in the form

o = p i - - - p m / q i - - - q n (3)
where the I'll'qv are prime ideals and no pM is equal to any qv; and this
expression is unique up to the order of the factors.
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12 1 Numbers and Ideals

Proof We have a = ("(1!'Y2)& for some integral & and some non-zero "}'1,"}'2
in 0; applying the theorem to ("(1), ("(2) and & gives an expression (3), and
we can remove any factors common to the numerator and denominator.
Suppose that there were a second such expression

then we would have

Pi • • • Pmqi • • • qj,' = qi • • • qnpi • • • p'm>

and since no pM is a qv and no P~ is a q~, it follows from the uniqueness
clause in the theorem that the p~, are a permutation of the PI' and the q~,
a permutation of the qv. 0

The theorem which follows, and also Corollary 1 to it, are each known
as the Chinese Remainder Theorem.

Theorem 7 Let a = Y[p^ be a non-zero ideal of OJ then the natural map
<p: 0 —> Il(o/p~") i s ont° and induces an isomorphism

Proof The kernel b of <p consists of the a which lie in each P : " j so b is
the largest ideal divisible by each P~", by the Corollary to Theorem 5.
Thus & = a. Since &1 = p;2 • • p~m is not divisible by PI and hence is not
contained in it, we can find f31 in &1 but not in Pl. Since PI is maximal,
O/Pl is a field, and hence we can find "}'1 in 0 whose image in O/Pl is the
inverse of the image of f31. Thus f3l"Y1 = 1 — 01 with 01 in Pl. Now 1 — of!

is a multiple of f31 which is congruent to 1 mod p ~ l . Hence the image of <P
contains 1 x 0 x • • • x o. It also contains all the other similar expressions;
so <p is onto. 0

Corollary 1 Let a l , . . . ,elm be non-zero integral ideals coprime in pairs
and let aI,... ,,am be elements of o. Then there exists a in 0 such that

a = aMmodoM (/x = 1 , . . . ,m). (4)

Proof Write 0^ = n p££"j by hypothesis no prime ideal occurs more than
once as a PI 'V' and each congruence (4) is equivalent to the finite set of
congruences
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2 Ideals and factorization 13

Now write a = n aIL; the corollary just restates that the map 4> in the
theorem is onto. 0

Corollary 2 Let a, b be non-zero ideals; then we can find a in a such that
(a)ja is prime to b.

Proof Let P b ' " , Pm be the prime factors of b. For each It = 1 , . . . ,m
define nIL by p~"lIa, and choose aIL in p~,. but not in p~, .+ l . By Corollary
1 there exists a in 0 such that

a = =aIL mod p~,.+1 for each It and a == 0 mod (aj I I p£");

and this does what we need. o

Corollary 3 Let a be a non-zero ideal and a' a non-zero 'element of a; then
there exists a in a such that a = (a, a').

Proof Apply Corollary 2 with b = (a'). o

Each of the last two corollaries extends to fractional ideals a. For we
can find a non-zero c in 0 such that ca is integral. If 7 in ca is such that
(-y)jca = (c-1'Y)ja is prime to b then a = c-1'Y meets the requirements of
Corollary 2; and if 6 in ca is such that ca = (6, 00') then 0 = c-16 meets
the requirements of Corollary 3.

It follows from Theorem 7 that there is an isomorphism (though not a
canonical one)

p"-1 /?" « o/p (5)

for any non-zero prime ideal P and any integer n > O. For fix {3 in p n - 1

but not in pn; the map 0 —+ pn-1 jpn given by 0 1-+ 0{3 has kernel p, so
we need only prove that it is onto. Given any 7 in p n - 1 , by Corollary 1 to
Theorem 7 we can find 'Y1 satisfying

7 l = 7modpn, 7 l = O m o d ^ / p " - 1 ) .

Now 01 = 'Y1/{3 is an integer, because any prime power which divides {3
also divides 'Y1; and 01 maps to 'Y1 and hence to 'Ymodpn.

Now let k be an algebraic number field and 0 the ring of integers in k.
It follows from Lemma 1 that any non-zero fractional ideal a is a lattice in
k. We now define the absolute norm Norm a of a; note the capital letter.
Let V be the R-vector space k ®Q R, on which volume is defined up to
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14 1 Numbers and Ideals

multiplication by an arbitrary constant. Both 0 and a are lattices in V, so
we can write

Norma = vol(V/a)/vol(V/o).

If a is integral, then

Norm a = [0 : a]. (6)

By convention, and despite this definition, we write Norm (0) = 0 where
(0) is the zero ideal. If a ^ 0 is in k and at,... ,an are a base for a as a
Z-module, then aa t , . . . , aan are a base for aa. Using the volume defined
on page 3, we deduce

Norm(aa) = nqa Norm a = \normk/Qa\ Norm a (7)

and in particular Norm((a)) = \normk/Qa\. We could instead have used
(6) and (7) to define the absolute normj this is more algebraic but clumsier.

Lemma 8 If aI,a2 are fractional ideals in k, then

(Normat}(Norma2) =

Proof In view of (7) it is enough to prove this when the a", are integral and
non-zero. If o = n P : " & integral, then by (5), (6) and Theorem 7

Norma = II[o : pM]n" = II(Normp",)n,..

The lemma now follows by factorizing al and a2. o

For some applications it is convenient to generalize Ok, the purpose being
to enable us to ignore certain 'bad' primes. If p is a prime ideal of Ok, we
say that a in k is integral at p if a = at/a2 where at,a2 are in Ok and
a2 is not in pj provided that a i - 0 , this is equivalent to saying that p does
not occur among the q/l in the factorization (3) of (a). More generally,
let S be any set of primes, and define Os to be the set of elements of k
integral at each prime outside S. (This notation must not be confused
with the much more important op introduced in Chapter 2.) It is easy to
see that Os is Dedekind. The ideals of Os are just the as = a ®o Os where
0 is an ideal of OJ for we can recover one possible a from any ideal b of
Os because a = b D 0 implies b = as. To any fractional ideal a in k there
corresponds the fractional ideal as = 0 a®o 0sj but recovering a possible a
from a fractional ideal for Os is untidy and is best done by means of (3).
The prime ideals of Os are just the Ps where p is a prime ideal of 0 not in
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2 Ideals and factorization 15

S; to derive from (2) a factorization of as we delete from the right hand
side any primes in S and put a subscript S on the others.

There is a general theorem that if 0 is a Dedekind domain with quotient
field k, and if K is a finite algebraic extension of k and D the integral closure
of 0 in K, then D is Dedekind; taking 0,k to be Z,Q it follows that the
ring of integers of any algebraic number field is a Dedekind domain. But
the proof of this general theorem is tedious and there is an easy shortcut.

Theorem 8 If 0 is the ring of integers of an algebmic number field k then
o is Dedekind.

Proof We have only to prove that any non-zero prime ideal p in 0 is maximal
— in other words that 0/1' is a field. It is an integral domain, so we only have
to prove the existence of inverses. Let a be in 0 but not in 1'. Multiplication
by a gives a map of 0/1' to itself with trivial kernel; since 0/1' is finite such
a map must be onto, so the class of a has an inverse. 0

Since 0/1' is a finite field, it contains pI elements for some rational prime
p and some f = fp > O. Clearly p D (p), so let I'e be the exact power
of p which divides (p). The primes with ep > 1 are called ramified; we
shall see later that for each k there are only finitely many of them. We can
factorize (p) as a finite product (p) = n pep; taking Norms on both sides
and writing n = [k : QJ we obtain

n = £ e p / p (8)
where the sum is taken over all p dividing a fixed p. The analogue for
extensions K/k will be proved as the Corollary to Lemma 13.

Let 0 be a Dedekind domain with quotient field k, and let Jk be the
group of non-zero fractional ideals of k. The ideal class group of k is

Ck = Jk/(group of non-zero principal ideals).

If k is an algebraic number field and 0 its ring of integers, we shall show
below that the order of Jk is finite; it is called the class number of k and
is denoted by h. There is an exact sequence

0 -> o* -» k* -* Jk -* Ck -+ 0,

where o* is the group of units of o. For a general Dedekind domain, we
can say nothing useful about the two outer terms. But if 0 is the ring of
integers of an algebraic number field k (or even if 0 = Os for some set S of
primes in such a k), they have important properties. We consider units in
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16 1 Numbers and Ideals

§3; the main theorem about Ck is Theorem 9 below, though it too will be
refined in §3.

Let [k : Q] = n and fix a base a t . . . . ,a n for Ok as a Z-module. Any f3
in k can be written

P = b1a1 + . . . + bnan with bv in Q;

we define the height of f3 to be H(f3) = L Ibvl, which gives a metric on k.
Write C = maxH(al'av). If f3 is in Ok then H(f3) is in Z, as is C.

Lemma 9 Let a be a non-zero fractional ideal in an algebmic number field
k and a a non-zero element of a of minimal height. For any f3 in a we can
find 7 in Ok and m in Z such that

H(mf3/a-'Y)~ (C + 1)-1 and 0 < m ~ M, (9)

where M = (n(C + 1))n + 1.

Proof If we multiply a, a and f3 by the same integer N, we alter neither
the hypotheses nor the conclusions; so we can assume that a is integral. In
particular, H is integral on a, so its minimum is attained and a exists. We
now use the pigeonhole principle. For any 'Ym in 0 write

mf3/a - 'Ym = Cim)al + • • • + c~m)an with cSm) in Q;

given m we can choose 'Ym in 0 so that 0 ~ c~m) < 1 for each v and thus
determine a point Pm = (c~m) ,... ,~m )) in the unit cube. Partition this
cube into M — 1 subcubes of side (n(C + 1))-1, each defined by

rv/(n(C + 1)) ~ c < (rv + l)/(n(C + 1))
for some integers rv with 0 ~ rv < n(C + 1). Two of PI , . . . , PM must
lie in the same subcube — say Pm l and Pm2 with m1 < m2. Writing
m = m2-mb 7 = 'Ym2 -'Yml we obtain (9). 0

Theorem 9 If k is an algebmic number field the order of Ck is finite.

Proof For any € = Le i l a I " €' = L e~av in k we have

CH(€)H(€')

in the notation above. It now follows from (9) that

H(mf3 - a'Y) ~ CH(a)H(mf3/a - 'Y) ~ CH(a)/(C + 1).
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2 Ideals and factorization 17

But m{3 - 07 is in a, and must therefore vanish because a has minimal
height among the non-zero elements of a. It follows that (M!){3 is a multiple
of a for every {3 in a. Now consider a1 = (M!)a/a. It is an integral ideal
in the class of a, and it contains M! because a contains aj so it is a union
of cosets of (M!)o in o. But there are only finitely many ideals composed
in this way. 0

The corresponding result for (Ok)S as defined on page 15 follows at once.
If a and b are in the same ideal class for 0, so are as and bs for 0sj so
Theorem 9 for Os follows from Theorem 9 for o.

We shall obtain a much more realistic way of bounding the order of Ck
in Theorem 10 below, whose proof does not depend on Theorem 9. The
real point of the proof above lies in the following exercise.
Exercise Without assuming any of the earlier results in this section, de-
fine a relation between non-zero fractional ideals a, a' in a given algebraic
number field k by

0 ~ a' if there exist non-zero a, a' in k such that aa = a'a'.

Prove that this is an equivalence relation, and that the argument of Lemma
9 and Theorem 9 shows that there are only finitely many equivalence
classes. Now proceed as follows.

• If ab C ab for some non-zero b, then a C (a).

Let {3I,... , (3n be a base for b and for any a' in a write A = a'/a. Since
Ab C b there exist c!-'v in Z such that A/3!-, = Lc!-,v/3vj so A satisfies
det(AI — C) = 0 where C is the matrix of the c!-'v. Hence A is an integer.

• If ab = ab for some non-zero b, then a = (a).

Write a' = a - l a, which we now know to be integral. Thus b = a'b, so that
/3v = L a!-,v/3v with a!-'v in a'. Hence det(I — A) = 0 where A is the matrix
of the a!-,vj expanding this determinant shows that 1 is in a'.

• For any fractional ideal a, there exists b ̂  (0) such that ab is principal.

Among the am with m ^ 0 there must be two in the same equivalence class
— say ami and am2 with m1 < m2. Thus a1aml = a2am2 for some a1,a2,
whence (at) = a2am 2-m l and we can take b = am 2-m l - 1 .

Now deduce the main results of this section for the special case when
o = Ok, the ring of integers of an algebraic number field k.
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18 1 Numbers and Ideals

3 Embedding in the complex numbers
Let k be an algebraic number field with [k : QJ = n; in this section we
exploit systematically the embedding k —+ Rrl x Cr2 ~ Rn already intro-
duced on page 3. For convenience we order the embeddings O'v : k —+ C so
that 0'1,.. ' ,O'rl are real and that O'V,O'V+R2 are complex conjugate when
r1 < v ~ r1 + r2. We shall need the following elementary result.

Lemma 10 Let A be a lattice in V ~ Rn and let S be a bounded closed
convex subset of V symmetric about the origin; then S contains a point of
A other than the origin provided vol(S) ~ 2nvol(V1A).

Proof Assume first that vol(S) > 2nvol(VIA). If the map !S -+ VIA is
one-one into, then vol(!S) ~ vol(VIA) which is false. So there are points
PI,P2 in ! S with the same image in VIA. By symmetry -P2 is in !S , so
that by convexity !(P1 — P2) is in !S . Thus P1 — P2 is in both S and A.

If vol(S) = 2nvol(vIA) the same argument shows that (1 + €)S contains
a point Qt ^ 0 of A for any € > 0. But for € < 1 the candidates for Qt lie
in the bounded discrete set 2S n A, so they belong to a finite set. Hence
there is a point Q ^ 0 of A which belongs to (1 + €)S for arbitrarily small
€; and since S is closed, Q must belong to S. D

Theorem 10 Let 0 be the ring of integers of an algebraic number field k
of discriminant d.

(i) There is a constant C = Cr1,r2 depending only on r1,r2 such that each
ideal class ofk contains an integral ideal of Norm at most CldI1/2

•

(ii) The order of Ck is finite. .

Proof Define a map k —+ V ~ Rn by sending a in k to

where the 0'v are ordered as at the beginning of this section. If a is any
non-zero fractional ideal in k, it follows from Lemma 1 and the remarks
on page 10 that the image of a in V is a lattice. Let S be any closed
bounded convex subset of V symmetric with respect to the origin; let v be
the volume of S and M the maximum of

in S. The volume of Vla-1 is c = 2-r2IdI1/2/Norma. For A = 2(clv)1/n

the volume of AS is 2nc; so by Lemma 10 there exists a ^ 0 in a - 1 n AS,
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3 Embedding in the complex numbers 19

whence 1normal ~ >..nM. But aa is an integral ideal in the same class as
a, and

Norm(aa) = InormalNorma ~ 2r l + r 2Mv-lldl l / 2 .

This proves (i), and since there are only finitely many integral ideals in k
with Norm less than a preassigned bound, (ii) follows. 0

If one is going to use this theorem to compute h (and in general no other
method is known), then it is desirable to make Crt,r2 = 2r1+r2M/v as small
as possible. An efficient choice of S is

rl+r2

which gives

c - (A\ n!

The details of this calculation are given in the exercise below. Applying (i)
to the principal ideal class and noting that Crt,r2 < 1, we obtain

Corollary For every algebmic number field k, Idl ~ (nn/n!)( lllY2 > 1.

Thus the discriminant of an algebraic number field k with [k : Q] = n grows
at least exponentially with n. It was shown by Safarevic that no stronger
statement can be true: see [CF], Chapter IX.

Exercise Prove that the S chosen above is convex, and that M = n-n.
[For convexity, use the triangle inequality and

- A)x2)2 + (Ayi + (1

for 0 < A < 1. In polar coordinates this last inequality is

An + (1 - >')r2 ~ J>.2r~ + 2>'(1 - >')rlr2 cos(fh - O2) + (1 - >..)2r~,

which is trivial. That M ^ n~n follows from the inequality between the
arithmetic and geometric means.]

Transforming pairs Xv,XV+r2 from Cartesian to polar coordinates, show
also that v = 2r1(2'llY2Drt,r2(n) where

De,m(t) = / • • • / yi---ymdxi---dxedyi--- dy
J J
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20 1 Numbers and Ideals

and 'R.e,m(t) is given by xp ~ 0 (1 < p < I), yp ~ 0 (1 ^ p < m) and

xi + • • • + xi + 2(yi + • • • + ym) < t.

Prove that
rt rt/2

De,m(t)= lotDe-1,m(t - x)dx = Iot/ 2De,m-l(t-2y)ydy
Jo Jo

and deduce De,m(t) = 4-mtl+2m/(i + 2m)! by induction. o

For small values of n, more is known. For rl = 0, r2 = 1 we can take
CQ\ — V3 and this appears to be all that can be said. In all other cases,
there is known or conjectured to be an isolation theorem. To explain this,
it will be convenient to write temporarily

Ct = (least Norm of an integral ideal in the class c)/ldkll/2,

where c is an ideal class for the field k. For rl = 2,r2 = 0 we have
C;-1 ~ VS, but C;-1 ~ V'8 except when c is the unique ideal class in
Q(VS)j the least point of accumulation of the C;-1 is 3, and all the classes
c with C;-1 < 3 can be specified. (For proofs of some of these statements,
see the exercise on page 62.) For rl = 3, r2 = 0 we have C;-1 ~ 9 except
when c is the unique ideal class in the field Q(2cos 2;) with d = 49. For
n = r2 = 1 we have C;-1 ~ J23. But the methods by which these results
are established have nothing to do with algebraic number theory. They
belong to the Geometry of Numbers, which was once fashionable but which
(except for the widely applied Lemma 10) ceased to be so some thirty years
ago in England and considerably earlier elsewhere.

All these statements are best possible, in the sense that the constants
cannot be improved. It is conjectured that both the cases rl = r2 = 1
and rl = 0, r2 = 2 have properties like those which have been proved for
**i = 2,r2 = o. More spectacularly, it is conjectured that for each pair
rl, r2 with rl + r2 > 2 the C;-1 have no finite point of accumulation.

A unit of 0 is by definition an element a ^ 0 of 0 such that 0:-1 is also
in OJ thus the units form a group which in standard notation is just o*.
An alternative and more useful definition is that a unit is any element a
of 0 such that normk/Q(O:) = ±1. For if a is a unit then norm(o:) and
norm(o:-l) are elements of Z whose product is Ij conversely, if a is in 0
with norm(o:) = ±1 then ±0:-1 is equal to norm(o:)/o:, which is a product
of powers of conjugates of a and therefore an integer.
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3 Embedding in the complex numbers 21

Theorem 11 The group of units in 0 is the product of the group of roots
of unity in 0, which is cyclic and finite, and a free group on rl + r2 — 1
generators.

Proof The map o* -+ Rrl+r2 defined by

a i-> (log \<Tia\,... , log \ari+r2a\) (10)

is a homomorphism from o* to the hyperplane

Yl + --- + Yri+ 2(yP1+1 + • • • + yr i + r 2) = o

in Rr l + r 2 . Its kernel consists of the a in o* with laal = 1 for all a; so in
the standard topology on k it is a bounded subset of the discrete set 0 and
is therefore finite. If its order is N then every element of it is an N-th root
of unity; and the kernel is cyclic because the group of N-th roots of unity is
cyclic, being generated by exp(27ri/N}, and hence so are all its subgroups.

It remains to prove that the image of the map (1O) is a lattice in the
hyperplane (II). For this, let .N be a bounded neighbourhood of the origin
in (11) or even in Rr l + r 2 . The points of o* which map into .N have every
\<rot\ bounded; so in the standard topology they lie in the intersection of
o and a bounded set, and hence they form a finite set. Thus the image is
discrete. It remains to show that the image of (10) spans (11). For this it
is enough to prove the following assertion:-

• Given any real Al,... , Arl+r2 not all equal, there is a unit 11 with

f(r\) =AX log |<ri7?| + • • • + Ari log |<rriT?|

+ 2(Arl+1 10glarl+1111 + • • • + Arl+ r 2 10g larl+r2111) ^ 0.

Let Pl,... ,Prl+r2
 b e positive real numbers such that

Pl-"Pr1{Prl+l-Pr1+r>)2 = ($)r'\d\1/2 = A, (12)
say, where d is the discriminant of k. In the coordinates defined on page
18, the set S given by

IX",I ~ pM for 1 ~ n < rt, IX~ + X~+r21 ~ p! for n < p < rl + r2

is bounded, closed, convex and symmetric with respect to the origin; and
its volume is 2rl+r2Idll/2. By Lemma 10 there is a non-zero integer a in k
such that

|o>a| < Pn for 1 ̂  p. < r\ + r2;
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22 1 Numbers and Ideals

and Inormk/Qal ~ A now follows from (12). Since also Inormk/Qal ~ 1,

IX"I ~A-lp" for 1 ~ P. ~ rl,
|xji + x*+rJ ^ A - 1 ^ for n < n ̂  n + r2.

Let us say temporarily that at.a2 in 0 are equivalent if at/a2 is a unit.
The ~lements in an equivalence class are those which generate a particular
principal ideal, and up to sign their norm is the Norm of that principal
ideal; so there are only finitely many equivalence classes whose Norms are
bounded by A, because each of them corresponds to a subgroup of 0 of
index at most A. Let {3l,... , {3N be representatives of these classes. The a
generated above lies in one of these classes, so n = al(3/1 is a unit for some
v. But now f(TJ) = f(a) — f({3/1) and this differs from

Al logpl + • • • + Ar1 logPrl + 2(Ar1+l logPrl+l + ... + Arl+r2 10gPrl+r2)

by at most B = If({3/1)I + {logA) L IA"I, which does not depend on the p^.
We can choose the p" so that (12) holds and the last displayed expression
exceeds B in absolute value; this ensures f(TJ) ^ 0. 0

As it stands, this argument is not constructive because we have no way
of writing down a complete set of representatives {3l,... ,{3N. But by a
slight modification of the argument, we can find rl + r2 — 1 independent
units; for by choosing different sets of pM we can find as many a with
Inor~k/Qal ~ A as we wish, and suitable quotients of these will be units.
Once we have rl +r2 — 1 independent units, it is in principle straightforward
to find a base for the group of units; for we can quantify the statement that
if a is a unit and the image of a under the map (10) is near enough to the
origin then a is a root of unity. But in practice such calculations can be
quite tedious.

Corollary Let S be a finite set, consisting of m primes in o. Then the
group of units in Os is the product of the group of roots of unity in Os
(which is the same as for 0) and a free group on n + r2 + m — 1 generators.

Proof Let Pt.. . . , Pm be the elements of S. There is an exact sequence

o —- 0* —- Os —- {free group generated by the p,,};

and the image of the right hand map contains each P~ and is therefore free
of rank m. 0

Since the units give rise to a lattice A in the vector space V defined by
(11) and there is a canonical measure on V, we expect the volume of VIA
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4 Change of fields 23

to be of interest. This volume is called the regulator R of k. To write it
down explicitly, choose any base 1'/1,... , 1'/rl+r2-1 for the group

{units}/{roots of unity}

and form the (r1 + r2 — 1) x (r1 + r2) matrix whose II-th row is

Now delete any column; it does not matter which, since the sum of the
columns is O. The regulator R is then defined to be the absolute value of
the determinant of the resulting matrix.

4 Change of fields
Let k c K be algebraic number fields; it is natural to ask how far the
concepts which we have introduced for extensions k/Q can be extended to
K/k. For this, one needs to be able to lift certain objects from k to K.
Elements of k are automatically elements of K, and the property of being
integral does not depend on the field we are working in; but there is more
difficulty with ideals. There is only one sensible way of lifting a fractional
or integral ideal o of k to K; this is by means of the conorm. We define
21 = conormK/kll to be the smallest (fractional or integral) ideal of K which
contains all the elements of 11; equivalently we could define it as a ®0 O.
It is trivial to check that taking conorms commutes with multiplication of
ideals, that if a is in k then conormK/k(a) = (a) where the (a) on the left
is in k and the (a) on the right is in K, and that the tower law

if K ~ L ~ k then conormK/d (conorm^ a) = conormK/kll

holds for a in k. In other words, the notation is reasonably foolproof. By
abuse of language, one often writes o where one should write conormK/k ll.
In consequence, we sometimes need to write Normkll instead of Norm a to
make it clear which field we regard o as belonging to.

This process gives an apparently attractive way of getting rid of ideals
and working purely with elements of k:

Theorem 12 Given any algebraic number field k there is a finite extension
K D k such that for every ideal a in k, conormK/kll is principal.

Proof Let Ill!112 be ideals of k in the same ideal class, so that there are
non-zero {3l!{32 in k such that (/?i)oi = ({32)1l2; then

= ({32)conormK/kIl2
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24 1 Numbers and Ideals

for any K ~ k. Thus if one ideal in an ideal class of k becomes principal
in K, they all do. Now let Cl},... , Clh be representatives of the ideal classes
in k; the af are all principal in k, so of = (ai) for some ai in k. Let

then (conormK/kCli)h = (ai) and so conormK/kCli = ({ilii) in K. 0

Unfortunately, this technique for describing divisibility is so clumsy as
to be unusable. But the theorem has some historical interest, as being one
of the first signposts towards class field theory.

If we know that an ideal ~ in K has the form conormK/kCl then we can
recover a as follows.

Lemma 11 Let K ~ k and let a be any fractional ideal in k. Then

D k = Cl.

Proof Since conorm^/^o D a set-theoretically, all we have to prove is that
if f3 = E a^A^ is in k, where the a", are in o and the A", are integers in K,
then f3 is in Cl. Extending K if necessary, we can assume K normal over k.
Let O'}, . . . , Un be the elements of Gal(K/k)j then

On the right hand side, the coefficient of any monomial in the a", is an
algebraic integer in K invariant under Gal(K/k), and hence an integer in
k. Thus p n is in an, and SO f3 is in a. 0

If ~ is an ideal in K, how should we define normK/k~? If possible we
should form the product of '~ and all its conjugates, and transfer the result
back to k. To do this, we should choose an extension L of K normal
over k, denote the distinct k-homomorphisms K —- L by 0'1,... ,Un, form
nconormL/O'vK(O'v~), which is an ideal in L, and show by some analogue
of the Fundamental Theorem of Galois Theory that this is conormL/kCl for
some ideal a in k. But in this simple form the last step does not work; for
in contrast with what happens with elements of L, an ideal of L which is
invariant under every element of Gal(L/k) need not be the conorm of an
ideal in k. Suppose for example that k = Q and L = Q(,,'—' 5), so that
.0L = Z[v'-5]. The ideal ~ = (1 + H , 1 - H ) consists of all m+nH
with m + n even; so it is invariant under Gal(L/Q) and ~ n Q = (2). But
21 ^ conormL/Q(2), so ~ is not a conorm for L/Q. In fact ~2 = (2) in L.

The way round this difficulty depends on the following result:
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4 Change of fields 25

Lemma 12 Let a be the ideal in k generated by the normK/kA where A
runs through the elements of an ideal 21 in K, and let L D K be a normal
extension ofk. Then in the notation above

conorm/,/fco = ] [ coxiormL/(TiK(oi'&). (13)

Proof Since O'iA is in conorm^,/^ (^21), normK/kA = n(O'iA) k m t n e

right hand side of (13). Hence there is an integral ideal £ in L such that

conormL/ka = £ JJconornix,/^ (O'i2().

We must prove that £ = (1). Let ~ be an ideal in K prime to £ D K and
such that 2(~ is a principal ideal, say 2(~ = (B) with B in K. Since £ is
fixed under Gal(L/k), conormi/c^(<TJQ3) is prime to £ for every O'i. Since
B is in 2(,

conormL/ka :

( ) ( )

so nconormL/u;K(O'i~) is a multiple of .c. But n c o n o r mL/u;K(O' i~) is
prime to .c. Hence £ = (1). 0

In view of this result, we define normK/k21 to be the ideal in k generated
by all the normK/kA for A in 21. We list the standard properties of norms
of ideals, which are analogous to those of norms of numbers:

Lemma 13 Let K D L D k be algebraic number fields, let 2(, ~ be ideals
in K and a an ideal in k, and let A be an element of K. Then

normK/k(A) = (normK/kA), (14)
normL/k(normK/L21) = normK/k21, (15)

normK/k(21~) = (normK/k21)(normK/k~)' (16)
a[K:kJ = normK/k(conormK/ka), (17)

= normk/Qa. (18)

Proof We can assume that 21,~,a,A are non-zero, for otherwise these
equalities are trivial. Now (14) follows immediately from the definition. In
each of the other equations, the right hand side is contained in the left hand
side in view of the corresponding equalities for numbers. Now choose ideals
21', 55' in K and a' in k so that 2121', !l3~', aa' are principal, and multiply
the inequalities for undashed letters by the corresponding inequalities for
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26 1 Numbers and Ideals

dashed ones. We obtain statements about numbers, in which equality holds
by (14); so equality must also hold in the component inequalities. 0

Corollary Let K D k be algebmic number fields and let p be a prime in k
whose factorization in K is conormK/kp = n ~~'. Denote by fi the degree
of.o/~i over 0/1'. Then normK/k~i = ph and [K :kJ = E ed i .

Proof Taking Norms and using the last two results in the lemma,

(NormK(conormK/kP» = normK/Q(conormK/kp)
= normk/QP[K:k] = (NormkP)[K:k]

and

Comparing these results gives the second assertion. Hence normK/k~i is a
power of p by (17), and normk/Q(normK/k~i) = normk/Qph by (15), (18)
and NormK~i = (NormkP)h; this gives the fil,"st assertion. 0

By analogy, we can define the relative discriminant of K over k as
follows. Let [K : kJ = n and let a 1 , . . . , an be n elements of .OK linearly
independent over k. Imitating (1), we write

! ' ••• ,an) = de t (Tr K / k (a J .&a, ,» ;

then the relative discriminant of .0K over 0 is the ideal in k generated
by all the 6k/k(at.... ,an). But this is less interesting than the relative
different introduced in §8.

5 Normal extensions
Throughout this section K, k will be algebraic number fields with K normal
over k, so that G = Gal(K/k) acts on K and everything derived from it. Let
p be a prime ideal in k, and let conormK/kP = n ~~i be its factorization in
K and Ii the degree of the field .0K/~I o v e r Ok/p. In a n obvious notation
we have the tower laws eK/Q = eK/kek/Q a nd FK/Q = fK/kfk/Q. If q is m

G then also p = n(q~i) e , . Since each q~i is a prime ideal in K, the q~i
must be a permutation of the ~ i . The key to the results of this section is
as follows.

Theorem 13 Suppose K is normal over k with G = Gal(K/k). Then G
acts tmnsitively on the ̂ 3j, all the ei have the same value e, all the Ii have
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5 Normal extensions 27

the same value f, and [G] = [K : k] = efg where g is the number of distinct
prime factors ofp in K.

Proof Let q3 be one of the q3ij then q3 n k is an ideal in Ok containing p but
not containing Ij it must therefore be equal to p because p is maximal. By
Corollary 1 to Theorem 7, we can choose a in q3 so that (a)/q3 is prime
to pj thus normK/ka lies in q3 n k = p, so that each ^ divides some ua.
But the ideal (ua) is the product of uq3 and an ideal prime to pj hence
«PJ = uq3. Since [K : k] = efg is now a special case of the Corollary to
Lemma 13, all the other claims follow at once. 0

In what follows, we fix our attention on one prime factor q3 of p. Let
Z denote the subgroup of G consisting of those u which fix q3j Z is called
the splitting group (Zerlegungsgruppe) of q3 and its fixed field Kz the
splitting field. The reason for this name comes from

Lemma 14 Let H be a subgroup of G and let KH be its fixed field. Then
?Pi and q3j divide the same prime ideal in KH if and only if q3 i = uq3j for
some u in H.

Proof 'If' is clearly trivialj for 'only if' we apply the transitivity property
of Theorem 13 to the normal extension K/KH with Galois group H. 0

It follows that Kz is the smallest field L between k and K such that
the prime q3 n L in L does not split in K, though it may ramify there.
Moreover if e, f, 9 refer to q3 or a prime in a smaller field divisible by it,
then g(K/Kz) = 1 and [Kz : k] = [G : Z] = g(K/k), so that

e(K/Kz)f(K/Kz) = [K : Kz] = e(K/k)f(K/k).

By the tower laws e(K/Kz) ~ e(K/k) and f(K/Kz)-~ f(K/k)j so we
have equality in both relations. Thus in going from k to Kz we split off
the prime q3 n Kz but do not ramify it or extend its residue field.

Now consider the residue field .OK/Q3. Every element of the splitting
group Z induces an automorphism of .oK/q3 which leaves o/p elementwise
fixed. Moreover, if a is in K then the characteristic polynomial of a over
Kz is .,p(X) = flu in Z(X — ua). Denote reduction modq3 by a tildej since
we have just shown that t/;(X) is defined over o/p and all its roots are o:a
with u in Z, all the conjugates of a over o/p have this form. Choosing a
so that a generates OK/% we deduce that every automorphism of .OK/Q3
over o/p is induced by some u in Z. Let T be the kernel of the epimorphism

Z ~ Gal«.oK/q3)/(o/p)),
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28 1 Numbers and Ideals

where we know from the Galois theory of finite fields that the right
hand side is a cyclic group of order f; T is called the inertia group
(Tragheitsgruppe) and its fixed field KT the inertia field of ~ I ' This
proves all but the last clause of

Theorem 14 T is a normal subgroup of Z, of order e, and Z/T is cyclic
of order f. T consists of those elements of Z which induce the identity on
oK/~; these are just the elements of G for which a = oa. mod ~ for all a
inOK.

For the last clause, we need only note that if u is not in Z then we can
choose a so that a is in ~ but not in u - l ~ , whence a^aa mod ~. Now
GAL(K/KT) = T, which is also the inertia group of ~ for the extension
K/KT; thus f(K/KT) = 1, whence e(K/KT) = e and so ~ n KT = T-
Thus ~ n Kz remains prime in KT, which is why KT is called the inertia
field, but going from Kz to KT induces an extension of degree f of the
residue field.

We can go further. Choose n in OK SO that ~lln and consider those u
in T for which un = =nmod~2. In view of the last clause of Theorem 14
this property does not depend on the choice of n, and hence such u form
a group V; it is called the ramification group (Verzweigungsgruppe).

Theorem 15 V is normal in Z, and is the unique Sylow p-subgroup ofT;
moreover T/V is cyclic and its order divides Norm(~) — 1.

Proof If p is the rational prime underlying ~ then any element of V has
order a power of p. For if u is an element of V other than the identity then
we can choose n so that un ^ II. Thus un = =n + £lnm mod~m + 1 for
some M > 1 and some a in OK not divisible by ~. Iterating, we obtain
u r n = =n + r£ln m mod~m + l . Thus u cannot have order prime to p, and
the same happens for any power of u other than the identity. Now let u be
any element of T and..,!rite 0a = un/n; then (3u does not depend on the
choice of n and u —+ (3u is a homomorphism from T into the cyclic group
(OK/VY with kernel V. This implies in particular that V is normal in T.
But since ( . 0 K / ~ ) . has order prime to p, V is p-Sylow. Uniqueness follows
from the facts that all Sylow p-subgroups of an arbitrary finite group are
conjugate and V is normal in T. That V is normal in Z follows from the
facts that T is normal in Z and V is uniquely determined by T. 0

It is possible to investigate the structure of V further, by defining the
higher ramification groups. For these, and their connection with the differ-
ent (introduced in §8), see Chapter IV of [Sel. It turns out that a knowledge
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5 Normal extensions 29

of the chain of ramification groups associated with ~ tells one the exact
power of ~ which divides the different. This both strengthens Theorem 21
in Chapter 2 and proves the assertion made in §8 that the different is a
measure of the badness of bad primes. (The assertion is still valid for non-
normal extensions, but the proof requires more complicated notation.) Of
course, once one has obtained Z the rest of this section is really local theory
and might be better expressed in the language of Chapter 2j for in that
language K n kp = Kz within K!p and hence Z is canonically isomorphic
to Gal(K!plkp).

If e = 1 then T is trivialj and Z = Gal«.oK/~)/(o/p)), which is now
cyclic of order f, has a natural generator given by a *-* liNormp for all li.
The corresponding element of G is called the Frobenius element and is
denoted by [K~k]. It is uniquely determined as an element of G by

(19)

for all a in .OK. It obviously has the property

for every a in Gj thus it is defined up to conjugacy by a knowledge of p. In
particular, if G is abelian then this symbol depends only on pj in this case
it is called the Artin element or Artin symbol and is denoted by (Ktk).
(Note the change from square to round brackets.) By multiplication we
can now define the Artin symbol (K £k) for any fractional ideal a which
involves no ramified primej and by construction the map a 1-+ (K£k) is a
homomorphism. The Artin symbol plays a central role in class field theory.

In some contexts one needs to extend the definition of the Frobenius and
Artin elements to the case of primes ramified in Klk. There is only one
sensible way to do thisj that is to define [K~k] to be the set of all elements
of G which satisfy (19). This identifies the Frobenius element as a member
of ZIT, or equivalently as a left coset of T in Z or even in G.

It is natural to ask how all these objects behave under change of field.
For this purpose we suppose that K D L D k, that K is normal over k with
G = Gal(Klk), that H = Gal(KIL) and that ~ is a prime ideal of K and
.0, p are the corresponding prime ideals of L, k. If we consider Llk we shall
also need to assume that H is normal in G, so that Gal(LIk) = GIH.

Theorem 16 With the notation above, ZK/L = ZK/k n H and similarly
forT and Vi and [K'L] = [^]f where Norm.o = (Normp)J', so that f
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30 1 Numbers and Ideals

is associated with Q as a factor of p. If H is normal in G then ZL/k is the
image of ZK/K in G/H and similarly for T and V; and [.!G-I is the image

Proof The first half of the first sentence is immediate, and the second
follows from (19) because [Kr ] l ' is the only element of G with the requisite
property. Now assume that H is normal in G, and let a be an element of
G. The image of a in G/H is in ZL/k if and only if O'~ divides .oj and
since H is transitive on the prime ideals in K which divide .0, this happens
if and only if O'H meets ZK/K. A similar argument works for T, and the
result for V follows from the fact that V is the unique Sylow p-subgroup
of T. The result for the Frobenius symbol follows trivially from (19). 0

Suppose that we consider another prime factor O'~ of p instead of ~j
then the Z, T, V for O'~ are obtained from those for ~ by conjugation by
0'. In an obvious notation, Zay = 0'ZopO'-l and so on. We have already
noted that the corresponding statements hold for the Frobenius and Artin
elements.
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Valuations

6 Valuations and completions
For any field k, an absolute value, also called a multiplicative valua-
tion, will be a map k —- R denoted b y a n ||a|| which for some a > 0
satisfies the conditions 11011 > 0 for 0 ^ 0, 11011 = 0 and

IMHI/JH = 110.811, 110 + .811<1~11011<1 + 11.811<1. (20)
Readers are warned that some authors use a more restrictive definition.
Two valuations 11.111 and 11.112 are called equivalent if 110112 = lIollY for
some fixed c > 0 and all o. An equivalence class of valuations is called a
place. Any valuation makes k into a metric space with metric given by
d(XllX2) = IIx1 — x211<1j this metric depends on a, but the induced topology
only depends on the place.

Lemma 15 Distinct places induce distinct topologies on k.

Proof Suppose that 11.111 and 11.112 induce the same topology on k. Since

IIxll < 1 «=> ||xn|| _> 0 as n —- 00 <=> xn - 0 as n —- 00,

IIxll1 < 1 if and only if IIxll2 < 1. We can assume that there exists Xo ̂  0
with this property, for otherwise IIxlll = IIxll2 = 1 for all x ^ 0. Define
c > 0 by IIxoll2 = IIxollY and for any x ^ 0 in k with IIxlll < 1 let A satisfy
IIxll1 = Ikolli- If min > A then IIx:Ixnll1 < 1 whence IIx:Ixnll2 < 1
and IIxll2 > IIxoll~/nj similarly if min < A then IIxll2 < IIxoll~/n. Thus

$ f = IIxollY. D
At this stage it must appear more natural to get rid of a and replace the

second relation (20) by the usual triangle inequality

||a + .811~11011 + ||/?||. (21)

31
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32 2 Valuations

However on page 35 we shall see that in each place there is a natural
distinguished element (called a normalized valuation), and unfortunately
it does not always satisfy (21).

In what follows we shall ignore the trivial valuation IIall = 1 for all a ^ 0,
which corresponds to the discrete topology. A m.ultiplicative valuation on
a field k is called Archimedean if k has characteristic 0 and Ilmil > 1
for some m in Z, and non-Archimedean otherwisej the excuse for this
terminology is that for an Archimedean valuation IImll tends to infinity
with m, and Archimedes wrote a book called On Large Numbers. It turns
out that Archimedean and non-Archimedean valuations have significantly
different properties.

Lemma 16 If k is an algebmic number field, the Archimedean valuations
on k are given by IIall = 100aic where c> 0 and a is any embedding k —+ c .

Proof The function on k defined in this way is certainly an Archimedean
valuation, so let 11.11 be any Archimedean valuation. It is clearly enough to
prove the result when a is in o. Replacing 11.11 by an equivalent valuation
if necessary, we can assume that (21) holds. The first task is to prove

• Ilmil = Imlc for all m in Z and some fixed c > o.

Clearly II±1112 = 11111 = 1, so we need only consider the case m > 1. Choose
some mo > 1 and for any m, N write mN in the scale of mo:

mN = ^~]aumQ where 0 ~ a" < mo. (22)

Here the sum is taken over 0 ~ v < iVlogm/logmo. Let A be an upper
bound for lIali where 0 ~ a < mo. If we could choose mo with IImoli ~ 1,
applying (21) to (22) would give IImliN ~ A(1 + N log m/log mo)j taking
N-th roots and letting N —+ 00 would then give IImil ~ 1 for all m > 1,
contrary to hypothesis. Thus IImil > 1 for all m > 1. But now the same
argument gives

IlmliN ~ A(1 + Nlogm/logmo)IImoIINlogm/logmoj

taking N-th roots and letting N -+ 00 we obtain Ilmil ~ Ilmoillogm/logmo.
If we had strict inequality here, we could interchange the roles of mo and
m and obtain a contradiction. So IImll1/logm is independent of m, and if
we choose c so that it is equal to eC our assertion follows.

Now let a be a non-zero element of 0, and order the av : k —+ C so that
IO'"aI ~ 100"+1al. (This ordering depends on a and should not be confused
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6 Valuations and completions 33

with the ordering used in §3.) Let c have the value obtained in the previous
paragraph. Write

v—ra

II(X - O'aN) = xn+ a1Xn-1 + .. . + an, Pm = I I (O'lIaN). (23)

The am are symmetric functions of the O'aN and the largest summand in
am is ±Pm; so laml < ClPml where C depends only on n. Moreover, if
100m+1al < 100mai then once N is large enough this summand is much larger
than any other in am; SO laml > ~lPml. Also lIamll = lamlc because the am

are in Z. If

for some 1-', then in the first equation (23) with a N for X the term a",aN(n-",)
on the right would be much larger than any of the others, which contradicts
the triangle inequality since the sum of all the terms vanishes. We get a sim-
ilar contradiction if Iiall > 10'1alc or Iiall < 100nalc; so Iiall = 100",alc for some
1-'. Apparently /x here might depend on a; but using Ila.8NII = Ilall • II.8I1N

with N large we find first that we can require n to be the same for .8 and
a.8N and then that it is the same for a.8N and a. 0

A refinement of this argument actually proves that any Archimedean
valuation on any field L is equivalent to one defined by IIxll = 100xi for some
embedding a : L —- C. In our case there are T1 + T2 classes of Archimedean
valuations — one for each real embedding k —- R and one for each pair of
complex conjugate embeddings k - C . Note that R or C respectively can
be identified with the completion of k under the appropriate topology. The
Archimedean places are often called the infinite places, or by an abuse
of language motivated by Lemma 17 below, the infinite primes.

For non-Archimedean valuations we can radically improve (21), for if 11.11
satisfies (21) and is non-Archimedean then

Here the an,N are integers, so their absolute values are at most 1. The
right hand side is bounded by (N +1) max(llall, 1I.8I1 ) N . Taking N-th roots
and letting N —- 00 gives

||Q + .811 ~max(lIall, 11.811); (24)

and if this holds for one valuation in an equivalence class, it holds for them
all. Applying (24) to a = (a + .8) + (—.8) gives

lIall~max(lIa + /?|
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34 2 Valuations

and by symmetry there is equality in (24) whenever lIall ^ \\(3\\. A metric
having this property is called an ultrametric.

Lemma 17 Let 11.11 be a non-Archimedean valuation. There are a non-zero
prime ideal"of0 and a constant C > 1 such that lIall = c-m for alla:f:0
in k, where m is defined by "mila.

Proof Any a ^ 0 in 0 satisfies an equation

where the a", are in Z. If LIALL > 1 then the first term on the left would have
strictly larger valuation than any of the others, which contradicts (24). So
||Q|| ~ 1 for all a in o. If IIall = 1 for all a ^ 0 in k then our valuation
would be trivial; so there are integers a ^ 0 with lIall < 1. Using (24)
again, the.set of a with lIall < 1 form an ideal ,,; and " is prime because
lIala211 < 1 implies lIadl < 1 or lIa211 < 1.

Now choose n in " but not in ,,2 and let a be any non-zero element of k.
In the notation of the lemma we can write (a/rrm) = at/a2 where at. a2 are
integral ideals prime to ". By Theorem 7 we can find .82 in a2 and prime
to p. Write 0i = .B2a/rrm, so that .81 is in al. Neither .81 nor fo is in 1', so
they both have valuation 1; thus lIall = IIrrllm. D

Conversely, by the formula in the lemma any p and C determine a non-
Archimedean valuation; and changing C only changes the valuation within
its place. This place can be identified with 1', and will be called a finite
place. Denote by kp the completion of k under the metric associated with
p. An element a of kp is determined by a Cauchy sequence {an} where
110m — onll —» 0 as m,n —- 00; hence 1I0nil tends to a limit, which we can
define to be 11011. It is easy to check that kp is a field containing k, and that
11.11 determines a non-Archimedean valuation on kp which extends the given
valuation on k. If we denote by op the set of a in kp such that lIall ~ 1 and
by Pp the set of a in kp such that lIall < 1, then op is an integral domain
whose quotient field is kp and Pp is its only non-zero prime ideal. Note
that op/pp can be canonically identified with 0/1'. The elements of op are
in one-one correspondence with the nested sequences of residue classes

almod" ~ 02mod,,2 ~ ... ~ ammodpm ~ . . . .

Now let the /3M be a fixed set of representatives of the residue classes mod p
in 0, and let rr be in " but not in 1'2. (When we work with kp we shall
consistently use RR in this sense.) Thus the itn~l0ll are a set of represen-
tatives of the residue classes modpn in p n - l ; hence the elements of op are
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6 Valuations and completions 35

the E ~ 'Yn1l"n where each 'Yn is a P w Similarly the elements of kp are the

The field kp is an example of a local field, a subject for which there is a
good introduction in [Cal and a comprehensive account in [Se]. Analysis in
kp is much easier than in R; for example, it follows from (24) that a series
in kp converges if and only if its terms tend to O. The next three lemmas
are further examples of this; they are stated only for kp, but it will be clear
from the proofs that they hold in much greater generality.

If we wish to refer to a place which is not necessarily finite, we usually
denote it by v and denote the corresponding completion of k by kv. If v is
infinite, it is conventional to take ov to be the same as kll

The formulae for 11.11 in Lemmas 16 and 17 each contain an arbitrary
constant. But there is a canonical way of deriving a valuation on kll in the
class of 11.11 from the induced: topology on k. For any a in kll, multiplication
by a gives a map of kll to itself which multiplies the natural measure of
volume on kll by a constant; we choose this constant to be lIali. (The
volume on kll is only determined up to an arbitrary constant, but this does
not affect the value of lIall.) This process is also described, from a slightly
different starting point, in §A1.3. For infinite places this gives lIali = 100ai
if a is real and LIALI = IO'al2 otherwise; for the finite place associated with p
it gives Iiall = (NormkP}-m where pm is the exact power of p which divides
(a). This and Norm((a» = Inormk/Qal immediately give the Product
Formula

where the product is taken over all normalized valuations.
Taking the logarithm of a non-Archimedean valuation and renormalizing,

we obtain the additive valuation a 1-+ vp(a} = v where pll is the exact
power of p which divides a. (The double use of v is traditional, and should
not cause confusion.) The corresponding niles for this are

vp{ap) = vp(a)+vp(0), vp(a +/3) > min{vp(a),vp((3)),

and in the latter rule we have equality whenever the two arguments on the
right are unequal.

Lemma 18 below says that under modest conditions factorizations of
polynomials can be lifted from o/p to op. This and Lemma 19 are special
cases of Hensel's Lemma, for which the underlying idea is due to Newton.
In its most general form (which belongs to algebraic geometry), this enables
one to refine an approximate solution (in k or kp) of a set of polynomial
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36 2 Valuations

equations in k or kp to an exact solution in kp. In Lemma 18 we shall again
use a tilde to denote reduction mod p.

Lemma 18 Let f(X) be a polynomial in op[X] and j(X) = ifJl(X)ifJ2(X)
where </>i,<fo in (ojp)[X] are coprime. Then there exist polynomials 11,h
in op[X] with f(X) = I1(X)h(X), degl1 = degifJl and j",(X) = ifJ",(X).

Proof We construct polynomials / } " , /^ in op[X] for n = 1,2,... whose
reductions mod p are </>i, fa and which have the propertiesdeg /{ = deg ifJl,

for /I = 1,2; (25)

then the /„ = lim /^n will exist and have the required properties.
For the f~l) we lift the </>„ to op[X] in any way. To construct the

from the fSn) we proceed as follows. By hypothesis

/ = f
~n)f~n) + 7rnh(n) for some h(n) in op[X] with degh(n) ~ degf.

If we choose f~n+1) = f~
n) + 7rng£n) with the g£

n) in op[X] then the second
condition (25) will certainly be satisfied, and the first one will be equivalent
to

and therefore also to

Since 4>i,fa are coprime and (ojp)[X] is a principal ideal domain, there
are polynomials t/h,1/J2 in (ojp)[X] such that fafo + <t>2^\ = h^ and

l < degifJl; and we can take the g£n) to be any lifts of the 1/J",. 0

The next result is not quite so obvious as one would expect.

Corollary Let K, k be algebraic number fields with K D k and let !,p, p
be prime ideals in K, k respectively such that !,pIp. If a is in D\ll then a is
integral over Opj in particular TrKop/kpll and normKop/kpll are in op.

Proof Suppose that !,peup and choose II in D so that !,pUll. Let B b .. • , Bn
be a base for O/^J as an (ojp)-vector space. The representation on page
35 implies that the II" B", with 0 ~ fj, < e form a base for D\ll as an op-
module. Hence K\ll is algebraic over kp. In what follows, we shall use the
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6 Valuations and completions 37

absolute value associated with Sfl, which clearly induces an absolute value
on k associated with p. Let

be the minimal monic polynomial for a over kp• We assume that the cp
are not all in op and obtain a contradiction. Let b in op be such that the
bcp are all in op but not all divisible by p. If bcm were the only one of the
bcp not in p then em would have strictly larger absolute value than any of
the other terms in f(a) = 0, contradicting the ultrametric law (24). In any
other case, we can use the lemma to lift the factorization bf(X) • 1 to a
non-trivial factorization of bf(X) over op, and f would not be minimal. 0

It follows from Lemma 18 that if j(X) = 0 has a root of multiplicity 1
in 0/1' then this root can be lifted to a root of f(X) = 0 in op. Here the
multiplicity 1 condition is inconvenient, though we have to pay a price for
dropping it.

Lemma 19 Let f(X) be a monic polynomial in op[X] with formal deriva-
tive f'(X), and let a in op be such that IIf(a)1I < IIf'(a)112. Then there is
a unique root a* of f(X) = 0 in op such that

ll- (26)
Proof We construct a sequence al = a,a2,... of elements of op such that

Ilf(an}ll, }
= 1I!'(a)lI, lIan+! - anII ~ 1I!(an)II/IIf'(a)lI. j

These relations imply that lIan+! — anll —+ 0, so that the sequence tends
to a limit a* which is clearly a root of !(X) = o.

If an+! = an + f3n for some f3n in op then

= !(an) + f3n!'(an) + integral multiple of f3!. (28)

Take f3n = —!(an)/f'(an}, so that the first two terms on the right of (28)
cancel. Now the penultimate claim in (27) follows from

!'(an+!) = f'(an) + integral multiple of f3n

because the second term on the right has strictly smaller value than the
first; and then the remaining claims follow at once.

It remains to prove uniqueness. But suppose ai,a2 are distinct roots of
!(X) = 0 satisfying (26); then f(X) = (X - ai)(X - (2)g(X) with g(X)
in op[X], whence 1If'(ai)1I = lIai - a*2\\ l Ig(ai)1I ~ lIai - aill. 0
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38 2 Valuations

Some f are such that we can start this successive approximation process
with a worse estimate a. An example which will be needed later is as
follows.

Lemma 20 Let p be the mtional prime below p and let ao,~ in 0; be such
that c?o = =~modpm+r where pmllp and r(p - 1) > m. Then there exists a
in",; such that aP = ~.

Proof We again construct a sequence ao, all.... such that

an+1 = an modp"+r; (29)

then a = liman will do what we want. Suppose that we have already
chosen ao,... ,an, and write an+1 = an + ll'n+rf3n where f3n must be in
op. The first congruence (29) will be satisfied if

f3n modpm + r + n + 1

and this is always possible. o

Lemma 21 (i) Let L = kp(a) be a finite algebmic extension of kp and let
f(X) be the minimal monic polynomial for a over kp• If g(X) in kp [X]
is monic and close enough to f(X), then there exists 0 in L such that
g(f3) = 0 and L = kp(f3), and g(X) is irreducible over kp.

(ii) Every finite algebmic extension of kp lies in some K~ where K is a
finite algebmic extension ofk and ty is a prime of K above p.

Proof To prove (i), we would like to apply Lemma 19 to a as an approxi-
mate solution of g(X) = 0; but this is illegitimate because we do not yet
have a valuation on kp(a). Instead we replace f(X) by a polynomial go(X)
close to f(X) and in P[X]i and if 13 is a root of go we choose a neighbour-
hood N of f in the space of all monic polynomials in kp[X] with the same
degree as f so that the conditions of Lemma 19 hold for 13 and any 9 in N.
For kp(13) to be meaningful we must embed kp and 13 in a common field;
it will be convenient to take this field to be K~, where K is the splitting
field of go(X) over k and 3̂ is any prime of K lying above p. Clearly the
valuation on K associated with 3̂ restricts to a valuation on k associated
with 1', though the latter may not be canonically normalized; thus we can
use 11.11 to denote both of them.

After multiplying a by a suitable element of 0, we can assume that f(X)
is in op[X]. Define D(g1lg2) = ngH~i) for any monic polynomials g1lg2
in kp[X] and of the same degree as f, where the product is taken over all
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6 Valuations and completions 39

roots & of 92; thus D(91192) is equal to a polynomial in the coefficients of
(/i and 92, and c = IID(f, f)II ^ 0 because f has no repeated roots. We
require N to be so small that IID(91,92)1I = c for all 91192 in N and that
every 9 in N is in op[X]. We impose the further condition on N that for
g in N every coefficient of f — 9 has absolute value strictly less than c ?

If we take 90 to be in N n o[X] then every coefficient of 9 - 90 admits the
same bound and hence

If f3i is any root of 90, then 9' (f3i) is in D'l3; so 1 19'(f3i) II ~ 1 and therefore
119'(f3)II ~ c. Hence the hypotheses of Lemma 19 are satisfied, so to each
root f3i of 90 there corresponds a root 7* oig in Osp with Ihi -f3iII < c. But
if f3i, f3i are distinct roots of 90 then IIf3i - f3ill ~ 119b(f3i)II ~ c; so if also
Ihi- ~~ 0j\\ < c then 'Yi and 7, are distinct. Since 9 has only as many roots
as 90, each root of 9 must occur as a 7* and is therefore in D'l3. Moreover
kp('Yi) C kp(f3i) C K'l3 for some root f3i of 90.

Taking 9 to be f, this proves (ii). Knowing this, we can take 90 in the
argument above to be any polynomial in N. But kp(f3) D kp(a), so that in

degff ^ [fcp(/?) : fcp] > [*p(a) : fcp] - deg/

the two outer terms are equal; it follows that kp(f3) = kp(O:) and 9(X) is
irreducible over kp. 0

In the language which we have introduced in this section, we can restate
the Chinese Remainder Theorem (Theorem 7) as follows. Let pi , . . . ,Pm
be distinct prime ideals in 0 and 0:11... ,O:m any elements of 0; for any
e > 0 we can find a in 0 such that \\a — O:llllp" < € for each /-l. A variant
of this which does not discriminate against the infinite places is the Weak
Approximation Theorem:

Theorem 17 Let V1,.•. ,Vm be distinct places of k and 0:1,... , O:m any
elements ofk. To any € > 0 we can find a in k such that \\a — a^H^ < €
for each /-l.

Proof We saw on page 3 that k is dense in n kv, where the product is over
all infinite places; so we can find f3 in k satisfying 11f3 - a^\\Vli < ~€ for all
the infinite places among the Vw Choose M > 0 in Z such that M(O:Il — (3)
is in 0 for each finite place Vw By Theorem 7 we can find 7 in 0 such that
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40 2 Valuations

for each finite place vIL; then a = 'Y/MN + 0 will satisfy all our conditions
provided that N > 0 in Z satisfies

IINllvl' >2f-11l'Y/Mllvl' for each infinite place «„, (30)
liN - ILLVL' < !fllMhllvl' for each finite place V (31)

For this, it is enough to choose N so that N — 1 is divisible by a large power
of NormI'll for every pM associated with a finite place uM. •

Exercise In the notation of the theorem, prove by induction on m that
there exists 0 in k such that 11{3l1vl > 1 and 11{3l1vl' < 1 for J.L = 2, . . . ,m.
[Use the proof of Lemma 15 to find 7 with Ibllvl > 1 and Ibllvm < 1. By
the induction hypothesis there exists 6 with 11611vl > 1 and 11611vl' < 1 for
H = 2, . . . ,m - 1. Now take 0 = 'Y6T if 11611vm ~ 1 or 0 = 'Y6T/(1 + 6T)
if 11611vm > 1, where r is large.] By considering {3T/(1 + (3T) for r large,
deduce the theorem in the special case a\ — 1, 0:2 = • • • = O:m = 0 and
hence derive it in general. 0

The significance of the phrase 'weak approximation' will be explained
in §9, where Theorem 17 will be translated into the language of adeles.
Roughly speaking, a weak approximation theorem asserts the existence of
one or more elements of k satisfying certain conditions, whereas a strong
approximation theorem asserts the existence of one or more elements of
0, or Os for a preassigned finite set S of prime ideals, satisfying certain
conditions. (Thus Theorem 7 is a strong approximation theorem.) Strong
approximation theorems are in general much harder to prove than weak
approximation ones, and are usually uglier to state. For example, the
strong analogue of Theorem 17 is trivially false for o. If we add the further
condition that there is at least one infinite place which is not among the
v^, we obtain a plausible but unproved conjecture.

7 Field extensions and ramification
Let K = k(o:) be an algebraic number field with [K : k] = n, let 0(X) be
the minimal monic polynomial for a over k, let P be a prime ideal in Ok
and let p be the rational prime divisible by p. There is a close relationship
between the factorization of <j> in kp and the factorization of conormK/kP
in DK . The latter must have the form

(32)
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7 Field extensions and mmification 41

for some primes ^Ji, . . . , lJ9 in DK . We say that p ramifies in KIk if some
ep' > Ij the ramification is called wild if some ep' is divisible by p, and tame
otherwise. If we write normK/k'.lJp. = p/l', the Corollary to Lemma 13 gives

n = [K:k] = Lep.fw (33)
We temporarily drop the subscript J.L. Let f31,... , f31 in DK be such that
their images are a base for O/^P as an (0Ip)-vector space, and let TI in DK
be such that '.lJIITI. Then the f3iTIi with 0 ~ j < e form a base for DK/$ as
an (o/p)-vector space, so that [K\lJ : kp] = ef. We can however strengthen
this result considerably:

Theorem 18 In the notation above, there is a natuml isomorphism

K®kkp& KVl © • • • © KVg (34)

both algebmically and topologically.

Proof By (33), both sides of (34) are kp-vector spaces of the same finite
dimension. There are natural maps K ®k kp —~ K<$^ and hence there is a
continuous vector space homomorphism <j> from the left hand side of (34) to
the right hand side. But <j>(K) is dense in the right hand side, by Theorem
17, so <f> is onto. 0

Theorem 19 In the notation above, let <j>(X) = Y\<t>n(X) where the
are irreducible in kp[X]. Then after renumbering, deg<£M = ell-fp. and

is the minimal monic polynomial for a over

Proof For each fixed n, it follows from Theorem 18 that a generates K\lJ
over kp. Let <j>n(X) be the minimal monic polynomial for a over kp when
both are considered as lying in K\lJI'. (This will depend on J.L; the point
is that we cannot define binary operations between a and elements of kp
until we have embedded them both in a common field.) Thus <t>n(X) has
degree [K\lJ : kp] = e^f^ and divides <j>(X); comparing degrees and using
(33), it only remains to show that the <t>n{X) are distinct. But the topology
on ATip̂  is determined by a knowledge of (fr^X), and by Theorem 17 the
topologies induced on K by the various '.lJp. are all different. 0

We shall shortly see that when k = Q the p with some e > 1 are just
those which divide dKj hence for any k the primes p in 0 which ramify
in Klk also divide dK. Assume for convenience that we have chosen a to
be an integer. In the notation above <j>{X) is in o[X] and if one excludes
finitely many p then J(X) = 0 has no repeated roots. If so, by Lemma
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18 the factorization of <j>{X) over kp corresponds to that of ~(X) over Fq
where q = NormPi and if <j>i(X) corresponds to ~1 then we can take
?Pi = (p, ,p1(0)) where ,p1(X) is any lift of ~1(X) to o[X]. We can actually
do better than this.

Lemma 22 With the notation above, let 0 in O be such that the index 01
0[0] in O is finite and prime to p. Then ~(X) = l l ( ,p , , ( X W" where the
,p,,(X) are in Fq[X], coprime and irreducible, and deg,p" = I", II 9,,(X)
is any lift ol,p,,(X) to o[X] then ~ " = (P,9,,(0)).

Prool Let ,p1(X) be a monic irreducible factor of ~(X) over Fq and let 13 in
Fq be a root of ,p1(X). Every element of O can be written as E~-1 c v o v

where the Cv are in k with denominators prime to P and n = [K : k]i
hence there is an epimorphism D —t Fq[13] given by 0 1-+ 13 which extends
reduction mod p. Let ~ be its kerneli since the image is a field, ~ is a prime
ideal which divides p. If e, I denote the standard values corresponding to
3̂ then deg,p1 = I because Fq[f3] ~ . o /~ has order (Normp)!. Moreover

V ~ (P,91(0)). Conversely any element 7 of ~ has the form h(o) where
h(X) is in k[X] and the coefficients of h have denominators prime to Pi and
h(f3) = 0 so that ,p1 divides h. In other words h(X) - 91(X)h1(X) has all
its coefficients in p for some h1(X) in O[X]i setting X = 0 we deduce that
7 is in (1',91(0». In particular ~1I91(O) if e > 1.

We have 4>(X) = Y[(MX))C" for s o m e c»- T h u s <K*) ~ n(^(^)) c"
has all its coefficients in 1', so YKgnia))0" lies in 1'. On the other hand
9,,(0) maps to ,p,,(f3) ^ 0 if P. ^ 1, so 9,,(0) is not in ~ and the distinct 9"
correspond to distinct prime factors of p in K. Hence (91(0Wt is divisible
by ~ei so C1 ~ e if e > 1, by the last result in the previous paragraph.
This also holds if e = 1. Comparing [K : k] = E c"l" with (33) shows that
c\ = e and that each ~ " is generated in this way. 0

The most favourable situation is when O = 0[0], which seems to happen
quite often. (There is a problem with assertions like this, because it is
not clear what one should mean by an arbitrary algebraic number field.)
But there are pairs K, p for which there does not exist an 0 satisfying the
conditions of Lemma 22, though this can only happen if Normp ~ [K : k].
(See Exercise 2.8.) In such cases there may still be labour-saving tricks
available, but sometimes the least onerous way to find how p factorizes is
to study .0/p. However, the following lemma, which is needed for a quite
different reason, does enable one to modify Lemma 22 so as to compute
the ~ " and their associated e", I " one by one.
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8 The Different 43

Lemma 23 Let 1',~ be prime ideals in algebmic number fields k, K respec-
tively with K D k and ~Ip. There exist an algebmic integer 0 in K and
embeddings ofOp and 0 into K<$ such that K<p = kp(o) and op[o] = 0<p.

Proof Let ~ generate .o/~ over 0/1' and lift ~ back to an integer 0 in .0;
then op [o] contains representatives of all the classes in .o/'.P. If it also
contains an element divisible by 3̂ only to the first power, then it contains
representatives of every class in ~ m / ~ m+1 for e a c h m > 0, and the lemma
follows at once. But let <p(X) in o[X] be such that 4>{X) is the minimal
monic polynomial for ~ over 0/1', and let <j>'{X) be the formal derivative of
<I>(X). Here <j>'{X) does not vanish identically because .o /~ is separable
over 0/1'; hence ;i'(~) ̂  0 because ;j' has smaller degree than <f>. If TI in .0
is such that ~IITI then W ( a ) and

<j)(a + TI) = 4>(a) + n0'(a) mod~2. (35)

By (35) at least one of 0 and 0 + TI satisfies the condition in the second
sentence of the proof, and they are both lifts of ~. 0

Exercise Obtain the analogues of Theorems 18 and 19 for infinite places.

8 The Different
Many number-theoretic objects give rise to an ideal which identifies the bad
primes for that object and measures how bad they are. Such an ideal is
important primarily because it has this property, but the definition does not
always make this evident; on occasion this fact can be a non-trivial theorem.
Typically such an ideal is called the conductor, but for an extension K/k
of algebraic number fields it is called the (relative) different.

By Lemma 3, every k-linear map K —+ k has the form Q ~ TrK/k(o{3)
for some {3 in K. It is natural to ask which are the {3 for which the image
of .OK under this map lies in Ok. Let S be the set of such (3; clearly S is
an .oK-module which contains .OK. On the other hand, TRK/Q(O{3) must
lie in Z. So if 0 1 , . . . , ON are a base for DK as a Z-module then S must
lie in the Z-module spanned by {3I,... ,(3N where % satisfies

l ^ V (36)
0 otherwise. v '

If we write (3/1 = ~ 0pCP/I with CP/l in Q then we have the matrix relation

(Tr(aMap))((cv)) = J.

It follows that each dKCp/l is in Z where DK is the discriminant of K, so
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44 2 Valuations

S is contained in the fractional ideal di/OK j since S is an OK-module, it
is itself a fractional ideal. Since also S ~ OK , it is natural to write S as
D"1 = i)j

(ik where i)K/k is an integral ideal called the different of K/k. If
k = Q, the {3v defined above span O^yo and it follows that

= | det(TrK/Q(aMap))| - |djr|. (37)

Now let K ~ L ~ k and let (3 run through the elements of 0 K, A through
the elements of OL and 7 through the elements of i)L/k. If a is in K then

a in i)j(ik <==> TrK/k(a{3) is in Ok for all (3

TrK/k(a{3A) = TrL/k(ATrK/L(a{3)) is in Ok for all (3, A
TrK/L(a{3) is in i)Lik for all (3

) = TrK/L(a'Y{3) is in OL for all {3,'Y
a'Y is in i)j(iL for all 7 <£=̂  a in i)j(iLi)Likj

and therefore

ftf/fc = ^K/L^L/k- (38)

Let ~ be a prime ideal of K and let p be the prime ideal of k which
it divides. By analogy with what we have already done globally, we can
consider the set of 0 in AT«p such that TrK'lI/kp (a{3) is in op whenever a is
in D«p. As in the global case, this set is a fractional ideal in K'f,Ij we again
write it as 0~x and we now call i) the local different for the extension
K'f,I/kp• We identify 0 with a power of ~, though strictly speaking it is a
power

Lemma 24 The global different i)K/k is the product of the local differents.

Proof Suppose that '7 generates K over kj then by Theorem 19

TrK/k'7 = LTrK'lI/kp'7 for '7in K. (39)
V

But any '7 in K can be written as rf — '7" where each of '7' and '7" generates
K over k, and (39) holds for '7 because it holds for '7' and '7". Now let p
be any prime ideal of k. It follows from (39) that if (3 in K lies in B -̂1 ,fe
for each ~ above p and if a is in OK then TrK/k(a{3) is integral at p. By
considering all such {3 which are integral at every prime of K which does
not divide p, we conclude that TIi)KqJ/kp divides i)K/k where the product
is taken over all ~ dividing p.

Conversely, suppose that ~rlli)K/k and let P in K be in ~ - r but not in
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8 The Different 45

1.l31-r. For any a in DK it follows from (39) that TrKop/kp (a{3) is in op, for
all the other terms in (39) are certainly in op. Thus 0 is in 'OKop/kp ' whence

D

The proof of Theorem 20 below is complicated. The motivation behind
it is that if we write [K : k] = n, we can find 'O;A by taking a base
a t . . . . , a n for DK as an ok-module and solving the equations (36) for the
(3v, where now the trace is for K/k. If we could choose the av to be
1, a,... , a n - 1 for some integer a with K = k(a), there would be a sensible
formula for the solution of (36). In the first part of the proof we derive
such a formula; instead of using brute force, we apply a trick which is
worth knowing because it turns up in a variety of contexts. For the global
extension K/k we cannot expect to have such a base.. But we showed in
Lemma 23 that for each prime ^} in K we can find an a which has the
corresponding local property; and using Lemma 24 this is good enough.

Theorem 20 Let a run through those integers of K for which K = k(a)
and let 4J(X) be the minimal monic polynomial of a over k; then 'OK/k is

the highest common factor of the 4J'(a).

Proof Write
XI V \

m—X i o \rn—2 . , a
+ {31X n -2+... + {3n-l,X-a

so that the (3v are in Okra] and F30 = 1. In the algebraic closure I

where the sum is over the roots av of 4J(X) = 0; for the difference of the
two sides is a polynomial of degree at most n - 1 which vanishes at the n
values X = avo Equating coefficients of XP gives

1 if [i = p,
0 otherwise;

hence the (3n-l-p!4J'(a) are linearly independent over k and Tr(al"{3) is in
Ok for fi = 0 ,1 , . . . , n - 1 if and only if {3 is in the ok-module S spanned
by the (3n-l-p!4J'(a). It follows that S ~ 'O'Kik; however, S c (l!4J'(a»,
s o 'OK/k ~ (4J'(a» f°r e a ch a. If l , a , . . . , a n - 1 are a base for DK as an
ok-module, this argument gives 'OK/k = (4J'(a» because f30 = 1.

By Lemma 23 with Ĵ — 1.l31, we can choose a so that op[a] = D'Pl' The
construction ensures that a is not in 1.l3t. and it allows us to require that a
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is in ^3M for all It > 1. Hence in the notation of Theorem 19, for each \i > 1
the constant term of <f>^(X) is divisible by ^ and hence by p. Since 4>ii{X)
is irreducible in kp, it follows from Lemma 18 that all the coefficients in
(pfi(X) except the leading one are divisible by p; and hence <^(a) is not
divisible by '.131. This implies

<f>'(a) and <j>[(a) are divisible by the same power of '.131. (40)

But 4>\{X) is the minimal monic polynomial for a over kp, where a is
regarded as an element of Kyx; so an argument like that in the previous
paragraph shows that the local different for K!pJkp is equal to {(j>i(a)).
The theorem now follows from (40) and Lemma 24. 0

Theorem 21 Let p,'.13 be prime ideals in algebmic number fields k,K re-
spectively with K D k and let e > 0 be given by '.13ellp. Then ^Pe

and q3elilK/k if and only ifple.

Proof Suppose temporarily that a is in ^ in the notation of Theorem
19. Then the constant term in <f>^(X) must be divisible by ^}M and hence
by p. As in the proof of Theorem 20 every coefficient of <j>p(X) except the
leading one must be divisible by p; for otherwise ^>n(X) would be reducible,
by Lemma 18. In particular

ainq3 ==> p divides TrK'.JI/kp (a). (41)

Now let 0 be any element of q31-e; if pll7r then 7r{3 is in ^ for every It,
so that (39) and (41) imply pITrK/k(7r{3) whence TrK/k({3) is in op. Thus
q3e-1 divides ilK/k'

Now revert to the assumption that a is in .0, and denote reduction
modq3 by a tilde. Then a is a root of 4)1(X) = 0; let its minimal monic
polynomial over o/p be 1/J1(X), Thus 1/J1 divides 4)1 and, using Lemma 18
again, 4)1 must be a power of ^i- But deg1/J1 divides It, the degree of .01q3
over o/p, and deg4)l = e11t; so 4)1 must be an e1-th power. If ple1 the
second coefficient of 4)1 must therefore be 0, whence

a in .o and pie ==> p divides TrK!Jl/kp (a); (42)

using this instead of (41) we deduce that '.13elilK/k. If instead p)'e1 we can
choose a in D so that a generates D/ty over o/p and the second coefficient
of 1/JI. which is —Tr(a), is non-zero. But the first of these properties implies
that 4)1 = 1/J~1, and the second property then shows that p does not divide

(a); thus $JC does not divide ilK/k' 0
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8 The Different 47

Corollary In any extension K/Q at least one prime p ramifies.

Proof By the Corollary to Theorem 10, IdKI > 1; hence "K/Q ^ (1) by (37).
But note that in general there is no corresponding result for extensions K/k;
for more information see §17. 0

The lemma and corollary which follow will be useful in §13.

Lemma 25 Let K1,K2 be Galois over k, and write K = K1K2. Then K
and Kl n K2 are Galois over k,

= [K2:K1nK2],

and

l K2)) « G a l ^ / ^ i n K2)) x Gfd(K2/(Ki n K2)).

Proof Any element of K is a rational function of elements of Kl and K2.
Any embedding K —+ k restricts for i = 1,2 to an embedding Ki —+ k
which is by hypothesis an automorphism of Ki; so any image of an element
of K is a rational function of elements of K1 and K2, and therefore lies in
K. Thus K is normal over k. Similarly an element of Kl n K2 has all its
conjugates over k in both Kl and K2, and therefore in Kl n K2; so the
latter is normal and even Galois over k.

Now choose Q in K2 so that K2 = k(o:), and let f(X) be a minimal
monic polynomial for a over Kl n K2 . Clearly a generates K over K1, so
K is separable over Kl and hence over k. Moreover f(X) is irreducible
over K1; for if we had f(X) = h(X)h(X) in Kl with the Ii monic, then
the coefficients of the fi would be in K1 by hypothesis and in K2 because
they are combinations of conjugates of a over k. Hence they would be in
Kl n K2 and f would not be irreducible. But now

In view of what we have already proved, the natural map

n K2)) -> Gal(ffi/(ffi n K2)) x

is an injection, for if we know the effect of a : K —+ k on Kl and K2 we
know it on K. But we already know that both sides have the same degree;
so it is an isomorphism. 0
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Corollary Let K1,K2 be Galois over Q with coprime discriminants, and
write K = K1K2. Then

Id n K2 = Q, [K:Q] = [Kl : Q] . [K2 : Q], 'OK/Q = 'OKL/Q'OK2/Q

and a base for the integers of K over Q is given by the product of bases for
the integers of Kl and of K2 over Q.

Proof It follows from (38) that 'OKlnK2/Q divides both 'OKL/Q and 'OK2/QJ
since these are coprime by hypothesis, 'OKlnK2/Q = (1). By the Corollary
to Theorem 10, this can only happen if Kl n K2 = Qj this also gives the
relation between degrees.

Now suppose that 0 is in K2 and also in 'O:KiKl . If e is any integer in
K2 we showed in the proof of the lemma that the conjugates of f3e over K1
and over Q are the samej hence TrK2/Q(f3e) = TRK/KL(F3E) is a n integer,
and it follows that 13 is also in &#X/Q- Thus 'OK/KL divides 'OK2/Q, and it
follows from (38) that 'OK/Q divides 'OKL/Q'OK2/Q. S O 'OKl/Q'OK2/Q = 'OK/Q
will follow from the previous sentence combined with d^ dj? = dK, where
ni = [Ki : Q]j and this in turn will follow from the assertion about integral
bases. Let al,... , an l be a base for the integers of K1 and 131,... , f3n2 a
base for the integers of K2j then the aif3j span K as a Q-vector space and
are integers, so they generate a subgroup of index m in the Z-module of
integers of K. Let 0"11••• ,O"nl be the elements of Gal(K/K2)j as in the
proof of the lemma, their restrictions to Kl are the elements of Gal(Kt/Q).
Let 'Yl,... ,'Ynl be elements of K2 such that E'Yiai is an integer. The
equations

+ • • • + 'YnlO'janl = integer (1 ~ j ~ nt),

for the 'Yi, have determinant JdKlj thus each 'YiJdKl is an integer, whence
m divides some power of dK l. A similar statement holds for dK2

j and since
dKlIdK2 are coprime, m = 1. 0

9 !dales and Adeles
In discussing 'local-to-global' problems it is often necessary to consider
several different v-adic fields simultaneously, where each v may be either a
finite or an infinite place. The natural language for this is that of adeles
and idelesj we can use this to express some of our previous results in more
elegant terms, but its real importance is in the higher reaches of the theory.

At first sight it might seem natural to form the product of all the kvj
this certainly is a topological ring, and it contains all the elements which
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9 Ideles and Adeles 49

could interest us. But there are two things wrong with it. It has no
satisfactory compactness properties since the individual factors are only
locally compact; and most of its elements have not even the most superficial
claims to be in the image of the natural map k —. 0 k", for we know that
any a in k is a p-adic integer for almost all p. This last remark gives us a
strong hint about the set which we ought to be considering, and it turns
out that there is only one topology which we can reasonably impose on it.

An adele is an element of the set-theoretic product 0k", subject to
the condition that if Q = 0a" is an adele then a" is in 0" for all but
finitely many v. We shall usually denote adeles or ideles by bold Greek
letters. They are both examples of what in a more general context is called
a restricted direct product.

The adeles form a commutative ring Vk under componentwise addition
and multiplication. We give Vk a topology by taking as a base for the open
sets the 0 U", where each U" is open in k" and U" = 0" for all but finitely
many v. It is easy to verify that this does define a topology, that the ring
operations are continuous, and that the subspace 00" is open and the
induced topology on it is just the product topology; hence 0 0" is locally
compact and so is Vk.

The diagonal map is the map k —. Vk defined by a 1-+ 0 a; it enables
us to identify k with a subset of Vk• The elements of its image are called
the principal adeles. This map induces on k the subspace topology; and
if we view k and Vk simply as additive groups we can form Vk/k and endow
it with the quotient topology.

Lemma 26 With the conventions above, Vk/k is compact and k has the
discrete topology. Moreover n lIall" = 1 for any a ^ 0 in k.

Proof Theorem 7 shows that given any adele 0a" there exists a in k
such that each a" — a is in 0". In other words, every coset of k in Vk
meets 0' k" x Y[ Op where the first product is over all infinite places and
the second over all finite ones. But ( 0 ' k,,)/Ok is compact, so there is a
compact subset S of 0' k" which meets every coset of Ok. Thus every coset
of k in Vk meets S x Oil op, and the latter is compact; hence so is Vk/k.

To prove that k has the discrete topology, it is enough to show that there
is a neighbourhood of 0 in Vk which contains no other point of k. But the
set defined by

lIa"lI" < 1 if v is an infinite place,
ckv is in 0" if v is a finite place
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is an open set containing 0; and it contains no other element of k by the
Product Formula. 0

The proof that Vk/k is compact, like the results which lead up to it,
does not depend on the Product Formula; so we can now give a new proof
of the latter, which is more highbrow than the one on page 35 but does
explain why such a formula exists. For Vk is locally compact and therefore
possesses an essentially unique Haar measure, which must be the product
of the Haar measures on the factors. Now let a be any non-zero element
of k; multiplication by a defines an automorphism of Vk which maps k
onto itself, so it induces a homeomorphism of Vk/k. Because Vk/k has
finite non-zero measure, this homeomorphism is measure-preserving. But
the action of a on kv multiplies the Haar measure on kv by lIallv, by the
definition of the normalized valuation; so it multiplies the measure on Vk

Lemma 26 depends crucially on using every place v in forming the prod-
uct. Let VW be formed in the same way as Vk but leaving out the factor
corresponding to w; then it is conjectured (but not proved in general) that
k is dense in VW.

For the argument above, we did not need to normalize the Haar measure
on Vk; but for the following corollary we do. The normalizations we need
are those described in §A1.3.

Corollary With these normalizations, Vk/k has measure 1.

Proof As in the proof of the lemma, Vk/k ~ ((TI' kv)/o) x TI"op. The
measure of the second factor on the right is TI(NormDp)-1/2 = Idkl-1/2,
and the calculation on page 3 shows that the measure of the first factor is
IdkI1/2. 0

The invertible elements of Vk form a group, called the idele group Jk;
thus an idele is an element a = TI av such that av ^ 0 for all v and av is a
unit for all but finitely many v. There is a natural map Jk ~ I k, where h is
the group of ideals; it sends a = TI av to (a) = TI pnp where pnp lIap, and it
extends the natural map k* —~ Ik. (The infinite places play no part in this
map.) But although Jk is a subset of Vk we must not give it the subspace
topology, for ~ i-> £ - 1 would not be continuous in that topology. (Take
k = Q and let a(p) be the adele with air) = p and all other components 1;
in the adelic topology a^ —~ 1 as p —~ 00, but (a(p»)-l does not tend to a
limit.) Instead we give Jk the topology induced by regarding it as a group
of operators on the additive group Vk: that is, a base for the open sets in
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9 Ideles and Adeles 51

Jk is given by the II Uv where each Uv is open in k: and Uv = 0: for all but
finitely many v. This topology is strictly finer than the subspace topology,
so the inclusion Jk —+ Vk and the multiplication map Jk x Vk -+ Vk are
continuousj and with it Jk is a locally compact topological group. As with
adeles, there is a natural map k* —+ Jk defined by a 1-+ II aj it is called
the diagonal map, and enables us to identify k* with a subset of Jk. The
elements of its image are called the principal ideles. This map induces
on k* the subspace topologyj and we can form Jk/k* and endow it with
the quotient topology.

Lemma 21 The group k* is a discrete subgroup of Jk .

Proof The topology induced on k* as a subset of Jk is finer than that
induced on it as a subset of Vkj and the latter is already the discrete
topology, by Lemma 26. 0

The analogue of the first statement in Lemma 26 is much deeper than
that lemma, and to state it we need a further definition. The map Jk —+ R*
given by a = IIav 1-+ lIall = II lIavllv is well-defined because almost all
the factors on the right are equal to 1j and it is a continuous epimorphism.
Its kernel Jl contains k* by the Product Formula. For Jl we no longer
have the nuisance of having two distinct induced topologies:

Lemma 28 Jl is closed both as a subset of Jk and as a subset ofVk, and
the two induced topologies on it coincide.

Proof To prove that J l is closed in Vk, take any n av in Vk but not in Jlj
we shall construct a neighbourhood of it in Vk which does not meet Jl.
Write C = n lIavllv, where the product must either converge or diverge to
0, because it only contains a finite number of terms which exceed 1. Since
C ^ 1 by hypothesis, there are two cases to consider.

First suppose that C > 1. For each infinite place and for those finite
primes p for which either Normp ~ 2C or lIaplip ^ 1 (of which there can
only be finitely many because the product for C converges) let Sv be a small
open neighbourhood of av in kv. Now II' lIavllv = C where the product is
taken over these Vj so we can choose these neighbourhoods so small that
if f3v is in Sv for each such v, II'IIf3vllv < 2C. For any other v we take
Sv = ov, so that f3v in Sv implies that either lIf3vllv = 1 or lIf3vllv < 1/2C.
If the latter possibility ever happens, then F| \\0V\\V < 1. Thus nSv is open
in the adelic topology, contains II av and does not meet Jl.

If instead C < 1 choose a finite set of places, including all infinite places
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52 2 Valuations

and all primes with IIO:pllp > 1, such that if C' is the product of the IIO:VLLV

taken over these places then C' < 1. For each such v let Sv be a small open
neighbourhood of O:v in kv; these neighbourhoods are to be so small that if
f3v is in Sv for each such v then \{C +1) > n lIf3vllv where the product is
over this finite set of v. For any other v take Sv = Ov' Thus nSv is open
in the adelic topology, contains nO:v and does not meet J l .

Thus Jl is a closed subset of Vk. It is closed in Jk too, because the idelic
topology on Jk is finer than the restriction of the adelic topology.

For the last assertion in the lemma it is enough to show that any Jk-
open subset of Jl is Vk-open, the converse being trivial. Now let S = n Sv

be any basic Jk-open set; we need to find a Vk-open set S' such that
S n Jl = S' n J l . By writing S as a union of smaller basic open sets if
necessary, we can assume that each Sv is bounded; since for all but finitely
many v we have Sv = 0; and therefore IIO:vllv = 1 for all av in Sv, there is
a constant C such that n IIO:vllv < C f°r a l ln O:v in S. Now write

S' = { op if P is finite, Sp = 0; and Normp ~ 2C,
" \ Sv otherwise.

Since the first of these happens for all but finitely many p, S' = nSv is
open in Vk; and S' nJl= SnJl as in the first part of the proof. 0

Theorem 22 JI/kOO is compact.

Proof As before, denote by Ik the multiplicative group of non-zero
fractional ideals of k, and endow it with the discrete topology. Because
Ik/{image of k"} is finite, there is a finite group of translates of n ° :
whose union meets every coset of k" in JI . By Theorem 11 there is a
closed bounded set S in n ' K> w n e r e the product is taken over the infinite
places, such that any coset of k" in Jl which meets n ' K x n i l °; also

meets S x nil 0;. But this last set is the product of compact spaces and is
therefore compact. 0

To prove Theorem 22 we used the finiteness of the ideal class group and
the structure of the group of units. Conversely, from an independent proof
of Theorem 22 we can immediately deduce these two results — which are
the key structural theorems of the elementary theory. For such a proof, see
Chapter II of [CF].

We specified the measure on Jk in §A1.3, and the measure on Jl now
follows from the exact sequence (algebraic and topological)

0 -+ Jl -+ Jk -+ R* -» O.

)'����*��!��!���(��((%'���+++���"�&�����$&���$&��(�&"'���((%'����$��$&�����������������������������
�$+#!$������&$"��((%'���+++���"�&�����$&���$&����#�*�&'�(,�$���$&$#($��$#������%�������(����
	�
���')� ��(�($�(�����"�&������$&��(�&"'�$�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.003
https://www.cambridge.org/core


9 Ideles and Adeles 53

In this case we can be very explicit, though uncanonical, because the exact
sequence splits. Let u be a fixed one of the infinite primes, and let a be
any idele. There is a unique f3 in Jl which is the same as a in all but
the u-th component and for which auf(3u is real and positive; and the map
</>: a 1-+ f3 is a continuous homomorphism. Given a set S1 in Jl, let S be
that part of its inverse image under 4J which satisfies

and define the measure of S1 to be the measure of S. It is easy to see that
this gives a Haar measure on J l , which does not depend on the choice of
u.

Theorem 23 If the measure on Jk is the product of the measures above
on the individual k~ then the measure of Jl/k* is 2rl(27rt2hR/w where w
is the number of roots of unity in k*.

Proof The map Jk —+ Ik induces an epimorphism from J1 to the ideal
class group; if we denote the kernel of this epimorphism by S1 then it
is enough to find the measure of S1/k* and multiply by h. Each coset
of k* in S1 contains elements of the set SU consisting of the ideles in S1

whose components at each finite prime p are in 0;; and these elements
are determined up to an element of 0*. Denote by Sb the elements of the
finite product TI' av such that TI' lIavllv = 1, where the products are taken
over the infinite places. There is a natural measure on Sb induced by the
measures chosen on R* and C*, and the measures of S1 Ik*, of SU10;" and
of Sb/oic are all equal since SU = Sb x TI o;. Now let "11,... , "1rl+r2-1 be
a base for the units modulo roots of unity; given any TI' av in Sb we can
define real numbers Xl,••• ,x r 1 + r 2 -1 by the equations

log lIavllv = x1 10g 1I"1111V + • • • + xr1+r2-1 10g lI"1rl+r2-1I1v

for each Archimedean v. Each coset of 0* in Sb has just w members in
the region given by 0 ~ Xi < 1. But if v is real, going from dav/llavl lv to
d(log lIavllv) gives a factor 2 to take account of the sign of av; and if v is
complex, dz Adz/lzl2 = d(r2) Ad()lr2 in polar coordinates, and integrating
over 6 gives a factor 27r. The measure of Sb /ok is therefore

where the product is taken over all but one of the Archimedean valuations
and the multiple integral is taken over the region given by 0 ~ Xi < 1
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54 2 Valuations

for each i. Going from the log Ilavllv to the Xi gives a further factor IRI.
Combining these factors, we obtain the theorem. 0
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Special fields

Most of this chapter illustrates the general theory in Chapters 1 and 2 by
means of applications to particular kinds of field. However, many of the
results in §12 and §13.1 depend on analytic properties of the zeta function
which are not stated until §14 and not proved until §15. The standard
calculations on Q( V1) in §13 are also used to prove a particular case of
Fermat's Last Theorem, due to Kummer.

10 Quadratic fields

The quadratic fields are just the fields k = Q(vim"} where m ^ 1 is a
square-free integer. Since 1, rm are integers which form a base for k as a
Q-vector space and 6,2(1, rm) = 4m is not divisible by any square other
than 4, the Z-module spanned by 1, rm either is 0 or has index 2 in o.
Since ! and !rm are clearly not integers, the latter case happens if and
only if a = !(1 + rm) is an integer. The minimal equation for a over Q
is X2 — X — ~(m - 1) = 0, so a is an integer if and only if m == 1 mod4.
Thus

, _ = {m if m == 1 mod 4,
\ 4m if m == 2 or 3 mod 4.

Both cases are covered by the statement that the integers are those numbers
of the form ! (x+yVd) for which x, y and ~ (x2 _ dy2) are in Z. The primes
which ramify are those which divide d, and ramification can only mean
(p) = 1'2 with f = 1. Any other prime either splits (that is, (p) = 1"1''' with
/ = 1 for each factor) or remains prime (with f = 2). To test which, we
use Theorem 19 and Lemma 19; for X2 — m factorizes in Qp if and only if

55
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56 3 Special fields

X2 — m = 0 has a root in Qp. Thus when 2 does not ramify

(2) splits in k if m == 1 mod 8,
(2) remains prime in k if m == 5 mod 8;

and if p is an odd prime which does not divide m,

(P) splits in k if and only if (™) = 1

where the latter bracket is the quadratic residue symbol.
If m > 0 then k is real and the only roots of unity which it contains are

±1. If m < 0 all units in k are roots of unity, and they correspond to the
solutions of x2 — dy2 = 4 in Z. It is now easy to see that k contains six
roots of unity if d = —3, four if d = — 4 and two otherwise.

There is a close relation between ideal classes in a quadratic field k and
classes of binary quadratic forms

aX~ + bXIX2 + cX~ with b 2 -4ac = d (43)

under the unimodular group. For let a be an non-zero integral ideal of k
and let aI,a2 be a base for a as a Z-module. Any a in a has the form
a = Xlal + X2a2 with Xl, X2 in Z, which implies

norm a = (xlal + X2(2)(xIO"al + x20"(2)

where a is the non-trivial element of Gal(k/Q). The right hand side is
a quadratic form in Xl,x2 all of whose coefficients are rational integers
divisible by 0 • aa = (Norm a), and its discriminant is

a l a2I =(Norma)2dk.O"al O"a2

Dividing by Norm a we get a quadratic form (43). We can change the base
for a as a Z-module by means of an integral unimodular transformation on
Xl, X2. If we start from another ideal in the same class — say a' = ({3)a for
some {3 in k* — then we can take {3al,(3a2 as a base for a'; this yields the
same quadratic form as before. Conversely if we write

aX~ + bXIX2 + cX~ = a(XI + ,xX2)(XI + 0",xX2)

a straightforward calculation shows that a,a,x are a base for an ideal of
k and this ideal gives rise to the quadratic form which we started from.
However, the quadratic form has two linear factors and therefore gives rise
to two ideal classes, which are in general distinct.

When m < 0 there is a simple way round this: we fix an embedding
k --+ C and require the base aI,a2 to satisfy S'(a2/al) > o. This imposes
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10 Quadratic fields 57

an ordering on any base for a as a Z-module, and restricts us to integral
transformations on Xl.X2 with determinant +1. Now there is a one-one
correspondence between ideal classes in k and equivalence classes of binary
quadratic forms (43). This gives the easiest way of computing class numbers
when m < O. For after a suitable linear transformation we can assume that
a is the least value taken by the quadratic form (43) and that, subject to
this, c is as small as possible; in this case we say that (43) is in reduced
form. This gives e ~ a and Ibl ~ a, whence a ~ J - d / 3 . Conversely, if
these inequalities hold it follows easily that a and e have the properties
in the previous sentences. We can obtain a unique representative of the
equivalence class of quadratic forms by writing Xl + X2 for Xl if b = —a,
or X2,-Xl for XI,X2 if e = a and b < 0; in this way we can require
a ~ b > —a, e ~ a and b ~ 0 if e = a. If {3 = Q2/QI these conditions are
equivalent to ! > S/3 > -!, 1{31 ~ 1 and 3/? > 0 if 1{31 = 1. The reader
who knows about elliptic modular functions will recognize the fundamental
domain of the modular group.

To compute the ideal class number, we let b run through all values with
|6| ~ ^/—d/3, where b is odd or even according as d is; for each such b
we factorize ae = ~(b2 — d) and list the triplets (a,b,c) with a ~ b > -a ,
e~ a and b ~ 0 if a = a There are h of these triplets, where h is the class
number of k. The Brauer-Siegel Theorem (76) says that logh ~ \ log Idl as
d —+ — 00, but the known effective results are much weaker. There is a law of
composition of quadratic forms (43) which corresponds to multiplication of
ideal classes, but for computational purposes there is little to be gained by
using it. There is a remarkable conjecture, supported by both theoretical
arguments and numerical evidence, that the odd order part of the ideal
class group is cyclic for 97-7% of all values of m < O. (See [Co], §5.1O.)

Theorem 24 Let m < 0 and suppose that t distinct primes divide d. Then
there are exactly 2t-1 elements of order 1 or 2 in the ideal class group of
k.

Proof Because 0 • all = (Norm 11) is principal, we need to count the number
of ideal classes fixed by 0'. But if QI, Q2 are a base of 0 with C;S(Q2/Qt} > 0
then O'QI, — O'Q2 are a base of all with 3?(—aa^loax) > O. Suppose that the
reduced binary quadratic form corresponding to 0 is aX? + bXIX2 + eX?;
then all corresponds to aX? — bXIX2 + eX? and this is also reduced. But a
and all are in the same ideal class if and only if these forms are equivalent,
and it is easy to see that this happens precisely for forms of the shape

or aX?
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In each of these cases the ideals o = (a, a{3) and O'Cl = (a, -ao-{3), where
a{32 + b{3 + e = 0, are not merely in the same class but equal. Hence each
ideal class in k of order 1 or 2 contains at least one ideal which is a product
of ramified primes and rational primes, and clearly we can ignore the latter.
Conversely, the square of any ideal which is a product of ramified primes
is principal.

It remains to discover which of the 2t ideals generated in this way are
themselves principal. Each of the latter corresponds to two pairs of integers
x, y and —:x, —y such that Hx2 — dy2) is square-free and divides — d. This
implies x2 - dy2 ~ -4d, so that Iyl ~ 2. Apart from the obvious solutions
(±2,0) and (0, ±2), the latter requiring 41d, we need only consider y = ±1.
Now x2 — dy2 = —4d/r for some r requires 1 ~ r ~ 4; since d = — 2 is
not allowed, the only solutions are given by x = 0 when 41d, x = ±1 when
d = —3, x = 2 when d = —4, and x = ±3 when d = —3. Thus for
every value of d we obtain just two principal ideals of this kind: these are
(1 + A ) and (1) when m = —1, and (v'm) and (1) in all other cases. 0

When m > 0 the situation is more complicated. By Theorem 11 the
group of units is the product of {±1} and an infinite cyclic group; any of
the four units which generates the latter is called a fundamental unit.
There are various ways of defining a reduced form (43), the simplest being
to require lei ~ lal ~ Ibl; for given d there are only finitely many reduced
forms, and they can be listed because a2 < ~d. But each equivalence class
will contain a number of reduced forms, this number being large if the
fundamental unit is large, which it usually is. Moreover, one wishes to
find both the class number and the group of units. For hand calculation,
the better way to proceed is illustrated in Examples 4 to 6 below. Here we
take advantage of the estimates quoted on page 20, whose proof is sketched
in the exercise at the end of this section. The analogue of Theorem 24 is
that there are 2 t - 1 elements of order 1 or 2 in the ideal class group if the
fundamental unit has norm - 1 , and 2t-2 if it has norm +1, but the proof
is considerably more complicated than that of Theorem 24. Subject to
this, the class number is usually small; for example it is conjectured that
the class number is not divisible by any odd prime in 75-4% of all cases.
But even the assertion that h = 1 infinitely often is only a long-standing
conjecture.

Example 1 m = —14. Now d = —56 and the reduced quadratic forms (43)
are

X2 + UXl 2X2 + 7X2, ZX2 ± 2XXX2 +
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10 Quadratic fields 59

Thus h = 4. The ideal class group must be cyclic, by Theorem 24; and this
example shows that we cannot strengthen the conclusion of that theorem
to2t-1Ilh.
Example 2m = —35. Now d = —35 and if we take account of equivalences
the reduced quadratic forms are

X; + X1X2 + 9xi, 3X; + X1X2 + 3xi ,

so that h = 2. The odd prime p splits if and only if (- ;5) = 1; such a p is
a product of principal ideals if p = X~ + X1X2 + 9xi is soluble in integers,
and of non-principal ideals if p = 3X~ + X1X2 + 3xi is soluble in integers.
(Just one of these must happen.) The former requires p == ±1mod5 and
the latter requires p == ±2 mod 5. But to have so simple a rule as this
depends on having h = 2t-1 in the notation of Theorem 24.

Example 3 m = —131. Now d = -131 and if we take account of equiva-
lences the reduced quadratic forms are

X; + X1X2 + 33Xi, 3X; ±X1X2+ llxi, 5X; ±3X1X2 + 7xi,

so that h = 5. Here (2) is prime, (3) = P3P~ and (5) = P~P~, where we can
name the factors so that

v'-131 == 1 modp~ and v'—131 = =2modp~,
v'-131 == 2 mod p~ and v'-131= = 3 mod p~.

There is no principal ideal with Norm 3, 5 or 15 because the first quadratic
form does not represent any of these numbers; so the four ideals we have
produced through factorization must between them represent the four non-
principal ideal classes. Hence there must be a principal ideal of Norm 45,
and one such is (!(7 + v'—131)). This is not divisib~e by P3 or p~, so it
must factor as p~2p~, whence p~ is in the class of p~

3. Similarly (7) = p~p~

where v'—131 = =3modp~ and v'—131 = =4modp~; and consideration of
{!(3 + v'—131)) whose Norm is 35 shows that p~ is in the same ideal class
asp~.

Example 4 m = 10. Now d = 40 and V40/5 < 3, so any ideal class
contains an integral ideal of Norm at most 2 and we need only look at how
2 factorizes. We know that (2) = p~; moreover P2 is not principal because
X~ - lOxi = ±2 is insoluble in Z5 and hence in Z. Thus h = 2. By
inspection 3 + JW is a unit, and it is the fundamental unit because it gives
the least non-trivial solution of X~ — lOxi = ±1.

Example 5 m = 229. This has been chosen because it is the first case

)'����*��!��!���(��((%'���+++���"�&�����$&���$&��(�&"'���((%'����$��$&����������������������������	
�$+#!$������&$"��((%'���+++���"�&�����$&���$&����#�*�&'�(,�$���$&$#($��$#������%�������(����
	�
���')� ��(�($�(�����"�&������$&��(�&"'�$�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.004
https://www.cambridge.org/core
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when h is not a power of 2. Now d = 229 and ../229/8 < 6, so using the
strong result quoted at the end of §3 any ideal class contains an integral
ideal of Norm at most 5. Thus we need only consider the factorization of 2,
3 and 5. Here (2) is prime, (3) = p3p3' and (5) = 1'~1'~. But !(13 + v'229)
has norm —15, so after renumbering if necessary it must be equal to 1'a1'~;
and 1'5 is in the same class as 1'~. By inspection ! (15 + v'229) is a unit; it
is actually a fundamental unit, but we shall not need this fact. To prove
that h = 3 it is enough to show that p3 is not principal — that is, that all
integer solutions of xl + XIX2 - 57X~ = ±9 have XlI X2 both divisible
by 3 and thus give elements of k in the ideal (3). This time congruence
arguments do not help. But if the equation has a solution XI,X2, we can
multiply (Xl + !(1 + v'229)X2) by a power of the known unit !(15 + v'229)
to ensure that

3 < |xi + §(1 + v/229)x2| < 3 x §(15 + v^29);

this implies also

3 x !(v'229 - 15) < IXI + !(1 - v'229)x21 ~ 3.

This process does not affect whether Xl,X2 are both divisible by 3. These
inequalities define a bounded search region, and we find that within it there
are no pairs Xl, X2 of the kind we are looking for. Of course, we can make
this process more efficient; but that does not change the underlying idea.

Example 6 m = 73. This is a case where the fundamental unit is large
enough for one to need an efficient process for finding it. Now d = 73 and
. . /73/8 < 4, SO using the strong result quoted at the end of §3 any ideal
class contains an integral ideal of Norm at most 3. But (2) = p2p2' and
(3) = 1'a1'~, so after renaming we can require that (!(7 + v'73) = 1'~1'a. By
considering Norms we obtain

(!(1 + v'73)) = 1 '~1'a 2, (!(3 + v'73)) = 1'~4,
(!(5 + v'73)) = p f P3, (!(7 + v'73)) = 1'~1'a,
(!(9 + v'73)) = 1'~, (!(l l + v'7.3)) = 1'~21'

~.

These equations are enough to show that P2,p2,p3,p3 are all principal, so
h = 1. Moreover

(!(7 + v'73»(!(9 + v'73))3(!(ll + v'73))
24

has trivial divisor, so that it is a unit. It is equal to 1068 + 125v'73 and
this is actually a fundamental unit. It might appear from the factorizations
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10 Quadratic fields 61

above that one could form smaller combinations with trivial divisor, but
there is a pitfall to beware of. For example

12
has trivial divisor; but it is just a complicated way of expressing 1.

Lemma 29 Let p be an odd prime and p a primitive p-th root of unity.
Let 8 = L(;)pr where the bracket is the quadratic residue symbol and the
sum is over the residue classes prime to p; then 82 = (pl ) p.

Proof We obtain 82 = L L ( r ; ) p r + s = L t (~) L r p r ( 1 + t ) o n w r i t i n g
s = rt. The inner sum is p if t = — 1, and 0 otherwise. 0

Corollary Any quadratic field is cyclotomic — that is, it is a subfield of
the field of all roots of unity.

Proof After the lemma, it is enough to prove the result for Q ( A ) and
Q(V2), for any quadratic field Q(.;m) lies in the least field containing
A , V2 and the J±p for the odd primes p dividing m. But A is a
fourth root of unity and (1 + A)/V2 is an eighth root of unity. The
corollary is also a special case of the Kronecker-Weber Theorem, for which
see §20. D

Theorem 25 (Quadratic Reciprocity) Ifp,q are distinct odd primes,
then

(~)(~) = (_1)( P- l ) ( q- l ) / 4 . (44)
Proof Since F ; is cyclic, ((

;) = =r(p-l)/2 mod p. If 8 is as in Lemma 29 then
8q-l = (_I)(p-l)(q-l)/4p(q-l)/2 = =(_1)(P-L)(Q-L)/4(~) modq.

On the other hand, if we write s = rq,

dividing by 8, which is prime to q, and combining with the previous equa-
tion we obtain (44). 0

To obtain the auxiliary law (~) = (_1)(p2_l)/8, consider T = (1 + i)P

where i — =A. For on the one hand T == 1 + V modp; on the other hand

T = (1 + i)(2i) ( p - l ) / 2 == (1 + i)i(p-l)/2 (~) modp.
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62 9 Special fields

Now consider separately the four possible values of p mod 8.

Exercise Let I = aX2 + bXY + cy2 with d = b2 - 4ac ^ 0 and a, b, c
real have min I/(x, y)1 = M > 0 where x, y run through all pairs of rational
integers not both zero. If the minimum M is attained, show that by an
integral unimodular change of variables, and replacing I by —I if necessary,
one can take a = M, 0 ~ b ~ M.

(i) If d < 0 show that M is attained and d ~ 3M2.
(ii) If d > 0 and M is attained, then split cases by considering 1(1,1).

Show that 1(1,1) ~ M implies that I = M(X2 + XY - y2) and
d = 5M2. If 1(1,1) ~ - M then I = M(X2 - 2y2) and d = 8M2

if 1(3, -2) ~ M, while d ~ 22~1M2 if 1(3, -2) ~ -M.

In (ii), can the argument be pushed further? What happens if M is not
attained?

11 Pure cubic fields
These are fields Q(rm>, where we can take m = mlm~ with ml,m2 co-
prime, square-free and positive. Write

a.2 = \jTn\m2

so that 1,01002 span k as a Q-vector space. We have

a2(1,010(2) = -27m~m~.

Theorem 26 In the notation above, d = —27m~m~ and 1,01,02 are a
base lor 0 unless ml = ;::±m2 mod 9. In the latter case j(1 + ml0l +m2(2)
is also in 0 and d = — 2

Prool If for example p ^ 3 is a prime factor of ml then (p,(1)3 = (p),
so that p ramifies; since p2lla2 we must have p2lld. If 31ml a similar
calculation shows that (3) = P~ with P31101 and P~1I02' Hence if CO,Cl,C2
are in Q the exact powers of P3 which divide the non-zero summands in
a = CO + CI0l + C202 are all different, so that 0 can only be an integer if
Co, C10 C2 are 3-adic integers. It follows that 1, 010 02 are a base for 0 if 31ml
or similarly if 31m2. If instead 31mlm2 then d contains an odd power of 3
and therefore 3 ramifies. Theorem 11 allows two possibilities:

(3) = p~p;2 and d = -3m~m~, or (3) = p~ and d = -27m~m~.
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12 Biquadratic fields 63

By Theorem 19 the first case happens if and only if X3 - m = 0 is soluble
in Q3, and by Lemma 19 this happens if and only if m == ±1 mod 9. This
is the same as ml = ±rri2 mod 9. To find a base for the integers in this
case, let \i = rm in Q3; then (al - J.1.)(a~ + J.1.al + J.1.2) = 0, so Theorem 19
implies that m2a2 + J.1.al + fJ? = 0 in kp where p = p~. Since fi = =ml mod 3
it follows easily that 1 + mlal + m2a2= = 0 mod 3. 0

Now suppose that p)'3mlm2, so that p is not ramified. Since F ; is cyclic
of order p - 1, the equation X3 - 1 = 0 has one root in F p if p == 2 mod 3
and three if p == 1 mod 3. Thus if p == 2 mod 3 then X3 — m = 0 has one
root in F p and that root has multiplicity 1; so it follows from Theorem 19
that (P) = p'p" where Normp' = p and Normp" = p2. If p == 1 mod 3 then
x3 — in = 0 has three roots in F p or none; and the theoretical criteria for
distinguishing between these two possibilities are more complicated than
direct calculation. In the first case (p) = p'p"p"'; in the second case (p) is
a prime ideal in k.

Example m = 12. Now 1, al = ~ , a2 = ~ are a base for 0 and

norm(eo + Clal + C2a2) = I(eo, Cl,C2) = cg + 12c~ + 184 - 18eoCIC2.

Since J—d/23 < 7 we need only look at the factorization of 2, 3 and
5. We have already seen that (2) = p~, (3) = p~ and (5) = p~p~ where
Normp~ = 5 and Normp~ = 52. But

1(2,1,1) = 2 so that (2 + al + a2) = P2,
1(3,1,1) = 3 so that (3 + al + a2) = P3,
1(5,2,2) = 5 so that (5 + 2al +2a2) = p~,

1(0, -1,1) = 6 so that (al - a2) = P2P3.

It follows from the first three of these that all ideals of Norm less than 7
are principal; so h = 1. Moreover

(2 + a l + a 2 ) ( 3 + a l + a 2 ) = 5 5 +

a2 - a l
is a unit — and actually the fundamental unit.

12 Biquadratic fields
Let K be the biquadratic field Q(yTal, yTa2), where none of aI,a2 and
are squares, and write a3 = ala2/m2 where m2 is the largest square which
divides ala2. Then K is normal over Q with Galois group C2 x C2, and
K has three intermediate fields ki = Q(y7ii). Throughout this section
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64 9 Special fields

d, h, R and W will be the values for K, and the values for ki will be denoted
by the subscript i. Neglect for the moment primes which ramify in K/Q;
then e = 1 and the splitting group Z is cyclic of order f. We have two
possibilities:

(i) f = 1, so that p splits completely in K and in each ki;
(ii) f = 2, so that p splits in one ki and remains prime in the other two.

Thus up to finitely many factors of the form (1 — p-/B)±l arising from the
ramified primes,

= &(*)<**(*)&,(*). (45)
We could check in the same way that the factors from the ramified primes
also cancel, but it is less effort to argue as follows. Let 0(8) be the quotient
of the two sides of (45), which we know to be the product of finitely many
factors of the form (1 - p - f s )±1 . Let 1/J(8) be the quotient of the products
of expressions (77) below corresponding to the two sides of (45); then

where the left hand equality follows from the functional equation and the
right hand equality holds because the terms in curly brackets in (77) cancel
in 1/J. In view of the shape of 9(8), this can only happen if everything
cancels; so 9(8) = 1 and up to sign

d = d!d2d3. (46)

It is easy to check that the sign is also correct. Applying (75) to (45) gives

hR = h1h2h3R1R2R3 x (4W/W1W2W3)' (47)
The last factor is easy to calculate, for V'I can only lie in K if tP(n) = 1,2
or 4 where tP is Euler's function, by the Corollary to Theorem 27 below.
The only even values of n satisfying this are those with n ~ 12; and we can
rule out n = 10 because Gal(Q( l ~ ) / Q ) ~ C4. Now

n = 8 <==> K = Q ( H , V2) whence 4W/W1W2W3 = 2;

in all other cases, including n = 12 for which K = Q( A, \f—A), it is easy
to check that 4W/W1W2W3 = 1.

Now let ." be a unit in K and denote by (1I the non-trivial element of
Gal(K/ki)' Then 77 • off is in ki and therefore in oi, the group of units of
ki; and on multiplying these three expressions together we see that

.,,2 = ±.,,2normK/Q'" = ±
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13 Cyclotomic fields 65

is in Oi0203' Denote by W the group of roots of unity in Kj then it follows
at once that

or 2 if K is c o m p l e x ,^ 4 or 8 .f R .= [OK : ^ O l o 2 o 3 ] = I ^ ̂  4 or g .f R .s ̂  (48)

Here we can delete W except when K = Q{A,\1'2).
Suppose first that K is complexj choose the notation so that kl is real

and let TJ be a fundamental unit of K. Then WTJE is a fundamental unit
for kl where W is a root of unity in K, and hence Rl = !fRj taking into
account the anomalous case K = Q { A , \1'2), (47) gives

h = !h1h2h3[Di< : oio;o;].

If instead K is real, a similar calculation gives

h = ~hlh2h3[Di< : oio;o;].

I know of no other way to prove such resultsj and study of particular cases
suggests that there is no corresponding relation between the ideal class
groups.

13 Cyclotomic fields
Let km be the field of m-th roots of unity. By a cyclotomic field I
shall mean any subfield of any kmj but the reader is warned that some
authors restrict the phrase to the km themselves. It is in any case natural
to start with the km themselves; the properties of their subfields can then
be deduced by means of Theorem 16. The most interesting fact about
a general cyclotomic field is that one can write down explicitly units of
a particular kind (the so-called cyclotomic units) and that usually these
generate a subgroup of finite index in its full group of units. Moreover, this
index is the product of the ideal class number h and factors which are easy
to compute.

In studying the km it is convenient to deal with the prime factors of m
one at a time — that is, to deal first with the special case when m is a prime
power and then, writing m = [!??> *° obtain the field km by composition
from the various fields kpr using Lemma 25 and its Corollary.

Theorem 27 Let p be a primitive pr-th root of unity, where p is prime;
then N = [Q{p) : Q] = pr-l{p - 1) and the conjugates of p over Q are the
distinct pn with n prime to p. The numbers 1,p,... , pN-l form a base for
the integers of Q(p). Write M = pr-l(pr — r — 1); then the different of
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66 3 Special fields

Q(p) is (1 — p)M and its discriminant is ±pM where the sign is negative
if p := 3 mod 4 or pr = 4 and positive otherwise. The roots of unity in
Q(p) are just the ±pp. The only prime which ramifies is (p) = «1 _ p»N.
There is a natural isomorphism between Gal(Q(p)/Q) and the multiplica-
tive group of residue classes modpr prime to p, where the automorphism
corresponding to nmodpr is Un : p t-t pn. If l is a prime other than p, the
Arlin symbol is (Qrl{Q) = at-

Proof Certainly p satisfies the equation

of degree N, whose roots are precisely the pn with n prime to p. In partic-
ular

I I (1 -p n )=1 / J (1 )=p . (49)

But 1 - P divides 1 - pn; and if n' is such that nn' := 1 mod pr then 1 - pn

divides 1 — pnn' = 1 — p. Hence each factor in the product (49) is 1 - P
times a unit, and in terms of ideals we have (p) = «1 — p))N. This implies
that [Q(p) : Q] ~ N; and since consideration of 1/J gives the opposite
inequality it follows that [Q(p) : Q] = N, that 1/J is irreducible over Q, that
all the pn with n prime to p are conjugate to p, and that 1 — P is a prime
ideal. Since an element of the Galois group is determined by its action on
p, the Galois group consists of the Un : / ) H pn with n prime to p and
UmnP = pmn = UmUnP.

Except in the special case pr = 2 all embeddings of Q(p) in C are
complex, and therefore r1 = 0 and r2 = ~N; moreover we know that the
sign of the discriminant is (—1)r2. Since

II(P - up) = 1/J'(p)=prppr-1/(ppr-l - 1 )

where the product is taken over all the up other than p itself, and

normQ(p)/Q(ppr-l _ 1) = ± ( n o r m Q ( ~ ) / Q ( { 1 1 - l))pr ' = ±ppr *

by (49) in the special case r = 1, we find that

a2(1 , p,... , pN-1) = ±norm 1/J'(p) = ±pM,

which is the value asserted for the discriminant up to sign. In particular,
the only factor we can take out of this is a power of p. To assert that the
pn for 0 ~ n < N form a base for the integers is the same as to assert that
the (1 - p)n form one. Thus to prove the assertions about the discriminant
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19 Cyclotomic fields 67

and a base for the integers, it is enough to show that if the an are in Q
for 0 ~ n < N and are such that E a n { l — p)n is an integer then the
an are integers. But all the non-zero terms in this last sum have distinct
(1 - p)-adic additive valuations, so each of them must be an integer. Since
there is only one prime ideal in Q(p) which divides (p), the different is
uniquely determined by the fact that its Norm is the ideal generated by
the discriminant. Now suppose that there is a root of unity € in Q(p) which
is not of the form ±rf'j raising it to a power if necessary we can assume
it is an l8-th root of unity for some prime l. Here dQ(E)IdQ(p) because
Q{€} C Q(p)j and since we have already shown that dQ(E) is divisible by l
this implies l = p. Comparing discriminants now gives s ~ r, contrary to
hypothesis.

Finally, the Artin symbol satisfies ( $ • , ) £ = e m o d l for every integer
£ in Q(p). Taking { = p, it is evident that o~t is the only element of the
Galois group which meets this condition. 0

Corollary Let p be a primitive m-th root of unity for some m > 2;
then [Q(p) : Q] = <f>(m) where <j) is Euler's function. If n is prime to
m then pn is conjugate to p over Q. The roots of unity in Q(p} are just
the ±rf'. The primes which mmify in Q(p} are just those which divide
m, except that 2 does not mmify if 211m. Gal(Q(p}/Q} is isomorphic to
the multiplicative group of residue classes mod m prime to m, where the
element corresponding to nmodm is (Jn : p f-+ pn. If l is a prime not
dividing m the Arlin symbol is given by ( V// ) = &e-

Proof Recall that if m = nprj then the value of Euler's function is

Now everything follows at once from the theorem, together with Lemma 25
and its Corollary. These also give us the value of the different and hence of
the discriminant. The assertion about the roots of unity is proved in the
same way as in the theorem. 0

For any prime p, let m = prm' where m' is prime to p. If Am denotes
the group of residue classes mod m prime to m, there is a canonical iso-
morphism

Gal(*m/Q) ss Am w Am' x Apr « Gal(Aw/Q) x Gal(V/Q)

and the primes above p in km, are totally ramified in km/km
,. It follows
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that the splitting group of p is C x Apr, where C c Am' is the cyclic
group generated by p, and the inertia group of p is Apr. The corresponding
statements for any cyclotomic field now follow from Theorem 16.

The following result will be needed both in §13.2 and in §20.

Lemma 30 Let k = Q(() where ( is a primitive p-th root of unity, and
write 1r = 1 — (. If e is in Ok and prime to 1R, and if £ = agmod1rP for
some 0 0 in of * then (1R) is unramified in K/k where K = k(~).

Proof Suppose first that e = =agmod1rp+1. In the notation of Lemma 20
we have m = p - 1, so that we can take r = 2; hence e = oP for some
a in o? ., so that (1r) splits completely in K by Theorem 19. If instead
1rPII(e-ag), we can assume that K ^ k, which indeed follows from the last
assumption. Let TJ = ( ~ - (0)/1r, so that K = k(TJ), and let f(X) be the
minimal monic polynomial for TJ; then

f(X) = Xp + (og-VM"1)^ + K ~ 0Apmod7r.
It follows that TJ is in .0K; hence "0K/k is prime to 1R by Theorem 20, and
so (1R) is unramified in K/k by Theorem 21. It is not hard to show that in
this case (1R) remains prime in K. 0

13.1 Class numbers of cyclotomic fields
Let k be any cyclotomic field with [k : QJ = n and let m be such that
k c km; it is proved in §20 that all fields abelian over Q can be obtained
in this way. Let Am be the group of residue classes mod m prime to m
and Hm the kernel of the map Am -+ Gal(km/Q) —+ Gal(k/Q) given
by the Corollary to Theorem 27; we shall meet almost the same notation
again in §17. Let X be any character of Am/Hm and let fx be the exact
conductor of X — that is, the least f such that X is defined mod f; and
write fx = Normfx. It will follow from Theorem 33 that Idkl = n fx;
alternatively, we can apply to both sides of (50) the functional equations
implicitly described in (79) and (77) below. The key to what follows is the
identity

L(8,X), (50)

which follows from the remarks after the proof of the Corollary to Theorem
27. If XO is the principal character, L(8,Xo) is just the Riemann zeta
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IS Cyclotomic fields 69

function (71). Multiplying both sides of (50) by s - 1, letting s —> 1 and
using (75) we obtain

f 21-nldkll /2n'£(I,X) if k is real,
\ (2?r)-n/2wldkll/2n'£(1,X) if k is not real, { '

where in each case the product is over all characters of AmiHm except
Xo. To justify this, we must show that the L(I, X) are well-defined; and to
make it useful we must obtain a closed formula for the L(I,X), which we
now do. Let x run through a set of representatives of the residue classes
mod/'X. and let y run through those prime to I'X.. If ( is a primitive I'X.-th
root of unity then

because the innermost sum is Ix. if n = ymodfx and 0 otherwise. By
rearranging we obtain

If x == 0modIx. the first expression in curly brackets vanishes. But if
x ^ 0 mod fx then at least formally

lim £ n~ V n x = " ( C n z / n ) = - log(I - CZ ) (53)

where we choose that branch of the logarithm which has imaginary part
strictly between — ?ri and ?ri. This last step can be justified by a standard
theorem of Abel or by the exercise which follows.
Exercise If IzI < 1, show by uniform convergence that

lim " n-szn = " n-lzn = - log(l - z).

If also IZll ~ 1 show that

and that, provided IZl — 11 ~ f for some fixed f > 0, the right hand side is
absolutely convergent uniformly in Zl and s provided !Rs ~ f. Deduce that
lims-+ l4>(s,zI) exists and is continuous in Zl, and derive (53). 0

The Gauss sum, which is the first expression in curly brackets in (52),
satisfies

For if x is not prime to I let r be the quotient of I by the highest common
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70 9 Special fields

factor of x and f. Replace y by yc where c == 1 mod Tj since ex= = x mod f
we obtain TZ(X) = X(C)Tz(X). Thus TZ(X) = 0 because if X(c) = 1 for all
such c, the conductor of X would divide T. If on the other hand x is prime
to f then TZ(X)X(X) = E1IX(xy)(Z1l = Tl(X). Moreover

= £ £
on writing x = yz. Summing first over y gives ITL(X)12 = f.

It follows from (53) and (54) that

Since n i x = Idkl, t h e contribution of the f;lTl(X) to n'IL( l ,x)1 will be
Idkl-1/2 which will cancel with the Idk11/2 in (51).

It is now necessary to split cases. We shall say that X is an even char-
acter if X(-1) = 1 a n d a n °dd character if X(-1) = - 1 . Since complex
conjugacy on k is induced by p 1-+ p-l where p is a primitive m-th root of
unity, it follows from the Corollary to Theorem 27 that all characters are
even if k is real but half of them are odd if k is not real. If k is not real, it
has a totally real subfield ko such that [k : ko1 = 2j this is the field fixed by
complex conjugacy, so the characters associated with ko are just the even
characters associated with k. It follows from (51) that if k is real

whereas if k is not real

h =

(55)

LX(x)10g(1 - eZ)I (56)

where ho and RO are the values for ko, the product is taken over all odd
characters and the expression in curly brackets is equal to [ok : oko1. For
further information on this last expression, see Exercises 1.8 and 3.9.

Suppose first that k is real. Let f be a factor of mj for what follows to be
non-trivial, f must be a multiple of Ix. for some non-principal x- Let HI
be the image of Hm in AI and ( a primitive f-th root of unity; Fix some a
prime to f and not in HI, and let C run through a half-set of representatives
of the classes modf in HI, so that the cmodf and the —cmodf together
represent all the classes in HI' Then

is a unit in Q«() and is fixed by Gal(Q«()lk n Q«(» ~ Hlj so it is a unit
in k, and it is not obviously trivial. The units of k composed from —1 and
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13 Cyclotomic fields 71

these units are called the cyclotomic units of k. In general, it follows
from Theorem 11 that there are multiplicative relations among the units
(57) as a and f varyj but no one has sorted out the details. One should
expect that the right hand side of (55) is the regulator of a suitable set
of cyclotomic unitsj but this again is unproved. Both these are problems
which defeated Hasse, so they will not be easy. All that one knows is the
following.

Let X be a character mod f, but not necessarily with conductor f, let (
be an f-th root of unity, and write

CZ) (58)
where the sum is taken over a set of representatives x of the residue classes
mod f prime to f. For any prime p we can obtain a character x* m°d fp
by restricting the argument of X t° be prime to p. Let ~p = (j then

(1 - CZ) = (1 - CZ)(1 - cz-!) . . . ( 1 - Cz-(p-l)!). (59)
If plf then substituting (59) into (58) gives S(X,() = S(x*,O- If however
pIf then we can write x = py in (58) and obtain

S(x,() = LX(PY)10g(1 - C P r ) + S(X*,~) = X(P)S(X,(

Thus in either case we have

We can now rewrite (55) as

} i r i £ | ( 6 0 )
Here (m is a primitive m-th root of unity, the double product on the left is
taken over all primitive characters X induced by characters X* of AmiHm
and over all distinct primes plm, and the sum on the right is taken over a
complete set of representatives x for the elements of AmiHm. Of course,
this formula is only useful if no X(p) is equal to 1.

The right hand side of (60) can be expressed as a regulator by means of
the second part of the following lemma, due to Dirichlet.

Lemma 31 With the notation above, let the B(y) be variables indexed by
the elements ofAIH. Then

} -1)) (61)
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72 3 Special fields

where the xi run through the characters ofAIH andYi,Yj run through the
elements of AIH; and

I T {£Xi{Vi)B{yi)} = det(B(YiY,;-t) - B(Yi)) (62)
where the product on the left excludes the principal character and Yi,Yj on
the right run through the elements of AIH other than H itself.

Proof If we multiply the i-th row of the determinant in (61) by X*(Yi)
and add all the other rows to the first one, the term in the j-th column
becomes X*(y;)LX* (y)B(y)j so the right hand side of (61), considered as
a polynomial in the B(y), is divisible by E X*(y)B(y). Since this holds for
each X*, the right hand side of (61) is divisible by the left hand side. By
considering degrees, the quotient must be a constantj and by looking at
the coefficient of (B(H))n that constant must be 1.

We can renumber the Yi so that Yl = H. By the argument in the previous
paragraph, the left hand side of (62) is equal to the determinant obtained
from that in (61) by replacing the first row by (1 ,1 , . . . , 1). Now subtract
the first column from each of the others. 0

In each sum on the right of (60) we can write x = cy, where y runs
through representatives of the elements of AIH and c runs through repre-
sentatives of the congruence classes mod f in H. Thus

(~X) = LyX*(Y)L c log(l - CT- (63)

Let 0';1 be the element of Gal(kIQ) corresponding to the class of y; in
AmiHm. Write

= II
where n' is taken over a half-set of representatives of the classes mod m
in Hm and n is taken over a full set of representatives. Since .jO';e/e is
an integral power of e, the 11; are cyclotomic units in k, and 111 = 1 since
G\ is the identity. It now follows from (62) and (63) that the right hand
side of (60) is the regulator of 112,. . • , 11n.

We now turn to (56). Here every X is odd, so that

) log(l - e X ) = ! £ X(x){log(l - eX) - log(l - (X)}
xx(x)

where x runs through all the integers prime to f with Ixl < !f. Taken
with (56), this gives a formula for h/ho in which all the terms are rational
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13 Cyclotomic fields 73

and easy to compute. That h/ho is actually integral is an easy consequence
of class field theory; see Exercise 5.3. There are elementary proofs of this
last statement, which are straightforward when k = km but complicated in
general.

13.2 Fermat's Last Theorem
A major motivation for studying kn was the possibility of applications to
Fermat's L88t Theorem — the assertion that

xn + yn = zn, XyZ ? 0

has no solution in rational integers when n > 2. Since any integer greater
than 2 is divisible either by 4 or by an odd prime, it is enough to consider
the cases when n is either 4 or an odd prime p. The cases n = 3 and
n = 4 were proved by Fermat; for two versions of the argument when
n = 4, see Exercises 3.5 and 3.6. Although there is no way of knowing, it
seems likely that the argument which convinced Fermat in the general case
was of the same type as that given below, combined with the 88sumption
of unique factorization. The oldest recorded version of this argument is
due to Kummer in the mid-nineteenth century. He was able to make it
rigorous, but the price W88 the additional condition that p should be a
so-called 'regular' prime — that is to say, that the class number of Q(V'T)
is prime to p. Though most small primes (including all p < 37) are regular
it is still not even known whether there are infinitely many regular primes.

It is enough to assume that there are integers x, y, z with highest common
factor 1 such that

XP + yP = Z P , Xyz ^ 0 (64)

and derive a contradiction. Denote by ( a primitive path root of unity and
write 1r = 1 — (. We separate cases according as plxyz or plxyz.

In the first case we can take p ~ 5, for if p = 3 each of xP, yP, zP would
be congruent to ±1mod9 and this contradicts the first equation (64). If
p ~ 5 we write (64) in the form

(x + y)(x + (y). . .(x + (P- ly) = zP; (65)

the factors on the left are coprime in pairs because they can have no com-
mon factor other than (1R), and by hypothesis (1R) does not divide the right
hand side. Hence each of these factors, viewed 88 an ideal, must be a path
power. But since h is prime to p, an ideal whose path power is principal
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74 9 Special fields

must itself be principal. Hence each factor on the left in (65), regarded as
a number, must be the product of a p-th power and a unit. In particular

x + £y = apu (66)

for some integer a prime to TT and some unit u. If we use a bar to denote
complex conjugacy, then u/fi. is a unit all of whose conjugates over Q
have absolute value 1; thus it is a root of unity and must have the form
T) = ± ( m for some m with 0 ~ m < p. Also a = a mod 71" by considering the
expression for a as an element of Z[p], and therefore (a/o)P= = 1 modp7r.
Comparing (66) with its complex conjugate, we obtain

x + (y - 1/(x + ely)= = O modp7r.

Multiplying this congruence by ( if m = 0, or by (2 if m = p — 1, we see
that if m ^ 1 there is a polynomial f(T) in Z[T] of degree at most p—2, not
divisible by p but such that f « ) = 0 modp7r. But now g(U) = f(I - U) has
degree at most p — 2 and is not divisible by p, but g(7I")= = Omodp7r; and
this is impossible because the terms in g(71") all have distinct valuations.
Thus m = 1 and 1/ = ±(. But now y == ±xmodp. If the lower sign held,
then x + y would be divisible by p, whence plz contrary to hypothesis; so
x == y mod p.

Applying the same argument to (— x)P + zP = yP gives — x == zmodp.
Now substituting back into (64) gives p = 3, and this has already been
ruled out. This completes the discussion of the first case.

Nearly all the difficulty in the second case is in the proof of the follow-
ing fundamental lemma. This was another of the precursors of class field
theory. An elementary proof, which goes back to Kummer, is sketched
in the exercise later in this subsection; in the text we derive the result
painlessly from classical class field theory.

Lemma 32 In the notation above, let E be a unit of k = Q(() such that
e = =af mod7I"P for some al in Ok. Then either E = ~P for some unit e in k
orplh.

Proof Suppose that the first alternative does not happen. The p roots of
XP — E form complete sets of conjugates, all sets being of equal size; so they
are all conjugate and K = k({if) is abelian of degree p over k. But 1)K/k
divides p, by Theorem 20 applied to a = {if. Lemma 30 shows that (71") is
unramified in K/k; so K/k is not ramified at any place. In the terminology
of §17 this means that H contains the group of principal ideals, so the ideal
class group has a quotient group isomorphic to Gal(K/k), whence plh. 0
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19 Cyclotomic fields 75

For the second case of Fermat's Last Theorem, again under the condition
that plh, it is convenient to consider a more general equation. (We shall
use the method of infinite descent, invented by Fermat himself, and for this
it is essential to choose an equation which will descend to itself.) Suppose
that there are non-zero integers x, y, z in k, with w dividing z but not x or
y, which give a solution of

XP + YP = fZP (67)

for some unit f in k. Define n by 7rnIIZ, and write (67) in the form

{x + y)(x + (y)...(x + ( p - l y ) = fZp. (68)

At least one of the factors on the left in (68) must be divisible by 7R; SO all of
them are, and the highest common factor of any two is tra where a = (x, y)
is prime to (7r). Hence the factors on the left use up the p residue classes
mod 7r2 divisible by 7r, so that one of them is divisible by 7R2; mUltiplying y
by a power of (, we can take this factor to be x + y. Thus 7r11(x + (ry) if
plr, and 7rp(n-l)+lII(x + y); in particular n > 1.

The product of the ideals associated with the factors on the left of (68)
is a p-th power, and the highest common factor of any two of them is 7ra;
so as ideals

(x + (ry) = ™K for r = 0 ,1 , . . . , p - 1 . (69)

Let c: be an integral ideal in the class of bO l, divisible by a but not by (7R).
Thus a-lc:p is principal and hence equal to ({3) for some {3 in Ok, so that
(69) becomes

Since h is prime to p and (c:br)P is a principal ideal, so is ~br; if it is equal
to (ar) then

+
for some units fr. Here 7rn-lllao and the other ar are prime to 7R. Com-
bining the equations with r = 0,1 and p — 1 gives

This implies that ( L l f l l = =(-at!a-I)Pmod7rP, so (f_lfl l = if for some
unit 71 by Lemma 32. Thus

and here (1 + ()fofll is a unit. So we have generated another solution of
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76 3 Special fields

(67), and indeed one with 1RN-11IAO. If we assume that X,y,z were chosen
to make n as small as possible, we obtain a contradiction. This completes
the discussion of the second case.

By a refinement of this argument, it can be shown that the se.cond case is
impossible under the weaker hypothesis ptho, where ho is the class number
of Q( + ( - 1 ) , the maximal real subfield of Q ( ) . (That this hypothesis
is weaker than p%h is a special case of Exercise 5.3.) Vandiver conjectured
that p never divides ho, and this has been verified by computer for all
p < 4 X 106

• But naive probabilistic arguments suggest that counterexam-
ples to Vandiver's conjecture should be so rare that no feasible amount of
computation is likely to produce one.

Exercise The object of this exercise is to provide an elementary proof of
Lemma 32. The first half consists of the following key result. It can be seen
as a statement that a certain cohomology group is non-trivial — though
this interpretation does not make the proof easier. We continue to denote
the field of p-th roots of unity by k.

Lemma 33 Let K be cyclic of degree p over k and let a be a genemtor of
Gal(K/k); then there is a unit TJ of K such that normK/kTJ = 1 but TJ does
not have the form f/af for any unit f of K.

Note that if we did not require f to be a unit, Lemma 4 would allow us to
satisfy TJ = f/ae. Write

U1 = .oK/ok' U = Ut/{torsion part of Ud.

It follows from Theorem 11 that

• U is a free abelian group on !(p — 1)2 generators.

Our terminology will reflect the fact that U is multiplicative. In particular,
if f(X) = I X * 1 ' is in 2[X] we write <*'<*> = IK*"*)"" f<* any " ^ &•
Let F(X) = 1 + . . . + Xp-1 and recall that F(X) is irreducible in Z[X] by
Theorem 27; then fJF(u) = 1 for every 0 in U. Denote by S(fJ1,... ,fJr) for
any fJ... ,fJr in U the set of aVfJp for v = 0,. . . ,p - 2 and p = 1,... ,r.
Write m = !(p-1).

• We can find fJ1,... ,fJminU such that the elements of S(fJb... , fJm) are
multiplicatively independent.

Suppose that we have chosen fJ b.. ,fJr where 0 ~ r < m, and let fJr+1 in
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13 Cyclotomic fields 77

U be multiplicatively independent of S((h,... , Or)' Suppose there were a
relation of the form

O*'w=1 (70)
where the fp(X) are polynomials of degree at most p - 2 in Z[X] and
fr+l ^ 0. Then we could find g(X),h(X) in Z[X] and N ^ 0 in Z with
gfr+! + hF = N. Raising (70) to the g(o}th power gives

which contradicts the hypothesis on Or+!' It follows from the last two
results that S(Ot,... , Om) spans a subgroup of finite index in U.

• If 01. " . . , Om are chosen so that the index of S(Ot,... , Om) in U is as
small as possible then no 01-' has the form Ol-u with 0 in U..

Suppose otherwise. It is enough to show that 0 is not in the subgroup
generated by S(Ol,... ,Om), because then replacing 01-' by 0 will replace
this subgroup by a strictly larger one. Let

so that (1 - X)f(X) = P - F(X) and so OP = O£(U). If 0 were in the
subgroup generated by S(Ot,... , Om) we would have a contradiction. Now
note that O~ = (O£(U»)l-U and deduce that if a is prime to p then ~ ^ 9l~°.
Applying an integral unimodular transformation, deduce:

• if al,... , am are integers not all divisible by p then n O~" does not have
the form Ol-u with 0 in U.

Now let ( be a primitive p-th root of unity. In proving the lemma we can
assume ( = ~l-u for some unit ~ in K, for otherwise we can take ", = (.
Hence ~P = normK/k~ is a unit in k, and ~ is not in k. Now lift each 01-' to
a unit T]^ in K and consider the map

<p: {group generated by the "'I-'} -+ 0k/{p-th roots of unity}

induced by normK/k. There are three possibilities:

(i) ~P is a primitive p-th root of unity. Let ",U be a primitive element in
the kernel of <p, and choose ", to be a product of (",U )a with a prime
to p, a power of ~ and ±1 such that normK/k'" = 1.

(ii) No non-trivial power of ~P is in the image of <p. The kernel of <p has
rank at least 2, so that there is a primitive element ",U in the kernel
of <p such that normK/k"'U = ±1. Take ", = ±",U.
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78 3 Special fields

(iii) Neither (i) nor (ii) holds. Now there is an element if in the group
generated by the rj^ such that (nOrmK/k.,.,b) fePb is a root of unity
for some b > o. Show that we can assume that if is not a p-th
power and proceed as in (ii), using if /£6 and the kernel of </>.

This completes the proof of Lemma 33. For the proof of Lemma 32 let
i) be as in Lemma 33. We can assume that € is not a p-th power in kj if we
write K = k( {if) then Kfk is cyclic of degree p. It follows from Lemma
4 that there is an integer {3 in K such that r\ = flx~". As an ideal, ((3) is
invariant under Gal(Kfk). By considering the prime factorization of ({3)
and using the fact that there is no ramification in Kfk by Lemma 30, show
that ((3) = conormK/kb for some ideal b in k. For b to be principal would
contradict Lemma 33j on the other hand bP = normK/k({3) is principal. 0
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Analytic methods

14 Zeta functions and L-series
A fundamental tool in the study of prime numbers is the Riemann zeta
function

<(s) = £rr* = n(l-p-T\ (71)
where the sum is over all integers n > 0 and the product is over all primes
p; that the two are equal is equivalent to unique factorization. The sum
and product are both absolutely convergent in !Rs > 1, and (s) ~ (s -1)" 1

as s —+1 from the right. The first non-trivial property of (s) is that it can
be analytically continued to the entire s-plane, subject to a simple pole at
s = 1, and that it satisfies the functional equation

(1 - s) = 21-s1r-Sr(s)(s) cos ~1RSJ

this equation is equivalent to saying that

/2 (72)

is unchanged by writing 1 — s for s. As we shall see below, the extra
factor in (72) can be regarded as the missing factor in the product (71)
corresponding to the infinite prime. The other fundamental property of

(s), assuming it is true, is the Riemann hypothesis: that the only zeros of
Z(s) lie on the line !Rs = ~.

The problem of the distribution of primes in arithmetic progressions led
to the study of the Dirichlet L-series

Wn~s = II(1 - xfrKT1 (73)
where x(n) is a congruence character mod ! for some integer I — that
is to say, x(n) = 0 when n is not prime to I, and if n is prime to I then X is

79
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80 4 Analytic methods

induced by a character on the group of residue classes prime to f. L(s, X)
can also be analytically continued over the whole s-plane, though without
a pole at s = 1 if X is non-trivial, and it satisfies a functional equation of
the form

where /(s, X) is a known and comparatively simple function. This equation
cannot easily be put into a symmetric form; in fact /(s, X) involves a Gauss
sum and any symmetry would induce an identity between Gauss sums.
There is also a Riemann hypothesis for L(s, X).

Quite generally, to call a function a (global) zeta function or L-series is
to assert that it is a Dirichlet series Y^^^8^ a nd that after normalizing
if necessary by writing s — So for s it has four key properties:

(i) It can be written as an Euler product Yl<l>p(p~s) where each <j>p(X)
is a rational function of X; note that this makes no allowance for
factors corresponding to the infinite prime,

(ii) The series and product converge absolutely in !Rs > 1 but no further;
and they can be analytically continued to the entire s-plane subject
to possible poles at s = 0 and/or 1.

(iii) There is a functional equation connecting L(s) with L(1 - s), where
the latter expression is often obviously the same as L(l — s).

(iv) The non-trivial zeros of L(s) lie on !Rs = !.

The function may also have zeros at z = -n for certain n ~ 0; these should
be thought of as the consequence of failing to include a factor corresponding
to the infinite prime in the product required by (i). Fortunately, these four
properties only need to be asserted as conjectures and not as proven facts;
indeed modular forms give rise to examples where even (i) is not trivial,
and there is as yet no case where (iv) has been proved. On the other hand, I
know of no case in which the second part of (ii) has been proved without the
argument simultaneously proving (iii). A function having these properties
is usually called a zeta function if it has a pole at s = 1 and an L-series
otherwise; but this is not a firm rule.

For an arbitrary algebraic number field k, the only possible analogue of
the Riemann zeta function which satisfies (i) above is

(k(S) = ~)Norma)- S = I I ( l - (Normp)-s)-l, (74)

where the sum is over all non-zero integral ideals a and the product is over
all prime ideals p. Again, this identity is equivalent to unique factorization.
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14 Zeta functions and L-series 81

To any rational prime p there correspond at most [k : QJ primes p; so the
product is absolutely convergent in !Rs > 1 and hence so is the sum.

It is reasonably easy to study the behaviour of (k(S) as s —• 1 from the
right. One rewrites the Dirichlet series as

/>OO

(k(S) = L a n n - s ^ s " 1 / x~'~lA(x)dx
Jo

where A(x) = Ln~xan
; SO it is enough to estimate A(x). The calculation

is essentially that in the proof of Theorem 23, and the conclusion is

(«-l)<fc(s)-»2ri(2ir)r2|dr1/2W2iir1 as s -» 1. (75)

We shall not carry out this process explicitly because the result is contained
in Theorem 28 in the next section. The formula (75) is among other things
the starting point of the proof of the Brauer-Siegel Theorem: that if k is
Galois over Q then

10g(hR) ~ \ log Idl as Idl -> oo (76)

for fields of any fixed degree; see [L], Chapter XVI. Empirical evidence
suggests that if T1 + T2 > 1 (so that R is non-trivial) then log h is usually
very small compared to log Idl, though this is not so for the families of fields
which one is most likely to write down; but it is very unlikely that there is
anything analogous to (76) for h or R separately.

Analytic continuation and the functional equation for (k(S) a r e much
more difficult, and were only proved by Heeke in 1918 in a remarkable
paper. With the advantages of hindsight, the basic idea of Heeke's paper
is fairly natural; but the details are complicated and the proof depends on
what appears at first sight to be a lucky accident. Heeke's first result was
that

Cfe(s){7r-s/2r(iS)P{(27r)1-sr(S)P|4r/2 (77)

is unchanged on writing 1 — S for s. It is now natural to guess that
1l'-s/2f(!s) a n d (21l')1-sr(s) are the missing factors in the product formula
for (k(S) corresponding to a real and a complex infinite place respectively,
even though they look totally unlike the factors in (74) coming from the
finite primes. We have already seen that the discriminant d = ±Norm 0 is
conductor-like, so that the factor Idkls/2 = (Norm1l)s/2 should be thought
of as related to the conductor of the field k.

For L-series, the situation is more complicated. Choose a finite set S of
prime ideals and denote by IS the group of those fractional ideals whose

)'����*��!��!���(��((%'���+++���"�&�����$&���$&��(�&"'���((%'����$��$&����������������������������

�$+#!$������&$"��((%'���+++���"�&�����$&���$&����#�*�&'�(,�$���$&$#($��$#������%�������(����
	�
���')� ��(�($�(�����"�&������$&��(�&"'�$�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.005
https://www.cambridge.org/core


82 4 Analytic methods

prime factorizations do not involve any ideal in S. Let X be a character of
IS and write

-S)-1 (78)

where the sum is restricted to integral ideals in IS and the product to
prime ideals not in S. To prove analytic continuation and a functional
equation, we need to impose certain conditions on X which constitute the
definition of a Heeke GrOssencharakter. However, the appropriate factors
for the infinite places are no longer those that appear in (72) and (77);
we have to replace s by s + sv, where Sv depends both on X and on the
particular place we are looking at. Replacing X by X-I reverses the signs
of all the Sv. Write

r(«, x) = V "
where the first product is taken over the real and the second over the
complex places. Hecke's second result was that

A(s, X) = L(s, X)f(s, x){Norm(fO)}s/2 (79)

is multiplied by a number of absolute value 1, depending only on X, when
s is replaced by 1 — s and X by X-I. He expressed this last number as a
finite sum, which generalizes the Gauss sum which appears in the classical
case k = Q.

Tate's thesis, which was written in 1950 but not published until 1967 (as
Chapter XV of [CF]), presented a new proof of analytic continuation and
the functional equation, using the language of adeles and idetes. General
theory now replaces the heavy calculations needed by Hecke, but some at
least of the ideas remain the same. Tate's proof is given in the next section.

A completely different generalization of the L-series (78) was introduced
by Artin. To explain his motivation, we return to (73). Let K be the field
of I-th roots of unity. By the Corollary to Theorem 27, we can interpret
X as a character on Gal(K/Q); and (73) then becomes

where ( ~ ~ ) is the Artin element and the product is taken over all p
prime to I . If we assume the assertions in §17, we can give an exactly
analogous interpretation of (78) in terms of a certain abelian extension
K/k. What Artin did was to consider extensions K/k which are Galois
but not necessarily abelian. Instead of a character X it is now necessary
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15 The functional equation 83

to use a representation P of Gal(K/k) — that is, a homomorphism p :
Gal(K/k) —+ GL(W, C) where W is a finite dimensional vector space. If p
is a prime ideal in k unramified in K/k and 3̂ is one of the primes of K
above p, then the associated factor in the Artin L-series is

which does not depend on the choice of 3̂ or of p within its equivalence
class. We have still to take account of ramified primes. If p is ramified in
K/k then the Frobenius element [Ktk] is a coset of the inertia group T<.p;
so the space it naturally acts on is WT, the subset of W whose elements
are invariant under the action of T via p. Thus the L-series which we are
led to consider is

L(s,p) = J ] p {det{/- (Normp)-V([^rD acting on WT}}
- l

This is the Artin L-series.
For any a in Gal(K/k) the characteristic roots of p(a) have absolute

value 1; so the product is absolutely convergent in ~(s) > 1. Clearly

L(s, Pi + (2) = L(s, Pi)L(s, P2);

and if P is the principal representation (for which dim W = 1 and every
p(a) is the identity) then L(s,p) = (k(S). It is known that L(s,p) can be
analytically continued to the whole s-plane as a meromorphic function and
that it satisfies a functional equation of the usual type. It is conjectured
that if p is irreducible and non-principal then L(s, p) is everywhere holo-
morphic. The importance of this conjecture is that it would imply that
(K(S)/(k(S) is holomorphic for any algebraic number fields K, k with K
Galois over k.

The expression for (K(S) as a product tells us how rational primes p
factorize in K. Suppose for convenience that K is normal over Q and let
L be any field intermediate between Q and K. If we know how p factorizes
in K then Theorem 16 tells us how it factorizes in L. Since there are only
a very limited number of possibilities to consider (especially if we confine
ourselves to unramified primes, as in fact we can), we can reasonably hope
to have product relations between (K(S) and the various (DS) including
(Q(S). All this is more easily understood from the example to be found in
§12. For the general theory, see [FT], Chapter VIII.7.
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84 4 Analytic methods

15 Analytic continuation and the functional equation

In this section J.L+ will denote the Haar measure on Vk, normalized so that
= 1, and J.L will be a Haar measure on Jk; we shall defer for

as long as possible introducing the factor which comes from the particular
normalization of fi which we chose in §A1.3. We now define a Tate zeta
function; we shall see later how it relates to Heeke's zeta function. Let X
be a continuous character on Jk which is trivial on k*; we shall call such a
character a Tate character. Let I : Vk —+ C be a function so well behaved
that all the formal manipulations which follow are valid. By analogy with
the Fourier transform on Jk we define

C(/,X,*) = / f(a)x{a)\\a\\3dn, (80)
JJk

where we require I(a) to die away so rapidly as lIall -+ 00 that the integral
converges absolutely in some right hand half-plane !Rs > QO. This formula
defines an analytic function of s in this half-plane; our main task is to
continue it to the entire s-plane. For this it is crucial that X is trivial on
k*.

We divide Jk into two parts: J> on which Iiall > 1 and J < on which
lIall < 1; we can ignore the part with LIALL = 1 because it has measure
o. The integral over J> is absolutely convergent and defines an analytic
function for all s, since these properties hold for !Rs > QOI it is the integral
over J< which we have to worry about. Let S be a fundamental domain
for the action of k* on J < and write J< = UeS where e runs through the
elements of k*; then

f f(a)x(a)lIaIlBdJ.L = L f f(ea)x(a)lIaIlBdJ

In the first term on the right we apply the corollary to Theorem A6 (the
Poisson Summation Formula); since J.L+(Vk/k) = 1, we can replace the term
in curly brackets by

Write {3-1 for a and note that in an obvious notation dJ.L({3) = dJ.L(a) and
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15 The functional equation 85

8-1 is a fundamental domain for the action of k* on J>. Thus

/1 E /(ao|x(a)Hi*d/i= /1 E /V'olxMHr1^
JS [t in k J JS \Z\nk J

Defining X by X(f3) = X(f3-1) and interchanging integration and summa-
tion,

(81)

Let us further assume that J(f3) dies away so rapidly as 1If311 —+ 00 that
(i , X,s) also exists for lRs large and positive; then the first integral on the

right exists for all s.
We must now look at the second term on each side of (81). Suppose first

that X is n°t trivial on Jl, and choose 7 in Jl with xb') ¥" 1- Writing a'Y
for 0., we obtain

so this expression must vanish. Hence in this case the second term on the
left in (81) vanishes, and the same is true of the second term on the right.
On the other hand, if X is trivial on Jl then the value of X(0.) depends
only on 110.11 and hence x(a) = lIalie f°r some pure imaginary c, since these
are the only characters on Jk/Jl ~ R + . Here we can set c = 0, which is
equivalent to absorbing c into s. Using the decomposition Jk = Jl x (0,00)
by which we defined the induced measure on Jl, we obtain

where JL1 is the induced measure on J l . The other similar integral is equal
to JL1(Jl/k*)/(s - 1). Thus we finally obtain

Theorem 28 Assume that if X is trivial on Jl then it is normalized so as
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86 4 Analytic methods

to be trivial on J". Then under suitable conditions on I,

where the last term only occurs il X(a) is trivial. The right hand side is
analytic in the entire s-plane except lor the possible poles at 8 = 1 and
s = 0 arising from the last term on the right. Moreover

((f,x,s) = ( ( f ,x ,1-s) . (83)

The last sentence follows immediately from the main formula, bearing in
mind that we have identified Vk with V", so that the transform of j(a)
viewed as a function on V" is I(-a).

Note that (82) is homogeneous in the Haar measure \i on J", so that
we have not yet committed ourselves to a particular normalization of 1-'.
Subject to this, the value of 1-'1(JUk*) can be read off from Theorem 23.
The reader will have noticed that we have not used the fact that X is a

character, but only that it is multiplicative; so we could have taken X t°
be any quasi-character J" —+ C* trivial on k*. But this apparent extra
generality is spurious. For since Jl/k* is compact, X induces a character
on Jl; and since the kernel of the map a 1-+ lIall is J l , we must have
Ix(a)I = lIalie for some real c. Now replacing X by the character a 1-+
lIall-Cx(a) is equivalent to replacing 8 by s — c.

To make use of these results, we need to evaluate the integrals which
define j and (; and in any case we need to ensure that our hypotheses on
I and X can be satisfied. It is natural to choose I and X to be products of
functions defined on the factors kv and k: respectively:

The easy way to ensure that these products converge is to require for almost
all v that Iv = 1 on Ov and Xv = 1 on 0:. IT we also require Iv to vanish
outside Ov for almost all v, then

for the integral over V" is equal to the product of the integrals over the kv
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15 The functional equation 87

A similar argument gives the corresponding result

(U,x,8) = I I 1 fv(av)Xv(av)lIavll~dJ..tv, (84)

where now the measure on Jk is the product of the measures on the k~, as
in Theorem 23. For if v is p and fp vanishes outside op, the corresponding
factor is

oo .

(85)

Here the n-th term is the product of (NormlJ)-nS and a coefficient inde-
pendent of 8. If the formal product of these series is absolutely convergent
and so are the remaining integrals in (84), then the non-zero terms of the
product are precisely the ones we need for an integral over Jf. Here we
treat the product over the non-Archimedean valuations as a Dirichlet series
and therefore only retain the corresponding terms in the product; this is
the same convention which we used to expand the Euler product in (71).

We now evaluate the local factors for those primes p for which XP = 1
on 0;. We choose

/P(£P) = { J for ep in op,
0 otherwise.

If lip denotes the local different for k/Q at p then as in §A2.2

71 \ f /r, • rn_,e >w + f (NormOp)" 1 / 2 for r)p in Op"1,fp(Vp) = j^ e x p ^ p i r ^ p ) ) ^ = ^ Q» o t h e ^ i s e )
P

because the integrand is a character on op which is trivial if and only if "1p
is in () ; l . By hypothesis Xp(ap) depends only on Ilaplip and must therefore
have the form

for 81 pure imaginary; here 81 may depend on p. Using (85), the corre-
sponding local factor of the zeta function (U, X, 8) is then

o

where 7r satisfies lJlI7r. Similarly, if lJrlI()p the local factor of ( ( j , X, 8) is

(NormOpr ^ x ^ X l - f.;(7r)(NormlJ)-S)-l.
Let S be a finite set of places which includes the Archimedean places and all
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the primes p excluded from the discussion above. Write Xb(p) = Xp(7I') f°r

all p outside S and use multiplicativity to extend the definition of Xb to IS,
the group of those fractional ideals in Ik whose factorizations do not involve
any prime ideal in S. We shall see in Lemma 34 below that the characters
Xb obtained in this way are precisely the Hecke Grossencharakters, and
L(8, Xb) below is the Hecke L-series. Thus up to finitely many factors
corresponding to the places in S,

where by analogy with (78) it is natural to call the right hand side L(8, Xb).
It follows from (83) and the expressions above for the local factors that

( 8 7 )

where il. is the product of the ilp for p not in S. In other words, we get a
functional equation for L(8, Xb), provided that the local characters Xv have
been chosen so that X = I1Xv is trivial on k*. To satisfy this condition,
we need to see what local characters Xv are available.

Suppose first that v comes from a finite prime p. The 1 + pm are a
decreasing sequence of small subgroups, in the sense explained on page
126; so XP is trivial on those which have m ~ mp, where we take mp to
be as small as possible. We call pmp the conductor of the restriction of
XP to 0;; that restriction is induced by a character on the finite group
0;/(1 + pmp), and we are free to select any such character as Xp' Now fix
an element w in k* with pl17l' and write op = 71'''{3p where (3p is in 0;; if we
define 8v by Xp(7I') = 117I'1I~" then the most general Xp is given by

Here 8v is really an element of iR mod (271'i/log Il7l'IIp) rather than of iR.
Next suppose that v is real. Since the characters on (0, 00) are just the
x —+ XS" for some pure imaginary 8v, there are just two classes of characters:

Xv(x) = |x|s" or xv(x) = |x|8"signx. (88)

Finally, suppose that v is complex. Let z = rei8; then by considering the
restrictions of Xv to 6 = 0 and to r = 1 we obtain

Xv(z) = r*»ein«e (89)

for some pure imaginary 8v and some integer nv' The effect of increasing
all the Sv by the same constant c is to multiply x(a) by Iialle, which is
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15 The functional equation 89

equivalent to a translation on Sj but in general there is no obviously natural
way of choosing c. Also, replacing X by X- I reverses the signs of all the Sv'

We have still to ensure that X = nXv is trivial on k*j we achieve this
by forcing X t° be trivial successively on roots of unity, on ok modulo
roots of unity, and on k*10k, First choose the presence or absence of the
factor signx in (88) for each real valuation and the value of n in (89) for
each complex valuation. Choose also a finite set S of non-Archimedean
valuations (which will be the ones for which Xp is non-trivial on 0;) and for
each of them choose a character Xp on 0;, subject only to the condition that
X(w) = I if w generates the group of roots of unity in k*. The conductor
of X, denoted by f, will be the product of the local conductors pmp defined
above. We shall show that for each set of such choices there are exactly h
admissible characters X, where h is the class number of k.

The values of Sv for the Archimedean valuations are determined up to
the addition of a common constant by the condition that X is trivial on
a base for ok modulo roots of unityj for this imposes TI + T2 - I linear
conditions on these Sv whose determinant (with some abuse of language)
is the regulator. These equations have the form Lap'vsv" = ibp. where the
dfiufb^ are realj so we can take the Sv to be pure imaginary. In view of
the remarks after (89) we can assume a fixed choice of these values. Now
denote by J~riv the group of ideles {3 = n {3v such that {3p is in 0; for each
pj thus Jtr iv is both the kernel of the map Jk —> k and the set of ideles for
which the choices above have already determined the value of X. There is
an exact sequence

0 -» oj -» f x Jlriv ^Jk^Ck-+0, (90)

in which the middle map is a x (3 w a~lfi and the one following it is
Jk —* h —* Ck. Define X on the image of <j> by x(0(«: x (3)) = X({3) where
4> is the middle map in (90); X is well-defined because {3 is determined up
to multiplication by an element of ok and we have already arranged that
X is trivial on ok' Using Theorem AI, we see that X can be extended to a
character on Jk in just h waysj and it is easy to see that these are precisely
the characters on Jk which extend the restriction of X to Jtr iv and are
trivial on k*.

To express the condition which defines a Heeke GrOssencharakter 1jJ for an
algebraic number field k requires an integral ideal f of k, a pure imaginary
number Sv for each infinite place v of k and a rational integer nv for each
complex place v. Let S be the set of prime ideals which divide f and denote
by IS the set of fractional ideals in k whose prime factorization involves no
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90 4 Analytic methods

ideal in S. A character ip on IS is called a Heeke Grossencharakter if

1>((<*)) = { I I lff"al~^ } {Yi(<rva/\ava\)-n» } (91)
whenever a == 1 mod f and uva > 0 for all real embeddings uv : k —> R.
In (91) <7U is the embedding k —> C, the first product is taken over all
infinite places and the second over all complex infinite places. For given f
we are free to choose the nv, but there are considerable constraints on the
Sv arising from the fact that 'IjJ({a)) = 1 whenever a is a unit.

Lemma 34 The characters X~ derived from Tate characters X are the Hecke
Grossencharakters.

Prool Let X be a Tate character with conductor f, and let nv, Sv be as in (88)
and (89). If a is as above then Xp(a) = 1 for p in S, so 1 = x(a) = n Xv(a)
implies

where the right hand product is over all Archimedean Vj and this is (91).
Conversely, suppose that if> satisfies (91). We shall require X t° have

conductor f, so that Xp for p not in S is completely specified by the require-
ment Xp(1r) = 'IjJ(p). Since X~ only depends on these Xp(1r), this ensures
that X~ = 'IjJ if w e can construct X at all. If v is Archimedean then Xv is
specified by (88) and (89) where nv,Sv are as in (91), except that we have
still the choice between the two alternatives in (88). By the argument of the
previous paragraph we have ensured that X(a) = 1 for all a == 1 mod f such
that a is positive at all real places. If merely a == 1 mod f then x(a2) = Ij
since

{a == 1 modf}/{a == 1 modf and a > 0 at all real places} ~ {±IYl,

there is just one way of making the rl choices (88) so that x(a) = 1 f°r all
a == 1 ~odf. Similarly there is then just one way of choosing XP on 0; for
each p in S so that x(a) = 1 f°r all a which are units at p for each such
p, and finally just one way of choosing the Xp(-7r) f°r p in S to ensure that
x(a) = 1 for all a in k*.

All that is left to do is some tidying up. It follows from (87) that the
quotient

(v(fv, X̂ > 1 - S)/Cv(fv, Xv, S)

does not depend on the choice of Iv. This can be proved directly, because
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15 The functional equation 91

it is equivalent to

(v(fv, Xv, s)(v{iv,Xv, 1 - s) = (v{9v, Xv, s)(v{h, Xv, 1 - s)

for any admissible functions fv,9v on kv. The left hand side here is

/ / U^gMXvioc^Wa^WlWWvd^
Jko Jko

fv{a)gv{ai)\\a\\v d/xQ 1

on writing .B = a , . Since Ha^d/ia = Avdf-Lt for a constant Av whose value
is unimportant, the expression in curly brackets is

Jkv Ukv

where Cv is the additive character which appears in the Fourier transform.
This last expression is clearly symmetric in fv and gv.

Nevertheless, we should choose these fv to make everything as simple as
possible. If v is real the best choice for fv is

exp(-7ri") if Xv(x) = \x\s",
nxz) if Xv(x) = IxlSvsignx,

where the reader is warned that n denotes 3 • 14159... when discussing
infinite places. Now h(x) = fv{x) in the first case and h(x) = ifv(x) in
the second. Indeed these are just the identities

exp(_7ry2 + 27rixy)dy = exp(-7rX2), (93)

yexp(_7ry2 + 27rixy)dy = ixexp(-7rX2), (94)
>

where (93) is standard and (94) is obtained by differentiating with respect
to x. The corresponding factor (v(fv, Xv, s) reduces to the standard integral
for the Gamma function; its value is 7r-(8+8v)/2r(~(S + sv)) in the first
case and 7r-(8+8v+1)/2r(~(S + Sv + 1)) in the second. Similarly the value
°f (v(h, Xv, 1 — s) is obtained by writing 1 — s for s and reversing the sign
of sv, and also mUltiplying by i in the second case.

If v is complex then we write z = x + iy and in an obvious notation take

f (x - iy)lnl exp{-27r{x2 + y2)) if n ~ 0,
fv,n \ (x + iy)lnlexp(-27r(x2 + y2)) if n ~ o.
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92 4 Analytic methods

I claim that this gives T:;(z) = i1nl/v,_n(z). The minus sign on the right
ensures that £(rei9) = r-2sve-in 9. For n = 0 the assertion is that

/•OO /<OO

/ / exp(-27r(u2 + v2) + 47ri(xu - yv))dudv = ! exp(-27r(x2 + y2)),
J-oo J-oo

which is just the product of (93) with itself. The general case is now
obtained by applying the operator ( J j + ^ J if n ~ 0, or ( ̂  i t y )
if n ~ o. The factor (v(fv,Xv,s) is (27r)1-s-8v+1nl/2r(s + Sv + !Inl). The
value of (v(fv, Xv, 1 - s) is again obtained from this by writing 1 - s for s
and reversing the sign of Sv.

The remaining cases are when v is non-Archimedean and plf. Now we
can no longer define /p by (86) because (p(fp, XP's) would vanish if we did
so; there is no obviously best choice for /p, and we shall take

t (~\- f c i ( I ) = exP(27riTrfc|)/Qp(z)) for x in ^ f p X,
IA ' ~\ 0 otherwise

in the notation of Lemma A6, where fp is the conductor of XP as on page
88. Thus

I() = 1 () d+ -1 (Normi>p)1/2Normfp if y == I m o d fp ,
" h?i? V I ° oth.erwlse,

by Lemma A5. If for convenience we define m,r by pmllfp, prlli>p, then

CP(/P,XP,S)= f ; iiPi
n=—TO—r Pn\p"

I claim that every term in this sum vanishes except the first.
Suppose first that n ~ - r , so that C1(x) = 1 on pn \ pn+1. Writing

x = 7rny, the integral becomes

Xp(x) d\ix = Xp(7rn) / Xp(y) dfiy = 0
Jo;

because the restriction of Xp to 0; is non-trivial.
Now suppose that - m -r <n< -r. We write pn \ p n + 1 as a union of

sets Xo + p - r = xo(l + p - n - r ) . On such a set C1(X) = C1(XO), so

but 0 < —n — r < m, so XP is a non-trivial character on 1 + p - n - r and
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15 The functional equation 93

each integral on the right vanishes. Thus finally

where writing X1r-m-r for x in the integral gives

Wp(Xp) = (Normfp)1^ / Cl(X1r-m-r)Xp(x)dlLx. (96)
0;

If, copying the earlier argument, we write x = t:(I+y) where e runs through
a set of representatives for 0;/(1 + pm) and y is in pm, then we obtain

Wp(Xp) = (

which can be described as a generalized local Gauss sum. The canonical
property

|WP(XP)I = 1 (97)

can be proved as in §13.1, or we can argue as follows. On the one hand, the
factor associated with p on the right of (87) is independent of the choice of
Jp. If instead we use 9p = h then fp(x) = Jp(— x)j so this factor is equal
to

{(P(FP'-.XP, 1-s)}-lf
I" ) (p(fp,XP's)

by (95), where the factor xp(—1) comes from the need to write —x for x
in the integral (96). Now set s = ! and write Xp instead of Xpj comparing
the last result with (95) we obtain

On the other hand, it follows from (96) on writing —x for x that

These two results together give (97).
We can now finally write down the functional equation in full detail. We

again define A(s,X) by (79), though now r(s,X) is the product of factors
for each infinite place which are

1r-(S+Sv)/2r<!(s + sv» for the first case in (92),

1r-(s+sv+1)/2r(!(s + Sv + I» for the second case in (92),

+ Sv + !Inl) if v is complex.
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94 4 Analytic methods

Combining all our previous results now gives

s,X~) _.-t I T w . (

where t is the number of real places for which Xv(x) = IxIS"signx. 0

16 Density theorems
Euclid proved that there are an infinity of rational primes. Dirichlet proved
that any congruence class modn which is prime to n contains an infinity
of primesj and a much more general theorem of Cebotarev will be found
below. On the other hand, it has not been proved that there are an infinity
of n for which n2 + 1 is prime, or for which n and n + 2 are both prime.

Most proofs that there are an infinity of primes having a given property
depend on showing that the set of such primes has positive density. There
are two standard measures of density even for sets of rational primes, and
they both generalize to an arbitrary algebraic number field k. Let S be a
set of prime ideals of k and So the set of all prime ideals of k. The most
common definition of the density of S is

limx.....oo(N(S,X)/N(So,X)) (98)

p.rovided this limit existsj here N(S, X) is the number of prime ideals p
in S which satisfy Normp < X and similarly for N(So,X). The prime
number theorem for k (which we shall not prove) states that

The alternative measure is the Dirichlet density, which is defined as

(99)

provided this limit exists. In order not to have to prove analytic con-
tinuation, it is usual to take the limit as s tends to 1 from above. The
denominator in (99) is asymptotic to -log(s - 1), as can easily be seen
from (74) and (75).

Whether we work with (98) or (99), the density of S depends only on
the first degree primes in S — that is, the prime ideals p for which Norm p
is a prime in Qj for it is easy to show that the set of all primes in k which
are not first degree has density zero.

If the limit (98) exists so does the limit (99) and they have the same valuej
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16 Density theorems 95

see Exercise 4.2. But (99) can exist even when (98) does not, though such
cases are probably pathological. More to the point, (99) is usually much
easier to prove than (98); for the natural line of attack on (98) requires
a knowledge of the behaviour of the numerator of (99) on the whole line
!Rs = 1. For applications, what is normally needed is to know that the
density of S is strictly positive; but it does not matter which density one
uses. Each of the three theorems in this section is stated and proved for
Dirichlet density, but remains true if we replace Dirichlet density by density
as defined by (98).

The standard way to prove a density theorem appears in its simplest
form in Dirichlet's theorem on primes in arithmetic progression.

Theorem 29 Let m > 2 and let c be a fixed integer prime to mi then the
rational primes which satisfy p == c mod M have Dirichlet density (4)(M))- L

where 4> is Euler's function.

Proof Let k = Q( y'I) and let X be a character on Gal(k/Q); by the
Corollary to Theorem 27, X induces a character on (Z/mZ)* which we
shall also denote by X. Suppose that X is not principal. In the notation of
(73)

L:~Sn(n-S-(n + 1)-8) where Sn = L

But n-S - (n + 1)-S = O(n-1-CT) where u = !Rs, and Svm = 0 for any
integer v by Lemma A5, so that Sn is bounded; so L(s, X) is analytic in
!Rs > 0 and in particular at s = 1. Again, if p has order f as an element of
( Z / M Z ) * then X{p) r u n s through the f-th roots of unity as X varies, and
X{p) takes each value equally often; so

Using the Corollary to Theorem 27 again, it follows that

up to finitely many factors corresponding to the primes dividing M. Here
(k(8) has a simple pole at 8 = 1 and so has L(8, Xo) where XO is the principal
character; for L{8, XO) is (Q( 8 ) U P t° finitely many factors. All the other
factors on the right in (100) are analytic at 8 = 1, so (100) implies

) ^ 0 for X¥-Xo.
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96 4 Analytic methods

Since log(l - X(P)P-S) = -X(P)P-S + 0(p-2u) where a = !Rs, we obtain

in !Rs > 1. Thus

A similar argument gives

logL(s,Xo) = log(Q(s) + 0(1) = L p p - s +

Combining these two equations with (100) gives the theorem. 0

The same ideas work for an arbitrary algebraic number field k, but we
have to appeal to much more sophisticated results. We now use the notation
of §17. A weaker version of the following result will reappear as Theorem
35.

Theorem 30 Let k be an algebraic number field and AIH a congruence
divisor class group in k. Let C be a coset of H in A. Then the Dirichlet
density of the prime ideals inC is N-1, where N = card(AIH).

Proof Let K be the abelian extension of k which is the class field for AIH
in the sense of Theorem 32, and let X r u n through the characters of AIH.
If XO is the principal character then L(s, Xo) is equal to (k(S) up to finitely
many factors; so L(s, Xo) has a simple pole at s = 1. Any other character
X satisfies x« a ) ) = 1 whenever a == 1 mod f and aua > 0 for all real places;
so by Lemma 34 it comes from a Tate character which is clearly non-trivial.
Hence L(s,X) is analytic at s = 1, and using Theorem 37 instead of (100)
we again obtain L(l,X) ^ 0. The rest of the proof follows that of the
previous theorem. 0

The isomorphism between AIH and Gal(KIk) given by the Artin symbol
implies that we can identify the set of prime ideals in C with the set of
prime ideals p for which the Artin symbol (Ktk) takes a given value. But
this is only a special case of a more general result, the Cebotarev Density
Theorem, for which we only need to assume that KIk is Galois and not
necessarily that it is abelian.

Theorem 31 (Cebotarev) Let K,k be algebraic number fields such that
K is Galois over k, let a be an element of Gal(Klk) and denote by (a)

)'����*��!��!���(��((%'���+++���"�&�����$&���$&��(�&"'���((%'����$��$&����������������������������

�$+#!$������&$"��((%'���+++���"�&�����$&���$&����#�*�&'�(,�$���$&$#($��$#������%�������(����
	�
���')� ��(�($�(�����"�&������$&��(�&"'�$�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.005
https://www.cambridge.org/core


16 Density theorems 97

the conjugacy class of u. Let S be the set of prime ideals p of k such that
for every ~ above p the Frobenius element [~kl lies in (u). Then S has
Dirichlet density card((u))jcard(Gal(Kjk)).

Proof Let I be the order of u and L the fixed field of u, so that L is
the splitting field of ~ whenever [K~kl = u. The Dirichlet density of the
primes q in L with (K'L) = u is 1 - 1 , by the remarks after the proof of
Theorem 30. If P is in S its prime factors are the distinct T~ with T in
Gal(Kjk)j T fixes ~ if and only if T is in the cyclic group generated by u,
and [~~l = [K~kl if and only if T is in Z(u), the centralizer of u. Hence
the number of distinct ~ above p with [Ktl = u is 1-lcard(Z(u))j and
the Dirichlet density of S is

1- 1 1 card((u))
) =card(Z(u)) =card(Gal(Kjk))

because there is a one-one correspondence between the ~ with [K~kl = u
and the q with (K'L) = u, and Normq = Normp. 0
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Class Field Theory

17 The classical theory
Let k be an algebraic number field and K a finite abelian extension of k.
The objective of classical class field theory, which was largely achieved, was
to describe the properties of K in terms of objects in k. The theory was
first formulated in the 1890s, partly by Weber (following Kronecker) and
partly by Hilbert (following Kummer); but one crucial component was only
provided by Artin in 1927. The first proofs were given by Takagi in the
19208; he used complicated group-theoretic arguments which we now know
to belong to group cohomology — a subject which at that time had not
been invented.

Let k be an algebraic number field with class number h > 1. It is
straightforward to show that there are algebraic number fields K D k such
that every ideal in k becomes principal in K. Is there a canonical way of
choosing K, and what additional properties will the extension K/k have?
Hilbert conjectured that there is just one such field K with the following
additional properties:

(0 T*K/k = (1), so that the extension is unramified at all finite places;
(ii) the extension is also unramified at all infinite places, so that the places

of K above a real infinite place of k are all real;
(iii) K is abelian over k with Galois group isomorphic to the ideal class

group Ik of k.

He called such a field the absolute class field of k, and proved its existence
in certain cases, for example when h = 2. This conjecture was reinforced
by one of the key tools in Kummer's work on Fermat's Last Theorem: if k
is an algebraic number field of class number h and K an abelian extension

98
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17 The classical theory 99

of k with "OK/k = 1 and Gal(Klk) ~ Z/(p) where p is prime, then plh and
there are just p ideal classes in k whose members become principal in K.

It had been shown by Kummer that the cyclotomic fields (the subfields of
Q(e) where e is a root of unity) were abelian over Q and that how a prime
p factorized in such a field depended only on congruence properties of p.
Kronecker conjectured the converse of this: that every abelian extension
of Q is a cyclotomic field. A nearly complete proof was given by Weber,
though it took a further generation before all the gaps in his argument were
filled in. The result is however an easy consequence of the general theory,
as well as being a major inspiration for its formulation.

The examples obtained in these ways led Weber to the general ideas of
a congruence divisor class group and of a class field. To define the
former, let m be the formal product of an integral ideal in k and possibly
some real infinite places in kj thus we can formally write m = n P~" where
some of the p^ may be infinite real places. Denote by Am the subgroup of
Ik consisting of the fractional ideals whose prime factorizations involve no
prime ideal dividing mj here we only take account of the finite primes PI-' in
m. Let H~ be the subgroup of Am consisting of those principal ideals which
can be written as (a) where a == 1 mod m — that is, a == 1 mod p:" in kp"

for each finite p", and (1a > 0 if p", is a real infinite place and a: k —- R
is the corresponding map. In this way there corresponds to any m the
quotient group AmIH~, which is easily seen to be finite. In what follows,
we shall denote by Hm any subgroup of Am which contains H~.

Suppose that min in the obvious sensej then Am ~ An and H~ ~ H~.
Moreover, Hn = Hm n An D H® for any Hm; and since each coset of H~ in
Am meets An there is a canonical isomorphism

Let mt.m2 be two such formal divisors with associated groups HmllHm2.
We shall say that these two groups are equivalent if for some common
multiple m of mbm2 (and thus for any common multiple)

Am n Hml = Am n Hm2.

It is easy to show that this is an equivalence relation Hml ~ Hm2 and that
the quotient group AmiHm does not depend on the choice of m. We call
the equivalence class of such quotient groups a congruence divisor class
group AIH, and we call the least modulus m for which it can be realized
the conductor f of AIH.

A finite algebraic extension K of k is called a class field for AIH if the
prime ideals p in k which split completely in K (that is, those which have
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100 5 Class Field Theory
eK/k = fK/k = 1 for each prime ty of K above p) are precisely those which
belong to H. For the real infinite places in f this needs an elucidation: we
require that the extensions to K of a real infinite place in k are all complex
if it is in f and all real otherwise. We can now state the key results of the
classical theory.

Theorem 32 Every abelian extension KIk is a class field for some AIH.
Conversely, there corresponds to each congruence divisor class group AIH
in k a unique class field KIk, and K is abelian over k.

In stating the next two theorems we shall denote by K the class field
corresponding to AIH in k.

Theorem 33 The places in k which ramify in the extension KIk are pre-
cisely those which divide f. Moreover, if X runs through the characters of
AIH and fx is the conductor of x, then the finite part of nx fx is just
normK/k'OK/k, where 'OK/k is the different of the extension.

To define the conductor of X we form HU, the union of those cosets of H
on which X = 1; the conductor of X is just the conductor of AIHU.

Theorem 34 The Galois group of KIk is isomorphic to AIH. This iso-
morphism is canonically realized by means of the Artin symbol (K £k); the
map a 1-+ ( ~ - ) is an epimorphism A —> Gal(Klk) with kernel H.

The second sentence is the Artin Reciprocity Law. It was only dis-
covered a generation later than the rest of classical class field theory was
formulated (and some five years after the rest was proved); but as soon as
it was discovered it was recognized as the central result of the theory. It
contains all previously known reciprocity laws.

Corollary Let p be a prime ideal in k not dividing f. Then p is a product
of g prime factors Ĵ in K, each with normK/k'.l3 = pI where fg = (Klk)
and f is the order in AIH of the ideal class containing p.

These theorems enable one to describe the factorization in K of primes in
k in terms of objects in k. To do this, we need to find the H associated with
a given abelian extension Klk. Since we know the conductor of H (or, more
easily, the primes which divide it) by Theorem 33, there are only a small
number of possibilities for H; and all but one of these can be eliminated by
considering the factorization of a few small unramified primes. (Compare
Exercise 5.1.) Implicit in Theorem 34 is the generalization of Dirichlet's
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17 The classical theory 101

theorem on primes in arithmetic progression; the deduction of this from
Theorem 34 can be found in §16.

Theorem 35 Each coset of H in A contains an infinity of prime ideals.

As the theory developed, it became clear that Hilbert's original question
was somewhat peripheral. But the theory does provide an answer to it, as
follows.

Theorem 36 Let H be the group of principal ideals in A. Then f = (1)
and the class field for AjH is the absolute class field in the sense of Hilbert.

These theorems do not however tell one anything about the group of units
in K or the class number of K; and broadly speaking it is only w\len one
can construct class fields explicitly that one can obtain any information
about these. For arbitrary k, the construction of K from H is the one
major unsolved problem in the theory; but it should be remembered that
in mathematics not all problems have solutions. The simplest examples of
what is known are as follows.

According to the Kronecker-Weber Theorem, the abelian extensions of Q
are just the cyclotomic fields — that is, the subfields of some Q(€), where
e is a root of unity. Analytically € = exp(2rrimjn) for some m, n in Z, so
that € can be regarded as the value of the periodic function exp(z) at a
division point — that is, at a value of z which is a rational submultiple of
its period 2rri. In the 1890s elliptic modular functions were a major growth
industry (as they have now become again); and the work of Kronecker and
Weber, and of their students, strongly suggested that all abelian extensions
K of complex quadratic fields k could be generated by values of certain of
these functions at distinguished points, and that if p is a prime ideal in a
complex quadratic field k then the factorization of p in K depends only on
congruence properties of p in k; but a complete proof of these assertions
had to await the work of Takagi. These results have been generalized to
other (but still rather limited) types of algebraic number field k by Shimura
and others, using the theory of complex multiplication of Abelian varieties

Some of the results above can be put into analytic form, in terms of
L-series and zeta functions. (There was a period when strenuous attempts
were made to rid class field theory of all taint of analysis, but the pen-
dulum has now swung back and the importance of the analytic aspect is
recognized.) Let s be a complex variable, and take ~s > 1 so that all
problems of convergence are trivial. Let X b e a ny character on AjH with
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102 5 Class Field Theory

conductor fx. We can lift X back to a congruence character modfx, that
is, a homomorphism

X : Af -+ {complex numbers of absolute value I}

whose kernel contains HP. Set x(a) = 0 for all integral ideals a not in Af
and write

* ( f l ) _ - TT f i - "''-* N"X
^ ~ 1 1 \ 7(Norm a)B

where the sum is over all integral ideals a in k and the product is over all
prime ideals p in k. This is the classical (Dirichlet) L-series; the equality
of sum and product is just the Unique Factorization Theorem. In the
particular case when X is the principal character, so that fx = (1), we
obtain the Dedekind zeta function

where the sum is taken over all integral non-zero ideals a and the product
over all prime ideals p. In this language we can restate Theorem 33 and
the Corollary to Theorem 34 together in the following form.

Theorem 37 (K(S) = nL(s,X) where the product is over all characters
ofA/H.

Theorems 32 to 34 are the main theorems of classical class field theory;
it was essentially a global theory, since the importance of local class field
theory did not become apparent till later. Closely linked to the development
of classical class field theory was the study, largely inspired by Hasse, of
local-to-global questions. These can appear in two ways, though they are
not essentially different:

(i) If a condition is satisfied (for example, if an equation is soluble) in
every kt" does that imply that it is satisfied in k?

(ii) Suppose we have a set of objects 0 defined with respect to k, such
that the completion map k —+ kv sends 0 to an object Ov defined
with respect to kv. Given a collection of Ov for v in S, where S
is some subset of the set of all valuations, is there an 0 of which
they are all images?

In each case, if the answer is negative, can we describe the obstruction?
The simplest example of a positive theorem which answers a question of
this kind is the Hasse Norm Theorem:
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18 Chevalley's reformulation 103

Theorem 38 Suppose that KIk is cyclic and a ink is everywhere locally
a norm for Klk — that is, a is in the image of the map K ®kkv —+ kv

induced for each v by completion from the norm map K —+ k — then a is
the norm of an element of K.

If KIk is merely abelian then this result need not be true; for example,
if we take k = Q, K = Q(y'I3, J i7) then - 1 is a norm everywhere locally
but it is not a global norm.

18 Chevalley's reformulation
It still remains true that for many applications the classical language is the
most convenient. But there were several unsatisfactory features about the
original formulation of class field theory. That it only gives information
about abelian extensions is probably a fact of life; though there is now a
subject called non~abelian class field theory, it does not provide answers to
the most obvious questions — perhaps because there are no good answers to
them. But sometimes (as with Theorem 38) the classical theory only gave
information about a restricted class of abelian extensions. There were also
aesthetic objections: to the substantial role which analysis played in the
original proofs, to the ugly definition of the congruence divisor class group
AIH and to the complications of the group-theoretic arguments involved
in the original proofs.

These were the reasons for a reformulation in terms of homological alge-
bra. This produced some new theorems which could be stated in classical
language — for example it provided a description of the group

{everywhere local norms}I{actual norms}

which is the obstruction to the obvious generalisation of Theorem 38. (In-
deed, one now instinctively assumes that all obstructions are best described
in term of cohomology groups.) In this language the classical theorems be-
came statements about certain cohomology groups, which remained valid
for normal extensions which were not necessarily abelian; however, it was
only in the abelian case that these cohomology groups could be described in
down-to-earth terms. At the same time Chevalley introduced the concept
of ideles. In the language of ideles AIH can be replaced as follows. Let
H be any open subgroup of Jk containing k*; by definition H has finite
index in Jk. Chevalley showed that there is a natural one-one correspon-
dence between pairs A, H and subgroups fj, and that this enables one to
reformulate most of the main theorems of classical class field theory.
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104 5 Class Field Theory

This led to a more radical reformulation, which also takes into account
infinite abelian extensions. Let S be a finite set of valuations which con-
tains all Archimedean valuations; S is related to, but is not necessarily the
same as, the set of places which occur in m in Weber's definitions. De-
note by IS the group of those fractional ideals which do not involve any
prime ideal in S in their factorization, and by JS the group of those ideles
whose components are 1 at each place in S. These are subgroups of Ik, Jk
respectively, and JS is closed in Jk. The natural map Jk —+ h already
introduced on page 50 induces a continuous map JS —+ IS, which we write
in the form E i-» (£)5. It is also convenient to write FK/k for the Artin
map a i-» (-—), which is a homomorphism IS -+ Gal(K/k) provided S
contains all ramified primes. Theorem 34 can now be rewritten in the fol-
lowing apparently weaker form, in which we fix an abelian extension K/k
and S is assumed to contain all the primes which ramify in K/k.

Theorem 39 There exists € > 0 such that FK/k((e)) is the identity for all
£ in k* for which lie — Il1v < € for each v in S.

For suitable € these conditions imply £ = 1modm, so that Theorem
39 does follow from Theorem 34. The converse, that Theorem 39 implies
Theorem 34, is less easy. The key fact is that FK/k is trivial for all e
which are norms for K/k, and hence (after Theorem 39) for all e which are
locally norms for every v in S. Now Theorem 34 follows from local class
field theory, which is much easier than the global theory.

At this stage Hecke's Grossencharakters enter the picture. These were
originally introduced as the most general homomorphisms

X : IS —+ {complex numbers of absolute value I}

for which Hecke's proof of the functional equation for the associated L-
series is valid. One form of the condition on X is (91), as was shown in
Chapter 4; this is equivalent to the apparently weaker condition that for
any neighbourhood N of 1 there exists an € > 0 such that the inverse
image of N contains all principal ideals (e) with e satisfying lie — Il1v < €
for each v in S. (See Exercise 4.3.) This led to the idea of an admissible
map. Let G be any commutative topological group; then a homomorphism
<j>: IS —+ G is called admissible if to any neighbourhood N of the identity
in G there corresponds an € > 0 such that ifJ(e)) is in N for any e in k
with lie — ll1v < € for each v in S. Theorem 39 can now be rewritten in the
form
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18 Chevalley's reformulation 105

Theorem 40 The Arlin map FK/k : IS —+ Gal(K/k) is admissible.

So far, we have been considering a single abelian extension K/k. If
instead we consider all finite extensions of k and the corresponding Artin
maps, it becomes evident that the natural language to use is the language
of ideles. The detailed translation depends on

Lemma 35 Suppose that G is topologically compl~te, and that the homo-
morphism <f> : IS —+ G is admissible. Then there is a unique continuous
homomorphism tp : Jk —+ G such that

(i) V(0 = 1 for each e ink*,
(ii) 'I/J(E) = ^((O5) f°r each E in JS.
Conversely, let i\> be any continuous homomorphism Jk —+ G which is trivial
on k*, and suppose that there is a neighbourhood of the identity in G which
contains no non-trivial subgroup; then tp comes from some set S and some
associated admissible map <f>: IS —+ G.

Such a if) induces a continuous homomorphism Ck = Jk/k* —+ G where
Ck is called the idele class group; we call this map ip too. In particular,
Theorem 40 is equivalent to the existence of a tp which also satisfies

</>(£) = FK/ktttf) for all £ in Js;

such a ip, which is unique by the lemma, is called the Artin map 'l/JK/k'
Now the main theorems of class field theory take the following form.

Theorem 41 To every finite abelian extension K/k corresponds an Arlin
map ip : Jk —+ Gal(Kjk). This is an epimorphism whose kernel is precisely
the open subgroup k*(NormK/k(JK)); and it induces an isomorphism

Ck/NormK/k(CK) t

If LD K D k with L abelian over k, then there is a commutative diagram

Ck *-^ Gal(L/k)

II I
Ck ^ Gtd(K/k)

where the right hand arrow is restriction to K. Conversely, if Af D k* is
an open subgroup of Jk then there is a unique abelian extension Kjk such
that N is k*(NormK/k (JK)), the kernel of the Artin map
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106 5 Class Field Theory

The commutative diagram above enables us to take the inverse limit
as K runs through all abelian extensions of k. In this way we obtain a
continuous homomorphism

1/Jk : Ck -+ Gal(k&b/k)

where k&b is the maximal abelian extension of k and the Galois group has
the topology proper to an inverse limit — that is to say, a base for the open
neighbourhoods of the identity is given by the subgroups of finite index.
The map 1/Jk is onto, and its kernel is just the connected component of Ck.
Unfortunately, for general k very little is known about this kernel.

19 Reciprocity theorems
It is natural to ask whether the Quadratic Reciprocity Law (Theorem 25)
can be generalized to arbitrary algebraic number fields k and to higher pow-
ers. This is possible, subject to one important restriction on k. Throughout
this section, m > 1 will be a fixed integer and we shall require k to con-
tain the m-th roots of unity. Denote by S the set consisting of the infinite
places of k and those primes of k which divide m; and note that if p is
not in S then xm — 1 splits completely in k and therefore in op/p, whence
Norm p = 1 mod m.

For a in k* let K = k(e) where em = a; denote by S(a) the union of
5 and the set of primes at which a is not a unit, and define the power
residue symbol (i") by

for any prime p of k which is not in S(a). If we extend this definition by
multiplicativity to (i-) for all b in IS(a) then (i-) is an m-th root of unity
which is unaltered by replacing e by another m-th root of a. We call (i")
a power residue symbol because (i") = 1 is equivalent to eNormp = emodp,
hence to emodp lying in op/p and so by Hensel's Lemma to a being an
m-th power in kp.

Now suppose that a' is also in k and that K' = k(e') with (e,)m = a',
and write L = KK'. By Theorem 16 (Ktk) is the restriction of ( ¥ ) to
K and so on; and therefore

faa'
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19 Reciprocity theorems 107

where Lo = k(€€'). It follows that

(101)aa! \ la

provided the right hand side is defined. Again ( ^ ) e = €Normpmodp
implies

(102)
PJ '

This determines (~) uniquely as an m-th root of unityj moreover it gives
an alternative proof of (101), and it shows that if b is integral then (f)
only depends on a mod b.

Now let A/H be the congruence divisor class group corresponding to
K/k. It follows from Theorem 33 that the only finite primes which can
appear in f, the conductor of A/H, are those in S(a). Let 7 be in k*j then
7 is in H if 7 is in (k~)m for each v in S(a), and it follows from Theorem
34 that

- ) = (-) •7b/ \b)
The theory can be given a more symmetric form in terms of the Hilbert

norm residue symbol. This was introduced by Hilbert in the case m = 2,
by means of the much simpler definition (105) below, and by Hasse in
general. The first step is to define the local Artin map corresponding to
the abelian extension k(€)/kj because it costs nothing, we shall do this for
an arbitrary abelian extension Klk. Let G = AIH be a congruence divisor
class group in k, with conductor f, and let S be the set of prime ideals
which divide f. Denote by IS = A the group of. those fractional ideals
whose prime factorizations involve no ideal in S, and by JS the group of
ideles whose components are 1 at each place in S.

Lemma 36 In the notation above, for each place v of k there is a unique
homomorphism fv : k~ —+ G such that
(i) if P is a prime ideal not in S then fp is trivial on 0;,
(ii) f = n fv is well-defined and continuous on Jk,
(iii) if E is in JS then f«E)) is the image of(E) in G, where (E) is as on

page 50,
(iv) f(f3) = 1 for each f3 ink*.

Proof If p is not in S we must take fp(ap) to be the image of pn in G where
pnllapj this ensures (i) and (iii), and also (ii) provided the fv for v in S
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108 5 Class Field Theory

are continuous. Let N > 0 annihilate G and temporarily let the I" with v
in S be any homomorphisms k: —+ G. Then 1({3) is the identity provided
that {3 is in k* and in (k:)N for each v in S, for then Theorem 17 implies
that we can write {3 = jS /̂Jz with fa in Jk, & in k* and ^2 = 1 mod f — so
that ((32) is in H. The natural map k* —+ n« in sC^v/CO^) *s onto, using
Theorem 17 again, and it follows that there is just one choice of the I" with
v in S for which (iv) holds. Moreover these I" are continuous because the
k:/(k:)N are finite. 0

The local Artin map tpv : k* —+ AIH —+ Gal(Klk) is obtained by com-
posing I" with the isomorphism of Theorem 34. It also follows from the
corollary to that theorem that if a is a norm for KIk and v is not is S then
I,,(a) is the identity. Using Theorem 17 yet again, the construction in the
proof of the lemma implies that this holds also if v is in S.

The Hilbert symbol (a, 0)v for a, {3 in k* is now defined by

^(/3)e = (a, p)vv,

we shall shortly prove that it extends to a continuous function on k;. The
value of (a, (3)" is again an m-th root of unity, and is unaltered by replacing
e by another m-th root of a. It is trivial that

and an argument like that which was used to prove (101) gives

Lemma 37 Each 01 the symbols (a, —a)" and (a, 1 — a)v is equal to 1
whenever it is defined.

Prool Write d = m/[K : kj, so that the conjugates of e over k are the ("'e
with d\n where ( is a primitive m-th root of unity. For any 7 in k,

so t/J,,(-ym - a) is the identity and (a,'Ym - a)" = 1. Now set 7 = 0,1. 0

Corollary For any a, {3 in k* we have (a,{3)" ({3,a)" = 1.

Prool By bilinearity

(a{3, -a(3)" = (a, -a)v ({3, -(3)" (a,{3)" ({3,a)"

and all but the last two terms are equal to 1. o
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19 Reciprocity theorems 109

It follows that the Hilbert symbol induces a skew-symmetric bilinear map

KKKT x k;/(k;)m -+ {m - th roots of unity}. (103)

For by the definition of tPv we can take the second argument to be in k~,
and even in k~/(k~)m because the Hilbert symbol is killed by m. But

is onto, so corresponding to any {3 in k: we can find {31 in k* such that
(o:,{3)v = (0:,(31)v for all a ink*. Thus we can use the corollary to extend
the range of a from k* to k~.

The other key property of the Hilbert symbol is

T[(a,(3)v = l, (104)

which follows from (iv) of Lemma 36. The product is well-defined because
(0:,(3)v = 1 whenever 0:,{3 are both in o~ and v is not in S.

Theorem 42 The Hilbert symbol, regarded as a bilinear form (103), is
non-degenerate.

This is a key result in local class field theory. For v in S we cannot prove
it in this book, essentially because of the rather indirect construction of fv
in the proof of Lemma 36. But if v = P is not in S the result is trivial.
For suppose a is in 0; and PLL1R; then by construction (a, n)p = 1 if and
only if p splits completely in k(€)/k, which by Theorem 19 is the same as
saying that a is in (o;)m. If pn\\a with min but a is not in (k;)m then
(o:, 1R)P ^ 1; if m,(n and r is the highest common factor of m and n, then
(0:, (3)p ̂  1 if {3 is in 0; and not an (m/r)-th power.

Theorem 43 Let L be abelian over kv; then the grou.p of norms from L to
kv has index [L : kvl in k~.

This result again belongs to local class field theory, though elementary
proofs exist. We quote it because the special case [L : kvl = 2 implies the
important formula (105) below; but even in this case the elementary proof
is no more than a tedious and unilluminating verification.

It is reasonably easy to evaluate the Hilbert symbol when v is not in
S. If v is Archimedean the fact that k contains the m-th roots of unity
implies that (0:, (3)v = 1 except perhaps when m = 2, v is real and 0:, {3 are
both negative; in this exceptional case (105) shows that (o:,{3)v = - 1 . The
non-Archimedean cases are covered by the following lemma. One relatively
simple case for which v is in S is given in (105), and another can be found
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110 5 Class Field Theory

in the exercise later in this section. For any particular k the Hilbert symbol
is given by a table which can easily be constructed with the help of (104).
For an illustration of this, see Exercise 5.5.

Lemma 38 Suppose that p is a finite prime of k not in S; then

(a,.8)p = (~) where 7 = (_I)v(a)v(,B)av(,B).8-v(a).

Here j is a unit at 13, so that the value of (~) is given by (102).

Proof It follows from the construction of 'l/Jp that (a, .B)p = 1 for a, 0 in 0;;
and if PLL7R then (7R, —7R)P = 1 by Lemma 37, and (a, 7R)P = (~) by definition
if a is in 0;. Write a = 7rv(a)ao, 0 = 7RV(,B).80. Using the results of the first
sentence and the bilinearity of the Hilbert symbol

and the result now follows from the Corollary to Lemma 37. o

For any a,.8 in k* denote by (0)s^ the ideal obtained from (.8) by
deleting any prime factors which lie in S(a), and write

G)-
note that despite (101) it is not always true that (,BP') = (~)(;/). Then
we have the general power reciprocity law:

Lemma 39 If a, .8 are in k* then

where the product is taken over all v in S(a

Proof Using the Corollary to Lemma 37 we have

(I) (I)" - {nP „„ ,„ w(*«.} {IL
not in 8(a)n8(,B

because the terms which occur in both products are each equal to 1 as in
the proof of Lemma 38. Now use (104). 0

Now suppose that m = 2, but place no restriction on k. The case m = 2
is particularly favourable, because in order to give a formula for (a, .8)v it
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19 Reciprocity theorems 111

is enough to give a necessary and sufficient condition for (0:, {J)v = 1. Such
a condition is as follows:

~1 otherwise.

This follows easily from Theorems 42 and 43. For we can assume that a
is not in (k;)2 and write L = kv(y'Q). The proof of Lemma 37 shows that
(0:, {J)v = 1 if {J is a norm for L/kv, which is equivalent to the solubility of
o:X2 + {Jy2 = 1; and Theorem 43 shows that for fixed a the {J for which
this holds form a subgroup of index 2 in k;. It now follows from Theorem
42 that (0:, {J)v = — 1 if {J is not a norm.

What underlies this result is the much more general fact that central
simple algebras over k can be classified by means of the Hilbert symbol;
see [Weil], Chapters IX to XI or [CF], pages 137-8. Denote by A the
quaternion algebra with norm form

Xl - o:X~ - 0X1 + o:{JX~; (106)

then each of the two following conditions is necessary and sufficient for
A ®k kv to be isomorphic to the algebra of 2 x 2 matrices with elements in
fcy

(i) the quadratic form (106) has a non-trivial zero in kv;
(ii) (0:,{J)v = 1.

It is easy to see that (i) is equivalent to the solubility of o:X2 + {Jy2 = 1
in kv.

Exercise Let m = p be an odd prime and let k = Q«() where ( is a
primitive p-th root of unity; thus the only finite place in S is p = (1R)
where 1R = 1 — (. The object of this exercise is to provide as Lemma 40 a
straightforward way of computing the Hilbert symbol (0:, {J)p.

Write "'r = 1 — 1rr for r = 1,2,... , let Ur be the group of elements f in
k; satisfying f == 1 mod1rr and let UO = 0;. Show that

(i) the image of 1R generates k;/o;,
(ii) 0; = (0;)PU1,
(iii) for each r the image of "'r generates Ur/Ur+lI

(iv) every element of Up+! is in Uf. [Use Lemma 20.]

Deduce that 1r and " ' 1 1 . . . , r)p generate k;/(k;)p. This means that we need
only evaluate (0:, {J)p when each of 0:, {J is n or one of "'1,... , rjp; and this
can be done by induction from the following lemma.
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112 5 Class Field Theory

Lemma 40 If (i ^ 1, v ^ 1 then

(ty*>^)P = (Vn,Vn+i>)p (Vn+u,r}u)f (it,rin+u)p (r)v,7r)p (107)

and in particular (rj^, r}v)9 = 1 if n + v > p. Moreover (1r, 1R)P = 1 and

. f 1 ifl^ft<p,
'/*.*)* = | ^ if n = p.

Because p is odd, (a,a)p = 1 for all a in k; by Lemma 37. For (107)
apply Lemma 37 to (3 = '11V/'11IL+V, noting that 1 - 0 = 1rv'11v/'11Il+v, and
use bilinearity. If \i + v > p then '111l+v is in {k;)P and so all symbols
involving it are equal to 1. If 1 ~ n < p it follows from Lemma 37 that
{'11Il,1r)p = {'11Il,1rIl)p = 1; so the only difficulty comes with the very last
assertion. Taking II = 1, fi = P - 1 in (107) gives (,'11P-DP = (1r,'11p)p
because each of the other factors is 1. If a = ( in (102) the congruence
must actually be an equality because it cannot be satisfied otherwise; now
use (104) and Lemma 38 to show that

If Q\ — I I (v(~)(Normq-l)/p

for any 0 in 0;, where qv^ ||/? and the product is taken over all prime ideals
q of k other than p. Finally, prove that under the same conditions

Y* v(.8)(Normq - 1) = =Norm(.8) - 1 modp2

and Norm ('11p-d = Norm((I - TT^1)) = 1 - TR1RP-1= = 1 -pmodp2. 0

20 The Kronecker-Weber Theorem
It follows from the Corollary to Theorem 27 that every cyclotomic field is
a class field; conversely, Theorem 16 and Theorem 27 enable us to com-
pute the Artin symbol for any cyclotomic field, and it follows that to each
congruence divisor class group there corresponds a unique cyclotomic field
which is a class field for it. In particular, the field of m-th roots of unity
corresponds to Hmoo. But this is not enough to prove that these are the
only class fields over Q. This assertion is the Kronecker-Weber Theorem
(Theorem 44). Its proof is elementary but complicated; it exploits many
of the ideas in Chapters 1 and 2, as well as Theorem 27 and its Corollary.
The fact that every extension of Q is ramified at some prime (Corollary to
Theorem 21) plays a crucial role.

In this section we shall denote by C(n) any cyclic group of order n. Let
K be a cyclic extension of Q with G = Gal(K/Q) « C(pr) where p is
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20 The Kronecker-Weber Theorem 113

prime, let Gl be the unique subgroup of G of index p and k the fixed field
of Gl, so that k is cyclic over Q with Gal(k/Q) = G/Gl ~ C(p). Let
^ (which may be equal to p) be a prime which ramifies in k. The inertia
group of e for k is the entire Galois group G/G1; since any proper subgroup
of G is in Gl, it follows from Theorem 16 that the inertia group of e for
K/Q is the entire Galois group G. Hence e is totally ramified in K —
that is, e = pr and f = 9 = 1. Such primes are the key to the following
arguments.

Lemma 41 Let K/Q be cyclic with G = Gal(K/Q) ~ C(pr). Then there
are a cyclotomic field L and a field K' with Gal(K'/Q) ~ C(p8) and s ~ r
such that LK = LK' and the only prime totally ramified in K'/Q is P
itself.

Proof Suppose that e ^ p is totally ramified in K; if there is no such e we
can take K' = K. In the notation of §5, V is trivial because [K : QJ is
prime to e; hence T = G is cyclic of order dividing e - 1 by Theorem 15, so
that £ = =1modpr. Now let L be Q ( 0 ) ; then KL is abelian over Q and
its Galois group is a subgroup of C(pr) x C(£ - 1). Let Kl be the inertia
field of £ for KL/Q. As before, the corresponding ramification group is
trivial, so Gal(KL/Kt} is cyclic; its order must be a multiple of £ — 1 by
Theorem 27 applied to KL D L D Q. SO Gal(KL/Kl) ~ C(£ - 1) since
Gal(KL/Q) contains no larger cyclic subgroup than C(£ — 1). A prime
other than £ which ramifies in Kl must ramify in KL and therefore in K,
for only £ ramifies in L. No prime ramifies in Kl n Lj so Kl n L = Q,
and now KlL = KL by a comparison of degrees. But Gal(KL/Q) has
Gal(L/Q) ~ C(£ - 1 ) as a quotient, so it has the form C(p8) x C(£ - 1) for
some s ~ rj and hence Gal(Kt/Q) ~ C(p8) by Lemma 25.

If Kl does not have the properties required of K', then we can repeat
the process again on K1. This process must eventually end, because one
fewer prime is ramified (not necessarily totally) in Kl than in K. 0

Lemma 42 (i) Let P be an odd prime and let K be a field cyclic over Q
with Gal(K/Q) ~ C(p). If p is the only prime which ramifies in K then
K is a subfield of the field ofp2-th roots of unity.

(ii) If[K:QJ = 2 and 2 is the only prime which ramifies in K, then K
is Q(v%), Q(7ZT) or Q(v/=2), all of which are subfields of

Proof After the results in §1O, (ii) is trivial; so we need only consider (i).
Let L = Q(V'l)j then Gal(KL/L) ~ C(p) since K and L have coprime
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114 5 Class Field Theory

degrees over Q. By a standard result in Galois theory, KL = L(a) where
aP = P is in L. Choose a generator a of Gal(KL/Q) ~ C(p(P — 1)); then
K is the fixed field of uP and L is the fixed field of up - l . Thus up-l/3 = /3
and hence up-la = ( a where (P = 1; but ( ^ 1 because we can assume
that a is not in L. As in §13, we write n = 1 — (. Since 0' induces a
generator of Gal(L/Q) there is a primitive root nmodp such that 0'( = ( n

and hence up-l(ua) = u(up-la) = (n(ua); in other words, (ua)/an is
invariant under up-l and is therefore in L, and hence (u/3)/pn is a p-th
power in L.

It follows that (ua)/a is not in L and therefore generates KL over L.
The prime ideal (1£') in L is invariant under 0', so (0'/3)/ /3 is a 1£'-adic unit.
Replacing a by (ua)/a and /3 by (0'/3)//3, we can assume that /3 is a 1£'-adic
unit, and by further replacing a by al-p = a//3 we can also assume that
/3 == 1 mod 1£'; this means that /3 = £°7 where 7 == 1 mod 1£'2 and therefore

7 == 1+C7rmmod1£'m+1

7T)for some m > 1 and some c in Z prime to p. For 6 in the local field L
Lemma 19 shows that 6 == 1 mod TT is a p-th power in L7r if and only if
5 = =1mod1£'p• Since (u'Y)hn = (u/3)/pn is a p-th power in L and so also
inL7r,

aj = 7™ mod 1£'P•

But an = 1 — (n = =n(1 — 0 mod1£'2 and therefore

<T7 == 1 + cnm1£'m mod1£'m+1.

The last three displayed equations together imply that either m ~ p o r
cnm = =cn modp, and the latter also requires m~ p since m > 1 and n is a
primitive root modp. It follows that 'Y==1 mod1£'p•

To prove the lemma, it is enough to show that 7 is a p-th power in
L. Since Kl = L(jfy) is in K( PY'l), no prime other than p ramifies in
Kt/Q and Kt/Q is abelian. But by Lemma 30 and the result above, (1£')
does not ramify in Kt/L. Let k be the inertia field of p for Kt/Q; then
[Kl : k] = p — 1 and k = Q because no prime ramifies in k/Q. Thus
[Kl : Q] = p — 1 and 7 is a p-th power in L. 0

Theorem 44 Every abelian extension ofQis cyclotomic.

Proof We prove this by induction on the degree of the extension. Let K be
abelian over Q with Gal(K/Q) = G. If G is a non-trivial direct product
Gl x G2 then K is the least field containing the fixed fields of Gl and of G2,
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20 The Kronecker-Weber Theorem 115

which are abelian extensions of Q of degrees lower than that of K. Hence
we may assume that G ~ C(pr) where p is prime. In view of Lemma 41
we can assume that p is the only prime which is totally ramified in K, and
in view of Lemma 42 we can further assume that r > 1.

Consider first the case when p is odd; let KI be the unique subfield of
K with [KI : QI = p and let L be the field of pr+l_th roots of unity. Since
K n L D KI by Lemma 42 and Gal(L/Q) ~ C(pr(p - 1)),

H = Gal(KL/Q) ~ C(pr(p - 1)) x C(pr') for some r' <r (108)

because H is a proper subgroup of C(pr(p - 1)) x C(pr) which admits a
C(pr(p — 1)) as a quotient group. Let HI = Gal(KL/L); then

H/HI = Gal(L/Q) ~ C(pr(p - 1));

by (108) HI is a direct factor of H. If H = HI X H2 then the fixed field
of H2 has degree pr' < pr over Q, and KL is the compositum of it and L.
Hence by the induction hypothesis K is cyclotomic.

When p = 2 this argument needs some modification. The Galois group
over Q of the field of 2r+2_th roots of unity is C(2) x C(2r), and hence this
field has a subfield L with Gal(L/Q) ~ C(2r). Now the argument used for
p odd will still work, provided we show that the unique quadratic subfield
of K is Q(v'2); for since L satisfies all the conditions imposed on K, this
will hold for L also. If K is real this is trivial. If K is complex it admits
complex conjugacy as a non-trivial automorphism of order 2; all its proper
subfields are fixed under this and hence are totally real. 0
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Appendix

Al Prerequisites
In this section we prove the standard results about finitely generated abelian
groups and lattices, and about norms and traces in field extensions of fi-
nite degree, for the benefit of those readers who do not know them already.
They are prerequisites for everything in this book. We also give a brief ac-
count, without proofs, of the definition and key properties of Haar measure.
Logically, this is not essential for the arguments in most of the book, but
it underpins the point of view adopted. For a really single-minded reliance
on Haar measure, see [Weil].

A 1.1 Finitely generated abelian groups and lattices
In this subsection, all abelian groups will be written additively.

Lemma A l Let G be a finitely genemted torsion-free abelian group such
that
(i) G is genemted by Xl...• ,Xn,
(ii) G cannot be genemted by less than n elements.
Then there is no non-trivial relation alXl + . . . + anxn = 0 with the a" in
z.

Proof Assume that there is such a relation, and among all sets of n gen-
erators and all non-trivial relations as above choose that one for which
A= lall+ . . . + IanI is least. We have two cases, either of which will give
a contradiction.

(a) At least two of the a" are non-zero. By permuting subscripts and
changing signs we can assume that al ~ a2 > o. Now consider the

117
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118 Appendix

base xt, Xl + X2, xa , . . . for G. In terms of this base our relation
becomes (al - a2)xl +a2(xl +X2) + . . . = 0, and this has a smaller
value of A.

(b) Only one all is non-zero. We can take this to be aI, so that the relation
is alXl = O. Since G is torsion-free, Xl = 0; so G is generated by
the n — 1 elements X2,... , Xn.

These contradictions prove the lemma. o

We call a base having the properties in Lemma Al a minimal base.
Every finitely generated torsion-free abelian group has a minimal base, for
we need only choose a base consisting of as few elements as possible.

Lemma A2 Let G be a finitely generated torsion-free abelian group, and
let H be a subgroup ofG. Then there exist a minimal base Xl,... ,Xn ofG
and integers mt , . . . , mr for some r ~ n such that

(i) the mp are positive and mplmp+1 for p = 1,... ,r — 1,
(ii) mlXt,... , mrXr are a minimal base for H.

If H has finite index in G then r = n.

Proof The proof is really by induction on n, but because of the form of the
induction hypothesis it is better not to state it in that way. We can assume
that H is non-trivial. Let Yl, ' ". ,Yn be any minimal base for G and let
h = alYl + . . . + anYn be any non-zero element of H. Making an integral
unimodular transformation on the YII cannot decrease the highest common
factor of the all and is an action which can be reversed; so it leaves the
highest common factor unchanged. Now choose h to be a non-zero element
of H for which this highest common factor is as small as possible, and then
choose that minimal base Yl,... ,Yn for G for which A = lall +... + IanI
is as small as possible for this particular h. If two or more of the all were
non-zero, we could decrease A just as in the proof of Lemma AI; hence
after permuting subscripts we can assume that al = ml > 0 and all other
all vanish. Let z = blYl +... + bnYn be any element of H; then

• mllbl since if 0 < bl — eml < ml for some c in Z then z-ch would give
rise to a smaller highest common factor than h,

• b2Y2 + ... + bnYn = z - (bt/ml)h is in H,
• mllbll for each v, for otherwise mlYl + ~Y2 + . . . + bnYn would give rise

to a smaller highest common factor than h.
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A1 Prerequisites 119

Now let GI be generated by Y2, ' ". , Yn, let HI = GI nH and write Xl = YI.
We have shown that

If we repeat the process on GI and HI, we shall have mllm2 by the last
bullet point. We stop when H is exhausted. If r < n then all the mXn

would generate distinct cosets of H, and H would not have finite index in
G. U

Theorem Al Let G be a finitely generated abelian group. There exist
elements Xl,..• ,Xn of G and integers mI, . . . ,mr for some r ~ n such
that
/•\ /\ r 1

(ii) each mp > 1 and mplmp+1 for p = 1,... ,r — 1,
(iii) each element of G can be written uniquely as alXI + . . . +anxn where

the av are integers and0 ~ ap < mp for p=1,...,r.
Moreover G uniquely determines n and the mp'

Proof To prove existence, let Yb ' ". , YN be any generators of G, and let
G* be the free abelian group on the N generators YI,... ,YN. There is
a natural epimorphism G* —t G obtained by mapping each Yv into the
corresponding Yv; let H* be its kernel. Since G* is torsion-free, we can
apply Lemma A2 to G* and H*, obtaining a base XI,... ,XN for G* and
integers Mb...,MR; let Xv be the image of Xv in G. The Xv generate G,
and blXI + • • • + bNXN = 0 if and only if Mplbp for each p ~ r and bp = 0
for each p> r. Thus we have achieved all our claims except the statement
that MI > 1. But if some Mp = 1 the corresponding xp = 0, so that xp

can be deleted from the base for G which we have just constructed.
To prove uniqueness, suppose that we have a second such representation,

given by dashed letters. We first prove that n = n'. For if not, let n > n'
and let p be a prime dividing mI. Using the undashed representation we
have an obvious epimorphism from G to the n-dimensional vector space
over Fp; hence this space must be generated by the images of the x~. This
is absurd because the set which they generate contains at most pn' < pn

elements.
Now for any m > 0 consider the group mG consisting of all mx with X

in G. This has the representation in the theorem if we replace the Xv by
mxv and the mv by mv/(mv,m), where the mxv for which mvlm must
be deleted. Hence mp is invariantly defined by the property that mp is
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the least m for which a canonical representation of mG uses at most n — p
generators. D

Corollary Any subgroup of a finitely genemted abelian group G is finitely
genemted.

Proof As in the proof of the theorem, construct a finitely generated torsion-
free group G* and an epimorphism G* —+ G. If H is a subgroup of G, let
H* be the inverse image of H. Then H* is finitely generated, by Lemma
A2, and the images of the generators of H* generate H. D

Now let V be Qn or Rn with the standard topology, and write k = Q
or R respectively. A lattice A in V is a Z-module which satisfies any two
of the following three conditions.

(i) A spans V as a k-vector space.
(ii) A is discrete in the topological space V.
(iii) A is a free Z-module on n generators.

Lemma A3 Any two of these three properties imply the third.

Proof Suppose first that any n elements of A are linearly dependent over
k. If S is a maximal set of linearly independent elements of A containing
r < n elements, then the k-vector space generated by S contains Aj but
since it has dimension r it is not the whole of V, so (i) does not hold.

We now use the pigeonhole principle. Let Xl,... ,Xn be elements of A
linearly independent over k, so that the xv span Vj and let Ao be the Z-
module spanned by the xv. Suppose that A is discrete in Vj thus there
is an integer M > 0 such that the only element J2 ^ ^ of V with each
I AII I < M-I which lies in A is the origin. The Mn boxes of the form
mlliM ~ \v < (mil + 1}IM, where the mil are integers with 0 ~ mil < M,
cover the cube C defined by 0 ~ Xv < 1 for each 11. Let Yll... ,YN be
representatives of distinct cosets of AIAOj by translation we can assume
that they all lie in the cube C. Hence N ~ Mn, for otherwise Yr, Ys would
lie in the same box and Yr - Ys would be an element of A lying in the
forbidden neighbourhood of the origin. Hence A is finitely generated (by
the xv and Yi), and A is a free Z-module on n generators by the last sentence
of Lemma A2 with G = A and H = Ao. We have therefore shown that (i)
and (ii) imply (iii).

If (i) and (iii) hold, let {Xli ' ". ,xn} be a base for Aj then Xl,... ,Xn
span V and any point of V can be written as E A^xy with \u in k. The
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neighbourhood of the origin given by IAIII < 1 for each v contains no point
of A other than the origin, so A is discrete in V.

Finally, if (ii) and (iii) hold but (i) does not, let W be the k-vector space
spanned by A. Then (i) and (ii) hold with W in place of V; so (iii) holds
with dim W in place of n, which is a contradiction. 0

A1.2 Norms and Traces
Let K, k be fields with K D k and [K : kJ = n finite, and let Xl,... , Xn be
a base for K as a k-vector space. For any Y in K the endomorphism of the
k-vector space K given by X 1-+ yx has a characteristic polynomial F(Y).
Explicitly, there exist aij in k such that

and the characteristic polynomial of Y is F(Y) = det(YI — A) where A
is the matrix of the aij. A change of base takes A into T-lAT and hence
does not affect F; and F(y) = 0 follows by regarding (AI) as equations for
the Xi. We are particularly interested in the second and last coefficients of
det(YI + A), which define the trace and norm of y:

TrK/k(y) = trace(A), normK/k(y) = det(A).

If At,A2 correspond to Yl,Y2 respectively then Al ± A2 corresponds to
2/i ± Y2 and AlA2 to YlY2; so we obtain

Tr(Yl±Y2) =TrYl±TrY2, norm(YlY2) = (norm Yl) (norm Y2). (A2)

Lemma A4 Let K D k with [K : kJ finite, let Y be an element of K and let
F,f be the characteristic polynomials of Y for K/k and for k(y)/k. Then
F = fm where m = [K: k(y)J.

Proof Let Xl,... ,xm be a base for K over k(y). If [k(y) : kJ = r then
1,y,... , yr-l are a base for k(y) over k, and therefore the x",yP form a base
for K over k. But if A, B are the matrices whose characteristic polynomials
are F,f respectively, then A consists of m copies of B down the main
diagonal, with zeros everywhere else. 0

Corollary Let Yl,... ,Yn in the algebraic closure k of k be the distinct
conjugates of y over k. Then [K : kJ = ns for some integer s, and

normK/kY = (Yl ' " • Yn)8, TrK/ky = S(Yl +... + Yn). (A3)
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If Ut,••• ,UN are the distinct embeddings of K into k which fix k element-
wise, then [K : k] = NS for some integer S, and

normK/kY = II(ulIy)s, TrK/ky =

If k(y) is separable over k then s = [K : k(y)]; if K is separable over k
then S = 1.

Proof The equations (A3) follow from the fact that the roots of f are the
YII, possibly repeated, and they have equal multiplicity; if k(y) is separable
over k then this multiplicity is 1 and n = [k(y) : k]. For each YII there
is a homomorphism k(y) —+ k given by y t-+ yu, and each of these can be
extended to K in the same number of ways. 0

We could have defined norm and Trace by the formulae in this corollary
— and this is what we had to do when we defined the norm of an ideal in
§4. The crucial formulae (A2) follow at once and we do not need to mention
the characteristic polynomial. But we would instead have to prove that the
results lie in k — though this is trivial in the separable case, which is all
that concerns us in this book.

Theorem A2 Let K D L D k be a tower of extensions, with [K : k] finite,
and let Y be an element of K. Then

normL/k(normK/LY) = normK/kY, TrL/k(TrK/Ly) = TrK/ky.

Proof We use the notation of the last corollary. In the first equation, each
side is the product of the yv each taken the same number of times; and this
number is determined by the fact that each side is the product of [K : k]
conjugates of y. For the second equation we need only replace 'product' by
'sum'. 0

A1.3 Haar measure
A topological group is a group which, as a set, is equipped with a topol-
ogy such that the group operations (multiplication and inversion) are con-
tinuous. There is one major theorem about topological groups; and every
serious mathematician needs to know the statement of it though not the
proof.

Theorem A3 Let G be a locally compact topological group. There exists
on G a measure /J, unique up to multiplication by a constant, such that
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every compact subset ofGis measurable and

fi{g0S) = n(S)

for any go in G and any measurable subset SofG. There is a corresponding
integral JG f(g)dJ.L with the property

/ f(gog)dJ.L= 1 f(g)dJ.L.
JG goG

These are called the left Haar measure and left Haar integral re-
spectively. There is a similar theorem for the right Haar measure and right
Haar integral. Left and right Haar measure are frequently the same (for
example if G is either commutative or compact); but this is not always so.

The proof of this theorem is difficult; but one really uses it only as
motivation. In the cases which occur in practice one usually needs to know
the Haar measure explicitly and it is usually obvious what it is; but one
hardly ever needs the uniqueness assertion.

It is sometimes obvious how one should normalise the Haar measure; for
example, if G is compact or has a particularly important compact subgroup
Go then it is natural to choose I' so that J.L(Go) = 1. Again, the natural
normalisation of ^ on R is the one which induces J.L(R/Z) = 1; but there
is no obviously best normalisation of the Haar measure on C.

Now let K be a locally compact topological field. Associated with K
there are two topological groups — K with the addition law and K* with
the multiplication law — and the corresponding Haar measures 1'+ and I'x

are different. These are respectively the additive and the multiplicative
Haar measures on K. Let a be any non-zero element of K. The map

is an additive Haar measure on K, so it has the form S 1-+ co:J.L+(S) for some
cQ by the uniqueness of Haar measure. One frequently writes Co: = lIall,
thus defining a function from K* to the positive reals; note that lIall does
not depend on the choice of 1'+. (By convention we write 11011 = 0.) Clearly

and though 11.11 need not induce a metric on K, under modest extra con-
ditions it induces a topology on K which is just the one we began with.
Moreover

j f(x)dJ.Lx = J f(x)llxll-1dJ.L+ (A4)
if we adjust the constants in I'x, 1'+ suitably.

)'����*��!��!���(��((%'���+++���"�&�����$&���$&��(�&"'���((%'����$��$&�����������������������������
�$+#!$������&$"��((%'���+++���"�&�����$&���$&����#�*�&'�(,�$���$&$#($��$#������%�������(����
	�
���')� ��(�($�(�����"�&������$&��(�&"'�$�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.007
https://www.cambridge.org/core


124 Appendix

The simplest cases of Haar measure are given by (i) to (iii) below;- (iv)
and (v) are crucial for applications to algebraic number theory.

(i) If G is a finite group, or more generally if G has the discrete topology,
,,(S) is just the number of elements in S. If K is a finite field then
Iiall = 1 for a ^ 0.

(ii) R is a field and the Haar measure on R is the standard one. Thus
IIxll = Ixl and the Haar measure on R* which is given by (A4) is
S ^ Is N"1^-

(iii) C is also a field. One possible Haar measure on C is given by area in
the complex plane, but it is customary to double this, giving the
measure associated with dz A dz. In either case IIzll = Iz12; this
does not give a metric, but Ilzlll/2 does. Again the Haar measure
on C* is given by (A4).

(iv) Let k be an algebraic number field and p a prime ideal of k; then kp
is a locally compact field. We have lIalip = (Normp}-m if a is in
k* and pmlla. Every residue class modpm for fixed m ~ 0 has
measure ,,+(op)(Normp}-m. It might appear natural to normalise
the additive Haar measure so that ,,+(°p) = 1, and this is what
some writers do; but following Tate we shall normalize it so that
JL+(op} = (Normi)p}-1/2 where i)p is the local different introduced
in §8. The benefits of this will become clear in §A2.2 and in the
Corollary to Lemma 26. The measure on Vk will be the product of
the measures on the kv.

(v) There are also several plausible ways to normalize the measure on k;.
We choose to require " x (o ; ) = 1, and to take the measure on
Jk to be the product of the measures on the k:. However, some
writers prefer to take "X(o;} = (NormI' - l)j(Normp}; if so, the
set consisting of the units congruent to (3 mod pm for any fixed unit
ft and any m > 0 has measure (Normp}-m. For those who also
take , , + ( ° P ) = 1, the relation (A4) is preserved.

A2 Additional topics
This section falls into two parts. The first two subsections outline the
theory of Fourier transforms on locally compact abelian groups, which is
an essential foundation for §15. The third one is not used anywhere in this
book, except for a passing reference at the end of §18; but I hope that the
reader who pursues the advanced theory will find it useful.
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A2.1 Characters and duality
Denote by T the circle group Izl = 1 with the usual topology, and let G
be any locally compact abelian grOUpj then a character of G is defined to
be a continuous homomorphism c : G —+ T. The following trivial remark
will be used repeatedly.

Lemma A5 Let X be a chamcter on a compact group G; then

/ X(z) dfix = */ X is trivial on G,
0 otherwise.

Proof We need only prove the second statement. Choose Xo in G with
X(xo) ¥" 1 a nd write xXo for x in the integralj then

/ X(*)d/z= / x(zzo)d/z = X(xo) / x(x)d/x,
JG JG JG

from which the statement follows. o

The characters of G form a multiplicative group, normally denoted by
G; to write them additively, we use the identification T w R/Z. We can
topologize 0 as follows. Fix a character EO of Gj then a base for the open
neighbourhoods of EO in 0 is given by the set of characters c on G such
that

Ic(g)-eo(g)I <€ for 9in S

where € > 0 and S is any compact subset of G. It is easy to check that
with this topology 0 becomes a locally compact topological group and each
element of G induces a character on O. But much more is true:

Theorem A4 (Pontryagin duality) We can identify the chamcter group
of 0 with G. IfGis compact then 0 is discrete; ifGis discrete then 0 is
compact. If H is a closed subgroup of G and HI consists of those elements
of 0 which are trivial on H, then HI is closed in 0 and there are canonical
isomorphisms H w G/ff" and G/H « HI.

Corollary Any chamcter on a closed subgroup ofG can be extended (non-
uniquely) to the whole ofG.

Note that if the Gi are subgroups of G such that any neighbourhood of
the identity in G contains some Gi then for any character c on G we can
find some Gi on which c is trivial. For let N be the neighbourhood of 1 in
T given by Rz > !j then c-1N is a neighbourhood of the identity in G and
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therefore contains some Gi. But c(Gi) is a subgroup of T contained in N,
and must therefore be trivial because N contains no non-trivial subgroups.
A set of such Gi is called a set of small subgroups.

We now find the character groups of some of the topological groups
we shall encounter. All these calculations can be done in an elementary
fashion, so that logically we shall not need Theorem A4.

Consider first Z: now we can choose c(l) arbitrarily and define c by
c(n) = c(l)n, and any such c is continuous. Hence Z = T and by duality
T = Z; it is easy to check directly that any character on T has the form
z I-t zn for some n in Z by considering its kernel, which must be either the
whole of T or a finite subgroup. Since Ok ~ z n , its dual is Ok ~ Tn .

Let k be an algebraic number field. In view of Lemma 26 we expect to
give Q or k the discrete topology; and in fact there are no other sensible
topologies which make these groups locally compact. We are not interested
in all their characters, but only in those that extend to some completion;
and these are best obtained by finding directly the characters on the possi-
ble completions. Let k" be any completion of k and let Qw be the closure
of Q within k", so that w is the valuation on Q which is the restriction
of v. Qw must be either R or Qp. In either case there are natural maps
"w : Qw ---+ R/Z, being given for Qw = Qp by Qp ---+ Qp/Zp ---+ R/Z be-
cause the elements of Qp/Zp can be identified with those elements of Q/Z
whose denominators are powers of p. Using "w we can define the function
x I-T exp(27rix) for any x in Qw. In the following lemma the signs have
been chosen so as to simplify the corresponding statement in the adelic
case.

Lemma A6 We can identify fv with k", the chamcter Co. corresponding
to a in k" being given by

co.({3) = exp(±27riTrk"/Q,,,(a,8)),

where the sign is chosen to be minus for Archimedean and plus for non-
Archimedean places.

Proof Most of this assertion is easy. With the definition above, Ca is a
character; for it is a homomorphism, and it is continuous because Trace
is so. The ca form a group algebraically isomorphic to k" under a I-t Ca,
for ca trivial implies that Tr(a,8) is in Z for all ,8, which is only possible
if a = o. Moreover the group of ca is homeomorphic to k" under this
correspondence. For let 8M be the compact set \\0\\v ^ M where M is
fixed; then lIall" small implies Tr(a,8) small uniformly in ,8 and hence cQ
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is close to the identity character. Thus a t-+ CQ is continuous. Conversely,
suppose that ca is close to the identity character. If w is Archimedean this
means that ITr(a.8) —nf31 < f for each .8 in 8 M and some nf3 in Z, where
we require f ~ 1. If nf3 is ever non-zero then by replacing .8 by .8x where
Ixl < 1 and xnf3 is not close to an integer, we obtain a contradiction. So
ITr(a.8)I < f for all .8 in 8M, and this implies that a is small with f. If
instead w corresponds to p then ITr(a.8) — np\ < f where this time nf3 is
in Zp and we shall require f < 4~; if Tr(a.8) is ever not in Zp then by
replacing .8 by pm.8 for suitably chosen m we obtain a contradiction. Now
take M large; if CQ is close enough to the identity character, a.8 must be
in i)- l for all .8 with 11.811" ~ M, where 0 is the different, and this implies
that lIall" is small.

It remains to show that we have found all the characters of k". But the
characters which we have found certainly form a closed subgroup H" in the
notation of Theorem A4; and if this is not the whole of k" then there is a
non-trivial subgroup H c k" on which H" is trivial. Choosing .8o ̂  0 in H
we obtain a contradiction. 0

Consider next v,;. Let 8 be any finite set of places, including all the
Archimedean places, and let Gs be the subgroup of Vk consisting of those
adeles II a " for which a" = 0 for v in 8 and a" is in 0" for all v. The Gs are
a set of small subgroups in the sense of the remarks below the Corollary to
Theorem A4, so any character c on Vk is trivial on some Gs, say Gso' Let
Cv denote the character induced on k" by the natural embedding k" -+ Vk;
thus Cv is trivial on 0" for almost all v. Since any (3 in Vk is the sum of an
element in GSo and a finite set of elements of various k",

where almost all the factors on the right are 1. Conversely, if we have any
set of characters Cv on the k" such that Cv is trivial on 0" for almost all
v, this formula defines a character on Vk. This determines the algebraic
structure of v,;. As for its topology, any compact set in Vk is contained in
II8" where each 8" is compact and almost every 8" is 0,,; hence a base
for the open neighbourhoods of the trivial character is given by the sets
IIC", where each C" is an open neighbourhood of the trivial character in k"
and almost every C" consists of all characters which are trivial on 0". If v
corresponds to a finite unramified prime p, such a character corresponds to
an element of 0" under the identification in Lemma A6. We have therefore
proved
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Lemma A7 There is a natuml identification V; ~ Vk.

Explicitly, the character Co corresponding to a = n av in Vk is given by

(A5)= exp (21

where as before w is the valuation of Q which is the restriction of v, and "w

maps Qw to R/Z. As in Lemma A6 the sign is plus for non-Archimedean
and minus for Archimedean places. One useful consequence is that if a, {3
are both in Vk, then

(A6)

Corollary The chamcter Co is trivial on k if and only if a is in k.

Proof Suppose first that a, 0 are both in k. By (39),

*,,<,„ (a/3)
P pip

where the sum on the left is taken over all Archimedean places; for each
side is equal to the image of Trk/Q(a{3) in Q/Z. Thus the sum on the
right of (A5) is O. (It was for this reason that we introduced the unnatural
looking sign convention in Lemma A6.) Now let G be the additive group
of all adeles a = nav such that Co is trivial on k. We have shown that
G D k, and G is a k-vector space; thus G/k is a k-vector space which is
a subspace of Vk/k. But the latter is compact, by Lemma 26, so G/k is
trivial. 0

We shall not need to know 1; in what follows; and this is just as well
because in general no satisfactory description of it is known. But we shall
need some information about its quasi-characters — that is to say, its
continuous homomorphisms into C*. In particular if X is a quasi-character
so is a 1-+ IlaIlBx(a), where the function 11.11 is that defined after the proof
of Lemma 27.

A2.2 Fourier transforms
Let f(g) be a complex-valued function on a locally compact additive group
G, and let J.I.bea Haar measure on G. Suppose that f is continuous and
integrable on G. The Fourier transform of f is the function on G given
by

He) = f
JG
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The complex conjugacy sign appears here for historical reasonSj however,
complex conjugacy is bound to appear somewhere in the theory. The im-
portance of this definition comes from the duality relation:

Theorem AS There is a Haar measure it on G such that

J(g) = f(-g) = / faj(c)c(g)
JG

provided that the integral exists.

Since G only determines the Haar measure on it up to multiplication, to
find the correct it for any particular G we need to verify the result for one
particular function J. If we can identify G with G then we can normalize
H; for if we multiply [i by a constant we have to divide it by the same
constant, and there is a unique positive multiplier for which it is equal to
1-'. We shall show below that if G is R, C or kp then the measure I-' which
was chosen in §A1.3 is the one which achieves this. It will then follow that
the same statement holds for Vk.

The modern theory of Fourier transforms recognizably includes the classi-
cal analytic theory — though the classical results were proved under weaker
conditions on J. There are three important special cases in classical pure
mathematics: Fourier series, Fourier integrals, and Mellin transforms. The
first two are straightforward. Since Z = T ~ RjZ, Theorem A5 gives

2irinx ^ C = /* f(x)e~2*inx/(*) = T cne2irinx ^ Cn = / f(x)e~2*inxdx.
-00 Jo

Next consider R~Rj then

f(v) = f°° f(x)e2*ixydx «=» /(*) = r f(y)e~2irixvdy- (A7)
Thus in this case fi = it. The easiest way to check that the multiplicative
constant is correct is to note that J(x) = e~*x implies j(y) = e~*v .

Classically, the Fourier duality formula for C was not important enough
to warrant a name. It asserts that if

j{w)= IIJ{z)exp{21ri!R{zw))dz1\dz

then (at least up to a constant factor)

(w) exp(—21ri!R(zw)) dw A dw.
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130 Appendix

To check that the factor here is correct, take f(z) = gl(xV2)g2(YV2) where
z = x + iy; if w = u + iv then j(w) = 9i(uV2)§2(-vV2) where 9i,§2 are
given by (A7).

To check that fJ, = JLfor kp take

f(x) = { 1 for x i~ op,
M ' \ 0 otherwlSe;

then by Lemma A5

j ( y ) = 1 exp(-21riTrkp/Qp(xy))dJL~
J
1

_ { (Norm~p)-1/2 for y in Op ,
\ 0 otherwise,
f

because the integrand in the middle expression is a character on op. Simi-
larly we obtain

I f(y)exp(2iriTrkp/Qp(xy))dti+ = f(x)
Jkp

since JL+(~; l) = (Norm~p)JL+(op). Thus fJ, = JL.

The Mellin transform formula is derived from (A7) exactly as in the clas-
sical theory. For let g(z) = L~ an exp(21rinz) where the an are complex
numbers such that an = O(nU-1-E) for some real q and some € > OJ this
series is absolutely convergent in the upper half-plane lRz > 0, and g(z) is
periodic with period 1. If L(s) = L ann-s where s = q + iT then

f° e^^y^dy = 1°° g(iy)yS-ldy.

But this simply says that the left hand side, considered as a function of
T, is the Fourier integral transform of 21re21rXU g(ie21rX). After some tidying
up, the dual formula becomes

where the integral is taken along the vertical line lRs = q.

Theorem A6 (Poisson Summation Formula) Let H be a discrete sub-
group of G such that G/H is compact, and let HU consist of the elements
ofG which are trivial on H, so that HU = G;II. Then

H HI
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A2 Additional topics 131

provided that f is integrable on G, EH f(g + h) is absolutely convergent
uniformly in 9 and E j(hl) is absolutely convergent.

Proof HI is discrete and G/HU is compact, by Theorem A4. Define the
function t/J(x) on G/H by t/J(x) = EH f(x + h)

= [ f(g)dJ.t, 4>(hU) = [ t/J(x)hU(x)dJ.t. (A9)
JG JG/H

/ {) / () () f
LA/H 10 LA/H

Now Theorem A5 gives

H»

up to a constant factor. To see that the constant is correct, set t/J(x) = Ij
then 4>(1) = J.t(G/H) and 4>(hU) = 0 otherwise, the latter result coming
from writing xXo for x in the second equation (A9) where /i"(xo) ^ 1. Also

$(h*) = f <t>{x)Wx)dix = I f(g)Wg)dfi = />»),
JG/H JG

the change in the order of summation and integration being justified by
the hypotheses on f. Hence

#*MG/ff ) = $>»(*)/(/.»),

and writing x = 0, t/J(O) = E f(h) gives the theorem. o

If we multiply /x by a constant, we multiply both sides of (AS) by the
same constant; so the theorem is true for any choice of IJ. The special case
which will be needed in §15 is as follows.

Corollary Let f(e) be a function on Vk which is integra~le and for which
Ex in k f(a(x + e» is absolutely convergent for all adeles e and ideles a,
uniformly in e for each a. Suppose also that E x in k j(ax) converges for
each a, where we have identified v,; with Vk. Then

x in fc x in fc

Proof Write g(e) = f(ae)i then

9('1) = I 9{i)^tt)dn = fJv Jv

= Ilall-1
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132 Appendix

where to go from the first line to the second we have written a - l E for E.
Now apply the theorem to g(E) with G = Vk and H = k, and use the fact
that H" = k by the Corollary to Lemma A7. D

If we identify Vk with Vk, the symmetry property of the Fourier transform
becomes

/fa) = / f(€M£n)dn «=* /«) = / f(v)ci(iv)dii (Aio)

where /x is normalized by the condition J-L(Vk/k) = 1. For we know from
Theorem A5 and (A6) that f(E) = AJv J('1)cl(E'1)dJ-L for some constant A
depending on J-L. Applying Theorem A6 to both f and j and remembering
that CL(E'1) = cl(-E'1) we obtain A(J-L(Vk/k))2 = 1; so A = 1 is equivalent
to J-L(Vk/k) = 1.

A2.3 Galois theory for infinite extensions
Let K be a separable normal extension of a field k, with Galois group G.
If [K : k] is finite, the fundamental theorem of Galois theory states that
there is a one-one correspondence between fields L with K D L D k and
groups H c G, given by the relations

L consists of those elements of K which are fixed under H,
H consists of those elements of G which fix L elementwise.

The usual proofs of this depend on the finiteness of [K : k], because they
use counting arguments; so they collapse when [K : k] is infinite. It is
natural to ask how much the conclusion needs to be changed in that case.

Lemma AS Let K, L be fields such that K D LD k and K is Galois over
k. If H is the Galois group of K over L, then the fixed field of H is L.

Proof This follows directly from the finite case. For let e be any element of
K not in L and let R with K D A D L be the splitting field of the minimal
polynomial of e over L. There is an L-automorphism of ̂  which does not
leave e fixed, and this can be extended to an L-automorphism a of K with
the help of Zorn's Lemma. Since a is an element of H, the fixed field of H
cannot be larger than L. D

There are in general too many subgroups H of G for them all to be Galois
groups of K/L for some intermediate field L; so how do we identify those
H which have this property? To answer this, we introduce a topology on
G.
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A2 Additional topics 133

Let Ki run through those subfields of K which are normal over k and
for which [Ki : k] is finite, and let

GDGt = Gal(K/Ki), St = G/Gi = Gel(Kt/k).

If Ki D Kj there is a natural homomorphism <Pij : Si —t Sj. The Si form
an inverse system of groups with connecting homomorphisms <Pij, whose
inverse limit is G with the obvious maps <Pi : G —t Si = GIGi. For let a
be any element of G. Each e in K is in some Ki; and the actions of a and
<Pia on e are the same. Hence a is uniquely determined by a knowledge of
all the <Pia.

The Si are finite groups, so we give each of them the discrete topology;
and we give G the topology induced on it as an inverse limit — that is,
the finest topology such that each <Pi is continuous. A base for the open
subsets of G is given by the cosets of the Gi, and any such set is also
closed because it is the complement of the union of the other cosets of the
same Gi. The topology obtained in this way is Hausdorff, and with it G is
compact. However, it is not known, even when G = Gal(Q/Q), whether
every subgroup of finite index in G is open; this is one of a number of
related unsolved questions, all of which appear to be very difficult.

Lemma A9 Let H be a subgroup of G. Then H is the Galois group of K
over some field L with K D LD k if and only if H is topologically closed.

Proof Suppose first that H = Gal(KIL). If a is in the closure of H and
£ is any element of L, we have to prove that AE = e. Let KO C K be the
splitting field for the minimal polynomial of e over k; then KO is Galois
over k and [Ko : kJ is finite. Let Go, So and <Po be as above. Now <PoH C So
is closed because So is discrete, and it leaves e fixed; hence a belongs to
the closed set <p(/<PoH and leaves e fixed.

Conversely, if H is closed let L be its fixed field. If a is not in H, we
have to show that there are elements of L which are not fixed by 0'. There
is a basic neighbourhood .AI of a which does not meet H — that is, there
is a Kl finite and Galois over k with <PI : G —t SI = Gal(Kdk) such that
<pIH does not contain <PIa. Let £1 C Kl be the fixed field of <pIH C SI.
Then l i d because £1 is fixed elementwise by H; but £1 is not fixed
under 0'. 0

Putting the last two lemmas together, we obtain the Fundamental The-
orem of Galois Theory for arbitrary extensions (which contains the corre-
sponding one for finite extensions):
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Theorem A7 In the notation above, there is a one-one correspondence
between fields L with K D L D k and closed subgroups H of G.

There is one case in which we know how to describe G explicitly: that is
when k is a finite field Fq and K = k is its algebraic closure. Now there is
just one extension of k of each finite degree n, which we call KM. Since
s(n) = Ga\(K^ /k) is cyclic of order n and is generated by the Frobenius
endomorphism u : x 1-+ xq, we can identify S^ with Zj{n) by identifying
av with v mod n. Here K^ D K^ if and only if nlm, and the map cPm,n
is then identified with the map Zj{m) —~ Zj{n) which sends v mod m into
v mod n.

If m,n are coprime, the degree of the compositum K^K^ must be a
multiple of both m and n, whence -K(m)K(n) = K(mn). The natural map
s(mn) ~ s(m) x s(n) of Galois groups is one-one and can be identified with
the natural map of residue groups; and it is an isomorphism. In forming
G, the inverse limit of the S^n\ we can therefore treat the different prime
factors of the n separately; thus G is naturally isomorphic to the product
of the inverse limits of the S(p") ~ Zj(p"'). These inverse limits are just
the Zp.
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Exercises

Chapter 1

1.1 For the ring R = C[x, y], which has unique factorization, prove that

(i) apart from (0) and R itself, there are two kinds of prime ideals, one
kind being maximal and the other not,

(ii) any non-zero ideal can be written in at most one way as a product of
prime ideals,

(iii) there are ideals which cannot be writte~ as a product of prime ideals,
(iv) division by ideals, even when possible, is not always unique.

[Think geometrically. The two kinds of prime ideals correspond to points
and irreducible curves.]

1.2 Show that neither of Z[Rl6] and Z[v'5] is a unique factorization
domain.

[Consider the factorization into irreducible elements of 6 in the first case
and 4 in the second.]

1.3 Find a unit in Q ( ~ ) and show that this field has class number
h = 1.

1.4 Find a unit in Q ( ~ ) and show that this field has class number
h = 3. Deduce that X3 + 22y3 + 3Z3 = 0 has no rational solutions.

[If x, y, z is a solution with x, y coprime integers, show that P3 is not
principal, where P313, but that (x + y~) = P3a3. The equation is in fact
soluble in every Qu, but to prove this requires ideas not in this book; see
for example [Ca].]

1.5 Suppose that the extension K/Q is normal and has a Galois group
which is simple but not cyclic. Show that there is no rational prime p such
that (P) remains prime in K.

135

)'����*��!��!���(��((%'���+++���"�&�����$&���$&��(�&"'���((%'����$��$&����������������������������
�$+#!$������&$"��((%'���+++���"�&�����$&���$&����#�*�&'�(,�$���$&$#($��$#������%�������(����
	�
���')� ��(�($�(�����"�&������$&��(�&"'�$�

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139173360.008
https://www.cambridge.org/core


136 Exercises

1.6 Show that the ring of all algebraic integers is not Noetherian, and
deduce that Q is a Noetherian ring not all of whose subrings are Noetherian.

[Fix a prime p and let Mn be the ideal generated by pl/nj show that the
Mn form a strictly increasing sequence.]

1.7 Suppose that k contains (, a primitive p-th root of unity where
p is prime, and that K is Galois over k with [K : k] = pj and write
G = Gal(Klk) ~ Cpo Show that K = k((ia) for some a in k.

[Let u be a generator of G. Take a = E ~ - l C • u"/3 for /3 in Kj and
show that one can choose /3 so that a ^ 0.]

1.8 Let K, k be algebraic number fields with K totally complex, k totally
real and [K : k] = 2. If JL.K denotes the group of roots of unity in K, show
that [.oK : 0kJl.K] = 1 or 2.

[The non-trivial automorphism of KIk is complex conjugacy. Show that
V *"> v/v induces a homomorphism .oK —J L.KIJL.K the kernel of which
contains 0KJL.K. Conversely, show that if a is in the kernel then a/a =

2 =(f(for some ( in JL.KJ SO al( is in ok.]

1.9 Show that the only integral solutions of X3 = y2 + 13 are given by
X = 17,Y = ±7D.

[Factorize the equation in Q(V-13), which has class number 2. Show
that if x, y is an integer solution then (y + %/—13) must be the cube of an
ideal and hence y + J-13 = (a + bJ-13)3j thus 1 = b(3a2 - 13b2).)

1.10 Let k be an algebraic number field. Show that there is a finite
set of prime ideals PI, . . . ,Pr with the following property: if R is the ring
consisting of those elements of k which are integers except perhaps at the
Pi, then R is a principal ideal domain.

1.11 Let ( n = 1 and assume that a = (E;:L(NI)/M is a n algebraic
integer. Show that either a = (ni for each i or a = D.

1.12 Let X be an indeterminate. Show that the ring Z[X] is Noetherian
and integrally closed in its field of fractions, but is not a Dedekind domain.

1.13 Let k be an algebraic number field. Show that Ok is a principal
ideal domain if and only if it satisfies the following condition: for every a
in k but not in Ok there exist /3,7 in Ok such that

0 < Inormk/Q(a/3 - 7)! < 1.
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Chapter 2

2.1 If K, k are algebraic number fields with K D k prove that the relative
discriminant of K/k is normK/klJK/k.

2.2 Show that X2 - 82y2 = ±2 has solutions in every Zp but not in Z.
What conclusion can you draw about Q(V82}?

2.3 Give an example of finite extensions KbK2 over Q such that

[KIK2:K1]f;[K2:KlnK2].

[Thus without the Galois condition, nothing is left of Lemma 25.]

2.4 Show that the class of the relative discriminant for K/k in the ideal
class group Ck is a square.

[Argue locally, using the fact that .OK ®O Op is a free op-module.]

2.5 Let K D k, let q3 be a prime ideal in K and let p be the prime ideal
of k divisible by q3. Show that q3 is wildly ramified if and only if TrK'.Jl/kp

a

is in Pp for every a in .o~.

2.6 Let l be a prime and let f(X} = Xl — aX — b be an irreducible
polynomial in Z[X] for which (l - l}a and lb are coprime. Let K be the
splitting field of f(X) over Q. Show that

(i) if p ramifies in K/Q then ep = 2,
(ii) G = Gal(K/Q} is Sl, the symmetric group on l elements,
(iii) if k is the fixed field of the alternating group Ai, then K/k is unram-

ified.

[Since X!'(X} — If(X} is linear and not divisible by any prime, any re-
peated factor of /{X} must be linear and have multiplicity 2. Now Theorem
19 implies (i) and shows that the non-trivial element of the ramification
group of p is a transposition. Since G contains an element of order l and
a transposition, this gives {ii}j and {iii} follows by applying Theorem 16 to
the ramification group of p.]

2.7 Prove that if p is unramified in Kl/k and in K2/k, then it is unram-
ified in K1K2/kj and that if p splits completely in Kl/k and K2/k then
it splits completely in K1K2/k. Show however that if p remains prime in
KIK2/k then [KIK2 : k] is the least common mUltiple of [Kl : k] and
[K2 : k].

Give an example where p is ramified in KIK2/Q but not in Kl/Q or
K2/Q.
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[For the last part, take P = 3 and Kb K2 to be conjugate fields Q(rm}.]

2.8 Let K = Q(J7, v'I3}. Show that for any integer a in K, the dis-
criminant of 1,a,a2,a3 is divisible by 3; and deduce that 1,a,a2,a3 can
never be a base for the integers of K.

[Use the fact that (3) splits completely in K, and therefore 31(a3 - a}.]

2.9 Show that X4 + 1 is reducible in Qp for every P > 2.

Chapter 3

3.1 Let p = (n + Cn1 where (n is a primitive n-th root of unity. What
additional condition on n is needed for the ring of integers of Q(p) to be

3.2 Let P be a prime and m an integer such that pl(m/l - I} for v = n
but not for any smaller v > O. Show that P has at least one prime factor
with e = f = 1 in Q( vT} and deduce that p = 1 modn. Hence show that
for any n there are infinitely many primes p = 1 mod n.

3.3 Let K = Q( vT) with n = PI • • P m , where the P~ are distinct odd
primes, and let K~ be the field of (n/p~)-th roots of unity. Let u~ be a
generator of the cyclic group Gal(K/K~), write U = Ul " • ' Um and let L
be the fixed field of u. Show that K/L is unramified at each finite place.
What additional condition is needed to ensure that it is also unramified at
the infinite places?

3.4 (i) Let G be a finite abelian group. Show that there are fields K, L
with K = Q( vT} and L C K such that Gal(K/L} ~ G and no (finite
or infinite) place ramifies in K/L. [Use the results of the two previous
exercises.]

(ii) Using Theorem 37, show that the ideal class group of L contains a
subgroup isomorphic to G.

The following two exercises illustrate the method of infinite descent, and
show the importance of choosing the right equation to apply the method
to.

3.5 Show that X4 + y4 = Z2 has no non-trivial solutions in Z.
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~f there are solutions, let x, y, z be the one with Izl minimal. Without
loss of generality, assume y odd; then x2 = 2uv, y2 = u2 — v2 with u, v
coprime. Thus u = A2, V = 2B2 and y2 = A4 - 4B4. Hence show that
A2 = [2 + m2, B2 = lm with i, m coprime and therefore both squares.
Now IAI < Izl gives a contradiction.]

3.6 Show that fX4 + y4 = Z2 has no non-trivial solutions in Z [ v '
where f4 = 1.

[Let 7r = 1 + A . Show by 1I"-adic arguments that it is enough to
consider the case when TT divides X but not Y or Z, and that then 1I"21X.
Deduce that we can take Z - y2 = 1I"2f1U4, Z + y2 = 1I"-2f2V4 where fb f2
are roots of unity; and hence y2 = 1I"-4f3V4 + f4U4 where 1I"21V. Writing
V\/—I for Y if necessary, show that f4 = 1. Verify that the same power of
7T divides v and X, and derive a contradiction.]

3.7 Repeat the investigation at the end of §14 for the case when K is
the splitting field of an irreducible non-normal cubic equation over Q.

3.8 Verify equation (46) by elementary means.
[The only substantial calculation concerns the powers of 2; here it pays

to split cases, using the properties both of the different and of a base for
.OK.]

3.9 Let k = km be the field of m-th roots of unity and ko its maximal
totally real subfieldj and let Ilk be the group of roots of unity in k.

(i) If m is a prime power or twice a prime power, show that Ok = okollk.
(ii) If not, show that [ok : 0kollk] = 2.

[Use the result of Example 1.8. For (i) let m = pr or 2pr. If the result
is faIse and p > 2, there exists 11 in ok with 112 in ko bat 11 not in ko;
then k = ko(Vii) would not be totally ramified at p. If p = 2 and 11 in
ok is not in 0kollk then ( = .,,/fj is a primitive m-th root of unity; then
normk/L( = ± A T but normk/Ll1 is a power of A T where L = Q ( A ) .
For (li), show that 11 = 1 — ( is a unit, where ( is a primitive m-th root of
unity and deduce that the homomorphism of Exercise 1.8 is onto.]
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Chapter 4

4.1 If the Dirichlet series Lann-s converges at s = so, show that it
converges whenever ~s > ~so and that it converges absolutely whenever
lRs > lRso + 1 .

[For the first assertion, use summation by parts.]

4.2 If the limit (98) exists, show that the limit (99) exists and has the
same value.

[Use summation by parts.]

4.3 Let S be a finite set of places and let X be a character on [s such
that for any neighbourhood N of 1 there exists € > 0 such that the inverse
image of N contains all principal ideals (~) with II~ — ll1v < € for each v in
S. Show that X satisfies (91).

[Choose the nv,Sv so that (91) holds for all units with II~ — ll1v < €j then
proceed as in the proof of Lemma 34.]

4.4 Let X be a non-trivial character of conductor mj show that

for all integers N. Deduce that if p is prime and X is a non-trivial character
modp then x(n} ^ 1 f°r some n ~ p1/2(1 + logp}.

[If 7'x(X} is the Gauss sum as defined in (54), show that

X(b)exp(21l'ibn/m}
n=1 bmodm

exp{21l'ib/m} -1 '
b!;;dmexp{21 l ' '

In each term of the last sum, the numerator is absolutely bounded by 2
and the absolute value of the denominator is 12sin(ll'b/m)I. Hence

x(n}1 ~ 2m-1/2 L cosec(ll'b/m)

where we can take the sum to run over 0 < b ~ \m\
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Exercises 141

Chapter 5

5.1 Write i = A and let K = Q(i, ~ ) , kl = Q(i) and k2 = Q(V2).
Show that K is abelian over each of kl and k2' with Gal(Kjkl) ~ C4 and

« C2 X C2.

(i) If H is the congruence divisor class associated with Kjkl, show that
its conductor divides (1 + if and that H contains i and 5, and
that these facts specify it completely.

(ii) If H is the congruence divisor class associated with Kjk2' show sim-
ilarly that the finite part of its conductor divides (V2)5 and that
H contains 3, and that these facts specify it completely.

[In (i), every a == 1 mod (1 + if is a (1 + i)-adic fourth power and (1 + i)
is the only prime which ramifies in Kjk1; these give the assertion about the
conductor. Since the units represent all the odd residue classes mod (1+i)3,
we need only identify the residue classes mod(1 + if in H which are
congruent to 1mod(1 + i)3. This appears to give six candidates for H,
but four can be rejected because they are not invariant under complex
conjugacy. One of the remaining two contains 5 and the other contains
1 + 4i; but the second must be rejected because (1 + 4i) does not split
completely in Kjk1.]

5.2 Let Xl,... , X4 be integers not all divisible by any p == 7 mod 8, such
that

Show that IX31 £ 5 or 7 mod 8.
[Assume that X3 is odd and show that 41X2• Using the notation and

results of the previous exercise, show successively that the ideal (Xl +2iX n
is in the kernel of the Artin reciprocity map for Kjkl' that the first degree
primes in this kernel are those whose Norms split completely in K, and that
therefore the ideal (X3 + X4V2) is in the kernel of the Artin reciprocity
map for Kjk2. Hence deduce that X4 is even and IX31 == 1 or 3 mod 8.]

5.3 Let k be totally complex and ko totally real with [k : ko] = 2. If
h, ho are the class numbers of k, ko respectively, show that holh.

[Let L be the Hilbert class field of ko. Show that L n k = ko whence
: k] = [L : ko] = ho, and that kLjk is unramified and abelian.]

5.4 Let (^ ) denote the quadratic residue symbol in Z, where m, n are
coprime and n is odd and positive. Using the general properties of the
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142 Exercises

power residue symbol, show that (~l) and ((~) only depend on n mod 8,
and hence deduce the auxiliary laws

It is possible to derive Theorem 25 in the same way, but this involves
an unnatural case-by-case calculation; a somewhat less ugly version of the
same calculation can be found in the next exercise.

5.5 (i) Let m = 2 and k = Q in the machinery of §19. Show that the
Hilbert symbol (a,bh depends only on a and b mod(Q2)2, and construct
a table of its values. [Choose particular representatives for the classes of a
and b and use (104) and Lemma 38.]

(ii) Check the results of (i) by means of (105).
(iii) Deduce the law of quadratic reciprocity for Q.

5.6 Take p = 3 in the notation of the exercise on page 111. Show that
any a in k* can be written in essentially one way in the form a = i^Vao
with 00 == ±1 mod 3. Prove that

if each of 00, /% is congruent .to ±1 mod 3 and 8(00) n 8(130) = 8. Prove
also that

• (£)•<-
if 00 =
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Suggested further reading

There are a substantial number of texts which cover more or less the same
material as Chapters 1 and 2. The most thorough and careful is
[FT] A. Frohlich and M.J. Taylor, AIgebmic Number Theory, Cambridge
University Press, 1991.
The texts which I have found most inspiring are
[Weyl] H. Weyl, AIgebmic Theory of Numbers, Princeton University Press,
1940,
[Cal J.W.S. Cassels, Local Fields, Cambridge University Press, 1986. This
goes far wider than its title suggests, with a particularly strong emphasis
on applications to Diophantine equations.
A more comprehensive account of the local theory, both elementary and
advanced, is
[Se] J.-P. Serre, Local Fields, Springer-Verlag, 1979. (The original French
version was Corps Locaux, Hermann, 1968.) This can fairly be described
as a masterpiece.

The best reference for class field theory (covering both local and global
fields) is still
[CF] J.W.S. Cassels and A. Frohlich (editors), AIgebmic Number Theory,
Academic Press, 1967.
Alternative accounts can be found in
[N] J. Neukirch, Class Field Theory, Springer-Verlag, 1986;
[L] S. Lang, Algebmic Number Theory, Springer-Verlag, 1986. This was
originally written in 1970; it also covers the elementary theory and a sub-
stantial amount of analytic material.
An interesting and recommendable illustration of how much can be achieved
without overt Galois cohomology is the second half of
[Weill A. Weil, Basic Number Theory, Springer-Verlag, 1973. The first half
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144 Suggested further reading

of this book is an account of the elementary theory, dominated by the use
of Haar measure; this is an interesting approach, but Weil's style does not
help the reader.
The best account of Iwasawa theory is to be found in
tWa] L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag,
1980.
Books on the computational aspects of the subject become out of date as
new packages are developed. Subject to this, the definitive account is
[Co] H. Cohen, A Course in Computational Algebraic Number Theory,
Springer-Verlag, 1995.
A good introduction to these aspects can be found in
[Sm] N.P. Smart, The Algorithmic Resolution of Diophantine Equations,
Cambridge University Press, 1998.
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Index

dk, 4
h, 15
Jk, 15, 50
kp, 34
R,23
T},T2, 3
Vk,49
w, 53
T, 125
o,D,l
Ll2, 4
Ck, 15
Sk, 16

absolute norm, 13
absolute value, 31
adele, 48

principal, 49
algebraic number field, vii
approximation

strong, 40
weak, 39

Archimedean, 32
Artin element, symbol, 29
Artin map, 100

local, 108
Artin Reciprocity Law, 100
ascending chain condition, 6

Cebotarev Density Theorem, 96
character, 125

congruence, 79
Heeke GrOssencharakter, 82, 90, 104
Tate, 84

characteristic polynomial, 121
Chinese Remainder Theorem, 12
circle group, 125
class field, 99
class field theory, viii
class number, 15

conductor, 43, 68, 99, 100
congruence divisor class group,
conorm, 23
cyclotomic, 65

Dedekind domain, 9
density, 94

Dirichlet, 94
diagonal map, 49, 51
different, 43, 44

local, 44
discriminant

absolute, 4
relative, 26

Exercise, 17, 19, 40, 43, 62, 69,

Fermat's Last Theorem, vii, 73
first degree primes, 94
Frobenius element, 29, 134

Gauss sum, 69

Haar measure, integral, 123
Hasse Norm Theorem, 102
height, 16
Hensel's Lemma, 35
Hilbert Basis Theorem, 8
Hilbert symbol, 107, 108
Hilbert's Theorem 90, 4

ideal
fractional, 10
integral, 10

ideal class group, 15
idele, 48, 50

principal, 51
idele class group, 105
inertia group, field, 28
integer, algebraic, 1
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integral at p, 14
integral closure, 3

Kronecker-Weber Theorem, viii, 112

L-series, Dirichlet, 79
lattice, 120
local field, 35

minimal base, 118

Noetherian, 6
norm, 121

order, 3

pigeonhole principle, 16, 120
place, 31

finite, 34
infinite, 33

Pontryagin duality, 125
power residue symbol, 106
Product Formula, 35, 50

Quadratic Reciprocity Law, 61
quasi-character, 128

ramification, 41
tame, 41
wild, 41

ramification group, 28
ramified primes, 15
reduced form, 57
regulator, 23
Riemann hypothesis, 79

splitting group, field, 27
Stickelberger, 5

trace, 121
transform

Fourier, 128
Mellin, 130

ultrametric, 34
unit, 15

cyclotomic, 71
fundamental, 58

valuation
additive, 35
multiplicative, 31

zeta function
Riemann, 79
Tate, 84
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