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Foreword

1t is a very sad moment for me to write this “Geleitwort” to the English
translation-of Jiirgen Neukirch’s book on Algebraic Number Theory. It would
have been so much better, if he could -have done this himself.

But it is also very difficult for me to write this “Geleitwort”: The book
contains Neukirch’s Preface 10 the German edition. There he himself speaks
about his intentions, the content of the book and his personal view of the subject.
What else can be said?

It becomes clear from his Preface that Number Theory was Neukirch’s
favorite subject in mathematics. He was enthusiastic about it, and he was also
able to :mplant this enthusiasm into the minds of his students.

He attracted them, they gathered around him in Regensburg. He told them
that the subject and its beauty justified the-highesteffort and so they were always
-eager and motivatedto discuss and to learn the newest developments in'number
theory and arithmetic algebraic geometry. I remember very well the many
occasions when this equipe showed up in the meetings of the “Oberwolfach
Arbeitsgemeinschaft” and demonstrated their strength (mathematically and on
the soccer field).

During the meetings of the “Oberwalfach Arbeitsgemeinschaft” people
come together to learn a subject which is not necessarily their own speciality.
Always -at the end, when the -most -difficult talks had to be delivered, the
Regensburg.crew took over. In the meantime many members of this team teach
at German universities.

We find this charisma of Jirgen Neukirch-n the book. It will be a motivating
source for young students to study Algebraic Number Theory, and I am sure
that it will attract many of them.

At Neukirch’s funeral his daughter Christiane recited the poem which she
often heard from her father: Herr von Ribbeck auf Ribbeck im Haveiland by
Theodor Fontane. It tells the story of a nobleman who always generously gives
away the pears from his garden to the children. When he dies he -asks for a
pear to’be put in his grave,so that later the children can pick the pears from the
growing tree.

This is — 1 believe — a-good way of thinking of Neukirch’s book: There are
seeds in it for a tree to grow from which the “children” can pick fruits in the
time to come.

‘G. Harder



Translator’s Note

When | first accepied Jiirgen Neukirch’s request to translate his Algebraische
Zahlentheorie, back in 1991, no-one imagined that he would not live to see the
English edition. He did see the raw version of the translation (I gave him the
last chapters in the Fall of 1996), and he still had time 1o go carefully through
the first four chapters of it.

The bulk of the text consists of detailed technical mathematical prose
and was thus straightforward o translate, -even though the author’s desire
to integrate involved arguments and displayed formulae inte comprehensive
sentences could not simply be copied into English. However, Jiirgen Neukirch
had peppered his book with more meditative paragraphs which make rather
serious use of the'‘German language. When I started to work on the translation,
he warned me that in every one of these passages, he was not seeking poetic

eauty,-butonly the precisely adequate expression of anidea. Tt is for the reader
to judge whether T managed to render his ideas faithfully.

There is -one neologism thai 1 propose in this translation, with Jiirgen
Neukirch’s blessing: I call replete divisor, ideal, etc., what is -usually -called
Arakelov-divisor, etc. (a terminology that Neukirch had aveided in the German
edition). Time will deliver its verdict.

Tam much indebted to Frazer Jarvis for going through my entire manuscript,
thus saving the English language from various infractions. But needless to say,
Ialone am responsible for all deficiencies that remain.

After Jirgen Neukirch’s untimely death early in 1997, it was Ms Eva-
Maria Strobel who took it upon herself to finish as best she could what Jiirgen
Neukirch had to leave undone. She had already .applied her infinite care and
patience to-the original ‘German book, and she had assisted Jiirgen Neukirch in
proofreading the first four chapters of the translation. Without her knowledge,
responsibility, and energy, this book would not be what itis. In particular, a
fair number of small corrections and modifications of the German original that
had been accumulated thanks to attentive readers, were taken into account for
this English edition. Kay Wingberg graciously belped to check a few of them.
We sincerely hope that the book published here would have made its author
happy.

‘Hearty thanks go to Raymond Seroul, Strasbourg, for applying his wonderful
expertise of TgX to the final preparation of the camera-ready manuscript.



viii Translator’s. Note

Thanks go to the Springer staff for seeing this project through until it was
finally completed. Among them I want to thank-especially Joachim Heinze for
interfering rarely, but effectively, over the years, with the realization of this
translation.

Strasbourg, March 1999 Norbert Schappacher
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Number Theory, among the mathematical disciplines, occupies an idealized
position, similarto the-one that mathematics holds among the sciences. Under
no-obligation to serve needs that de not originate within itself,, it is essentially
-autonomous in setting its goals, and thus manages to protect its undisturbed
harmony. The possibility of formuiating its basic problems simply, the peculiar
clarity of its statements, the arcane touch in its laws, be they discovered or
undiscovered, merely divined;last but not least, the charm of its particularly
satisfactory ways of reasoning -— all these features:have at all times attracted
to number theory a community of dedicated followers.

But different number theorists may dedicate themselves differently to their
science. Some wil push the‘thearetical development only as far as is necessary
for the concrete result they -desire. Others will strive for a more universal,
conceptual clarity, never tiring of searching for the deep-lying reasons behind
the apparent variety-of arithmetic phenomena. Both attitudes are justified, and
they grow particularly effective through the mutual inspirational influence they
exert-on one another. Several beautiful textbooks illustrate the success of the
first attitude, which is oriented towards specific problems. Among them, let
us pick out in particular Number Theory by S.I. Borevicz and LR. SAFAREVIC
[14]: a book which'is extremely rich in content, yet easy to read, and which
we especially recommend to the reader.

The present - book was conceived with a different objective in mind. It does
provide the student with an essentially seif-contained introduction to the theory
of algebraic number fields, presupposing only basic algebra (it starts with
the -equation 2 = 1 + 1). But uniike the textbooks aluded to above, it
progressively emphasizes theoretical aspects that rely on modern concepts.
Still, in doing so, a special effort is made to limit the amount of abstraction
used, in order that the reader should not lose sight of the concrete goals of
number-theory proper. The desire to present number theory as much as possible
from a unified theoretical point of view seems imperative today, as a result of
the revolutionary development that number theory has undergone in the last
decades in conjunction with ‘arithmetic algebraic geometry’. The immense
success that this new geometric perspective has brought about — for instance,
in the context of the Weil conjectures, the Mordell conjecture, of problems
related to the conjectures of Birch and Swinnerton-Dyer — is largely based on
‘the unconditional and universal:application of the conceptual approach.



X Preface to the German Edition

It is true that those impressive results can hardly be touched upon in this
book because they require higher dimensional theories, whereas the -book
deliberately confines itself to the theory of algebraic number fields, ie., to
:the 1-dimensional case. But I thought it necessary to -present the theory in a
way which takes these developments-into account, taking them as the distant
focus, borrowing emphases and.arguments from the higher point of view, thus
integrating the theory of algebraic number fields into the higher-dimensional
theory — or at least -avoiding any obstruction to such an integration. This is
why I preferred, whenever it was feasible, the functorial point of view and the
more far-reaching argument to the clever trick, and made a particular effort to
place geometric interpretation to-the fore, in the spirit-of the theory-of algebraic
curves.

Let me forego the usual habit of describing the content of each individual
chapter in‘this foreword ; stmply turning pages will yield the same information
in a more entertaining manner. I would however like to-emphasize a few-basic
principles that have guided me while writing the book. The first chapter lays
down the foundations of the global:theory and the second of the local theory of
algebraic number fields. These foundations are finally summed up in the first
three sections of chapter I11, the aim of which isto.present the perfect analogy of
the classical notions and results with the theory of aigebraic curves and the idea
of the Riemann-Roch theorem. The presentation is dominated by “Arakelov’s
point of view”, which has acquired much importance in recent years. It is
probably the first time that this approach, with all its intricate normalizations,
‘has received an extensive treatment in a textbook. But I finally decided not
to employ the term “Arakelov divisor” although it is now widely used. This
would have entailed attaching the name of Arakelov to many other concepts,
introducing too heavy:a terminology for this elementary material. My decision
'seemed -all the more justified as Arakerov himself introduced-his divisors-enly
for arithmetic surfaces. The corresponding idea in the number field case goes
back to Hass, and is clearly highlighted for instance in S. Lane’s textbook [94].

Tt was not without hesitation that 1 decided to include Class Field Theory'in
chapters IV-VI. Since my book [107] on this subject had been published not
long before, another treatment of this theory posed obvious questions. But inthe
end, after long censideration, there was simply no other-choice. A sourcebook
on algebraic number fields without the crowning conclusionof class field theory
with its important consequencesfor the theory of L-series wouldhave appeared
like a torso, suffering from an unacceptable lack of completeness. This also
gave me the opportunity to modify and emend my earlier treatment, to enrich
that somewhat dry presentation with quite a few examples, to refer ahead with
some remarks, and to add beneficial exercises.

Alotof work went into'the last chapter on zeta functions-and L-series. These
functions have gained central importance in recent decades, but textbooks do
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not pay sufficient attention to them. I did not, however, include Ta7&’s approach
to Hecke L-series, whichis based on harmonic-analysis, although:it wouid have
suited-the more conceptual orientation of the book perfectly well. In fact, the
clarity of Ta7e’s ownpresentation could hardly be improved upon, and it has also
been sufficiently repeated in other places. Instead T have preferred to turn back
10 Hecke’s approach, which is not easy io understand in the original version,
but for all its various advantages eried out for a modern treatment. This having
beendone, there was the obvious opporturity of giving a thoroughpresentation
-of Arriv’s L-series with their functional equation — which surprisingly has not
been undertaken in any existing textbook.

It was a difficult decision to exclude fwasawa Theory, a relatively recent
theory totally germane to algebraic number fields, the subject of this book. Since
it mirrors important geometric properties of algebraic curves, ‘it would have
been a particularly beautiful vindication of our oft-repeated thesis that number
theory is geometry. [ do believe, however, that:in this case the geometric aspect
becomes truly convincing only if one uses étale cohomology — which can
neither be assumed nor reasonably developed here. Perhaps the dissatisfaction
with this exclusion will be strong enough to bring about a sequel to the present
volume, devoted to the cohomelogy of algebraic number fields.

From the very start the book was not just intended as-a modern sourcebook
on algebraic number theory, but also as :a convenient textbook for a course.
This intention was increasingly jeopardized by the unexpected growth of the
material which had to be covered in view -of the :intrinsic necessities of the
theory. Yet I think that the book has not lost that character. In fact, it has passed
a first test in -this respect. With a bit of careful planning, the basic content of the
first three chapters can easily be presented in-one academic year (if possible
including infinite Galois theory). The following term will then provide scarce,
yet sufficient roem for the class field theory -of .chapters TV—VI.

Sections 11-14 of chapter 1 may mostly be dropped from an introductory
course. Although the results of section 12 on orders are irreievant for the
sequetl, I.consideritsinsertion in the book particularly important. For one thing,
-arders constitute the rings of multipliers, which-play an eminent role in many
diophantine problems. But most importantly, they tepresent the analogues
of singular algebraic curves. As cohomology theory becomes increasingly
important for algebraic number fields, and since this is even more true of
algebraic K -theory, which cannot be constructed without singular schemes,
‘the time has come to give:orders an adequate treatment.

In chapter II, the special treatment of hensehan fields in section 6 may be
restricted to complete valued fields, and thus joined with section 4. If pressed
for time, section 10 on higher ramification may be omitted completely.
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The first three sections of chapter 111 should be:presented in-the lectures since
they highlight a new approach to- classical results of algebraic number theory.
The -subsequent theory concerning the theorem of Grothendieck-Riemann-
Roch is a nice subject for a student seminar rather than for an introductory
course,

Finally, in presenting class field theory, it saves considerable time if the
students are already familiar with profinite groups and infinite Galois theory.
Sections 4-7-of chapter V, on formal groups, Lubin-Tate theory and:the theory
-of higher ramification.may be omitted. Cutting out event more, chapter V, 3, on
the Hilbert symbol, and VI, 7 and 8, still leaves a fully-fledged theory, which
is however unsatisfactory because it remains in the abstract realm, and is never
linked to classical problems.

A word on the exercises at the end of the sections. Some of them are not so
much exercises, but additional remarks which did not fit well inte the main text.
The reader is encouraged to prove his versatility -in looking up the literature.
1 should also point out that 1 have not actually done all the exercises ‘myself,
so that there might be occasional mistakes in the way they are posed. If such a
case arises, it is for the reader to find the correct formulation. May the reader’s
reaction to such a pessible slip of the author be mitigated by Goethe’s distich:

“Irrtum verldft uns nie, doch ziehet ein héher Bediirfnis
Immer den strebenden Geist leise zur Wahrheit hinan” *

During the writing of this book T have been helped in many ways. 1 thank
‘the Springer Verlag for considering my wishes with generosity. My students 1.
Kavsz, B. Kock, P. KoLcze, Ta. Moser, M. Spiesshave critically examined larger
or smaller parts, which led to numerous improvements and made it:possible to
-avoid mistakes-and ambiguities. To my friends W.-D. Gever, G. Tamme, and K.
WivGeerc 1 owe much valuable advice from which the ‘book has profited, and
it was C. DenivGER and U. Jannsen who suggested that I give a new treatment
of Hecke’s theory .of theta series and L-series. I owe a great debt of gratitude
to Mrs. Eva-Maria StroseL. She drew the pictures and helped me with the
proofreading and the formatting of the text, never tiring of going into the
minutest detail. Let me heartily thank all those who assisted me, and also those
who are not named ‘here. Tremendous thanks are due to Mrs. MarTiva HERTL
who did the typesetting of the manuscript in TgX. That the book can appearis

* Error is ever with us. Yet some angelic need
‘Gently coaxes our striving mind upwards, towards truth,
(Translation suggested by Barry Mazur.)
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-essentially due to her competence, to the unfailing and kind willingness with
which she worked through the long handwritten manuscript, and through the
many modifications, additions, and corrections, .always prepared to give her
best.

Regensburg, February 1992 Jiirgen Neukirch
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Chapter 1
Algebraic Integers

§ 1. The Gaussian Integers

The -equations
2=14+1,5=14413=44+9 17=1+16,29=4425 37T=1+36

show the first prime numbers that can be represented as a sum of two squares.
Except for 2, they are all = 1 mod 4, and it is true in general that any odd
prime number of the form p = a* 4+ b? satisfies p = 1 mod 4, because
‘perfect squares are = ( or = 1 mod 4. This is obvious. What is not obvious
is the remarkable fact that the converse also holds:

(1.1) Theorem. For all prime numbers p # 2, one has:

p:az-l—b2 {a,b€Z)y <+ p=Ilmod4.

The -natural explanation of this arithmetic law concerning the ring Z of
rational integers is found .in the larger domain of the gaussian integers

Ziil={a+bi|abeZ}, i=+-1.
In this ring, the equation p = x> 4 y? turns into the product decomposition
p=&+iy)x —iy),
so that the problem is now when and how a prime number p € 7 factors

in Z[i]. The answer to this question is based on the following result about
unique factorization in Z{i].

(1.2) Proposition. The ring 7Z.[i] is-euclidean, therefore in particular facto-
rial.

Proof: We show that Z[i] is euclidean with tespect to the function Z[i] —
NU {0}, @ — |a|? So, for a,B € Z[i], B # 0, one has to verify the
existence of gaussian integers y, p such that

a=yB+p and |pI> <|BI%.
It clearly suffices to find y € Z[i] such that f% -~ y! < 1. Now, the
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gaussian integers form a lattice in the complex plane C (the peints with
immeger coordinates with respect to the basis 1,7). The complex number %
lies in some mesh of the lattice and its distance from the nearest lattice point
is net greater than half ‘the length of the diagonal of the mesh, i.e. %\/i

Therefore there exists an element y € Z[i] with [ % — y] < —;\/5 =<1. O

Based on this result-about the ring Z[/], theorem (1.1) now follows like
this: it is sufficient to show that a prime number p = 1 mod 4 of Z does
not remain a prime element in the ring Z{i]. Indeed, if this is proved, then
there exists a decomposition

p=a-p

inte two non-units ¢, 8 of Z[i]. The norm of z = x + iy is defined by
N(x+iy) = (x +iy)x —iy) =x"+%,
Le., by N(z) = lz]. 1t is multiplicative, so that one has
p?=N(@) N(B).

Since ¢ and g are not units, it follows that N{(a), N (f) # 1 (see exercise 1),
and therefore p = N{«) = a? + b*, where we put ¢ =a + bi.

Finally, in order to -prove that a rational prime of the form p = | + 4n
cannot be a prime element in Z[i], we note that the-congruence

~1=x*mod p

admits a solution, namely x — {Zx)!. Indeed, since —1 = (p — 1)! mod p
by Wilson’s theorem, one has

~l=(p-D'={1-2--C)]{(p— Dp —2)- - (p —2m)]
=[] [(=1*@n)!] =[@m1]* mod p.

Thus we have p|x? 4+ 1= (x 4+1)(x —i). But since % + l; ¢ Z{i}, p does
not divide any of the factors x +i, x —i, and is therefore not a prime element
in-the factorial ring Z[{].

The example of the equation p = x?+y> shows that.even quite elementary
questions about rational integers may lead to the consideration -of higher
domains of integers. But it was not so much for this equation that we have
introduced the ring Z[i], but rather in -order to preface the general theory
of algebraic integers with a concrete example. For the same reason we wiil
now look at this ring a bit moere closely.


J.G. Yang
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‘When developing the theory -of divisibility for a-ring, two basic problems
.are most prominent: on the one hand, to determine the units of the ring in
-question, on the other, its prime elements. The answer to the first question
in the present .case is particularly -easy. A number o = @ + bi € Z[i] is a
unit if and only if its norm is 1:

N(@) = (a +ibY(a—ib) =a* + b* =1

(exercise 1), i.e.,if either a> = 1, b> = 0, or a*> = 0, b*> = 1. We thus obtain
the

(1.3) Proposition, The group of units of the ring Z[i] censists of the fourth
roots of unity,
ZLY = {1, — 1,4, —i).

In order to answer the question for primes, i.e., irreducible elements of
the ring Z[i], we first recall that two elements «, f in a ring are called
associated, -symbolically « ~ g, if they differ only by a unit factor, and
that every element associated to an irreducible element 7 is also irreducible.
Using theorem (1.1) we obtain the folowing precise list-of all prime numbers
of Z{i].

(1.4) Theorem. The prime elements & of Z[i], up to associated elements,
are given as follows.

Q) m=a+bi witha>? +b*>=p,p=1mod4,a > |b| >0,
3) m=p, p =3 mod4.

Here, p denotes a prime numberof Z.

Proof: Numbers asin (1) or (2) are prime because a-decomposition 7 = «- 8
in Z[i} implies an equation

p=NG@@) =N -N(@B),

with some prime number p. Hence either N(a) = 1 or N(8) = 1, so that
either ¢ or 8 is a unit.

Numbers m = p, where p = 3 mod 4, are prime in Z[i], because
a decomposition p = « - B into non-units a, 8 would imply that p? =
N(a)-N(B), so that p = N(a) = N(a + bi) = a®> + b*, which accoerding
to-(1.1) would yield p = 1 mod 4.
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This being said, we have to check that an arbitrary prime element 7

of Z[i] is associated to -one of those listed. First of all, the decomposition
N(m)=m T =pi--pr,

with rational primes p;, shows that 7| p for seme p = p;. This gives
N(m)|N(p) = p°, so that either N(7) = p or N(7) = p°. In the case
N(m) = p we get 1 = a + bi with @®> + b* = p, so 7 is of type (2) or,
if p = 2,1t is associated to 1 4. ‘On the other hand, if N(x) = pz,
then = is associated to p since p/m is an integer with norm one and
thus a anit. Moreover, p = 3 mod 4 has to hold .in this case because
otherwise we would have p = 2 or p = 1 mod 4 and because of (1.1}
p = a®+ b* = (a + biYla — bi) could not be prime. This completes the
proof. O

The proposition also settles completely the question of how prime num-
bers p € Z decompose in Z[i]. The prime 2 = (1 +i)(1 —i) is associdted to
the square of the prime element 1 4-/. Indeed, the identity 1 —i = —i(1+1)
shows that 2 ~ (I 4 i)2. The prime numbers p = 1 mod 4 split into two
conjugate prime factors

Jugate pu p = (a+bi)a—bi),

and the prime numbers p = 3 'mod 4 remain prime in Z[1].

The gaussian integers play the same rdle in the field
Q) ={a+bi|abeQ}
as the rational integers do in the field Q. So they should be viewed as the
“integers” in Q(i). This notion of integrality is relative to the coordinates of
the -basis 1,i. However, we also have the following characterization of the
gaussian integers, which is independent of a-choice -of basis.

(1.5) Propesition. Z[i] consists precisely-of those elements of the extension
field Q(i) of Q whichsatis{y a monic polynomial equation

X4ax+b=0

-‘with coefficients.a,b € Z.

Proof: An element o = ¢ 4 id € Q(i) is a zero -of the polynomial
x24+ax+beQx] with a=—2¢,b=c*+d>.

If ¢ and d are rational integers, then se are a and b, Conversely, if ¢ and b

are integers, then so are 2¢ and 2d. From (2¢)> + (2d)? = 4b =0 mod 4 it

follows that (2¢)? = (2d)? = 0 mod 4, since squares are-always =0 or = 1.

Hence ¢ and d are integers. 0
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The last proposition -ieads us to the general notion of an algebraic integer
as being an element satisfying a monic polynomial -equation with rational
integer coefficients. For the domain-of the gaussian integers we have obtained
in this section a complete -answer to the -question of the units, the -question
-of prime €lements, and to the -question -of unique factorization.

These questions indicate already the fundamental problems in the general
theory of algebraic integers. But the answers we found in the special
case Z[i] are not typical. Novel features will present themselves instead.

Exercise 1. o € Z[i] is a unit if and-only if N(a) = 1.

Exercise 2, Show that, in the ring Z[/], the relation aff = ¢y”, for «, B relatively
prime numbers and ¢ :a unit, implies o = ¢'§" and 8 = &¢"x", with &', &” units.

Exercise 3. Show that the integer solutions of the equation

x2 _+_ yl — 22
such that x,y,z >-0.and (x,y,z) =1 (“pythagorean tripies™) are all given, up to
possible permutation-of x and y, by the formuie

x =u*— 2, y = 2uv, z=u+ 2,
where u,v€Z,u > v >0, (u.v) = 1, u, v not both odd.
Hint: Use exercise 2 to show that necessarily x +iy = o with a unit & and with
a=u-+iveZlil.

Exercise 4. Show that the ring Z[i] cannot be ordered.

Exercise 5. Show that the only units of the ring Z[~/—d] = Z + ZA/—d, for any
rational integer d > 1, are %1.

Exercise 6. Show that the ring Z[+/d] = Z + Z+/d, for any squarefree rational
integer d > 1, has infinitely many -units.

Exercise 7. Show that the ring Z[ﬁ] =7 + Z+/2 is euclidean. Show furthermore
that its units .are given by £(1 + \/i)”, n € Z, and -determine 1its prime -elements.

§ 2, Integrality

An algebraic number field is a finite field -extension K -of Q. The ele-
‘ments of K are called algebraic numbers. An algebraic number is called
integral, or an algebraic integer, if it is a zero of a monic polynomial
f(x) € Z[x]. This notion -of integrality applies not only to algebraic num-
bers, but occurs in ‘many difterent contexts and therefore has to be treated
in full generality.
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In what follows, rings are always understood to be commutative rings
with 1.

(2.1) Definition, Let A € B be an extension of rings. An element b € B is
called integral over A, if it satisties a monic equation

X tax" '+ ta, =0, n>1,

with-coefficients-a; € A. The ring B is called integral over A if all elements
b € B are integral over A.

1t is desirable, but strangely enough not immediately obvious, that the
sum and the product of two elements which are integral -over A are again
integral. This will be a consequence of the following abstract reinterpretation
of the notion of integrality.

{2.2) Propesition. Finitely many elements by, ..., b, € B are all integral
over A if and only if the ring Alb,, ..., b,] viewed as an A-module is finitely
generated.

To prove this we make use of the following result of Iinear algebra.

(2.3) Proposition {Row-Column Expansion). Let A = (a;;) bean (r x r)-
matrix with entries in an arbitrary ring, and let A* = (a;“j) be the adjoint
matrix, Le.,a;; = (=it det(A; 1), where the matrix A;; is obtained from A
by deleting the i -th column and the j-th row. Then-one has

AAY = A"A = det(A)E,

where £ denotes the unit matrix of rank r. For any vector x = (x, ..., X;),
this ‘yields the implication

Ax =0 == (detA)x =0.

Proof of proposition (2.2): Let.b € B ‘be integral over A and f(x) € A[x]
-a monic polynomial of degree » > 1 such that f(b) = 0. For an arbitrary
polynomial gix) € Alx] we may then write

gx) = q(x) f(x) + 1),
with g (x}), r(x) € Alx] and deg(r(x)) < n, so that one has
g =rb)=ay+arb+- - +a, b
Thus A{b] is generated as A-module by 1,5, Y



§2. Integrality 7

More generally, if by, ..., b, € B are integral over A, then the fact that
Alb, ...,-b,] is of finite type over A follows by induction on n. Indeed,
since b, is integral -over R = A[b,, ..., b,_1], what we have just shown
implies that R{b,] = A[b, ..., bp] is finitely generated-over R, hence also
over A, if we assume, by induction, that R is an A-module of finite type.

Conversely, assume that the A-module Alb,, ..., b,] is finitely generated
and that w;, ..., w, is a system of generators. Then, for any element
b € Alby, ..., b,], one finds that

r
bw; = Zaijwj, i=1,...,r, aj;€A.
j=1

From (2.3) we see that det(bE — (a;;))w; =0,i =1, ..., r (here E is the
unit matrix of rank r), and since 1 can be writiten 1 = cyw; + - -+ + ¢y, the
identity det(bE — (a;;)) = 0 gives us a monic equation for b with coefficients
in A. This shows that b is indeed integral over A. ]

According to this proposition, if by, ..., b, € B are integral over A,
then so is any element b of Alb, ..., b,l, because Alb,, ..., Dy, b] =
Alby, ..., by} is a finitely -generated A-meodule. In particular, given iwo
integral elements b, b, € B, then b; + b, and b b, are also integral over A.
At the same time ‘we obtain the

(2.4) Proposition. Let A € B C C be two ring extensions. If C s integral
over B and B isintegral over A, then C is integral over A.

Proof: Take ¢ € C, and let ¢” +byc" ™' + ... +b, = 0 be an equation with
coefficients in B. Write R = A[by, ..., b,]. Then R[c] is a finitely generated
R-module. If B is integral over A, then Rfc] is even finitely generated
over A, since R is finitely generated over A. Thus c is integral over A. [

From what we have proven, the set of -all elements
A = {b € B| b integral over A}

in a ring extension A C B forms a ring. It is called the integral closure
of A in B. A is said to be integrally closed in B if A = A. It is immediate
from (2.4) that the integral closure A is itself integrally-closed in B. If A is an
integral domain with field of fractions K, then the integral closure A of A
in K is called the nermalization of A, and A is simply called integrally
closed if A = A. For instance, every factorial ring is integrally closed.
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In fact, if a/b € K (a,b € A) is integral over A, i.e.,
@/b)" +ar(@/by'™" + - +a, =0,
with a; € A, then
a"+aba" " + -+ ah" =0.

Therefore each prime €lement 7w which divides b also divides a. Assuming
a/b to be reduced, this implies a/b € A.

We now turn to a more specialized situation. Let A be an integral
domain which is integrally closed, K its field of fractions, L|K a finite
field extension, -and B ‘the integral closure of A in L. According to(2.4), B
is automatically integrally closed. Each element § € L is of the form

b
B=~>, beB,acA,
-a
because if

apB"+ - +aBp+an=0, a €A, a #0,
then b = a, B is integral over A, an integral -equation
(anP)' +---+ay(anp) +a, =0, a; €A,

being obtained from the equation for 8 by multiplication by a~'. Further-
more, the fact that A is integrally closed has the effect that an element 8 € L
is integral-over A if and only if its minimal polynomial p(x) takes its coef-
ficients in A. In fact, let B be a zero of the monic polynomal g(x) € Afx].
Then p(x) divides g(x) in K[x], so that all zeroes By, ..., B, of p(x)
are integral over A, hence ‘the same ‘holds for all the-coefficients, in other
words p(x) € A[x].

The trace and the norm in the field extension L |K furnish important tools
for the study of the integral elements in L. We recall the

(2.5) Definition. The trace and norm of an element x € L are defined to be
the trace and determinant, respectively,-of the endomorphism

T, : L > L, Tyl =xa,
-of the K -vector space L:

Trp ik (x) =Tr(Ty),  Npjk(x) = det(T.).
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In the characteristic polynomial
folt) =det(tid=T,) =" —ait"' +... +(=1)"a, € Ki]
of Ty, n =L : K], we recognize the trace and the norm as
ay =Trpg(x) and a, = Npg(x).
Since Tyyy =T, + T, and Ty, = T, o T, we obtain homomorphisms
Trpk :L— K and Npyg : LY — K™,

In the case where the extension L}K is separable, the trace and norm admit
the following Galois-theoretic interpretation.

(2.6) Proposition. If L|K is a separable extensionando : L — K varies
-over the different K -embeddings of L into an algebraic-ciosure K of K, then
we have

(i) fr(@) =11t —ox),
i) Trpx(x) =Y ox,

(i) Npygxx) = l_[ oX.

Proof: The characteristic polynomial f(f) is a power
L0 =p?!, d=[L:KW],
of the minimal polynomial
)y =t"+cit" 4 ey, m= [K(x) : K] ,

of x. In fact, 1,x, ..., x™ ! is a‘basis of K(x)|K, and if a), ..., ay is a
‘basis .of L|K{x), then

o, arx, ..o x™ N g aax, ., agx™!
is a basis-of L|K . The matrix -of the linear transformatior T : y — xy ‘with
respect to this basis has obviously only blocks along the diagonal, each of
them equal to

/0 1 0
0 1 0
0 0 0 1

—Cm  —Cm—1 —Cm-2 '+ €1
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The corresponding characteristic ‘polynomial is easily checked to be
o™ N ey = pa(D),
sothat finally 7 (1) = p.(1)7.
The set Homg (L, K ) of all K -embeddings of L is ‘partitioned by the

equivalence relation
C~T &— 0X =T7TX

into m equivalence classes of 4 elements each. if oy, ..., 0, is a-system of
representatives, then we find

m
pit) =[]t — 0ix),
i=1

and fo(t) = [IiL, (¢ —0ix)? = [T/L, [Tgnot — 6x) =[], (¢ — ox). This
proves (1), and therefore also .(ii) and (iii), after Vieta. ]

(2.7) Cerollary. In a tower of finite field extensions K < L € M, one has

Trijk oTrmie =Trmk s Newk o Nmi = Ny -

Proof: We assume that M |K is separable. The set Homg (M LK) of K-
embeddings of M is partitioned by the relation

o~T &= Oo|L=71L
into m = [L : K] equivalence ciasses. f o, ..., 0, is a system of represen-
tatives, then Homg (L, K) ={o;|r|i =1, ..., m},and we find
m

m m
Trink () =3 Y ox =3 TropmieL(oix) =3 o; Tray(x)

i=10~0; =l =1
= Triix (Trane () .
Likewise for the norm.

‘We will not need the inseparable case for the sequel. However it follows
easily from what we have shown above, by passing to-the maximal separable
subextension M*|K. Indeed, for the inseparable degree [M : K], =
M :M5lonehas [M : K], ={M : L|;[L : K], and

Frng(x) = [M : K Trygs i (x),  Nagjg () = Nags i (0)tMKD

(see [143], vol. 1, chap. 11, §10).

[
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The discriminani of .a basis «y, ..., @, of a separable extension L|{K is
defined by i
dlai, ....ap) = det((0;)))’,

where o, i =1, ..., r, varies over the K -embeddings L — K. Because of
the relation
Trrik (o)) = ) (oxe; ) (0rt),
k

the matrix (Trp k (¢;;)) is the product of the matrices (oke;)' and (op;)).
Thus one may -also write

dey, «.oo0y) = det(TI’L;K (Oéi(xj')') .
In the special case of a basis of type 1,4, ..., 6" " one gets

dq1,6, ...,0"" = 1@ —6,)",
i<j
where 8; = 0;0. This is seen by successively multiplying each of the first
(n — 1) columns in the Vandermonde matrix

1 6 6 - o
1 6 6 - 6
1 6, 6 ... ot

by 6, and subtracting it from the following.

(2.8) Proposition. If L|K is separable and e, ..., a, Is a basis, then the
discriminant
dley, ..., 0y) #0,
and
(x, ) = Trp ik (xy)
is a nondegenerate bilinear formon the K -vector space L.

Proof: We first show that the bilinear form (x, y) = Tr(xy) is nondegenerate.
Let @ be a primitive element for L |K, i:e., L = K(6). Then 1,0, ... Lo
is a basis with respect to which the form (x,y) is given by ‘the matrix
M = (TrtL|K(9’_1'91*!)),-,]-:1‘,,,,n. It is nondegenerate because, for 6, =-0; 6,
we ‘have
det(M) =d(1,6, ..., 6" = [](6; —6;)* #0.
i<

If «, ..., a, is an arbitrary basis of L|K, then the bilinear form (x, y) with
respect to this basis is given by the matrix M = (Trp x (¢ @;)). From the
aboeve it follows that d{¢, ..., a,) =det(M) # Q. O
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After this review from the theory of fields, we return to the integrally
closed integral domain A with field of fractions K, and to its integral
closure B in the finite separable extension L|K. If x € B is an integral
element of L, then all of its conjugates ox are also integral. Taking into
account that A is integrally closed, i.e., A = BN K, (2:6) implies that

Triix(x), Npg(x)eA.
Furthermore, for the group of units of B over A, we obtain the relation
xe B NLIK(X)EA*.

Forif aNpx(x) = 1,a € A, then | =a][, ox = yx forsome y € B. The
discriminant is often useful because -of the folowing

(2.9) Lemma. Leta, ..., @, be a basis-of L|K which is contained in B, of
discriminant ¢ = d(ay, ..., a,). Then one has

dB C Ac + - -+ + A, .

Proof: If « = a1y + - +apa, € B, aj € K, then the a; are a solution of
the system of dinear equations

Trik (i) = Z Trp k(eaj)a;,
J

and, as Trp .k (¢ja) € A, they are given as the quotient of an element of A
by the determinant det(Trrx (ot;etj)) = d. Therefore da; € A, and thus

do € Acy + - -+ + Aw, . O

A system of elements @, ..., w, € B such that each b € B can be
written uniquely as a linear combination

b=ajw + - +a,wy

with coefficients a; € A, is cailed :an integral basis of B over A (or:
an A-basis of B). Since such an integral basis is automatically a basis
of L|K , its length n always equals the degree [L : K] of the field extension.
The existence of an integral basis signifies that B is a free A-module
of rank n = [L : K. In general, such an -integral basis does not exist.
If, however, A is a principal ideal domain, then one has the following more
general

(2.10) Proposition. If L|K is separable and A is.a principal ideal domain,
then every finitely generated B -submodule M # 0 of L is a free A-module of
rank [L : K. In particular, B admits an integral basis over A.
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Proof: Let M # 0be a finitely generated B-submodule of L and «y, .. .., ¢,
a basis of L|K. Multiplying by an element of A, we may arrange for the «;
to lie in B. By (2.9), we then have dB € Aw; + - -- + A«,, in particular,
rank(B) < [L : K1, and since a system of generators of the A-module B is
also a system of generators of the K-module L, we have rank(B) = [L : K].
Let py, ..., oty € M be a-system of generators of the B-module M. There
existsan @ € A, a # 0, suchthatay; € B,i =1, ..., r,sothataM C B.
Then
adM C.dB C Aay + - -~ + Aa,, = M.

According to the main theorem on finitely generated modules.over principal
ideal domains, since M ts a free A-module, so is ad M, -and hence also M.
Finally,

L : K} =rank(B) < rank(M) = rank(ad M) < rank{My) = [L : K],
hence rank(M) = [L : K. 0

It is in general a difficult problem to produce integral bases. In concrete
situations 1t can also be an important one. This is why the following
propesition is interesting. Instead of integral bases -of the integral closure B
of Ain L, we will now simply speak of integral bases of the extension LK.

(2.11) Proposition. Let L|K and L'|K be two Galois extensions of degree n,
resp. n',such that LNL" = K. Let wy, ..., wy, resp. o, ..., ,,, be an
integral basis of L | K, resp. L'{K , with discriminant d, resp. d’. Suppose that
d and d' are relatively prime in the sense that xd + x’d’" = 1, for suitable
x, x' € A. Then w; u); is an integral basis of L.L', -of discriminant ar'dm.

Proof: As LNL' = K, we have [LL’' : K] = nn’, so the nn’ products vwiw}
«do form a basis-of LL’|K. Now det « be an integral element of LLL’, and

write
/

'a:Za,-jw,-wj, aij ekK.
L
We have to show that a;; € A. Put 8; = ) ;a;;wi. Let G(LL'|L") =
{o1. ..., 0n}and G(LL'|L) = {0/, ...,0,,}. Thus
GLL|K)={owoy | k=1,....n, £=1,..., 1},
Putting

T = (O’éa)}), a=(oa,...,o,a), b=@, ..., L),
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one finds det(T)? = d' -and
- a=ThH.

Write T7* for the adjoint matrix of T. Then row-column expansion {2.3) gives
det(TYb=T"a.

Since T* and a have integral entries in LL’, the muitiple d’h has integral
entries in L, namely d'8; = ), d'a;; w;. Thus.d'a;; € A. Swapping the roles
of (w;) and (w;.),rone checks in the same manner that da;; € A, so that

ajj = xdagj +x’d’,a'l-j €A.

4

Therefore «w; o is indeed an integral basis of LL'|K. We compute the
discriminant A of this integral basis. Since G(LL'|K) = {oyo; | k =
L...,n, £ = 1,...,#}, it is the square of the determinant .of the
{nn’' x nn’)-matrix

M = (oxo, w,a,j) = (opw; aéa)}).

This matrix is itself an (#’ x n')-matrix with entries (n x n)-matrices of which
the (£, j)-entry is the mairix Qa’éa); where Q = (oyw;). In other words,

[0) 0\ [ Eojow; --- Eo o
\:0 Q/ \Eolw, --- Es),w,
Here £ denotes the (n x n)-unit matrix. By changing indices the second
matrix may be transformed to look like the first one. This -yields

A = det(M)? = det(Q)*" det((oyw))) " = d”'d". O

Remark: It follows from the proof that the proposition is valid for arbitrary
separable extensions (not necessarily ‘Galois), if one assumes instead -of
LNL' =K that L and L’ are lincarly disjoint.

The chief application of our censiderations -on integrality will concern the
integral closure .ox C K of Z € Q in an algebraic number field K. By
propesition {2.10), every finitely generated ok -sabmodule a of K admits
a Z-basis ¢y, ..., O,

a:Z(x,—i—---—i-Zan.

"The discriminant
d(wy, ..., o) = de{( (o*io:j)) g
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is independent of the choice of a Z-basis; if &}, ..., «; is another basis,
then the base change matrix T = (a;;), o = > ;aijaj, as'well as its inverse,
has integral entries. It therefore has determinant 1, so that indeed

d@), ..., o) =det(T) d(ay, ..., an) =d(@i, ..., ).
We may therefore write

da) =d(ay, ..., o).
In the special case of an integral basis wy, ..., ®w, of ©x we obtain the
discriminant of the -algebraic number field X,
dg =d(og) =d(wy, ..., wy).

In general, one has the

(2.12) Propeosition. If o C o are two nonzero finitely generated Ok -sub-
‘modules of K, then the index (o' : ¢) is finite and satisfies

d@@) = (@ :0)? d@).

All we have to show is that the index (a’ : a) equals the absolute value
of the determinant of the base change matrix passing from a Z-basis of a
to a Z-basis of a'. This proef is part of the weli-known theory of finitely
generated Z-modules.

Exercise 1. Is 31+—2an an algebraic integer?

Exercise 2. Show that, if the integral domain A is integrally ciosed. then so is the
polynomial ring A[z].

Exercise 3. In the polynomial ring A = Q[X,Y], consider the principal ideal
p =:(X? —Y?). Show that p is a prime ideal, but A/p is-not integrally closed.

Exercise 4. Let D be a squarefree rational integer # 0, 1 and d -the discriminant of
the quadratic number field K = Q(+/D). Show that

d=D, if D=1 mod 4,
d =4D, ifD=2or3 mod4,
.and that an ‘integral basis of K -is given by {1, JB } in the second case, by
{1, %(11 + /D)) in the first case, and by {1, L+ Vd )} in both cases.
Exercise 5. Show that {1, s/i 3/52,} is an integral basis of @(3/6).
Exercise 6. Show that {1,6, %(9 +6?%)} is an integral basis of Q(6),-9° —0 —4 = 0.

Exercise 7. The discriminant di of an algebraic number field K is always = Omod 4
-or. =1 mod 4 (Stickelberger’s discriminant relationy.

Hint: The determinant det{c;w;) of an integral basis w; is a sum of terms, each
prefixed by a positive or a negative sign. Writing P, resp. N, for the sum of the
positive, resp. negative terms, one finds dg = (P — N)? = (P + N)* —4PN.
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§ 3. Ideals

Being a generalization of the ring Z C @, the ring ok of integers of an
algebraic number field K is at the center of all our considerations. As in Z,
every non-unit & # 0 can be factored in og into a product of irreducible
elements. For if « is not itself irreducible, then it can be written as a product
of two non-units- = Sy. Then by §2, one has

1 < [NkigB®)] < |Nkig@)], 1< |Nkio(y)| <|Nkigl@)

3

and the prime decomposition of « follows by induction from those of p
and y. However, contrary to what happens in the rings Z and Z[i], the
uniqueness of prime factorization dees not hold in general.

Example: The ring of integers of the field K = Q(+/—5) is given by §2,
exercise 4, as ©x = Z + Z~/—5. In this ring, the rational integer 21 can be
decomposed in two ways,

20=3-7=(142v=5)- (1 =24=5).

All factors occurring ‘here are irreducible in ©g. For if one had, for
instance, 3 = aff, with «, 8 non-units, then 9 = Nk () Nk g(B) would
imply Nk g{e) = 3. Bui the equation

Ngig(x +y~/=5) =x* +5y* = £3

has no solutions in Z. In the same way it is seen that 7, 1 + 24/—5, and
1 — 24/—5 are irreducible. ‘As the fractions

14+2/-5 1+2-5
3 7

do not belong to ok, the numbers 3 and 7 are not associated to 1 +24/—5
or 1 —24/—5. The two prime factorizations of 21 are therefore essentially
different.

Realizing the failure of unique factorization in general has led to one of the
-grand events in the history of number theory, the discovery of ideal theory by
Epuarp Kummer. Inspired by the discovery of complex numbers, Kummer's
idea was that the integers of K would have to admit an embedding into a
bigger domain of “ideal numbers” where unique factorization into “ideai
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prime numbers” would hold. For instance, in the example -of
21=3-T=(14+2+-5)(1 -24-5),

the factors on the right would be composed of ideal prime numbers p, P2,
P3, Pa. subject tothe rules

3=pwpy, T=psps, 14+2V-5=pips, 1-2V-5=pps.

This would resolve the above non-uniqueness into the wonderfully unigue
factorization

21 = (p1p2)(P3ps) =-(P1p3)(P2p4).

Kummer’s concept of “ideal numbers” was later replaced by that of ideals
of the ring ©k . The reason for this is easily seen: whatever an ideal number
.a should be defined to be, it ought to be linked to certain numbers a € ok
by a divisibility relation-a|a satisfying the following rules, for a, b, € 0,

aja and ‘alb = ajaxb; onla = alia.

And an ideal number a should be determined by the totality of its divisors
n Og

a={acok|ala}.
But in view of the rules for divisibility, this set is.an ideal of 0k..

This is the reason why RicHArRD DEDEKIND Te-introduced Kummer’s “ideal
numbers” as being the ideals of ©ox. Once this is -done, the divisibility
relation a| a can simply be defined by the inclusion a € a, and more generally
the divisibility relation a|b between two ideals by b C a. In what follows,
we will study this notion of divisibility more closely. The basic theorem here
is the foilowing.

(3.1) Theorem. Thering o is noetherian, integrally-closed, and every prime
idealp #0is a maximal ideal.

Proof: ok is noetherian because every ideal a is a finitely generated Z-
module by (2.10), and therefore .a fortiori a finitely generated ¢k -module.
By §2, ok is also integrally closed, ‘being the integral closure of Z in K.
It thus remains to show that-each prime ideal p # 0 is maximal. Now, pNZ
is a-nonzero prime ideal (p) in Z: the primality is clear, and if y € p, y # 0,
and
Yiday" '+ +a,=0

is an equation for y with a; € Z, .a, # 0, then g, € p N Z. The integral
domain © = Ok /p arises from x = Z/pZ by adjoining algebraic elements
and is therefore again a field (recall the fact that o] = «{a), if « is
algebraic). Therefore p is a maximal ideal. [N
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The three properties of the ring ox which we have just proven lay the
foundation of the whole theory of divisibility of its ideals. This theory was
developed by Dedekind, which suggested the following

(3.2) Definition. A noetherian, integrally closed integral domain in which
every nonzero prime ideal is maximal is called a Dedekind domain.

Just as the rings of the form 0x may be viewed as generalizations of the
ring Z, the Dedekind domains may be viewed as gencralized principal ideal
domains. Indeed, if A is a principal ideal domain with field of fractions K,
and L|K is a finite field extension, then the integral closurc B of A in L is,
in general, not a principal ideal domain, but always a Dedekind domain, as
we shall show further on.

Instcad of the ring ox we will now consider an arbitrary Dedekind
domain ©, and we denote by K the field of fractions of ©. Given two
ideals a and b of © (or more generally of an arbitrary ring), the divisibility
relation alb is defined by b < a, and the sum of the ideals by

a+b={a+b|aca beb].

This is the smallest ideal containing a as well as b, in other words, it is
the greatest common divisor ged(a, b) of a and b. By the same token the
intersection a N b is the lem (least common muttiple) of a and b. We define
the product of a and b by

ab={ Y aib; | a; € a, b € b}.
7

With respect to this multiplication the ideals of © will grant us what the
elements alone may refuse to provide: the unique prime factorization.

(3.3) Theorem. Every ideal a of o different from (0) and (1) admits a
factorization
a=pppr

into nonzero prime idcals p; of © which is unique up to the order of the factors.

This theorem is of course perfectly in line with the invention of “idecal
numbers”. Still, the fact that it holds is remarkable becausc its proof is far
from straightforward, and unveils a deeper principle governing the arithmetic
in ©. We prepare the proof proper by two lemmas.
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(3.4) Lemma, For every idcal a # 0 of © there exist nonzero prime ideals
Pi. P2, .., pr such that
azppr--

Prooef: Suppose the set 90 of those ideals which do not fulfili this condition
is nonempty. As © is noetherian, every ascending chain of ideals becomces
stationary. Therefore 9 is inductively ordered with respect to inclusion and
thus admits a maximal element a. This cannot be a prime ideal, so there exist
elements b, by € © such that b6, € a, but by, by ¢ a. Put a; = (b)) +a,
a; = (hy) +-a. Then a G ay, a G a2 and ay0; C a. By the maximality of a,
both a; and a; contain a product of prime ideals, and the product of these
products is contained in a, a contradiction. [m]

(3.5) Lemma. Letp be a prime ideal of © and define
pl={rek|xpCo}.

Thenonchasap ' == {},aixi|a; € 0. x; € p~'} # a, forevery ideala # 0.

Proof: Let a € p, a # 0, and pypo---p, C (@) © p, with r as small as
possible. Then one of the p;, say p,, is contained in p, and so p, = p because
Py Is a maximal ideal. (Indeed. if none of the p; were contained in p, then
for ¢very i there would exist @; € p; ~ p such that a;---a, € p. But p is
prime.) Since py---p, € (a), there exists b € po---p, such that b ¢ a0,
ie., a”'b ¢ 0. On the other hand we have bp C (a), i.e., a~'hp C 0, and
thus ¢~'h € p~'. It follows that p~' + o,

Now let a # 0 be an ideal of © and «. ..., @, a system of generators.
Let us assume that ap~' = a. Then for every x € p~',
Xt =Y ai; 0. aij €0.
J
Writing 4 for the matrix (x8;;—a;;) we obtain A1, ..., @) = 0. By (2.3).
the determinant d = det(A} satisfies day = -+~ = da, =0 and thus d = 0.

It follows that x is integral over o, being a zero of the monic polynomial
f(X) =det(X8;; —a;;) € 0| X]. Therefore x € ©. This means that pl=o0,
4 contradiction. [m]

Proof of (3.3): I. Existence of the prime ideal factorization. Let 91 be the
set of all ideals different from (0) and (1} which do not admit a prime ideal
decomposition. If 21 is nonempty, then we arguc as for (3.4) that there exists
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a maximal element a in 9. It is contained in a maximal ideal p, and the
inclusion © € p~' gives us

acap'cpp' co.

By (3.5), onehas a S ap™' and p S pp~' < 0. Since p is a maximal ideal,

it follows that pp~' = o©. In view of the maximality of a in 9 and since
a#9p,ic, ap”' # o, the ideal ap~' admits a prime ideal decomposition
ap~™' =p;---p,, and so does a =ap~'p = p;---p,p, a contradiction.

11. Uniqueness of the prime ideal factorization. For a prime ideal p one has:
abCp=aCporbCp, ie,plab=plaorpib. Let

a=piP2-Pr=mad2Gs
be two prime idcal factorizations of a. Then p, divides a factor q;, say qi,
and being maximal equals q,. We multiply by p;' and obtain, in view of
pr#pip) =0, that
P2 Pr=920 s
Continuing like this we see that r = s and, possibly after renumbering,
pi=q; forali= O

Grouping together the occurrences of the same prime ideals in the prime
ideal factorization of an ideal a # 0 of ©, gives a product representation

a=pl'-py, v =00

In the sequel such an identity will be automatically understood to signify
that the p; are pairwise distinct. If in particular a is a principal ideal (a),
then — following the tradition which tends to attribute to the ideals the role
of “idcal numbers™ — we will write with a slight abuse of notation
a=p'--p).

Simifarly, the notation a|a is often used instcad of a|(a) and (a,b) =1
is written for two relatively prime ideals, instead of the correct formula
(a,b) = a+ b = o. For a product « = a ---a, of relatively prime ideals
ai, ..., a,, one has an anatogue of the well-known “Chinese Remainder
Theorem” from elementary number theory. We may formulate this result for
an arbitrary ring taking into account that

n
a=Na.
i=l
Indeed. since a; |a,i = 1, ..., i, we find on the one hand thata € (7_, a;,
and fora € M); a; we find that a; | &, and thercfore, the factors being relatively
prime, we get a =@, ---a, |a, le, a € a.
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(3.6) Chinese Remainder Theorem. Let a,, ..., a, be ideals in a ring ©
such thata; + a; = o fori # j. Then, if a = ('_, u;. one has

i<
n
o/u = @ o/a;.
i=1

Proof: The canonical homomorphism

n "
o— P oja., ar— P amoda,
i=1 =1
has kernel a = [7); a;. It therefore suffices to show that it is surjective.
For this, let x; mod 6; € ©/a;, i = 1,...,n, be given. If n = 2. we
may write | = a; + a2, @; € g;. and putting ¥ = x4, + xjq2 we get
x=x; mod a;, i =1,2.
If n > 2, we may find as before an element y; € © such that

"
yy=lmoda;, y =0mod ()a.

a2

and, by the same token, elements y2, ..., y, such that

yi=1moda;, y,=0moda; fori#j.

Putting x = xyy; 4+ -+ x,y, we find x = x; mod a;, i = |
proves the surjectivity. [m]

Now let © be again a Dedekind domain. Just as for nonzero numbers, we
may obtain inverses for the nonzero ideals of © by introducing the notion
of fractional ideal in the ficld of fractions K.

(3.7) Definition. A fractional ideal of K is a finitely generated ©-submod-
ulea #0ofK.

For instance, an clement ¢ € K* defines the fractional “principal ideal”
(a) = av. Obviously, since o is noetherian, an ©-submodule a # 0 of K is
a fractional ideal if and only if there exists ¢ € 0, ¢ # 0, such that ca € ©
is an ideal of the ring . Fractional ideals are multiplied in the same way
as ideals in ©. For distinction the latter may henceforth be called integral
ideals of K.

(3.8) Proposition. The fractional ideals form an abclian group, the ideal
group Jx of K. The identity element is (1) = o, and the inversc of a is

a'=|xek|rxaco}.
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Proof: One obviously has associativity, commutativity and a(l) = a. For
a prime ideal p, (3.5) says that p G pp~' and therefore pp~' o
because p is maximal. Consequently, if @ = py---p, is an intcgral ideal,
then b = p;' - p; ! is an inverse. ba = o implics that b € o', Conversely,
if xa C o, then xab € b, so x & b because ab = o. Thus we have b = a™".
Finally, if & is an arbitrary fractional ideal and ¢ € ©, ¢ # 0, uch that
ca C o, then (ca)™' = ¢~'a~! is the inverse of ca, so aa ' = 0. O

(3.9) Coroliary. Every fractional ideal a admits a unique representation as a
product

a=]fe"
b

with v, € Z and vy, = 0 for almost all . In other words, Jx is the free abefian
group on the set of nonzero prime ideals p of ©.

Proof: Every fractional ideal a is a quotient a = b/c of two integral ideals b
and ¢, which by (3.3) have a prime decomposition. Therefore ¢ has a prime
decomposition of the type stated in the corollary. By (3.3), it is unique if a
is integral, and therefore clearty also in general. [m]

The fractional principal ideals (@) = a©, @ € K™, form a subgroup of the
group of ideals Jx , which will be denoted Px. The quotient group

Clgy =Jg/Px

is called the ideal class group, or class group for short, of K. Along with
the group of units ©* of o, it fits into the exact sequence

| —- 0" — K' — Jg — Clg — 1,

where the arrow in the middle is given by ¢ — (@). So the class group
Clg measures the expansion that takes place when we pass from numbers
to ideals, whereas the unit group ©* mecasures the contraction in the
same process. This immediately raises the problem of understanding these
groups ©* and Clx more thoroughly. For general Dedekind domains they
may turn out to be completely arbifrary groups. For the ring ok of integers
in a number field X, however, one oblains important finiteness theorems,
which are fundamental for the further development of number theory. But
these results cannot be had for nothing. They will be obtained by viewing
the numbers geometrically as lattice points in space. For this we will now
prepare the necessary concepts, which all come from linear algebra.
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Exercise 1. Decompose 33 + 114/=7 into irreducible integral clements of Q(v/—7).

Exercise 2. Show that

134 /—47 13- /—47
e

are two_essentially different ith into irreducible integra: elements of
Q/—47).

Exercise 3. Let  be squarefree and p a prime number not dividing 2d. Let o be the
ring of integers of Q(v/d ). Show that (p) = p @ is a prime ideal of o if and only if
the congruence 12 = d mod p has no selution.

54=2.3 =

Exercise 4. A Dedekind domain with  finite number of prime idcals is a principal
ideal domain.

Hint: [fa =p;'---p/" # 0 is an idcal, then choose elements 7; € p, ~p? and apply
the Chinese remainder theorem for the cosets 7" mod pi''.

Exercise 5. The quotient ring o/a of a Dedekind domain by an ideal a # 0 is a
principal ideal domain.

Hint: For a = p" the only proper ideals of o/a are given by p/p”. ..., p""'/p".
Choose z € p ~. p* and show that p* = ox" + p.

Exercise 6. Every ideal of a Dedekind domain can be generated by two elements.
Hint: Usc cxercise 5.

Exercise 7. In a noetherian ring R in which every prime ideal is maximal. each
descending chain of ideals a; 2 a; D - - becomes stationary.

Hint: Show as in (3.4) that (0) is a product p; - --p, of prime ideals and that the
chain R 2 p; 2 pyp2 2 --- 2 pi---p, = (0) can be refined into a composition
series,

Exercise 8. Let m be a nonzero integral ideal of the Dedekind domain ¢. Show that
in every ideal class of Cl, there exists an intcgral ideal prime to m.

Exercise 9. Let o be an integral domain in which all nonzero ideals admit a unique
faclorization into prime ideals. Show that o is a Dedekind domain.

Exercise 10. The fractional ideals a of a Dedekind domain ¢ are projective o-

modules, i.c., given any surjective homomorphism M —> N of o-modules, each

homomorphism a —> N can be lifted to a homomorphism 4 : @ — M such that
foh=g

§ 4. Lattices
In § 1, when solving the basic problems concerning the gaussian integers,

we used at a crucial place the inclusion

ZiilcC
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and considered the integers of Q(i) as lattice points in the complex plane.
This point of view has been generalized to arbitrary number fields by
Hermanw Minkowskt (1864~1909) and has led to results which make vp an
essential part of the foundations of algebraic number theory. In order to
develop Minkowski’s theory we first have 1o introduce the gencral notion of
lattice and study some of its basic properties.

(4.1) Definition. Let V' be an n-dimensional R -vector space. A lattice in V
is a subgroup of the form

F=2%v 4+ Ly,

with linearly independent vectors vy, ..., vy, of V. The m-tupfe v\, ..., v,)
iy called a basis and the set

@ ={xv+ ot xpva |y € R 0<x < 1}

a fundamental mesh of the lattice. The lattice is called complete or a 7 -
structure of V, if m = n.

The completeness of the lattice is obviously tantamount to the fact that
the set of all translates @ + y, y € I', of the fundamental mesh covers the
entire space V.

The above definition makes usc of a choice of linearly independent
vectors. But we will need a characterization of lattices which is independent
of such a choice. Note that, first of all, a lattice is a finitely generated
subgroup of V. But not every finitely generated subgroup is a lattice — for
instance Z + Z/2 C R is not. But cach lattice I" = Zyy + -+ + Zvy
has the special property of being a discrete subgroup of V. This is to say
that every point y € [ is an isolated point in the sense that there exists a
neighbourhood which contains no other points of . In fact, it

y=avi+- - tapvm €,
then, extending vy, .... t, to a basis v, ..., v, of V, the sct

{xior 4+ x|y ER,

a,f,x',\<lfori:1,....m]

clearly is such a neighbourhood. This property is indeed characteristic.

(4.2) Proposition. A subgroup I €V is a lattice if and only if it is discrete.
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Proof: Let I" be a discrete subgroup of V. Then I” is closed. For let U be an
arbitrary neighbourhood of 0. Then there exists a neighbourhood U’ € U of 0
such that every ditference of elements of U’ lies in U If there werc an x ¢ I”
belonging to the closure of I, then we could find in the neighbourhood x+U*
of x two distinct elements yy, 1, € I, sothat 0 # y — e U —U' C U.
Thus 0 would not be an isolated point, a contradiction.

Let Vy be the tinear subspace of V which is spanned by the set I, and
let m be its dimension. Then we may choose a basis 1, ..., ty of Vi which
is contained in 17, and form the complete lattice

DNn=2u+ - +Zu, €T

of Vo. We claim that the index (7 : Ip) is finite. To see this, let y; € I” vary
over a system of representatives of the cosets in 77/ 7. Since I is complete
in Vy, the translates @y + y, ¥ € I, of the fundamental mesh

@o={xiu+ ity | X €R, 0<x; < 1}
cover the entire space V. We may thercfore write
vi=pityi, mEeP., wielhCW.

As the pt; = y; — yo; € I lie discretely in the bounded set @y, they have to
be finitc in number. In fact, the intersection of I' with the closure of & is
compact and discrete, hence finite.

Putting now g = (I" : Iy), we have gI” € I}, whence

re én;:z(éul) +Z(ﬂtm)

By the main theorem on finitely generated abelian groups, I therefore
admits a Z-basis v, ..., v, r < m, ie., I' = Zy, + --- + Zv,. The
vectors vy, ..., v, are also R-linearly |ndcpendem because they span Lhe
- dlmcnslonal space Vi,. This shows that I is a lattice.

Next we prove a criterion which will tell us when a lattice in the space V —
given, say, as a discrete subgroup /” € V — is complete.

{4.3) Lemma. Alattice I" inV is complete if and only if there exists a bounded
subset M C 'V such that the collection of all translates M + v,y € I, covers
the entire space V.
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Proof: If I' = Zv; + -+ +Zv, is complete, then one may takc M to be the
fundamental mesh @ = {xjv) + -+ +x,v, |0 < x; < 1}.

Conversely, let M be a bounded subset of V whose translates M + y,
for y € I", cover V. Let V; be the subspace spanned by I". We have to
show that V = Vj. Solet v € V. Since V = UVGF(M + y) we may write,
for each v € N,

ve=ay+y, @weM. pnel CV.
Since M is bounded, éa,,‘ converges to zero, and since Vj is closed,

3 1 1
v=lim —a,+ lim —y, = lim —y, € Vp. [m]
v—no v v—a0 p o

Now let V be a euclidean vector space, i.c., an R-vector space of finite

dimension # equipped with a symmetric, positive definite bilincar form
(LyItV xV —R.
Then we have on V a notion of volume — more preciscly a Haar measure.
The cube spanned by an orthonormal basis e, ..., ¢, has volume 1,
and more generally, the parallelepiped spanned by n linearly independent
vectors vy, ..., Uy,
@ ={xv+ - +xu ek 0<x <]

has volume

vol(®) = | det A],
where A = (ai) is the matrix of the base change from e, .... ¢, to
Ul e, Un, 5O that v = Yo aixex. Since

({vi,vp)) = (kz[aikajdl%w)) = (;ﬂtk”/k) = AA",

we also have the invariant notation
vol(®) = |det((vy, v;)] /.

Let I” be the lattice spanned by vy. ..., v,. Then @ is a fundamental
mesh of I, and we write for short
vol(I) = vol{®).
This does not depend on the choice of a basis vy, ..., v, of the lattice
because the transition matrix passing to a different basis, as well as its
inverse, has integer coefficients, and therefore has determinant £1 so that
the set @ is transformed into a set of the same volume.

We now come to the most important theorem about lattices. A subset X
of V is called centrally symmetric, if, given any point x & X, the point —x
also belongs to X. It is called convex if, given any two points x,y € X, the
whole line segment {ty + (1 — x| 0 < ¢ < 1} joining x with y is contained
in X, With these definitions we have
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{4.4) Minkowski’s Lattice Point Theorem. Let I” be a compiete lattice in
the euclidean vector space V and X acentrally symmetric, convex subsct of V.
Suppose that

vol(X) > 2" vol(T").

Then X contains at least one nonzero lattice pointy € I'.

Proof: It is enough to show that there exist two distinct lattice points
vi.¥2 € I' such that

1 1
(GX+r)n(3X +p) £4.
In fact, choosing a point in this intersection,
1
Rt = %X2+Vz~ X0 €X,

we obtain an element | I
y=vi—n= i»‘z ~ 5
which is the center of the line segment joining x; and —x;, and therefore
belongs to X N I,
Now, if the sets %X + v,y €', were pairwise disjoint, then the same
would be true of their intersections ¢ﬁ(%X+y) with a fundamental mesh @
of I', i.e., we would have

vol(@) = ¥ vel(@n (1X +7)).
b1 2

But transiation of ¢ N (%X + y) by —y creates the set (@ —y) N %X of
equal volume, and the @ — y. y € I', cover the entire space V', therefore
also the set 3 X. Consequently we would obtain

vol(®) > ¥ vol((® - y)n %X) =vol(1x) = % vol(x),
yel 2 2

which contradicts the hypothesis. O

Exercise 1. Show that a lattice I in R” is complete if and only if the quotient R" /T
is compact.

Exercise 2. Show that Minkowski's lattice point thcorem cannot be improved,
by giving an example of a centrally symmetric convex set X C V such that
vol{X) = 2"vol(S") which does not contain any nonzero point of the lattice 1.
If X is compact, however, then the staiement (4.4) docs remain true in the case of
cquality.
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Exercise 3 (Minkowski’s Theorem on Linear Forms). Let

Litxr, s X=X agx, i=1..nm
pa
be real lincar forms such that det{a,;) # 0. and let ¢;, ..., ¢, be positive real numbers
such that ¢ --- ¢, > | det{ay;)|- Show that there exist integers m. ..., m, € Z such
that
[LiGmys o)l < e, [P n.

Hint: Use Minkowski's [attice point theorem.

§ 5. Minkowski Theory

The basic idea in Minkowski’s treatment of an algebraic number field K ()
of degree # is to interpret its numbers as points in #-dimensional space. This
explains why his theory has been called “"Geometry of Numbers.” It seems
appropriate, however, to follow the current trend and call it “Minkowski
Theory” instead, because in the meantime a geometric approach to number
theory has been developed which is quite different in nature and much
more comprehensive. We will explain this in §13. In the present section,
we consider the canonical mapping

JiK — Ko

TIC, av— ja={(ra).
2

which results from the # complex embeddings T : K — C. The C-vector
space K¢ is cquipped with the hermitian scalar product

(% () =23 % ¥

T
Let us recall that a hermitian scalar product is given by a form H(x,y)
which is linear in the first variable and satisfies H (x.y) = H(y,x) as well

as H(x,x) > 0 for x # 0. In the sequel we always view K¢ as a hermitian
space, with respect to the “standard metric” ().

The Galois group G(C{R) is generated by complex conjugation
Fizr— 1z,
The notation F will be justified only Jater (see chap. I1I, §4). ¥ acts on the
one hand on the factors of the product [, €, but on the other hand it also
acts on the indexing set of ’s: to each cmbedding 7 : K — C corresponds
its complex conjugate T : K — C. Altogether, this defines an involution

F:Ke — Ke
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which, on the points z = (z;) € K¢, is given by
(Fz)r =I7.

The scalar product { , ) is equivariant under #, that is
{(Fx,Fy)=F{x,y).

Finally, we have on the C-vector space K¢ =[], C the linear map

Tr:Kg — C.

given as the sum of the coordinates. It is also #-invariant. The composite
KL ke -5 C

gives the usual trace of K |Q (see (2.6), (ii)),
Triga) =Tr(ja).

We now concentrate on the R-vector space
+
ke = k¢ =[11¢]
T

consisting of the G (C|R)-invariant. i.e., F-invariant, points of K. These
are the points (z;) such that zz = Z;. An explicit description of K will be
given anon. Since Ta = Td for @ € K, one has F(ja) = ja. This yields a
mapping
J K — K.
The restriction of the hermitian scalar product {, } from K¢ to Ky gives a
scatar product
{(,): Kpx Kz — R

on the K-vector space Kg. Indeed, for x,y € K3, one has {x,¥) € R in

view of the relations F{x.y) = (Fx, Fy} = (x. y), {x, ) = {x. 9} = {y.x},
and, in any case, {x,x}) > 0 for x # 0.

We call the euclidean vector space
K2 =[I1c]’
T

the Minkowski space, its scalar product { , ) the canonical metric, and
the associatcd Haar measure (see §4, p. 26) the canonical measure. Since
Tro F = F o 1r we have on K3 the E-lincar map

Tr:Ky — R,
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and its composite with j : K — Kg is again the vsval race of X )Q,

Trg g(a) = Tr(ja).

Remark: We mention in passing — it will not be used in the sequel — that
the mapping j : K — Ky identifies the vector space Ky with the tensor
product K @5 R,

K®yR— Kg, a®x+— (ja)x.

Likewise, K ®g C —> K. In this approach, the inclusion K4 € K¢
corresponds to the canonical mapping K ®g R — K ®¢C which is induced
by the inclusion R — C. F corresponds to F(a®z) =a ®Z.

An explicit description of the Minkowski space K3 can be given in the
following manner. Some of the embeddings 7 : K — C are real in that they
land already in R, and others are complex, i.e., not real. Let

Pl K — R
be the real embeddings. The complex ones come in pairs

0T, .., 0,0, K —C

of complex conjugate embeddings. Thus 7 = r + 2s5. We choose from each
pair some fixed complex embedding, and let p vary over the family of real
embeddings and o over the family of chosen complex embeddings. Since F
leaves the p invariant, but exchanges the o, @, we have

Kg ={(z)e[IC|z, €R, z; =7} .
T
This gives the

(5.1) Pr iti There is an isc

1Ky — [[R=R"*>
T

given by the rule (z¢) > (x;) where
Xp=12p, Xo =Re(zq), x5 =1Im(z,).
This isomorphism transforms the canonical metric {, ) into the scalar product
.y)= ;arxryy .

where ; = 1, resp. a; = 2, if 1 is real, resp. complex.
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Proof: The map is clearly an isomorphism. If z = (z;) = (x; +iy)s
2 = (2}) = (x; +iy;) € Ku, then zp7), = x,x,, and in view of ys = x5z
and y; = x[, one gets

26T, + 2555 =207y + 257, = 2Re(z4Z,) = 2x0 Xy + X5 XY

This proves the claim concerning the scalar products. ]

The scalar product (x,y) = Z, wrX;yr transfers the canonical measure
from Kp to R"T. Tt obviously differs from the standard Lebesgue meas-
ure by

V0leanonicat (X) = 2° VOlLenesgue (S (X)) -
Minkowski himself worked with the Lebesgue measure on R'*%, and
most textbooks follow suit. The corresponding measure on Kg is the one
determined by the scalar product

[
[£35) ’; o KT

This scalar product may therefore be called the Minkowski metric on K.
But we will systematically work with the canonical metric, and denote by
vol the corresponding canonical measure.

The mapping j : K — K= gives us the following lattices in Minkowski
space K.

(5.2) Proposition. If a # 0 is an ideal of 0k, then I' = ja is a complete
lattice in Kg. Its fundamental mesh has volumc

vol(I'y = /|dk | {0k : a).

Proof: Let o). ..., a, be a Z-basis of @, so that I =Z jo, +--- + Z ja,.
We choose a numbering of the embeddings v : K — C, 7, ..., 7, and
form the matrix A = (t¢a;). Then, according to (2.12), we have

dia) =di@, ... ) = (det A)? = (0 : 0)*d(ok) = (0 : 8)* dk.

and on the other hand
" _
(Ui, jox)) = (Lt Teaw) = AAT
=t
This indeed yields
o 2
vol(r) = |det((jos, jaun)|'” = ldetal = /ldg [ (ox :@). D
Using this proposition. Minkowski’s lattice point theorem now gives the

following result, which is what we chiefly intend to use in our applications
to number theory.
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(5.3) Theorem. Let o # 0 be an integral ideal of K, and let <z > 1), for
7 € Hom(K , C), be real numbers such that ¢, = ¢z and

Tler > Aok a),

where A = (%)"«/\d,( [. Then therc exists a € a, a # 0, such that
|tal <¢; forall t € Hom(K.C).
Proof: The set X = {(z;) € Ki | |z] < ¢;} is centrally symmetric and
convex. Its volume vol(X) can be computed via the map (5.1)
fiKe = TIR, (@) — (o),
I

given by x, = z,, X5 = Re(zo), x5 = Im(zq). It comes out to be 2° times
the Lebesgue-volume of the image

FX)y = {0 € TIR | xpl <y 57 +52 <3}
5
This gives
VOHX) = 2° volpapue ( F(X)) =2 [T [T0red)y = 2777 [T ex
” " T
Now using (5.2), we obtain

288
Vol(X) > 2 “71"(;) Vidx] @k = a) = 2 voK(I").

Thus the hypothesis of Minkowski’s lattice point theorem is satisfied. So
there does indced exist a lattice point jo € X, a # 0, @ € a: in other
words |ta} < ¢

There is also a multiplicative version of Minkowski theory. It is based
on the hemomorphism

j KT — kg =[[C".
T
The multiplicative group K7 admits the homomorphism
N:Kf—C*
given by the product of the coordinates. The composite

k- Lks S
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is the usual norm of K |Q,
Nggla) = N(ja).
In order to produce a lattice from the multiplicative theory, we use the
logarithm to pass from multiplicative to additive groups
£:Cr— &, z+—loglzl.
Tt induces a surjective homomorphism

¢ K:— []R,
*

and we obtain the commutative diagram

Ktk — LR

e | |v E

g— s —t s R

The involution F € G(C|R) acts on all groups in this diagram, trivially
on K*, on K¢ as before, and on the points x = (7)€ [T, Rby (Fx); = x5.
One clearly has

Foj=j. Fot=foF, NoF=FoN, TroF=Tr,

i.e.. thc homomorphisms ol the diagram are G (C|R)-homomorphisms. We
now pass everywhere to the fixed modules under G(C|R) and obtain the
diagram

K — sk s [L.R]T

| |» E

¢— > — R,

The R-vector space [ [T, R] ™ is explicitly given as follows. Separate as
before the cmbeddings T : K — C into real ones, gy, ..., g, and pairs
of complex conjugate ones, 61,51, ..., 05,3, We obtain a decomposition
which is analogous to the one we saw above for [ [T, cl".

[MR] =NRx[TIR xR},
. P

The factor | R x R]* now consists of the points {x,x), and we identify it
with R by the map (x.x) — 2x. In this way we obtain an isomorphism

[UR]‘ = R,
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which again transforms the map 7r : [ TR } * 5 R into the usual map
Tr R — R

given by the sum of the coordinates. Identifying [ [, R ] * with R™*, the
homomorphism
€Ky — R
is given by
£00) = (log [py b - loglxp, |, log xa, % ..., 10g 16,1,

where we write x € Ki © [, C* as x = (x).

Exercise 1. Write down a constant A which depends only on K such that every
integral ideal @ # 0 of K contains an element a # 0 satisfying
|tal < A(og : @' forall T € Hom(K.C), n = [K : Q].
Exercise 2. Show that the convex, centrally symmetric st
X={Goekr| Lzl <1}
has volume vol(X) = 2/7* ¥ (see chap. 1L, (2.15)).
Exercise 3. Show that in every ideal a # 0 of ok there exists an @ # 0 such that
INkig(@)] = M(og : a).
[PE . .
where M = = (2)"/[dx | (the so-called Minkowski bound).
nt o
Hint: Use exercise 2 to proceed as in (5.3), and make use of the incquality between
arithmetic and geometric means,

%;\z,\z(mm)"”.

§ 6. The Class Number

As a first application of Minkowski theory, we are going to show that the
ideal class group Clg = Jg/Px of an algebraic number field K is finite.
In order to count the ideals a # 0 of the ring 0 we consider their absolute
norm

N(a) = (0g s a).

(Throughout this book the case of the zero ideal a = 0 is often tacitly
excluded, when its consideration would visibly make no sense.) This index
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w
%

is finite by (2.12), and the name is justified by the special case of a principal
ideal () of o, where we have the identity

(@) = [ Nxote]-
Indeed, if ). ..., wy isa Z-basis of Ok, then @ @, ..., @ @, is a Z-basis of
(o) = aog, and if A = (4;;) denotes the transition matrix, ¢ w; = Y aij wj,
then, as was pointed out already in §2, one has |det(A)| = (ox : (@)} as
well as det(A) = Nk g(«) by definition.
(6.1) Proposition. If o = p|'-
a # 0, then one has

--p," is the prime factorization of an ideal
M) = Np )™ - Npr )™

Proof: By the Chinese remainder theorem (3.6), onc has
og/a=0k/p G- Bok/p;

We are thus reduced to considcring the case where a is a prime power p*.
in the chain
p2p 2. 2p"

one has p' # p’*' because of the unique prime factorization, and each
quotient p* /p’“ is an ok /p-vector space of dimension |. In fact, lt a €
pi < p't and b= (a)+p't, then p' 2 b 2 p™*' and consequently p = b,
because otherwise b’ = bp™ would be a propcr divisor of p = p'*'p~'. Thus
+1. So we have

& = a mod p'*' is a basis of the ¢k /p-vector space p'/pf
p'/p'*! = ok /p and therefore

N(p*) = (0k :19°) =k PH:P)--- @ p)=%p*. O

The proposition immediately implies the multiplicativity
N(ab) = N(a)N(b)
of the absolute norm. It may thercfore be extended to a homomorphism
N: Ty — BY

detined on all fractional ideals a =[], p", v, € Z. The following lemma,
a consequence of (5.3), is crucial for the finiteness of the ideal class group.

(6.2) Lemma. In every ideal a # 0 of ok there exists ana € a,a # 0, such

that s
[Nkg(a)] < 1;) Vidg 90w
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Proof: Given & > 0, we choose positive real numbers ¢, for 7 €
Hom{K,C), such that ¢; = ¢; and

Moo= (%)S\/W«n(a) te.

Then by (5.3) we find an element a € a, a # 0, satisfying |ra| < ¢;. Thus
2\s

[Nkg(@] =Tlzal < (7) Jldx ] ) + &

b

n

This being true for all & > 0 and since | Nk g (a)] is always a positive integer,
there has to exist an ¢ € a, ¢ # 0, such that

24
[Vt = (Z) Vide @ o

(6.3) Theorem. The ideal class group Clx = Jg / Pk is finite. Its order
hg = (Jg : Pg)

is called the class number of K,

Proof: If p % 0 is a prime ideal of 0k and p NZ = pZ, then 0k /p is a
finite field extension of Z/pZ of degree, say, f > 1, and we have

M) = p/.

Given p, there are only finitely many prime ideals p such that pNZ = pZ,
because this means that p| (p). Tt follows that there are only finitely many
prime ideals p of bounded absolute norm. Since every integral ideal admits
a representation a = p;' - - p} where v; > 0 and

N(a) = Np)™ - Nep)"™,

there are altogether only a finite number of ideals a of ok with bounded
absolute norm N(a) < M.
It therefore suffices to show that each class |a] € Clg contains an integral

ideal a; satisfying
248
N =M = (=) Vids].

For this, choose an arbitrary representative a of the class, and a y € ok,
y #0,such that b = ya~' < og. By (6.2), there exists & € b, & # 0, such
that

[Ngige)] - Do) ' = N((@)b™!) = Mab™') <M.

The ideal a; = ab™' = ay ~'a € [a] therefore has the required property. O
q
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The theorem of the finiteness of the class number /x means that passing
from numbers to ideals has not thrust us into unlimited new territory. The
most favourable case occurs of course when #x = 1. This means that og
is a principal ideal domain, i.c., that prime factorization of elements in the
classical sense holds. In general, however, one has kg > 1. For instance,
we know now that the only imaginary quadratic fields Q(v/d), d squarefree
and < 0, which have class number 1 are those with

d=-1,-2,-3, -7 —11, =19, — 43, — 67, — 163.

Among real quadratic fields, class number ! is morc common. In the range
2 < d < 100 for instance, it occurs for

d=2,356,711,13,14,17, 19,21, 22, 23,29,
31,33,37,38,41,43,46.47,53,57,59,61,
62,67,69,71,73,77, 83, 86, 89,93,94,97.

It is conjectured that there are infinitely many real quadratic fields of class
number 1. But we do not cven yet know whether there are infinitely many
algebraic number fields (of arbitrary degree) with class number 1. It was
found time and again in innumerable investigations that the ideal class groups
Clg behave completely unpredictably, both in their size and their structure.
An exception to this lack of rule is Kenkichi fwasawa’s discovery that the
p-part of the class number of the field of p-th roots of unity obeys a very
strict law when n varies (see [136], th. 13.13).

In the case of the field of p-th roots of unity, the question whether the
class number is divisible by p has played a very important special role
because it is intimately linked to the celebrated Fermat's Last Theorem
according to which the equation

xP 4yl =2

for p > 3 has no solutions in integers # 0. In a similar way as the sums of
two squares x?+y% = (x +iy)(x —iy) lead to studying the gaussian integers.
the decomposition of x” +y” by meuns of a p-th root of unity ¢ & 1 leads o
a problem in the ring Z[£] of integers of Q(£). The equation y” = z/" — x”
there turns into the identity

Yoy y=G-0E -tz - ).

Thus, assuming the cxistence of a solution, one obtains two multiplicative
decompositions of the same number in Z[{]. One can show that this
contradicts the unique factorization — provided that this holds in the
ring Z[¢). Supposing erroneously that this was the case in general — in
other words that the class number #,, of the ficld Q(¢) were always equal
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© 1 — some actually thought they had proved “Fermat’s Last Theorem” in
this way. Kussmer, however, did not fall into this trap. Instead, he proved that
the arguments we have indicated can be salvaged if one only assumes p t k),
instead of 4, = 1. In this case he called a prime number p regular, otherwise
irregular. He cven showed that p is regular if and only if the numerators
of the Bernoulli numbers B85, B, ..., B,_3 are not divisible by p. Among
the first 25 prime numbers < 100 only three are irregular: 37, 59, and 67.
We stitl do not know today whether there are infinitely many regular prime
numbers.

The connection with Fermat’s last theorem has at last become obsolete.
Following a surprising discovery by the mathematician Gexk#arp Frey, who
established a link with the theory of elfiptic curves, it was Kesnern RiBer,
who managed to reduce Fermat’s statement 1o another, much more important
conjecture, the Taniyama-Shimura-Weil Conjecture. This was proved in
sufficient generality in 1994 by Awprrw Wiks, after many years of work,
and with a helping hand from Riciiarn Tavior. See (144].

The regular and irregular prime numbers do however continuc to be
important.

Exercise 1. How many integral ideals a are there with the given norm Ma) = #?

Exercise 2. Show that the quadratic fields with discriminant 5, 8, 11, =3, —4,-7,
—8, — 11 have class number 1.

Exercise 3. Show that in every ideal class of an algebraic number field K of degree n,
there exists an integral ideal a such that

n' 4. —
Na) = — (= d|.
(@) = 2 () Vide
Hint: Using cxercise 3. §5. proceed as in the proof of (6.3).
Exercise 4, Show that the absolute value of the discriminant |dg| is > 1 for every
algebraic number ficld K # @ (Minkowski’s theorem on the discriminant, see
chap. 11l (2.17)).

Exercise 5. Show that the absolute value of the discriminant |dy | tends to oc with
the degree  of the ficld.

Exercise 6. Let a be an integral ideal of K and a” = (a). Show that a becomes a
principal ideal in the ficld L = K (/a), in the sense that acy, = (@),

Exercise 7. Show that, for every number ficld K , there exists a finite extension L
such that every ideal of K becomes a principal ideal.
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§7. Dirichlet’s Unit Theorem

After considering the ideal class group Clg, we now turn to the second
main problem posed by the ring o of integers of an algebraic number
field K, the group of units o} . It contains the finite group p(K) of the
roots of unity that lie in K, but in general is not itself finite. Its size is in
fact determined by the number r of real embeddings p : K — R and the
number s of pairs 0.5 : K — C of complex conjugate embeddings. In order
to describe the group, we usc the diagram which was set up in §5:

k' — ky — > [.®]"

w| L]

Q* * log | | R.

In the upper part of the diagram we consider the subgroups
oy ={& € ok | Nkig(e) = =1}, the group of units,
S={yeKk;| Ny ==+l1}, the “norm-one surfacc”,
H={xe[[lR] +| Tr(x) =0}, the “trace-zero hyperplane”.
T
‘We obtain the homomorphisms
oy s b
and the composite A := £ o j : 0} — H. The image will be denoted by
r=xoy)<H,
and we obtain the
(7.1) Proposition. The sequence
| —> u(K) — 0 2> T —0
Is exact.
Proof: We have to show that j(K) is the kernel of A, For ¢ € u(K) and
7 : K — C any cmbedding, we find log |7¢| = log I = 0, so that certainly

u(K) € ker(x). Conversely, let € € 0 be an element in the kernel, so
that A{g) = €(je) = 0. This means that |te} = 1 for cach cmbedding
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T : K — C, sothat j&¢ = (&) lies in a bounded domain of the R-
vector space K. On the other hand, je is a point of the lattice jox of Kx
(see (5.2)). Therefore the kemei of A can contain only a finite number of
elements, and thus, being a finite group, contains only roots of unity in K*.

m}

Given this proposition, it remains to determine the group I". For this, we
need the following

(7.2) Lemma. Up to multiplication by units there are only finitely many
elements & € ok of given norm Ny g () = a.

Proof: Let « € Z, a > 1. In every one of the finitcly many cosets of
ok laok there exists, up to multiplication by units. at most one element o
such that IN(«)] = [Nk p{@)| = a. Forif 8 = a +ay. y € 0k, is another
one, then
i 1+ My € ok

B B
because N(B)/f € ok, and by the [

k, and by the same token ¢ =1+ = ~ye ok,
iec., f is associated to . Therefore, up to multiplication by units, there
arc at most {0k : aok) elements of norm *a.

(7.3) Theorem. The group I" is a complcte lattice in the (r + 5 — 1)-
dimensional vector space H , and is therefore isomorphic to Z" '*~'.

Proof: We first show that I' = A{0%) is a lattice in H, ic., a discrete
subgroup. The mapping 4 : ©f — /I arises by restricting the mapping

KL e -5 [w,
v v

and it suffices to show that, for any ¢ > 0, the bounded domain {{x;) €
[1; R x| < c} contains only finitely many points of /” = £(j0%). Since
&((z;)) = (log|z;]), the preimage of this domain with respect to £ is the
bounded domain

1< e}

{GoyellCY| et <

It contains only finitely many clements of the sel jo} because this is a
subset of the lattice jog in []_]r C]+ (see (5.2)). Therefore /™ is a lattice.
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We now show that 7 is a complete lattice in /f. This is the principal
claim of the theorem. We apply the criterion (4.3). So we have (o find a
bounded set M C H such that

H=JM+y).
yer

We construct this set through its preimage with respect to the surjective
homomorphism

£:8— H.
More precisely, we will construct a bounded sct T in the norm-one surface S,
the muitiplicative translations T je, € € 0%, of which cover all of S:

S= U Tjs.

ey,

For x = (x;) € T, it will follow that the absolute values |x.| are bounded
from above and also away from zero, because [, x| = 1. Thus M = &(T)
will also be bounded. We choose real numbers ¢, > 0, for 7 € Hom(K .C),
satisfying ¢; = ¢ and

2.5 _
=11e - (2) i
and we consider the set
X ={G)ekKa|lzel <o}
For an arbitrary point ¥ = (y;) € S, it follows that
Xy ={@) €Ki ||zl <}

where ¢; = cr|yc|, and one has ¢; = ¢t and [], ¢f =[], ¢r = C because
IT: I¥| = IN(y}| = L. Then, by (5.3), there is a point

]

ja=(taye Xy, acog, a#0.

Now, according to lemma (7.2), we may pick a system a, ..., ay € Ok,
@ # 0, in such a way that every a € og with 0 < [Ngg(a)| < C is
associated to one of these numbers. The set

N

T=85nUX(e)™!

i=]
then has the required property: since X is bounded, so is X (jo;)™' and
therefore also T, and we have

S= U Tje.

-
feol



42 Chaprer 1. Algebraic Integers

In fact, if y € §, we find by the above an a € 0k, a # 0, such that
jae Xy so ja=xy' for some x € X. Since

[Neg@] = [Ny ™| =[Nw| <[ler =C,

 is associated to some a;, a; = g, € € 0. Consequently

y=xja' = r,f(a,-"s).

Since y, je € S, one finds xjoz," es ﬂon("' CT,andthus y e Tje, O

From proposition (7.1) and theorem (7.3) we immediately deduce Dirich-
let’s vnit theorem in its classical form.

(7.4) Theorem. The group of units ©} of O is the dircct product of the finitc
cyclic group ju(K') and a free abelian group of rank r +5 ~ 1.

In other words: there exist units &, ..., &, £ = r + s — 1, called
fundamental units, such that any other unit £ can be written uniquely as a
product

v )
e=gg) g

with a root of unity ¢ and integers v;.

Proof: In the exact sequence

1 — pK) — 0 2> T ~—>0

I is a free abelian group of rank # = r +5 — 1 by (7.3). Let vy, ..., v, be
aZ-basisof I', let e, ..., & € 0f be preimages of the v;, and let A € 0
be the subgroup generated by the £;. Then A is mapped isomorphically onto
I" by &, ie., one has u(K)N A = (1} and therefore 0} = u(K) x A, ]

Identifying [ [T, R] © = R’" (see §5, p.33). H becomes a subspace of
the cuclidean space R”'* and thus itsell a euclidean space. We may therefore
speak of the volume of the fundamental mesh vol(A(o%)) of the unit lattice
I = i{(0}) € H, and will now compute it. Let &y, ..., &t =r +5—1,
be a system of {undamental units and @ the fundamental mesh of the unit
lattice A(0%), spanned by the vectors (&), ..., A{e) € If . The vector

Ay = Nekt
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is obviously orthogonal to A and has length 1. The ¢-dimensional volume
of @ therefore equals the (r + 1)-dimensional volume of the parallelepiped

spanned by kg, A(£1). ..., A(g;) in R**'. But this has volume
Aoy M) M)
+det :
Aoerr Aept(E) o Aepa(er)

Adding all rows to a fixed one, say the i-th row, this row has only zeroes,
except for the first entry, which equals /i + 5. We therefore get the

(7.5} Proposition. The volume of the fundamental mesh of the unit lat-

tice M(O}) in H is

i) vol(A(of)) = Vr +sR.
where R is the absolute valuc of the determinant of an arbitrary minor of rank
t =r + s — | of the following matrix:

Aien) - MlE)

hepi(E) e Ren(e)
This absolute valuc R is called the regulator of the field K .

The importance of the regulator will only be demonstrated later (see
chap. VII, §5).

Exercise 1. Let 2 > 1 be a squarefree integer and d the discriminant of the real
quadratic number ficld K = Q(v/D) (see §2. exercise 4). Let 51, y1 be the uniquely
determined rational integer solution of the equation

x2—dyt =4,
or — in case this equation has no rationa integer solutions — of the cquation
x? =4,
for which x. v = § are as small as possible. Then
oo ED Vd
2

is a fundamental unit of K. (The pair of equations x* — dy? = 4 is called Pell’s
equation.)

Exercise 2. Check the following table of fundamental units &, for Q(vD):

D 2 3 5 6 7 10
s 14V2 2443 (1+V52 5+2V6 84347 34410
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Hint: Check one by one for y = 1,2,3, ..., whether one of the numbers dy? T4 is a
square x*. By the unit theorem this is bound to happen, with the plus sign. However,
for fixed y, let preference be given to the minus sign. Then the first case, in this
order. where dy} F 4 = x?, gives the fundamental unit & = (v, + /@ )/2.

Exercise 3. The Battle of Hastings (October 14, 1066).

“The men of Harold stood well together, as their wont was, and formed thirteen
squares, with & like number of men in cvery square thercof, and woe to the hardy
Norman who ventured to enter their redoubts: for a single blow of 4 Saxon war-
harched would break his fance and cut through his coat of mail... When Harold
threw himself into the fray the Saxons were one mighty square of men, shouting the
battle-cries, ‘Ut!’, *Olicrosse!’. ‘Godemite!”.” [Fictitious hisiorical text, following
esscatially problem no. 129 in: H.E. Dundency, Amusements in Mathematics, 1917
(Dover reprints 1958 and 1970).]

Question. How many troops does this suggest Harold Tl had at the battle of Hastings?

Exercise 4, Let § be a primitive p-th root of unity, p an odd prime number. Show
that Z[¢ 1" = (D)Z[¢ +¢']*. Show that Z[¢]* = (2251 +¢Y |0 <k <5, ne 7},
it p=>5.

Exercise 5. Let £ be a primitive m-th root of unity, m > 3. Show that the numbers
% for (k.m) =1 are units in the ring of integers of the ficld Q(¢). The subgroup
of the group of units they generate is called the group of eyclotomic unifs.
Exercise 6. Let K be a totally real number ficld, i.e., X = Hom(K,C) = Hom(K . &),

and Ict 7 he a proper nonempty subsel of X. Then there exists a unit & sarisfying
O<ve<lforreT,andze> | forT ¢ 7.

Hint: Apply Minkowski’s lattice point theorem to the unit lattice in trace-zero space.

§ 8. Extensions of Dedekind Domains

Having studied the ideal class group and the group of units of the ring og
of integers of a number ficld K, we now praposc to make a first survey of
the set of prime ideals of ok . They are ofien referred to as the prime idcals
of K — an imprecise manner of speaking which is, however, not likely to
cause any misunderstanding.

Every prime ideal p # 0 of 0 contains a rational prime number p (see
§3. p. 17y and is therefore a divisor of the ideal pox. Hence the guestion
arises as to how a prime number p factors into prime ideals of the ring ok .
We treat this problem in a more general context, starting from an arbitrary
Dedekind domain ¢ at the base instead of Z, and taking instead of og the
integral closure @ of @ in a finite extension of its field of fractions.
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(8.1) Proposition. Ler o be a Dedekind domain with field of fractions K , let
L|K be a finitc extension of K and O the integral closure of © in L. Then O
is again a Dedekind domain.

Proof: Being the integral closure of ©, O is integrally closed. The fact that
the nonzero prime ideals P of O are maximal is proved similarly as in the
case © = Z (see (3.1)): p = P N o is a nonzero prime ideal of ©. Thus
the integral domain /%0 is an extension of the field ©/p, and therefore has
itself to be a ficld. because if it were not. then it would admit a nonzero
prime ideal whose intersection with ©/p would again be a nonzero prime
ideal in ©/p. It remains to show that @ is noetherian. In the case that is of
chief interest to us, namely, if L|K is a separable extension, the proof is
very easy. Let«, ..., a, be a basis of L|K contained in O, of discriminant
d =d,.... ay). Then d # 0 by (2.8), and (2.9) tells us that O is
contained in the finitely generated o-module 0w, /d + - - - + oo, /d. Every
ideal of O is also contained in this {initely generated o-module, and therefore
is itself an ©-module of finite type, hence « fortiori a finitcly generated O-
module. This shows that © is noetherian, provided L|K is separablc. We
ask the reader’s permission 1o content ourselves for the time being with
this case. We shall come back to the general case on a more convenient
occasion. In fact, we shall give the proof in a more general framework
in §12 (see (12.8)). [m]

For a prime ideal p of © one always has
pO#O.

In fact, let 7 € p ~ p2 (p # 0), so that w© = pa with p f o, hence p+a = 0.
Writing 1 =b+s.withhepandsca, wefinds ¢ pandsp Cpa=rno.
If onc had pO = O, then it would follow that sO = spO C 7O, so that
s=mx forsome x e ONK = 0, Le., s € p, 4 contradiction.

A prime ideal p # 0 of the ring © decomposes in O in a unigue way into
a product of prime ideals,

PO =B
Instead of pO we will often write simply p. The prime ideals B; occurring in
the decomposition are precisely those prime ideals P of O which lic over p
in the sense that one has the relation
p=PnNo.
This we also denote for short by P |p, and we call ) a prime divisor of p.
The exponent ¢; is called the ramification index, and the degree of the field

extension
fi =[O/ o/p)
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is called the inertia degree of J; over p. If the extension L |K is scparable,
the numbers e;, f; and the degree n = [L : K] are connected by the
following law.

(8.2) Proposition. Let L|K be scparable. Then we have the fundamental
identity

Proof: The proof is based on the Chinese remainder theorem
’
O/p0 = QOB
i=1

O/pO and O/EB;" are veclor spaces over the field x = o/p, and it suffices
to show that

dim, (O/p) =n and  dim (O/PB7) = e fi.

In order to prove the first identity, let @, ..., wn € O be representatives
of a basis @, ... @m of O/pO over « (we have seen in the proof of (8.1)
that @ is a finitely generated ©-module, so certainly dim,(O/pQ) < co).
It is sufficient to show that wy, ..., @, is a basis of L|K. Assume the
@, ..., wy are linearly dependent over K, and hence also over o. Then
there are elements @y, ..., a@n € © not all zero such that

aywi + o+ amwy =0.

Consider the ideal a = {(ai. ..., am) of © and find ¢ € a~' such that
a ¢ a”'p, hence aa & p. Then the elements aay, ..., aay, lie in o, but not
all belong to p. The congruence

aajw) + -+ - + Gy, =0 mod p

thus gives us a linear dependence among the @y, ..., @, OVer &, a contra-
diction. The w,, ... . wy, are thereforc linearly independent over K.

In order to show that the w; arc a basis of L|K, we consider the o-
modules M = 0w + --- + 0wy and N = O/M. Since O = M + pO,
we have pN = N. As L|K is separable, O, and hence also N, are finitely
generated @-modules (see p.45). If oy, ... a, is a system of generators
of N, then

o =Y aja; foraep.
i

Let A be the matrix (a;;) — I, where / is the unit matrix of rank s, and let
B be the adjoint matrix of A, whose entries are the minors of rank (s — 1)



§8. Extensions ot Dedekind Domains 47

of A. Then one has A(a, ..., ;) = 0 and BA = dJ, with d = det(A),
(see (2.3)). Hence
0=BA(a, ..., &) = (doy, ..., dey)'.

and therefore dN = 0, ie., dO € M = ow, + --- + Cw,. We have
d # 0, because expanding the determinant d = det((a;;) — f) we find d =
(—1)* mod p because a;; € p. It follows that L =dL = Kw| + -+ Kawp.
@, ..., wy is therefore indeed a basis of L|K.

In order to prove the second identity, let us consider the descending chain

OB 2P/B 2 2B B 20

of i-vector spaces. The successive quotients PY/BYt' in this chain are
isomorphic to O/, for if & € PBY ~ P!+, then the homomorphism

O — PP, ar— aa,

has kernel P, and is surjective because P} is the ged of P and
(@) = a0 so that P! = a® + P/, Since f; = [O/P; : ], we obtain
dim, (P! /PrH) = £ and therefore

vl
i

=1
dim (O/B]) = 5 dim (B} /BT =i fi u]
o

Suppose now that the separable extension L|K is given by a primitive
element ¢ € O with minimal polynomial
LX) € o[X],

so that L = K(#). We may then deduce a result about the nature of the
decomposition of p in O which, albeit not complete, does show characteristic
phenomena and a striking simplicity. It is incomplete in that a finite number
of prime ideals are excluded; only those relatively prime to the conductor of
the ring ©[6] can be considered. This conductor is defined to be the biggest
ideal § of @ which is contained in o{#]. In other words

F=|acO|a0colbl}.

Since @ is a finitely generated ©-module (see proof of (8.1)), one has § # 0.

(8.3) Proposition. Let p be a prime ideal of © which is relatively prime to the
conductor § of 0|61, and let

B =piX) g (X)”



48 Chapter 1. Algebraic Integers

be the factorization of the polynomial p(X) = p(X) mod p into irreducibles
Pi(X) = p;(X) mod p over the residuc class field o/p, with all p{X) € 0[X]
monic. Then

Pi =pO+pi(NHO, =1,
are the different prime ideals of O above p. The incrtia degree f; of B, is the
degree of p;(X), and one has

R RN

LTy

Proof: Writing O’ = 0[¢] and & = o/p, we have a canonical isomorphism
OO = O'/p0 = B[X1/(B(X)).

The first isomorphism follows from the relative primality pO +§ = O. As
F C @, it follows that O = pO + ¥, i.e., the homomorphism O — Q/pO
is surjective. It has kemcl pO N, which equals pO'. Since (p, FNo) =1,
it follows that pO N O" = (p + NPON ') € pO'.

The second isomorphism is deduced from the surjective homomorphism

olX) — BIX1/(F(X0) .

Its kernel is the ideal generated by p and p(X), and in view of O’ = 0[6] =
ol X}/ (p(X)), we have O'/p0" = BIXT/(F(X)).

Since (X) = [1_, Pi(X)*, the Chincse remainder theorem finally gives
the isomorphism

alx1/(px) = éBEIX]/(ﬁ,tX))“’-
i=1

This shows that the prime ideals of the ring R = X]/(p(X)} are the
principal ideals (7;) gencrated by the p;(X) mod p(X), fori =L ..., r.
that the degree |R/(77;) : O] equals the degree of the polynomial p; (X) and
that
0 =(p)= ﬂ(l'l,)”’ .
i=l

In view of the isomorphism 8[X1/(F(X)) = O/p0O, f(X) — f(#). the
same situation holds in the ring O = O/pO. Thus the prime ideals PB; of
O correspond to the prime ideals (5}, and they are the principal idcals
generated by the p; () mod pO. The dcgrceL@/ﬁ, : 0] is the degree of the
polynomial 7;(X), and we have (0) = ();_, B{'. Now let B; = pO+pi(6)O
be the preimage of B; with respect to the canonical homomorphism
0 — 0/p0.
Then 9, for i = |, ..., r, varies over the prime ideals of O above p.
fi =1 0/Bi : o/pl is the degree of the polynomial 77,(X). Furthcrmore ‘D:”
is the preimage of ;' (because ¢; = #{P | v e N)). and pO 2 (V_ B,
so that p O[T/, Bi" and thesefore pO = [T;_, Pi' because Y e; f; = n.
m}
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The prime ideal p is said to split completely (or to be totally split) in L,
if in the decomposition
P
onehasr =n =1L : K],sothate; = fy = I foralli =1,..., ropis
called nonsplit, or indecomposed, if r = 1, i.e., if there is only a single
prime ideal of L over p. From the fundamental identity

Yeifi=n

i=1
we now understand the name of incrtia degree: the smaller this degree is,
the more the ideal p will be tend to factor into different prime ideals.

The prime ideal P; in the ducomposmon p = [T, (’ called
unramified over ¢ (or over K} if ¢; = 1 and if the resldue class field
extension O/PB;lo/p is separable. If not, it is called ramified, and totally
ramified if furthermore f; = 1. The prime ideal p is called unramified if
all P; are unramified, otherwise it is called ramified. The extension L|K
itself is called unramified if all prime ideals p of K are unramified in L.

The case where a prime ideal p of K is ramified in L is an exceptional
phenomenon. In fact, we have the

(8.4) Proposition. IfL|K is separable, then there are only finitely many prime
ideals of K which are ramified in L.

Proof: Let ¢ € O be a primitive element for L, ie.. L = K(6), and let
p(X) € o[X] be its minimal polynomial. Let

d=d(1,8,...,0" Y=Tl:-6)co
iy

be the discriminant of p(X) (see §2, p. 11). Then every prime ideul p of £
which is relatively prime to ¢ and to the conductor § of ©[¢/] is unramified.
In tact, by (8.3), the ramification indices ¢; equal | as soon as they are equal
to 1 in the factorization of p(X) = p(X) mod p in ©/p, so certainly if p(X)
has no multiple roots. But this is the case since the discriminant d = d mod p
of p(X) is nonzero. The residue class field extensions O/P;ito/p are
generated by 8 =8 mod B, and therefore separable. Hence p is unramified.

The precise description of the ramified prime ideals is given by the
discriminant of Q|o. It is defined to be the ideal d of © which is generated by
the discriminants d(wy. . ... wy) of all bases @y, ..., w, of L|K contained
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in O. We will show in chapter 11I, §2 that the prime divisors of 0 are exactly
the prime ideals which ramify in L.

Example: The law of decomposition of prime numbers p in a quadratic
number field Q(,/a) is intimately related to Gauss's famous quadratic
reciprocity law, The latter concerns the problem of intcger solutions of the
equatjon

4by=a, (a.bel),
the simplest among the nontrivial diophantine equations. The theory of this
equation reduces immediately to the case where b is an odd prime number
p and (a,p) = [ (exercise 6). Let us assume this for the scquel. We are
then facing the question as to whether ¢ is a quadratic residue mod p.
i.e., whether the congruence

x*=amod p
does or does not have a solution. In other words, we want to know if
the equation ¥ = &, for a given element 7 = a mod p € ¥, admits
a solution in the field F), or not. For this one introduces the Legendre

symbo} (I“—)) which, for every rational number a relatively prime to p, is

defined to be (% =1 or —1, according as .
have a solution. This symbol is multiplicative,

()=6)6)

This is because the group F, is cyclic of order p— [ and the subgroup IF;2 of

=« mod p has or does not

squares has index 2, Le., Fy/F} = 2/2Z. Since (%) =1leaely,

=1
= mod p.

one also has a
(2) =0
”
In the case of squarcfree a, the Legendre symbol (%) bears the following
relation with prime factorization. (%) =1 signifies that
P—a= {(x —a)(x +a)mod p

for some & € Z. The conductor of Z|/« } in the ring of intcgers of Q( /) is
a divisor of 2 (see §2, cxercise 4). We may therefore apply proposition (8.3)
and obtain the

(8.5) Proposition. For squarefree a and (p,2a) = 1, we have the equivalence

(ﬁ) =1 &= pistotally split inQ(/@).
P
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For the Legendre symbol, one has the following remarkable taw, which
like none other has left its mark on the development of algebraic number
theory.

(8.6) Theorem (Gauss’s Reciprocity Law). For two distinct odd prime
numbers ¢ and p, the following identity holds:

(1’)(17’) — (s

One also has the two “supplementary theorems™
-1 p=1 2 P
o en, (7:717.
(5 )=t S)=en
Proof: (1) = (-1’ mod pimplies (31) = (-7 since p £ 2.
pampl 7 P
In ordt,r to determine ( %) we work in the ring Z[{] of gaussian integers.

Since (1 +i)? = 2{, we find

52 1

(L+07 =+ (+?) o

and since (1 40)7 = 1 +i7 mudpand(% :

,) =2 mod p. it follows that

Pt

(%)(H—in%zwi(

mod p.
From this, an easy computation yields

(%);(—I)”% mod . resp. (z);(,l)pT“modp,

. 71 . -
if 2 is even, rcsp odd. Since

deduce ( ) = (-
In ()rder to prove the first formuta, we work in the ring Z|[ |, where £ is
a primitive £-th root of unity. We consider the Gauss sum

= B

aelZ )"

rzz(%)z.

and show that
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For this, let ¢ and b vary over the group (Z/€Z)*, put ¢ = b ! and deduce
__ (b
from the identity ( ) = ( f ) that

() -;b(%’w £ (T ) =B ()
-5 ()

L#l
¢ o . x
Now Y, (I) =0, as one sees by multiplying the sum with a symbo! (?) =
—1, and putting & = ;™' gives 3, ¢PC D =g+ £2 4 g =
from which we indeed find that

(—T])rza (=D(=D+e—1=¢.

, )i
This, together with the congrnence (%) = ¢’% mod p and the identity
-1

(7) = (1T, implies

r":r(rz)”l =1( gt (%)mod p.

On the other hand one has
[ A Y ﬁ) ar uﬂ:(f)
=2 = () R (T ) = (F)r modp.

r(%) = r(—l)%’l”; (%) mod p.

Multiplying by 7 and dividing by %€ yields the claim. a

n

s0 that

We have proved Gauss’s reciprocity law by a rather contrived calculation.
In §10, however, we will recognize the truc reason why it holds in the law
of decomposition of primes in the field Q(¢) of £-th roots of unity. The
Gauss sums do have a higher theoretical significance, though, as will become
apparent later {sce V1I, §2 and §6).

Exercise 1. If a and b arc ideals of ©, then one has ¢ = a © N O and
alb & a0|bO.

Exercise 2. For every integral ideal 2 of ©, there exists a # € Q such thal the
conductor § = {a € O} 0O© € 0|81} is prime to A and such that L = K (6).
Fxercise 3. If a prime ideal p of K is totally split in two separable cxtensions L|K
and L'|K, then it is also 1otally split in the composite exiension.
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Exercise 4. A prime ideal p of K is totally split in the separable cxtcnsion LIK if
and only if it is totally split in the Galois closure N |K of L|K.

Exercise 5. For a number field K the sta of ion (8.3) concerning (he
prime decomposition in the extension K (#) holds for all prime ideals p 1 (O : ©[#]).

Exercise 6. Given a positive integer b > 1, an integer a relatively prime (o b is a
quadratic residue mod b if and only if it is a quadratic residue modulo each primec
divisor p of b. and if a = 1 mod 4 when 4[b, 8 1 b, resp. « = | mod 8 when 8]b.

Exercise 7. Let (2, p) = | andav =r, mod p,v =1, .... p—1,0 <r, < p. Then
the ., give a permutation 7 of the numbers L. ..., p — 1. Show that sgn = ()
{a, is the n-th

Exercise 8. Let a, , where ¢ =

5
Fibonacei numben). If p is a prime number 7 2,5, then one has
4= g) mod p.
Exercise 9. Sudy the Legendre symbol (3 as a function of p > 3. Show that the

property of 3 being u uadratic residue or nonresidue mod p depends only on the
class of p mod 12.

Exercise 10. Show that the number of solutions of % = a mod p equals | +(5).

Exercise 1. Show that the number of solutions of the congruence ax? + bx +¢ =

ER
0 mod p. where tw, p) = 1, equals 1+ (2-54<),

§9. Hilbert’s Ramification Theory

The question of prime decomposition in a finite extension L|K takes
a particularly interesting and important turn once we assume L|K to be a
Galois extension. The prime ideals are then subject to the action of the Galois
group

G =G(LIK).
The “ramification theory” that arises from this assumption has been intro-
duced into number theory by Davin HiLserr (1862—1943). Given a in the
ring O of integral elements of L, the conjugate oa, for cvery o € G, also
belongs to O, Le., G acts on O. If P 1s a prime idcal of O above p, then
so is 0P, for each ¢ € G, because
oPne=c(@Pno)=cp=>p.

The ideals ¢B, for & € G, are called the prime ideals conjugate to .
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(9.1) Proposition. The Galois group G acts transitively on the set of all prime
ideals B of O lying above p, i.e., these prime ideals are alf conjugates of each
other.

Proof: Let P and ' be two prime ideals above p. Assume P’ # o for
any ¢ € G. By the Chinese remainder theorem there exists x € O such that
=0mod P and x=I1modeP forall ceG.

Then the norm N i (x) = [, ox belongs to P' N = p. On the other
hand, x ¢ o' for any 0 € G. hence ax ¢ P for any o € G. Consequently
[Toeg ox ¢ PN =p, a contradiction. ]

(9.2) Definition. If*P is a prime ideal of O, then the subgroup
Gy={oeG|oP=")
is called the decomposition group of B over K. The fixed field
Zp={xel|ox=1x foralloc € Gy}

is called the decomposition field of P over K.

The decomposition group encodes in group-theorctic language the number
of different prime ideals into which a prime ideal p of © decomposes in O.
For if P is one of them and o varies over a system of representatives
of the cosets in G/Guy, then o P varies over the different prime ideals
above p, each one occurring precisely once, i.e., their number equals the
index (G : Gg). In particulas, one has

Gyu=1 = Zyg=1L <= pis totally split,
Gp=G0G < Zy=K <= pis nonsplit.
The decomposition group of a prime ideal o B conjugate to P is the
conjugate subgroup
Gop=0Gypa™'.
In fact, for T € G, one has the equivalences
1€Gop €= 0P=0P ¢ o 'eP=P

& 0710 Gy &= TeoGpo!.

Remark: The decomposition group I the prime decomposi also
in the case of a non-Galois extension. For subgroups U and V of a group G,
consider the equivalence relation in G defined by

o~0o & o' =uov foruclU,veV.



§9. Hilbert’s Ramification Theory 55

The corresponding equivalence classes

UoV ={uov|uelU.veV)}
are called the double cosets of G modd U, V. The set of these double cosets,
which form a partition of G, is denoted U\G/V .

Now let L|K be an arbitrary separable extension, and embed it into a
Galois extension N|K with Galois group G. In G, consider the subgroup
H = G(N|L). Let p be a prime ideal of K and P, the set of prime ideals
of L above p. If P is a prime ideal of N above p, then the rule

H\G/Gyp —> P, HoGyr— o BNL,
gives a well-defined bijection. The proof is left to the reader.

In the Galois case, the inertia degrees f, ..., f; and the ramification
indices ¢). ..., ¢, in the prime decomposition
p="P By
of a prime ideal p of K are both independent of i,
h==fi=f. es=-=e, =c.

In fact, writing B = P. we find P; = 0;P for suitable o; € G, and the
isomorphism o; : O — O induces an isomorphism

O/P = O/oyP, a mod P r+—> o;a mod ;P
so that
fi=[0/0P:o/p]=[0O/B:0/p]. i=1L .., r.
Furthermore, since o, (pQ) = pO, we deduce from

PO = a(P)0oi(pO) &= @P’Ip0O

the equality of the e;, i = 1, ..., r. Thus the prime decomposition of p in O
takes on the following simple form in the Galois case:
p=([1o%)".

a
where o varies over a system of representatives of G/Gq. The decomposi-
tion field Zg of P over K has the following significance for the decompo-
sition of p and the invariants ¢ and f.

(9.3) Proposition. Let Pz = PN Zy be the prime ideal of Zy below P.
Then we have:

(i) Bz isnonsplitin L, i.c., P is the only prime idcal of L above P,
(it) P over Zap has ramification index e and inertia degree f.
(iii) The ramification index and the inertia degree of 3, over K both equal 1.
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Proof: (i) Since G(L|Zyp) = G, the prime ideals above Pz are the a P,
for 0 € G(L|Zq), and they are all equal to B.

(ii) Since in the Galois case, ramification indices and inertia degrees are
independent of the prime divisor, the fundamental identity in this case reads

n=cfr.

where n 1= #G,r = (G : Gy). We see therefore that #G g = [L : Zyg] = ef .
Let ¢, resp. ¢”, be the ramification index uf‘n over Zg, resp. 0
Then p J.ysz ...in Zy and Pz = P in L. so that p = P
e = ¢'¢”, One also obviously gets the analogous identity for lhe inertia
degrees f = f'f". The fundamental identity for the decomposition of Bz
in L then reads [L : Zg| = €'f’, ie., we have ¢/ f" = ef, and therefore

=, fl=f e =f" =1 ]

The ramification index e and the inertia degree f admit a further
interesting group-theoretic interpretation. Since o0 O = O and 6P = P,
every ¢ € Gy induces an automorphism

F:0/P— O/P, amod Pr— oag mod P,

of the residue class field O/P. Putting «(P) = O/P and «(p) = 0/p, we
obtain the

(9.4) Proposition. The extensionk (*P) |« (p) is normal and admits 4 surjective
homomorphism

Gg — G(e(PB)(p)).

Proof: The inertia degree of Pz over K equals 1, i.c., Zg has the same
residue class field «(p) as K with respect to p. Therefore we may, and
do, assume that Zp = K, ie., Gp = G. Let ¢ € O be a representative
of an element 8 € «(P) and f(X), resp. g(X). the minimal polynomial
of @ over K. resp. of § over «(p). Then & = ¢ mod P is a zero of the
polynomial (X} = f(X) mod p, i.e., F(X) divides F(X). Since L|K is
normal, f(X) splits over O into linear factors. Hence f(X) splits into tinear
factors over « (P), and the same is true of g(X). In other words, « ()|« (p}
is a normal cxtension.

Now let & be a primitive element for the maximal separable subextension

of k(P x(p) and
7 € G(x(PIkp)) = G P)B)le(p)) .
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Then 7 @ is a root of g(X), and hence of f(X), i.c., there exists a zero 6
of f(X) such that 8 = &8 mod P. #' is a conjugate of 6, ie., 0/ = a0
for some o € G(L|K). Since o8 = 76 mod P, the automorphism o is
mapped by the homomorphism in question to &. This proves the surjectivity.

[m]

(9.5) Definition. The kernel Iyy © Gy of the homomorphism
Gy — G(c(P)Ixp))
is called the inertia group of P over K . The fixed field
Ty={xeL|ox=ux forallo eIy}

is called the inertia field of B over K.

This inertia field Tip appears in the tower of fields
KCZyCTp<SL,
and we have the exact sequence
1~ Ip —> G~ G(k(P)lx(p)) — 1.

Its propertics are cxpressed in the

(9.6) Proposition. The extension Toz| Zqs is normal, and one has
G(TylZy) = G(x(P)lc). GLITy) = Ip.
1f the residue field extension « (B) 1« (p) is separable, then one has
#yg=[L:Tgl=c, (Gp:lp)=I[Tp:Zyl=f.
In this case one finds for the prime ideal Pt of Ty below P:
(i) The ramification index of P over Py is e and the inertia degree is 1.

(ii) The ramification index of Pr over Pz is 1, and the inertia degree is f.

Proof: The first two claims follow from the identity #Gp = ¢f. So we only
have to show statements (i) and (ii). Using the fundamental identity, they all
follow from « (B4} = « (P). As the inertia group £ of P over K is also the
inertia group of P over Ty, it follows from an application of proposition (9.4)
to the extension L{iTy that G (P (Pr)) = 1, hence «(Pr) =«(P). O
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In the diagram
K= Zyg— T L
/ 1
we have indicated the ramification indices of the individual field extensions
on top, and the inertia degrees on the bottom. In the special case where the
residue field extension « (P)|« (p) is separable we find
fg=1 & Tp=L & pis unramificd in L.

In this case the Galois group G (x (P« (p)) = Gy of the residuc class field
extension may be vicwed as a subgroup of G = G(L|K).

Hilbert's rar tion theory, with its various refinements and generaliza-
tions, belongs naturally to the theory of valuations, which we will develop
in the next chapter (see chap. 11, §9).

Exercise L. If L|K is a Galois extension of algebraic number fields with noncyclic
Galois group, then there are at most finitely many nonsplit prime ideals of K.
Exercise 2. If L| K is a Galois extension of algebraic number fields, and P a prime
ideal which is unramified over K (i.e., p = PN K is unramified in 1), then there 15
onc and only ene automorphism g € G(L|K) such that

ppa=a’ mod P foralla e o,
where ¢ = [«(B) : k(p)[. [t is called the Frobenius automorphism. The decompo-
sition group G o is cyclic and @q is a generator of G q.
Exercise 3, Let L|K be a solvable extension of prime degrec p (nol. necessarily
Galois). If the unramificd prime ideal p in L has two prime factors 0 and 93 of
degree 1, then it is already totally split (theorem of F.K. ScHmiDT).

Hint: Use the following result of Gaross (sce [75], chap. [1, §3): if G is a transitive
solvable permutation group of prime degree p, then there is no nontrivial permutation
o € G which fixes two distinct letters.

Exercise 4. Let L]K be a finite {not necessarily Galois) extension of algebraic number
fields and N|K the normal closure of L|K. Show that a prime ideal p of K is totally
split in L if and only if it is 1otally split in V.

Hint: Usc the double cosct decomposition H\G/G g, where G = G(N|K). H =
G(NIL) and G g is the decomposition group of a prime ideal P over p.

§ 10, Cyclotomic Fields

The concepts and resuits of the theory as far as it has now been
developed have reached a degree of abstraction which we will now balance
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by something more concrete. We will put the insights of the general theory
to the task and make them more cxplicit in the example of the n-th
cyclotomic field (7). where ¢ is a primitive z-th root of unity. Among
all number fields, this field occupies a special, central place. So studying it
does not only furnish a worthwhile example but in fact an essential building
block for the further theory.

Tt will be our first goal to determine explicitly the ring of integers of the
field (7). For this we need the

(10.1) Lemma. Let n be a prime power £" and put X = 1 — . Then the
principal ideal (}.) in the ring © of integers of Q({) is a prime ideal of degree |,
and we have

to=()", where d=e(t")=(QQ):Ql
Furthermore, the basis 1.¢, ..., 291 of Q(£)|Q has the discriminant

dlg, . Y =k, s=" e —v— 1),

Proof: The minimal polynomial of { over @ is the n-th cyclotomic poly-
nomial

GaX) = (XU — DX == xTTE e xE
Putting X = 1, we obtain the identity
£= [ U-=t5.
QE(Z/nEY"

But 1 — % = g,(1 — ¢), for the algchraic integer g, = llf{; =

L4+ ¢ 44 ¢#7 1 If ¢ is an integer such that gg’ = 1 mod £”, then

1-¢ _1=@h¥ ‘ -
= gt (Y
=T g +¢ (%]
is integral as well, ie.. &, is a unit. Cunsequemly €= g(1 — 7)), with

the unit & = n £y, hence £0 = (A)‘“ ). Since [Q(¢) @ Q) = @(£¥), the
fundamental ldenmy (8.2) shows that (1) is a prime ideal of degree 1.

Let ¢ = i, ....% be the conjugates of ¢. Then the cyclotomic
polynomial is ¢, (X) = ]_[,d,,(X —¢) and (sce §2, p. 11)

o
+d(1,¢. ..., 247N =TT = &) = [1 66 = Ngwia (20} -
i#f i=1
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Differentiating the equation
= Dgax) = X -1
and substituting £ for X yields
E-he @ =e¢ "

with the primitive £-th root of unity & = ¢, But Nggyg(§ — 1) = %€,
so that

- .
Noie® — D = Ngee@ - D' =+
Observing that ¢ "' has norm %1 we obtain
dllg, . 0 = ENG (g ) = =00 TN o g
with s = €77 (vf — v ~ 1). 5

The ring of integers of () is now determined, for arbitrary z, as follows.

(10.2) Proposition. A Z-basis of the ring o of integers of Q({) is given by
Lg. ... ¢¢ Y withd = g(n), in other words.

o=L+ILL 4+ + 7 =ZZ).

Proof: We first prove the proposition in the case where n is a prime
power £°. Since d(1,¢, ..., £y = £, (2.9) gives us

CocZlf1Co.

Putting A = 1 — ¢, lemma (10.1) tells us that o/io = Z/LZ, so that
o =%+ o, and « fortiori

ro+Zlg]l=o0.

Multiplying this by A and substituting the result Ao = %0 + LZ[¢], we
obtain

Mo+ Zt)=o.
Iterating this procedure, we find

Mo+ Zicl=0 forall r=1,
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For t = 5@(£") this implics, in view of £ 0 = 220 (see (10.1)). that
o=No+ZL]=o+Zlr)=1Z¢].

In the general case, let n = €' -~ ¢/, Then & = "4 is a primitive ¢/ -th
root of unity, and one has

Q) =Q) - Q&)

and Q&) - Q- N Q&) = Q. By what we have just seen, for cach
] .. , the elements 1.4, ..., [,‘1”', where d; = w(l:”), form an
integral basis of Q(¢;)|Q. Since the discriminants d(1.Z;, . ... :,“"") =+£
are pairwise relatively prime, we conclude successively from (2.11) that the
elements ¢ ---¢”, with j; = 0...., d; — 1, form an integral basis of
Q) Q. But cach one of these elements is a power of ¢. Therefore every
« € o may be written as a polynomial @ = f(£) with coefficients in Z.
Since ¢ has degree ¢(#) over Q, the degree of the polynomial f({) may be
reduced to ¢(#) — 1. In this way one obtains a representation

i=1,

o =apt+ail + -+ dgum- 1 £

Thus 1,4, ..., £¥"~!is indeed an integral basis. [}

Knowing that Z[{] is the ring of integers of the field (}{Z) we are now in
u position to state explicitly the law of decomposition of prime numbcers p
into prime ideals of Q(£). It is of the most beautiful simplicity.

(10.3) Proposition. Letn =[], p" be the prime factorization of n and, for
every prime number p, let f, be the smallest positive integer such that

plr = 1modn/p*r.
Then one has in Q () the factorization
p=p-p)0",

where py, ..., p, are distinct prime ideals, all of degree f,.

Proof: Since © = Z{¢], the conductor of Z[{] equals 1, and we may
apply proposition (8.3) to any prime number p. As a consequence, every p
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decomposes into prime idcals in exactly the same way as the minimal
polynomial ¢,(X) of { factors into irreducible polynomials mod p. All we
have to show is therefore that

AP P)
@) = (m(X) - p, (X)*"" mod p,
where p(X). ..., p,(X) are distinct irreducible polynomials over Z/ pZ of
degree f,. In order to see this, put # = p"rm. As &, resp. n;, varies over
primitive roots of unity of order m, resp. p*», the products & n; vary precisely
over the primitive #-th roots of unity, i.c., one has the decomposition over 0:

(X)) = [1X = &)
7

Since X7 ~ 1= (X — )" mod p, one has 1; = | mod p, for any prime
ideal p| p. In other words,

BulX) = []X — £777 = 6, (X)*7"™) mod p.
;

This implies the congruence
@0 (X) = 9, (X)*P") mod p.

Observing that f, is the smallest positive integer such that p/r = 1 mod mr,
it is obvious that this congruence reduces us to the case where p { n, and
hence o(p”) = (1) = 1.

As the characteristic p of o/p does not divide n, the polynomials X* — 1
and #X"~' have no common root in ¢/p. So X" — 1 mod p has no
multiple roots. We thercfore see that passing to the quotient © — o/p
maps the group g, of n-th roots of unity bijectively onto the group
of n-th roots of unity of o/p. In particular, the primitive n-th root of
unity { modulo p remains a primitive n-th root of unity. The smallest
extension field of F, = Z/pZ containing it is the field i because its
multiplicative group ]F,//y is cyclic of order pfr—1. ¥ olp 1s thercfore the

field of decomposition of the reduced cyclotomic polynomial

Bu(X) = @n(X) mod p.
Being a divisor of X" — I mod p, this polynomial has no multiple roots,
and if

Fn(X) = P1(X) -+ Pr(X)
is its factorization into irreducibles over F,, then every Pi(X) is the minimal
polynomial of a primitive n-th root of unity & e AF;’/”. Its degree is
therefore f,. This proves the proposition. [m]

Let us emphasize two special cases of the above law of decomposition:
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(10.4) Corollary. A prime number p is ramified in Q(¢) if and only if
n=0mod p,
except in the case where p = 2 = (4,n). A prime number p # 2 is totally

split in Q(¢) if and only if
p=1lmodn.

The completeness of these results concerning the integral basis and the
decomposition of primes in the field Q () will not be matched by our study
of the group of units and the ideal class group. The problems arising in this
context are in fact among the most difficult problems posed by algebraic
number theory. At the same time one encounters here plenty of astonishing
laws which are the subject of a theory which has been developed only
recently, Iwasawa theory.

The law of decomposition (10.3) in the cyclotomic field provides the
proper explanation of Gauss's reciprocity law (8.6). This is based on the
following

(10.5) Proposition. Let ¢ and p be odd prime numbers, £* = (— l)%l, and
¢ a primitive £-th root of unity. Then one has:
p is totally split in Q(~/€*) <= p splits in Q(¢) into an even
number of prime idcals.

Proof: The little computation in §8, p. 51 has shown us that £* = 72 with
T = Zuem/zz»‘(%)(”- so that Q(v/€*) € Q(). If p is totally split in
Q(«/F), say p = pips, then some automorphism ¢ of Q(¢) such that
op) = pr transforms the set of all prime ideals lying above p, bijectively
into the sct of prime ideals above p,. Therefore the number of prime ideals
of @(¢) above p is even. Now assume conversely that this is the case. Then
the index of the decomposition group Gy, or in other words, the degree
[Z, : Q] ol the decomposition ficld of a prime idecal p of Q(¢) over p,
is even. Since G(Q(£)Q) is cyclic, it follows that Q(v€) € Z,. The
inertia degree of p N Z, over @ is 1 by (9.3), hence also the inertia degree
of p N Q(/£*). This implies that p is totally split in Q(+/Z* ). m]

From this proposition we obtain the reciprocity law for two odd prime

numbers € and p.
() -
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as follows, Ir suffices to show that
D=0
P T\ /s
- =) N
In fact, the completely elementary vesult (T,}) =(=1)"T (sec §8,p.5)

()= =G E)=()-ns

By (8.5) and (10.5), we know that (%) = | if and only if p decomposes
in the field Q(Z) of £-th roots of unity into an cven number of prime ideals.

By (10.3), this number is r = {;—l where f is the smallest positive integer

such that p/ = | mod ¢, ie., r is even if and only if f is a divisor

of (’;—] But this is tantamount to the condition p=1/2 = 1 mod ¢. Since

an element In the cyclic group Fy has an order dividing g if and only if

it belongs to ¥}?, the last congruence is equivalent to (?) = 1. So we do
I 4 . §

have (7) = (’7) as claimed.

Historically, Gauss’s reciprocity law marked the beginning of algebraic
number theory. It was discovered by Euvier, but first proven by Gauss. The
quest for similar laws concerning higher power residues, i.c., the congruences
x" = ¢ mod p, with n > 2, dominated number theory for a long time.
Since this problem required working with the a-th cyclotomic field, Kummrr's
attempts to solve it led 1o his seminal discovery of ideal theory. We have
developed the basics of this theory in the preceding sections and tested it
successfully in the example of cyclotomic fields. The further development
of this theory has led to a totally comprehensive generalization of Gauss’s
reciprocity law, Artin’s reciprocity law, one of the high points in the history
of number theory, and of compelling charm. This law is the main theorem
of class field theory, which we will develop in chapters TV--V1.

Exercise 1, (Dirichlet’s Prime Number Theorem). For cvery natural number # there
are infinitely many prime numbers p = 1 mod .

Hint: Assumc there are only (initely many. Let £ be their product and consider the
#-th cyclotomic polynomial ¢,. Not all numbers ¢, (rnP), for x € Z, can equal 1.
Let p ¢, (xnP) for suitablc x. Deduce a contradiclion from this. (Dirichlet’s prime
number theorem is valid more generally for prime numbers p = a mod a, provided
(e.n) =1 (see VII, {5.14) and V1), §13)).
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Exercise 2. For cvery finite abelian group A there cxists a Galois extension £|Q
with Galois group G(L|Q) = A.

Hint: Use exercisc 1.

Exercise 3. Every quadratic number field Q(+/d ) is contained in some cyclotomic
field Q(Z,), ¢, a primitive n-th root of unity.

Exercise 4. Describe the quadratic subfields of Q(£,)@Q. in the case where 2 is odd.

Exercise 5. Show that Q(v/=1), Q(+v/2), U(y/=2) are the quadratic subficlds of
QNG Torn =20, g 2 3.

§ 11. Localization

To “localize” means to form quotients, the most familiar case being the
passage from an integral domain A 10 its field of fractions

K:{%|ae/\.hs/\\(0)}.

More generally, choosing instead of A ~ {0} any nonempty S € A ~ {0}
which is closed under multiplication, one again obtains a ring structure on
the set

S":{% €K|aeA .YGS}.

The most important special case of such a multiplicative subset is the
complement S = A ~ p of a prime ideal p of A. In this case one writes A,
instead of AS™', and one calls the ring A, the Jocalization of A at p. When
dealing with problems that involve a single prime ideal p of A af a vime it is
often expedient to replace A by the localization A,. This procedurc forgets
cverything that has nothing to do with p, and brings out more clearly all the
properties concerning p. For instance, the mapping

g q4ay

gives a 1-l-correspondence between the prime ideals g € p of A and the
prime ideals of Ap. More generally for any multiplicative set S, one has the

(11.1) Proposition. The mappings

qr— g5 and Qr—>ONA

are mutually inverse 1-}-correspondences between the primce ideals 9 C A~S
of A and the prime ideals 9 of AS™".
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Proof; It q € A ~. § is a prime ideal of A, then
D:qS":{iMeq. ses

isa pnme ideal of AS~'. Indeed, in obvious notation, the relation ﬁi €,
ie., % = :’,,. implies that s“aa’ = ¢ss’ € q. Therefore aa’ € q, ’be(..iuse
s" ¢ q, and hence @ or ' belong to q, which shows that % or ?— belong
to £. Furthermore one has ’
q=9NA,
since % =a € £2N A implies ¢ = as € g, whence a € g because 5 ¢ q.
Conversely, let 9 be an arbitrary prime ideal of AS™'. Then g =9nN A
is obviously a prime ideal of A, and onc has g € A ~ §. In fact, if g were
to contain an s € §, then we would have 1 = - % € 1] because % € AST.
Furthermore one has
N=g5"".
Furltf €9, lhena_— seQNA=q, hen(.c%_afeqi' . The
mappings q — g5~ and Q = 0N A are therefore inversces of each other,
which proves the proposition.

Usually S will be the complement of a union {J,.x p over a set X of
prime ideals of A. In this case one writes

A(X)*{*U geA g#FOmodplorpe X

instead of AS~!. The prime ideals of A(X) correspond by (11.1) 1-1 to
the prime idcals of A which are contained in UF(X p, all the others are
being eliminated when passing from A to A(X). For instance, if X is finite
or omits only finitely many prime ideals of A, then only the prime ideals
trom X survive in A(X).

In the case that X consists of only one prime ideal p, the ring A(X) is
the localization

Ap:{ﬁ‘/,geA, g %0 mod p}

of A atp. Here we have the

(11.2) Corollary. If p is aprime ideal of A, then Ay, is alocal ving, i.e., Ay has
a unique maximal ideal, namely my, = pA,. There is a canonical embedding
Alp > Ap/my,
identifying Ay/my with the ficld of fractions of A/p. In particular, if p is a
maximal ideal of A, then one has
AfpT = Ayml forn > 1.
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Proof: Since the ideals of A correspond 1-1 to the ideals of A contained
in p, the ideal m, = pA, is the unique maximal ideal. Let us consider the
homomorphism

FrA/p — Ap/my,  a wod p" — a mod my.

Forn =1, f is injective because p = m,; N A. Hence A,/m, A, becomes the
field of fractions of A/p. Let p be maximal and n > 1. Foreverys € A < p
onc has p* +sA = A, le., ¥ =s mod p” is a unit in A/p". For n = 1 this
is clear from the maximality of p, and for » > 1 it follows by induction:
A=p' '+5sAp=pA=p(p" +5A) GP +5AS p" FsA=A.

Injectivity of f: leta € A be suchthata € my, i.e.. « = /s with b € p".
s¢p. Thenas =hep”, sothatas =0in A/p”, and hence @ = in A/p".

Surjectivity of f: let a/s € Ay, @ € A, s ¢ p. Then by the above, there
exists an @’ € A such that ¢ = a’s mod p”. Therefore a/s = o' mod p"A,,
ic., a/s mod my lies in the image of f.

In a local ring with maximal ideal m, every element ¢ ¢ m is a unit.
Indeed, since the principal ideal (a) is not contained in any other maximal
ideal, it has to be the whole ring. So we have

A=A~ m.

The simplest local rings, except for fields, are discrete valuation rings.

(11.3) Definition. A discrete valuation ring is a principal ideal domain o with
a unique maximal ideal p # 0.

The maximal ideal is of the form p = (7) = 7o, for some prime
element 7. Since every element not contained in p is a unit, it follows
that, up to associated elements, 7 is the only prime element of . Every
nonzero clement of © may therefore be written as & 7", for some & € 0*,
and # > 0. More generally, cvery clement a # 0 of the field of fractions K
may be uniquely written as

a=¢n", ce0*, nel.

The exponent a2 is called the valuation of a. It is denoted v(a), and it is
obviously characterized by the equation

(a) = p* .
The valuation is a function

weK*— 7,
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Extending it to K by the convention ¢(0) = 0o, a simple calculation shows
that it satisties the conditions

uwlab) =v(a) + v(h), vig+b) > min{ v(g). v(h)] .
This innocuous looking function gives rise to a theory which will occupy all
of the next chapter.

The discrete valuation rings arise as localizations of Dedekind domains.
This is a consequence of the

(11.4) Proposition. If o is 4 Dedckind domain, and S € © ~ {0} is a multi-
plicative subset, then © ™" is also a Dedekind domain.

Proof: Let 2 be an ideal of ©S~! and a = AN o. Then A = a § !, because
f*EQl agecoands €S, then one has @ = 5 - ;e%lﬁu_u so that

=a-; €aS™'. As a s finitely generated, so is 9, i.c., 05~ is noetherian.
It fol]ows trom (11.1) that every prime ideal of ©S~' is maximal, because
this holds in . Finally, 0S~' is integrally closed, for if x € X satisfies the
equation

X +

with coefficients {\i € o8~', then mulllplymg it with the n-th power
of s = s7...5, shows that sx is integral over o, whence sx € o and
therefore x € ©S~". This shows that ©S~' is a Dedekind domain. O

(11.5) Proposition. Let o be a noetherian integral domain. © is a Dedekind
domain if and only if, for all prime idecals p # 0, the localizations ©, are
discrete valuation rings.

Proof: If © is a Dedekind domain, then so are the localizations o,. The
maximal ideal m = po, is the only nonzero prime ideal of ©,. Therefore,
choosing any 7 € m ~. m?, onc necessarily finds (;r) = m, and furthermore
m" = ("), Thus ©, is a principal ideal domain, and hence a discrete
valuation ring.

Letting p vary over all prime ideals # 0 of ©, we find in any case that

o=op.
»
For if § & (1), 0p. with a.b € o, then

a={xeojraechol]
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is an ideal which cannot be contained in any prime ideal of ©. In fact, for
any p, we may write % = £ with ¢ € @, 5 ¢ p, so that sa = bc, hence
$ € a ~ p. As ais not contained in any maximal ideal, it follows that a = o,
hencea=1-a€ho,ie, % co.

Suppose now that the ©, are discrete valuation rings. Being principal ideal
domains, they are integrally closed (see §2), so 0 = ﬂp Oy is also integrally
closed. Finally, from (11.1) it follows that every prime ideal p # 0 of © is
maximal because this is so in ©,. Therefore © is a Dedekind domain. [

For a Dedekind domain o, we have for each prime ideal p # 0 the discrete
valuation ring 0, and the corresponding valuation

v K*— 2
of the field of fractions. The significance of these valuations lies in their
relation to the prime ideal factorization. If x € K* and
) =]Tp"™
»
is the prime factorization of the principal ideal (x), then, for each p, one has
Yy = Up(x).

In fact, for a fixed prime ideal q # 0 of ©. the first equation above implies
(because p 0, = 0q for p # q) that

xeq = (IT9)
P

— Vam — ¥a
q = 07"10q =Wy

Hence indeed vq(x) = vg. In view of this relation, the valuations vy arc also
called exponential valuations.

The reader should check that the localization of the ring Z at the prime
ideal (p) = pZ is given by

Z<,,)={% labez, p)(b}.

The maximal ideal pZ,, consi
and the group of units con:
valuation associated to Zp),

sts of all fractions a /b satisfying pla, ptbh,
s of all fractions «/b satisfying p t ab. The

vp 1 Q — Z U {oo}.

is called the p-adic valuation of Q. The valuation v,(x) of an element
x € Q* is given by
vplx) =v,

where x = p'a/b with integers a, b relatively prime to p.
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To end this section, we now want to compare a Dedekind domain o to
the ring
o(X) = [{— | fieco, g #0modp for pe X},

where X is a set of prime idcals # 0 of © which contains almost ail
prime ideals of ©. By (11.1), the prime ideals # O of o(X) are given as
px = po(X), for p € X, and it is easily checked that © and ©(X) have the
same localizations
0p = 0(X)py -

We denote by C/(0), resp. Ci(©(X)), the ideal class groups of o, resp.
o(X). They, as well as the groups of units ©* and ©(X)*, are related by the
following

(11.6) Proposition. There is a canonical exact sequence

I — 0" — o(X)" — P K"/o, — Cl(0) — CloX)) — 1,
pEx
and one has K* /o), = L.

Proof: The first arrow is inclusion and the second one is induced by the
inclusion o(X)* — K*, followed by the projections K* — K*/o}. If
a € 0(X)" belongs to the kernel, then ¢ € o for p ¢ X, and also for p € X
because 0, = o(X)y,, hence ¢ € [, 0; = o* (see the argument in the
proof of (11.5)). This shows the exactness at ©(X }*. The arrow
(43} K"/o; — Cl(0)
pEX
is induced by mapping
@ o, mod 0f —> [] p*r,
EX bEX
where v, : K* — Z is the exponential valuation of K associated to o, Let
D, ¢x @ mod O} be an element in the kemnel, ie.,

I1 p™! = (@) = []p*®,
pex P

for some ¢ € K*. Because of unique prime factorization, this means that
ve(w)y = 0 for p € X, and vy(ey) = wyla) for p ¢ X. Tt follows
that o € mch (’); = o(X)* and @ = @p mod 0;. This shows exactness
in the middle. The arrow

Cl(0) — Cl(o(X))
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comes from mapping a — ao(X). The classes of prime ideals p € X
are mapped onto the classes of prime ideals of ©(X). Since Cl(o(X)) is
generated by these classcs, the arrow is surjective. For y ¢ X we have
po(X) = (1), and this means that the kernel consists of the classes of the
ideals ],z p"». This, however, is visibly the image of the preceding arrow.
Therefore the whole sequence is exact. Finally, the valuation vy, : K* — 7
produces the isomorphism K*/o}, = Z. O

For the ring of integers ok of an algebraic number field X', the proposition
yields the following results. Let S denote a finite set of prime ideals of ok
{not any more a multiplicative subset), and let X be the sct of all prime
ideals that do not belong to S. We put

o} = ok (X).

The units of this ring are called the S-units, and the group le( = Cl(mf()
the S-class group of K.

(11.7) Corollary. For the group KS = (o‘;)‘ of S-units of K there is an
isomorphism
KS = (K x ZHHHt

where r and s are defined as in § 5, p. 30.

Proof: The torsion subgroup of K% is the group ;2(K) of roots of unity
in K. Since C/(0) is finite, we obtain the following identities from the exact
sequence (11.6) and from (7.4):

rank(K ) = rank (0} ) + rank{ D Z) =#S +r +s — 1.
pes

This proves the corollary. [m]

(11.8) Corollary. The S-class group le( = Cl(o;) is finite.

Exercise L. Let A be an arbitrary ring, not necessarily an integral domain, let M be
an A-module and § a multiplicatively closed subset of A such that 0 ¢ 5. In M x §
consider the equivalence relation

(m,s)~ (m'.s") <= Is5" €S such that s"(s'm - sm’) = 0.

Show that the set My of equivalence classes (n2,5) forms an A-modulc, and that
M > Mg, a > (a. 1), is a homomorphism. In particular. Ay is a ring. It is called
the localization of A with respect to S.
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Exercise 2. Show that, in the abovc situation, the prime ideals of Ag correspond -1
to the prime ideals of A which are disjoint from S.If p € A and ps C Ag correspond
in this way. then Ag/pg is the localization of A/p with respect to the image of S.

Exercise 3. Let f : M — N be a homomorphism of A-modules. Then the following
conditions are equivalent;

(i} [ is injective (surjective).

(i) fp: M, > Ny is injective (surjective) for cvery prime ideal p.

(i) fim: My — Ny is injective (surjective) for every maximal ideal m.

Exercise 4. Let § and 7 be two multiplicative subsets of A, and T* the image of T
in Ay, Then one has Agy = (Ag)y-.

Exercise 5. Let f : A — B be a homomorphism of rings and S a multiplicatively
closed subset such that f(S) € B*. Then £ induces a homomorphism Ag — B.

Exercise 6, Let A be an integral domain. If the localizalion A is integral over A,
then Ay = A.

Exercise 7 (Nakayama’s Lemma). Let A be a local ring with maximal ideal m, let M
be an A-module and N C M a submodule such that M/N is finitely gencrated. Then
one has the implication:

M=N+mM —= M=N.

§12. Orders

The ring og of integers of an algebraic number field K is our chief
interest because of its excellent property of being a Dedekind domain. Due
to important theoretical as well as practical circumstances. however, one is
pushed to devise a theory of greater generality which comprises also the
theory of rings of algcbraic integers which, like the ring

0=Z+Zv5<Q(V3),

are not necessarily integrally closed. These rings are the so-called orders.

(12.1) Definition, Let K [Q be an algebraic number ficld of degree n. An order
of K is a subring © of ox which contains an integral basis of length n. The
ring ok is called the maximal order of K .
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In concrete terms, orders are obtained as rings of the form
o=2Zla, ..., al,

where o, ..., @ are integers such that X = Q. .... ). Being a
submodule of the free Z-module vk, 0 does of course admit a Z-basis
which, as Qo = K, has (o be at the same time a basis of K ;Q, and therefore
has length . Orders arise often as rings of multipliers, and as such have their
practical applications. For instance, if ), .... o, is any basis of X |Q and
M =Zay + . + Za,, then

oy =lacK|aM < M}

is an order. The theoretical significance of orders, however, lies in the fact
that they admit “singularities”, which are excluded as long as only Dedekind
domains with their “regular” localizations ©y arc considered. We will explain
what this means in the next section.

In the preceding section we studied the localizations of a Dedckind
domain og. They are extension rings of Ox which are integrally closed,
yet no longer integral over Z. Now we study orders. They are subrings
of ox which are integral over Z, yet no longer integrally closed. As a
common generalization of both types of rings let us consider for now all
one-dimensional noetherian integral domains. These are the noetherian
integral domains in which every prime ideal p # 0 iy @ maximal ideal.
The term “one-dimensional” refers to the general definition of the Krull
dimension of a ring as being the maximal length d of a chain of prime
ideals po G 1 & - G Pan

(12.2) Proposition. Anorder o of K is a one-dimensional noetherian integral
domain.

Proof: Since o is a finitely generated Z-module of rank n = [K : @],
every ideal a is also a finitely generated Z-module, and @ fortiori a finitely
generated @-module. This shows that © is noetherian. If p % 0 is a prime
idealand ¢ e pNZ, ¢ # 0, then a0 T p S 0, i.e., p and © have the same
rank #. Therefore o/p is a finite integral domain, hence a ficld, and thus p
is a maximal ideal. c

In what follows, we always let © be a one-dimensional noetherian integral
domain and K its field of fractions. We set out by proving the following
stronger version of the Chinese remainder theorem.
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{12.3) Proposition. /fa # 0 is an ideal of o, then

o/a = Poy/ao, = P op/av,.
b poa

Proof: Let &, = © N aop. For almost all p onc has p 2 a and therefore
a0, = ©p, hence @, = o. Furthermore, one has a = (M, 6 = {5, -
Indeed, for any a € ﬂv Gy, the ideal b = {x € 0] xa € a} docs not belong
to any of the maximal ideals p (in fact, one has sy,a € a for any sp € p).
consequently, b = 0, i.c., ¢ = 1 -a € a, as claimed. (11.1) implies that,
if p 2 a, then p is the only prime ideal containing d,. Therefore, given two
distinct prime ideals p and ¢ of o, the ideal d,+8, cannot be contained in any
maximal ideal, whence @y + & = 0. The Chinese remainder theorem (3.6)
now gives the isomorphism

ofa = P o/d,.
poa
and we have 0/d, = 0p/aoy, because p = p mod G, is the only maximal
ideal of ©/dy. a

For (he ring o, the fractional ideals of o. in other words, the finitely
generated nonzero ©-submodules of the field of fractions K, no longer form
a group — unless © happens to be Dedekind. The way oul is to restrict
attention to the invertible ideals, i.c., to those fractional ideals a of © for
which there exists a fractional ideal & such that

ab = o.

These form an abelian group, for trivial rcasons. The inverse of a is still the
fractional ideal

o' ={xeK|rxaC o},
because it is the biggest ideal such that aa™' € . The invertible ideals of ©
may be characterized as those fractional ideals which are “locally” principal:

(12.4) Proposition. A fractional ideal a of o is invertible if and only if, for
every prime ideal p # 0.

ap = aoy

is a fractional principal idcal of 0.
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Proof: Let a be an invertible ideal and ab = o. Then 1 = Y7/, aib;
with @; € a, b; € b, and not all a;b; € ©p can lic in the maximal ideal
pOp. Suppose @by is a unit in op. Then a, = @0y because, for x € ap,
xby € ayb = oy, hence x = xbi(b1a)) " oy € @10y

Conversely, assume a, = a0y is a principal ideal ap0y, a, € K™, for
every p. Then we may and do assume that ¢, € a. We claim that the
fractional ideal a~! = {x € K | xa C o} is an inverse for a. If this were not
the case, then we would have a maximal ideal p such that a ' Cpco
Let ai. ..., a, be generators of a. As a; € ap ©p, we may write a; = ay%.
with b; € ©, s; € © ~ p. Then s;q; € apo. Putting s = s 5, we have
sa; € ayo fori =1, ..., n, hence ,\a;'a < © and therefore s¢;' € a™'.

v
Consequently, s = sa;'a, € a~'a C p, a contradiction. O

We denote the group of invertible ideals of © by J(). It contains the
group P (0} of fractional principal ideals a0, « € K*.

(12.5) Definition. The quotient group
Pic(o) = J(0)/P(0)

is calfed the Picard group of the ring .

In the casc where © is a Dedekind domain, the Picard group is of course
nothing but the ideal class group Clx. In general, we have the following
description for J{©) and Pic(o).

(12.6) Propesition. The correspondence a +— (ap) = (aop) yields an
isomorphism
J() = @P(wp).
»
Identifying the subgroup P (o) with its image in the direct sum one gets

Pic(o) = (B P(op)/P0).
P

Proof: For every a € J(0), a, = a0, is a principal ideal by (12.4), and we
have g, = @, for almost all p because a lies in only finitely many maximal
ideals p. We therefore obtain a homomorphism

J(0) — B Poy), ar— (ap).
v
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It is injective, for if a, = oy for all p, then a C ﬂp ©p = © (see the proof
of (11.5)), and one has to have a = © because otherwise there would exist
a maximal ideal p such that « C p C 0, ie, ay C poy # 0. In order to
prove surjectivity, let (¢,0p) € @p P(0y) be given. Then the 0-submodule

a=ayoy
P

of K is a [ractional ideal. Indeed, since ay0p = oy for almost all p, there is
some ¢ € o such that cap € 0, for all p, ie., ca © ﬂp op = 0. We have to
show that one has
a0 = @0y

for every p. The inclusion C is trivial. In order to show that a,0, C a0y, let
us choose ¢ € @, ¢ # 0, such that ('a;'uq € o for the linitely many q which
satisfy a;‘aq ¢ 0. By the Chinese remainder theorem (12.3), we may find
a € o such that

a=cmodyp and « €cay a0, for q#Fp.
en & = ac—' i it i . o, =
Then £ = ac™! is a unit in 0y and ape € (), aq0q = 0, hence

ap0p = (ape}0p € 00, [m]

Passing from the ring © to its normalization &, i.e., to the integral closure
of ¢ in X', one obtains a Dedekind domain. This is not all that easy to prove,
however, because @ is in gencral not a finitely generated o-module. But at
any rate we have the

(12.7) Lemma. Let o be a one-dimensional noctherian integral domain and &
its normalization. Then, for each ideala # 0 of @, the quotient &/ad is a finitely
generated ©-module.

Proof: Let a € a, « # 0. Then &/a& is a quotient of 6/ad. It thus suffices
to show that ©/a® is a finitely generated @-module. With this end, consider
in © the descending chain of ideals containing ao
ay = @"dN0,.a0).

This chain becomes stationary. In fact, the prime ideals of the ring o/a0
are not only maximal but also minimal in the sense that ©/a¢ is a zero-
dimensional noetherian ring. In such a ring every descending chain of ideals
becomes stationary (see §3, exercise 7). If the chain @, = a, mod ao is
stationary at a1, then so is the chain a,,. We show that, for this n, we have

O Cao+ad.
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= (ﬁ € 0, b.c € o. Apply the descending chain condition 1o the

2 and the chain of ideals (™), where @ = a mod co. Then
@ = @), ie., we find some x € © such that o = xa't' mod co.
hence (1 — xa)a" € co. and therefore

b b (I —xa)a"
p= 1(1 —xa) + Bxa = 7,}& +Bxacato+ad.
(& a S

—h

Let 4 be the smallest positive integer such that § € ™0 + ad. It then

suffices to show that # < n. Assume # > n. Writing
“ - PR
() B=— tai withueo ded,
a

we have u = a”(ﬂ —aii) € a"®N o C ay = ay4) because h > n, hence
i =a"i +au'. « €0, i’ €. Substituting this into () gives
_ s et 1k, 2
B= = +ai+a)ea "o+ad.
e
This contradicts the minimality of /. So we do have & Ca "0 +ad.
&/ad thus becomes a submodule of the o-module (¢ "o + «d)/ad
gencrated by =" mod a®. It is thercfore itself a finitely generated o-module,
q.c.d. O

(12.8) Propusition (KrurL-Axizukn). Let © be a one-dimensional noetherian
integral domain with field of fractions K . Ler L |K be a finite extension and O
the integral closure of © in L. Then O is a Dedekind domain.

Proof: The facts that O is integrally closed and that cvery nonzero prime
ideal is maximal, arc deduced as in (3.1). It remains to show that O is
noetherian. Let wi, ..., », be a basis of L|K which is contained in O.
Then the ring Og = Ofw, ..., w,] is a finitely generated o-module and in
particular is noetherian since © is noctherian. We argue as before that Oy is
one-dimensional and are thus reduced to the case L = K. So lct 2 be an
ideal of O and @ € AN ©, a # 0; then by the above lemma O/¢Q is a
finitely generated ©-module. Since ¢ is noetherian, so is the ©-submodule
A/a0, and also the O-module A O

Remark: The above proof is taken from KarLansky’s book [82) (see also
[161]). It shows at the same time that proposition (8.1), which we had proved
only in the case of a separable extension L|K, is valid for general finite
extensions of the field of fractions of a Dedekind domain.
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Next we want to compare the one-dimensional noetherian integral do-
main o with its normalization &. The fact that & is a Dedekind domain is
evident and does not require the lengthy proof of (12.8) provided we make
the following hypothesis:

{*) ©is an intcgral domain whose normalization & is a tinitely generated
©-module.

This condition will be assumed for all that follows. Tt avoids pathological
situations and is satisfied in all interesting cases, in particular for the orders
in an algebraic number field.

The groups of units and the Picard groups of © and & are compared with
each other by the following

(12.9) Proposition. Onc has the canonical exact sequence
I — 0" — 8" — P oy/o, — Pic(0) —> Pic(d) — 1.
3

In the sum, p varies over the prime ideals # 0 of © and &, denotes the integral
closure of 0 in K.

Proof: If p varies over the prime ideals of &, we know from (12.6) that
J(®) = P P(&y).
B

If p is a prime ideal of ©, then pd splits in the Dedekind domain & into a
product
po =B B

i.e., there are only finitely many prime idcals of & above p. The same holds
for the integral closurc &, of oy. Since every nonzero prime ideal of &,
has to lie above poy, the localization &, has only a finite number of prime
ideals and js therefore a principal ideal domain (see §3, exercise 4). In view
of (12.6}, it follows that

P{dy)=J

and therefore
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Observing that P(R) = K*/R* for any integral domain R with field of
fractions K, we obtain the commutative exact diagram

| —> K"/0" — @K/}, —> Pic(o) —> 1

ISR G

I — K*/o" — @K*/Z); — Pic(®) — L.
P

For such a diagram onc has in complete generality the well-known snake
lemma: the diagram gives in a canonical way an exact sequence

1 — ker(er) — ker(B) — ker(y)

—5> coker{a) — coker(8) — coker(y) — |

relating the kernels and cokernels of «,f.y (see [23], chap. 11, §3,
lemma 3.3). In our particular case, &, 8, and therefore also y, are surjective,
whereas

ker(a) = &*/0* and  ker(f) = @(’);/o;.
P
This then yields the exact sequence

| — 0" — 8" — @&}/0} —> Pic(0) —> Pic(®) — 1. O
v

A prime ideal p # 0 of o is called regular if o, is integrally closed, and
thus a discrete valuation ring. For the regular prime ideals, the summands
&} /oy, in (12.9) are trivial. There are only finitely many non-regular prime
ideals of ©, namely the divisors of the conductor of . This is by definition
the biggest ideal of & which is contained in ©, in other words,

j={acd|adco}.

Since & is a finitely generated ©-module, we have f # 0.

(12.10) Proposition. For any prime ideal p # 0 of © one has
ptf <= pisregular

If this is the case. then p = pd is a prime ideal of 0 and 0, = d;.



80 Chapter 1. Algebraic Integers

Proof: Assume p t f, ie,p 2 f and let r € f ~ p, Then 1& € o, hence
b C 70 Cop. Im= pop is the maximal ideal of ©), then, putting
p=mnNo, fisaprime ideal of & such that p C FNo, hence p =§nNo
because p is maximal. Trivially, 0p € &5, and if converse]y Si 3 o,,, for
4 ED €PN P.thenta € v and ts € @ ~ P, hem.e\f 7_ € Op.
Therefore 0y = @. Thus, by (11.5), 0 is a valuation ring, i.e., p is regular.

One has furthermore that § = pd. In fact, P is the only prime idcal of &
above p. For if § is another one, then &3 = 0y, C Oy, and therefore

F=0npoy Cong

hence §i = §. Consequently, p® = p¢, with ¢ > 1, and furthermore
m=pop = (PO}, = 0, =m’, ie., ¢ = 1 and thus p = pd.

Conversely, assume ¢, is a discrete valuation ring. Being u principal
ideal domain, it is integrally closed, and since & is integral over o, hence a
fortiori over op, we have & C ©p. Let x, ..., x, be a system of generators
of the ©-module . We may write x; = % with a; € 0, 5 € © ~ p. Setting

s=23--5 €0~ p, we find sxy, 'x,, € 0 and therefore s& C 0, ie.,
s €[~ p. It follows that p { f. O

!

We now obtain the following simple description for the sum B, &} /0p
in (12.9).

(12.17) Proposition. @F@:/o; = D/ (ofh*.

Proof: We apply the Chinese remainder theorem (12.3) repeatedly. We have
(1) o/f = Poy/fop.
v

The integral closure &, of ©, posscsses only the finitely many prime ideals
that lie above po,. They give the localizations &, where p varies over the
prime ideals above y of the ring &. At the same time, &, is the localization
of & with respect to the multiplicative subset & ~ . Since f is an ideal of &,
it follows that &, = jv,. The Chinese remainder theorem yields

and

@) Bff = DD p/10p = D Oy/f0,
P v
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Passing to unit groups, we get from (1) and (2) that

@) @/ /i = D@/ [(op/fop).

3

For | € p we now consider the homomorphism
@2 0~ (By/f0p)"/(0p/f0Op)"

It is surjective. In fact, if £ mod &, is a unit in &, /f®,, then £ is a unit in Oy,
This is so because the units in any ring are precisely those elcments that are
not contained in any maximal ideal, and the preimages of the maximat ideals
of &,/§0, give precisely all the maximal ideals of 3, since O, € pdy.
The kernel of ¢ is a subgroup of &} which is contained in ©p, and which
contains @ It is therefore cqual to o). We now conclude that

By/op = (Dy/fOp)" Hop/fop)".

This remains true also for p 2 f because then both sides are equal to 1
according to (12.10). The claim of the proposition now follows from (3). []

Our study of one-dimensional noctherian intcgral domains was motivated
by the consideration of orders. For them, (12.9) and (12.11) imply the
following generalization of Dirichlet’s unit thcorem and of the thcorem on
the finiteness of the class group.

(12.12) Theorem. Lct o be an order in an algebraic number field K, ok the
maximal order, and f the conductor of ©.
Then the groups O} /0" and Pic(©) are finitc and one has

#(o *
#Pic(o) = Kok

(©F - o) #o/h"
where hg is the class number of K. In particular, one has that

rank(o") = rank(ok) =r +5 — .

Proof: By (12.9) and (12.11), and since Pic(ox ) = Clg, we have the exact
scquence

1 — 0% /&% — (0 [N/ (0/f) —> Pic(©) — Clx —> 1.

This gives the claim, {

L
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The definition of the Picard group of a one-dimensional noetherian integral
domain © avoids the problem of the uniqueness of prime ideal decomposition
by restricting attention to the invertible ideals, and thus leaving aside
the information carried by noninvertibles. But there is another important
gencralization of the ideal class group which does take into account aff prime
ideals of o. It is based on an artificial re-introduction of the uniqueness of
prime decomposition. This group is called the divisor class group. or Chow
group of o. Its definition starts from the free abelian group

Div(o) =P Zp
p

on the set of all maximal ideals p of @ (Le., the set of all prime ideals # 0).
This group is called the divisor group of ©. Its elements are formal sums

D=3 nyp
v

with np, € Z and #p = O for almost all p, calied divisors (or 0-cycles).
Corollary (3.9) simply says that, in the case of a Dedckind domain, the
divisor group Div(o} and the group of ideals are canonically isomorphic.
The additive notation and the name of the group stem from function theory
where divisors for analytic functions play the same role as ideals do for
algebraic numbers (see chap. I1I, §3).

In order to define the divisor class group we have to associale to every
f € K* a“principal divisor” div(f). We use the case of a Dedckind domain
to guide us. Therc the principal ideal (f) was given by

=,
»

where v, : K* — Z s the p-adic exponential valuation associated to the
valuation ring ©,. In gencsal, 0, is not anymore a discrete valuation ring.
Nevertheless, o, defines a homomorphism
ordy : K™ — Z

which generalizes the valuation function. If f = a/b € K*, with a.h € 0,
then we put

ordp(f) = o, (Op/acy) — Lo, (0p/bOp),
where £, (M) denotes the length of an op-module M, i.., the maximal
Iength of a strictly decreasing chain

M=My2M2--2M =0
of 0y-submodules. In the special case where 0y is a discrete valuation ring
with maximal ideal m, the value v = v,(a) of a € 0, for ¢ # 0, is given
by the equation
aop =m".
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It is equal to the length of the o,-module ©,/m”, because the longest chain
of submaedules is

Op/m¥ D m/m” Do D> mY/m’ = (0).

Thus the function ord, agrees with the exponential valuation vy, in this case.
The property of the function ord, to be a homomorphism follows from
the fact (which is easily proved) that the length function £, is multiplicative
on short exact sequences of p-modules.
Using the functions ord, : K* — Z, we can now associate o every
element f € K* the divisor

div(f) = Y ordy (/)p,
»

and thus obtain a canonical homomaorphism
div : K* — Div(0).

The elements div(f) are called principal divisors. They form a subgroup
P(o) of Div(e). Two divisors 12 and D’ which differ only by a principal
divisor are called rationally equivalent.

(12.13) Definition. The quotient group

CH'(0) = Div(0)/P(0)

is called the divisor class group or Chow group of 0.

The Chow group is related to the Picard group by a canonical homomor-
phism
div ; Pic(o) — CII'(0)

which is defined as follows. If a is an invertible ideal, then, by (12.4), aoy,
for any prime ideul p # 0, is a principal ideal ¢p0y, g, € K*, and we put

div(a) = 3" — ordy(ap)p.
v
This gives us a homomorphism
div : J(©) — Div(o)

of the ideal group J () which takes principal ideals into principal divisors,
and therefore induces a homomorphism

div : Pie(0) — CH'(0).

In the special case of a Dedekind domain we obtain:
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(12.14) Proposition. If o is a Dedekind domain, then
div : Pic(0) — Clf'(0)

is an isomorphism.

Exercise 1. Show that
CIX.YIHUXY —X). CIX.YIHXY — ).
CIX Y —YYH, CX.Y I - X - XY
are onc-dimensional noetherian rings. Which ones are integral domains? Determine
their normalizations,
Hint: For instance in the last example, put ¢ = X/¥ and show that the homomor-
phism C{X ¥1— Tle), X s 2= 1, ¥ s 1% — 1). bas kemel (Y2 — X2 — X%},
Exercise 2, Let ¢ and b be positive integers that arc not perfect squares, Show that the
fundamental unit of the order Z -+ Z \/a of the field ((v/a) is also the fundamental
unit of the arder 7, 4+ Z /@ + Z/—b + Zo/a /~h in the field Q(/a, v—5).
Exercise 3. Let K be a number field of degrec # = |K : Q. A complete module
in K is a subgroup of the form
M=Za)+ -+ Za, .
where @, ....w, arc linearly independent elements of K. Show that the ring of
multiplicrs
o={ack|aM c M}

is an order in K, but in general not the maximal order.
Exercise 4. Determine the ring of multipliers @ of the complete module M =
Z +7/2 i0 Q(/2). Show that & = | + +/2 is a fundamental unit of ©. Determine
all integer solutions of “Pell’s equation™

K2-2yt=7.
Hint: N(x +3v2) =22 =23, NG+ V2) = N(G+3V2) =7
Exercise 5. In a onc-dimensional noetherian integral domain the regular prime
ideals % O ace precisely the invertible prime ideals.

§ 13. One-dimensional Schemes

The first approach to the theory of algebraic number fields is dominated
by the methods of arithmetic and algebra. But the theory may also be treated
fundamentally from a geometric point of view, which will bring out novel
aspects in a variety of ways. This geometric interpretation hinges on the
possibility of viewing numbers as functions on a topological space.
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In order to explain this, let us start from polynomials

FO) = a4 +ay
with complex coefficients a; € C, which may be immediately interpreted
as functions on the complex plane. This property may be formulated in a
purely algebraic way as follows. Let ¢ € C be a point in the complex plane.
The set of all functions f(x) in the polynomial ring C[x] which vanish at
the point ¢ forms the maximal ideal p = (x — @) of C[x]. In this way the
points of the complex plane correspond 1-1 to the maximal ideals of C[x].
We denote the set of all these maximal ideals by

M =Max(Clx]).

‘We may view M as a new kind of space and may interpret the elements f (x)
of the ring C[x] as functions on M as follows. For every point p = (x — a)
of M we have the canonical isomorphism

Cixl/p —C,

which sends the residuc class f(x) mod p to f{a). We may thus view this
residuc class

fp) = f(x) mod p € k(p)
in the residue class field « (p) = C[x]/p as the “value” of f al the point
p € M. The topology on C cannot be transferred to M by algebraic means.
All that can be salvaged algebraically arc the point sets defined by eguations
of the form

fxy=0

(i.e., only the finite sets and M itself). These sets are defined 1o be the closed
subsets. In the new formulation they are the sets

Vi ={veM|fm =0} ={peM|p2(fun].

The algebraic interpretation of functions given above leads to the fol-
lowing geometric perception of completely generai rings. For an arbitrary
ring ©, one introduces the spectrum

X = Spec(v)
as being the set of all prime ideals p of ©. The Zariski topology on X is
defined by stipulating that the sets
V()= {p|p2a}

be the closed sets, where o varies over the ideals of ©. This does make X into
a topological space (obscrve that V (a} UV (b) = V (ab)) which, however, is
usually not Hausdorff. The closed points correspond to the maximal ideals
of o.
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The elements f € © now play the rble of functions on the topological
space X : the “value” of f at the point p is defined to be

J{p) = f mod p

and is an element of the residue class ficld «(p), i.e., in the field of fractions
of o/p. So the values of f do not in general lic in a single field.

Admitting also the non-maximal prime ideals as non-closed points, turns
out to be extremely useful — and has an intuitive reason as well, For instance
in the case of the ring © = Cfx|, the point p = (0} has residuc class
field x(p) = C(x). The “value” of a polynomial f € Clx] at this point
is f(x) itself, viewed as an element of C(x). This element should be thought
of as the value of f at the unknown place x — which one may imagine to
be everywhere or nowhere at all. This intuition complics with the tact that
the closure of the point p = (0) in the Zariski topology of X is the total
space X. This is why p is also called the generic point of X.

Example: The space X = Spec(Z) may be represented by a line.

P S 0 D S
2 3 5 711 generic point

For every prime number one has a closed point, and there is also the generic
point (0}, the closure of which is the total space X. The nonempty open sets
in X arc obtained by throwing out finitely many prime numbers p, ..., p,.
The integers a € Z are viewed as functions on X by defining the value of ¢
at the point (p) to be the residue class

a(p)=amod p e Z/pL.
The fields of values are then
Z/2L, Z{3Z, Z/5Z, Zj1L, Z/VZ,....Q.
Thus every prime field occurs exactly once.
An important refinement of the geometric interpretation of elements of
the ring O as functions on the space X = Spec(©) is obtained by forming
the structure sheaf oy. This means the following. Let I/ # } be an open

subset of X. If © is a onc-dimensional integral domain, then the ring of
“regular functions™ on U is given by

L’?(U):{é]g(p)#() forallpe U],
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in other words, it is the localization of © with respect to the multiplicative
set § = 0 ~ [y p (see §11). In the general case, o(U) is defined to
consist of all elements
s=(sp) e [T op
pel/

which locally are quotients of two elements of ©. More precisely, this means
that forevery p € U, there cxists a neighbourhood V C U of p, and elements
f.g € o such that, for each q¢ € V, one has g(g) # 0 and 5, = f/g
in ©q. These quotients have to be understood in the more gencral sense
of commutative algebra (sec § 11, exercisc 1). We leave it to the reader to
check that one gets back the above definition in the case of a one-dimensional
integral domain ©.
If ¥ C U are two open sets of X, then the projection

Moy — Ilop

pel/ pev
induces a homomeorphism

puv s oU) — o(V),

called the restriction from U to V. The system of rings o({/) and mappings
puv is a sheaf on X. This notion means the following.

(13.1) Definition. Let X bc a topological space. A presheaf F of abelian
groups (rings, efc.) consists of the following data.

(1) Forevery open set U, an abelian group (a ring, etc.) F(U) is given.

(2)y Forevery inclusion U C 'V, a homomorphism pyy @ F(U) — F(Vyis
given, which is called restriction.

Thesc dat:
@ F@=0,

(b} py is the identity id : F(U}y — F(U),

{€) puw = pvw opyv,foropensets W SV CU.

are subject to the following conditions:

The etements s € F(U) arc called the sections of the presheaf F over U,
If V € U, then one usually writes pyy(s) = s|y. The definition of a
presheal can be reformulated most concisely in the language of categories.
The open sets of the topological space X form a category Xiop in which only
inclusions are admitted as morphisms. A presheaf of abclian groups (rings)
is then simply a contravariant [unctor

F: Xp —> (ab), (rings)

into the category of abelian groups (resp. rings} such that F(#} = 0.
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(13.2) Definition. A presheaf F on the topological space X is called a sheaf
if, for all open coverings (U} of the open sets U, one has:
(i) Ifs.s’ € F(U) are two sections such that s|y; = 5’|y, for all i, then
s=s".
iy Ifs; € F(U;) is a tamiily of sections such that

silunu; = siluny;

foralli. j, then there exists a section s € F(U) such that sy, = s; foralli.

The stalk of the sheaf F at the point x € X is defined to be the direct

limit (sce chap. TV, §2)
Fo= lig FW),
Uoy

where U varies over all open neighbourhoods of x. In other words, two
sections sy € F(U) and sy € F(V) are called equivalent in the disjoi
union |y, F(U) if there exists a neighbourhood W € U NV of x such
that sy lw = sy ]w. The equivalence classes are called germs of sections
at x. They are the elements of F,.

We now return to the spectrum X = Spec(o) of a ring © and obtain the

(13.3) Propusition. The rings o(U), together with the restriction mappings
puv, form asheaf on X. It is denoted by 0y and called the structure sheaf
on X. The stalk of vx at the point p € X is the localization 0y. ie.,
Ox.p = 0.

The proof of this proposition follows immediately from the definitions.
The couple (X,ox) is called an affine scheme. Usually, however, the
structure sheaf 0y is dropped from the notation. Now let

10— 0

be a homomotphism of rings and X = Spec(©), X' = Spec(0’). Then ¢
induces a continuous map

fiX— X fe)=¢0),
and, for every open subset U of X, a homomorphism
[ oWy — olUy, s—>sofly.

where U’ = f "'(U). The maps f;; have the following two properties.
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a) If V C U are open sets, then the diagram

15 .
otl) o’

oV)y —F— o(v)

is commutative,
b) Forp e U' C X" and a € o(U/) one has

a(foh) =0 = fH@e)=0.

A continuous map f : X’ — X together with a family of homomorphisms
fi o) — o(U") which satisfy conditions a) and b) is called a morphism
from the scheme X' to the scheme X. When referring to such a morphism,
the maps £ are usually not written explicitly. One can show that every
morphism between two affine schemes X’ = Spec(o’) and X = Spec(0) is
induced in the way described above by a ring homomorphism ¢ : © — ©'.

The proofs of the above claims arc easy, although some of them are a bit
lengthy. The notion of scheme is the basis of a very extensive theory which
occupies a central place in mathematics. As introductions into this important
discipline let us recommend the books [51] and [104].

We will now confine oursclves to considering noetherian integral do-
mains o of dimension < 1, and propose to illustrate geometrically, via the
scheme-theoretic interpretation, some of the facts treated in previous sec-
tions.

L. Fields. If X is a field. then the scheme Spec(&) consists of a single point
(0) on top of which the field itself sits as the structure sheaf. One must
not think that these one-point schemes arc all the same because they differ
essentially in their structure sheaves.

2. Valuation rings. If o is a discrete valuation ring with maximal ideal p,
then the scheme X = Spec{() consists of two points, the closed point x = p
with residue class field x(p) = o/p, and the gencric point 7 = (0) with
residue class field « () = K. the field of fractions of ©. One should think
of X as a point x with an infinitesimal neighbourhood described by the
generic point 7:

X, ———————
X 0

This intuition is justitied by the following obscrvation.
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The discrete valuation rings arise as localizations
f
0y = Elfwgem, g #0

of Dedekind domains ©. There is no neighbourhood of p in X = Spec(o}
on which all functions § € op are defined because, if © is not a local
ring, we find by the Chincse remainder theorem for every point q # p,
g # 0, an element g € o satisfying ¢ = 0 mod g and ¢ = 1 mod p.
is defined on a sufficiently small neighbourhood; hence one may say that
all clements 4 of the discrete valuation ring oy are like functions defined
on a “germ” of neighbourhioods of p. Thus Spec(op) may be thought of as
such a “germ of neighbourhoods™ of p.

We want to point out a small discrepancy of intuitions. Considering the
spectrum of the one-dimensional ring C[x], the points of which constitute the
complex plane, we will not want to visualize the infinitesimal neighbourhood
X\, = Spec(Clx[p) of a point p = (x —a) as a small line segment, but rather
as a little disc:

Then % € 0y us a function is nol defined at q. But every element f? €0y

This two-dimensional nature is actually inherent in all discrete valuation
rings with algebraically closed residue field. But the algebraic justification of
this intuition is provided only by the introduction of a new topology, the étale
topology, which is much finer than the Zariski topology (see {1G3], [132]).

3. Dedekind rings. The spectrum X = Spec(©) of a Dedekind domain o
is visualized as a smooth curve. At each point p one may consider the
localization ©,. The inclusion © <> o, induces a morphism

£ Xp = Spec(op) — X,

which extracts the scheme X, from X as an “infinitesimal neighbourhood”
of p:

X = Spec(o)
-~

generic point
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4. Singularities. We rnow consider a one-dimensional noctherian integral
domain © which is not a Dedekind domain, e.g., an order in an algebraic
number field which is different from the maximal order. Again we view the
scheme X = Spec(o) as a curve. But now the curve will not be everywhere
smooth, but will have singularitics at certain points,

—=" X, = Spec(0,)

™ X = Spec(o)

point

These arc precisely the nongeneric points p for which the localization o is
no Jonger a discrete valuation ring, that is o say, the maximal ideal poy is
not generated by a single element. For example, in the one-dimensional ring
0 = Clx, y)/(y* — x*), the closed points of the scheme X are given by the
prime ideals

p=(r—ay=b) mod (" ~x%)
where (a, b) varies over the points of €2 which satisfy the cquation

W -a=0.

The only singular point is the origin. It corresponds to the maximal ideal
po = {X,¥), where ¥ = x mod (y2 —xH, ¥ =y mod (y? — %) € o. The
maximal ideal py©y, of the local ring is generated by the elements X, ¥, and
cannot be generated by a single element.

5. Normalization., Passing to the normalization & of a onc-dimensional
noetherian integral domain © mcans, in geometric terms, taking the resolution
of the singularities that were just discussed. Indeed, if X = Spec(©) and
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X= Spec(®), then the inclusion © — & induces a morphism f : s

a Dedekind domain, the scheme X is to be considered as smooth.
s lhg prime factorization of p in &, then p,, ..., fi, arc
the different points of X that are mapped to p by f. One can show that p
is a regular point of X — in the sense that o, is a discrete valuation ring —
ifandonly ifr =1,e;=1and f; = (d/F :o/p) =1

6. Extensions. Let © be a Dedekind domain with field of fractions K.
Let L|K be a finite separable extension, and O the integral closure of ©
in L. Let ¥ = Spec(o), X = Spec(0), and

X —Y
the morphism induced by the inclusion © — O, If p is a maximal ideal of ©
and

pO =P - Py

the prime decomposition of p in O, then Py, ..., B, are the ditferent points

of X which are mapped to p by f. The morphism £ is a “ramified covering.”
Tt is graphically represented by the following picture:

- —_—— - Y
i ramified points '

This picture, however, is a fair rendering of the algebraic situation only
in the case where the residue class fields of © arc algebraically closed (like
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for the ring Clx[). Then, from the fundamental identity }_; e; f; = n, there

are exactly n = |L : K] points By, ..., P, of X lying above each point p
of ¥, except when p is ramified in ©. At a point p of ramification. several
of the points P, ..., P coalesce. This also explains the terminology of

ideals that “ramify.”

If L|K is Galois with Galois group G = G(L|K), then every auto-
morphism ¢ € G induces via ¢ : O — O an automorphism of schemes
o : X — X. Since the ring ¢ is fixed, the diagram

X —2-X

,‘\Y/r

is commutative. Such an automorphism is called a covering transformation
of the ramified covering X/Y. The group of covering transformations is
denoted by Auty (X). We thus have a canonical isomorphism

G(LIK) = Auty(X).

In chap. 11, §7, we will see that the composite of two unramified extensions
of K is again unramified. The compositc K. taken inside some algebraic
closure K of K, of all unramified extensions L|K is called the maximal
unramified extension of K. The integral closure & of © in K is still a one-
dimensional integral domain, but in gencral no longer noetherian, and, as a
rule, there will be infinitely many prime ideals lying above a given prime
ideal p # 0 of ©. The scheme ¥ = Spec(d) with the morphism
f¥—vy

is called the universal covering of Y. It plays the same role for schemes
that the universal covering space X > Xofa topological space plays in
topology. There the group of covering transformations Auty (X) is canoni-
cally isomorphic to the fundamental group m(X). Therclore we define in
our present context the fundamental group of the scheme ¥ by

(Y)Y = Auty () = G(K|K).

This establishes a first link of Galois theory with classical topology. This
link is pursued much further in étale topology.

The geometric point of view of algebraic number fields explained in this
section is corroborated very convincingly by the theory of function fields of
algebraic curves over a finite field F,. In fact, a very close analogy exists
between both theories.
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§ 14. Function Fields

We conclude this chapter with a brief sketch of the theory of function
fields, They represent a striking analogy with algebraic number fields, and
since they are immediately related to geometry. they actually serve as an
important model for the theory of algebraic number tields.

The ring Z of integers with its field of fractions Q exhibits obvious
analogies with the polynomial ring T, [f] over the field F;, with p elements
and its field of fractions F p(¢). Like Z, F,|¢] is also a principal ideal domain,
The prime numbers correspond to the monic irreducible polynomials p(r) €
Fplel. Like the prime numbers they have finite ficlds F o, d = deg(p(t)),
as their residue class rings. The difference is, however, that now all these
fields have the same characteristic. The geometric character of the ring Fp[z]
becomes much more apparent in that, for an element f = f(r) € Fp[z], the
value of f ata point p = (p(r)) of the affine scheme X = Spec(F,[t]) is
actually given by the value f(a) € Fj, il p(t) =t — a, or more generally
by f(@) € Fpu, if a € Fpa is a zero of p(¢). This is due to the isomorphism

Fpltl/p —> Fpa,

which takes the residue class f(p) = f mod p to f(x). In the analogy be-
tween, on the one hand, the progression of the prime numbers 2, T,
and the growing of the cardinalitics p, p?, p®, p*, ... of the residue fields
FF .« on the other, resides onc of the most profound mysteries of arithmetic.

One obtains the same arithmetic theory for the finitc extensions K of F (1)
as for algebraic number fields. This is clear from what we have developed
for arbitrary one-dimensional noetherian integral domains. But the crucial
difference with the number field case is seen in that the function field K
hides away a finite number of further prime ideals, besides the prime ideals
of o, which must be taken into account in a fully-fledged development of
the theory.

This phenomenon appears already for the rational function field F,(r}),
where it is due to the fact that the choice of the unknown 7 which determines
the ring of integrality ¥z} is totally arbitrary. A different choice, say
#' = 1/1, determines a completely different ring F |1 /¢1, and thus completely
different prime ideals. It is therefore crucial to build a theory which is
independent of such choices. This may be done either via the theory of
valuations, or scheme theoretically, i.¢., in a geometric way.

Let us first sketch the more naive method, via the theory of valuations.
Let X be a finite extension of Fp(¢) and © the integral closure of F[¢] in K.
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By § 11, for every prime ideal p # 0 of o there is an associated normalized
discrete valuation, i.e., a surjective function

vy K — Z U {oo}
satisfying the properties
(D) vp(0) = o0,
(i1) vp(ah) = vpla) + vp(b),
(it)) vpla + b) = min{vy(a). vp(h)}.

The relation between the valuations and the prime decomposition in the
Dedekind domain © is given by

(@ = [Tp"),
b

The definition of a discrete valuation of K does not require the subring o to
be given in advance, and in fact, aside from those arising from o, there are
finitely many other discrete valuations of K. In the case of the field F,(z)
there is one more valuation, besides the ones associated to the prime ideals
p = (p() of Fylt], namely, the degree valuation v,,. For Ai’ € Fpt),
f.g € Fyle], it is defined by

vw(g) = deg(g) — dog(f),

It is associated to the prime ideal p = yF,[y] of the ring F,[y], where
v = 1/t. One can show that this exhausts all normalized valuations of the
field Fp, (1)

For an arbitrary finite extension K of F,(¢), instead of restricting attention
(o prime ideals, one now considers all normalized discrete valuations vy of K
in the above sense, where the index p has kept only a symbolic value. As
an analogue of the ideal group we form the “divisor group™. ie., the free
abelian group generated by these symbols,

Div(K)y = [Zn‘,p| ny € Z, ny =0 for almost all p] .
v
We consider the mapping
div: K* — Div(K), div(f) = vp(f)p,
»
the image of which is written P(K), and we define the divisor class group

of K by
CIHK) = Div(K)/P(K).
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Unlike the ideal class group of an algebraic number field. this group is not
finite. Rather, oric has the canonical homomorphism

deg : CI(K) — T,

which associates to the class of p the degree deg(p) = [k(p) : Fpl of the
residue class field of the valuation ring of p, and which associates to the
class of an arbitrary divisor a =3~ n,p the sum

deg(a) = 3 npdeg(p).
P

For a principal divisor div(f), f € K*, we find by an easy calculation that
deg(div(f)) = 0, so that the mapping deg is indecd well-defined. As an
analogue of the finiteness of the class number of an algebraic number field,
one obtains here the fact that, if not CI(X) itself, the kernel Ci%K) of
deg is finite. The infinitude of the class group of function fields must not
be considered as strange. On the contrary, it is rather the finiteness in the
number field case that should be regarded as a deficiency which calls for
correction. The adequate appreciation of this situation and its amendment
will be explained in chap. IIT, § 1.

The ideal, completely satisfactory framework for the theory of function
fields is provided by the notion of scheme. In the last section we introduced
affine schemes as pairs (X,0x) consisting of a topological space X =
Spec(o) and a sheaf of rings 0y on X. More generally, a scheme is a
topological space X with a sheaf of rings ox such that, for every point of X,
there exists a neighbourhood U which, together with the restriction oy of
the sheaf oy to U, is isomorphic to an affine scheme in the sense of §13.
This gencralization of affine schemes is the correct notion for a function
field K. It shows all prime ideals at once, and misses none.

In the case K = Fp(¢) for instance, the corresponding scheme (X, ox)
is obtained by gluing the two rings A = Fplu} and B = Fplv], or
more precisely the two atfine schemes U = Spec(A) and ¥V = Spec(B).
Removing from & the point py = (i), and the point py, = (v) from ¥V,
one has U~{po} = Spec(Fplu.u™' ). V—{po} = Spec(F (v, v7']), and the
isomorphism [ : Flu, w1 Fplv, v u e vl yields a bijection

@V —ip) —> U —fpp), pr— [0
We now identify in the union &/ UV the points of V — {ps} with those
of U —{py} by means of ¢, and obtain a topological space X . It is immediately
ohvious how to obtain a sheaf of rings ©x on X from the two sheaves oy
and oy. Removing from X the point p,, resp. pg, one gets canonical
isomorphisms

(X—{Pa), Ox-ipay) = W00, (X—{poh Ox—ppo) = (V,0v).
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The pair (X, 0x) is the scheme corresponding to the field F,(r). It is called
the projective line over I, and denoted ]P,l‘;”.

Po Po

More generally, one may similarly associate a scheme (X.ox) to an
arbitrary extension K|F,(¢). For the precise description of this procedure
we refer the reader to [51].



Chapter 11
The Theory of Valuations

§ 1. The p-adic Numbers

The p-adic numbers were invented at (he beginning of the twentieth
century by the mathematician Kurr Hrvser (1861-1941) with a view to
introduce into number theory the powerful method of power series expansion
which plays such a predominant role in function theory. The idea originated
from the observation made in the last chapter that the numbers f € Z may
be viewed in analogy with the polynomials f(z) € C|[z] as functions on the
space X of prime numbers in Z, associating to them their “value” at the
point p € X, i.e., the element

f(p):=f mod p

in the residue class field « (p) = Z/pZ.

This point of view suggests the further question: whether not only the
“value” of the integer f € Z at p, but also the higher derivatives of f can be
reasonably defined. In the case of the polynomials f(z) € C[z]. the higher
derivatives at the point z = a are given by the coefticients of the expansion

f@=a+mGz—a)+ 4 az —a)",

and more generally, for rational functions f{z) = i”:f; e C(z), with

g.h € C[z], they are defined by the Taylor expansion
o
fo=Yai-a),
v=0

provided there is no pole at z = a, i.e., as long as (z —a) | h{z). The fact that
such an expansion can also be written down, relative to a prime number p
in Z, for any rational number f € Q as long as it lies in the local ring

Zgy={%|ghet pth)

leads us to the notion of p-adic number. First, every positive integer f € N
admits a p-adic expansion

f=a+ap+-+ap",
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with coefficients ¢; in {0, 1, .... p — 1}, i.e., in a fixed system of represent-
atives of the “field of values” x(p) = F,,. This represcntation is clearly
unigue. It is puted explicitly by successively dividing by p, forming the
following system of equations:

f=a0+pfi.

fi=ai+ph.

fat =an_1 + pfas
Jo=an.
Here ¢; € {0, 1, ..., p— 1} denotes the representative of f; mod p € Z/pZ.
In concrete cases, one sometimes writes the number f simply as the sequence
of digits ap, @142 . . . a,, for instance
216 = 0,0011011  (2-adic),
216 = 0,0022 (3-adic),
216 = 1,331 (5-adic).
As soon as one tries to write down such p-adic expansions also for negative
integers, let alone for fractions, one is forced to allow infinite series
2o
Sap’ =atapt+ap+--.
v=0
This notation should at first be understood in a purely formal sense, ie.,
3 5 qaup" simply stands for the sequence of partial sums
n=1

=y app’s n=120...
=0

(L.1) Definition. Fix a prime number p. A p-adic integer is a formal infinitc
series

ay+ayp+apt+o,
where 0 < a; < p, for all i =0.1,2, ... The set of all p -adic integers is
denoted by Z.

The p-adic expansion of an arbitrary number f € Zpy results from the
following proposition about the residue classes in Z/p"Z.

(1.2) Proposition. The residuc classes a mod p* € Z/p"Z can be uniquely
represented in the form

a=ay+ap+ap +-+aup"" mod p”

where 0 <g; < pfori =0, ....n—1L
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Proof (induction on n): This is clear for n = 1. Assume the statement is
proved for n — 1. Then we have a unique representation
a=aytaip+ap tetaap 4"
for some integer g. If ¢ = @, ., mod p such that 0 < a,_y < p. then a,_,
is uniquely determined by «, and the congruence of the proposition holds.
a

Every integer f and, more generally, every rational number f € Z,) the
denominator of which is not divisible by p, defines a sequence of residuc
classes

Sp=fmod p" €eZ/p"L, n=1.2, ...,

for which we find, by the preceding proposition,

| = ag mod p,

v2 = ap + ¢ p mod pz.

el

§3y=do+ap+ap?mod pt, etc.,
with uniquely determined cocfficients ag, @y, a2, ... € {0. 1, ..., p—1} which
keep their meaning from one line to the next. The sequence of numbers
Ssi=aAaptampt o daptt, n=12,...,

defines a p-adic integer
%
Y avp’ € Zp.
=0

We call it the p-adic expanéion of f.

In analogy with the Laurent series f(z) = Y e _, ay(z — a)", we now

extend the domain of p-udic integers into that of the formal series

5 1

Y apt=acmp "+ tasip tagtapt-o,

v="m
where m € Z and 0 < a, < p. Such series we call simply p-adic numbers
and we write @, for the set of all these p-adic numbers. If f € Q is any
rational number, then we write

= /5 P where g h €L, (gh.p) = 1.
i
and il
a+aip+ap+e-
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is the p-adic expansion of % then we attach to f the p-adic number

—m+1

ap™ +arp +ootdm tamapt€Q,

as its p-adic expansion.
In this way we obtain a canonical mapping
QL—Q,,
which takes Z into Z,, and is injective. For if @, b € Z have the same p-adic
expansion, then @ — b is divisible by p” for every n, and hence a = h. We

now identify @ with its image in @, so that we may writc @ S @, and
Z < Z,. Thus, for every rational number f € Q. we obtain an identity

i .
= ap".
v=_m

This establishes the arithmetic analogue of the function-theoretic power series
expansion for which we were looking.

Examples: a) 1l = (p— D+ (p—Dp+(p—-Dp°+--.
In fact, we have
—l=(p=D+{p~Dp+-+(p—Dp"" —p"
henee =1 =(p— D+ (p~Dp+--+(p— Hp"" mod p".
L 24 ...
b) l;”—1+p+p +

In fact,

I=+p+-+p" N0 —p)+p".

1
hence —— =l4p+t -+ p
1-p

Ymod p".

Onc can define addition and multiplication of p-adic numbers which
turn Z, into a ring, and Q,, into its ficld of fractions. However, the direct
approach, defining sum and product via the usual carry-over rules for digits,
as onc does it when dealing with real numbers as decimal fractions, leads
into complications. They disappear once we use another representation of the
p-adic numbers f = 3" (a, p", viewing them not as sequences of sums of
integers

n—1
su= Y awp’ e,
v=0
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but rather as sequences of residue classes
5 = 7 "
Sp=s, mod p" € Z/p" L.

The terms of such a sequence lie in different rings Z/p"Z, but these are
related by the canonical projections

ZipT Sz pT S wypn

and we find
An(Sap1) =

In the direct product
20
11 Z/p"Z = { Gadnen | X0 € Z/p"Z},
n=1

we now consider all elements (x,),cn With the property that

Ap(hpg) =x, forall n=1.2, ...

This set is called the projective limit of the rings Z/p"Z and is denoted
by lim Z/p"Z. In other words, we have
n

oo
im 2/p"% = { @duew € T Z/p"Z | hpCGipp0) =20, n=1,2,... ).
n n=l
The modified representation of the p-adic numbers alluded to above now
follows from the
(1.3) Proposition. Associating to cvery p-adic integer
o
f=Xap’
=0
the sequence (5,)qen of residue classes
n-1
Sp= > ayp'mod p' € Z/p"Z,
v=0

ylelds a bijection
Zp —> lim Z/p"2.
"
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The proof is an immediate consequence of proposition (1.2). The projective
limit lim Z/p"Z offers the advantage of being clearly a ring. In fact, it is a
subring of the direct product [172, 7/ p"Z where addition and multiplication
are defined componentwise. We identify Z, with lim Z/p"Z and obtain the
ring of p-adic integers Z ,.

Since cvery element f € Q,, admits a representation

f=pr"s
with g € Z,, addition and multiplication extend from Zp to Q,, and QP
becomes the field of fractions of Z,.

fn Z,, we found the rational integers ¢ € Z which were determined by

the congruences

* Umod p*,

a=aotap+t--tapp
0 < a; < p. Making the identification
Zp = lim Z/p"7
n
the subsct Z is taken to the set of tuples

x
(amod p, amod p*, amod p?, ...y e [] Z/p"Z
n=1

and thereby is realized as a subring of Z,. We obtain {) as a subficld of the
ficld Q, of p-adic numbers in the same way.

Despite their origin in function-theoretic ideas, the p-adic numbers live
up to their destiny entirely within arithmetic, more precisely at its classical
heart, the Diophantine equations. Such an equation

Flxg, ..., ¥y) =0

is given by a polynomial F € Z[x, , Xy1, and the question is whether
it admits solutions in integers. This difficult problem can be weakened by
considering, instead of the cquation, all the congruences

Floy, oo, ¥, ) = 0 mod m.

By the Chinese remainder thcorem, this amounts to considering the
congruences

Flxy, ..., )y =0 mod p”
modulo all prime powers. The hope is to obtain in this way information about

the original equation. This plethora of congruences is now synthesized again
into a single equation by means of the p-adic numbers. In fact, one has the
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(L4) Proposition, Let F(x,, ..., x,) be a polynomial with integer cocffi-
cicnts, and fix a prime numbcer p. The congruence

F(xi, ..., x)=0mod p*
is solvable for arbitrary v > 1 if and only if the cquation
Flao,x)=0
is solvable in p-adic intcgers.
Proof: As established above, we view the ring Z, as the projective limit
0
Z, = im Z/p'Z C [] Z/p"2.
v v=1
Viewed over the ring on the right, the equation F = 0 splits up into
components over the individual rings Z/p"Z, namely, the congruences
F(xy, ..., x,) =0mod p".

If now

) ,
e oxe) = (7 X ’,‘,')} W €L,

with (,rf”).,‘eN € Zp = lim Z/p"L, is a p-adic solution of the equation
v
F(x1.....xp) = 0, then the congruences are solved by
F(a”, ) =0mod p*, v=1.2,...

Conversely, let a solution (x:”, RN x:,m) ol the congruence

Flxy, ..., xy)=0mod p*

be given for every v > 1. If the elements (.xf"’).,g,q € ]_[f‘;l Z/p‘7 are
already in lim Z/p*%, foralli = 1, ..., n. then we have a p-adic solution
of the equation £ = 0. But this is not automatically the case. We will
therefore extract a subsequence from the sequence (x}") ..... Xy )) which
fits our needs. For simplicity of notation we only carry this out in the case
n =1, writing x,, = ,\‘:V». The general case follows exactly the same pattern,

In what follows, we view (x,) as a sequence in Z. Since Z/pZ is finite,
there are infinitely many terms x, which mod p arc congruent to the same
element y| € Z/p7. Hence we may choose a subsequence (xf,”) of {x,}
such that

"=y modp and F(xV) =0mod p.
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Likewise, we may extract from (x,(,‘”) a subsequence (.x’ﬁz)) such that
x? =y, mod p* and F(.r‘(,i’) =0 mod p?,

where y; € Z/p*Z evidently satisfies y = y; mod p. Continuing in this
(%)

way, we obtain for each k > 1 a subsequence {xy '} of [.n(,"”} the terms of
which satisfy the congruences
x,(,k’ = y; mod pK and F(x‘(‘“) = 0 mod pk
for some yx € Z/p*Z such that
yi =y 1 mod pt !
The yi define a p-adic integer y = (Vi )rew € lﬂ LI = Z, satistying
F(ye) = 0 mod p* *

for all & > 1. In other words, F(y) = 0. [m]

Exercise L. A p-adic number @ = 5% a.p" € Q, is a rational number if and
anly if the sequence of digits is periodic (possibly with a finite string before the tirst
period).

Hint: Write p"a =h+ ¢

Osh<p, 0=c<ph

Exercise 2. A p-adic inleger ¢ = ay + @, p + azp> + -+ is a unit in the ring Z, if
and only if aq # 0

Exercise 3. Show that the equation x? = 2 has a solution in Z-.

Excreise 4. Write the numbers 3 and — 2 as S-adic numbers.

Exercise 5. The field @, of p-adic numbers has no automorphisms except the
identity.

Exercise 6. How is the addition, subtraction, multiplication and division of rational
numbers reflected in the representation by p-adic digits?

§ 2, The p-adic Absolute Value

The representation of a p-adic integer

[4)] uu+a|p+uw2+~u 0<ag; < p,
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resembles very much the decimal fraction representation

1 L2
d('Jru'(E) +ﬂz(m) +o, 0= <10,

of a real number between 0 and 10, But it does not converge as the
decimal fraction does. Nonetheless, the field @, of p-adic numbers can
be constructed from the ficld Q in the same fashion as the field of real
numbers R. The key to this is to replace the ordinary absolute value by
a new “p-adic” absolute value | |, with respect to which the scries (1)
converge so that the p-adic numbers appear in the usual manner as limits
of Cauchy sequences of rational numbers. This approach was proposed by
the Hungarian mathematician J. Kirscitak. The p-adic absolute value | Ipis
defined as follows.

b

Leta = 7, h.c € Z be a nonzero ratjional number. We extract from b and

from ¢ as high a power of the prime number p as possible,
o

(2) a=p" Wp)=1.

and we put
lal, = h
Thus the p-adic value no longer measures the size of a number a € N.
Instead it becomes small if the number is divisible by a high power of p.
This elaborates on the idea suggested in (1.4) that an integer has to be 0 if it
is infinitely divisible by p. In particular, the summands of a p-adic series
ay+a p+ap? +- - form a sequence converging to O with respect to | [p-
The exponent m in the representation (2) of the number a is denoted
by v, (a), and one puts formally v,,(0} = oc. This gives the function
Uy Q@ — Z U {ool.
which is easily checked to satisfy the propertics
1) vwlay=00=a=0,
2) vplab) = vpla) + vy(b),
3) wvpla+h) = minfv, (@), vy (b1,
where x 4+ 00 = o0, 00 + 00 = 20 and 6¢ > x, for all x € Z. The function
vp is called the p-adic exponential valuation of (. The p-adic absolute
value is given by
[1p:@—R. ar—lal,=p ",

In view of 1), 2), 3), it satisfics the conditions of a rorm on Q:
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D lal,=0¢&=a=0,
2) labl, = lalplblp,
3) la+blp < maxflaly. |blp} < laly + [h),.

One can show that the absolute values | |, and | | essentially exhaust
all norms on Q: any further norm is a power | |} or | |*, for some real
number s > 0 (see (3.7)). The usual absolute value | | is denoted in this
context by | [« The good reason for this will be explained in due course. In
conjunction with the absolite values | |p, it satisfies the following important
product formula:

(2.1) Proposition. For every rational number a # 0, one has
Mal, =1,
P

where p varies over all prime numbers as well as the symbol oc.

Proof: In the prime factorization
a==+ [] p
pEoo
of a, the cxponent vy of p is precisely the exponential valuation vj,(a) and

the sign equals T The equation thercfore reads

a m 1
[tlso psos talp

$o that one has indeed [, lal, = 1. B

The notation | |, for the ordinary absolutc value is motivated by the
analogy of the field of rational numbers @ with the rational function field
k() over a finite field k, with which we started our considerations, Instead
of Z. we have inside 4 (¢) the polynomial ring &[¢], the prime ideals p 3 0 of
which are given by the monic irreducible polynomials p(r) € k[r]. For every
such p, one defines an absolute value

| lpik() — R

&l
[IO%
We extract from g(z) and h{t} the highest possible power of the irreducible
polynomial p(¢),

as follows. Let f(z) = . &(#), it} € k[z] be a nonzero rational function.

fi6y = py” gi S Ghp =1
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and put

w=m Ifle=a"",
where g, = ¢, d, being the degree of the residue class field of p over &
and ¢ a fixed real number > 1. Furthermore we put v,(0) = oo and |0}, = 0,
and obtain for v, and | |, the same conditions 1), 2), 3) as for v, and | |,
above. In the case p = (¢ — «) for a € £, the valuation vp(f) is clearly the
order of the zero, resp. pole, of the function [ = f{r)att =a.

But for the function field &(r), there is one more ¢xponentiat valuation
Uno D k(1) — Z U {co},

namely

Voo (f} = deg(n) — deg(g),
where [ = % # 0, g h € klr]. It describes the order of zero, resp. pole,
of f(r) at the point at infinity oo. i.e., the order of zero, resp. pole, of
the function f(1/¢) at the point ¢ = 0. It is associated to the prime ideal
p = (1/1) of the ring &[1/¢] € k(r) in the same way as the exponential
valuations v, are associated to the prime idcals p of £{7]. Putting

[floo =g,

the unique factorization in 4(z) yields, as in (2.1) above, the formula

[T =1.
»

where p varies over the prime ideals of £[z] as well as the symbol 0o, which
now denotes the point at infinity (see chap. 1. §14, p. 95).

In view of the product formula (2.1), the above consideration shows that
the ordinary absolute value | | of Q should be thought of as being associated
to a virtual point at infinity. This point of view justifics the notation | |n,
obeys our constant [eitmotiv to study numbers as functions from a gcometric
perspective, and it will fulfill the expectations thus raised in an ever growing
and amazing manner. The decisive difference between the absolute valuc
| | of @ und the absolute vafue | |, of k() is, however, that the former
is not derived from any exponential valuation v, attached to a prime ideal.

Having introduced the p-adic absolute valuc | |, on the ficld Q. let us
now give a new definition of the field Q, of p-adic numbers, imitating the
construction of the field of real numbers. We will verify aftcrwards that this
new, analytic construction does agree with Hensel's definition, which was
motivated by function theory.
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A Cauchy sequence with respect to | |, is by definition a sequence
{x,} of rational numbers such that for every & > 0, there exists a positive
integer nq satisfying

Xn — Xmlp < € forall n.m = ng.
Example: Every formal series
>, ;
>Yap’, 0<a,<p,
o
provides a Cauchy sequence via its partial sums

n-l
v
Xp= Y avp’.

because for # > m one has
—1

.
b =l = | 2 avp”|, < max {lavplo} < o5

A sequence {x,} in Q is called a nullsequence with respect to | |, if
| x|, is a sequence converging to 0 in the usual sense.

Example: 1. p, p?, p3,

The Cauchy sequences form a ring R, the nullsequences form a maximal
ideal m, and we define afresh the field of p-adic numbers to be the residue
class field

Q, = R/m.
We embed @ in @, by associating to every element a € Q the residue
class of the constant sequence (a.4,a. ...). The p-adic absolute value | |,

on Q is extended to @, by giving the clement x = {x,} mod m € R/m the
absolute value
Ixlp = Jim |5,y € R.

This limit exists because {|x.|,} is a Cauchy sequence in R, and it is

independent of the choice of the sequence {x,} within its class mod m

because any p-adic nullsequence {y,} € m sal s of course lim |y, [, = 0.
n>oc

The p-adic exponential valuation v, on Q extends to an exponential
valuation
vp 1 Qp —> Z U {00}
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In fact, if x € Q), is the class of the Cauchy sequence {x,} where x, # 0,
then

Uplan) = —log, [xylp

either diverges to oo or is a Cauchy sequence in Z which eventually must
become constant for large n because Z is discrete. We put

vp(x) = lim vp(x,) = vp(x,) forn = ng.
o
Again we find for all x € Q,, that

el = p=nt).

As for the ficld of real numbers onc proves the

(2.2) Proposition. The field Q, of p-adic numbers is complete with respect
to the absolute value | |, i.c., every Cauchy sequence in Q), converges with
respect to | |,

As well as the field R, we thus obtain for each prime number p a new
ficld @, with equal rights and standing, so that Q has given rise (o the
infinite family of fields

Q20 @3 Qs: Q7 Qi o Qe =R
An important special property of the p-adic absolute values | |, lies in
the fact that they do not only satisty the usual triangle inequality, but also
the stronger version
[x + ylp < max{ [x|p [¥[p] .

This yields the following remarkabic proposition, which gives us u new
definition of the p-adic integers.

(2.3) Proposition. The set

Zyi={xeQ|ldy =i}

is a subring of Q.. It is the closure with respect 1o | |, of the ring Z in the
field Q.
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Proof: That Z,, is closed under addition and multiplication follows from
Ix + ylp < max{|xl,.1ylp} and |xylp = |xlplylp-
If {x,) is a Cauchy sequence in Z and x = lim x,, then x|, < 1 implies
n—oc

also x|, < 1, hence x € Zp. Conversely, let x = lim x, € Z,, for a
n—ma

=1

Cauchy sequence {x,} in @. We saw abovc that one has |x|p = |xalp
forn > ny, ie.. X, = % with @, b, € Z, (by. p) = 1. Choosing for each
n > ny a solution y, € 7 of the congruence by, = a, mod p" yields
X0 = Yulp < ﬁ and hence x = nli‘:‘;/ ¥, 50 that x belongs to the closure
of Z. a

The group of units of Z, is obviously
Zy={xely|lxlp,=1}.
Every clement x € @, admits a unique representation
1

x=p"u wihmeZanduc?,.

For if v,(x) = m & Z, then vp(xp ™) = 0, hence |xp~"|, =1, ie,
u = xp™" € Ly, Furthermore we have the

(2.4) Proposition. The nonzero ideals of the ring Z,, arc the principal idcals
Py ={x €@, |vplx) = n).
with n > 0, and one has
Tip ) p" Ly = Lip L.
Proof: Let a # (0) be an ideal of Z), and x = p™u, u € Z;‘,, an element
of a with smallest possible m (since |x|, < I, one has m > 0). Then
a = p"Z, because y = p"u' € a, w' € I, implies n > m, hence
y={(p"™"u)p" € p"ZL,. The homomorphism
%—> Lp/p"Lp, ar—> amod p"Zp.

has kernel p"Z and is surjective. Indeed, for every x € Z,, there exists
by (2.3) an @ € 7 such that

be—aly = 5
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i€, vp(x —a) > n, therefore x —a € p"Zp, and hence x = a mod Py So
we obtain an isomorphism

Dp/ P Ly = TP ]

We now want to establish the link with Henscl’s definition of the ting Z,,
and the field @, which was given in § 1. There we defined the p-adic integers
as formal series

2
Sap'. 0<a, <p.
for

which we identified with sequences
Sp=samod p" €eZ/p"L, n=12,...,

where s, was the partial sum

These sequences constituted the projective limit

o
m Z/p"Z = { (uduen € T[] Z/p" 7| Xni1 > x4}
n=l

”
We viewed the p-adic integers as elements of this ring, Since

Zp/p"L, = Z/{p"Z,
we obtain, for every # > I, a surjective homomorphism

Z, — LZ/p"7.

It is clear that the family of these homomorphisms yields a homomorphism

Z, — lim Z/p"Z.

n

It is now possible to identify both definitions given for Z, (and therefore
also for Q) viu the
(2.5) Proposition, The homomorphism

Z, — lim Z/p"Z

n
is an isomorphism.
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Proof: If x € Z, is mapped to zcro, this means that x € p"Z, foralln > 1,
ic., jxlp < # for all n = 1, so that x|, = 0 and thus x = 0. This shows
injectivity.
An element of [jm Z/p"Z is given by a sequence of partial sums
"

n-1
sa=3 ap’, O0<a, <p.
v=0

We suw above that this sequence is a Cauchy sequence in Z,. and thus
converges to an element

x
x=Y ayp’ €7y

Since

x
x=sa= Y awp’ € p'Lp.
o

sp mod p" for all n, ie., x is mapped to the element of
tim Z/p"7 which is defined by the given sequence (s,)ucn. This shows

”
surjectivity. [}

We emphasize that the elements on the right hand side of the isomorphism
Zp — L\E YA
n

are given formally by sequences of partial sums
A=l
sa=yawp’. n=12,...

On the left, however, these sequences converge with respect to the absolute
value and yield the clements of Z, in the familiar way, as convergent infinite
series

x
x=Y awp’.

v=0

Yet another, very elegant method to introduce the p-adic numbers comes
about as follows. Let Z[|X|} denote the ring of all formal power series
3%, ai X! with integer cocfficients. Then one has the

(2.6) Proposition. There is a canonical isomorphism

Zp = ZIX)/X = p).
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Proof: Consider the visibly surjective homomorphism Z[[X]] — Z, which
to every formal power series § o ja, XV associates the convergent series
Y o yawp’. The principal ideal (X — p) clearly belongs 1o the kernel
of this mapping. In order to show that it is the whole kemel, let
F(X) =X ZyacX" be a power series such that f(p) = Y00 ayp® = 0.
Since Z,/p"Z, = Z/p"Z, this means that

a+ap+---+a, p" =0mod p"
for all #n. We put, for # = 1.
1

by |:*F(ll0+alp+"'+tlu—|.ﬂ"71)-

Then we obtain successively
ag =~ phy,
ay =hy — pby,
ay=hy — pha, etc.
But this amounts to the equality
o+ aX +aX 4 )= (X = p)lbo+ b X + b2 X +--0),
e., f(X) belongs to the principal idcal (X — p). O

Exercise 1. [x — v|, > | |x], — |¥], 1.
Exercise 2. Let 2 be a natural number, n = ay+ @ p+-- +a,_p ' its p -adic

expansion, with 0 <&, < p.and s = ag+a,+---+a,_;. Show that v, (nl) = ,T— T

11
10 07 0%
Exercise 4. Let ¢ € 1+ pZp, and let @ = a4+ aip+ap? + - - - be a p-adic integer,
and write s, = do + @ p +--- +a,1p""'. Show that the sequence &* converges
(o & number £ in 1+ pZ,. Show furthermore that | + pZ, is thus turned into a
multiplicative Z,-modulc.

Exercise 3. The sequence 1. . does not converge in Q. for any p.

Exercise 5. For cvery « € 7. (a. p) = 1, the sequence a"” ),y converges in Q.
Exercise 6. The fields ©, and (), are not isomorphic, unless p = ¢.
Exercise 7. The algebraic closure of Q, has infinite degree.

Exercise 8. In the ring 7,[[X]) of formal power serics Y02, . X" over Z,.
one has the m]lnwlng division with remainder. Let f.¢ € Z,[|X|| and let
FX) =dao+ X + - such that pla, for v =0.....n— L, but p {«,. Then one
may write in a unique way

g=af +r.
where ¢ € Z,11X1], and r € Z,[X | is a polynomial of degree < n — 1.
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Hint: Let 7 be the operator 7(X% b, X*) = Y50, b, X*™". Show that U(X) =
dyFapp X+ =T(f(X)) isaunitin Z,[[X]) and wnlc f(X) = pPX)+X"UX)
with a polynomial P(X) of dcgrcc < n— 1. Show that

P
l/(X) Z( Do )

is u well-defined power series in Z,1[X1] such that 7(gf) = 7(2).

q(X)= (g)

Exercise 9 (p-adic Weierstrass Preparation Theorem). Every nonzero power serics
FX) =3 aX" e Z,lIX1
=0
admits a unique representation
FXy = prPIXHYU(X),

where U(X) is a unit in Z,[X1] and P(X) € Z,[X] is a monic polynomial
satisfying P(X) = X" mod p.

§ 3. Valuations

The procedure we performed in the previous section with the field @ in
order to obtain the p-adic numbers can be generalized to arbitrary fields
using the concept of (multiplicative) valuation.

(3.1) Definition. A valuation of a field K is a function
| 1K >R

cnjoying the properties

() |x|=0,and x| =0 ¢ x =0,

@iy Jxyl = xllyl.

(i) |x+ ¥ < x|+ |yl “triangle inequality”.

We tacitly exclude in the sequel the case where | | is the trivial valuation
of K which satisfies |x| = 1 for all x # 0. Defining the distance between
two points x, y € K by

d{x.y) = lx = |

makes K into a metric spacc, and hence in particular a topological space.

(3.2) Definition. Two valuations of K are called equivalent if they define
the same topology on K.
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(3.3) Proposition. Two valuations | || and | |, on K are equivalent if and
only if there exists a real number s > 0 such that one has
[x] = [x]3

forallx € K.

Proof: If | || =| |5, withs > O,then| |;and | |, are obviously cquivalent.
For an arbitrary valuation | | on K, the inequality |x| < 1 is tantamount to
the condition that {x"}, .y converges to zero in the topology defined by |
Therefore if | || and | [, are equivalent, one has the implication

(%) Jxly <8 = |xf2< 1.

Now let y € K be a fixed element satisfying [y|; > 1. Let x € K, x # 0.
Then |x|i = [y|f for some & € R. Let m;/n; be a scquence of rational
numbers (with #; > 0) which converges to @ from above. Then we have

¥l = IyI§ < Iy[}"", hence

‘/\’

<
Y
so that |x|, < ly\;“/”’. and thus |x|; < |y|$. Using a sequencc m;/n;
which converges 1o @ from below (%) tells us that [x]> > |y|%. So we have
{x]2=|yl§. Forall x € K, x # 0, we therefore get
log |x| _ log |yl

log|xl, ~ loglyl

a

hence [x{, = |x[3. But |y|, > | implies |y|» > 1, hence s > 0.

The proof shows that the equivalence of | |, and } [, is also equivalent
to the condition
x|y <1 = |x[p < 1.
We use this for the proot of the following approximation theorem, which
may be considered a variant of the Chinese remainder thcorem.

{3.4) Approximation Theorem. Let| |, .... | 1» be pairwisc inequivalent
valuations of the field K and let a\, ..., a, € K be given elements. Then
for every & > 0 there exists an x € K such that

|x —aili <& foralli=1,..., n.
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Proof: By the above remark, since | |, and | |, are inequivalent, there
exists « € K such that |«|; < | and |al, = 1. By the same token, there
exists B € K such that |], < 1 and |8]; > 1. Putting y = f/, one finds
|yl > land |y], < L.

We now prove by induction on # that there exists z € K such that
|zli>1 and |z|; <} forj=2,.... 5.
We have just done this for n = 2. Assume we have found z € K satisfying
jz) > 1 and |z|; <! forj=2.....n—1.

If |z|, < 1. then z™ y will do, for m large. If however |z|, > 1, the sequence
ty = 2" /(1 + z™) will converge to 1 with respect 1o | |{ and | |, and to O

with respect to | |a. ..., | |n-1. Hence, for m large., 4, y will suffice.
The scquence z” /(1 + z™) converges to | with respect to | |, and to 0
with respect to | |2. ..., | |». For every i we may construct in this way a z;

which is very close to | with respect to | |;. and very close to 0 with respect
to | |; for j # i. The element

X=az1+ -+ dnZy

then satisfies the statement of the approximation theorem. a

(3.5) Definition. The valuation | | is called nonarchimedean if |n| stays
bounded. for all n € N. Otherwise it is called archimedean.

(3.6) Proposition. The valuation | | is nonarchimedean if and only if it
satisfics the strong triangle inequality

lx + y| < max{ |x], |yI}.

Proof: If the strong triangle inequality holds, then one has

lal={l+--+1] =1
Conversely, let (7] < N for all n € N. Let x, y € K and suppose |x| > |y|.
Then [x{"{y]"~" < |x|” for v > 0 and onc gets

n

eyl < 3| ()] Py < N+ DIx)”,

v=0

hence
eyl < N7 4wy x = N+ )Y max Lyl

and thus |x + | < max{|x|,|y|} by letting n — oc. (&}
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Remark: The strong triangle inequality immediately implies that
X1 # 1yl = |+ y) = max{ |x]. [y} .

One may extend the nonarchimedean valuation | | of K to a valuation of
the function field K(¢) in a canonical way by setting, for a polynomial
fiy=aotair+---+ay",

171 =max{lacl, ..., la,|}.
The triangle inequality | f + g| < max{|f|.|gl|} is immediate. The proof
that | fg| = | f}|g| is the same as the proof of Gauss’s lemma for polynomials

over factorial rings once we replace the content of f in this lemma by the
absolute value | f].

For the field @, we have the usual absolute value | |, = | |. this being
the archimedean valuation, and for each prime number p the nonarchimedean
valuation | |,. As a matter of fact:

(3.7) Proposition. Every valuation of Q is cquivalent to one of the valua-
tions | [p or} |x.

Proof: Let || | be a nonarchimedean valuation of @. Then [z =
T4+ 1] < 1, and there is a prime number p such that ||p|} < 1 because,
if not, unique prime factorization would imply |x|| = 1 for all x € @*. The
set

a={aeZ|la| <t}

is an ideal of Z satisfying pZ C a # Z, and since pZ is a maximal ideal,
we have a = pZ. If now a € Z and ¢ = bp™ with p t b, so that b ¢ a. then
liPll = 1 and hence

lall = llpll™ = laf;,
where s = —log || pll/ log p. Conscquently || || is equivalent to | |,.
Now let | || be archimedean. Then one has, for every two natural numbers
nm > 1,
&) 171957 = 108

In fact, we may write

m=ag+an—+--+an

where @ € {0,1,....n — 1} and n" < m. Hence, observing that
r < logm/logn and |lg;|| = |1 +---+ 1| < @ 1| < n, one gets the
inequality

logm
logn

el < 3 Nl - il = X il - lle)” < (1 +

)” X "”Hhvgm/lugnA
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Substituting here m* for m, taking k-th roots on both sides, and letting &
g g g
tend to oo, one finally obtains

Joll < U087 or e < )/ teen

Swapping m with n gives the identity (). Putting ¢ = [|a[|'/®¢" we have
{2 = 2, and putting ¢ = ¢* yields, for every positive rational number
x=uafb,

el = o8 = ]
Theretore || || is equivalent to the usual absolutc value | | on Q. [m]

Let | | be a nonarchimedean valuation of the field K. Putting
v(x)y = —log|x| forx#0, andw(0)=o00,
we obtain a function
v:K — RU{o0)
verifying the properties
i) vx) == r=0,
(i) vxyy =v(x) +v(y),
(i) v(x + y) = min{v(x), v(y)},
where we fix the following conventions regarding elements ¢ € R and the
symbol 0o: @ < 0¢, @ + 00 = 0, 00 + 00 = 00,

A function » on K with these properties is called an exponential
valuation of K. We exclude the case of the trivial function v(x) = 0
for x # 0, 1(0) = co. Two exponential valuations v, and v, of K are called
equivalent if v; = svy, for some real number s > 0. For every exponential
valuation v we obtain a valuation in the sense of (3.1) by putting
—v{x)

x|l =q
for some fixed real number ¢ > L. To distinguish it from v, we cali | |
an associated multiplicative valuation, or absolute value. Replacing v by
an equivalent valuation sv (i.c., replacing ¢ by ¢' = ¢*) changes | | into
the equivalent multiplicative valuation | |*. The conditions (i), (iD), (iii)
immediately imply the

(3.8) Proposition. The subset
o={xek|vw 20} ={xek|xl=1}
is a ring with group of units
o ={xek|vm) =0} ={xek|lxI=1)
and the unigue maximal ideal
p={rek|vw) >0} =

xe k|l <1}.



§3. Valuations 121

© is an integral domain with field of fractions K and has the property that,
for every x € K. either x € © or x~' € 0. Such u ring is called a valuation
ring. Its only maximal ideal is p = {x € © | x~' ¢ ©}. The field o/p is called
the residue class field of ©. A valuation ring is always integrally closed. For
if x € K is integral over o, then there is an equation

XMoot aq, =0

X ¢ 0, so that x~' € o, would imply the
——ay Ty e o,

with ¢; € © and the hypothesi
contradiction x = —a; — azx”"

An exponential valuation v is called discrete if it admits a smallest
positive value s. In this case, one finds
w(K*) = sZ.
It is called normalized if s = 1. Dividing by s we may always pass to a
normalized valuation without changing the invariants ©, ©*, p. Having done

50, an element
m €0 suchthat v(m) =1

is a prime element, and every element.x € K* admits a unigue representation
x=un"

with m € Z and u € o*. For if v(x) = m, then v(x7~") = 0, hence
u=xa"eo

(3.9) Proposition. If v is a discrete exponential valuation of K , then
o={xek|vx)=0}
Is a principal ideal domain, hence a discrete valuation ring (sce 1, (11.3)).
Suppose v is normalized. Then the nonzero idcals of © are given by
pr=n"o={xeK|v(x)=n}, nz0,
where 7 is a prime element, i.e., v() = 1. One has

et = ofp.

Proof: Let a 5 0 be an ideal of © and x # 0 an element in a with
smallest possible value v(x) = n. Then x = u ", ¥ € ©*, so that 770 C .
If y =em™ € a is wbitrary with & € o*, then m = v(y) > n, hence
y={(ex" "x" € x"0, so that a = 7" 0. The isomorphism

p = ofp
results from the correspondence ax” — a mod p. O
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In a discretely valued field K the chain
o2p2p7 2972

consisting of the ideals of the valuation ring © forms a basis of
neighbourhoods of the zero element. Indeed, if v is a normalized exponential
valuation and | | = ¢~ (¢ > 1) an associated multiplicative valuation, then

1
xeK|\.x\<F].

As a basis of neighbourhoods of the element 1 of K*, we obtain in the
same way the descending chain

o =UO Sy o y® ...
of subgroups

). om0

UM =1+p' ={xrek*|1-x| <

q

of ©". (Observe that 1+p” is closed under multiplication and that, if x € U™,
then so is x~' because |1 — x| = [x|"'x — 1] = [l — x| < T]’_‘) ym
is called the n-th higher unit group and U'" the group of principal units.
Regarding the successive quotients of the chain of higher unit groups, we
have the

(3.10) Proposition. o*/U = (o/p")* and UM/UYTD = ofp, for
n=>1.

Proof: The first isomorphism is induced by the canonical and obviously
surjective homomorphism

o* — (0/p™Y*.  ur— umodp”,

the kemel of which is U, The second isomorphism is given, once we
choosc a prime element 7, by the surjective homomorphism

U™ =1+n" —s ofp. 1+n"ar—> amodp.

which has kernel U ¢ +1. [}
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Exercise 1. Show that |z] = (z2)""? = |/[Ngg(z)] is the only valuation of C which
extends the absolute value | | of R.

Exercise 2. What is the relation between the Chinese remainder theorem and the
approximation theorem (3.4)?

Exercise 3. Let k be 4 field and K = 4(¢) the function field in one variable. Show that
the valuations v, associated to the prime ideals p = {p(#)) of &[t], together with the
degree valuation v,,, are the only valuations of K, up to equivalence. What are the
residue class ficlds?

Exercise 4. Let © be an arbitrary valuation ring with ficld of fractions K,
and let ' = K*/o*. Then I' becomes a totally ordered group if we define
x mod ©* > y mod ©* to mean x/y € Q.

Write I” additively and show that the function
v:K — IUfoc},
v{0) = oc, ¥(x) = x mod ©* for x € K, satisfies the conditions
Dolx)=oc=>r=0,
2) vlxy) = vix) +v(y),
3) vix + y) = minfv(x), v(y)}.
v is called a Krull valuation.

§ 4. Completions

(4.1) Definition. A valued field (K .| |) is called complete if cvery Cauchy
sequence {aq}qen In K converges to an elementa € K, ie.,

lim |a, —a| =0.
o

Here, as usual, we call {a,},er a Cauchy sequence if for every ¢ > 0
there exists N € N such that

lay —ami <& forall n.m=>N.

From any valued field (K,| [) we get & complete valued field (I’(\.| [) by
the process of completion. This completion is obtained in the same way as
the field of real numbers is constructed from the field of rational numbers.
Take the ring R of all Cauchy sequences of (K] |), consider therein the
maximal ideal m of all nullsequences with respect to | |, and define

K =R/m.
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One embeds the field K into K by sending every « € K to the class of the
constant Cauchy sequence (a.a.4, ... ). The valuation | { is extended from
K to K by giving the element @ € K which is represented by the Cauchy
sequence {ap jpen the absolute value

lal = tim |a,|.
N

This limit exists because ‘ lan| — lam| ‘ < |ay — am| implies that |a,] is a
Cauchy sequence of real numbers. As in the case of the field of real numbers,
one proves that K is complete with respect (o the extended | |, and that each
a € K is a limit of a sequence {g,} in K. Finally one proves the uniqueness
of the completion (K. | |): if {(K’.| |") is another complete valued field that
contains (K.| |) as a dense subfield, then mapping

| |-lim ay +— | |"-lim a,
noroo =
gives a K -isomorphism o : K — K’ such that |a] = loal’.

The fields R and C are the most [amiliar cxamples of complete fields.
They are complete with respect to an archimedean valuation. Amazingly
enough, there are no others of this type. More precisely we have the

(4.2) Theorem {Ostrowski). Let K be a field which is complete with respect
to an archimedean valuation | |. Then there is an isomorphism o from K
onto R or C satisfying

la| = |oa|® forall aeK,

for some fixed s € (0, 1].

Proof: We may assume without loss of generality that R € K and that the
valuation | | of K is an extension of the usual absolute vajue of K. In fact,
replacing | | by | \‘7' for a suitable s > 0, we may assume by (3.7) that the
restriction of | | to @ is equal to the usual absolute value. Then taking the
closure @J" K we find that @ is complete with respect to the restriction
of | | to Q, in other words, it is a completion of (@, ] |). In view of the
uniqueness of completions, there is an isomorphism o : R — @ such that
la| = |oal as required.

In order to prove that K = R or = C we show that each £ € K satisfies
a quadratic equation over K. For this, consider the continuous function
[ : € — R defined by

FO =18 -z +5+
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Note here that z + Z

minimum 2. The set

€ R € K. Since _limk f(z) = 00, f(z) has a

S={zeC| fla)=m)
is therefore nonempty, bounded, and closed, and there is a zy € S such that
lzol = |z] for all z € S. It suffices to show that m = 0, because then one has
the equation &2 — (zo + Zp)& + z
Assume m > 0. Consider the real polynomial

&) =x% — (20 + Zo)x + z0Z0 + &,

where 0 < & < m, with the roots z,.Z; € C. We have 2,2, =
henee |z > |zg] and thus

[G) > m.

For fixed n € N, consider on the other hand the real polynomial
. P2 2n
G =g —¢]" — (=) = [J(x —e) = [(x — @)
izl i=1

with roots @. ..., @z, € C. It follows that G(z;) = 0; say, z; = ). We
may substitute & € K into the polynomial
o
Gx)? = [1(x* = (e +&)x + ;@)
=l
and get
, . et
[G@] =1 fle)z flem™ .
i=1

From this and the inequality
[GE)| <187 — (2o + 20§ +2030l" + | = 6]" = flzo)" +&" = m" + 6",
it follows that f (@ )m™ ' < (m" + £")? and hence

fla) £3\"\2

I <1 — ) .

m ( * (m)

Forn — oo we have f(e) < m, which contradicts the inequality f(or|) > m
proved before. O

In view of Osrrowsks’s theorem, we will henceforth restrict attention to
the case of nonarchimedean valuations. In this case it is usually expedient —
both with regard to the substance and to practical technique — to work with
the exponential valuations v rather than the multipticative valuations. So let v
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be an exponeniial valuation of the field K. It is canonically continued to an
exponential valuation & of the completion K by setting

(@) = ,,IL“L vldy),

where a = lim a, € [’f. a, € K. Observe here that the sequence vidg)
n—

has to become stationary (provided a # 0) because, for n = ng, one
has #(a — a,) > 8(a), so that it follows from the remark on p. 119

v(ay) = D(an —a +a) = min{ d(a, — a). D)} = b(@).

Therefore it follows that
v(k*) = 0(K").

and if v is discrete and normalized, then so is the extension . In the
nonarchimedean case, for a sequence {dn}sen to be a Cauchy sequence,
it suffices that a@,.1 — a, be a nullsequence. In fact, vig, — am) =
Wity zi<n{V(@r1 — a)}. By the same token an infinitc series 30 dv
converges in K if and only if the sequence of its terms a, is a nullsequence.
The following proposition is proved exactly as its analogue, proposition (2.4),
in the special case (Q, vp).

(4.3) Proposition. Ifo C K, resp. 8 K. is the valuation ring of v, resp.
of U, and p, resp. P, is the maximal ideal, then one has
8/ =ofp

and. if v is discrete, one has furthermore

B/p" T oyt for n= 1.

Generalizing the p-adic expansion to the case of an arbitrary discrete
valuation v of the field K, we have the

(4.4) Proposition. Let R C o be a system of representatives for k = ofp
such that O € R, and let = € © be a prime elcment. Then every x # 0 in K
admits a unique representation as a convergent series

x =" (ay +am +at )

where a; € R, a0 A0, m € Z.
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Proof: Let x = n™u with # € 3*. Since B/ = o/p, the cla
has a unique representative ay € R, ay # 0. We thus have u = ay + b\,
for some b, € 3. Assume now that ay, ...,a,_, € R have been found,
satisfying

w=ag a4+ a7+ 7"b,
for some b, € O, and that the @; are uniquely determined by this equation.
Then the rcpresentative a, € R of b, mod 70 € T/p = o/p is also
uniquely determined by « and we have b, = a, +7h,41, for some by € 5.
Hence

u=aptam+-+ap 1" dant 47",y

In this way we find an infinite series Y°7° . ¢, 7" which is uniquely determined
Ly v=0 quely
by u. It converges to u because the remainder term 777+'5, | tends to zero. O

In the case of the field of rational numbers @ and the p-adic valuation v,
with its completion @,, the numbers O, 1, ..., p — 1 form a system of
representatives R for the residue class field Z/pZ of the valuation, and
we get back the representation of p-adic numbers which has already been
discussed in §2:

x=pT g+ ap+apt o).
where 0 < a; < pandm € Z.

In the case of the rational function field 4 (r) and the valuation v, attached
to a prime ideal p = (r — a) of k[¢] (sce §2), we may take as a system of
representatives R the field of coefficients & itsclf. The completion then turns
out to be the field of formal power series k((x)), x = ¢ — a, consisting of
all formal Laurent scrics

FO =0 +alt—a)+alt—ay+-),
with @; € k and m € Z. The motivating analogy of the beginning of this

chapler, between power series and p-adic numbers. thus appears as two
spectal instances of the same concrete mathematical situation.

In § 1 we identificd the ring Z, of p-adic integers as being the projective
limit lim Z/p"Z. We obtain a similar result in the general setting of

n
valuation theory. To cxplain this, let K be complete with respect to a discrete
valuation. Let © be the valuation ring with the maximal ideal p. We then
have for every n > [ the canonical homomorphisms

o — o/p"
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and
ofp P o/p? Jz ofpt <.
This gives us a homomorphism

f "
— O
o lim o/p
n

into the projective limit
<
im o/p" ={(x) € [T o/n" | duGrin) = xu) .
” a=1
Considering the rings o/p" as topological rings, for the discrete topology,

gives us the product topology on []o2, ©/p", and the projective limit
Lim ©/p" becomes a topological ring in a canonical way. being a closed

7
subset of the product (see chap. IV, §2).

(4.5) Proposition. The canonical mapping

o — lim o/p"

n

is an isomorphism and a homeomorphism. The same is true for the mapping

o — lim o*/U"™.
um
0

Proof: The map is injective since its kemel is ()=, p" = (0). To prove
surjectivity, let p = o and let R € o, R 2 0. be a system of representatives
of ©/p. We saw in the proof of (4.4) (and in fact already in (1.2)) that the
elements @ mod p” € o/p” can be given uniquely in the form

a=ap+am+- 4 a, 7" mod p”,

where a; € R. Each element s € {im o/p" is therefore given by a sequence
of sums "

Sp=dotay T4 a7, n=1,20..,

with fixed coefticients «; € R, and it is thus the image of the clement
x=lims, =Y an"co.
n—oc

The sets P, = [],., ©/p" form a basis of neighbourhoods of the zero
element of ]2, ©/p". Under the bijection

o — lim o/p¥
v
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the basis of neighbourhoods p” of zero in © is mapped onto the basis of
neighbourhoods £, 0 lim o/p¥ of zero in L o/p¥. Thus the bijection is

a homcomorphism. It mduces an hommphlsm and homeomorphism on the
group of units

= (fm o/p) E lim (o/p") X lim ot U, O

One of our chief concerns will be to study the finitc cxtensions L |K of a
complete valued field K. This means that we have 1o turn 1o the question of
factoring algebraic equations

FO) =apx” 4y 5"t ay =0

over complete valued [iclds. For this, Hensel's seminal “lemma” is of
fundamental importance. Let K again be a field which is complete with
respect to a nonarchimedean valuation | |. Let ¢ be the corresponding
valuation ring with maximal ideal p and residue class field « = o/p.
We call a polynomial f(x) = ap + a;x + --- + apx” € ©[x] primitive
if f(x)#0modp,ie.,if

| £l =max{laql. .... la,|} = 1.

(4.6) Hensel’s Lemma. !f a primitive polynomial f(x) € olx| admits
modulo p a factorization

f(x) =g (x)h(x) mod p
into relatively prime polynomials g,k € «[x], then f(x} admits a factoriza-
tion

F) = g0h(x)
into polynomials g, h € o[x] such that deg(g) = deg(g) and

g(x)=F(x)modp and h(x)=h(x) modp.

Proof: Let d = deg(f), m =deg(%), hence d —m > deg(h). Let g,
ho € olx] be polynomials such that gy = g mod p, sy = & mod p and
deg(go) = m, deg(hg) < d — m. Since (g.h) = 1, there exist polynomials
a(x), b(x) € olx] satistying ago + bhg = 1 mod p. Among the coefficients
of the two polynomials f — gohg and agy + bho — 1 € plx| we pick one with
minimum value and call it 7.
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Let us look for the polynomials g and £ in the following form:
g=gtmr .,
h=hy+qm -+—qz;'r2 +eee
where p;, g; € o[x] are polynomials of degree < m, resp. < d —m. We then
determine successively the polynomials

g1 = Qo+ vt py ™

hamy = ho + qu + o+ guam™

in such a way that one has
f = gn_1hn mod 7",

Passing to the limit as n — oo, we will finally obtain the identity f = gh.
For n = 1 the congruence is satisfied in view of our choice of m. Let us
assume that it is already established for some n > 1. Then, in view of the
relation

8n = -1+ a7, hp = oy qan”,
the condition on g,. i, reduces to

f =8 thnot = (&u1qn + hpoy pu)” mod 777"
Dividing by 7", this means
8a=1Gn + o1 Pn = 80Gn + hopn = fn mod 7,
where f, = 77" (f — gn-1hn-1) € Olx]. Since goa + hob = 1 mod 7, one
has
goafy + hohfy = [, mod .

At this point we would like to put ¢, = af, and p, = bf,, but the degrees
might be too big. For this reason, we write

b(x) fa(x) = g (x)go(x) + palx),

where deg(p,) < deg(gy) = m. Since go = g mod p and deg(go) = deg(g),
the highest coeflicient of gy is a unit; hence ¢(x) € ©[x] and we obtain the
congruence

golafn + hog) + hopn = fr mod 7.

Omitting now from the polynomial af,, + hog all cocfficients divisible by xr,
we get a polynomial g, such that gogy + hopn = f, mod w and which, in
view of deg(f,) < d, deg(go) = m and deg(hop,) < (d —m) +m = d, has
degree < d — m as required. a
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Example: The polynomial x?~'—1 € Zplx] splits over the residue class fietd
Zp/pLy =y into distinct lincar factors. Applying (repeatediy) Hensel’s
lemma, we see that it also splits into linear factors over Z,. We thus obtain the
astonishing result that the field G, of p-adic numbers contains the (p — 1)-th
roots of unity, These, together with 0, even form a system of representatives
for the residue class field, which is closed under multiplication.

(4.7) Corollary. Let the field K be complete with respect to the nonar-
chimedean valuation | |. Then, for every irreducible polynomial f(x) =
do+ayx + -+ aux” € K|x| such that apa,, # 0, one has

171 = max{ laol. la,|} .

In particular, a, = 1 and ay € © imply that f € o[x].

Proof: After multiplying by a suitable element of K we may assume that
f € olx] and |f| = 1. Let 4, be the first one among the coefficients
ag, - .., ay such that |a,| = 1. In other words, we have

f)=x"(a, +arpx+ -+ ax""ymod p.

If onc had max{|agl. la.|} < 1, then O < r < n and the congruence would
contradict Hensel’s lemma. O

From this corollary we can now deduce the following theorem on
extensions of valuations.

(4.8) Theorem. Let K be complete with respect to the valuation | |.
Then | | may be extended in a unique way to a valuation of any given
i cnston L|K . This sion is given by the formula

fa] = /| Neix (@),

when L|K has finite degree n. In this case L is again complete.

Proof: If the valuation | | is archimedean, then by Ostrowski’s theorem,
K =R or C. We have Neg(z |z> and the theorem is part
of classical analysis. So let | | be nonarchimedean. Since every algebraic
extension £.|K is the union ol its finite subextensions, we may assume that
the degree n = [L : K] is finite.
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Existence of the extended valuation: let © be the valuation ring of K and O
its integral closure in L. Then one has

() O={aelL|Nykia) €o}.

The implication & € @ = Ny k(@) € O is evident (see chap. I, § 2, p. 12).
Conversely, let @ € L* and Ny x (@) € 0. Let

fO =x"tar x4+ tay e Kix]

be the minimal polynomial of e over K. Then Ny, k(@) = a' € o, so that
lagl < 1,i.e., ap € 0. By (4.7) this gives f(x) € olx], ie., 0 € O.

For the function fa| = {/[NLx (@)], the conditions |a| =0 &> a =0
and |af3| = |a||B] are obvious. The strong triangle incquality

la + Bl < max{ |el. |81}
reduces, after dividing by o or 8, to the implication
el €1 = Jla+1| =<1,

and then, by (x), to @ € O = a + | € O, which is trivially true. Thus
the formula |a| = "/INL‘K(ot)\ does define a valuation of L and, restricted
to K, it clearly gives back the given valuation. Equally obviously it has ©
as its valuation ring.

Uniqueness of the extended valuation: let | |" be another extension with
valuation ring ¢, Let P, resp. ', be the maximal ideal of O, resp. O'. We
show that @ C . Let o € O ~ O and let

Foy =2 fandt 1 tay

be the minimal polynomial of « over K. Then one has a,. ..., aq € 0 and
@ ' e P, hence | = —aja™! — - —agla~ ¥ € P, a contradiction.
This shows the inclusion & < (. In other words, we have that
le| < 1 = ||’ < | and this implies that the valuations | | and | |
are equivalent. For if they were not. then the approximation theorem (3.4)
would atlow us to find an ¢ € L such that || < | = || > 1. Thus | | and
| |" are equal because they agree on K.

The fact that L is again complete with respect to the extended valuation
is deduced from the following general result. o

(4.9) Proposition. Let K be complete with respect to the valuation | | and
let V' be an n-dimensional normed vector space over K. Then, for any basis
Ve ..., Uy Oof V the maximum norm

llxivg + -+ xpuyll :max[ sl ..o \,\‘n”
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is equivalent to the given norm on V. In particular, V is complete and the
isomorphism

K" — V. (x,....2 Xp) > X101+ X,

is a homeomorphism.

Proof: Let v, ..., v, be a basis and || || be the corresponding maximum
norm on V. It suffices to show that, for every norm | | on V, there exist
constants p, p' > 0 such that

plixll = |x] < p'lixll forall xeV.

Then the norm | | defines the same topotogy on V as the norm | ||,
and we obtain the topological isomorphism X" — V, (x|, ..., 1 X,) —
X104 +x,0,. In fact, || || is transformed into the maximum norm on K7,

For p' we may obviously take |vi[ + --- + |v,|. The existence of p is
proved by induction on n. For n = | we may take p = |v;]. Suppose that
everything is proved for (n — |)-dimensional vector spaces. Let

Vi=Kvy+- + Ko+ Kvip + -+ Ko,

so that V = V; 4 Kv;. Then V; is complete with respect to the restriction
of | | by induction, hence it is closed in V. Thus V; + v; is also closed.
Since 0 ¢ [_J]_,(V; + v;), there exists a neighbourhood of 0 which is disjoint
from i, (Vi + v;), i.c., there exists p > O such that

lwi+vif>=p forall w; eV; andall i=1,..., n.

For v = xjv; + -+ + x,v, # 0 and |x,} = max{|x;[}, one finds

O X X
= 2ot 4 | 200
X, X
so that one has |x| = ply.| = pllx|. [m]

The fact that an exponential valuation v on K associated with | | extends
uniquely to L is a trivial consequence of theorem (4.8). The extension w is
given by the formula

1
wlo) = ";V(NL\K(U))

ifn=|L:K]<oc.
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Exercise 1. An infinite algebruic extension of a complete field K is never complete.

Exercise 2. Let Xg, Xy, ... be an infinite sequence of unknowns, p a fixed prime

number and W, = X"+ pX" 4+ -+ p"X,. n = 0. Show that there exist
polynomials Sy, Sy, PP €Z[Xo. Xy, ... Yo. Yy ... | such that

Wa(So. S1u ) = Wa(Xo XL )+ Wo (Yo Yo o)

Wy(Po, P ) = We(Xg, Xyo ) - WolYo. YL o).

Exercise 3. Let A be a commutative ring. For ¢ = (ag.ay. ...}, b = (b by, ...),
a; by € A, put

a+b=(Syla,b). Si(a,b), ..}, a-b=(Pola,b).Plab) ...).
Show that with these operations the vectors @ = (dp, @, ... ) form a commutative

ring W(A) with 1. Tt is called the ring of Witt vectors over A,
Exercise 4. Assume pA = 0. For every Wil vector ¢ = (4g,a1, ...) € W(A)
consider the “ghost components”™

et
I

" =W, @) =a +pa’”” +--+ p'a,

as well as the mappings V. F : W(A) — W(A) defined by

Va=0,a0.a....) and Fa=(af.af. ..).
called respectively “transfer” (“Verschicbung” in German) and “Frobenius”. Show
ot V)" = pa"" and & = (Fa)" + p'a,.
Exercise 5. Let & be a field of characteristic p. Then V is 4 homomorphism of the
additive group of W (k) and ' is a ring homomorphism, and one has

VFa=FVa=pa.

Exercise 6. If & is a perfect ficld of characteristic p, then W (k) is a complete
discrete valuation ring with residue class field 4.

§ 5. Local Fields

Among all complete (nonarchimedean) valued fields, those arising as
completions of a global field, i.e., of u finite extension of either Q or I¥,(r),
have the most eminent relevance for number theory. The valuation on such
a completion is discrete and has a finite residue class field, as we shall see
shortly. In contrast to the global fields. all ficlds which are complete with
respect 1o a discrete valuation and have a finite residue class field are called
local fields. For such a local field. the normalized exponential valuation is
denoted by vy, and | |, denotes the absolute value normalized by

ixlp = (rv‘,(\)>

where ¢ is the cardinality of the residue class ficld.
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(5.1) Proposition. A local field K is locally compact. Its valuation ring ©
is compact.

Proof: By (4.5) we have 0 = Igr;n o/p", both algebraically and topo-
logically. Since p®/p'*' = o/p (see (3.9)), the rings o/p” arc finite,
hence compact. Being a closed subsct of the compact product [T02, o/p”,
it follows that the projective limit lim ©/p”, and thus o. is also compact.
For every a € K, the set @ + © is an open, and at the same time compact
neighbourhood, so that X' is locally compact. [m]

In happy concord with the definition of global fields as the finite cxtensions
of Q and FF,(r), we now obtain the following characterization of local fields,

(5.2) Proposition. The local fields are preciscly the finite extensions of the
fields Q, and F,({1)).

Proof: A finite extension K of k = Q, or k = F,((1)) is again complete,
by (4.8). with respect to the extended valuation |o| = J[Ngp(o)l,
which itself is obviously again discrete. Since K|k is of finitc dcgree,
so is the residue class field extension «|Fp, for if ¥, ...,%, € «
are lincarly independent, then any choice of preimages x, xp € K
is linearly independent over k. Indeed, dividing any nontrivial &-lincar
relation Ax; + - + A,x, = 0, A; € k, by the coefficient A; with biggest
absolute value, yields a linear combination with cocllicients in the valuation
ring of k with 1 as i-th coefficient, from which we obtain a nontrivial relation
JX|+ -+ A%, = 0 by reducing to «. Therefore K is a local field.
Conversely, let K be a local field, v its discrete exponential valuation.
and p the characteristic of its residue s field «. If K has characteristic 0,
then the restriction of v to @ is cquivalent to the p-adic valuation v, of Q
because v(p) > 0. In view of the completeness of X, the closure of Q) in K
is the completion of @ with respect 0 vy, in other words @, € K. The
fact that K|Q), is of finite degree results from the local compactaess of the
vector space K, by a general theorem of topological linear algebra (see [ 18],
chap. I, §2, n® 4, th. 3), but it also follows from (6.8) below. If on the other
hand the characteristic of K is not cqual to zero, then it has to equal p.
In this casc we find K = «((r)), for a prime element 7 of K (see p.127),
hence F,((1)) © K. In fact, if & = Fp(a) and p(X) € F,[X]) € K|X] is
the minimal polynomial of & over F,, then, by Hensel’s lemma, p(X) splits
over K into linear factors. We may therefore view x as a sublield of K. and
then the elements of K tumn out (o be, by (4.4), the Laurent series in { with
cocfficients in «. O
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Remark: One can show that a field K which is locally compact with respect
to a nondiscrete topology is isomorphic either to R or C. or to a finite
extension of Q,, or Fjp((2)), ie., to a local field (see [137], chap. 1, §3).

We have just seen that the Jocal fields of characteristic p are the power
series fields F,, (()), with ¢ = pf. The local fields of characteristic 0, i.e.,
the finite extensions K |Q, of the ficlds of p-adic numbers Q,. are called
p-adic number fields. For them one has an exponential funcrion and a
logarithm function. In contrast to the real and complex case, however, the
former is not defined on all of K, whereas the latter is given on the whole
multiplicative group K *. For the definition of the logarithm we make use of
the following fact.

(5.3) Proposition. The multiplicative group of a local field K admits the
decomposition
K'=(r)xp, 1 x U,

Here m is a prime elcment, (n) = (ot | k € ZY, q = #« is the number of
clements in the residuc class ficld k = o/p, and U =t + p is the group
of principal units.

Proof: For every o € K*, one has a unique representation o = m"u with
n e, ueo*sothat K* = () x o*. Since the polynomial X4~ — 1 splits
into linear factors over K by Hensel’s lemma, 0* contains the group s, of
(g — 1)-th roots of unity. The homomorphism ©* — «*, i > u mod p, has
kernel /" and maps j4,—; bijectively onto «* Hence 0* =y, x U0, O

(5.4) Proposition. For a p-adic numbcr ficld K there is a uniguely
determincd continuous homomorphism

log: K* = K
such that tog p = 0 which on principal units (1 + x) € U'" is given by the

series
2 3

log(1 + 1) L4z
og: X)=x - .
¢ 773

Proof: By §4, we can think of the p-adic valuation v, of @, as extended
to K. Observing that v,(x) > 0, so that ¢ = p"™) > 1, and p*r™" < v,
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giving v, (v) < ::—; (with the usual logarithm), we compute the valuation of

the terms x" /v of the series,
x¥ Inc  Inv In{c” /vy
v,,(f) =vupX) —vp (V) Z Ve — — = Inte?/v) .
v Inp Inp Inp
This shows that x”/v is a nullsequence, i.e., the logarithm scries converges.
It defincs a homomorphism because

log({1 +x)(1 + »)) = log(1 4 x) +log(l + »)

is an identity of formal power series and all series in it converge provided
T+x, 14+yeU®.
For every a € K*, choosing a prime element 7, we have a unique
representation
a =" Dw(@)ie),
where v, = e, is the normalized valuation of K, w(@) € ptq—1, (@) € Ui,

As suggested by the equation p = 7w (p){p}, we define logrm = —(—l, log {p}
and thus obtain the homomorphism log : K* — K by

loga = vp(e) logm + log (@)

Iuis obviously continuous and has the property thatlog p = 0. 1f A : K* — K
is any continuation of log : U(" — K such that A(p) = 0, then we
find that A(§) = ;I%lk(é‘/ 'y = 0 for each & € 41 It follows that
0 = er(m) + M{p)) = er(w) + log {p), so that A(m) = logm, and thus
ey = vp(@)A(m) + A({a)) = vp(@)logw +log (o) = loga, forall e € K*.
log is therefore uniquely determined and independent of the choice of 7.

U

(5.5) Proposition. Let K|Q, be a p-adic number field with valuation ring
© and maximal ideal p, and let po = p*. Then the power series

PR 22
exp(xy =1+x+ ng; 4. and log{l+z)=z— 7

yicld, for n > ﬁ two mutually inverse isomorphisms {(and homeomor-
phisms)
exp .
n_
p U,
log,

We preparc the proof by the following clementary lemma.
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(5.6) Lemma. Letv =73} ,a;p',0 <a; < p, be the p-adic expansion of
the natural number v € N. Then

s
h=—— ipt=1.
vp(vh) P ga.(p )

Proof: Let [¢] signify the biggest integer < ¢. Then we have

W/pl = ai+ap+-+ap ',

Iv/p?] = @ Ftap T
v/p'] = ar.
Now we count how many numbers 1,2, ..., v are divisible by p, and then

by p?, etc. We find
v =[/pl+-+D/p l=a +(p+Da+ -+ P+ + Da,
and hence
(p=Dupw)) = (p—Dar+ (p° - Dar+---+(p — Da, = Zm(n -.
i}
]
Proof of (5.5): We again think of the p-adic valuation v, of Q, as being

extended to K. Then vy, = e, is the normalized valuation of K. For cvery
natural number v > I, one has the estimate

oy _ 1

v—1 = p—1
for if v = p%yy, with (vg, p) = 1 and a > 0, then
wp(v) a__ U a St
v—1 p"uu—l =1 p=1plt.kpt+l = p-1

For u,(z) > pﬁ‘ 2 #0,i¢, vp(2) > ﬁ this yields

z” vp(v)
() = 0 = 0 = Doy — up) > (0 1)(fl -t o,
and thus vy(log(l + z)) = vy(2). For n > 7‘—7 log therefore maps U
into p”. 7

For the exponential series 3 < x"/v!, we compute the valuations
vp(x¥ /v as follows. Writing, for v > 0,

v=aytap+---+ap, 0<a <p,
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we gel from (5.6) that

o
= — Y ap' —1)= (v—(a+a+ - +a)}.
r—1i% p—1

Putting s, = ag + - - - + a, this becomes

v

X Vv — 5y 1 Sy
U,;(\T!) = vup(y) — e V(Up(«\f) iy l)+ o1

e

For vy (x) > s ie, vplx) > — l' this implies the convergence of the

14
exponential series. 1 furthermore x # 0 and v > 1, then one has

sp =1

xY v—1 Sy
—}—v,x)=(@w—1 ) — —— >
v,y(‘y!) vp(x) = (v — Lup(x) P + R 12

Therefore vy (exp(x)—1) = vp(x), i.e., forn > 7+ €Xp maps the group p”

into & . Furthermore, onc has for vy(x), vp(z) > p‘j that
explog(l+z)=1+z and logexpx =x.

for these are identities of formal power series and all of the serics converge.
This proves the proposition. m]

For an arbitrary local field &', the group of principal units &/(" is a Hip-
module {(where p = char(x)) in a canonical way, i.c., for every l+xet™
and every z € Z,, one has the power (1 +x)° € U“) This is a consequence
of the fact that UV /U@ has order ¢ for all n (where ¢ = #U/p — the
reason for this is that U© /U = o/p, by (3.10), so that UV /y i+
is 4 Z/q" Z-module) and of the formulas

U = lim 0O and Z, = lim Z/q"Z.

n "

This obviously extends the Z-module structure of &/ (") The function
fl)=0+x)"

is mnlinuous because the congruence 2" mod ¢"Z, implies (I + x)° =

(I+.7 mod U“*+, 5o that the neighbourheod z + ¢"Z,, of z is mapped

to the neighbourhood (] +x)?UHD of f(z). In particular, (1 4 )" may be
expressed as the limit

(14 x)7 = lim (1 +x)7
iso
of ordinary powers (1 +x)7, z; € Z, if z = lim 7.
i~oc

After this discussion we can now determine explicitly the structure of the
tocally compact multiplicative group K * of a locat field K .
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(5.7) Proposition. Let K be a local field and ¢ = p/ the number of
elements in the residue class field. Then the following hold.

(i} If K has characteristic 0, then one has (both algebraically and
topologically)
~ T d

FEZOL/q-DEGL/ P TSI,
wherca > 0 and d = [K : Q]
(i) If K has characteristic p, then one has (both algebraically and
topologically)

FELZOL/G-DZSLY.

Proof: By (5.3) we have (both algebraically and topologically)
K= xpg i x UV 2282/g~- DL U,
This reduces us (o the computation of the Z,-module U*".
(i) Assume char(K) = 0. For n sufficiently big, (5.5) gives us the
isomorphism
By o

log: U — p" = "0 = 0.

Since log, exp, and f(z) = (1 + x)* are continuous, this is a topological
isomorphism of Z,-modulcs. By chap.I. (2.9), © admits an integral basis
@, ag over L. ie, 0 = Zpoy @ - @ Lyoy = LY. Therefore
U = 74, Since the index (U : U) is finite and U™ s a finitely
generated Z,-module of rank d, so is U". The torsion subgroup of &/ (" is
the group e of roots of unity in K of p-power order. By the main theorem
on modules over principal ideal domains, there exists in U/ a free, finitely
generated, and therefore closed, Z,-submodule V of rank o such that

UD = pipe x V = Z/p'2 & LY,
both algebraically and topologically.
(ii) If char(K') = p, we have K = F,((2)) (see p. 127) and

U =14 p=141F,l]).

The following argument is taken from the book [79] of K. /wasawa.

Letwy, ..., wy be abasis of I, |F ,. For every natural number # relatively
prime to p we consider the continuous homomorphism

/
e Zh > UP, ga, ..., ap) = [T + wir™y* .
i=l
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This function has the following properties. If m = np®, s > 0, then

O Ui = gn(p"Z,f,)U("””
and, for o = (a1, ..., ar) EZ,C,
2) o ¢ pLf e ga(p'a) g UHD.

Indeed, for @ = Y/, biws € By, by € Z, b; = a; mod p, we have
I
gney = [141 + i) = 1 4+ " mod p" 1!
i=1

and hence, since we are in characteristic p,

lp'e) = gu(@” =1+ " mod p"T'.
As o varies over the elements of Z,f) . w, and thus also ", varics over the cle-
ments of Fy, and we get {1). Furthermore one has g, (p*a) = 1 mod p™*! <=
wm = 0 > b =0 mod p.fori =1,..., f <= g =0mod p, for
Lfe=ae pZ,,, and this amounts 10 (2).
We now consider the continuous homomorphism of Z,-modules

g=Tlg: A=1]] Z{,—»U(”.
n.py=1 . p=1

i

where the product [, ,,_ Z,f, is taken over all n = I such that (n, p) =1,
euch factor being a copy of Z,’,. Observe that the product g(8) = [] gu{an)
converges because g,(y) € U™, Let m = np®, with (n. p) = 1, be any
natural number. As g,,('//;,{) C g(A), it follows from (1) that each coset
of U/ 7+ s represented by an element of g(A). This means that g(A)
is dense in U("), Since A is compact and g is continuous, g is actually
surjective.

On the other hand, let § = (..., @y, ...) € A, £ £ 0, ie, o, #£ 0 for
some 7. Such an a, is of the form &, = p*B, with s = s(a,) = 0, and
Bn € Z,C ~ pZ,f,. It now follows from (2) that

golon) €U, gy ¢ UMD for m = miay) = np®.
Since the 7 are prime to p, all the ni(w,) have to be distinct, for all a, # 0.
Let # be the natural number, prime to p and such that o, # 0, which
satisfies m(a,) < m{ay ), for all ' # n such that @, # 0. Then one has, for
all n’ # n, that
gwlon) € U where  m = miay) < mlay).

Conscquently
£(8) = gulo) # 1 mod U,

and so g(§) # 1. This shows the injectivity of g. Since A = Z}), this proves

the ctaim (ii). O
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(5.8) Corollary. If the natural number n is not divisible by the characteristic
of K. then one finds the following indices for the subgroups of n-th
powers K** and U" in the multiplicative group K* and in the unit group U :
K" K™ =nU UM = ﬁ#m.(l().
lp

Proof: The first cquality is a consequence of K* = () x U. By (5.7), we
have
= Ky X Z8, resp. U = u(K) x I,

when char (K) = 0, resp. p > 0. From the exact sequence
L — 1, (K) — w(K) =5 p(K) — p(K)/u(K)" —> 1,
one has #u, (K) = #u(K)/u(K)". When char(K) = 0, this gives:
(U 2 U") = #0a (KWL n)T = 0 (K ) p @0 = 0, (KD /1],

and when char(K') = p one gets simply (U : U") = #p,(K) = #;L,,(K)/\n\p
because (n,p) = 1, ie., nZ, = Zp.

Exercise 1. The logarithm function can be continued to a continuous homomorphism
log : Q, -+ @Q, and the exponential function to a continuous homomorphism

- ) and v, is the unique

exp i BTT > @ where BT =[x € T, | ) =

extension of the normalized valuation on @,.
Exercise 2. Let K|, be a p-adic number ficld. For | +x € U'" and z € Z,, one
has
Q407 =3 ()
=0

The series converges even for x € K such that v,(x) > ﬁ

Exercise 3. Under the ahove hypotheses one has
(1+x) = exp(zlog(1 +1)) and log(l +x)° = z log(l +x).
Exercise 4. For u p-adic number ficld K, every subgroup of finite index in K* is

both open and closed.

Exercise 5. If K is & p-adic number ficld, then the groups K", for # € N, form a
basis of ncighbourhoods of 1 in K*.

Exercise 6. Let X be a p-adic number ficld, v, the normalized exponential valuation
of K, and dx the Haar measure on the locally compact additive group & , scaled so
that fo, dx = L. Then one has v,(a) = /‘m dx. Furthermore,

. dx
I(/):/ f
K01 1xly

is a Haar measurc on the locally compact group K*.
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§ 6. Henselian Fields

Most results on complete valued fields can be derived from Hensel’s
lemma alone, without the full strength of completeness. This lemma is valid
in a much bigger class of nonarchimedean valued fields than the complete
ones. For example, let (K, v) be a nonarchimedean valued field and (K, )
its completion. Let @, resp. 3, be the valuation rings of K, resp. K. We then
consider the separable closure K, of K in ff, and the valuation ring ©,, C K,
with maximal ideal p,. which is associated to the restriction of 9 to K,

KCSK,CK., 0Co,cb.

Then Hensel's lemma holds in the ring 0, as well as in the ring 3 even
though K, will not, as a rule, be complete. When K, is algebraically closed
in K — hence in particular char(K) = 0 — this is immediately obvious
(otherwise it follows from (6.6) and §6, exercise 3 below). Indced, by (4.3)
we have

o/p = 0s/py = O/F.

and if a primitive polynomial f(x) € o,[x] splits over o©,/p, into
relatively prime factors g(x). 2(x), then we have by Hensel's lemma (4.6) a
factorization in &

Fx) = gh(x)

suchthat g = g mod . £ = & modp, deg(g) = deg(%). But this factorization
already takes place over ©, once the highest coefficient of g is chosen to be
in 0}, because the coefficients of £, and thercfore also thosc of g and 4 are
algebraic over K.

The valued field K, is called the henselization of the ficld X with respect
to v. It enjoys all the relevant algebraic properties of the completion K, but
offers the advantage of being itself an algchraic extension of K which can
also be obtained in a purely algebraic manner, without the analytic recourse
to the completion (see §9. cxercise 4). The consequence is that taking the
henselization of an infinitc algebraic cxtension L|K is possible within the
category of algebraic extensions. Let us define in general:

(6.1) Definition. A henselian field is a ficld with a nonarchimedean
valuation v whose valuation ring © satisfics Hensel’s lemma in the sense
of (4.6). One also calls the valuation v or the valuation ring © henselian.
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(6.2) Theorem. Let K be a henselian field with respect to the valia-
tion | |. Then | | admits one and only one extension to any given algebraic
extension L|K . It is given by

let = | N @)

if L|K has finite degree n. In any case, the valuation ring of the extended
valuation is the integral closure of the valuation ring of K in L.

The proof of this theorem is verbwim the same as in the case of a
complete field (see (4.8)). What is remarkable about our current setting is
that, converscly, the unique extendability aiso characterizes henselian fields.
In order to prove this, we appeal 1o a method which allows us to express
the valuations of the roots of a polynomial in terms of the valuations of
the coefficients. It rclies on the notion of Newton polygon, which arises as
follows.

Let v be an arbitrary exponential valuation of the ficld K and let

f)=ap+mx +--+ax" € K|x|

be a polynomial satisfying apus # 0. To each term a;x' we associate a point
(i, v(ay)) € R?, ignoring however the point (¢,00) if a; = 0. We now take
the lower convex envelope of the set of points

{ €0, va), (Lv(@)), ..., (n.vian)} .

This produces a polygonal chain which is called the Newton polygon of

flx).

(e, 0{a1n))
(0.1(a0)) 4 . .
\‘/jm.m,n
(¢, e{ai))
The polygon consists of a sequence of line segments Sy, 2, ... whose

slopes are strictly increasing., and which are subject to the following
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(6.3) Proposition. Let f(x) = ay +aix + -+ + azx", apa, # 0, be a
polynomial over the field K, v an exponential valuation of K. and w an
extension to the splitting field L of f.

If (r,v(ar)) < (s,v(ay)) is a line segment of slope —m occurring in the
Newton polygon of f, then f(x) has precisely s — r roots w,. ..., ay_, of
value

wion) == wlay_,) =m.

Proof: Dividing by a, only shifts the polygon up or down. Thus we may

assume that g, = |. We number the roots «y, ..., &, € L of f in such a
way that
wl) = = wlog) = m,
Wy ) =0 = wld,) =mo,

wloy 1) = = wlwg) =myy,

where my < my < --- < myyy. Viewing the coefficients a; as elementary
symmetric functions of the roots ;. we immediately find

vlap) = v(l) =0,

v(ay—y) = min{w(e)} = m,
i

vlay—2) = min{w(e)} = 2m,
i“r

vlan ) = min fwiw, o)) = s,
iy

the latter because the value of the term « ...y, s smaller than that of all
the others,

vlany-1) 2 omin fwle .o )b = sim +my,
ey 41
vldy_s,—2) = min {w(ct” ---”"\‘+z)] = symy +2m,,
By 2
Vapg) = min fwle o)} =sim 4 (s —s)mo,
iy >

and so on. From this result one concludes that the vertices of the Newton
polygon, from right to left, are given by

(r,0), (n—s1,5:m), (—s3,0m + {52 —s)ma), ...
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The slope of the extreme right-hand line segment is
O —sym
——— = —my,
n—{(n—s)
and, proceeding further 1o the left,
(simy+ -+ (55— s;20m) — (imy + - + (541 = 3))mg1)
(n—s;) = (n = 5j31)

=M.

U

We emphasize that, according to the preceding proposition, the Newton
polygon consists of precisely one segment if and only if the roots &y, ..., &y
of f all have the same value. In general, f(x) factors into a product according
to the slopes —m, < -+ < —m,

fo) =an [] fi (),
j=t

where N
fo= T @ —a).
wla)=m;
Here the factor f; corresponds to the (# — j + 1)-th segment of the Newton
polygon, whose slope cquals minus the valuc of the roots of f;.

(6.4) Proposition. If the valuation v admits a uniquc cxtension w to the
splitting field L of f, then the factorization

,
foy=an [ fi(v)
j=1
is defined alrcady over K, i.e., fj{x) = ]_[u,.(a’):m’ (x —o) € K|x].

Proof: We may clearly assume that a, = 1. The statement is obvious when
f(x) is irreducible because then onc has «; = oja, for some 0; € G(L|K),
nce, for any extension w of v, w o o; is another one, the uniqueness
implies that w(a;) = w(ojay) = my, hence fi{x) = f(x).

The general casc follows by induction on n. For n = 1 therc is nothing to
show. Let p(x) be the minimal polynomial of @ and gix) = f(x)/p(x) €
K|x|. Since all roots of p(x) have the same value my, p(x) is a divisor
of f1(x). Let g/(x) = fi(x)/p(x). The factorization of g(x) according to
the slopes is

2 =g I fix).
i=2

Since deg(g) < deg(f), it follows that f;(x) € K[x|forall j=1,...,r.U
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If the polynomial f is irreducible, then, by the above factorization result,
there is onty one slope, i.e., the Newton polygon consists of a single segment.
The values of all coefficients lie on or above this line segment and we get the

(6.5} Corollary. Let f(x) = ay+aix+---+a,x" € K[x] be an irreducible
polynomial with a, # 0. Then, i | | is a nonarchimedean valuation of K
with a unique extension to the splitting field, onc has

[£1=max{|aol, lanl} .

In (4.7) we deduced this result for complete fields from Hensel’s lemma
and thus obtained the uniguencss of the extended valuation. Here we obtain
it, by contrast, as a consequence of the uniqueness of the extended valuation.
We now proceed to deduce Henscl's lemma from the unique extendability.

(6.6) Theorem. A nonarchimedean valued field (K, | |} is hensclian if and
only if the valuation | | can be uniquely cxtended to any algebraic extension.

Proof: The fact that a henselian vatuation | | extends uniquely was dealt
with in (6.2). Let us assume conversely that | | admits one and only one
extension to any given algebraic extension. We first show:

Let f(x) = ag +ax + - 4+ a,x" € olx] be a primitive, irreducible
polynomial such that aea, # 0, and let f(x) = f(x) mod p € k[x]. Then
we have deg(f) = 0 or deg(f) = deg(f), and we tind

ey =agom,
for some irreducible polynomial $(x) € «|x| and a constant .

As f is irreduciblc, the Newton polygon is a single line segment and thus
| £ = max{|ag|, |a,|}. We may assume that a, is a unit, because otherwise
the Newton polygon is a segment which does not lic on the x-axis and this
means that _f(x) =dy.

Let L|K be the splitting field of f(x) over K and () the valuation ring
of the unique extension | | to L, with maximal ideal . For an arbitrary
K -automorphism o € G = G(L|K), we have |oa| = [o| forall @ € L,
because | | and the composite | | oo extend the same valuation. This shows
that 6O = O, P = P. If o is a zero of f(x) and p its multiplicity, then
aa € Oforall o € G. Indeed. if @ ¢ O, then [, |oal* = |[], oal* > 1
would imply that the constant cocfficient @y could not belong to ©. Thus
every o € G induces a « -automorphism & of O/, and the zeroes 7@ = 7a
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of f(x) are all conjugate over «. It follows that Flo)=ag)™, g is
the minimal polynomial of & over . Since a, € ©*, we have furthermore
that deg(/) = deg(f)-

Let now f(x) € olx] be an arbitrary primitive polynomial, and let

F0) = file) - £ )

be its factorization into irreducibles over K. Since 1 = |f| = [] I £l
multiplying the f; by suitable constants yields |f;| = 1. The filx) are
thercfore primitive, irreducible polynomials in o[x]. It follows that

Fy = Fi)- Frn),

wherc deg(f:) = 0 or deg(f;) = deg(f;), and i is. up to a constan factor,
the power of an irreducible polynomial. If f = gh is a factorization into
relatively prime polynomials g,/ € «|x], then we must have

iel jed
where a,b € « and {1, .... r} =1 UJ and deg(f;) = deg(f)) fori € /.
We now put
g=allfi. h=bTl/
iel jed
fora.h e o* suchthata =a,h="h mod p and [ = gh. 0

We have introduced henselian fields by a condition of which the reader
will find weaker versions in the litcrature, restricted to monic polynomials
only. Both are equivalent as is shown by the following

(6.7) Propositi A no himed field (K, v) is henselian if any monic
polynomial f(x) € o[x] which splits over the residue class field x = o/p as

fx) = g(0)h(x) mod p
with relatively prime monic factors g (x), R(x) € «|x|, admits itsclf a splitting
Fx) = gnhx)
into monic factors g(x), h(x) € olx] such that

glx)= ;E(x) modp and h{x) = B(x)mod p.
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Proof (£. NarT): We have just seen that the property of K to be henselian
follows from the condition that the Newton polygon of every irreducible
polynomial f(x) = ay +a1x + -+ +a,x" € K[x] is a single line segment.
It is therefore sufficient to show this. We may assume that a, = 1. Let L|K
be the splitting field of 7. Then there is always an extension w of v to L.
It is obtaincd for example by taking the completion K of X, extending the
valuation of K in a umqut. way to a valuation v of the algebraic closure £
of K. cmbedding L into K. and restricting ¥ to L. It is also possible to get
the extension w directly, without passing through the completion. For this
we refer to [93], chap. XII, §4, th. 1.

Assume now that the Newton polygon of f consists of more than one
segment:

Let the tast segment be given by the points (m, €) and (1,0). If e = 0, we
immediately have a contradiction. Becausc then we have v(a;) > 0, so that
fxyeolxliand ay = -+ = gy = 0 mod p, a, # 0 mod p. Therefore
ey = (X" 4o+ ap,)X™ mod p, with m > 0 because there is more
than one segment. In view of the condition of the proposition this contradicts
the irreducibility of f.

We will now reduce to ¢ = 0 by a transformation. Let o € L be a root
of f(x) of minimum value w(a) and let @ € K such that v(a) = ¢. We
consider the characteristic polynomial g(x) of ¢ 'a" € K(w). r = n — m.
If fx) = [T/_,(x — e, then g(x) = [{_;(x — aa™"). Proposition (6.3)
shows that the Newton polygon of g(x) also has more than one segment, the
last one of slope

—w(a 'o") = vla) —rw) =
Since g(x) s a power of the minimal polynomial of a~'e’, hence of an
irreducible polynomial, this produces the same contradiction as before. [

Let K be a field which is henselian with respect to the exponential
valuation v. If L|K is a finite extension of degree #, then v cxtends uniquely
to an exponential valuation w of L, namely

1
wlo) = ;u(NL‘K(a)).
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This follows from (6.2) by taking the logarithm. For the value groups and
residue class fields of v and w, onc gets the inclusions
v(K*)y Cw(l*) and « Ch.
The index
e=e(w|v) = (wl") :v(K")
is called the ramification index of the extension L|K and the degrec
f=fwlv)=[:«]

is called the inertia degree. If v, and hence w = %v o Nk, is discrete
and if 0, p, 7, resp. O, P, 11, are the valuation ring, the maximal ideal and a
prime element of K, resp. L, then one has

e = (w(DZ : v(m)Z),
so that v() = ew(1), and we find
= el
for some unit ¢ € O*. From this one deduces the familiar {sce chap.1)
interpretation of the ramification index: p O = 7w O = YO = P*, or

p="9"

(6.8) Proposition. One has |L : K] = ¢f and the fundamental identity
[L:K]=ef.

if v is discrete and L|K is separable.

Proof: Let |, ..., w; be representatives of a basis of Alx and let
o, ..., ey € L* be elements the values of which vepresent the various
cosets in w(L*)/v(K*) (the finiteness of e will be a consequence of what
follows). If v is discrete, we may choose for instance 7; = I1'. We show that
the clements

wimi. j=1,....f. =0, ....e—1,
are lincarly independent over K, and in the discrete case form even a basis

of L|K. Let
e=t [

Y > ajwini =0

i=hj=1
with a;; € K. Assume that not all g;; = 0. Then there exist nonzero sums
5= ZJ/:I ajjw;, and cach time that 5; # 0 we find w(s;) € v(K™). In
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fact, dividing s; by the coefficicnt a;, of minimum value, we get a linear
combination of the w), ..., wy with coefficients in the valuation ring 0 € K
one of which cquals I. This linear combination is % 0 mod 9B, hence a unit,
so that w(s;) = w(a;,) € v(K*).

In the sum Zf;ol $i7;, two nonzero summands must have the same value,
say w(spmg) = wis;n;), i # j, because otherwise it could not be zero
(observe that w(x) # w(y) = w(x+ y) = min{w(x), w(y)}). It follows that

w(m) = w(my) + ws)) — wis) = w(r;) mod v(K*),
a contradiction. This shows the lincar independence of the w; ;. In particular,
we have ef <[L:K].

Assume now that v, and thus also w, is discrete and let It be a prime
element in the valuation ring O of w. We consider the ©-module

-1 f
M=3 3 owm
i=0j=1
where 71; = I1' and show that M = O, i.e., {w;m;} is even an integral basis
of O over ©. We put I
N=) ow,
j=l
so that M = N + TIN + .- + T1°"'N. We find that
O=N+10,

because, for @ € O, we have @ = @y + - - + aywy mod [1O, 4; € o. This
impl

O=N+TMN+TD) = =N+TIN +--- + I 'N + I°0,
so that O = M + P = M + p0O. Since L|K is separable, O is a finitely
generated o-module (see chap. 1. (2.11)), and we conclude @ = M from
Nakayama’s lemma (chap. I, § 11, excrcise 7). (]

Remark: We had already proved the identity [L : K| = ¢f in a somewhat
different way in chap. I, (8.2), also in the case where v was discrete and
L|K separable. Both hypotheses are actually needed. But, strangcly enough,
the separability condition can be dropped once K is complete with respect
to the discrete valuation. in this case, one deduces the equality @ = M in
the above proof from O = M + pO, not by means of Nakayama’s lemma.
but rather like this: as p'M € M, we get successively
O=M+pM+p0)=M+p’O=-.-=M+p*'0O

forall v = 1, and since {p*O},ey is a basis of neighbourhoods of zero in @,
M is dense in O. Since o is closed in K, (4.9) implies that M is closed in O,
so that M = O.
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Exercise L. In a henselian field the zeroes of a polynomial are continuous functions
of its cocficients. More precisely, one has: et f () € K1x| be a monic polynomial
of degree # and

Foy =TTk —a™
i=l

its decomposition info linear factars, with m; = 1, @ # a; for i % j. If the monic
polynomial gtx) of degree n has all coefficients sufficiently close to those of f(x),
then it has r roots fi, ..., f which approximate the ey, .... @, 1o any previously
given precision.

Exercise 2 (Krasner’s Lemma). Let @ € K be separable over K and let o =
@, -...a, he its conjugates over K. Il € K is such that

j — Bl < la—a| for i
then onc has K (x) C K(f).

Exercise 3. A field which is henselian with respect (o two incquivalent valuations is
scparably closed (Theorem of F.K. Scrsipr).

Ln,

Exercise 4. A separably closed field K is hensclian with respect to any
nonarchimedean valuation.

More generally, every valuation of K admits a uniguc extension to any purely
inscparable cxtension L |K .
Hint: Ifar = € K, one is forccd (0 put w(@) = Sv@).
Exercise 5. Let K be a nonarchimedean valued field, © the valuation ring,
and p the maximal idcal. K is henselian if and only if cvery polynomial
FO0 = X" +aux" 4+ ag € olx] such that @y € p and @ ¢ P has a
zero a € p.
Hint: The Newton polygon.
Remark: A local ring ¢ with maximal ideal p is called henselian if Hensel's lemma
in the sense of (6.7) holds for it. A characterization of these rings which is important
in algebraic geometry is the following:

A local ring o is hensclian if and only if cvery finitc commutative o-algebra A
splits into a direct product A = [T, A; of local rings A;.

The proof is not straightforward, we refer (o [103], chap. [, §4, th. 4.2.

§ 7. Unramified and Tamely Ramified Extensions

In this section we fix a base ficld K which is henselian with respect to
a nonarchimedean valuation v or | |. As before, we denote the valuation
ring, the maximal ideal and the residuc class field by 0.p.«, respectively.
If LK is an algebraic extension, then the corresponding invariants are
labelled w, O, %, &, respectively. An especially important role among these
extensions is played by the unramified extensions, which are defined as
follows.
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(7.1) Definition. A finite extension L|K is called unramified if the
cxiension i|i of the residue class field is separable and one has

lL:Kl=[h: k)

An arbitrary algebraic ¢ ion L|K is called ificd if' it is a union of
finite unramified subextensions.

Remark: This definition does not require K to be henselian; it applies in
all cascs where v extends uniquely to L.

(7.2) Proposition. Let L|K and K'|K be twa extensions inside an algcbraic
closure K|K and fet L' = LK'. Then one has

L|K unramified == L'|K' unramified.

Each subextension of an unramified extension is unramified.

Proof: The notations o.p,x; o'\p.«’s O, P r: O, P, 1 arc self-
explanatory. We may assume that L|K is finite. Then X[« is also finitc
and, being separable, is therefore generatcd by a primitive element &,
A= «@). Leta € O be a lifting, f(x) € olx] the minimal polynomiat of &
and f{x) = f(x) mod p € «|x]. Since

I3 k] = deg(f) = deg(f) = (Ko} : K1 < [L: K|=[r:«l,

one has L = K{a) and f(x) is the minimal polynomial of & over «.

We thus have L = K'(«). In order to prove that L|K’ is unramified,
let g(x) € o'[x] be the minimal polynomial of o over K’ and glx) =
g(x) mod p’ € «’|x]. Being a factor of f(x), g(x) is separable and hence
irreducible over «', because otherwise g(x) is reducible by Hensel’s lemma.
‘We obtain

kT ([L: K') = deglg) = deg(@) = (' @) : «'] < A" : «'T.
This implies [L": K') = [" : «'], i.e., L'| K" is unramificd.
If L|K is a subextension of the unramified extension L'|K , then it follows

from what we have just proved that L'|L is unramified. Hence so is L| K , by
the formula for the degree. a

(7.3} Corollary. The composite of two unramified extensions of K is again
unramified.
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Proof: 1t suffices to show this for two finite extensions L|K and L'|K.
L|K is unramitied, hence so is LL'|L’, by (7.2). This implies that LL|K is
unramified as well because separability is transitive and the degrees of field
(and residue ficld) extensions are multiplicative. ]

(7.4) Definition. Let L|K be an algebraic extension. Then the composite
T\K of all unramified subextensions is called the maximal unramified
subextension of L|K .

(7.5) Proposition. The residue class field of T is the separable closure A,
of « in the residue class field extension Alx of L|K, whereas the value
group of T equals that of K.

Proof: Let Ay be the residue class field of 7 and assume & € A is
separable over «. We have to show that @ € Aq. Let f():) € k{x] be the
minimal pofynomial of & and f{x) € olx] a monic polynomial such that
7 = f mod p. Then f(x) is irreducible and by Hensel's lemma has a root &
in L such that & = a mod B, ie., [K (@) : K] = [«(@) : «]. This implies
that K (&)} K is unramified, so that K (@) € 7, and thus & € Ao.

In order to prove w(7*) = v(K*) we may suppose L|K to be finite. The
claim then follows from

[T: K1z (w(T*) oK) ko k] = (w(T") : v(KD)IT : K. O

The composite of all unramified extensions inside the algebraic closure K
of K is simply called the maximal unramified extension K,-|K of K
(nr = ‘non ramifiée’). Its residue class field is the separable closure iy |x.
K contains all roots of unity of order m not divi sible by the characteristic
of k because the separable polynomial x* — 1 splits over & and hence also
over Ky, by Hensel’s lemma. If « is a finite fictd, then the extension K, | K
is even gencrated by these roots of unity because they generate & [«

If the characteristic p = char(x) of the residue class field is positive, lhcn
one has the following weaker notion acce ing that of an ifi
extension.

(7.6) Definition. An algcbraic extension L|K is called tamely ramified
if the extension Alk of the residue class ficlds is separable and one has
(L : T1. p) = L. In the infinitc case this latter condition is taken to mean
that the degree of cach finite subextension of L|T is prime to p.
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As before, in this definition K need not be henselian. We apply it whenever
the valuation v of K has a unique extension to L. When the fundamental
identity ef = |L : K| holds and A|x is separable, to say that the extension
is unramified, resp. tamely ramilied, simply amounts to saying that e = 1,
resp. (¢, p) = 1.

(7.7) Proposition. A finitc cxtension L|K is tamely ramified if and only if
the extension L|T is generated by radicals

L=T("Yar....."Ya)
such that (m;, p) = 1. In this case the fundamental identity always holds:

IL:K]=ef.

Proof: We may assume that K = T because L|K is obviously tamcly
ramified if and only if L|T is tamely ramified, and if this is the case, then
[7 : K] =1[h:x] = f. Let LIK be tamely ramified, so that x = i and
([L : K], p) = 1. We first show that ¢ = 1 implies L = K. Leta € L ~ K.
Writing « = o, .. um for the conjugates and ¢ = Tr(a) = ¥ 1 o,
the clement f = o — —a € L.~K has trace Tr(8) = 3, g = 0. Since
v(K*) = w(L*), we may choose a b € K* such that v(h) = w(f) and obtain
aunit & = /b € LK with trace 3", & = 0. But the conjugates &; have
the same residue classes & in &, because A = «. Hence 0= Y/, &; = m&.
and thus m = 0 mod p, which contradicts p {[L : K] and m|[L : K].

Now let @i, ..., - € w(L*) be a system of representatives for the
quotient u(L*)/u(K*) and m; the order of w; mod r(K*). Since
w(L*) = lv(NL”((L”)) < lv(K ), where n = [L : K], we have m;|n, so
that (m;, p) = 1. Let y; € i be an element such that w(y;) = w;. Then
w(y™) = v(e;), with ¢; € K, so that y"" = cie; for some unit & in L.
As A = x we may write & = bju;, where b; € K and u; is a unit in L
which tends to 1 in . By Henscl’s lemma the equation x™ — u; = 0 has a
solution f; € L. Putting o; = y; 8, '€ L, we find w(e;) = w; and

y
I,

o =a, i= T,

where a; = ¢;b; € K, ie.. we have K("v— . "tay) € L. By
construction, both fields have the samc value group and the same residue
class field. So, by what we proved first, we have

L= K("ar, ... ).
The incquality [L : K| < ¢ and thus. in view of (6.8), the cquality
IL : K| = e, now follows by induction on r. If L, = K("Yay), then
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) € w(L]) yields
e(LyIK) = (wL}) s u(KM) = my = L K]

Also e(.|L) = [L : L], because w(L*)/w(L}) is generaicd by the residuc
classes of an, ..., @-. Thus

e=e(L|LyeL |K) = [L:LillLy: K] =[L: K]

In order to prove that an extension L = K("Var, ..., "/a;) is tamely
ramified, it suffices to look at the case r = 1, ie., L K(Wa),
where (m.,p) = l. The general case then follows by induction. We may
assume without loss of generality that « is separably closed. This is seen
by passing to the maximal unramified extcnsion Ky = Ky, which has the
separable closure k1 = icy of x as its residue class ficld. We obtain the
foltowing diagram

L L,

K Ky,

where LMK, =T = K and L, = K((/a). If now L,|K; is tamely
ramified, then X)lic; is separable; hence Ay =« and p f [Ly @ Ky =
[L:K}=1{L:T] ie. LIK is also tamely ramificd,

Let @ = 7/a. We may assume that [L : K| = [K(Va) : K| = m.
In fact, it ¢ is the greatest divisor of m such that a = a? for some
4 € K*, and il m' = m/d, then o = "V and [K{"Y/a) : K] = m'. Now
let # = ord(w(o) mod v(K*)). Since mw(a) = v(u) € v(K*), we have
m = dn. Consequently w(a") = v(h), h € K*, and vy = wia”) = via);
thus @™ = a = eb? for some unit & in K. As (d,p) = 1, the equation
x4 — & = 0 splits over the separably closed residue field « into distinct linear
factors, hence also over K by Hensel’s lemma. Thereforc o” = wo=a
for some new b € K*. Since x™ — a is irreducible, we have d = 1, and
hence m = n. Thus

e>n=|L:K]=zef >e,
in other words f = 1, and so A = « and p { n = ¢. This shows that L|K is
tamely ramified.
(7.8) Cuiullary. Let L|IK and K'|K be two extensions insidc the algebraic
closure K|K, and L' = LK'. Then we have:
L1K tamely ramificd = L'|K’ tamely ramified.

Every subextension of a tamely ramified extension is tamely ramified.
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Proof: We may assumc without loss of generality that L|K is finite and
consider the diagram

I

N
x— N

The inclusion T € T’ follows from (7.2). If L|K is tamcly ramified,
then L = T("Vay. .... “ar), (mi,p) = 1: hence L' = LK' = LT =
T'("Vay. " /@y ), so that L')K” is also tamely ramitied. by (7.7).

The claim concerning the subextensions follows exactly as in the
unramified case.

(7.9) Corollary. The composite of tamely ramified extensions is tamely
ramified.

Proof: This follows from (7.8), exactly as (7.3) followed from (7.2} in the
unramified case. n

(7.10) Definition. Lct L|K be an algebraic cxtension. Then the compos-
ite V/|K of all tamely ramified subextensions is called the maximal tamely
ramified subextension of L|K.

Let w(L*)'"" denote the subgroup of all clements @ € w(L*) such
that mow € v(K*) for some m satisfying (m, p) = 1. The quotient group
w(L.*)P Ju(K*Y then consists of all elements of w(L*)/v(K*) whose order
is prime to p.

{7.11) Proposition. The maximal tamely ramified subextension V|K of
L|K has value group w(V*) = w(L*)*") and residue class field equal 1o the
separable closure Ay of x in Al«.

Proof: We may restrict to the case of a finite cxtension L[K. By
passing from K to the maximal unramified subextension, we may assume
by (7.5) that Ay = . As p t e(V|K) = #w(V*)/u(K*}, we certainly
have w(V*) C w(L")'". Conversely we find, as in the proof of (7.7), for
every @ € w(L*)\ aradical ¢ = %/a € L such thata € K. (m, p) = | and
w{a) = w, so that one has o € V, and € w(V*).
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The results obtained in this section may be summarized in the following
picture:
K

n

T < v

n

L
A
WK = w(T*) € w(l™" C wl").

s

In

Ay o= A

N

If L|K is finite and ¢ = ¢'p“ where (¢/. p) = 1, then [V : T] = ¢'. The
extension L |K is called totally (or purely) ramified if 7 = K, and wildly
ramified if it is not tamely ramified, i.e., if V # L.

Tmportant Example: Consider the extension Q,(¢)|Q, for a primitive
n-th root of unity ¢. In the two cases (7, p) = 1 and n = p*, this extenston
behaves completely differently. Let us first look at the case (7. p) = 1 and
choose as our base field, instcad of Q,, any discretely valued complete field
K with finite residue class field « = I, with ¢ = p”.

(7.12) Proposition. Let L = K ({), and let O]o, resp. A« be the extension
of valuation rings, resp. residue class fields, of L|K . Suppose that (n, p) = .
Then one has:

(i) The extension LK is unramified of degree f, where f is the smallest
natural number such that ¢/ =1 mod n.

(ii} The Galois group G(L|K) is canonically isomorphic to G(\|x) and is
generated by the automorphism ¢ : ¢ — 9.

(i) O =olt].

Proof: (i) If ¢(X) is the minimal polynomial of { over K, then the
reduction ¢(X) is the minimal polynomial of = ¢ mod P over «.
Indeed. being a divisor of X7 — T, ¢(X) is separable and by Henscl’s
lemma cannot split into factors. ¢ and ¢ have the same degree, so that
[L:K)=[k():xl=[h:&|=:f. LK is therefore unramified. The
polynomial X” — 1 splits over O and thus (because {(z, p) = 1) over A into
distinct linear factors, so that A = Tr‘q,' contains the group i, of n-th roots
of unity and is generated by it. Consequently / is the smallest number such

that pt, C ]I“‘Z,, i.e., such that n yq/ — L. This shows (i). (ii) results trivially
from this.
(iii) Since LK is unramified, we have pO = ‘B, and since 1.{. ..., {f"

represents a basis of Alx, we have O = o[¢{] + pQ, and O = o[Z] by
Nakayama’s lemma. G
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(7.13) Proposition. Let & be a primitive p™ -th root of unity. Then one has:
() Q,(0)|Qp is totally ramificd of degree p(p™) = (p — Dp™ .
() G@pNQ,) = (Z/p"Z)".
(i) Z,|¢] is the valuation ring of Q,(¢).
(iv) 1 —¢ is a prime element of Z,|¢ | with norm p.
Proof: £ =" "isa primitive p-th root of unity, i.e.,
P74 EP 24 41 =0, hence

g e <.
Denoting by ¢ the polynomml on the left, £ — 1 is a root of the equation
(X +1) =0. But this is 1rreduc|blc because it sfies Eisenstein’s criterion:
(1) =pand ¢(X) = (XP" — /X" — iy =(X = 1)P" 7 D mod p.
Tt foltows that [Q,(¢) : @] = @(p™). The canonical injection G(Qp()Tp)
— (Z/p"LY*. o +> n{c), where a{ = ¢"'7), is therefore bijective. since

both groups have order (p(p”’). Thus
Ny, cye,(1 =) =Tl(1 —at) =) = p.
a

Writing w for the cxtension of the normalized valuation vp of @, we find
furthermore that @(p”)w( — 1) = v,(p) = 1, ie., Q,()|Q, is totally
ramified and ¢ — 1 is a prime element of @p(¢). As in the proof of (6.8),
it follows that Z,[¢ — 1] = Zpl¢] is the valuation ring of Q, ). Thls
concludes the proof.

If & is a primitive n-th root of unity and n = n'p™, with (n', p) = 1,
then propositions (7.12) and (7.13) yield the following result for the maximal
unramified and the maximal tamely ramified extcnsion:

Qp ST =Q &) SV =T() S Q).

Exercise 1. The maximal unramified extension of @@, is obtained by adjoining all
roots of unity of order prime to p.

Exercise 2. Let K be henselian and K, |K the maximal unramified extension.
Show that the subextensions of K, |K correspond 1-1 to the subextensions of the
separable closure i, |«
Exercise 3. Let L|K be totally and tamely ramitied, and let A, resp. I”, be the value
group of L. resp. K. Show that the intermediale ficlds of L|K correspond 1-1 to
the subgroups of A/1".
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§ 8. Extensions of Valuations

Having seen that the henselian valuations extend uniquely to algebraic
extensions we will now study the question of how a valuation v of a
field K extends to an algebraic extension in general. So let v be an arbitrary
archimedean or nonarchimedean valuation. There is a little discrepancy in
notation here, because archimedean valuations manifest themselves onty as
absolute values while the letter v has hitherto been used for nonarchimedean
cxponential valuations. In spite of this, it will prove advantagcous, and agrees
with current usage, to employ the letter v simultaneously for both types of
valuations, to denote the corresponding multiplicative valuation in both cases
by | |y and the completion by K,. Where contusion lurks, we will supply
clarifying remarks.

For cvery valuation v of K we consider the completion K, and an
algebraic closure K, of K,. The canonical extension of v to K, is again
denoted by v and the unique extension of this latter valuation 10 K, by .

Let L|K be an algebraic extension. Choosing a K -embedding
L — K,,
we obtain by restriction of U to TL an extension
w=7voT

of the valuation v to L. In other words. if v, resp. ¥, are given by the absolute

values | |y.resp. | |5, 0n K, Ky, resp. K., wherc | |5 extends precisely the
absolute value | |, of K, then we obtain on L the multiplicative valuation
[xhe = |Tx]5.

The mapping t : L — K, is obviously continuous with respect to this
valuation. 1t extends in a unique way to a continuous K -embedding

7:Ly —> Ky

where, in the case of an infinite extension L|K, L, does not mcan the
completion of L with respect to w. but the union L, = |J; Liw of the
completions L, of all finite subexicnsions £;|K of LK. This union
will be henccforth called the localization of L with respect to w. When
[L : K| < 00, T is given by the rule

y=w-limx, > Ttx:=0-lim 1y,
oo " oo
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where {x,},en is a w-Cauchy sequence in L, and hence {7.x, }yen a ©-Cauchy
sequence in K,. Note here that the scquence Tx, converges in the finite
compiete extension 7L - K, of K. We consider the diagram of fields

L — Ly,

(%) ‘ K,
K-

The canonical extension of the valuation w from L to Ly, is precisely the
unique extension of the valuation v from K, to the extension L, |K,. We
have

Ly=LK,,

because if L{K is finite, then the field LK, C L, is complete by (4.8),
contains the field L and therefore has to be its completion. If L,,|K, has
degree n < 00, then, by (4.8), the absolute values corresponding to v and w
satis{y the relation

11w = | Negie, (0] -

The field diagram (%) is of central importance for algebraic number theory. It
shows the passage from the “global extension™ L|K to the “local extension”
L |K, and thus represents one of the most important methods of algebraic
number theory, the so-called local-to-global principle. This terminology
arises from the case of a function field K, for example K = C(¢), where the
elements of the extension L are algebraic {unctions on a Riemann surface,
henice on a global object, whereas passing to K, and L, signifies looking at
powcr series expansions, i.e., the local study of functions. The diagram (x)
thus expresses in an abstract manner our original goal, to provide methods
of tunction theory for use in the theory of numbers by means of valuations.

We saw that every K-embedding 7 @ L — Ky gave us an extension
w = v o1 of v. For every automorphism o € G(K | K,) of K, over K, we
obtuain with the composite

L5E, 5K,
a new K-cmbedding ' = ¢ ot of L. It will be said 10 be conjugate to T

over K . The lollowing result gives us a complete description of the possible
extensions of v to L.

(8.1) Extension Theorem. Lct L|K be an algebraic field extension and v a
valuation of K. Then one has:
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(i) Every cxtension w of the valuation v arises as the composite w =
for some K -embedding T : L — K.

(ii) Two extensions ¥ ot and U o ©’ are equal if and only if T and ©" are
conjugate over K.

Proof: (i) Let w be an extension of v to L and L, the localization of
the canonical valuation, which is again denoted by w. This is the unique
extension of the valuation v from K, to L. Choosing any K, -embedding
7: L, — Ky, the valuation ¥ o T has to coincide with w. The restriction
of 7 to L is therefore a K -embedding 7 : L — K, such that w = Fo 7.

(ii) Letr andocr, witho € G(K,|Ky), be two embeddings of L conjugate
over K. Since ¥ is the only extension of the valuation v from K, to Ky,
one has T = ¥ oo, and thus ¥ ¢t = ¥ o (¢ o 7). The extensions induced to L
by 1 and by ¢ o T arc therefore the same.

Conversely, let 7.7° 1 L — K, be two K -embeddings such that
Totr=1bor. Leto : 1L — r'L be the K -isomorphism 0 = v’ 077"
We can extend ¢ o a K,-isomorphism

o:tL K, — UL -K,.
Indeed, L is dense in 7L - K. so every clement x € L - K, can be written
as a limit
x = lim ©x,

n—oo
for some sequence x, which belongs to a finite subextension of L. As
ot =100t the sequence T'x, = g, converges to an element

ox = lim otx,

n—oc

in 'L - K. Clearly the correspondence x — o.x does not depend on the
. . . . o .

choice of a sequence {x,}, and yiclds an isomorphism L - K, — 'L - K,

which leaves K, fixed. Extending o to a K, -automorphism & € G(K ,|K,)
gives 7' =& o T, so that T and 7’ are indeed conjugate over K. [

Those who prefer to be given an extension L|K by an algebraic equation
F(X) = 0 will appreciate the following concrete variant of the above
extension theorem.

Let L = K (a) be gencrated by the zero o of an irreducible polynomial
F(X) e K[X] and let

X = FHEO™ - (X
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be the decomposition of f(X) into irreducible lactors fi(X), ... fr(X) over
the completion K. Of course, the m; are one if f is scparable. The K-
embeddings 7 : L — K, are then given by the zeroes § of f(X) which lic
in Ky:
7L — K,, t@=§.

Two embeddings 7 and T’ are conjugate over K, if and only if the zeroes ()
and t’(ce) are conjugate over K, i.e., if they are zeroes of the same irreducible
factor f;. With (8.1), this gives the

(8.2} Proposition. Suppose the extension L|K is generated by the zero o
of the irreducible polynomial f(X) € K[X].

Then the valuations w, ..., w, extending v to L correspond 1-1 to the
irreducible factors fy, .... f in the decomposition

FX)y= AX)™ - fr (XY™

of [ over the completion K.

The extended vatuation w; is explicilly obtained from the factor f; as
follows: let o € K, be a zero of f; and let
L —> K, a—a,
be the corresponding K -cmbedding of L into K. Then one has
wi=v07.
7; extends to an isomorphism
T Loy iy Kyl

on the completion L, of 1. with respect to w;.

Let L|K be again an arbitrary finite extension. We will write w{v to
indicate that w is an extension of the valuation v of K to L. The inclusions
L — L, induce homomorphisms L ®x Ky — L, viaa @ b ab, and
henee a canonical homomorphism

¢ Lox Ky — []Ly.
wiv
To begin with, the tensor product is taken in the sensc of vector spaces, ie.. the
K -vector space L is lifted to a K, -vector space L.Qx K. This latter, however,
is in lact a K, -algebra, with the multiplication (¢ @ b){a' @ b') = aa’ ® bV,
and ¢ is a homomorphism ol K -algebras. This homomorphism is the subject
of the
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(8.3) Proposition. If L|K is scparable, then L ®k Ky =[]0, Lo

Proof: Let @ be a primitive element for LK, so that L = K(«), and let
f(X) € K1X]be its minimal polynomial. To every w{v, there corresponds an
irreducible factor f,(X) € K|X] of f(X), and in view of the separability,
we have f(X) = ]_[",“, fu{X). Consider all the L,, as embedded into an
algebraic closure K, of K, and denote by a,, the image of & under L — Ly,
Then we find L, = K.(wy) and f,,(X) is the minimal polynomial of o,
over K,. We now get a commutative diagram

K [X)/(f) — l_‘[va[X]/(ﬁn)

! hl

Lk Ky —> [T Lus
wiv
where the top arrow is an isomorphism by the Chinese remainder theorem.
The arrow on the left is induced by X +— a®1 and is an isomorphism because
K[X1/(f) = K{«) = L. The arrow on the right is induced by X — ay,
and is an isomorphism because Ky[X]/(fu) = Ky(ew) = Ly Hence the
bottom arrow is an isomorphism as well. a

(8.4) Corollary. If L|K is separable, then one has
L:Kl= XLy Kol
ww
and
Negle) =[] Nk @y, Trog (@) =3 Trok, (@)
wlw wiv

Proof: The first cquation results from (8.3) since [L : K| = dimg (L) =
dimg, (L ®k K ). On both sides of the isomorphism
Lok Ky =[] Lu
i
let us consider the endomorphism: multiplication by a. The characteristic
polynomial of « on the K-vector space L @k K, is the same as that on the
K -vector space L. Therefore
char. polynomialy , (@) = [] char. polynomial, x (@).
wly

This implies immcdiately the identities for the norm and the trace. O
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If v is a nonarchimedean valuation, then we define. as in the henselian
case, the ramification index of an extension w|v by

en = (w(L*) 1 v(K")
and the inertia degree by
S = [hw k]

where Ay, resp. «, is the residue class field of w, resp. v. From (8.4)
and (6.8), we obtain the fundamental identity of valuation theory:

(8.5) Proposition. If v is discretc and LK separable, then
Yewfw=IL:KI.

wly

This proposition repeats what we have already seen in chap. [, (8.2),
working with the prime decomposition. If K is the field of fractions of a
Dedckind domain o, then to every nonzero prime ideal p of © is
the p-adic valuation v, of K, defined by v,(a) = v, where (@
(see chap. . § 11, p. 67) The valuation ring of vy, is the localization oy, Il [}
is the integral closure of © in L and if

RO =
is the prime decomposition of p in L, then the valuations w; = Al'\;\
i = 1,....r, are precisely the cxtensions of v = v, to L, ¢ arc the
con'cspcnde ramification indices and f; = [O/P; : o/p] the inertia

degrees. The [undamental identity

tffﬁ =1L:K]
=1

has thus been established in two different ways. The raison d' étre of valuation
theory, however, is not to reformulate idcal-theoretic knowledge, but rather,
as has been stressed earlier, to provide the possibility of passing from
the extension L|K to the various completions L.|K, where much simpler
arithmetic laws apply. Let us also emphasize once more that completions
may always be replaced with henselizations.

Kxercise 1. Up (o equivalence, the valuations of the field Q(v/3) arc given as
follows.

1) |a + b5, = la +by/3| and |a + by/5]> = a — h+/3] are the archimedean
valuations.
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DT p =2 0r S or a prime number # 2.5 such that (£) = —1. then there is
exctly one extension of | |, to Q(+/3), namely
la +bv/5), = la® = 5572
3) I p s & prime number 7 2.5 such that (£) = 1. then there we two
extensions of | |, to G(/5), namely
1@+ bV5ly = la+byl, 1esp. la+hvV5l,, = la—byl,.
0in Q,.

Exercise 2. Determine the valuations of the ficld Q(/) of the Gaussian numbers.

where y is a solution of x? -~

Exercise 3. How many cxtensions to (/2 ) does the archimedean absolute value | |
of @ admit?

Exercise 4. Let L|K bc a finite separable extension, o the valuation ring of a
discrete valuation v and O its integral closure in L. If w|v varies over the extensions
of v to L and Gy, resp. O, arc the valuation rings of the completions K ., resp. L,..
then one has N

0@ 3, = [10,.

win

Exercise 5. How docs proposition (8.2) relate to Dedekind’s proposition,
chap. 1, (8.3)7
Exercise 6, Let L|K be a finitc ficld i va d
valuation, and w an extension to L. If (2 is the integral closure of the valuation ring o
of v in L, then the localization Qg of © al the prime ideal P = (o € O | w(a) > 0}
is the valuation ring of w.

§9. Galois Theory of Valuations

We now consider Galois extensions L|K and study the effect of the Galois
action on the extended valuations w|v. This leads to a direct generalization of
“Hilbert’s ramification thcory” — see chap. I, §9, where we studied, instead
of valuations v. the prime ideals p and their decomposition p = 9}'- - - ¢ in
Galois extensions of algebraic number fields. The arguments stay the sume,
so we may be rather brief here. However, we formulate and prove all results
for extensions that are not necessarily finitc, using infinite Galois theory. The
reader who happens not to know this theory should feel free to assume all
extensions in this scction to be finite. On the other hand, we treat infinite
Galois theory also in chap. 1V, §1 below. Its main result can be put in a
nutshell like this:

In the case of a Galois extension L |K of infinite degree, the main theorem
of ordinary Galois theory, concerning the 1-1 correspondence between
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the intermediate ficlds of L|K and the subgroups of the Galois group
G(L|K) ceases to hold; there are more subgroups than intermediate fields.
The correspondence can be salvaged, however, by considering a canonical
topology on the group G{L|K), the Krull topolegy. It is given by defining,
for every o € G(L|K), as a basis of neighbourhoods the cosets cG(L|M),
where M|K varies over the finite Gulois subextensions of L|K. G(L|K) is
thus turned into a compact, Hausdorlf topological group. The main theorem
of Galois theory then has to be modified in the infinite case by the condition
that the intermediate fields of L|K correspond 1-1 to the closed subgroups
of G(I.|K}. Otherwise, everything goes through as in the finite case. So one
tacitly restricts attention to closed subgroups, and accordingly to continuous
homomorphisms of G(L|K).

So let L|K be an arbitrary, finite or infinite, Galois extension with Galois
group G = G(L|K). If v is an (archimedean or nonarchimedean) valuation
of K and w an extension to L, then, for every o € G, w o o also extends v,
so that the group G acts on the set of extensions w|uv.

(9.1) Proposition. The group G acts transitively on the set of exten-
sions wlv, i.e., every two extensions are conjugate.

Proof: Let w and w' be two extensions of v to L. Suppose L|K is finite.
If w and w’ are not conjugate, then the sets

{woo|oeG) and {woo|oeG)
would be disjoint. By the approximation theorem (3.4), we would be able to
find an x € L such that

lox{y <t and |ox|w > 1

for all & € G. Then one would have for the norm ¢ = Ny |k (x) = I—[ﬂ&G ox
that |e|, =[], lox]w < 1 and likewise ||, > 1, a contradiction.

If L|K is infinite, then we let M |K vary over all finite Galois subexten-
sions and consider the sets Xy = {0 € G| woo|y = w'|y). They arc
nonemplty, as we have just seen, and also closed because, for o € G ~ Xy,
the whole open neighbourhood o G(L{M) lies in the complement of X .
We have [y Xu # 9. because otherwise the compactness of G would yield
a relation ()/_, X, = ¢ with finitcly many M;, and this is a contradiction
becavse if M = M-+ M, then Xy = (V_, Xp,. O

(9.2) Definition. The decomposition group of an extension w of v to L is
defined by
Gy=Gu(LIK)={ocGIK)|woo =w)].
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If v is a nonarchimedean valuation, then the decomposition group contains
two further canonical subgroups

Gu 21y 2 Ry

which are defined as follows. Let o, resp. (3, be the valuation ring, p,
resp. P, the maximal ideal, and let « = o/p. resp. 2 = O/, be the residue
class field of v, resp. u.

(9.3) Definition. The inertia group of w|v is defincd by
Iy =1(LIK)={0 €Gy|ox=xmod P forall xeO}
and the ramification group by

Ru=Ryp(LIK)={0 €Gy| 2 =1mod P forall xelL’}.

Observe in this definition that, for o € G, the identity woo = w implies
that one always has 0O = QO and ox/x € O, forall x € L*.

The subgroups Gy, /iy, Ry of G = G(L|K), and in fact all canonical
subgroups we will encounter in the scquel, are all closed in the Krull
topology. The proof of this is routinc in all cases. Let us just illustrate the
model of the argument for the example of the decomposition group.

Let o € G = G(L}K) be an element which belongs to the closure of G .
This means that, in every neighbourhood o GG (L| M), there is some element
oy of G,. Here M|K varies over all finite Galois subextensions of L|K.
Since oy € aG{(L|M), we have oy |y = 0|y, and w o oy = w implies
that wo oy = wooy|m = w|y. As L is the union of all the M, we get
woo = w,so that ¢ € G, This shows that the subgroup G,, is closed
inG.

The groups Gy, Ju. Ry carry very significant information about the
behaviour of the valuation v of X as it is extended to .. But before going
into this, we will treat the functorial properties of the groups Gy Ly, Ru..

Consider two Galois extensions L|K and L/|K’ and a commutative
diagram
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with homomorphisms t which will typically be inclusions. They inducc a
homomorphism
T GIL'K) — G(LIK), t(ch=1""d"t.
Observe here that, L|K being normal, the same is true of TL|7K, and thus
one has o'tL C 1L, so that composing with 7~ makes sense.
Now let w’ be a valuation of L', v' = w'|¢- and w = w o1, v = w|k.
Then we have the

(9.4) Proposition. 7 : G(L'|K") — G(L|K) induces homomorphisms
Gy (LK"Y — Gu(LIK).
(LK"Y — Ty (LIK).
Ry (L'|K"Y —> Ru(LIK).

In the latter two cases, v is assumed to be nonarchimedean.

Proof: Let 0’ € Gy (L'|K’) and 0 = t*(0"). If x € L, then one has
[Xluvo = loxlw = 17 '0"tx]y = | Txly = ¥ lw = [x]u.
sothat ¢ € Gy (LIK). If ¢’ € [,,(L'|K") and x € O, then
wlox —x) = w(r"(a'rx —x)} = w'(o'(zx) — (tx)) >0,
and o € ©,,(L1K). If o' € Ry (L'|K") and x € L*, then

(2 1) = (e (T ) = w (-1 o

so that o € Ry, (L|K). O

If the two homomorphisms v : L — L' and T : K — K' are
isomorphisms, (hen the homomorphisms (9.4) are of course isomorphisms.
In particular, in the case K = K’. L = L', we find for each 7 € G(L|K):

Guer =77'Gut, Iy =7 'fut. Rusr =77 'Rut,
ie., the decomposition, inertia, and ramification groups of conjugate
valuations are conjugate.
Another special case arises from an intermediate ficld M of L|K by the
diagram
L = L

K—— M.

7* then becomes the inclusion G(L|M) < G(L|K), and we trivially get the
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(9.5} Proposition. For the cxtensions K € M C L, one has
Gul(LIM) = Gu{LIK)NG(LIM),
Ll M) = L (LIK)NGL|M).
Ry(LIM) = Ry (LIK)NG(LIM).

A particularly important special case of (9.4) occurs with the diugram

— L

which can be associated to any extension of valuations w|v of L|K. If L1K is
infinite, then L, has to be rcad as the localization in the sensc of §8. p. 160.
(This distinction is rendered superfluous if we consider, as we may perfectly
well do, the henselization of LK.} Since in the local extension L, |K, the
extension of the valuation is unique, we denote the decomposition, incrtia,
and ramification groups simply by G{(L|K.), T{(L,|Ky). R(L,|Ky). In
this case, the homomorphism t* is the restriction map

G(Ly|Ky) — GULIK), or— 0.

and we have the

(9.6) Proposition.  G,.(L|K) = G(Ly|Ky),
La(LIKY = 1(LylKy).
Ry (LIK) = R(LulKy).

Proof: The proposition derives from the fact that the decomposition group
GudL|K) consists precisely of those automorphisms o € G(L|K) which
are continuous with respect to the valuation w. Indeed, the continuity of the
o € G ,{l.|K) is clear. For an arbitrary continuous antomorphism o, onc has

Il <1 = loxlw = [¥lwo < L.

because |x|, < | means that x” and hence also ox” is a w-nullsequence,
i.c.. [ox|, < 1. By §3, p. 117, this implies that w and w arc cquivalent,
and hence in fact equal because w|g = w ook, so that o € G (L|K).
Since L is dense in L, every o € G,{L|K) cxtends uniquely to a
continuous K ;-automorphism & of L,. and it is clear that & € /(L.|Ky),
resp. & € R(Ly|Ky). if o € I, (L|K), resp. o € R,u(L|K). This proves the
bijectivity of the mappings in question in all three cases. ]
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The above proposition reduces the problems concerning a single valuation
of K to the local situation. We identify the decomposition group G,.(L|K)
with the Galois group of L,;|K, and write

GulL|K) = G(LwlKy),

and similarly £,,(L1K) = I (L,{K.) and Ry (LK) = R(Lw|Ky).

We now explain the concrete meaning of the subgroups G, fy, Ry of
G = G(L|K) for the field extension L|K.

The decomposition group G, consists — as was shown in the proof
of (9.6) — of all automorphisms o € G that are continuous with respect
to the valuation w. It controls the extension of v to L in a group-theoretic
manner. Denoting by G, \G the set of all right cosets G .0, by W, the set of
cxtensions of v to L and choosing a fixed extension w, we obtain a bijection

G\G — Wy, Guo —> wao .

In particular, the number #W, of extensions equals the index (G : G ). As
mentioned alrcady in chap. I, §9 — and left for the reader to verily — the
decomposition group also describes the way a valuation v cxtends to an
arbitrary separable extension L|K. For this, we cmbed LK into a Galois
extension N |K, choose an extension w of v to N, and put G = G(N|K),
H =G(N|L), Gy = Gw(NIK), to get a bijection

G \G/H = W, GuoH — wool.

(9.7) Definition. The fixed ficld of G,
Zy=ZuL|K)={xelL|ox=x forall 0 € Gy},

is called the decomposition field of w over K.

The réle of the decomposition ficld in the extension L{K is described by
the following proposition.

(9.8) Proposition.
(iy The restriction wy of w to Z,, extends uniquely to L.

(ii) If v is nonarchimedean, wy has the same residue class ficld and the
same value group as v.

(iii) Z,, = L N K, (the intersection is taken inside L,.).
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Proof’; (i) An arbitrary extension w’ of wz (o L is conjugate to w over Zy:;
thus v’ = w oo, for some o € G(L|Zy) = G, ie, w' = w.

(i) The identity Z,, = L N K, follows immediately from G.(L|K) =
G(LwlKy)-

(ii) Since K, has the same residue class field and the same value group as K,
the same holds true for Z,, = L N K.

The inertia group /,, is defined only if w is a nonarchimedean valuation
of L. It is the kernel of a canonical homomorphism of G,. For if O is
the valuation ring of w and B the maximal ideal, then, since 00 = O and
ap =P, every o € Gy, induces a « -antomorphism

T:0/8 — O/P, xmod P ox mod P,
of the residue class field A, and we obtain a homomorphism
Gy — Aut (D)

with kernel /.

(9.9) Proposition. The residue class ficld extension Al is normal, and we
have an exact sequence

| — Iy —» Gy —> G(hi) —> L.

Proof: In the case of a finite Galois extension, we have proved this already
in chap. I, (9.4). In the infinite case Alx is normal since L|X, and hence
also 4|k, is the union of the finite normal subextensions. In order to prove
the surjectivity of f : G — G(i|«) all one has to show is that f(G.) is
dense in G{A|x) because f(G), being the continuous image of a compact
set, is compact and hence closed. Let & € G(Alc) and G (A|n) be a
neighbourhood of &, where |« is a finite Galois subextcnsion of Alx. We
have to show that this neighbourhood contains an element of the image f (7},
7 € Gy Since Zy, has the residue class field «, there exists a finite Galois
subextension M}Z,, of L|Z, whose residuc class field M contains the field
. As G(M|Z,,) — G{(M|«) is surjective, the composite

Gu = G(LIZy} — GM|Zy) — GM|x) — Giulx)

is also surjective, and if t € G, is mapped to & |, then f(z) € TG (h|p).
as required.
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(9.10) Definition. The fixed field of 1y,
Tw=T.(IK)={xel|ox=x forall o e1,}.

is called the inertia field of w over K.

For the inertia field, (9.9) gives us the isomorphism
G(TwlZw) = Gale).

It has the following significance for the extension £|K .
(9.11) Proposition. T,,|Z,, is the maximal unramificd subextension of L|Z,.

Proof: By (9.6), we may assumc that K = Z,, is henselian. Let T|K be the
maximal unramified subextension of L|K. It is Galois, since the conjugate
extensions are also unramified, By (7.5). T has the residue class field A, and
we have an isomorphism
G(T'K) =5 Glrsli).

Surjectivity follows from (9.9) and the injectivity from the fact that 7'|K
is unramified: every finitc Galois subextension has the samc degree as its
residue class field extension. An element o € G{(L|K) therefore induces the

identity on &, i.e.. on %, if and only if it belongs to G(L|T). Consequently,
G(LIT) = Iy, hence T = T, o

If in particular K is a henselian field and K, |K its separable closure, then
the inertia ficld of this extension is the maximal unramified extension T (K
and has the separable closure &, |« as its residue class field. The isomorphism

G(I'Ky = G(igle)
shows that the unramified extensions of X correspond 1-1 to the scparable
cxtensions of .
Like the inertia group, the ramification group R, is the kerncl of a
canonical homomorphism
lw = x(LIK},

where
X (L1IK) =Hom(A/ T A7),
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where A = w(lL*), and 7 = »(K*). If 0 € I, then the associated
homomorphism

Xo P AT = A
is given as follows: for § = 8 mod I' € A/I", choose an x € L* such that
w(x) = & and put ox
Yo (B) = - mod .

This definition is independent of the choice of the representative § € § and of
x € L* For if x' € L* is an element such that w(x") = w(x) mod I,
then w(x') = w(xa), @ € K*. Then x’ = xau, u € OF, and since
cu/u=1mod P (becausc ¢ € ), one gets ox'/x’ = ox/x mod P.

One sees immediately that mapping ¢ — x, is a homomorphism
1, — x{(L|K) with kemel R,

(9.12) Propusition. R, is the unique p-Sylow subgroup of 1.

Remark: It L|K is a finite extension, then it is clear what this means. In the
infinite casc it has to be understood in the sense of profinite groups, i.e., all
finite quotient groups of R, resp. f,,/ Ry, by closed normal subgroups have
p-power order, resp. an order prime to p. In order to understand this better,
we refer the reader to chap. 1V, §2, exercise 3-5.

Proof of (9.12): By (9.6), we may assume that K is henselian. We restrict to
the case where L|K is a finite extension. The infinite case of the proposition
follows formally from this.

If R, were not a p-group, then we would find an element ¢ € Ry, of
prime order £ % p. Let K’ be the fixed field of o and «' its residue class
field. We show that ' = A. Since R, € /,, we have that T € K'. Thus
Ay € &', s0 that Al is purely inseparable and of p-power degree. On the
other hand, the degree has to be a power of ¢, forif @ € A and if & € L is
a lifting of &, and f(x} € K'[x] is the minimal polynomial of a over K',
then f(x) = g(x)™, where g(x) € «'[x] is the minimal polynomial of &
over «', which has degree either | or £, as this is so for f(x). Thus we
have indeed " = i, so that L|K’ is tamely ramified, and by (7.7) is of the
form L = K'(a) with @ = ¥4, a € K'. It follows that oo = e, with a
primitive ¢-th root of unity { € K. Since o € R,,, we have on the other hand
oafa = ¢ =1 mod P, a contradiction. This proves that R, is a p-group.

Since p = char(X), the elements in A* have order prime to p, provided
they are of finite order. The group x (L|K} = Hom(A/I", A*) therefore has
order prime to p. This also applies to the group /,./Ry © x(L|K), so that
Ry 1s indeed the unique p-Sylow subgroup. ]




§9. Galois Theory of Valuations 175

(9.13) Definition. The fixed field of R,,,
Vo=VullIK)={xeL|ox=x forall oeRy},

is called the ramification field of w over K.

(9.14) Proposition. V,,|Z,, is the maximal tamely ramified subextension
of L|Zy,.

Proof: By (9.6) and the fact that the value group and residue class field do
not change, we may assume that K = Z,, is henselian. Let V,, be the fixed
field of Ry,. Since Ry, is the p-Sylow subgroup of I,,, V,, is the union of
all finite Galois subextensions of L|T of degree prime to p. Thercfore V,,
contains the maximal tamely ramtified extension V of T (and thus of Z,,).
Since the degrec of each finite subextension M|V of V,,|V is not divisible
by p, the residuc field extension of M|V is separable (see the argument in
the proof of (9.12)). Therefore V,,|V is tamely ramified, and V,, = V. o]

(9.15) Corollary. We have the exact sequence

Il — R, — Iy — x(LIK) — 1.

Proof: By (9.6) we may assume, as we have already done several (imes
before, that K is henselian. We restrict to considering the case of a linite
extension L|K. In the infinite case the proof follows as in (9.9). We have
already seen that R, is the kemel of the arrow on the right. It therefore
suftices to show that

Uy R = Vi : Tul = #x(L1K).
As Tpy|K is the maximal unramificd subextension of Vi |K, V,.|7, has
inertia degree 1. Thus, by (7.7),
Vo s Tl = #(w (V) /w(T) .
Furthermore, by (7.5), we have w(T,;) = »(K*) =: I', and putting
4 = w(L"), we see that w(V})/v(K*) is the subgroup AV /I" of A/F
consisting of all elements of order prime to p, where p = char(x). Thus
Vi : ] = #(A"/T).

Since A* has no clements of order divisible by p, we have on the other hand
that
X(L|1KY=Hom(A/I".%") = Hom(A'Y /I 3*).
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But (7.7) implies that 1* contains the m-th roots of unity whenever atm/r
contains an element of order m, because then there is a Galois extension
generated by radicals T (Y@ )| Ty of degrec m. This shows that x (LK) is
the Pontryagin dual of the group A'”/I" so that indeed

i Tl = #(AV /1) =#y(LIK). o

Exercise 1. Let K be a hensclian (ield, Z|K a tamely ramitied Galois extension,
G =G(L|K),T=1(L|K)and I =G/! =G(x|k). Then ] is dhelmn and becomes
a M-module by letting @ = o € I” operatc on / via 7 = 010

Show that therc is a canonical isomorphism / = x(L|K) of I'-modules. Show
furthermore that every tamely ramified cxtension can be cmbedded into a tamely
ramified extension L|K, such that G is the semi-direct product of x(L|K) with
GAlk): G = x(L|K) X G(A]).

Hint: Use (7.7).

Exercise 2. The maximal tamely ramified abelian extension V of @, is finite over
the maximal unramified abelian extension 7 of G,

Exercise 3. Show that the maximal unramified extension of the power scries field
K =F,((0) is given by T = F,((1)), where T, is the algebraic closure of F,. and
the maximal tamely ramificd extension by T'({V/7 { m € N, (m. p) = 1}).

Exercise 4. Let v be a nonarchimedean valuation of the field K and let ¥ be an
extension 1o the separable closure K of K. Then the decomposition ficld Zr of #
over K is isomorphic to the henselization of K with respect to v, in the sense of §6.
p. 143

§ 10. Higher Ramification Groups

The inertia group and the ramification group inside the Galois group of
valucd fields are only the first terms in a whole serics of subgroups that we
are now going to study. We assume that L|K is a finite Gulois extension
and that vg is a discrete normalized valuation of K, with positive residue
field characteristic p, which admits a unique cxtension w to L. We denote
by v, = ew the associated normalized valuation of L.

(10.1) Definition. For cvery real number s > —1 we define the s-th
ramification group of L|K by

G, =GuLIK)={oeG|vloa—a) zs+ | forallac O}.
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Clearly, G_, = G, Gy is the inertia group / = /(L|K). and G, the
ramification group R = R(L|K) which have alrcady been defined in (9.3).
As

vt 'ora —a) = ve(t7(o1a ~ Ta)) = v {o(ra) - ta)
and 7O = O, the ramification groups form a chain
G=G 12Gi2G,2G,2--

of normal subgroups of . The quotients of this chain satisfy the

(10.2) Proposition. Let 7, € O be a prime element of L. For every integer
s > 0, the mapping
Gy/Gypy — U U g s TR
T
is an injective homomorphism which is indcpendent of the prime element 7y,
Here U,t" denotes the s-th group of principal units of L, i.e., UZ“' =0
and U = 14+7,0, fors > 1.

We leave the clementary proof to the reader. Obscrve that one has
U0 = and U JUSHY = g fors > 1. The factors Gy /G, 4 are
thereforc abelian groups of exponent p, for s > 1, and of order prime to p,
for s = 0. In particular, we find again that the ramification group R = G, is
the unique p-Sylow subgroup in the inertia group I = G,

We now study the behaviour of the higher ramification groups under
change of fields. If only the basc field K is changed, then we get directly
from the definition of the ramification groups the following generalization
of (9.5).

(10.3) Proposition. If K’ is an intermediate field of L|K, then onc has, for
all s > —1. that
Gs(LIK") = G{LIK)NG(LIK).

Matters become much more complicated when we pass from L|K (o0 a
Galois subextension L'| K. It is true that the ramificution groups of L|K are
mapped under G(L|K) — G(L'|K} into the ramilfication groups of L'|K ,
but the indexing changes. For the precise description of the situation we
need some preparation. We will assume for the sequel that the residuc field
cxtension X|x of L|K is separable.
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(10.4) Lemma. The ring jon Q of © is s, i.e., there exists
an x € O such that O = o[x].

Proof: As the residue field extension Alx is separable by assumption, it
admits a primitive element ¥. Let f(X) € 0X] be a lifting of the minimal
polynomial F(X) of X. Then there is a rcpresentative x € O of X such that
7 = f(x) is a prime element of O. Indeed, if x is an arbitrary representative,
then we certainty have v, (f(x)) = | because f(¥) = 0. If x itself is not as
required, i.e.. if ve (f(x)) > 2, the representative x + 7y will do. In fact,
from Taylor’s formula
fOAm) = f)+ f g +brf. beO,

we obtain v (f(x + 7)) = | since f'(x) € O, because F(xy#0. Inthe
proof of (6.8), we saw that the

il =xl ), =0, =1, i
form an integral basis of & over ©. Hence indeed O = olx]. a

e —1,

For every o € G we now put
inglo) =vilox —x),

where @ = o[x]. This definition does not depend on the choice of the
generator x and we may write

Gy(LIK)=|o e Glirk(@)=s+1}].
Passing to a Galois subextension L'|K of L|K, the numbers i1« (o) obey
the following rule.

(10.5) Propesition. If ¢’ = ey y is the ramification index of L|L', then

R . 1 .
it (c’y = - > k(o).

oo

Proof: For o' = 1 both sides are infinitc. Let o’ # 1, and let O = o[x] and
O’ = o[y, with OO’ the valuation ring of L'. By definition, we have

ik (e =vilo'y —y).  ink(o) = v lox —x).
We choose a fixed ¢ € G = G(L|K) such that |y = o'. The other
elements of G with image o’ in G' = G(L'|K) are then given by o7,
7 € H = G(L|L'). It therefore suffices to show that the clements

a=oy—y and h= [](otx —x)
rell

generate the same ideal in O,
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Let f(X) € O'[X] be the minimal polynomial of x over L’. Then
F(X) = [Ty (X — 7x). Letting ¢ act on the coefficients of f, we get the
polynomial (o f)(X) =[], (X — o tx). The coefficients of o f — f are all
divisible by @ = oy — y. Hence a divides (of)(x) — f(x) = £bh.

To show that converscly b is a divisor of a. we write y as u polynomial
in x with coefficients in 0, y = g(x). As x is a zero of the polynomial
8(X) — y € O[X], we have

g(X) —y = f(X)h(X), h(X)eO[X].

Leiting o operate on the coefficients of both sides and then substituting
X = x yiclds vy — oy = (6 f)(x)(ah)(x) = £b(oh){(x), i.e., b divides a. O

We now want (o show that the ramification group G(L|K) is mapped
onto the ramification group G,(L'{K) by the projection

G(LIK) — G(L'|K),
where ¢t is given by the function 57k : [—1,00) — [—1,00),
. © /‘ dx
=1 s) = —_—
i v (Go:Gy)

Here (Go @ G) is meant to denote the inverse (G, : Gg¢)~' when
—l=x<0ic,simply I,if -l <x <0.ForO<m=<s<m+Il.meN,
we have explicitly

1
m_m(x):;(mwﬁ---Jrm (s —mgmn). g =H#G;.
{

The function 7, can be expressed in terms of the numbers ipik (o) as
Tollows:

(10.6) Proposition. 1.1k (s) = o Tyeq min{ iz g (@)os+ 1} — 1.

Proof: Let 6(s) be the function on the right-hand side. It is continuous and
piecewise finear. One has 6(0) = 9,5 (0) = 0, and if m > —1 is an integer
andm < s <m+ 1, then

! ,
H'(,\')::#[neG|i”K((7)zm+2] =k )
4

Go:Gui)

13

Hence ¢ = np k.



180 Chapter I1. The Theory of Valuations

(10.7) Theorem (Hersrann). Let L'|K be a Galois subextension of L|K
and H = G(L|L"). Then one has

G (LIK)H/H =G,(L'|K) where t=n,1:(s).

Proof: Let G = G(L|{K), G' = G(L'|K). For every o’ € G', we choose an
preimage ¢ € G of maximal value iz |k () and show that
(%) ipkiey = L= nue{ink @) —1) .

Let m = ipglo). If T € H belongs to Hpoi = Gp-((LIL'), then
iri (r) =z m, and ipk(0T) = m, s0 that ip .k (or) = m. If T ¢ Hy .
then ipx () < m and ip k(o) = irk (). In both cases we thercfore
find that iz, & (c7) = min{iy k(). m}. Applying (10.5), this gives

. i L ps
ik (o) == 3 minfipx (@), m}.
& zelt
Since ip 1k (r) = i (1) and e’ = ey 1 = #Hp, (10.6) gives the formula (x),
which in turn yields
o' e GHIH & ix{o)— 125 & k(o) — 1z qou(s)
= i) =1z nw(s)
= o' e G LIK). t=nus). =

The function #x is by definition strictly increasing. Let the inverse
function be ¥z x : [—1,00) — |—1,00). One defines the upper numbering
of the ramification groups by

G'(LIK) :==Gy{L|K) where s = x().

The functions 7z x and ¥k satisfy the following transitivity condition:

(10.8) Proposition. If L'|K is a Galois subextension of L|K , then

ek = ek onnee and Yk = Yo o Wik -

Proof: For the ramification indices of the extensions L|K, L'|K. LIL'
we have ¢1x = ey ger . From (10.7), we obtain G,/H, = (G/H)1,
£ = n0(5); thus

1 1

1
§ = #(G/H ) ——H#H,.
LK LK er Lt
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This equation is equivalent to
Nk 8) = N ON0 ) = ek o nue)' (5).
As ik (0) = (g o nee)0). it follows that nrx = ek o o and
)

the formula for ¥ follows.

The advantage of the upper numbering of the ramification groups is that
it is invariant when passing from L |K to a Galois subextenston.

(10.9) Proposition, Let L'|K be a Galois subextension of L|K and
H = G(L|L"). Then onc has

GULIKYHIH = G (L |K).

Proof: We put s = Y x (1), G' = G(L'|K), apply (10.7) and (10.8). and
get
G'HIH =Gy HIH =Gl iy = Glnartoy ron
=G, =¢". 5]

Exercise 1. Let K =@, and K, = K ({), where ¢ is a primitive p-th root of unity,
Show that the ramification groups of K,|K arc given as follows:

G =G(K,JK) fors=0,
Go=GK MK forl=s<p—1,
Ge=GK,|Ky) forp=s<p’—1,

for p'' <s.

Exercise 2. Let K’ be an intermediate ficld of L] K. Describe the relation between
the ramification groups of L|K and of L|K" in the upper numbering.



Chapter 111
Riemann-Roch Theory

§ 1. Primes

Having set up the general theory of valued fields, we now return to
algebraic number ficlds. We want to devclop their basic theory from
the valuation-theoretic point of view. This approach has two promincnt
advantages compared to the ideal-theoretic trcatment given in the first
chapter. The first one results from the possibility of passing to completions,
thereby enacting the important “local-to-global principle”. This will be done
in chapter VI. The other advantage lies in the fact that the archimedean
valuations bring into the picture the points at infinity, which were hitherto
facking, as the es at infinity”. In this way a perfect analogy with the
function fields is achieved. This is the task to which we now turn.

(1.1) Definition. A prime (or place) p of an algebraic number field K is a
class of equivalent valuations of K . The nonarchimedean equivalence classes
are called finite primes and the archimedean ones infinite primes.

The infinite primes p are obtained, according to chap. 11, (8.1), from the
embeddings v : K — C. There arc two sorts of these: the real primes,
which arc given by embeddings v : K — R, and the complex primes.
which are induced by the pairs of complex conjugate non-real embeddings
K — C. p is real or complex depending whether the completion K, is
isomorphic to R or to C. The infinite primes will be referred to by the formal
notation p | oc, the finite oncs by p { oc.

In the case of a finite prime, the lctter p has a multiple meaning: it also
stands for the prime ideal of the ring © of integers of X, or for thc maximal
ideal of the associated valuation ring, or even for the maximal ideal of
the completion. However, this will nowhere create any risk of confusion.
We writc p|p if p is the characteristic of the residue field «(p) of the finite
prime p. For an infinite prime we adopt the convention that the completion K,
also serves as its own “residue field, ™ i.c., we put

«(p) == K,, when ploc.
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To cach prime p of K we now associate a canonical homomorphism
vp: K" >R
from the multiplicative group K* of K. If p is finite, then v, is the p-adic

exponential valuation which is normalized by the condition v (K*) = Z. If p
is infinite, then vy, is given by

vpla) = —log Izal,
where 7 : K — C is an embedding which defines p.

For an arbitrary prime p|p (p prime number or p = o¢) we put
furthermore
fo=[x® (]
so that f, = |Kp : R]if p|oc, and
o, ifptooc,
Np) = {n} i Pt
efe, ifp|oc.

This convention suggests that we consider ¢ as being an infinite prime
number, and the cxtension C|R as being unramified with inestia degree 2.
We define the absolute value | |, : K — R by

lalp = 9(p) "+

for a # 0 and |0, = 0. I{ p is the infinite prime associated to the embedding
v : K — €, then one finds

laly = lzal, resp. lal, = |ral’,
if p is real, resp. complex.
If L|K is a finite extension of K, then we denote the primes of £ by
and write Bp to signify that the valuations in the class B, when restricted

to K, give those of p. In the case of an infinite prime P, we define the
inertia degree, resp. the ramification index, by

Saprp = Lo Kyl resp.egp = 1.

For arbitrary primes P|p we then have the

(1.2) Proposition. (i) Z‘mp@mp fpp = Zm‘p[b,; Kpl=I[L: K|,
(ii) MNP = N(p)vie,
(iil) vypla) = exppvp(@) fora e K™,
(V) vp(Ni ik, (@) = fppopla) forael’,
W) lalp = INLyk, @]y forael.
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The normalized valuations | |, satisfy the following produet formula,
which demonstrates how important it is to include the infinite primes.

(1.3) Proposition. Given any @ € K*, one has |a|, = | for almost all p,
and

[Tlalp=1.
v

Proof: We have vy(a) = 0 and therefore Ja|, = 1 for all ptoo which do not
occur in the prime decomposition of the principal ideal (a) (sce chap. I, § 11,
p- 69). This therefore holds for almost all p. From (1.2) and formula (8.4)
of chap. 11,
Niig(a@) =[] Nk, iy, (@)
[

(which includes the case p = 00, Q, = R), we obtain the product formula
for K from the product formula for @, which was proved alrcady in
chap. T1, (2.1):

[Tlaly =TTIT lalp =TI 1| V&, @], = 1| Nk pt@], = 1. O
p P oplp ”opip r

We denote by /(o) the group of fractional ideals of K, by P(0) the
subgroup of fractional principal ideals, and by

Pic(o) = J(0)/P(0)

the ideal class group Clx of K.

Let us now extend the notion of fractional ideal of K by taking into
account also the infinite primes.

(1.4) Definition. A replete ideal of K is an element of the group

J(©@):=Jw) x [1R}.
Pl
where R, denotes the multiplicative group of positive real numbers.

In order to unily notation, we put, for any infinite prime p and any real
number v € IR,
Ve v *
pli=e" eRY.
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Given a system of real numbers vy, ploo, let ﬂpmp”v always denote the
vector

[Te™ =«

plac ploc
and not the product of the quantities ¢ in R. Then cvery replete idcal
a € J{®) admits the unique product representation

n—ﬂw“xl'lp"*l'[p"

phoc ploo

where v, € Z for p { oo, and v, € R for ploo. Put
ar= [T p™ and an = []p"™,

pioo ploo
so that @ = a7 X ue. 0f is & fractional ideal of K, and a,, is an element of
Hv\oo R*. At the same time, we view ar, 1esp. Gz, a8 replete ideals

arx [T 1. resp. (1) X an.
ploo

Thus for all el of J (&) the decomp

Q=0 Ox

applies. To @ € K* we associate the replete principal ideal
lal = l—[pupm\ (@) x n pmpw)

These replete ideals form a subgmup P(@) of J(&). The factor group
Pic(D) = J(D)/ P (D)
is called the replete ideal class group, or replete Picard group.

(1.5) Definition. The absolute norm of a replete ideal o = ]-[P p'» is defined
fo be the positive real number

N(a) =[NP
v

The absolute norm is multiplicative and induces a surjective homomor-
phism
N:J@) - R}
The absolute norm of a replete principal ideal [«] is equal to 1 in view of the
product formula (1.3},

N([a)) = [INM»@ =] lal;" =
v v
We thercfore obtain a surjective homomorphism
N : Pie(@) - RY
on the replete Picard group.
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The relations between the replete idcals of a number field K and those of
an extension field L are afforded by the two homomorphisms
= LS =
J(©Ok) —= J @),
Neig

which are defined by
fl.\K(HPV") = l_[ l_[ PBeAVe
» P Pl
Ne (TTBY'®) =TT T pfaeve.
B P Bip
Here the various product signs have to be read according to our convention,
These homomorphisms satisfy the

(1.6} Proposition.
(i) For a chain of fields K € L C M, one has Ny \x = Npx o Ny, and
iMk =dmLoirk.
(i) NpgGrgxa)=a"Kl foraeJ@g).
(iil) M(Np () =AY forA e J(BL).
(iv) If L|K is Galois with Galois group G, then for every prime ideal
of o, one has N jx (B)or =[l,c6 0B
(v) For any replete principal ideal [a] of K, resp. L, onc has
ink (laly = lal,  resp. Npjg(lal) = INpjx ()]
(vi) Npjx () = Ny )y is the ideal of K generated by the norms
Npxta) ofalla €.

Proof: (i) is based on the transitivity of inertia degree and ramification
index. (ii) follows from (1.2) in view of the fundamental identity
eq o fopepp = L ¢ K. (iii) holds for any replete “prime ideal” P
of L, by (1.2):

m(NL‘K(q})) - ‘.Tl(p/'”“’) — ‘J'Z(p)f““” =NP).
and thercfore for all replete ideals of L.
(iv) The prime ideal p lying below P decomposes in the ring O of integers
of L as p = (P --- B,)*, with prime ideals B; = o;P, o; € G/Gp. which
arc conjugates of g and thus have the same inertia degree f. Therefore

Nk @O =p/ O =19 =T [ wrP= [] o

i=] retiy aeG
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(v) For any element @ € K*, (1.2) implies that vp(@) = egpvp(a). Hence
kS Fiplp
i llal) = ik (TTp™@) = T] [T ot = [T = [a].
» » Plp B

If, on the other hand, @ € L*, then (1.2) and chap.1l, (8.4) imply that
vp(NL K (@) = Dgypp fmpvap(a). Hence
NL\K(lU]) — NL‘K(H(BL‘BUI)) - HPUD(NL‘K(U)) = [Npik (@)}
P [

(vi) Let ay be the ideal of K which is generated by all Nijx (@), with @ € A
If 9 is a principal ideal (¢). then ap = (Npjx (@) = Npjx (Ap). by (V).
But the argument which yielded (v) applies equally well to the localizations
O, |0} of the extension O|0 of maximal orders of L|K. Oy has only a finite
number of prime ideals, and is therefore a principal ideal domain (see chap. 1,
§3, exercisc 4). We thus get

(ap = NLik (()p) = Nik (U0p
for all prime ideals p of ©, and consequently ay = Npjx (Ur). [}

Since the homomorphisms iz x and Ny,x map replete principal ideals 1o
replete principal ideals, they induce homomorphisms of the replete Picard
groups of K and L, and we obtain the

(1.7) Proposition. For every finite extension L|K, the following two
diagrams are commutative:

Pic(@L) —=— R}

wllwe en]e

Pic(dx) ——— R,

Let us now translate the notions we have introduced inlo the function-
theoretic language of divisors. In chap. 1, § 12, we defined the divisor group
Div(0) 1o consist of all formal sums

D=3 vp.
ptoo
where v, € Z, and v, = 0 for almost all p. Contained in this group is the
group P(@) of principal divisors div(f) = ZMN vp(f)p. which allowed us
to define the divisor class group

CH'(0) = Div(o)/P(0).



§ 1. Primes 189

It follows from the main theorem of ideal theory, chap. I, (3.9), that this
group s isomorphic 1o the ideal class group Clx , which is a finite group (see
chap. I, (12.14)). We now extend these concepts as follows.

(L.8) Definition. A replete divisor (or Arakelov divisor) of K is a formal
sum

D=3 vy,
v

where v, € Z forp { 00, vy € R for p|oo, and v, = 0 for almost all p.

The replete divisors form a group, which is denoted by Div(d). It admits
a decomposition
Div(8) = Div(o) x & Rp.
plac

On the right-hand side, the second factor is endowed with the canonical
topology, the first one with the discrete topology. On the product we have the
product topelogy, which makes Div(3) into a locally compact topological
group.

We now study the canonical homomorphism

div: K" — Div(®),  div(f) = Y va(fip.
¥

The clements of the form div(f) are called replete principal divisors.

Remark: The composite of the mapping div : K* — Div(G) with the
mapping
Div@) — [TR, ¥ upp — (0 iy
v

ploo

is cqual, up to sign, to the logarithm map

L 1og 1 Flye )«

MK — TR, )=
Pl

of Minkowski theory (see chap. I, §7. p.39, and chap. lil. §3, p.211). By
chap. I (7.3), it maps the unit group o* onto a complete lattice I~ = A(o*)
in trace-zero spuce H = {(x,) € ]_[pm R Zp‘x v, = 0L

(1.9) Proposition. The kernei of div : K* — Div(®) is the group u(K) of
roots of unity in K, and its image P (D) is a discrete subgroup of Div(&).
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Proof: By the above remark, the composite of div with the map Div(&) —
ﬂp‘x R, >, vpp B> (0pfo)pioc- yiclds, up to sign, the homomorphism
rA:iK*— ]']moC R. By chap. I, (7.1), the latter fits into the exact sequence

| — w(K) —> 0" 25 T —> 0,

where ' is a complete lattice in tracezero spacc H C [l R.
Therefore (K) is the kemel of div. Since I' is a lattice, there
exists a neighbourhood U of 0 in [, R which contains no element
of I cxcept 0. Considering the isomorphism o @[], R — Dy R
(Vpdpse > me ;7: p, the set {0} x aU C Div(o) x @p‘x Rp = Div(d)
is a neighbourhood of 0 in Div(&) which contains no replete principal divisor
except 0. This shows that P(0) = div(K*) lies discretely in Div(&). O

(1.10) Definition. Thc factor group
CH'(®) = Div(0)/P(0)

is called the replete divisor class group (or Arakelov class group) of K.

As P(D) is discrete in Div(3), and is therefore in particular closed,
CH'(5) becomes a locally compact Hausdorff topological group with respect
to the quoticnt topology. 1t is the correct analogue of the divisor class group
of a function field (see chap. I, § 14). For the latter we introduced the degree
map onto the group Z: for CH'(5) we obtain a degree map onto the
group R. It is induced by the continuous homomorphism

deg : Div(0) — R
which sends a replete divisor D = Zp vpp to the real number
deg(D) = Y vy log N(p) = log([TN(p)™).
v v
From the product formula (1.3), we find for any replete principal divisor
div(f) € P(O) that
deg(div(f)) = X log (@™ = log(TT1/1,') =0-
P P
Thus we obtain a well-defined continuous homomorphism
deg : CH'(D) — R.

The kernel C//'(3)" of this map is made up from the unit group ©* and the
ideal class group Clx = CH'(0) of K as follows.
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(1.11) Proposition. Let I” = 3{(0*) denote the complete lattice of units in
trace-zero space H = {(xp) € [Ty R | Ly Xp = O). There is an cxact
sequence

0— H/I —> CH'(®)® — CH'(0) — 0.

Proof: Let Div(5)" be the kernel of deg : Div(&) — R. Consider the exact
sequence
0— [1 =5 Div@) — Div(o) — 0,
Plow
where a((v)) = Ys % p. Restricting to Div(®)? yiclds the exact
P

commutative diagram

0 — AM0") —— P@) ——— P(0) —> 0

l l l

0—— H —2— Div(5)® —— Div(o) — 0.
Via the snake lemma (see [23], chap. ITI, §3. (3.3)), this gives rise 1o the
exact sequence

0 — H/W0") — CH'(5)" — CHY (0) — 0. O

The two fundamental facts of algebraic number theory, the finiteness of
the class number and Dirichlet’s unit theorem, now merge into (and are
in fact equivalent to) the simple statement that the kernel CH'(2)° of the
degree map deg : CH'(3) — K is compact.

(1.12) Theorem. The group CH'(@)" is compact.

Proof: This follows immediately from the exact sequence
0—> H/I — CH'(®)° — CH"(0) —> 0.

As I is a complete lattice in the R-vector space H, the quotient H /1" is a
compact torus. In view of the finiteness of C#'(0), we obtain CH'(5)" as
the union of the finitely many compact cosets of #/I" in CH'(3)". Thus
CH'(D)" itself is compact. m]
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The correspondence between replete ideals and replete divisors is given
by the two mutually inverse mappings

div : J(3) —> Div(B), div([Tp™) =3 —vpb,
v v

Div(@) — J(5), Soppr— [T
[ ®

These are topological isomorphisms once we equip
J(@)=J(0) x [TR}
ploo
with the product topology of the discrete topology on J(©) and the canonical
topology on [],,. R%. The image of a divisor D = 37, vyp is also written

as
oDy =[]p™ ™.
v

The minus sign here is motivated by classical usage in function theory.
Replete principal ideals correspond to replete principal divisors in such
a way that P(5) becomes a discrete subgroup of J(®) by (1.9). and
Pic(D) = J(O)Y/P(D) is a locally compact Hausdorlt topological group.
‘We obtain the following extension of chap. I, (12.14).

(1.13) Proposition. The mapping div : J(®) —> Div(5) induces a
topological isomorphism
div : Pic(&) — CH'(&).
On the group /(&) we have the homomorphism M : /(&) — RY. and

on the group Div(®) there is the degree map deg : Div(®) — R. They are
obviously related by the formula

deg(div(a)) = —logN(a).
and we get a commutative diagram

0 — Pic(d)" —— Pic(®) —— RL— 0

00— CH'G) —— CH'(B) R — 0

with exact rows. (1.12) now yields the
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(1.14) Corollary. The group
Pic(®)® = | {a] € Pic(B) | M(a) = 1}

Is compact.

The preceding isomorphism result (1.13) invites a philosophical reflection.
Throughout the historical development of algebraic number theory, a
controversy persisted between the followers of Dedckind’s ideal-theoretic
approach, and the divisor-theoretic method of building up the theory from
the valuation-theoretic notion of primes. Both theories are cquivalent in the
scnsc of the above isomorphism result, but they arc also fundamentally
different in nature. The controversy has finally given way to the realization
that neither approach is dominant, that each one instead emanates [rom its
own proper world, and that the relation botween these worlds is expressed by
an important mathematical principle. However, all this becomes evident only
in higher dimensional arithmelic algebraic geometry. There, on an algebraic
Z-scheme X, one studies on the one hand the totality of all vector bundles,
and on the other, that of all irreducible subschemes of X. From the first, onc
constructs a scries of groups K;(X) which constitute the subject of algebraic
K-theory. From the second is constructed a series of groups CH'(X).
the subject of Chow theory. Vector bundles are by definition locally free
oy -modules. In the special case X = Spec(o) this includes the fractional
ideals. The irreducible subschemes and their formal linear combinations,
i.c., the cycles of X, are 1o be considered as generalizations of the primes
and divisors. The isomorphism between divisor class group and ideal class
group extends to the general setting as a homomorphic relation between the
groups C/{*(X) and K;(X). Thus the initial controversy hus been resolved
into a seminal mathematical theory {for further reading, see [13]).

Exercise 1 (Strong Approximation Theorem). Let $ be a finite set of primes and
let py be another prime of K which does not belong to S. Let ¢, € K be given
numbers, for p € S. Then for every ¢ = 0, there exists an x € K such that

I —aplp <& forpe S, and x|, < 1 forpgSUipo}.

Exercise 2. Let K be totally real, ic., K, = IR for all pjoc. Let T be a proper

nonempty subsct of Hom{K .R). Then there exists a unit e of K satisfying 7& > |

forveSand0<ze<1fort &S,

Exercise 3. Show that the absolvte norm M : Pic(Z) — R is an isomorphism.

Exercise 4. Let K and L be number fields, and let 7 : K — /. be a homomorphism.
Given any replete divisor I = 3y, vp® of L. define a replete divisor of K by

the rule
nD) =32 Y vafa)p.
AT
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where fayp is the inertia degree of 9B over TK and B signifies Tp = P Show
that 7, induces a homomorphism

T i CH' @) - CH' (x).
Exercise 5. Given any replete divisor D = Y, vyp of K, define a replete divisor of

L by the rule
D) =3 3 e P
v

where ¢qyp denotes the ramification index of P over K. Show that 7" induces a
homomorphism
T CH'(0x) — CH'(3,).
Exercise 6. Show that 7, o t* = |L : K| and that
deg(z, D) = deg(D), deg(z"D) = [L: K |dcg(D).

§ 2. Different and Discriminant

It is our intention to develop a framework for the theory of algebraic
number ficlds which shows the complete analogy with the theory of function
fields. This goal leads us naturally to the notions of different and discriminant,
as we shall explain in §3 and §7. They control the ramification behaviour of
an extension of valued fields.

Let L{K be a finite separable field extension, © € K a Dedekind domain
with field of fractions K, and let @ € L be its integral closure in L.
Throughout (his section we assume systematically that the residue field
extensions A« of O|o are separable. The theory of the different originates
from the fact that we are given a canonical nondegenerate symmetric bilinear
form on the K -vector space L, viz., the trace form

T(x,y) =Tr(xy)

(see chap. I, §2). Tt allows us to associate to every fractional ideal A of L
the dual O-module

A=|xrel| rxA <o}

It is again a fractional ideal. For if o, ..., o, € O is a basis of L|IK
and d = det(Tr(w;er;)) its discriminant, then ad*% < O for every nonzero
a € AN o. Indeed, if x = xjo) +--- +x,0, € *A, with x; € K, then the ax;
satisfy the system of linear equations Z,":, ax; Tr(oiey) = Tr{xaa;) € 0.
This implies dax; € © and thus dax € O.
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The notion of duality is justified by the isomorphism
*A = Homy (% 0), ¥ — (y > Tr(xy)).

Indeed. since every o-homomorphism f @ 21 — © extends uniquely to a
K -homomorphism f : L — K in view of AK = L, we may consider
Hom {2, 0} as a submodule of Homg (Z., K), namely, the image of *2 with
respect to L — Homg (L, K), x + (y = Tr{xy)). The module dual to O,

*O = Homy (O, 0),

wilt obviously occupy 4 distinguished place in this theory.

(2.1} Definition, The fractional ideal
Colo ="0={x € L| Tr(x0) € 0]
is called Dedekind’s complementary module, or the inverse different. Its

inverse,

—1
Dolo = €

is called the different of O|o.

As € 2 O, the ideal Do, € O is actually an integral ideal of L. We
will frequently denote it by Dy, x . provided the intended subrings ©, O are
evident from the context. In the same way, we write €1 ¢ instcad of €op)o.
The different behaves in the following manner under change of rings ©
and O.

(2.2) Proposition.
(i) For a tower of fields K € L € M, one has Dy = Dy Dk
(i) For any multiplicative subset S of 0, onc has Ds-105-1o = S~ Dojo-
(iii) If Pip are prime idcals of O, resp. 0, and Og|o, are the associated
completions, then

D01o0q = Doylo, -

Proof: () Let A= 0 C K,and let B C L, C € M be the integral closure
of o in L, resp. M. It then suffices to show that

Coia=€ciplha-
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The inclusion 2 follows from
Trag.k (Ci8€raCY = Trix T (€c,p€piaC)
=Trp k(€14 Trane(€epC)) € A

In view of BC = C, the inclusion C is derived as follows:

Trak (€ciaC) = Trrik (B TruiL (€c aC)) € A,
so thal Ty (€c14C) € €p)a, and thus

Trar 1(€54814C) = €51 Tranr.(€¢1aC) € B.
This does indecd imply Q‘,}l,ﬁcm C Ccip.and s0 €cia € Coiplpa.
(ii) is trivial.
(iii) By (ii) we may assume that © is a discrete valuation ring. We show that
Coje is dense in oy 0,- In order to do this, we use the formula

Troi = 3 Tregik,
Blp

(see chap. I, (8.4)). Let x € €pp and y € Oy The approximation theorem
allows us to find an 7 in L which is close to y with respect to vg, and close
to O with respect Lo vgy, for P'|p, P # B. The left-hand side of the equation

Tryk (vn) = Trogue, om) + 32 Tre i, (6n)
FEp

then belongs to ©y, since Try x (x77) € © C O, but the same is truc of the
elements TI'LQ‘,\KV(A?]) because they arc close to zero with respect (o vy,
Therefore Trr )k, (xy) € ©p. This shows that €10 € Coy0,-

If on the other hand x € €oyi0,. and if & € L is sufficiently close
to x with respect to v, and sufficiently close to O with respect to vy,
for P # P, then & € Copo. In fact, if y € O, then Trpyx,EY) € O,
since rpqik, (xy) € Op. Likewise TI‘L\B,‘KV(E}J) € oy for PP, becau:
these elements are close to 0. Therefore Try |k (§¥) € 0, N K = ©, i
& € Cpjo. This shows that Coje is dense in Coyo,. in other word:
€oj00qp = Coylo,, and s0 DojoOp = Doyja,- O

If we put D = Dy x and Dy = Dy gk, and consider Dy at the same
time as an ideal of O (i.e., as the ideal O N D), then (2.2), (iii) gives us the

(2.3) Corollary. D = [[Dp.
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The name “different™ is explained by the following explicit description,
which was Dedekind’s original way to define it. Let @ € O and let
f(X) € ol X} be the minimal polynomial of o. We define the different
of the element « by
fllay if L =K(a),

0 if L # K{a).
In the special case where (O = o[a] we then obtain:

Sk a) =

(2.4) Proposition. If O = ol«], then the diffcrent is the principal ideal
Dk = (Seic @)

Proof: Let f(X) =as+a X + -+ +a, X" be the minimal polynomial of &
and .

X

X—a

The dual basis of 1., ..., " ' with respect to Tr(xy) is then given by

b” h""' .

Fe e

For if o, ...,y are the roots of f, then one has
LX) e

iz X —a fle)

as the difference of the two sides is a polynomial of degrec < n — 1 with

=bo+h X+t X

=X", 0<r<n-—1,

roots ay. .... a,, so is identically zero. We may wrile this equation in the
form ) o
| o ]=x
X—a @

Considering now the coefficient of each of the powers of X, we obtain

7 (of L) =3,
f@)
and the claim follows.
AsO=0+oa+ - +oa"!, we get
Cojo = @) (©bg+ - + Oby_).
From the recursive formulas
by =1

b2 —aby
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it follows that
byi=a " tapget T i

s0 that by + -+ + 0b,_ = ola] = O; then €ojp = f'(@)~'O, and
thus Dy ¢ = (f'(@)).

The proof shows that the module *ole] = {x € L | Tr x (xola]) € o},
which is the dual of the @-module o|a]. always admits the o-b: o' /@),
i=0,....,n— |. We exploit this for the following characterization of the
different in the general case where O need not be monogenous,

(2.5) Theorem. The different Dy is the ideal generated by all differents
of elements 81 x () fora € O.

Proof: Let @ € O such that L = K(a), and tet f(X) be the minimal
polynomial of «. In order to show that f'(«) € Dy k. we consider the
“conductor” f = foly = {x € L | xO < ola]} of ofa] (see chap.1, §12,
p-79). On putting b = f’(a), we have for x € L:

xef &= xOColal = b 'xO C b ole] =0la|
= T O Co = b 'xeD, ) = x € hDily.

Therefore (f'(@)) = for1Dr 1k, s0 in particular, f'(a) € Dk

Dy, k thus divides all the differents of clements 87k (). In order to prove
that Dy« is in fact the greatest common divisor of all §; x (w), it suffices
to show that, for every prime ideal P, therc cxists an @ € © such that
L = K(a) and vp(Dy k) = vp(f'(@)). _

We think of L as embedded into the separable closure K, of K, in such
a way that the absolute value | | of K, defines the prime .

By chap. 11, (10.4), we find an element § in the valuation ring Og of the
completion Ly satisfying Oq = oy[8]. and the proof foc. cit. shows that.
for every clement & € Ogq which is sufficiently close to 8, one also has
Og = opla]. From (2.2}, (iii) and (2.4}, it follows that

vp(Drik) = vp(Dryik,) = vp(dLyk, @) .
It therefore suffices to show that we can find an clement @ in O such that
L = K (a) and
“m(ﬁl.mk (@) = vp(8eix (@) .
For this, let o5, . L K be K -embeddings giving the primes P; |p
different from 8. lu a € opbe dn element such that

) [th—al=1 forall 1eG,=GIKyK,).
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(Choose ¢ = 1, resp. @ = 0, according as the residue classes t8 mod P
which are conjugate over o /p are zero or not.) Using the Chinese remainder
theorem, we now pick an « € O such that @ — 8| and |oj — a], for
i =12,....r, are very small. We may even assume that L = K (o) (if not,
modify by e +7Vy, m € p, forv big, y € O, L = K(y): for suitable v # p,
one then finds K (o + 7Vy) = K(« + 7#y) = K (y)). Since « is close to 8,
we have Og = 0y[e]. Now

Srqik, (@) = [Tl —za),
T#l

where t runs through the K,-embeddings Loy — I?‘, different from L.
Furthermore,

.
Spik () = [ e —ow) = [T — ) [] T — 5joi0),
akl Tl i=2

where o runs over the K -embeddings different {from 1, and the t;; are certain
elements in Gp. But now

la —tyoe] = |tj'a —mel = I1j'e —a+a—oal =1,

since |a — o;a| is very small, and rf/'oz is very close to 11/1,5 (see (*)).
Therefore (82 (@) = vl (@ — 7)) = vp(S 1k, (@), as required.
O

The different characterizes the ramification behaviour of the cextension
LiK as follows.

(2.6) Theorem. A prime ideal B of L is ramified over K if and only if
BlDrik-

Let B* be the maximal power of B dividing Dy k. and let ¢ be the
ramification index of B over K. Then one has

s=e—1, it is tamely ramified,

e=<s=<e—1+uvple), IfP iswildly ramified.

Proof: By (2.2), (iii), we may assume that © is a complete discrete valuation
ring with maximal ideal p. Then, by chap. II, (10.4). we have O = o|a/| for
a suitable @ € O. Let f(X) be the minimal polynomial of . (2.4) says that
s = vp(f'(@)). Assume L|K is unramified. Then @ = « mod B is a simple
zero of F(X) = f(X) mod p, sothat ["(w) € O* andthus s =0 =e — I.
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By (2.2), (i) and chap.1l, (7.5}, we may now pass to the maximal
unramified extension and assume that L |K is totally ramified. Then o may
be chosen to be a prime element of O. In this case the minimal polynomial

FXy=aX +a X'+ ta., a=1.

is an Eisenstein polynomial. Let us look at the derivative

) = eape” '+ (e = Dara* 2+ +ae.

Fori =0 e— 1, we find

vys((e — aja~7") = evyle — i) + evylaj) + e - —i—1mode,
so that the individual terms of f'(«) have distinct valuations, Thercfore
s=vq(fl(0) = min {vp(te — Haa7="}.
i<
If now L|K is tamely ramified, ie., if vy(¢) = 0, then the minimum
is obviously equal to ¢ — 1, and for wy(¢e) = 1, we deduce that
e<s<uvple)+e— 1. [

The geometric significance of the different, and thus also the way it fits
into higher dimensional algebraic geometry, is brought out by the following
characterization, which is due to £. Kirer. For an arbitrary cxtension B|A
of commutative rings, consider the homomorphism

H:B®4aB-— B, xQ®yr— xy,
whose kernel we denote by /. Then
Qpu=1/1"=1®pg8 B

is a B ®@ B-module, and hence in particular also a B-module, via the
embedding B — B ® B. b~ b® 1. It is called the module of differentials
of B|A, and its elements are called Kéhler differentials. If we put

dr=x®!~1®xmodI?
then we obtain a mapping
d:iB—» 24,

satisfying

d(xy) = xdy+ ydx,

da=0 for acA.
Such a map is called a derivation of B|A. One can show that ¢ is universal
among all derivations of B|A with values in B-modules. _Q,'”A consists of
the linear combinations Y~ y; dx;. The link with the different is now this.
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(2.7) Proposition. The different Doy is the annihilator of the O-
module 25, i.e.,

Dojo ={xreO|xdy=0 forall yeO}.

Proof: For greater notational clarity, let us put O = B and 0 = A. If' A’
is any commutative A-algebra and B’ = B ®4 A’ then it is easy 1o see
that §2}, qar = =) 514 ®a A’ Thus the module of differentials is preserved
under lﬂCdllZdIlOn and completion, and we may thercfore assume that 4 is
a complete discrete valuation ring. Then we find by chap. 11, (10.4), that
B = Alx]. and if F(X) € A[X] is the minimal polynomial of x, then 254
is generated by dx {exercise 3). The annihilator of dx is f'(x). On the other
hand, by (2.4) we have D4 = (f'(x)). This proves the claim. O

A mosl intimate connection holds between the different and the
discriminant of O|o. The latter is defined as follows.

(2.8) Definition. The discriminant 0o is the ideal of © which is generated
by the discriminants d{cy. ..., a,) of all the bases o, ..., a, of L|K which
are contained in O.

We will frequently write 02\ instead of Dojo. If ¢y, ... @, is an
integral basis of Olo, then b7 x is the principal ideal generated by
d(ay, .. ..a,) = dp |k, because all other bases contained in O are transforms

sriminant is obtained

of the given one by matrices with entries in ©. The di
from the different by taking the norm Ny x (see §1).

(2.9) Theorem. The following relation exists between the discriminant and
the different:
dik = N Drix)-

Proof: If $ is a multiplicative subsct of o, then clearly dg-1p)5-1, =
70010 and Dg-10j5-16 = $7'Dojo. We may therefore assume that o is
a discrete valuation ring. Then, since © is a principal ideal domain, so is O

(see chap. 1, §3. excrcise 4), and it admits an integral basis ay. ... a,
(see chap. L. (2.10)). So we have o ix = (d{vy, ,&y)). Dedekind's
complementary module €¢), is gencrated by the dual basis of, ....q,

'
which is characterized by TrL‘K(a,u/) = 8;;. On the other hand, Coj is a
principal ideal (8) and admits the o-basis B, .. .. Ba, of discriminant

d(Ban, ... Bay) = Nk (BYd(a, ... o).
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But (N jx(8)) = Nk (€ojo) = NL\K(DL‘IK) = Ny @rig)™'s and

(e, ... aq)) = dp - One has d{an. ... o) = deti(oje)).
dlo, ... ) = de&((ma 1?2, for a; € Homg (L.K), and Tr(n(,u ) = 8ij.
Then d(a;. .... Op) d(a, ..oy = 1, Combining these yields
o'y = e )™ = ) = d(Ben - fan))
= Nuk (Do) oLk
and hence Npjx (k) =0 % o

(2.10) Corollary. For a tower of fields K € L C M, onc has

1045
prik = 0,_‘ WLk QL) -

Proof: Applying to Dux = Dar.Dp ik the norm Nygjx = Npjx o Nz,
(1.6) gives

Dk = Nek Q) NLx DR = Nk @undlffiE u]

Putting @ = 07« and dp = 27k, and viewing Oq also as the ideal
dp N o of K, the product formula (2.3) for the different, together with
theorem (2.9), yields:

(2.11) Corollary. @ =[]y 05.

The cxtension L|K is called unramified if all prime ideals p of K arc
unramified. This amounts to requiring that all primes of K be unramified.
In fact, the infinite primes are always to be regarded as unramified
because eqyp = I

(2.12) Corollary. A prime idcal p of K is ramified in L it and only if p|o.
In particular, the extension L|K is unramified if the discriminant 0 = (1).

Combining this result with Minkowski thcory Icads to two important
theorems on unramified extensions of number ficlds which belong to the
cl I body of algebraic number theory. The first of these results is the
following.
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(2.13) Theorem. Lct K be an algebraic number ficld and et S be a finite
set of primes of K. Then there exist only finitely many extensions L|K of
given degree n which are unramified outside of §.

Proof: If L.|K is an cxtension of degree # which is unramified outside of S,
then, by (2.12) and (2.6), its discriminant 0,k is one of the finite number
of divisors of the ideal @ = [ es p*'*). It therefore suffices to show

o0

that there are only finitely manywcxlcnsions L|K of degree n with given
discriminant. We may assume without loss of generality that K = Q. For
if LIK is an extension of degree n with discriminant @, then L|Q is an
extension of degree m = n[K : Q] with discriminant (d) = D’,’(‘QNKN
Finally. the discriminant of L (v/—1)|Q differs from the discriminant of L|Q
only by a constant factor. So we are reduced to proving that there exist
only finitely many fields K |Q of degree n containing /=1 with a given
discriminant ¢. Such a field K has only complex embeddings 7 : K — C.
Choose one of them: 7y. In the Minkowski space

K}:[l:](c]*

(see chap. I, §5) consider the convex, centrally symmetric subset

X ={(z,) € Kz | [Im(z¢)| < C/|d].
[Re(ze)| < 1, |z¢| < 1 for t # 10, 7o} .

where C is an arbitrarily big constant which depends only on n. For a
convenient choice of C, the volume will satisfy

vol(X) = 24 \/1d] = 2" vol(ox ),

where vol(og) is the volume of a fundamental mesh of the lattice jog
in Kz - sce chap. [, (5.2). By Minkowski’s lattice point thcorem (chap. I,
(4.4)), we thus find @ € 0k, o # 0, such that jo = (ra) € X, that is,

) |Im{zgen)| < CY1d]. [Re(roa)| < 1, |ral <1 for 3 7,To.

This o is a primitive element of K, ie., one has K = Q(a). Indeed,
|Ng i) = Hr |z = | implies |tge| > 1; thus Im(me) # O so that
the conjugates g and Toer of @ have to be distinct. Since |ra| < 1 for
T # T5.Tg, one has toor # ta for all T # 7y, This implies K = Q(o),
because if (J(or) g K then the restriction Tojiye) would admit an extension
7 different from 17y, contradicting Toe # To.

Since the conjugates T of o are subject 1o the condilions (). which
only depend on ¢ and n, the cocfficients of the minimal polynomial of «
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arc bounded once d and r are fixed. Thus every ficld K |Q of degree n with
discriminant d is generated by one of the finitely many lattice points « in the
bounded region X. Therefore there are only finitely many fields with given
degree and discriminant.

The second theorem alluded to above is in fact a strengthening of the first.
1t follows from the following hound on the discriminant.

(2.14) Proposition. The discriminant of an algebraic pumber field K of

degree n satisfics
g ld |7 = L"(”)"“
K"z .
ni\4

Proof: In Minkowski space K+ = []_[r (C]4 . T € Hom(K , ), consider the
convex, centrally symmetric subset
Xe={G) eke| ¥tz =1}
T
Its volume is "
vol(X,) = 2"n?7
n!
Leaving aside the proof of this formula for the moment (which incidentally
was excreise 2 of chap. I, §5), we deduce the proposition from Minkows
lattice point thcorem (chap. 1, (4.4)) as follows. Consider in Kg the lattice
I = jo defined by o. By chap. 1, (5.2), the volume of a {fundamental mesh
is vol(I") = /Idx I. The inequality
vol(X;) > 2" vol(Z")
therefore holds if and only if 2"71‘[7”‘ = 2" /Tdk ]|, or equivalently if

’s

I fn'(n) [del +e.

for some ¢ > 0. If this is the case, there exists an @ € @, @ # 0. such
that ja € X;. As this holds for all & > 0, and since X, contains only
finitely many lattice points, it continues to hold for & = 0. Applying now the
inequality between arithmetic and geometric means,

1 1in
;;IM z (Ulzr\) .

we obtain the desired result:

1 nl ANy -
1= Wea@] = [iral = 2 (Sleal)” < 5 = 72 (2) Vidkd
/x! "2
= D) i,

Given this, it remains to prove the following lemma. C
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(2.15) Lemma. In Minkowski spacc Kg = [l_[r C ] *, the domain
X ={(z0) € Ka| Xzl <1}
H

has volume
o

vol{X,) =2"n"
n.
Proof: vol(X,) is 2 times the Lebesgue volume Vol(f(X,)) of the
image f(X,) under the mapping chap. [, (5.1).
fiKp — ]—IR (27} —> (x),

where x,, = z,, x; = Re(zs), x5 = Im(z,}. Substituting ;. i = 1, ...,r,
instead of x,.and y;, z;, j =1, ....s s, instead of x;, x5, we sec that f(X,)
is described by the inequality

el 4l 2y + 24 42y 22 <

The factor 2 occurs because | | = |z4|. Passing to polar coordinates
yj = ujcost;, z; = ujsin®;, where 0 < 8; <27, 0 < u;, one sees that
Vol{ f (X)) is computed by the integral

l(f)—j seugdxy - dxpduy - dugdo) - - db,
extended over the domain
leal+ x| 200 4 -+ 20 <10

Restricting this domain of integration to x; > 0, the integral gets divided
by 2. Substituting 2u; = w; gives

I =24°Qr) ().
where the integral
I () = / wy - wedxy - dxpdwy - dug
has to be taken over the domain x; > 0, w; > 0 and
x) Xy Fuy bt wy S 1
Clearty I, (1) = AL () = 1 (1), Writing xa+- - 4, +w  +- -+ wy
=<t — x| instead of (%), Fubini’s theorem yields

1 I
L) :f Lo —x)dx :/ (= x)" ) - Loy (1)
(8] o

1
=1 1.
n
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By induction, this implies that
1

brish = rr—1)---fn—r+1

oo (1)

In the same way, one gets

1
Io..r<1>=f wi(l—w)?* 2dwily - (1),
it

and, doing the integration, induction shows that

1 1
Ty (1} = ot lo,o(1} = o

1

Together, this gives I (1) = and therefore indeed

) 2
vol(X,) = 2°Vol( £ (X,)) = 2°2747 @) ", 5(1) = T’Tﬂ'. =

If we combine Stirling’s formula,
"o
n! :«/271/1(1) vﬁ, 0<f <l.
-
with the incquality (2.14), we obtain the inequality

E I

d 7) g

x| > (4 2nn ¢

This shows that the absolute value of the discriminant of an algebraic
number field tends to infinity with the degree. In the proof of (2.13) we saw
that there are only finitely many number fields with bounded degree and
discriminant. So now, since the degree is bounded if the discriminant is, we
may strengthen (2.13), oblaining

(2.16) Hermite’s Theorem. There exist only finitely many number fields
with bounded discriminant.

Cotgmani
The expression a, = W(Z) satisfies

R

ie..dp.y > a,. Since a; = % > 1, (2.14) yields
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(2.17) Minkowski’s Theorem. The discriminant of a number ficld K
different from Q is # +1.

Combining this result with corollary (2.12), we obtain the
(2.18) Theorem. The field Q does not admit any unramified extensions.

These last theorems are of fundamental importance for number theory.
Their significance is seen especially clearly in the light of higher dimensional
analogues. For instance, let us replace the finite field extensions L|K of a
number field X by all smooth complete (i.e., proper) algebraic curves defined
over K of a fixed genus g. If p is a prime ideal of K, then for any such
curve X, one may define the “reduction mod p”. This is a curve defined
over the residue class field of p. One says that X has good reduction at the
prime p if its reduction mod p is again a smooth curve. This corresponds
to an extension L|K being unramified. In analogy to Hermite’s theorem,
the Russian mathematician £.S. Sararrvic: formulated the conjecture that there
exist only finitely many smooth complete curves of genus g over K with
good reduction outside a fixed finite set of primes S. This conjecture was
proved in 1983 by the mathematician Gern Farrvgs (see [351). The impact
of this result can be gauged by the non-expert from the fact that it was the
basis for Farras's proof of the famous Merdell Conjecture:

Every algebraic equation
Fly)=0

of genus g > 1 with coefficients in K admits only finitely many solutions
in K.

A 1-dimensional analogue of Minkowski’s theorem (2.18) was proved
in 1985 by the French mathematician J.-M. Fontame: over the field @, there
are no smooth proper curves with good reduction mod p for all prime
numbers p (see [39]).

Exercise L Let d() = d(1,o, ....a" "), for an element & € © such that L = K (a).
Show that Dy, is generated by all discriminants of clements d{a) if © is a complete
discrote valuation ring and the residue ficld extension Ax is scparable. In other
words, Dyx cquals the ged of all discriminants of individual elements. This fails
to hold in general. Counterexample: K = @, L = Q(a), o* —a? — 20 — 8 =0,
(Sce (601, chap. III, §25, p.443. The untranslatable German catch phrase for this
phenomenon is: there are “auferwesentliche Diskriminantenteiler”.)
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Exercise 2, Let L|K be a Galois extension of henselian ficlds with separable residue
field cxtension ilx, and lel Gy, i = 0. be the i-th ramification group. Then, if
D = P one has

5= @G — 1.
=
Hint: If © = olx| (see chap. 11 (10.4)). then s = 0, Bp1x (7)) = Eneg vi(x =)
"

Exercise 3. The module of differentials 24, is generated by a single element dx.
x € ©, and there is an cxacl seguence of O-modules
0= Do = O > 2, > 0.
Exercise 4. For a tower M 2 L 2 K of algebraic number ficlds there is an exact
sequence of vy -modules
0— 2/ ® 0w —~ iy — g, — 0.
Exercise 5. I ¢ iy a primitive p"-th root of unity, then

-
e
Dy, ez, = P .

§ 3. Riemann-Roch

The notion of replete divisor introduced into our development of number
theory in §1 is a terminology reminiscent of the function-theoretic model.
We now have (o ask the question o what extent this point of view docs
justice to our goal to also couch the number-theoretic results in a geometric
function-theoretic fashion, and conversely to give arithmetic significance to
the classical theorems of function theory. Among the latter. the Riemann-
Roch thcorem stands out as the most important representative. If number
theory is to proceed in a geometric manner, it must work towards finding an
adequate way to incorporate this result as well. This is the task we are now
going to tackle.

First recall the classical situation in function theory. There the basic data is
a compact Riemann surface X with the sheaf oy of holomorphic functions.
To cach divisor D = Y p_y veP on X corresponds a line bundle (D),
i.c., an oy -modulc which is locally free of rank 1. 1f U is an open subset
of X and K (U} is the ring of meromorphic functions on U/, then the veetor
space o(D)(U/) of sections of the sheaf ©(D) over U is given as

oD = { fe K(U)| ordp(f) = —vp forall P € U}.

The Riemann-Roch problem is to calculate the dimension

Dy =dim H'(X, 0(D))
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ol the vector space of global sections
HY(X, 0(D)) = o(D)(X).

In its first version the Riemann-Roch theorem does not provide a formula for
H(X,o(D)) itself, but for the Euler-Poincaré characteristic

x(o(D)) = dim H°(X, 0(D)) ~ dimH' (X, 0(D)).
The formula reads
x{o(D)) =deg(Dy+1—g,

where g is the genus of X. For the divisor D = 0, one has o(D) = oy
and deg(D) = 0. so that x (0x) = 1 — g: then this cquation may also be
replaced by

x(0(D)) = deg(D) + x(ox).

The classical Ricmann-Roch formula
D)~ UK — D)y =deg(D)+1—g

is then obtained by using Sexre duality, which states that H'(X. 0(D)) is
dual 10 H(X.w ® o(—D)), where @ = 2} is the so-called canonical
modute of X, and K = div(w) is the associated divisor (sce for instance
[511. chap. III, 7.12.1 and chap. TV, 1.1.3).

In order to mimic this state of affairs in number theory, let us recall the
explanations of chap. 1, §14 and chap. III, §1. We endow the places p of
an algebraic number ficld K with the role of points of a space X which
should be conceived of as the analoguc of a compact Riemann surface. The
clements f € K* will be given the réle of “meromorphic functions” on
this space X. The order of the pole, resp. zero of f at the point p € X,
for p { oo, is defincd to be the integer vp(f). and for ploc it is the real
number v, (f) = —log |zf|. In this way we associate to each f € K* the
replete divisor

div(f} =3 wp(f)p € Div(©®).
v

More precisely, for a given divisor D = Zp VpP, we are intercsted in the
replete ideal

oDy =[1p™
P

and the set
HYoD)y ={f e K*| div(f) = D}
={feo®x|0# 1, = Np)* for ploc} ,
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where the rclation D’ > D between divisors D' = 3_, vip and D = 3, veb
is simply defined to mean v} > v, for all p. Note that HO(o(D)) is no longer
a vector space. An analogue of H'(X, (D)) is completely missing. Instead
of attacking directly the problem of measuring the size of H°(a(D)), we
proceed as in the function-theoretic model by looking at the “Euler-Poincaré
characteristic” of the replete ideal o(D). Before defining this, we want
to establish the relation between the Minkowski space Ke = [[1,C]".
7 & Hom(K,C). and the product [], o, Kp. The reader will allow us to
explain this simple situation in the following sketch.

We have the correspondences
pK—>R +— p rcalprime,p:p,,:l(p;»lk
0.7 K—=>C + p complexprime,o =0p: Ky —> C.
There are the following isomorphisms
K QR — Kg, a®xr— ((rakx) .
Pl

K®;R— []Kp. a®x+— ((gpa)x)
ploo

7, being the canonical embedding K — K (see chap.II, (8.3)). They lit
into the commutative diagram

KR = K: = [[R x JlCxCI™
” o
‘ { :Tl’[/)v RTH[«‘,XFV\
KoR = [1K = T1% x [k
ploo P real b complex

where the arrow on the right is given by ¢ > (oa, @ ¢). Via this isomorphism,
we identify Kz with [T, Kyt
Ky = [1Kp.

Ploo

The scalar product {x,y) =}, Xt 5 on Ky is then transformed into

oyy= 3 xpyp+ 2 (pFp +Xp¥p)-
v real P complex
The Haar measure g on Ky which is determined by (x.y) becomes the
product measurc
w=T1 tp-

Pl
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where
tp = Lebesgue measure on K = R, if p real,

Htp = 2 Lebesgue measure on K, = C, if p complex.
Indeed, the system 1/+/2, i/+/2 is an orthonormal basis with respect to the
scalar product xy + Xy on K, = C. Hence the square Q = {z = x +iy|
0 < x,y < 1/+/2} has volume #p(0Q) = 1, but Lebesgue volume 1/2.
Finally, the logarithm map
e TC ] — [TIR]Y, x e (loglxel),
i 3

studied in Minkowski theory is transformed into the mapping

T Ky — TTR. x> (loglxly) .

ploo ploc

for one has the commutative diagram

kg —— [I,R]"

4
My &5 = Tl .
where the arrow on the right,
[TTIR]" =T1& x [TIR x R|* — []R.
3 » o plx

is defined by x = x for p < p, and by (v.x) > 2x¢ for 0 < p.
This isomorphism takes (he trace map x — ¥, x, on [[,R]" into
the trace map x — 3. xp on [, R, and hence the tracc-zero space
H={x e[, B]"| T, x =0} into the trace-zero space
H={re[IR| ¥ x,=0}.
ploo ploc

In this way we have translated all necessary invariants of the Minkowski
space Ky to the product [T, .. Kp.

To a given replete ideal

a=ar- e = ] p% x [T p"
phoc Pl2o
we now associate the following complete lattice ja in K. The fractional
ideal ar © K is mapped by the embedding j : K — Ky onto a
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complete lattice jar of Kie =[], Kp- By componentwise multiplication,
oo = [pjoc PP = (-1 €"70 o ploe yields an isomorphism
et KE = Kit,  (Xp)ppe > (€ Xp)pjoc -
with determinant
(*) det(a) = [ e = [ Mp)™ = Naw)-
plow ploc

The image of the lattice jar under this map is a complete lattice
jai=axjar.

Let vol(a} denote the volume of a fundamental mesh of ja with respect to

the canonical measure. By (x), we then have

vol(a) = M(aa) vol(ay).
(3.1) Definition. If a is a replete ideal of K , then the real number
x(a) = —log vol(a)

will be called the Euler-Minkowski characteristic of a.

The reason for this terminology will become clear in §8.

(3.2) Propositi The Euler-Minkowski ¢ ristic x{a) only depends
on the class of a in Pic(&@) = J(D)/P (D).

Proof: Let ja] = [l la)eo = (@) X [alx be a replete principal ideal. Then
one has

lala = aag X (@) .
The lattice j(aay) is the image of the lattice jo; wnder the linear map
Jja: Kg = Ka, (xp)piso > {@p)pinc- The absolute valuc of the determinant
of this mapping is obviously given by

[det(ja)| = U Jaly = [T 9Py ™ = Ndal) ™"
ploo p o
For the canonical measure, we thercfore have
vol(any) = 9M(|a)w) " vol(ar)-
Taken together with (), this yields
vol([ala) = M([alxte) vol(aay) = Nlas) vol{ay) = vol(a),
so that x (lala) = x (). o

The explicit evaluation of the Euler-Minkowski characteristic results from
a result of Minkowski theory. viz., proposition (5.2) of chap. 1.
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(3.3) Proposition. For every replete ideal a of K one has

vol(@) = /ldk | N(a).

Proof: Multiplying by a replete principal ideal [a] we may assume, as
vol(la]a) = vol(a) and N([a|a) = N(a), that a¢ is an integral ideal of K. By
chap. I, (5.2) the volume of a fundamental mesh of ar is given by

vol(ar) = /ldx (0 : ap).
Hence

vol(a) = N(a) vol{ay) = N(ax) v/ |dk | Nap) = / |dk | N(a). [m]

In view of the commutative diagram in § 1, p. 192, we will now introduce
the degree of the replete ideal a to be the real number

deg(u) = —log M(a) = deg(div() .
Observing that
x(0) = —log /|dk|.
we deduce from proposition (3.3) the first version of the Riemann-Roch
theorem:

(3.4) Proposition. For every replete ideal of K we have the formula

x{a) = deg(a) + x(0).

In function theory there is the following relationship between the Euler-
Poincaré characteristic and the genus g of the Riemann surface X in question:
10y =dimH"(X,0x) —dimH'(X,05) =1—g.

There is no immediate analogue of #'(X. o) in arithmetic. However, there
is an analogue of H"(X.ox). For each replete ideal a = [T, p" of the
number field X, we define

H%a)={feK"|vg(f) = v forall p}.
This is a finite set because jH"(a) lies in the part of the lattice jo; C Ky
which is bounded by the conditions | £, < e™*/», p|oo. As the analogue of
the dimension, we put £(a) = 0 if //%(a) = @, and in all other cases
#1°(a)
vol(W) ’

£a) :=log
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where the normalizing factor vol(W) is the volume of the set
W ={(en) € Kx = [[1C] | Izl < 1}.
T

This volume is given explicitly by

vol(W) = 2" (2m)",
where 7, resp. s, is the number of real. resp. complex, primes of K (see the
proof of chap. 1, (5.3)). In particular, one has
#1(K)
7ony’
because | f1, < 1 for all p, and ]_[p | flp = 1 implies | f|, = | for all p, so
that H%(o) is a finite subgroup of K* and thus must consist of all roots of
unity. This normalization leads us necessarily to the following definition of
the genus of a number field, which had already been proposed ad hoc by the
French mathematician AvprE WEn. in 1939 (see [138]).

H%0) = u(K), sothat £(0)=log

(3.5) Definition, The genus of a number field K is defined to be the real

number
#i (K]

g =£(0) — x(0) =log )

Observe that the genus of the field of rational numbers @ is 0. Using this
definition, the Riemann-Roch formula (3.4) takes the following shape:

(3.6) Proposition. For cvery replete ideal o of K one has
x{a) = deg(a) + £(0) — ¢.

The analogue of the strong Riemann-Roch formula
£(Dy = deg(D) + | — g + £(K = D),
hinges on the following deep theorem of Minkowski theory, which is due
to Serce Lang and which reflects an arithmetic analogue of Serre duality.

As usual, let r, resp. s, denote the number of real, resp. complex, primes,
and n = |K : Q).

(3.7) Theorem (S. LanG). For replete ideals a = ]_[p p'r € J{D ). one has
2"Q2n)*
irry
if M(a) — o0, Here, as usual, O{t) denotes a function such that O{t}/t
remains bounded as t — oC.

#Ha ) =

TN(a) + O(MN@)' ¥)
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For the proof of the theorem we need the following

(3.8) Lemma. Leta,, ..., a4 be fractional ideals representing the ¢
the finite ideal class group Pic(0). Let ¢ be a positive constant and

2 ={a=[]p"|ar= 0, NP> < M@ for ploo).
[
Then the constant ¢ can be chosen in such a way that

h
J@) = J%UPE).
i=1

Proof: Let B; = {a € J(5)| af = a;}. Multiplying by a suitable replete
principal ideal |a], every a € J(&) may be transformed into a replete
ideal @' = afa| such that a; = a; for some /. Consequently, one has
J(©) = U,h:| B; P (D). It therefore suffices to show that B; € A P(O)
fori=1,..., h, if the constant ¢ is chosen conveniently. To do this, let
a=20;a0 € B, o = [0 P € [y Y- Then we find for the replete
ideal . ,
O = 0 M) ™7 = [T p*>,
ploc

where v, = v — 131 favg, that Mal,) = 1, and thus 3, fav = 0.
The vector

( fpv’;....)e]_[]R

ploc

therefore lies in the trace-zero space H = {(x,) € ]—Ip‘w R| 3o = 0
Inside it we have — sce chap. I, (7.3) — the complete unit lattice A(o*). Thus
there exists a lattice point AG) = (..., — fpvpd), .. pjoc, 4 € 0%, such
that

prV; - fp”p(u)‘ < foco
with a constant ¢y depending only on the lattice A(0*). This implies

L 1 |
Vo= vp (i) = vyt ‘Z fava=vp(a) = — log Man)+co = ~ log Ma)+cy
e

with ¢ = ¢ — L logM(a;). Putting now & = afu '] = [, p", we get
by = a;. This is because [uly = (u) = (1) and

fonp = fp(vp — vp(u)) < % log MN(a) + ney,

so that M(p)™ < ¢"19a)/>/" for pjoo; then b € U;, so that a = b[u] €
A P(D), where ¢ = ¢"1.
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Proof of (3.7): As O(t) = O(t) — 1, we may replace H’(a™") by
H@ =1 Uit ={fear' |11y = 0" for ploc].
We have to show that there are constants C,C’ such that
272y
VIdk1
for all o € J(&) satisfying 9(a) z C'. For a € K*. the set H'(a™") is
mapped bijectively via x — ax onto the set H%(laja™'). The numbers
#H%@a™") and M(a) thus depend only on the class a mod P(5). As by the

preceding lemma J(0) = Uf‘:, A; P(D), it suffices to show (x) for a ranging
over the set 9.

) #H (a™"y —

‘ﬂ(u)‘ < CN(@)'~*

For this, we shall use the identification of Minkowski space
Ka=[] K,
ploc

with its canonical measure. Since ay = q; fora = ]"['_,p"p € 2;, we have
A = {f eal [ 1flp < 0p)™ forploo} .

We therefore have to count the lattice points in [ = jal" C Ky which fall
into the domain

Pa=1T] Dy

ploc
where D, = {x € K| |xly < J(p)**}. Let F be a fundamental mesh of 1.
We consider the sets

X={yel|[(F+y)nP #0}.

Y={yel|F+ycPd.

X Y={yel|(F+y)nok#n}.
AsY € Py =H™a™") € X andas Uy oy (F+y) € Pa S Uyex(F+y),
one has
#Y < #H %"y < #X

as well as
#Y vol(F) < vol(Pg) < #X vol(F).

This implies

llPo) | yx sy —wex < v).

T -1y
@) = oy | =
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For the set Pq = [1,,, Dp. we now have

vol(P) = T] 20p™ 1 27Mp™ =2"(27) N(aa)
P real

» complex

(obscrve here that, under the identification Ky = C, one has the equation
[xlp = 1.|%). For the fundamental mesh F, (3.3) yiclds

vol(F) = /dg | N(a; ).
From this we get
2 (2m)*
VidxT

Having obtained this inequality, it suffices to show that there exist
constants C,C” such that

|ty ~ m(u)l <#X LT

HX NV =#y € U| (F+y) NPy £4) <CN@'F.

for all a € % with M(a) > C’. We choose C’ = | and find the constant C
in the remainder of the proof. We paramelrize the set P, = [Ty Dy via the
mapping

PREE L

where 7 = [0, 1], which is given by

I — Dy, 1rs 2olt — 1), if p real,

17— Dy, (p.0) — JfG;(pcos 2w, psin2m6), if p complex,
where oy, = N(p)**. We bound the norm [l dep(x)|| of the derivative
do(x) 1 R" — R" (x € ["). If dp(x) = (au), then {|de(x)| < nmax |ai].
Every partial derivative of ¢ is now bounded by 2a,. resp. 2 /@;. Since
o € ;, we have that o, = N(p)™ < ¢9Ua)/»/7. for all p|oo. It follows that

i de(x)| < 2mnmax Dz,‘,//" < R
The mean value theorem implies that
() o) = = @Y x =yl
where | || is the euclidean norm. The boundary of P,,

3Py =J 8D, x [T Dq].
P a#p

is parametrized by a finite number of boundary cubes /"~' of [”. We
subdivide every edge of /*~! into m = [M(a)'/"] > C' = 1 segments of
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equal length and obtain for /"~ a decomposition into m"~! small cubes of
diameter < (n— l)‘/"/m From (#x), the image of such a small cube under ¢
has a diameter < 2202 ¢ 9 a) /7 < (n=1)1 20y 2L < (=)' P2 =z e
The number of Lmnslaleﬂ F 4y, y e I', meeting a domain of diameter < ¢>
is bounded by a constant ¢; which depends only on ¢; and the fundamental
mesh K. The image of a small cube under ¢ thus meets at most 3
translates F + p. Since there are precisely m"~) = [7t(@)!/"}"~" cubes in
@171y, we see that @(/"~') meets at most oM@ < M)
translates, and since the boundary 3P, is covered by at most 21 such
parts ¢(/"~'), we do indeed find that

#ly € T (F +y) NPy £} <CNW'

for all a € 2; with M(a) > 1, where C = 2ncy is a constant which is
independent of a € ¥;, as required.

From the theorem we have just proved, we now obtain the strong version
of the Riemann-Roch theorem. We want to formulate it in the language of
divisors. Let D = }_,, vp be a replete divisor of K.,

HOD) = HO(o(D)) = { f € K™ wp(f) = —wp}

#HY(D)

#D) = Eo(D) = log - s

and  x(D) = x(o(D)).
We call the number

i(D) = &D) — x(D)
the index of specialty of D and get the

(3.9) Theorem (Riemann-Roch). For cvery replcte divisor D € Div(T ) we
have the formula

D) = deg(D) + £(0) — g +i(D).
The index of specialty i(D) satisfies
(D) = 0( o7 =Py

in particular, i(D) = 0 for deg(D) — o0.

Proof: The formula for £(D) follows from x(D) = deg(D) + £(0) — ¢
and x(D) = £(D) — i(D). Putting a~! = (D), we find by (3.7) that

#H%™) M)
2y k]

(14 p(@ N7},
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for some function @{a) which remains bounded as 9(a) — oo, so that
deg(D) = —log Ma ') = log M(a) — oo. Taking logarithms and observing
that log(1 + 0(1)) = O(¢) and N(e)~'/* = exp(—1 deg D}, we obtain
D) = £(a™") = —log(Vldk | M(@™")) + O (M) ')
= X(D)+ 0@ *eP),
Hence i (D) = €(D) — x(D) = O(e™ % %Dy, O

To conclude this section, let us study the variation of the Euler-Minkowski
characteristic and of the genus when we change the field K. Let £|K be a
finite extension and o, resp. O, the ring of integers of K, resp. L. In §2 we
considered Dedekind’s y module

Crk ={xel] Tx0) S 0o} = Homo(O,0).

It is a fractional ideal in L whose inverse is the different Dy k. From (2.6),
it is divisible only by the prime ideals of L which arc ramified over K.

(3.10) Definition. The fractional ideal
wg = Cx = Homg (o, Z)
is called the canonical module of the number fieid K .

By (2.2) we have the

(3.11) Proposition. The canonical modules of L and K satisfy the rclation

L = Cp gk -

The canonical module wx is related to the Euler-Minkowski character-
istic x (o) and the genus g of K in the following way, by formula (3.3):

vol(0) = +/|dk|.
(3.12) Proposition. degwy = —2x(0) = 2g — 2¢(0).

Proof: By (2.9) we know that Ngig(®kg) is the discriminant ideal
Ok |q = (dx). and thercfore by (1.6), (iii):

M) = NDxie) ' = NoKi) ™" = ldk |7,
so that, as vol(0) = /]dk [, we have indeed

degwg = —log Mawy ) = log |dg | = 2logvol(®) = —2x(0) = 2g—26(0).
]
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As for the genus, we now obtain the following analogue of the Riemann-
Hurwitz fermula of function theory.

(3.13) Proposition. Let L|K be a finite extension and g, resp. g, the
genus of L, resp. K. Then one has

|
g — o) =IL: Kl(gx — £0k)) + Edegcuk.
In particular, in the case of an unramified extension L|K

xloL) =L : Klx (o).

Proof: Since w; = €1 g wg . onc has
M) = R ko) MEL k) = M) EEIN(CLik).

50 that
degwy, =[L : Kldegwg +degCpik .

Thus the proposition follows [rom (3.12). ]

The Ricmann-Hurwitz formula tells us in particular that, in the decision
we took in § I, we really had no choice but to consider the extension C|R
as unramified. In fact, in function theory the module corresponding by
analogy to the ideal €, x takes account of preciscly the branch points of
the covering of Riemann surfaces in question. In order to obtain the same
phenomenon in number theory we are forced to declare all the infinite
primes ¢ of L unramified, since they do not occur in the ideal €«

Thus the fact that C|R is unramified appears to be lorced by nature itself.
Investigating the matter a little more closely, however, this turns out not to
be the case. It is rather u consequence of a well-hidden initial choice that we
made. In fact, in chap.1, § 5, we equipped the Minkowski space

m,,:[]:[c]*

with the “canonical metric”

(roy) =2 xc ¥
T
Replacing it, for instance, by the “Minkowski metric”

(x,y) = L arxeye,
T
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oy = 1if 1 =T, =} if r # 7, changes the whole picture. The Huar

measures on K» belonging to {,} and (.) are related as follows:
VOluumonical (X) = 2° VOluinkowski{ X ) -

Distinguishing the invariants of Riemann-Roch theory with respect to the
Minkowski measure by a tilde, we get the relations
(@) = x(@+1log2*, &a) = £(a) + log2'
(the latter in casc that H%(a) # #), whereas the genus remains unchanged.
Substituting this into the Riemann-Hurwitz. formula (3.13) preserves its shape
only if one enriches €z x into a replete ideal in which all infinite primes P
such that Lgz # K, occur. This forg:s us to consider the extension C|R as
ramified, to put &gy = [Lo : Kl fyp = 1, and in particular
& =[K, Rl, fy=1.
The following modifications ensue from this. For an infinite prime p one has
to define ) .
Bpla) = —Fyloglral, p"=e"%, N =e.
The absolute norm as well as the degree of a replete ideal @ remain unaltered:
o) = Ma),  deg(a) = — logT(a) = deg(a).
The canenical module wx however has to be changed:
ax =wx ] pzmng
P complex
in order for the equation
degdg = —25%(0) = 2g — 2(0)
to hold. By the same token. the ideal €z |k has to be replaced by the replete
ideal -
QL\K = GL\K J_l leupZ

Hoc
B!

50 that
B = Cp i irk(@k).

In the same way as in (3.13), this yiclds the Riemann-Hurwitz formula

g — o) =L : Kl(gx — lok)) + %degéL\K‘

In view of this sensitivity to the chosen metric on Minkowski space K.
the mathematician Uwe Jannsew proposes as analogues of the function fields
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not just number fields K by themselves but number ficlds equipped with a
metric of the type

oY)k =2 arx:¥e,
T

ap > 0, 2 = @7, on K. Let these new objects be called metrized number
fields. This idea does indeed do justice to the situation in question in a very
precise manner, and it is of fundamental importance for algebraic number
theory. We denote metrized number fields (K, {, Yx) as K and attach to
them the following invariants. Let

(X, )k = L orxeye.
B

Let p = p, be the infinite prime corresponding to T : K — C. We then put
wp = o AL the same time, we also use the letter p for the positive real
number

p=e* e RY,

which we interpret as the replete ideal (1) x (1, .-+, b, e 1, ---,1) €
J(0) x T[] RY. We put
ploo

ep= /ey and fp=ap[Kp: R),
and we define the valuation v, of K * associated to p by
vpla) = —&p log |ral.
Further, we put
Ny =el> and alp = NP,
so that again |a|, = |ral if p is real, and lalpy = \ra|? if p is complex. For
every replete ideal a of K, there is a unique representation a = [ p", which
gives the absolute norm Ma) = T19t(p)"», and the degree v
3
deg (o) = —log M(a).
The canonical module of K is defined to be the replete ideal

wg = wg - wx €J(0)=71(0) X Tr;.
ploc

where wy is the inverse of the different Dy of K|Q, and

s = (@; Dpies € [T RY.
ploc
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The Riemann-Roch theory may be transferred without_any problem,
using the definitions given above, to metrized number fields K = (K. (. }x)-
Distinguishing their invariants by the suffix K yields the relations

volg(X) = [ v/az vol(X).

because Ty : (Ki, (k) = (Ka, (), (x¢) +> (/& xe), is an isometry
with determinant [, /&, and therefore

xz{0k) = —logvolg{ox) = x{(ox) —log[]/or.

#H0K)

Lp(og) = log—— = €(og) —log]] or.
volg (W) T
The genus
#u(K) v/ 1dk |
g = €g(oK) — Xg(0x) = Lk} — x (o) = log o

does not depend on the choice of metric.

Just as in function theory. there is then no longer one smallest field, but ¢
is replaced by the continuous family of metrized fields (@, axy), @ € RY,
all of which have genus ¢ = 0. One even has the

(3.14) Proposition. The metrized fields (Q,axy) are the only metrized
number fields of genus 0.

Proof: We have
e — o TV
S8 =08 Ty
Since m is transcendental, one has s = 0. i.e., K is totally real. Thus
#1(K) = 2 so that |dx | = 4"}, where n = r = [K : Q| In view of the
bound (2.14) on the discriminant
n 2

A
this can only happen if n < 6. But for this case one has sharper bounds, due
1o Onryzko (see | 1111, table 2):

=0 = #uK)ldx| =2"2n)".

n = 3 4 5 6

Jde V" = 3,00 4,21 530 635

This is not compatible with |dg |"/" = 4%, 50 we may conclude that n < 2.
But there is no real quadratic field with discriminant |dx | = 4 (see chap. 1,
§2, exercise 4). Hence n = 1, so that K = Q. [m]
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_ An extension of metrized number fields is a pair K = (K.{ k),
L = {(L.{,)).suchthat K € L and the metrics

(VK = L eeke Ve, (=1 feXaYo
T a
satisfy the relation w; > f; whenever 1 = a|x. If P|p are infinite primes

of L|K, P belonging to o and p to T = o |k, we definc the ramification
index and inertia degree by

epip = /By and  fop = Bo/erily: Kol
Thus the fundamental identity
S epp fop = [L 1 K|
Ble
is preserved. Also %P is unramified if and only if @; = . For “replete prime
ideals” p = o7, B = 7, we put

ik = TP Nk () = p/or.
Pl

Finally we definc the different of LK to be the replete idcal
Dy =Dk Do € J@L) =J (1) x T] B},
Ploc

where Dk is the different of L|K and

Do, = (Bp/ay)pie € q11_[ L
|oc

where B = Bo and @, = &, (P belongs to @ and p to T = o |g). With this
convention, we obtain the general Riemann-Hurwitz formula

|
g —bplon) =1L : K(gg — g(ok)) — 5 deg Dy
If we consider only number fields endowed with the Minkowski metric,
then Ly # K, is always ramified. In this way the convention found in

many textbooks is no longer incompatible with the customs introduced in the
present book.

§ 4. Metrized ©-Modules

The Riemann-Roch theory which was presented in the preceding scetion
in the case of replete ideals is embedded in a much more far-reaching
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theory which treats finitely generated o-modules. It is only in this setting
that the theory displays its true nature, and becomes susceptible to the most
comprchensive generalization. This theory is subject to a formatism which
has been constructed by Arexaspex Grorugapiscx for higher dimensional
algebraic varieties, and which we will now develop for number fields. In
doing so, our principal attention will be focused as before on the kind of
compactification which is accomplished by taking into account the infinite
places. The effect is that a leading r6le is claimed by linear algebra — for
which we refer to |15]. Our treatment is based on a course on “Arakclov
Theory and Grothendieck-Riemann-Roch™ taught by Giwrer Tammr. There,
however, proofs werc not given directly, as we will do here, but usually
deduced as special cases from the general abstract theory,

Let K be an algebraic number field and o the ring of integers of K. For
the passage from K to R and C, we start by considering the ring

) Ky =K ®gC.

It admits the following two further interpretations, between which we will
freely go back and forth in the sequel without further explanation. The set

X (C) = Hom{K,C)
induces a canonical decomposition of rings

vA] Ke =2 DC, a®zr— P zoa.
eX(L)

aeX(C) -
Alternatively, the right-hand side may bc viewed as the set CX©) =
Hom(X (C), C) of all functions x : X (C) — C, ie.,
3) K¢ = Hom(X(C).C).
The field K is embedded in K via
K—KggC, ar—a®l,
and we identify it with its image. In the interpretation (2), the image of a € K

appears as the tuple €3, ou of conjugates of «, and in the interpretation (3)
as the function x(0) = oa.

We denote the generator of the Galois group G(C|R) by Fu, or simply
by £ This underlines the fact that it has a position analogous to the Frobenius
automorphism F, € G(F,|F ), in accordance with our decision of § 1 to
view the cxtension C|R as unramified. # induces an involution F on Ko
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which, in the representation K¢ = Hom(X(C).C) for x : X({C)—> C,is
given by

(Fx)(0) = x(7).
F is an automorphism of the R-algebra K¢. It is called the Frobenius
correspondence. Sometimes we also consider, besides F. the involution
z +— 7 on K¢ which is given by

(o) =z(0).

We call it the conjugation. Finally, we call an element x € K¢, that is, a
function x : X (C) — €, positive (written x > 0) if it takes real values, and
if x(o) > O forall 6 € X(C).

By convention every ©-module considered in the sequel will be supposed
to be finitely generated. For every such o-module M, we put
Mc=M®zC.
This is a module over the ring K¢ = 0 ®z C, and viewing © as a subring of
K¢ — as we agreed above — we may also write

M =M®. K¢

as M ®;z C = M ® (0 ®; C). The involution x + Fx on K¢ induces the
involution
Fla®xy=a® Fx

on Mg In the representation Mo = M ®z C, one clearly has

Fla®:)=a®z.

(4.1) Definition. A hermitian metric on the K¢-module M¢ is a sesqui-
linear mapping
(L m i Mo x Mo — Ko,

ic., @ Kg-linear form (x.y)y in the first variable satisfying

ERESVEIS
such that one has {x.x)u > 0 forx # 0.

The metric { . Yy is called F-invariant if we have furthermore

Fx.y)m ={Fx.Fyipm.
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This notion may be immediately reduced to the usual notion of a hermitian
metric if we view the Kg-module Mg, by means of the decomposition

Ko =@, C, as a direct sum
Mc=M®oKe= @ M,
scX(C)
of C-vector spaces
Mo =M., C.

The hermitian metric { . ) then splits into the direct sum
v = D (Ko, Yodu,
aEeX(T)
of hermitian scalar products {, )y, on the C-vector spaccs M. In this
interpretation, the £ -invariance of {(x, y)» amounts to the commutativity of
the diagrams

(4.2) Definition. A metrized o-module is a finitely generated ©-module M
with an F -invariant hermitian metric on M.

Example 1: Every fractional ideal « € X of o, in particular o itself, may
be equipped with the trivial metric
ey =xy= B x5,

oeX(C)
on a®z C = K ®g C = K. All the F-invariant hermitian metrics on a are
obtained us

alx,y) = ax¥ = Qo) Vo,
P

where @ € K¢ varies over the functions « : X(C) — RY such that
w(7) = alo).

Example 2: Let L|K be a finite extension and 9 a fractional ideal of L,

which we view as an ©-module M. If Y{C) = Hom(L,C), we have the

restriction map Y (C) — X(C), T — 7|y, and we write tlo ifo =1k,

For the complexification My; = 2 ®z C = L, we obtain the decomposition
C= @ M,,

Te¥ (0 seX (L)
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where M, = .|, C. M is tumned into a metrized ©-module by fixing the
standard metrics B
yim, =3 5e¥e
I

on the (L : K]-dimensional C-vector spaces M.

If M and M’ are metrized ©-modules, then so is their direct sum M & M,
the tensor product M ® M’, the dual M = Hom. (M, ©) and the n-th exterior
power A" M. In fact, we have that

M®M)e =M &Mz, (M®o M) =Me ®x,. M.
Me = Homg (Mg Ke), (N'Mde =N Me.
and the metrics on these K -modules are given by
@Ay DY mom = (5, 00m + XYy resp.
e ®x' vy @Y men = w0y resp.
(X ¥y = o, yim, Tesp.
{00 A A YA A Y gy = det{ (i yihu) -

Here X, in the case of the module Il7lc, denotes the homomorphism
X={.xy: Mz — Kz.

Among all ©-modules M the projective ones play a special réle. They
are defined by the condition that for every exact scquence of ©-modules
F' — F — F" the sequence

Home (M, F') — Hom, (M, F) — Homy (M, F")
is also exact. This is equivalent to any of the following conditions (the last
two, because © is a Dedekind domain). For the proof, we refer the reader to
standard textbooks of commutative algebra (see for instance [90], chap. TV,
§3, or [16], chap. 7, §4).

(4.3) Proposition. For any finitely generated ©-module M the following
conditions are equivalent:

(1) M is projective,

(iiy M is a direct summand of a finitely generated free ©-module,

(iii) M is locally free, ie., M @, 0, is a frec op-module for any prime
ideal p,

(iv) M is torsion free, ie., the map M — M, x — ax, Is injective for all
nonzero a € 0,

(v} M = ad o" for some ideal a of © and some integer n > 0.
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In order to distinguish them from projective 0-modules, we will henceforth
call arbitrary finitely generated o-modules coherent. The rank of a coherent
©-module M is defined to be the dimension

k(M) = dimg (M ®, K).
The projective o- modules L of rank 1 are called invertible o-modules,
because for them L @, J AN 0, a®d — daa), is an isomorphism. The
invertible o-modules are either fractional ideals of K, or isomorphic to a
fractional ideal as o-modules. Indeed, il L is projective of rank 1 and @ € L.,
a # 0, then, by (4.3), (iv), mapping
L—L@K=K@®l), xr— f)a®l),

gives an injective o-module homomorphism L — K, x = f{x), onto a
fractional ideal a C K.

To sec the connection with the Riemann-Roch theory of the last section,

which we arc about to generalize, we obscrve that every replete ideal
a=[Tp" [T =
ploc ploo
of K defines an invertible, metrized ©-module. In fact, the identity
Ao = [Ty P yields the function
@ X(C) — Ry, alo) =M,
where p, denotes as before the infinitc place defined by o : K — C. Since
P& = bo . one has ¢(&) = a(o), and we obtain on the complexification
A = 8 ®z C = K¢

the F-invariant hermitian metric

= @ x5

meX(C)

X, ¥)a = 0]

(see example 1, p.227). We denote the metrized 0-module thus obtained
by L(a).

The ordinary fractional ideals, i.e., the replete ideals a such that
8 = I, and in particular o itself, are thus cquipped with the frivial
metric {x, y}a = (x,y) = xy.

(4.4) Definition. Two metrized o-modules M and M’ are called isometric
if there exists an isomorphism
FiM— M

of o-modules which induces an isometry fr : Mg — M.
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(4.5) Proposition.

(i) Two replete ideals a and b define isometric metrized ©-modules L(a)
and L(b) if and only if they differ by a replete principal idcal [a]: a = bla].

(ii) Every invertible metrized ©-module is isometric to an 0 -module L(a).
(i) L(ab) = L(a) @0 £.(b), L{a™") = Liw.

Proof: (i) Let a =[], ", b =[], p*r. [a) = I, @ and let

@(a) =¥, Blo) = e p(o) = P,

If a = blal, then v, = 1 + vp(@); thus « = By, and a; = be(a). The
o-module isomorphism by — ar, X — ax, takes the form { . }p to the form
{, }a. Indeed. viewing a as cmbedded in K¢, we find a = @, aa and

ad = @e~ @ =y,
P
because vy, (@) = — log|aal. so that
(ax,ay)e = alax,ay) = ay " {x, v) = Blr.yy = {5, Yo

Therefore by — a7, X > ax, gives an isometry L{a) = L(b).

Conversely, let g : L(b) — L(a) be an isomeury. Then the o-module

homomorphism

g:bp— ar
is given as multiplication by some element a € b{‘m = Hom(by, a7). The
identity

Blx,y) = (3o = (g(x). g(1)e = afax,ay) = ay ' {x.¥)

then implies that @ = By, so that v, = gy + vp(a) for all pjoo. In view
of a¢ = brla), this yields a = bla].
(ii) Let L be an invertible metrized ©-module. As mentioned before, we have
an isomorphism

gL —
for the underlying ©-module onto a fractional ideal ar. The isomorphism
ge @ Lg — o = K¢ gives us the F-invariant hermitian metric
Bx,y) = {gz' (). gg' () on Ke. Tt is of the form

h(x,y) =axy

for some function o : X{C) — R} such that a(a) = (o). Putting now
a(o) = e, with v, € R, makes ar with the metric 4 into the metrized
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o-module L(a) associated to the replete ideal a = ar ]—Ipmp”v, and L is
isometric to L(a),
(i) Let a = [T,p", b = [T, p", al0) = e, pla) = ¢ The
isomorphism

6 Qg by —> atby, a®b+— ab.

between the o-modulgi_undcrlying L(0) ® L(b) and L(ab) then yields, as
{ab.a'byqp = afaba’t = ala,a"VBib,h") = (a,d'Va(b.b)p. an isometry
L(8) ®s L(b) = L(ab).

The o-module Hom,(ar, ©) underlying Z(a) is isomorphic. via the
isomorphism

g:a;! — Homy(ap,0), ar—> (gla) 1 x> ax).
to the fractional ideal u‘T‘. For the induced K¢ -isomorphism
gr t Ko — Homg (K¢, K¢)

we have , .
ge)M =xy=a laxy=a ' (y.X)r(w-

so that gr(x) = o~ 'X, and thus

(8200, 8y = @ HF Ty =02 T Fiw

= XV = Y@y

Thus g gives an isometry L(a) = Lia~"). ]

(4.6) Definition. A short exact sequence
oM SM Lo
of metrized ©-modules is by definition a short exact sequence of the
underlying o-modules which splits isometrically, i.e., in the sequence
0— ML Mo B Mp—s 0,

M;. is mapped isomctrically onto ac M., and the orthogonal complement
(osz[’j)J is mapped isometrically onto M.

The homomorphisms «, A in a short exact sequence of metrized ©-modules
are called an admissible monomorphism, resp. epimorphism.

To each projective metrized ©-module M is associated its determinant
det M, an invertible metrized ©-module. The determinant is the highest
exterior power of M, i.c.,

detM = A"M, n=r1k(M).
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(4.7) Proposition. If 0 — M' 5 M . M" = 0 is a short exact
sequence of projective metrized ©-modules, we have a canonical isometry

detM' Qo det M" = detM .

Proof: Let #' = rk(M') and n” = rk(M"). We obtain an isomorphism
kidetM' ®,detM” > detM

of projective ©-modules of rank 1 by mapping

() AL ALY A LAY o amy AL A AT A L AT

where 7, ... A, are preimages of mj....,m,, under g : M — M.
This mapping does not depend on the choice of the preimages, for if, say,
Ay +am,_,, where m),. | € M', is another preimage of m{, then
aml AL A NG ) A AN

R s s~

= anty A.../\amn,/\ml /\...Aﬂl"u
since am| A ... Aam, Aam, = 0. We show that the o-module iso-
morphism « is an isometry. According 1o the rules of multilinear algebra it
induces an isomorphism

« t det ML, ®k, det M{. —> det Mg

of Kc-modules. Let &),y € Mg, i = 1,....n", and x;.y; € aM%,

j=1,....n", and fusthermore
=AY = A x= A y= N
Then we have

(i (&' ® BX).k (Y ® By)hsamt = (X’ A X, @Y A Yaernt

((»V,’«yi)w' 0 )
= det —_
0 (Bxj. Byetme

= det{{x]. yi)m) det((Bx;. Bye)m)
= (", 3 )aeust (B, BY)aer
= (¥ @ Bx. Y @ BY)aa Mo

Thus « is an isometry. C
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Exercise 1. If M, N. L are metrized o-modules, then one has canonical isometries
Mo N =NR;M, (M@ N)®ol = M®a(NRyl),
M®: (NDL) = (Mo N)® (M Qo L).

Exercise 2. For any two projective metrized o-modules M. N, onc has
n i j
AMEN) = GAMOAN.
e

Exercise 3. For any two projective metrized o-modules M, N, one has
det(M ® N) = (det MYE™ ™) @ (det NS,
Exercise 4. If M is 4 projective metrized o-module of rank #, and p > 0, then there
is a canonical isometry
det( A M) = (detMyPN

§ 5. Grothendieck Groups

We will now manufacture two abelian groups from the collection of
all metrized ©-modules, resp. the collection of all projective metrized o-
modules. We denote by {M} the isometry class of a metrized ©-module M
and form the free abelian group

Fo®) = QLM resp. FOUO) = QZIM),
M) M)

on the isometry cl s of projective, resp. coherent, metrized o-modules. In
this group, we consider the subgroup

Ry(B) C Fo(®), resp. RYB) C F'&).

generated by all clements {M'} — {M} + {M"} which arise from a short exact
sequence
00— M —>M-—>M —0

of projective, resp. coherent, metrized ¢>-modules.

(5.1) Definition. The quotient groups
Ko(D) = Fo(@)/Ro(B), resp. K'(&) = F'(3)/R" (&)

arc called the replete (or compactified) Grothendieck groups of o. If M
is & metrized ©-module, then [M] denotes the class it defines in Ko(D),
resp. KY(5).
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The construction of the Grothendieck groups is such that a short exact
sequence
0— M —> M —> M —> 0

of metrized ©-modules becomes an additive decomposition in the group:
M| = M| +M"].
In particular, one has
M &M= [M]+M"].
The tensor product cven induces a ring structure on Ko(3), and K °(3) then
becomes a K(3)-module: extending the product
(MM} = (M ® M)

by linearity, and observing that N@ M = M ® N and (M @N)QL =
M ®& (N @L), we find right away that F(3) is a commutative ring and Fo(5)
is a subring. Furthermore the subgroups Ro(3) € Fo(3) and R°(B) € FO(&)
turn out to be Fo(&)-submodules. For if

0—M—-M-—M —0

is a short exact sequence of coherent metrized ©-modules, and N is a
projective metrized ¢-module, then it is clear that

0—>NOM — NQM —>NIM' — 0

is a short exact sequence of metrized ©-modules as well, so that, along with
a generator {M') — {M} + {M"}, the element

IV UM} — (M} + (M) = (N O M|~ (N QM|+ (N QM
will also belong to Ro(3), resp. RY(&). This is why Ko(&) = Fo(@)/Ro(&)
is aring and K%(8) = FO(&)/R%(D) is a Ko(d)-module.
Associating to the class [M] of a projective ©-module M in Ky(D) its
class in K (@) (which again is denoted by | M]), defines a homomorphism
Ko@) — K%D).

It is called the Poincaré homomorphism. We will show next that the
Poincaré homomorphism is an isomorphism. The proof is based on the
following two lemmas.

(5.2) Lemma. All coherent metrized ©-modules M admit a “metrized
projective resofution™, i.e., a short exact sequence

0— E—F—M-—0

of metrized ©-modules in which E and F arc projective.
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Proof: If «y, ..., o, is a system of generators of M, and F is the free
o-module F = ¢, then

"
F— M, (. ... 50— Y X0,
i=l

is a surjective ©-module homomorphism. Its kernel E is torsion free, and
hence a projective ©-module by (4.3). In the exact sequence

00— Ec — Fo 5 Mz — 0.
we choose a section s : Mg — Fg; of [, sothat Fo = Eg @ sMy. We obtain
a metric on Fg by transferring the metric of M¢ to sMq;, and by choosing
any metric on E¢. This makes 0 - £ — F — M — 0 into a short exact
sequence of metrized ©-modules in which E and F are projective. ]

In a diagram of metrized projective resolutions of M

0— F — F — M — 0

Ll

0— K — F — M —0

the resolution in the top line will be called dominant if the vertical arrows
are admissible epimorphisms.
(5.3) Lemma. Let

0= —FLu—o ool o

be two metrized projective resolutions of the metrized o-module M. Then,
taking the ©-module

F=Fxy b ={(x" e F x F'| o)y = f)

and the mapping f : F — M, (»
third metrized projective resolution

A e X = (), one obtains a

0O—E—F—>M-—0

with kerel E = E' x E" which dominates both given oncs,
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Proof: Since F' & F” is projective, so is F, being the kemnel of the

homomorphism F' @ F"” LT b Thes E s

Iso projective, being the
kemel of F — M. We consider the commutative diagram
7

0— Eb — Fi === Mc —0
R
O Lo — Fo === Mz — 0
s
L1
0— Ef — F! === M¢ —0,

e
where the vertical arrows are induced by the surjective projections
FISF. FIS R

The canonical isometries

give a section

51 Mg — Fo, sx=(sx.5"%).
of F which transfers the metric on Mc (o a metric on s My
carries the sum of the metrics of
receives a metric, and

0O—E—>F—>M-—0

becomes a metrized projective resolution of A7, It is trivial that the projections
F — FE'.and £ — E” are admissible epimorphisms, and it remains to show
this for the projections 7' : F — F', 7" : F — F". But we clearly have the
exact sequence of o-modules

0— E" 5 F=F' sy F" 25 F' — 0,
where ix” = (0, x”). As the restriction of the metric of F to E = E' x E”
is the sum of the metrics on £’ and E”, we see that i : E/ — i
isometry. The orthogonal complement of { Ef. in Fe is the space

Flox, s"Me = [ (X' s"a) € F&ox s"Me | f'(x)) = a) .

nd on the
other hand it is orthogonal to i .. For if we write x' = s'a+e¢’. with ¢’ € £,
then

Indeed, on the one hand it is clearty mapped bijectively onto F,

(' s"a) = sa + (€', 0),
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where (¢, 0) € Ec and we find that, for all x” € EZ,
{ix" ' s"a)) = (0,5 sa) p +{©.x7), (.0)), =

Finally, the projection F{ xu, s"My; — F/. is an isometry, for if (x'.s"a),
(¥ 8"h) € Ffoxy, s"Mg and x' = s'a+ ¢,y =s'h+d', withe',d' € E.
then we get

',s"a) = sa + (', 0),  (y,s"h) = sh+ (. 0)
and
(O s"a). (' s"B)) p = (sa,sb) o+ (5@, (@ 0)) o +{ (e, 0). 56},
+{(e".0), (. 0}
= {a.byy + (' dVp = (sa.sByp + (¢ .d') g

=(a+e sb+dyp = (xY)p. ]

(5.4) Theorem. The Poincaré homomorphism

Ko(®) — K®)
is an isomorphism.

Proof: We define a mapping
7 FU3) ~— Ko(D)

by choosing, for every coherent metrized o-module M, 2 metrized projective

resolution
0O—F—F—>M-—0

and associating to the class {M} in FO(3) the difference [F| — [E] of the
classes [F] and [E] in Ky(3). To sec that this mapping is well-defined let us
first consider a commutative diagram

00— E — F — M —0

b

0— E —5 F — M —0

of two metrized projective resolutions of M, with the top one dominating the
bottom one. Then £ — F induces an isometry ker(a)—> ker(f). so that we
have the following identity in Ko(&):

LFI = [E1=1F'T+ [ker(8)] ~ [E"] — [ker(@)] = | #'] — | E'].
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Ifnow 0 = E' > F' > M > 0, and 0 > E" — F" > M — 0 are two
arbitrary metrized projective resolutions of M, then by (5.3) we find a third
one, 0 - £ — F — M — (), dominating both, such that
[F1—(E)=[F}- [E]=[F"| - |E"|.
This shows that the map & : FO3) = Ko() is well-defined. We now show
that it factorizes via K°(3) = F*(8)/R%(). Let0 — M’ - M->M" - 0
be a short exact sequence of metrized coherent ©-modules. By (5.2), we can
pick a metrized pl’uje(,llve resolution 0 — £ — F—>M — (. Then clearly

00— E"—> F ~>M” — 0 is a short exact sequence of metrized ©-modules

as well, where we write f” = o f and E” = ker(f"). We thus get the
commutative diagram

0— £ — F 15 M o

[
0— £ —F 2w o

and the snake lemma gives the exact sequence of ©-modules
0—E—eLw—o

It is actually a short exact scquence of metrized ©-modules, for £Z is mapped
isometrically by f onto M, so that E"E C Ej is mapped isometrically by f
onto M. We therefore obtain in Ko(&) the identity

M} —w{M) + 7 {M"} = |E"] — [E] - ([F] - [E]) +[F| - [E"] = 0.
1t shows that 7w : F(&) — Ko(3) does indced factorize via a homomorphism
K@) — Ko(®).

Tt is the inverse of the Poincaré homomorphism because the composed maps
Ko(@) — K°(8) — Ko(8) and K'(5) — Ko(@) — K@)

are the identity homomorphisms. Indeed, if 0 > £ - F > M — QOis
a projective resolution of M, and M is projective. resp. coherent, then in
Ky(), resp. K%(d), one has the identity |[M]=|F]—[E]. O

The preceding theorem shows that the Grothendieck group Ko(&) does not
Jjust accommodate all projective metrized ©-modules, but in fact all coherent
metrized ©-modules. This fact has fundamental significance. For when



§5. Grothendieck Groups 239

dealing with projective modules, one is led very quickly to non-projective
modules, for instance, to the residue class rings ©/a. The corresponding
cla in K°(3), however, can act out their important réles only inside the
ring Ko(3). because only this ring can be immediately subjected to a more
advanced theory.

The following relationship holds between the Grothendieck ring Ko(3)
and the replete Picard group Pic(5), which was introduced in § 1.

(5.5) Proposition. Associating to a replete idcal o of K the metrized o-
module L(a) yields a homomorphism

Pic(3) — Ko(3)*, [a] —> |L(a)],

into the unit group of the ring Ko(3).

Proof: The correspondence [a] — [L(a)] is independent of the choice of
a replete ideal a inside the class [a] € Pic(D). Indeed, if b is another
representative, then we have a = blu/, for some replete principal ideal |¢],
and the metrized o-modules £{a) and L (b) are isometric by (4.5), (1), so that
[L(a)] = [L(b)). The correspondence is a multiplicative homomorphism as

[L(ab)] = [L (%) ®c L(B)] = [L(@][L{b)]. [m}

In the sequel. we simply denote the class of a metrized invertible ©-
modute L(a) in Ky(&) by [a). In particular. to the replete ideal 0 = I, P
corresponds the class 1 = [0] of the o-module © equipped with the trivial
metric.

(5.6) Proposition, K(3) is generated as an additive group by the ele-
ments |a).

Proof: Let M be a projective metrized o-module. By (4.3), the underlying
o-module admits as quotient a fractional ideal gy, i.c., we have an exact
sequence

00— N—M-—ag—0

of o-modules. This becomes an exact sequence of metrized ©-modules once
we restrict the metric from M to N and choose on ar the metric which is
transferred via the isomorphism Né = ggr. Thus a; becomes the metrized
o-module L(a} corresponding to the replete ideal a of K, so that we get the
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identity {M] = [N] + |a] in Ko(3). Induction on the rank shows that for
every projective metrized -module M, there is a decomposition

[M]=Tail+ - +la]. O
The elements [a] in Ko(D) satisty the following remarkable relation.

(5.7) Proposition. For any two repletc ideals a and b of K we havc in
Ko(D) the equation
{al = (6] — 1) = 0.

Proof (Tamus): For every function « : X (C)} — € let us consider on the
Ke-module K¢ = ey () © the form
axy = @alo)xq Y,
P
a y N .
5 B of such functions, we consider on the

K¢ -module K¢ @ K¢ the form

For every matrix A =

(x @y, &' @®y)a=oxX +yx¥ +8yX + pyy.
ax¥y, resp. {, )a, is an F-invariant metric on K, resp. on K @ K, if
and only if & is F-invariant {iL.¢., a(¢) = @(&)) and a(s) € R, resp. if all
the functions o, B, y, 8 are F-invariant, a(5), (o) € R} and § = ¥/, and if
moreover det A = aff — y¥ > 0. We now assume this in what follows.

Let a and b be fractional ideals of K. We have to prove the formula
[a]l +[b] = |ab] + 1.

We may assume that ay and by are integral ideals relatively prime to one
another, because if nccessary we may pass to replete ideals o' = ala],
b’ = b|b] with corresponding ideals a; = aju, by = beh without changing the
classes [a], [0, [ab] in K¢(8). We denote the o-module ar, when metrized
by axy, by (ar, o), and the o-module ar @ by, metrized by { , )4, for

= ; ;) by (@ b, A). Given any (wo matrices A = <; ; and

, oy .
A=|_, we write
(V ﬂ’)

if [(ar & bp), A] = [{(ay @ by), A'] in Ky(D). We now consider the canonical
exact sequence

A~ A

0—> ar—> ar @ by — by — 0.
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Once we equip a@®by with the metric { . )4 which is given by A = ( ; i;)

we obtain the following exact sequence of metrized o-modules:
() 0—>(un01)—>(a,eabf</1)—>(b;,ﬂ—ywl)~>0,
Indeed, in the cxact sequence

0— K¢ — Ke @ Ke — Ke — 0,

the restriction of ( ,}a to K¢ @ [0} yields the metric wxF on K,
and the orthogonal complement V of K¢ @ {0} consists of all elements
a+bh e K¢ @ K¢ such that

(B0, a®b) =axd +yxb =0,
for all x € K-, so that
V={(-7/0b®b|becKc}.

The isomorphism V 5> Ko, (=¥ /oYb Db —> b, transfers the metric {, )4

on V into the metric 8x¥, where 8 is determined by the rule
s={r 'Ma' ), ={(-F/ml @ L(-F/m @ 1),
vy ¥y __vr 24
so—s -yl -y +B=p-"=.
o a o [*2

This shows that (x) is a short exact sequence of metrized o-modules, i.e.,

(5 73)~(5 2 0)

Replacing g by 8 + Vui we get

(oz Yy o ) o 0)
Vo B+E 0By
Applying the same procedure to the exact sequence O — by — ar @ by —

ay — 0 and the metric v ) on ar & by, we obtain

#

(a'+§ y>w(o¢’ 0)
v 8 0B

Choosing
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makes the matrices on the left equal, and yields

oft
(a 0>N P 0
0# o p+2)

o

M1

or, ifwepu[&:ﬁ+g.

@ 0 £
o (6 5)- (5 3)

which is valid for any F-invariant function § : X(C) — K such that § > .
This implies furthermore

“ e
e (5 39)-(5 2)

for any two F-invariant functions 8,& : X(C) — R%. Forif ¥ : X(C) - R
is an F-invariant function such that « > 8,k > &, then (xx) gives

(55~ -5 %)
0 & 0 « 0 &)
Now putting § = 8 and & = 1 in (% *), we find

[(ar, )]+ [(by, B)] = Har. aB)| + Lby].
For the replete ideals a = ], p*», b = [, p**, this means
() [a) + [b] = [abec] + [b¢].
for if we put (o) = 2", (o) = ¢*r | then we have

{ar,a) = L(a), (br, B) = L(b). (ap,af) = L(abs).
On the other hand, we obtain the formula

2) [a] +[b¢] = [abs| 4+ 1

in the following manner. We have two exact sequences of coherent metrized
©o-modules:

0 — (o1br. o) — (ar. @) — ag/atby — O,
00— (b1) — (. — o/by — 0.
As ar and by are relatively prime, i.e., ay + by = @, it follows that

ag/ashy — /by
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is an isomorphism, so that in the group K(3) one has the identity
Tar/aibel = [0/b], and therefore

[tar, @)] = [(arbr. )] = [(0. D] — [ (b, D1,
and so
lal = [abr]l =1 = [by]).
From (1) and (2) it now follows that

[a] + [b] = [aboc] + [0¢] = [aboob] + | = Jab] + 1.

In view of the isomorphism Ko{@) = K°(&), this is indeed an identity
in Ko(®). O

§ 6. The Chern Character

The Grothendieck ring Ko(3) is equipped with a canonical surjective
homomorphism
tk: Ko@) — Z.

Indeed, the rule which associates 1o every isometry class {M) of projective
metrized ©-modules the rank

tk{M} = dimg (M @, K)

extends by linearity to a ring homomorphism Fo(3) — Z. For a short exact
sequence 0 — M — M — M" — 0 ol metrized ©-modules onc has
tk(M) = rk(M') + rk(M"), and so tk({M'} — {M} + {M"})} = 0. Thus 1k is
zero on the ideal Ry(3) and induces therefore a homomorphism K(3) — Z.
It is called the augmentation of Ko(&) and its kemel 7 = ker(rk) is called
the augmentation ideal.

(6.1) Proposition. The idcal I, resp. 17, is generated as an additive group
by the elements [a] — 1, resp. (Ja] — 1)([6] — 1), where a. b vary over the
replete ideals of K.

Proof: By (5.6), every element £ € Ko(5) is of the form

£= 3 nfwl.
=1
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10§ e . then tk(§) = Y j_, ni =0, and thus
g=Y gl — X =Y ndnl—D.

The ideal /2 is therefore gencrated by the elements ([a] — D(lb] — 1} As
fel(lal = DAY — D) = {(leal = D = (e} = D) {61 = ),

these clements already form a system of generators of the abelian group /7.

By (5.7). this gives us the
(6.2) Corollary. {?=0.

We now define
Ko@) =Z!

and turn this additive group into a ring by putting xy =0 forx.yel.

(6.3) Definition. The additive homomorphism
¢ Ko@) — 1, ) =& — k&)
is called the first Chern class. The mapping
ch: Ko(@) — grKo(@).  ch(€) = k(&) + ¢ ().

is called the Chern character of K¢(0).

(6.4) Proposition. The Chern character
ch 1 Ko@) — grKo(0)

is an isomorphism of rings.

Proof: The mappings rk and ¢| are homomorphisms of additive groups, and
both are also multiplicative. For rk this is clear, and for ¢, it is enough to
check it on the generators x = [a], ¥y = [b]. This works because

Gy =xy— =G =-D+—-D+E-—Hy-bH=al +ay),

because (x — 1)(y — N =0by (§.7). Therefore ch is a ring homomorphism.
The mapping
Zl — Ko@), n@&vr—>E&+n,

is obviously an inverse mapping, so that ch is even an isomorphism. a
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We obtain a complete and explicit description of the Chern character by
taking into account another homomorphism, as well as the homomorphism
tk : Ko(O) — Z, namely

det : Ky(8) — Pic(d)
which is induced by taking determinants det M of projective ©-modules M
as follows (see §4). det M is an invertible metrized ©-module, and therefore
of the form L(a) for some replete ideal a, which is well determined up
to isomorphism. Denoting by |det M] the class of a in Pic(3), the linear
extension of the map {M} — [det M] gives a homomorphism
det : Fy(8) —> Pic(D).
It maps the subgroup Ro(3) to 1, because it is generated by the clements
{M'} — {M}+ {M"} which arise from short exact sequences
00— M —>M-—M —0
of projective metrized o-modules and which, by (4.7), satisfy
det{M} = [det M] = [det M' & det M"|
= [det M'[det M"| = det{M'} det{M"},
Thus we get an induced homomorphism det : Ky(3) — Pic(®). It satisfics
the following proposition.

(6.5) Proposition. (i) The cancnical homomorphism
Pic(3) — Ko(0)"

is injective.

(ii} The restriction of det to I,
det: | —> Pic(0),

is an isomorphism.

Proof: (i) The composite of both mappings
Pic(@) —> Ko@) - Pic(d)

is the identity, since for an invertible metrized o-module M, one clearly has
det M = M. This gives ().
(ii) Next, viewing the elements of Pic{3) as clements of Ko(3),

81 Pic(@) — I, Sxy=x—1,
gives us an inverse mapping o det : / — Pic(5). In fact, one has
detos = id since det([a] — 1) = detla] = [a], and & o det = id since
3(det(la] —~ 1)) = 8(det|a)) = &([al) = [a] — | and because of the fact that
[ is generated by clements of the form |a] — 1 (see (6.1)). [m]
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From the isomorphism det : / —— Pic(0)., we now obtain an

isomorphism .
grKy(®) — Z @ Pic{d)
and the composite
Ko(@) > ar Ko(3) 2% 7 & Pic(5)

will again be called the Chern character of Ko(3). Observing that
det(c((§)) = det(§ — rk(&) - 1) = det(£), this yields the explicit description
of the Grothendieck group Ko (0):

(6.6) Theorem. The Chern character gives an isomorphism

¢h: Ky(0) — Z @ Pic(D), ch(&) = 1k(£) @ det(§).

The expert should note that this homomorphism is a realization map
from K -theory into Chow-thcory. Identifying Pic(®) with the divisor
class group CH'(3), we have to view Z @ Pic(D) as the “repletc” Chow
ring CH (D).

§ 7. Grothendieck-Riemann-Roch

We now consider a finite extension L{K of algebraic number fields
and study the relations between the Grothendieck groups of L and K.
Let o, resp. O, be the ring of integers of K. resp. L, and write
X (C) = Hom(K,C), Y(C) = Hom(/., C). The inclusion i : © — J and the
surjection ¥ (C) = X(C), o > ok, give two canonical homomorphisms

i* D Ko@) — Ko@) and i, : Ko(O) — Ko(@).

defined as follows.
If M is a projective metrized o-modulc, then M ®, O is a projective
O-module. As
MR M = M¢ ®k,. L.

the hermitian metric on the K¢-module Mg extends canonically to an
F -invariant metric of the Ly -module (M &, O)r. Thercfore M @, O is
automatically a metrized @-module, which we denote by i*M. If

M8, 0®s

0> M —>M—M —0
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is a short exact sequence of projective metrized ©-modules, then
0— M Q0 — M@,0— M ©,0—0

is a short exact sequence of metrized (O-modules, because (7 is a projective
©-module and the metrics in the sequence

0— Mg —> Mg —> Ml — 0
simply extend L -sesquilinearly to metrics in the sequence of L¢-modules
0 —> M{ ®x. Le —> Me ®k, Lo — M ®k, Le — 0.

This is why mapping, in the usual way (ie., via the representation
Ko(8) = Fol0)/Ro(D)),
M li'M] =M ®., O]
gives a well-defined homomorphism
i*: Ko@) — Ko(0).
The reader may verify for himself that this is in fact a ring homomorphism.

On the other hand, if M is a projective metrized O-module, then M
is automatically also a projective o-module. For the complexification
= M ®y C we have the decomposition

Me= @ M= B OMc= D M,,
Te¥ (L) gcX(@) o aeX(C)

where M; = M ®¢_C and

My =M ®0..C= @M.

Tlo

The C-vector spaces M, carry hermitian metrics ( , )y, . and we define the
metric { . ), on the C-vector space M, to be the orthogonal sum

v, = X (ke v, -

1|0

This gives a hermitian metric on the K¢ -module M¢, whose F -invariance
is clearly guaranteed by the F-invariance of the original metric { , )y. We
denote the metrized o-module M thus constructed by i, M.

If0—- M — M —> M” — 0 is a short exact sequence of projective
metrized O-modules, then

00— iM — iM—iM —0
is clearly an exact sequence of projective metrized o-modules. As before,
this is why the correspondence
M — [i,M]
gives us a welt-defined (additive) homomorphism
i Ko(@) — Ko(®).
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(7.1) Proposition (Projection Formula). The diagram
Ko@) x Ko@) —— Ko(O)

S
Ko@) x Ko@) —— Ko(®)

is commutative, where the horizontal arrows are multiplication.

Proof: If M, resp. N, is a projective metrized O-module, resp. ©-module.
there is an isometry

(M ®pi"N) = LM ®, N

of projective metrized o-modules. Indeed, we have an isomorphism of the
underlying ©-modules
Mo (N®aO) =T M@N., a®bQc)>ca®b.
Tensoring with C, it induces an isomorphism
Mz @1, (Ng ®x, L) = My ®k,. Ne.

That this is an isometry of metrized Kg-modules results from the

distributivity
Sl e = (0 ) o,
Tlo e
by applying mathematical grammar. O

The Riemann-Roch problem in Grothendieck’s perspective is the task
of computing the Chern character ch(i,M) for a projective metrized O-
module M in terms of ch(M). By (6.6), this amounts to computing det(i, M}
in terms of detM. But det M is an invertible metrized (J-module and is
therefore isometric by (4.5) to the metrized O-module L(2) of a replete
ideal % of L. N7k () is then a replete idcal of X', and we put

Npjg (det M) == L(Npig () .
This is an invertible metrized ©-modute which is well determined by M up
to isometry. With this notation we first establish the following theorem.

(7.2) Theorem. For any projective metrized O-module M one has:
tk(i, M) = tk(M) k(D)
det(iuM) = Npjg (det M) Qo (deti )™M,

Here we have tk(O) ={L : K.
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Proof: Onehas Mgy := M @, K =M Q@00 ®, K = M Qu L = My and
therefore

rk(i, M) = dimg (Mg ) = dimg (M) = dimg (Mp)|L : K| = k(M) rk(O).
In order to prove the second equation, we first reduce to a special case. Let
MM) =det(iuM) and  p(M) = Ny k (det M) ®,, (deti, )k

IHf0—- M — M - M” — 0is a short exact sequence of projective
metrized O-modules, one has

() M) ZAM) @AM and  p(M) = p(M) Qs p(M").

The isomorphism on the left follows from the exact sequence 0 — i, M’ —
ivM — i,M" — 0 by (4.7), and the one on the right from (4.7) also, from
the multiplicativity of the norm Ny g and the additivity of the rank rk. As in
the proof of (5.6). we now make use of the fact that every projective metrized
O-module M projects via an admissible epimorphism onto a suitable O-
module of the form L(2A) for some replete ideal 2. Thus (x) allows us to
reduce by induction on rk(M) to the case M = L(2A). Here tk(M) = 1. so
we have 1o establish the isomorphism

det(i, L(A) = L(Npix (W) @ dety O.

For the underlying o-modules this amounts to the identity
(k) dety Ar = Ny ik (Ap) det, O,

which has to be viewed as inside detg L and which is proved as follows.
If O and © were principal ideal domains, it would be obvious. In fact, in that
case we could choose a generator & of 2y and an integral b W,
of O over 0. Since Ny |k () is by delinition the determinant det(7,) of the
transformation T, : L — L, x = cv.x, we would get the equation

QoI A A ey = NLg @)@ AL A o),

the left-hand side, resp. right-hand side, of which would, by (1.6}, gencrate
the left-hand side, resp. right-hand side, of (xx). But we may always
produce a principal ideal domain as desired by passing from O]o to the
localization Oy |0y for every prime ideal p of © (see chap. 1, § 11 and §3,
exercise 4). The preceding argument then shows that

(deto Apdp = delo, Ar, = Npjx (Ur,) dete, Op = (N g (Up) deto Oy

and since this identity is valid for all prime ideals p of ©, we deduce the
equality ().
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In order to prove that the metrics agree on both sides of (wx), we put
M = L&), N = L), a= Nyx®@) and we view M. N, a as metrized
o-modules. One has Mg = = L¢ and oc = K¢, and we consider the
metrics on the components

M, =@®C, Ny=@C, 8,=C,
M

Tl

where ¢ € Hom(K,C) and r € Hom(L,C) is such that r]o. We have to
show that, for &, n € detg M, and a, b € T, one has the identity

(a&.bnaem, = (a.P)a, (& Mau N, -
For this, let Uos = [Ty B, so that one gets
Ao = Npjx (A) = [1 97
ploc

with vy = ¥ gy faspvs. Then

vy, =S a¥e, BV, = Ly,
T o
(a.b)q, = ¢rab, Voo = 3 Frumevp = Y vy, .
Piva Tl
Let§ =x; A ... AXy =y A... Ay, Wenumber the embeddings 7o,
Thy s Ty PUE L = Vi and form the matrices
e 0
=(xig), B=@iy). D:( )
0 o

Then, observing that

det(D) = l‘le\’r‘ =0l efwirare = &%
Blpo

we do indeed get

(@& budacist, = ab (& o,
= ab det((AD)(BD)') = ab (det D)* det(AB")

= ™o ab (&, Dhaan, = {d.b)a, (. Maan, -

This proves our theorem. [}

Extending the formulas of (7.2) to the free abelian group
Fo0) = P Z{M)
1M}

by linearity, and passing to the quotient group Ko(@) = Fy(D)/Ro(OD)
yields the following corollary.
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(7.3) Corollary. Forevery class § € Ko(D), one has the formulas
k(i,§) = (L : K]rk(§).
det(i,£) = |det A, OO Ny g (det §).
The square of the metrized ©-module deti, 0 appearing in the second

formula can be computed to be the discriminant 0y x of the extension L| X,
which we view as a metrized o-module with the /rivial metric.

{7.4) Proposition. There is a canonical isomorphism

(deti,O)®? = ok

of metrized ©-modules.

Proof: Consider on O the bilinear trace map
T:0x0— o0, €y Ty,
Tt induces an ©-module homomorphism
T:detO@detO — 0,
given by
Tl A Aa) ® (B A A By) = det(Tre k(@i B))).

The image of T is the discriminant ideal d;,x, which, by definition, is
generated by the discriminants

@, ... @) = det(Trpx (w;w;))

of ail bases of L|X which are contained in . This is clear if ¢ admits
an intcgral basis over o, since the ; and §; can be written in terms of
such a basis with coefticients in ©. If there is no such integral basis, it will
exist after localizing Oy |0, at every prime ideal p (see chap. I, (2.10)). The
image of

Tp 1 (det Op) ® (det Op) —> Oy

is therefore the discriminant ideal of Oylo, and at the same time the
localization of the image of T. Since two idcals are equal when their
localizations are, we find image(T) = d7 k. Furthermore, T has to be
injective since (det®)®? is un invertible ©-module. Therefore T is an
o-module isomorphism.
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We now check that
Te : (det(@)®?) . — QL)
is indeed an isometry. For O¢ = O ®y C, we obtain the K;-module
decomposition
O =D0,,
P
where o varies over the set Hom(K ,C), and the direct sum
O, =BO®.C)=PC
Tl To
is taken over all T € Hom(L, C) such that t|x = . The mapping Oy — K¢
induced by Try 1 O — o is given, for x = @, xq, X5 € Oy, by
Try g (6) = X Tro (xs),
b

where Ti; (x;) = ZH”,\' .1 the x5 ¢ € C being the components of .t,. The
metric on (i,0)¢ = O is the orthogonal sum of the standard metrics

(X.3)e = X x:¥e = Tro (4F)
Tl

on the C-vector spaces (1,0)s = O = @B, C. Now let x;, y; € O,
i=1,...omand write X = X) AL AX,, ¥ = Y1 AL Ay, € det(Oy). The
map Te splits into the direct sum Te = @5, T of the maps

Ty det(Oy) ®¢ det(Og) = Qpix)e =C
which are given by
Ty (x @ y) = det(Tra (xi 39}
For any two n-tuples x;, ¥/ € O, we form the matrices
A= (Tre(iy)). A = (T Fi3D), B = (Tro ). B = (Tra (7))
Then one has AA’ = BB’, and we obtain
(T @ Tt @), =T-08nTHE®Y)
= det(Tre (%)) det(Tro (7)) = det(AA") = det(BB')
= det(Tr, (x,-IJ')) del(le()’zﬂ)) = det( (,\‘1.,\‘;)") det( (y,,y;){,)
= (X X Ve, (3 Y Vw10, = (X 3, X' @ ¥ 0192+

This shows that Tr is an isometry. O
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We now set out to rewrite the results obtained in (7.2) and (7.4) in the
language of Grornespieck’s general formalism. For the homomorphism i,
there is the commutative diagram

Ko@) —2 2z

ol [P

Ko@) —2o 7.

because [L : K'] times the rank of an O-module M is its rank as ©-module.
Thereforc i, induces a homomorphism

i 1 (O) — 1(®)

between the kernels of both rank homomorphisms, so that there is a
homomorphism _

It grKo(O) — gr Ko(8).
It is called the Gysin map. (7.3) immediately gives the following explicit
description of it,

(7.5) Corollary, The diagram
2 Ko@) 2% 7. Pic(O)
i l ILKION, ¢
g Ko@) 2% 7 @ Pic(d)

Is commutative,

‘We now consider the following diagram

Ko(O) ., 2 Ko(O)

| B

Ko@) —2 grKo(@)

where the Gysin map i, on the right is explicitly given by (7.5), whereas
the determination of the composite ch o i, is precisely the Riemann-Roch
problem. The difficulty that confronts us here lies in the fact that the diagram
is not commutative. In order to make it commute, we nced a correction,
which witl be provided via the module of differentials (with trivial metric),
by the Todd class, which is defined as follows.



254 Chapter 1If. Riemann-Roch Theory

The module .Q('g‘o of differentials is only a coherent, and not a projective
@-module. But its class [_(2('7‘01 is viewed as an element of Ko(3) via the
Poincaré isomorphism

Ko@) — K"0),

and since tko (824,,,) = 0. it lies in 1(D).
Olo-

(7.6) Definition. The Todd class of Q|0 is defined to be the element

TG0y = 1 = e (1210 ]) =1 = 11820} € e Ko@) ® ZLL L.

Bccause of the factor % the Todd class docs not belong to the ring

gr Ko(Q) itself, but is only an element of grl((,(@) ® Z[%]. The module
of differentials .Qé,‘o is connected with the different D, x of the extension
L|K by the exact sequence

0— Dyg — O —> 25, — 0

of O-modules (with trivial metrics) (sec §2, exercise 3). This implies that
lSZ('v”o] = 1—[Dyx]. We may therefore describe the Todd class also by the
different:

Td(Olo) = 1 + %q@m] = %(1 +@kl)-

The main result now follows from (7.3) using the Todd class.

(7.7) Theorem (Grothendieck-Riemann-Roch). The diagram

k(@) 22, or Ko(O)

| |-

Ko@) — s g Ko(®)

is commutative.

Proof: For £ € Ko(O), we have to show the identity

ch(i &) = iy (Td(O]0) ch(®)).
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Decomposing ch(i.§) = rk(i,&) @ ¢ (i,£) and ch(&) = rk{&) @ ¢)(£) and
observing that
Td(O|oych(®) = (1+ 5 (Drix] — 1)) (tki€) + 1 (€))
=1k + [ @) + 5 kEUDex] - 1]

it suffices to check the equations

(@ tk(i§) = 1k(E) tk(i,[OT),

®) 16a8) = i€ + 1k (E)e((,1O])
and

(© k(i O} = i(1),

[t 261 (3,10)) =i {IDrk]1— 1)

in gr Ko(&). The equations (a) and (¢) are clear because of k(i[O =
k(i) = [L : K. To show (b) and (d), we apply det to both sides and are
reduced by the commutative diagram (7.5) to the equations

(© det(i.&) = Ny k ( (det £)) [det i, O],
) (deti,0)®? = Ny x (det Dy g ).
But (e} is the second identity of (7.3), and (f) follows from (7.4) and (2.9). O

With this final theorem, the theory of algebraic integers can be integrated
completely into a general programme of algebraic geometry as a special case.
What is needed is the use of the geometric language for the objects considered.
Thus the ring © is interpreted as the scheme X = Spec(0), the projective
metrized ©-modules as metrized vector bundles, the invertible ©-modules as
line bundles, the inclusion i : © — O as morphism f : ¥ = Spec(®) — X
of schemes, the class .Q(!_,‘O as the cotangent elemeny, ete. In this way one
realizes in the present context the old idea of viewing number theory as part
of geometry,

§ 8. The Euler-Minkowski Characteristic

Considering the theorem of Grothendieck-Ricmann-Roch in the special
case of an extension K'|Q, amounts to revisiting the Riemann-Roch theory
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of §3 from our new point of view. At the center of that theory was the
Euler-Minkowski characteristic
x(a) = —logvol(a)

of replete ideals a of K. Here, vol(a) was the canonical measure of a
fundamental mesh of the lattice in Minkowski space K3 = a @y R defined by
a. This definition is properly explained in the theory of metrized modules of
higher rank. More preciscly, instead of considering a as a metrized ©-module
of rank 1, it should be viewed as a metrized Z-module of rank [K : Q.
This point of view leads us necessarily to the following definition of the
Euler-Minkowski characteristic.

(8.1) Proposition. The degree map
degy : Pic(0) — R,  degg ([a]} = — log N(a),
extends uniqucly to a homomorphism
Xk Ko@) — R
on Ko(8), and thereby on K(8). It is given by
Xk = degodet
and called the Euter-Minkowski characteristic over K.

Proof: Since, by (5.6), Ko(®) is generated as an additive group by the
elements [a] € Pic(0), the map degg on Pic(®) determines a unique
homomorphism Ko(3) — R which extends degy . But such a homomorphism
is given by the composite of the homomorphisms

Ko@) 25 Picd) =2 R,

as the composite Pic(0) — Ko(O) det, Pic(D) is the identity. [

Via the Poincaré isomorphism Kq(8) — K@), we transfer the maps

det and xx to the Grothendieck group K%(3) of coherent metrized o-
modules. Then proposition (8.1) is equally valid for K°(3) as for Ko(d).
We define in what follows xx (M) = xx (IM]) for a metrized ©-module M.
If L|K is an extension of algebraic number fields and i : © — O the
inclusion of the maximal orders of K, resp. L, then applying degy to the
formula (7.2) and using

deg, () = — log A = —log NNy« (A) = degy (Ny k(W)
(see (1.6), (iii)) gives the
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(8.2) Theorem. For cvery coherent O-module M, the Riemann-Roch
formula

Xk (M) = deg, (det M) + eki{M) xx (i.O)
is valid, and in particular, for an invertible metrized O -module M, we have

xk (M) = deg; (M) + xx (1,O).

We now specialize 1o the case of the base ficld K = @, that is. we
consider metrized Z-modulcs. Such a module is simply a finitely generated
abelian group M together with a euclidean metric on the real vector space

Mg =M@z R.

Indeed, since @ has only a single embedding into C, ie., Qr = C. a
metric on M is simply given by a hermitian scalar product on the C-vector
space Mg = M3 ® C. Restricting this to M+ gives a euclidean metric the
sesquilinear extension of which reproduces the original metric.

If M is a projective metrized Z-module, then the underlying Z-module
is a finitely generated free abelian group. The canonical map M — M ® R,
a > a® |, identifies M with a complete lattice in Mg, If oy, ..., oy is a
Z-basis of M, then the set

d):‘.na|+---+x,,u,,|'(,E]K, 0<x <1}

is a fundamental mesh of the lattice M. The euclidean metric { . )y
defines a Haar measurc on M. Once we choose an orthonormal basis
1, ..., ey of My, this Haar measure can be expressed, via the isomorphism
M3y — R, xie( 4+ x5, —> (x|, ..., X,), by the Lebesgue measure

on R”. With respect to this measure, the volume of the fundamental mesh @
is given by

vol(®) = |det(ley.))] 7.
It will be denoted by vol(M) for short. It does not depend on the choice of
Z-basis o, ..., o, because a different choice is linked to the original one
by atrix with integer cocfficients which also has an inverse with integer
coeflicients, hence has determinant of absolute value 1.

A more elegant definition of vol(M) can be given in terms of the invertible
metrized Z -module det M. det Mz is a one-dimensional R-vector space with
metric { . Jaerar, and with the lattice det M isomorphic to Z. If x € det M is
a generator (for instance, ¥ = oy A ... A a,), then

Vol M) = lIxllasr = VX, Xhgarnr -
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In the present case, where the base field is Q, the degree map
deg : Pic(Z) — R
is an isomorphism (see § 1, exercise 3), and we call the unigue homomorphism
arising from this,
x =degodet: K%Z) — R,

the Euler-Minkowski characteristic. It is computed explicitly as follows.

(8.3) Proposition. For a coherent metrized Z -modufe M, one has

X (M) = log #Mor ~ log vol(M /M) .

In this formula M, denotes the torsion subgroup of M and M/M,
the projective metrized Z-module which receives its metric from M via
MQR=M/M,®R.

Proof of (Sg): If M is a finite Z-module, then the determinant of the class
[M] € K*Z) is computed from a free resolution

0—E—F-5M-—0,
where ¥ =Z" and E =ker(a) = Z". If weequip F@R=EQR =R"

with the standard metric, the sequence becomes a short exact sequence of
metrized Z-modules, because M ® R = 0. We therefore have in K(Z):

M| =[F]-IE].

Let A be the matrix corresponding (o the change of basis from the standard
basis e, ..., ¢, of FtoaZ-basis ¢, ..., e, of E. Thenx =¢, A... A ey,
resp. X' = ¢{ A ... Ay, is a generator of det F, resp. det £, and

X =detA-x=(F:E)y x=#M x.

The metric || || on det £ is the same as that on det /7, so that
X{(E) = deg(det E) = —log |lx'| = — log(#M||x]|) = — log#M + x{(F).
and then

XMy = x(IF1 = E]) = x(F) — X(E) =log#M.

For an arbitrary coherent metrized Z-module M we have the direct sum
decomposition
M = M B M/ Mo
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into metrized Z-modules. If @, ..., w, is a basis of the lattice M/M,,,
then x = oy A ... Aa, is a generator of detM/M; then x(M/M.)
= deg(detM/My) = —loglx| = —logvol(M/M). We therefore

conclude that

X(M) = X(Mio) + X (M/Mior) = log #Mior — logvol(M /M.y, O

The Euler-Minkowski characteristic of a replete ideal a,
x(a) = —logvol(a),

which we defined ad hoc in §3 via the Minkowski measure vol(a) now
appears as a simple special case of the Euler-Minkowski characteristic for
metrized Z-modules to which the detailed development of the theory has led
us. Indeed, viewing the metrized o-module L (a) of rank 1 associated (o a as
the metrized Z-module i, L{a) of rank [K : Q], we get the

(8.4) Proposition. x(a) = x{i,L(a)).

Proof: Let a = aja,, = ar I"[W,C p¥®. The metric {, };,1(a) on the C-vector
space K¢ =[], .y C is then given by

(6 Wity = 3P X ¥,
T

where p. is the infinite placc of K corresponding to the embedding
7 : K — C. Tt results from the standard metric {, ) via the F-invariant
transformation
T:Ke — Koo Oodrexe) > (€ xo)rex(o) -

Equivalently,

O isL@ = (Tx, Ty).
The volume vol(/,L (1)) of a fundamental mesh of the lattice ay in Ky with
respect to the Haar measurce defined by the euclidean metric on Ky is then
the volume of a fundamental mesh of the lattice 7'a; with respect to the
canonical measure defined by { . ). Thus

vol(i,L(a)) = vol(Tap).

In the representation Kp = [T, , K, the canonical embedding

Kg=K®aR — Ke =K @ C

maps an clement (xp) o0 to the element (x;)ycx () with x; = rxp, . Here we

extend 7 to K\, . The restriction of the transformation T : (x;) > (e x;)
to Ky = nu\'x Ky is therefore given by {xp) > (e"vxy). The lattice Tay is
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then the same lattice which was denoted a in §3. So we obtain
vol(i.L(a)) = vol(a),
e x(L(a) = x(). o
Given this identification, the Riemann-Roch theorem (3.4) proven in §3
for replete ideals a,
x(a) = degla) + x(0),
now appears as a special case of theorem (8.2), which says that

x(ixL(@)) = deg(L(a)) + x(i,0).



Chapter 1V
Abstract Class Field Theory

§ 1. Infinite Galois Theory

Every field 4 is cquipped with a distinguished Galois extension: the
separable closure £ |&. Its Galois group G = G(k|k) is called the absolute
Galois group of £. As a rule, this extension will have infinite degree. It
does, however, have the advantage of collecting all finite Galois extensions
of k. This is why it is reasonable to try to give it a prominent place in Galois
theory. But such an attempt faces the difficulty that the main theorem of
Gulois theory does not remain true for infinite extensions. Let us explain this
in the following

Example: The absolute Galois group Gv/, = G(T,,HE‘,,) of the field F), with
p elements contains the Frobenius automorphism ¢ which is given by
¥ =xP forall xe F,,.
The subgroup (p) = {¢" |n € Z} has the same fixed field F, as the whole
of Gy,. But contrary to what we are used 1o in finite Galois theory, we
find (p) # Gr,. In order to check this, let us construct an element ¥ € G,
which docs not belong to (). We choose a sequence {a,}yen of integers
satisfying
dn = ap, mod m
whenever m|n, but such that there is no integer a satisfying a, = @ mod n

for all n € N. An cxample of such a sequence is given by a, = n'x,, where
we write # = n'p', (', py =1, and | = n'x, + p**®y,. Now put

Vo = ¢ I5,, € GEpIE,).
If Fpm © F o, then m|n, so that a, = a, mod m, and therclore
Yl =0 F = 0" [Fpn = V-
Observe that ¢| #,n has order m. Therefore the ¥, define an automorphism
¥ of F,, = ;= Fpr. Now v camnot belong to {g) because ¢ = ¢, for

a € Z, would imply x,//|;ﬂ,, = g \F”,, = (ﬂ"\w,,n and hence g, = ¢ mod n
for all n, which is what we ruled out by construction.
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The example does not mean, however, that we have to chuck the main
theorem of Galois theory altogether in the case of infinite extensions. We just
have to amend it using the observation that the Galois group G = G(82[k)
of any Galois extension £2[k carries a canonical topology. This topology is
called the Krull topology and is obtained as follows. For every o € G we
take the cosets

cG(R21K)

as a basis of ncighbourhoods of o, with K|k ranging over finite Galois

subextensions of £2|. The multiplication and the inverse map
GxG—G, (6,001, and G— G or—o,

arc continuous maps, since the preimage of a fundamental open neigh-

bourhood oG (2|K), resp. o 'G(£2|K), contains the open neighbourhood

oG(22|1K) x tG(82]K), resp. oG (22]K). Thus G is a topological group

which satisfies the following

(1.1) Proposition. For every (finite or infinite) Galois extension $2|k the
Galois group G = G(82|k) is compact Hausdortt with respect to the Krull
topology.

Proof: If 0.7 € G and o # t, then there exists a finite Galois subextension
K|k of $2tk such that o|x # tlg, so that 0G(2|1K) # 1G(82|1K) and
thus oG ($2|K) N tG(§2|K) = . This shows that G is Hausdorff. In order
to prove compactness, consider the mapping

h:G—TJ|GKIk, cr—Tlolk.
K £

where K |k varics over the finite Galois subextensions. We view the finite
groups G(K (k) as discrete compact topological groups. Their product is
therefore a compact topological space, by Tykhonov’s thcorem (see [98]).
The homomeorphism /4 is injective, because o | = | for all K is equivalent
to o = 1. The scis U = HK#K"G(KM) x {#} form a subl of
open sets of the product []x G(K|k), where Kolk varies over the finite
subextensions of 2|k and @ € G(Kglk). If 6 € G is a preimage
of &, then h'(U) = aG(£2|Ko). Thus A is continuous. Moreover
hoG(R2]1Ky) = MG)NU, so B : G + h(G) is open, and thus a
homeomorphism. It therefore suffices to show that A(G) is closed in the
compact set [[x G(K [k). To see this we consider, for cach pair L' 2 L of
finite Galois subextensions of §2 |, the set

M = {TTox € [1GKID | ovlL =ou).
K K
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One clearly has h(G) = (.57 Miyp- So it suffices to show that Mpp
is closed. But if G(L|k) = {oy. ..., on}, and $; © G(L'|k) is the set of
extensions of o; to L', then

P

M= U{ TT GKIK) x 8; x {ai))
KEL 1

i=l

i.e., My is indeed closed. O

The main theorem of Galois theory for infinitc cxtensions can now be
formulated as follows.

(1.2) Theorem. Let $2|k be a (finite or infinite) Galois extension. Then the
assignment
K+— G(R|K)

is a 1-1-correspondence between the subextensions Kk of 2|k and the
closed subgroups of G(£2|k). The open subgroups of G(82|k) correspond
precisely to the finite subextensions of £2|k.

Proof: Evcry open subgroup of G(82]k) is also closed, because it is the
complement of the union of its open cosets. If K {k is a finite subextension,
then G(£2|K) is open, because each ¢ € G(£2|K) admits the open
neighbourhood oG (2|N) C G(82]K), where N |k is the normal closure
of K|k. If K|k is an arbitrary subcxtension, then

G(R1|K) =(G(21K;).

where K;lk varies over the finite subextensions of K |k. Therefore G($2|K)
is closed.

The assignment K +— G(£2|K) is injective, since K is the fixed field of
G(2|K). To prove surjeclivily, we have to show that, given an arbitrary
closed subgroup H of G(£2|k), we always have

H=G(2|K),

where K is the fixed ficld of #. The inclusion # € G(£22|K) is trivial.
Conversely, leto € G(£2|K). Il L|K is a finite Galois subextension of 2|K ,
then o G (£2|L) is a fundamental open neighbourhood of ¢ in G($2{K). The
map H — G(L|K) is certainly surjective, because the image 7 has fixed
field K and is therefore equal to G(L|K), by the main thcorem of Galois
theory for finite extensions. Thus we may choose a t € H such that
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Tle =0l ie, v € HNoG($2|L). This shows that o belongs to the
closure of H in G(£2|K), and thus to H itself, so that H = G(£2|K).

If H is an open subgroup of G(§2]k), then it is also closed, and therefore
of the form # = G(82|K). But G(£2|k) is the disjoint union of the open
cosets of H. Since G(£2|k) is compact, a finite number of cosets suffices to
cover the group. Thus there is only a {inite number of them; H = G(2|K)
has finite index in G($2]&), and this implies that K |k has finitc degree. O

The topological Galois groups G = G($2|k) have the special property
that there is a fundamental system of neighbourhoods of the neutral clement
1 € G which consists of normal subgroups. This property leads us to the
abstract, purcly group-theoretical notion of a profinite group.

(1.3) Definition. A profinite group is a topological group G which is
Hausdor{l' and compact, and which admits a basis of neighbourhoods of
1 € G consisting of normal subgroups.

It can be shown that the last condition is tantamount to G being totally
disconnected, i.c., to the condition that each element of G is equal to its own
connected component. Every closed subgroup H of G is obviously again a
profinite group. The disjoint coset decomposition

G=JoiH
i
shows immediately that / is open if and only if the index (G : H) is finite.

Profinite groups are fairly close relatives of (inite groups. They can
be reconstituted rather easily from their finite quotients. For the precisc
description of this we need the notion of projective limit, which naturally
occurs in various places in number theory and which we will introducc next.

Exercise L. Let L]k be a Galois extension and K [ an arbilrary cxtension, hoth
contained in a common extension $2|&. If L N K = k. then the mapping

GILK|K) > G(LIK. o o],
is a (opological isomorphism, that is, an isomorphism of groups and &
homeomarphism of topological spaces,

Exercise 2. Given a family of Galois cxtensions K[k in 21k, let K|k be the
composite of all K, |k, and K[k the composile of the cxtensions K |k such that
J#i 1K, 0K =k forall i, then one has a topological isomorphism

G(K k) = J]GK k).
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Exercise 3. A compact Hausdorff group is totally disconnected if and only if
its neutral clement admits a basis of ncighbourhoods consisting only of normal
subgroups.

Exercise 4. Every quoticnt G/H of a profinite group G by a closed normal subgroup
H is a profinile group.

Exercise 5. Let G be the closure of the commutator subgroup of a profinite group,
and G = G/G'. Show that cvery continuous homomorphism G — A into an
abelian profinite group factorizes through G**,

§ 2. Projective and Inductive Limits

The notions of projective, resp. inductive limit generalize the operations
of intersection, resp. union. If {X;};¢; is a family of subsets of a topological
space X which for any two sets X;,X; also contains the set X; N X;
(resp. X; U X;), then the projective (resp. inductive) limit of this family is
simply de ined by

lim X=X Gesp. lim X, =X

ict iel iel iel
Writing i < j il X; € X; (resp. X; € X;) makes the indexing set / into a
directed system, i.€., an ordered set in which, for every pair i, j, there exists
a k such that i < & and j < £. In the case at hand, such a & is given by
Xp = X; N X; (resp. Xy = X; UX)). For i < j we denotc the inclusion
X; = X; (resp. X; <= X;) by fi; and obtain a system {X,. fi;} of sets
and maps. The operations of intersection and union are now generalized by
replacing the inclusions f;; with arbitrary maps.

(2.1) Definition. Let I be a dirccted system. A projective, resp. inductive
system over [ is a family {X;, fi; 1 i, j € 1. i < j} of topological spaces X;
and continuous maps

fij i X; — Xi. resp. fy; 1 Xi — X,
such that one has f;; = idx, and
fik = Jijo fix, resp. fu = [ fij.

wheni < j <k.

In order to define the projective. resp. inductive limit of a projective,
resp. inductive system {X;, f;}, we make use of the direct product [];.; X,,
resp. the disjoint union [ [;.; X;.

iel
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(2.2) Definition. The projective limit
X = lim X;
Jm
iel
of the projective system {X;, fi;} is defined to be the subset

X = e € [1Xi ] fiyep) =x; for i< j}
iel

of the product [1,; X;.

The product [];.; X; is equipped with the product topology. If the X; are
Hausdorfl, then so is the product, and it contains in this case X as a closed
subspace. Indeed, one has

where Xij = { (tidier € [1g Xe | fij(x;) = x:], so that it suffices to show
the closedness of the sets X;;. Writing p; : ]_[k&, Xy — X; for the i-th
projection, the two maps ¢ = p;, f = fijop;j i [l Xx = Xi are
continuous, and we may write X;; = {x e[l Xulg) = f(x)}. But in
the Hausdorff case the equation g(x} = f(x) defines a closed subset. This
representation X = [);.; X;; also gives the lollowing

(2.3) Propesition. The projective limit X = lim X; of nonempty compact
spaces X; is itself nonempty and compact. i

Proof: If all the X; are compact, then so is the product [];.; X:, by
Tykhonov’s theorem, and thus aiso the closed subset X. Furthermore,
X = ﬂ:;/ X;; cannot be the empty set if the X; are nonempty. In fact.
as the product H, X; is compact, there would have to be an intersection
of finitely many X;; which is empty. But this is impossible: if all indices
catering into this finite intersection satisfy i, j < n, and if x, € X,,, then the
element (x;)ie; belongs to this intersection, where we choose x; = fip(x),
for i < n, and arbitrarily for all other /. (]

(2.4) Definition. The inductive limit
X = lim X;
0
icl
of an inductive system {X;, f;;} is defined to be the quotient

X = (LX) /~
of the disjoint union | [;; X;. where we consider two elements v; € X; and

xj € X; equivalent if there exists a k > i, j such that

S = frdx)).
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In the applications, the projective and inductive systems {X;, fij} that
oceur will not just be systems of topological spaces and continuous maps,
but the X; will usually be topological groups, rings or modules, etc., and
the fi; will be continuous homomorphisms. In what follows, we will deal
explicitly only with projective and inductive systems {G}, g;;} of topological
groups. But since everything works exactly the same way for systems of
rings or modules, these cases may be thought of tacitly as being trcated
as well.

Let {G;. gi;} be a projective, resp. inductive system of topological groups.
Then the projective, resp. inductive limit

G:Liﬂ Gy, resp. G=lim Gy

iel iel
is a topological group as well. The multiplication in the projective
limit is induced by the componeniwise multiplication in the product
[lic; Gi- In the casc of the inductive limit, given two cquivalence classes
x.ye G = llﬂ G, one has to choosc representatives x; and y; in the

iel
same G in order to define
xy = cquivalence class of xgyy .

We leave it to the reader to check that this definition is independent of the
choice of representatives, and that the operation thus defined makes G into
a group.

The projections p; : ﬂ,e, G; — Gy, resp. the inclusions ¢; : G; —
U;.; Gi. induce a family of continuous homomorphisms
g :G— G;. resp. g:G, — G

such that g = g o g;, resp. & = g; o gi;. for i < j. This family has the
following universal property.

(2.5) Proposition, If 11 is a topological group and
hitH— G, resp. h:G; — H
is a family of continuous homomorphisms such that

hi=gijohj, resp. hi=hjogy

fori < j, then there exists a unique continuous homomorphism

—

h:[l—»(}:li(__m Gi. resp. h:G=lim G — H
i i

satisfying hi = gioh, resp. hij = hog; foralli el.
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The easy proof is left to the reader. A morphism between two projective,
resp. inductive systems {G, g;} and (G’.,gl'/) of topological groups is a
family of continuous homomorphisms f; : G; — G}, i € I, such that the
diagrams

6 ¢ 6 g
«VUJ Jk,’h resp. L T I
¢ G G I G

commute for i < j. Such a family (f;)ie; defines a mapping
f:M16G: — [1G;. resp. f:]]G; — |[Gis
iel iel iel il

which induces a homomorphism

folim Gi— lim Gi, resp. f: lim G, —> lim G
iet iel il iel
In this way lim , resp. lim . becomes a functor. A particularly important
property of this functor is its so-called “cxactness™. For the inductive
limit lﬂ; , exactness holds without restrictions. In other words, one has the

(2.6} Proposition. Let « : (G;,g,'/) — (Gr.gij} and B 2 {Gi.gij) —
{G}. g‘”/.) be morphisms between inductive systems of topological groups
such that the sequence
G; @ G; B G;'
is exact for every i € /. Then the induced sequence
lim G, < tim G £ lim 67
iel iel iel

is also exact.

Proof: Let G’ = lim G;, G = lim G;, G = linp Gy. We consider the
i i
commutative diagram

G G 2 G
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Let ¥ € G be such that 8(x) = 1. Then there exists an i and an x; € G; such
that g;(x;) = x. As

g Bil) = Bgi(x) = Bx) = 1.

there exists j > i such that f;(x;) equals 1 in (,’/ Changing notation, we
may therefore assume that 8;(x;) = I, so that there exists y; € G; such that
a;(y;) = x;. Pulling y = g/ (). we have a(y) = x. [m]

The projective limit is not cxact in complete generality, but only for
compact groups, so that we have the

(2.7) Proposition. Let « : {G].g;;} — {Gi.gy} and B : {Gi.gij) —
(G} 8};) be morphisms between projective systems of compact topological
groups such that the sequence

G,’ @ G A G;/
is exact for every i € 1. Then

lim G} % lim G; P> m 67
: ; i

is again an cxact scquence of compact topological groups.

Proof: Let ¥ = (x,)ies € h(Ln Gy oand B(x) = 1, so that 8;(x;) = 1 for

i
alt i € /. The preimages ¥; = otf'(,\’,) C G then form a projective system
of nonempty closed, and hence compact subsets of the G;. By (2.3), this
means that the projective limit ¥ = lim Y; € lim G} is nonempty. and

« maps cvery element y €Y tox. ' i}

Now that we have at our disposal the notion of projective limit, we
return (o our starting point, the profinite groups. Recall that these are the
topological groups which are Hausdorff, compact and totally disconnected,
i.e., they admit a basis of neighbourhoods of the neutral element consisting
of normal subgroups. The next proposition shows that they are precisely the
projective limits of finite groups (which we view as compact topological
groups with respect to the discrete topology).



270 Chapter IV. Abstract Class Field Theory

(2.8) Proposition. If G is a profinite group, and if N varies over the open
normal subgroups of G, then one has, algebraically as well as topologically,
that

5}
I3

lim G/N.
If conversely {G, gi;) is a projective system of finite (or even profinite)
groups, then
G = IE G;
i

is a profinite group.

Proof: Let G be a profinite group and let {N; | i € 1} be the family of its
open normal subgroups. We make / into a directed system by defining / < j
if N; 2 N;. The groups G; = G/N; are finite since the cosets of A in
G form a disjoint open covering of G, which must be finite because G is
compact. For i < j we have the projections g;; : G; — G; and obtain a
projective system {G;, g;;} of finite, and hence discrete, compact groups. We
show that the homomorphism
fiG— lm G, or—> Tloi. o0i=0mod N,
il iel

is an isomorphism and a homeomorphism. f is injective because its kernet
is the intersection (7)o, N;, which equals (1} because G is Hausdorff and
the N; form a basis of neighbourhoods of 1. The groups

Us =T1Gi x TT{1g; )
¢S ie§

with § varying over the finite subsets of /, form a basis of neighbourhoods
of the neutral element in [];, G;. As f~'(UsN lim G;) = Mies Ni» we see
that f is continuous. Moreover, as G is compact, the image f(G) is closed
in IL“ G;. On the other hand it is also dense. For if x = (x;);¢; € ll(_m G,
and x{Ug N l& G} is a fundamental neighbourhood of x, then we may
choose a y € G which is mapped to x; under the projection G — G/N,
where we put N = ﬂ,e_\ N;. Then y mod N; = x; forall i € S, so that
f(y) belongs to the neighbourhood x(Ug N lg ;). Therefore the closed
set f(G) is indeed dense in l& G;, and so f(G) = lim G;. Since G
is compact, f maps closed scts into closed sets, und thus also open sets
into open sets. This shows that f : G — lim G, is an isomorphism and a
homeomorphism.

Conversely, let {G;, gi;} be a projective system of profinite groups. As
the G; are Hausdorfl and compact, so is the projective limit G = lim G;,
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by (2.3). If N; varies over a basis of neighbourhoods of the neutral element
in G; which consists of normal subgroups, then the groups
Us =Tl Gi x T] Ni.
igs ies

with § varying over the finite subsets of /, make up a basis of neighbourhoods
of the neutral element in [],.; G; consisting of normal subgroups. The normal
subgroups Us N lim G; thercfore form a basis of neighbourhoods of the
neutral element in lim G,; thus lim G; is a profinite group.

Let us now illustrate the notions of profinite group and projective limit by
a few concrete examples.

Example 1: The Galois group G = G(£2|k) of a Galois extension 21k
is a profinite group with respect to the Krull topology. This was already
stated in § 1. If K |k varies over the finite Galois subextensions of $21k, then,
by definition of the Krull topology, G (£2|K) varies over the open normal
subgroups of G. In view of the identity G (K |k) = G(R1k)/G(2]1K) and
of (2.8), we thercfore obtain the Galois group G (£2|k) as the projective limit
G(R2)k) = h£ G(K k)
of the tinite Galois groups G(K |k).

Example 2: If p is a prime number, then the rings Z/p"Z, n € N, form
a projective system with respect to the projections Z/p"Z — Z/p™Z,
for n > m. The projective limit

Zy=lm Z/p"Z

n

is the ring of p-adic integers (sec chap. 11, § 1).
Example 3: Let o be the valuation ring in a p-adic number field K and pits
maximal idcal. The idcals p”, n € N, make up a basis of neighbourhoods of

the zero element 0 in ©. © is Hausdortt and compact, and so is a profinite ring.
The rings o/p”, n € N, arc finite and we have a topological isomorphism

o = lim o/p", ar— [](amodp").
" neN
The group of units U = o* is closed in ©, hence Hausdorff and compact,
and the subgroups &/ ") = | + p” form a basis of neighbourhoods of 1 € /.

Thus
U= lim U
n

is also a profinite group. In fact, we have seen all this already in chap. 11, §4.
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Example 4: The rings Z/aZ. # € N, form a projective system with respect
to the projections Z/nZ — Z/mZ, n|m, where the ordering on N is now
given by divisibility, n|m. The projective limit

Z = lim Z/nZ

s

was originally called the Priifer ring, whereas nowadays it has become
customary 1o refer to it by the somewhat curt abbreviation “zed-hat”
(or “zee-hat™). This ring is going (o occupy quitc an important position
in what follows. It contains Z dense subring. The groups nZ, n € N, are
precisely the open subgroups of 7, and it is easy to verily that

Z/nZ = T/nZ.

Taking, for each natural number #, the prime factorization n = [, p'7, the
Chinese remainder theorem implies the decomposition

#/nZ = 110/ p" L
»

and passing 1o the projective limit,

I

7

I1Zp-
»

This takes the natural embedding of Z into 7 to the diagonal embedding
7=, Zp ar> (a.a,a....).

Example 5: For the field F, with ¢ elements, we get isomorphisms
GFqIF,) = Z/nZ.
one for every n € N, by mapping the Frobenius autormorphism ¢, 1o
1 mod nZ. Passing to the projective limit givee an isomorphism
G(F,IF,) =z

which sends the Frobenius automorphism ¢ € G(F‘,UF(,) to | € Z. and the
subgroup (¢) = {¢" | n € Z} onto the dense (but not closed) subgroup Z
of Z. Given this, it is now clear, in the example at the beginning of this
chapter, how we were able to construct an clement ¥ € (;(TF“, |F,;) which did
not belong to (). In fact, looking at it vi the isomorphism G ( W‘/ |Fy) =

what we did amounted to writing down the clement

(....0.0,1,,0.0... e[]Z =7
&

which does not belong to Z.
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Example 6: Let @\Q be the_extension obtained by adjoining all roots
of unity. Its Galois group G(@\Q) is 1hen Lannmcally _isomorphic (as a
topological group) to the group of units Z" =11,Z, of Z,

GQI =2

This isomorphism is obtained by passing to the projective limit from the
canonical isomorphisms

G(Q{un) Q) = (Z/n)*,

where 1, denotes the group of -th roots of unity.

Example 7: The groups Z, and 7 are {additive) special cases of the class
of procyelic groups. These are profinite groups G which are topologically
generated by a single element o ; i.c., G is the closure (g} of the subgroup
(¢) ={o" | n € Z}. The open xubgroups of a procyclic group G = (o) arc
all of the form G". Indeed, G” is closcd, being the image of the continuous
map G — G, x = x". and the quotient group G/G" is finite, because it
contains the finite group {o¥ mod G" |0 < v < n} as a dense subgroup,
and is therefore equal to it. Conversely, if H is a subgroup of G of index n,
then G" S H CGandn=(G:H)<(G:G" ) < n,sothat H = G".

Every procyclic group G is a quotient of the group Z.In fact, if G = ),
then we have for every n the surjective homomorphism

%/nZ — G/G", | mod n¥% > o mod G”,
and in view of (2.7). passing to the projective limit yields a continuous
surjection 7Z — G.
Example 8: Let A be an abelian torsion group. Then the Pontryagin dual
Xx(AY = Hom(A,Q/Z)
is a profinitc group. For one has
A=A,
i
where A; varics over the finite subgroups of A, and thus

X(A) = lim x(4;)

with finite groups x(A;). If for instance,

a=qQ/z=J tzsm.
neN
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then x(1Z/Z) = Z/nZ, so that

X(@Q/%) = Yim Z/nZ =Z.

Example 9: If G is any group and N varies over all normal subgroups of
finite index, then the profinite group
G = lim G/N
N
is called the profinite completion of G. The profinite completion of Z. for
example, is the group Z = lim Z/nZ.
n

Exercise L. Show that, for a profinite group G, the power map G x Z — G.
(¢,n) = ", cxtends to a continuous map
GxZ—>G., (6.0 0",

and that one has (79)” = ¢ and ¢“** = 60" it G is abelian.

Exercise 2. I 0 ¢ G and ¢ = lim @; € Z with ¢ € Z, then o = Jim o is in G.
i fis

Exercise 3. A pro-p-group is « profinite group G whose quotients (G /N . modulo all
open normal subgroups N, are finite p-groups. Imitating excrcise 1, make sense of
the powers o, for all o € G and a € Z,.

Exercise 4. A closed subgroup H of a profinitc group G is called a p-Sylow
subgroup of G if, for every open normal subgroup N of G. the group HN/N is &
p-Sylow subgroup of G/N. Show:

(i) For every prime number p, there cxists a p-Sylow subgroup of G.

p

(iii) Fvery two p-Sylow subgroups of G are conjugate.

Every pro-p-subgroup of G is contained in & p-Sylow subgroup.

Exercise 5. What is the p-Sylow subgroup of 7 and of Z} 7
Exercise 6. If (G,} is a projective system of profinitc groups and G = lm G,

then G** = lim G (sce § 1, exercise 5).
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§ 3. Abstract Galois Theory

Class field theory is the final outcome of a long development of algebraic
number theory the beginning of which was Gauss's reciprocity law

()=

b/\al o

The endeavours to generalize this law finally produced a theory of the abelian
extensions of algebraic and p-adic number fields. These extensions L|K are
classified by certain subgroups N = Nyx A; of a group Ag attached to
the basc field. In the local » Ag is the multiplicative group K* and in
the global case it is 1 modification of the ideal class group. At the heart of
this theory there is a mysterious canonical isomorphism

GILIK) = Ax/Npig AL,

which — if we view things in the right way — encapsulates the reciprocity
law in its most general form. Now, this map can be abstracted completely
from the ficld-theoretic situation and treated on a purely group theoretical
basis. In this way. class field theory can be given an abstract, but elementary
foundation, to which we will now turn.

We begin our considerations by giving ourselves a profinite group G.
The theory we are about to develop is purely group theoretical in nature.
However, the only applications we have in mind are field theoretical, and the
language of field theory allows immediate insights into the group theoretical
relations. We will therefore formally interpret the profinite group G as a
Galois group in the following way. (Let us remark in passing that every
profinite group is indeed the Galois group G = G(k|k) of a Galois field
extension k|&; this will allow the reader to rely on his standard knowledge
of Galois theory whenever the formal development in terms of group theory
alone would seem odd.)

We denote the closed subgroups of G by G, and call these indices K
“fields”; K will be called the fixed field of G . The field & such that Gy =G
is called the base field, and k denotes the field satisfying Gy = {1). The
field belonging to the closure (@) of the cyclic group (o) = {o* | k € %}
generated by an element o € G is simply called the fixed field of o.

We write formally K € L or LIK if G, C G, and we call the pair
L|K a ficld extension. LK is called a finite cxtension, if G is open, i.c..
of {inite index in G, and this index

IL:Kl:=(Gg :Gyp)
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will be called the degree of L|K. L|K is said to be normal or Galois il Gy,
is a normal subgroup of G . If this is the case, we define the Galois group
of LK by

G(LIK)=Gk/GL.

If N O L 2 K arc Galois extensions of K, we define the restriction of an
element o € G(N|K) to L by
olp =o mod G(N|L) € G(L|K).
This gives a homoemorphism
G(N|K) — G(L|IK), ovr—=olp,
with kernel G(N|L). The extension L|K is called cyclic, abelian, sotvable,
etc., if the Galois group G(L|K ) has these properties. We put

K =NK; (“intersection”}
i

if G is topologically generated by the subgroups G, and
K =[]K; (“composite™)
i

ifGg =Gk, f G- =0 Gyo foro € G, we write K’ = K.

Now let A be a continuous multiplicative G-module. By this we mean
a multiplicative abelian group A on which the elements o € G operate as
automorphisms on the right, o : A — A, @ > a°. This action must satisfy
i ¢ ' =a,
Gi) (ab)” =a%h°,
(i) ¢”* = @")",
i) A =Ugpy<oo Ak

where Ax in the last condition denotes the fixed module A%« under G,
so that

Ag = [ae/\|a” =a foralle EGKI.
and where K varies over all extensions that are finitc over . The
condition (iv) says that G operates continuously on A, i.c., the map

GxA— A, (c.@)—d°.

is continuous, where A is equipped with the discrete topology. Indeed. this
continuity is equivalent to the fact that, for every element {o.a) € G x A,
there exists an open subgroup U = G of G such that the neighbourhood
ol x {a} of (o, ) is mapped to the open set {a”}, and this means simply
that a® € AY = Ak.
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Remark: In the exponential notation ¢”, the operation of G on A appears
as an action on the right. This notation is adequate for many computations
in the e of multiplicative G-modulcs A. For instance, the notation
a®~' = a”q™" is to be preferred to writing (¢ — )a = aa -a~'. On the
other hand, classical usage often calls for an operation on the left. Thus in the
case of a Galois extension L|K of actual fields, the Galois group G(L|K)
acts as the automorphism group on L from the left, and therefore also in the
same way on the multiplicative group L*. This occasional switch from the
left to the right should not confuse the reader.

For every extension L|K we have Ag € A, and if L|K is finite, then
we have the norm map

Neg 2 AL — Ag. Npg(@ =]1a%,
-
where o varies over a system of representatives of Gy \Gg. If L|K is Galois,
then A; is a G(L|K)-module and one has
AZ;(I,\K) = A
At the center of class field theory there is the nerm residue group
HYG(LIK). AL) = Ag [Nk A
‘We also consider the group
HGWIK), AL) =y, AL/ lGwix) Ar -
where
Wex AL ={a € AL| Nykia) = 1)
is the “norm-one group” and I 1k) AL is the subgroup of Nik At which is
generated by all elements

with e € Az, and 0 € G(LIK). If G(L]K) is cyclic and o is a generator,
then /G 1x) AL is simply the group

A7 ={a" " a e ALl
In fact, the formal identity o — 1 = (1 + 0 + - + 0*~")(o = 1) implies

@ V= with b= [1E e

Let us now apply the notions introduced so far to the cxample of Kummer
theory. For this, we impose on the G-module A the following axiomatic
condition.
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(3.1) Axiom. One has H™G(L\K),A) = 1 for all finite cyclic
extensions L|K .

The theory we are about to develop makes reference to a surjective
G -homomorphism
prA— A, ar—a¥,

with finite cyclic kernel p,. The order n = #uy, is called the exponent of
the operator g. The case of prime interest to us is when g is the n-th power
map a > a". and pg, =, = (§ € A| & = 1} is the group of “n-th roots
of unity” in A.

We now fix a field K such that u,, C Ag. For every subset B C A,
let K (B) denote the fixed field of the closed subgroup

H={oeGg|b" =b forall beBj

of Gg. If B is Gk -invariant, then K (B)|K is obviously Galois. A Kummer
extension (with respect to ) is by definition an extension of the form

K(p™(A) K.

where A C Ag. A Kummer extension K (™' (A)|K is always Galois,

and its Galois group is abelian of exponent n. Indeed, for an extension

K (p~"(@)|K , we have the injective homomorphism
G(K(p™ @)IK) —> np, or—a’,

where @ € p~'(a). Since py, € Ag, this definition does not depend
on the choice of . Thus, for a Kummer extension L = K(p~'(4)) =
[Teca K (97" (@)}, the composite map

GLIKY — [1G(Kp~ " @IK) — up
asA
is an injective homomorphism.

The following proposition says that conversely, any abelian extension
L|K of exponent # is a Kummer extension.
(3.2) Propesition. If L|K is an abclian extension of exponent n, then
L=K(p "(A) with A4=A7NAk.

if in particular, L|K is cyclic, then we find I = K (o) witha¥ =a € Ag.
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Proof: We have p~'(4) © AL, for if x € A and x® = «¥ = a € A,
« € A, then ¥ = £a € Ay for some £ € gy € Ag. Therefore
K (% (A)) € L. On the other hand, the extension L|K is the composite of
its cyclic subextensions. For it is the composite of its finite subextensions,
and the Galois group of a finite subextension is the product of cyclic
groups, which may be interpreted as Galois groups of cyclic subextensions.
Let now M|K be a cyclic subextension of L|K. It suffices 1o show that
M C K(p~'(A)). Let @ be a generator of G(M|K) and ¢ a generator
of . Letd = [M: K|, d =n/d and § = ;. Since Nyx (5) = £4 = 1,
(3.1) shows that § = «®~' for some o € Apy. Thus K © K(e) € M.

But o = Ea. Thus & = «a is equivalent to i = 0 mod d, so that
K (@) =M. But (a®)"~" = (a°) = ¥ = |, so that a = a¥ € Ag: then
@ € p7'(A), and therefore M C K (p~'(A)). 0

As the main result of general Kummer theory, we now obtain the following

(3.3) Theorem. The correspondence
Ar—L=K(p "(4)

is a 1-1-correspondence between the groups A such that /\fg C AC Ay and
the abelian extensions L|K of exponent n.

If A and L correspond to each other, then Af NAg = A, and we have a
canonical isomorphism

A/AY = Hom(G(LIK), ). amod AY — x,,

where the character x, : G(LIK) — p,, is given by x,(6) = «" ', for
aep ().

Proof: Let L|K be an abelian extension of cxponent #. By (3.2), we then
find L = K (p~'(4)) with A = AY N Ax. We consider the homomorphism
A — Hom(G(LIK). pp). a— x4,

where x,(0) =a"" x e p"(a). Since
Xa=1 <3 o' =1 forallo € G(L|K)
= a€Ag &> a=ao¥ cAf,

it has the kernel Af; . To prove the surjectivity, we let x € Hom(G(L|K), o)
x defines a cyclic extension M|K and is the composite of homomorphisms

G(LIK) - G(MIK) 2> puy,. Let o be a generator of G(M]K). Since
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Nk (X(0)) = X (@)K = 1, we deduce from (3.1) that ¥ (0) = ! for
some @ € Ay. Now, (@)7 ' = (a®~'}¥ = X(0)¢ = 1, so that g = ¥ €
AP A = A. For T € G(LIK), one has x (1) = F(zlw) =a™~! = xa(@).
so that ¥ = xa. This proves the surjectivity, and we obtain an isomorphism

4/A% = Hom(G(LIK). 1p) -

If A is any group between A‘}z and Agx and if L = K(p~'(A)), then
A = AY N Ag. In fact, putting A" = A¥ 1 Ag, we have just seen that one
has

A'/AY = Hom(G(LIK). ) -

The subgroup A/A';; corresponds under Pontryagin duality to the subgroup
Hom(G(L|K)/H . 1p), where

H={oeGUIK)| talo)=1 forall aea}.

As o | = yu(o) for @ € p (@), H leaves fixed the clements
of ©~'(A), and as K(p~'(4) = L. we find that /I = 1, so that
Hom(G(L|K)/H,1yp) = Hom(G(L|K), wp). It follows that A/A‘;; =
AJAY e, 8 =4

It is therefore clear that the correspondence A t» L = K(p~'(4)) is
a 1—I-correspondence, as claimed. This finishes the proof of the theorem. []

Remarks and Examples: 1) If L|K is infinite, then Hom(G (LK), 1)
has to be interpreted as the group of all continuous homomorphisms
% : G(LIK) = jtp, ie., as the character group of the topological group
G(L|K).

2) The composite of two abelian extensions of K of exponent n is again
of the same type, and all of them lie in the maximal abelian extension of
exponent #. It is given by K = K{'(Ax)), and for the Pontryagin dual

G(RIK)* = Hom(G(K|K).Q/Z) = Hom(G(K|K). 1)
we have by (3.3) that N
GKIK)™ & Ax/AL.

3) If & is an actual field of positive characteristic p and k is the separable
closure of k, then A may be chosen to be the additive group k and g to be
the operator

g:k— k. ars>pa=a’—a.

Then axiom (3.1) is indeed satisfied, for we have, in completc generality:
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(3.4) Proposition. For every cyclic finite field extension L|K, onc has
H='GLIK), L)y = 1.

Proof: The extension L [K always admits a normal basis {o¢| o € G(L|K)}.
so that L = @, Koc. This means that L is a G(L|K)-induced modulc in
the sense of §7, and then H~"(G(L|K),Ly =1, by (7.4). O

The Kummer theory with respect to the operator pa = a” — a is usually
called Artin-Schreier theory.

4) The chief application of the theory developed above is to the case where G
is the absolute Galois group G (k |&) of an actual field £, A is the mulupluauve
group &* of the algebraic closure, and g is the n-th power map a — a”, for
some natural number n which is relatively prime to the characteristic of k
(in particular, n is arbitrary if char(k) = 0). Axiom (3.1) is alway: sfied
in this case and is called Hilbert 90 because this statement occurs as Safz
number 90 among the 169 theorems in Hilbert’s famous “Zahlbericht™ [72).
Thus we have the

(3.5) Theorem (Hilbert 90). For a cyclic field extension LI|K one always
has
H Y GWLIK), L) =1

In other words:
An element w € L* of norm Ny (e) = 1 is of the form a = g7,
where 8 € L* and o is a generator of G(L|K).

Proof: Letn = [L : K]. By virtue of the linear independence of the automor-
phisms 1,0, ....¢" ! (sec [15], chap. 5, §7, no. 5), there exists an element
¥ € L* such that

B=y+ar® +D(I1»nyrrl P Zyn”" £0.
As Nijx (@) =1, one gets off” = B, and thus & = ', 0O
If now the field K contains the group w, of n-th roots of unity, the

operator g{(a} = ¢" has exponent n, and we obtain the following corollary,
which is the most important special case of theorem (3.3).
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(3.6) Corollary. Let n be a natural number which is relatively prime to the
characteristic of the field K , and assume that 11, € K.

Then the abelian extensions L|K of exponent n correspond 1—1 to the
subgroups A € K* which contain K*", via the rule

A L=K(V2).
and we have

G(L|K) = Hom(A/K™, tin).

Hilbert’s theorem 90, which is the main basis of this corollary. admits the
following generalization to arbitrary Galois extensions L | K , which goes back
to the mathematician Emvy Nogrer (1882-1935). Let G be a finite group
and A a multiplicative G -module. A 1-cocycle, or crossed homomorphism.
of G with values in A is a function f : G — A satisfying

flon) = floy f(D)
for all o, 7 € G. The 1-cocycles form an abelian group Z'{(G, A). For every
a € A, the function
fulo) =a” !
is a 1-cocycle, for one has
fulory =" 1 = @ e = folo) fu(®.

The functions f; are called 1-coboundaries and form a subgroup B "G, A)
of ZI(G, A). We define

HU(G. A) = Z"(G, A/B G, A)

and obtain as a first result about this group the
(3.7) Proposition. If G is cyclic, then HYG. A) = HY(G, A).
Proof: Let G = (o). If f € Z'(G., A), thenfork > |

764 = flat Y fey = fF D fl@) flo) = = *g', fey,
and £(1) = 1 because f(1) = f(1)f(1). If n = #G, then

n-1
Nefloy=T1 fle)” = fleh=fh=1,
i=0
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so that f(0) € nyA = {a € A|Nga = [ a® = 1}. Conversely we
obtain, for every a € A such that Nga = 1, a I-cocycle by putting (o) =a
and

k=1 i

feh=Tla"

i=0
The reader is invited to check this. The map f — f(o) therefore is an
isomorphism between Z'(G, A) and N A- This isomorphism maps B'(G, A)
onto I A, because f € BN(G, A) < f(o*) = a®" ! for some fixed @ <=
f@)=a° ' flo) e IgA. [m]

Nocther’s generalization of Hilbert’s theorem 90 now reads:

(3.8) Proposition. For a finite Galois field extension L|K , one has that
HYGLIK), L) = 1.

Proof: Let f: G — L* be a I-cocycle. For ¢ € L*, we put
a= ¥ flo)x’.
eG(LIK)
Since the automorphisms o are linearty independent (see [15], chap. 5, §7,
n0.5), we can choose ¢ € L* such that o # 0. For 7 € G(L|K), we obtain

o' =Y )T =L fO 7 fon)e"™ = f() e,

T

e, f(1)=p"" withg =o', ]

This proposition will only be applied once in this book (see chap. VI.
(2.5)).

Exercise 1. Show that Hilbert 90 in Nocther’s formulation also holds for the additive
group L of a Galois cxtension L|K.
Hint: Use the normal basis thcorem.
Exercise 2. Let £ be a ficld of characteristic p and k its separable closure, For fixed
7 = 1, consider in the ring of Witt vectors W (k) (see chap. i1, §4, excrcise 2-6) the
additive group W, (k) of truncated Will vectors g = (ap.ay, ... ,a,-1). Show that
axiom (3.1) holds for the G(k|k)-module A = W, (k).
Exercise 3. Show that the operator

p: Wolk) > W,(B), pa=ra—a,
is a homomorphism with cyclic kernel s, of order p". Discuss the corresponding
Kummer theory for the abelian cxtensions of cxponent p”.
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Kxercise 4. Let G be a profinite group and A a continuous G -module. Put
H'(G. Ay = Z"(G.A)/B'(G. A),

where Z'(G, A) consists of ail continuous maps f : G — A (with respect to the
discrete topology on A) such that f(ar) = f(0) [ (1), and B'(G. A) consists of
all functions of the form f,(o) = @” ', @ € A. Show that if g is a closed normal
subgroup of G, then one has an exact scquence

| = HY(G/g. AY — HYG. A — 1'(g.4).
Exercise 5. Show that H'(G.A) = lim I/1(G/N,A™), where N varies over al)
the open normal subgroups of G.
Exercise 6. If | — A — B — € — 1 is an exact sequence of continuous
G -modules, then one has an exact sequence

| > A% = BY Y > H'(G,A) - H'(G,B) — H'(G.C).

Remark: The group 17'(G. A) is only the first term of « whole series of groups
HI(G. A). i = 1,2.3. ..., which arc the objects of group cohomology (see [145]).
Class ficld theory can also be built upon this theory (see |10], [108]).

Exercise 7. Even for infinite Galois extensions L1, one has Hilbert's theorem 90:
HUGLIK). 1) =1,
Exercise 8. If 7 is not divisible by the characteristic of the ficld K and if s, denotes
the group of #-th roots of unity in the scparable closure K, then

H' (Gt = K7/KT

§ 4. Abstract Valuation Theory

The further devclopment will now be based on a fixed choice of a
surjective continuous homomorphism

d:6—1

from the profinite group G omto the procyclic group 7= lim Z/nZ (see
§2, example 4). This homomorphism will produce a theory which is an
abstract reflection of the ramification theory of p-adic number ficlds. Indeed,
in the case where G is the absolute Galois group G = G (k)k) of a p-adic
number field &, such a surjective homomorphism d : G — 7. arises via the
maximal unramified extension k|k: if F, is the residue class field of k. then,
by chap. J1, §9. p. 173 and example 5 in §2, we have canonical isomorphisms

Gl = G(F,IF) =7
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which associate 1o the element | € Z the Frobenius automorphism
¢ € Gk|k). It is defincd by

a’=a'modp for aed.
where &, resp. i, denote the valuation ring of &, resp. its maximal idcal. The
homomorphism d : G — 7 in question is then given, in this concrete case.

as the composite "
G — Gy —= 7.

In the abstract situation, the initial choice of a surjective homomorphism
d : G — 7 mimics the p-adic case, but the applications of the theory are by
no means confined to p-adic number fields. The kernel / of d has a certain
fixed field £k, and ¢ induces an isomorphism G(k|k) = Z.

More generally, for any field K we denotc by /x the kemel of the
restriction d : Gx — Z, and call it the inertia group over K. Since

Ik =Gk NI =Gk NGy =G yq.
the fixed field & of I is the composite
K =Kk
We call ElK the maximal unramified extension of K. We put
fx = (iid(GK)). ex =(1:1g)
and obtain, when fx is finite. a surjective homomorphism

1 -
dx = —d:Gxk — 7
fr

with kernel /¢, and an isomorphism

dy GKIKy -5 7.

(4.1) Definition. The element ¢k & G(I?}K) such that dx(pg) = | is
called the Frobenius over K.

For a field extension L|K we define the inertia degree f, x and the
ramification index ¢; x by

frig =(d(Gy):d(GL)) and epx = Uk : 1p).
For a tower of fields K C L € M this definition obviously implies that

fui = frk fe and ewnx = epik e -
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(4.2) Proposition. For every extension L|K we have the “fundamental
identity”
[L:K|=fLkeLk-

Proof: The exact commutative diagram

| — I —— G —— d(G) — 1

L |

1 — Ix —> Gx —> d(Gg) — |

immediately yields, if L|K is Galois, the exact scquence
1 — Ig /1, — GLIK) — d(Gk)/d(Gr) — 1.

If LK is not Galois, we pass to a Galois extension M| K containing L, and
get the result from the above transitivity rules for ¢ and 1. a

L|K is called unramified if e; x = 1, ie., if L © K. LIK is called
totally ramified if frx =1, ie,if LN K K. In the unramified case, we
have the surjective homomorphism

G(K|K) — G(LIK)
and, if fx < oo, we call the image @1k of gk the Frobenius automorphism
of L|K.

For an arbitrary extension L|K one has
L=LK.
since LK = LKE = LE =L, and LN I?\K is the maximal unramificd
subextension of L|K . It clearly has degree
Fuk =ILNK K.
Equally obvious is the
(4.3) Proposition. If fx and f; are finite, then frix = fu/fx. and we
have the commutative diagram
4 -
G, —= I
[
Gk % 7.

In particular, one has @11z = w,f(' ",
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The Frobenius automorphism governs the entire class field theory like
a king. It is therefore most remarkable that in the case of a finite Galois
extension L| K, every ¢ € G(L|K) becomes a Frobe automorphism once
it is manceuvered into the right position. This is achieved in the following
manner. For what follows, let us assume systematically that fx < oc.
We pass from the Galois extension L|K to the extension L{K and consider
in the Galois group G{L|K) the semigroup

Frob(L|K) = {0 € G(LIK) | dk (o) € N} .

Observe here that dx : Gx —> 7 factorizes through G(Z\K) because
G Ip © Ik recall also that O ¢ N, Firstly, we have the

I

(4.4) Proposition. For a finite Galois extension L|K the mapping
Frob(L|K) — G(LIK), o+ o],

is surjective.

Proof: Let 0 € G(L|K) and let ¢ € G(ZlK) be an element such that
di(p) = 1. Then ¢z = px and ¢l 5 = @1k k- Restricting o to the
maximal unramified subextension L N K|K, it becomes a power of the
]irobenifs automorphism, o |,z = ‘ﬂ;l.ml?u(' so we may choose n in N. As
L =LK, we have

GIIK) = GLILNEK).

fnow t € G(LIR) is mapped to o "|; under this isomorphism, then
7" is an element satisfying &1, = t¢"|; = 0¢™"¢"|; = o and
& = @k - Hence dg(5) = n, and so & € Frob(L|K).

Qe

Thus every element ¢ € G(L|K) may be lifted to an clement
& e Frob(L|K). The following proposition shows that this lifting, considered
over its fixed ficld, is actually the Frobenius automorphism.

(4.5) Proposition. Let & € Frob(ZJK), and let X be the fixed field of &.
Then we have:

) frik =dg (), (i) [Z:K] < oo, (iii) F=I, (v} & =95
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Proof: (i) XN K is the fixed field of 5|7 = o @ o that
frk =1ENK K] =dx(8).

(ii) One has K € £K = £ C L: thus
exix = Uk < I5) =#G(Z1K) < #G(L\K)
is finite. Therefore [Z : K] = frkexix is finite as well.

(iii) The canonical surjection I' = G(L| %) = G(£|X) = Z has to be
bijective. For since I = (&) is procyclic, one finds (I : I'") < n for every
n € N (see §2, p, 273). Thus the induced maps '/ = 7/nZ are bijective
and so is I~ — Z But (“(L\Z‘) C(Z\E) implics that I=%

(iv) f51kdz(8) = di (&) = fxx; thus d(@) = Land so & = ¢, O
Let us illustrate the situation described in the last proposition by a diagram,
which one should keep in mind for the sequel.

(3

L=~

—K

All the preceding discussions arose entirely from the initial datum of the
homomorphism d : G — Z. We now add to the data a multiplicative G-
module A, which we equip with a homomorphism that is to play the réle of
a henselian valuation.

(4.6) Definition. A henselian valuation of A; with respect to d:G — 7 is
a homomorphism N
viAy—> Z
satistying the following properties:
() viA) =ZDZand Z/nZ = Z/nZ foraltn € N,
(il v(NkAg) = fx Z for all finite extensions K 1%,

Exactly like the ongmal homomorphism & : G; — Z the henselian
valuation v : A; — 7 has the property of reproducing itsctf over every finite
extension K of &.
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{4.7) Proposition. For every field K which is finitc over k, the formula
1 .
vk = —voNgy: Ax — Z
fx

defines a surjective homomorphism satisfying the following properties:
() vk =vgnoo forallo € G.
(ii} For cvery finite extension L|K , one has the commutative diagram

v
Ay ——

YK

Ay ——

Sk

B 4 B

Proof: (i) If v runs through a system of representatives of G;/Gg. then
o~'To sweeps across a system of representatives of Gy/o~'Ggo =
G /G go. Hence we have, fora € Ag,

|

oI 5%) = Soo(([14)) = 7 o(Neu)

vga(a®) = ;

Ko
= ug(u).

(ii) For @ € A; one has:

I 1
frkvel@ = frx TLU(NL\A(«)) =7 (Nk x{Npik (@)

I
=vk (N @) . O

(4.8) Detinition. A prime element of Ax is an clement mg € Ak such that
vi () = 1. We put

Uk = {u e Ax | vk (u) =0} .

For an unramified cxtension L|K, that is, an extension such that
fr.x =L : K], we have from (4.7), (i) that v |4, = vg. In particular, a
prime clement of Ag is itself also a prime element of A,. If on the other
hand, L|K is totally ramified Jrik =1, and if 7z is a prime clement
of Ay, then mx = Ny, (7r7) is a prime element of Ay,
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Exercise 1. Assume that every closed abelian subgroup of G is procyclic. Let K |k
be a finile extension. A microprime p of K is by definition a conjugacy class
(o) € G of some Frobenius element o & Frob(k|K') which is not a proper power
&, n = 1, of some other Frobenius element o’ € Frob(k|K ). Let spec(K) be the
set of afl microprimes of K. Show that if L|K is a finite extension, then there is a
canonical mapping

7z spee(L) — spec(K).
Above any microprime p there are only finitely many microprimes P of L. i.c., the
set 7= ! (p) is finite. We writc p to mean P e (p).
Exercise 2. For a finite cxtension L[K and a microprime Plp of L. let
Faup = d(P)/d(p). Show that

Y fpe=I[L:KI
T

Exercise 3. For an infinite extension L|K, let
spec(L) = lim spec(La),
where L, | K varies over the finite subextensions of LK. What are the microprimes
of k2
Exercise 4. Show that if L|K is Galois. then the Galois group G(L|K) operates
transitively on spec(L). The “decomposition group”
Gu(L|K)={6 e GILIK)|P =P}

and if Zg = LEBIX) i the “decomposition ficld™ of 9B € spec(L), then
L|Zg is unramified.

§ 5. The Reciprocity Map

Continuing with the notation of the previous section, we consider again a
profinite group G, a continuous G -module A, and a pair of homomorphisms
d:G——)i, UIAA*)i.
such that d is continuous and surjective and v is a henselian valuation with
respect to d. In the following we introduce the convention that the letter X,
whenever it occurs without embellishments or commentary to the contrary,
will always denote a field of finite degree over k. We furthermore impose the
following axiomatic condition, which will be systematically assumed in the

sequel.

(5.1) Axiom. For every unramified finite extension L|K one has

H(G(LIK),Ur) =1 for i=0. -
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For an infinite extension L}K we set
NekAr = INmix Av .
M

with M|K varying over the finite subextensions of L|K.

Our goal is to define a canenical homomorphism
rpg tG(LIK) — Ag /Npg A
for every ﬁjile Galois extension L}K . To this end, we pass from L|K 1o the
extension L|K and define first a mapping on the semigroup
Frob(L|K) = {0 € G(L|K) | dx (o) e N},

(5.2) Definition. The reciprocity map
1ok Frob(LIK) — Ak /Ny A
is defined by
rZ‘K(n) = Ny (mx) mod NZ\KAZ'
where ¥ is the fixed field of 0 and mz € Ay is a prime element.

Observe that X' is of finite degree over K by (4.5), and o becomes the
Frobenius automorphism @z over X. The definition of rlm(”) does not
depend on the choice of the element 7 5. For another one differs from 7 s
only by an element u € U, and for this we have Nyx(u) € Ny g Ap.
S0 Lhm Nsixk () € Nyx Ay for every finite Galois subextension M{K
of L|K. To see this, we may clearly assume that £ C M. Applying (5.1) to
the unramificd extension M| X, one finds u = Nas x(¢), & € Uy, and thus

Nk (u) = Neik (N (8)) = Nak (6) € Nax A .
Next we want to show that the reciprocity map ry ¢ is multiplicative. To do
this, we consider for every o € G(ZIK) and every n € N the endomorphisms

g —1: Af — A;, ar— a""' =4 ja,
=t
op: A — Ap. ar—a™ =Tlda" .
i=0
In formal notation, this gives o, = {; :]I , and we find that

(@—-Dooy =00l —1)=0"~1.
Now we introduce the homomorphism
N=Npg: Aj — Ag

and prove two temmas for it.
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(5.3) Lemma, Letg, o € Frob(Z\K) withdg(p) = |, dg(ay=n. I Z is
the fixed ficld of o and a € Az, then

Nxjg{a) = (N o) (@) = (py o N)(@).

Proof: The maximal unramified subextension X = TNK|K is of degree n,
and its Galois group G(ZY|K) is generated by the Frobenius automorphism
oo = ¢kl = @lglen = | zu. Consequently, Nxojx = @nlagy. On
the other hand, one has K = L and £ N K = X° and therefore
Ngizo= Nlay-Forae Az we thus get

Nk @ = Neog (Nyso(@) = N@)* = N(@™).
The last equation follows from ¢G(L|K) = G(L|K)e. O
The subgroup /g7 Uz » which is generated by all elements of the

form u* !, u € Uz, 7 € G(L|K), is mapped to | by the homomorphism
N =Npg:Up = Ug. We therefore obtain an induced homomorphism

N 2 HoG N Up) — U

on the quotient group Ho(G(L1K). Up) = Uz /1 g U For this group, we
have the following lemma.

(54) Lemma. If x € Hy(G(L|K), Up) is fixed by an element ¢ € G(L|K)
such that dg (¢) = 1, i.e., x¥ = x, then

N () € Ny Uz

Proof: Let x =« mod /g z,z,Uz, with x#~"' = 1, so that

r o
*) W =Tluf™ . welUp. weGIIK).

i=)
Let M|K be a finite Galois subextension of ZiK. In order to prove that
N(u) € NpypgUpy, we may assume that w.u; € Uy and L © M. Let
n=[M:K]o=¢" adlet ¥ 2 M be the fixed ficld of o. Further,
let 3, % be the unramified extension of degree n. ie.. the fixed field of
a" = ¢'L. By (5.1), we can then find elements &,2; € Uy, such that

u=Ng, c(@ =i, u=Ng,z() =a’.
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By (%), the elements ¥~ and []; u"f"L only differ by an element ¥ € Uy,

such that Nz, (¥ 1. Hence — again by (5.1) — they differ by an element
of the form $°~', with § € Us,. We may thus write

a9 = et n,;’f = (50~ ln ~T:*‘_
i

Applying N gives N (@) #~' = N(5%)¢~", so that
N@=NGF") -z,

for some z € Uy such that z¢~! = 1; therefore z¥ = z, and z € Uk. Finally,
applying o, and putting y = ¥™ = N5, =(§) € Ug, we obtain, obscrving
n=|M : K| and using (5.3), that

N@u) = N(@)™ = N(F)™™ = N(y#)2"
= Nz (MNuk (2) € Ny Unr - O

(5.5) Proposition. The reciprocity map
"o FIob(LIK) —> Ak /Ny Af
is multiplicative.
Proof: Let o103 = o1 be an cquation in Frob(Z\K), n; = dg{a;), X the

fixed field of o; and 7; € Ay, a prime clement, for i = 1,2, 3. We have to
show that

Nz g (TN 5y & (2) = Ny i (13) mod Ny Ay
Choosc a fixed ¢ € G(Z\K) such that d (p) = 1 and put
v =07'¢" e GLIK).
From o102 = 03 and 1) + 1y = 13, we then deduce that
T=0; o] ¢ =0y M (e M) e
Putting 04 = ¢ 019", iy = dg (04) = Ty = Z(”l. g = zr)” € Ax,
and 74 = 04’ @"4, we find 13 = 1,74 and
Nzx(m) = Nxjx (m1).
‘We may therefore pass to the congruence

Nk (13) = Ny g {m2)N gy k (714) mod Ny Ay
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the proof of which uses the identity 73 = vy, From (5.3), we have
Nk (i) = N(a™). Thus, if we put

Py Py —9n
=Ty imy

then the congruence amounts simply to the relation N(u) € Ny, Ay. For

this, however, lemma (5.4) gives us all that we need.

i Tyt 1 _
Since gy, o (¢ — 1) = ¢ — 1 and 71,‘” ' n,ﬂ’ ¥ = ', we have

61 el l-t_l-m
u -—]f} Ty Ty .

From the identity 73 = 7574, it follows that (7 — D+ (1 =) + (1 — 14} =
(1 = 12)(1 — 7). Putting now

! T
Ty = ANy, My =y my, W =wamy, w € Up,

we obtain

For the element x = u mod /47, Uf € H[,(G(Z\f). Uy), this means that
x#~1 = 1, and so x¥ = x; then by (5.4), we do get N(u) = N (x) € Ny Af.
O

From the surjectivity of the mapping
Frob(l/|K) — G(LIK)

and the fact that NT,\KAE C Ny Ap, we now have the

(5.6) Proposition. For every finitc Galois extension L|K, there is a
canonical homomorphism

rek c GULIK) — Ax /Ny A
given by
rpg (o) = Nyx (mg) mod Ny x Ar.,

where X is the fixed field of a preimage & € Fmb(ZJK) of o € G(L|K) and
ny € Ay is a prime element. It is called the reciprocity homomorphism
of LIK.
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Proof: We first show that the definition of ry x (o) is independent of the
choice of the preimage & € Frob(L|K) of o. For this, let 5’ € Frub(Z|K)
be another preimage, X' its fixed field and 75 € Ax a prime element.
If dx (&) = dk(8'), then & |z = &'|g and &7 = &', so that & = &',
and there is nothing to show. However, if we have, say, dx (§) < dx ('),
then ' = &f for some ¥ € Frob(L|K), and ¥|;, = L. The lixed field "
of £ contains L, s0 7 (£) = Nprjg(mge) = 1 mod Npjx Ap. It follows
therefore that rE‘K(r?’) = VZ‘K([I)r,:‘K(f) = r,:m(ﬁ).

The fact that the mapping is 2 homomorphism now follows directly
from (5.5): if 61,6 € Frob(L|K) are preimages of 0,0, € G(L|K), then
&3 = 65 is a preimage of 03 = ¢,02. [}

The definition of the reciprocity map expresses the fundamental principle
of class field theory to the effect that Frobenius automorphisms correspond
fo prime clements: the element o = ¢x € G(L|X) is mapped to ry € Ay
for reasons of functoriatity, the inclusion G(L|X) — G(L|K) corresponds
to the norm map Ny |x : Ax — Ag. So the definition of r; |k (o) is already
forced upon us by these requirements. This principle appears at its purcst in
the

(5.7) Proposition. If L|K is an unramified cxtension, then the reciprocity
map
reik P GLIK) ~> Ak /Npk AL
is given by
reik(@Lik) = mg mod Ny g Ap,
and Is an isomorphism.

Proof: In this case one has £ = K and YK € G(E\K) is a preimage of
@rix with fixed field K, ice., rp & (¢r1x) = mx mod N g Az. The fact that
we have an isomorphism is seen from the composite
G(LIKY —> Ag /Ny AL —> Z/nZ = Z/nL,

with # = [L : K|, where the second map is induced by the valuation
vk @ Ay — Z because vg(NpxAr) € nZ. It is an isomorphism, for
if vx(a) = 0 mod nZ, then a = un{", and since u = Ny (e) for some
g elUp, by (5.1),wefinda = N,_‘K(sn;é) = 1 mod Ny x Ay.. On the side of
the homomorphisms, the generators ¢, :x, 75 mod Ny x Az, and 1 mod nZ
correspond to each other, and everything is proved.

The reciprocity homomorphism r7 x exhibits the following functorial
behaviour.
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(5.8) Proposition. Let L|X and L'|K’ be finite Galois extensions, so that
K CK'andL C L',and leto € G. Then we have the commutative diagrams

GUIKY 5 ag /Ny A GULIK) —— Ax/Nix Ay

[ o E

GUIKY M5 Ag/NoxAr  GUTIK™Y 255 Ao Npo ke Are

where the vertical arrows on the left are given by o' — o'|L. resp. by the

conjugation T > o 'to.

Proof: Let o' € G(L'|K") and 0 = o'|, € G(LIK). If &' € Frob(L'|K")
is a preimage of o’. then & = &'|; € Frob(L|K) is a preimage of o such
that dg{(5) = _fkrkd,(ir”r’) € N. Let 5’ be the fixed field of . Then
r=xnL Z'N X is the fixed field of & and frx = 1. If now
s € As is a prime element of X', then 7z = Ny z(rz) € Ap s a
prime element of . The commutativity of the diagram on the left therefore
follows from the equality of norms

Nyg(rs) = Ny (Nezlns)) = Npg (e = Nk (Nenge(rsn) -

On the other hand, let T € G{L|K), and let ¥ be a prcimage in Frob(L|K)
with fixed field X, and £ € G a lLifting of £ to k. Then X is the fixed
field of n"fn\ln ,and if ¥ € Ax is a prime element of £, then 7 € Ap~
is a prime element of 7. The commutativity of the diagram on the right
thercfore follows {rom the equality of norms

Nyajga (%) = Npx ()7 . 3]

Another very interesting functorial property of the reciprocity map is
obtained via the transfer (Verlagerung in German). For an arbitrary group
G, let G’ denote the commutator subgroup and write

G = GG

for the maximal abelian quoticnt group. If then # € G is a subgroup of
finite index, we have a canonical homomorphism

Ver - Gah Huh E

which is called transfer from G to H. This homomorphism is defined as
follows {see (751, chap. IV, § ).
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Let R be a system of representatives for the left cosets of H in G,
G =RH,1eR Ifo € G we write, for every p € R,

op=pla,. o, eH. p ER,

and we define
Ver(oc mod G') = [ o, mod H'.
peR

Another description of the transfer results from the double cosct decomposi-
tion
G = J)TH
7

of G in terms of the subgroups (o) and H. Letting f(v) denote the smallest
natusal number such that o, = ¢/ ('1 € H, one has HN(x~'o1) = (07),
and we find that

Ver(o mod G') = [Jo; mod H'.
T

This formula is obtained from the one above by choosing for R the set
{oit|i=1...., f(T)}. Applying this to the reciprocity homomorphism

ekt GLIKY™® — Ak /NLik AL

we get the

(5.9) Proposition. Let L|K be a finite Galois extension and K' an
intermediate ficld. Then we have the commutative diagram

g

GLIKY™ —5 Ag/NyxiAL

o

GLIK)™ 5 Ag Nk AL,

where the arrow on the right is induced by inclusion.

Proof; Let us write temporarily G = G(Z\K) and H = G(Z{K'). Let
o € G(L|K), and let & be a preimage in Frob(L|K) with fixed field >
and § = G(L|Z) = (). We consider the double coset decomposition
G =JStH and put §; = 'St N H and &, = t7'6 ¢ as above. Let

7
G=G(LIK), H=GWI|K), §S=(0). T=r1|, and or =&;|.

Then we obviously have
G=US7H,
T
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and therefore

Ver(o mod G(LIK)') =[]or mod G(LIK'Y.
.

For every 1, let w; vary over a system of right cosct representatives of H/S.
Then one has
H=JSwo: and G= | Stor.
wr T

Let X, be the fixed field of &;, i.e., the fixed ficld of S;. X7 is the fixed
field of T~ so that X | X7 is the unramified subextension of degree f(r}
in Z|E'. If now 7 € Az is a prime element of X, then 77 € Axr is a
prime element of £7, and thus also of ;. In view of the above double coset
decomposition, we therefore find

Nrix(ry= [1 7™ =TT1=*) =[INgkx™),

T T wr

and since 5; € th(ZlK’) is a preimage of 6; € G(L|K"), it follows that

ruk (@) =[1rog(o) = rege([Toe) = rke(Ver(e mod G(LIK))) .

m}

Exercise 1. Let £.|K be abelian and totalty ramificd. and lct 7 be a prime clement
ol Ap. I then o € G(L|K) and

Yol =t
with y € Uy, then ry k(o) = N(¥) mod Nyjx Ar, where N = N ¢ (B. Dwors, see
1122}, chap. XIII, §5).

Exercise 2. G alice the theory ped so far in the fc ing way. Let £ be
4 set of prime numbers and let G be a pro-P -group, i.e., a profinite group all of
whose quotients (/N by open normal subgroups N have order divisible only by
primes in P.

Let d : G — Zp be a surjective homomorphism onto the group % [per
and let A be a G-modulc. A henselian P-valuation with respect (o  is by deilnumn
4 homomorphism

v A= Zp

which satisfies the following properties:
(i) v(Ax) = Z 2 Z and Z/nZ = %/n% for all natural numbers n which are
divisible only by primes in .
(i) v(NkwAx) = fiZ for all finite extensions K |k, where fx = (d(G) : d(Gx)).

Under the hypothesis that H'(G(L|K),U;) = | for i =4, — 1, for all unramified
extensions L|K , prove the existence of a canonical reciprocity homomarphism 7, :
GULIK )™ — Ax /Ny A for every finite Galois extension L|K .
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Exercise 3. Let ¢ : G — Z be a surjective homomorphism, A a G -module which
satisfies axiom (5.1}, and let v : A, — Z be a henselian valuation with respect 1o d.
Let K |k be a finite extension and let spec(K) be the set of microprimes of X'
(sec §4, exercise 1-5). Define u canonical mapping
r ispec(K) — Ax /Np (Ar.
and show that, for a finite exicnsion, the diagram

spec(L) —— A /Np, A

i [

spec(K) — % Ax /Ny A
commutes. Show furthermore that, for every finite Galois extension L|K, ry induces
the reciprocity isomorphism

rog P GULIK) = Ag [Ny Ag.
Hint: Let ¢ € G« be an element such that dx () € N. Let X be the fixed field of
@ and "
Ap = lim Ag,,
where K, |K varies over the finite subextensions of Z'| K, and where the projective
limit is taken with respect to the norm maps Nx,k, : Ak, — Ag,. Then there is a

sutjective homomorphism vs : Ay —> Z and a homomorphism Ngjx : As — Ag.

§ 6. The General Reciprocity Law
‘We now impose on the continuous G -module A the following condition.

(6.1) Class Field Axiom. For every cyclic extension L|K one has

L:K] fori=0,
oo - [ 0,

Among the cyclic extensions there are in particular the unramified ones.
For them the above condition amounts precisely to requiring axiom (5.1). so
that one has

{6.2) Pr iti For a finite ified extension L|K , one has

H(GLIKYU) =1 for i=0—1.
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Proof: Since L|K is unramified, a prime element mg of Ag is also a
prime element of A;. As H Y GWLIK), Ay =1, every element u € Up
such that Ny x () = | is of the form u = @, witha € Ap. 0 = g k.
So writing @ = &nfl, ¢ € U, we obtain v = &°~'. This shows that
HWGLIK). U =1

On the other hand, the homomorphism vy : Ax — Z gives rise to a
homomorphism

vk Ak /Nux AL —> Z/nZ = L/nl,

where n = [L : K| = frx, because vg (Npix Ar) = frixkZ = nZ. This
homomorphism is surjective as v (g mod Ny jx Ap) = 1 mod nZ. and it is
bijective as #Ag /Ny x A = n. If now u € Uk, then we have 4 = Npjx (@),
with @ € Ay, since vg () = 0. But 0 = vg (u) = vg (N7 k(@) = nuila),
s0 we get in fact @ € U, This proves that HY(G(L|K).Uy) = 1. O

By definition, a class field theory is a pair of homomorphisms
(d:G—>Z,v:iA> 7).
where A is a G-module which satisfics axiom (6.1), d is a surjective
continuous homomorphism, and v is a henselian valuation. From proposition
{6.2) and §5, we obtain for every tinite Galois cxtension L |K , the reciprocity
homomorphism
rLik P GULIK)™ — Ak /NLik AL

But the class field axiom yields moreover the following thcorem, which
represents the main theorem of class ficld theory, and which we will call the
general reciprocity law.

(6.3) Theorem. For every finite Galois extension L|K . the homomorphism
rrig  GILIK)” — Ag/NLix AL

is an isomorphism.

Proof: If M|K is a Galois subextension of L|K, we get from (5.8) the
commutative exact diagram

l— G(L|M) G(LIK) GM|KYy — |

o [on [

Natix
Aw/NumAL —— Agx/Npx AL —— Ax/Nuk Ay — L.

‘We use this diagram to make three reductions,
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First reduction. We may assume that G(L|K) is abelian. For if the
theorem is proved in this case, then, putting M = L% the maximal
abelian subextension of L]K, we find G(L|K)*" = G(M|K), and the
commutator subgroup G(L|M) of G(L|K) is precisely the kemel of r7 k.
ie., GILIK)" — Ax/Npx AL is injective. The surjectivity follows by
induction on the degree. Indeed, in the case where G(L|K) is solvable,
one has either M = L or [L : M] < |L : K|, and if ryx and rp y are
surjective, then so is ryz k. In the general case, tet M be the fixed field of a
p-Sylow subgroup. M|K nced not be Galois, but we may use the left part
of the diagram, where r7 y is surjective. It then suffices to show that the
image of Nk is the p-Sylow subgroup S, of Ax /Ny x Ar. That this holds
true for all p amounts to saying that 1|5 is surjective. Now the inclusion
Ag € Ay induces a homomorphism

it A /Nix Ay — Ay /N AL,

such that Nan o i = [M 2 K1 As (M : KLpy = 1, 5, 255 ¢ i

surjective. so S, ties in the image of Nasx , and therefore of ry k.

Second reduction. We may assume that L|K is cyclic. For if M|K varies
over all cyclic subextensions of LK, then the diagram shows that the kernel
of 7y x lies in the kemel of the map G(LIK) — [], GIM|K). Since
G(L|K) is abelian, this map is injective and hence the same is true of rp k.
Choosing a proper cyclic subextension MK of L|K, surjectivity follows by
induction on the degree as in the first reduction for solvable extensions.

Third reduction. Let LiK be cyclic. We may assume that frx = 1. To
see this, let M = L N K be the maximal unramified subexicnsion of L|K.
Then frm = 1 and ry g is an isomorphism by (5.7). In the bottom
sequence of our diagram, the map Ny x is injective because the groups
in this sequence have the respective orders |L : M], [L : K1, [M : K] by
axiom (6.1). Therefore 71 | is an isomorphism if rp u is.

Now let L|K be cyclic and totally ramified, ie., fux = 1. Let o " bea
gencerator of F(L\K) We view ¢ via the isomorphism G(L|K) = (,(L\K)
as an clement of G( L\K) and obtain the element & = o, € Frob(L|(K).
which is a preimage of 0 € G(L|K) such that dx () = dg (pL) = -fLLK =1.
‘We thus find for the fixed field X|K of & that frik =l andso ZNK =K.
Let MK bc3 finite Galois subextension of L|K containing X and L, let
M" = M N K be the maximal unramified subextension of M|K, and put
N = Nypo. As fy1x = frix = loonefinds N |4, = Nz, Nla, = Nyk
(see the proof of (5.3)).
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For the injectivity of r |, we have to prove this: if I’L‘K(O'k) =1, where
O<k<n=[L:K) thenk =0.

In order to do this, let 7 € Az, m; € Ay be prime elements. Since
2. L € M, my and my are both prime elements of M. Putting rri- = 1471,‘)
u € Uy, we obtain

rLk (0" = N@E) = Nw) - N(ef) = N @) mod Ny jx A .

From r”K(G*) =1, it thus follows that N (1) = N(v) for some v € U}, so
that N (= 'v) = 1. From axiom (6.1), we may write #~'v = ¢“~' for some
a € Ay, and find in Ay the equation

(”Zl,)n—l - (”tv)r?—w - (”kxu—lu)z?—\ _ (”n—w)&—t - (GJ—l)n—y
and so x = 7'r£vaH7 € Ay, Now vy0(x) € 7 and nug(x) = vy (x) =k
imply that one has k¥ = 0, and so r7 x is injective. The surjectivity then
follows from (6.1).

The inverse of the mapping rz ¢ : G(LIK)* — Ak /Nyk AL gives, for
every finite Galois extension L|K, a surjective homomorphism
( L LIK): Ak —> GLIK)*
with kernel Ny, x Ay,. This map is called the norm residue symbol of L|X.

From (5.8) and (5.9) we have the

(6.4) Proposition. Let L|K and L'|K’ be finite Galois extensions such that
K CK'andL C L', and leta € G. Then we have the commutative diagrams

A~ e gy Ax ——H0 L Gk
| | |-
ap LB Gkt g D Gk,

and if K' € L, we have the commutative diagram

Ax CLLIKY (;(L‘Kr)uh

L

Ax HE Gk,
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The definition of the norm residue symbol automatically extends to
infinitec Galois extensions L|K. For if L;|K varies over the finite Galois
subextensions, then

G(LIK)™ = lim G(L;|K)*
i
(see §2, exercise 6). As @ LplK) e = (a,L;1K) for Ly 2 L;, the
individual norm residue symbols (a,L;|K), a € Ak, determine an element
(a,LI1K) € GILIK)™.
In the special casc of the extension K |K, we_find the following intimate
connection between the maps dy , vk, and ( , K |K).
(6.5) Proposition. One has
@ RIK)=¢*®, andthus dx o( KIK)=vk.

Proof: Let L|K be the subextension of I?\K of degree f. As Z/fZ =

Z/f7Z.wehave vg(a) =n+ fz,withn € Z,z € Z; that is, a = wr,’éh/.
with 4 € Ug, b € Ag. From (5.7), we oblain

(@ KIK) e = (@, LIK) = (g, LIKY' (B, LIK) = gf o = o),

Thus we must have (¢, K |K) = g3, O

The main goal of field theory is to classify all algebraic extensions of
a given field K. The law governing the constitution of extensions of X is
hidden in the inner structure of the basc field K itself, and should therefore
be expressed in terms of entities directly associated with it. Class field theory
solves this problem as far as the abelian extensions of K are concerned,
It establishes a 1—1-correspondence between these extensions and certain
subgroups of Ax. More precisely, this is done as foliows.

For every field K. we equip the group Ax with a topology by declaring
the cosets aNp;x Ay to be a hasis of neighbourhoods of @ € Ag, where L|K
varies over all finite Galois extensions of K. We call this topology the norm
topology of Ag.

(6.6) Proposition. (i) The open subgroups of Ag are precisely the closed
subgroups of finite index.

(ii) The valuation vk : Ax — 7 is continuous.
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(iii) If L|K is a finite extension. then Ny x : Ay — Ag Is continuous.
(iv) Ag is Hausdorff it and only if the group
Ak =Nk Ac
L

of universal norms is trivial.

Proof: (i) If A" is a subgroup of Ak, then

N=Ag ~ |JaN.
ANEN

Now, if A is open, so are all cosets @A, so that A is closed, and since A” has
to contain one of the neighbourhoods N x Az of the basis of neighbourhoods
of 1, A is also of finite index. If, conversely, A/ is closed and of finitc index,
then the union of the finitely many cosets aA” # A is closed, and so A”
is open.

(ii) The groups fZ, f € N, form a basis of neighbourhoods of 0 € Z
(see §2), and if L|K is the unramified extension of degree f, then it follows
from (4.7) that

vk (NLik A = foetAn) € fZ,
which shows the continuity of vk .
(iii) Let Nagx Ay be an open neighbourhood of 1 € Ax. Then

Neg (NmpiwAmr) = Nuvik Ame € Notjg Aw

which shows the continuity of Ny .
(iv) is sclf-evident. O

The finite abelian cxtensions L|K are now classificd as follows.

(6.7) Theorem. Associafing
L N =NpgAp

sets up a 1-1-correspondence between the finite abelian cxtensions LK and
the open subgroups N of Ay . Furthermore, one has

Ly CLye= N, 2N, Ny, =Ny, N Ny Nme, = NN,
The field L corresponding to the subgroup A of Ag is called the class
field associated with A" By (6.3}, it satisfies
G(LIK) Z Ag/N.
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Proof of (6.7): If L| and L, are abelian extensions of K . then the transitivity
of the norm implies A7, 1, € N, NA,. If, conversely, a € Ni, NN, then
the element (¢, L1£L2|K) € G(L,L2|K) projects trivially onto G(L;|K), that
is, (@, L;|K) = 1 fori =1,2. Thus (¢, L L3|K) = 1.ie.,ae Nijt,- We
therefore have Ay 1, = N NN, and so
Ny 2N, = N NN, =N, = N, &= 1L Ly - K]
=[Ly: K|+ L, CL;.

This shows the injectivity of the correspondence L + A7,

If A is any open subgroup, then it contains the norm group Ay = Ny x Ay
of some Galois extension L|K. (6.3) implies that A, = N w, so we may
assume L|K to be abelian. But (A, LIK) = G(L|L") for some intermediate
field L' of L|K. Since N' 2 N, the group A is the full preimage of
G(L|L") under the map ( ,L|K): Ax — G(L|K), and thus it is the full
kernel of ( ,L'|K): Ax — G(L'|K). Thus A" = Af;.. This shows that the
correspondence L — AN is surjective,

Finally, the equality N7 nz, = Nj, A, is obtained as follows.
LyN Ly C L; implies that Ny, ~r, DN, i = 1,2, and thus

Nijat, 2 NN,

As ’\/L,,’V ., is open, we have just shown lhal]\/l /\ = N for some finite
abelian cxtension LK. But r\L AL implies L € L. M Ly, so that
NN, =N 2 Moo, - o

Exercise 1. Let n be a natural number, and assume the group 1, = {§ € 4 | £ = 1}
is cyclic of order #, and A € A". Let K be a field such that u, € Ax, and let
L|K be the maximal abelian extension of exponent 2. If L|K is finite, then one has
Nk AL = Alb.
Exercise 2. Under the hypotheses of cxercise |, Kummer theory and class field theory
yield, via Pontryagin duality G(L|K) x Hom((‘(L\K) Ha) =y, a nondegenerate
bilinear mapping (the abstract *Hilbert symbol™)

) Ag/AY X Ag A — 1,
Exercise 3. Let p be a prime number and (¢ 1 G — Z,, v : Ac — 7,) a p-class
field |h::ory in the sense of §5, exercise 2. Let ' : G — Z, be another surjective
homomorphism, and K'|K the Z Z,-extension defined by d'. Let v’ : A, — Z, be the
composite of

L RK)

Ax —>(J(K\K)4»/'

Then (d',v') is also a p-class ficld theory. The norm residue symbols associated to
{d.v) and (d'. v} coincide. (No analogous statement holds in the case ol Z-class
field theories (d : G — 2, v: Ay — z).
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Exercise 4. (Generalization to infinite extensions.) Let (d : G — L, v : Ay —> Z)
be a class field theory. We assume that the kernel Uy of v : Ay — Z is compact for
every finite extension K |&. For an infinite cxtension K |&, put

A¢ = jm A,
wherc K, |k varies over the finite subextensions of K|k and the projective limit is
taken with respect to the norm maps Nk ik, @ Ax, = Ak, Show:
1) For every (finite or infinitc) extension L|K', one has a norm map

Nik A — Ax.
and if L|K is finite, there is an injection i : Ax — Ay If furthermore L|K is
Gialois, then one has Ay = ATHX),
2) For cvery extension K |k with finite inertia degrec fx = [K N : k1. (d, v) induces
a class ficld theory (dyx 1 Gx — Z, v : Ag — £).
3) If K € K’ are extensions of k with fx, fg+ < oc, and L|K and L'}K" are (finite
or infinite) Galois cxtensions with L € L', then one has a commutative diagram

Ao LK Gk

ol

Ay L Gk

Exercise 5. If L|K is a finite Galois extension, then G5” is 1 G(L|K)-module in a
canonical way, and the transfer from G, to G, is a homomorphism

Ver : G4 — (G

Exercise 6. (Tautological cluss field theory) Assume that the profinitc group G
satishies the condition: for every finite Galois cxtension,

Ver: G — (GUOHIK)

is an isomorphism. (These are the profinite groups of “strict cohomological dimen-
sion 27 (see |145], chap. 1L, th. (3.6.4)).) Put Ay = G4 and form the dircet limit
A= lig Ay via the transter. Then Ay is identificd with A% .

Show that for every cyclic cxtension L|K one has
IL:K| fori=0
t fori =—1,

#HU(G(LIK), ALy =

and that for every surjective homomorphism d 1 G — Z, the induced map
i A = G — 7 is a henselian valuation with respect 10 . The corresponding reci-
procity map ry g : G(LIK) — Ag /Ny A, is essentially the identity.

Abstract class ficld theory acquires a much broader range of applications if it is
generalized as follows.

Exercise 7. Let (; bc a profinite group and B(G) the category of finite G-sets,
i.c., of finite sets X with a continuous G -operation. Show that the connected, i
transitive G-scls in B(G) are, up to isomorphism, the scts G/G . where Gy is an
open subgroup of G, and G operates via multiplication on the left.
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If X is a finite G-set and x € X, then
(X x) =G, =0 eGlax=x}
is called the fundamental group of X with base point x. Foramap f: X — ¥ in

B(G), we put

GIX[Y) = Auty(X).
f is called Galois if X and ¥ arc connected and G(X[¥) operatcs transitively on
the fibres £~ (y),

Exercise 8. Let f 1 X — ¥ be a map of connected finite G-sels, and let x € X.
(x) € Y. Show that f is Galois if and only if 7, (X.x) is a normal subgroup
of (¥, ¥). In this casc. one has a canonical isomorphism

GXIY) = m (Y. yy/m(X. x).

A pair of functors
A= (A" A,): B(G) > (ah),
consisting of a contravariant functor A* and a covariant functor A, from B(G) w0
the category (ab) of abelian groups is called a double functor it
AMX) = AX) = AX)
for all X e B((7). We define
Ax = A(G/Gy).
If f:X = Y is a morphism in B(G), then we put
ANfy=F" and A(f)= f..

A homomorphism / : A — B of doublc functors is a family of homomorphisms
h(X) : A(X) — B(X) representing natural transformations A* — B* and A, — B,.

A G-modulation is defined to be a double functor A such that
(i) ACX U Y) = A(X) x ACY).
(ii) If ameng the two diagrams

X X Ay — s Ay

! J J 7 and /.1 J IR
¢ , o
vV «——7Y Ay — Ay

in B(G), resp. (ab), the one on the left is cartesian, then the one on the right is
commutative.
Remark: G-modulations were introduced in a general context by A. Dasss under
the name of Mackey functors (sce |32]).
Exercise 9. G-modulations form an abelian category.

Exercise 10, If A is a G-module, then the function A(G/Gx) = A%% extends to a
G-modulation A in such a way that, for an exicnsion L|K, the map f* 1 Ay — Ay,
resp. fu 1 A — Ax, induced by [ G/G, — G/Gy. is the inclusion, resp. the
norm Ny«
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The rule A — A is an equivalence between the category of G-modules and the
catcgory of G-modulations with “Galois descent”, i.e.. of those (7-modulations A
such that

F7rAY) = AOEH
for every Galois mapping f : X — ¥, is an isomorphism.

Exercise 11. G-modulations are explicily given by the following data. Let
By(G) be the catcgory whosc objects are the G-sets G/U. where U varics
over the open subgroups of G, and whose hisms are just the projecti
71 GJU = GJV for U € V. as well as the maps (o) : G/U — G/oUa ',
W tUo =10 "(eUs™"), foro €G.
Let A = (A%, A,) : Bo(G) — (ab) be a double functor and for = : G/U — G/V

(U C V), resp. c(o) : GJU — GjoUa™ (o € G), define

Ind¥ = A.(): A(G/U) - AG/V),

Res, = A*(z): ALG/V) — AG/U).

(o). = Alelo)): AGUY — AG/alUo™").

If for any three open subgroups U,V C W of G, one has the induction formuia

v itva b -
Res!! oIndj, = Indi™™ " " oc(a), o Res o i
1 =, 2 Inds Vel
G

then A cxtends uniquely to a G-modulation A : B(G) - (ab).
Hint: [f X is an arbitrary finite G -set, then the disjoint union
Ay = J AG/G)
xeX
is again a G-sel, because ¢(0),A(G/G.) = A(G/G,.). Define A(X) o be the

group
A(X) = Homy (X. Ax)

of all G-equivariant sections X — Ay of the projection Ay — X.
Exercise 12. The function 7*(G /G ¢) = G¥ extends 1o a G -modulation
7" B(G) — (pro-ab)
into the category of pro-abelian groups. Thus, for an extension L|K. the maps
JPGY — G resp. fu i Gy —> G, induced by f 1 G/Gi — GG are given
by the transfer, resp. the inclusion G, — G-
Exercise 13, Let A be a G-modulation. For every connected finite G-set X, let
NAX) = LA,

where the intersection is taken over all Galois maps f : ¥ — X, Show thai the

function N A(X) defines a G -submodulation N A of A, the ion of universal
norms.
Exercise 14. If A is a G-modulation, then the ion 4 is againa G [

which, for connected X , is given by
AX) = lim A/ AT,

where the projective limit is (aken over all Galois maps f : ¥ — X.
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For the following, let d : G — Z be a fixed surjective homomorphism. Let
f:X > ¥ be a map of conncted finite G-sets and x € X, y = f(x) € ¥. The
inertia degree, resp. the ramification index, of / is defincd by

Doy = @Gy 1 d(G)) resp. exy =, 1 1),
where 1, tesp. I, is the kemel of d : Gy — Z, resp. d : G, — Z. f is called
unramified if exy = 1.

Exercise 15. d dcfines a G-modulation Z such that the maps £+, f,, corresponding
to a mapping f : X — ¥ of connected G -scts, are given by

- P
ZYV)=7 ——
Frv

This gives a homomarphism of (-modulations
dia? — Z.
Exercise 16. An unramificd map / : X — ¥ of connected finite G-sets is Galois,
and d induces an isomorphism
GXIY) = %/ fxwk.

Let gy v € G(X|Y) be the element which is mapped to 1 mod fyyZ.

Let A be a G-modulation. We define a henselian valuation of A 10 be a
homomorphism N

viA—Z
such that the submodulation v(A) of Z comes from a subgroup Z € Z which
contains 7. and satistics Z/nZ = Z/nZ for all n € N. Let U denote the kemel of A.

Exercise 17. Compare this definition with the definition (4.6) of a henselian valuation
of a G-module A.

Exercise 18. Assume that for every unramified map f : X — ¥ of connccted finite
G-sets, the sequence

U~>U(Y)ﬂU(X)‘—»U(X)HU(Y)ﬁU

is cxact, and that A(Y)*¥1 C £, A(X) for every Galois mapping f : X — ¥ (the
latter is a conscquence of the condition which will be imposcd in exercise 19). Then
the pair (d, v) gives. for every Galois mapping / : X — Y, a canonical “reciprocity
homomorphism™

oy GOXY) > AY)/fAXD.

Exercise 19, Assume, beyond the condition required in exercise 18, that for every
Galois mapping / : X — ¥ with cyclic Galois group G(X|Y), one has
(AY): LA =X ¥) and  Ker f, = im(o™ — 1.

where [X : ¥] =#/ '(v). with y € ¥, and & is a gencrator of G(X|¥). Then if ryy
is an isomorphism for every Galois mapping f : X — ¥ of prime degree [X : Y],

ray  GXIY)™ — AYYFAX),
for every Galois mapping f : X — Y.
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Exercise 20, Under the hypotheses of exercise 18 and 19 one obtains a canonical
homomorphism of G -modulations

R
whose kernel is the G-modulation NA of universal norms (see exercise 13). It
induces an isomorphism

of the completion A of A (see exercise 14).

Remark The lheory sketched above and contained in the cxercises has a very

to higher dii i class field theory. In chap. V, (1.3),
we will show that, for a Galois extension L|K of local fields, there is a rcupruuly
isomorphism

G(LIK)™ = K*/Nyxl™
The multiplicative group K* may be interpreted in K -theory as the group K1(K') of
the ficld K. The group K2(K ) is defined to be the quotient group
KyK) =(K* @ K")/R,
where R is generatcd by all elements of the form x @ (1 — x). Treating Galois
extensions LIK of “2-local fields” — these are discretely valued complete fields
with residuc class field a local field (e.g., @, ((x)), F,((+){(»)) } — the Japanese
mathematician Kazova Karo (see [83]) has established a canonical isomorphism
GLIKM™" = K (K)/Npx Ka(L).
Kato's proof is intricate and needs heavy machinery. It was simplified by the
Russian mathematician /. Frsewko (sce [36], [37), 138]). His proof may be viewed
as a special casc of the theory sketched above. The basic idea is the following.
The correspondence K > K3(K) may be extended to a G-modulation K». Tt does
not satisfy the hypothesis of excrcise 15, so that one may not apply the abstract
theory directly to K,. Bul Frsinko considers on K the fincst topology for which the
canonical map ( . ) : K* x K* — K2(K) is scquentially continuous, and for which
one has x, + y, — 0, —x, — 0 whenever x, — 0, y, — 0. He puts
KPR = Ko(K) /A2 (KD
where A»(K) is the intersection of all open neighbourhoods of 1 in K>(K), and he
shows that
KSP(K) /N KLY = Ky(K)Y/ N Ka(L)
for cvery Galois extension LiK, and that Ky*(K) satisfies propertics which imply
the hypothesis of exercise 18 and 19 when viewing K3 as a G -modulation. This
makes Karo's theorem into a special case of the theory developed abave.

§ 7. The Herbrand Quotient

The preceding section concluded abstract class field theory, In order to
be able to apply it to the concrete situations encountered in number theory,
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it is all important to verify the class field axiom (6.1) in these contexts.
An excellent (ool for this is the Herbrand quotient. It is a group-theoretic
formalism, which we develop here for future use.

Let G be a finite cyclic group of order n, let o be a generator, and A a
G-module. As before, we form the two groups
HYG.A) = A%/NgA and H™'(G,A)= w;A/IGA,
where
n=t
AC=f{acA|a®=a}, NegA=|Nga=]]da" |aca}.
=0

veA=laecA|Nga=1}, IcA={a""|acA}.

(7.1) Proposition. If 1 - A — B — C — 1 is an exact sequence of
G -modules, then we obtain an exact hexagon

Ju
HYG, A) HYG. B)
b g
H=G,C) HY(G,C)
T

N 10 HEB) < g A

Proof: The homomorphisms £/, f4 and f,, f5 are induced by A —> B
and B -1 C. We identify A with its image in B so that { becomes the
inclusion. Then f3 is defined as follows. Let ¢ € €% and let b € B be
an element such that j{b) = c. Then we have j(h°~") = ¢! = | and
Ne(~') = Ng(b")/N(by = 1, so that °~' € n, A. f3 is thus defined
by ¢ mod NgC ~ 67~ mod I A. In order to define fs, let ¢ € n,C. and
let b € B be an clement such that j(h) = ¢. Then j(N;b) = Nge = 1, so
that Ngb € A. The map f, is now given by ¢ mod /; A > Ngh mod Ng A,

We now prove exactness at the place H%(G. A). Let « € A% such that

fila mod NgA) = 1; in other words, @ = Ngh for some b € B. Writing
¢ = j(b), we find fe(c mod {5C) = a mod N A. Exactness at H~ (G, A)
is deduced as follows: let a € v, A and fu(a mod IgA) = 1, ic.,a = p"",

with b € B. Writing ¢ = j(»), we tind fi(c mod NgC) = a mod I;A.
The cxactness at all other places is scen even more easily. m]



312 Chapter V. Abstract Class Field Theory

(7.2) Definition. The Herbrand quotient of the G-module A is defined
to be o
#HY(G, A)
MG A) = /-
¢ ) #H-Y(G. A)

provided that both orders are finite.
The salient property of the Herbrand quotient is its multiplicativity.

(7.3) Proposition. if | > A — B — C — 1 is an exact sequence of
G -modules, then one has

G.B) =h(G. A WG.C)

in the sense that, whenever two of these quotients are defined, so is the third
and the identity holds.

For a finite G-module A, one has h(G, A) = 1.

Proof: We consider the exact hexagon (7.1}. Calling #; the order of the
image of f;, we find

#HYG, A) = neny. #HOG BY=mny,  #HUG,C)=mn,
#HNG, Ay = nyng.,  #H (G, B) = nans,  #H7'(G.C) = nsi.
and thus
#HY(G, A) #HNG,.C) - #H(G.B)
=#HYG,B) - #H ™' (G. A) - #H 1 (G, O).

At the same time, we see that if any two of the quotients arc well-
defined, then so is the third. And from the last equation, we obtain
(G, B) = h(G, AYk(G,C). Finally, if A is a finite G-module, then the
exact sequences

| A s AT gA s 1 Ty A= A5 NgA — 1,

show that #A = #AY #IGA =#y, A - #NG A, and h(G. A) = L. 0

If G is an arbitrary group and g a subgroup, then to any g-module B, we
may associate the so-called induced G-module

A = Ind;(B).



§7. The Herbrand Quotient 313

!t consists of all functions f : G — B such that Sty = fx)7 for all
7 € g. The operation of ¢ € G is given by
70y = flox).
It ¢ = {1}, we write Ind;;(B) instead of Indf;(B). We have a canonicat
g-homomorphism
7 IndG(B) — B, [+ f(1),
which maps the g-submodule
B'={felnd;(B)| fxy=1 forx &g}
isomorphically onto B. We identify B" with B. If g is of finite index, we find
Ind§(B)y= T[] 87,
oeti/y

where the notation o € G/g signifies that o varies over a system of left
coset representatives of G/g.

Indeed, forany f € Indé(B) we have a unique factorization f =[], 77,
where f, denotes the function in B’ which is determined by f, (1) = f(o~').

If converscly 4 is a G-module with a g-submodule B such that A is the
direct product

A= 11 8°.
oty

then A = Indj,(B) via B = 8.

(7.4) Propesition. Let G be a finite cyclic group, g a subgroup and B a
g-module. Then we have canonically

H'(G. Ind§,(B)) = H'(g,B) for i=0, -1,

Proof: Let A = Indf;(B) and let R be a system of right coset representatives
for G/g with 1 € R. We consider the g-homomorphisms

TiA— B, fr— f(l); v:iA— B, f—TI Fp).
pek

Both admit the g-homomorphism
N b foroeg,
$:B— A, br— fhlo)= X
I forogg,
as a section, i.e., 7 o5 = vos =id, and we have

7ToNg=Ngou,
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because one finds that, for f € A,

W Hiny=T1 l'lRf‘”<1>: [T f(pr) = H(n F() " = Ne(v(£)) .
TEE pe T e

If f € AS, then f(o) = f(1) forall o € G,and f(1) = f(x) = f(1)T for
all T € g. The map  therefore induces an isomorphism
7:AY — B

It sends Ng A onto N, B, for one has T(NGgA) = Ny(vA) € N,B on the
one hand, and on the other, Ny(B) = N¢(vsB) = (N (sB)) S m(NgA).
Therefore H°(G. A) = H(g. B).

As Nyov = o Ng, the g-homomorphism v : A — B induces a
g-homomorphism

vi oA — N\,B.

It is surjective since v o s = id. We show that /g A is the prcimage of /,B.
15 A consists of all elements f°~!, f € A, o € G. For if G = (6y) and
o =of, then f77 = f(l+<rn+-+n(; D=1 ¢ I A. Tn the same way, one
has /,B = {h*"' | b € B, T € g). Writing now op = p'1,, with p.p €R,
T, € g, we obtain

o-1 flop) fohe ol
= = =T1h i.B.
et =1 Ty S ey Tl ek

On the other hand, for »°~' € [yB8, the function f7~', with f =

is a preimage as v(fT") = vs(B)7! = bT"!. After this it remains to
show ker(y) € IgA. Let G = (), n = (G : ), R = (LLg, ...,e" 'L
Let f €, A be such that \)( f) = [T7g¢ = L. Define the function

heAby h(l) =1, h(p*) = T1Z! f(9"). Then f(*) = h(p")/h(g*~") =
Wt} ¢ for 0 < k < n,and F(DRY () = [T75) £@') = 1. Hence
F=h"" € igA Thus we finally get H (G, 4) = H™'(g, B). =)

Exercise 1. Let f.g be endomorphisms of an abclian group A such that
fog=go f =70 Make sense of the following statement. The quoticnl
(ker f :img)
fA) = ————°=
T = e Tm )
is multiplicative.
Exercise 2. let f,g bc two commuting endomorphisms of an abelian group A.
Show that
o7 (A) = qu ¢ (A)go, 1 (A,
provided all quotients are defined.



§7. The Herbrand Quotient 315

Exercise 3. Let G be a cyclic group of prime order p, and let A be a G-module
such that ¢o, ,(A) is defined. Show that

WG, AP = g0, (A fqu.(A).
Hint: Use the exact scquence

0— A% — A 2L Al 0,

Let N=1+40+---+0"" in the group ring Z|G1. Show that the ring Z{G]/ZN
is isomorphic to Z[¢|, for £ a primitive p-th root of unity, and that in this ring
one has

p=t(o— 1)l
where & is « unit in Z[G]/ZN.

Exercise 4. Let L|K be a cyclic extension of prime degree. Using exercise 3,
compute the Herbrand quotient of the group of units o of L, viewed a
G(L|K)-module.

Exercise 5. If G is a group, g 4 normal subgroup and A a g-module, then
HY G, Indi(A)) = H'(g, A).



Chapter V
Local Class Field Theory

§ 1. The Local Reciprocity Law

The abstract class lield theory that we have developed in the last chapter
is now going to be applicd 1o the case of a local field, i.c., to a field which is
complete with respect to a discrete valuation, and which has a finitc residue
class field. By chap. I, (5.2), thesc are precisely the finite extensions K of
the fields Q, or F,,((r)). We will usc the following notation. Let

ug be the discrete valuation normalized by vg (K*) = Z,

Ok
Px
LY
Uk
Uy
q
laly

1

r

K

= {a € K| vx(a) = 0} the valuation ring,

{a € k| vgiay > 0} the maximal ideat,

= ok /px the residue class field,

= {a € k*| vg(a) = 0} the unit group,

= 1 4 p} the group of a-th higher units, n = 1,2, ...,
= gx =#«,

= ¢ ¥ the normalized p-adic absolute value,

the group of n-th roots of unity, and 1, (K) = pt, N K™,

or simply 7, denotes a prime clement of X, ie., px = w0k,

In local class field theory, the réle of the profinite group G of abstract
class field theory is taken by the absolute Galois group G (X {k) of a fixed
local ficld &, and that of the G-modulc A by the multiplicative group &*
of the separable closure & of k. For a finite extension K |k we thus have
Ak = K*, and the crucial peint is to verify for the multiplicative group of
a local ficld the class field axiom:

(1.1) Theorem. For a cyclic extension L|K of local fields, one has

L:K) fori=0,
#H(G(LIK), L) = '] ! fz:’ 1
i=-1.
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Proof: For i = —1 this is the claim of proposition (3.5) (“Hilbert 90™)
in chap.1V. So all we have to show is that thc Herbrand quotient is
MG.L*) = #HYG,L*) = [L : K], where we have put G = G(L|K).
The exact sequence
| — Uy~ L* 5 7 — 0,
in which Z has to be viewed as the trivial G-module, yields, by chap. [V,
(1.3),
G LYYy =hG. ZYR(G,UL) = [L : K1h(G,UL).

Hence we have to show that 2(G .U} = 1. For this we choose a normal
basis {«” | 0 € G} of L|K (see [93], chap. VIII, § 12, th.20), « € oz, and
consider in o the open (and closed) G-module M = ¥, ; ©xa”. Then
the open sets

Vi=l+agM, n=12...,
form a basis of open neighbourhoods of 1 in Uy. Since M is open, we have
n}(VOL C M for suitable N, and for n > N the V" are even subgroups
(of finite index) of U}, because we have

LMWL M) =2l MM Cnfo, ol "M CaliM.
Hence V"V" C V", and since 1 — mgu, for p € M. lies in V", so
does (1 — wfy)™" = 1+ 7 (X7 wing’ V3. Via the correspondence

14+ n,’éa — o mod mx M, we obtain G -isomorphisms as in II, (3.10),

VOV 2 Mirg M = @ (ok /px o’ = Indg ok /pk) -
oG

So by chap.TV, (7.4), we have H(G.V"/V"™t)y = | fori = 0, — |
and n» > N. This in turn implies that H'(G, V") = | fori = 0, — |
and n > N. Indeed, if for instance i = 0 and @ & (V™) then @ = (Ngho)a.
with by € V*, a; € (V"9 and thus a) = (N¢ b\ )a, for some by € V"*!,
ay € (V"G ele.; in general,

ai = (Nghaiy. b e V™M aiyy e (V"0

This yields ¢ = Ngb, with the convergent product b = H;’;o hi € V",
so that H(G, V") = 1. In the same way we have for @ € V" such that
Nga = 1, that a = b7 !, for some b € V", where ¢ is a generator of G.
Thus H (G, V") = 1. We now obtain

WG UL = (G ULJVORG VY = 1

because Uy /V" is finite. (]
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(1.2) Corollary. If L|K is an unramified extension of focal fields, then for
i =0, — 1, one has

HY(G(LIK).UL) =1 and H(GWLIK),UP) =1 for n=1.2 ..
In particular,

NikUp=Ug and NyxUP =uUl.

Proof: Let G = G(L|K). We have already seen that H(G,U;) = 1 in
chap. 1V, (6.2). In order to prove H'(G,U{") = 1. we first show that

HI(G.A) =1 and HY(G,2) =1,

for the residue class field A of L. It is enough to prove this for i =
as A is finite, and so #(G,A*) = A(G,A) = 1. We have H (G, 2*) = |
by Hilbert 90 (see chap. IV, (3.5)). Let f = [* : «] be the degree of A over
the residue class field « of K, and let ¢ be the Frobenius automorphism
of A|x. Then we have

f=1
Hvgh=#rer| Y a" = ZA" =0} =4/
i=0 i=0
and
#e—Dr=g ",

since the map A #=L,  has kernel «. Therefore H (G, )= Ne* /@ = D
=1

Applying now the exact hexagon of chap. 1V, (7.1), to the exact sequence
of G -modules

1 — U — U, — a2 — 1,

we obtain H'(G.U") = HU(G,Up) = 1, because H (G, 3"y = 1. If 7 is
a prime element of K, then 7 is also a prime element of L, so the map
U(”’ — A given by 1 4+-an” + @ mod p; is a G-homomorphism. From the
exact sequence

— Ut S U a1,
we now deduce by induction just as above, because H'(G, 1) = 0, that
HIG UMYy = H(G.UM) =1,

since HI(G.U}") = 1. u]
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We now consider the maximal unramified extension k| over the ground
field k. By chap. 11, §9, the residue class field of & is the algebraic closure ©
of the residue class ficld « of 4. By chap. 1I, (9.9), we get a canonical
isomorphism

Glklh) = GFle) = Z.
It associates fo the clement | € Z the Frobenius automorphism x > x¢
in G(¥|«), and the Frobenius automorphism ¢ in G (k|k) which is given by

a% =qg? modpp, ae€op.

For the absolute Galois group G = G(/?U() we there{ore obtain the continu-
ous and surjective homomorphism

d:G— 7.

Thus the abstract notions of chap. IV, §4, bascd on this homomorphism,
like “unramified”, “ramification index”, “inertia degree”, etc.. do agree, in
the case at hand, with the corresponding concrete notions defined in chap. I

As stated above we choose A = £* to be our G -module. Hence Ax = K*,
for every finite extension K |k. The usual normalized exponential valuation
vi : k* — Z is then henselian with respect to d, in the sense of chap, IV, (4.6).
For, given any finite extension X |&, ﬁvk is the extension of v to K, and
by chap. I1, (4.8),

1
;UK(K*)f v(NgpK*) = v (N K™

1
[K k] ex fx
i€, w(NgpK*) = fxvg (K*) = fxZ. The pair of homomorphisms
@:G—>Z, k" =17

therclore satisties all the properties of a class field theory, and we obtain the
Local Reciprocity Law:

(1.3) Theorem. Forevery finite Galois extension L| K of local fields we have
a canonical isomorphism

reik  GULIKY? —— K*/NpigL”.

The general definition of the reciprocity map in chap.1V, (5.6), was
actually inspired by the case of local class ficld theory. This is why it is
especially transparent in thi se: leto € GLL\K), and lct & be an extension
of o to the maximal unrumified extension L|K of L such that dg (§) ¢ N
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or, in other words, & |z = ¢k, for some n € N. If X is the fixed field of &
and 7x € X is a prime clement, then

roik (o) = Ngg(mg) mod Ny g L™,
Inverting ryx gives us the local norm residue symbol
( JLIK):K* —> G(LIKY".
Tt is surjective and has kernel Ny x L*.
In global class field theory we will have to take into account the field
R = Q4 along with the p-adic number ficlds Q,. It also admits a reciprocity
law: for the unique non-trivial Galois extension C|R, we define the norm

residue symbol
( .C|R): R* — G(CT|R)

by

(@, CIRWW=T = =1,
The kemel of (|, CIR) is the group R of all positive real numbers, which
is again the group of norms NgzC* = |z eC*.

The reciprocity law gives us a very simple classification of the abelian
extensions of a local field K. It is formulated in the following

(1.4) Theorem. The rule

L N = NpxL*

gives a | —-correspondence between the finite abelian extensions of a local
field K and the open subgroups A" of finite index in K *. Furthcrmore,

Ly CLy¢= N, DN, Nijn, =Ny, NN, Npjn, =N

1N

Proof: By chap. IV, (6.7), all we have to show is that the subgroups A"
of K* which are open in the norm topology are precisely the subgroups of
finite index which are open in the valuation topology. A subgroup A" which is
open in the norm topology contains by definition a group of norms Ny g L*.
By (1.3), this has finite index in K*. It is also open because it contains the
subgroup Ny x U, which itself is open, for it is closed, being the image of
the compact group Uy, and has [initc index in Ux. We prove the converse
first in

The case char(K) { n. Let A" be a subgroup of finitc index n = (K* : A').
Then K** € A, and it is enough to show that K*" contains a group of
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norms. For this we use Kummer theory (see chap. IV, §3). We may assume
that K * contains the group u, of n-th roots of unity. For if it does not, we
put Ky = K {(u,). If K contains a group of norms Ng,x, L}, and L|K is
a Galois extension containing L, then

Npg L™ = Nk (Nrjg, L") € Nk (Neyx, LY
C Ng k(K" S K™

Solet p, € K,and let L = K(«M/K*) be the maximal abelian extension of
exponent . Then by chap. IV, §3, we have

) Hom(G(LIK), ) = K*/K™.

By chap. I, (5.8), K*/K** is finite, and then so is G(L|K). Since K*/Nj x L*
is isomorphic to G (L|K ) and has exponent n, we have that K™ C Ny g L*,
and (k) yields

#K*/K™ =#G(LIK) =#K"/Np g L",
and therefore K™ = Ny g L*.

The case char(K) = p|n. In this case the proof will follow from Lubin-Tate
theory which we will develop in §4. But it is also possible to do without this
theory, at the expense of ad hoc arguments which turn out to be somewhat
elaborate. Since the result has no further use in the remainder of this book,
we simply refer the reader to the beautiful treatment in [122], chap. XI, §5,
and chap. XTV, §6.

The proof also shows the following

(1.5) Proposition. If K contains the n-th roots of unity, and if the characier-
istic of K does not divide n, then the extension L = K(W)ik is finite, and
one has

Nygl*=K" and G(LIK) = K*/K™.

Theorem (1.4) is called the existence theorem, because its essential
statement is that, for every open subgroup A of finite index in K*, there
exists an abelian extension L|K such that NyxL* = N. This is the
“class field” of A/. (Incidentatly, when char(K) = 0, every subgroup of
finite index is automatically open — see chap. I1, (5.7).) Every open subgroup
), as these form a basis of

of K* contains some higher unit group Uf(” s
neighbourhoods of 1 in K*. We put U}(") = Ug and define:
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(1.6) Definition. Let L|K be a finite abelian extension, and n the smallest
number > 0 such that U,(("7 C Nyp g L*. Then the ideal

f=rk
is called the conductor of L|K .

(1.7) Proposition. A finite abelian extension L|K is unramified if and only
if its conductor is f = 1.

Proof: If L|K is unramified, then Ux = NpxUp by (1.2), so that
f = L If conversely f = 1, then Uy C NpxUp and mf € Npgl*,
for n = (K* : Npjxk L*). If M|K is the unramified extension of degree n,
then Ny x M* = (nl"() x Ug € NpgL*, and then M D L, ie., LIK is
unramified. ]

Every open subgroup A" of finite index in K* contains a group of the
form (/) x U,((”’, This is again open and of finite index. Hence every
finite abelian extension L|K is contained in the class ficld of such a
group (rf) x U,((")A Therefore the class fields for the groups (z/) x U,((")
are particularly important. We will characterize them explicitly in §5, as
immediate analogues of the cyclotomic fields over Q. In the case of the
ground field K = Q,,, the class ficld of the group (p) x U,(('” is preciscly
the field @, (uepn) of p-th roots of unity:

(1.8) Proposition. The group of norms of the extension Q,,(;L”u)\(@p is the

group (p) x U((;’:)

Proof: Let K = Q, and L = Qp(pr). By chap.II, (7.13), the extension
LI|K is totally ramified of degree p" '(p — 1), and if ¢ is a primitive p"-th
root of unity, then 1 — ¢ is a prime element of L of norm Ny, x (1 —¢) = p.
We now consider the exponential map of Q,. By chap. II, (5.5), it gives an
isomorphism
exp:py — UL

for v > |, provided p # 2, and for v > 2, even if p = 2. It
transforms the isomorphism py — pi* ! given by ¢ > p*~'(p — Da.
into the isomorphism UY) — U™ given by x > x27' 70 g0 that
" e it p £ 2, ad PP P =UP i p=2,n>1
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(the case p = 2. n = | is trivial). Consequently, we have U;(") C Npxl*
if p # 2. For p =2 we note that

0P v usuf = (U Us(oEY .

because a number that is congruent to 1 mod 4 is congruent to 1 or 5 mod 8.
Hence

an-L

() @2 52mm g 02)

o =(U")T usTTU)

Itis casy to show that 5" * = Npx (247), s0 Ug” € Ny x L* holds also in
case p = 2. Since p = Nyx(l — ), we have (p) x Ug” & NyglL®,
and since both groups have index p"'(p — 1) in K*, we do find that
Nk L* = (p) x UZ” as claimed. ]

As an immediate consequence of thi t proposition, we obtain a local
version of the famous theorem of Kronecker-Weber, to the effect that every
finite abelian extension of @ is contained in a cyclotomic field.

(1.9) Corollary. Every finite abelian cxicnsion of L|Q, is contained in a field
Q,(%), where ¢ is a root of unity. In other words:

The maximal abelian extension Q%” |@, is generated by adjoining all roots
of unity.

Proof: For suitable 7 and n, we have (p/) x Ué':’) < NpjxL*. Therefore L
is contained in the class field M of the group

') x Ug;)) = ((,,/) x Ug,) N ((p) % Uﬁ(ﬂ))

By (1.4), M is the composite of the class field for (p’) X Uu” — this being
the unramified extension of degree f — and the class field for (p) x U,'Q';)
M is thercfore generated by the (p/ — 1) p”-th roots of unity. ]

From the local Kronecker-Weber theorem, onc may readily deduce the
global, classical Theorem of Kronecker-Weber.

(1.10) Theorem. Every finite abelian cxtension L|Q is contained in a field
Q(¢) generated by a root of unity .
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Proof: Let S be the set of all prime numbers p that are ramified in L, and
let L, be the completion of L with respect to some prime lying above p.
Then L,,\Q,, is abelian, and thercfore L, < Q,,(;L,,,,), for a suitable n,.
Let p¢ be the precise power of p dividing 7, and let
n=T]p.
pes
We will show that L € Q(u,). For this let M = L(p,). Then M|Q is
abelian, and if p is ramificd in M|Q, then p must lie in S. If M, is the
completion with respect to a prime of M above p whose restriction to L
gives the completion L, then
My = Lp(a) = Qplitpenn) = Qplptpr Y Qp Gea),
with (7', p) = L. @), (,)|Q), is the maximal unramified subextension of
Q@ (eprop)|Qp. The inertia group I, of M,|Q, is therefore isomorphic to
the group G(Qp (e, )|Qp), and consequently has order @(p°), where ¢
is Euler’s function. Let / be the subgroup of G(M|Q) generated by all {;,,
p € 5. The lixed field of / is then unramified, and hence by Minkowski's
theorem from chap. 111, (2.18), it equals @, i.e., 7 = G(M|Q). On the other
hand we have

#1 < [1#, = [1e(p™) = () = [Qlus) : Q),
pes pes

and therefore [M : Q] = [Q(i,) : @1, so that M = Q(x,,). This shows that
L S Qlun)- O

The following cxercises 1-3 presuppose exercises 4-8 of chap. IV, §3.

Exercise 1. For the Glois group /* = G (K |K), onc has canonically
H'(I.Z/Z) = Z/nZ and H'(F.p) = UgK* /K™,
the latier provided that # is not divisible by the residue characteristic.
Exercise 2. For an arbitrary ficld K and a G -module A, put
HY K. Ay=H'(Gg. A).
If K is & p-adic number fictd and 7 a natural number, then there exists a nondegen-
erate pairing
HUYK #/nl)y x HYK , 1,) — Z/nT
of finite groups given by _
(x.a) = x((a. KIK)).
If # is not divisible by the residue characteristic p, then the orthogonal complement of
H) (K. Z/n) = 1(G(KIK).Z/nZ) € H' (K. Z/nT)

is the group -
Hy (K ope) v= HUG(K K ) ) € H' (K ptn) -



326 Chapter V. Local Class Field Theory

Exercise 3. If L|K is a finite extension of p-adic number fields, then one has a
commutative diagram
HYL.Z/nZ) x H'(L.p,) — Z/nZ
T Lo |

H'YK.Z/nZ) x H'(K.w) — Z/nL.

Exercise 4 (Local Tate Duality). Show that the statcments of cxercises 2 and
3 generalize to an arbitrary finite Gy-module A instead of Z/aZ, and A" =
Hom(A, K*) instead of i,,.

Hint: Use exercises 4-8 of chap. IV, §3.

Exercise 5. Let £|K be the composite of all Z,-extensions of a fi-adic number tield
K (ie., extensions with Galois group isomorphic to Z,). Show that the Galois group
G(L|K) is a free, finitely generated Z,-module and determine its rank.

Exercise 6. There is only one uaramified Z ,-extension of K. Generate it by roots of
unity.

Exercise 7. Let p be the residue characteristic of K, and let L be the field generated
by all roots of unity of p-power order. The fixed field of the torsion subgroup of
G(LIK) is a Z,-extension. It is called the cyclotomic Z,-extension.

Exercise 8. Lot ,|Q, be the cyclotomic Z, <cxtension of Q,,, let G(&,1Q,) = Z,
be a chosen isomorphism, and let d : G, — Z, be the induced homomorphism of

the absolute Galois group. Show:
For a suitable topological generator 1 of the group of principal units of @2,

loga

. Zp, @)= .
Q, - Z, (a) logn

defincs a hensclian valuation with respect to d, in the sense of abstract p-class field
theory (see chap. TV, §5, exercise 2).

Exercise 9. Determine all p-class ficld theories (d : Gx — Z,, v: K* — Z,) over
a p-adic number field K.

Exercise 10. Determine ali class field theories (d : Gy — 2, v : K= — 2) overa
p-adic number field K.

Exercise 11. The Weil group of a local field K is the preimage Wy of Z under the
mapping dy : Gy — . Show:

The norm residue symhol ( . K“’|K} of the maximal abelian extension K“°|K
yields an isomorphism
CRPIK) K Wi,

which maps the unit group Uy onto the incrtia group 7 (K“*]K), and the group of
principal units U5 onto the ramification group R(K*"|K).
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§2. The Norm Residue Symbol over Q,

If ¢ is a primitive m-th root of unity, with (m, p) = 1, then Q,()1Q,
is unramified, and the norm residue symbol is obviously given by

tpta)

(a.Qp(©)Q,) e = ¢,

But if £ is a primitive p”-th root of unity, then we obtain the norm residue
symbol for the extension Q,,(¢)|Q), explicitly in the simple form

(@.QuO1Q,) ¢ = ¢

where @ = up?“ and ¢* "is the power ¢ with any rational integer
r =u~" mod p”. This result is important, not only in the local situation, but
it will play an essential role when we devclop global class field theory (sce
chap. VL. §5). Unfortunately, there is no dircct algebraic proof of this fact
known to date. We have to invoke a transcendental method which makes
use ol the completion K of the maximal unramified extension K of a local
field K. We extend the Frobenius ¢ € G(K 1K) to K by continuity. First we
prove the

2.1) Lemma. Forevery ¢ € o, resp. every ¢ € Ug . the equation
y K » TESP- Y £ q
X —x=c, resp. ¥ =g,

admits a solution in og , resp. inUg . If x¥ = x forx € og, then x € ok.

Proof: let 7 be a prime element of K. Then 7 is also a prime element
of K, and we have the g-invariant isomorphisms
JTTI0 e ")~ o
UK/UIZ =k UL UE =i
(see chap. I, (3.10)). Let ¢ € Ug and ¢ = ¢ mod pg Since the residue class

field & of K is algebraically closed, the equation X% =¥ = X - (¢ = qx)
has a solution # 0 in K = og /pg. ie.,

(-:x‘f 'a|, xyelg, ae Ulg).
For similar reasons, we find that ¢y = ,\‘f"ag, for some x; € Ul‘?” and
@ € U,(;). so that ¢ = (x,xz)“’ ‘ay. Indeed, putting ay = | + bym,
-9

x3 = L+ ym, gives ayxy

=1-0f -y, — b)r mod 7, ie., we
have to solve the congruence ,\“”

— y2 — b =0 mod x, or equivalently the
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equation ¥4 — ¥, — b, = 0 in . This is possible because & is algebraically
closed. Continuing in this way, we get

C=(nxzx)? lag, e UL, a,,EU,%")_

and passing to the limit finally gives ¢ = x*~', where x = [[72, x, € Ug.
The solvability of the equation x¥ — x = ¢ follows analogously, using the
isomorphisms P;’? /0%

Now let x € og and x¥ = x. Then, for every n > |, one has

aIl e

(%)

X

<. + 7"y, with x, € 0k and y, € 0g.

Indeed, for n = | we have x = a + 7h, with g € Og b eog, and x¥ =x
implies ¥ = @ mod 7. Hence a = x; + e, with x| € 0k, ¢ € O, and
therefore x = x|+ (h+¢) = x14+7y1, yi € Og. The equation x =
implies furthermore that y,‘f = yn, 5o that we get as above y, = ¢, + nd,.
with ¢, € ok, d, € of, and therefore x = (x, + ¢,7") + 7"+'d, =
Xt £ gy, for some X1 € Ok, yu1 € og. Now passing to the limit
in the equation (%) gives x = lim, . X, € Ok, because K is complete. 0

For a power series F(X|, ..., X,) € 0g[[X/. ....X,ll, let F? be the
power serics in og[[X1, ..., X, || which arises from ¥ by applying ¢ to the
coefficicnts of F. A Lubin-Tate series for a prime element 7 of K is by
definition a power series e(X) € ok[|X|] with the propertics

e(X)=nX moddeg2 and e(X)= X% modr,

where ¢ = g denotes, as always, the number of elements in the residue
class ficld of K. The totality of all Lubin-Tate series is denoted by £;. In
&y there are in particular the polynomials

e(Xy=uX?+m(ag X"+ +wX)+nX,
where u,4; € 0x and ¥ = | mod 7. These are called the Lubin-Tate
polynomials. The simplest one among them is the polynomial X9 + mX.

In the case K = @, for example, ¢(X) = (1 + X)” — 1 is a Lubin-Tate
polynomial for the prime element p.

(2.2) Proposition. Let 7w and T be prime clements of K, and let e(X) €&y,
&(X) € & be Lubin-Tate series. Let L(X,, ..., X,) = Y1, aiX; bealinear
form with cocflicicnts a; € og such that

aL(Xy, .. X)) =TLAX LX)
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Then there is a uniquely determined power scries F(Xy,....X,)
e ogllX1. ..., Xl satisfying

F(Xi, ..., X)) =L(X\,...,X,) mod deg 2.
e(F(Xy, ... X)) = FO(8X0), ....8(Xn) -

If the coefficients of ¢, &, L lie in a complete subring 0 of og such thato¥ = o,
then F has coefficients in © as well.

Proof: Let © be a complete subring of og such that ©¥ = o, which
contains the coefficients of ¢.e, L. We put X = (X, ..., X, and e(X) =
e(X), ... e{Xy)). Let

FOO = £ B0  cllx)
be a power series, E,(X) its homogeneous part of degree v, and let
F(X)= Z Ev(X).
Clearly, F(X) is a solution of the above problem if and only if Fi(X) =
L(X) and
43} e(F(X)) = FF{e(X)) mod deg(r + 1)

for every r > 1. We determine the polynomials E,(X) inductively. For
v =1 we are forced to take E,(X) = L{X). Condition (1) is then satistied
for r = | by hypothesis. Assume that the £,(X), for v = 1, ...,r, have
already been found, and that they are uniquely determincd by condition (1}.
We then put Fri(X) = Fr(X)+ E,.(X) with 2 homogeneous polynomial

E,11(X) € o[X]| of degree r + | which has yet to be determined. The
congruences

¢(Fop1 (X)) = e F(X)) + 7 E, 1(X) mod deg(r +2),
FE(200)) = FE@OO) + 7 ES, ((X) mod deg(r +2)
show that E,4((X) has to satisfy the congruence
2 GrX) + w B (X) — T T ES (X)) = 0 mod deg(r +2)

with G,41(X) = e(F, (X)) — F@(X)) € o[|X]]. We have G,.((X) =0
mod deg(r + 1) and

3) Gra(X) = Fo (X)) — FA(XY) =0 mod 7
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because ¢(X) = e(X) = XY mod n and a® = o mod 7 for ¢ € .
Now let X! = X;‘ - X% be a monomial of degree r + 1 in ©[X]. By (3).
the coefficient of X' in G, is of the form —xp, with 8 € 0. Lt a be
the coefficient of the same monomial X' in E,,,. Then mra — Ta¥ is the
coefficient of X' in wE, | — TE?, . Since G, (X) = 0 mod deg(r + 1),
(2) holds if and only if the coefficient & of X' in E,, satisfies the equation
@) —f+ra -7 et =0

for every monomial X* of degree r+ 1. This equation has a unique solution a
in 0z, which actually belongs to ©. For if we put y =7 ~'7"" ', we obtain
the equation

a—ya¥ =8,
which is clearly solved by the series
a=B+yB 4y BT 4 e o

(the series converges bccause wg(y) > 1). If o is another solution,

then @ — o’ = y(a — "), hence vgla — o) = vg(y) + vp ((or —
o¢')¥) = vg(y) + vgla — &), ie., vg(e — ') = 0o because vg(y) = |,
and therefore « = o'. As a consequence, for cvery monomial X' of

degree r + 1, equation (4) has a unique solution « in ©, ic., there
exists a unigue E,;1(X) € o[X] satisfying (2). This finishes the proof.
G

(2.3) Corollary. Let 7 oand T be prime elements of K. and let ¢ € &,
@ € Ex be Lubin-Tate scrics with coefficients in 0. Letm = uw, u € Uy,
andu = &', & € Ug. Then there is a uniquely determined power series
0(X} € ogllX]1| such that §(X) = ¢X mod deg 2 and

ecf=60%08e,
Furthermore, there is a uniqucly determined power series |u](X) € og[[X]]
such that [u](X) = uX mod deg 2 and

colul=[uloe.
They satisly

0¥ =6 olul.

Proof: Putting L(X) = £X, we have wL(X) = TL¥(X) and the first
claim follows immediately from (2.2}. In the same way, with the lincar
form L(X) = uX. one obtains the existence and uniqueness of the power
series [u](X) € ok ||X|]. Finally, defining 6, = ()V’il o|u], we get

ol =(cof)¥ olul=©0d)  olul= "'

and thus &) = § because of uniqueness. Hence 8¢ = 8 o [u]. 0

olu)foe=6foe,
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(2.4) Theorem. Leta = up®'? ¢ Q. and fet ¢ be a primitive p* -th root of
unity. Then one has
!

(a.Qp(NQ,) ¢ =

Proof: As N is dense in Zp, we may assume that # € N, (u.p) = 1.
Let K = @,, L = Qp(¢). and let 0 € G(L|K) be the automorphism
defined by
{rf = {M’].

Since Q,(0)IQ,, is totally ramified, we have G(LIK) = G(L|K), and
we view o us an clement of G(L|K). Then & = oy € Frob(Z|K) is an
element such that dx (8) = 1 and & |, = o. The fixed field X of & is totally
ramified because fx|x = dg (&) = | by chap.1V, (4.5). The proof of the
theorem is based on the fact that the field £ can be explicitly generated by
a prime element 5 which is given by the power series € of (2.3).

In order to do this, assume & and ¢ = g, have been extended continuously
to the completion L of L, and consider the two Lubin-Tatc polynomials

e(X)=upX + X7 and F(X)=(1+X)} -1

as well as the polynomial [u](X) = (I + X)* — 1. Then é([ul(X)) =
1+ X —1 = [¢](Z(X)). By (2.3), there is a power serics #(X) € 0g[[X1]
such that

ec@=6"cé and 69 =60lul.
Substituting the prime element A = ¢ — | of L, we obtain a prime clement
of X by
Ty =8(A).

Indeed, [u](2%) = (1 + A7) — 1 = {9 — 1 = ¢ — | = &, and therefore
g =0v(7) = 0([ul(aM)) =6 = s,
ie., wy € X. We will show that
P(X)=€""(X) " +up e Z,IX]

is the minimal polynomial of 7z, where ¢/ (X) is defined by €”(X) = X and
¢ (X) = e(e!~"(X)). P(X) is monic of degrce p"~'(p — 1) and irreducible
by Eisenstein's criterion, as e(X) = X” mod p, and so el (xyr! =
X' =0 mod p. Finally, ¢"(X) = ¢"~(X) - (up + "' XOPT") =
AIX)P(X), so that

Plrg)e™ (ry) = ¢"(n5).

Since &/ (rx) = €l (B(1)) = 0¥ (&' 0) = 6 (1 + )7 = N = 0¥ ¢ — D).
we have ¢ (mx) = 0, ¢"~ () # 0, and thus P(ry) =10
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Observing that Ny jx (¢ —1) = (—l)"p, d =L : K](seechap.1I, (7.13)),
we obtain

Nk (rz) = (1Y P0) = (=1)* pu = u mod N xL*

and therefore rp x (0) = wod Ny L*, ie., (4, L|K) = (a,LIK) =0, as
required.

In order to really understand this proof of theorem (2.4), one has to
read §4. Let us note that one would got a direct, purely algebraic proof, if
one could show without using the power series ¢ that the splitting ficld of
the polynomial e”(X) is abelian, and that its elements are all fixed under
& = oy This splitting field would then have to be equal to the field &
and every zero of P(X) = &"(X)/e" 1(X) would have to be a prime
element 7z € X such that Nxig(mx) = u mod Ny g L*, in which case
reik (o) =u mod NpxL*, and so (u,LIK) = a.

Exercise L The p-class field theory (d : G, — Z,, v : @, — 7) for the unramificd
Z,-extension of @, and the p-class field theory (4 : G, = Zp, 6 : G = Z,) for
the cyclotomic Z,-extension of @, (see § |, exercise 7) yield the same norm residue
symbol ( . L|K).

Hint: Show that this statement is cquivalent to formula (2.4): (4, @, (D)1@,)¢ = ¢

Exercise 2. Let L|K be a totally ramificd Galois extension, and let L (resp. £) be
the completion of the maximal unramified extension L (resp. K) of I (resp. K).
Show that Nz ¢L* = K*, and that every v € L” with Ny z(y) = 1 is of the form
I ' o e GULIK).

Exercise 3 (Theorem of Dwors). Let LK be a totally ramificd abelian extension of
p-adic number fields. Let x € K* and y € L* such that Ny p(3) = x. Let z; € L*
and choose ; € G(L|K) such that

.
wE =

Putting o = [T, 1. onc has (x.L|K) = o

Hint: See chap. 1V, §5, exercise 1.

Exercise 4. Doduce from exercises 2 and 3 the formula (e, @,(1Q,)¢ = ¢* ' for
some p”-th root of unity ¢.
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§3. The Hilbert Symbol

§ 3. The Hilbert Symbol

Let K be a local ficld, or K = R, K = C. We assume that K contains
the group 4z, of n-th roots of unity, where # is a natural number which
is relatively prime to the characteristic of K (i.c., n can be arbitrary if
char(K) = 0). Over such a field K we then have at our disposal, on the
one hand, Kummer theory (see chap.IV, §3), and on the other, class field
theory. 1t is the interplay between both theorics, which gives rise to the
“Hilbert symbol™. This is a highly remarkable phenomenon which will lead
us to a generalization of the classical reciprocity law of Gauss, to n-th power
residues.

Let L = K(+/K*) be the maximal abelian extension of exponent n.
By (1.5), we then have

Nywl*=K",
and class field theory gives us the canonical isomorphism
G(LIK) = K*/K*™.
On the other hand, Kummer theory gives the canonical isomorphism
Hom(G(L|K), 1,) = K*/K™.

The bitinear map

G(LIKY x Hom(G(L|K), 1) —> pn, {0, %) —> x(9).
therefore defines a nondegenerate bilinear pairing

(?) CKK KUK —

{bilinear in the multiplicative sense). This pairing is called the Hilbert
symbol. Its relation to the norm residue symbol is described explicitly in
the following proposition.

(3.1) Proposition. Fora.b € K*, the Hilbert symbol ah €y is given
4 P

b
Y (a,K(«”/;)IK)%:(HTb)«”/Z.

Proof: The image of a under the isomorphism K*/K*" = G(L|K) of class
field theory is the norm residue symbol o = (¢, L|K }. The image of » under
the isomorphism K*/K* = Hom(G(L|K), t;) of Kummer theory is the
character y, : G(L|K) — u, given by xu(z) = r%/(’/;. By definition of
the Hilbert symbol, we have

b 0= n
(”p ):X,,(a) =ab/ Vb,
hcnuc(a.K(%)IK){’/E:(u,L\K)%:(%)Q/E, [}
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The Hilbert symbol has the following fundamental properties:

(3.2) Proposition.

o (55 - ()

i (45) = (5)(57)

(iii) (%) = | <= a is a norm from the extension K (VB)IK .
w (-0

W (“57) = tana (=59 =1,

W) ¥ (%) — | forallb € K*, thena € K*".

Proof: (i) and (ii) arc clear from the definition, (iii) follows from (3.1), and
(vi) reformulates the nondegencrateness of the Hilbert symbol.
If h € K* and x € K such that x" — b £ 0, then

n=i
xt—b=[lx~'8), B =0
i=0
for some primitive -th root of unity Z. Let d be the greatest divisor of # such
that y¢ = b has a solution in X, and let # = dm. Then the extension K (£)|K

is cyclic of degree m, and the conjugates of x —¢'§ are the elements x—¢/ 8
such that j =i mod d. We may therefore wrilc

d-1
X" —b =[] Nipnx e — ' B).
=

Hence x" — b is a norm from K (VB)|K. ic..

(A‘" —ph,b) _1

Choosing ¥ = 1, b =1 —«, and x =0, h = —a then yield (v). (iv) finally
follows from

(SO = (NG

P
. —uaby\ b, —ab ab. — ab
(u pu )( p(t):( F‘417):1‘ o
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In the case K = R we have n = 1 or n = 2. For n = 1 one finds, of
course, (“Th) = 1. and for n = 2 we have

(”"Jh) — e

sgna—t

because ((l,R(«/F)UR) =1forb > 0,and = (—1)" 2 for b < 0. Here
the letter p symbolically stands for an infinite place.

Next we determine the Hilbert symbol explicitly in the case where K is
a local ficld (# R, C) whose residue characteristic p does not divide n. We
call this the case of the tame Hilbert symbol. Since Hn € iy 1 one has
n{g — | in that case. First we establish the

(3.3) Lemma. Let (n.p) = | and x € K*. The extension K (¥/x)|K is
unramified if and only if x € Ug K*".

Proof: Let v = uy” with u € Uk, y € K*, so that K (¥/x) = K (¥/u). Let
&' be the splitting field of the polynomial X” — & mod p over the residuc
class ficld «, and let K'|K bc the unramified extension with residue class
field «” (see chap. I1, §9, p. 173). By Hensel’s lemma, X" — i splits over K’
into linear factors, so K({/u) € K' is unramified. Assume conversely that
L = K{({/x) is unramified over K, and let x = ux’, where u Uy and
7 is a prime clement of K. Then vy (Vun’ )= %W_(TI') = '; € Z, hence
alr.ie, " € K™, and thus x € Ug K. O

Since Ux = pty—y x U,((”, every unit # € Ux has a unique decomposition
u = w(u){u)

with (i) € py_y and () € U,(('), u = w{u) mod p. With this notation we
will now prove the

(3.4) Proposition. If (n.p) = 1anda, b € K*, then

(apJ) _ w((—])“ﬁ:—:)wil)/”.

where o = vi (a), 8 = vk (b).
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Proof: The function
B g-1/n
(a,b) = w((—l)“ﬁ—)
ab
is obviously bilinear (in the multiplicative sense). We may therefore assume
that @ and b are prime elements: ¢ = 7, b = —nwu, u € Uk. Since clearly
m, —my = (BT

y = Yu and K’ = K (y). Then we have

) = 1, wc may restrict to the case a = 7, b = u. Let

T
(rouwy = w4 and (L, KKy = (= ).
)

By (3.3), we see that K'|K is unramified and by chap. 1V, (5.7), (=.K'|K)
is the Frobenius automorphism ¢ = ggnx. Consequently,

(7’-”) = B et eI 2 @)D = () mod

P ¥
hence (Lp“—) = (m.u), because i, ; is mapped isomorphically onto x* by
Ug — «*. a

The proposition shows in particular that the Hilbert symbol
(n, u) = w@¥n
P

(in the case (n, p) = 1) is independent of the choice of the prime element
7. We may thercfore put

u U
(;) = (T) for welUg.
(%) is the root of unity detcrmined by
(%) = 'Y mod pg.
We call it the Legendre symbol, or the n-th power residue symbol. Both
names are justified by the
(3.5) Proposition. Let (n, p) = 1 and u € Uk . Then one has

(%) =1 <= uisann-thpower mod pg .
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Proof: Let ¢ be a primitive (¢ — 1)-th root of unity, and let m = q; l.
Then ¢" is a primitive m-th root of unity, and
(S) =) =1 &= o) € ty < o) = @Y
= u=ol) = (") mod pg. 3

Itis an important, but in gencral difficult, problem 1o find explicit formutae
for the Hilbert symbot {%2) also in the case pln. Let us look at the case
where # =2 and K = Q- W a € Zs, then (=1)* means

(=¥ =(=1y",
where r is a rational integer = a mod 2.
(3.6) Theorem. Letn =2, Fora,b e «,*7 we write

a=p*d’. b=ply, J. b e Ug, .

a.h p-1 a'NB b e
SOV Ly T (, .
() == () ()
In particular, one has ( LS p) = (=1 D12 ypng ( %) = (%) Lif e is a unit.
Ifp=2anda.be Uuz, then

Proof: The claim for the case p # 2 is an immediate consequence of (3.4),
-1
8

Ifp # 2, then

and will be left to the reader. So let p = 2. We put p{a@) = and

e(a) = - An elementary computation shows that

nlaay) = nla) + n(a) mod 2 and  s(ayaz) = e(a)) + &(da) mod 2.

Thus both sides of the equations we have to prove are multiplicative and it
is enough to check the claim for a set of generators of Uy, JUS, 15, ~ 1}

is such a set. We postpone this for the moment and define (a.h)y = (%)




338 Chapter V. Local Class Field Theory

We have (—1,x) = | if and only if x is a norm from Qy(v=1)IQs.
ie,x =y + 2 €@, Since 5=4+1and 2= 1+ 1, we find that
(—1,2y = (—1. 1. If we had (=1, — 1) = L. then it would follow that
(=t,x) =1 for all x, i.e., —1 would be a square in @3, which is not the
case. Therefore we have (—1, — 1) = —1.

We have (2.2) = (2. — 1) = 1 and (5.5) = (5, — 1) = L. It remains
therefore to determine (2.5). (2.5) = 1 would imply (2,x) = | for all x,
i.c.. 2 would be a square in Q3, which is not the case. Hence (2,5) = -1

By direct verification one sees that the values we just found coincide with
those of (=1)™@, resp. (—1)*{@*® _in (he respective cases.

It remains to show that U@:/Ué, is generated by {5, — 1}. We set U =

Ug,, U™ = zzg’z’. By chap. 11, (5.5), exp : 2"Z2 — U™ is an isomorphism
for n > L. Since u > 2a defines an isomorphism 22Z; — 2°Zs. x > x*
defines an isomorphism U — U™, It follows that U ¢ U?. Since
{1, — 1.5, — 5} is a system of representatives of U/UP, UJU? is generated
by —1 and 5.

It is much more difficult to determine the n-th Hilbert symbol in the
general case. It was discovered only in 1964 by the mathematician Hrrsut
Brucxnir, Since the result has not previously been published in an easily
accessible place, we state it here without proof for the case n = p¥ of odd
residue characteristic p of K.

So let jpr © K, choose a prime element 5 of K, and let W be the ring
of integers of the maximal unramified subextension T of K|Q, (ic., the
ring of Witt vectors over the residue class field of X). Then every element
x € K can be written in the form

x = f(m),
with a Laurent series f(X) € W{(X)).

For an arbitrary Laurent series f(X) = 213,," aiX' € W((X)), let
FT(X) denote the serics
FRex) = Saf X,
i
where ¢ is the Frobenius automorphism of W. Further, let Res{ fdX) e W
denote the residue of the differential fdX,
ot
dlog f = %dx,
and s i
i~ 1y
log f = Z(¥|)'H(f*).
i=1 i
it fel+pWlXIN
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Now let ¢ be a primitive p'-th root of unity. Then | — £ is a prime
clement of Q,(¢), and thus
1—¢=n,

for some unit ¢ of X, where ¢ is the ramification index of KIQp¢). Let
n(X) € W[IX]1] be a power series such that

& =n(m),
and let 1(X) be the series
L 14— Xnxn =,
hX) = +( nxy

1 - X @i eW. lim g =0.
2 T={ = Xeq(x )P :Zw”’ GeW. Am i

With this notation we can now state Brockner's formula for the p"-th Hilbert

symbol (\T)), p = char(i) # 2.

(3.7) Theorem. Ifx,y € K* and f,g € W({X))* such that fim) = x and

g(r) =y, then

where
1 »
w(x.y) = Trwz, Res /1-(— log £
14

1 ” ,
i dlogg— ; log ;% ;(1 log fp) mod p”.

For the proof of this theorem, we have to refer to [20] (see also
169] and |135]). Briickner has also deduced an explicit formula for the
case n = 2", but it is much more complicated. A more recent treatment
of the theorem, which also includes the case n = 2", has been given by
G. Hesniakr [69).

It would be interesting to deduce from these formulue the following
classicul result of fwasawa [RO|, Arriv and Hasse (scc |9)) relative to the
lield

P. = Q).
where ¢ is a primitive p¥-th root of unity (p # 2). Putting 7 = 1 — ¢ and
denoting by S the trace map from @, 1o Qp, we obtain for the p¥-th Hilbert
symbol (%) of the field @, the
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(3.8) Proposition. Fora € U( ”‘ h ) and b € Py one has

) (%) — Stloea Diogh)/p*

where D log b denotes the formal logarithimic derivative in 5 of an arbitrary
representation of b as an integral power series inm with coefficients inZ.

Fora € U(” one has furthermore the two supplementary theerems

LoaN _ L Stoga)/p”
@ (—p )=¢ .

TN S mepa)/pt
3 (T )=t .

The supplementary theorems (2) and (3) go back to Arriv and Hasse |91,
The formula (1) was proved independently by Axriv |10] and Hassk 611
in the case v = 1, and by fwasawa |80] in general. In the casc v = 1, for
instance, one can indeed obtain the formulac from BRECKNER’S theorem (3.7).
Since

15<[”,)E{lmodp, [‘_p 5 and loga =0 mod p2,

P 0 mod p. i#p—1,
one may also interpret the £ -exponent in the formulae (1)—3) as the (p—1)-
st coefficient of a 7 -adic expansion of loga D log b. In this way it appears as
a formal residue Res; i, loga D lng,h As to the supplementary theorems,

one has to define also Dlog{ = —¢~', Dlogm = ="

Exercise 1. For n = 2 the Hilbert symbol has the following concrete meaning:

(E2) <1 e art et

0 has a nontrivial solution in K.

Exercise 2. Deduce proposition (3.8) from theorem (3.7},

Exercise 3. Let K be a local field of characteristic p, let K be its separable
closure, and let W, (K) be the ring of Witt vectors of length o, with the operator
W (K) — W,(K), pa = Fa — a (see chap. 1V, §3. exercises 2 and 3). Show
that one has ker(p) = W, (F,).

Exercise 4. Abstract Kummer theory (¢hap. 1V, (3.3)) yiclds for the maximal abelian
extension L|K of exponent # a surjective homomorphism

W,(K) — Hom(G(LIK), W, (F,)), x> xoo

where onc has x.(¢) = af — & for all @ € G(L|K). with an arbitrary & € W, (L)
such that p€ = x. Show that x — x, has kernel pW, (K).
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Exercise 5. Definc, for x & W, (K) and a € K*, the symbol [x,a) € W,,(F,) by
[x.a) = x,((@. L|K)).

where (, LIK) is the norm residue symbol. Show:

W) 16,0) = (@ K (BIKE ~ &, if & € W,(K) with p§ =

@ii) Lx + y.a0) = [x,a) + [y. ).

(i} Lv.ab) = [x,@) + [x, b).

(iv) [x,0) = 0 <= a € Ny K(E)", where & € W,(K) is an element such
that g€ = x.

W [x,@y=0forall a € K* &= x € pW, (K).
i) [x.a)=0forall x e W,(K) = v € K*".

Exercise 6. Let « be the residuc ¢l
K =x((x)). Let

field of K and & a prime element such that

diK - 2. [ df,
be the canonical map to the differential module of K |« (see chap. ill, §2, p-200).
For every f € K one has
df = frdw,
where f; is the formal derivative of f in the cxpansion according 1o powers of 7
with cocfficients in «. Show that for w = (oo ), the residuc

Resw :=

-1
does not depend on the choice of the prime clement .

Exercise 7. Show (hat in the casc 2 = [ the symbol [x.q) is given by

).

i
[x.a) = Trypp, Res(x 2
a

Remark: Such a formula can also be given for n > | (P. Kowcas 1881).

§4. Formal Groups

The most explicit realization of local class field thcory we have encoun-
tered for the case of cyclotomic fields over the field Q. ie., with the ex-
tensions Q,(£)|Q,, where ¢ is a p”-th root of unity. The notion of formal
group allows us to construct such an explicit cyclotomic theory over an ar-
bitrary local field K by introducing a new kind of roots of unity which are
“division points” that do the samc for the field K as the p”-th roots of unity
do for the ficld Q.
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(4.1) Defini A(1-di fonal, cc ive) formal group overaring o
is a formal power series F(X Y) € o[[X, Y]] with the following properties:

(i) F(X,Y)=X+Y moddeg2,
(iiy F(X,Y)=F({F,X) “commutativity”,
(i) F(X,F(Y,Z)) = F(F(X.Y),Z) “associativity”.

From a formal group one gets an ordinary group by evaluating in a domain
where the power scries converge. If for instance © is a complete valuation
ring and p its maximal ideal, then the operation

x+y:=F{x.y)
K

defines a new structure of abelian group on the set p.

Examples:
1. Gu{X,Y) = X +Y (the formal additivc group).

2. Gm(X.Y)= X +Y + XY (the formal multiplicative group). Since
X+Y+Xy=(0+X0+¥" -1,
we have

(xj»y)+l:(x+|)-(y+l).

So the new operation + is obtained from multiplication - via the translation

x> x4+ o

3. A power series f(X) = aX + aX?+ .- € ollX]] whose first

coefficient «; is a unit admits an “inverse”, i.c., there exists a power series
F X =ar'X 4 e ollXT],

such that £ "' (f(X)) = f(f~'(X)) = X. For every such power series,
FIXLY)y=f ' (fXD)+ f()

is a formal group.

(4.2) Definition. A homomorphism f : F — G betwecn rwo formal groups
is a power series f(X) = a1 X +ayX? + - € of[X1] such that

FFE DY =GfX). (V).
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In example 3, for instance, the power series f is a homomorphism of the
formal group F to the additive group G,. It is called the logarithm of F.

A homomorphism f : F — G is an isomorphism if ) = f(0) is a unit,
i.c., il there is a homomorphism ¢ = f~' : G — F such that

FlaX) =g(f(x)) =x.

If the power series f(X) = @/ X 4+ a2X? + - satisfies the cquation
SF(X, YY) = G(f(X), £(Y}), but its coefficients belong to an cxtension
ring ¢, then we call this « homomorphism defined over . The following
proposition is immediately evident.

(4.3) Proposition. The homomorphisms f : F — F of a formal group F
over © form a ring Ende,(F) in which addition and multiplication are defined
by

U+ =F(fX),g(X),  (For()= f(g(X).

(4.4) Definition. A formal ©-moedule is a formal group F over © together
with a ring homomorphism

o0 — Endo{F), a+— [ajp(X),

such that [a|p(X) = aX mod deg 2.

A homomorphism (over ©' 2 ©) between formal o-modules F,G is a
homomorphism f : F — G of formal groups (over ') in the sense of (4.2)
such that

Flalp (X)) = lalg(£(X)) forall aco.

Now let © = ok be the valuation ring of a local field K, and write
¢ = {0k : px ). We consider the following special formal ok -modules.

(4.5) Definition. A Lubin-Tate module over ok for the prime element 7 is
a formal © -module F such that

[lr(X)=XYmod 7.
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This definition reflects once more the dominating principle of class field
theory, to the effect that prime elements correspond to Frobenius elements. In
fact, if we reduce the coefficients of some formal o-module F modulo 7, we
obtain a formal group F(X.Y) over the residue class field F,. The reduction
mod 7 of [7)r(X) is an endomorphism of F. But on the other hand,
F(X) = X7 is clearly an endomorphism of F, its Frobenius endomorphism.
Thus F is a Lubin-Tate modulc if the endomorphism detined by a prime
element 7 gives via reduction the Frobenius endomorphism of F.

Example: The formal multiplicative group G, is a formal Z,-module with
respect to the mapping

Top = Bndg, (G @ > ale, () = (1 + X7 —1= 5 (X"

zZ, o
v=

G,y is a Lubin-Tate module for the prime element p because

115, (X)) = (1 +X)P — 1 = X" mod p.

The following theorem gives a complete and explicit overall view of the
totality of all Lubin-Tate modules. Let ¢{X). e(X) € 0k [[X1] be Lubin-Tate
series for the prime element 7 of K, and let

FoX.Yye og[[X.Y]} and lal, z(X) € oxlIX]]

(a € 0k) be the power series (uniquely determined according to (2.2)) such
that

FAX.Y)=X+Y moddeg2,  e(Fe(X.Y)) = Fo(e(X),e(V)) .
la),.(X) = aX mod deg2, elale #(X)) = lale.:(2(X)) .
If e(X) = &(X) we simply write [a]. z(X) = [a].(X).

(4.6) Theorem. (i} The Lubin-Tate modules for v are precisely the series
Fo(X.Y), with the formal o -module structure given by

ok —> Endoy (F).  ar— lal(X).

(i) For every a € ok the power scries [al, z(X) is 2 homomorphism
lale.z: Fa — F.

of formal o-modules, and it is an isomorphism if a is a unit.
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Proof: If' F is any Lubin-Tatc module, then e(X) := [nlr(X) € &
and F = F, because e(F(X,Y)) = F(e(X).e(Y)). and because of the
uniqueness statement of {2.2). For the other claims of the theorem onc has
to show the following formulae.
(1) FAX.,Y) = F(Y.X),
(2) Fe(X. Fo(Y.2)) = Fo,(FAX.Y). Z),
@) lale #{Fz(X, YY) = Felal, :(X).[ale s (V).
@) la +b)e 7(X) = Fellal, 5(X). [b]. z2(X)),
(5} lab], z(X) = [al, 7 (b1, (X)),
©) |7 (X)) = e(X).
1) and (2) show that F, is a formal group. (3), (4), and (5) show that
og — Endoy (Fo), ar—> lale,

is a homomorphism of rings, i.e., that £, is a formal o -module, and that
lale,z is a homomorphism of formal ok -modules {from F; to F,. Finally,
(6) shows that F, is a Lubin-Tatc module.

The proofs of these formulae all follow the same pattern, Onc checks
that both sides of each formula are solutions of the same problem of (2.2),
and then deduces their equality [rom the uniqueness statement. In (6) for

instance, both power series commence with the linear form s X and satisfy
the condition e(|7|.(X)) = [m].(e(X}), resp. e{e(X)) = ele(X)). [m]

Exercise 1. End (G, ) consists of all aX such that a € o.

FExercise 2. Let R be a commutative Q-algebra. Then for every formal group F(X,Y)
over R, there exists a unique isomorphism

log, 1 F — G,,
such that log,(X) = X mod deg 2. the logarithm of F.

Hint: Let F, = #F/dY. Differentialing £ (F(X,¥),Z) = F(X.F(¥,2)) yields
Fi(X.0)=1moddeg 1. Let y(X) = 1 + % @, X" e R[[X]] be the power series
such that ¥ (X)F,(X.0) = L. Then log, (X) = X + % % X" does what we want.

~
) X
Excrcise 3. logg (X) = g(fl) o = log(l + X).

Exercise 4, Let 7 be a prime element of the local field K, and let f(X) =
X+ 7 "X+ 772X 4. Then

FXLY) =70+ £, laleX) = f7@f(X), aeok.
defines a Lubin-Tatc module with logarithm log, = f.
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Exercise 5. Two Lubin-Tate modules over the valuation ring oy of a local field K,
but for different prime clements = and 7, are never isomorphic.

Exercise 6. Two Lubin-Tate modules £, and F7 for prime clements 7 and 7T always
become isomorphic over o, where K is the completion of the maximal unramitied
extension K|K.

Hint: The power series ¢ of (2.3) yields an isomorphism 6 : /5 — F..

§ 5. Generalized Cyclotomic Theory

Formul groups are relevani for local class field theory in that they allow
us to construct a perfect analogue of the theory of the p”-th cyclotomic
field Q,(£) over Q. with its fundamental isomorphism

G(QpIQ,) — @/p"D)

(see chap. IT (7.13)), replacing @, by an arbitrary local ground field K.
The formal groups furnish a generalization of the notion of p”-th root of
unity, and provide an explicit version of the local reciprocity law in the
corresponding exicnsions.

A formal ok -module gives risc to an ordinary ©g -module if we read
the power series over a domain in which they converge. We now choose for
this the maximal ideal § of the valuation ring of the algebraic closure K of
the given local field K. If G(X, ..., X,) € ox[[X), .. X1l is a power
series with constant coefficient 0, and if xy, ...,x, € p. then the series
G(xy, ....Xn) converges in the complete field K (x, ..., x,) to an element
in p. From the definition of the formal ©-modules and their homomorphisms
we therefore obtain immediately the

(5.1) Proposition. Let F be a formal ok -module. Then the set p with the
operations

x+y=F(x,y) and a«x=lalplx),
H

X,y €9, a € 0k, is an 0g -module in the usual sense. We denote it by pr.
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If f : F — G is a homomorphism (isomorphism) of formal ©x -modulcs,
then
fiPr — g, x+— flx),
is a homomorphism (isomorphism) of ordinary ok -modulcs.
The opcrations in §z, and particularly scalar multiplication « » x =
[alr(x), must of course nol be confused with the usual operations in the
field K.

We now consider a Lubin-Tate module # for the prime element 7 of k.
We definc the group of ”-division peints by
Fn) ={repp|n"+2=0} =ker(lx"]).

This is an og-module, and an Ok /m" 0k -module because it is killed
by "0k

(5.2) Propusition. F(n) is a free 0 /7" 0k -module of rank 1.

Proof: An isomorphism f : F — G of Lubin-Tate modules obviously
induces isomorphisms f : pr — Pg and f : F(n) = G(n) of og-
modules. By (4.6), Lubin-Tate modules for the same prime clement 7 are all
isomorphic. We may therefore assume that F = F,, with e(X) = X417 X =
|717(X). F(n) then consists of the ¢” zerces of the iterated polynomial
e"(X)=(ec--0e)(X) = [n"|(X), which is casily shown, by induction
on n, to be separable. Now if &, € F(n) ~ F(n — 1), then

o — F(n), ar>ask,,

is a homomorphism of ©x -modules with kernel "0 . It induces  bijective
homomorphism ok /7" — F(n) because both sides are of order ¢”. [J

{5.3) Corollary. Associating a — |alr we obtain canonical isomorphisms
ok /a"0k —> Bdoy (F())  and Ux/UY —> Aute, (F(m) .
Proof: The map on the left is an isomorphism since o /n%0x = F(n)

and Endo, (0k /7"0k) = 0k /n"0k. The one on the right is obtained by
taking the unit groups of these rings. a
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Given a Lubin-Tate module £ for the prime element i, we now define
the field of 7"-division points by

Ly=K(Fw).

Since F{n) C FF(n + 1) we get a tower of fields

o
KCLiCLyC...CLy:=UJ L
n=1

These ficlds are also called the Lubin-Tate extensions. They only depend
on the prime element 7, not on the Lubin-Tate module F. For if G is
another Lubin-Tate module for m, then by (4.6), there is an isomorphism
S F — G, f € oxliX]] such that G(n) = f(F(m) € K(F(n)), and
hence K (G(n)) = K(F(n)). If ¥ is the Lubin-Tate module F, belonging to
a Lubin-Tate polynomial e(X) € Ex, then e(X) = [x|p(X) and L, |K is the
splitting field of the a-fold iteration

XY =(eo-ce)X)=|x"Ip(X).

Example: If ox =Z, and F is the Lubin-Tatc module G, then
"Xy = 1", (X) = 1+ X7 — L.

So G, (n) consists of the elements £ — 1, wherc ¢ varies over the p* -th roots
of unity. L,|K is therefore the p”-th cyclotomic extension @ (¢ ){Q,. The
following theorem shows the complete analogy of Lubin-Tate extensions with
cyclotomic fields.

(5.4) Theorem. L,|K isatotaily ramified abelian extension of degrec ¢~ (¢—
1) with Gulois group

GLaK) = Aute, (F(n) = Ug /UL

ie., forevery o € G(L,|K) there is a unique class w mod U, withy € U
such that

A% = |ulp(h) for X € F(n).
Furthermore the following is true: let F be the Lubin-Tatc module ¥, associated
to the polynomial e(X) € Ex, and let b, € F(ny ~ F(n —1). Then &, is a
prime clement of L, i.e., L, = K (A,), and

&(X)

=1(X)

is its minimal polynomial. In particufar one has Ny, x (=)n) = 7.

Gu(X) = = x4 4 r e oglX)
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Proof: If
e(X) = XY +mlug 1 X 4+ + XD X
is a Lubin-Tate polynomial, then

e’ (X)
& (X) = et 1(X)

=0T pr(age WX T+ wme (X)) 4w

is an Eisenstein polynomial ol degree ¢"~'(¢ — 1). If F is the Lubin-Tate
module associated to ¢, and A, € F(n) ~ F(n—1), then X, is clearly a zero
of this Eisenstein polynomial, and is therefore a prime element of the totally
ramified extension K (1,)|K ol degree q”"((/ — 1). Bach ¢ € G(L|K)
induces an automorphism of F(n). We therefore obtain a homomerphism

G(Ln|K) — Auto, (F(n)) = UK/U,((”).
Itis injective because L, is generated by #(n), and it is surjective because
#G(Ly|K) 2 [KOw) K] =¢" (g = 1) = #UK/U,((M.

This proves the theorem. J

Generalizing the explicit norm residue symbol of the cyclotomic fields
Q,{up)lQ, (see (2.4)), we obtain the following explicit formula for the
norm residuc symbol of the Lubin-Tate extensions,

(5.5) Theorem. For the field L,|K of ="-division points and for a =
un’ @D ¢ K* u € Uy, one has

(@. LylK)h =[u 'lr(2), 1€ F(n).

Proof: The proof is the same as that of (2.4). Let ¢ € G(L,|K) be the
automorphism such that

V=T r(R), A€ Fm).

Let & be un element in Fmb(Z,,\K) such that o = &|;, and di (6) = 1. We
view & as an automorphism of the completion L, = L,,I? of Z Let X be
the fixed field of 5. Since fp|x = tIK (6) =1, X|K is totally ramified. It has
degree ¢" (g — 1} because 2N K=Kand ¥=3K=L,. Consequently
IZ:Kl=1IL,: KI=1Ly: K].
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Now let ¢ € &, € € E; be Lubin-Tate series over ok, where 7 = u 7.,
and let F = F;. By (2.3), there exists a power series 8(X) = ¢X +--- €
og[[X]], with & € Ug, such that

69 =fofulr and 6Y0e=co0b (p=gx).
Let A, € F(n) ~ F(n — 1). &, is a prime element of L,, and
wr =6()
is a prime element of X because
78 =0°05) = 07(lu~'1p () =0k =7z,
Since ¢/(B(Aq)) = 0¥ (@ () = O for i = n,and £ 0 for i =n — 1,
we have wy € Fe(n) ~ F.(n — 1). Hence X = K (rg) is the field of 7"-

division points of F,, and Nxjx{—75) = n = 4T by (3.4). Since ¥ =
Np,k(—An) € Np, ik Ly, we get

re, k(@) =Nyix(—ng) =n =umod Ny, kL.
and thus

(@, LalK) = % LK), Lol K) = (u, Ly 1K) = 0. 0

(5.6) Corollary. ThefieldL,|K of " -division points is the class field relative
1o the group (n) x U < K.

Proof: For a = um"<‘“ we have
4 €N kLE &= (@ LylK) = 1 = [u'[p () =4 forall & € F(n)

e Gy = ey &= uT e UL e ae () x U

a

For the maximal abclian extension K“?|K. this gives the following
generalization of the local Kronecker-Weber theorem (1.9):

(5.7) Corollary. The maximal abelian cxtension of K is the composite
K® =KLy,

where L is the union | J | L, of the fields L, of w"-division points.
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Proof: Let L|K be a finite abelian extension, Then we have 7/ e Nygl*
for suitable f. Since Ny |x L* is open in K*, and since the U,‘g’) form a basis
of neighbourhoods of 1, we have (/) x U,((") S Ny L* for u suitable
n. Hence L is contained in the class field of the group (7/) x U =
() x UYYN (e !) % U). The class field of () x U s Ly, and that
of (/) x Uk _is the unramified extension Ky of degree f. It follows that
LCKfLy C KLy =K. r

Exercise 1. Let F = F, be the Lubin-Tate module for the Lubin-Tate series ¢ € &,
with the endomorphisms [a] = lal,. Lot § = ox[1X 1] and §* = {g € S| ¢(0) € Ux}).
Show:

(i) 1t g € § is a power series such that ¢(F (1)) = 0. then g is divisible by ], ie.,
2(X) = [R1ORX), h(X) € S.

(ii) Let g € S bc a power series such that
fX LD =g(X) forall heF).
where we write X + & = F(X,4). Then there exists a unique power scrics #(X) in
S such that F
¢=hoxm.
Exercise 2. If #(X) is a power series in §, then the power series
mX)= [] AX+2)
er £
also belongs to S, and one has A (X Tk) = hm(X) forall 4 € £(1).
Exercise 3. Let N() € § be the power series (uniquely determined by exercise |

and cxercise 2) such that
Ntwolxl= [1 (X +2).
AR *

The mapping N : S ~» § is called Coleman’s norm operator. Show:

(i) N(hiha) = NN (h).

(iiy N =4 mod p.

(i) #e X'S fori=0= N(h)eX's

(iv) h=1lmod p' fori > | = N(f) = | mod p~".

(¥) Yor the operators N(h) = h, N"(k) = N(N" '(h). onc has
N'ODolxtl= [T kX i) nz0.

ermF

(vi) 4 e X8*. i =0, then N*~U(h)/N"(h) € §* and
N™hy = N"(h) mod p"~'. > 0.
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Exercise 4. Let A € F(n+1) ~ F(m, n = 0,and i = 7" 'J(3) € Fi+1) for 0 <
i < n. Then A, is a prime clement of the Lubin-Tatc extension L; 1 = K(F (i +1).
and 0ray = 0x[A] is the valuation ring of L;i. with maximal ideal pipi = %0i-1.
Show:

lel B € " 'projq. 0 < i = n. Then there exists a power series h(X) € S such
that

KGOy = for O<i<n.

Hint: Writc f, = 7 "o Gi)e with £,(X) € olX) and put, for § < i <
G (X) = [ ') Axi ] Then b = X0, I is a solution.

Exercise 5. Let 4 € Fln 4+ 1) ~ F(n) and & = [7" ‘}(), 0 =i < n. For cvery
W€ Uy, . there exists a power series h(X) € of[X]] such that

Ny Gy = h(h) for 0<is<n,
where N, is the norm from L, 110 Lig1.
Hint: Write & = /(A), i (X) € olX], and put hy = N*(k) € S*. Show that
B = N,.(w) — () € 77 pi0;.1. Then by exercisc 4 therc is a power serics
Ha(X) € O[(X T} such that B = ha(i,), 0 <7 < n. Show that £ = hy + Iy works.

Remark: The solutions of these exercises are discusscd in detail in [79], 5.2.

§ 6. Higher Ramification Groups

Considering the homomorphism
( LLIK):K* — G(LIK)

defined for an abelian extension £|K of local fields by the norm residue
symbol, it is striking that both groups are cquipped with a canonical filtration:
in the group K* on the left we have the descending chain

) K 2Uk=UP 22U 20 2
of higher unit groups U,((". and on the right there is the descending chain
(%) G(LIK) 2 G (LIK) 2 G (LIK) 2 GHLIK) 2+

of ramification groups G'(L|K) in the upper numbering (see chap. I1, § 10).
The latter arose from the ramification groups in the lower numbering

GiLIK) = {0 € GILIK) | viloa—a) =i+ 1 forall acor)
via the strictly increasing function

- /‘ dx
§) = —_—
K by Got G
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by the rule

GULIK) = Gy, n(LIK),
where ¥ is the inverse function of 5. We will now prove the remarkable
arithmetic [act that the norm residue symbol ( . L|K ) relates both filtrations
(%) and (x%) in a precise way. To this end we determine (generalizing chap. 11,
§10, exercise 1) the higher ramification groups of the Lubin-Tate extensions.

(6.1) Proposition, Letl.,|K be the field of " -division points of a Lubin-Tate
modulc for the prime element . Then

GillalK) =G(Ly|Ly) for ¢*~'<izqh—1.

Proof: By (5.4) and (5.5), the norm residue symbol gives an isomorphism
Uk /U — GLIK) for every k. Hence G(LyIL) = (W L, 1K). We
therefore have to show that
GiLalK) = (U LK) for ¢* <i<q —1.
Let ¢ € G(Ly|K) and 0 = (u~',L,|K). Then we have necessarily
u e U because (,LylK) : Ug /UL —> G(L,|K) maps the p-Sylow
subgroup UL /U onto the p-Sylow subgroup G (L, 1K) of G(L,|K).
Letu =l +ea” ¢ e Ug,and A € Fin) ~ F(n—1). Then & is a prime¢
element of L, and from (5.4) we get that
= lulp(h) = F(&, [s7" ] (M) .
If m > n, then o = 1, so that v, (A7 — A) = oc. If m < n, then Ay, =
[m™]4(4) is a prime element of L,_, and therefore also {e7™|p(2) =
[21F (Ap—m). As Ly|L,_pm is totally ramified of degree g™ we may write
[ex™1F (1) = £qi?” for some &y € Uy, Since F(X,0) = X, F(0.Y) =Y,
wehave F(X.Y)=X+Y+XYG(X.Y) with G(X.Y) € og|[X.Y]]. Thus
A= k= Flherd) = a = sh +ad acoy,,
g, itm <,
oo, iftm=an.
By chap. II, §10, we have G;(Ly|K) = {6 € G(Ln|K) | iy, x{0) =
i+ 1) Nowle:q* Vsisdt - Ll e UP, thenm >k, ie.
iLk(0) = ¢* =i+ 1, and s0 0 € Gi{L,|K). Thxs proves the inclusion
WY LalK) € Gi(La|K). I conversely o € G;(L,|K) and & % 1, then
iLk (@) =g" >i>g*" ie., m > k. Consequently u € Ul((“. and this
shows the inclusion G, (L|K) € (UL, L,1K). O

ik (@) i=v, (A7 — 1) =
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From this proposition we get the following result, which may be consid-
ered the main theorem of higher ramification theory.

(6.2) Theorem, If L|K is a finite abclian extension, then the norm residue
symbol
( LLIK):K* — G(LIK)

maps the group U,‘(") onto the group G*(L|K), torn = 0.

Proof: We may assume that L|K is totally ramificd. For if LYK is
the maximal unramified subextension of L|K, then we have on the one
hand G*(L|K) = G"(LIL") because ¥pox(s) = s and Ypx(s) =
Yoo ()} = Y ro(s) (see chap. Ii, (10.8)). On the other hand, by
chap. 1V, (6.4), and chap. V, (1.2), we have

(Uln)

L LILY) = (Npow U LIK) = (U, LIK) .

L
so we may replace L|K by L|LC.

If now L|K is totally ramified and 7y is a prime element of /., then
= Ny k() is a prime element of K and () x U;(m) C NygL* form
sufficiently big. Therefore L|K is contained in the class field of (z) x Ug",
which, by (5.6), is equal to the field L, of x™-division points of some
Lubin-Tate module for 7. In view of chap. II, (10.9), and chap. 1V, (6.4), we
may even assume that L = L,,. By (6.1), the norm residuc symbol maps the
group U;(") onto the group

G(L|Ly) = Gi(LnlK) for g""'<i<g" -1
But we have (see chap. I, § 10}
1
Nk (g" = 1) = — (g1 +---+8g-1}
8o
with g; = #G;(L|K) = #G(Ln|La) = (¢" '—q" g -1 forg""' <i

4" — 1. This yields 7., (¢" — 1) = n and thus (U, LIK) = Gyr_1(LIK)
GULIK).

Ok 1A

Higher ramification groups G'(L|K) were introduced for arbitrary real
numbers ¢ > —1. Thus we may ask for which numbers they change. We
call these numbers the jumps of the filtration {G'(L)K)}» 1 of G(L|K). In
other words, ¢ is & jump if for all & > 0, one has

G'(LIK) # G (LK)
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(6.3} Proposition (/{assk-Axi-), For a finite abelian extension L{K , the jumps
of the filtration {G' (L |K)};»_1 of G{L|K) are rational integers.

Proof: As in the proof of (6.2), we may assumc (since G'(L|K) =
GULILY) that L|K is totally ramified and contained in a Lubin-Tate
extension L, | K. If now 7 is a jump of (G'(L|K)}, then by chap. 1T (10.9),
¢ is also a jump of {G'(L,,|K)}. Since by (6.1), the jumps of {G (L, |K}}
are the numbers ¢" — 1. for n =0, ..., m — 1 {g = 2 is an exception: 0 is
not a jump), the jumps of {G(L,,|K)} are the numbers 1.,k (¢" — 1) = n,
forn=0....,m—1. [m]

The theorem of Hasse-Axr has an important application to Artin L -series,
which we will study in chap. VII (see chap. VIL, (11.4)).



Chapter V1
Global Class Field Theory

§ 1. Idéles and Idele Classes

The réle held in focal class field theory by the multiplicative group of the
basc ficld is taken in global class field theory by the idele class group. The
notion of idéle is a moditication of the notion of ideal. It was introduced
by the French mathematician Ceavpe Crevarrey (1909-1984) with a view
to providing a suitable basis for the important local-to-global principle, i.c.,
for the principle which reduces problems concerning a number field K to
analogous problems for the various completions K. Crrvaisiy used the term
“ideal clement”, which was abbreviated as id. el.

An adele of K — this curious expression, which has the stress on the
second syllable, is derived from the original term “additive id2le” — is a
family

o = ()
of elements ¢, € Ky, where p runs through all primes of K, and a,, is integral
in K, for almost alt p. The ad¢les form a ring, which is denoted by

Ax =[O Ky.
P

Addition and multiplication are defined componentwise. This kind of product
is called the “restricted product” of the K, with respect to the subrings
05 € Ky

The idéle group of K is defined to be the unit group

Iy = Ak,
Thus an idéle is a family
o = {oy)

of elements o, € K} wherc oy is a unit in the ring 0, of integers of K, for
almost all p. In analogy with Ak, we write the idéle group as the restricted
product

Ik =TIk
P
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with respect to the unit groups ;. For every finite set of primes S, /x
contains the subgroup
=[1K; x [1Uy
pes peS
of S-ideles, where U, = K for p infinite complex, and U, = R} for p
infinite real. One clearly has

e =UI%,
§
if § varies over all finite sets of primes of XK.

The inclusions K C K, allow us to define the diagonal embedding
K*— Ix,

which associates to @ € K* the idele o € /x whose p-th component is the
element @ in K. We thus view K* as a subgroup of /5 and we call the
elements of K* in /¢ principal idéles. The intersection
kS =K"nig

consists of thc numbers a € K* which are units at all primes p ¢ S, p { oc,
and which are positive in K, = R for all real infinite places p ¢ S. They
are called S-units. In particular, for the set Sy, of infinite places, K 5 is the
unit group o} of og. We get the following generalization of Dirichlet’s unit
theorem.

(1.1) Propesition. If S contains all infinite places, then the homomorphism

KSR, i@= (log\a\p)pgx,
pes

has kernel (K ), and its image is a complete Iattice in the (s — 1) -dimensional
trace-zero space H = { (x,) € Mhes R Xpes tp =0}, s = #S.

Proof: For the set S, = {p| oo}, this is the claim of chap.1, (7.1) and (7.3).
Let 8§ = 8 ~ S, and let J(S;) be the subgroup of Jx generated by
the prime ideals p € Sy. Associating to every ¢ € K the principal ideal
ia = (a) € J(Sy), we obtain the commutative diagram

1 — of —— K% ——Jp

b b L

0—[R—> [[R— [[R
PESa pes pes
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with exact rows. The map 1" on the right is given by

2 (I p™) == I1 velog M(p)
pesy pes)

(obscrve that |al, = Tp)~™“"), and maps J (S;) isomorphically onto the

complete lattice spanned by the vectors

e =(0....,0.logN(p).0, ...,0),

for p € Sy. Tt follows that ker(i) = ker(") = (K), and we obtain the cxact
sequence

(%) 0 —> im(\) — im(h) — imA").

where the groups on the left and on the right are lattices, This implies that
the group in the middle is also a lattice. For if x € im(2), and U is a
neighbourhood of i (x} which contains no other point of im(2"), then i ' ({/}
contains the coset x + im(1), and no other. It is discrete since im(1') is
discrete.

For cvery p € Sy, it A is the ¢l
ie.,

s number of K, then p” belongs to i (K 5).

J(Soh CHKS) C I(Sn.

The groups on the lelt and on the right have rank #S, hence so docs i (K ¥).
In the sequence (), the image of / therefore has rank #Sy, and the kernel has
rank #5,. — 1. Hence im(1) is a lattice of rank #S,, — 1 +#S5; = #5—1. It lies in
the (#S — 1)-dimensional trace-zero space H , since [ 5 al, = [, laly =t
fora e K5. a

(1.2) Definition. The clements of the subgroup K* of I are called principal
ideles and the quotient group
Ck = Ix/K*

is called the idele class group of K.

The relation between the ideal class group Clx and the idéle class group
Ck 1s as follows. There is a surjective homomorphism

()il —> Ix. ar— (@) = []p,
ploc
from the id&le group /¢ to the ideal group Ji. Its kernel is

Sox
1 =Tl Kk, x [T Us.
P pico



360 Chapter V1. Global Class Field Theory

It induces a surjective homomorphism
Cx — Clg
with kernel I,‘i"”K”/K*. ‘We may also consider the surjective homomorphism

Ix — 1(D), a+r— [[p>,
b

onto the replete ideal group J (). Its kernel is
1 = {(ep) € Ik | laply = 1 for all p}

(see chap. 11, §1). It takes principal ideles to replete principal ideals and
induces a surjective homomorphism

Cx —> Pic(d)

onto the replete ideal class group, with kemnel /) K*/K *. We therefore have
the

(1.3) Proposition. Cix = Ix/I3*K*, and Pic(®) = Ix/IQK*".

In contrast to the ideal class group, the idele class group is not tinite. But
the finiteness of the former is reflected in terms of the latter as follows.

(1.4) Propesition. /x = I{K*, ic., Cx = [ZK*/K*, il S is a sulliciently
big finite set of places of K.

Proof: Let a;, .... aj be ideals representing the # classes of Jx /Px. They
are composed of a finite number of prime ideals py. .. .. pn. Now if S is any
finite set of place< containing these primes and the places at infinity, then
one has fg :I K*.
In order to sce this, we use the isomorphism [K/[S" = Jg lte e ik,
then the corresponding ideal («) = ]_[M p”r{@e) belongs to some class a; Pk,
e., () = a;(a) for some principal ideal (). The idele o =wa~" is mapped
by Ix — Jk tothe ideal o; =[] ot p“"“ v}, Since the prime ideals occurring
v € Uy for all p & S. Hence

a’:ua"el)}.andthusael,ﬁk*. u]

in g; lic in 8, we have vp(a ) =0, ic., o
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The idele group comes equipped with a canonical topology. A basic

system of neighbourhoods of | € /¢ is given by the sets

[1W, % [1Up < Ik,

pes peS
where S runs through the finite sets of places of K which contain all p|oo,
and W, © K is a busic system of neighbourhoods of 1 € K}, The groups Uy,
are compact for p € S. Therefore the same is true of the group ﬂwx Up. If
the W, for p|oc, are bounded, then npes Wy x ]_[WS Uy is u neighbourhood
of 1 in /x whose closure is compact. Therefore fx is a locally compact
topological group.

(1.5) Proposition. K* is a discrete, and therefore closed. subgroup of Ix.

Proof: 1t is enough to show that 1 € /x has a neighbourhood which contains
no other principal idele besides 1.

U= {aelk]| layly=1forpfoc, lay— 1l <1 for ploo},

is such a neighbourhood. For if we had a principal idtle x € 41 different
from |, then we get the contradiction

P=TTIx =1y =[Tlx=1- [Tl—1
[ proo [

< Tl =1y = [T max{|x|y. 1} = 1.
pioc plec

That the subgroup is closed follows for a completely general reason: since
(x.y) > xy~' is continuous. there is a neighbourhood V of I such that
VV ! C 4 For every y € /i, the ncighbourhood yV then contains at most
one x € K*. Indeed, from x| = yv;, x2 = yu» € K*, with 1y # xa. one

deduces x5 = vivy! € 4, a contradiction. D

As K™ is closed in [k, the fact that /¢ is a locally compact Hausdorft
topological group carries over to the idéle class group Cx = Ix/K*. For
any idtle o = (ap) € I . its class in Cx will be denoted by {or|. We define
the absolute norm of « to be the real number

RNy = [[R@* =TT eyl
P P

If x € K* is a principal idele, then we find by chap.III, (1.3), that
N(x) = Hv M;‘ = 1. We thus have a continuous homomorphism

N:Cx — RY.
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It is related to the absolute norm on the replete Picard group Pic(&) via the
commutative diagram

n «
Cxk — K

| H

Pic(®) — RY.

Here the arrow
Cx — Pic(B)
is induced by the continuous surjective homomorphism
Ix — J(B),  (ap) —> [Tp™,
[
with kernel
1 ={(ap) € Ix | layl, = 1 forali p}.

As 10 the kernel C‘,é of M: Cx — Ry, we obtain, in analogy with chap. 11,
(1.14), the following important theorem. It reflects the finiteness of the unit
rank of K as well as the finiteness of the class number.

(1.6) Theorem. The group CY = {le} € Cx | Me]) = 1} is compact.

Proof: The claim concerning the commutative exact diagram

| — Cf ———Cx —— R — |

! ! H

I = Pic(d)" —— Pic(d) —— R} —> |

will be reduced to the compactness of the group Pic(3)", which was
proved in chap. ITI, (1.14). The kernel of the vertical arrow in the middle
is the group IRK*/K*=1IL/I% NK*, where we have 7§ = [, 19,
19={ay € Kyl logly =1}, and 1Y NK* = w(K) by chap.qll, (19).
This kernel is clearly compact. We obtain an cxact sequence

L — 1RKT /K — €} — Pic(@) — 1

of continuous homomorphisms. Since Pic(5)" is compact, and the same
is true for the fibres of the mapping C‘,’( — Pic(3)" (they are cosets, all
homcomorphic to /¢ K*/K*). hence so is C}.
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The idele class group Cg plays a similar role for the algebraic number
field K as the multiplicative group K} does for a p-adic number field K.
Tt comes equipped with a collection of canonical subgroups which are to be
viewed as analogues of the higher unit groups Uv.(v“) = 1 +p” of a p-adic
number field K. Instead of p”, we take any integral ideal m = nmw pe.
We may also write it as a replete ideal

m=[]p"
v

with 7, = 0 for ploc, and we treat it in what follows as a module of K. For
every place p of K we put U;m = Uy, and
14", ifpfoc,
Uy = { RE C Ky ifp s real,
C* =Ky, ifpiscomplex.
for ny > 0. Given a, € K| we write

@y =1 mod p" = a, e U

For a finite prime p and n, > O this means the usual congruence; for a
real place, it symbolizes positivity, and for a complex place it is the empty
condition.

(1.7) Definition. The group
CR=IgK /K™,
formed from the idéle group

="
P

is called the congruence subgroup mod m, and the quotient group Cg /CE
Is called the ray class group mod m.

Remark: This definition of the ray class group does correspond to the
classical one, as given (in the ideal-theoretic version) for instance in Hasse’s
“Zahlbericht” [53]. It differs from those found in modern textbooks, and also
from that given in [107] by the author: in the present book, the components
a)p of idéles a in I are always positive at all real places p, so we have here
tewer congruence subgroups than in the other texts. This choice does not only
simplify matters. Most of all, it was made substantially because of the choice
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of the canonical metric (. ) on the Minkowski space Ky (see chap. 1, §5).
In fact, we saw in chap. IlI, § 3, that this choice forces the extension C|R to
be unramified. We will cxplain in §6 below how to interpret this situation,
and how to reconcile it with the definition of ray classes in other texts.

The significance of the congruence subgroups lics in that they provide an
overview over all closed subgroups of finite index in Cx. More precisely,
we have the

(1.8) Proposition. The closed subgroups of finite index of Ck arc precisely
those subgroups that contain a congruence subgroup C 2.

Proof: C is open in Cx because IF = HFU‘K,N") is open in /fg.
/@ is contained in the group I)z“‘ = Tlpj K5 X Tppoc Up. and since

(Ck 1K JK") =#Clg = h < oc, the index
(Ck :CPY = RUP K IRK"Y < hUP 1)
= [TW, 0" [T - U™

pino P

is finite. Being the complement of the nontrivial open cosets, which are
finite in number, C¥ is ctosed of finite index. Consequently, every group
containing CE is also closed of finite index, for it is the union of finitely
many cosets of C2.

Conversely, let A" be an arbitrary closed subgroup of finite index. Then
A is also open, being the complement of a finite number of closed coscts.
Thus the preimage J of A" in [k is also open, and it thus contains a subsct
of the form

W= T[] W, x [] U,
pes pgS
where § is a finite set of places of K containing the infinitc ones,
and W, is an open ncighbourhood of I € K. If p € § is finite,
we are liable to choose W, = U:,"", because the groups Upm’) < K
form a basic system of neighbourhoods of | € K5 If p € § is real,
we may choose W, C R}. The open set W, will then generate the
group RY, resp. K in the case of a complex place p. The subgroup of J
generated by W is therefore of the form /', so A" contains the congruence
subgroup C¢. ]
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The ray class groups can be given the following purely ideal-theoretic
description, Let J be the group of all fractional ideals relatively prime to m,
and let P be the group of all principal ideals (a) € Pk such that

a=1modm and q totally positive.
The latter condition means that, for cvery real embedding X' — R, @ tumns
out to be positive. The congruence « = | mod m means that « is the quoticnt
b/c of two integers relatively prime to m such that # = ¢ mod m. This
is tantamount to saying that @ = 1 mod p"» in Ky, ie., a € Uy for
all plm = nv’(w v, We put
cre = Jp/PR.

We then have the

(1.9) Proposition. The homomorphism
(Vilg — I, ar (@) =[] p"*),
ploc
induces an isomorphism

Cx/CE = CIF .

Proof: Let m = [], p"», and let
I ={a e Ix | ap € UY" for plmoc) .

Then /g = I;g")K”. because for every @ € I, by the approximation
theorem, there exists an @ € K* such that apa = 1 mod p”» for pjm,
and apa > 0 for p real. Thus B = (apa) € I8, so thate = fa~' € I{VK ™.
The elements « € /g™ N K* are precisely those generating principal ideals
in P2 Therefore 1he.currespondcncc a > (@) = [T pre(e) defines a
surjective homomorphism

Ck = IVK K = 1 /18" N K" — IR/ P

Since () = 1 for a € I, the group CR = /2'K*/K* is certainly contained
in the kemel. Conversely, if the class [«] represented by o I,'("') belongs
to the kernel, then there is an (¢) € PP, with a € 1A K*, such that
(@) = (a). The components of the idele B = au ™' satisfy B, € U, for
p{moo, and B, € Ué“"‘ for p|moo, in other words, B € /¢, and hence
el = |18] € IgK*/K™ = C'@. Therefore CR is the kemnel of the above
mapping, and the proposition is proved. ]
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The ray class groups in the ideal-theoretic version CIf = J&'/Pg were
introduced by Hemrich Weser (1842-1913) as a common generalization of
ideal class groups on the one hand, and the groups (Z/mZ)* on the other.
These latter groups may be viewed as the ray class groups of the field Q:

(1.10) Proposition, For any module m = (m) of the field Q, onc has
Cq/CR = CIf = (T/mL).

Proof: Every ideal (a) € J§ has two gencrators. ¢ and —a. Mapping
the positive generator onto the residue class mod m, we get a surjective
homomorphism J(‘;‘ — (Z/mZ)* whose kernel consists of all ideals (a)
which have a positive generator = | mod m. But these are precisely the
ideals («) such that ¢ = 1 mod p"r for p|moo, ie., the kernel of PX‘I“‘ o

The group (Z/mZ)* is canonically isomorphic to the Galois group
G (Q(n)1Q) of the m-th cyclotomic field Q (g, ). We therefore obtain a
canonicat isomorphism

G@Qum)IY) = Co/CF.

It is class field theory, which provides a far-reaching generalization of this
important fact. For all modules m of an arbitrary number field X', there will
be Galois extensions K ™| K generalizing the cyclotomic fields: the so-called
ray class fields, which satisfy canenically
G(K™K) = Cx/CE
(see §6). The ray class group mod 1 is of particular interest here. It is related
to the ideal class group C/x — which according to our definition here, is in
gencral not a ray class group — as follows.

(1.11) Proposition. There is an exact sequence

| — o' /o, — [] R*/RY — Cly — Clx —> 1,
preal

where o7 is the group of totally positive units of K.

Proof: One has Cly = Cx/Ck = Ix/ILK* and, by (1.3), Clx =
T /IK*, where 1) = T[,U, and 13% = TlyeoUp % [Ty K-
We therefore obtain an ¢xact sequence

| — INKT VKT — Cx [Ck — Clx —> 1.
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For the group on the left we have the exact scquence
1 IR OK I NK — 11— K 1L K — 1.

But 1,%*0 K*=o" ik nK* = o, and 1N = My Ki/Up =
[Ty e B/RE. a

Exercise 1. () Ag = (Z ®, Q) x R.

(i) The quoticnt group Agy/7 is compact and connected.

(iii) Agy/7 is arbitrarily and uniquely divisible, ie., the equation nx = y has a
unigue solution, for every 1 € N and y € Agy/Z.

Exercise 2. Let K be a number field, m = 2°m’ (m’ odd), and det § be a finite set
of primes. Let @ € K* and a € K, for all p ¢ S. Show:

() If K (£0)| K is cyclic, where ¢»: is a primitive 2°-th root of unity. then @ € K™
(1) Otherwisc onc has at least that g € K*/2,

Hint: Use the lollowing fact, proved in (3.8); if L|K is a finite cxtension in which
almost all prime ideals split completely, then L = K.

Exercise 3. Write 1} = 1} x 11, with 1} =[]y, Up. I = [Tyyn, Up. Show that
taking integer powers of ideles « € /! extends by continuity to cxponentiation o
with x € Z.

Exercise 4. Let ¢, ...
are then independent units with respect to the exponentiation with clements of Z,
ie., any relation

& € 0} be independent units. The images &, ..., in /!

€D,

implies x; =07 =1,...,¢
Exercise 5. Let ¢ € o} be totally positive, i.e., & € /. Extend the cxponentiation
7 — i, n — &". by continuity to an exponentiation Z x R — I} =1 x 1},
&+ &%, in such a way that 9M(s*) =

Exercise 6. Let py. ..., P, be the complex primes of K. For y € R, lct ¢;(¥) be
the idéle having component e¥™* at p,, and components 1 at all other places. Let
1, ....& be a Z-basis of the group of tolally positive units of K.
(i) The id2les of the form

o=e ol i) b0, k€L xR,y eR,
form a group, and have absolute norm Ny = 1.

(ii) o is a principal ideal if and only if &, € Z CZ x Rand y; € Z C R.
Exercise 7. Sending
(Moo Ve 3 b 81 () -y ()
defines a continuous homomorphism
fExRY xRS — €Y
into the group €Y = {lar} € Cx | MJrl) = 1}, with kemel Z° x Z°.
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Exercise 8. (i) The image DY of /' is compact, connected and arbitrarily divisible.
(if) / yields « topological isomorphism
£ UZ x RY/ZY x (RIZY — DY.

Exercise 9. The group DY is the interscetion of all closed subgroups of finite index
in C{, and it is the connected component of 1 in Cy.

Exercise 10. The connected component Dy of 1 in the idéle class group C is the
dircet product ol ¢ copies of the “solenoid” (Z x R)/Z. s circles R/Z. and a real
line.
Exercise 11. Every ideal class of (he ray class group CIJ can be represented by an
integral ideal which is prime to an arbitrary fixed ideal.
Exercise 12. Let © = ug. Bvery class in (o/m)* can be represented by a totally
positive number in o which is prime to an arbitrary fixed ideal.
Exercise 13. For every module m, one has an exact sequence

| 0 fom — (ofm)* — CIY — Cle — |,
where o, resp. oF. is the group of tolally positive units of ©, resp. of totally
pasitive units = | mod m.

Exercise 14. Compute the ketmels of C/ft — Clyx and €I > CIf¥ for m|m.

§ 2. Idéles in Field Extensions

We shall now study the behaviour of ideles and idele classes when we
pass from a fickd K to an extension L. So let L|K be a finite extension of
algebraic number fields. We embed the idele group /¢ of K into the idele
group /; of L. by sending an ideéle « = (&) € /x to the idele o = (u\'l,) el
whose components ay, are given by

ay=0o,e Ky S Ly for Plp.
In this way we obtain an injective homomorphism
Ixk — 1.

which will always be tacitly used to consider /x as a subgroup of /.. An
element a = (o) € I, therefore belongs to the group [ if and only if its
components o belong to Ky (BIp). and if one has furthermore ay = ay
whenever B and B’ lic above the same place p of K.

Every isomorphism o : L — oL induces an isomorphism

ol — I
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like this. For each place 9B of L, o induces an isomorphism

a:lqg—> (@L)sp.

For il we have o = P-lim @;, for some sequence a; € L, then the scquence
aa; € oL converges with respect to | |5q in (0 L)y, and the isomorphism
is given by

o = Plim e > oa = oPlim 0w,

For an idele & € 1, we then define oo € /; 10 be the idéle with components
(6@)op = 0wy € (GL)gy.

If L|K is a Galois extension with Galois group G = G(L|K), then
every o € G yields an automorphism o : Iy, — I, i.c., I is tumed into an
G-module. As to the fixed module l,f; =lael |loa=aloralo € G},
we have the

(2.1) Proposition. If'L|K is a Galois cxtension with Galois group G, then
19 =1x.
Proof: Leta € /x C /. For o € G, the induced map o : Ly = Lopisa
K y-isomorphism, if 9B|p. Thercfore
(0a)oy = 0aq = ap = tsyp,
50 that oo = &, and therefore o € 177, If conversely o = (ay) € 18, then
(0Q)oqy = oop = Qg

for all o € G. In patticular, if ¢ belongs to the decomposition group
Gy = G(Lg|Kp) then o = P and cayp = ays so that ap € K;A IfoeG
is arbitrary, then ¢ : Ly = Loy induces the identity on K, and we get
oy = 0oy = dqyp for any two places P and 0P above p. This shows that
o€ fg. I

The idele group /;. is the unit group of the ring of adéles &y, of L. It is
convenient to write this ring as
Ar=T] Ly
»

where
Ly=1T]]Lg.
Blp
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The restricted product [], L, consists of all families (o} of elements ap € Ly
such that @, € Oy = [y, O for almost all p. Via the diagonal embedding

Ky — Ly,

the factor L, is a commutative K,-algebra of degree 3y [Ly @ Kpl =
[L : K]. These embeddings yield the embedding

Ag — Ap,

whose restriction
Iy =Ay — A} =11

turns out to be the inclusion considered above.
Every ), € L)) defines an automorphism
ap Ly —> Ly, xt+— apx.

of the K p-vector space L. and as in the case of a field extension. we define
the norm of «p, by
Ni ik, (o) = det(urp).

In this way we obtain a homomorphism

Nr,ik, :L;1 — K.
It induces a norm homomorphism

Neg ol — Ig

between the idele groups /. = HpL; and /g = ]:[FK;. Explicitly the norm
of an idele is given by the following proposition.
(2.2) Proposition. If L|K is a finite extension and o = (o) € 11, the focal
components of the idéle Ny k(@) arc given by

Nk (@p = [1 Negix, (agp) .
B

Proof: Putting o, = (asp)ypyp € Ly, the Ky -automorphism e 0 Ly — Ly is
the direct product of the K p-automorphisms gy @ Ly — L. Therefore

N, ik, (o) = det(ar,) = [] det(arp) = [ Nr i, (@) u]
Flp Blp

The idtle norm enjoys the following properties.
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(2.3) Proposition. (i) For a tower of fields K € L € M we have
Nuig = Nei o Nagie.

(ii) IfL|K is embedded into the Galois extension M| K and if G = G(M|K)
and H = G(M|L), then onc has for a € I1: Npjk (@) = [[peqm o

(i) Npk (@) =a'“K fora e Ig.

(iv) The norm of the principal idéle x € L* is the principal idéle of K
defined by the usual norm Ny x (x).

The proofs of (i), (ii), (iii) are literally the same as for the norm in a field
extension {scc chap. I, §2). (iv) follows from the fact that, once we identify
Ly = L ®x Ky (sce chap. 11, (8.3)), the Ky-automorphism [, : Ly, — Lp,
¥ > xy, arises from the K -automorphism x : L — L by tensoring with K,
Hence det( f,) = det(x).

Remark: For fundamental as well as practical reasons, it is convenient to
adopt a formal point of view for the above considerations which allows us to
avoid the constant back and forth between idéles and their components. This
point of view is based on identifying the ring of adeles &, of L as

AL =~Ax®x L.
which results from the canonical isomorphisms (see chap. II, (8.3))

K, ®k I‘%L‘,: [MTLy. o, ®@ar— o (tpa).
B

Here g denotes the canonical embedding 73 1 L — Lo,

In this way the inclusion by components fx C I is simply given by the
embedding Ax — Aj, o > o ® 1, induced by K € L. An isomorphism
L — al. then yiclds the isomorphism

aihy =Ax Qx L —> Ax @ al = Agyy

via (¢ @ a) = a ® oa, and the norm of an L-idele @ € Aj is simply
the determinant

Npjk (@) = dets (o)
of the endomorphism « @ A; — A; which o induces on the finite Ag -
algebra &y = Ag ®x L.

Here are consequences of the preceding investigations for the idéle class
groups,
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(2.4) Propeosition. If L|K is a finite extension, then the homomorphism
Ix — 1, induces an injection of idéle class groups

Cx — Cr. aK'r— alL®,

Proof: The injection /¢ — /. clearly maps K* into L*. For the injectivity,
we have 10 show that /g N L* = K*. Let M|K be a finite Galois extension
with Galois group G containing L. Then we have /5 € 1. © [y, and

IKNL*C Ik NM S Uk "M =1k MY =k nK*=K*. O

Via the embedding Cx — (', the idele class group Cx becomes a
subgroup of Cp.: an element aL* € Cy (« € 1) lies in Cx if and only if the
class @ L* has a representative o in {x. Tt is important to know that we have
Galois descent for the idele class group:

(2.5) Proposition. If L|K is « Galois extension and G = G(L|K), then C.
is canonically a G -module and Ci’ =Ck.

Proof: The G-module /; contains L* as a G-submodule. Hence cvery
o € G induces an aulomorphism

€5 Cu. ol (o)l
This gives us an exact scquence of G-modules

| — LY~ — Cp —> 1.
We claim that the sequence

l— L0 s i —Cf — 1
deduced from the first is still exact. The injectivity of L*¢ — 1Z is trivial.
The kernel of /¢ — €8 is I NL* = Ix NL* = K* = L' The
surjectivity of [Z; — ci is not altogether straightforward. To prove it, let
al™ e C,‘_’ For every o € G, one then has o (wl.”) = wl*, ie, oo = ax,
for some x, € L*. This x, is a “crossed homomorphism”. i.e., we have

Xgv = Xg - OXr,

Indecd, xor = T8 = T2 2% o 6(Z %2 = gxpx,. By Hilbert 90 in

Nocther’s verston (see LhAlp IV (3.8)) such a crossed homomolphlsm is of

the form x, = ay/y for some y € L*. Putting o’ = ay ! yields o’'L* = aL”
and 00’ = caoy”' = axsoy” = ay ' =o' hence o' € /{’. This proves

surjectivity. [
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§3. The Herbrand Quoticent of the ldeie Class Group

The norm map Ny g : I; — I sends principal idéles o principal ideles
by (2.3). Hence we get a norm map also for the idele class group Cy,

Nyg 1 Cp — Ck .

It enjoys the same properties (2.3}, (i), (ii). (iii), as the norm map on the
idele group.

Exercise 1. Let @, ..., be a basis of L|K. Then the isomorphism
L®x Ky = [layp Lo induccs, for almost all prime ideals p of K, an isomorphism

W0y B Bw,0, =[] O,
e

where 0y, resp. O, is the valuation ring of K. resp. L.
Exereise 2. Let L|K be a finite extension. The absclute norm 9% of ideles of K,
resp. L. behaves as follows under the inclusion iyx @ fx — ;. resp. under the
norm Nyg :fp — Ig:

Nigx (@) = M)A for wely,

DUN, ()} = Tt} for «ef,.
Exercise 3. The correspondence between ideles and ideals. o > (a). satisfies the
following rule, in the case of a Galois extension LK,

(Npg o)) = Ny g (@)

(For the norm on ideals, see chap. TIL, §1.)
Exercise 4. The ideal class group, unlike the idtle class group, does not have
Galois descent. More preciscly. for a Galois extension 7.|K, the homomorphism
Clx — CIPMY i in general neither injective nor surjective.
Exercise 5. Define the trace Tryix : A; —> Ax by Trix(o) = trace of the
endomorphism x — ax of the Ay -algebra A, and show:
0 Traie (@)p = gy Trigur, (@)
(i} For a tower of ficlds K € L C M, one has Trygx = Trp ¢ ML
(iii) If L|K is embedded into the Galois extension M |K, and if G = G(M|K) and
H = G(MIL). then onc has for @ € A, Try x (@) = X 011 0.
(iv) Trpx (@) =L Ko fora e Ag.
(v) The trace of a principal adele x € L is the principal adele in Ay defined by the
usual trace Try x (3.

Tt

§ 3. The Herbrand Quotient of the 1dele Class Group

Our goal now is to show that the idele class group satisfies the class
field axiom of chap. IV, (6.1). To do this we will first compute its Herbrand
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quotient. It is constituted on the one hand by the Herbrand quoticnt of the
idele group, and by that of the unit group on the other. We study the idéle
group first.

Let L|K be a finite Galois extension with Galois group G. The G-module
1;, may be described in the following simple manner, which immediately
reduces us to local fields. For every place p of K we put

Ly=TlLyp and Up,=[]Uy.
Flp Plp
Since the automorphisms o € G permute the places of L above p, the

groups Ly, and Uy p are G-modules, and we have for the G -module /¢ the
decomposition
=1L,
v

where the restricted product is taken with respect to the subgroups Uy, € L.
Choose a place P of L above p. and let Gy = G(LylKy) € G be
its decomposition group. As ¢ varics over a system of representatives of
G /Gy, o runs through the various places of L above p, and we get

Ly=TLin=TloWh. Uis= Uy = DU(U‘”)'

In terms of the notion of induced module introduced in chap. IV, §7, we thus
get the following

(3.1) Propesition. L} and Uy, are the induccd G -modules

Ly =Ind (Wi, Urp = Indg (W)

Now let S be 4 finite set of places of X containing the infinite places. We
then define /7 = I, where § denotes the set of all places of L which lie
above the places of §. For 12 we have the G-module decompaosition

N
=T Ly x I1 ULps
pes peS

and (3.1) gives the
(3.2) Proposition. If L|K is a cyclic extension, and if S contains all primes
ramified in L. then we have fori = 0, — | that

HUG. 1)) = QH Gy LY and H(G.I1) = DH Gy Ly,
pes 3

where for each p, P is a chosen prime of L above p.
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Prqof: The fjecomposition l,‘? =(DQesLp@V.V = [Togs Ur.p. gives us
an isomorphism
HGIH =B H'G,LY) & HI(G.V),
pes

and an injection H'(G,V) — ]_[pdg H'(G.UL p). By (3.1) and chap.1V,
(7.4). we have the isomorphisms H“(G,L;) = H(Gy LI}J) and
HAYG. Upy) = H(Ggp,Ugp). Forp ¢ S, L|Kp is unramified. Hence
H'(Gy,Up) = 1, by chap.V, (1.2). This shows the first claim of the
proposition. The second is an immediate consequence:

HUG, 1) = h%g HIG.If) = Ig GC%H’(G%L;L‘):Q?H’(G%L&‘).
§ped

[m]

The proposition says that one has /1~ '(G , I;) = {1}. because H"(Gq), L?B)
= {1} by Hilbert 90. Further it says that

Ik /NLik I = D KS/NLyk, L,
[l
where P is a chosen place above p. In other words:

An idele @ € Ix is a norm of an idele of L if and only if it is ¢ norm
locally everywhere, i.e.. if cvery component «y is the norm of an element
of LE,.

P

As for the Herbrand quotient 2(G. 1) we obtain the result:
(3.3) Proposition. If L|K is a cyclic extension and if S contains all ramified
primes, then 5
hG ) =] 1y
pes

where np = [Ly : K.

Proof: We have H~'(G\ 1) = [Tyes H ™' (G L) = 1 and
HYUG 1) = [T HYGy, L)
pes
By local class field theory, we find #H”(G«u.L?ﬁ) = (Kt Newiw, L)
= ny. Hence

. #HYG, I -
[N R I R o

#HW(G 1) pes

Next we determine the Herbrand quotient of the G-module LS = £ N Iz
For this we need the following gencral
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(3.4) Lemma. Let V be an s-dimensional R-vector space, and let G be a
finite group of automorphisms of V which operates as a permutation group
on the clements of a basis v, ... Uy OV = Va().

If I is a G -invariant complete lattice in V| i.c., of* C T for all o, then
there exists a complete sublattice in T,

I'=Zw + -+ Zw,,
such that ow; = wy(j forallo € G.
Let | | be the sup-norm with respect to the coordinates of the basis

.. v Since I is a lattice, there exists a number A such that for every
x €V, thereisay € I" satistying

x—yl<h.
Choose a large positive number ¢ € R, and a y € I” such that
ltvy =yl < b,

and define

w= ¥ oy, i=1,....3 5,
a(h=i
i.e., the summation is over all ¢ € G such that (1) = i. Forevery t € G
we then have
Twp o= 3 ToOy = 3. pyY = W)
a(h=i =T
1t is therefore enough to check the linear independence of the w;. To do this,
let .
Yeuw =0, ek,
=1
If not all of the ¢; = 0, then we may assume |¢;| < 1 and ¢; = | for some j.
Let
y =1 -y,
for some vector y of absolute vatue |y| < b. Then
wi= Y oy=t3 Usy — Y =RV — Y.
a()=i ol)=i
where |yi| < gh, for g = #G, and n; = #o € G| all) = i}l We
therefore get
s 5
0= Y cqwi =13 cinjv; — 2.
=1 i=1
with |z]| < sgh. ie.,
I =tajvj o+ Y LR
i#i

1f ¢ was chosen sufficiently large, then z cannot be written in this way. This
contradiction proves the lemma.
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Now let L|K be a cyclic extension of degree n with Galois group
G = G(LIK), let § be a finite set of places containing the infinite places,
and let § be (he set of places of L that lie above the places of S. We denote
the group L5 of §-units simply by LS.

(3.5) Proposition, The Herbrand quotient of the G -module LS satisfies
N
"G, L7) = =[] np.
m pes§

where ny = Loy Kpl.

Proof: Let {exy | P € S} be the standard basis
V= I‘[mg R. By (1.1), the homomeorphism

of the vector space

AL — V. @) = X log lalpeg,
pes

ell
&

has kernel (L) and its image is an (5 — 1)-dimensional lattice, § =
make G operate on V' via

gep = eayp.
Then 4 is a G-homomorphism because we have, for o € G,

iMoa) = Tlog loalyes = T log luly 190¢,-15
B B

=o(Xloglal, wpeo-1g) = oria).
B

Therefore ¢ Z%g eq and LS generate a G -invariant complete
lattice ™ in V. Since Zeg is G -isomorphic to Z, the exact sequence

00— Zep — I' —> I'/Zey —> 0,
together with the lact that I'/Zey = A(LS), yields the identities
) 1
WG LYY = WG ML) = h(G.Z) WG, ) = ~ (G, T).
L

We now choose in I” a sublattice I/, in accordance with lemma (3.4). Then

we have
= @qu) =P PLug= @ I,
pes Plp
and o wqp = weg. This identifies I“p’ as the induced G -module

I=@iwy= @ olwy)=hdS" Lug,).
Bl oeG/Gy
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where Py is a chosen place above p, and G, is its decomposition group. The
lattice I’ has the same rank as ", so is therefore of finite index in I". From
chap. IV, (7.4), we conclude that

1 1 1
RG.LSY = =G, Ty = ~ TG I} = ~ T[] 1(Gy. Zws,)
n N opes " opes

|

1
= - [1h(Gy2).

pes

"

Thus we do find that i(G, L5) = L[], np, Where np = #Gy = [Lgr: Kyl
U

From the Herbrand quotient of I,‘f and L% we immediately get the
Herbrand quoticnt of the idele class group Cy. To do it choose a finite set of
pl S containing all infinite ones and all primes ramified in £, such that
1. l,fL". Such a set exists by (1.4). From the exact sequence

1— LS — 1§ — 1fLe — 1
arises the identity
G, Cr) = (G DG, LY.
and from (3.3) and (3.5) we obtain the

(3.6) Theorem. If L|K is a cyclic extension of degree n with Galois group
G =G(L|K), then

#HY(G,C
MG.CL) = (G,Cr)

G

In particular (Cx  NpxCr) = n.

From (his result we deduce the [ollowing interesting cons e.

(3.7) Corollary. If LK is cyclic of prime power degree n = p" (v > 0),
then there are infinitely many places of K which do not split in L.

Proof: Assume that the st $ of nonsplit primes were finite. Let M| X be the
subextension of L|K of degree p. For every p ¢ S, the decomposition group
G, of L|K is dillerent from G (L|K ). Hence Gy © G(L|M). Therelore every
p ¢ S splits completely in M. We deduce from this that Naix Cy = Ck,
thus contradicting (3.6).
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Indeed, let @ € fx. By the approximation theorem of chap.Il, (3.4),
there exists an @ € K* such that a™" is contained in the open subgroup
NMNK"M%, forallp e S. If p ¢ S, then apa™ Vis automatically contained
in NMvu‘KvM"i! because Mg = K. Since

I /Nmk I = D K[/ Naoyix, M,
»
the idéle ea™" is a norm of some idtle B of /y, ic., o = (Nykfla €

Nk I K*. This shows that the class of « belongs to Ny g Cy, so that
Cx =NuigCu- m]

(3.8) Corollary. Let L|K be a finite extension of algebraic number fields.
If almost alf primes of K split completely in L, then L = K.

Proof: We may assume without loss of generality that L|K is Galois. In
fact, let M|K be the normal closure of L|K. and write G = G{M{K) and
H = G(M|L). Also let p be a place of K, B a place of M above p, and
let Gy be its decomposition group. Then the number of places of L above p
equals the number #4\G /G g of double cosets HoGq in G (see chap. I, §9).
Hence p splits completely in L if #4\G/Gq = |L : K] = #H\G. But this
is tantamount to Geqg = 1, and hence to the fact that p splits completely in M.

So assume L|K is Galois, L # K. and let ¢ € G(L}K) be an clement
of prime order, with fixed field K'. If almost all primes p of K were
completely split in L, then the same would hold for the primes p’ of K. This
contradicts (3.7).

Exercise 1. If the Galois extension L|K is not cyclic. then there are at most finitely
many primes of K which do not split in L.

Exercise 2, If L|K is a finite Galois extension, then the Galois group G(L|K} is
gencrated by the Frobenius automorphisms g of all prime idcals B of L which arc
unramitied over K.

Exercise 3. Let L|K be a finite abelian extension, and let £ be a subgroup of /x
such that K=/ is dense in /5 and D © NpjxL*. Then L = K.

Exercise 4, Let L, ..., L,|K be cyclic extensions of prime degree p such that
L;NL; =K for i # j. Then there arc infinitely many primes p of K which split
completely in L;, for i = 1, but which are nonsplit in L;.
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Having determined the Herbrand quotient #(G.Cp) to be the degree
n = [L : K] of the cyclic extension L|K. it will now be enough to show
either H='(G,C) = 1 or HNG.CL) = (Cx : Ny xCp) = n. The first
identity is curiously inaccessible by way of direct attack. We are thus stuck
with the sccond. We wilt reduce the problem to the case of a Kummer
extension. For such an extension the norm group Ny xCp cun be written
down explicitly, and this allows us to compute the index (Cgx @ Ny g Cr).

So let K be a number field that contains the n-th roots of unity, where n
is a fixed prime power, and let L|K be a Galois extension with a Galois
group of the form

GILIK) = (Z/nZy .
We choose a finite set of places S containing the ramified places, those that
divide n, and the infinite ones, and which is such that fx = Il’} K*. We write
again K5 = I)E N K* for the group of S-units, and we put s = #S.

(4.1) Proposition. One has s > r, and there exists a set T of s —r primes
of K that do not belong to S such that

L=K(VA).

where A is the kernel of the map K5 — [Tyer Kp/K5-

Proof: We show first that L = K(Q/Z) it A=L*NK®, and then that A is
the said kerncl. By chap. IV, (3.6), we certainly have that L = K ( VE), with
D =L""NK. Wy e D, then K,(/x)|Kp is unramitied for all p ¢ S because
S contains the places ramified in L. By chap. V. (3.3), we may therefore
write x = upyy, with u, € Uy yy € K. Putting y, = | for p € S, we get
an idele y = (y,) which can be written as a product y = oz with « € I;,
2 K* Then x:" = uyel € Uy forall p ¢ S, ie, xz "€ I3 NK* = K5,
50 that xz™" € A. This shows that J = AK*”, and thus L = K (VA).

The field N = K (VK3 ) contains the field /. because 4 = L*' N K €
KS. By Kummer theory. chap. IV, (3.6), we have

G(NIK) = Hom{K’/(K5)" . Z/nZ) .

By (1.1), K% is the product of a free group of rank s — 1 and of the
cyclic group p(K) whose order is divisible by n. Therefore K¥/(K%)"
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is a free (Z/aZ)-module of rank s, and so is G(N|K). Moreover,
GINIK)/G(N|L) = G(LIK) Z (Z/aZ) is a free (Z/nZ)-module of
rank » so that 1 < s, and G{N|L) is a free (%/nZ)-module of rank s —r. Let
o) ay , beaZ/nZ-basis of G(N|L), and let N; be the fixed field of a;,
i=1,....s~r.Then L = ()!_{ N;. Forevery i = 1. ....s s — r we choose
a prime PB; of N; which is nonsplit in N such that the primes pi. ..., p, .,
of K lying betow ;. ..., PBs—r are all distinct, and do not belong to S. This
is possible by (3.7). We now show that the set T = {p,., ..., p,_,} realizes
the group A = L M K'S as the kernel of K5 — [T,.r Kj/K3.

N; is the decomposition ficld of N|K at the unique prime 3} above
P;, tor i =1, ....s —r. Indeed. this decomposition tield Z; is contained
in N; becausc P, is nonsplit in N. On the other hand. the prime p;
is unramified in N, because by chap. V. (3.3), it is unramitied in every
extension K (Yu), u € K5. The decomposition group G(N|Z;) 2 G(N|N;)
is therefore cyclic, and necessarily of order n since each element of G(N |K)
has order dividing #. This shows that N; = Z;.

From L = (,Z} N; it follows that L|K is the maximal subextension of
NIK in which the primes p;. ..., Ps—r split completely. For x € K% we
therefore have

YeAe K(YN)SL e K, (Yx)=K,,i=1

SveKi=ho s -,
This shows that A is the kernel of the map K5 — [[Z K. /K" m]

{4.2) Theorem. Let T be a set of places as in (4.1), and let
Cx(S.T)=1g (S, K /K™,

where

(8, Ty =[] k3" = T1 K5 x [1 Up.

be§ pet’ pESLT
Then one has
NygCr 2 Cg(S.T) and ((,'K :CK(S.T)) =|[L:K].

In particular, if L|K is cyclic, then NpjxCp = Cx (S.T).

Remark: It will follow from (5.5) that NyxCr. = Cg(S,7T) also holds in
general,

For the proof of the theorem we need the following
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(4.3) Lemma. Ix(S,T)NK* = (K5VT)",

Proof: The inclusion (KSUT)" C 1x(S,T) N K* is wivial. Let y €
Ik (S, TyNK*, and M = K (/3). It suffices to show that NaxCaye = Ck.,
for then (3.6) implies M = K, hence y € K*" N Ix(S.T) C (KSUT)". Let
lale Ckx = I;K”/K*, and let & € l,? be a representative of the class [e].
The map
K5 — [0/,
peT

is surjective. For if A denotes its kernel, then obviously K™ M A = (K5,
and AK* /K*" = A/(KS)". From (1.1) and Kummer theory, we therefore
get
#KSJKSy o

#A/(KSy  BG(LIK)
This is also the order of the product because by chap. II, (5.8), we have
#Uy/UJ = n since p { n. We thus find an element x & K% such that
oy = xiuy, tp € Uy, for p € T. The idéle @’ = wx™ ' belongs to the same
class as o, and we show that o’ € Nyx/p. By (3.2), this amounts to
checking that cvery component , is a norm from Mq|Ky. For p € S this
holds because y € K. Hence we have Mg = K forp € T since a, = uy
is a n-th power. For p ¢ S UT it holds because o, is a unit and Mq|Kp is
unramified (see chap. V, (3.3)). This is why ] € Nax Cyr, ged. [}

#HKS/A) =

ntr

Proof of theorem (4.2): The identity (Cx : Cx (S, 7)) = |L : K] follows
from the exact sequence

1 18T AK /LS. TYN K — 13T /(8. T)
— LK I (S, THK® — 1.
Since 137 K* = I, the order of the group on the right is
(IETK* I (S. TIK*) = (IxK*/K* 1 1x (S, T)K"/K")
=(Ck : Cx(S,T)) -
The order of the group on the icft is
(1T A K™ (ST NK™) = (K57 c e Tyry = 7

because #(SUT) = 25 — r. and jt, € KV, In view of chap. 11, (5.8), the
order of the group in the middle is

2
n?

(1T g8, Ty) = MKk =TI

- ”2.s l—[ ‘n‘gl = nZSI
pes pes 1lp v
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Altogether this gives

R .
(Ck :Cx(8,T)) = o = =LK
We now show the inclusion Cx(S,T) € NpxCp. Let « € 1x(S.T).
In order to show that @ € Ny, [, all we have to check, by (3.2), is again
that every component a), is a4 norm from Lg|Ky,. For p € § this is true
because ), € K;‘” is an n-th power, hence a norm from Kv(C/KT;) (see
chap. V, (1.5)), so in particular also from Ly|K,,. For p € T it holds because
(4.1) gives &4 © K, and thus Ly = K. Finally. it holds for p ¢ SUT
since ap is a unit and Lyp| K is unramitied (see chap. V, (3.3)). We therefore
have /g (S.TY S Nyl ie., Cx(S. TY S NLkCp.

Now if LK is cyclic, i.e., if r = 1, then from (3.6),

[L:K]<(Cx N xCL) = (Cx :Ck(S.TY) =IL:KI.

hence Ny jxCp = C (S, T). =

Now that we have an explicit picture in the case of a Kummer ficld, the
result we want follows also in complete generality:

(4.4) Theorem (Global Class Field Axiom). If L|K is a cyclic extension
of algebraic number fields, then

L:K) fori=0,
#H'(G(LIK),CL) = ! ) ort

1 fori =—1.

Proof: Since A{(G(L|K).C;) = [L : K. it is clearly enough to show that
#HY(G(L|K),C) | IL : K|. We will prove this by induction on the degree
n=[L:K]. We write for short H(L|K) instead of H*(G(L|K).Cyp). Let
MK be a subextension of prime degree p. We consider the exact sequence

Ny . .
Cu/NemCr LS Cx/NLkCr. — Cx /NyikCyr — 1,
i.e., the exact sequence
HYLIMY — HY (LK) — H'(MIK) — 1.

If p < n. then #HO(L|M) | [L : M1, #H°(M|K Y| (M : K] by the induction
hypothesis, hence #H(LIK)|[L : MIIM : K]1=[L: K|

Now let p = n. We put K' = K(up) and L' = L(up). Since
d=[K:K]|p—1. wehave G(LIK) = G(L'|K". L'|K" is a cyclic
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Kummer extension, so by (4.2), #4°(L'|K’) = [L' : K'] = p. It therefore
suftices to show that the homomorphism

(%) HYLIK) — HY(L'|K")

induced by the inclusion C; — Cy is injective. H*(L|K) has expo-
nent p, becausc for x € Cx we always have x” = Ny x(x). Taking
d =[K': K|-th powers on H°(L|K) is therefore an isomorphism. Now
let ¥ = x mod Ny xCyr belong to the kernel of (). We write ¥ = 37,
for some ¥ = y mod Np.xCy. Then ¥ also is in the kernel of (),
ie,y=Npg(z). 2 € Cp and we find:

¥ = Nin (9) = Noi (=) = N (N () € N €

Hence ¥ = 3¢ = L. C

An immediate consequence of the theorem we have just proved is the
famous Hasse Norm Theorem:

(4.5} Corollary. Let L|K be a cyclic extension. An clement x € K* is a
norm if and only if it is a norm locally everywhere, ie., a norm in every
completion Lg|Ky (B(p).
Proof: Let G = G(1.|K) and G = G(Lp|Ky). The exact sequence
|l — L' — I —C.— 1
of G -modules gives, by chap. 1V, (7.1), an cxact sequence
H™N(G.CL) — HYG.L") — HNG.11).

By (4.4), we have H Y(G.Cp) = 1, and from (3.2) it follows that
HYUG, 11y = @B, HNGy, L) Therefore the homomorphism

K* /Ny kL™ —> DK} N1k, Ly
v
is injective. But this is the claim of the corollary. [m]

It should be noted that cyclicity is crucial for Hasse's norm theorem. In
fact, whereas it is true by (3.2) that an clement x € K* which is everywhere
locally a norm, is always (he norm of some idele o of L, this need not be
by any means a principal idele, not even in the case of arbitrary abelian
cxtensions.
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Exercise 1. Determine the norm group Ny xC; for an urhnmry Kummer cxtension
in a way analogous to the case treated in (4.2) where G(L|K) = (Z/p*Z) .

2. Let ¢ be a primitive m-th root of unity. Show that the norm group
cquals the ray class group mod m = (m) in Cg.

G

Exercise 3. An equation x? h.a.b K", has a solution in K if and only if
ywhere locally. i.e., in cach completion K .

= Nk 0 = Vay) if a ¢ K*.

Exercise 4. I a quadratic form ¢\x] + - 4-a,52 represents zero over a field K with
more than five elements (i.e., a1x7 + -+ - + «,x2 = 0 has a nontrivial solution in K).
then there is a representation of zero in which all x, # 0.

Hm(. It @& = % # 0, b # 0, then there are non-zero elements & and £ such that
aw® + b = i. To prove this, multiply the identity
=1y 4r
ridrerrrii
+1P w4+ 0?2
by ¢&* = & and insert 1 = hy”/a. for some element y 3 0 such that 7 3 1. Use
this to prove the claim by induction.

Exercise 5. A quadratic form ax? + by + ¢22, a, b, ¢ € K™, represcnts zera if and
only il it represents zero everywhere locally.
Remark: Tn complete generality, one has the following “local-to-global principle™:

Theorem of Minkowski-Ha:
zero il and only if it represent

: A quadratic form over a number ficld K represents
zcro over every completion K.

The proof follows [rom the result stated in exercise 5 by pure algebra (scc |113]),

§ 5. The Global Reciprocity Law

Now that we know that the idele class group satisfies the class ficld axiom,
we proceed to determine a pair of homomorphisms

Gy 7. Cp - )

obeying the rules of abstract class field theory as developed in chap. 1V,
§4. For the Z-extension of @ given by d, we have only one choice. It is
described in the following

(5.1) Proposition. Let 2| be the field obtained by adjoining all roots of
unity, and let T be the torsion subgroup of G($2|1K) (ie., the group of all
elements of finite order). Then the fixed field G|Q of T is a Z -extension.
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Proof: Since 2 =, Q). we find
G(R1Q) = im G(Qu)IQ) = lim (Z/nZ)" = z.
” »
But Z = [[,Z, und Zj, = Z, x Z/(p — DI for p # 2 and
Zy = Zy x Z/2Z. Conscquently,
G(R21Q) =7* = ZxT, where T

[l 2/(p— DT x 227,
pA2

This shows that the torsion subgroup 7 of G{£2|Q) is isomorphic
to the torsion subgroup of 7. Since the latter contains the group
@Ff,Z/ p — DZ & Z/2Z, we see that the closure T of T is lsnmorphlL
to T. Now. if Q is the fixed field of T, this implies that F(@|Q) =
G2I/T = Z. u

Another description of the 7 -extension @|Q is obtained in the following
manner. For every prime number p, let $2,|Q be the field obtained by
adjoining all roots of unity of p-power order. Then

G(2y|Q) = lim G(Quep)|Q) = lim (7/p1)" =7},

<

and Z¥ = L, x Z/(p — 1)Z for p # 2 and L3 = Z, x Z/2Z. The torsion
subgroup of Z}, is isomorphic to Z/(p — 1)Z, resp. Z/2Z, and taking its

fixed field gives an extension @(N\Q with Galois group
G(Q

The 7 -extension @| is then the composite Q ﬂ

AP

Q) = Zp.

"

We fix an isomorphism G(@Q) = 7. There is no canonical choice as in
the case of local fields. However, the reciprocity law will not depend on the
choice. Via G(|Q) = Z, we obtain a continuous surjective homomorphism

d:Gy — Z

of the absolute Galois group G = G(Q|Q). With this we continue as in
chap. 1V, §4, choosing kN: 19 as our base field. If X |Q is a finite extension,
then we put fx =[K NQ : @] and get a surjective homomorphism

1 ~

dx = —d :Gx — Z.

fx
))_/hich defines the Z-extension K = K@ of K. E\K is called the cyclotomic
Z-extension of K. We denote again by ¢k the element of G (K |K) which is
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mapped to 1 by the isomorphism GN(ELK) = 7, and by ¢k the restriction
@k | if LIK is a subextension of K} K. The automorphism ¢y, x must not be
confused with the Frobenius automorphism corresponding to a prime ideal
of L (scc §7).

For the Gg-module A, we choose the union of the idele class groups
Cy of all finite extensions K1Q. Thus Ax = Cx. The henselian valuation
v:Cg — % will be obtained us the composite

Cq | Q] G(@\Q) d Z
where the mapping [ ,@Q] will later tum out to be the norm residue symbol

{ .Q|Q) of global class field theory (sce (5.7)). For the moment we mercly
define it as follows.

For an arbitrary finite abelian extension £ |K, we define the homomor-

phism

[ \LIK|:Ix — G(LIK)
by

Joo. LIK | = [Tiep. Lyl K.

v

where L, denotes the completion of L with respect to a place Blp, and
(wp. Ly|Kyp) is the norm residue symbol of local class field theory. Note that

almost all factors in the product are | because almost all extensions LKy
are unramified and almos! all &, are units.

(5.2) Proposition. If L|K and L'|K’ are two abelian cxtensions of finite
algebraic number ficlds such that K € K and L C L', then we have the
commutative diagram

te =L Gk

| LK

Ix, ————— G(L.|K).

Proof: For an idele o = {ayp) € /¢ of K', we find by chap. 1V, (6.4), that

(g, Lig | K|, = (Nicy ik, (), Ly K)o (BIP).
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and (2.2) implies
Nk (), LIKT = TTVg 1k @)p. Lyl Kp) =TT TT (Vi i, (), Ll Kp)
[ P Rlp

= [log, LiglKip|, = e, L'IK 1], . u]
3

If L]K is an abelian extension of infinite degree. then we define the
homomorphism
[ LIK]:1x — G(LIK)
by its restrictions [ ,L|K]|z- == [ .L'|K] to the finite subextensions L'
of L|K. In other words, it @ € Ix. then the elements [a, L'|K | define,
by (5.2}, an element of the projective limit l(@ G(L'|K), and |a. L|K] is

o
preciscly this clement. once we identify G(L|K) = lim G(L']K). Again
one has the cquation

foe. LIK] = TT(ep, Lyl Kp) .
v

where L, does not denote the completion of L with respect 1o a place
above p, but rather the localization, ie., the union of the completions
L;,\K,, of all finite subextensions (sec chap. 11, §8). Then Ly| K is Galois,
G(Ly|Kp) € GIL|K), and the product l_[p(u,”L,,IKv) converges in the
profinite group to the clement |o, LK. Indeed, if L’{K varies over the
finite subextensions of L|K, then the sets Sy = {p] (o, L} |Kp) # 1} are
all finite, so that we may write down the finite products

o= [Tlep. LplKp) € GILIK).

pes,

They converge to [o, L|K ], forif [, L|K)G (L|N) is one of the fundamental
neighbourhoods (i.e., N|K is one of the finite subextensions of LX), then

op € la, LIKIG(LIN)
forall L’ O N because

o v = [THep, NplKp) = o, NIKT = [, LIK || x -
[}
This shows that [, L|K'] is the only accumulation point of the family {5;}.

It is clear that proposition (5.2) remains true for infinite extensions L
and L’ of finite algebraic number ficlds K and K.
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(5.3) Propesition. Forevery root of unity ¢ and every principal idele a € K*
one has

la, KAOIK]=1.

Proof: By (5.2), we have [Nk g(a), Q(0)IQ] = [¢. K(§)|K 1) Hence
we may assume that K = @. Likewise we may assume that ¢ has prime
power order £ # 2. Now let « € @", let v, be the normalized exponentiat
valuation of @ for p # o0 and write ¢ = u,,p"/"‘”. For p # {.o0,
Qp(£)|Q), is unramified and (p.Q,(2)1Q,) is the Frobenius automorphism
@p 1§ — ¢P. From chap. V, (2.4), we thus get

po @ for p# L0,
(a.Qp0NQ,) ¢ =¢™ with np=qu;' forp=t.
sgn(a) for p=occ.

Hence
[, QOIQI = [1{a. @y (t)Q,) ¢ = ¢
»
where o = []n, = sena) [] pu,r(u)M:I = sgn(a) [] pr@Wa=' = 1.
P pAfoo pEX

O

Since the extension I?\K is contained in the field of all roots of unity
over K, the proposition implies

la. KIK1=1

for all « € K*. The homomorphism [ .E\K] g > G{E\K) therefore
induces a homomorphism

| [KIK]:Cxk — GIK),
and we consider its composite
vg 1 Cx — Z
with dg : G(I?IK) — 7. The pair (di,vi) is then a class ficld theory, for

we have the

(5.4) Proposition. The map vk : Cx — Z is surjective and is a hensefian
valuation with respect to dx .
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Proof: We first show surjectivity. If £.|K is a tinite subextension of K |K .
then the map

[ LIKI=TIC . LplKp) 2 1 — G(LIK)
P

is surjective. Indeed, since ( ,Ly|Ky) : K; — G(LplKy) is surjective,
[/x.LIK] contains all decomposition groups G(Ly|Kp). Thus all p split
completely in the fixed field M of [Ix,L|K|. By (3.8), this implics
that M = K, and s0 [k LIK| = G(L]K). This yiclds furthermore that
[fx. K\K] [Ck. K|K] is dense in O(K\K) In the exact sequence

[*»L‘KHCKHLRiﬁ)l

(see §1) the group C'l: is compact by (1.6), and we obtain a splitting,
ift we identify R’ with the group of positive real numbers in any infinite
completion K. Thus Cx = C‘,é x Ri. Now, [RL,E\KJ = 1, for if
X € R* then [x, IaKJ fo = [x.L]K] =1 for cvery finite subextension
LIK of [(\K because we may always write x = v' with y € R}
and n = [L : K). Therefore [Ck, KIK] = cy. K\K is a closed, deme
subgroup of O(KIK) and therefore equal to G(K\K) This proves the
surjectivity of vg =dg o , K\K]

In the definition of a hensclian valuation given in chap. IV, (4.6). condition
(i) is satisfied because vg{(Cx) = 7., and condition (i) follows from (5.2)
because for every finite extension L|K we have the identity

vk (NLikC) = vk (Npg ) = lIK[NL\K[LyE‘KI
= fukdille. LILI = frgen(Ci) = fuxZ. O

In view of the fact that the idele class group Ck satisfies the class field
axiom. the pair N
(dg : Gy — 7.
constitutes a class field theory, the “global class field theory™. The above
homomorphism vg = dg o[ .I?\K] Cx — Z. for finite extensions K 1Q.
satisfies the formula
ug = idﬁ of ,QIQYo Nk = LU« o Nk
fx Ix
and is therefore precisely the induced homomeorphism in the sensc of the
ubstract theory in chap. IV, (4.7).

o — Z)

As the main result of global class field theory we now obtain the Artin
reciprocity law:



§5. The Global Reciprocity Law 391

(5.5) Theorem. For every Galois ion L1K of finite algebraic number
fields we have a canonical isomorphism

rk  GULIK)Y? =5 Cx /NLkCL.

The inverse map of r,x yiclds a surjective homomerphism
( LLIKY:Cg = G(LIK)*
with kernel Ny xCp. The map ( ,L|K) is catled the global norm residue
symbol. We view it also as a homomorphism Ix — G(L|K)*".
For every place p of K, we have on the one hand the embedding
G(Ly|Kp) = G(LIK), and on the other the canonical injection

(1K= Ck,
which sends a, € K to the class of the idele
{ap) = (... 1 L Lap 11,1, ...).

These homomorphisms express the compatibility of tocal and global class
field theory, as follows.

(5.6) Proposition. If L|K is an abelian cxtension and p is a place of K.
then the diagram

K Gk

of |

cx —HE L Gk

is commutative,

Proof: We tirst show that the proposition holds if L[K is a subextension of
KJK orif L = K (i), i = V—1, and ploc. Indeed, the two maps [ K\K]
(. KIK): Iy — F(KJ/() agree because from chap. 1V, (6.5), we have

dg o ( ,K\K):v/(:dkn[ ,K\K].
Thus, if £]K is a subextension of E\K and & = (ay) € /. then
(@ LIK) = lo, LIK | = T](tp. Ly K.
v

In particular, for a, € K} we have the identity

(ap) LK) = (ap. Lyl Ky,
which shows that the diagram is commutative when restricted to the finite
subextensions of K |K.
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On the other hand, let L = K (i), ploc, and L, # K,. Then K‘; = R",
R} is the kcrnel of ( ,Ly|Kyp), and (=1, Ly|Kp) is complex conjugation in
G(Ly|Kp) = G(C|R). Thus, all we have to show is that ({(—1), L|K) # L.
If we had ({—1).L|K) = 1, then the class of {(—1) would be the norm of a
class of Cp, Le., {(—1)a = Ny g (w) for some a € K* and an idele o € /5.
This would mean that @ = Ny, ik, (etg) for g # p and —a = Ny ik, (ap). ie.,
(@, LglKg) = 1 for q # p and (—a. Ly|Ky) = 1. By (5.3), we would have
U=la,LIK| = [1y(a. LqlKg) = (a, Ly|Ky), s0 that (—1,Ly]Ky) = 1. and
therefore —1 € Ny ik (L)) = Negje € = RY, a contradiction.

We now reduce the general case to these special cases as follows. Let
L'|K’ be an abelian extension, so that K € K', L C L. We then consider
the diagram

(.'(L;,\A;)
GlLy| Ky)

GLKY) e | = Coer /N G

GILIK) - e O [N O

where L, = KL, K = KK, L}, = KL’ In this diagram, the top and
bottom arc commutative by chap. TV, (6.4), and the sides arc commutative
lor trivial reasons. If now L'| K’ is one of the special extensions for which
the proposition is already established, then the back diagram is commutative,
and hence also the [ront one, for all elements of G(Ly|K,) in the image of
G(L;,IK;) — G(Lp|Ky). This makes it clear that it is enough to find, for
every o € G(Lp|Ky), some special extension L'|K” such that o lies in the
image of G(Ly,|Kp). It is even sufficient to do this only for all o of prime
power order, because they generate the group. Passing to the fixed field of o
we may assume moreover that G(L|K) is generated by o.

When ploo and Ly # Ky, ie, Ky =R, L, =C, weput L' = L(i) € C,
and choose for K’ the fixed field of the restriction of complex conjugation
to L' Then L' = K'() and K, = R, L, = €, so the mapping
(1(1‘,|K ) = G(LyplKp) is xur]e(.uv«,

When p f 00, we find the extension L'| K as follows. Let o be of p-power
order. We denote by I?}K‘ resp. Z\L, the Z,-extension contained in KK,
resp. L|L, and consider the field diagram
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iy —

with localizations IZP = KPE, Zp = L,,Z (all ficlds are considered to lie in
a4 common bigger ﬁgld). We may now lift 0 € G(Ly|Kp) = G(L|K) to an
automorphism & of L, such that

(1) 5 € GLylKy),
51 s = of
2)6lp = ok
Indeed, since Ky, = K,K # K, the group G(K,|K,) # 1. and thus is
of finite index if viewed as ubémup of G{K|K) = Zp. It is therefore
generated by a natural power ¥ = @ Pk of Frobenius Ye ik € GIKIK). As

in the proof of chap. 1V, (4.4), we may then lift 6 toa 6 € G(Zp\[(b) such

that 6| =y, meN,sothat&|z = o .
sl =y, , Iz =¢¥

We now take the fixed field K’ of &|;, and the extension L' = K'L. As
in Lhdp IV (4.5), conditions (ii} and (iii), it then tollows that |[K': K] < o
andK'=L.L' {K" is therefore a subextension of K’ JK'. and o is the image
of n\,_rp under G(L |Ky) = G(Ly|Ky). This finishes the proof. [m]

for some n € N.

(5.7) Corollary. If L|K is an abelian extension and o = (ap) € Ix, then
(@, LIK) = [1(p, 5| Kp).
»

In particular, for a principal idéle a € K* we have the product formula
M, LylKyp) = 1.
v

Proof: Since /¢ is topologicaily generated by the ideles of the form
a = {ap}, ap € K, it is enough to prove the first formula for these
idzles. But this is cxactly the statement of (5.6):

(o, LIK) = ({up). LIK) = (ap. Ly| Kp) = [T(atq, Lql K ).
a

The product formula is a consequence of the fact that (e. L|K ) depends only
on the idele class o mod K*. O
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Identifying K with its image in Cx under the map a, > (g}, we obtain
the following further corollary, where we usc the abbreviations N = Ny
and Ny = Np ik,

(5.8) Corollary. For every finite abelian extension one has
NCLOK = Nyl

Proof: For v, € NFL; we see from (5.6) that ((xp). LK) = (xp. Ly|K})
= 1. Thus the class of {x,) is contained in NCy. Therefore NyL3 € NCp.
Conversely, let &@ € NCp N Ky Then @ is represented on the one
hand by a norm idéle « = N, B € I, and on the other hand
by an idéle (rp). x, € Ky This gives {r)a = N with a € K*.
Passing to components shows that « a norm from L,|K, for every
q # p. and the product formula (5.7) shows that ¢ is also a norm
from L,|Ky. Therefore x, € NpLy, and this proves the inclusion
NCLNK* C NpLE.

Exercise 1. Il Dy is the connected component of the unit element of Cy, and it
K“|K is the maximal abelian extension of K, then Cx /Dy = G(K“"|K).
Exercise 2. For every place p of K one has Ki* = KK
Hint: Usc (5.6) and (5.8).
Exercise 3. Let p be 4 prime number, and let M, |K be the maximal abelian p-
extension unramified outside of {p(p}. Further, let #/|K be the maximal unramified
subestension of M,|K in which the infinite places split completely. Then there is an
exacl sequence
| — G(M,|H) — GM,IK) > Clx(p) — 1.
where Cly(p) is the p-Sylow subgroup of the ideal class group Clx . and there is a
canonical isomorphisin
Gl = [TUS U nE).
Bl bl

where E is the closure of the (diagonally embedded) unit group £ = o in [Ty, Uy.

Exercise 4. The group E(p) := E N[, UL is a Z,-module of rank
P (F) 1= ranks, (F(p)) = [K = Q1 — ranksz, G M, 1K), ry(E) s called the peadic
unit rank.

Problem: For the p-adic unit rank, one has the famous Leopoldt conjecture:
rEY=r+5—1,

where 7, resp. 5. is the number of all real, resp. complex. places: in other words.

GM,IK)=s+1

The Leopoldt conjecture was proved for abelian number filds & |3 by the American

mathematician Azsaxo Batmrr [22]. The general case is still open to dale.

rankz,
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§ 6. Global Class Fields

As in local class field theory, the reciprocity law provides also in global
class field theory a complete cla ion of all abelian extensions of a finite
atgebraic number field K. For this it is necessary to view the idele class
group Cx as a topological group, equipped with its natural topology which
the valuations of the various completions K, impress upon it (see § 1).

(6.1) Theorem. The map
L N =NpxCr,

is a | —|-correspondence between the finite abelian extensions L|K and the
closed subgroups of finite index in C . Morcover one has:

LiCLy <= Ny 2N N =N, NN Neae, = N AL

The ficld L|K corresponding to the subgroup N of Ck is called the class
field of A", It satisfies
G(LIK) = Cx/N.

Proof: By chap. IV, (6.7), all we have to show is that the subgroups A of Cx
which are open in the norm topology are precisely the closed subgroups of
finite index for the natural topology.

If the subgroup A is open in the norm topology, then it contains a
norm group Np xCy. and is therefore of finite index. because from (5.5),
(Ck : NpgCry = #G (L1 K)*P. To show that A is closed it is enough to
show that Ny xCyp For this, we choose an infinite place p of K and
denote by [k the image of the subgroup of positive real numbers in K,
under the mapping { } : K7 — Ck. Then Ik is a group of representatives
for the homomorphism 9N : Cx — R} with kernel C‘,‘( (see §1), ic.,
Ck =C} x I'c. By the same token, [k is a group of representatives for the
homomorphism 91: ¢, — R. We therefore get

Nk Cr = Ny Cf x Ny Tk = N € x I = N €Y x Ty

The norm map is continuous, and C} is compact by (1.6). Hence Ny« C? is
closed. Since Ik is clearly also closed in Cx . we get that Ny x Cy, is closed.

Conversely let A" be a closed subgroup of Ck of finite index, We have
to show that A7 is open in the norm fopology, i.e., contaitts a norm group

;.| A, and if the A arc open in the norm topology, then so is A,
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Now let J be the preimage of A7 with respect to the projection /5 — Cx.
Then J is open in /¢ becausc N is open in Cx (with respect to the natural
topology). Therefore J contains a group

U =TT x 1 Us.

pes rgS
where S is a sufficiently big finite set of places of K containing the
infinite ones and thosc primes that divide #, such that fx = I,‘}K”. Since
g 2 J)y = n, J also contains the group [T, K3 x [ ys(1). and hence
the group

Igt8) = [T K" = [] U,

pes pes
Thus it is enough to show that Cx(S) = /x (S)K*/K* € A contains a norm
group. If the n-th roots of unity belong to K, then Cg (S} = Ny x Cy. with
L = K(VYKS), becausc of the remark following (4.2). If they do not belong
to K, then we adjoin them and obtain an extension K'|K. Let S be the set
of primes of K’ lying above primes in §. If S was chosen sufficiently large,
then Ix/ = I§.K'™ and Cx(§') = Ny Crr. with L' = K'(VK'S). by
the above argument. Using chap. V., (1.5), this gives on the other hand that
Nir k ({5 € 1, (S), so that

NpngCrr = N (NLgCroy = N (Cir(8) € Ck (S).

This finishes the proof. a

The above theorem is called the “existence theorem™ of global class field
theory because its main assertion is the existence, for any given closed
subgroup A" of finite index in Cg, of an abelian extension L|K such thal
Ny xCy = N. This extension L is the cl field for A. The existence
theorem gives a clear overview of all the abelian extensions of K once we
bring in the congruence subgroups C¢ of Cx corresponding to the modules
m= nufm p"® (see (1.7)). They are closed of finite index by (1.8). and they
prompt the [ollowing definition.

(6.2) Definition. The class field K™|K for the congruence subgroup C2 s
called the ray class tield mod m.

The Galois group of the ray class field is canonically isomorphic to the
ray class group mod m:

G(K™MK) = Cx/C.
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One has .

mm’ = K" C K™,
because clearly CF 2 C;}". Since the closed subgroups of finite index in Cx
are by (1.8) precisely those subgroups containing a congruence subgroup
CR, we get from (6.1) the

(6.3) Corollary. Every finitc abclian extension L|K is contained in a ray
class field K™ |K .

(6.4) Definition. Let L|K be a finite abelian extension, and ler Nj =
NikCr. The conductor § of L|K (or of N7) is the ged of all modules
such that L € K™ (i.e., CP C AL).

KI|K is therefore the smallest ray class field containing L |K. But it is
not true in general that m is the conductor of K™|K. In chap. V, (1.6), we
defined the conductor f, of a p-adic extension L,|K, for a finite place p, to
be the smallest power f, = p” such that U,‘('” S Ni,ik,Ly. For an infinite
place p we define f, = 1. Then we view f as the replete ideal T p° and
obtain the

(6.5) Proposition. Iff is the conductor of the abelian extension L|K , and f,
is the conductor of the local extension LKy, then

f=T1h-
P

Proof: Let A = Ny xCy, and let m = r[p P be a module (n, = 0
for p|oc). One then has

CRCN & flm and []fslm <= flp™ forallp.
3

So to prove f = ]_[p fp, we have 10 show the equivalence
CRCN < fplp™ foralp.
It follows from the identity A" N Ky = NpLj (see (5.8)):
CRPCN e (@elfl>aeN) foraelk
= (ap = 1 mod p™ = (o) € NN KJ = NyL}) forallp
el sae NpLp) = Us™ C NyLj = Fylp™.
[m]
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By chap. V, (1.7). the local extension L,|K,, for a finite prime p, is
ramified if and only if its conductor f, is # 1. This continues to hold also for
an infinite place p, provided we call the extension Ly | K, unramified in this
case, as we did in chap. 1. Then (6.5) yields the

(6.6) Corollary. Let L|K bc a finite abelian extension and { its conductor.
Then:
p is ramified in L < plf.

In the case of the base ficld Q. the ray class fields are nothing but the
familiar cyclotomic ficlds:

(6.7) Propusition. Let m be a natural number and m = (m). Then the ray
class field mod m of ( is the field

Q" = Qtm)

of m-th roots of unity.

Proof: Let m = [l,,,, p". Then I8 = [],., U,(,”"‘ x Ri. Let
m = m'p"™. Then U,(,"”) is certainly contained in the norm group
of the unramified extension @, (iu)|Q,. but also in the norm group
of Q,,(u,,ﬂ,,)\ﬁ@l,. according to chap. V., (1.8). This means, by §3, that every
idele in /' is a norm of some idele of Q). Thus CF © NCqyy,)- On the
other hand. Co/Cy = (Z/mZ)" by (1.10). and therefore

(Ce 1‘7@) = [QGem) : @] = (Ca : NCuyu) -

so that Cf = NCgyy,,). and this proves the claim. r

According to this proposition, one may view the general ray class fields
K™K as analogues of the cyclotomic fields Q(z,,)[Q. Nonetheless, they
are not made to take over the important role of the latter because all we know
about them is that they exist. but not how to generate them. In the case of
local fields things were difterent. There the analogues of the ray class fields
were the Lubin-Tate extensions which could be generated by the division
points of formal groups — a fact that carries a long way (see chap. V. §5).
This local discovery does, however, originate from the problem of generating
global class fields, which will be discussed at the end of this section.

Note in passing that the above proposition gives another proof of the
theorem of Kronecker and Weber (see chap. V. (1.10)) to the effect that
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every finite abelian cxtension L |Q is contained in a field Q(14,,)|Q, because
by (1.8) the norm group Np,gCy lies in some congruence subgroup Cgf,
m = (m), so that L S Q(pp).

Among all abelian cxtensions of K, the ray class field mod 1 occupies a
special place. It is called the big Hilbert class field and has Galois group

GK'|K)y = Cl} .
By (1.11), the group Cl} is linked to the ordinary ideal class group by the
cxact sequence
1 — o*/ot — [] R*/R, — Clfy — Clx — 1.
preal

The big Hilbert class field has conductor f = 1 and may therefore be
characterized by (6.6) in the following way.

(6.8) Proposition. The big Hilbert class field is the maximal unramified
abelian extension of K.

Since the infinite places are always unramified, this means that all prime
ideals are unramificd. The Hilbert class field, or more precisely, the “smali
Hilbert class ficld™, is defined to be the maximal unramified abelian extension
H|K inwhich all infinite places split completely, i.e., the real places stay real.
It satisfies the

(6.9) Proposition. The Galois group of the small Hilbert class ficld H K is
canonically isomorphic to the ideal class group:

G(H|K) = Clg .

Inn particular, the degree [H : K] is the class number hg of K.

Proof: We consider the big Hilbert class field K'|K and, for every infinitc
place p, the commutative diagram (see (5.6))

L KK
K P GUK, K )

ol |

:
I/t ks —F Gk,
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The small Hilbert class field H|K is the fixed ficld of the subgroup G
generated by all G(K 1K), p|oo. Under ( LK'|K) this is the image of

(T KRR /I K = LK K
pioo
where 1§ = [Ty Kj % [Tyjo Up- Therefore by (1.3),

GHIK) = GK'IK)/Gn = Ik/IT“K™ = Clg . C

Remark: The small Hilbert class field is in general not a ray class ficld
in terms of the theory developed here. But il is in many other textbooks
where ray class groups and ray class fields arc defined differently (see for
instance [1071). This other theory is obtained by equipping all number ficlds
with the Minkowski metric

(6 ¥k = Yo xr Ve {z € Hom(k,0)) .

ar=1ift =7, 0, = l: if T # T. A ray class group can then be attached
to any replere module

m=[]p",
b

where np € Z.np = 0,and n, = 0 or = 1 if p|oo. The groups Ué”") attached

to the metrized number field (K, { . }x) are defined by

1+p", for ny > 0, and U, for #, = 0. il p { oo,
pos R*, if p is real and 1, =0,
L if p is veal and np = 1,
C* = K,. ifpiscomplex.

The congruence subgroup mod m of (K.{ .}x) is then the subgroup
CP = IPK*/K* of Cx formed with the group

()
’:‘?=HU»'“~
v

and the factor group Cx /CY is the ray class group mod m. The ray class
field mod m of (K, {,)k) is again the class ficld of K corresponding to
the group CF € Ck. As explained in chap. 111, § 3, the infinite places p have
to be considercd as ramified in an extension L|K if Ly # K. Likewise,
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the conductor of an abclian extension L|K, ie., the ged of all modules
= l_[p P> such that CF C Ny Cy, is the replete ideal

f=TIfs.
[

where now for an infinite place p. we have f, = p™ with n, = 0if L, = K,
and ny = 1 if L, # K. Corollary (6.6} then continues to hold: a place p is
ramified in L if and only il p occurs in the conductor f.

This entails the following modifications of the above theory, as far as ray
class ficlds arc concerned. The ray class field mod 1 is the small Hilbert
class field. It is now the maximal abelian extension of K which is unramified
at all places. The big Hilbert class field is the ray class field for the module
m= [—[vmp. In the case of the base field Q. the field Q(¢) of m-th roots
of unity is the ray class field mod mpy., where po is the infinite place. The
ray class ficld for the module m becomes the maximal real subextension
@ + ¢"), which was not a ray class ficld before. This is the theory one
finds in the textbooks alluded to above. It corresponds to the number ficlds
with the Minkowski metric. The theory of ray class fields according to the
treatment of this book is forced upon us already by the choice of the standard
metric {x,y} = }__x:¥. on Ky, taken in chap. 1. § 5. Itis compatible with the
Riemann-Roch theory of chap. Ifl, and has the advantage of being simpler,

Over the field @, the ray class tield mod (m7) can be generated, according
10 (6.7). by the m-th roots of unity. i.e., by special values of the exponential
function ¢2**. The question suggested by this observation is whether one
may construct the abelian extensions of an arbitrary number field in a
similarly concrete way, via special values of analytic functions. This was
the historic origin of the notion of class ficld. A completely satisfactory
answer to this question has been given only in the case of an imaginary
quadratic field K. The results for this case are subsumcd under the name
of Kronecker’s Jugendtraum (Kroncecker’s dream of his youth), We will
briefly describe them here. For the proofs, which presuppose an in-depth
knowledge of the theory of e/liptic curves, we have to refer 1o [96] and (28].

An elliptic curve is yven as the quotient £ = C/I" of C by a complete
lattice I” = Zew) + Zew» in C. This is a torus which receives the structure of
an algebraic curve via the Weierstrass g:-functlon

P() = () = i + ¥ { . i]_

oy (Lfmy @?

where I = I" < {0}. ¢(z) s a meromorphic doubly periodic function, i.e.,

PEH+) =p@) forall wel,
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and it satisfics, along with its derivative £’(z), an identity
PP =4p — p () — g

The constants g2, g3 only depend on the latticc /7, and are given by
=gl =603, 5, g3 = &(I) = 1403 o5 & und ' may
thus be interpreted as functions on C/I". If one takes away the finitc set
§ C /T of poles, one gets a bijection

C/r S {y eC?| Y =dr'—gx—g}. 2 (9.9(D).

onto the affine algcbraic curve in C? given by the equation y* =
4x® — gox — g3. This gives the torus C/I the structure of an algebraic
curve E over C of genus 1. An important rdle is played by the j-invariant

JEY = j(I7) = with A = g3 —27g%.

263\(22‘
A
Tt determines the clliptic curve E up to isomorphism. Writing generators
@,y of I' in such an order that T = w,/w, lies in the upper half-
plane H, then j(£) becomes the value j(z) of a modular function, ie.,
of a holomorphic function j on H which is invariant under the substitution
4t +b b .
Te e d ) € SLo(Z).

for cvery matrix J

Now let K € C be an imaginary quadratic number field. Then the ring
ok of intcgers forms a lattice in C, and more generally, any ideal a of 0k
does as well. The tori C/a constructed in this way are clliptic curves with
complex multiplication. This means the following. An endomorphism of an
elliptic curve E = C/TI" is given as multiplication by a complex number z
such that 2z~ C I". Generically, one has End(E) = Z. If this is not the casc,
then End(E) ® © is necessarily an imaginary quadratic number ficld K,
and one says that this is an elliptic curve with complex multiplication. The
curves C/a are obviously of this kind.

The conscquences of these analytic investigations for class field theory
are the following.

(6.10) Theorem. Lct K be an imaginary quadratic number field and a an
ideal of ©g. Then one has:

(i) The j-invariant j(a) of C/a is an algebraic integer which depends only
on the ideal class R of a, and will therefore be denoted by j(R).

(ii) Every j(n) generates the Hilbert class field over K.
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Giiiy Hay, ... aj are representatives of the ideal class group Cly, then the
numbers j(a;) are conjugate to one another over K.

(iv) For almost all prime idcals p of K one has
ICEFICRIN

where g, € G(K (j(a))|K) is the Frobenius automorphism of a prime ideal B
of K (j(a)) above p.

Note that for a totally imaginary field K there is no diffcrence between
big and small Hilbert class field. In order to go beyond the Hilbert class field,
ie., the ray class field mod 1, to the ray class fields for arbitrary modules
m # 1, we form, for any lattice /” € C, the Weber function

—273 88 o (2), i gags £0,

A
T = —2%3¢ % PRz, ifg =0,
2
2834 ;Z PF ). if g3 =0.

Let R € Clx be an ideal class chosen once and for all. We denote by R* the
es in the ray class group Cfy = J 2/ P& which under the homomorphism

I — Clg
are sent to the idcal class (m)&~'. Let a be an idcal in &, and let b be an
integral ideal in &*. Then abm™' = (a) is a principal ideal. The value 7,(a)
only depends on the class £*, not on the choice of a,b and a. It will be
denoted by

T(8") = 14(a).

With these conventions we then have the

(6.11) Theorem. (i) The invariants T(]Y), &), ..., for a fixed ideal
class R, are distinct algebraic numbers which are conjugate over the
Hilbert class ficld K' = K (j(R)).

(ii) For an arbitrary 8. the field K (j (8), T(8%)) is the ray class field mod m
over K :
K™= K(jA).7(8").
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Exercise 1. Let K'|K be the big, and H|K the small Hilben class field. Then
G(K'|if) = (j2Zy ', wherc r is the number of real places, and 2/ = (0" : 0}).

Fxercise 2. Let d > 0 be squarefrec, and K = Q(v/d). Let € be a totally
positive fundamental unit of K. Then one has [K': H| =1 or = 2. according as
Nggle) = —lor= 1.
Exercise 3. The group (Cx)" = (/x)"'K*/K* is the interscction of the norm groups
NiixCy, of all abelian extensions £ |K of exponent #.
Exercise 4. (i) For 1 number field & , local Tate duality (sce chap. V, § 1, exercise 2)
vields a non-degeneraic pairing
3] OH (Kp Z/nZ) x 11" (Ky jea) = Z/nZ

[ »
of locally compact groups, where the restricted products are taken with respect to
the subgroups H,. (Kp. Z/nZ), tesp. H\ (K. jts). For x = (xp} in the first and

@ = (ap) in the second product, it is given by

(1.0 = X xoletp. Kl K ).
v
(i) If L|K is a finitc extension, then onc has a commutative diagram
OH U Z/nZy x QHUgu) — Z/nL
B *

] e H

i
OH K, 2/nZy x OH'(Kpw,) — ZjnL.
g g

(iii) The images of
HU(K,Z/nLy — T1H (K, Z/nZ)
g

and
HU(K ) = [TH (Ko )
G

are mutual orthogonal complements with respect to the pairing ().

Hint for (iii): The cokemel of the second map is Cx/{Ck)". and one
has H'(K,Z/nZ) = Hom(G(L\K),Z/nZ), where LIK is the maximal abelian
extension ol exponenl .

Exercise 5 (Global Tate Duality). Show that the
an arbitrary finite (5 -module A instead of Z/n
of

Hint: Use cxercises 4-8 of chap. [V, §3, and cxercise 4 of chap. V, §1.

alements of cxercise 4 extend to
nd A" = Hom(A,K*) instcad

Exercise 6. It S is a finite set of places of K, then the map
HYUK . Z/n7) — [ H (K Z/nZ)
o8

is surjective if and only if the map
HYUK ) — T H (Kpo)
P
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is injective. This is the case in particular if cither the extension K (x| K is cyclic,
=2, (m,2) = 1, or il § docs not contain all places p|2 which are nonsplit in
K (o) (see § 1, exercise 2).

Exercise 7 (Theorem of Gruswarn). If the last condition of exercise 6 is satisfied
for the triple (K, 2. §), then, given cyclic extensions Ly|K,, for p € S, there always
exists a cyclic extension L|K which has £ ,1K, as a complction for p € S, and
which satisties the identity of degrees

[L K] =sem{[Ly : Kpl)
(see also [10]. chap. X, §2).

Note: Let G be a finitc group of order prime to #4(K), let § be a finite set of
places. and let Ly|Ky, p € S, be given Galois cxtensions whose Galois groups (7
can be embedded into G. Then there exists a Galois extension L|K which on the
one hand has Galois group isomorphic to G, and which on the other hand has the
given extensions L ,| K, as complctions (see | L09]).

§ 7. The Ideal-Theoretic Version of Class Field Theory

Class field theory has found its idele-theorctic formulation only after it
had been completed in the language of ideals. From the very start, it was
guided by the desire to classifly all ubelian extensions of a number field K.
But at first, instead of the idele class group Cg, therc was only the ideal
class group Clg at hand to do this, along with its subgroups. In terms of
the insights that we have gained in the preceding section, this mecans the
restriction to the subfields of the Hilbert class field, ie., to the wnramified
abelian cxtensions of K. If the basc ficld is @, this restriction is of course
radical, for Q has no unramified extensions at all by Minkowski's theorem.
But over @, we naturally encounter the cyclotomic fields Q(t,,)[Q with
their familiar isomorphisms G{Q(um)|Q) = (Z/mZ)*. Hewwicrn Wesrr
realized, as was already mentioned. that the groups Clg and (Z/mZ)* are —
with a grain of salt — only different instances of a common concept, that of
a ray class group, which he defined in an ideal-theoretic way as the quotient
group

crp = Igpy

of all ideals relatively prime 1o a given module m, by the principal ideals («)
with @ = 1 mod m, and « totally positive. He conjectured that this group
Cly, along with its subgroups, would do the same for the subextensions
of a “ray class field” K™|K (which at first was only postulated to exist)
as the ideal class group Cly and its subgroups did for the subficlds of the
Hiibert class ficld. Moreover. he stated the hypothesis that every abclian
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extension ought to be captured by such a ray class field, as was suggested
by the case where the base field is @, whose abelian extensions are all
contained in cyclotomic fields Q(um)IQ by the Kronecker-Weber theorem,
After the seminal work of the Austrian mathematician Prurier FURTWANGLER
144), these conjectures were confirmed by the Japanese arithmetician Trus
Takaci (1875-1960), and cast by Emi Arriv (1898-1962) into a definite,
canonical form.

The idele-theoretic language introduced by Crvacer brought the
simplification that the idtle class group Cx encapsulated all abeliun
extensions of L|K at once, avoiding choosing a module m every time
such an extension was given, in order to accommodate it into the ray class
field K™} K , and thereby make it amenable to class field theory. The classical
point of view can be vindicated in terms of the idele-theoretic version
by looking at congruence subgroups CF in Cx, which define the ray class
fields K™ | K. Their subfields correspond, according to the new point of view,
to the groups between C and C, and hence, in view of the isomorphism

Cx/CP = CIY.

to the subgroups of the ray class group Clx.

In what follows, we want 1o deduce the classical, ideal-theoretic version
of global class field theory from the idele-theorctic one. This is not only an
obligation towards history, but a factual necessity that is forced upon us by

fiate]

the numerous applications of the more el ry and more i y
accessible ideal groups.

Let L|K be an abelian extension, and let p be an unramified prime
ideal of K and P a prime ideal of L lying above p. The decomposition
group G(Lyp|Kp) © GLIK) is then gencrated by the classical Frobenius
automorphism

@ = Gty Ll Kp),
where 7, is a prime clement of Kp. As an automorphism of L, g, is
obviously characterized by the congruence
gpa =a’ mod P forall acop

where g is the number of clements in the residue class field of p. We put

(55,
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Now let m be a module of K such that L lics in the ray class field mod m.
Such a module is called an module of detinition for L. Since by (6.6) each
prime ideal p f m is unramified in L, we get a canonical homomorphism

(M) SR — G(LIK)

from the group J@' of all ideals of K which are relatively prime to m by
putting, for any ideal a = [T, p*»:

(=TI

(L% s called the Artin symbol. If p & JR is a prime ideal and 1, a prime
element of K, then clearly

(#):((np),uk).

if {ny) € Cx denotes the class of the idéle (..

b 11,

The relation between the idele-theoretic and the ideal-theoretic formulation
of the Artin reciprocity law is now provided by the following theorem.

(7.1) Theorem. Let L|K be an abelian extension, and let m be a module of
definition for it. Then the Artin symbol induces a surjective homomorphism

LIK
(L):Cl','g — G(LIK)
with kernel H™/PE, where H™ = (Npjg JMYPE, and we have an exact

commutative diagram

| —NkC — Cx —H5 L Gk — 1

L]

I — H™YPR —— CIf ——— G(LIK) — 1.

Proof: In § 1, we obtained the isomorphism ( ) : Cg JCR — CIg = JEIPR
by sending an idele o = (ay) to the ideal (@) = []y,, p"r@. This
isomorphism yields a commutative diagram

cercr —“HE L Gk

ol Lo
cm —L LGk,

and we show that £ is given by the Artin symbol.
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Let p be a prime idcal not dividing m, m, a prime element of Kp.
and ¢ € Cx /CE the class of the idsle (rp) = (... L Lm. L1 ... Then
(¢) =yp mod PE and

LIK
() = (e LIK) = (frp). LIK) = (‘T)

This shows that f : JZ/PE — G(L|K) is induced by the Artin symbol
(LEY : yp — G(LIK), and that it is surjective.

It remains to show that the image of Np.xC; under the map
() Cx — JB/PP is the group H™/PZ. We view the module
m = ]_[Mm p"r us a module of L by substituting for each prime idcal p
of K the product p = gy, P4, As in the proof of (1.9), we then get
€= 1{™L7/L, where 1™ = (@ € I | ag € Uy ™" for Plmoc). The
clements of .

N €= Nu (™K (K
are the classes of norm ideles Ny (). for o € Iz'“). As

Np g (oyy = [] Negik, (aq)
Tl

(see (2.2)), and since vy{Npy &, (@p)) = Sppvp(ay) (see chap. 111 (1.2,
the idele Ny jx (@) is mapped by ( ) to the ideal
WNex@) =111 plamrelen) = N x (11 (Bu,,,»m\u)).
P> Blp Ptow
Therefore the image of Ny xCp under the homomorphism ( ) : Cg —

m

JRJPR s preciscly the group (N ik JTPR/ P, a.ed.

(7.2) Corollary. The Artin symbol (%) for a € JI, only depends on
the class a mod PP. It defincs an isomorphism

(K5 opimm = awik).

The group H™ = (Ny x JM) PR is called the “ideal group defined mod m”
belonging to the extension £ |K. From the existence theorem (6.1), we see
that the correspondence £ +> H™ is 1—1 between subextensions of the ray
class ficld mod m and subgroups of Ji' containing Pg'.

The most important consequence of theorem (7.1) is a precise analysis
of the kind of decomposition of any unramified prime ideal p in an abelian
extension L|K. It can be immediately read off the ideal group H™ C J2
which determines the field L as class ficld.
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(7.3) Theorem (Decomposition Law). Let L|K be an abelian extension of
degree n, and let p be an unramified prime ideal. Let m be a module of
definition for L|K that is not divisible by p (for instance the conductor), and
let H™ be the corresponding ideal group.

If f is the order of p mod /™ in the class group JT/H™, i.e., the smallest
positive integer such that

pl e H™,
then p decomposes in 1, into 4 product
p=%FB

of r = n/f distinct prime ideals of degree f over p.

Proof: Let p = P, --- P, be the prime decomposition of p in L. Since
p is unramified, the 9; are all distinct and have the same degree f. This
degree is the order of the decomposition group of 9B; over X, i.e.. the order
of the Frobenius automorphism ¢, = (%) In view of the isomorphism
JZ/H™ = G(L|K), this is also the order of p mod H™ in JR/H™, This
finishes the proof. ]

The theorem shows in particular that the prime idcals which split
completely arc precisely those contained in the ideal group If7, if f is
the conductor of L|K.

Let us highlight two special cases. If the base ficld is K = @ and we look
at the cyclotomic field G, )|Q. the conductor is the module m = (m),
and the ideal group corresponding to Qi) in Jg is the group P As
GRS = (Z/mZ)* (sce (1.10), we obtain for the det_umpnsnmn of
rational primes p 4 m, the Jaw which we had already deduced in chap.1,
(10.4), and in particular the fact that the prime numbers which split completely
are characterized by

p=1modm.

In the case of the Hilbert class field L|K, i.c.. of the field inside the
ray class field mod | in which the infinitc places split completely, the
corresponding ideal group H C J = J is the group Py of principal ideals
(see (6.9)). This gives us the strikingly simple

(7.4) Corollary. The prime ideals of K which split completely in the Hilbert
class field arc precisely the principal prime ideals.
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Another highly remarkable property of the Hilbert class field is expressed
by the following theorem, known as the principal ideal theorem.

(7.5) Theorem. In the Hilbert class ficld every ideal a of K becomes a
principal ideal.

Proof: Let K|K be the Hilbert class field of K and let K5| K| be the Hilbert
class field of K. We have to show that the canonical homomorphism
Jx/Px — Jk. [Pk,

s trivial. By chap. IV, (5.9), we have a commutative diagram

T /Pri = Cxi /N Cxy = GKAKD

o I

Jk/Px Cx/NkxCk, = GKIIK),

where i is induced by the inclusion Cx € Ck,. It is therefore cnough to
show that the transfer

Ver : G(K 1KY — G(Ka|K )

is the trivial homomorphism. Since KK is the maximal unramified abelian
extension of K in which the infinite places split completely. i.e., the maximal
abelian subextension of K2|K, wc see that G(K2|K () is the commutator
subgroup of G(K3|K). The proof of the principal ideal theorem is thus
reduced to the following purely group-theoretic resuit. [}

(7.6) Theorem. Let G be a finitely gencrated group, G' its commutator
subgroup, and G the commutator subgroup of G'. If (G : G") < 00, then
the transter

Ver: G/G — G'/G”

is the trivial homomorphism.

We give a proof of this theorem which is due to Ernst Wirt [141]). In the
group ting Z[G| = {3 ;o a0 | 7o € L}, we consider the augmentation
ideal /¢;, which is by definition the kernel of the ring homomorphism

ZIGl — L., Y. ns0 F— X.ng.
o o
For every subgroup H of G, we have Iy Cig.and{t = l|T € H, T #1)

is a Z-basis of /. We first establish the following lcmma, which also has
independent interest in that it gives an additive interpretation of the transfer.
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(7.7) Lemma, For cvery subgroup H of finite index in G, one has a
commutative diagram

616G — Y Hy

5l E al =
S
6/1E —— Uy +Iclw)/iciu.
where the homomorphisms 8 are induced by o v+ 80 = o — 1, and the

homomorphism S is given by

Srmod 71 =x ¥ pmod lglu,
peR
for a system of representatives of the left cosets R > 1 of G/H.

Proof: We first show that the homomorphism
5
) HIH — (g + gl /o1y
induced by 7 > 8t = 7 — 1 has an inversc. The elements péz, v € H,
T # 1, p € R, form a Z-basis of Iy + I 1. Indeed. it follows from
p8T =81 + 8pdt

that they generate 7y + /6 /4, and it

0= nepdT =3 foc(pT =~ p) = Y npept = L L np2) 0.

P ot P P T
then we conclude that #, ; = 0 because the pr.p are pairwise distinct.
Mapping pdz to r mod H', we now have a surjective homomorphism
Iy +igly — H/H'.

It sends 8(pt')87 € Iy to T't’ 'v=' = 1 mod H' because 8{pt')8t =
£8(t't) — pdr’ — 7. 1t thus induces a homomorphism which is inverse to
(). In particular, if H = G, we obtain the isomorphism G/G’ > 16/12.

The transter is now obtained as

Ver(o mod G') = [ o, mod H',
pER

where 0, € H is defined by op = p'o,. p' € R. Ver thus induces the
homomorphism

S G /1E — a6l /ety



412 Chapter VI. Global Class Field Theory

given by S(o mod 13) = ¥ . 80, mod /g1y From op = p'o, follows
the identity
8p + (B0 )p = B0, + 8p' + 8p'Sap.
Since p’ runs through the set R if p does. we get as claimed
S@Gpmod 1) = Y 8o, =Y. Bo)p=80 3 pwod lgly. O
pek peR pekt

Proof of theorem (7.6): Replacing G by G/G", we may assume that
G" = {1}. i.c., that G’ is ubclian. Let R 5 1 be a sysiem of representatives
of left cosets of G/G'. and let oy, ....0, be generators of G. Mapping
¢ =(0,...,0.1.0, ....0) € Z" 10 o, we get an exact sequence

07"z — GG — 1.

where f is given by an n x n-matrix (mjy) with det(miz) = (G 1 G').
Consequently,

P

[lo/ =1 wih neG"

i=l
The formulae 8(xy) = &x +8y +38x8y, 8(x™") = —(8x)x~" yield by iteration
that

S(I1 o/ w) = X (o =0,

il i=1
where 145 = mjx mod f¢;. In fact, the 1 are products of commutators of the
o; and 6. We view (uik) as @ matrix over the commutative ring

ZIG/G'] = ZIGY/ZiG g,

which gives a meaning to the determinant 1 = det(it} € ZIG/G']. Let (hi))
be the adjoint matrix of (z;¢). Then

(S0 = 3 _(50p)ptirhe; = 0 mod 16ZIG ¢,
ik

so that (50 )i = 0 mod IGZIG) g = Iglg forall o. This yields

w= ¥ pmodZ|G)lg
NER

For if we put o = Y. #,0, Where p = p mod G’ then forall@ € G/G'.

Fu =3 n,505=3.n,D-
o 3
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This implies that all n, are equal, hence p =m Y p mod Z[G |{¢ . and

as

peR

po=det(mi) =(G G =m(G : GYymod I¢;,
we even have m = 1. Applying now lemma (7.7), we sce that the transfer is
the trivial hemomorphism since

S(8c mod 13) =80 Y. p = (o) =0mod Igiy . [l
pck

A problem which is closely related 1o the principal ideal theorem and
which was first put forward by Pririrr FURTWANGLER is the problem of the
class field tower. This is the question whether the field tower

K=KiSKI CK:CKic....

where K, is the Hilbert class ficld of K;, stops aftcr a finite number of
sicps. A positive answer would have the implication that the last field in the
tower had s number | so that in it not only the ideals of K, but in fact all
its ideals become principal. This perspective naturally generated the greatest
interest. But the problem. after withstanding for a long time all attempts to
solve i, was finally decided in the negative by the Russian mathematicians
E.S.Goion and I.R. Sararrvic in 1964 (see [48]. [24]).

Exercise 1. The decomposition law for the prime idcals p which are ramified in an
abelian extension L|K can be formulated like this. Let § be the conductor of L| K,
HY C 4] the ideal group for L. and /1, the smallest ideal group containing /1 of
conduclor prime to p.
If ¢ = (Hy : #17) and p' is the smallest power of p which belongs 1o H,,. then
p=0PB- Py,

where the T5; are of degree £ over K, and r = £ 5 =|L : K.

o
Hint: The class tield for H, is the inertia field above p.
The (ollowing exercises 2-6 concern a non-abeliun cxample of E. Arrin.

Exercise 2. The polynomial /(X) = X% -- X + 1 is irreducible. The discriminant of
aroot & (i.c., the discriminant of Zla|) is ¢ = 19 151.

Hint: The discriminant of a root of X +aX + b is 5% + 2%,
Exercise 3. Let k = (ia). Then Z[e] is the ring o of integers of k.

Hint: The discriminant of Z|a| equals the discriminant of o; because on the
one hand, both differ only by a square, and on the other hand, it is squarclree.
The transition matrix from 1.e, ....a"" to an integral basis wi, ... ., of o is
therefore invertible over Z.
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Exercise 4. The docomposition field K |Q of £(X) has as Galais group the symmetric
group &s, .. it is of degree 120.

Exercise 5. K has class number 1.

Hint: Show, using chap. 1. §6. cxercise 3, that every ideal class of K contains an
ideal @ with 9t(a) < 4. If 9y # 1, then o has to be a prime ideal p such that
Mp) = 2 or 3. Hence op/p = Z/27 or = L/3Z., so f has a oot mod 2 or 3.
which is not the case.

Exercise 6. Show that K | Q(+/T9- 151) is a (non-abelian!) unramified extension.
Exercise 7. For every Galois cxtension L|K of finitc algebraic number fields. there
exist infinitely many finitc extensions K’ such that L N K’ = K. and such that
LK’|K" is unramified.

Hint: Let § be the set of places ramified in LK, and let Ly = Kp(@p). By the
approximation theorem, choose an algcbraic number o which, far cvery p € §. is
close 1o a, when embedded into K p. Then K y(ary) © Kp(@) by Krasncr's lemma,
chap. 11, $6, exercise 2. Put K’ = K (@) and show that LK'|K" is unramified. To
ohow that @ can be chosen such that LMK’ = K use (3.7), and the fact that G(L1K)
is gencrated by elements of prime power order.

§ 8. The Reciprocity Law of the Power Residues

In class ficld theory Gauss's reciprocity law mceets its most general and
definite formulation. Let n be a positive integer > 2 and K a number field
containing the group jt, of 1-th roots of unity. In chap. V, §3, we introduced,
for every place p of K, the n-th Hilbert symbol

(T) K5 x Ky == e
It is given via the norm residue symbol by

(@, Kp(YBIK,) Vb = (%)\/Z

These symbols all fit together in the following product formula.
(8.1) Theorem. Fora,h € K* one has

) -

P
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Proof: From (5.7), we find

[1;1(%)]«7: (Lo Ko B21K0)] V5 = (oK BNV = V.

and hence the theorem. [m]

In chap. V, §3, we defined the n-th power residue symbol in terms of the
Hilbert symbol:
ay _ n.u)
() =057
where p is a prime ideal of K not dividing n, @ € Uy, and 7 is a prime

element of K, We have seen that this definition does not depend on the
choice of the prime element 7 and that one has

(%) =1 < a=0o" mod p,
and more generaily

aN _ g-lin _
(p)ia mod p, ¢ =MN(p).

(8.2) Definition. For every ideal b = np'm p' prime to n, and every
number a prime to b, we define the n-th power residue symbol by

(B)-T1(5)"

i

Here (%)VD =1 when v, =0.

The power residue symbol (%) is obviously multiplicative in both

arguments. If b is a principal ideal (h), we write for short (%) = (%)
‘We now prove the general reciprocity law for the n-th power residues.

(8.3) Theorem. Ifa,b € K* are prime to each other and to n, then

G =110

placo
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Proof: If p is prime to hnoo, then we have

by vsle by tste b
G =)=

where 7 is a prime element of K. For if we puta = wr ™", then (%2
because u, b € U,. For the same reason, we find

u, h -

Wb N .
(%) =1 [orp prime to abnoo.

(8.1) then gives
GG -G TG -GG
G- wm%)-

pllah)

Here p{(b) means that p occurs in the prime decomposition of (5). n

Gauss’s reciprocity law, for which we gave an elementary proof using
the theory of Gauss sums in chap. I, (8.6). in the case of two odd prime
numbers p./, is contained in the general reciprocity law (8.3) as a special
case. For if we substitute, in the case K = Q, n = 2, into formula (8.3) the
explicit description (chap. V, (3.6)) of the Hilbert symbol (%) for p=2
and p = oo, we obtain the following theorem. which is more general than
chap. 1. (8.6).

(8.4) Gauss’s Reciprocity Law. Let K = @, n = 2, and let ¢ and b be
odd, relatively prime intcgers. Then onc has

(%)(g) R IS e

and for positive odd integers b, we have the two “‘supplementary theorems”
—1 bl ay L
P ()=
(7)=c» ¥
For the last equation we need again the product formula:

(=L =T =D

P2
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The symbol (I) is called the Jacobi symbol, or ulso the quadratic
residue symbol (although, for » not a prime number, the condition that the
symbol (h) = 1 is no longer equivalent to the condition that « is a quadratic
residue modulo b).

In the above formulation, the reciprocity law allows us to compatte simply
by itcration the quadratic residue symbol (7—)) as is shown in the following

example:
40077 25460 22 6365 40077
(65537) (400 ) (40077) B (40077)(40077) B ( 6365 ) B
1887 6365 704 4} 11 1887
(6%5) ( 887) (1887) (1887)(1887)7_( 11 )7
6 2 3 11 2
() =B =G =-(5)=-() =1
Class tfield theory originated from Gauss’s reciprocity law. The quest
for a similar law for the n-th power residues dominated number theory
for a long time, and the ali-embracing answer was finally found in Artin’s
reciprocity law, The above reciprocity law (8.3) of the power residues now
appears as a simple and special consequence of Artin’s reciprocity law. But
to really settte the original problem, class field theory was still lacking the
explicit computation of the Hilbert symbols (“ h

} for plaocc. This was

finally completed in the 1960s by the mmhemuucmn Hesur Brickaer, see
chap. V, (3.7).



Chapter VII
Zeta Functions and L-series

§ 1. The Riemann Zeta Function

One of the most astounding phenomena in number theory consists in the
fact that a great number of deep arithmetic properties of u number field are
hidden within a single analytic function, its zeta function. This function has
a simple shape, but it is unwilling to yield its mysterics. Each time, however,
that we succeed in stealing one of these well-guarded truths, we may expect to
be rewarded by the revelation of some surprising and significant relationship.
This is why zeta functions, as well as their gencralizations, the L-series,
have increasingly moved to the foreground of the arithmetic scene, and today
arc morc than cver the focus of number-theoretic research. The fundamental
prototype of such a function is Riemann’s zeta function

MR

1
=3 —-
n=1 11

where s is a complex variable. It is to this important function that we tum
first.

(1.1) Proposition. The scrics £(s) = Zs“:, 'L is absolutcly and uniformmly

"
convergent in the domain Re(s) > 1+ §, for every § > 0. It therefore
represents an analytic function in the half-plane Re(s) > 1. One has Euler’s
identity

to =11

1
p 1—p

where p runs through the prime numbers.

Proof: ForRe(s) = o > 144, the series 3 ;- |1/n*| = 3 )" 1/n” admits
the convergent majorant Y00 1/n'*%, i.e., £(5) is absolutely and uniformly
convergent in this domain. In order to prove Euler’s identity, we remind
ourselves that an infinite product l_[:i, ay of complex numbers a, is said 1o
converge if the sequence of partial products P, = a1 ---a, has a nonzero
limit. This is the case if and only if the serics Y v, loga, converges, where
log denotes the principal branch of the logarithm (see [2], chap. V, 2.2). The



420 Chapter VII. Zeta Functions and L-series

product is called absolutely convergent if the series converges absolutely.
In this case the product converges to the same limit cven after a reordering
of its terms a,,.

[.et us now formally take the logarithm of the product

|
E)=]l+—="
I;[ L=p=*
We obtain the series

log E(s) = .
oerw =T 5 5
It converges absolutely for Re(s) = o > [ + 4. In fact, since | p™*| = p"® =
P!+ one has the convergent majorant

3 (o) = e =25
P TP 1 =5 pis

P n=1

This implies the absolute convergence of the product

E(,\'):l—[% :exp(z(i L))
p 1=p 7 oa=t APt
In this product we now expand the product of the factors
1 1
T Ty
for all prime numbers py. ... pr = N, and obtain the equality
1 o] 1 o1
® r:I:[N =5 .. Zv Py ; w’

where 3’ denotes the sum over all natural numbers which are divisible only
by prime numbers p < N. Since the sum Y.’ contains in particular the terms
corresponding to all n < N, we may also writc

p=N

Comparing now in (+) the sum 3" with the scries £(x), we get

1 1
[T —=— <] ¥ > ‘SENW'

p=N -

,; m

where the right hand side goes 10 zeto as N — 00 because il is the remainder
of a convergent series. This proves Euler’s identity.
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Euler’s identity expresses the law of unique prime factorization of natural
numbers in a single equation. This already demonstrates the number-theoretic
significance of the zeta function. It challenges us to study its propertics more
closely. By its definition, the function is only given on the half-plane
Re(s) > 1. It does, however, admit an analytic continuation to the whole
complex plane, with the peint s = 1 removed, and it satisfies a functional
equation which relates the argument s to the argument 1 — s. These crucial
facts will be proved next. The proof hinges on an integral formula for the
zeta function ¢ (s) which arises from the well-known gamma function. This
latter is defined for Re(s) > O by the absolutely convergent integral

and obeys the following rules (see [34], vol. I, chap. I).

(1.2) Proposition. (i) The gamma function is analytic and admits a
meromorphic continuation to all of C.

(i) It is nowhere zero and has simple poles ats = —n,n =0, 1.2, ..., with
residues (—1Y'/n!. There are no poles anywhere else.

(iii) It satisfies the functional equations

D s+ 1) =sI(s),

2) F(HF(l—sy= —"—

sinzs
| N I
DFAGINCES E) = ?F(Z.\') (Legendre’s duplication formula).
(iv) It has the special values T'(1/2) = /=, F()) = I, Ttk + 1) = k!,
k=0,1,2,....

To relate the gamma function to the zeta function, start with the substitution
¥ +> maly. which gives the cquation
o

1 cdy
ek [

n

o

Now sum over all # € N and get

o
n"F(.r)K(ZS):/Z e
=l
o
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Observe that it is legal to interchange the sum and the integral because

x %0
”‘/ y i’:f JRets) ay
Tt s dy —wnly Rets) DY
P 4
=1 n=1 y
0 0

= 77RO (Re(s)) ¢ (2Refs)) < oo

=

Now the series under the integral,
&, 2y
e = Y e Y,
a=1

arises from Jacobi’s classical theta series
2 X 2.
0y = 3 e =142y i
nez 2=l

i.c., we have g(y) = 3(8(iy) — 1). The function
Z(s) = (s /20 ()

is called the completed zeta function. We obtain the

(1.3) Proposition. The completed zeta function Z(s) admits the integral
representation
17 d
Z(s) = 2/(9«;) —yyr 2
¥

[

The proof of the functional equation for the function Z(s) is based on the
following general principle. For a continuous function f : R} — C on the
group R’ of positive real numbers, we define the Mellin transform to be
the improper integral

oo
dy
L = (1= peo)y

[

provided the limit f(0o0) = limy_n f(y) and the integral exist. The
following theorem is of pivotal importance, also for later applications.
We will often refer to it as the Mellin principle.
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{L.4) Theorem. Let f.g: R — C be continuous functions such that
FM=a+ 0™, g =hy+ 0™,
for y — 00, with positive constants ¢, «. If these functions satisfy the
equation
f(l) =Yty
5 3
for some real number k > 0 and some complex number C # 0. then one has:

(i) The integrals L(f,s) and L{g.s) converge absolutely and uniformly if s
varies in an arbitrary compact domain contained in {s € C | Re(s) > k}.
They arc therefore holomorphic functions on {s € C| Re(s) > k}. They
admit holomorphic continuations to C ~ {0,k}.

(ii) They have simple polcs at s = 0 and s = k with residues
Res,—y L(f.8) = —ag, Rese_p L(f.s)=Chy, resp.
Resemn L(g.8) = —hg, Resy—g L(g.8) = C ™ 'ap.
(iii) They satisty the functional equation
L(f.s)=CL{g.k—35).
Remark I: The symbol @(y) = O(¥(y)) means, as usual, that onc has

@(y) = e(y)¥r(y), for some lunction ¢(y) which stays bounded under the
limit in question, so in our casc, as y — 00.

Remark 2: Condition (ii) is to be understood to say that there is no pole
if ay = 0, resp. by = 0. But there is a pole, which is simple, if ap # 0,
resp. by # 0.

Proof: If 5 varies over a compact subset of C, then the function e~*"y7,
o = Re(s), is bounded for y = | by a constant which is independent of .
Therefore the condition f(y) = a9 + O{e™") gives the following upper
bound for the integrand of the Mellin integral L(f.s).

JCFO) —a)y™!| < Be™ y"*y < B' =,

for all y = 1, with constants B.B'. The integral [~(f (¥} — ao)y*~'dy
therefore admits the convergent majorant f]x %z{y which is independent
of 5. It therefore converges absolutely and uniformly, for all s in the compact
subset. The same holds for f,w(y(,\') — b)y*~'dy.
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Now let Re(s) > k. We cut the interval of integration (0, 00) into (0, 1]
and (1, 0c) and write
o0
Lo = [(re) - a)y "—+/(m>—aﬂ) &2
1 o
For the second integral, the substitution y + 1/y and the equation
FU1/y) = Cykg(y) give:
1

f(/'()') —a)y

0

w
. Ch
-3 +C/<g(_v) — by dy -
§ k—x
1

By the above, it also converges absolutely and uniformly for Re(s) > k. We

therefore obtain
ay Chy
Lif)==2 4 == +F ).

where
o

Flyy = [[(/(y) —ao)y* + C(g(y) —ho)y* ™

"=y £(y) that:

Swapping f and g, we see from g(1/y)

by  C~
Lig. x)——7+ +F(\)
where
%
~ ¥ ks 4¥
66 = [1ew) = my +C7 0 =] -
J )
The integrals (s} and G(s) converge absolutety and locally uniformly on
the whole complex plane, as we saw above, So they represent holomorphic
functions, and one obviously has £ (s) = CG(k—s). Thus L{f, s} and £.(g.s)
have been continued to all of C ~ {0,k} and we have L(f.s) = CL(g.k—s5).
This finishes the proof of the theorem. 4

The result can now be applied to the integral (1.3) representing the
function Z(s). In fact, Jucobi's theta function 6(z) is characterized by the
following property.
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(1.5) Proposition. The scries

b= oin's

4

converges absolutely and uniformly in the domain {z € C| Im(z) > 8},
for every 8 > 0. It therefore represents an analytic function on the upper
half-plane 1l = {z € C|[ Im(z) > 0}, and satisfies the transformation formula

8(—1/z)=/z/i 8(z).
We will prove this proposition in much greater generality in §3 (see (3.6)),

so we take it for granted here. Observe that if z lies in H then so does —1/z.
The square root 4/z/1 is understood to be the holomorphic function

hiz) = (l%lug:/'l‘

where log indicates the principal branch of the logarithm. It is determined
uniquely by the conditions

hzyY =z/i and h(iy) =5 >0 fory € R,

(1.6) Theorem. The completed zeta function
Z(s) = n T (5 /DEs)

admits an analytic continuation to C ~ {0.1}, has simple poles at s = 0
and s = | with residues —1 and |, respectively, and satisfies the functional
equation

Z(s) = Z(1 —5).

Proof: By (1.3}, we have

Wi iy
z2 =3 /(e(i_v) - 1))»"7".
0
ie., Z(2s) is the Mellin transform
Z(2s) = L(f,5)
of the function f(y) = %(7‘(1')'). Since

~ s
Oliy) =1+2¢7 (14 3 ¢770=0y)
"2
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onc has f(y) = % + O(e™™¥). From (1.5), we get the transformation formula

1 2
f/yy = 59(—1/1',»-): ~y oGy =3 f ().

By (1.4), L(f.s) has a holomorphic continuation to C ~ {0, 1/2} and simple
poles at s = 0, 1/2 with residues —1/2 and 1/2, respectively, and it satisfies
the functional cquation

L(/'.A):L(f.%—.\').

Accordingly. Z(s) = L(f,s/2) has a holomorphic continuation to C ~ {0. 1}
and simple poles at s = 0. 1 with residues — | and 1, respectively. and satisfies
the functional equation

7 :L(/.%) :L(f, !

575)_2(1—\) =

For the Riemann zeta function itself, the theorem gives the

(1.7) Corollary. The Riemann zeta [unction {{(s)} admits an analytic
continuation to T ~ {1}, has a simple pole at s = | with residue 1 and
satisfies the functional equation

(1l —5) =2027)" r(\)cns( )cm

Proof: Z(s) = x~*/2I'(5/2)¢(s) has a simple pole at s = 0, but so does
I'(s/2). Hence £ (s) has no pole. Als = |, however, Z(s) has a simple pole.
and so does £(s), as I'(1/2) = /7. The residue comcs out to be

Res,— £(s) = 720 (1/2)7 Resy 2(s) = 1.
The equation Z(1 — s} = Z(s) translates into
T'(3)
ris)
Substituting {1 —)/2, resp. 5/2, into the formulae (1.2), (iii), 2) and 3) gives

r()r(tE) = me

)]"(%E) = cos(:.\'/Z)‘

) =gy =m1 >

o{s).
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and atter taking the qumiem

/()= pen o

Inserting this into () now yiclds the functional equation claimed. [l

At some point during the first months of studies every mathematics student
has the suprise to discover the remarkable formula

It is only the beginning of & sequence:

SRRENES

— = —n',

amiat 90 a=1
These are explicit evaluations of the special values of the Riemann zeta
function at the points s = 2k, k € N. The phenomenon is explained via the
functional equation by the lact that the values of the Riemann zeta function
at the negative odd integers are given by Bernoulli numbers. These arise
from the function

te!
Fiy= ;
o —

and are defined by the series expansion
x £
Fiy=>3 Be~
ok
Their relation to the zeta function gives them a special arithmetic significance.
The first Bernoullt numbers are

1 1 1 1
Bo=1,B1=5. Bo=—,By=0 By=——,Bs=0, By = —.
0 =5 b= B 4 300 B =1
In general one has By,y = 0 for v = 1, because £(—1) = F(f) — 1. In the
, which scrves for defining

classical literature, it is usually the function ——
o
1

the Bernoulli numbers. As F (1) = +t. this does not change anything
i 2 I

except for B. where onc finds — 5 instead of % But the above definition is
more natural and better suited for the further development of the theory. We
now prove the remarkable

(1.8) Theorem. For cvery integer k > 0 one has

B,
t—ky=—"*.
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We prepare the proof proper by a function-theoretic lemma. For & > 0
and a € [g, 0c|, we consider the path

Ceo= (a6l + Ke +8,a),

which first follows the half-line from @ to &, then the circumference
K: = {z| |z] = &} in the negative direction, and finally the half-linc
from e to a:

(1.9) Lemma. Let U be an open subset of C that contains the path Cy
and also the interior of K. Let G{z) be a holomorphic function on U ~ {0}
with a pole of order mt at 0, and let G ()" ! (n € N), for Re(s) > % be
integrable on (0, a). Then onc has

«
/G(z)z""‘d:/ = (XTI _ ”[(I(l)imfllh.
0

Cron

Proof: The integration does not actually take place in the complex plane but
on the universal covering of T*,

X ={.a)eC* xR |argx =« mod 27}.

z and z*~' are holomorphic functions on X, namely

ey =x. (i) = (Tl wmied
and C, , is the path
Coa=1,+ K+ 17,
where [, = (a.e] x {0}, K, = {ge™ [t € |0.2x]}. I}, = [s.a) x {27}
in X. We now have
a

/G(z)z’“ Ydz = 7/sz”\*‘m.

1 E

«
S=lgs = 2mins /G(/)/”‘ Var,

W
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27
/G(z)z""‘d: _ —[/G(se ityghs=1 o itims=g o it g,
K. )

2

:7[/SU\G(M,”)(;,”,\JL
o

Since Re(s) > % ie., Re(ns —m) = 0, the last integral / (g) tends to zero
as & — 0. In fact, one has Iin‘irs”‘(}(se””) = (. This gives
£

Gz

(e?Tins 1)/G(r)r”" YA+ 1 (s,
g

Cra

and since the integral on the left is independent of £, the lemma follows by
passing to the limit as & — 0, o

Proof of (1.8): The function

F(z)=
e

a meromorphic function of the complex variable z, with poles only at
2miv, v € Z, v # 0. By/k is the residue of (k — 1)1 F(z)z"%" at 0,
and the claim reduces to the identity

k=l _ta -k
/ F: k-nt’

Res.o F(z)z7F' =

1
2mi
|z'=¢

for 0 < & < 27, where the circle 12| = ¢ is taken in the positive orientation.
We may replace it with the path —C\, = (=o¢, — ¢] + K, + |—¢, — 00),
which traces the half-line from —oc to —é, followed by the circumference
z| = &} in the positive direction, from —¢ to ~¢, and finally
the half-line from —& to —oc. In fact, the integrals over (—oc, — £] and
[—&, — o0) cancel each other. We now consider on C the function

H(s):/F *'ﬁ-

-C,
Here the integrals over (—oo, ~ ¢] and | —£. — oc) do not cancel each other

any longer becausc the function z* ' is multivatued. The integration takes
place on the universal covering X = {(x,z) € C* x R | argx = o mod 27}
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of €*, as in (1.9), and z,2°~! arc the holomorphic functions z{x.at) = x,
27 (x, @) = e5DUINI+®) The integral converges absolutely and locally
uniformly for all s € C. 1t thus defines a holomorphic function on C, and we
find that 1
Res._o F(2)z "' = — H( — k).
2mi
Now substitute z > —z, or more precisely, apply the biholomorphic
transformation
g: X — X, (x.a)r— (—x,0—7).

Since zo @ = ~z and

! c@)x.a) = 1 Wexo — ) = 5= log x| +iw im)

— e ke,

fF(-z)z“" =

Cr

we obtain

H(s)=—c"

where the path C, = ¢~ 0 (—C,) follows the half-line from oo to &, then the
circumference K, in negative dircction from ¢ to &, and finally the half-line
from & to o0, The function

2, R
W

n=l

has a simple pole at z = 0 so that, for Re(s) > 1, (1.9) yields

H{sy= —r"'”‘/G(z)z" 'dz
s
o ; % u
cdr
= —(™ — a"’”)/G(I)I‘(TI =2 SinT[S/G(I)f"T-
[ [}

The integral on the right will now be related to the zeta function. In the
gamma integral

H /s dt
)= (’ITv

a
we substitute ¢ > nz and get

17 .
o~ :/ﬂ mI\dT_

n¥
0



§ 1. The Riemann Zeta Function 431

Summing this over all n € N yields

Fooa
e = / Gon sl
I3

The interchange of summation and integration is again justified becausc

7 d
>, t
S e 2 <o
n=1 4
0
From this and (1.2), 2), we get
2
H(s) = =2isinwsl(s)¢(s) = F(l [(\)
Since both sides arc holomorphic on all of C, this holds for all 5 € C. Putting
s =1 —k we obtain, since I"(k) = (k — 1)!,
40

e 1
Res:—q F(2)z* ':EH(I~/<):—W- qed. O

Applying the functional equation (1.7) for £(s) and observing that
I'(2k) = (2k — 1)!, the preccding theorem gives the following corollary,
which gocs back to Evier

(110} Corollary. The values of {(s) at the positive even integers s = 2k,
k=1,2,3,..., are given by
o1 2%

L(2k) = (=1) 2001

Bog.

The values ¢(2k — 1), k > 1. at the positive odd integers have been
clucidated only recently. Surprisingly enough, it is the higher K -groups
Ki(Z) from algebraic K -theory, which take the lead. In fact, one has a
mystcrious canonical isomorphism

r: KM,.(Z)@]R — R.

The image Ry of a nonzero element in Ky ((Z) ®7 @ is called the 2k-th
regulator. It is well-determined up to a rational factor, i.e., it is an element
of R*/Q*, and one has

£(2k — 1) = Ry mod Q7.
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This discovery of the Swiss mathematician Agmanp Borri. has had a
tremendous influence on further arithmetical research, and has opened up
deep insights into the arithmetic nature of zeta functions and L -series of the
most general kind. These insights are summarized within the comprehensive
Beilinson conjecture (see [117]). In the meantime, the mathematicians
Spencer Brocw and Kazuva Kato have found a complete description of the
special zeta values £(2k — 1) (i.c., not just a description mod G*) via a new
theory of the Tamagawa measure.

The zeroes of the Riemann zeta function command special atiention.
Euler’s identity (1.1) shows that one has ¢ (s} # O for Re(s) > 1. The gamma
function I"(s) is nowhere 0 and has simplc poles at s = 0. — 1. =2, ... The
functional equation Z{s} = Z(1 — s}, i.c.,

70 /g(s) = n TR (( - 9)/2) 0 =),

therefore shows that the only zeroes of £(s) in the domain Re(s) < 0 arc
the poles of I'(s/2), i.c., the arguments s = =2, —4, — 6, ... These arc
called the trivial zeroes of ¢(s). Other zerocs have to lie in the critical strip
0 < Re(s) < 1, since £(s) # O for Re{s) > 1. They are the subject of the
famous, still unproven

Riemann Hypothesis: The non-trivial zeroes of Z(s) lic on the line
Re(s) = 4.

This conjecture has been verified for 150 million zeroes. It has immediate
consequences [or the problem of the distribution of prime numbers within all
the natural numbers. The distribution function

(x) = #|p prime number < x}
may be written, according to Riemanwy, as the series

m(x) = R{x) — 3 R(xP),
»
wherc p varies over all the zcroes of £(s), and R(x) is the function

x 1 (log x)”
Ry=1+3% —— .
0 +n:1 agn+ 1 nt

On a microscopic scule, the function 7(x) is a step-function with a highly
irregular behaviour. But on a large scale it is its astounding smoothness
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which poscs one of the biggest mysteries in mathematics:

6000
m(x)
5000
4000
3000

2000

1000

10000 20000 30000 40000 50000

On this matter, we urge the reader to consult the essay [142) by Dow Zacier

Exercise 1. Let «.» be positive real numbers. Then the Mellin transforms of the
functions f(y) and g(y} = [ (ay") satisty:

L(f.s/b) = ba""Lig,s).
Exercise 2. The Bernoulli polynomials 8,(x) arc defined by

1ot

2 &
=FOe" =3 Bilo) -
=1 k1

o —

so that B, = B,(0), Show that
Buxy =3 ()8
=
Exercise 3. B, (x) — Be(x — 1) = kx* 1.
Exercise 4. For the power sum
selmy= 15426 430 g g
one has \
si{n) = m(lfm(n) = By (0).

Exercise 5. Let () = (2:) = X, ¢*7"". Then far al marices v = (¢ )

in the group

e ={(¢ Z) € 5L(2)| ¢ =0 mod 4]



434 Chapter V11. Zeta Functions and L-series

one has the formula

aztby L
v((_zﬂl) =9, zeH.
where -
jro = (5)ert e + '

The Legendre symbol ((‘7) and the constant &4 are defincd by
X 7(“‘7‘) ife<0.d <0,
) () omervise.

1, ifd=1mod4,
&4 = .
Z1i, itd=3mod4.

Jacobi’s theta function #(z) is thus an cxample of 2 modular form of weight
for the group [3(4). The represcntation of L-seties as Mellin transforms of modular
forms, which we have introduced in the case of the Riemann zeta function, is one
of the basic and seminal principles of current number-theoretic research (see [106]).

§ 2. Dirichlet L-series

The most immediate relatives of the Riemann zeta function are the
Dirichlet L-scrics. They are defined as follows. Let m be a natural number.
A Dirichlet character mod m is by definition a character

¥ (Z/mL) — §'=|zeC]|z|=1}.
It is called primitive if it does not arise as the composile
(@ mIy — (Tm'T) > §!

of a Dirichlet character x’ mod m’ for any proper divisor a1'|m. In the gencral
case, the ged of all such divisors is called the conductor f of x. So x is
always induced from a primitive character x* mod f. Given x. we define
the multiplicative function x : Z = C by
x(nmod m) for (r.m) =1,
xtn) =
0 for (n.m) # 1.

The trivial character x° mod m, x°(n) = [ for (n,m) = |, x"(n) = 0 for
(n.m) # |, plays u special role. When read mod 1, we denote it by x = L.
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It is also called the principal character. Considering it in the theory to be
developed now has the effect of subsuming here everything we have done in
the last scction. For a Dirichlet character x, we form the Dirichlet L-series
T xm

Lix.5) =2 .

s
=t M

where s is a complex variable with Re(s) > L. In particular, for the principat
character x = 1, we get back the Riemann zeta function ¢ (). All the results
obtained for this special function in the last section can be transferred to
the general £.-series L{x.s) using the same methods. This is the task of the
present section.

(2.1) Proposition. The series L(x, s) converges absolutely and uniformly in
the domain Re(s) > 148, for any 8 > 0. It therefore represents an analytic
function on the half-planc Re(s) > 1. We have Euler’s identity

1
Lixsy=[—7r"—
x Ulfxal)[”\

In view of the multiplicativity of x and since |x(n)| < I. the proof is
literally the same as for the Ricmann zeta function. Since, moreover, we will
have (o give it again in a more general situation in §8 below (see (8.1)), we
may omit it here.

Like the Riemann zeta function, Dirichlet L-series also admit an analytic
continuation to the whole complex plane (with a pole at s = 1 in the case
x = x", and they satisfy a functional equation which relates the argument s
to the argument | — . This particularly important property does in fact hold
in a larger class of L-series, the Hecke L-series, the treatment of which
is an essential goal of this chapter. In order to provide some preliminary
orientation, the proof of the functional equation will be given here in the
special case of the above I-series L(y,s). We recommend it for careful
study, also comparing it with the preceding section.

The proof again hinges on an integral representation of the [unction
L(x.s) which has the effect of realizing it as the Mellin transform of a
theta serics. We do. however, have to distinguish now between even and odd
Dirichlet characters x mod m. This phenomenon will become increasingly
important when we generalize further. We define the exponent p € {0, 1}
of x by

X(=1) = (=D"y).

x(tm) = x(n)(i)p

711

Then the rule



436 Chapter VII. Zeta Functions and L-series

defines a multiplicative function on the semigroup of all ideals (n) which are
relatively prime to m. This function is called a Grifencharakier mod .
These Grofiencharaktere are capable of substantial generalization and will
play the leading part when we consider higher algebraic number fields
(see §7).

We now consider the gamma intcgral

o

K . dy

Fixs) = r("*'T”) :/e—)ymﬂn/zjv.
i

Substituting y +> mn2y/m, we obtain

my 5 1 T Iy
(7) T s — :/’”,,(,mﬂy/mvmm/z;.
T n¥ i ¥
0 .
We multiply this by x (7). sum over all » € N, and get
wip o a4
= g 2y 2 3
) (ﬂ) T P L) :/ 3 x(mafe ™ s/ s 1)/ Y.
ko g = ¥y

Here, swapping the order of summation and integration is again justified,
because

o

i ‘X(n)n"("””:vm V(Hm/q & ’
a=1d ’ ’
m\Re+P)/2_ Re(s) + p ¢
=(3) (T Je(e) <o

The scries under the integral (%),
% 5
gy =3 x(mnle T,
n=1
arises from the theta series

0(x,2) = Z X(”)np(,xm?:/u(
nek

wherc we adopt the convention that 0° = 1 in case # = 0, p = 0. Indeed,
X (ma? = x(—n)(—n)” implies that

x
B = x®+23 X(”)np(,:rmz:/m»
n=|
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so that g(y) = 1(0(x,iy) — x(0) with x(0) = I, if x is the trivial
character 1, and )“((0) = 0 otherwise. When m = 1, this is Jacobi’s theta
function .
0(z) = 3 i
ncZ
which is associaled with Riemann’s zeta function as we saw in § 1. We view

the factor
ANES
Latrst= (2) Fn
in (%) as the “BEuler factor™ at the infinite prime. It joins with the Euler factors
Lp(s) = 1/{1 = x(p)p~*) of the product representation (2.1) of L(x.s) to
define the completed L-series of the character x:

Alx,8) =Loe(x.9L(x,5), Re(s) > 1.

For this function (%) gives us the

(2.2) Proposition. The function A(x.s) admits the integral representation
H '
¢ . 2 4y
Alx.s) = % /(f}(x.m - X(o))ymm-‘T.
o :

where c(x) = (%)”/2,

Let us emphasize the fact that the summation in the L-series is only over
the natural numbers, whereas in the theta scries we sum over a/f integers.
This is why the factor #” had 1o be included in order to link the L -scrics 1o
the theta series.

‘We want to apply the Mellin principle to the above integral representation.
So we have to show that the theta series #(x,iy) satisties a transformation
formuta as assumed in theorem (1.4). To do this, we usc the following

(2.3) Proposition. Let ., b, it be real numbers, p > 0. Then the serics

O la.b.zy= 3

acq

itatg)Pot2mibg

converges absolutely and uniformly in the domain Im(z) > §, forevery 8 = 0.
and for z € H, one has the transformation formufa

Oula,h, ~ 1)y = ¢ idb Orjpl—b,a.2).
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This proposition will be proved in § 3 in much greater generality (see (3.6)),
so we take it for granted here. The series 6, (a,b,z) is locally uniformly
convergent in the variables a, #. This will also be shown in § 3. Differentiating
p times (p =0, 1) in the variable a, we obtain the function

. 2z +2miby
07 b,zy = Zm(a+g)pgvrlt/+gl +2mibg
wen?

More precisely, we have

dr .
mﬁu(u. h,z) = (2711)”:”9)’[((1, b.2)

and

dr o amia
€ PG,y (—b,a, ) = Qi) e Y], (—b.a.).

Applying the differentiation d”/da?” (o the transformation tormula (2.3), we
get the

(24) Corollary. For a. b, p € R, yu > 0, one has the transformation
formula

0fa.b, — 172y = [i? e u] " 2/i)? 260 (~b.a,2).

This corollary gives us the required transformation formula for the theta
series #(x. «), if we introduce the Gauss sums which are defined as follows,

(2.5) Definition. For n € Z, the Gauss sum t(x,n) associated o the
Dirichlet character x mod m is defined to be the complex number

el .
e = X ()T,

v={)

Forn =1, we write t{x) = t(x. 1).

(2.6) Proposition. For a primitive Dirichlet character x mod m, onc has

T(x.my=Xmt(x) and |t(x)|=m.
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Proof: The lirst identity in the case (n.m) = 1 follows from x(va) =
x () x(v). When d = (n,m) # 1, both sides are zero. Indeed, since x
is primitive, we may in this case choose an ¢ = 1 mod m/d such that
a # 1 mod mand x{a) # 1. Multiplying t(x,#) by x(a) and observing that
ermivan/m — Q2N gives y(a)T(x.n) = T(x,n), so that T(x.n) = 0.
Further, we have

, - -1 N =1 )
TGO =t0T00 =100 X X (wye M =3 r(x, v)e Fm
v=0 v=0

:'"Z'"'Z" o) 2Rl g=2mivim _ Z 20 Z v im
V=0 =0 o)
The last sum equals m for u = 1. For & # 1, it vanishes becausc then
& = 2™ =D/ s an m-th root of unity # 1, hence a root of the polynomial
X"
X -1

=Xt X4

Therefore 17(x)[2 = mx (1) = m. H
‘We now obtain the following result for the theta series 6(x, z) .

{2.7) Proposition. If x is a primitive Dirichlet character mod m, then we
have the transformation formula

0(x, = 1/2) = /P ROGT. o).

)
i”ym
where x Is the complex conjugate character to x, i.e., its inverse.

Proof: We split up the series 6(x,z) according to the classes @ mod a1,
a=0,1,...,m— 1, and obtain

Olx.2) = Z x(mn? " afm Z xt@) ¥ (qug)p(,m(uml I

gem

hence

m—1

=Y x(@éf(a,0.z/m).
w=0

By (2.4), onc has

0@, 0, = 1/mz) =

z/ ! TH‘/W((L(I,”IZ).
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and this gives

I/W(O amzy= Y gnemglmzﬂnnm - L]Y (,Zm(mmt”/z an?;/m_
gedn M et

Multiplying this by x{a). then summing over «. and observing that

T(x.n) = X (1)1 ()), we find:

1 n 1 »
B0 —1/2) = o $ = X(a)e,’/,,,(o.u.m;)

= mz/i n+; ( a]()27m/:,m)"/v Jintzim
[I"nl”’l X

_ H)f( 70 Z FinynP erinim
_ o . R
= ’,,f( /TR 2). o

The analytic continuation and functional equation for the function A(x.s)
now falls out immediately. We may restrict ourselves to the casc of a
primitive character mod m. For x is always induced by a primitive character
x' mod £, where f is the conductor of x (see p.434), and we clearly have

Lix,s) = TT{1=x(mp)LX'.5)
I,:l”;

so that the analytic continuation and functional equation of A(x,s) follows
from the one for A(x’, s). We may further exclude the case m = 1 (this is not
really necessary. just to make lifc casy), this being the case of the Riemann
zcta function which was settled in § 1. The poles in this case are different.

(2.8) Theorem. If x is a nontrivial primitive Dirichlet character. then the
completed L-series A(x.s) admits an analytic continuation to the whote

complex planc T and satisfies the functional equation

Alx.$) =W0OOAF —5)

T(x)
irym’

with the factor W(x) = This factor has absolute value 1.
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Proof: Let f(y) = “©g(x,iy) and g = “TX’H(X:’)’), c(x) = (%)’7/2.
We have x{(0) = x(0) = 0, so that

X, 2y
0(x,iv) =2 Z X{mnP e T
n=1

and therefore f(y) = Qe ™/™), and likewisc g() = O(e™¥my,
By (2.2}, onc has
:x;
AGx,s) = Lz")fe(x,iy)y”
0
We therefore obtain A(x.s) and similarly also A(¥.s) as Mellin transforms
AQcs) =L(f.s) and  A(F.$) = L{g,s)
s+p
2

p dy
v

of the functions f(y) and g(y) at the point 5" = . The transformation
formula (2.7) gives
v o(x) COOTOO pil,s ()

,:* - LRy (Rliy) = P t3 a(y) .
H(5)=500 ~1/in = 2 e YOG = I )
Theorem (I.4) therefore tells us that A(x, s) admits an analytic continnation
to ail of C and that the equation
Alxs) = L(F ) = WOOL(g, p+ 4 — S2) = WOOL (g, 252)

=Wx)AX,1-5)

X

holds with W (x) = e

By (2.6), we have {W(x)| = 1. a

The behaviour of the special values at integer arguments of the Riemann
zeta function generalizes to the Dirichlet L-series L(x, s) if we introduce, for
nontrivial primitive Dirichlet characters x mod m, the generalized Bernoulli
numbers By , defined by the formula

m fedt o 1k
Folty= ) ——— =3 By, —-
1 (1) u; X )(‘m, _— ‘g(‘ kX T
These are algebraic numbers which lie in the field Q(x) generated by the
values of x. Since
1 elm—adt

Fy(=t) = ZX(*UX(W—G) T = X(=DFO.

et

we find (—1)* By, = x(=1)Bs.y, so that
Biy=0 for k+#p mod?2,
it p e {0, 1} is defined by x(—1) = (= )P x(1}.
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(2.9) Theorem. For any integer k > 1, one has

B,
LG 1 —hy= -2k

Proof: The proof is the same as for the Riemann zeta function (see (1.8)):
the meromorphic function

POESWIOE :k‘zBﬁ,,f
et - 1

has poles at most at z = 2%" v € Z. The claim therefore reduces to showing
that

_Lii=h
k)

Multiplying the cquation

)

= residue of Fl(:)z"‘" atz =0.

o

1 t
re— :/e'"’z‘i
n* t

o

by x(n), and summing over all n, yields

7 d
2) F(A‘)L(X..V):/GK(!}t\Tl
o

with the function

az

x o Ut _
B) Gyl =Y xme™ = 3 x(@) 7= = Fy(-2)z7".

fomt} a1 I—em
From the equations {2) and (3) one deduces equation (1) in exactly the same
manner as in (1.8).

The theorem immediaicly gives that
L(x. 1 —k}y=0 for k% pmod2,
p € (0.1} x(=1) = (=1)?x(1), provided that x is not the principal
character 1. From the functional equation (2.8) and the fact that L{x.k) # 0,
we deduce for & > | that
By _
L()pl-k):*T #0 for k=pmod2.

The functional equation also gives the
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{2.10) Corollary. Fork = p mod 2, k > [, one has

()

Lk = (e TR
’ m k!

2ir

For the values L(x.k) at positive integer arguments k& $ p mod 2,
similar remarks apply as the ones we made in § 1 about the Riemann zeta
function at the points 2k. Up to unknown algebraic factors, these values are
certain “regulators” defined via canonical maps from higher K -groups into
Minkowski space. A detailed treatment of this deep result of the Russian
mathematician A.A. Briivson can be found in [110].

tad a0
, X(u)ij,,j. The Bernoulli polynomials B, , (x)
ter x are defined by

Exercise L Let F,(f,x) =3
asssociated to the Dirichlet ch

x &
F,i,x) =3 B, O
= 1
Thus B ,(0) = B;_ . Show that

.
Bey() =3 ())Bx'™
;

i
Exercise 2. B, ,(x) — B, (x —m)=k > xla)a+x—m} ' k=0
Fxercise 3. For the numbers §; ,(v) = ¥_, x(@)a*, k = 0, one has
i
Si. vy = m(lﬁw.,(wl) = By (00
Exercise 4. l‘or a primitive odd character x, one has

3 x(@a #0.
=

§ 3. Theta Series

Riemann’s zeta function and Dirichlet’s L-series are attached to the
field @. They have analogues for any algebraic number field K, and the
results obtained in § 1 and 2 extend to these generalizations in the same way,
with the same methods. In particular, the Mellin principle applics again,
which allows us to view the L-series in question as integrals over theta
series. But now higher dimensional theta series are required which live on
a higher dimensional analogue of the upper half-plane H. A priori they do
not have any relation with number fields and deserve to be introduced in
complete generality.
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The familiar objects C, R, R%, H. | |, log, find their higher dimensional
analogues as follows. Let X be a tinite G(C[R)-sel, i.e.. a finite set with an
involution 7 + T (r € X), and let n = #X. We consider the r-dimensional
C-algebra

c=1]]C
reX

of all tuples z (Zedrex. z¢ € €, with componeniwise addition and
multiplication. If z = (z) € C, then the element Z € C is defined to have
the following components:

@)e

We call the involution z > 7 the conjugation on C. In addition, we have
the involutions z > z* and z — ™z given by

Iy, resp.
*z*. The set

R:[]:[cr:‘zech:g}

One clearly ha:

forms an n-dimensional commutative R-algebra, and C = R @z C.

If K is a number fickd of degree # and X = Hom(K,C), then R is the
Minkowski space Ki (= K Qg 1R) which was introduced in chapter I, §5.
The number-theoretic applications will occur there. But for (he moment we
leave all number-theoretic aspects aside.

For the additive. resp. multiplicative, group €. resp. C*, we have the
homomorphism

Tr:C—>C. Trz) =37, Tresp.
T

N.C* = C* N@) =1z
T
Here Tr(2), resp. N(z), denotes the trace, resp. the dcterminant, of the
endomorphism C — C, x > zx. Furthermore we have on C the hermitian
scalar product
(3 = SaeFe = Ty
T

It is invariant under conjugation, {(x.y) = (¥.¥}, and restricting it yiclds
a scalar product { . ). ie., a euclidean metric, on the R-veetor space R.
if z € C, then *z is the adjoint element with respect to { . }, i.e.,
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In R, we consider the subspace
Ry={reR|x=x}=[]IR]".
b
Thus we find for the components of x = (x;) € Ry that x7 = x; € R.

If § € R, we simply write x > § to signily that x; > § for all 7. The
multiplicative group

Ri={reRy|x=>0} :[l_[lR{jr]Jr
T
will play a particularly important part. H consists of the tuples x = (x;)

of positive real numbers x, such that x7 = x., and it occurs in the two
homomorphisms

IR — R, ¥ =) Ixl = (),
log : RY —> Ry, ¥ = (x) —> logx = (logx;}.
We finally define the upper half-space associated to the G(C|R)-sct X by
H=R, +iR}.

Putting Re(z) = (2 + 2). In(2) = 2 (z — 7), we may also write
2 2 2%

H={:eC|:

*, Im(z) > 0].

If z lies in H, then so does —1/z, because zz € R7, and Im(z) > 0 impties
Im(—1/z) > 0, since zZ Im(—1/z) = — Im( }=1m(z) > 0.
For two tuples z = (z;), p = (p;) € C, the power
=@ eC
is well-defined by
2Pr = pPrloesc
24 .
if we agree to take the principal branch of the logarithm and assume that
the z; move only in the planc cut along the negative real axis. The table
HCC2R=R 2R}, | |: R >R}, log: Ry SR,
HCSC2R2R: 2R, ||:R >R, log: R — Ry,
shows the analogy of the notions introduced with the familiar ones in the
cuse n = 1. We recommend that the reader memorize them well, for they

will be used constantly in what foltows without special cross-reference. This
also includes the notation

E 2Nz T, N (L) x> 8, 2l
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The functional equations we are envisaging originate in a general formula
from functional analysis, the Poisson summation formula. Tt will be proved
first. A Schwartz function (or rapidly decreasing function) on a euclidean
vector space R is by definition a C™-function f : R — C which tends to
zero as x — 00, even if multiplied by an arbitrary power |x{”, m = 0,
and which shares this behaviour with all its derivatives. For every Schwartz
function f, one forms the Fourier transform

For= [ reoe=sax,
R

where dx is the Haar measure on R associated to { , ) which ascribes
the volume 1 1o the cube spanned by an orthonormal basis, i.e.. it is the
Haar measure which is selfdual with respect to { . }. The improper intcgral
converges absolutely and uniformly and gives again a Schwartz function f.
This is easily proved by elementary analytical techniques; we refer also
to [98], chap. XIV. The prototype of a Schwartz function is the function

h(x) = e

All functional equations we are going to prove depend, in the final analysis,
on the special property of this function of being its own Fourier transform:

(3.1) Proposition. (i) The function h(x) = ¢~"%) is its own Fourier
transform.

(ii) If f is an arbitrary Schwartz function and A is a lincar transformation
of R, then the function f4(x) = f{Ax) has Fourier transform

1

F vy — Feia-ly
fA(})—ldelA‘f(/‘ -

where ‘A is the adjoint transformation of A,

Proof: (i) We identify the euclidcan vector space R with R" via some
isometry. Then the Haar measure dx turns into the Lebesgue measurc

dxy -+~ dxy. Since h(x) =[]/, e ™™, we have it = [, (e 7Y, s0 we
may assume n = 1. Differentiating
s
l?(y):/ By e 2T gy

-0
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in y under the integral, we find by partial intcgration that
P oo
tT}Al(y) = —2x;i / xh{x)e Y gy = —ZHyZ(y).
¥

—o

This implies that Z(y) = C e~ for some constant C. Putting y = 0 yields
C =1, since it is well-known that f e"”zdx =1

(ii) Substituting x +> Ax gives the Fourier transform of f4(x) as:
ﬁ\(y):/f(Ax)e’z"'“v”dx:/f<x>ﬁ""\""*>”|detAr‘dx

i N o,
— ey [ roe A s = fea. O

From the proposition ensues the following result, which will be crucial
for the sequel.

(3.2) Poisson Summation Formula. Ler I" be a complete lattice in R and
let
I'={g eR|(g.g)eZforallger}

be the lattice dual to I'. Then for any Schwartz function [, one has:

Y@= Z Fleh,
gel

vul(F)

where vol{I7) Is the volume of a fundamental mesh of T.

Proof: We identify as before R with the euclidean vector space R” via some
isometry. This turns the measure «x into the Lebesgue measure dx, - - - dx,.
Let A be an invertible 1 x #-matrix which maps the lattice Z" onto 7. Hence
l' = AZ" and vol(I") = \det Al. The lattice 7" is dual to itself, and we get
= A*Z" where A* =4 ', as
gel — "(An)g =Ag' e Z forallneZ”
= U el =g e 'z,

Substituting the equations

- 1 -
— A t Ak — f () = ty
F=AZ", T'=ATZ", falxy=f(AY), fa()= PSTIR S(A™Y)
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into the identity we want 1o prove, gives

T fam = T Faw.

In order to prove this, let us write f instead of f4 and take the series
g =3 flr+ky.
keZ!
It converges absolutely and locally uniformly. For since f is a Schwartz
function. we have, if x varies in a compact domain,
[fac+mf k™ <C
for almost all k € Z". Hence g(x) is majorized by a constant multiple of
the convergent serics > .o TR This argument works just as well for all
partial derivatives of f. So g(x) is a C*-function. [t is clearly periodic,
glx+n)=glx) foral neZ”,
and therefore admits a Fourier cxpansion

gl = Z tn i
ne!

whose Fourier coefficients are given by the well-known formula
| 1

4
2 gy dxy,.

Un = /--fx(x)é”
4] o

Swapping summation and integration gives

[ [
an = f . / )T e = 3 / For R gy
0

[t o kezt 4]
= f(n).
It follows that
Y fm=g®=Y a= Y fim. ged i
neZt ne#t ned’

We apply the Poisson summation formula to the functions
Folah,x) = N((X+H)p) TR Ak 2y

with the parameters a, b € R and a tuple p = (p;) of nonnegative integers,
such that p; € {0,1} if T = T, and p,pz = 0 if 7 # 7. Such an clement
p € 1, Z will heneeforth be called admissible.
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(3.3) Proposition. The function f(x) = f,(a.b.x) is a Schwartz function
on R. Its Fourier transform is

Ty = [I-Tr(/))(,z,'u(u.h)]' Fol=b.a,y).

Proof: It is clear that fj,(a.b, x) is a Schwartz function, because

| fota. b 0| =P

TR

for some polynomial P(x).

Let p = 0. By (3.1), the function ~(x) = ¢ 7" equals its own Fourier
transform and one has

FLO = fola,box) = hi(a + x) 00

We therefore obtain

o :/h(a+ 2Ty 2T g
®

:f/1(”[1::,(‘-47.\7/,) dx
R

- (,Zm{v—h.tl?;(y Y

o2t by = ly—b. y=hl42mi 1y )

¢

— o TN L pg .
For an arbitrary admis
the identity

ible p, we get the formula by differentiating p times

() Fotab.y) = e T fy—b.a, )

in the variable «. Now the functions are neither analytic in the individual
componenls @, of @, nor are these independent of cach other, when there
exists a couple T # 7. We therefore proceed as follows. Let p vary over
the elements of X such that p = 5, and let o run through a system of
representatives of the conjugation classes {r, T} such that T # T. Since
prpr = 0. we may choose & in such a way that pz = 0. Then one has

{la+x.a+x)=Ya, +x,)° +23 (s + 56 )az +45).
7 5

We now differentiate p, times both sides of (x) in the real variable «,, for
all p, and apply p, times the differential operator

RV )
KRR
bay  2\0&  omz
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for all 0. Here we consider a7 = & + inz as a function in the real variables
&5, sz (“Wirtinger calculus™). On the lefi-hand side

ﬁ,(u,h._v) - / e Tlaty.al \)+27u(h,H(,er‘U(Y‘\”rd/\,.

we may differentiate under the integral. Then, observing that p; = 0 and

i((a{7 + Xo )5 + X5)) = (¢s + X5), WC Oblain

/ TH{(—27(a, + X)) Pr
)

L= (atg + x)) 70 e a2 B g
>
= N((=2m)") /N((“er)p)[ Rk a2, 2 v g

=N((=2m)") fp(a,b,y).
The right-hand side of (%),
2T D =TI 5 bR Y) L gZmila —byimm (=bty. b1y
in view of

(@ —b+y) =3 ap(=hy +yp) + X(aa(~bz + y5) + ag(=be + ,)).
o 3

and as pz = 0, becomes accordingly
N{@ri)PYN{(=b+ )P} e 1D f b a3
= N(Qri)P) 4P £ gy,

Hence "
Folab,y)=Ni=Pye g (pa y). 0

We now create our general theta series on the upper half-space

H={zeC|z=2"Im(z) >0} =Ry +/iR}.

(3.4) Definition. For every complete lattice I of R, we define the theta
series
Or(zy= 3 e™W& ;e H.
gel’
More generally, for a. b € R and any admissible p € ], Z, we put

6(a,b,z) = Y N((a + g)P) emieremutganithg)
gel



§3. Theta Scrics 451

(3.5) Proposition. The series 8](a, b. z) converges absolutely and uniformly
on cvery compact subset of R x R x H.

Proof: Let § € R, § > 0. For all z € H such that Im(z) > §, we find
| NGa +g)p)(,m‘(uw):.wo42m(/>.g,‘ < |N((@ + )| e-moitsats)

Let
fela) = N{{a + g)?) e ™Hietsats) (@eR.gel).

For K C R compact, put | f, |k = sup | fy{x)|. We have to show that
ek

L [ felk < 00.

gel
Let g1.....g; be a Z-basis of I, and for g = >7 myg; € I'. let
1y = max |m;|. Furthermore, define [lx|| = /{x, x). If |gll = 4sup x|},

i ek
then for all ¢ € K:
2
@+ga+g = (lal—lgl)” = lgl® - 2lal - ligl

= gl =
,sz Z3

where £ = _inf > j=148i. g7 yi vy is the smallest eigenvalue of the matrix
£¥i=1 )

({gi gi)-
N({a+ Y migi) is a polynomial of degree g in the m;, (¢ = Tr(p)),
the coefficients of which are continuous functions of a. Tt follows that
[N(a+g)")| < ud*' foralla e K,

provided i, is sufficiently big. One therefore finds a subset I C I with
finite complement such that

X z 2
T lfelk £ X Popdtt e B
eel™ n=0

where P(p) = #{m eZ" 1 max |m;| = u} =2u+ 1" —2u— D" The
i

series on the right is clearly convergent. O

From the Poisson summation formula we now get the general
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(3.6) Theta Transformation Formula. One has

OF (@ b, — 1/2) = [i7P 19 Pyol(7)] T N (/D72 ) 07 (=b.a. ).

In particular. one has for the function 0;-(z) = Hj’v (0.0,z2):

NGTT
Or(=1/z) = ﬁ Or(2).

F: Both sides of the transformation formula are holomorphic in z
Therefore it suffices to check the identity for z = iy, with y € RY.
. 50 that

and  — 1/z =i,

Ll =

z=7
Observing that ¢+ = t* =*1, so that (§t, n) = (§.%n) = (&, tn), we obtain
(?"(a b~ 1) =NG Y N((erIg)p) o Hakg tat )2t gy
gl

Let @ = ta, = t~'h. We consider the function
f,,(Dt,ﬁ» xX) = N((a + Y)p) ‘,7rr((x+\,(¥+ﬂ+2f{hﬂ.\r‘

and put
prla, Box) = fpla B.tx).
This gives
0 8l (a.b. — /D)= NGUT)Y gila B.g)
gel
and similarly z = i gives that
) Gﬁ,(—b,a.:) =NG") ¥ g-i(=B.ag)
gl

Now apply the Poisson summation formula

3 fle)= Fleh
E; ](F ) el
to the function
f@)y =g p.x) = fpla.B,1x).
Its Fouricr transform is computed as follows. Let f(x) = f,(a. B.x), so that
f(x) = hltx} = h(x). The transformation A : x > rx of R is self-adjoint
and has determinant N (#). Thus (3.1), (ii), gives

= ,
/‘())—N(t)/l(t ¥
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The Fourier transform & has been computed in (3.3). This yields
For = [NGON OS] (g )
= [NV P g (e ).
Substituting this into (3) and multiplying by N(t~") gives, by (1) and (2):
02a.b. ~ 1/2) = [N &THPyol ()] 7 00 (—b,a. 2).

Since t = (z/)""2, ie., @21y | = (z/f)“%, this is indeed the transfor-
mation formula sought. O
For n = 1, we obtain proposition (2.3), which at the time was used

without proof [or proving the functional equation of the Dirichlet L -series
(and Riemann’s zeta function).

§ 4. The Higher-dimensional Gamma Function
The passage from theta series to L-series in § | and §2 was afforded by

the gamma function
P
—
I'(s) :/e"y"—-
0 ’

In order to generalize this process, we now introduce a higher-dimensional
gamma function for every finite G(C|R)-sct X, building upon the notation of
the last section. First we fix a Haar measure on the multiplicative group R% :

Let p = {r. 7} be the conjugation classes in X. We call p real or complex,
depending whether #p = | or #p = 2. We then have

R, =T[R},.
»

where
Ry, =R}, resp. Ri, = [ RY x R;]Jr ={t» |ye R},
‘We define isomorphisms

R, — kY
by ¥y = vy, resp. (y.y) = yz, and obtain an isomorphism

¢ R, —TIR;.
P
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We now denote by ’ the Haar measure on R% which corresponds to the
product measure !

l_[ 1

b
where % is the usual Haar measure on R, The Haar measure thus defined
is called the canonical measure on R7. Under the logarithm

log : R* —= Ry»
it is mapped to the Haar measure dx on Ry which under the isomorphism
Ry =[]Rsy % [IR.
» v

Xp P> Xp, Tesp. (Xp,xp) > 2xp, corresponds to the Lebesgue measure
on [T, R.

(4.1) Definition. For s = (s;) € C such that Re(s;) > 0, we definc the
gamma function associated to the G(C|R)-set X by

_ dy
[‘X(s):/N(e Ea
Ry

The integrand is well-defined, according to our conventions from p. 445,
and the convergence of the integral can be reduced to the case of the ordinary
gamma function as follows.

(4.2) Proposition. Dccomposing the G(C|R)-set X into its conjugation
classes p, one has
x(s) =TT 5(sp).
v

where s, = s; for p = {1}, resp. sy = (s¢,57) forp = {r,T}. 1 # 7. The
factors are given explicitly by

I (sp), if'p real,

Do) =1 it
2171 P (Tr(sy)).  if p complex,

where Tr(sp) = §; + 57.
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Proof: The first statement is clear in view of the product decomposition

(ki) = (0K, 11 52).

The second is relative to a G(C|R)-set X which has only one conjugation
class. If #X = 1, then trivially I'x(s) = I'(s). So let X = (1,7}, T # T.
Mapping

YR —RY, s (VL VE)L

one then gets

/N(e"‘y‘)% :/N({,—«fr.ﬁ)(\ﬁ.ﬁ)‘»&m;))?
R’y .
x

(},zﬁ\ﬁnmﬂ'
'

0

and, since d(1/2)?/(¢/2)* = 2dt /1, the substitution ¢ > (t/2)? yields
dy

N{eTy) == =217 P (Tr(s)) O

Ry

The proposition shows that the gamma integral I°(s) converges for
s = (s;) with Re(s;) > 0, and admits an analytic continuation to all of C,
except for poles at points dictated in the obvious way by the ordinary gamma
{unction I (s).

We call the function
Lx(8) = NG~ Ix(s/2)

the L-function of the G(C}R)-set X. Decomposing X into the conjugation
classes p, yields
Lx(s) =[] Lp(sp).
»

where as before we write s, = s, forp = {r}and s, = (s;.57) forp = (7.7},
T # T. The factors L,(s,) arc given explicitly, by (4.2), as

T (8/2), if p real,

Lp(sp) = e .
2027y PO P (Tr(s,)/2), i p complex.

For a single complex variable s € C, we put

Ix(s)y = Iy(shy,
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where 1 = (1, .... 1) is the unit element of C. Denoting r,. resp. r,, the
number of real, resp. complex. conjugation classes of X, we find

Tx(s) =272 ()1 128y,
In the same way we put
Lx(s)=Lx(s1)=n"""Tx(s/2), n=#X,

and in particular

Lu) =Ly ="l r@/2, i X =(1},

Lo(s) =Ly(s) =2Qm)" I'(s). if X={r.T}, 1#7.
Then we have, for an arbitrary G(C|R)-set X:

Lx(s) = Lals)" Le(s)?.

With this notation, (1.2} implies the
(4.3) Propusition. () Lx(1) =1, Le(D) = £
(1) La(s+2)=s-Le(s), Los+ 1) = 57 Le(s).

(i) Lzx(l =s)Lg(l +5) = Le()le(l —5) =

L
cosms/2’ sinms

(iv) Lg(s)Lm(s + 1) = Ly (s) (Legendre’s duplication formula).

As a consequence we obtain the following functional equation for the
L-tunction Ly (s):

(4.4) Proposition. Ly (s) = A(s)Lx(] — s} with the factor
A(s) = (cos s /2)" 2 (sins /2) 2 L ().

Proof: On the one hand we have
Li(s) Lyg($)Lg(l +5)
L =9 e - 9L+
and on the other
Le(s) Le(s)?
Lel—9  Le(t—siLc®)
=cosns/2 sinws/2 L{j(.v)z.

The proposition thercfore results from the identity Ly (s) = Lg(s) Lo (s)2.

= cosws/2 Lols)

1
= - sinmsL(s)
] sinsLy(s)
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This concludes the purely function-theoretic preparations. They will now
be applied to number theory.

§ 5. The Dedekind Zeta Function

The Riemann zeta function £(s) = 3 ;= | AL is associated with the field @

of rational numbers. It generalizes in the following way to an arbitrary
number ficld K of degree n = [K : Q).

(5.1) Definition. The Dedekind zeta function of the number field K is
defined by the series
1
s)= -
Tk (s) Xu: Nay
where a varics over the integral ideals of K, and M(a) denotes their absofute
norm.

(5.2) Proposition. The series {x (s) converge absolutely and uniformly in
the domain Re(s) = 1 + § for every 8 > 0, and onc has

=
ww =1l —gg=

where p runs through the prime ideals of K .

The proof proceeds in the same way as for the Riemann zeta lunction
(sec (1.1)), becausc the absolute norm 9(a) is multiplicative. We do not
go into it here, because it is the samc argument that also applies to Hecke
L-series, which will be introduced in §8 as a common generalization of
Dirichlet L-series and of the Dedekind zeta function,

Just like the Riemann zeta function. the Dedekind zeta function also
admits an analytic continuation to the complex planc with 1 removed, and
it satisties a functional equation relating the argument s to | — 5. This is
what we are now going to prove. The argument will turn out to be a higher
dimensional generalization of the one used in §1 for the Riemann zeta
function.
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First we split up the series i (s), according to the classes & of the usual
ideal class group Clg = J/P of K, into the partial zeta functions
1
.,;Z_@ Na)

integeal

(R, 8) =

so that
Crisy =2 L(A.s5).
8

The functional equation is then proved for the individual functions (R, s).
The integral ideals in £ are described as follows. If a is a fractional ideal,
then the unit group ©* of @ operates on the set a* = a ~ {0}, and we denote
by a*/o* the set of orbits, i.e., the set of classes of non-zero associated
clements in a.

(5.3) Lemma. Let g be an integral ideal of K and R the class of the ideal
a~'. Then there is a bijection

a*/o* -5 |be & bintegral}, @+ b=qu"".

| —1

Proof: If @ € o*, then ¢o™! = (@)a™' is an integral ideal in K, and if
aa~" = ha~', then (@) = (b), so that ah~' € ©*. This shows the injectivity
of the mapping. But it is surjective as well, since for every integral b € &,
one has b = aa™! withe € ab C a. O

To the G{T|R)-set X = Hom(K, C) corresponds the Minkowski space
K :R:[I:[C]f
The field X' may be embedded into K. Then one finds for ¢ € K* that
NN = [Nxig@)] = [N@)],

where N denotes the norm on R* (see chap.l, §5). The lemma thercfore
yields the

. N 5 .
(5.4) Proposition. {(£,5) = M(a) Ee;‘, W
o jo

By chap. L. (5.2). the ideal g forms a complete lattice in R whose
fundamental mesh has volume

vol(a) = \/dj{
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where dq = 9(a)?|dx | denotes the absolute value of the discriminant of a,
and dy is the discriminant of K. To the series ¢ (&, 5) we associate the theta
series
0(a,2) = B (/dV/™y = 3° l,mu:/d},"”.m.
aca
It is rclated to (R, s5) via the gamma integral associated o the G(C}R)-set
X =Hom(K,Q),

vy 4y
k()= Fx(9) = / Neer 2
R” )
where s € C, Re(x) > 0 (see (4.1)). In the integral, we substitute

v wlal’y/dl"

with | | denoting the map R* — R, (x;) > (|x¢|). We then obtain

_ N(a)» i dy

Sp=as §)— = oy fd @y gy B2

ldx I'n Fk(v)w(aw‘ /< () Y
R

Summing this over a full system R of representatives of a*/0*, yiclds

o - s dy
il e, 20 = [ eowor S
R -

with the series }
=3 oo Tlay/dy "l
acht
Swapping summation and integration is legal, for the same rcason us in the
case of the Riemann zeta function (see p. 422). We view the function

Zocls) = ldi 1P 2T (5/2) = |dk PP Ly (5)

as the “Euler factor at infinity” of the zeta function (£, 5) (see §4, p. 455)
and define
Z(8.5) = Z~($)S(R,5).

The desire to reatize this function as an integral over the theta series €(a, 5) is
frustrated by the fact that in the theta serics we sum over all ¢ € a. whereas
summation in the scrics g(y) is only over a system of representatives of
a*/o". This difficulty — which was already hinted at in the case of the
Ricmann zeta function — will now be overcome in the general casc as
follows.
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The image |0*| of the unit group ©* under the mapping | | : R* — R
is contained in the norm-one hypersurface
S={xeR|Nw)=1}.

Writing every y € R}, in the form

y=x" x=

=N,

N(y)

we obtain a direct decomposition
* B
R: =S x B
Let ¢*x be the unique Haar measure on the multiplicative group 8 such that
the canonical Haar measure dy/y on RY becomes the product meusure

@ d*x x %

We will not need any more explicit description of ¢”x.

We now choose a fundamental domain F for the action of the group
0¥ = {le|?| & € ©*} on S as follows. The logarithm map

log: R} — Ry,  (x) > (logxy).

takes the norm-one hypersurface § to the trace-zero space # = {x € Ry
Tr(x) = 0}, and the group [©*| is taken to a complete lattice G in H
{Dirichlet’s unit theorem). Choose F to be the preimage of an arbitrary
fundamentat mesh of the lattice 2G. Any such choice satisties the

(5.5) Proposition. The function Z(f, 2s) is the Meliin transform
Z(R,25)=L{f.5)
of the function
f(t) = frla,ty = &fﬂ(a.irt"”’)d*x‘

¥

where w = #u(K} denotes the number of roots of unity in K.

Proof: Decomposing R* = 8§ x R, we find

o
g dt

Z(ﬁ,z.\-):[/ 5 et gegp 4
1 aeR t
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with #' = (t/d,)"/". The fundamental domain F cuts up the norm-one
hypersurface S into the disjoint union
S= |J nF.
nefox|
The transformation x > 7°x of 8 leaves the Haar measure d* v invariant and
maps F to nzF, $0 that
T T gy o 3 5 e gy

/ aem ne o7 deR
8 W

1 ,
2 Y et L) g4
WS peoraeh

A
L /(e(a,f,n‘/”) = )dx = f(1) = f(o0).
@

7

Observe here that we have to divide by w = #u(K), bocause (K) is just
the kemel of 0* — |©*| (sec chap. L. (7.1)). hence EM = %Z;- Observe
furthermore that as runs through the sct a* = a ~ {0} exactly once, and

finally that f(oc) = ul/F d*x, as 8(a.ixo0) = |. This result does indeed
show that
x
. L dt
Z(829) = [{f)— Flo))t T:L(f-.\')- 0

[

Using this proposition, the functional equation for the function Z(R.s)
follows via the Mellin principle from a corresponding transformation formula
for the function fp(a.r), which in turn derives from the general theta
transformation formula (3.6). In order to find the precisc equation, we have
to compute the volume vol(F) of the fundamental domain F with respect
to d”x, and the lattice which is dual to a in R. This is achicved by the
following two lemmas,

(5.6) Lemma. The fundamental domain F of § has the following volume
with respect to d*x:
vol(Fy =2"""R,

where v is the number of infinite places and R is the regulator of K (see
chap. 1, (7.5)).
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Proof: The canonical measure dy/y on R} is transformed into the product
measure d*x x dit/¢ by the isomorphism

a:SxR} — RL, (x.)F— it

Since / = {r e RY | | <t < e} has measure 1 with respect to dt/r, the
quantity vol(F) is also the volume of F x [ with respect to d*x x dt/t,
i.e., the volume of a{F x [) with respect to dy/y. The composite  of the
isomorphisms

R 2R, S [[R=F

plov

(see §4, p.454) transforms dy/y into the Lebesgue measurc of R”,

vol(F) = volg (e (F x 1)) .

Let us compute the image Yo (F x ). Let 1 = (1. ..., 1) € 8. Then we find
1
Wea((1,0) = elogr'/" = ~elogs
n
with the vector e = (ep,. ....ep ) € R, ey, = I, resp. = 2, depending
whether p; is real or complex. By definition of F, we also have
Yo F x {1}) =2¢,
where @ denotes a fundamental mesh of the unit lattice G in trace-zero space
H = {{x;) e R"| }_x; = 0}. This gives
1
YoF x [)=2¢ + [0, =]e.
n

the parallelepiped spanned by the vectors 2ey, ..., 2¢,_. %e. ifer,....e0

span the fundamental mesh @. Its volume is %2’ ~! times the absolute valuc

of the determinant

LIV F N I

det { : :
LT e e

Adding the first  — 1 lines to the last one, all entries of the last line become

zero, except the last one, which is # = Y ¢,,. The matrix above these

zeroes has the absolute value of its determinant by definition equal to the

regulator R. Thus we get

vol(F) =2'"'R. a
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(5.7) Lemma. The lattice I in R which is dual to the lattice I' = g is
given by
T = ()7,
where the asterisk denotes the involution (x;) — (X)) on Kg and O the
different of K|Q.
Proof: As (x.v} = Tr(*xy), we have
T'={%eR|(g,a)eZforallae a} ={x eR| Trixa) cz}.

Tr(xs) © Z implics immediately x € K, forifa,. ..., day is a Z-basis of g and
X = Xid o Xpap, with x; € R, then Tr(xay) = 3, x; Triaiaj) =n; € 7.
is a system of linear cquations with coefticients Tr(aia)) = Tri g (aia;) € Q,
soall x; € Q, and thus x € K. It follows that

T ={xeK| Trxa) C Z}.

By detinition we have 07! = {x € K | Trip(xe) € Z}, and we obtain the
equivalences v €* I &= Trgg(xao) C Z for all ¢ € g <= xa C 0!
= xean) n

(5.8) Proposition. The functions fr(a,t) satisfy the transformation formula
I
fe(er) =120 (@),
and onc has

27! “
fren="—R+0™"")  fort— o00,c>0.
w

Proof: We make use of formula (3.6)

Or{=1/z) = ———6r.(z
r{=1/z) ol r(z)
for the lattice I = a in R, whose fundamental mesh has volume

vol(I") = Ta)ldy |2 The lattice I dual to I” is given by (5.7)
as *I'" = (ad)”'. The compatibility {"gz.%¢) = (gz.g) implics that
Op+(z) = twy(z). Furthermore we have

diagy1 = @) N©) 2dic| = /(M@ ldk |} = 1/d,.

The transformation x > x~! of the multiplicative group 8§ fixes the Haar
measure d”x {in the same way as x > —ux fixes a Haar measure on R")
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and maps the fundamental domain F onto the fundamental domain F~',
whose image log(F ') is again a fundamental mesh of the lattice 2 log [0”}.
Observing that N (x(1dq) /") = tdq for x € S, we oblain

fe(at) = [ oulisid)as

A

1
= — | 8u{—1/ixVidy) d*x

W

£t

1 (rd)'? . .

= vo?(u) H‘ﬂg)q(l,\’m) d*x
P

I‘/Z P *
=— /em,,‘(,.xw/dm,,\)d x

W

)

= e (@)
This shows the first formula. To prove the second. we write

| 1 1ok
fr@a.n =~ f dxt — /(H(a.iu””) = .
w u w
;

F

The function r(/) satisfies r(r) = ()(zl"""'), ¢ > 0,1t — oo, as the
summands of 6(a,ixt'/") — 1 are of the form

@Vl e a0, 1 =t /dy.
The point x = (x;) varies in the compact closure Fc [[—[r ]ki]‘ ol F.
Hence x; > § > O forall 7, ie..

(ax,a) = Y |tal’xe = 8{a.a)

and so \(F
ey = D s Yy - ).
w
Writing m = min{{a,«} | a € a.a # 0} and M = #la € al {a.ay = m}, il
follows that
Hn(iﬁiﬁ) = (,4An,$T(M+ b (,—m\\[u.u)—m)’g/7) — 00"
a.ayem

V" We thus get as claimed

fran = 2O \OI(F) 4ot et u):

where ¢ = wdm/dy

|

R+ 00", o
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This last proposition now enables us to apply the Mellin principle (1.4) to
the functions f:(u. ). For the partial zeta functions

1
C(R.s) = —
(5 tgi N(b)*
integral

this yields the following result, where the notations dg, R, w, and r signify
as before the discriminant, the regulator, the number of roots of unity. and
the number of infinite places, respectively.

{5.9) Theorem. Thc function
Z(R,8) = Zoo($)0{R.8).  Re(s)> 1,

Zods) = |dg |*2m "2 I (5/2), admits an analytic continuation to T ~
{0, 1} and satisfies the functional equation

ZR ) =Z(R 1 -3),

where the idcal classes & and & correspond to cach other via AR = |0|. It
has simple poles at s = 0 and s = | with residues

B P%
——R. resp. —R.
Ly w

Proof: Let f(1) = fr(a.t) and g(t) = Jr-1({a0)~',£). Then (5.8) implies
[
H(7) ="

and 1in tin
SO =a+0™"), g =ay+0e "),

=
with ay = ZTR Proposition (1.4) thus ensures the analytic continuation of
the Mellin transforms of f and g, and the functional equation

L(f.5) = L(g. % 7.\-)

with simple poles of L(f.s) at s =0 and s = % with residues —aq. resp. dq.
Therefore 5
Z(Ros) = L(/‘, E)
admits an analytic continuation to € ~. {0, 1} with simple poles at s = 0 and
s = | and residucs
-

2 2
—2ap=——R, resp. 2qp= —R
w w
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and satisfies the functional equation

Z(R,5) = L(f, %) = L(g. ! Z(E. 1 —3). o

This theorem about the partial zeta functions immediately implies an
analogous result for the completed 7eta function of the number field X,

Zy (5) = Zae(8)Ck (5) = 2 Z(R,5).
R

(5.10) Corollary, The completed zeta function Z(s) admits an analytic
continuation to C ~ {0, 1} and satisfies the functional equation
Zg(sy=Zg(l —5).
It has simple poles at s = 0 and s = | with residues
_ 2"hR , 2"hR ,

w

resp.

where h is the class number of K.

The last result can be immediately gencralized as follows. For every
character
x:d4/P— 8

of the ideal class group, one may form the zeta function
Z(x.5) = Zoo($)E (X5

where
x(a)
ainepral JH@)

¢, s) =

and x(a) denotes the value x (%) of the class & = |a] of an ideal a. Then
clearly
Z(x.$) = L x(MZR5).
I
and in view of & = £ !]2], we obtain from (5.9) the functional equation
Z(x.8) = x(MZ(X. 1 —9).

It x # 1, then Z(x, 5) is holomorphic on all of . as 35 x(R) = 0.
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We now conclude with the original Dedekind zeta function

1
Cxlsy = Za: Ry
The Euler factor at infinity, Zy(s), is given explicitly by §4 as

Zools) = |di 2Ly (s) = |di PPLE () Lo G5y,

Re(s) > |.

where ry, resp. r», denotcs the number of real, resp. complex, places. By
(4.3), (i), onc has Z(1) = |dg |'? /72, As

k() = Zog () Zke (9) = ld |72 Ly (5) " Zg (),

we obtain from (4.4) the

(5.11) Corollary. (i) The Dedckind zeta function Cx(s) has an analytic
continuation to C . {1}.
(i) Ats =1 it has a simple pole with residue
227y
(=" hR = hR/e*,
wld 172 e
Here h denotes the class number and
wldg|'?
2 (2w y2
the genus of the number ficld K (sce chap. 111, (3.5)).

g =log

(iii) It satisfics the functional equation
Sk (1= 5) = AWk ()
with the factor
- =% s "‘“3(,- LA n
Als) = |dk| —(cos 5 ) s|n7) Le(s)".
The proof of the analytic continuation and functional equation of the
Dedekind zeta function was first given by the mathematician Ericrr Hicke
(1887-1947), along the same general lines we have presented here, albeit in a

somewhat different formulation. Further, the theory we are about to develop
in the following sections § §6-8 also substantially goes back 10 Hrcke.

The formula for the residue

211 2y
Res,—i ¢k (s) = W"R
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is commonly known as the analytic class number formula. It does allow
us to determine the class number # of the field K, provided we know the
law for the decomposition of primes in this field sufficiently well to lay our
hands on the Euler product and thus compute the zeta function.

The following application of corollary (5.11) to Dirichlet £ -series L(x.s)
(see §2) is highly remarkable. It results from studying the Dedekind zcta
function ¢ (s) for the ficld K = Q(jt,,) of m-th roots of unity. and is based
on the

(5.12) Proposition. If K = Q(uy) is the field of m-th roots of unity, then

Ik (s) =G [1L(x. 5},
x

where x varies over all Dirichlet characiers mod m. and

Gsy= 1A -pm™"

plm

Proof: The proof hinges on the law of decomposition of prime numbers p in
the field K. Let p = (p; ... p,)° be the decomposition of the prime number
pin K, and let f be the degree of the p;, ie., JUp;) = p!. Then gx(s)
contuins the factor

Ha-oap H'=a-p 7.

olp
On the other hand, the L -series give the factor [T, (1— X (p)p~)~'. For plm
this is 1. So let p { m. By chap. 1, (103), f is the order of p mod m in
(%/mZ)* and ¢ = 1. Since efr = @(m), the quotient 7 = @(m)/f is the
index of the subgroup G, generated by p in G = (Z/mi)*. Associating

X +> x(p) defines an isomorphism G, = jis, and gives the exacl sequence
| — G7Gy —> G — py — 1.

where ™ indicates character groups. We therefore find r = #((}7(]/,) =(G:
G ) clements in the preimage of x (p). It follows that

MO —xmp=' = TU=¢p™ "= —p Fayr
x Teny

=10 =% 97"

ply

Finally. taking the product over all p, we get Lk (s) = G(s) [, L(x. ). O
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For the trivial character x° mod m. we have L(x° 5) = My =p %
£(s). so that

{K(\)‘F(V)]—l L=p™¢) I] Lix.9).

x#x®

Since ¢ (s) and {x (s) both have a simple pole at s = 1, we obtain the

(5.13) Propusition. For every non-trivial Dirichlet character X . one has

Lix.1) #0.

This innocuous looking result is in fact rather profound, and yiclds as a
concrete consequence

(5.14) Dirichlet’s Prime Number Theorem. Every arithmetic progression
a, atm, ax£2m, a+3m, ..., with(a.m)=1.

ie., every class @ mod m. contains infinitely many prime numbers.

Proof: Let x be a Dirichlet character mod #. Then one has, for Re(s) > 1,

- & x(p x»
o L(x.2) = = Slog—x(p)p™) = ¥ 5 P 2D,
Pom=l M R
where g, (s) is holomorphic for Re(s) > % — this follows from a trivial
cstimate. Multiplying by x (¢ *') and summing over all characters mod nr.
yields

Zx(a")logL(X ‘)*ZZX(“ ))+xz(\)
xopr
m ‘ |
=X Yxe™'h ¥ — +as)
h=i X p=bimy P*
= L’:') + g{s).
p=aimy P’

Nolte here (hat
0. ifas#bh,
Y xtahy = PN *
¥ olm) =#Z/mZ)y*. la=h,
When we pass to the limit s — 1 (s real > 1), log L(x.s) stays
bounded for x # x” because Lix.1) # 0, whercas logL(x".s) =



470 Chapter V1. Zeta Functions and L-series

me log{] — p™*) + log £(s) tends to because (s) has a pole. The
left-hand side of the above equation therefore tends 10 0o, and since g(s) is
holomorphic at s = 1. we find

: @im)
lim =0

s patmy P*

Thus the sum cannot consist of only finitely many terms, and the theorem is
proved.

For a = 1, Dirichlet’s prime number theorem may be proved by pure
algebra (see chap. 1. § 10, exercise 1). Scarching for a proof in the general
case Dirichlet was led to the study of the L-series L(x,s). This analytic
method gives sharper results on the distribution of prime numbers among
the classes @ mod m. We will come back to this in a more general context
in§13.

§ 6. Hecke Characters

Let m be an integral ideal of the number tield K, and let J™ be the group
of all ideals of X which are relatively prime to m. Given any character
x:dm s st ={zec|lzl =1},
we may associate to it, as a common generalization of the Dirichlet L -series
as well as the Dedekind zeta function, the L-series
x(a)
Lix.5) = -
9 =2 gy
Here a varies over all integral ideals of K, and one defines x (a) = 0 whencver
(a.m) # 1. Searching for the most comprehensive class of characters x for
which the corresponding L-series could be shown (o have a functional
equation, HrckE was led to the notion of Grifiencharaktere, which we
detine as follows.

(6.1) Definition. A GroBencharakter mod m is a character x : Jm =5
for which there exists a pair of characters
X (o/m)* — ST ¥ RE— SN
such that
2 (@) = %@ g (a)

for every algebraic integer a € o relatively prime to m.
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A character y of J™ is a Gréflencharakter mod m as soon as there exists
a character xo, of R* such that

x((@) = xool@)

for all ¢ € o such that ¢ = 1 mod m. For if this is the case, then the rule

xi(a) = x({a)) xo(a) ' defines a character xr of (0/m)* which satisties
x((@) = xi@) xoola)

for all algebraic integers ¢ € o rclatively prime to m. This last identity

undertines the fact that the restriction of a Gréfencharakter to principal

ideals breaks up into a finite and an infinite part. From

m('“):{aeo[(a.m):l].

it extends uniquely to the group
K™ ={aek*|(@m=1}

of all fractions relatively prime to m, because cvery a € K™ determines
a well-defined class in (o/m)*. The character y,,, and thus also the
character x;, are dctermined uniquely by the GréBencharakter x., since
the group
K"={ae K™ |a=1modm}
is dense in R*, by the approximation theorcm, and one has yx..(a) = x((a))
for @ € K™. Let us recall that the congruence ¢ = 1 mod m signifies that
a = hjc, for two integers b, ¢ relatively prime to m, such that b = ¢ mod m
or, equivalently, a € U;“") € Kp forpim, it m = ]_[F P,
The character x., factors automatically through R* /0™, where

o"={ceco"|e=1modm}.

In [act, for & € 0™ we have x(e) = 1, and thus xa(8) = xp(€) xoe () =
x(#)) = L The two characters x; and xo, of (0/m)*. resp. R*/o™,
associated with a Gréfiencharakter x satisfy the relation

Xl xo(e) =1 forall e e 0,

and it can be shown that every such pair of characters (xr, x~,) comes from
a Gréflencharakter x (exercise 5).

The attempt to und d Grifiencharaktere in a conceptual way leads
one o introduce idéles. [n fact, all Grifiencharaktere arise as characters of
the idéle class group of the number field XK. We will not use this more
abstract interpretation in what follows, but it will be explained at the end of
this section.
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(6.2) Proposition, Let x be a Grifiencharakter mod m, and let m" be a
divisor of m. Then the following conditions are equivalent.

(i) x is the restriction of a Grofiencharakter x':J o 5 ' mod m'.

(i) xr factors through (0/m’)*.

l’roof (l) = (ii). Let x bc the restriction of the Grifenc Immkm
2J™ S, and let X{+ X4 be the pair of characters associated with x'.
Lel ¥, TCSP. ¥o. be the composite of

(o/my* — (o/m’y* JL§1 resp. RT/0™ — R o™ X 50

We then find for a € 0™ C o™
@) = (@) = @xi(@) = HFala),
so that xr = Xr and Ya = Xoc because yr and xs are umqucly determined
by x. Thus x; lactors through (©/m")* (and xo, through R"/o'“
(i} = (i). Let x; be the composite of (0/m)* — (0/m’)" #» S'. In every
class @' mod P™ € J™/P™, there is an ideal a € J™ which is relatively
prime to m, i.e., a’ = ag for some (@) € P™. We put
¥ @) = (@) (@) e (@)

This definition docs not depend on the choice of the ideal a € Jm, for if
a8’ =g, @) € J™, (a)) € P™, then one has (aa(‘) e J™, and

XX @ Ko@) = x @x (aay D) xr@ ) xoola™ @) 1{(@) Xoo(@)

= x(a) x/{axaclar).

The restriction of the character x' from J™ to J™ is the Grifiencharakter x
of J™, and if {a') is u principal ideal prime to m’ and &' = ab. (@) € J™,
(h) € P™, then we have
1 (@) = x (@) x (1) = x((@)) xith)xo (B)
= Xr(@) Kec @) X{ (B) (D) = x{(ab) Yoo lab) = () Xocldl) -
Thus x' is a Grafiencharakter mod m' with corresponding pair of characters
Xi> Xoor U

The Grifiencharakter x mod m is called primitive if it is not the
restriction of a Grafiencharakter x' mod m’ for any proper divisor m'[m.
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According to (6.2), this is the case if and only if the character xy of (o/m)*
is primitive in the sense that it does not factorize through (o/m")* for any
proper divisor m'|m. The conductor of x is the smallest divisor { of m
such that x is the restriction of a Griflencharakter mod f. By (6.2), f
is the conductor of ¥, i.e., the smallest divisor of m such that y; factors
through (o/f)*.

Let us now have a closer look ut the character xr. and then at the
character Y.

(6.3) Definition. Let x; be a character of (0/m)* and y € m~'0~", where 2
is the different of K |Q. Then we define the Gauss sum of x; to be

i iy
Tl y) = Y xelx)e™ s
x mod m
(v, my=1

where x varies over a system of representatives of (0/m)*.

The Gauss sum does not depend on the choice of representatives x, for if
x'=x mod m, then x'y —xy e mm~'0"' =07 = {a € K| Tr(a) € .},
so that

Tr(x'y) = Tr{xy) mod 7,

and therefore /70 = (20 The same argument shows that
Tm(xr, ) depends only on the coset y + 0!, ie.. it defines a function
on the o/m-module m '9! /0=, In the case K = @, m = (m), we get back
the Gauss sum introduced in (2.5) by T(xr.2) = T (X1 %). We will have to
define theta series and L-scrics attached to Hecke's Grofiencharaktere with
a view to proving functional equations. For this, the following properties of
Gauss sums will play a crucial réle.

(6.4) Theorem. Let x; be a primitive character of (o/m)*, let y € m~'2"!
and a € ©. Then onc has

) Tlxr ¥). i @m) =1,

Tl @) = i) # 1,

and furthermorc

[t ¥)| = /OUm),  if (ymo, ) = 1.
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The most diffcult part of the theorem is the last claim. Tn pmvc it, we
make the following preparations. For integral ideals a = pl Sepov =1
consider thc Maébius function

1, ifr=0,ic,a=(),
pl@y =10, ifv=-=u
0, otherwise.

For this function we have the

(6.5) Proposition. Ifa# 1, then Y ju(b) =0.
bla

Proof: If a=p)" - p/, v = 1, then
Zmb)*u(lHZu(pH— S wlpi i) o plpr )
it
=D+ B (O
=(1+(=D)" =0. 0

Now, for y € m '2~" and for every integral divisor a of m, we look at
the sums

oY= ¥ &P and s = % PITETASY)
x mod m x mod m
(r.ml=a aly
These sums do not depend on the choice of representatives x, for if
x = x mod m, then (x' — x)y € 9~', hence Tr(x'y) = Tr(xy) mod Z. We
find the

(6.6) Lemma. One has

Ti(y) = X2 p(@)Saly),
alm

and for every divisor alm,
Ny, ifyea s,

Sal¥) =
: 0, ify¢gao7l.
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Proof:: In view of (6.5), we have

@S =Y ue ¥ Tl =L T wlay=Ti(».
a'm alm b|m alb

alblm

Ify € a='o7" and a| x. then xy € 0", s0 that Tr(xy) € Z, i.c., all summands
of S, are 1 and there are #(a/m) = ‘.YI(E) of them. If on the other hand
y ¢ a~'07!, then we can find in a/m a class z mod m such that zy ¢ 9~',
ie., Tr(zy) ¢ Z, so that 2™/ 7% =£ | and we obtain

TS ()= Y AN Z g ()
x mod m
aly

since x + z varies over all the classes of a/m as x does, so that we do find
Saly)=0. [m]

Proof of Theorem (6.4); Leta € 0, (a.m) = L. As x runs through a system
of representatives of (©/m)*, so does xa. We get

Twlxrnay) = 3 xilrye? Il

X mod m
(xom,

=Xi@) 3 xilxaye e
* mod m
(romi=1

= Xr{@) Ty ¥)-

Let {(a.,m) = m; # 1. Since x; is primitive, we can find a class
b mod m € (0/m)* such that

%@ #£1 and b=1mod .
my

1

As u consequence, ab = a mod m, so that aby — ay € 2 ', and by what we

have just shown,
X0V tmtr, @y) = Tmlxr, bay) = Tmlxr, ay).
Finally, in view of X¢(b) # I, we find tyn(xr, ay) = 0.

As for the absolute valuc of the Gauss sum, we sce {rom (6.6) that
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[T X I = Ton Oty 1) Tin (X1, ¥)
= Yt X e T Iy

X mod m
(x.m)=1
W 2 v
= ¥ Taltexye 0N
X mod m
(x,m)=1
- ¥ T oz 2327 T =1)
mod m & mod m
=1 om=1

= ¥ udN(ye-1n)
= mod m

{eomy=1
= Z x;()Zu(a)sﬂ(mfl))

= =t

We now make use of the condition (ymd, m) = 1. It implies that
[ m
yz—1Dea 07 &z slmod;

Indeed, if z — 1 € a~'m, then y(z — ) e m™ 0 'a~'m=a~'0~". It on the
other hand z # 1 mod —, e, & )( (z— D.then vy(z - 1) < up(‘“) for a
prime divisor p of 2 Smce (ymD m) = |, we have vp(ymd) = 0, so that
vp(y) = —vp(m) — vp(D) and

p(0(z = 1) < vp(m) — vp(e) + vp(¥) = —vp(a) — vp(0) = vp(a” 7Y,

and thus y(z — 1) ¢ a~'0~'. This, together with (6.6). gives

2_ m -
ot ) *u%"(“m(u) T oue.

= mod m
z=1 mod m/a

For a # 1, the last character sum vanishes since x is primitive. and therefore
nonzero on the subgroup of z mod m € (©/m)* such that z = | mod m/a:
the sum reproduces itself under multiplication with a value x(x) # § of the
character, So we finally have that [t (¢r, > = 9Um). This proves all the
statements of the theorem.

Having studied the characters xq of (0/m)*, we now tum to the characters
% of R*. They arc given explicitly us follows.

(6.7) Propesition. The characters & of R*, ie., the continuous homomor-
phisms
xR — SN
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are given explicitly by
M) = N (xP|x| 704,

for some admissible p € [, Z (see §3, p.448) and a ¢ € Ry. p and g are
uniquely determined by A.

Proof: For every x € R* we may write v = ﬁm, and obtain in this way
x

a decomposition
R*'=UxR",

where U= {x € R*| |x| = 1}. It therefore suffices to determine separately
the characters of U and those of RY. We wrile p instead of t for elements of
Hom(K, C) to indicate that T = 7. and we choose an element o from each
pair {r, T} such that 7 % T. Then we have

U=[18"T =TI < T[S = 8']T.

and S' — [S' x 8'I*, x5 > (x5. %), is a topological isomorphism. The
characters of {£1} correspond one-to-one to exponentiating by a ppe{0.1},
and the characters of §' correspond one-to-one to the mappings x, .rf,,
for k € Z. From the correspondence & +— (k.0), resp. (0. — k), for & = 0,
resp. & < 0, we obtain the characters of [S' x $']* in a one-to-one way from
the puirs (pr, pz) with pr.p; > 0 and p.p; = 0. The characters of U are
therefore given by
ax) = N(x"y,
with a uniquely determined admissible p € [], Z.
The characters of R* are obtained via the topological isomorphism
log: R} — R;.

Writing as above

R, =[]k x ]_[[]RX]R]Jr,

» o

und observing the isomorphism [ & x R] DI R (g o do ) > 200, We SCC
that a character of Ry corresponds one-to-one to a system (g,.¢,) via the
rtle

X > [] efesn [ e¥dote

» o

It is thercfore given by an clement ¢ € R: via x = N(e%). The
isomorphism log then gives a character 4 of RY via y = N(efd0er) =
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N(y'?), with a uniquely determined ¢ € R. In view of the decomposition

X = ﬁ | x|, we finally obtain the characters i of R* as
X \P
a0 = N((5 Y 109) = N (ar1et ). 0
@ =N((7) ) = Narixt 71

If the character xo. associated to the Grofencharakter x : J™ — S Vis
given by .
Xoo(X) = N (xP1x|7PH1Y),
then we say that x is of type (p.¢), and we call p —iq the exponent
of x. Since ¥ factors through R* /0™, not all exponents actually oceur (see
exercise 3)

The class of all Graflencharakrere subsumes in particular the generalized
Dirichlet characters defined as follows. To the module

m= ]
ptoc

we associate the ray class group J™/P™ mod m (see chap. VI, §1). Here
J™ is the group of all ideals refatively prime to m, and P™ is the group of
fractional principal ideals (@) such that

a=1modm and a totally positive,

This last condition means that ta > 0 for cvery real embedding t : K — R.

(6.8) Definition. A Dirichlet character mod m is a character

x 4™ Pm—
of the ray class group mod m, ie., a character x : J™ — S' such that
x(P™ =1

The conductor of a Dirichlet character x mod m is defined to be the
smallest module f dividing m such that x factors through J J7:28

(6.9) Proposition. The Dirichlet characters x mod m are precisely the
Grisfencharakiere mod m of type (p.0), p = (pe), such that p, = 0 for all
complex . In other words, one has

x(@) = x[(aw((%)"),

for some character xq of (0/m)*. The conductor of the Dirichlet character is
at the same time also the conductor of the corresponding Grifiencharakter.
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Proof: Let x be a Grafiencharakter mod m with corresponding characters
Xts Xoo Of (©0/m)*, R*/0™, such that x., is of type (p,0) with p, =0 for r
complex. For totally positive ¢ € © such thata = | mod m, we then obviously
have xp(a) = 1, and xx(a) = 1, and then x((a)) = xr(@) xeola) = 1.
Therefore x factorizes through J™/P™, and is thus a Dirichlet character
mod m.

Conversely, let x be a Dirichlet character mod m. i.e., a character of J™
such that x(P™) = 1. Let K™ ={a € K*|a = Imod m}, K" = {a € K™|a
totally positive} and R, = {(x;) € R" | x; > 0 for 7 real}. Then we have
an isomorphism

K™/KP — R/RY, =[] (1)

+)
preal
Then the composite

kmygm L gmypm X g

defines a character of R*/R} . It is induced by a character x.. of R* which —
because xn.(RY,) =1 — is of the form xo.(x) = N((‘:j)”) with p = (p, ).
pr €1{0.1} for 7 real, and pr = O for T complex. We have x((a)) = xn(a)
fora € K™, and

xi€@) = x ({@)) xaolay™'

gives us a character of (©/m)*. Therefore x is indecd a Grifiencharakter of
the type claimed.

Let f be the conductor of the Dirichlet character x mod m, and let ' be the
conductor of the corresponding Grdfencharakter mod m. x : J™/P™ — §!
is then induced by a character x’ : J1/PT — S\, s0 the Grifencharakter
X :J™ = §" mod m is the restriction of the Gréfencharakter x' + IV — §'.
This implies that §'| . On the other hand, the Gréfiencharakter x : J™ — §'
is the restriction of u Gréfiencharakter x” + 11 — §', so X Is the composite

of (o/m)* — (o/fV* Y (see (6.2)). By the above, x” gives a character

JV7PY = §! such that the Dirichlet character x @ J™/P™ - S! factors
through J7'/ P Hence f|', so that f = f..

(6.10) Corollary. The characters of the ideal class group Cly = J/P,
i.c., the characters x @ J — S' such that x(P) = 1, are preciscly the
Grifiencharaktere x mod | satisfying yo. = 1.
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Proof: For m = | we have (o/m)* = {l}. A character x of J/P is
a Groflencharakter  mod 1. The associated character xy is trivial, so
Kool@) = xi(@) 'x((@)) = 1, and thus xoc = 1. because K* is densc
in R*. If conversely x is a Groflencharakter wod | satisfying yoc = L. then

1 (@) = @ xctay = xila) = 1,

for a € K*. Therefore x(P) = 1, and x is a character of the ideal class
group. [m]

To conclude this section, let us study the relation of Graflencharaktere to
characters of the idele class group.

(6.11) Definition. A Hecke character is a character of the idéfe class group
C = 1/K* of the number field K , i.c.. a continuous homomorphism

x:1—5'
of the idéle group I = UPK; such that x (K*) = 1.

In order to deal with Hecke characters concretely, consider un integral
ideal m = ]—[p p'r of K; ie., ny > 0 and n, = O for p|oc. We associate to
this ideal the subgroup 1™ of 1,

I™ =" x Iy where " =[] U:w, Iw=T] K}

i P

If p f 00, then Up is the group of units U, if » = 0, and the n-th group
of higher units for # > 1. We interpret I as the multiplicative group R* of
the R-algebra R = K @ R =[], Kp. Observe that ™ differs slightly
from the congruence subgroup /™ = [, U; ") introduced in chap. VI, § 1, in
that, for real p, we have the factor U,_(,”’ =R instead of the component K ;.
The effect is that 1/7™K* is not the ray class group J™/P™ mod m, but
isomorphic to the quotient J ™/ P™ by the group P™ of all principal ideals {«)
such thall a = 1 mod m — this is scen as in chap. V1, (1.9). We will refer
to J™/P™ as the small ray class group.

We call m a module of definition for the Hecke character x if
XU =1

Every Hecke character admits a module of definition, since the image of
X nvﬁm U, — S’ is a compact and totally disconnected subgroup of
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$', hence finite, and so the kernel has to contain a subgroup of the form
[Ty Us™ where 1, = 0 for almost all p. For it we can take the ideal
m= nvh p"» as a module of definition.

Since x (/") = 1, the character x : C = //K* — 5’ induces a character
x:Cm) — §'

of the group
Cim) = 1/17K*.

But it will not in general factor through the small ray class group
I/IMK = J™/P™ (see chap. VI, (1.7), (1.9)), which bears the following
relation to € (m).

(6.12) Proposition, There is an exact sequence

1 — R7/0™ — Cm) — J™/P™ — 1.

Proof: The claim follows immediately from the two exact sequences
| — TK" /1K™ — T/PKY — 1JTVK = 1,
L — I NK /I NK — T — TK /PR — 1,
In the second ome, onc has /™ N K™ = o™ I"NK* = | and

I™/1% = [, = R*, and so T™K*/1™K* = R* /o™,
v f

Given a Hecke character x with module of definition m, we may now
construct u Gréfiencharakier mod m as follows. For every p { oo, we choose
a fixed prime clement 7, of K, and obtain a homomorphism

¢ ™ — C(my

which maps a prime ideal p { m fo the class of the idele (m) =
.1.1,...). This mapping does not depend on the choice of

ince the ideles {up), up € Uy, for p t m, lic in [

Taking the composite map

Iy L 8t

yields a 1—1 correspondence between Hecke characters with module of
definition m and Gréflencharaktere mod m. The reason for this is the
following
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(6.13) Proposition. There is a canonical cxact sequence

| K™ 0™ 20 gm s (ojm)* x R /0™ Ls cm) — 1,

where § is given by

§@) = ()", @ mod m, @ mod 0™).

Proof: For every a € K™, let @ € / be the idele with components @, = a
for p { moo and @, = 1 for p|moc. It is then obvious that

c((a)) =@ mod I{"K™.

Let us decompose the principal idele a according to its components in
| = It x I, as a product @ = ara., and define the homomorphisms

@ (o/m* — C(m), ¥ :R'/o™ — C(m)

by
@(a) = Tas mod IMK*, by =b"" mod IPK*.

where cvery b € R* = Iy is considered as an idele in /. For a € 0,

a =1 mod m, we have ai@ | € I* €/, so we get in C(m) the equation
@(a) = [dax] = [arasx] = la} = 1, where | | indicates taking classes.

This shows that ¢ is well-defined. For every ¢ € o™, one has g € ™, so
[£oc] = l&swer] = [¢] = 1 in C{m). and thus ¥ (ex) = 1. Consequently  is
well-defined. We now define the homomorphism

fd™ x (o/m)* x R /o™ — C(m)

by
f((a, @ mod m, b mod 0©™) = c(@)p(@)y (h),

and we show that the resulting sequence is exact. The homomorphism § is
clearly injective. For @ € K™ one has

F(8@) = (@) " pl@¥@ =7 'Faay, mod IPK* =1,
so that f o8 = 1. Conversely, let
F((a.a mod m, b mod 0™) = c(@e@yhy=1,
and let a = [, p". Then
c(a) =y mod I"K*

for some idéle y with components y, = 71:’ for p t moc, and y, =]
for p |moo. This yiclds an identity

ydah™ =tx with £el® and xeK*.
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For p f moc one has (ydawh 'y = mla = &x in K. and so
vp = vy(a'x). Forp|m one has (yaumh"),, I = &,x. 50 that x € U™,

and also 0 = vy, = v,(a~'x) since « is relatively prime to m. This gives

a= (a.\’").
Asx € l/‘ »one has x = | mod m, hence
elax™) = pla).
Finally, for ploo we find (yaaxb™'), = aby’ = x in Ky, so that
h o™, and thus

Wlax™) = yib).
So we have
(a, @ mod m, h mod 0™) = ((ax™"), ax™' mod m, ax~' mod o") .

and this shows the exactness of our sequence in the middle.

The surjectivity of f is proved as lollows. Let o mod /"K* be a class
in C(m). By the approximation theorem, we may modify the representing
idéle o, multiplying it by a suitable x € K*, in such a way that ay € U(““)
for plm. Let a = [T p*@, Then we have

e{ay =y mod /7K™,
where the idele y has components y, = 7!“"("") = &qp, & € Uy, for
P moo and y, = 1 for p|moo. This gives ya o € I, and if we define

b=ag!, then f({a.1 mod m.bmod 0™) = yh~' = ya,, =@ mod 1K™
O

By the preceding proposition, the characters of C(m) correspond 1—1 1o
the characters of J™ x (0/m)* x R*/o™ that vanish on §(K ™ /0™), ie., to
the triples x, xr. x of characters of J™, resp. (0/m)*. resp. R*/0™, such
that

x((u)) 7‘)(((41 mod m) x(a mod ©o™) = |

for a € K™, This makes x a Grifiencharakter mod m, and since x; and
X~ ure uniquely determined by yx, we obtain the

(6.14) Corollary. The correspondence x — x oc is 1—1 between characters
x of C(m), ic. Hecke characters with modulc of definition m, and
Grifiencharaktere mod m.




484 Chapter VI Zeta Functions and L-serics
Exercise 1. Let m = []/_, m; be a decomposition of m into integral idcals which
are pairwisc relatively prime. Then one has the decompasitions
to/m)" = [to/m)”
=i
and ,
m o7 = @m,"b"/o "
Let xr be a character of (0/m)*, and let xy be the characters of (o/m;)" delined

by x. If y € m'0 /0" and if y, € m, 0 !/d7! arc the components of y with
respect to the above decomposition, then

Tl ¥) = [1 7w Ot 31
=

Kxercise 2. Prove thc Mébius inversion formula: let f(n) be any function of
integral ideals a with values in an additive abelian group, and let

gla)y =3 fo).
b

Then one has

Jlay= Z wlg )g'(h)
Exercise 3. Which of the characters A(x) = N{(x”]x| "%} of R* are characters of
R*/o™?

Exercise 4. The characters of the “small ray class group” J®/P™ mod m are the
Gréfencharaktere mod m such that xo = 1.

Fxercise 5. Show that every pair of characters x; @ (o/m)" — S' and
1 R*/0™ — §' such that

X&) xnc(e) =1 forall eeo"

comes from a Grdfiencharakter mod m.

Exercise 6. Show that the homomorphism ¢ : J™ — C(m) is injective.

Theta Se

ies of Algebraic Number Fields

The group P of fractional principal ideals (a) is constituted from the
elements @ € K*, and it sits in the exact scquence

| —o*"— K'— P — 1.

In order to form the theta serics we will nced, let us now extend K* to &
group K* whose clements represent alf fractional ideals a € J.
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(7.1) Proposition. There is a commutative exact diagram

l— 0" —— ks p s

R

l— o — kY g

with a subgroup Krcer containing K* such that |a| € RY, and
N((@) = [N@]
foralla € K*,
Proof: Let the ideal class group J/ P be given by u basis [b], ..., |6, 1. and

choose, for every one of these basic classes, an ideal by, ..., b,. Then every
fractional ideal a € J can be written in the form

— Vi vy
a=ab'.--b)

where @ € K* is well-determined up 1o a unit & € 0, and the exponents
v; mod A; arc uniquely determined, h; being the order of [b;) in J/P. Let
”’ = (h;). For every 7 € Hom(K . C). we choose a fixed root

in C in such a way that h,; = b,, whenever t is complex. We define K*to
be the subgroup of C* generated by K* and by the elements b= (i e C
Each class [b] € //F contains a uniquely determined ideal of the form

b=b" b with 0<v <h,
and we consider the mapping

Frd/p — K* K", FUb) =5 B mod K*.

It is a homomorphism. for if b = b - b} and b' = b’ ---bY . and if
Vi + V] = gty 4 &ihi, O <y < By, then by - b is the ideal belonging to
the class [b][b'], and
FAblw Dy =B B
=@,

it o
BB by

LBy med KT = (BN LAY

[ is clearly surjective. To show the injectivity, let if;l"‘ by =a e K"
and let # = fy---h, be the class number of K. Then we have for
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the ideal a = a” b} .- & J that o = a~F(pH Mg =

”‘(h“ . h" Yt = (1). Since J is torsion-free, it follows that a = (]) and
so by = {(«) € P. From this we deduce that every element @ € IS
ndmih a umque representation

5:4:171‘“ ---;;,”’. O<v <h, aek*.
We define a map -
():R*—J
by o ~ v ;
=ab)' B > (@) =ab} b

Arguing as above, we see that this is « homomorphism, It is surjective and
obviously has kemel o*. Finally we have that \h | = (\h,,\) € R} and

NG =mab! = [N bo| = [TTebi] = [T17] = INGol"

so that m((h,)) = \N(b,)\, and thus |a| € R%, MN(a)) = [N(a)| for
alla € K*. a

The elements a of K* used to be called ideal numbers — a name which
is somewhat forgotten but will be used in what follows. The diagram (7.1)
implies an isomorphism -
KY/K* = J/P.
For a,b € K* we write @ ~ b if a and b lie in the same class
ab ' € K*. We call a an ideal integer, or an integral idcal number, if () is
an integral ideal. The semigroup of all ideal integers will be denoted by 3.

Furthermore we write a | b if g € @, and for every pair ¢, b € K, we have
the notion of ged(a.b) € K* (which is lacking inside K*). The greatest
common divisor is the ideal number ¢ (which is unique up to a unit) such
that the ideal (d) is the ged of the ideals (), (b). Observe that the ideal
numbers are not defined in a canonical way. This is the reason why they have
not been able (o hold their own in the development of number theory. (They
are treated in (46], [65].)

We now form an analogous extension of the prime residue groups
(Z./mZ)". For three ideal numbers «, b, m, the congruence

a = hmod m

e BU{0). If m = (m). we also write this
~(m)

signifies that @ ~ b and £ ,"
relation us ¢ =  mod m. Let m be an integral ideal. The semigroup ©
of all intcgral ideal numbers relatively prime to m is partitioned by the
cquivalence relation = into classes, which we will write as @ mod m. They

are given explicitly as follows.
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(7.2} Lemma. Foreverya € 3™ one has

amodm=a+afa Ym.

Proof: Leth e a mod m, b # a, ie, h = ac for some ¢ € K*, o # |, and
b—a=cm,ced. Then

i b-a)=a—1¢e(@—1)=(a ' )c)m) C (a "ym,

so that b € a + a(a™")m. Let conversely b € a + a{a™")m, b # a, and thus
bja =a € | +(¢~")m. Then one has b ~ @ and (b —a) = (a)(a — 1) C
(a)a 'ym = (m), i.e., m|h — a and thercforc b = ¢ mod m.

We now consider the set
(©/m)* == {a mod m|a € 3™}

(m)

of all equivalence classes in the semigroup 8™ of ideal integers prime to m.

(7.3) Proposition. (O/m)* is an abelian group, and we have a canonical
exact sequence

1 — (o/m)* —> (B/m)* — J/P —> 1.

Proof: For a,b € 3™, the ¢ ab mod m only depends on the classes
a mod m, b mod m. so we get a well-defined product in (5/m)*. Every
class « mod m has an inverse. Indeed, since (a) + m = ©, we may write
I =a+4+u, 0#ac(q), u € m Consequently ala, so that « = aux,
x € 3™, andsince | € a(l + @~ 'm) = @ mod m, we see that ax mod m is
the unit class, i.e., x mod m is nverse (0 ¢ mod m.

The right-hand arrow in the sequence is induced by a — (a). Tt is
surjective since every class of J /P contains an integral ideal relatively prime
to m. If the class @ mod m = a(l + (@) 'm) is mapped to 1, then one has
(@) € P,and so ¢ € 0, (a,m) = |. Hence @ mod m = « + m is a unit
in ©/m. The injectivity of the arrow on the left is completely trivial, i.e., we
have shown the exactness. [}

For an ideal class & € J/P, we will denote by & € J/P in what follows
the class defined by
AR = |mo],
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where 0 is the different of K|Q. Let m = (m) and 8 = (d), with some fixed
ideal numbers m. d. For m = @ let m = 1. We now study characters

X 1 (G/my" — T*,
and put x(a) = 0 for ¢ € © such that (¢, m) # 1. In the applications, x will
come from a Grifiencharakter mod m, but the treatment of the theta series
is independent of such an origin of x.

(7.4) Definition. Let a € G be an ideal integer, and fet & be the class of (a).
Then we define the Gauss sum
r(xa)= Y X(;)(,Zm Tr\l?u/rml)y
x mod m
where ¥ mod m runs through the classes of (3/m)* which are mapped to the
class &' In particular, we put T(x) = t(x. 1).

The Gauss sum 7(x, ) reduces immediately to the one considered in §6,
i) = X x()e T

¥ mod m

(romi=
In fact, on the one hand we have

v=%a/md em™ 07",
since the class of the ideal (v) = (a)(X)(m)~'(d) ' is the principal class
AA'm 0 ' 5oy € K*, and onc finds
ye) =@m ' cma,

because a and ¥ are integral. On the other hand, if ¥ mod m is a fixed
class of (5/m)* which maps to &, then, in view of (7.3), we get the others
by Xx mod m, with x mod m varying over the classes of (©/m)*. Therefore

(x.a) = x (el ).

and in particular

00 = x(D)alx. »)
with y = X/md, which satisfies (ymd, m) = | since ymd = (%) and
({X),m) = 1. Consequently, 7(x.«) does not depend on the choice of
representatives X, and theorem (6.4) yields at once the

(7.5) Proposition. For a primitive character x of (5/m)*, one has
Ty ay = XlaTt(x)
and [t(x)| = /M),
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The theta scries 6(x. z) used in §2 in the treatment of Dirichlet L -serics
are attached to the field Q. We now have to find their analogues relative to
an arbitrary number field K. Given any admissible clement p € [], Z (see
§3, p.448) and a character x of (&/m)*, we form the Hecke theta series

0oL = T pl@N @)l

ae U0}

where m, d are fixed ideal numbers such that (m) = m and (d) = 0. We take
m =1 if m = 1. The case m = 1, p = ( is cxceptional in that the constant
term of the theta series is x (0N (07) = 1, whereas it is 0 in all other cases.

s Red/P

Let us decompose the theta scries according to the ideal cla
into partial Hecke theta series

8P (R, x,2) = b X((I)N(up)(:n(u:/’\mt/\,u]v
ael fnduy

where a varies over all ideal integers in the class R € I?"/K" which
corresponds to the ideal class & under the isomorphism K*/K* = J/P.
For these partial theta serics, we want to deduce a transformation formula,
and 1o this end we decompose them further into theta series for which we
have the general transformation formuta (3.6) at our disposal.

Let a be an integral ideal relatively prime to m which belongs to the
class &, and let a € 3™ be an ideal number such that (a) = .

(7.6) Lemma. Assume that m # | or p # 0. If x mod m varies over the
classes of (©/m)*, then onc has
O7(R, x.2) = x(@N@") ¥ x08f(x,0.zcla’/mdl)
x mod m
where I" is the lattice m/a € R and
B(x,0,2) = 3 N((r+g)P) itz onet,

gel’

Proof: In the theta series 67 (8, x. 2). it suffices (o sum over the elements of
RN 0™ because x is zero on the others. Every class ¥ mod m € (&/m)*
is either disjoint from & or else it is contained in £ In view of the exact
sequence (7.3)

I — (o/m)" — B/m)* — J/P — |,

the classes
ax mod m = a{x + n"m)
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arc the different residue classes of (5/m)* contained i in R. This gives

9”(R x.7) = Z Z X(ar)N((ut#»(Ig)”) Ty 4 )/ lmd alc+g))

X modm ge

= x(@)N(a”) Z X(«‘)ZN((A +g)n) PaidiCasisl le? fmd 1. 5 =g}
x mod m g€

=x@N@) ¥ x(x80(x.0,z1a*/md)). ]
X mod m

For any admissible element p = (p;), we will write p for the admissible
element with components 77, = pz. From the transformation formula (3.6)
for the series (),'-y and proposition (7.5) on Gauss sums, we now obtain the

(1.7) Theorem. For a primitive character x of (&/m)*, one has the
transformation formula

7R x. = 1/2) = WG PIN (/7 )07 (. X, 2

with the constant factor

Wix.py= [,-rr<m,\,((':j‘)’7)]” r‘r(t)((r:l)

This factor has absolute value |W (x.p)| = 1.

Proof: The lattice I dual to the lattice I” = m/a © R is given, according
10 (5.7), by *I'" = a/md. (Here as in §4, the asterisk signifies adjunction with
respect to { . ), ie. {x.ay} = (*ax,y).) The volume of the fundamental
mesh of I is by chap. 1, (5.2),

vol(I") = 9tm/a)/[dx | = N(Im/al) N(1d])'"
From (3.6) we now get

(1) OF(x.0, — 1/|md/a®

= AL (0.x.zimd [d”)).
with the factor
Az) =[PP N (m/a)N ()] 7 N ((imd ja?)270)77)
= [0 m) ] N (I P1P) N (172

and the scrics

@ 000 zimd/a?)) = X N(g™") e K min s mdfa:
o
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Writing g" = #ﬁ/‘”, the rules stated in §3 give

(x,8) = Triaxg/md),
(¢'tmd/a®|z,8') = Cgzlmd/a®|/Imd [a|®."g) = (gz/|md]. g)
and N((*9)") = N(yF). If g’ varies over the lattice I, then g varies over
the set
(md/ay T’ = (md/@)amd)”™' = & N3)U{0}.
Substituting all this into (2) yields
(3) 60.(0.x 2)mdfa?))

_ N((L)h) E N(gﬁ)t':"‘ Tirtaxg/md) priigzfimd).g) |
md sE(RNS)0}
Let us now consider first the special case m = 1, p = 0 (which was
essentially treated already in §5). In this casc, we have (RN &) U {0} =
lag| g € K. (ag) € ©} = aa™' = al. Consequently
0P (R x,2) = Z R/l 3 g fdiog = g, (zla¥d).
el

= ¥ R = g (zagal).
se(RNE)I0}

87 (R,

Equation (1) thus becomes
07 (R, x, — 1/2) = N(z/D}OP(R.X.2).
Now assume m 3 1 or p # 0. Then we have x (O)N(07) = 0. Substituting
(3) into (1) and (1) into formula (7.6), with —1/z instead of z, we obtain
PR — D =N Y x(@n)ef(x.0. — 1/2|md/a’])

v mod m

=B ¥ N(gf))( T xlax) AT Tt/ m(/i) oz Imd )

Ge RN © mod m
with the factor
Na”)

N((mdja)P)

Now consider the sum in parcntheses. If x varies over a system of
representatives of (0/m)*, then ax varies over a system of representatives
of those classes of (&/m)* which are mapped under (8/m)* — J/P to the
class & Furthermore, (g) is an integral idcal in the class &', and since &'

B(z) = A(z)
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bears the same relation &8 = [md] to K as R does to £, we recognize the
sum in question as the Gauss sum

()= 3 xlax)e ase/md

¥ mod m

Substituting in now the result (7.5),
T(x-8) = X(1x).

we finally arrive at the identity

4y O7(R, x. —1/2) = W<x~F)N((Z/i)"*‘f)ﬁﬁ(.ﬁ',y )
with the factor
I p - N(a”)t(x)
W(x, ) = [ /D(m) Y; Tl 0
op =[r ] (| ) Mg

_ T(x) ((\md\)/’) ((1’" )
iT /M(m) md la]27
T(x) [»N(Tr‘ md P !
= == N N
At L (( \m(1|) )]
where one has to observe that Tr(p) = T7(p). a” = ", a*a = |a|?, and

|md|’ = (|md )P = \m(l\ﬁ because |md| € RY. Since |t(x)| = M(m),
we have |[W(x,p)| = 1. 1

Ifm# 1 or p#0, we find for the special theta series:
07(x.2) = 3 x(@N (@) em e imdla — N iRy 7).
5 7

aed

and (7.7) yields the
(7.8) Corollary. 67 (x. — 1/z) = W(X.F)N((:/i)”*%)HF(T(.z).

We recommend that the reader who has studied the above proof allow
himself a moment of contemplation. Looking back, he will rcalizc the
peculiar way in which almost all fundamental arithmetic properties of the
number field K have been used. First they served to break up the theta
series, then these constituents were reshuflled by the analytic transformation
faw, but in the end they are reassembled to form u new theta series. Having
contemplated this. the reader should reflect upon the admirable simplicity of
the theta formula which encapsulates all these aspects of the arithmetic of
the number field.
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There is however one important fundamental law of number theory which
does not enter into this formula, that is, Dirichlet’s unit theorem. This will
play an essential role when we now pass from theta series to L -series in the
next section.

Exercise 1. Define ideal prime numbers and show that unique prime factorization
holds in K%,

Exercise 2. Let @ be the semigroup of all ideal integers. If ¢ = (a.b) is the ged of
a. b, then there cxist elements x, ¥ € & U {0} such that

d=xa+yb.
Furthermore, we have x ~ d/a, resp. ¥ ~ d /b, unless x = 0, tesp. ¥ = 0. Here the
notation & ~ 8 means af~' € K*.
Exercise 3. The congruence «x = h mod m has  solution in & with integral x if
and only it (a, m)|h. This solution is uniquc mod 1, provided (u,m) = 1.

Exercise 4. A system of finitcly many congruences with pairwise relatively prime
moduli is simultaneously solvable if every congruence is solvable individually in
such a way that the individual solutions are equivalent (with respect to ~),

Exercise 5. If a.m € 3. then there exists in every residue class mod 7 prime to 1.,
an ideal integer prime to a.
Exercise 6, For the factor group J™/P™ by the group P™ of all principal ideals (a)
such that ¢ = 1 mod m, onc has the exact sequence

I = oo™ — B/m)* — J™P™ > 1,

where 0™ = {¢ € 0* | &

| mod m}.

Exercise 7. Lot K'™ be the preimage of J™ under K* -> J, and let
K™={aeK*|a=1mod m). Then onc has @/m)y* = K'™/K™.

§ 8. Hecke L-series

Let m be again an integral ideal of the number field K and let
X dm—s s!
be a character of the group of ideals relatively prime to m. With respect to
this character, we form the L -scries
xta)

L9 =% g

where a varies over the integral ideals of K and we put x{(a) = 0 whenever
(a.m) # 1. Then the following proposition holds in complete generality.
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(8.1) Proposition. The L -series L(x. s} converges absolutely and uniformly
in the domain Re(s) > 1 + 8. for all § > 0, and one has
|
Loty =1l —— s
l;I L= x(mMANp)~
where p varics over the prime ideals of K.

Proof: Taking formally the logarithm of the product

1

FO =T e
gives the series u

log £(s) = T i xm"

v oamt APy

It converges absolutely and uniformly for Re(s) = o = | +§. In fact,
since [x(p)] < 1, and [UpY'| = [UP)I” = pH*H > p'* and since
#{p|p) = d = |K : Q). it admits the following convergent upper bound
which is independent of s:

d
Y — g =dlogg(l+8).

p.on AP
This shows that the product
! & e
E@) =] 7———— =ex
0 —me ~ (3 mer)
is absolutely and uniformly convergent for Re(s) = | + 8. Now develop in
this product the factors

1 2
N xp) N x(p)

TXER®= " ey Awwr
for the finitely many prime ideals p;, ..., p, such that N(p;) < N, and
multiply them. This yields the equation

- ! & XPO™ - x (o)™

) ;= ¥ ;
.1;[1 L= X)) ™, T OUpDY - Npe)*)*
_yv X
o Ma)
where Y denotes the sum over all integral ideals a which are divisible at
most by the prime ideals py. ... p,. Since the sum 3" contains in particular
the terms such that M(a) < N, we may also write
1 x{a) ;o x{w)

S R

ol L= xEONEH™ ey M@ mion Na®




§8. Hecke L-scries 495

Comparing now in (%) the sum ¥’ with the series L(x.s), we get
x(a)

=y I
pita

: 1
R
1 =gomn — Lol <] 2
1
< —_—
T waen May+d

For N — oo the right-hand side tends o zero, as it is the remainder term of
a convergent serics, since the sequence (Zm(ﬂ)<N fn(nl)'*” ) Nen iS monotone
increasing and bounded from above. Indeed, with the previous notations we
find

s M@ = 2 W
IT

(1= 9py~+0) -

and

toe(FT(1 =90 1%9) ™) = S 1og((1 - 7))

i=1
x, 1
g g‘((p )ll+6
&, i
Z e
1

npr(+8)
og(¢(1+3)) . o

= 3

=d

We now face the task of analytically continuing the L-series L(x,s)
attached to a GroBencharakter x mod m, and setting up a suitable functional
equation for it at the same time. So we are given a character

x:J%— 8
such that
) x{(@) = x:(@) oo (@)
for all integers @ € o relatively prime to m, and there arc two associated

characters
xi:(O/m)* — §' and x. :R* — 5!,
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The character ¢ extends in a unigue way to a character

xi : @/myr — '
such that the identity (+) holds for all integral ideal numbers a € ™ prime
to m. Indeed, the restriction of the function x¢(@) := x(()) xs0(@)™" of ™
to o™ is given by the original character xy of (0/m)*, so it is in particular
trivial on | + m and thus yields a character of (3/m)*.

The L-series of a Griflencharacter of J™ is called a Hecke L-series.
If x is a (generalized) Dirichlet character mod m, i.e., a character of the ray
class group J™/P™, then we call it a (gencralized) Dirichlet L-series, The
proof of the functional equation of the Hecke L-series proceeds in exactly
the same way as for the Dedekind zeta function, except that it is based on
the theta transformation formula (7.7).

We decompose the Hecke L -series according to the classes R of the ideal
class group J /P as a sum
L(x.s) =3 L(& x.5)
7

of the partial L-series

x(a)
LR x,9) =
(8 x.9) E Ny

integral

and deduce a functional equation for those. If all one wants is the functional
cquation of the L-series L(x,s). this decomposition is unnecessary it may
also be derived directly using the transformation formula (7.8), becausc we
know how to represent any idcal a by an ideal number (this was not yet
the case when we were treating the Dedckind zeta function). However, we
prefer to establish the finer result for the partial L -series.

By (7.1), we have a bijective mapping
ROB)/or —> [ac & aintegral}, ar— @),

where & € [?:/K‘ corresponds to the class & € J/P with respect to the
isomorphism K*/K* = J/P. Thereforc we get

xa)
L(R, x,5) = S,
@ =2 NP

where R is a system of representatives of & N3)/o*. We want to write this
function as a Mellin transform. To this end, we recall from §4 the L-function

Ly = Ny = N [ Ny,
y
@
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which has been attached to the G(C|R)-set X = Hom(K , C). The character
Xoc of R* corresponding to x is given by (6.7) as

Xoolx) = N (%7 x| 7P ¥9),

for an admissible p € [, Z and a ¢ € Ry. We put s = s1 + p — ig, where
s € C is a single complex variable, and

Loolx.5) = Lx(s) = Lx(s1+ p—igq).

In the integral

Ix(s/2) = /N(e—v",b/z) dy
y
o

we make the substitution
y > zlal’y/Imd| (a €R),

where m.d € 3 are fixed ideal numbers such that (m) = m and d)y=0is
the different of X |Q. We then obtain

/2 N d
Tx(s/2) = N((—‘ 7rd’> )N(\ﬂ\“)/L""(m/""d""’\N(,\”/z)7‘)
0
¥

and, since N (|md|%2) = (|dx |MUm))*/2,

/2 ¢ # = —riay/Imdi ab o 8/2 ﬂ
(1 ) L) s 71m/< ks
&

where ¢(x) = N(lmd|~P+4)Y2_ Mulliplying this by x/(a)N(a”) and
summing over ¢ € R yields, in view of
Xi(@N@”) _ x(a)N@la)=744) (@)

N(lal") N{lal) T IN@PF

the equation
dy
(Idx M) P Lo (X, LR, x.5) = «(x)]g(y)lv(,v““)%
R )
with the series

8= X xr(@N(ar)eies/mdta,
ueR

‘We now consider the completed L -series

AR, X.8) = (|dx 1M Loc(x, LR X, 5) .
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Then we get
/2, 4
AR x.9) =) [ gINOGY) -
R} ’
We now want to write this function as an integral over the series

OPR D) =G0+ X xi(@N(ah)em e nda,
aefnd

where the summation is extended not only — as in the case of g(y) — overa
system of representatives 93 of (& N 3)/0*, but over alt @ € RN B. We have
e(x)=1ifm=1and p=0,and e(x) = 0 otherwise. We will procecd in
the same way as with the Dedekind zeta function (see (5.5)). Just as we did
there, using

cr1/n Y =
y Y AN X_N(y)'/" t=N(y),
with n = [K : Q], we decompose
dt
R =S xR}, dy:a*.vXT.
¥y

Then, observing that
Ny ) = NN () = N(x(p'u{)/l)'%(.\‘+Tl‘(/7—lq)/n){

we obtain the identity
7 d
- dt
(%) AR, X.5) :c<x>f/Nu*ﬂ""’/z)gm‘/”)d*xr‘ -
[

with s = %(J + Tr(p — iq)/n). The function under the second integral will
be denoted by

gl = N (x(P=in/2y b Xf(a)N(ap)g—muu"H/\md\,u).
aeR
From it, the theta series (&, xel'/”) is constructed as follows.

(8.2) Lemma. NPT O (08, x ixtV") —e(x)) = ¥ anllex.1).

sco*

Proof: For every unit & € ©*, one has xno{&)xi(e) = x{(&)) = 1, so that
we get
N{[e]") = TaleIN (") = xe(eIN (7).
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We put for short & = x¢'/"/|md) and obtain
go(l81%x.1) = N(x{P-ia)2y 7 xi(ea)N ({ea)P} e ™ #e5 50 — o n(x 1),
aeh
Since RNG = ) eR, we get
EEQ¥
NP O 0(R. x.ixt ") — e(x)) =

=X 5 NaPHOR) p(ea)N ((sa)?) e ek o0l

£CO* acER

=X gemtx.0= X ga(lelx.0). ul
sCco* gco*

From this lemma we now obtain the desired integral representation of
the function A(R, x.s5). We choose as in §5 a fundamental domain F of §
for the action of the group |o*|2. F is mapped by log : Ry —>R:itoa
fundamental mesh of the lattice 2 log [©*]. This mcans that we have

S= |J #*F.

nelo*|

(8.3) Propusition. The function

AR x.5) = (1di 19tm)) 7

Loc(X,8)L(R, x.5)
is the Mellin transform

AR x.5)=L(f.5)
of the function

F@O = frRx. 0 = %/N(x(”""'/z)é)(fi,X.i.rt'/”)d*x
F

at s’ = %(A‘ + Tr(p — ig)/n). Here we have set n = |[K : Q, c(x) =
N(Jmd|~7%4)Y/2, and w denotes the number of roots of unity in K.

Proof: One has

floco) = M /N(Afnfrq)ﬂ)d*x_
w
F
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‘We have seen before that

7 s dt -
(%) /\(.‘i,x..\‘):/fu(')t TZL(I‘.J)
0

where

oty = <0 [ gatennds.
5
Since S = Uni‘o,‘n”} one has

H=c0 T fgm(.\xl)d'x.
VIE\U"\,IZF

In each one of the integrals on the right, we make the transformation
F — 7°F . x > n%x, and obtain

fo<z>=vmf T eminiondix.
nelo*|
¥

The fact that we may swap summation and integration is justified in exactly
the same way as for the casc of Dirichlet L-series in §2, p.436. In view of
the exact sequence

| — p(K) — 0" — |0*] — 1,

where 1(K) denotes the group of roots of unity in K, one has
#{e € 0% |e| = n} = w, so that we get

3 gallelPet) = wemnx, ).
1¢1=y

Using (8.2), this gives

c(x) .
Jfot) = fX/ 3 gou(lelx, 1) d*x
w sco*
F
GEY fN(x(””‘“/z)(e(.ﬁ,X,[xt‘/")—s()()) 4'x
w
v
= f{) - floo).
This together with (+) yields the claim of the proposition. [m]

Tt is now the transformation formula (7.7) for the theta series (8, x,2) =
#P(R, xr.z) which gnarantees that the functions f(1) = fr(R. x.1) satisfy
the hypotheses of the Mellin principle.
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(8.4) Proposition, We have fr(&, x.1) = ay + O(e""]"") for some ¢ > 0,
and 12
N(|d|' )
ay = NI /N(,\‘”"/‘)d*x
w
r

ifm=1and p =0, and ag = 0 otherwise. Furthermore we have
[
Fe(Rx 1) = Woor O f @
where AR’ = [m?], and the constant factor is given by
() md \PNI=V T(xp)
W :[,mp)N ] AL
0 (( mar) ) )

Proof: The first statement follows exactly as in the proof of (5.8). For the
second, we make use of formula (7.7). It gives us
NoaPra =
B(R. x, = 1/2) = 0P(R, xr, — 1/2) = W(ON((z/ )P 1) 6P (R X1, 2)
ot -
=WOON ((2/ D2 8(R X 2).
because Xoo(x) = NQPIX[=PT9) = N ((x)7|x|~P=i9) = N(xP|x|7=i4).
Observing the fact that the transformation x > x *! leaves the Haar measure
dx invariant and takes the fundamental domain £ to the fundamental domain
F~1,(7.7) yields for z = ixe'/":
1

fF(—R-X- ;) = ((ui);() / N(X('Hq)/z)é)(ﬁ.X,ix/tl/")d”,\‘
J
] / NG P08 x| — 17ixi") d*x
w
P

_ oW /N(Xfl:g'i+p+§)N([(p+§>/nw(ﬁ/.Yyiny//,)dvx
w
£l
_ cQOW)
- ur

N(x(ﬁ“‘“/z)x'/HT’”’)/”H(R’,Z ’-Irl/ﬂ)dx/\_
A
= WO (R .

We have used in this calculation that N(x'/?) = N(x)"/*> = | and
N(x?) = N((*)?) = N(x?), and that the character X, the complex
conjugate of X, is given by

Toolx) = N (&7 x| 7P=i7). =i
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From this proposition and (1.4), we now finally get our main result.
We may assume that x is a primitive Grifiencharacter mod m, ie., that
the corresponding character x¢ of (o/m)* is primitive (sce §6, p.472).
The L-series of an arbitrary character differs from the L-series of the
corresponding primitive character only by finitely many Euler factors. So
analytic continuation and functional equation of one follow from those of the
other.

(8.5) Theorem. Let x be a primitive Gréfencharacter mod m. Then the
function

AR x5 = (ldx 19Um) VLot X LR, x05),  Res) > 1.

has a meromorphic continuation to the complex plane C and satisfies the
functional equation

AR x,9) = WOOAR T 1= 9)

where R = [md], and the constant factor is given by

woo = [P (2 )] T

It has absolute value |[W(x)| = L.

A(R, x.5) is holomorphic except for poles of order at most one at
s=Tr(—p+ig)/nands=1+Tr(p+ig)/n. Inthccasem# 1 orp#0,
A(R, ¥, ) is holomorphic on all of C.

Proof: Let f() = fr(& x,1) and g(t) = fr-1(&.X.0. From f() =
ag+ 0=y, g(t) = by + O(e™""") and

1
(7)) = Wi e,

it follows by (1.4) that the Mellin transforms L(f.s) and L(g,s) can be
meromorphically continued, and from (8.3) we get

Ak =1(1, %(x +Tr(p — i) /)
= WOOL(s. 5 + TR n = 56 + T = ig)/m)

|
= W(x)L(gv FU s +Tr(§+iq)/n))
=W()AR. X1 —9).

wherc we have to take into account again that oo (x) = NP |x |74y
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According to (1.4), in the case ag # 0, L(f, s) has a simple pole at s = 0
and s = § +Tr(p)/n, ie., AR, X,5) = L(f, 1(s + Tr(p — ig)/n)) has a
simple pole at s = Tr(—p +ig)}/n and s = 1 + Tr(p + ig)/n. f m £ |
or p # 0, then ag = 0, i.e., A(R, x, ) is holomorphic on all of C. [m]

For the completed Hecke L-series

AG8) = (dic IRMN Lo (6, HIL(X.$) = 3. AR 1,5)
®

we derive immediately from the theorem the

(8.6) Corollary. The L-series A(x.s) admits a holomorphic continuation
to

CATr(—p+ig)/n, 1 +Trip +ig)/n}
and satisfies the functional equation

Alx, sy = WO AKX 1—5).

It is holomorphic on all of C, ifm# 1 or p # 0.

Remark 1: For a Dirichlet character x mod m, the functional equation
can be proved without using ideal numbers, by splitting the ray class group
J™/P™ into its classes &, and then proceeding exactly as for the Dedekind
zeta function. The Gauss sums to be used then are those treated by Hasse
in [52]. On the other hand, one may prove the functional equation for the
Dedekind zeta function by using ideal numbers, imitating the above proof,
without decomposing the ideal group at all.

Remark 2: There is an important alternative approach (o the results of
this section. It starts from a character of the idéle class group and from
the representation (8.1) of the corresponding L-series as an Euler product.
The proof of the functional equation is then based on the local-to-global
principle of algebraic number theory and on the Fourier analysis of p-adic
number fields and their idele class group. This theory was developed by the
American mathematician Jo#n Tarx, and is commonly known for short as
Tate’s thesis. Even though it does meet the goal of this book of presenting
modern conceptual approaches, we still decided not to include it here. The
reason for this is the clarity and conciseness of Tate’s original paper [24],
which cannot be improved upon. In addition Srrar .anG’s account of the
theory [94] provides an illustrative complement.
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Thus instead of idly copying this theory, we have chosen to provide a
conceptual framework and a modern treatment of Hecke’s original proof
which is somewhat difficult to fathom. It turns out that Hecke's approach
continues to have a rclevance of its own, and can even claim a number of
advantages over Tate’s theory. For the functional equation of the Riemann
zeta function and the Dirichlet L -scries, for example, it would be out of
proportion to develop Tate’s formalism with all its p-adic expense, since
they can be settled at a beginner’s level with the method used here. Also,
L-series, and the very theory of theta series has to be seen as an important
arithmetic accomplishment in its own right.

It was for pedagogical reasons that we have proved the analytic
continuation and functional equation of L-series four times over: for the
Riemann zeta function, for the Dirichlet L-scries, for the Dedekind zeta
function, and finally for general Hecke L-serics. This explains the number
of pages needed. Attacking the general case directly would shrink the exposé
to little more than the size of Tate's thesis. Still, it has 1o be said that
Tate’s theory has acquired fundamental importance for number theory at
large through its far reaching generalizations.

§9. Values of Dirichlet L-series at Integer Points

The results of § 1 and §2 on the values {{1 — ) and L(x, 1 — k) of the
Riemann zeta function and the Dirichlet L-series will now be extended to
generalized Dirichlet L-series over a totally real number field. We do this
using a method devised by the Japanese mathematician Takuro Swintant (who
died an early and tragic death) (see [127], [128]).

We first prove a new kind of unit theorem for which we need the following
notions from linear algebra. Let V be an n-dimensional R-vector space, k
a subfield of R, and V; a fixed k-structure of V, ie., a k-subspace such
that V = V; ® R. By definition, an (open) k-rational simplicial cone of
dimension d is a subset of the form

Clor, ..cvg) = {1+ +tava | e € RS

where vy, ....v; are linearly independent vectors in V. A finite disjoint
union of k-rational simplicial cones is called a k-rational polyhedric cone.
We call a linear form L on V k-rational if its coefficients with respect to a
k-basis of Vi lie in .
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(9.1) Lemma. Every nonempty subset ditferent from {0} of the form
P={reV|L() =0, 0<iz Mjx)>0 0<j<m}

with nonzero k -rational linear forms L;, M; (€ =0 orm =0 is allowedy is
a disjoint union of finitely many k-rational cones, and possibly the origin.

Proof: First let P = {x € V| L;(x) = 0. 1, ..., ¢}, with k-rational
linear forms L, ..., Ly # 0. For n = I and n = 2 the lemma is obvious. We
assume it is established for all R-vector spaces of dimension smaller than .
If P has no inner point, then there is a linear form L among the L, ... L¢
such that P is contained in the hyperplane L = 0. In this case the lemma
follows from the induction hypothesis. So let # € P be an inner point, i.e.,

Ly(u) > 0. ..., Le(u) > 0. Since Vy is dense in V, we may assume u € Vj.
Forevery i = I.....¢, let &P = |{x € P| Li(x) = O}. If ; P # {0}, then
3; P ~ {0} is by the induction hypothesis a disjoint union of a finitc number

of k-rational si cones of di ion < n. If a si | cone in 3; P
has a nonempty intersection with some 3; P, then it is clearly contained in
9 P NJ;P. Therefore 3; P U...U 8P ~ {0} is a disjoint union of k-rational
simplicial cones of dimension < n, so that

HPU.UHP~{0)=JC;,

jed
7C(v SV UL ve, € Vi, dj < n. Forevery j € J
=C{v, SV u). This is a (d; + 1)-dimensional &-rational

nmp]lclal cone. We claim lhal

P 0} = Uc/u UC(u)UR+14
jed

Indeed, if the point x € P . {0} lies on the boundary of P, then it belongs
to some 9; P, hence to U/e_, C;. On the other hand. i’ x belongs to the
interior of P, then L;(x) > 0 for all i. If x is a scalar multiple of u, then
we have x € R u. Assume this is not the case, and let 5 be the minimum
of the numbers L (x)/L(u), ..., L¢(x)/L¢(u). Then s > 0 and ¥ — su lies
on the boundary of P. Since x — su # 0, there is a unique j € J such that
x —su € C;, and thus there is a unique j € J such that x € Cj{u). This
proves the claim.

Now let
P:{.¥€V|L,(x)30, O<i<t Mj(x)>0, j=1....m}.
Then

P={xeV|Lix) =0, M;(x) 20}
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is a disjoint union of a finite number of %-rational simplicial cones and {0}.
For every j = 1, sy let 3P = {x € Pl M;(x) = 0}. If a simplicial
cone in P has nonempty intersection with 9; P, lhen it is contained in ;7.
As P =P ~ UL, 9P, we see that since P ~ {0} is a disjoint union of
finitely many k- ralmnal simplicial cones, then so is P. [m]

(9.2) Corollary. If C and C' are k-rational polyhedric cones, then C ~ C”
is also a k-rational polyhedric cone.

Proof: We may assume without loss of generality that C and C' are k-
rational cones. Let d be the dimension of C’. Then there are n A-rational

linear forms Ly, ..., L,_q, My, .... My such that
C={xeV|Li() = -=Lig(x) =0, Mi@x) >0, ..., Myg(x) > o}.
If we define, foreachi =1, ...,n—4d,

CE={xeC|Lix)="=Li(x)=0, £Li(x)>0}.

and foreach j=1,....d,

C,:{xeC

then we find, as can be checked immediately, that C ~ €’ is the disjoint
union of the sets Cf, ..., C7 4. CT,...,Cp_y. Cio ..o, Ca. By (9.1), these
are either empty or k-rational polyhedric cones. Therefore C ~ C” is also. O

Li(x)=-=Lp.a(x)=0,
Mix) > 0, .., Mj_i(x) > 0. M;(x) <0

It is a rare and special event if a new substantial insight is added to the
foundations of algebraic number theory. The following theorem, proved by
Suiviant in 1979, falls into this category. Let K be a number field of degree
n=[K:Ql andletR =[], C] * be the corresponding Minkowski space
(r € Hom(K.T)). Define

R!,, ={(;) €R*|x; > 0 forall rcal 7} .

(Observe that one has Ry, = R’ only in the case where K is totally real.)
Since R = K ®¢ R, the field K is a Q-structurc of R. The group

o} =o"NRy,

of totally positive units acts on R}, via multiplication, and we will show that
this action has a fundamental domain which is a Q-rational polyhedric cone:
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(9.3) Shintani’s Unit Theorem. If £ is a subgroup of finite index in 0%,
then there exists a (Q -rational polyhedric cone P such that

R}, = UF &P (disjoint union).
ek

Proof: We consider in R}

7,, the norm-one hypersurface

s={rer,

NG =1},

Every x € R, is in a unique way the product of an element of S and of a
positive scalar element. Indeed, x = [N (x)|"/"(x/|N (x)|'/*). By Dirichlet’s
unit theorem, E (being a subgroup of finite index in ©*) is mapped by the
mapping
e:5— [TIR]",  (x) — (loglxcl),
T

onto a complete lattice [° of the trace-zero space H =
{x e [TI,R]"| 7r(x) = 0}. Let @ be a fundamental mesh of I, let
@ be the closure of @ in H, and put F = € '(&). Since @ is bounded and
closed, so is F. It is therefore compact, and we have

Q)] S=|JeF.

3

Let x € F and Us(x) = {y € R |lx — yll <&} C R}, 8 > 0. Then there
is clearly a basis vy, ..., v, € Us(x) of R such that ¥ = tju; + ++- + 1,0,
with #; > 0. Since K is dense in R by the approximation theorem, we may
even choose the v; to lic in K N Us(x). Then Cs = C(vy, ....v,) is a
Q-rational simplicial cone in R, with x € Cs, and cvery y € C; is of the
form y = Az with 2 € R} and z € Us(x). We may now choose § sufficientty
small so that
CsNeCs =0 forallee £, e #1.

It not, then we would find sequences A,2y, Az, € Ciyu, Ak, € RE,
2,2, € Uip(x), and &, € E, &, # 1, such that A,z, = &,A,z}, and thus
PuZv = 823, Py = Ay/A},. z, and z,, would converge to x; now p, would
converge to 1 as o} N(z,) = N(z}), i.e., x = (lime,)x. This would mean
that lim £, = 1, which is impossible, since £ is discrete in R.

F being compact, we thus find a finite number of Q-rational cones
Cy, ....Cp in RY, ) such that
@ F=U(CNF

m
=
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and C;NeC; =W forall e € E. e # 1. and all i = 1. ..., m. From (1)
and (2), we deduce that

Ri, = U U &G

i=lsel
In order to urn this union into a disjoint one, we put C}” =y and

cV=ci~UsCi. i=2....m
eck

€C, and C; are disjoint for almost all & € £. Hence, by (9.2), ¢} is a
Q-rational polyhedric cone. Observing that C; NeC; =W fore € E, & £ 1.
we obtain

m
A1
Rt =U Uec”
i=leck
and sV NCY =Pforallec K andi =2, ...,m.
We now assume by induction that we have found a finitc system of
Q-rational polyhedric cones C‘” ..... Cf” ), v=1,...,m—2 satisfying the
following propertics:

W M cai

n .
Gy Ry, =U U EC,VJ,

iZtecE
(i) €' NC;=foralle € E,ifi <vandi# .
We put CHY = ¢ for i < v+ 1, and

C; frrh) C“) ~ U C‘(,l)l for izv+42.

Then C,("“). L., 8V is a finite system of Q-rational polyhedric cones

which enjoys properties (i), (i), and (jii) with v+ 1 instead of v. Consequently,
(':"””, .., C¥=D s a system of Q-rational polyhedric cones such that

m
R, = U eC™ " (disjoint union). O
i=leck

Based on Shintani’s unit theorem, we now obtain the following description
of Dirichlet’s L -series. Let m be an integral ideal, J™/P™ the ray class group
mod m. Let x : J®/P™ — C* be a Dirichlet character mod m, and

Lo =% gﬁ((:)’
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the associated Dirichlet L-series. If & varies over the classes of J™/P™,
then we have

Lx,5) =3 x (R (R.5)
R

with the partial zeta functions

1
R.o5) = —_—
HAO= T Sy

aintegral

Let & be a fixed class, and o an integral ideal in R. Furthermore let
(+a'my=0+a'mn R}, be the set of all totally positive elements
in 1 + a~'m. The group

E:oﬂr‘:{seo"’szImodm,eeR:’H}

acts on (1 + a~'m),, and we have the

(9.4) Lemma. There is a bijection
O+a'm)/E "> R, @+ aa,

onto the set fiy, of integral ideals in &,

Proof: Leta € (1 +a~'m);. Then we have (a — 1)a € m, and since a and
m are relatively prime, we get a — | € m, i.e., (@) € P'™. Hence aa lies
in & Furthermore, we have aa C a(l + a~'m) = a4+ m = o, so that aa is
integral. Therefore ¢ ~ an gives us a mapping

(L+a7'm)y = R

It is surjective, for if aa, ¢ € P™, is an integral ideal in £, then
{a—Na C mu Cm,sothat g € I +a"'m, and also a € RY,,, and so
ae(l+a” m)Jr For a,b € (1 +a~'m),, we have aa = ba if and onty
if (@) = (b), so that @ = he with £ € 0*. Since ¢ € (1 + a"m)+, it follows
that ¢ € £, ie., @ and b have cxactly the same image if and only if they
belong to the same class under the action of E. [m]

The lemma implics the following formula for the partial zeta function
C(R.5):
1

1
R 8) = —— —_—
YR = Sy TN @T
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where R runs through a system of representatives of (1 +a~'m),./&. To this
we now apply Shintani’s unit thcorem. Let

m
R, =) UG
i=leck

be a disjoint decomposition of R}, into {initely many Q-rational simplicial

cones C;. Foreveryi = I, ...,m, letv;, ..., viy be a linearly independent
system of generators of C;. Multiplying if necessary by a convenient totally
positive integer, we may assume that all vy lie in m. Let

Cl={nvn+ o+t |0 <1 < 1},

and
RARCH=(+a'm)nC!.

Then we have the

(9.5) Proposition. The sets R(8, C;) are finite, and one has

[{R.5)= L(Cix,8)

1
e D
N (S ver®cp
with the zeta functions

C(Chx. ) = Y| N+ 2w+ +zgvia)|

where 7 = (21, ....z4,) varies over all d; -tuples of nonnegative integers.

Proof: R(£.C;) is a bounded subset of the lattice a~'m in R, translated
by I. It is thercfore finite. Since C; € R}, is the simplicial cone gencrated
by vir, ... Vg € myevery a € (1 + a~'m) N C; can be written uniquely as

4
a=3 yivu
=
with rational numbers y; > 0. Putting
yve=xs+zp, O<xp<l1, 0<z€7Z,
we have 3" xyvi¢ € 1 +a 'm because 3 zyuie € m € a”'m. In other words,

every a € (1 +a~'m) N C; can be written uniquely in the form

4
a=x+3 z
=1



§9. Values of Dirichict L-scrics at Integer Points 511
with x = Y xev;¢ € R(R,Cy). Since
m
A4a'myy = Ya+atmnec,
i=leck

a = x+ Y zpu;; runs through a system 9 of representatives of { 1+alm) /E

if / runs through the numbers t, ..., n, x through the elements of R(R,C;),
and z = (21, ..., z4) through integer tuples with z¢ > 0. Thus we indeed
find that
1o
C(R.5) = o(Crox.8). [m]

(9.6) Corollary. For the Dirichlet L -series attached to the Dirichlet character
x 1 J™/P™ — C*, we have the decomposition

x(w
L{x,5) =
e % Ma) 5 cer@ e

¢(Ciox, ),

where & runs through the classes J™/P™, and a denotes an integral ideal
in R, one for each class.

The relation between zeta functions and Bernoulli numbers hinges on a
purely analytic fact which is independent of number theory. This is what we
will describe now.

Let A be a real r X n-matrix, r < n, with positive entri
1 =i < n. From this matrix we construct the linear forms

saji, 1< j<r,

n ,
Li{ty. ..., )y =Y auti and Li(zi, ..., ) =3 a;z;.
i=1 j=1

For an r-tuple x = (x, ...,x,} of positive real numbers, we write the
following series

tAxsi= Y [ILiE+07.
H {0 i=1

On the other hand we define the generalized Bernoulli polynomials B (A, x)
by

1
Bi(A,) = — ¥ Br(A,x)",
Hoi

where By (A, x)/ (k)" is the coefficient of

k—1 h—1
AR URRIT TR 8}
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in the Laurent expansion at O of the function
rooexplux;Li(6))
j=t exp(ul;(t)) —

=1

in the variables . t). ... .ti_1.fiz1, ....8y. For r = n =1 and A = q,
we have By(a,x) = a*~! By (x), with the usual Bernoulli polynomial Bg(x)
(see § 1, exercise 2). The equation

Bi(A L —x)y=(=1)"* VB4 x),

where | — x signifies (1 —x;, ..., 1 — ), is easily proved.

(9.7) Proposition. The series {{A, x,s) is absolutely convergent for Re(s) >
r/n, and it can be meromorphically continued to the whole complex plane.
Its values at the points s = | —k, k = 1,2, ..., are given by

L(Ax 1=k = (——l)'w-

Proof: The absolute convergence for Re(s) > r/n is deduced from the
convergence of a series > | ﬁ by the same arguments that we have used
repeatedly. It will be left to the reader. The remainder of the proof is s;
to that of (1.8). In the gamma function

3

o
,
r(s)"zf--- Mot 0y Yy - du,
i=l
i 1]

we substitute
> LIz + 0,

and obtain

re"[ILie+x~°
=1

0 o
:/---fexp[— ZI‘L,*(Z+X)](H ety T dty
=1
[

Summing this over all z = (z,, ..., 2.}, z; € Z, z; > 0, and observing that

SHLzH+x) =2 (z; + L),
i=1 j=1



§9. Values of Dirichlet L-scrics at Integer Points 513

yields the equation
T($)'C(A, x,8) = / . -/g(t)(n et YT ity
oD
with the function

o — _ e —x)L ()
gy =g, ..., m—g exp L) 1

‘We cut up the space R” into the subsets
Di={reR |0<y <y, L=t .. i-Li+l, ....n}

fori =1,...,n,and get

&5} CAx ) =T()™" Y ]gm(u ety Ty
=
b;

In D; we make the transformation of variables
t=uy=u(y. ..., Yu)s
where 0 < &, 0 < yy < 1 for ¢ #7 and y; = 1. This gives
r@ [ ey a,
by

o1 1

:l‘(.r)’"/[/"'/ﬂ(u}')(
0

00

Myer 'T1 dy[]u”‘ Vdu.
2 i

For 0 < & < I, let now I (1), resp. /,(400). denote the path in C consisting
of the interval 1, ], resp. [+0c. &], followed by a circle around 0 of radius
¢ in the positive direction, and the interval [, 1], resp |e. + oc]. For ¢
sufficiently small, the right-hand side of the last equation following (1.9)
becomes

@ A [~ (T v TT diye .
[ i
Fe(4o) Lo (=)

with the factor
Al — rs)™
Gy = (@i — (e — i1
where one has to observe that the lincar forms L., ....L, have positive
coefficients. It is easy to check that the above expression, as a function ol the
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variable s, is meromorphic on all of C. As for the factor A(s), (1.2) implies

that F—sy

1
T @riy (i S (et — [y temis |
Let us now put s = 1 — &, The function "/ (2" — 1)/(*™* — 1) takes
the value (—1)"*~Yn at s = 1 — k. Thus expression (2) turns into

Cpyw-p LR / /[g(uy)u”“’“"(n ] dy[]du.
[ e

Lo

A(s)

(

n Qmi)®

where K, denotes the positively oriented circumference of the circle of radius
£, and where we have to observe that the integrals over (oo, ¢| and [¢, 00).
resp. over |1, ¢ and |&, 11, kill each other in (2) if s = 1 — k. This value is
obviously ((—1)"*=1 I (k)" /n} times the coefficient of u"*~([ ], yokt
in the Laurent expansion of the function

Coexp(u(l —x)Li(y)
=t exp(ul;(y) —1 )vzly

=

UYL, o HYio1 M Ui o YY) =

which is a holomorphic function of u, 1, ..., 4. 1, fiz1, ...,y in the direct
product of n copies of the punctured disc of radius . Therefore the value
of (2) at s = 1 — & equals (—1)"* DE"By(A, 1 — x)")/n. Inserting this
into (1) gives

1
C(Ax 1= k) = (=102 3 Bi(A 1 — 0
=)

Bir(A 1 —x)

— (kD .

= (=" M

Together with the equation By (A, 1 — x) = (—1*% Ui B (A, x) mentioned
above, this gives the desired result. [}

Theorems (9.5) and (9.6) now imply our main result concerning the values
of Dirichlet L-series L{x,s) at integer points s = 1 —k, A =1,2, ... If K
is not totally real, then these values are all zero (except if x is the triviat
character, for which s = 0 is not a zero). This can be read ott immediately
from the functional equation (8.6) and (5.11).

So we let K be a totally real number field of degree n. Numbering
the embeddings T : K — R identifies the Minkowski space R with R",
and R}, = R} with the set R} of vectors (xi,...,x,) with positive
cocfficients x;. Given the Q-rational simplicial cone C; C R’| generated by
Vits .- - Vi, We again consider the zeta functions

C(Crox.s) = TN +zivn + -+ zq i)}
z
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it
vy=@). ey, =14,

then A; = (@) is a (d x n)-matrix with positive entries, and the -th
component of 21051 + - - - + 24, vig, becomes

LiGzi, ....zq) = Eajk i
For x € R, we therefore get
»
SChx. ) =L T Lizrs o 20) ™" = (AL X, 5),
T k=1

and, from (9.5) und (9.6), we obtain by putting s = | — k the

(9.8) Theorem. The values of the partial zeta function { (£, s} at the integral
pointss =1 —k, k=1,2,3, ..., are given by
By(Ar,x) ]

n
FR - py =ty [y
i=1 xeR(R,C;)

and the valucs of the Dirichlet L -series L{x, s) are given by

" Br(A;, x
L<x,1—k>:2x(um<u)“z[< e k(kn 2).
G i=l NER(R.Cy)

Here a is an integral ideal in the class & of J™/P™,

This result about the Dirichlet L -series L(x.s) also covers the Dedekind
zeta function i (s). The theorem says in particular that the values L(x. 1 —k).
for k > 1, are algebraic numbers which all lie in the cyclotomic field Q(xr)
generated by the values of the character x,. The valucs {x (1 — &) are even
rational numbers. From the functional equation (5.11),

_ 12 SN LTSN L
k{1l ~s)=|dg*"Y (Los 2) (sm 2) T (s)Y'Ck (s),

we deduce that (g (1 —k) =0 forodd k > |, and it is # O for even k > 1.
If the number field K is not totally real, then we have {g (s} = 0 for all
s=-1,-2, -3, ...

(9.9) Corollary (Siccrr-Kimaen), The values of the partial zeta function
C(R,5) at the points s = 0, — 1, —2, ... are rational numbers.
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Proof: Let ¢, ....a, be nonzero numbers in X, and let A be the (# x n)-
matrix (aj;), where aj; is the i -th component of «;, after identifying R = R”
according to the chosen numbering of the embeddings 7 : K — R. It is
enough to show that Bi(A,x) is a rational number for every r-tuple of
rational numbers x = (x,....x.). To see this, let L|Q be the normal
closure of K|Q and o € G(L|Q). Then ¢ induces a permutation of the
indices {1,2, ..., n} so that

oaj =ajeq (1 =j2r.i=1...,n).

Now we had By(A,x) = L Y1) Bi(A,. )", where By(A, 1) was the
coefficient of @™ =17ty . ti_y.ti1, ... 1) " in the Taylor expansion
of the function

, o explxjul;(6))

u
jot explLyo) — 1 |y

with L;(t) = ajity + -+« + djuty. This makes it clear that Bi(A,x)% Tics
in L and that 0 B (A, x)® = B(A, X)) Therefore By(A.x) is invariant
under the action of the Galois group G{L|Q), and thus belongs to Q. [}

The nature of the special values of L-series at integer points has recently
found increasing interest. Like in the class number formula, which cxpresses
the behaviour of the Dedekind zeta function at the point s = 0, the properties
of all the special values indicate a deep arithmetic law which appears
to extend to an extremely wide class of L-scries, the L-series attached
to “motives”. According to a conjecture of the American mathematician
Srrrren Licrrensavs, the significance of these L-values can be explained
by a strikingly simple geometric interpretation: they appear according to
the Lichtenbaum conjecture as Euler characteristics in étale cohomology
(see [99], [12]). The proof of this conjecture is a great, if still remote, goal
of number theory. On the way towards it, the insights into the nature of
L-series which we have encountered may prove to be important.

Finally we want to mention that the French mathematicians Dawier Barsky
and Piererre Cassou-NoGuis have used Suwrant’s result to prove the existence
of p-adic L-series. These play a major role in Iwasawa theory, which we
have mentioned before. The p-adic zeta function of a totally real number
field X is a continuous function

Gp i Zp {1} — Q.
which is related to the ordinary Dedekind zeta function i (s) by

Lp(—n) = Lk {—n) ]‘_[(1 - NPy
Plp
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for all 7 € N such that —n = 1 mod d, where d = [K (112p) : K] denotes
the degree of the field K (112,) of 2p-th roots of unity over K. The p-adic
zeta function is uniquely determined by this relation. Its existence hinges on
the fact that the rational values Zx (—n) are subjected to scvere congruences
with respect to p.

§10. Artin L-series

So far, all L-series we have considered were associated to an individual
number field K. With the Artin L-series, a new type of L-series enfers the
stage; these are derived from representations of the Galois group G(L|K)
of a Galois extension L{K. This new kind of L-series is intimately related
to the old ones via the main theorem of class field theory. In this way they
appear as far-reaching generalizations of the old L -series. Let us explain this
for the case of a Dirichlet L -series

Lx,$) = (”)

=11

p 1= x(n P
attached to a Dirichlet character
X {Z/mZ) —> C*,

Let G = G(Q(1) Q) be the Galois group of the field Q{u,,) of 7 -th roots
of unity. The main theorem of class field theory in this particular case simply
describes the familiar isomorphism

@/ mZy > G,

which sends the residue class p mod m of a prime number p { m 1o the
Frobeniius automorphism g, which in turn is defined by

et =¢" for {€pm.
Using this isomorphism we may interpret x as a character of the Galois
group G, or in other words, as a |-dimensional representation of G, i.e., a
homomorphism

x:G — GL{C).

This interpretation describes the Dirichlet L-series in a purely Galois-
theoretic fashion, :
IT—
ptm 1 = X(0p)p™°
and allows us the following generalization.

Lix.s)=
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Let L|K be a Galois extension of finite algebraic number ficlds with
Galois group G = G(L|K). A representation of G is an action of G on a
finite dimensional C-vector space V, i.c., a homomorphism

p:G — GL(V) = Aute (V).

Our shorthand notation for the action of ¢ € G on v € V is 0w, instead of
the complete expression p(o)v. Let p be a prime ideal of K, and let B|p be
a prime ideal of L lying above p. Let G be the decomposition group and
Iq the inertia group of P over p. Then we have a canonical isomorphism

Gy/lyg — G(x(Plcp)

onto the Galois group of the residue field extension « ()|« (p) (see chap. 1,
(9.5)). The factor group Gq/ly is therefore generated by the Frobenius
automorphism ¢q whose image in G (« ()« (p)) is the g-th power map
x = x4, where ¢ = M(p). ¢ is an endomorphism of the module Vi of
invariants. The characteristic polynomial

det(1 — pqt; V¥

only depends on the prime ideal p, not on the choice of the prime ideal P
above p. In fact, a different choice P'[p yields an endomorphism conjugate
to @y, as the decomposition groups Ggy and Gy, the inertia groups Igq
und /gy, and the Frobenius automorphisms ¢y and @y are simultancous
conjugates. We thus arrive at the following

(10.1) Definition. Let L|K be a Galois extension of algebraic number fields
with Galois group G, and let (p, V') be a representation of G. Then the Artin
L-series attached to p is defined to be

1
LK. ps)=]] —————————.
LK) l;[ det(] — pp(p)=5; VI¥)

where p runs through all prime ideals of K.

The Artin L -series converges absolutely and uniformly in the half-planc
Re(s) = 1 4 8, for any & > 0. It thus defines an analytic function on the
half-plane Re(s} > 1. This is shown in the same way as for the Hecke
L-series (see (8.1)), observing that the &; in the factorization

d

det(1 — @pUp) 5 V) = T[(1 - &Np) ™)

i=1

arc roots of unity because the endomorphism @q of V% has finite order.
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For the trivial representation (p,C), p(0) = |, the Artin L-serics is
simply the Dedckind zeta function ¢ (s). An additive expression analogous
(o the expansion

1
Ik(sy= Xﬂ: ey
does not exist for general Artin L -series. But they exhibit a perfectly regular
behaviour under change of cxtensions L|K and representations p. This
allows to deduce many of their excellent properties. As a preparation for this
study, we first collect basic facts from representation theory of finite groups.
For their proofs we refer to [125].

The degree of a representation (o, V) of a finite group G is the dimension
of V. The rep ion is called irreducible if the G-module V does not
admit any proper G -invariant subspace. An irreducible ref ion of an
abelian group s simply a character

p: G —> C"=GLi{C).

Two representations (p, V) and (o, V') are called equivalent if the G-
modules V and V' are isomorphic. Every representation (o, V) factors into
a direct sum

V=Vid -V
of irreducible representations. If an irreducible representation (pg. V) is

equivalent to precisely . among the rep ions in this d position
then ry is called the multiplicity of py in p, and one writes

P~ 3 rafus
a

where g, varies over all non-equivalent irreducible representations of G.

The character of a representation (o, V) is by definition the function
p:G—C, y,(0) =trace p(g).

One has x,(1) = dimV = degree(p), and )(,,(aro") = xp(r) for
all 0.t € G. In general, a function f : G — C with the property
that f{ota™') = f(r) is called a central function (or class function).
The special importance of characters comes from the following fact:

Two representations are equivalent if and only if their characters are equal.
I p~ 3, rape then
Xo =2 raXn, -
«
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The character of the wrivial representation p : G — GL(V), dimV =1,
p(o) = | forall o € G, is the constant function of value 1, and is denoted
by 1g, or simply 1. The regular representation is given by the G-module

V=CIGl={ L x:t|x; €C},
veG

on which the 0 € G act via multiplication on the left. It decomposes
into the direct sum of the trivial representation Vy = CZ{,GUU. and
the augmentation representation {Z” G Y00 | X = 0]A The character
associated with the regular, resp. the augmentation representation, is denoted
by g, resp. ug. We thus have r¢; = ug + 1g, and explicitly: rg(o) =0
fora £ 1, rg(l) =g =#G.

A character yx is called irreducible if it belongs to an irreducible
representation. Every central function ¢ can be written uniquely as a linear
combination

=Y cxx. ¢x€C,
of irreducible characters. ¢ is a character of a representation of G if and only
if the ¢, are rational integers > 0. For instance, for the character rg of the
regular representation we find

r¢ =2 x(x,

where x varies over all irreducible characters of G. Given any two central
functions ¢ and ¥ of G, we put

1 _
(@.4)=— 3 ploW (o), g=4#G,
8 veG

where ¥ is the function which is the complex conjugate of 3. For two
irreducible characters x and x', this gives

1, ifx=x",
0, if x #x'.
In other words, ( . ) is a hermitian scalar product on the space of all central
functions on G, and the irreducible characters form an orthonormal basis of
this hermitian space.

For the representations itself, this scalar product has the following
meaning. Let

(x.x’>:{

V=Vig---aV,

be the decomposition of a representation V with character x into the direct
sum of irreducible representations V;. If V' is an irreducible representation
with character x’, then (x.x’} is the number of times that V' occurs
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among the V;, up to isomorphism. For if x; is the character of V;, then
X =Xxt+:+ xr,so that
G XY= 0xD 4+ Gty
and we have (y;, x') = 1 or 0, depending whether V; is or is not isomorphic
o V'. Applying this to the trivial representation V' = C, we obtain in
particular that |
dimV% = = ¥ x(0), g =#G.
8 oG

Now let # : H — G be a homomorphism of finite groups. If ¢ is a central
function on G, then A*() = ¢ o ki is a central function on H. Conversely,
one has the following proposition.

(10.2) Frobenius Reciprocity. For every central function i on H there is
one and only one central function h, () on G such that one has

(0. 1 () = (B (@), %)

for all central functions ¢ on G.

This will be applied chiefly to the following two special cases.

a) H is a subgroup of G and h is inclusion.

In this case we write ¢|H or simply ¢ instead of A*(¢), and v, instead
of &, (y) (the induced fi ion). If ¢ is the character of a rep ion
{p, V) of G, then ¢|H is the character of the representation (o|H, V). If
is the character of a representation (p, V) of H, then ¥, is the character of
the representation (ind{p), [ndg(V)) given by the induced G-module

Indg(V) = { f:G—> V| flrx) =1f(x) forall r e II} s
on which o € G acts by (6 f)(x) = f(xo) (see chap. [V, §7). One has
Ynlo) =Ly (o™,
T

where 7 varies over a system of representatives on the right of G/H, and we
put (ot ) =0ifror~' ¢ H.
b) G is a quotient group H /N of H and h is the projection.

We then write ¢ instead of 2*(¢), and ¥; instead of 4.(y). One has

Yilo) = % T;ﬁ ¥{r).

If ¢ is the character of a representation (p,V) of G, then h*(p) is the
character of the representation (p o 4. V).

The following result is of great importance.
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(10.3) Brauer’s Theorem. Every character x of a finite group G is a Z-
linear combination of characters x;. induced from characters y; of degree 1
associated to subgroups H; of G.

Note that a character of degree 1 of a group H is simply a homomorphism
x:H—>C

After this brief survey of representation theory for finite groups, we
now return to Artin L-series. Since two representations (o, V) and (o', V)
are equivalent if and only if their characters x and x' coincide, we will
henceforth write

1
LK )=l ————7
l;[ det(1 — plep)R(p)~*: VIv)
instead of £(L|K,p,s). These L-serics exhibit the following functorial
behaviour.

(10.4) Proposition. (i) For the principal character x = 1, one has
LLIK , L.s) = ¢k (s).
i) If x, x' are two characters of G(L|K), then
LK, ¢+ x'8) = LANK x, )CWLIK, ', 9).
(iii) For a bigger Galois extension L'|K, L’ 2 L 2 K. and a character x of

G(L|K) one has
LUK, x,8y=L(LIK.x,s).
(iv) If M is an intermediate field, L 2 M 2 K, and x is a character

of G(L|M), then
LLIM, %, 5) = L(LIK, X4.5) .

Proof: We have already noted (i) earlier. (i} If (o, V), (p'.V') are
representations of G{L|K) with characters x,x', then the direct sum
(p@ o',V @© V') is a rcpresentation with character x + x', and

det(1 — ppts (V @ V') = det(l — gt V') det(l = gyt s V'),

This yields (ii).

(iii) Let P'|B|p be prime ideals of L'|L]K, cach lying above the next. Let x
be the character belonging to the G (L |K )-module V. G(L'|K)actson V via
the projection G(L'|K) — G(L|K). It induces surjective homomorphisms

Gy — G, Iy —> I, Guy/lyy — Gy/lp
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of the decomposition and inertia groups. The latter maps the Frobenius
automorphism @g to the Frobenius automorphism g so that (pq, Vivy=
(. V%), Loy

det(1 — pyr; V%) = det(l — gpt, V).

This yields (iii).
(iv) Let G = G(L|K) and H = G(L|M). Let p be a prime ideal of K,
9. ---.q- the various prime ideals of M above p, and B; a prime ideal
of L above q;, i =1, ...,r. Let Gy, resp. I;, be the decomposition, resp.
inertia, group of B; over p. Then H; = G; N H, resp. Il =1;NH, are the
decomposition, resp. inertia, groups of P; over ;. The degree of g; over p
is fi = (Gi - Hily), ie.,
Na;) = NP

We choose elements 1; € G such that ; = B7'. Then G; = 7,7'G 7,
and [; = rf'l‘r,. Let ¢ € G, be an element which is mapped to the
Frobenius gy, € G/, Then ¢; = rl’lwr, € G; is mapped to the Frobenius
oy, € Gi/1;, and the image of :p,f’ in H,/I" is the Frobenius of 93; over q;.

Now let p : H — GL(W) be a representation of H with character x.
Then x, is the character of the induced representation ind(p) : G — GL(V),
V = Indfl (W). Clearly, what we have o show is that

- ,
det(] — gr; VD) = [ dew(l — ofiesi; whi).
i=1
We reduce the problem to the case G; = G, ie., r = 1. Conjugating by 7;,
we obtain
det(l — /'ty Wy = det(1 — pfiediy (wyheiT)

and f; = (G : (G NgHY, ")1,). For every i we choose a system of
representatives on the left, o;;, of G; mod G, N r‘Hr,.". One checks
immediately that then {o;;7;} is a system of representatives on the left of
G mod H. We thus have (see chap. LV, §5, p.297) the decomposition

V=Qo,uWw.
i

Puiting V; = €D, 0;;7; W, we obtain a decomposition V = ; Vi of V as a
G -module. Hence

,
det(i — gt VI = [T det(1 — gt; V).
i=1
It is therefore sufficient to prove that

det(l —gr; V') = det(l — @it/ (W) THy.
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We simplify the notation by replacing G, by G, [ by I, G| N r,Hr," by
H, fiby f=(G:HI),V; by V, and W by W. Then we have still
V= Indg(W), ie., we are reduced to the case r = 1, G| =G.

We may further assume that / = 1. Forif weputG = G/I, H = H/INH,
then V/ = Indg(WmH)A Indeed, a function f : G — W in V is invariant
under / if and only if one has f{x7) = f(x) forall r € I, i.c., if and only if
it is constant on the right (and thercfore also on the left) cosets of G mod 7,
i.e., if and only if it is a function on G. Tt then automatically takes values in
WI0H ‘because 1f(x) = f(xx) = f(x)forr e INH.

So let / = |. Then G is generated by ¢, f = (G : H), and thus

i
V=Bdw.
i=0
Let A be the matrix of ¢/ with respect to a basis wy, ..., wg of W. If E
denotes the (d x d) unit matrix, then
0O E .. 0
0 0 - E
A0 .0

is the matrix of ¢ with respect (o the basis {¢'w;} of V. This gives

E —tE - 0
ot V) = - — ol
det(l — 1; V) = det 0 0 R det(l —¢/t/; W)
—tA 4] E

as desired. The last identity is obtained by first multiplying the first column
by ¢ and adding it to the second, and then multiplying the second column
by ¢ and adding it to the third, etc. [m]

The character 1, induced from the trivial character 1 of the subgroup
{1} € G(LIK) is the character rg = ZX x{1)x of the regular representation
of G(L|K). We thercfore deduce from (10.4) the
(10.5) Corollary. One has

20 =tk () [T LELIK. x.9* D,
x#1

where x varies over the nontrivial irreducible characters of G(L|K).
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The starting point of Artin’s investigations on L-series had been the
question whether, for a Galois extension L|K, the quotient {z.(s)/{k (s) is
an entire function, i.e., a holomorphic function on the whole complex plane.
Corollary (10.5) shows that this could be deduced from the famous

Artin Conjecture: For every irreducible character x # 1, the Artin L -series
L(L|K, x.s) defines an entire function.

We will sec presently that this conjecturc holds for abelian extensions. In
general it is not known. In view of its momentous conscquences, it constitutes
onc of the big challenges in number theory.

‘We will show next that the Artin L-series in the case of abelian extensions
L|K coincide with certain Hecke L -series, more precisely, with generalized
Dirichlet L -series. This means that the properties of Hecke’s series, and in
particular their functional equation, transfer to Artin serics in the abelian
case. Via functoriality (10.4) they may then be extended to the non-abelian
case.

The link between Artin and Hecke L-series is provided by class field
theory. Let L{K be an abelian extension, and let f be the conductor of L|K,
i.e., the smallest module

f=1TI1»"
ploo
field KT|K (sce chap. VI, (6.2)). The
surjective homomorphism

such that L|K lics in the ray ¢l
Artin symbol { 2} then gives us

LIK
JIPY— G(LIK), amod P!> (‘—)
a

from the ray class group J//PI. Here J1 is the group of fractional ideals
prime to f, and P! is the group of principal ideals (¢) such that ¢ = 1 mod §
and « is positive in Ky = R if p is real.

Now let x be an irreducible character of the abelian group G(L|K), i.c.,
a homomorphism

x :G(LIK)Y > C*.
Composing with the Artin symbol ( £ | this gives a character of the ray
class group J!/P7, i.e., a Dirichlet character mod f. It induces a character
on J', which we denote by

P AT A

By (6.9), this character on ideals is a GroBencharacter mod f of type (p,0),
and we have the
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(10.6) Theorem. Let L|K be an abelian extension, let j be the conductor of
LIK, let x # 1 be an irreducible character of G(L|K), and ¥ the associated
Gréfiencharakter mod f.

Then the Artin L -seri
the Grofiencharakter ¥

s for the character x and the Hecke L-scries for
sty the identity

1
LUK, %9 =[] —————L(%.9),
(LIK, x,5) ,,11 TG X.s)

where § = {p|f| xUp) = 1}.

Proof: The representation of G(L|K) associated to the character x is
given by a 1-dimensional vector space V = C on which G(L|K) acts via
multiplication by x, i.e., 6v = x{o)v. Since { is the conductor of L{K, we
find by chap. VI, (6.6}, that

plf < pisramified &= Ig#1.

If x({p) # 1, then V1% == {0}, and the corresponding Euler factor does not

occur in the Artin L-series. If on the other hand x (/p) = U, then viv=,
so that

det(1 — ppM() ™ V') = | — x(og)Np) ™"
‘We thus have

1 1
LLIK. X.5) =
EExe [«lr 1= 3 (o) (0~ pl:]s 1= x (pp)R(p)~°

and

1
LGs) =[]~
%0 =1 —Gmm—

For p 1 f, one has ("-L&) = ¢g. and s0 X(p) = x(pp). This proves the

claim. O

Remark: If the character x : G(L|K) — C* is injective, then § = 1, and
one has complete equality

L(LIK. x.8) = L(T,5).
In this case X is a primitive Gréfiencharakter mod f.

If on the other hand yx is the trivial character 1¢, then ¥ is the trivial
Dirichlet character mod f, and we have

) =11 L{X.5).

1
pif 1 — 9y~
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The theorem implies that the Artin conjecture holds for all Artin £ -
series L(L|K, x.s) which correspond to nontrivial irreducible characters x
of ahelian Galois groups G(L|K). For if Ly is the fixed field of the kernel
of x and X is the Groflencharakter associated with x : G(L4|K) — C*,
then the above remark shows that L(L|K, x,s) = LLy K, x.8) = L(X.5).
Hence L£(L|K, x.s) is holomorphic on all of C, because the same is true
for L{¥,s), as was shown in (8.5). This also sctiles the Artin conjecture lor
every solvable extension L|X .

Our goal now is (o prove a functional equation for Artin L -serics. The
basis for this will be the ubove thcorem and the functional cquation we have
already cstablished for Hecke L -series. We however have to complete the
Artin £, -series by the right “Euler factors™ at the infinite places. In looking
for these Euler factors, the first natural guideline is provided by the case of
Hecke L-series. But in order (o go the whole way, we nced an additional
Galois-theoretic complement which will be dealt with in the next section.

§ 11. The Artin Conductor

The discriminant = 2/ of a Galois extension L|K of algebraic number
fields admits a fine structure based on group theory. It is expressed by a
product decomposition

o =JTiox ™.

where x varies over the irreducible characters of the Galois group
G = G(L|K). The ideals f(x} are given by

fo0 = [1 p®
phoe

with
B UG
Solxy =3 Zcodim V& |
120 8

where V is a representation with character x, G; is the i-th ramification
group of LylKp, and g; denotes its order. This discovery goes back to Emit.
Aritv and Heiaur Hassr. The ideals §(x) are called Artin conductors. They
play an important role in the functional equation of the Artin L -series, which
we are going to prove in the next section. Here we collect the propertics
needed for this, following essentially the treatment given by J.-P. Sreri:
in {122].



528 Chapter VII. Zeta Functions and L-scrics

First let us consider a Galois extension L|K of local fields, with Galois
group G = G(L{K). Let f = frk = |A : «] be the inertia degree of L|K.
In chap. 11, § 10, we defined, for any o € G,

iGlo)y =vLlox —x),

where x is an element such that ©; = ©Og|x|. and vy is the normalized
valuation of L. With this notation we can write the i -th ramification group as

Gi={oeGliglo)=zi+1}.
One has ig(tot ') = ig(o), and iy(o) = iglo) for every subgroup
H € G.If L|K is unramified, then ig (o) =0 forall o € G, o # 1. We put
—ficlo) foro # 1,
flizicny foro=1.

a¢ is u central function on G, and we have

aglo) =

1
)= — 3 =0.
(ag, 1) vt ngxa( (o}

We may therefore write

=X f0x. fooeC,
¥

with x varying over the irreducible characters of G. Our chicl problem
is to prove that the coefficients f(x) are rational intcgers > 0. Once we
have shown this, we may form the ideal f,(x) = p/*), which will be the
p-component of the global Artin conductor that we want, First we prove that
the function ag satisfies the following properties (we use the notation of the
preceding section).

(11.1) Proposition. (i) If H is a normal subgroup of G then
agiH = (aGly.
(i) If {1 is any subgroup of G, and if K' is the fixed field with discriminant
ok k =", then
ag|H =viy + fxxdir .
(iii) Let G; be the i-th ramification group of G, u; the augmentation
character of G, and (u;). the character of G induced from u;. Then onc has
o

1
=X e
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Proof: (i) foliows immediately from chap. 11, (10.5).
(i) Let o € H, o # 1. Then

aG () = —fukic), an(o) = —fuxin(@). ryo) =0.
Since ig(o) = iy(o) and fr.x = frik: fxo 1k, this implics

aG{o) = vru(o) + fyxkan(o).

Now let o = 1, and let Dk be the different of LIK. Let 0 = oglx] and
g(X) be the minimal polynomial of x over K. By chap. 1, (2.4), Dy is
then gencrated by g'(x) = [15, (ox = x). Conscquently,

|
v @) = v )y = Y iglo) = ——ag(l).
azl Tk

By chap. I11. (2.9), we know, on the other hand, that 0, x = Neg Dk,
so vk o Npjkx = frigvp gives the identity

aG{l) = frixvitDrx) = vk O 1x),
and in the same way az (1) = vk (0r k7). From chap. 111, (2.10), we get
furthermore that

ik = @O Wik ke .
Thus ryy (1) =[L : K| and v = vk (D k) yields the formula
aG (D) =1L K'lvk (k) + frk v Qe = v (1) + fxrgan(l).

(iii) Let g; = #G;, g = #G. Since G, isinvariant in G, we have (i;).(0) = 0
if o ¢ Gi,and (u).(0) = —g/gi = —f - go/ei it 0 € Gy, @ # 1. and
Yooy = 0. For o € Gy ~ Ggpy, we thus find

1
agloy=—ftk+1) =3 ————(u), (o).
G f > Go oy i
This implies the identity for the case o = I as well, since both sides are
orthogonal 10 1¢. [m]

For the coefticients f(x) in the linear combination

aG =3 fO0x.

we have, in view of ai; (0™') = ag; (o), that

. 1 ! -
F0 =tac.x) = - ¥ aclo)xec ) =~ ¥ aglo™xto) = (x.a).
& oeG & o

¢ = #G. For any central function ¢ of G, we put
J@)y=(p,a5)

and

1
PG =— Y olo), g =4#G;.
&i wéd;
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(11.2) Proposition. (i) If ¢ is a central function on the quotient group G /H ,
and ¢ is the corresponding central function on G. then
flo) = flg).
(i) If @ is a central function on a subgroup H of G, and ¢, is the central
function induced by ¢ on G, then
flo) =vg Qrx)e(D) + [k flo).
(iii) For a central function ¢ on G, onc has

fo)=% ;%(w(l) ~ (G

i=0

Proof: (i) f(p) = (@, aG/) = (9. {aG)) = (¢'.ac) = f(@).

(i) () = (p,ac) = (9, acIHY = vip.ri) + frox (@ an) = vell) +
Jroix Flg) with v = vg Qg k).

(iii) We have (¢. (i )) = (|G u;) = p(1) — (G}, so the formula follows
from (L1.1), (iii). a

If x is the character of a representation (o, V) of G, then x (1) = dimV
and x(G;) = dim VG hence
FG0 =3 Zcodim v
iz 80

Now consider the function

‘ dx
m_u((.\):f GGy
ot Gy
0

which was introduced in chap. II, §10. For integers m > —1, it is given by
ok (=1 = =1, 10 (®) =0, and

mog
nLklm) =3y = form > 1.
i=1 80

The theorem of Hasse-Arr (sce chap. V, (6.3)) now gives us the {ollowing
integrality statement for the number f(x) in the case of a character x of
degree 1.

(11.3) Propuositi Let x be a character of G of degree 1. Let | be the
biggest integer such that x|G; # 1g; (when x = lg we put Jj=—1). Then
we have

FOO=nux D+ 1,
and this is a rational integer > 0.
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Proof: If i < j, then x(G;) = 0, so that x(1) — x(G;) = L. If i > j, then
x(Gi) = 1.and so x(1) — x{G;) = 0. From (11.2), (iii), it thus follows that

Logi .

fX)=2 S =mrN+1,

=0 &0
provided j > 0. If j = —1, we have x(1) — x(G;) =0 for all i > 0, and
hence by (11.2), (i), f(}) =0 =Lk (-1 + 1.

Let H be the kemel of x and L' the fixed field of //. By Herbrand’s

theorem (chap. I1, (10.7)) one has

Gi(LIKYH/H = G(L'|K) with j = n,0()).
In terms of the upper numbering of the ramification groups, this translates
into
GLIK)H/H = G'(L[K),

where 1 = 0y 1k (f) = neik (ML () = ning () (see chap. 1, (10.8)). But
X(GHLIKYH/H) # 1, and x(G; s(LIKYH/H) = x(G;+1(LIK)H/H)
=1 for all § > 0, and in particular G (L|K)H/H # G s(LIKYH/H for
all 8 > 0. Since 07 g (v) is continuous and strictly increasing. it follows that

G(L'\K)y =G (LIKYH/H # G (LIKYH /H = G (L'|K)

for all & > 0, i.e., ¢ is a jump in the ramification filtration of L'|K. The
extension L'|K is abelian and therefore ¢ = n; x (j) is an integer. by the
theorem of I{asse and Agr,

Now let x be an arbitrary character of the Galois group G = G(L|K).
By Brauer’s theorcm (10.3), we then have

X = Hikis, €L,

where x;. is the character induced from a character x; of degree | of a
subgroup H;. By (11.2), (ii), we have

FOO =0 f (i) = 2o (v Q00 (D) + e ) -

where K is the fixed field of H;. Therefore f(x) is a rational integer. On the
other hand, (11.1), (iii) shows that geag is the character of a representation
of G, 50 gof(x) = (x.goag) = 0. We have thus established the

(11.4) Theorem. If x is a character of the Galois group G = G(L|K ). then
f(x) is a rational integer > 0.
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(11.5) Definition. We define the (local) Artin conductor of the character x
of G = G(L|K) to bc the ideal

fol) = p/ 1.

In chap. V. (1.6). we defined the conductor of an ahelian extension L|K
of local tields to be the smallest power of p, f = p”, such that the n-th higher
unit group Ul‘(”' is contained in the norm group Ny x L*. The latter is the
kernel of the norm residue symbol

(.LIK): K* — G(L|K),

which maps U to the higher ramification group G'(L|K) = G ;(L|K) with
i =nrx(j) — see V. (6.2). The conductor f = p” is therefore given by the
smallest integer # > 0 such that G"(L|K) = 1. From (11.3) we thus obtain
the following result.

(11.6) Proposition. Let L|K be a Galois extension of local fields, and let x
be a character of G{L|K) of degree 1. Let L, be the fixed field of the kerncl
of x, and f the conductor of L, |K. Then one has

f=Ffe(x).

Proof: By (11.3), we have f(x) = nex () + 1, where j is the largest
integer such that G;(L|K) g G(L|Ly) =t H. Let t = .k (j). Then one
has

G’(LX\K):Gr(L\K)H/H:G,(LIK)H/H.

and GV (Ly|K) € Gj(LIK)H/H =1 for all & > 0. Hence 7 is the
largest number such that G'(L 1K) # 1. By the theorem of [lasse-Arr, £ is
an integer, and we conclude that f(x) = ¢ + | is the smallest integer such
that G/ (L |K) = 1, ie.. f(x) =n.

We now leave the local situation, and supposc that L|K is a Galois
cxtension of global fields. Let p be a prime ideal of K, Plp a prime
ideal of L lying above p. Let Ly|K, be the completion of L|K, and
Gq = G(Ly|Kp) the decomposition group of P over K. We denote the
lunction ag,, on Gy by agp, and extend it to G = G(L.|K) by zero. The
central function

ay =Y. agp
Py
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immediately turns out to be the function (ayp), induced by ag|Gyp. It is
thercfore the character of a representation of G. If now x is a character of G.
then we put

FOLPY = (X.ap) = [(x1Gw).
Then fo(x) = p/* P is the Artin conductor of the restriction of ¥ to
Gy = G(LplKy). In particular, we have f,(x) = 1 if p is unramified. We
define the (global) Artin conductor of x to be the product

fx) =TT falx)-
bl

Whenever precision is called for, we write f(L|K, x) instead of f()). The
properties (11.2) of the numbers f(x.p) transfer immediately to the Artin
conductor f(x), and we obtain the

(11.7) Proposition. (i) f(x + x') = fOOf(x ), f(1) = (.

(i) If L'|K is a Galois subextension of L|K, and x is a character of
G(L'|K), then
fILIK, ) = HL'IK . x).
iy If H is a subgroup of G with fixed field K'. and if x is a character
of H, then ,
FILIK  xa) = 050 Nk (ILIK . 30) -

Proof: (i) and (ii) are trivial. To prove (iii), we choose a fixed prime ideal T8
of L. put
G=G(LIK), H=G(LIK"), Gyp= G(LyplKyp).

with p = N K, and consider the decomposition

G =) GyrH

T
into double cosets. Then representation theory yields the following formula
for the character x of H:
() Xl =3"x7,
T

where x 7 is the character x™(a) = x(r~'o1) of GpnrHz™' and xJ is the
character of G induced by x7 (see [119], chap. 7, prop. 22). Furthermore

P, =P N K" are the diflerent prime ideals of K’ above P (see chap. I, §9,
p- 55}, and we have

Gyr =17'GoyT = Gl |Ky). Hyr = Gaw N H = G{Lan 1K)
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Now let 0y = " be the discriminant ideal of K (. |Ky, and let fy be the
degree of P, over K. Thus Ng/ 1k (B,) = p/‘ﬂ'. Since
FlL 1K ) = P09 and oy (L1, ) =
we have to show that
FO1G) = X v x (D) + fo f Gl Hgped,
T
or, in view of {11.2), (ii), that
(k) FIGy) =X F((x | Hae )
T
But Hyr = 7 "(GuNTHT™")1, and x|Hy, resp. (x|Hge ), arises by

conjugation & > tor~' from x7, resp. x7. Therefore f((x|Hp)) =
F(x5), and (x+) follows from (). O

We apply (iii) to the case x = 1y, and denote the induced character x.
by sG,# - Since f(x) = 1, we obtain the

(11.8) Corollary. dg/x = f(LIK,sG/1)-

If in particular # = {1}, then s¢;/y is the character r¢ of the regular
representation. Its decomposition into irreducible characters x is given by

rg = 2 x(Dx.
¥
This yields the

(11.9) Conductor-Discriminant-Formula. For an arbitrary Galois cxten-
sion L|K of global ficlds, one has

ok = [T100% 0,
x
where x varies over the irreducible characters of G(L|K).
For an abelian extension L1K of global fields, we defined the conductor
{ in VI, (6.4). By chap. VI, (6.5), it is the product
f= l-[ fv
r

of the conductors f,, of the local extensions Lqz|Kyp. (11.6) now gives rise to
the following
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(11.10) Proposition, Let L|K be a Galois extension of global fields, x a
character of G(L|K)) of degree 1, L, the fixed field of the kernel of x, and f
the conductor of Ly |K. Then one has

f=§00).

Now let L|K be a Galois cxtension of algebraic number fields. We form
the ideal w
o(LIK, x) = 0% Nk e (FLIK, )

of Z. The positive gencrator of this ideal is the integer
S(LIK. ) = lde PON(FLIK. x)) .

Applying (11.7) and observing the transitivity of the discriminant (chap. I1I,
(2.10)), we get the

(1L.11) Proposition. (i) ¢(LIK, x +x') = c(LIK, )c(LIK, ), e{L|K, 1)
= ldk |,

() c(L1K, x) =c(L'|K, x),
(i) c(L|K. x) = c(LIK’ x) .

Here the notation is that of (11.7).

§ 12. The Functional Equation of Artin L-series

The first task is to complete the Artin L-scries
1
LK x =] ——or——— |
ﬂc det(1 — @gM(p)—=: Vin)
for the character x of G = G(L|K), by the appropriate gamma factors. For
every infinite place p of K we put
Le ()%, if p is complex,
%(uk,x..x):{ e P
Lu(s)" Lr(s + 1", if p is real,

with the cxponents n? = M, nm = M Here gy is the
distinguished generator of G (LK), and

Lu(s) =m 72 (s/2),  Lots) = 20Q27) ™ I'(s)

(see §4). For p real, the exponents n*, n~ in Ly(L|K, x.5) have the
following meaning.
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The involution @y on V induces an eigenspace decomposition V. =
V* @ V™, where

V*:[,\’E\’iwqy(:'

L Vis{xeV|ppr= —x).

and it follows from the remark in § 10, p.521, that

1 §
dimV' = 5(xm+x(ww), dim V™ = 5 (x(1) ~ xtep) -

The functions £p(L|K, x,$) exhibit the same behaviour under change of
fields and characters as the L -series and the Artin conductor.

(12.1) Proposition. (i) Lp(L|K, x+x'.s)= LoLIK . x5 La(LIK. X8

(i) IfFL'|K is a Galois subextension of L|K and x a character of GUL'|K),
then
Lo(LIK . x.8) = Lp(L' 1K x50
(iii) If K' is an intcrmediate field of L|K and x 2 character of G(LIK").
then
LLIK o) = [T Lq(LIK x5,
qp

where q varies over the places of K' lying above p.

Proof: (i) is trivial.
(i) If PIP|p are places of L 2 L' 2 K, each lying above the next,
then @g; is mapped under the projection G(LIK) — G(LK) to gy
So x{op) = xlog)-
(iii} If p is complex, then there are precisely m = {K': K| places q above p.
They are also complex, and the claim follows from y.(1) = mx(1).
Suppose p is real. Let G = G(L|K), I = G(LIK"), and let H\G /Gy be
the set of double cosets H TGy with a fixed place B of L above . Then we
have a bijection

H\G /Gy — {q place of K’ above p}. HtGopr— 40 = Pl
(see chap. I, §9, p.55). qc is real if and only if grp = TopT e H, e,
Gegp = err" C H. The latter inclusion holds if and only if the double
coset G qs consists of only one coset mod H:

HtGqp = (HtGyt )t =Hr.
We thus obtain the real places among the g, by letting 7 run through a

system of representatives of the cosets //7 of H\G such that Tgpt™' € H.
But, for such a system, one has

Xulgpp) = ¥ x(ropt™) = L xlgen)-
G g
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Putting {3 = 7, makes g = Q|- run through the real places of X' above n
ie.,
xlom) = 3~ x(pa)-
alp
ol

On the other hand we have

X= 3 2x(M+ Y x(1).

q complex q real

Legendre’s duplication formula Lg(s)L+(s + 1) = Le(s) (see (4.3)) turns
this into

Lo(LIK, g 5) =

xtltxipn) pail] /nul
LoD [T La) ™ 70 I Luts+ 1) =
G complex q real q real
=[1Lq(LIK . x,5). 0
glp

We finally put

Loo(LIK, x5y = [T LolLIK. x.8)s
Pl

and obtain immediatcly from the above proposition the equations

Lol 1K, X+ 4'05) = Lol 1K, 3, ) Lo (LIK . x.5),
Loo(LIK. x.5) = LoolL'|K, x.5),
Loo(LIK X 8) = Loo(LIK', x.5).

(12.2) Definition. The completed Artin L-series for the character x of
G(L|K} is defined to be
ALIK. x5 = (LIK O P Lol LK X LLNK, X, 5).

where
C(LIK, x) = ldx "ON(LIK, )

The behaviour of the factors c(L|K ., x), Lo (L|K, x.8), C(L|K. X.8)on
the right-hand side, which we studied in (10.4), (11.t1), and above, carries
over to the function A(L|K, x.5), i.e., we have the
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(12.3) Proposition. (i) A(L|K.x + x',5) = ALIK. X, ) ALIK . x',5).
(i) If L'|K is a Galois subextension of L|K and x a character of G(L'|K),
then

ALK x.5) = ALK, x.05).
(iii} If K' is an intermediate field of L|K and x a character of G(LIK"),
then

ALIK . xar8) = ALLIK', x,5).

For a character x of degree 1, the completed Artin L-series A(L|K, x.5)
coincides with a completed Hecke L-series. To see this, let L |K be the
fixed field of the kernel of x, and let f = ]_[y p"» be the conductor of Ly |K.
By (11.10), we then have

f=Fx)-
Via the Artin symbol

LylK
JPY s LK), ar— (ﬂ)
a

X becomes a Dirichlet character of conductor f, ie., by (6.9). a primitive
Gréfencharakter mod f(x) with exponent p = (pc), so that p; = 0if v is
complex. This Grafiencharakter will be denoted ¥.

We put p, = p. if p is the place corresponding to the embedding
7: K — C. The numbers p, have the following Galois-theoretical meaning.
(12.4) Lemma., For every rcal place p of K one has

Pp=1Lyp:Kpl—1.

Proof: We consider the isomorphism
11K = 4Pl
where 1 =[] U,i"“' is the congruence subgroup mod f of the idele group
1= ]:[FK;‘ (see chap. VI, (1.9)), and consider the composite map
JI1KS — T PT — G(Ly|K) > T

Let p be a real place of K, and let o € / be the idele with components
o, = —1 and aq = 1 for all places q different from p. By chap. VI, (5.6),
the image g = (a, L, |K) = (=1, Lyp|Ky} in G(Ly|K) is a generator of
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the decomposition group Gy = G(L ;5K ). By the approximation theorem,
we may choose an @ € K* such that a = I mod f,a <0 in Ky, and @ > 0
in K, for all real places q % p. Then

B=aaciP=(xel]neUy" forplfo). iff=[],p".
As explained in the proof of chap. VI, (1.9), the image of & mod /'K* in
Jt/P!is the class of (8) = (), which therefore maps to . Consequently,

xa)) = (@ xa(a) = x(pp).

Since a = 1 mod f, we have xi(a) = | and ya(a) = N((\%\)V) =

(ﬁ)hu = (=DM ic., x(pp) = (=17, so that g = 1 lor p, = 0,
»

and gg # 1 for pp = 1. But this is the statement of the lemma. [m}

(12.5) Proposition. The completed Artin L -scries for the character y of
degree I and the completed Hecke L-series for the Groflencharakter ¥
coincide:

AMLIK, x.5) = A(F.5).

Proof: The completed Hecke L -series is given, according to §8, by

AR = (1 IMGEN) "

Lo X, 9)L(X, 5}
with
Loo(X,5) = Lx(s),
and s = 51 + p, where
Lx(s) = [] Lp(sp)
Pl
is the L-function of the G(C|R)-set X = Hom(K,C) defined in §4. The
factors L (s,) are given explicitly by
Le(s), il p complex,
Lp(sp) =
o P = 4 g, i real,
(see p.454). On the other hand we have
ALK X, 8) = (LK PP Lol LIK X DL IK X, 5)
with
C(LIK. X) = ldg IR(FLIK, X))
and
LoxAL|K, x,5) = [] Lp(LIK, x.5).
Pl
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Let L, be the fixed field of the kernel of x. By (11.11), (ii), and the remark
preceding temma (12.4), one has

ALIK. %) = e(Ly K. x) = ldx IM(HD)) s
and by (10.4), (ii}, and (10.6), and the subsequent remark, one has
LILIK, x.5) = LAy K. x,8) = L(Y.5).
We arc thus reduced to proving
Lo(LIK, x.8) = Ly(sy)

for ploo and s = s1 + p. Firstly, we have Co(L K, x,5) = Lp(L K. x,9)
(sce p.537). Let g be the generator of G(L,y|K)p). Since x is injective
on G(Ly|K), we get x(pq) = —1 i @p # 1 and x(pqp) = | if pg = L
Using (12.4) this gives

Le(s), for p complex,
Lo(Ly K, x.8)=14 Lr(s), for p real and P real, ie., p, =0,
Lg(s+1). for preal and P complex, ie., pp =1 .
Hence (+) shows that indeed L,(L|K . x.8) = Lp(Sp). u

In view of the two results (12.3) and (12.5). the functional equation for
Artin L-series now follows from Brauer’s theorem (10.3) in a purely formal
fashion, as a consequence of the functional equation for Hecke L -series,
which we have already established.

(12.6) Theorem. The Artin L-series A(L|K, x.s) admits a meromorphic
continuation to C and satisfies the functional cquation

ALIK. x,5)=WGOALIK. X 1 —5)
with a constant W {x) of absolute value 1.
Proof: By Brauer’s theorem. the character x is an integral linear combination
X=X ni i

where the y;. are induced from characters x; of degree 1 on subgroups
H; = G(IL|K;). From propositions (12.3) and (12.5), it follows that

ALIK . x.5) = [T ALIK, Kive 8"
i

=TT ALK g™
i

=[1AG, )"
i
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where ¥; is the G neharakter of K; associated to x;. By (8.6), the Hecke
L-series A(X;.s) admit meromorphic continuations to € and satisfy the
functional equation

AF ) =WEDAGL L —5).
Therefore A(L|K. x.s) satisfies the functional equation

ALK, 3,90 =WOOTT A1 =) = WEOAWLIK, T 1 —9),

where W(x) = [1; W(X:) is of absolute value 1. 0

The functional equation for the Artin £ -scries may be given the following
explicit form, which is easily deduced from (12.6) and (4.3):

LILIK. g, 1 —5) = AL 9 LLIK. T 8),
with the factor
. -
Als) = WOO[lde FONFLIK ] 2
X (c()s]n/Z)"WSin71.\'/2)"7 T (n)mxh

and the exponents

LN 1 n 1
= ox()+ X = xlep). = 2 x() =Y = x(eg).
nt= g Zp)zx(wm) no= s ;2)(((4:1:)
Here the summations are over the real places p of K. This gives immediately
the zeroes of the function £(L|K . x.s) in the half-plane Re(s) < 0. If x is
not the principal character, they are the following:

als= 0, =2 —4. ... seroes of order Zx(N+ ¥ Lxipm).
b real

ats=—1, =3, =5, ... zeroes of order Sx(1)— ¥ %x(wvu)-
2 Pl 2

Remark: For the proof of the functional equation of the completed Artin
L-series, we have made essential use of the fact that “Euler factors”
Ly(L|K, x.s) at the infinite places p, which are made up out of gamma
functions. behave under change of fields and characters in cxactly the same
way as the Euler factors

Lo(LIK. x.8) = det(] — pp0UP) *; Vv~
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at the finite places. This uniform behaviour is in striking contrast to the
great difference in the procedures that lead to the definitions of the Euler
factors for pjoo and p f oc. It is in this context that the mathematician
Curistorurr Denivaer recently made a very interesting discovery (see [26],
127]). He shows that the Euler factors for all places p can all be written in
the same way:

log N(p)

-1
S (sid—0,): HX /L)

Ly(LIK, X, ) = dety, (
Here H(X,/Ly) is an infinite dimensional C-vector space which can be
canonically constructed, €, is a certain lincar “Frobenius™ operator on it,
and dety, is a “regularized detcrminant” which gencralizes the ordinary
notion of determinant for finite dimensional vector spaces to the infinite
dimensional case. The theory based on this observation is of the utmost
generality, and reaches far beyond Artin L -series. It suggests a complete
analogy for the theory of L-series of algebraic varieties over finite fields.
The striking success which the geometric interpretation and treatment of the
L -geries has cnjoyed in this analogous situation adds to the relevance of
Deniwcer’s theory for present-day research.

§ 13. Density Theorems

Dirichlet’s prime number theorem (5.14) says that in cvery arithmetic
progression
a.atm, ax2m, axdm, ...,

a.m € N, {a,m) = 1, there occur infinitely many prime numbers. Using
L-series, we will now deduce a far-rcaching generalization and sharpening
of this theorem,
(13.1) Definition. Let M be a set of prime ideals of K. The limit
3 up)y
dM) = lim

peM
=140 Y NP
)

provided it exists, is called the Dirichlet density of M.



§13. Density Theorems 543

From the product expansion
1
k() =[] ———— Re(s) > 1,
=1 g
we obtain as in §8, p.494,
1 1 1
loglxlsy =3 ——— =3 —— 4 —
) R % W S
The latter sum obviously defines an analytic function at s = |. We write
f(s) ~ g(s) if f(s) — g(s) is an analytic function at s = 1. Then we have
t 1

logig(s) ~ 3 —— ~ —
; MN(p)* deg%:l N(p)’
because the sum Edcg(p)}l M(p) ™ taken over all p of degree > 2 is analytic
at s = 1. Furthermore, by (5.11), (ii), we have ¢ (s) ~ % and so

1
; T(p)*
So we may also write the Dirichlet density as
Nip)~*
doty = tim 2o IO

S 140 log ﬁ

~log ——
Og«\'—l

Since the sum 3~ 9(p) " over all prime ideals of degree > 1 converges, the
definition of Dirichlet density only depends on the prime ideals of degree 1
in M. Adding or omitting finitcly many prime idcals also does not change
anything as far as existence or value of the Dirichlet density is concerned.
One frequently also considers the natural density

Sy = tim T EMINW) <5}
o #p | Np) < x)
It is not difficult to show that the existence of (M) implies the existence
of d(M), and that one has §(M) = d(M). The converse is not always true
(see [123], p. 26). In the notation of chap. VL. §1 and §7, we prove the
generalized Dirichlet density theorem.

(13.2) Theorem. Lcim be a module of K and H™ an ideal group such that
ST H™ D P™ with index hy = (J™: H™).
Forevery class 8 € J™/H™, the set P (8) of prime ideals in & has density

d(P(R)) = e
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For the proof we nced the following

(13.3) Lemma. Let x be a nontrivial (irreducible) character of J™/P™ (ie.,
a character of degree 1). Then the Hecke L-scrics
1
L= —————
R T
(x (p) = 0 for p|m) satistics
Lix.1)#0.

Proof: By (8.5) and the remark following (5.10) (in the cuse m = 1), L(x. 5}
does not have a pole at s = |, Let L|K be the ray class field mod m,
so G(L|K) = J™/P™ Interpreting x as a character of the Galois group
G(L|K), the function L(x,s) agrees with the Artin L-series L(L|K, x.s)
up to finitcly many Euler factors — see (10.6). Like L{x.s). this Artin
L-scrics does not have a pole at s = 1. So all we have to show is that
L(LIK, x. 1) # 0. According to (10.5), we have

So) = tx () [T LLIK . 3. )% Y
xF]

wherc x runs through the nontrivial irreducible characters of G(L|K).
By (5.11), both ¢k (s) and £y (s) have simple poles at s = 1, ic.. the
product is nonzero at s = 1. Since none of the factors has a pole, we
find L(LIK, x. 1) #0.

Proof of (13.2): Exactly as for the Dedekind zeta function above, we obtain
for the Dirichlet /.-series
x(®
logL{).8) ~3 = = (&) .
Z RNp)* Ji’t.!;/’P” p§:" ‘ﬁ(b)’

Muitiplying this by x (R~") und summing over all (irreducible) x yields

logik () + L x(A D logLx.s) ~ 3 T (A& z T
Fr) wedmgpm g m(b)

Since L(x. 1) # 0, log L(x. 5} is analytic at s = 1. But

0. ifE A4,
AR
LAEED= 4w s

Hence we get

1
~log Lk () ~ him ¥ e
og Lk (s) ~ I p;: Ny

and the theorem is proved. [}
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The theorem shows in particular that the density of the prime ideals
in a class of J™/H™ is the same for every class, ie., the prime ideals
are equidistributed among the classes. In the casc K = Q, m = (m),
and H™ = P™ we have J™/P™ = (Z/mZ)" (sce chap. VI, (1.10)),
and we recover the classical Dirichlet prime number theorem recalled at
the beginning, in the stronger form which says that the prime numbers
in an arithmetic progression, i.e., in a class ¢ mod m, (a,m) = |, have
density V/#(Z/mTy*.

L
Fm =

Relating the prime ideals p of a class of J™/P™ via the class field
(heory isomorphism J™/P™ = ((L|K), to the Frobenius automorphisms

= (‘TK), gives us a Gulois-theoretic interpretation of the Dirichlet
densuy theorem. We now deduce a more general density theorem which
is particularly important in that it concerns arbitrary Galois extensions {not
necessarily abelian). For every o € G(L|K), let us consider the set

Prix (o)

of all unramificd prime ideals p of K such that therc exists a prime ideal Blp

of L satistying LIk
o=
where (TK) is the Frobenius automorphism op of P over K. It is clear
that this sct depends only on the conjugacy class
(o) ={ror™" [t e G(LIK)]
of ¢ and that one has Py k(o) N PLik(t) = W if (o) # (). What is the

densny of the set Pp x(o)? The answer to this question is given by the
Cebotarev density theorem.

(13.4) Theorem. Let L|K be a Gulois extension with group G. Then for
every o € G, the set Prx (o) has a density, and it is given by

#
d(Prik (o) = %

Proof: We first assume that G is generated by . Let m be the conductor of
L|K. Then £|K is the class field of an ideal group H™, J™ D H™ > pm,
Let £ € J™/H™ be the class corresponding to the element o under the
isomorphism

LKy

IPHY — 5 G, pr—
5
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Then Py k(o) consists precisely of the prime ideals p which lie in the
class £. By the Dirichlet density theorem (13.2), we conclude that Py x (o)
has density

1 1 #
d(PLik(0)) = — o)

ha  #G  #G

In the general case, let X be the fixed field of o. If f is the order of o,
then, as we just saw, d(Py () = % Let P (o) be the set of prime ideals
B of L such that P|p € Py g (o) and (%) = . Then P (o) corresponds
bijectively to the set PL‘E(U) of those prime ideals g in Prjs(g) such
that £ = K, q|p. Since the remaining prime ideals in P x (o) are either
ramified or have degree > 1 over {, we may omit them and obtain

AP o) = d(Puz () = —-
Now we consider the surjective map ‘
p:Pp0) = Prk(o). g qnk.
As Pj p(o) = P (o), we get, for every p € P (o),
p7'®) = [P e PO)|Blp} = Z@)/@).
where Z(o) = {1 € G | to = ot} is the centralizer of . So we get

. __f 1 _#e
WPk OD = a1 =z 7 TR

The Cebotarev density theorem has quite a number of surprising
consequences, which we will now deduce. If § and T ure any two scts
of primes, then lct us write

ScT
to indicate that § is contained in T up (o finitely many exceptional elements.
Furthermore, let us write S=T iIf SC T and T C S.

Let L|K be a finite extension of algebraic number fields. We denote by
P(L|K) the sct of all unramified prime ideals p of K which admit in L a
prime divisor P of degree 1 over K. So, il L|K is Galois, then P(L|K) is
just the set of all prime ideals of K which split completely in L.

(13.5) Lemma. f.ct N|K be a Galois extension containing L, and let
G =G(N|K), H = G(N|L). Then one has

P(LIKY= |J Punikl(o) (disjoint union).
(@inH 20
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Proof: A prime ideal p of K which is unramitied in N lics in P(L|K) if
and only if the conjugacy class (o) of o T)’ for some prime ideal
Plp of N, contains an element of H, i.e., if and only if p € Pu ik (a) for
some a € G such that (o) N H # .

(13.6) Corollary. If L|K is an extension of degree n, then the ser P(L|K)
has density d(P(L|K)) > 1. Furthermore, one has

"

d(P(LIK)) = % <= L|K is Galois.

Proof: Let N|K be a Galois cxicnsion containing L, and let G = G(N|K)
and /I = G(N|L). By (13.5), wc have

PLIKY= |J Pyi(o).
(@)nH 24

The Cebotarcy density theorem (13.4) then yicids
#a) 1

d(P(LIK)) = - =_—# U (o).
m?ﬁ#m #G #G ((a,rl;{l#l/‘ )

Since # C \ypynp20(0), it follows that

#H 1
d(P(LIK)y > = = —.
(P(LIK)} = ¥ " n
LIK is Galois if and only if H is a normal subgroup of G, and this is the
case if and only if (o) © H whenever (o) N H # §, and so this holds if and
only if H = );)npr24{0). This implies the second claim. ]

(13.7) Corollary. If almost all prime ideals split completely in the finitc
extension L|K , then L = K.

Proof: Let N|K be the normal closure of L{K, i.c., the smallest Galois
extension containing /.. A prime ideal p of K splits completely in L if and
only if it splits completely in N{K (see chap. I, §9, excrcise 4). Under the
hypothesis of the corollary, we therefore have

1
= = K)=——.
A(P(LIK)) =d(P(N|K}) VK]

sothat [N : K|=1land N =L =K. [}
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(13.8) Corollary. An extension LIK is Galois if and only if every prime
ideal in P(L\K} splits completely in L.

Proof: Let again N|K be the normal closure of L|K. Then P(N|K)
consists preciscly of those prime ideals which split completely in L. Hence
if P(NJK) = P(L|K), then by (13.6),

1 1
Kl =d(P(NIK)) =d(P(LIK)) = F - K]'

i, [N:Kl<|L:K] soL =N is Galois. The converse is trivial. o

(13.9) Proposition (M. Baurx). If L|K is Galois and M|K is an arbitrary
finite extension. then

P(LIKY2P(MIK) &= LS M.

Proof: L C M wivially implies that P(M|K) € P(L|K). So assume
conversely that P(L|K) 2 P(M|K). Let N|K be a Galois extension
containing £ and M, and let G = G(N|K ), H = G(N|L), Il = G(N|M).
Then we have

PMIKy= | Puyglo) € PULIK)= ) Pyxlo).
(@nH 49 {0y H 21

Let o € {I'. Since Py k(o) is infinite by (13.4), there must exist some

p € Pyik(o) such that p € Pyx(T) for a suitable © € G such that

{t) N H # . But then o is conjugate to 7, and since // is a normal

subgroup of G, we find {@) = {r) € /. We therefore have H' C H. and

hence L. C M. O

(13.10) Corollary. A Galois extension L|K is uniquely determined by the
set P(LIK) of prime ideals which split completely i it.

This beautiful result is the beginning of an answer o the programme
formulated by Leoporn Krowzcxkex (1821-1891). of characterizing the
extensions of K, with all their algebraic and arithmetic propesties. solely
in terms of sets of prime ideals, “in a similar way as Cauchy's theorem
determines a function by its boundary values”. The result raises the question
of how to characterize the sets P(L]K) of prime ideals solely in terms of
the base ficld K. For abelian extensions, class field theory gives a concise
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answer to this, in that it recognizes P(L|K) as the set of prime ideals lying
in the idcal group H™ for any module of definition m (see chap. V1. (7.3)).
If for instance L |K is the Hilbert class field, then P(L|K) consists precisely
of the prime idcals which are principal ideals. If on the other hand K = Q@
and L = Q). then P(L|K) consists of all prime numbers p = | mod m.

In the case of nonabelian extensions L|K, a characterization of the sets
P(L|K) is essentialty not known. However, this problem is part of a much
more general and far-reaching progra known as “Langlands philosophy™,
which is undergoing a rapid development at the moment. For an introduction
to this circle of ideas, we refer the interested reader to [106].
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