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It is a very sad moment for me to write this “Geleitwort” to the English 
translation of Jtirgen Neukireh’s book on Algebraic Number Theory. It would 
have been so much better, if he could have done this himself. 

But it is also very difricult for me to write this “Geleitwort”: The book 
contains Neukirch’s Preface to the German edition. There he himself speaks 
about his intentions, the content of the book and his personal view of the subject. 
What else can be said ? 

It becomes clear from his Preface Slat Number Theory was Neukirch’s 
favorite subject in mathematics. IIe was enthusiastic about it, and he was also 
able to implant this enthusiasm into the minds of his students. 

He attracted them, they gathered around him in Regensburg. IIe told them 
thatthe subject and its beauty justified the highest effort and so they were always 
eager and motivated to discuss and to learn the newest developments in number L 
theory and arithmetic algebraic geometry. I remember very well the many 
occasions when this equipe showed up in the meetings of the ‘Qberwolfach 
Arbeitsgemeinschaft” and demonstrated their strength (mathematically and on 
the soccer field). 

During the meetings of the “Oberwolfach Arbeitsgemeinschaft” people 
come together to learn a subject which is not necessarily their own speciality. 
Always at the end, when the most difficult talks had to be delivered, the 
Regensburg crew took over. In the meantime many members of this team teach 
at German universities. 

We find this eharisma of Jtirgen Neukirch in the book. It will be a motivating 
source for young students to study Algebraic Number Theory, and I am sure 
that it will attract many of them. 

At Neclkirch’s funeral his daughter Christiane recited the poem which she 
often heard from her father: Herr von Ribbeck au. Ribbeck im Havelland by 
Theodor Fontane. It tells the story of a nobleman who always generously gives 
away the pears from his garden to the children. When he dies he asks for a 
pear to be put in his grave, so that later the children can pick the pears from the 
growing tree. 

This is - I believe - a good way of thinking of Neukirch’s book: There are 
seeds in it for a tree to grow from which the “children” can pick fruits in the 
time to come. 

G. Harder 



Ylkmdator’s Note 

When I first accepted Jiirgen Neukirch’s request to translate his Algebmische 
Zahlentheorie, back in 1991, no-one imagined that he would not live to see the 
English edition. He did see the raw version of the translation (I gave him the 
last chapters in the Fall of 19961, and he still had time to go carefully through 
the first four chapters of it. 

The bulk of the text consists of detailed technical mathematicaI prose 
and was thus straightforward to translate, even though the author’s desire 
to integrate involved arguments and displayed formulae into comprehensive 
sentences could not simply be copied into English. However, Jiirgen Neukirch 
had peppered his book with more meditative paragraphs which make rather 
serious use of the German language. When I started to work on the translation, 
he warned me that in every one of these passages, he was not seeking poetic 
beauty, but only the precisely adequate expression of an idea. It is for the reader 
to judge wheEher I managed to render his ideas faithfully. 

There is one neologism that I propose in this translation, with Krgen 
Neukirch’s blessing: I call replete divisor, ideal, etc., what is usually called 
Arakelov divisor, etc. (a terminology that Neukirch had avoided in the German 
editionj. Time will deliver its verdict. 

I am much indebted to Frazer Jarvis for going through my entire manuscript, 
thus saving the English language from various infractions. But needless to say, 
I alone am respon-sible for all deficiencies that remain. 

After Jurgen Neukirch’s untimely death early in 1997, it was MS Eva- 
Maria Strobe1 who took it upon herself to finish as best she could what Jurgen 
Neukirch had to leave undone. She had already applied her infinite care and 
patience to the original German book, and she had assisted Jtirgen Neukirch in 
proofreading the first four chapters of the translation. Without her knowledge, 
responsibility, and energy, this book would not be what it is. In particular, a 
fair number of small corrections and modifications of the German original that 
had been accumulated thanks to attentive readers, were taken into account for 
this English edition. Kay Wingberg graciously helped to check a few of them. 
We sincerely hope that the book published here would have made its author 

happy. 
Hearty thanks go to Raymond Seroul, Strasbourg, for applying his wonderful 

expertise of T@ to the final preparation of the camera-ready manuscript. 



VI11 Translator’s Note 

Thanks go to the Springer staff for seeing this project through until it was 
fmally completed. Among them % want to thank especially Joachim Heinze for 
interfering rarely, but effectively, over the years, with the realization of this 
translation. 

Strasbourg, March 1999 Norbert Schappacher 



Preface to the German Edition 

Number Theory, among the mathematical disciplines, occupies an idealized 
position, similar to the one that mathematics holds among the sciences. Under 
no obligation to serve needs that do not originate within itself, it is essentially 
autonomous in setting its goals, and thus manages to protect its undisturbed 
harmony. The possibility of formulating its basic problems simply, the peculiar 
clarity of its statements, the arcane touch in its laws, be they discovered or 
undiscovered, merely divined; last but not least, the charm of its particularly 
satisfactory ways of reasoning - all these features have at all times attracted 
to number theory a community of dedicated followers. 

Rut different number theorists may dedicate themselves differently to their 
science. Some will push the theoretical development only as far as is necessary 
for the concrete result they desire. Others will strive for a more universal, 
conceptual clarity, never tiring of searching for the deep-lying reasons behind 
the apparent variety of arithmetic phenomena. Both attitudes are justified, and 
they grow particularly effective through-the mutual inspirational influence they 
exert on one another. Several beautiful textbooks il!ustrate the success of the 
first attitude, which is oriented towards specific problems. Among them, let 
us pick out in particular Number Theory by XI. BOREVKZ and I.R. $AFAREVIC 

[ 141: a book which is extreme!y rich in content, yet easy to read, and which 
we especially recommend to the reader. 

The present book was conceived with a different objective in mind. It does 
provide the student with an essentially self-contained introduction to the theory 
of algebraic number fields, presupposing only basic algebra (it starts -with 
the equation 2 = 1 + 1). But unlike the textbooks alluded to above, it 
progressively emphasizes theoretical aspects that rely on modern concepts. 
Still, in doing so, a special effort is made to limit the amount of abstraction 
used, in order that the reader should not lose sight of the concrete goals of 
number-theory proper. The desire to present number theory as much as possible 
from a unified theoretical point of view seems imperative today, as a result of 
the revolutionary development that number theory has undergone in the last 
decades in conjunction with ‘arithmetic algebraic geometry’. The immense 
success that this new geometric perspective has brought about - for instance, 
in the context of the Weil conjectures, the Mordell conjecture, of problems 
related to the conjectures of Birch and Swinnerton-Dyer - is largely based on 
the unconditional and universal application of the conceptual approach. 
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It is true that those impressive results can hardly be touched upon in this 
book because they require higher dimensional theories, whereas the book 
deliberately confines itself to the theory of algebraic number fields, i.e., to 
the l-dimensional case. But I thought it necessary to present the theory in a 
way -which takes these developments into accomt, taking them as the distant 
focus, borrowing emphases and arguments from the higher point of view, thus 
integrating the theory of algebraic number fields into the higher dimensional 
theory - or at least avoiding any obstruction to such an integration. This is 
why I preferred, whenever it was feasible, the functorial point of view and the 
more far-reaching argument to the clever trick, and made a particular effort to 
place geometric interpretation to the fore, in the spirit of the theory of algebraic 
curves. 

Let me forego the usual habit of describing the content of each individual 
chapter in this foreword; simply turning pages will yield the same information 
in a more entertaining manner. I would however like to emphasize a few basic 
principles that have guided me while writing the book. The first chapter lays 
down the foundations of the global-theory and the second of the local theory of 
algebraic number fields. These foundations are finally summed up in the first 
three sections of chapter III, the aim of which is to present the perfect analogy of 
the classical notions and results with the theory of algebraic curves and the idea 
of the Riemann-Roth theorem. The presentation is dominated by ‘Arakelov’s 
point of view”, which has acquired much importance in recent years. It is 
probably the first time that this approach, with all it-s intricate normalizations, 
has received an extensive treatment in a textbook. But I finally decided not 
to employ the term “Arakelov divisor” although it is now widely used. This 
would have entailed attaching the name of Arakelov to many other concepts, 
introducing too heavy a terminology for this elementary material. My decision 
seemed all the more justified as ARAKELO\J himself introduced his divisors only 
for arithmetic surfaces. The corresponding idea in the number field case goes 
back to HASSE, and is clearly highlighted for instance in S. L~NG'S textbook [94]. 

It was not without hesitation that I decided to include Class Field Theory in 
chapters IV-VI. Since my book [ 1071 on this subject had been published not 
long before, another treatment of this theory posed obvious questions. But in the 
end, after long consideration, there was simply no other choice. A sourcebook 
on algebraic number fields without the crowning conclusion of class field theory 
with its important consequences for the theory of L-series would have appeared 
like a torso, suffering from an unacceptable lack of completeness. This also 
gave me the opportunity to modify and emend my earlier treatment, to enrich 
that somewhat dry presentation with quite a few examples, to refer ahead with 
some remarks, and to add beneficial exercises. 

A lot of work went into the last chapter on zeta functions and L-series. These 
functions -have gained central importance in recent decades, but textbooks do 
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not pay sufficient attention tothem. I did not, however, include TATE’S approach 
to Hecke L-series, which is based on harmonic analysis, although-it wouid have 
suited the more conceptual orientation of the book perfectly well. In fact, the 
clarity of TATE’S own presentation could hardly be improved upon, and it has also 
been sufficiently repeated in other places. Instead I have preferred to turn back 
to HEGSE’S approach, which is not easy to understand in the original version, 
but for all its various advantages cried out for a modern treatment. This having 
been done, there was the obvious opportunity of giving a thorough presentation 
of .4RT&s L-series with their functional equation - which surprisingly has not 
been undertaken in any exi-sting textbook. 

It was a difficult decision to exclude fwasawa Theory, a relatively recent 
theory totally germane to algebraicnumber fields, the subject of this book. Since 
it mirrors important geometrie properties of algebraic curves, -it would have 
been a particularly beautiful vindication of our oft-repeated thesis that number 
theory is geometry. I do believe, however, that in this case the geometric aspect 
becomes truly convincing only if one uses &ale cohomology - which can 
neither be assumed nor reasonably developed here. Perhaps the dissatisfaction 
with this exclusion will be strong enough to bring about a sequel to the present 
volume, devoted to the.cohomology of algebraic number fields. 

From the very start the book was not just intended as a modern sourcebook 
on algebraic number theory, bnt also as a convenient textbook for a course. 
This intention was increasingly jeopardized by the unexpected .growth of the 
material which had to be covered in view of the intrinsic necessities of the 
theory. Yet I think that the book has not lost that character. In fact, it has passed 
a first test in this respect. With a bit of careful planning, the basic content of the 
first three chapters can easily be presented in one academic year (if .possible 
including infinite Galois theory). The following term will then provide scarce, 
yet sufficient room for the ciass field theory of-chapters I-V-VI. 

Sections 1 l-i4 of chapter I may mostly be dropped from an introductory 
course. Although the results of section 12 on m-ders are irrelevant for the 
sequel, I consider its insertion in the book particularly important. For one thing, 
orders constitute the rings of multipliers, which play an eminent role in many 
diophantine problems. But most importantly, they represent the analogues 
of singular algebraic curves, As cohomology theory becomes increasingly 
important for algebraic number fields, and since this is even more true of 
algebraic K-theory, which cannot be constructed without singular schemes, 
the time has come to give orders an adequate treatment. 

In chapter II, the special treatment of henselian fields in section 6 may be 
restricted to complete valued fields, and thus joined with section 4. If pressed 
for time, section 10 on higher ramification may be omitted completely. 
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The first three sections of chapter III should be-presented in the lectures since 
they highlight a new approach to classical results of algebraic number theory. 
The subsequent theory concerning the theorem of Grothendieck-Riemann- 
Roth is a nice subject for a student seminar rather than for an introductory 
course. 

Finally, in presenting class field theory, it saves considerable time if the 
students are already familiar with profinite groups and infinite Galois -theory. 
Sections 4-7 of chapter V, on formal groups, Lubin-Tate theory and the theory 
of higher ramification may be omitted. Cutting out even more, chapter V, 3, on 
the Hilbert symbol, and VI, 7 and 8: still leaves a fully-fledged theory, which 
is however unsatisfactory because it remains in the abstract realm, and is never 
linked to classical problems. 

A word on the exercises at the end of the sections. Some of them are not so 
much exercises, but additional remarks which did not fit well into the main text. 
The reader is encouraged to prove his versatility in looking up the literature. 
I should also point out that I have not actually done all the exercises myself, 
so that there might be occasional mistakes in the way they are posed. If such a 
case arises, it is for the reader to find the correct formulation. May the reader’s 
reaction to such a possible slip of the author be mitigated by Goethe’s distich: 

“Irrtum verlal& uns nie, dock ziehet ein hbher Bedtrfnis 
immer den strebenden Geist leise zur Wahrheit hinan.” * 

During the writing of this book I have been helped in many ways. I thank 
the Springer Verlag for considering my wishes with generosity. My students 1. 
KNJSZ, B. K&K, P. KOLCZE, TH. NOSBZ, M. SPIESS have critically examined larger 
or smaller parts, which led to numerous improvements and made it possible to 
avoid mistakes and ambiguities. To my friends W-D, GEYER, G. TAMME, and K. 

WINGBERG I owe much valuable advice from which the book has profited, and 
it was C. DEN~NGER and U. JANNSEN who suggested that I give a new treatment 
of Hecke’s theory of theta series and L-series. I owe a great debt of gratitude 
to Mrs. EVA-MARI. STROBEL. She drew the pictures and helped me with the 
proofreading and the formatting of the text, never tiring of going into the 
minutest detail. Let me heartily thank all those w.ho assisted me, and also those 
who are not named here. Tremendous thanks are due to Mrs. MARTINA HERTL 

who did the typesetting of the manuscript in T@. That the book can appear is 

* Error is ever with us. Yet some angelic need 
Gently coaxes our striving mind upwards, towards truth. 

(Translation suggested by BARRY MAZIIR.) 
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Xl11 

essentially due to her competence, to the unfailing and kind wi!lingness with 
which she worked through the long handwritten manuscript, and through the 
many modifications, additions, and corrections, always prepared to give her 
best. 

Regensburg, February 1932 .IC-gen Neukirch 
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Chapter I 

AEgebraic Integers 

5 1. The Gaussian Integers 

The equations 

2= l+l, 5= 1+4, 13=4-i-9, 17=1+16, 29=4+25, 37=1+36 

show the first prime numbers that can be represented as a sum of two squares. 
Except for 2, they are all 3 1 mod 4, and it is true in -general that any odd 
prime number of the form p = a2 + b2 satisfies p = 1 mod 4, because 
perfect squares are s 0 or = 1 mod 4. This is obvious. What is not obvious 
is the remarkable -fact that the converse also holds: 

(1.1) Theorem. For a11 prime numbers p # 2, one has: 

p=a2+h2 (a,bEZj w p-lmod4. 

The natural explanation of this arithmetic law concerning the ring Z of 
rational integers is found in the larger domain of the gaussian integers 

z[i]=(a+bi!a,bEz:), i=G. 

In this ring, the equation p = x’ + y2 turns into the product decomposition 

p = (x f iyj(x - iyj , 

so that the problem is now wlhen and how a prime number p E Z factors 
in Z [ i ]~ The answer to this question is based on the following result about 
unique factorization in Z 1 i]. 

(1.2) Proposition. The ring Z [i] is euckfean, therefore in particular facto- 
rial. 

Proof: We show that Z[ i] is euclidean with respect to the function Z[i] + 
N u {O), ct H la12. so, fo r CX,,~ E Z[i]> /!I # 0, one has to verify the 
existence of gaussian integers v, p such that 

a = yB + p and IpI2 < ]812. 

It clearly suffices to find y E Z]I] such that 1 F - ‘/ 1 < 1. Now, the 
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gaussian integers h-m a lattice in the complex plane ci: (the points with 
integer coordinates wSith respect to the basis 1, i). The complex number E 

B 
lies in some mesh of the lattice and its distance from the nearest lattice point 

‘fi is not greater than half the length of the diagonal of the mesh, i.e. 2~ _. 

Therefore there exists an element v E Z[ i] with ) i - y ) 5 $J” =z 1. !Zl 

Based on this result about the ring Z[i], theorem (1.1) now follows like 
this: it is sufficient to show that a prime number p E 1 mod 4 of Z does 
not remain a prime element in the ring Z]iJ. Indeed, if this is proved, then 
there exists a decomposition 

p=a.p 

into two non-units Q, B of Z[ i]. The norm of z = x + iy is defined by 

N(x+iy)=(x+iy)(x-iy)=X2+y*, 

i.e., by N(z) = ]z]‘= It is multiplicative, so that one has 

p2 = N(a). N(p). 

Since c~ and B are not units, it follows that N(o), N(j3) # 1 (see exercise 1 j, 
and therefore p = N (a> = a2 + b2, where we put (Y = a + hi. 

Finally, in order to prove that a rational prime of the form p = 1 + 4n 
cannot be a prime element in Z[i], we note that the congruence 

-I-X2modp 

admits a solution, namely x = (2~) I. Indeed, since - 1 E (p - 1) ! mod p 
by Wilson’s theorem, one has 

-1Q7-1)!=-~1.2...(2n)][(p-l)(p-2)**~(p-2n)] 

z C(2n)!][i-l>*“(2n)!] = [(2n)!]* mod p. 

Thus we have p (x2 + 1 = (x + i)(x - i). But since ; f f 4 Z[i], p does 
not divide any of the factors x + i , x - i , and is therefore not a prime element 
in the factorial ring Z[i]. 

The example of the equation p = x2+y’ shows that even quite elementary 
questions about rational integers may lead to the consideration of higher 
domains of integers. But it was not so much for this equation that we have 
introduced the ring Z [ i], but rather in order to preface the general theory 
of algebraic integers with a concrete example. For the same reason we will 
now look at this ring a bit more closely. 

J.G. Yang
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When developing the theory of divisibility for a ring, two basic problems 
are most prominent: on the one hand, to determine the units of the ring in 
question, on the other, its prime elements. The answer to the first question 
in the present case is particularly easy. A number (II = a + hl’ E Z[i] is a 
unit if and only if its norm is 1: 

l 
N(a) := (a + ihj(a - ih) = a2 + h2 = 1 

(exercise l), i.e., if either a2 = 1, b* = 0, or a2 = 0, h2 = 1. We Snus obtain 
the 

(13) Proposition. The group of units of the ring Z [ i] consists of the fourth 
roots of unity, 

Z[i]* = (1, - 1, i, - i). 

In order to answer the question for primes, i.e., irreducible elements of 
the ring Z[ i], we first recall that two elements (II, ,5 in a ring are called 
associated, symbolically a - B, if they differ only by a unit factor, and 
that every element assodiated to an irreducible element it is also irreducible. 
Using theorem (1.1) we obtain the following precise list of all prime numbers 
of Z[i]. 

(1.4) Theorem. The prime elements n of Z[i], up to associated elements, 

are given as fallows. 

(1) n = 1 + ‘, 

(2) Jr = a +l9i witha’ + b2 = p, p E I mod4, a > IhI > 0; 

(3 n = P, p = 3 mod 4. 

Here, p denotes a prime number of Z. 

Proof: Numbers as in (1) or (2) are prime because a decomposition n = CI ‘/I 
in Z[ i] implies an equation 

p = N(x) = N(a) . N(B), 

with some prime number p. Hence either IV(a) = Z or N(B) = l., so that 
either cx or B is a unit. 

Numbers -n = p, where p = 3 mod 4, are prime in Z[ i] 9 because 
a decomposition p = CY . /? into non-units (Y, p would imply that p* = 
IV (a) . /V(B), so -that p = I\I (a) = N (a + bi j = LZ’ + h*, which according 
to (l.lj would yield p G 1 mod 4. 
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This being said, we have to check that an arbitrary prime element rr 
of Z[i] is associated to one of those listed. First of all, the decomposition 

N(n) = n ~ Z = p1 I . . pr , 

with rational primes pi, shows that n ( p for some p = pi. This gives 
N(~)iN(pj = p2, so that either N(x) = p or N-(n) = p2. In the case 

l N(n) = p we get K = a + bi with a2 + h’ = p, so n is of type (2) or, 
if p = 2, it is associated to 1 + i. Bn the other hand, if N(n) = p’, 
then z is associated to p since p,lrr is an integer with norm one and 
thus a unit. Moreover, p G 3 mod 4 has to hold in this case because 
otherwise we would have p = 2 or p = 1 mod 4 and because of (1.1) 
p = a2 + b2 = (a + bi)(a - bi) could not be prime. This completes the 
proof. 0 

The proposition also settles completely the question of how prime num- 
bers p E Z decompose in Z [ i]. The prime 2 = (1 + i) (1 - i ) is associated to 
the square of the prime element 1-k i. Indeed, the identity 1 - i = -i (I+ i j 
shows that 2 - (1 + i)2. The prime numbers p E 1 mod 4 split into two 
conjugate prime factors 

p=(a+bi)(a-bi): 

and the prime numbers p = 3 mod 4 remain prime in Z(i]. 

The gaussian integers play the same role in the field 

Q(i)={a+biIa,bEQj 

as the rational integers do in the field Q. So they should be viewed as the 
“integers” in Q(i). This notion of integrality is relative to the coordinates of 
the basis 1, i. However, we also have the following characterization of the 
gaussian integers, which is independent of a choice of basis. 

(-1.5) Proposition. 2% [i ] consists precisely of those elements of the extension 
field Q(i j of Q which satisfy a monk polynomiai equation 

x’+ux+b=O 

with coeficieats a, b E Z 

Proof: An eiement o = c + id E Q(i) is a zero of the polynomial 

x2 + ax + b E Q[x] with a=-2c,h=c’+d2. 

If c and d are rational integers, then so are a and h. Conversely, if a and b 
are integers, then so are 2c and 2d. From (2~)’ + (2d)’ = 4b = 0 mod 4 it 
folows that (2~)~ 3 (2d)2 = 0 mod 4, since squares are always = 0 or = 1. 
Hence c and d are integers. D 
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The last proposition leads us to the general notion of an algebraic integer 
as being an eiement satisfying a monk polynomial equation with rational 
integer coefficients. For the domain of the gaussian integers we have obtained 
in this section a complete answer to the question of the units, the question 
of prime elements, and to the question of unique factorization. 

These questions indicate already the fundamental problems in the general 
II theory of algebraic integers. But the answers we found .in the special 

case Z[i] are not typieal. Novel features will present themselves instead. 

Exercise I. cx l Z [ i j is a unit if and only if N(a) = 1. 

Exercise 2. Show that, in the ring Z[iJ, the relation m/l = EY”, far a,,9 relatively 
prime numbers and F a unit, implies (II = ~.‘t” and B = E”v”, with E’, 6” units. 

Exercise 3. Show that the integer solutions of the equation 

such that X, y; z z=- 0 and (x, y, z) = 1 (“Pythagorean triples”) are all given, up to 
possible permutation of x and J, by the formula: 

x = u2 - v2, y = 2uv, 2 = L12 + v2, 

where u, v E Z, u > v P- 0, (u, v) = 1, u, v not both odd. 

Hint: Use exercise 2 to show that necessarily x + iy = &a2 with a unit E and with 
0 = u + iv E Z[i]. 

Exercise 4. Show that the ring Z[i] cannot be ordered. 

Exercise 5. Show that the only units of the ring Z[a] = Z + Zyq, for any 
rational integer d > 1, are & 1. 

Exercise 6. Show that the ring Z[&] = Z + Z&, for any squarefree rational 
integer d > 1, has infinitely many units. 

Exercise 7. Show that the ring Z[fi] = Z + Z& is euclidean. Show furthermore 
that its units are given by lt(l + A)‘, n E Z, and determine its prime elements. 

5 2. IntegraIity 

An tilgebraic number field is a finite field extension K of Q. The ele- 
ments of K are called algebraic numbers. An algebraic number is called 
integral, or an algebraic integer, if it is a zero of a manic polynomial 
f(x) E Z[x]. This notion of integrality applies not only to algebraic num- 
bers, but OGCU~S in many different contexts and therefore has to be treated 
in full generality. 
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In what follows, rings are always understood to be commutative rings 
with 1. 

(2.1) Definition. Let A C B be an extension ofrings. An element b E B is 
cadted integral over A, if it satisfies a manic equation 

xn + atx +‘+-+a, =o, pz) 1, 

with coefficients ai E A. The ring B is called integral over A if all elemeMs 
b E B are integrai over A. 

It is desirable, but strangely enough not immediately obvious, that the 
sum and the product of two elements which are integral over A are again 
integral. This will be a consequence of the following abstract reinterpretation 
of’ the notion of integrality. 

(2.2) Proposition. FiniteJy many elements hl, _ . . , b, E B are all integral 
over A if and only if the ring A[bl , . . . , b,] viewed as an A-moduJe is finiteJy 
generated. 

To prove this we make use of the following result of linear algebra. 

(23) Proposition (Row-Column Expansion). Let A = (a?i) be an (r x r) - 
matrix wifh entries in an arbitrary ring, and Jet A” = (aFj) be the adjoint 

matrix. i.e., aTj = (-l)“j det(Aij), where the matrix Aij is obtained from A 
by deleting the i -th column and rhe j -rh row. Then one has 

AA* = A*A = det(A)E, 

where E denotes the unit ma&ix of rank r. For any vector x = (xl, . . . , x,), 
this yields the implication 

Ax=0 ==+ (detA)x=O. 

Proof of proposition (2.2): Let b E B be integral over A and f(x) E A[x] 
a manic polynomial of degree y1 2, 1 such that f(b) = G. For an arbitrary 
polynomial x(x) E A [x] we may then write 

g(x) = s!xif(xi + r(x), 

with q(x), r(x) E A[x] and deg(r(x)) -C n, so that one has 

g(b) = r(h) = a0 + alh +. . . + an-lbn-‘~ 

Thus A[b] is generated as A-module by 1, h, . . . , h”-’ . 
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More generally, if Ii, r . . , b, E B are integral over A, then the fact that 
A[b!. . . . . b,] is of finite type over A follows by induction on n. Indeed, 
since b, is integral over R = A[bl, . . . , b,-1 j, what we have just shown 
implies that R[b,j = A[bl 5 . . . , b,*] is finitely generated -over R, hence also 
over A, if we assume, by induction, that R -is an A-module of finite type- 

Conversely, assume that the A-module A[b, , . . . , b,] is finitely generated 
and that o!, . . . . w,. is a system of generators. Then, for any element 

c b E A[bl, . . . , b,], one finds that 

hoi = 2 aiimj, i = 1, . . . . r, aij E A. 
j=1 

From (2.3) we see that det(bE - (aijjj wi = 0, i = 1, . . . , r (here E is the 
unit matrix of rank r), and since 1 can be written 1 = clic?l -t. . . + c,.w,, the 
identity det(bE - (a~)) = 0 gives us a manic equation for b with coefficients 
in 4. This shows that h is indeed integral over A. cl 

according to this proposition, if hi, . . . , b, E B are integral over A, 
then -so is any element b of A[b,, . . . , b,]. because A[b,) . . . , b12, b] = 
API, ..~, bnl is a finitely generated A-module. In particular, given two 
integral elements b! , b2 E B , then bl f b2 and bl b2 are also integral over A. 
At the same time we obtain the 

(2.4) Proposition. Let A G B 5 C be two ring extensions. If C is integral 
over B and B is integral over A ) then C is integral over A. 

Proof: Take c E C, and let c” + blcn-’ + . . . + b, = 0 be an equation with 
coefficients in B . Write R = A[b, , f . . , b,]. Then R[c] is a finitely generated 
R-moduie. If B is integral over A, then R[c] is even finitely generated 
over A, since R is finitely generated over A. Thus c i-s integral over A, 0 

From what we have proven, the set of all elements 

A = {b E B ] b integral over A/ 

in a ring extension A C B forms a ring. It is called the integral closure 
of A in B. A is said to be integrally closed in B -if A = ‘4. It is immediate 
from (2.4) that the integral closure A is itself integrally-closed in B. If A is an 
integral domain with field of fracltions K, then the integral closure A of A 
in K is called the normalization of A, and A is simply called integraliy 
closed if A = A. For instance, every factorial ring is integrally closed. 
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Bn faet, if a/b E K (a, tr E A) is integral over A, i.e., 

./f-I 
(fz/bj’z + a1 (a/h! +...+a, =o, 

with ai E A, then 

an + a,ba”-’ +. . . + a,pbn = 0. 

Therefore each prime element n which divides b also divides a. Assuming 
a/b to be reduced, this imphes a/b E A. 

We now turn to a more specialized situation. Let A be an integral 
domain which is integrally closed, K its field of fractions, i, 1 K a finite 
field extension, and B the integral closure of A in L. According to (2.4), B 
is automatically integrally closed. Each element /I E L is of the form 

b 
B’,’ beB, SEA, 

because if 

anpn +. . f +alB +a0 = 0, ai E A, an # 0, 

then b = a,/3 is integral over A, an integral equation 

(a,fiy + . . . +a;(~,/!?) +u;, = 0, u; E A, 

being obtained from the equation for b by multiplication by aff-‘. F;lrther- 
more, the fact that A is integrally closed has ‘he effect that an element ,B E L 
is integral over A if and on!-y if its minimal polynomial p(x) takes its coef- 
ficients in A. In fact, let B be a zero of the manic polynomial g(x) E A[x]. 
Then p(x) divides g(x) in K[x], so that al zeroes 61, ). . s j$, of p(x) 
are integral over A, hence the same holds for all the coefficients, in other 
words p(xj E A[x]. 

The rrace and the norm in the field extension L 1 K furnish important tools 
for the study of the integral elements in L. We recall the 

(2.5) Definition. The trace and norm of an element x E L are defined to be 
the Irace and detertninam, respectiveiy, of the endomorphism 

T,:L+L, T,(a) = X~y, 

of the K-vector space L : 

TrLIKjXj = Tr(T,), NQK(X) = det(Tx). 
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In the characteristic poiynomial 

&(t) = det(t id--T,) = t” - altnpl + . . . + (-!)“cz~ E K[t] 

of TX, n = [L : K 3, we recognize the trace and the norm as 

al = T~L,K(x) and a,, = I\;i~,,y(x). 

Since Tx+y = TX + Ty and TXY = TX c TY, we obtain homomorphisms 

TrLlK : t -+ K and NL,K : L* + k’*. 

In the case where the extension L [ K is separable, the trace and norm admit 
the following Galois-theoretic ifiterpretation. 

(2.6) Proposition. If L) K is a separable extension and (T : L -+ r varies 
over the different K -embeddings of L into an algebraic closure E of K , then 
we have 

6) fx(tj = n!r - ox>, 

(ii) TF-L~K (x) = Dx ox, 

(iii) -ru’~~~(.x) = hcrx. 
0 

Proof: The characteristic polynomial fr(tj is a power 

fx(t) = px(tf: d = [L : K(x)], 

of the minimal polynomial 

p,(tj = tm+CitM-’ +*..+c,, m = [K(X) : K], 

of X. In fact, 1, X, . . . , xmP1 is a basis of K(x)jK, and if aI, . . . , CX~ is a 
basis of L 1 K(x) , then 

al:Q!~x, .i.? (YIX m-l. ) . . . ; Qfd,cfdX, . . . . CQX m-l 

is a basis of L 1 K. The matrix of the Iinear transformation TX : y H xy with 
respect to this basis has obviously only blocks along the diagonal, each of 
them equal to 

/ 0 1 0 . . . 0 

I . 0 0 . . . 0 0 . . . 0 1 . . . . . . . . . . . -0 1 . . 

-Cm -Cm-l -cm-2 ... -cl 
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The corresponding characteristic polynomial is easily checked to be 

2” + c, P-.’ + ’ . . +-cm = px (t) ) 

so that finally fX(t) = ~,(t)~. 

The set Home (L, K) of all K -embeddings of L is partitioned by the 
equivalence relation 

CT-t M iJx=tx 

into m equivalence classes of d elements each. If Go, ~ . . , 0, is a system of 
representatives, then we find 

p,(t) = f”I (t - qx), 
i=l 

and fr (tj = ny!“=, (t - ~iix)~ = ny!“=, ngT-Gi (t - ax) = -n, (t - ax). This 
proves (i), and therefore also -(ii) and (iii), after VietB. 0 

(2.7) Cardlary. In a tower of finite field extensions K & L & M, one has 

Proof: We assume that MIK is separable. The set HomK (M, K) of K- 
embeddings of M is partitioned by the relation 

into m = [L : K] equivalence classes. If crl, . . , , 0, is a system of represen- 
tatives, then HomK(L,K) = {ai (L 1 i = 1, . . . , mj, and we find 

T~-MIK~) = 5 c OX = 5 T~~;~~/a;L(OiX) = 5 Gi T~~M~L(x) 
i=l o-o, /=I i=l 

= T~K(TQ,L(x)) ~ 

Likewise for the norm. 

We w-ill not need the inseparable case for :he sequel. However it follows 
easily from what we have shown above, by passing to the maximal separable 
subextension M,’ 1 K. Indeed, for the inseparable degree [M : K]i = 
[M : MS] one has [M : K]i = [M : L]i [L : K]i and 

T~MIK(X) = [bf : K]; T~M.cIK(x), Nn;liK(x) = NM.>IK(x)‘~‘~‘~ 

(see [143], vol. I, chap. II, 8 10). 0 
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The discriminant of a basis ~1, . . . , a!n of a separable extension L 1 K is 
defined by 

&a,, . . . , a,) = det((aiaI)j2, 

wherea,,i= 1, . . . . n, varies over the K -embeddings L + E. Because of 
the relation 

the matrix (Tr~!~(aiai)) is the product of the matrices (o,@i)’ and (Okkolj). 

Thus one may also write 

d(cxl, . . . . an) = det( TrL;K (aiaj)) . 

In the special case of a basis of type I,@, . . . , VP’ one gets 

d(l,0, ..*, On-‘) = n (Oi - Oj)“, 
icj 

where 8i = miie. This is seen by successively multiplying each of the first 
(n - 1) columns in the Vandermonde matrix 

i 

1 (3, 0; . . . g-’ 

1 Q2. fJ; . . . g-1 
. . . . . . . . . . . . .,I 

1 6 0; . . . q-1 

by 8, and subtracting it from tine following. 

(2.8) Proposition. lf L 1 K is separable and aI) . . . j cq, is a basis, then the 
discriminant 

and 

dial, . . . . a,) #O, 

is a nondegenerate bilinear form on the K-vector space L . 

Proof: We first show that the bilinear form (x, y) = Trjxyj is nondegenerate. 
Let 0 be .a primitive element for L I K, i.e., L = K (6 j. Then; 1,Q, . . . . b”-’ 
is a basis with respect to which the form (x, y) is given by the matrix 
A4 = (TrLIK(QiplOj-‘))i, j=1,..., ~1. It is nondegenerate because, for 8i = cr; 0, 
we have 

det(M) =d(l,Q, . . . . P’) = n(@ -0j)“#O. 
ix;l 

Ifw,, ,I., aE is an arbitrary basis of L 1 K, then the bilinear form (x, y) with 
respect to this basis is given by the matrix A4 = (TrLIK (ai a/)). From the 
above it follows that d(al, . . , a,) = det(M) f 0. 0 
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After this review from the theory of fields, we return to the integrally 
closed integral domain A with field of fractions K, and to its integral 
closure B in the finite separable extension L) K. If x E B is an integral 
eiement of L, then all of its conjugates GX are also integral. Taking into 
account that A is integrally closed, i.e., A = B n -K, (2.6) implies that 

Tr.!j#(Xj3 NL~K(x! E A. 

Furthermore, for the group of units of B over A, we obtain the relation 

x E B” / NLiK(x) E A*. 

For if ~NL,K(x) = 1, a E A, then 1 = an, GX = yx for some y E B. The 
discriminant is often useful because of the following 

(2.9) Lemma. Let ~31, . . . , an be a basis of L 1 K which is contained in B, of 
discriminant d = d(al, . . , a,). Then one has 

dB 5 Aa, t.. . + Aa,. 

Proof: If a = alal +. . . + a,~, E B, ~j E K ) then the aj are a solution of 
the system of linear equations 

TrL[K(CXiaj = CTf"LIk.(@iaj)aj, 

and, as TrLl,y (uin) E A, they are given as the quotient of an element of A 
by the determinant det(;rrL,K (aiaj j) = d, Therefore duj E A, and thus 

da E Aai + . . . + Aa,. 0 

A system of elements ~1, . . . , i~)~ E B such that each b E B can be 
written uniquely as a linear combination 

b = Ul@l + . . . +-U,LL)~ 

with coefficients ai E A, is called an integral basis of B over A (or: 
an -A-basis of B). Since such an inte.gral basis is automatically a basis 
of L 1 K, its length n always equals the degree [L : K 1 of the field extension. 
The existence of an integral basis signifies that B is a free A-module 
of rank n = [L : K]. In general. such an integral basis does not exist. 
If, however, A is a principal ideal domain: then one has the following more 
general 

(2.10) Proposition. If L /K is separable and A 9s .a principal ideal domain, 
then every finite@ generated B -submodule M f 0 of L is a free A-module of 
rank [L : K 1. In particular, B admits an integral basis over A. 
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Proof: Let M # 0 be a finitely generated B -submodule of L and ~1, ~ . . , CE, 
a basis of L 1 K. Multiplying by an element of A, we may arrange for the cli 
to lie in B. By (2.9), we then -have dB G Aal + . . ~ + Aa,, in particular, 
rank(B) 5 [L : K 1, and since a system of -generators of the A-module B is 
also a system of generators of the K-module L , we have rank(B) = [L : K ]. 
Let F,, . . . . ,ur f M be a system of generators of the B -module M. There 
exists an a E A, a # 0, such that api E B, i = 1, . . . . r, so that aM S B. 
Then 

adh4 cdl3 c ACX, +-..+Aa, =MO. 

According to the main theorem on finitely generated modules over principal 
ideal domains, since MO is a free A-module, so is ad M, and hence also M. 
Finally, 

[L : K] = rank(B) 5 rank(M) = rank(adM) 5 rank(Mn) = [L : K], 

hence rank(M) = [L : K]. El 

It is in general a difficult problem to produce integral bases. In concrete 
situations it can also be an important one. This is why the following 
proposition is interesting. Instead of integral bases of the integral closure B 
of A in L, we will now simply speak of integral bases of the extension L 1 K. 

(2.11) Proposition. Let L /K and L’I K be two Galois exteensions ofdegree r,, 
I resp. n’, such that L n L’ = K. Let wI t . . . ) w,, resp. O+ i . . . , CO;,, be an 

integral basis of L 1 K, resp. L’[ K, with discriminant d, req. d’. Suppose that 
d and d’ are relatively prime in the sense that xd + x/d’ = 1, for suit&e 
x, x’ E A. Then tq CO; is an integral basis of L-L’, of discriminant d”‘d”‘. 

Proof: As L r-’ L’ = K, we have [LL’ : K] = nn’, so the nn’ products CD~W~ 
do form a basis of LL’I K. Now iet cx be an integral element of LL’, and 
write 

a = C aj; wj wj, aij E K . 
!,J 

We have to show that aij E A. Put /3j = Ciaijwi. Let G(LL’IL’) = 

bl, -.i, -Ok] and G(LL’iL) = {a;, . . . . a;,). Thus 

G(LL’1K) = <[oka; 1 k = 1, . . . . n, C-= 1, . ..i n’} . 

Putting 

T = (~;a$>, a = (~;a’, . . . , ~;,a) f h = (,91, . ~. , Bn/)‘, 
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one finds det (T)2 = d’ and 
a=Tb, 

Write T* for the adjoint matrix of T. Then row-column expansion (2.3) gives 

det(Tj h = T*a. 

Srnce T* and CJ have integral entries in LL’, the muitiple d’h has integral 
entries in L, namely d’pj = xi d’ ‘. a,] wi. Thus d’aij E 4. Swapping the roles 
of (wi j and (CL$ j, one checks in the same manner that daij E .A, so that 

aij = xdaij + x’d’aij E A. 

Therefore oi a$ is indeed an integral basis of LL’lK. We compute the 
discriminant A of this integral basis. Since G(LL’ j K) = {a,& 1 k = 
1 . . . . . n, l = 1, . ..) n’}, it is the square of the determinant of the 
(yin’ x &)-matrix 

This matrix is itself an (n’ x ri’j-matrix with entries (n x n j-matrices of which 
the (fZ, jj-entry is the matrix QG~c$ where .Q = (Ukwi). In other words, 

Q EC+; ..- EC&~; 

M= . . 

0 

Here E denotes the (M x n)-unit matrix. By changing indices the second 
-matrix may be transformed to look like the first one. This yields 

d = det(M)’ = det(Q)2”’ det((a&j)> 2n = dn’d’n. 0 

Remark: It follows from the proof that the proposition is valid for arbitrary 
separable extensions (not necessarily Galois), if one assumes instead of 
L fX’ = K that L and L’ are linearly disjoint. 

The chief application of our considerations on integrality will concern the 
integral closure C?K C K of Z E Q in an algebraic number field K. By 
proposition (2.10), every finitely generated C)K-submodule a of K admits 
aZ-basisa,, .-., a,, 

a = Za, +. . . + ZCX, . 

The discriminant 
d(a,, . . . , CU.,) = det( (oia; j) ’ 
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is independent of the choice of a Z-basis; if CZ; ( . . . , a$ is another basis, 
then the base change qatrix T = (cQ~), CX~ = Cj aijaj , as well as its inverse, 
has integral entries. It therefore has determinant f 1, so that indeed 

Lqa;, . . . , a$) = det(T)‘d(ml, . . . , CX,) = d(al, , . . , a,). 

We may therefore write 

d(a) = d(al, . . ~ , an j: 

In the special case of an integral basis ~1, . . . , CO,, of OK we obtain the 
discriminant of the algebraic number field K, 

dK = d(oK j = G!(w:, . . . , CO,). 

In general, one has the 

(2.12) Proposition, If a s a’ are trvo nonzero finite@ generated OK-sub- 
modules of K, &en the index (al : a) is finite and satisfies 

d(a) = (a’ : a>2 d(a’). 

All we have to show is that the index (a’ : aj equals the absolute value 
of the determinant of the base change matrix passing from a Z-basis of a 
to a Z-basis of a’. This proof is part of the well-known theory of finitely 
generated Z -modules. 

Exercise 1. Is % an algebraic integer? 

Exercise 2. Show that, if the integral domain A is integrally closed. then so is the 
polynomial ring A[t]. 

Exercise 3. In the polynomial ring A = Q[X, Y], -consider the principal idea: 
p =.(X2 - Y’j. Sh ow that p is a prime ideal, but A/p is not integrally ciosed. 

Exercise 4. Let D be a squarefree rational integer # 0, 1 and d the discriminant of 
the quadratic number field K = Q(&). Show that 

d = D, ifD=l mod4, 

d=4D, ifD=2or3 mod4, 

and that an integral basis of K -is given by {I 9 fi) in the second case, by 
(1, h(l +a)) inthefirstcase,andby [l, i(d+d)] in bothcases. 

Exercise 5. Show that (1, z, ;52] is an integral basis of Q(z). 

Exercise 6. Show that (1, 8, i (6’ + 8* j] is an integral basis of Q(G), g3 - ~9 - 4 = 0. 

Exercise 7. The discriminant dK of an aigebraic number field K is aiways = 0 mod 4 
or 3 ! mod 4 (Stickelberger’z discriminant relation). 

Hint: The determinant det(o;ti),) of an integrai basis w, is a sum of terms, each 
-prefixed by a positive or a negative sign. Writing P, resp. IV, for the sum of the 
positive, resp. negative terms, one finds dR = (P - Nj2 = (P + N)* - 4P N. 
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l3eing a generalization of the ring Z c Q, the ring OK of integers of an 
algebraic number held K is at the center of all our considerations. As in Z, 
every non-unit c~ + 0 can be factored in c3~ into a product of irreducible 
elements. For if a! is not itself irreducible, then it can be written as a product 
of two non-units -a = PI/. Then by 0 2, one has 

1 =c 1 NK!Q(B>j -==c I%J(a)/ ? 1 < I NK,Q(Y)I -=c / NK,Q(a)/j 

and the prime decomposition of a follows by induction from those of ,6 
and y . However, contrary to what happens in the rings Z and Z [ i], the 
uniqueness of prime factorization does not hold in general. 

Example: The ring of integers of the field K = Q(G) is given by 5 2, 
exercise 4, as C?K = Z + Za. In this ring, the rational integer 21 can be 
decomposed in two ways, 

21 =3.7= (1+2~/q).(l-2&5). 

All factors occurring here are irreducible in 0~. For if one had, for 
instance, 3 = ap, with CX, 8 non-units, then 9 = NK~Q(~) NK IQ($) would 
imply NK ,~(a) = f3. EM the equation 

has no solutions in Z. In the same way it is seen that 7, 1 + 2,/-5, and 
1 - 2a are irreducible. As the fractions 

1+2%/q 1*2%/Z 

3 ’ 7 

do not belong to OK, the numbers 3 and 7 are not associated to 1 + 2-t/-5 
or 1 - 2%.-. The two prime factorizations of 21 are therefore essentially 
different. 

Realizing the failure of unique factorization in general has led to one of the 
grand events in the history of number theory, the discovery of ideal theory by 
ELIWARD KUMMER. Inspired by the discovery of complex numbers, Kummer’s 
idea was that the integers of K would have to admit an embedding into a 
bigger domain of “ideal numbers” where unique factorization into “ideal 
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prime numbers” would hold. For instance, in the example of 

21= 3.7 = (1+ 21/--5)(1 - 22/-5), 

the factors on the right would be composed of ideal qrime numbers p 1, ~2, 
$3, ~4, subject to the rules 

3 = plp2, 7 = 4.%&t, 1 + %a = pi&, i - 2d=3 = p&. 

This would resolve the above non-uniqueness into the wonderfully unique 
factorization 

21 = (#:P2)@.$4) = @lP3)(p2p4). 

Kummer’s concept of “ideal numbers” was later replaced by that of ideals 
of the ring c3~. The reason for this is easily seen: whatever an ideal number 
a should be defined to be, it ought to be linked to certain numbers a E UK 
by a divisibility relation a 1 a satisfying the following rules, for M, b, h E CJK, 

ajci and alb =+ ai.a*b; aja + alha. 

And an ideal number a should be determined by the totality of its divisors 
in 8~ 

g= {u c 0~ 1 ala). 

But in view of the rules for divisibility, this set is an ideal of OK.. 
This is the reason why RICHARD DEDEKIND re-introduced Kummer’s “ideal 

numbers” as being the ideals of c?~. Once this is done, the divisibility 
relation a 1 a can simply be defined by the inclusion a E a, and more generally 
the divisibihty relation a I h between two ideals by b C a. In what fohows, 
we will study this notion of divisibility more closely. The basic theorem here 
is the foilowing. 

(3.1) Theorem. The ring OK is noetherian, integrally closed, and every grime 
ideal p # 0 is a maximal ideal. 

Proof: OK -is noetherian because every ideal a is a finitely generated Z- 
module by (2.10), and therefare a ~fortiori a finitely generated (7~ -module. 
By $2, C??K is also integrally closed, being the integral closure of Z in K. 
I: thus remains to show that each prime ideal p f 0 is maximal. Now, p n Z 
is a nonzero prime ideal (p) in Z: the primality is clear, and if y E p, y # 0, 
and 

yn + Iliynpl + j . . + a, = 0 

is an equation for y with ai E Z:, CZ,, + 0, then aM E p C Z. The integral 
domain E = OK/p arises from K = Z/p% by adjoining algebraic elements 
and is therefore again a field (recak! the fact that K [a] = ~(a), if cx is 
algebraic). Therefore p is a maximai ideal. q 





























“re by 
v”L”,,,>“,,*,(x) = 2’ V”LhL”.( /(X)) 













d=2,3.5,6.7,1,,,3,14,17,19,21.22.23,29, 
31,33,37,38,41,43.46.47,53,57,59.61, 















Hint: Check one h” une tnr i = /,2.3. whether one 0, the numher\ d”’ T4 I\ d 

5 8. Extensiuns of Dedekind Domains 
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5 12. Orders 



































IS comm”mti”e. 

b) i-or p’ t U’ c X’ and n t O(“j ““r ha\ 

O(f(P’)) =o ==+ ,f;(n)(P’) =(I 













“$) = d%(n) -d%(f) 







Chapter II 

The Theory of Valuations 















5 2. The p-adic Absolute Value 

The repre\cnmon of n ,>.‘ldK Inlegcr 

(1) o,, + a ,I + 02,‘? + 0 5 <I, < ,‘, 
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