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December 4, 2020

Problem 1 (Exercise 3.8 on Pg. 62). Let Λ ⊂ Rn be a rank n lattice, and let S ⊂ Rn be a compact,
convex, and symmetric set. If

vol(S) ≥ 2nvol(Rn/Λ),

prove that S contains a nonzero element of Λ.

Solution. If vol(S) > 2nvol(Rn/Λ), Minkowski’s convex body theorem applies directly. Suppose
that vol(S) = 2nvol(Rn/Λ). The key step in the proof of the Minkowski body theorem now fails.
Indeed, it is a priori possible for the map T to be injective! To circumvent this, we will approximate
S by a sequence of convex bodies to which Minkowski’s theorem applies. Let ε1, ε2, . . . be a sequence
of positive real numbers tending to 0 and consider the sets Sr = (1 + εr)S. We have:

vol(Sr) = (1 + εr)
nvol(S) > vol(S) = 2nvol(Rn/Λ).

Now, we can apply the non-compact case of Minkowski’s convex body theorem to Sr to obtain a
non-zero element λr ∈ Sr ∩Λ. For each r, let sr be the closest point to λr in S (it exists because S
is compact and the distance between sr and λr tends to 0 because Sr is obtained from S by scaling
factors which tend to 1). Then, since S is compact, we can restrict r to a subsequence and assume
that sr converges to s∗ ∈ S. Then we also have that λr converges to s∗ on that subsequence. But
λr ∈ Λ is a convergent subsequence in a discrete set and therefore it is eventually constant. This
means that 0 6= s∗ ∈ S ∩ Λ as required.

Problem 2 (Exercise 3.10 on Pg. 64). Let S ∈ Rn be the subset consisting of points

e = (a1, . . . , ar1 , x1, y1, . . . , xr2 , yr2),

which satisfy

f(e) = |a1|+ · · ·+ |ar1 |+ 2

(√
x21 + y21 + · · ·+

√
x2r2 + y2r2

)
≤ n.

Show that S is convex.

Solution. Let 0 ≤ t ≤ 1 and

s = (a1, . . . , ar1 , x1, y1, . . . , xr2 , yr2),

s′ = (a′1, . . . , a
′
r1 , x

′
1, y
′
1, . . . , x

′
r2 , y

′
r2)

be two elements in S. Then ts+(1−t)s′ = (ta1+(1−t)a′1, . . . , tar1 +(1−t)a′r1 , tx1+(1−t)x′1, ty1+
(1− t)y′1, . . . , tyr2 + (1− t)y′r2). Note that for all i, we have:∣∣tai + (1− t)a′i

∣∣ ≤ t|ai|+ (1− t)|a′i|,
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by the triangle inequality. Furthermore, we have:√
(txi + (1− t)x′i)2 + (tyi + (1− t)y′i)2 = ||(txi + (1− t)x′i, tyi + (1− t)y′i)||2

≤ t||(xi, yi)||2 + (1− t)||(x′i, y′i)||2

≤ t
√
x2i + y2i + (1− t)

√
x′i + y′i,

again we use the triangle inequality on the 2-norm on R2. Therefore, we find that f(ts+(1−t)s′) ≤
tf(s) + (1− t)f(s′) ≤ tn+ (1− t)n = n and so ts+ (1− t)s′. We conclude that S is convex.

Problem 3 (Exercise 3.18 on Pg. 68). Let p be a prime number.

(a) Let u be an integer relatively prime to p, and define Λ ⊂ Z2 to be the lattice in R2 consisting
of all pairs (a, b) ∈ Z2 such that b ≡ au (mod p). Show that covol(Λ) = p.

(b) Let Λ ⊂ Z4 be the lattice in R4 consisting of all (a, b, c, d) ∈ Z4 such that:

c ≡ ua+ vb d ≡ ub− va (mod p).

Show that covol(Λ) = p2.

(c) Show that the volume of a ball of radius r in R4 is π2r4/2.

Solution. (a) The vectors (0, p) and (1, u) form a basis for Λ. The volume of the fundamental

domain is thus equal to det

(
1 u
0 p

)
= p.

(b) The vectors (1, 0, u,−v), (0, 1, v, u), (0, 0, p, 0), (0, 0, 0, p) form a basis for Λ. The volume of the
fundamental domain is thus equal to

det


1 0 u −v
0 1 v u
0 0 p 0
0 0 0 p

 = p2.

(c) There are many proofs of this, here is a quick one (from Wikipedia) that uses cylindrical
coordinates to relate the volume of the ball of radius r in R4, V4(r), to the radius of the ball of
radius r in R2, V2(r). For this, we think of the coordinates (x, y,R cos(θ), R sin(θ) on R4 and
we apply Fubini:

V4(r) =

∫ 2π

0

∫ r

0
V2

(√
r2 −R2

)
RdRdθ

= 2πV2(1)

∫ r

0
(r2 −R2)RdR

= 2πV2(1)

[
r2R2

2
− R4

4

]R=r

R=0

=
2πV2(1)r4

4

=
π2r4

2
.
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Problem 4 (Exercise 3.40 on Pg. 79). If K is a number field, show that the sign of ∆K is (−1)r2.

Solution. Let α1, . . . , αn be an integral basis for K. Let σ1, σ2 . . . , σr1 be real embeddings of
K and let σr1+1, σr1+2, . . . , σr1+2r2−1, σr1+2r2 be the complex embeddings of K arranged so that
σr1+2i−1 = σr1+2i. Now, taking the complex conjugate we find:

det(σi(αj)) = det(σi(αj)) = (−1)r2 det(σi(αj)),

since we are transposing the last r2 pairs of rows. As a result, det(σi(αj)) is real if r2 is even and
purely imaginary (that is on the imaginary line) if r2 is odd. It follows that ∆K = det(σi(αj))

2 is
positive if r2 is even and negative if r2 is odd. Thus, the sign of ∆K is (−1)r2 .

Problem 5 (Exercise (3) on Pg. 83). Same as Problem 1.

Problem 6 (Exercise (10) on Pg. 84). Let K = Q(
√

223).

(a) Find the group of units of K.

(b) Show that the ideal class group of OK is cyclic of order 3.

Solution. (a) Since K is a real quadratic field, we know by Dirichlet’s unit theorem that O∗K ∼=
{±1} × εZ, for some fundamental unit ε of K. It thus suffices to find a fundamental unit ε of
K. The continued fraction expansion of

√
223 is [14, 1, 13, 1, 28] and the period of the fraction

is 4. We compute (p4, q4) = (224, 15) and conclude that we can take

ε = 224 + 15
√

223.

(b) Note that 223 6≡ 1 (mod 4). Therefore Z[
√

223] is the rings of integers in Q(
√

223). The
discriminant is 892 and the norm form is N(a+ b

√
−14) = a2−223b2. We will use Minkowski’s

bound. Recall that the Minkowski bound is given by:

MK :=
n!

nn

(
4

π

)r2√
|∆K |.

In our case, MK = 2!
22

(
4
π

)0√
892 ∼ 14.93. We thus factor (2), (3), (5), (7), (11), (13).

(2) = (2,
√

223 + 1)2 = p22

(3) = (3,
√

223 + 1)(3,
√

223 + 2) = p3 p
′
3

(5) = p5

(7) = p7

(11) = (11,
√

223 + 5)(11,
√

223 + 6) = p11 p
′
11

(13) = p13

Therefore, the class group is generated by p2, p3 and p11. Now, let’s note that we have two
interesting elements in OK , namely 15 +

√
223 and 16 +

√
223, which respectively have norm

2 and 33. Noting that 15 +
√

223 = (1 +
√

223) + 7 · 2 we see that p2 = (15 +
√

223). Thus,
p2 is trivial in the class group. It is also immediate that (16 +

√
223) = p3 p11. Thus, the class

group is generated by [p3].
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To find the order of p3, we look for another element of small norm. Notice that −14 +
√

223
has norm −27. Furthermore, (−14 +

√
223) ⊂ p3 and since 3 does not divide −14 +

√
223 in

OK , we must have (−14 +
√

223) = (p3)
3. Thus, [p3] has order 1 or 3.

To show that [p3] has order 3, we need to show that p3 is not principal. We proceed by
contradiction. Suppose that p3 were principal and write p3 = (γ). We have p33 = (β) where
β = −14 +

√
223 and from the description of units in part (a), we have:

p33 = (β) = (γ3),

and thus
±εmβ = γ3

for some m ∈ Z and for ε = 224 + 15
√

223. Without loss of generality, we may assume that
m = 0, 1, 2 after multiplying by an appropriate power of ε3. We conclude that there is at least
one element of the list ±β,±εβ,±ε2β which is a cube in OK . There are now a couple of ways
to proceed, with the general idea being to find a homomorphism into a field where we can tell
which elements are cubes or not. Here’s the very clever solutions that quite a few students
found! By Kummer’s factorisation theorem, we have a homomorphism:

π : OK → OK/5OK = F25 = F5[
√

3].

This homomorphism sends π(a + b
√

223) = a + b
√

3, where a, b are the reductions of a and
b modulo 5. In particular, it sends ε to −1, which is a cube! Therefore, if we show that the
element π(β) = 1 +

√
3 ∈ F5[

√
3] is not a cube, then none of the elements ±β,±εβ,±ε2β can

be cubes in OK .

Checking that 1+
√

3 is not a cube in F5[
√

3] is a finite computation. Either compute the cubes
of the 25 elements of F25[

√
3] and verify that 1 +

√
3 is not part of the list. Or notice that any

non-zero cube a3 in F5[
√

3] must satisfy (a3)8 = 1 and calculate that (1 +
√

3)8 = 2 +
√

3 6=
1 ∈ F5[

√
3].

Therefore, we have our contradiction and we conclude that the ideal class group of OK is cyclic
of order 3.

Problem 7 (Exercise (11) on Pg. 85). Which of the following Diophantine equations have integer
solutions?

(a) X2 − 223Y 2 = ±11.

(b) X2 − 223Y 2 = ±113.

(c) X2 − 223Y 2 = ±1119.

Solution. We use the notation of Problem 6. Let K = Q(
√

223) and OK = Z[
√

223] denotes its
ring of integers.

(a) A solution to the equation X2 − 223Y 2 = ±11 would imply the existence of a principal ideal
in OK having norm 11. In particular, this would mean that [p11] and thus [p3] was trivial in
the ideal class group of K. This would imply that the ideal class group of K is trivial which
would contradicts Problem 6. Therefore, the Diophantine equation X2 − 223Y 2 = ±11 has no
integer solutions.
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(b) By Problem 6, we know that the ideal p311 is principal. Let’s say (γ) = p311. Then, N(γ) = ±113,
and so there is an integer solution to the Diophantine equation X2−223Y 2 = ±113. Note that
reducing the equation X2 − 223Y 2 = 113 modulo 4 gives X2 + Y 2 = 3 (mod 4) which does
not have a solution. Thus, in fact, N(γ) = −113 and only X2 − 223Y 2 = −113 has integer
solutions.

(c) By Problem 6, [p11]
8[p′11]

8[p11]
3 = [(1)] in the ideal class group. In particular, the ideal p1111 p

′8
11 is

principal. Let’s say (γ) = p1111 p
′8
11. Then N(γ) = ±1119. Therefore, there is an integer solution

to the Diophantine equation X2 − 223Y 2 = ±1119. For the same reason as in (b), we must in
fact have N(γ) = −1119 and only X2 − 223Y 2 = −1119 has integer solutions.

5


