MAT415 Assignment 4 Solutions

December 4, 2020

Problem 1 (Exercise 3.8 on Pg. 62). Let $\Lambda \subset \mathbb{R}^n$ be a rank n lattice, and let $S \subset \mathbb{R}^n$ be a compact, convex, and symmetric set. If

$$\operatorname{vol}(S) \ge 2^n \operatorname{vol}(\mathbb{R}^n / \Lambda),$$

prove that S contains a nonzero element of Λ .

Solution. If $\operatorname{vol}(S) > 2^n \operatorname{vol}(\mathbb{R}^n/\Lambda)$, Minkowski's convex body theorem applies directly. Suppose that $\operatorname{vol}(S) = 2^n \operatorname{vol}(\mathbb{R}^n/\Lambda)$. The key step in the proof of the Minkowski body theorem now fails. Indeed, it is a priori possible for the map T to be injective! To circumvent this, we will approximate S by a sequence of convex bodies to which Minkowski's theorem applies. Let $\epsilon_1, \epsilon_2, \ldots$ be a sequence of positive real numbers tending to 0 and consider the sets $S_r = (1 + \epsilon_r)S$. We have:

$$\operatorname{vol}(S_r) = (1 + \epsilon_r)^n \operatorname{vol}(S) > \operatorname{vol}(S) = 2^n \operatorname{vol}(\mathbb{R}^n / \Lambda).$$

Now, we can apply the non-compact case of Minkowski's convex body theorem to S_r to obtain a non-zero element $\lambda_r \in S_r \cap \Lambda$. For each r, let s_r be the closest point to λ_r in S (it exists because Sis compact and the distance between s_r and λ_r tends to 0 because S_r is obtained from S by scaling factors which tend to 1). Then, since S is compact, we can restrict r to a subsequence and assume that s_r converges to $s^* \in S$. Then we also have that λ_r converges to s^* on that subsequence. But $\lambda_r \in \Lambda$ is a convergent subsequence in a discrete set and therefore it is eventually constant. This means that $0 \neq s^* \in S \cap \Lambda$ as required.

Problem 2 (Exercise 3.10 on Pg. 64). Let $S \in \mathbb{R}^n$ be the subset consisting of points

$$e = (a_1, \ldots, a_{r_1}, x_1, y_1, \ldots, x_{r_2}, y_{r_2}),$$

which satisfy

$$f(e) = |a_1| + \dots + |a_{r_1}| + 2\left(\sqrt{x_1^2 + y_1^2} + \dots + \sqrt{x_{r_2}^2 + y_{r_2}^2}\right) \le n.$$

Show that S is convex.

Solution. Let $0 \le t \le 1$ and

$$s = (a_1, \dots, a_{r_1}, x_1, y_1, \dots, x_{r_2}, y_{r_2}),$$

$$s' = (a'_1, \dots, a'_{r_1}, x'_1, y'_1, \dots, x'_{r_2}, y'_{r_2})$$

be two elements in S. Then $ts + (1-t)s' = (ta_1 + (1-t)a'_1, \dots, ta_{r_1} + (1-t)a'_{r_1}, tx_1 + (1-t)x'_1, ty_1 + (1-t)y'_1, \dots, ty_{r_2} + (1-t)y'_{r_2})$. Note that for all i, we have:

$$|ta_i + (1-t)a'_i| \le t|a_i| + (1-t)|a'_i|,$$

by the triangle inequality. Furthermore, we have:

$$\sqrt{(tx_i + (1-t)x'_i)^2 + (ty_i + (1-t)y'_i)^2} = ||(tx_i + (1-t)x'_i, ty_i + (1-t)y'_i)||_2}$$

$$\leq t||(x_i, y_i)||_2 + (1-t)||(x'_i, y'_i)||_2$$

$$\leq t\sqrt{x_i^2 + y_i^2} + (1-t)\sqrt{x'_i + y'_i},$$

again we use the triangle inequality on the 2-norm on \mathbb{R}^2 . Therefore, we find that $f(ts + (1-t)s') \leq tf(s) + (1-t)f(s') \leq tn + (1-t)n = n$ and so ts + (1-t)s'. We conclude that S is convex. \Box

Problem 3 (Exercise 3.18 on Pg. 68). Let p be a prime number.

- (a) Let u be an integer relatively prime to p, and define $\Lambda \subset \mathbb{Z}^2$ to be the lattice in \mathbb{R}^2 consisting of all pairs $(a, b) \in \mathbb{Z}^2$ such that $b \equiv au \pmod{p}$. Show that $\operatorname{covol}(\Lambda) = p$.
- (b) Let $\Lambda \subset \mathbb{Z}^4$ be the lattice in \mathbb{R}^4 consisting of all $(a, b, c, d) \in \mathbb{Z}^4$ such that:

$$c \equiv ua + vb \quad d \equiv ub - va \pmod{p}.$$

Show that $\operatorname{covol}(\Lambda) = p^2$.

- (c) Show that the volume of a ball of radius r in \mathbb{R}^4 is $\pi^2 r^4/2$.
- Solution. (a) The vectors (0, p) and (1, u) form a basis for Λ . The volume of the fundamental domain is thus equal to det $\begin{pmatrix} 1 & u \\ 0 & p \end{pmatrix} = p$.
- (b) The vectors (1, 0, u, -v), (0, 1, v, u), (0, 0, p, 0), (0, 0, 0, p) form a basis for Λ . The volume of the fundamental domain is thus equal to

$$\det \begin{pmatrix} 1 & 0 & u & -v \\ 0 & 1 & v & u \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} = p^2.$$

(c) There are many proofs of this, here is a quick one (from Wikipedia) that uses cylindrical coordinates to relate the volume of the ball of radius r in \mathbb{R}^4 , $V_4(r)$, to the radius of the ball of radius r in \mathbb{R}^2 , $V_2(r)$. For this, we think of the coordinates $(x, y, R\cos(\theta), R\sin(\theta) \text{ on } \mathbb{R}^4$ and we apply Fubini:

$$V_4(r) = \int_0^{2\pi} \int_0^r V_2\left(\sqrt{r^2 - R^2}\right) R \, dR \, d\theta$$

= $2\pi V_2(1) \int_0^r (r^2 - R^2) R \, dR$
= $2\pi V_2(1) \left[\frac{r^2 R^2}{2} - \frac{R^4}{4}\right]_{R=0}^{R=r}$
= $\frac{2\pi V_2(1)r^4}{4}$
= $\frac{\pi^2 r^4}{2}$.

Problem 4 (Exercise 3.40 on Pg. 79). If K is a number field, show that the sign of Δ_K is $(-1)^{r_2}$.

Solution. Let $\alpha_1, \ldots, \alpha_n$ be an integral basis for K. Let $\sigma_1, \sigma_2, \ldots, \sigma_{r_1}$ be real embeddings of K and let $\sigma_{r_1+1}, \sigma_{r_1+2}, \ldots, \sigma_{r_1+2r_2-1}, \sigma_{r_1+2r_2}$ be the complex embeddings of K arranged so that $\sigma_{r_1+2i-1} = \overline{\sigma_{r_1+2i}}$. Now, taking the complex conjugate we find:

$$\det(\sigma_i(\alpha_j)) = \det(\overline{\sigma_i}(\alpha_j)) = (-1)^{r_2} \det(\sigma_i(\alpha_j)),$$

since we are transposing the last r_2 pairs of rows. As a result, $\det(\sigma_i(\alpha_j))$ is real if r_2 is even and purely imaginary (that is on the imaginary line) if r_2 is odd. It follows that $\Delta_K = \det(\sigma_i(\alpha_j))^2$ is positive if r_2 is even and negative if r_2 is odd. Thus, the sign of Δ_K is $(-1)^{r_2}$.

Problem 5 (Exercise (3) on Pg. 83). Same as Problem 1.

Problem 6 (Exercise (10) on Pg. 84). Let $K = \mathbb{Q}(\sqrt{223})$.

- (a) Find the group of units of K.
- (b) Show that the ideal class group of \mathcal{O}_K is cyclic of order 3.

Solution. (a) Since K is a real quadratic field, we know by Dirichlet's unit theorem that $\mathcal{O}_K^* \cong \{\pm 1\} \times \varepsilon^{\mathbb{Z}}$, for some fundamental unit ε of K. It thus suffices to find a fundamental unit ε of K. The continued fraction expansion of $\sqrt{223}$ is $[14, \overline{1, 13, 1, 28}]$ and the period of the fraction is 4. We compute $(p_4, q_4) = (224, 15)$ and conclude that we can take

$$\varepsilon = 224 + 15\sqrt{223}.$$

(b) Note that $223 \not\equiv 1 \pmod{4}$. Therefore $\mathbb{Z}[\sqrt{223}]$ is the rings of integers in $\mathbb{Q}(\sqrt{223})$. The discriminant is 892 and the norm form is $N(a+b\sqrt{-14}) = a^2 - 223b^2$. We will use Minkowski's bound. Recall that the Minkowski bound is given by:

$$M_K := \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^{r_2} \sqrt{|\Delta_K|}.$$

In our case, $M_K = \frac{2!}{2^2} \left(\frac{4}{\pi}\right)^0 \sqrt{892} \sim 14.93$. We thus factor (2), (3), (5), (7), (11), (13).

$$(2) = (2, \sqrt{223} + 1)^2 = \mathfrak{p}_2^2$$

$$(3) = (3, \sqrt{223} + 1)(3, \sqrt{223} + 2) = \mathfrak{p}_3 \mathfrak{p}_3'$$

$$(5) = \mathfrak{p}_5$$

$$(7) = \mathfrak{p}_7$$

$$(11) = (11, \sqrt{223} + 5)(11, \sqrt{223} + 6) = \mathfrak{p}_{11} \mathfrak{p}_{11}'$$

$$(13) = \mathfrak{p}_{13}$$

Therefore, the class group is generated by \mathfrak{p}_2 , \mathfrak{p}_3 and \mathfrak{p}_{11} . Now, let's note that we have two interesting elements in \mathcal{O}_K , namely $15 + \sqrt{223}$ and $16 + \sqrt{223}$, which respectively have norm 2 and 33. Noting that $15 + \sqrt{223} = (1 + \sqrt{223}) + 7 \cdot 2$ we see that $\mathfrak{p}_2 = (15 + \sqrt{223})$. Thus, \mathfrak{p}_2 is trivial in the class group. It is also immediate that $(16 + \sqrt{223}) = \mathfrak{p}_3 \mathfrak{p}_{11}$. Thus, the class group is generated by $[\mathfrak{p}_3]$.

To find the order of \mathfrak{p}_3 , we look for another element of small norm. Notice that $-14 + \sqrt{223}$ has norm -27. Furthermore, $(-14 + \sqrt{223}) \subset \mathfrak{p}_3$ and since 3 does not divide $-14 + \sqrt{223}$ in \mathcal{O}_K , we must have $(-14 + \sqrt{223}) = (\mathfrak{p}_3)^3$. Thus, $[\mathfrak{p}_3]$ has order 1 or 3.

To show that $[\mathfrak{p}_3]$ has order 3, we need to show that \mathfrak{p}_3 is not principal. We proceed by contradiction. Suppose that \mathfrak{p}_3 were principal and write $\mathfrak{p}_3 = (\gamma)$. We have $\mathfrak{p}_3^3 = (\beta)$ where $\beta = -14 + \sqrt{223}$ and from the description of units in part (a), we have:

$$\mathfrak{p}_3^3 = (\beta) = (\gamma^3)$$

and thus

$$\pm \varepsilon^m \beta = \gamma^3$$

for some $m \in \mathbb{Z}$ and for $\varepsilon = 224 + 15\sqrt{223}$. Without loss of generality, we may assume that m = 0, 1, 2 after multiplying by an appropriate power of ε^3 . We conclude that there is at least one element of the list $\pm \beta, \pm \varepsilon \beta, \pm \varepsilon^2 \beta$ which is a cube in \mathcal{O}_K . There are now a couple of ways to proceed, with the general idea being to find a homomorphism into a field where we can tell which elements are cubes or not. Here's the very clever solutions that quite a few students found! By Kummer's factorisation theorem, we have a homomorphism:

$$\pi \colon \mathcal{O}_K \to \mathcal{O}_K/5\mathcal{O}_K = \mathbb{F}_{25} = \mathbb{F}_5[\sqrt{3}].$$

This homomorphism sends $\pi(a + b\sqrt{223}) = \overline{a} + \overline{b}\sqrt{3}$, where $\overline{a}, \overline{b}$ are the reductions of a and b modulo 5. In particular, it sends ε to -1, which is a cube! Therefore, if we show that the element $\pi(\beta) = 1 + \sqrt{3} \in \mathbb{F}_5[\sqrt{3}]$ is not a cube, then none of the elements $\pm \beta, \pm \varepsilon \beta, \pm \varepsilon^2 \beta$ can be cubes in \mathcal{O}_K .

Checking that $1 + \sqrt{3}$ is not a cube in $\mathbb{F}_5[\sqrt{3}]$ is a finite computation. Either compute the cubes of the 25 elements of $\mathbb{F}_{25}[\sqrt{3}]$ and verify that $1 + \sqrt{3}$ is not part of the list. Or notice that any non-zero cube a^3 in $\mathbb{F}_5[\sqrt{3}]$ must satisfy $(a^3)^8 = 1$ and calculate that $(1 + \sqrt{3})^8 = 2 + \sqrt{3} \neq 1 \in \mathbb{F}_5[\sqrt{3}]$.

Therefore, we have our contradiction and we conclude that the ideal class group of \mathcal{O}_K is cyclic of order 3.

Problem 7 (Exercise (11) on Pg. 85). Which of the following Diophantine equations have integer solutions?

- (a) $X^2 223Y^2 = \pm 11$.
- (b) $X^2 223Y^2 = \pm 11^3$.
- (c) $X^2 223Y^2 = \pm 11^{19}$.

Solution. We use the notation of Problem 6. Let $K = \mathbb{Q}(\sqrt{223})$ and $\mathcal{O}_K = \mathbb{Z}[\sqrt{223}]$ denotes its ring of integers.

(a) A solution to the equation $X^2 - 223Y^2 = \pm 11$ would imply the existence of a principal ideal in \mathcal{O}_K having norm 11. In particular, this would mean that $[\mathfrak{p}_{11}]$ and thus $[\mathfrak{p}_3]$ was trivial in the ideal class group of K. This would imply that the ideal class group of K is trivial which would contradicts Problem 6. Therefore, the Diophantine equation $X^2 - 223Y^2 = \pm 11$ has no integer solutions.

- (b) By Problem 6, we know that the ideal \mathfrak{p}_{11}^3 is principal. Let's say $(\gamma) = \mathfrak{p}_{11}^3$. Then, $N(\gamma) = \pm 11^3$, and so there is an integer solution to the Diophantine equation $X^2 223Y^2 = \pm 11^3$. Note that reducing the equation $X^2 223Y^2 = 11^3$ modulo 4 gives $X^2 + Y^2 = 3 \pmod{4}$ which does not have a solution. Thus, in fact, $N(\gamma) = -11^3$ and only $X^2 223Y^2 = -11^3$ has integer solutions.
- (c) By Problem 6, $[\mathfrak{p}_{11}]^8 [\mathfrak{p}'_{11}]^8 [\mathfrak{p}_{11}]^3 = [(1)]$ in the ideal class group. In particular, the ideal $\mathfrak{p}_{11}^{11} \mathfrak{p}'_{11}^8$ is principal. Let's say $(\gamma) = \mathfrak{p}_{11}^{11} \mathfrak{p}'_{11}^8$. Then $N(\gamma) = \pm 11^{19}$. Therefore, there is an integer solution to the Diophantine equation $X^2 223Y^2 = \pm 11^{19}$. For the same reason as in (b), we must in fact have $N(\gamma) = -11^{19}$ and only $X^2 223Y^2 = -11^{19}$ has integer solutions.