MAT415 Assignment 4 Solutions

December 4, 2020

Problem 1 (Exercise 3.8 on Pg. 62). Let $\Lambda \subset \mathbb{R}^{n}$ be a rank n lattice, and let $S \subset \mathbb{R}^{n}$ be a compact, convex, and symmetric set. If

$$
\operatorname{vol}(S) \geq 2^{n} \operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right)
$$

prove that S contains a nonzero element of Λ.
Solution. If $\operatorname{vol}(S)>2^{n} \operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right)$, Minkowski's convex body theorem applies directly. Suppose that $\operatorname{vol}(S)=2^{n} \operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right)$. The key step in the proof of the Minkowski body theorem now fails. Indeed, it is a priori possible for the map T to be injective! To circumvent this, we will approximate S by a sequence of convex bodies to which Minkowski's theorem applies. Let $\epsilon_{1}, \epsilon_{2}, \ldots$ be a sequence of positive real numbers tending to 0 and consider the sets $S_{r}=\left(1+\epsilon_{r}\right) S$. We have:

$$
\operatorname{vol}\left(S_{r}\right)=\left(1+\epsilon_{r}\right)^{n} \operatorname{vol}(S)>\operatorname{vol}(S)=2^{n} \operatorname{vol}\left(\mathbb{R}^{n} / \Lambda\right)
$$

Now, we can apply the non-compact case of Minkowski's convex body theorem to S_{r} to obtain a non-zero element $\lambda_{r} \in S_{r} \cap \Lambda$. For each r, let s_{r} be the closest point to λ_{r} in S (it exists because S is compact and the distance between s_{r} and λ_{r} tends to 0 because S_{r} is obtained from S by scaling factors which tend to 1). Then, since S is compact, we can restrict r to a subsequence and assume that s_{r} converges to $s^{*} \in S$. Then we also have that λ_{r} converges to s^{*} on that subsequence. But $\lambda_{r} \in \Lambda$ is a convergent subsequence in a discrete set and therefore it is eventually constant. This means that $0 \neq s^{*} \in S \cap \Lambda$ as required.

Problem 2 (Exercise 3.10 on Pg. 64). Let $S \in \mathbb{R}^{n}$ be the subset consisting of points

$$
e=\left(a_{1}, \ldots, a_{r_{1}}, x_{1}, y_{1}, \ldots, x_{r_{2}}, y_{r_{2}}\right)
$$

which satisfy

$$
f(e)=\left|a_{1}\right|+\cdots+\left|a_{r_{1}}\right|+2\left(\sqrt{x_{1}^{2}+y_{1}^{2}}+\cdots+\sqrt{x_{r_{2}}^{2}+y_{r_{2}}^{2}}\right) \leq n .
$$

Show that S is convex.
Solution. Let $0 \leq t \leq 1$ and

$$
\begin{aligned}
& s=\left(a_{1}, \ldots, a_{r_{1}}, x_{1}, y_{1}, \ldots, x_{r_{2}}, y_{r_{2}}\right), \\
& s^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{r_{1}}^{\prime}, x_{1}^{\prime}, y_{1}^{\prime}, \ldots, x_{r_{2}}^{\prime}, y_{r_{2}}^{\prime}\right)
\end{aligned}
$$

be two elements in S. Then $t s+(1-t) s^{\prime}=\left(t a_{1}+(1-t) a_{1}^{\prime}, \ldots, t a_{r_{1}}+(1-t) a_{r_{1}}^{\prime}, t x_{1}+(1-t) x_{1}^{\prime}, t y_{1}+\right.$ $\left.(1-t) y_{1}^{\prime}, \ldots, t y_{r_{2}}+(1-t) y_{r_{2}}^{\prime}\right)$. Note that for all i, we have:

$$
\left|t a_{i}+(1-t) a_{i}^{\prime}\right| \leq t\left|a_{i}\right|+(1-t)\left|a_{i}^{\prime}\right|,
$$

by the triangle inequality. Furthermore, we have:

$$
\begin{aligned}
\sqrt{\left(t x_{i}+(1-t) x_{i}^{\prime}\right)^{2}+\left(t y_{i}+(1-t) y_{i}^{\prime}\right)^{2}} & =\left\|\left(t x_{i}+(1-t) x_{i}^{\prime}, t y_{i}+(1-t) y_{i}^{\prime}\right)\right\|_{2} \\
& \leq t\left\|\left(x_{i}, y_{i}\right)\right\|_{2}+(1-t)\left\|\left(x_{i}^{\prime}, y_{i}^{\prime}\right)\right\|_{2} \\
& \leq t \sqrt{x_{i}^{2}+y_{i}^{2}}+(1-t) \sqrt{x_{i}^{\prime}+y_{i}^{\prime}}
\end{aligned}
$$

again we use the triangle inequality on the 2 -norm on \mathbb{R}^{2}. Therefore, we find that $f\left(t s+(1-t) s^{\prime}\right) \leq$ $t f(s)+(1-t) f\left(s^{\prime}\right) \leq t n+(1-t) n=n$ and so $t s+(1-t) s^{\prime}$. We conclude that S is convex.

Problem 3 (Exercise 3.18 on Pg. 68). Let p be a prime number.
(a) Let u be an integer relatively prime to p, and define $\Lambda \subset \mathbb{Z}^{2}$ to be the lattice in \mathbb{R}^{2} consisting of all pairs $(a, b) \in \mathbb{Z}^{2}$ such that $b \equiv a u(\bmod p)$. Show that $\operatorname{covol}(\Lambda)=p$.
(b) Let $\Lambda \subset \mathbb{Z}^{4}$ be the lattice in \mathbb{R}^{4} consisting of all $(a, b, c, d) \in \mathbb{Z}^{4}$ such that:

$$
c \equiv u a+v b \quad d \equiv u b-v a(\bmod p)
$$

Show that $\operatorname{covol}(\Lambda)=p^{2}$.
(c) Show that the volume of a ball of radius r in \mathbb{R}^{4} is $\pi^{2} r^{4} / 2$.

Solution. (a) The vectors $(0, p)$ and $(1, u)$ form a basis for Λ. The volume of the fundamental domain is thus equal to $\operatorname{det}\left(\begin{array}{ll}1 & u \\ 0 & p\end{array}\right)=p$.
(b) The vectors $(1,0, u,-v),(0,1, v, u),(0,0, p, 0),(0,0,0, p)$ form a basis for Λ. The volume of the fundamental domain is thus equal to

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & u & -v \\
0 & 1 & v & u \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)=p^{2}
$$

(c) There are many proofs of this, here is a quick one (from Wikipedia) that uses cylindrical coordinates to relate the volume of the ball of radius r in $\mathbb{R}^{4}, V_{4}(r)$, to the radius of the ball of radius r in $\mathbb{R}^{2}, V_{2}(r)$. For this, we think of the coordinates $\left(x, y, R \cos (\theta), R \sin (\theta)\right.$ on \mathbb{R}^{4} and we apply Fubini:

$$
\begin{aligned}
V_{4}(r) & =\int_{0}^{2 \pi} \int_{0}^{r} V_{2}\left(\sqrt{r^{2}-R^{2}}\right) R d R d \theta \\
& =2 \pi V_{2}(1) \int_{0}^{r}\left(r^{2}-R^{2}\right) R d R \\
& =2 \pi V_{2}(1)\left[\frac{r^{2} R^{2}}{2}-\frac{R^{4}}{4}\right]_{R=0}^{R=r} \\
& =\frac{2 \pi V_{2}(1) r^{4}}{4} \\
& =\frac{\pi^{2} r^{4}}{2}
\end{aligned}
$$

Problem 4 (Exercise 3.40 on Pg. 79). If K is a number field, show that the sign of Δ_{K} is $(-1)^{r_{2}}$.
Solution. Let $\alpha_{1}, \ldots, \alpha_{n}$ be an integral basis for K. Let $\sigma_{1}, \sigma_{2} \ldots, \sigma_{r_{1}}$ be real embeddings of K and let $\sigma_{r_{1}+1}, \sigma_{r_{1}+2}, \ldots, \sigma_{r_{1}+2 r_{2}-1}, \sigma_{r_{1}+2 r_{2}}$ be the complex embeddings of K arranged so that $\sigma_{r_{1}+2 i-1}=\overline{\sigma_{r_{1}+2 i}}$. Now, taking the complex conjugate we find:

$$
\overline{\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)}=\operatorname{det}\left(\overline{\sigma_{i}}\left(\alpha_{j}\right)\right)=(-1)^{r_{2}} \operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right),
$$

since we are transposing the last r_{2} pairs of rows. As a result, $\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)$ is real if r_{2} is even and purely imaginary (that is on the imaginary line) if r_{2} is odd. It follows that $\Delta_{K}=\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)^{2}$ is positive if r_{2} is even and negative if r_{2} is odd. Thus, the sign of Δ_{K} is $(-1)^{r_{2}}$.

Problem 5 (Exercise (3) on Pg. 83). Same as Problem 1.
Problem 6 (Exercise (10) on Pg. 84). Let $K=\mathbb{Q}(\sqrt{223})$.
(a) Find the group of units of K.
(b) Show that the ideal class group of \mathcal{O}_{K} is cyclic of order 3 .

Solution. (a) Since K is a real quadratic field, we know by Dirichlet's unit theorem that $\mathcal{O}_{K}^{*} \cong$ $\{ \pm 1\} \times \varepsilon^{\mathbb{Z}}$, for some fundamental unit ε of K. It thus suffices to find a fundamental unit ε of K. The continued fraction expansion of $\sqrt{223}$ is $[14, \overline{1,13,1,28}]$ and the period of the fraction is 4 . We compute $\left(p_{4}, q_{4}\right)=(224,15)$ and conclude that we can take

$$
\varepsilon=224+15 \sqrt{223} .
$$

(b) Note that $223 \not \equiv 1(\bmod 4)$. Therefore $\mathbb{Z}[\sqrt{223}]$ is the rings of integers in $\mathbb{Q}(\sqrt{223})$. The discriminant is 892 and the norm form is $N(a+b \sqrt{-14})=a^{2}-223 b^{2}$. We will use Minkowski's bound. Recall that the Minkowski bound is given by:

$$
M_{K}:=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}} \sqrt{\left|\Delta_{K}\right|} .
$$

In our case, $M_{K}=\frac{2!}{2^{2}}\left(\frac{4}{\pi}\right)^{0} \sqrt{892} \sim 14.93$. We thus factor $(2),(3),(5),(7),(11),(13)$.

$$
\begin{aligned}
(2) & =(2, \sqrt{223}+1)^{2}=\mathfrak{p}_{2}^{2} \\
(3) & =(3, \sqrt{223}+1)(3, \sqrt{223}+2)=\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime} \\
(5) & =\mathfrak{p}_{5} \\
(7) & =\mathfrak{p}_{7} \\
(11) & =(11, \sqrt{223}+5)(11, \sqrt{223}+6)=\mathfrak{p}_{11} \mathfrak{p}_{11}^{\prime} \\
(13) & =\mathfrak{p}_{13}
\end{aligned}
$$

Therefore, the class group is generated by $\mathfrak{p}_{2}, \mathfrak{p}_{3}$ and \mathfrak{p}_{11}. Now, let's note that we have two interesting elements in \mathcal{O}_{K}, namely $15+\sqrt{223}$ and $16+\sqrt{223}$, which respectively have norm 2 and 33. Noting that $15+\sqrt{223}=(1+\sqrt{223})+7 \cdot 2$ we see that $\mathfrak{p}_{2}=(15+\sqrt{223})$. Thus, \mathfrak{p}_{2} is trivial in the class group. It is also immediate that $(16+\sqrt{223})=\mathfrak{p}_{3} \mathfrak{p}_{11}$. Thus, the class group is generated by $\left[\mathfrak{p}_{3}\right]$.

To find the order of \mathfrak{p}_{3}, we look for another element of small norm. Notice that $-14+\sqrt{223}$ has norm -27 . Furthermore, $(-14+\sqrt{223}) \subset \mathfrak{p}_{3}$ and since 3 does not divide $-14+\sqrt{223}$ in \mathcal{O}_{K}, we must have $(-14+\sqrt{223})=\left(\mathfrak{p}_{3}\right)^{3}$. Thus, $\left[\mathfrak{p}_{3}\right]$ has order 1 or 3 .
To show that $\left[\mathfrak{p}_{3}\right]$ has order 3 , we need to show that \mathfrak{p}_{3} is not principal. We proceed by contradiction. Suppose that \mathfrak{p}_{3} were principal and write $\mathfrak{p}_{3}=(\gamma)$. We have $\mathfrak{p}_{3}^{3}=(\beta)$ where $\beta=-14+\sqrt{223}$ and from the description of units in part (a), we have:

$$
\mathfrak{p}_{3}^{3}=(\beta)=\left(\gamma^{3}\right),
$$

and thus

$$
\pm \varepsilon^{m} \beta=\gamma^{3}
$$

for some $m \in \mathbb{Z}$ and for $\varepsilon=224+15 \sqrt{223}$. Without loss of generality, we may assume that $m=0,1,2$ after multiplying by an appropriate power of ε^{3}. We conclude that there is at least one element of the list $\pm \beta, \pm \varepsilon \beta, \pm \varepsilon^{2} \beta$ which is a cube in \mathcal{O}_{K}. There are now a couple of ways to proceed, with the general idea being to find a homomorphism into a field where we can tell which elements are cubes or not. Here's the very clever solutions that quite a few students found! By Kummer's factorisation theorem, we have a homomorphism:

$$
\pi: \mathcal{O}_{K} \rightarrow \mathcal{O}_{K} / 5 \mathcal{O}_{K}=\mathbb{F}_{25}=\mathbb{F}_{5}[\sqrt{3}]
$$

This homomorphism sends $\pi(a+b \sqrt{223})=\bar{a}+\bar{b} \sqrt{3}$, where \bar{a}, \bar{b} are the reductions of a and b modulo 5. In particular, it sends ε to -1 , which is a cube! Therefore, if we show that the element $\pi(\beta)=1+\sqrt{3} \in \mathbb{F}_{5}[\sqrt{3}]$ is not a cube, then none of the elements $\pm \beta, \pm \varepsilon \beta, \pm \varepsilon^{2} \beta$ can be cubes in \mathcal{O}_{K}.
Checking that $1+\sqrt{3}$ is not a cube in $\mathbb{F}_{5}[\sqrt{3}]$ is a finite computation. Either compute the cubes of the 25 elements of $\mathbb{F}_{25}[\sqrt{3}]$ and verify that $1+\sqrt{3}$ is not part of the list. Or notice that any non-zero cube a^{3} in $\mathbb{F}_{5}[\sqrt{3}]$ must satisfy $\left(a^{3}\right)^{8}=1$ and calculate that $(1+\sqrt{3})^{8}=2+\sqrt{3} \neq$ $1 \in \mathbb{F}_{5}[\sqrt{3}]$.
Therefore, we have our contradiction and we conclude that the ideal class group of \mathcal{O}_{K} is cyclic of order 3 .

Problem 7 (Exercise (11) on Pg. 85). Which of the following Diophantine equations have integer solutions?
(a) $X^{2}-223 Y^{2}= \pm 11$.
(b) $X^{2}-223 Y^{2}= \pm 11^{3}$.
(c) $X^{2}-223 Y^{2}= \pm 11^{19}$.

Solution. We use the notation of Problem 6. Let $K=\mathbb{Q}(\sqrt{223})$ and $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{223}]$ denotes its ring of integers.
(a) A solution to the equation $X^{2}-223 Y^{2}= \pm 11$ would imply the existence of a principal ideal in \mathcal{O}_{K} having norm 11. In particular, this would mean that $\left[\mathfrak{p}_{11}\right]$ and thus $\left[\mathfrak{p}_{3}\right]$ was trivial in the ideal class group of K. This would imply that the ideal class group of K is trivial which would contradicts Problem 6. Therefore, the Diophantine equation $X^{2}-223 Y^{2}= \pm 11$ has no integer solutions.
(b) By Problem 6, we know that the ideal \mathfrak{p}_{11}^{3} is principal. Let's say $(\gamma)=\mathfrak{p}_{11}^{3}$. Then, $N(\gamma)= \pm 11^{3}$, and so there is an integer solution to the Diophantine equation $X^{2}-223 Y^{2}= \pm 11^{3}$. Note that reducing the equation $X^{2}-223 Y^{2}=11^{3}$ modulo 4 gives $X^{2}+Y^{2}=3(\bmod 4)$ which does not have a solution. Thus, in fact, $N(\gamma)=-11^{3}$ and only $X^{2}-223 Y^{2}=-11^{3}$ has integer solutions.
(c) By Problem 6, $\left[\mathfrak{p}_{11}\right]^{8}\left[\mathfrak{p}_{11}^{\prime}\right]^{8}\left[\mathfrak{p}_{11}\right]^{3}=[(1)]$ in the ideal class group. In particular, the ideal $\mathfrak{p}_{11}^{11} \mathfrak{p}_{11}^{\prime 8}$ is principal. Let's say $(\gamma)=\mathfrak{p}_{11}^{11} \mathfrak{p}_{11}^{\prime 8}$. Then $N(\gamma)= \pm 11^{19}$. Therefore, there is an integer solution to the Diophantine equation $X^{2}-223 Y^{2}= \pm 11^{19}$. For the same reason as in (b), we must in fact have $N(\gamma)=-11^{19}$ and only $X^{2}-223 Y^{2}=-11^{19}$ has integer solutions.

