MAT415 Assignment 3 Solutions

November 11, 2020

Problem 1 (Exercise (1) on Pg. 54). Let K be a number field, let $\alpha \in K$, and let $T_{\alpha}: K \rightarrow K$ be the linear transformation from the \mathbb{Q}-vector space K to itself corresponding to multiplication by α. Show that $\operatorname{det}\left(T_{\alpha}\right)=N_{K / \mathbb{Q}}(\alpha)$.

Solution. Let $[\mathbb{Q}(\alpha): \mathbb{Q}]=d$. Then $[K: \mathbb{Q}(\alpha)]=\frac{n}{d}$. Note that $\operatorname{det}\left(T_{\alpha}\right)=\operatorname{det}\left(\left.T_{\alpha}\right|_{\mathbb{Q}(\alpha)}\right)^{\frac{n}{d}}$ and $N_{K / \mathbb{Q}}(\alpha)=\left(N_{\mathbb{Q}(\alpha) / \mathbb{Q}}(\alpha)\right)^{\frac{n}{d}}$. It thus suffices to show that $\operatorname{det}\left(\left.T_{\alpha}\right|_{\mathbb{Q}(\alpha)}\right)=N_{\mathbb{Q}(\alpha) / \mathbb{Q}}(\alpha)$.

Now, let's consider T_{α} as an operator on $\mathbb{Q}(\alpha)$. The characteristic polynomial of $T_{\alpha}, \operatorname{det}\left(x I-T_{\alpha}\right)$, is a monic degree d polynomial with coefficients in \mathbb{Q}. Furthermore, it has α as a root. In particular, it must be equal to the minimal polynomial of $\alpha!$ It thus follows that $\operatorname{det}\left(\left.T_{\alpha}\right|_{\mathbb{Q}(\alpha)}\right)=N_{\mathbb{Q}(\alpha) / \mathbb{Q}}(\alpha)$.

Problem 2 (Exercise (2) on Pg. 55). Let α be an algebraic integer of degree n, and let $f(x)$ be its minimal polynomial over \mathbb{Q}. Define the discriminant of α, denoted $\Delta(\alpha)$, to be the discriminant of the basis $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ for $\mathbb{Q}(\alpha) / \mathbb{Q}$, and let $\alpha_{1}, \ldots, \alpha_{n}$ be the conjugates of α.
a) Show that

$$
\Delta(\alpha)=(-1)^{\binom{n}{2}} \prod_{i=1}^{n} f^{\prime}\left(\alpha_{i}\right)=(-1)^{\binom{n}{2}} N_{\mathbb{Q}(\alpha) / \mathbb{Q}}\left(f^{\prime}(\alpha)\right) .
$$

b) Suppose α is a root of the polynomial $f(x)=x^{n}+a x+b$, where $a, b \in \mathbb{Z}$ are chosen so that $f(x)$ is irreducible. Use part a) to show that

$$
\Delta(\alpha)=(-1)^{\frac{n(n-1)}{2}}\left((-1)^{n-1}(n-1)^{n-1} a^{n}+n^{n} b^{n-1}\right)
$$

In particular, show that if $f(x)=x^{2}+a x+b$ then $\Delta(\alpha)=a^{2}-4 b$, an $\Delta(x)=x^{3}+a x+b$ then $\Delta(\alpha)=-4 a^{3}-27 b^{2}$.
c) Find an integral basis for the ring of integers of $\mathbb{Q}(\theta)$, where θ is a root of the polynomial $x^{3}-2 x+3$.
d) Find an integral basis for the ring of integers of $\mathbb{Q}(\theta)$, where θ is a root of the polynomial $x^{3}-x-4$.

Solution. Consult the solutions to Problem 3 and Problem 4 on Assignment 2.
Problem 3 (Exercise (6) on Pg. 55). Factor the ideals (2), (3), (7), (29), and (31) into prime ideals in $R=\mathbb{Z}[\sqrt[3]{2}]$.

Solution. As we noted in Assignment 3, in order to factor the ideal (p) into prime ideals in R, it suffices to factor the polynomial $f(x)=x^{3}-2$ into irreducibles modulo p, and to apply Kummer's factorisation theorem. From Assignment 2, we already know that $(2)=(2, \sqrt[3]{2})^{3},(3)=(3, \sqrt[3]{2}+1)^{3}$ and (7) are the factorisation of the ideas (2), (3) and (7) into prime ideals in R.

Modulo 29, we have $x^{3}-2=(x+3)\left(x^{2}+26 x+9\right)$. Hence,

$$
(29)=(29, \sqrt[3]{2}+3)\left(29,(\sqrt[3]{2})^{2}+26 \sqrt[3]{2}+9\right)
$$

Modulo 31, we have $x^{3}-2=(x+11)(x+24)(x+27)$. Hence,

$$
(31)=(31, \sqrt[3]{2}+11)(31, \sqrt[3]{2}+24)(31, \sqrt[3]{2}+27)
$$

Problem 4 (Exercise (7) on Pg. 55-6). Let $K=\mathbb{Q}(\theta)$, where θ is a root of $f(x)=x^{3}-2 x-2$.
(a) Show that $[K: \mathbb{Q}]=3$ and that $\mathbb{Z}[\theta]$ is the ring of integers in K.
(b) Show that $\operatorname{Cl}\left(\mathcal{O}_{K}\right)$ is trivial.

Solution. a) To show that $[K: \mathbb{Q}]=3$, it suffices to show that $f(x)$ is irreducible over \mathbb{Q}. This follows at once from Eisenstein's criterion or by the rational roots theorem. By Problem 2, $\left\{1, \alpha, \alpha^{2}\right\}$ has discriminant $-76=4 \times 19$. However, since the polynomial is Eisenstein at the prime 2, Proposition 2.9 tell us that $\left\{1, \alpha, \alpha^{2}\right\}$ is an integral basis!
b) To show that $\operatorname{Cl}\left(\mathcal{O}_{K}\right)$ is trivial, we will use the Minkowski bound. Recall that the Minkowski bound is given by:

$$
M_{K}:=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}} \sqrt{\left|\Delta_{K}\right|} .
$$

In our case, $M_{K}=\frac{3!}{3^{3}}\left(\frac{4}{\pi}\right)^{1} \sqrt{76} \sim 2.47$. Therefore, we only need to factor (2). Modulo 2, the polynomial f factors as x^{2}. Hence,

$$
(2)=(2, \alpha)^{2}=(\alpha)^{2} .
$$

It follows that every ideal if principal and we conclude that $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ is trivial.

Problem 5 (Exercise (10) on Pg. 56). Determine the ideal class group of $\mathbb{Z}[\sqrt[3]{2}]$.
Solution. We will use Minkowski's bound. Recall that the Minkowski bound is given by:

$$
M_{K}:=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}} \sqrt{\left|\Delta_{K}\right|} .
$$

In our case, $M_{K}=\frac{3!}{3^{3}}\left(\frac{4}{\pi}\right)^{1} \sqrt{108} \sim 2.94$. Thus, it suffices to factor (2). We know that it factors as

$$
(2)=(2, \sqrt[3]{2})^{3}=(\sqrt[3]{2})^{3}
$$

It follows that the class group is trivial.
Problem 6 (Exercise (11) on Pg. 56). Determine the ideal class groups (not just their orders) of: (a) $\mathbb{Z}[\sqrt{-14}]$.
(b) $\mathbb{Z}[\sqrt{-21}]$.

Solution. Note that $-14,-21 \not \equiv 1(\bmod 4)$. Therefore $\mathbb{Z}[\sqrt{-14}]$ and $\mathbb{Z}[\sqrt{-21}]$ are the rings of integers in $\mathbb{Q}(\sqrt{-14})$ and $\mathbb{Q}(\sqrt{-21})$ respectively.
a) The discriminant is -56 and the norm form is $N(a+b \sqrt{-14})=a^{2}+14 b^{2}$. We will use Minkowski's bound. Recall that the Minkowski bound is given by:

$$
M_{K}:=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}} \sqrt{\left|\Delta_{K}\right|} .
$$

In our case, $M_{K}=\frac{2!}{2^{2}}\left(\frac{4}{\pi}\right)^{1} \sqrt{56} \sim 4.76$. We thus factor (2) and (3).

$$
\begin{aligned}
& (2)=(2, \sqrt{-14})^{2}=\mathfrak{p}_{1}^{2} \\
& (3)=(3, \sqrt{-14}-1)(3, \sqrt{-14}+1)=\mathfrak{p}_{2} \mathfrak{p}_{3} .
\end{aligned}
$$

By examining the norm form, we see that there are no elements of norm equal to 2 or 3 . In particular, $\mathfrak{p}_{1}, \mathfrak{p}_{2}$, and \mathfrak{p}_{3} are not principal and they generate the class group. Furthermore, since $\mathfrak{p}_{1}^{2}=(2)$ and $\mathfrak{p}_{2} \mathfrak{p}_{3}=(3)$, we have $\left[\mathfrak{p}_{1}\right]^{2}=1$ and $\left[\mathfrak{p}_{2}\right]=\left[\mathfrak{p}_{3}\right]^{-1}$ in the class group.
To find a relation between \mathfrak{p}_{1} and either \mathfrak{p}_{2} or \mathfrak{p}_{3}, we look for elements whose norm is divisible by 2 and 3 only. By examining the norm form, we see that $N(2+\sqrt{-14})=18=2 \times 3^{2}$. Note that $2+\sqrt{-14} \in \mathfrak{p}_{1}$ and \mathfrak{p}_{2}. Furthermore, since $2+\sqrt{-14}$ is not a multiple of 3 , it does not belong to \mathfrak{p}_{3}. Hence, we have

$$
(2+\sqrt{-14})=\mathfrak{p}_{1} \mathfrak{p}_{2}^{2} .
$$

From this, we conclude that $\left[\mathfrak{p}_{2}\right]^{2}=\left[\mathfrak{p}_{1}\right]^{-1}=\left[p_{1}\right]$ in the class group. This means that the class group is generated by $\left[\mathfrak{p}_{2}\right]$ and that $\left[\mathfrak{p}_{2}\right]$ has order 4 (since $\left[\mathfrak{p}_{2}\right]^{2}=\left[\mathfrak{p}_{1}\right]$ has order 2).
Therefore, $\mathrm{Cl}\left(\mathcal{O}_{K}\right) \cong \mathbb{Z} / 4 \mathbb{Z}$ and the generator can be taken to be either of the two prime factors of the ideal (3).
b) The discriminant is -84 and the norm form is $N(a+b \sqrt{-21})=a^{2}+21 b^{2}$. We will use Minkowski's bound. Recall that the Minkowski bound is given by:

$$
M_{K}:=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}} \sqrt{\left|\Delta_{K}\right|} .
$$

In our case, $M_{K}=\frac{2!}{2^{2}}\left(\frac{4}{\pi}\right)^{1} \sqrt{84} \sim 5.83$. We thus factor (2), (3), and (5).

$$
\begin{aligned}
& (2)=(2, \sqrt{-21}+1)^{2}=\mathfrak{p}_{1}^{2} \\
& (3)=(3, \sqrt{-21})^{2}=\mathfrak{p}_{2}^{2} \\
& (5)=(5, \sqrt{-21}+2)(5, \sqrt{-21}+3)=\mathfrak{p}_{3} \mathfrak{p}_{4} .
\end{aligned}
$$

By examining the norm form, we see that there are no elements of norm 2, 3, or 5. In particular, $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \mathfrak{p}_{3}, \mathfrak{p}_{4}$ are not principal and they generate the class group. We now find relations by finding elements whose norm is divisible by 2,3 , or 5 . Note that $N(3+\sqrt{-21})=30=2 \times 3 \times 5$. Plainly, we have:

$$
(3+\sqrt{-21})=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{4} .
$$

Hence, $\left[\mathfrak{p}_{1}\right]\left[\mathfrak{p}_{2}\right]=\left[\mathfrak{p}_{4}\right]^{-1}$ in the class group. In particular, since \mathfrak{p}_{4} is not principal and since $\mathfrak{p}_{3} \mathfrak{p}_{4}=(3)$, we can conclude that $\left[\mathfrak{p}_{1}\right]$ and $\left[\mathfrak{p}_{2}\right]$ are linearly independent and that $\left[\mathfrak{p}_{1}\right]\left[\mathfrak{p}_{2}\right]=\left[\mathfrak{p}_{3}\right]$. Therefore, $\mathrm{Cl}\left(\mathcal{O}_{K}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and the generators can be taken to be prime factors of the ideals (2) and (3).

