
MAT415 Assignment 2 Solutions

October 24, 2020

Problem 1 (Exercise 1.38 on Pg. 20). Let I be a nonzero ideal in a Dedekind ring R with
factorization I = p1 · · · pr into prime ideals. Then:

a) I−1 = p−11 · · · p−1r .

b) II−1 = R.

Solution. a) By definition, I−1 = {x ∈ K : xI ⊂ R}. First, we note that

p−11 · · · p
−1
r I = p−11 · · · p

−1
r p1 · · · pr = (p−11 p1) · · · (p−1r pr) ⊂ R · · ·R ⊂ R.

This shows that p−11 · · · p−1r ⊂ I−1.

On the other hand, by definition, we have I−1I = I−1 p1 · · · pr ⊂ R. By Corollary 1.36, we
know that p p−1 = R for a prime ideal p of Dedekind domain R. Multiplying both sides of
I p1 · · · pr ⊂ R by p−1r , we find:

I−1 p1 · · · pr−1 = I−1 p1 · · · pr−1R ⊂ I−1 p1 · · · pr−1(pr p−1r ) ⊂ p−1r .

We proceed by successively multiplying both sides by p−1r−1, · · · , p
−1
1 , to find I−1 ⊂ p−11 · · · p−1r .

We conclude that I−1 = p−11 · · · p−1r as required.

b) By Corollary 1.36, we know that p p−1 = R for a prime ideal p of Dedekind domain R. Using
part (a), we find that

II−1 = p1 · · · pr p−11 · · · p
−1
r = (p1 p

−1
1 ) · · · (pr p−1r ) = R · · ·R = R

as required.

Problem 2 (Exercise 1.44 on Pg. 22). One can give an equivalent definition of Cl(R) without ever
mentioning fractional ideals, as follows. We say that two ideals I, J of R are equivalent (and write
I ∼ J) if there exists nonzero elements a, b of R such that aI = bJ .

a) Prove that ∼ defines an equivalence relation.

b) If I ∼ I ′ and J ∼ J ′, show that IJ ∼ I ′J ′. Deduce that there is a natural group structure on
the set of equivalence classes of nonzero ideals.

c) Prove that the group of equivalence classes of nonzero ideals of R is isomorphic to the ideal class
group Cl(R).

1



Solution. a) To show that ∼ defines an equivalence relation, we must show that it is reflexive,
symmetric and transitive. The fact that ∼ is symmetric and reflexive is immediate from the
definition. To show that it is also transitive, suppose that I ∼ J and J ∼ K for ideals I, J,K of
R. This means that there exists nonzero elements a, b, c, d of R such that aI = bJ and cJ = dK.
But then caI = cbJ = bcJ = bdK. Therefore I ∼ K and ∼ is transitive. Therefore, ∼ is an
equivalence relation.

b) Suppose that I ∼ I ′ and J ∼ J ′. Then there exists some non-zero elements a, b, c, d of R such
that aI = bI ′ and cJ = dJ ′. Then acIJ = bdI ′J ′. Thus IJ ∼ I ′J ′.
Write the equivalence class of a non-zero ideal I under ∼ as [I]. The operation on the equivalence
classed of non-zero ideals is [I][J ] = [IJ ]. The operation is clearly associative, has identity
[(1)] = [R]. To see that every ideal has an inverse is a bit trickier. By Problem 1, we have that
I−1 is a fractional ideal of R which has the property that I−1I = R. Now, take an element r
such that rI−1 ⊂ R (any non-zero element of I works). Then rI−1 is an ideal of R and we have

rI−1I = rR.

Therefore, [rI−1] is the inverse of [I].

Therefore, we have a natural group structure on the set of equivalence classes of nonzero ideals.
We call this group X.

c) Consider the map
Φ: X → Cl(R)

given by [I] 7→ [I] sending the ideal class of I under ∼ to the equivalence class of the ideal I
(considered now as a fractional ideal) in the ideal class group. This map is well defined because
if I ∼ I ′, then aI = bI ′ for some non-zero elements a, b of R, and so (a/b)I = I ′, whence I and
I ′ are equal in the ideal class group, and so Φ([I]) = Φ([I ′]). The map Φ is a homomorphism
because the operation in X and in the class group are both induced by multiplication of ideals.
To see that it is injective, suppose that Φ([I]) = [(1)]. Then I = (α) for some non-zero α ∈ K.
But since K is the fraction field of R, we can write α = a

b for some non-zero a, b in R. But then
bI = aR and so [I] = [R] = [(1)]. This shows that Φ is injective. To see that it is surjective, we
just need to show that every fractional ideal is equivalent to an ideal of R in the class group.
Let J be a fractional ideal. By the definition of fractional ideal, we can find a non-zero element
r ∈ R such that rJ ⊂ R. Then rJ is an ideal of R which we can call I and we have

rJ = I.

Therefore, [J ] = Φ([I]) and we conclude that Φ is surjective. Thus, we have shown that Φ is an
isomorphism.

Problem 3 (Exercise 2.7 on Pg. 36). Let α be an algebraic integer of degree n, and let f(x) be its
minimal polynomial over Q. Define the discriminant of α, denoted ∆(α), to be the discriminant of
the basis {1, α, . . . , αn−1} for Q(α)/Q, and let α1, . . . , αn be the conjugates of α.

a) Show that

∆(α) = (−1)(
n
2)

n∏
i=1

f ′(αi) = (−1)(
n
2)NQ(α)/Q(f ′(α)).
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b) Suppose α is a root of the polynomial f(x) = xn + ax + b, where a, b ∈ Z are chosen so that
f(x) is irreducible. Use part a) to show that

∆(α) = (−1)
n(n−1)

2
(
(−1)n−1(n− 1)n−1an + nnbn−1

)
In particular, show that if f(x) = x2 + ax+ b then ∆(α) = a2 − 4b, an ∆(x) = x3 + ax+ b then
∆(α) = −4a3 − 27b2.

Solution. a) The second equality follows from the definition of the norm. For the first equality, we
have that ∆(α) is the determinant of the following matrix:

1 α1 α2
1 · · ·αn−11

1 α2 α2
2 · · ·αn−12
...

1 αn α2
n · · ·αn−1n

 .

This matrix is a Vandermonde matrix and it’s determinant is given by the formula∏
1≤i<j≤n

(αi − αj)

(see the Wikipedia page on the Vandermonde matrix for some nice proofs of this identity). On
the other hand,

n∏
i=1

f ′(αi) =
n∏
i=1

∏
i 6=j

(αi − αj)

 .

In the inner product, you need to make 0, 1, . . ., n− 1 sign changes when i is respectively equal
to 1, 2, . . ., n to make it equal to the determinant of the Vandermonde matrix. Therefore, ∆(α)

and
∏n
i=1 f

′(αi) differ by (−1)
n(n−1)

2 which gives the first equality.

b) From part a), it suffices to show that
∏n
i=1 f

′(αi) = (−1)n−1(n − 1)n−1an + nnbn−1. Now,
f ′(x) = nxn−1 + a and so f ′(αi) = nαn−1i + a. So

∏n
i=1 f

′(αi) =
∏n
i=1(nα

n−1
i + a). But we

know that αi are the roots of f(x). In particular, αni = −aαi − b and so αn−1i = −a − b
αi

. So
the product above becomes:

n∏
i=1

(nαn−1i + a) =

n∏
i=1

(−na− nb

αi
+ a)

=
n∏
i=1

1

αi
(−(n− 1)aαi − nb)

=
(−1)n

b

n∏
i=1

(n− 1)a

(
− nb

(n− 1)a
− αi

)
=

(−1)n

b
(n− 1)nanf

(
− nb

(n− 1)a

)
=

(−1)n

b
(n− 1)nan

((
− nb

(n− 1)a

)n
+ a

(
− nb

(n− 1)a

)
+ b

)
= nnbn−1 + (−1)n−1(n− 1)n−1nan + (−1)n(n− 1)nan
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= nnbn−1 + (−1)n−1(n− 1)n−1an(n− (n− 1))

= nnbn−1 + (−1)n−1(n− 1)n−1an,

as required. If we substitute n = 2 in the formula above, we find f(x) = x2 + ax + b and
∆(α) = −(−a2 + 4b) = a2 − 4b. If we substitute n = 3, we find f(x) = x3 + ax + b and
∆(α) = −(4a3 + 27b2) = −4a3 − 27b2.

Problem 4 (Exercise 2.8 on Pg. 36).

1. Find an integral basis for the ring of integers of Q(θ), where θ is a root of the polynomial
x3 − 2x+ 3.

2. Find an integral basis for the ring of integers of Q(θ), where θ is a root of the polynomial
x3 − x− 4.

Solution. 1. Let f(x) = x3− 2x+ 3. By Problem 3, the discriminant of f(x) is −211. Now, 211
is prime and therefore {1, θ, θ2} is an integral basis for the ring of integers of Q(θ).

2. Let f(x) = x3 − x − 4. By Problem 3, the discriminant of f(x) is −428 = −4 × 107. If
OK 6= Z[θ], then by Lemma 2.3, the index of Z[θ] in OK must be 2. If that’s the case,

by Lemma 2.5, OK must contain one of 1
2 , θ

2 , θ2

2 , 1+θ
2 , 1+θ2

2 , θ+θ2

2 , 1+θ+θ2

2 . The minimal

polynomials of 1
2 , θ

2 , 1+θ
2 don’t have integer coefficients. You can also check fairly easily that

the minimal polynomial of θ2

2 does not have integer coefficients. We will check that θ+θ2

2 does
actually have integer coefficients. For this purpose, let’s find the linear dependence between 1,
θ+θ2

2 ,
(
θ+θ2

2

)2
, and

(
θ+θ2

2

)3
. To do so, let’s expand and simplify both

(
θ+θ2

2

)2
and

(
θ+θ2

2

)3
using the fact that θ3 = x+ 4 coming from f(x). We have:(

θ + θ2

2

)2

=
θ4

4
+
θ3

2
+
θ2

4

=
θ2 + 4θ

4
+
θ + 4

2
+
θ2

4

=
θ2

2
+

3θ

2
+ 2.

Furthermore, we have:(
θ + θ2

2

)3

=

(
θ + θ2

2

)2(
θ + θ2

2

)
=

(
θ2

2
+

3θ

2
+ 2

)(
θ + θ2

2

)
=
θ3

4
+

3θ2

4
+ θ +

θ4

4
+

3θ3

4
+ θ2

=
θ + 4

4
+

3θ2

4
+ θ +

θ2 + 4θ

4
+

3θ + 12

4
+ θ2

= 2θ2 + 3θ + 4.
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We must now find a, b, c ∈ Q such that
(
θ+θ2

2

)3
+ a

(
θ+θ2

2

)2
+ b

(
θ+θ2

2

)
+ c = 0. By the

calculations above, this is the same as solving the system:

2 +
a

2
+
b

2
= 0

3 +
3a

2
+
b

2
= 0

4 + 2a+ c = 0

This system has solution (a, b, c) = (−1,−3,−2). Therefore, θ+θ2

2 is a root of the polynomial

x3 − x2 − 3x − 2 and as a result belongs to OK . We find that
{

1, θ, θ+θ
2

2

}
has discriminant

−107. As this is square-free, we have found an integral basis.

Problem 5 (Exercise 2.18 on Pg. 42). Show that every nonzero prime ideal p of OK lies over a
unique prime number p.

Solution. Since p is non-zero, it contains a non-zero element α. Since α is an algebraic integer, it
is the root of a monic polynomial in Z, and we can write:

αn + a1α
n−1 + . . .+ an−1α+ an = 0

for some ai ∈ Z. But then an ∈ p. We can then factor an into primes in Z, an = p1p2 · · · pl.
But since p is a prime ideal it must contain at least one of those primes. Therefore, p lies over at
least one prime number. If p contained two distinct primes p, q of Z, then it would contain also
contain pZ + qZ = Z and thus it would contain 1. Since prime ideals are proper, this would be a
contradiction. Therefore, every prime ideal p of OK lies over a unique prime number p and thus
p∩Z = (p).

Problem 6 (Exercise 2.25 on Pg. 43). Factor the ideals (2), (3), and (7) into prime ideals in
R = Z[ 3

√
2].

Solution. By Proposition 2.10 in Baker’s notes, Z[ 3
√

2] is the ring of integers of Q( 3
√

2). This ques-
tion is now easy to do by applying Kummer’s Factorization Theorem, Lemma 2.15, because our
ring is monogenic. It thus suffices to find the factorisation of the polynomial f(x) = x3 − 2 into
irreducible modulo 2,3, and 7. Modulo 2, f(x) ≡ x3 (mod 2) and so we have (2) = (2, 3

√
2)3.

Modulo 3, f(x) ≡ (x + 1)3 (mod 3) and so we have (3) = (3, 3
√

2 + 1)3. Modulo 7, f(x) does not
have a root. As a result, it is irreducible, and so (7) is a prime ideal.

Remark 7. Over finite fields, there is a recursive algorithm that allows you to find all irreducible
polynomials of degree d. Indeed, write down all the monic polynomials of degree d. There are
finitely many since the base field is finite. For each of those, check using the Euclidean algorithm
whether it is divisible by an irreducible polynomial of degree strictly less than d. If it is, discard
it. If it is not, then it is irreducible. This way, you have written a list of the degree d irreducible
polynomials.

Using the lists of irreducible polynomials of degree at most d you have built, you can factor
any degree d polynomial into irreducibles by using the following algorithm. Take a polynomial f
of degree d. Without loss of generality, we can assume it is monic (otherwise you divide it by the
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leading coefficient). Then, check with your list if it is irreducible. If not, you can find an irreducible
factor of degree strictly less than d, say g1. Then you can now repeat the process for f/g1, f/(g1g2)
etc to find all the irreducible factors of f .
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