
MAT415 Assignment 1 Solutions

September 29, 2020

Problem 1 (Exercise 1.13 Pg. 11). Let d be a squarefree integer. Then the ring of integers OK in
K = Q(

√
d) is:

Z[
√
d] if d ≡ 2, 3 (mod 4)

Z[1+
√
d

2 ] if d ≡ 1 (mod 4)

Solution. Let α = r + s
√
d ∈ Q(

√
d) for r, s ∈ Q. The minimal polynomial of α is:

(X − r − s
√
d)(X − r + s

√
d) = X2 − 2rX + (r2 − ds2).

Now, α ∈ OK if and only if its minimal polynomial has integer coefficients if and only if 2r ∈ Z
and r2− ds2 ∈ Z. We note that 2r and 2s are both integers (since 2r is an integer, 2s

√
d = 2α− 2r

belongs to OK , which means that d(2s)2 is an integer, but since d is square-free, 2s must already
be an integer). So r = a

2 and s = b
2 with a and b integers. So α ∈ OK is equivalent to our equation

is equivalent to
a2 − db2 ∈ 4Z.

Looking at this equation modulo 4, this is equivalent to a2 = db2 (mod 4). Now, the quadratic
residues modulo 4 are {0, 1}.

If d ≡ 2, 3 (mod 4), this is equivalent to a2 ≡ b2 ≡ 0 (mod 4) which is equivalent to asking for
a, b to be even, which is same as asking for r, s to be integers. This means that OK = Z[

√
d] if d ≡

2, 3 (mod 4).
If d ≡ 1 (mod 4), this is equivalent to asking for a2 ≡ b2 (mod 4) which is equivalent to asking

that a ≡ b (mod 2). This means that OK = Z[1+
√
d

2 ] if d ≡ 1 (mod 4).

Problem 2 (Exercise 1.29 on Pg. 16). Prove that Z[
√
−3] is not a Dedekind domain, and does not

admit unique factorization of ideals.

Solution. Note that Z[
√
−3] is a Noetherian integral domain with Krull dimension 1. This is

because it is the quotient of the dimension 2 Noetherian ring Z[x] by the prime ideal (x2 + 3). So
the only thing that could go wrong is being integrally closed. Looking at Problem 1, we see that
1+
√
−3

2 is integral and lies in the fraction field of Z[
√
−3] but not in Z[

√
−3].

The fact that unique factorization of ideals fails in Z[
√
−3] will be done in Problem 6.

Problem 3 (Exercise 1.37 on Pg. 20). A Dedekind ring is a UFD if and only if it is a PID.

Solution. The direction [⇐] is easy since any PID is a UFD.
The direction [⇒] needs more work since UFDs don’t need to be PIDs. For example, Z[x] is a

UFD but not a PID (why?).
Suppose that R is a Dedekind ring which is a UFD. We want to show that R is a PID. First,

we claim that it suffices to show that every prime ideal is principal. Indeed, if every prime ideal
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is principal and I is an ideal of R, then since R is a Dedekind ring, we can write I = p1 · · · pk for
some unique prime ideals pi. But products of principal ideals are principal and so I is principal.

We now show that every prime ideal of R is principal. The (0) ideal is prime and principal.
Consider a prime ideal (0) 6= p. Let 0 6= x ∈ p be an element and write x = p1 · · · pl for irreducible
elements pi by using the UFD property. Then since p is prime, at least one of the pi must belong
to p, say pi0 . But then the ideal (pi0) is prime (since irreducible elements are prime in a UFD) and
fits in the chain (0) ( (pi0) ⊆ p. Since Dedekind domains have Krull dimension 1, the containment
(pi0) ⊂ p must be an equality. Therefore, p is principal.

Problem 4 (Exercise (1) on Pg. 30). Prove that the following rings are not UFDs by explicitly
finding two distinct factorizations of the same element.

a) Z[
√
−13]

b) Z[
√

10]

Solution. a) We have 14 = 2 · 7 = (1 +
√
−13)(1−

√
−13). We now check that 2, 7, 1±

√
−13 are

irreducible. The norm equation is N(a+ b
√
−13) = a2 + 13b2. We can check by inspection that

there are no elements of norm 2 or 7. We now check that this implies that 2 is irreducible. If 2
were reducible we could write it as 2 = αβ for some elements α and β which are not units. But
then 4 = N(2) = N(α)N(β). Since α and β are not units, neither can have norm ±1 and thus
both have norm 2. But this is a contradiction since we have shown that there are no elements
of norm 2. Similarly, one can show that 7 and 1±

√
−13 are irreducible.

b) We have 6 = 2 · 3 = (2 +
√

10)(−2 +
√

10). The norm equation is N(a + b
√

10) = a2 − 10b2.
Taking the equation modulo 10, we see that we get a quadratic residue modulo 10. The quadratic
residues modulo 10 are {1, 4, 5, 6, 9}. Therefore, there are no elements of norm 2 or 3 and thus
2, 3,±2 +

√
10 are all irreducible.

Problem 5 (Exercise (5) on Pg. 30). This problem has two parts.

a) Determine the ring of integers in Q(
√
d) for all square-free integers d.

b) Determine the unit group of the ring of integers in Q(
√
d) for all square-free integers d < 0.

Solution. a) In Problem 1, we found that the ring of integers OK in K = Q(
√
d) is:

Z[
√
d] if d ≡ 2, 3 (mod 4)

Z[1+
√
d

2 ] if d ≡ 1 (mod 4).

b) To find the units of Q(
√
d) for all square-free integers d < 0, we solve the norm equation

N(u) = 1 in OK .

If d ≡ 2, 3 (mod 4), we need to find all a, b ∈ Z such that

N(a+ b
√
d) = a2 − db2 = 1.

This equation has only the trivial solutions (a, b) = (±1, 0), except when d = −1, where the
solutions are (a, b) = (±1, 0) and (a, b) = (0,±1).
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If d ≡ 1 (mod 4), we need to find all a, b ∈ Z with a ≡ b (mod 2) such that

N(a+b
√
d

2 ) =
a2 − db2

4
= 1.

This is equivalent to finding all a, b ∈ Z with a ≡ b (mod 2) such that

a2 − db2 = 4.

This equation has only the trivial solutions (a, b) = (±2, 0), except when d = −3, where the
solutions are (a, b) = (±2, 0) and (a, b) = (±1,±1).

Recall that any finite subgroup of the unit group of a field is cyclic. Therefore, our calculations
tell us that the unit group of Q(

√
d) for square-free integers d < 0 is isomorphic to Z/2Z, with

the exception of Q(i) where it is isomorphic to Z/4Z and of Q(
√
−3) where it is isomorphic to

Z/6Z.

As you will see, imaginary quadratic fields are the only number fields whose unit group is finite.

Problem 6 (Exercise (7) on Pg. 31). Let R = Z[
√
−3], and let I be the ideal of R generated by 2

and 1 +
√
−3.

a) Show that I2 = (2)I but I 6= (2). Conclude that proper ideals in R do not factor uniquely into
products of prime ideals.

b) Show that I is the unique prime ideal of R containing (2). Conclude that the ideal (2) cannot be
written as a product of prime ideals of R.

c) Why do parts (a) and (b) above not contradict the theorem which says that every Dedekind
domain admits unique factorization of proper ideals into products of prime ideals?

Solution. a) We have I = (2, 1 +
√
−3). We find

I2 = (4, 2 + 2
√
−3,−2 + 2

√
−3) = (4, 2 + 2

√
−3) = (2)I.

To see that I 6= (2), note that 1 +
√
−3 ∈ I and any a+ b

√
−3 ∈ (2) must have a, b even.

Note that I is prime since R/I ∼= Z/2Z is a field.

If R had unique factorization into prime ideals, we could write (2) = p1 · · · pm for some prime
ideals pj with more than one equal I or at least one of them different from I. Then, we would
have I2 = Ip1 · · · pl. This is a contradiction to uniqueness of factorisation into prime ideals since
either the power of I would not match on both sides or a prime ideal factor would appear on
the right side but not on the left side.

b) The prime ideals ofR containing (2) are in bijection with the prime ideals ofR/(2) ∼= (Z/2Z)[
√
−3].

But (Z/2Z)[
√
−3] has 4 elements, namely 0, 1,

√
−3, 1 +

√
−3. Furthermore, you can check that

1 and
√
−3 are the only units of (Z/2Z)[

√
−3]. Thus (Z/2Z)[

√
−3] has a unique prime ideal

(1 +
√
−3). This means that I is the unique prime ideal of R containing (2).

If you could write (2) as a product of primes, then the only prime that would show up would
be I since it is the only prime ideal which contains (2). But then, (2) = Ik for some exponent
k > 1. But then from part (a), we would find (2) = Ik = (2k−1)I. This is a contradiction since
(2k−1)I = (2k, 2k−1 + 2k−1

√
−3) does not contain 2 for k > 1.

c) As shown in Problem 2, Z[
√
−3] is not a Dedekind domain because it is not integrally closed.
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