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Problem 1. This problem has two parts.

a) Compute the class number of Q(
√
−35).

b) Find all integer solutions to a3 = b2 + 35.

Solution. (a) Note that −35 ≡ 1 (mod 4). Therefore Z[1+
√
−35

2 ] is the rings of integers in K =

Q(
√
−35). The discriminant is −35 and the norm form is N(a+b

√
−35

2 ) = 1
4(a2 + 35b2) where

a ≡ b (mod 2). We will use Minkowski’s bound. Recall that the Minkowski bound is given by:

MK :=
n!

nn

(
4

π

)r2√
|∆K |.

In our case, MK = 2!
22

(
4
π

)1√
35 ∼ 3.77. Thus we only need to factor (2), (3). Let θ = 1+

√
−35

2
be the generator of the ring of integers. It has minimal polynomial given by x2 − x + 9. It is
irreducible modulo 2 and factors as x(x− 1) modulo 3. Therefore we find.

(2) = (2, θ2 − θ + 9) = p2

(3) = (3, θ)(3, θ + 1) = p3 p
′
3

Therefore, the class group is generated by p3. There are no elements of norm 3 in OK , so
p3 is not principal. To compute its order, note that N(1 +

√
−35) = 36 = 9 × 4. Together

with the fact that 1 +
√
−35 = 2θ ∈ p3 and that 3 does not divide 1 +

√
−35 in OK , we find

(1 +
√
−35) = p2

2 p
2
3. This means that [p3] has order 2.

Therefore, K has class number 2, Cl(OK) ∼= Z/2Z, and the generator can be taken to be either
of the two prime factors of the ideal (3).

(b) Since 35 is squarefree, a and b must be coprime. Since 35 is odd, they must have different
parities. If a were even, then we would have b2 ≡ 5 (mod 8), which is impossible since the
quadratic residues modulo 8 are 0, 1, 4. Thus, a and b are coprime with a odd and b even.

Let’s now work over K = Q(
√
−35). If a, b is a solution to the equation a3 = b2 + 35, we have

(a)3 = (b−
√
−35)(b+

√
−35).

We claim that the ideals (b −
√
−35) and (b +

√
−35) are coprime. Indeed, if a prime ideal p

divides both (b−
√
−35) and (b+

√
−35), then p |(a)3 (and thus (a)) and also p |(2b). Since a

is odd, we have that p 6 |(2) (lest it contain 1), and thus p |(b). But this would contradict the
fact that a and b are coprime. Thus, the ideals (b−

√
−35) and (b+

√
−35) are coprime.
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It follows by unique factorisation into prime ideals that (b−
√
−35) = a3 and (b+

√
−35) = b3

for some ideals a, b of OK .

As [a]3 = [b]3 = 1 in Cl(OK), and as the class number of OK is 2, we conclude that a and b
are principal ideals.

By assignment 1, the only units of OK are ±1. It follows in particular that

b+
√
−35 =

(
x+ y

√
−35

2

)3

=
x3 − 105xy2

8
+
y(3x2 − 35y2)

8

√
−35

for some integers x and y having the same parity. In particular, we see that

y(3x2 − 35y2) = 8.

Thus, y can be one of ±1,±2,±4,±8. We already know that x has the same parity as y, so
if y is one of ±4 or ±8, the left hand side of the equation above is divisible by 16 which gives
a contradiction. If y = ±2, we have 3x2 − 35(4) = ±4 and since x is even (because it has the
same parity as y), say x = 2x′, we have 3(x′)2 − 35 = ±1, thus (x′)2 = 12 or 34/3 and so x′

isn’t an integer, which is a contradiction. If y = 1, we have 3x2 = 43 which is a contradiction
since 3 6 |43. The only possible solutions are thus (x, y) = (±3,−1). Plugging these back in, we
find that these give b = ±36. Plugging this back into the original equation gives that a = 11.

Therefore, (a, b) = (11,±36) are the only integer solutions to the Diophantine equation a3 =
b2 + 35.

Problem 2. Prove that all primes p ≡ 1 (mod 3) can be written as a2 + ab+ b2.

Solution. The idea is to interpret a2 + ab+ b2 as a norm in a quadratic field with class number 1.
Showing that all primes p ≡ 1 (mod 3) can be written in the form a2 + ab + b2 then reduces to
showing that all primes p ≡ 1 (mod 3) are not inert in this quadratic field.

Consider the field K = Q(
√
−3). Note that −3 ≡ 1 (mod 4). Therefore Z[1+

√
−3

2 ] is the rings
of integers in K = Q(

√
−3). The discriminant is −3. Recall that the Minkowski bound is given by:

MK :=
n!

nn

(
4

π

)r2√
|∆K |.

In our case, MK = 2!
22

(
4
π

)1√
3 ∼ 1.10. Therefore, K has class number 1.

Now, let θ = 1+
√
−3

2 be the generator of OK = Z[θ]. The norm form is given by:

N(a+ bθ) = (a+ bθ)(a+ bθ) = a2 + ab+ b2.

Since K has class number 1, it thus suffices to show that all primes p ≡ 1 (mod 3) are not
inert in OK . By Kummer’s factorisation theorem, since |OK/Z[

√
−3]| = 2 and since we are only

interested in primes p ≡ 1 (mod 3), we can work in Z[
√
−3] to determine the splitting type of

primes p ≡ 1 (mod 3) in OK . Now,
√
−3 has minimal polynomial x2 + 3. It thus suffices to show

that x2 + 3 has a root modulo p for any prime congruent to 1 modulo 3.
This is equivalent to showing that −3 is a quadratic residue for all primes congruent to 1 modulo

3. We can do this using quadratic reciprocity. We have(
−3

p

)
=

(
−1

p

)
(−1)

p−1
2

3−1
2

(p
3

)
= (−1)

p−1
2 (−1)

p−1
2 = 1.

Therefore, we conclude that all primes p ≡ 1 (mod 3) can be written as a2 + ab+ b2.
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Problem 3. This problem has three parts.

a) Compute the ring of integers and the discriminant of K = Q(
√

2,
√
−3)

b) Describe the prime factorisations of (6) and (19) in OK .

c) Find generators for O×K .

Solution. (a) Note that K = Q(
√

2,
√
−3) is equal to the compositum Q(

√
2)Q(

√
−3) of Q(

√
2)

and Q(
√
−3). Note that Q(

√
2) and Q(

√
−3) are both Galois, Q(

√
2)∩Q(

√
−3) = Q, and that

the discriminant of Q(
√

2) and Q(
√
−3) (namely 8 and −3) are coprime.

Futhermore, letting θ =
√

2 and ω = 1+
√
−3

2 , we have that {1, θ} and {1, ω} are integral bases

for Q(
√

2) and Q(
√
−3) respectively.

By Propositon 2.42 and remark 2.44 of Baker, this implies that {1, θ, ω, θω} is an integral basis
of K = Q(

√
2,
√
−3) and that the discriminant of K is 82 ×−32 = 576.

(b) Since (6) = (2)(3), it suffices to factor (2), (3), (19). Consider

γ := θ + ω =
√

2 +
1 +
√
−3

2
∈ OK .

The minimal polynomial of γ is x4 − 2x3 − x2 + 2x + 7. The discriminant of γ is thus 69696.
This means that:

|OK/Z[γ]| =

√
∆K/Q(γ)

∆K
=

√
69696

576
= 11.

Since, 2, 3, 19 6 |11, we can apply Kummer’s factorisation theorem.

Modulo 2, x4 − 2x3 − x2 + 2x+ 7 factors as (x2 + x+ 1)2 and so

(2) = (2, γ2 + γ + 1)2.

Modulo 3, x4 − 2x3 − x2 + 2x+ 7 factors as (x2 + 2x+ 2)2 and so

(3) = (3, γ2 + 2γ + 2)2.

Modulo 19, x4 − 2x3 − x2 + 2x+ 7 factors as (x2 + 3x+ 5)(x2 + 14x+ 9) and so

(19) = (19, γ2 + 3γ + 5)(19, γ2 + 14γ + 9).

(c) Since K is totally imaginary, by Dirichlet’s unit theorem we have O×K ≡WK×Z, where WK are
the roots of unity of K. Computing explicitly, we find that WK

∼= {1, ω1, ω2, ω3, ω4, ω5} ∼= Z/6Z
where ω = 1+

√
−3

2 as above. So we just need to find a fundamental unit for O×K . Proceeding

as in Assignment 4, we find that ε = 1 +
√

2 is a fundamental unit of Q(
√

2). In particular,
ε = 1 +

√
2 is not a root of unity. We claim that ε is a fundamental unit. Indeed, K is a CM

field (a totally imaginary quadratic extension of totally real field which in our case is Q(
√

2)).
Thus by pg. 90 of Milne, we know that WK × O×Q(

√
2)

has index 2 or 1 in O×K according to

whether there exists a unit u of OK such that u = −u or not. Such a unit would necessarily
have the form (a+ b

√
2)(
√
−3). But such an element has norm:

N((a+ b
√

2)(
√
−3)) = (a2 − 2b2)2(−3)2
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and therefore cannot be a unit!

Therefore, O×K = WK × O×Q(
√

2)
and we see that the unit group O×K is generated by the order

6 element ω = 1+
√
−3

2 and the fundamental unit 1 +
√

2.

Problem 4. Find a quadratic field whose class number is divisible by 1024. (Hint: 1024 = 210).

Solution. The idea is to show to produce enough linearly independent 2-torsion elements in the
class group. In a quadratic field, primes that divide the discriminant ramify. Furthermore, since
the degree is 2, primes that ramify must ramify as (p) = p2 for some prime ideal p. These p (if not
trivial) represent a source of 2-elements in the class group!

Now, let’s use this insight to write down a quadratic field whose class number is divisble by 210.
Let p1, p2, . . . , p11 be the first 11 prime numbers congruent to 1 modulo 4. Let d be the product
of the 11 prime numbers and consider the field K = Q(

√
−d). Since −d ≡ 3 (mod 4), the ring

of integers of K is given by OK = Z[
√
−d]. The the discriminant is −4d and the norm form is

N(a+ b
√
−d) = a2 + db2.

Now, fix an 1 ≤ i ≤ 11. Since pi| − 4d = ∆K/Q, we have (pi) = p2
i for some prime ideal pi of

OK . Now, there is no element in OK with norm pi. Indeed, if N(a+ b
√
−d) = a2 + db2 = pi, then

since pi < d, we would need b = 0 which would give a2 = pi. Since this is impossible (pi is not a
square), we find that there are no elements of norm pi in OK . Thus, [pi] has order 2 in Cl(K).

Now, we claim that the ideals [p1], [p2], . . . , [p10] are linearly independent in the F2 vector space
Cl2(K) (this is notation for 2-torsion elements in the class group). That is, there is no non-trivial
subcollection of them whose product is principal. Indeed, suppose towards a contradiction that
pi1 · · · pil = (a + b

√
−d), for some l ≤ 10. Then, N(a + b

√
−d) = a2 + db2 = pi1 · · · pil . As before,

since pi1 · · · pil < d, we must have b = 0 and thus a2 = pi1 · · · pil which is impossible since pi1 · · · pil is
squarefree. Therefore, the ideals [p1], [p2], . . . , [p10] are linearly independent in the F2-vector space
Cl2(K).

This means that there are at least 210 elements in the Sylow 2-subgroup of Cl(K) and therefore
that 1024 divides the class number of K.

Another solution which is a bit more high-tech would be to use Gauss’ description of 2-torsion
in the narrow class group of quadratic fields as given in his Disquitiones Arithmeticae.

Theorem 1 (Gauss’s genus theory, 1801). Let K be a quadratic field, ∆K/Q its discriminant and

Cl+2 [K] the 2-torsion in its narrow class group. Let ω(∆K/Q) denote the number of distinct prime
factors of ∆K/Q. Then the 2-torsion in the narrow class group of K is given by

Cl+2 [K] ∼=
(

Z
2Z

)ω(∆K/Q)−1

.

For imaginary quadratic fields, there are no units of negative norm and so the class group is
isomorphic to the narrow class group. Thus, we see that any imaginary quadratic field Q(

√
d) with

d < 0 and with the property that d has 11 distinct prime factors also works.

Problem 5 (Exercise 4.46 on Pg. 106-7). Let L/K be a Galois extension of number fields with
Galois group G. Suppose q, q′ are prime ideals of OL lying over p, and assume that p is unramified
in L. If q′ = σ q with σ ∈ G, show that

Frobq′ / p = σ Frobq / p σ
−1.
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Solution. From Baker, we know that Frobq′ / p is the unique element of the Galois group which has
the property that

σ(x) ≡ xN(p) (mod q′)

for all x ∈ OL and where N(p) the cardinality of the residue field |k|.
Now, fix an element σ of the Galois group. Let x ∈ OL. By the definition of Frobq / p, we have

Frobq / p σ
−1(x)−(σ−1(x))N(p) ∈ q. Applying σ and noting that σ q = q′, we find σ Frobq / p σ

−1(x)−
xN(p) ∈ p′. Therefore, we have shown that

σ Frobq / p σ
−1(x) ≡ xN(p) (mod q′)

for all x ∈ OL. Since Frobq′ / p is the unique element of G satisfying this identity, we conclude that
Frobq′ / p = σ Frobq / p σ

−1 as required.

Problem 6 (Exercise 5.10 on Pg. 118). Verify the following identities in Zp:

(1) 1
1−p = 1 + p+ p2 + · · ·+ pn + · · ·

(2) −1 = (p− 1) + (p− 1)p+ · · ·+ (p− 1)pn + · · ·

Solution. (a) This identity is formal and holds in any ring where the infinite sum 1 + p+ p2 + · · ·+
pn + · · · makes sense. In our case, this infinite sum makes sense. Indeed, the sum converges
absolutely because the p-adic norm of the number p is strictly less than 1. Indeed, |p|p = 1

p < 1.

(b) This identity follows form the identity in part (a) by multiplying both sides by (p− 1).
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