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Abstract. This paper rephrases Kummer’s proof of many cases of Fermat’s last theorem in contemporary
notation that was in fact derived from his work. Additionally, it develops a reformulation of the proof using

class field theory from a modern perspective in a manner similar to the tactics used for the complete proof,

and describes how Kummer’s proof strategy can generalize to solve the theorem for a broader set of primes.

1. Introduction

Ernst Kummer was a 19th century mathematician who came across Fermat’s last theorem in attempts to
generalize the law of quadratic reciprocity and study higher reciprocity laws. While he described those
as “the principal subject and the pinnacle of contemporary number theory,” he considered Fermat’s last
theorem a “curiosity of number theory rather than a major item” [1]. A priori, this was not an unreasonable
opinion of a problem that could be understood by a 12-year-old. We state this mere curiosity below.

Theorem. For any integer n > 2, the equation xn + yn = zn has no non-trivial solutions in the integers,
i.e. if x, y, z ∈ Z satisfy this equation, then xyz = 0.

Despite his disinterest, Kummer made the first substantial step in proving a part of Fermat’s last theorem
for many cases. This came only a few weeks after Gabriel Lamé incorrectly announced that he had found a
complete proof [1]. Lamé did make the breakthrough in attempting to decompose xn+yn into linear factors
by introducing the complex numbers satisfying ζn = 1, known today as roots of unity. This allowed for the
algebraic identity

xn + yn = (x+ y)(x+ ζy)(x+ ζ2y)...(x+ ζn−1y).

Thinking this was the only groundbreaking step needed to find the complete solution, Lamé presented a
proof in March of 1847 using this fact while assuming incorrectly that this was a unique decomposition into
prime ideals [1]. A few years before this, Kummer had already discovered that such unique factorization
properties did not necessarily hold in the fields Q(ζp) generated by these roots of unity. He introduced the
origins of the notion of ideals in an attempt to salvage the disappearance of unique factorization, as well as
the class number and an analytic formula describing it [3]. A few weeks after Lamé presented the incorrect
proof, Kummer wrote a correct proof for a certain set of primes which had a property allowing for unique
factorization to work in the step of Lamé’s proof that went wrong. He called these regular primes, and in
his later work, continued his examination of both regular and non-regular primes to find straightforwards
characterizations and deeper properties. In his proof and this further examination, Kummer touched on ideas
that would be developed into present-day ideal theory, Kummer theory, p-adic analysis & zeta functions,
class field theory, etc. The core ideas on modern problems such as the Birth-Swinnerton-Dyer conjecture for
the complex multiplication case and the theorems of Clausen and von Staudt are influenced by Kummer’s
work, not to mention the root for the eventual complete solution of Fermat’s last theorem [4].

This article is intended to focus on Kummer’s ideas for and influence on Fermat’s last theorem, thus it stays
in the realm of proving the theorem for regular primes. Many of the preceding lemmas are given in detail as a
demonstration of the machinery needed, but additionally, a modern perspective is described, along with the
generalization of Kummer’s idea to a larger set of primes. Section 2 gives a background on cyclotomic fields
and describes some properties needed for the proof based on Kummer’s original work described in Sections
3 and 4. Section 5 reformulates the proof using an approach matching the strategies used for the complete
solution. Finally, Section 6 is devoted to proving Fermat’s last theorem for the most general characterization
of primes on which Kummer’s basic argument holds.
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2. Background

We must first describe general notation and some basic facts on cyclotomic fields and algebraic number theory.
Then, we can go on to understand the core idea from the proof, and in particular where the regularity of
primes fits in and therefore restricts the cases of Fermat’s last theorem.

Roots of unity & cyclotomic fields. For any odd prime p, we denote a fixed primitive pth root of unity
as ζp, i.e. ζp ∈ C has the property that ζkp 6= 1 for any k = 1, ...p − 1 while ζpp = 1. It, along with all of
its powers, is a root of the polynomial xp − 1, hence it satisfies the equation xp = 1, the motivation for its
name. To find its minimal polynomial, we note that the only rational pth root of unity is ζpp = 1, hence we
can factor xp − 1 = (x− 1)Φp(x) where

Φp(x) =
xp − 1
x− 1

= xp−1 + xp−2 + ...+ x+ 1.

This is called the pth cyclotomic polynomial as it is the minimal polynomial for ζp. Note that the other pth
roots of unity are powers of ζp, and are all roots of Φp(x) (except for ζpp = 1). From an analytic perspective,
we can think of ζp = e2πi/p, and subsequently, ζkp = e2πik/p. Here, we can see that all powers of ζp lie on
unit circle (f(z) = e2πiz) in the complex plane, and furthermore, the shape described with ζkp as vertices is
a regular p-gon. Furthermore in C, we can factor Φp(x) =

∏p−1
k=1(x− ζkp ) = xp−1 + xp−2 + ...+ x+ 1. From

here, we know that the product of the non-trivial pth roots of unity (i.e. not including 1) has magnitude 1
(the constant coefficient) and the sum of the non-trivial pth roots of unity also has magnitude 1 (the xp−2

coefficient). More explicitly, we have the relation

ζp + ζ2
p + ζ3

p + ...+ ζp−1
p = −1.

Hence, we have that the sum of all of the pth roots of unity is 0, i.e. any pth root of unity can be expressed
as a linear sum of its other powers. It is in fact true that that any set of p − 1 roots of unity are linearly
independent while the whole set is not.

We can also talk about the field generated by pth roots of unity over Q known as the pth cyclotomic
field. Note that this field, denoted K = Q(ζp), is automatically the splitting field for Φp(x) over Q as we
have seen before that the rest of the roots are just subsequent powers of ζp. This extension has degree
p − 1, coinciding with the degree of Φp(x), and furthermore, the group of automorphisms well-defined on
K which fix Q is cyclic. More explicitly, the Galois group, Gal(K/Q) ∼= (Z/pZ)× where the automorphism[
σk : ζp 7→ ζkp

]
7→ k.

A bit of algebraic number theory. Stepping back from the specifics of cyclotomic fields, we can realize
many useful properties of number fields, i.e. algebraic extensions over Q from algebraic number theory. First
note that any monic polynomial with coefficients in Z that is known to have roots in Q in fact has roots
in Z (known as the Rational Root theorem in high-school algebra). This interesting property can be used
to describe the structure of Z within Q, and we generalize this to any number field K. The elements of K
which are roots of monic polynomials with coefficients in Z are known as the algebraic integers of K and
furthermore produce a ring of integers, generally denoted OK . As an example, the ring of integers of any
pth cyclotomic field Q(ζp) is Z[ζp].

Like any other ring, OK has ideals, and one property is that the ring of integers for any field K is a
Dedekind domain, a type of integral domain with the added property that any ideal decomposes uniquely
into a product of prime ideals. It is not necessarily true, however, that the elements of a Dedekind domain
decompose uniquely into a prime or irreducible elements. It is not hard to find an example displaying this
unfortunate fact: if K = Q(

√
−5), then OK = Z[

√
−5], and we can consider 6 = 2∗3 = (1+

√
−5)∗(1−

√
−5).

Nevertheless, we can see that if all the ideals of a given OK are principal, then the unique decomposition of
prime ideals would give way to unique prime factorization of elements, as the factorization of any element
α ∈ OK would be characterized by the decomposition of the ideal (α) into prime ideals generated by single
irreducible elements. This motivates the construction of the ideal class group of K which is, loosely speaking,
the quotient group of all the ideals in OK modulo the principal ideals of OK . We are very lucky to find that
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this group is always finite, and in fact, when the order is 1, we are in the previously described case of all
ideals of OK are principal. The class number of K, denoted hK is the order of this ideal class group, hence
if hK = 1, OK has unique prime factorization of elements. If hK > 1, then OK does not have unique prime
factorization, but we can be more specific than that. The class number does describe the extent to which
unique factorization holds; for example, there are properties about length of decompositions in fields of class
number 2 that do not hold for fields with higher class number.

Regular primes. The property of whether a prime p is regular can be characterized based on the class
number of K = Q(ζp). As described above, we think of the class number as a scalar quantity describing how
“close” elements of OK are to having unique factorization, but explicitly the class number hK is the order
of the ideal class group.

Definition 2.1. An odd prime p is regular if the class group of K = Q(ζp) has no p-torsion, i.e. if the class
number hK is prime to p.

It is astonishing to think that such a fact should be related to the ease of proving Fermat’s last theorem,
but it is in fact the case. Lamé’s first step of decomposing a nontrivial counterexample xp + yp = zp in the
field Q(ζp) only goes so far when we don’t have unique prime factorization of the elements. It is easy to
work with zp when considering it as an ideal of OK , but at some point, we must be able to look at specific
elements of the ring of integers rather than the ideals they generate. A priori as ideals, we get

(z)p = (x+ y)(x+ ζpy)(x+ ζ2
py)...(x+ ζp−1

p y).

On one side, we have a pth power of a principal ideal, and on the other, we have a decomposition into p ideals
that are not only distinct, but can be shown to be relatively prime. The property of unique decomposition
into prime ideals tells us that every ideal (x + ζkp y) must independently be a pth power of an ideal Ak.
Thinking about the structure of the ideal class group, we can consider what kinds of ideals of OK have a
pth power which is principal. As elements of this quotient group, the ideals of OK modulo the principal
ideals of OK , it is clear that (x+ ζkp y) is identified with the trivial element, but it is not necessarily true that
Ak is. Nevertheless, if we have the added assumption that the prime p is regular, then we know that the
class number is prime to p, hence no element in the ideal class group can have order p without being trivial.
This directly implies that Ak is principal, and we can in fact think about the element αk generating this
ideal rather than the ideal (αk) = Ak itself. From this point onward, Kummer’s proof consists of algebraic
manipulations of units and algebraic integers in K leading to a contradiction that cannot be done simply
by working with ideals. It is easy to see that the regularity of p is the broadest way to guarantee that the
pth “roots” of the ideals generated by x + ζkp y are in fact principal, bringing the entire machinery down to
elements of OK .

Prime decomposition. It is interesting to note that prime ideals of a base field may not stay prime in an
extension. For example, we can show that in K = Q(ζp), the ideal generated by p decomposes as

(p) = (1− ζp)p−1.

where (1− ζp) turns out to be a prime ideal of OK . In algebraic number theory, we are quite interested in
how a prime ideal such as (p) in a base field Q occurs in a larger field such as K. It is “easiest” when a
prime stays inert, i.e. stays prime in the larger field extension. However, in many cases, such as the above,
a prime ideal of the base field will decompose further in the extension, and it is particular interesting to
note when such a decomposition includes repeated factors, i.e. when the prime ramifies. The case where the
prime of the base field can be written as a power of a single prime ideal in the extension is known as total
ramification. Additionally, for total ramification, we require that the power of the single ideal coincides with
the degree of the extension. As an example, we will prove that p totally ramifies in K as a power of (1− ζp).
To prove the above fact about (p), we first introduce the notion of cyclotomic units.

Definition 2.2. The cyclotomic units of OK = Z[ζp] are elements of the form
ζrp − 1
ζsp − 1

where p - rs.
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It is easy to see that these are units as they have obvious inverses, ζs
p−1

ζr
p−1 , hence the cyclotomic units are in

fact a subgroup of O×K . Furthermore, we see that since p - rs, we can find t such that r = st (mod p) hence
allowing us to express

ζrp − 1
ζsp − 1

=
ζstp − 1
ζsp − 1

= 1 + ζsp + ...+ ζs(t−1)
p ∈ OK .

Lemma 2.3. The principal ideal generated by p in OK decomposes as (1− ζp)p−1, and hence the principal
ideal (1− ζp) is prime in OK .

Proof. Since the minimal polynomial of ζp is Φp(x) = xp−1
x−1 , as a polynomial in K[x], it can be decomposed

as

Φp(x) =
p−1∏
i=1

(x− ζip).

Note that if we plug in x = 1 to Φp(x) we get from the polynomial in Q[x] and the polynomial in K[x] that

p =
p−1∏
i=1

(1− ζip).

Note that 1 − ζp is a unit away from 1 − ζip, i.e. 1 − ζip = u(1 − ζp) where u is the cyclotomic unit ζi
p−1

ζp−1 .
Thus we have an equality of ideals (1− ζp) = (1− ζip). This, combined with the decomposition of p gives us
(p) = (1− ζp)p−1. Furthermore, since [K : Q] = p− 1, from algebraic number theory we know that (p) can
have at most p− 1 factors, hence the previous decomposition of (p) is in fact a prime decomposition, so we
also get that (1− ζp) is a prime ideal in OK . �

3. Preliminaries

We now move to definitions and facts needed specifically for Kummer’s proof. The following propositions
and lemmas are crucial in Kummer’s proof. The following lemmas allow us to relate the algebraic integers in
OK with the rational integers in Z. Kummer’s main breakthrough in his proof was to work in an extension
of Q where (xp+yp) decomposed, so within the proof, he must go back and forth when dealing with elements
of OK and elements of Z using properties outlined by these lemmas.

Lemma 3.1. Suppose α = a0 + a1ζp + ...+ ap−1ζ
p−1
p with each ai ∈ Z. If ai = 0 for at least one i, then if

n ∈ Z such that n | α, then n | aj for all j.

Proof. We know that 1 + ζp + ...+ ζp−1
p = 0, hence any p− 1 elements of {1, ζp, ..., ζp−1

p } is a basis for OK
over Z. By assumption ai = 0, so we choose the corresponding basis without ζip. The other coefficients make
α an element of OK with respect to this basis. Hence, if n | α, then n must divide the coefficients of the
basis representation of α, i.e. n | aj for each j. �

Lemma 3.2. Let α ∈ OK . Then αp is congruent (mod p) to an element of Z.

Proof. Take {1, ..., ζp−2
p } as the basis of OK . We can then write α = a0 +a1ζp+ ...+ap−2ζ

p−2
p , where ai ∈ Z.

This gives
αp ≡ ap0 + (a1ζp)p + ...+ (ap−2ζ

p−2
p )p ≡ ap0 + ap1 + ...app−2 (mod p),

since all nontrivial binomial coefficients are congruent to 0 (mod p). �

Lemma 3.3. Assume x, y, z are a nontrivial solution to the equation xp + yp = zp. The ideals (x + ζipy)
with i ranging between {0, ..., p − 1} are either relatively prime as ideals or have exactly 1 common factor

(1− ζp) such that the ideals generated by the quotients x+ζi
py

1−ζp
are relatively prime.
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Proof. We make the assumption that x and y are relatively prime. Suppose ∃ p a prime ideal of OK such
that p | (x+ ζipy) and p | (x+ ζjpy). From above, we know that (1− ζp) = (1− ζkp ) as ideals when p - k. Thus,
p | (x+ ζipy)− (x+ ζjpy), however

(x+ ζipy)− (x+ ζjpy) = (ζipy − ζjpy) = (1− ζp)(y).

Hence, p | (1 − ζp) or p | (y). Similarly, we know that (x + ζipy) = (ζj−ip x + ζjpy), hence p | (ζj−ip x + ζjpy) −
(x+ ζjpy). Since (ζj−ip x− x) = (1− ζj−ip )(x) = (1− ζp)(x), we get that p | (1− ζp) or p | (y). Since x and y
are coprime, one of these two statements implies that p | (1− ζp). However, since (1− ζp) is a prime ideal,
we in fact get equality. Furthermore, note that if (1− ζp) | (x+ ζkp y), then (1− ζp) | (x+ ζk+1

p y) since

(x+ ζk+1
p y) = (x+ ζkp y) + (ζkp )(ζp − 1)(y).

Thus, if (1 − ζp) is a factor of (x + ζipy) for one i, then it is a factor for all i. In particular, we get that
x+ y ≡ 0 (mod 1− ζp). Since x+ y ∈ Z, then x+ y ≡ 0 (mod p), however xp + yp ≡ x+ y (mod p), hence
z ≡ zp ≡ 0 (mod p), i.e. p | z. If p - z, we’ve arrived at a contradiction here, and thus (1− ζp) cannot be a
common factor so in fact, the ideals (x+ ζipy) have no common factors. If p | z, then we have that the only
common factor between any two (x+ ζipy) and (x+ ζjpy) is 1− ζp.

It remains to be shown that (1− ζp)2 is not a factor of any two (x+ ζipy) and (x+ ζjpy). Recall that we are
assuming that p | z, hence we can further assume that p - y as if this were the case, then p | x as well, and
we could reduce the counterexample xp + yp = zp by a factor of pp (During the proof, we use this argument
to claim that the counterexample x, y, z is relatively prime). Without loss of generality, assume that i > j
and note that

(x+ ζipy)− (x+ ζjpy) = ζipy − ζjpy = ζjpy(ζi−jp − 1).

From the fact that (1− ζp) = (1− ζi−jp ) = (ζi−jp − 1) as ideals, we have that 1− ζp divides ζi−jp − 1 exactly
once. Furthermore, since 1− ζp | y then p | y (since y ∈ Z) and 1− ζp is relatively prime to ζjp, we have that

1− ζp | (x+ ζipy)− (x+ ζjpy) but (1− ζp)2 - (x+ ζipy)− (x+ ζjpy). Hence, we know that the quotients x+ζi
py

1−ζp

are relatively prime. �

For any prime p, Q(ζp) is automatically a subfield of C but not of R. We can see that the automorphisms
of Gal(K/Q) never send Q(ζp) into R. Furthermore, one of these automorphisms is the map of conjugation,
sending a + bi 7→ a − bi, its conjugate. Since the automorphisms have a group structure, we can pair each
automorphism σ ∈ Gal(K/Q) with its conjugate, the unique automorphism described by composing σ with
the map of conjugation. Note that this is equivalent in pairing elements of (Z/pZ)× with their additive
inverse. However, there is a large subfield K+ in Q(ζp) which sits inside of R, and properties of K and
this subfield K+ gives us information on the number of independent elements of each field and relates the
corresponding rings of integers, OK and OK+ with the use of Dirichlet’s Unit Theorem, stated below.

Theorem 3.4 (Dirichlet’s Unit Theorem). For any field K over Q with r real embeddings and s conjugate
pairs of complex embeddings, the unit group O×K is finitely generated with rank equal to

rank(O×K) = r + s− 1.

Proposition 3.5. Fix some odd prime p, and let K = Q(ζp). We have the following properties.

(1) K is a totally complex field, i.e. ∃ 0 real embeddings and p−1
2 pairs of conjugate complex embeddings.

(2) The maximal totally real subfield of K is K+ = Q(ζp + ζ−1
p ), i.e. K ∩ R = Q(ζp + ζ−1

p ). Furthermore,
OK+ = Z[ζp + ζ−1

p ] and [K : K+] = 2.
(3) K and K+ have the same unit rank, hence the embedding of the corresponding unit groups O×K+ ↪→ O×K
has finite index.

Proof. (1) Since all nontrivial pth roots of unity are primitive, the automorphisms ζp 7→ ζkp are embeddings
into C that cannot be entirely contained in R. Thus, there are no real embeddings and there are p − 1
complex embeddings, hence r = 0 and s = p−1

2 .
(2) Geometrically, we can see that ζp + ζ−1

p ∈ R as their imaginary coefficients are additive inverses, hence
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Q(ζp+ζ−1
p ) is a subfield of K entirely contained in R. Note that ζp is the root of a polynomial in Q(ζp+ζ−1

p )[x]
defined as f(x) = x2−(ζp+ζ−1

p )x+1. Since f(x) is degree 2 and x−ζp is not a polynomial in Q(ζp+ζ−1
p )[x],

f(x) is automatically the minimal polynomial for ζp over Q(ζp + ζ−1
p ), hence [K : Q(ζp + ζ−1

p )] = 2. This
additionally shows that Q(ζp + ζ−1

p ) is the maximal real subfield in K since we have already seen that K is
not totally real.
(3) By Dirichlet’s Unit Theorem, we know that the rank of O×K is a r + s − 1 = p−1

2 − 1. Furthermore, as
K+ is totally real, the rank of O×K+ is [K+ : Q]− 1 = p−1

2 − 1. �

Units in O×K can be be easily described in terms of units in O×K+ since the maximal real subfield is rather
large in such a manner that the index of the unit groups is finite. We show in the following proposition that
any unit of K can be decomposed into a product of pth root of unity and a totally real unit in O×K+ .

Proposition 3.6. For any u ∈ O×K , ∃ v ∈ O×K+ and an integer r such that u = ζrpv. It follows that the
index of O×K+ in O×K is p.

Sketch of proof. Consider some arbitrary unit u ∈ O×K and let α = u
u where u denotes the image of u under

the map of conjugation. It follows that α is an algebraic integer and additionally, |α| = 1. Furthermore,
|σk(α)| = 1 for each σk ∈ Gal(K/Q) since for all k, σk(u) = σk(u). It is a fact used often in algebraic number
theory that any algebraic integer whose Galois conjugates all have norm 1 must be a root of unity, so in
particular, u

u = ±ζkp for some k. It remains to show that α = +ζkp . Assuming otherwise, we arrive at the
contradiction that either 2 or u is contained in the prime ideal generated by (1− ζp) from expressing both u
and u (mod 1− ζp). These two statements cannot be true based on a highly technical norm argument (not
discussed here) and the fact that u is a unit. Hence, we have α = ζkp for some k. From here, we find r such
that 2r ≡ k (mod p), we set v = ζ−rp u, hence u = ζrpv (Note that if α = −ζkp , then finding such an r does

not work). We see that v = ζ−rp u = ζrpu, hence v
v = ζ−r

p u

ζr
pu

= ζ−2r
p α = 1, so v is in fact real, and therefore an

element of K+. �

Kummer’s Lemma. If p is a regular prime and u is in O×K such that u is congruent mod p to an element
of Z, then u is a pth power of an element of O×K .

The statement above, although seemingly simple, uses a lot of machinery, including the class number formula,
p-adic L-functions, and the characterization of regular primes using Bernoulli numbers. In fact, when
Kummer first defined regular primes, he included this property as another condition and proved it much
later. Kummer’s proof of this statement is given in [1].

4. Case I: The main argument

We are now ready to present the proof when p - xyz, generally known as the first case of Fermat’s last
theorem for regular primes. With this added assumption, Lemma 3.3 proves that the ideals (x + ζipy) are
pairwise coprime. The main steps in this proof are obtained from this fact and the regularity of p, and are
also used in the main argument for the second case and its generalizations in the following sections. The
proof from this section uses the main ideas from Kummer’s proof but is reformulated in the language of
modern mathematics and uses some new lemmas. It is based on the proof in [5]. We restate the assumptions
for this case of the theorem that will be proved in this section.

Theorem 4.1. Suppose p > 3 is a regular prime. Then

xp + yp = zp, p - xyz

has no nontrivial solutions in the rational integers, i.e. any integer solution (x, y, z) has the property that
xyz = 0.
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Proof. Fix some regular prime p > 3, and assume that we have a nontrivial x, y, z ∈ Z satisfying the hy-
pothesis. First, we can assume x, y, z are relatively prime, otherwise we can divide by their greatest common
denominator to get another counterexample. Additionally, we show that for any such counterexample (x, y, z)
we can rearrange to ensure that x 6≡ y (mod p) (which will be needed later). Suppose that x ≡ y ≡ −z
(mod p). Then note that

z ≡ zp ≡ xp + yp ≡ x+ y ≡ −2z (mod p) =⇒ 3z ≡ 0 (mod p),

then p - z implies p | 3, a contradiction to the fact that p > 3. Since we know that x ≡ y 6≡ −z (mod p), we
can exchange y and −z to get another counterexample satisfying all the hypotheses and x 6≡ y (mod p).

Kummer’s main argument. In OK , we have the decomposition of ideals

(z)p = (zp) = (xp + yp) = (x+ y)(x+ ζpy)...(x+ ζp−1
p y),

and furthermore, all ideals on the right hand side are pairwise relatively prime. Since this decomposition is
equal to the pth power of the ideal generated by z, we have that each (x+ ζipy) must be a pth power of an
ideal. (We can see this by considering the decomposition of (z) into prime ideals p. Since no p is shared
between various (x + ζipy), then in the corresponding decomposition of (z)p, each pp is a factor of exactly
one (x + ζipy).) Explicitly, we can write (x + ζipy) = Ipi where I1I2...Ip−1 = (z), and each Ipi is principal.
This is where we use the regularity of p, and hence this is why the proof is limited to primes which do no
divide the class number. Since each Ipi is principal, then in the class group defined as the group of ideals of
OK modulo the group of principal ideals of OK , we find that Ipi is trivial in the quotient group. However,
the class group has order hK which is not divisible by p, so there cannot exist a nontrivial element that has
p-torsion, i.e. that is annihilated by the exponent p. Thus, Ii must also be trivial in the class group, hence
Ii is also principal. Here, we see that if there was no assumption on the divisibility of hK by p, then in fact
Ii need not be principal.

Since Ii is principal, let αi ∈ OK be its generator. Thus, (x+ ζipy) = (αi)p = (αpi ) hence x+ ζipy = uαpi for
some unit u ∈ O×K . Note that we only need to treat the case for i = 1 (as we note that all nontrivial pth
roots of unity are primitive so based on the choice of ζp we can cycle through all cases). From Proposition
3.6, we can write u = ζrpv where r is an integer and v = v is an element of O×K+ . By Lemma 3.2, ∃ a rational
integer a ∈ Z such that αpi ≡ a (mod p). Thus, x+ ζpy = ζrpvα

p
i ≡ ζrpva (mod p). Furthermore, we get

x+ ζp−1
p y = x+ ζ−1

p y = ζ−rp vαi
p ≡ ζ−rp va ≡ ζ−rp va (mod p).

We know that x+ ζpy ≡ ζrpva ≡ ζ2r
p (x+ ζ−1

p y) (mod p) if and only if x+ ζpy − ζ2r
p x− ζ2r−1

p y ≡ 0 (mod p).
If 1, ζp, ζ2r

p , ζ2r−1
p are distinct, then by Lemma 3.1, p | x, y a contradiction, and we are done. We know that

1 and ζp must be distinct, and similarly, ζ2r
p and ζ2r−1

p must also be distinct, thus we are left with 3 cases,
which all hinge on Lemma 3.1:

(1) 1 = ζ2r
p : From this, we get x + ζpy − x − ζ−1

p y ≡ 0 (mod p), i.e. ζpy − ζp−1
p y ≡ 0 (mod p), hence

from Lemma 3.1, p | y, a contradiction.

(2) ζp = ζ2r−1
p : This assumption reduces the congruence x + ζpy − ζ2r

p x − ζ2r−1
p y ≡ 0 (mod p) to

x− ζ2
px ≡ 0 (mod p), hence again from Lemma 3.1, p | x, a contradiction.

(3) 1 = ζ2r−1
p : Note that this is equivalent to the relation ζp = ζ2r

p , which reduces the congruence
x+ ζpy− ζ2r

p x− ζ2r−1
p y ≡ 0 (mod p) to (x− y)− ζp(x− y) ≡ 0 (mod p), so by Lemma 3.1, p | x− y,

i.e. x ≡ y (mod p), a contradiction to the choice of (x, y, z) made at the beginning of the proof.
This proves that such a counterexample cannot exist, and the proof is complete.

�

Note that Kummer’s original proof did not end in the same manner. After showing that x + ζpy = ζrpvα,
Kummer found a congruence similar to x+ζpy−ζ2r

p x−ζ2r−1
p y ≡ 0 (mod p), and looked at coefficients using

the binomial expansion of 1 + (ζp− 1)r−1 to show that such an r cannot exist. However, the main argument
Kummer was able to make was in showing that Ii were principal, and thus (x + ζyp ) where pth powers of
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algebraic integers in OK . The final case p | z still rests upon this main property, and is in fact, a reduction
to the proof of the first case of Fermat’s last theorem for regular primes.

5. Case II: Completing the proof

In this section, we finish the proof by assuming p | z. We can make this stronger assumption instead of
p | xyz since for any counterexample (x, y, z) we can assume x, y, and z, are pairwise coprime, thus p only
divides one of x, y, or z. We can rearrange and flip signs such that p | z. In this situation, Lemma 3.3 proves
that the ideals (x + ζipy) have exactly one common factor, the prime ideal (1 − ζp). The proof from this
section is the reformulation of Kummer’s original proof for the second case in modern language. This proof
uses the same main argument as the first case, but also involves the method of infinite descent in which a
contradiction is reached by showing that if there is one “smallest” counterexample, then we can continue to
construct “smaller” counterexamples ad infinitum. We restate the assumptions for this second case of the
theorem that will be proved in this section.

Theorem 5.1. Suppose p > 3 is a regular prime. Then

xp + yp = zp, p | z
has no nontrivial solutions in the rational integers, i.e. any integer solution (x, y, z) has the property that
xyz = 0.

Proof. We prove a stronger statement: There are no nontrivial solutions to xp + yp = U(1− ζp)kpzp0 where
x, y, z0 ∈ OK and U ∈ O×K and relatively prime to each other as well as 1− ζp. Note that the actual theorem
is then just a special case where z is just written out as a product of its p-part and z0, and x, y, z0 are all
integers.

Assume we have a counterexample satisfying the hypotheses. We have the decomposition of ideals U(1 −
ζp)kpz

p
0 = (x+y)(x+ζpy)...(x+ζp−1

p y). By this equality, we know that for some i, 1−ζp | x+ζipy, however by
the same argument in Lemma 3.3, this implies that for all i, x+ζipy is divisible by 1−ζp, and furthermore, the

quotients x+ζi
py

1−ζp
generate ideals which are pairwise relatively prime, again following from the same argument.

We use the following lemma which allows us to assume that x and y are congruent to rational integers a and
b modulo (1− ζp)2.

Lemma 5.2. For any algebraic integer α ∈ OK\(1−ζp), ∃ l such that ζlpα ≡ a (mod (1−ζp)2) where a ∈ Z.

Proof of Lemma. Note that OK = Z[ζp] = Z[1 − ζp], hence one integral basis for OK involves the powers
of (1 − ζp). Therefore, we can find integers a0, a1 ∈ Z such that α ≡ a0 + a1(1 − ζp) (mod (1 − ζp)2).
Furthermore, since a0 is nonzero outside of (1 − ζp), we can find l ∈ Z such that a1 ≡ a0l (mod p). Since
ζp = 1− (1− ζp), we have ζlp ≡ 1− l(1− ζp) (mod (1− ζp)2). Thus,

ζlpα ≡ (1− l(1− ζp))(a0 + a1(1− ζp)) ≡ a0 + (a1 − la0)(1− ζp) ≡ a0 (mod (1− ζp)2).

�

Returning the the proof of the theorem, we know that ζlpx and ζjpy are congruent to rational integers modulo
(1− ζp)2. Since we merely need x and y to satisfy the equation U(1− ζp)kpzp0 = xp + yp, exchanging them
for ζlpx and ζjpy does not change anything. We know that x+ y ≡ a+ b (mod (1− ζp)2), where a, b ∈ Z are
the integers congruent to x, y respectively. Since 1 − ζp | x + y, then 1 − ζp | a + b, which implies p | a + b
since a + b ∈ Z. This, in turn, proves that (1 − ζp)2 | x + y which tells us that k must be strictly greater
than 1. To use the method of infinite descent, we choose our nontrivial counterexample (x, y, z0) such that
k is minimal. Our contradiction will arise from the construction of a new counterexample (x′, y′, z′0) such
that x′p + y′p = U ′(1− ζp)(k−1)pz′p0 .

From above, we know that (1 − ζp)2 | x + y, and by Lemma 3.3, we know that the quotients x+ζi
py

1−ζp
are

relatively prime, hence all of the extra powers of (1 − ζp) divide x + y only. Since (1 − ζp)p−1 | (x +
8



ζpy)(x+ ζ2
py)...(x+ ζp−1

p y) exactly, (i.e. (1− ζp)p - (x+ ζpy)(x+ ζ2
py)...(x+ ζp−1

p y)). We know further that
(1 − ζp)kp | xp + yp exactly, hence (1 − ζp)kp−p−1 | x + y. Thus, (1 − ζp)(k−1)p | x+y1−ζp

exactly. This will be
crucial when we consider the ideal generated by the quotients.

Changing Fermat’s equation to ideals we have(
(1− ζp)k−1z0

)p
=
p−1∏
i=0

(
x+ ζipy

1− ζp

)
,

where the ideals on the right are relatively prime. As in the first case, by Kummer’s main argument, we

have that each ideal generated by x+ζi
py

1−ζp
is a pth power of a principal ideal, hence ∃ αi ∈ OK such that we

have the equalities x+ζi
py

1−ζp
= uiα

p
i where ui are units in O×K . Furthermore, we know that {α0, ..., αp−1} are

pairwise relatively prime since their pth powers are relatively prime. From the previous argument, we know
that (1− ζp)k−1 | α0, and we can furthermore write α0 = (1− ζp)k−1β where β is relatively prime to 1− ζp.
From the equalities of x+ ζipy, we use x+ ζpy and x+ ζp−1

p y = x+ ζ−1
p y as well as the new substitution for

x+ y to get

(1− ζp)(k−1)pu0β
p − u1α

p
1 =

(x+ y)− (x+ ζpy)
1− ζp

= y

ζp(1− ζp)(k−1)pu0β
p − ζpu−1α

p
−1 =

(x+ ζ−1
p y)− (x+ y)

ζ−1
p (1− ζp)

= y[
ζp(1− ζp)(k−1)pu0β

p − ζpu−1α
p
−1

]
−
[
(1− ζp)(k−1)pu0β

p − u1α
p
1

]
= 0

If we let U ′ := (1+ζp)u0
−u1

and V ′ := ζpu−1
−u1

, then they are units and the last equation simplifies to U ′(1 −
ζp)(k−1)pβp = αp1 + V αp−1.If we consider the equation modulo p, then since p | (1 − ζp)p−1, we have 0 ≡
αp1 + V ′αp−1 (mod p). Recall from Lemma 3.2, we know that αp{1,−1} ≡ a{1,−1} (mod p) where a1, a−1 ∈ Z,
thus 0 ≡ a1 + V ′a−1 (mod p) (Note that a1 and a−1 are nonzero as they are relatively prime to α0 which
is divisible by p). However, this implies that V ′ must in fact be congruent to a rational integer (mod p).
Kummer’s Lemma then allows us to rewrite V ′ as a pth power of some unit v ∈ O×K . If we let x′ := α1,
y′ := vα−1, and z′0 = β, then we have U ′(1 − ζp)(k−1)pz′p0 = x′p + y′p, another counterexample which
contradicts the minimality of k. This completes the proof for the second case, and thus Fermat’s last
theorem holds for regular primes. �

6. A modern view

Kummer’s proof of Fermat’s last theorem can be reformulated to involve a modern approach that was
attempted for the proof of the entire theorem. For any counterexample at prime p, the goal is to attach
a representation ρ over K = Q(ζp) from the algebraic closure Q(ζp) into a certain extension L viewed as
vector spaces over K. In particular, the extension L/K would be equipped with Galois group isomorphic
to (Z/pZ)×. Note that this gives rise to a map Gal(Q(ζp)/Q(ζp)) → Gal(L/K) ↪→ Fp. We do this by
considering a different interpretation of regularity involving class field theory. Global class field theory tells
us that there exists an extension of K = Q(ζp) known as the Hilbert class field HK with the defining
property that Gal(HK/K) is isomorphic to the ideal class group of K. Furthermore, we know that HK is
totally unramified, i.e. none of the prime ideals in K have a decomposition in HK with repeated factors.
Galois theory explains the extensions that lie between K and HK in relation to Gal(HK/K), i.e. in relation
to the structure of the ideal class group of K. For example, if p does not divide hK , there is no p-torsion in
the ideal class group, i.e. there is definitely no extension of K of degree p that is in HK . In particular, there
does not exist a cyclic extension of degree p which is totally unramified. Hence, to every counterexample
at a prime p, we construct a totally unramified extension L over Q(ζp) with degree p in order to come
to a contradiction. In terms of representations, we note that Gal(L/Q(ζp)) ∼= (Z/pZ)×, so by adding the
zero automorphism we get Fp. Facts from infinite Galois theory and Kummer theory allow us to form the
representation ρ from the full Galois group of Q(ζp) to Fp. As expected, such ρ do not exist at regular primes
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p. The following proof is based on [2]. For this proof, we need some more facts, the most important from
class field theory. As usual, let K = Q(ζp), and we take p to be a prime greater than 3.

Proposition 6.1. (1) If u is a unit of OK such that it is congruent to a rational integer modulo p and not a
pth power in OK , then the field extension K(u1/p)/K is a cyclic extensions of order p that has the property
of being totally unramified. (This holds for any pth root of u.)
(2) If I is an ideal of OK such that Ip is principal, but I is not, then there is a cyclic extension over K of
order p that has the property of being totally unramified.

It is easy to see that the hypotheses in the above proposition, never hold for primes which are regular (this
follows from the definition and Kummer’s Lemma), hence one can understand that at such regular primes,
a cyclic extension would never exist.

Theorem 6.2. If there exists x, y, z ∈ Z such that xp + yp = zp, then we can produce a cyclic extension L
of K = Q(ζp) of order p which has the property of being totally unramified.

Proof. As expected, we have two cases, p - xyz and p | z. Furthermore, we assume as usual that x, y, and z
are relatively prime. In this proof, we will reference the original proof from the previous sections, using the
exact same notation.

Case I: p - xyz. As in the original proof, we rearrange and flip signs such that x 6≡ y (mod p). We use the
usual decomposition into relatively prime ideals (z)p = (x + y)(x + ζpy)...(x + ζp−1

p y) so that we can write
(x+ ζip) = Ipi for all i ∈ {0, ..., p− 1}. Here, we don’t have the assumption that p is regular. However, from
the argument of the original proof, we know that if I is principal, then following the same argument, we
obtain the congruence x+ ζpy − ζ2r

p x− ζ2r−1
p y ≡ 0 (mod p) and eventually get contradictions to p - xyz or

x 6≡ y (mod p) using Lemma 3.3. Thus, if x, y, and z exist, it must be that I must be principal, hence by
Proposition 6.1, there exists an extension of K with the needed properties.

Case II: p | z. Here, we generalize and consider the equation xp + yp = U(1 − ζp)kpzp0 where x, y, z0 are
elements of OK such that they are relatively prime to each other as well as 1−ζp, and we consider a solution
such that k is minimal. We note that in the decomposition U(1−ζp)kpzp0 = (x+y)(x+ζpy)...(x+ζp−1

p y), each
of factors x+ ζp−1

p y is divisible by 1− ζp and we can change x and y accordingly such that (1− ζp)k(p−1)+1 |

x+y. It follows that
(
(1− ζp)k−1z0

)p =
∏p−1
i=0

(
x+ζi

py

1−ζp

)
, and the ideals generated by x+ζi

py

1−ζp
are pth power of

ideals Ii ∈ OK . Here since we do not have the assumption that p is regular, we do not know whether or not
these ideals are principal. Nevertheless, if these ideals are principal, in particular, if I0, I1, and I−1 = Ip−1

are principal, then we have the following three equations

x+ y = (1− ζp)kp+1u0β
p

x+ ζpy = (1− ζp)u1α
p
1

x+ ζ−1
p y = (1− ζp)u−1α

p
−1

where β, α1, α−1 are elements of OK and u0, u1, u−1 are units in O×K . Following the same argument, we
arrive at an equation U ′(1 − ζp)(k−1)pβp = αp1 + V αp−1 where U ′ and V ′ are units of K. Looking at this
equation modulo p, we arrive at the conclusion that V ′ is congruent to an integer modulo p, so we either
have the case that V ′ is not a pth power producing a cyclic extension L = K(V ′1/p) from Proposition 6.1
satisfying all needed properties or there exists v ∈ O×K such that V ′ = vp. If we let x′ := α1, y′ := vα−1,
and z′0 := β, then we have U ′(1− ζp)(k−1)pz′p0 = x′p + y′p, a contradiction to the minimality of k. Hence, we
see that one of I1, I0, or I−1 must not be principal, and by Proposition 6.1, we can produce the extension
L over K with the needed properties. �

From the existence of such an L, we can go further to produce a representation ρ : Gal(K/K)→ Gal(L/K) ∼=
Fp. From Galois theory, we know that Gal(K/K) can be expressed as an inverse limit of the Galois groups of
its finite Galois subextensions, including L. In particular, we have a canonical homomorphism Gal(K/K)→
Gal(K/K)/Gal(K/L) ∼= Gal(L/K), giving rise to the exact representation ρ that we need.
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For the complete the proof for Fermat’s last theorem, Andrew Wiles attempted to associate to every coun-
terexample (x, y, z, p), a representation ρ : Gal(Q/Q)→ GLn(Fp) such that the representation was unramified
away from p and had “nice” ramification at p. He immediately followed by proving no such representations
exist, hence contradicting the existence of such counterexamples [2]. This is comparable to the strategy used
here to prove Fermat’s last theorem for regular primes.

7. Generalizing the second case

The method used in the second case of Kummer’s proof can be generalized to prove Fermat’s last theorem for
more than just regular primes. The basic argument stays the same, but we instead consider the generalized
equation

xp + yp = uλmzp,

where p is an odd prime, λ = (1− ζp)2, x, y, z,∈ Z[λ] such that they are relatively prime with each other and
λ, u ∈ Z[λ] ∩ R, and m ≥ p(p−1)

2 . We want to show that this equation has no solutions. We must make two
assumptions on our choice of p that loosely generalize the property of regularity. The first is that p - hK+ ,
i.e. p must not divide the class number of K+ = Q(ζp + ζ−1

p ). The second assumption is that certain units η
arising within the argument can be expressed as a pth power of a unit in K+. We will state this assumption
more accurately when these units show up. For this argument, we will need a couple of facts. The proof for
the following lemma can be found in [5].

Lemma 7.1. (1) For any α ∈ OK such that α ≡ 1 (mod (1− ζp)p), the extension K(α1/p)/K is unramified
at (1− ζp).
(2) Assume p - hK+ . Let α ∈ OK be such that α = α−1 and K(α1/p)/K is unramified. Then there exists
β ∈ K such that α = βp.

Main Argument. We are ready for the main argument. We will only present a sketch of the proof. The
full detailed proof can be found in [5].

Assume there exists a solution to the equation uλmzp = xp + yp satisfying the properties described above.
We can decompose the right hand side in K to get uλmzp = (x+y)(x+ζpy)...(x+ζp−1

p y). The only common
factor of any two (x + ζipy) and (x + ζjpy) for i 6= j is the prime ideal (1 − ζp). Furthermore, we know that
(1− ζp)2 = (λ) | (x+ y), so we have the equality

(x+ y)
(
x+ ζy
1− ζp

)(
x+ ζ2

y

1− ζp

)
...

(
x+ ζp−1

y

1− ζp

)
= vλm−(p−1)/2zp,

where v is a unit and the algebraic integers on the right generate ideals which are pairwise relative prime,

so in particular, since 1− ζp | x+ y, 1− ζp - x+ζ
i
py

1−ζp
for any i ∈ {1, ..., p− 1}. It follows that there exists ideals

Ii such that Ip0(λ)m−(p−1)/2 = (x+ y) and Ipi = x+ζi
py

1−ζp
for all other i. Note that Ip−i = I−i is the complex

conjugate of Ii.

If we assume that p - hK+ , then I0 is principal in Z[λ] (Note that it is okay to think of I0 in Z[λ] since
(1 − ζp) - I0). Furthermore, since x + y and λ are elements of R, the generator α0 of I0 is also real, so we
get x+ y = u0λ

m−(p−1)/2αp0 where u0 is a unit which is also real. For any i 6= 0, define

ai = −ζ−ip
x+ ζipy

x+ ζ−ip y
≡ 1 (mod (1− ζp)2m−p),

so in particular ai ≡ 1 (mod (1 − ζp)p). Note that the principal ideal generated by ai can be decomposed
as a pth power of (Ii/I−i). Thus, from Lemma 7.1, we not only know that the extension K(a1/p

i )/K is
unramified at (1− ζp), we furthermore know that it is totally unramified. Additionally, from the second part

of Lemma 7.1, ai = βpi where βi ∈ K. This allows for us to find αi ∈ Z[λ] such that x+ζi
py

1−ζp
= uiα

p
i where ui

is a real unit. Note that (αi)p = αp−i, so up to a root of unity, αi = α−i.
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From the equalities x+ ζipy = (1− ζp)uiαpi and x+ ζ−ip y = (1− ζ−ip )u−iαip as well as the formula for x+ y,
we get

−xy = u2
i (αiαi)− u2

0λ
2m−p+1α2p

0 λ
−1
a .

For j such that j 6= 0 and i 6≡ ±j (mod p), a similar equality holds. Combining the two gives us

η2(αiαi)p + (−αbαb)p = δλ2m−p(α2
0)p,

where η = ui/uj and δ is a real unit. Note that η defined here is the one needed as a pth power of a unit
from K+ in the second assumption. This allows us to define x1 = η2/pαaαa, y1 = −αbαb, and z1 = α2

0

so that the above equations turns into xp1 + yp1 = δλ2m−pzp1 . It is easy to show that x1, y1, z1 are pairwise
relatively prime and with λ. Again, we can use the method of infinite descent to produce a contradiction. If
we assume that (z) has the smallest number of distinct prime ideal factors in its decomposition, we in fact
know that (z) = I0I1...Ip−1 where Ii and Ij are relatively prime for i 6= j. However, z1 = α2

0 and α0 is

the generator of I0, hence (z1) = I2
0 so I1, ...,Ip−1 must be trivial. However, this implies that each x+ζi

py

1−ζp

is a unit for i 6= 0. With some manipulation, we arrive at the fact that either x + y = 0 or ζ2
p = 1, both

contradictions. Altogether, we see that such a solution cannot exist. �

The above argument proves the second case of Fermat’s last theorem for regular primes as well as other cases,
although it remains to show why the two assumptions are satisfied by the property of regularity. Proofs
demonstrating how to go about satisfying the two assumptions for regular primes as well as other cases can
be found in [5].
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