




Lines
Slope of line through (x1, y1) and (x2, y2):

m =
y2 − y1

x2 − x1

Point-slope equation of line through (x1, y1)

with slope m:

y − y1 = m(x − x1)

Slope-intercept equation of line with slope m

and y-intercept b:

y = b + mx

Rules of Exponents

axat = ax+t

ax

at
= ax−t

(ax)t = axt

Definition of Natural Log

y = lnx means ey = x

ex: ln 1 = 0 since e0 = 1

1

1

x

y

y = ln x

y = ex

Identities

ln ex = x

eln x = x

Rules of Natural Logarithms

ln(AB) = lnA + lnB

ln
(

A

B

)

= lnA − lnB

lnAp = p lnA

Distance and Midpoint Formulas
Distance D between (x1, y1) and (x2, y2):

D =

√

(x2 − x1)
2 + (y2 − y1)

2

Midpoint of (x1, y1) and (x2, y2):

(

x1 + x2

2
,
y1 + y2

2

)

Quadratic Formula
If ax2 + bx + c = 0, then

x =
−b ±

√

b2 − 4ac

2a

Factoring Special Polynomials

x2 − y2 = (x + y)(x − y)

x3 + y3 = (x + y)(x2 − xy + y2)

x3 − y3 = (x − y)(x2 + xy + y2)

Circles

Center (ℎ, k) and radius r:

(x − ℎ)2 + (y − k)2 = r2

Ellipse
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x
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Hyperbola

x2

a2
−

y2

b2
= 1

a
x

y

y = bx∕a

y = −bx∕a



Geometric Formulas
Conversion Between Radians and Degrees: � radians = 180◦

Triangle

A =
1

2
bℎ

=
1

2
ab sin �

�

✲✛ b

a
ℎ

Circle

A = �r2

C = 2�r

r

Sector of Circle

A =
1

2
r2� (� in radians)

s = r� (� in radians)

�

r

r s

Sphere

V =
4

3
�r3 A = 4�r2

Cylinder

V = �r2ℎ

Cone

V =
1

3
�r2ℎ

Trigonometric Functions

sin � =
y

r

cos � =
x

r

tan � =
y

x

tan � =
sin �

cos �

cos2 � + sin2 � = 1

✛

✛

r

(x, y)

�

✻

❄

y

✲✛ x

sin(A±B) = sinA cosB±cosA sinB

cos(A±B) = cosA cosB∓sinA sinB

sin(2A) = 2 sinA cosA

cos(2A) = 2 cos2 A−1 = 1−2 sin2 A

� 2�

−1

1 y = sin x

x

y

� 2�

−1

1 y = cos x

x

y

−� �

y = tan x

x

y

The Binomial Theorem

(x + y)n = xn + nxn−1y +
n(n − 1)

1 ⋅ 2
xn−2y2 +

n(n − 1)(n − 2)

1 ⋅ 2 ⋅ 3
xn−3y3 +⋯ + nxyn−1 + yn

(x − y)n = xn − nxn−1y +
n(n − 1)

1 ⋅ 2
xn−2y2 −

n(n − 1)(n − 2)

1 ⋅ 2 ⋅ 3
xn−3y3 +⋯ ± nxyn−1 ∓ yn
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PREFACE

Calculus is one of the greatest achievements of the human intellect. Inspired by problems in astronomy, Newton and Leibniz

developed the ideas of calculus 300 years ago. Since then, each century has demonstrated the power of calculus to illuminate questions

in mathematics, the physical sciences, engineering, and the social and biological sciences.

Calculus has been so successful both because its central theme—change—is pivotal to an analysis of the natural world and because

of its extraordinary power to reduce complicated problems to simple procedures. Therein lies the danger in teaching calculus: it is possible

to teach the subject as nothing but procedures—thereby losing sight of both the mathematics and of its practical value. This edition of

Calculus continues our effort to promote courses in which understanding and computation reinforce each other. It reflects the input

of users at research universities, four-year colleges, community colleges, and secondary schools, as well as of professionals in partner

disciplines such as engineering and the natural and social sciences.

Flexibility in a New Era of Teaching and Learning
The world has changed and the education system has changed with it. With little or no training, instructors and students have adjusted

to distance learning. As instructors ourselves, we saw how challenging this adjustment has been, especially for our students. These

experiences taught us first-hand the importance of being able to adapt our classes to a variety of formats, from regular in-person classes,

to online courses or some hybrid version in-between. The basis of the Eighth Edition is to provide a text and companion resources that

are flexible enough to support an active and engaging experience in each of these formats.

Active Learning: Good Problems in Different Formats
Active participation in solving well-crafted problems promotes student learning. Since its inception, the hallmark of our text has been

its innovative and engaging problems. These problems probe student understanding in ways often taken for granted. Praised for their

creativity and variety, these problems have had influence far beyond the users of our textbook.

The Eighth Edition continues this tradition by providing an array of new problems, with many drawing on data from timely real-

world applications. The Eighth Edition also expands on this tradition by adapting existing and new problems into an online format

that retains the original pedagogical goals of the problem. Under our approach, which we call the “Rule of Four,” ideas are presented

graphically, numerically, symbolically, and verbally, thereby encouraging students to deepen their understanding.

Problems types in this text include:

• Strengthen Your Understanding problems at the end of every section. These problems ask students to reflect on what they have

learned by deciding “What is wrong?” with a statement and to “Give an example” of an idea. Many of these problems have been

adapted into WileyPLUS.

• ConcepTests promote active learning in the classroom. These can be used with polling software, and have been shown to dramati-

cally improve student learning. Available at www.WileyPLUS.com. All ConcepTests have been adapted into WileyPLUS problems

so can serve as a tool to measure student understanding in a virtual classroom.

• Class Worksheets allow instructors to engage students in individual or group class-work. Samples are available in the Instructor’s

Manual, and at www.WileyPLUS.com.

• Data and Models Many examples and problems throughout the text involve data-driven models. For example, Section 8.6 begins

with applications of present and future value to new studies on the costs of climate change.

• Drill Exercises in the text, with most adapted into WileyPLUS, can be used to build student skill and confidence both in the

classroom and virtually.

Mathematical Thinking Supported by Theory and Modeling
The first stage in the development of mathematical thinking is the acquisition of a clear intuitive picture of the central ideas. In the next

stage, the student learns to reason with the intuitive ideas in plain English. After this foundation has been laid, there is a choice of direction.

All students benefit from both theory and modeling, but the balance may differ for different groups. Some students, such as mathematics

majors, may prefer more theory, while others may prefer more modeling. For instructors wishing to emphasize the connection between

calculus and other fields, the text includes:

• A variety of problems from the physical sciences and engineering.

• Examples from the biological sciences and economics.

• Models from the health sciences and of population growth.

• Problems on sustainability and climate change.

• Case studies on medicine by David E. Sloane, MD.

v
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Enhanced Online Content
This Eigth Edition provides opportunities for students to experience the concepts of calculus in ways that are not possible in a traditional

textbook. The E-Text of Calculus, powered by VitalSource, and WileyPLUS provide a wealth of resources such as interactive demon-

strations of concepts, embedded videos that illustrate problem-solving techniques, and built-in assessments that allow students to check

their understanding as they read.

Specific resources include:

• Concise introductory videos for every section.

• Customizable animated PowerPoint slides giving a short introduction for every section.

• Worked example videos by Donna Krawczyk at the University of Arizona, which provide students the opportunity to see and hear

hundreds of the book’s examples being explained in detail.

• Homework management tools, which enable the instructor to assign questions easily and grade them automatically, using a rich set

of options and controls.

• Pre-designed homework assignments. Use them as-is or customize them to fit the needs of your classroom.

• Set up for Success questions, in which students are prompted for responses as they step through a problem solution and receive

targeted feedback based on those responses.

• Algebra & Trigonometry Refresher material provides students with an opportunity to brush up on material necessary to master

Calculus.

• Embedded Interactive Explorations, applets that present and explore key ideas graphically and dynamically—especially useful

for display of three-dimensional graphs.

• Material that reviews and extends the major ideas of each chapter: Extra problems for many section, Review Exercises and Problems

for each chapter, CAS Challenge Problems, and Projects.

• Challenging problems that involve further exploration and application.

• Section on the �, � definition of limit (1.10).

• Appendices that include preliminary ideas useful in this course.

Flexibility and Adaptability: Varied Approaches
The Eighth Edition of Calculus is designed to provide flexibility for instructors who have a range of preferences regarding inclusion of

topics and applications and the use of computational technology. For those who prefer the lean topic list of earlier editions, we have kept

clear the main conceptual paths. For example,

• The Key Concept chapters on the derivative and the definite integral (Chapters 2 and 5) can be covered at the outset of the course,

right after Chapter 1.

• Limits and continuity (Sections 1.7, 1.8, and 1.9) can be covered in depth before the introduction of the derivative (Sections 2.1

and 2.2), or after.

• Approximating Functions Using Series (Chapter 10) can be covered before, or without, Chapter 9.

• In Chapter 4 (Using the Derivative), instructors can select freely from Sections 4.3–4.8.

• Chapter 8 (Using the Definite Integral) contains a wide range of applications. Instructors can select one or two to do in detail.

• A Fundamental Tool: Vectors (Chapter 13) can be covered before Chapter 12 (Functions of Several Variables).

• Instructors can teach a course in Multivariable Calculus using Chapters 12–16, or a course in Vector Calculus using Chapters 12–14

and a selection of material from Chapters 17–21.

• Instructors who want to show how to calculate flux integrals using general parameterizations early can teach Chapter 21 (Parameters,

Coordinates and Integrals) after Section 19.1.

To use calculus effectively, students need skill in both symbolic manipulation and the use of technology. The balance between the two

may vary, depending on the needs of the students and the wishes of the instructor. The book is adaptable to many different combinations.

The book does not require any specific software or technology. It has been used with graphing calculators, graphing software, and

computer algebra systems. Any technology with the ability to graph functions and perform numerical integration will suffice. Students

are expected to use their own judgment to determine where technology is useful.
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Content
This content represents our vision of how calculus can be taught. It is flexible enough to accommodate individual course needs and

requirements. Topics can easily be added or deleted, or the order changed.

Changes to the text in the Eighth Edition are in italics. In all chapters, problems were added and others updated. In total there are

more than 300 new problems, with a particular emphasis on ones that are moderately difficult and computational.

Chapter 1: A Library of Functions

This chapter introduces all the elementary functions to be used in the book. Although the functions are probably familiar, the graphical,

numerical, verbal, and modeling approach to them may be new. We introduce exponential functions at the earliest possible stage, since

they are fundamental to the understanding of real-world processes.

Section 1.7 now includes a wider variety of problems on calculating limits that can be solved using algebra or estimated using a

graph.

Chapter 2: Key Concept: The Derivative

The purpose of this chapter is to give the student a practical understanding of the definition of the derivative and its interpretation as an

instantaneous rate of change. The power rule is introduced; other rules are introduced in Chapter 3.

Chapter 3: Short-Cuts to Differentiation

The derivatives of all the functions in Chapter 1 are introduced, as well as the rules for differentiating products; quotients; and composite,

inverse, hyperbolic, and implicitly defined functions.

Chapter 4: Using the Derivative

The aim of this chapter is to enable the student to use the derivative in solving problems, including optimization, graphing, rates, para-

metric equations, and indeterminate forms. It is not necessary to cover all the sections in this chapter.

More optimization problems in Economics have been added to Section 4.3, including average cost and trade-off problems. To help

students in better understanding related rates, more problems have been added in Section 4.6, where a rate needs to be calculated, but

the equations and rates are given.

Chapter 5: Key Concept: The Definite Integral

The purpose of this chapter is to give the student a practical understanding of the definite integral as a limit of Riemann sums and to

bring out the connection between the derivative and the definite integral in the Fundamental Theorem of Calculus.

Chapter 6: Constructing Antiderivatives

This chapter focuses on going backward from a derivative to the original function, first graphically and numerically, then analytically. It

introduces the Second Fundamental Theorem of Calculus and the concept of a differential equation.

Chapter 7: Integration

This chapter includes several techniques of integration, including substitution, parts, partial fractions, and trigonometric substitutions;

others are included in the table of integrals. There are discussions of numerical methods and of improper integrals.

Problems have been added in Sections 7.1, 7.2, and 7.6 to emphasis the form of different integrands.

Chapter 8: Using the Definite Integral

This chapter emphasizes the idea of subdividing a quantity to produce Riemann sums which, in the limit, yield a definite integral. It

shows how the integral is used in geometry, physics, economics, and probability; polar coordinates are introduced. It is not necessary to

cover all the sections in this chapter.

Section 8.6 has been rewritten to introduce the ideas of present and future value using the predicted costs of climate change, with

related problems.

Chapter 9: Sequences and Series

This chapter focuses on sequences, series of constants, and convergence. It includes the integral, ratio, comparison, limit comparison,

and alternating series tests. It also introduces geometric series and general power series, including their intervals of convergence.

Chapter 10: Approximating Functions

This chapter introduces Taylor Series and Fourier Series using the idea of approximating functions by simpler functions.

Chapter 11: Differential Equations

This chapter introduces differential equations. The emphasis is on qualitative solutions, modeling, and interpretation.
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Chapter 12: Functions of Several Variables

This chapter introduces functions of many variables from several points of view, using surface graphs, contour diagrams, and tables. We

assume throughout that functions of two or more variables are defined on regions with piecewise smooth boundaries. We conclude with

a section on continuity. Chapter 13 can be taught before Chapter 12.

Chapter 13: A Fundamental Tool: Vectors

This chapter introduces vectors geometrically and algebraically and discusses the dot and cross product. Chapter 13 can be taught before

Chapter 12.

Chapter 14: Differentiating Functions of Several Variables

Partial derivatives, directional derivatives, gradients, and local linearity are introduced. The chapter also discusses higher order partial

derivatives, quadratic Taylor approximations, and differentiability.

Chapter 15: Optimization

The ideas of the previous chapter are applied to optimization problems, both constrained and unconstrained.

Chapter 16: Integrating Functions of Several Variables

This chapter discusses double and triple integrals in Cartesian, polar, cylindrical, and spherical coordinates.

Chapter 17: Parameterization and Vector Fields

This chapter discusses parameterized curves and motion, vector fields and flowlines.

Chapter 18: Line Integrals

This chapter introduces line integrals and shows how to calculate them using parameterizations. Conservative fields, gradient fields, the

Fundamental Theorem of Calculus for Line Integrals, and Green’s Theorem are discussed.

Chapter 19: Flux Integrals and Divergence

This chapter introduces flux integrals and shows how to calculate them over surface graphs, portions of cylinders, and portions of spheres.

The divergence is introduced and its relationship to flux integrals discussed in the Divergence Theorem.

Chapter 20: The Curl and Stokes’ Theorem

The purpose of this chapter is to give students a practical understanding of the curl and of Stokes’ Theorem and to lay out the relationship

between the theorems of vector calculus.

Chapter 21: Parameters, Coordinates, and Integrals

This chapter covers parameterized surfaces, the change of variable formula in a double or triple integral, and flux though a parameterized

surface.

Appendices

There are online appendices on roots, accuracy, and bounds; complex numbers; Newton’s method; and vectors in the plane. The appendix

on vectors can be covered at any time, but may be particularly useful in the conjunction with Section 4.8 on parametric equations.

Supplementary Materials and Additional Resources
Supplements for the instructor can be obtained online through WileyPLUS or by contacting your Wiley representative. The following

supplementary materials are available for this edition:

• Instructor’s Manual containing teaching tips, calculator programs, overhead transparency masters, sample worksheets, and sample

syllabi.

• Computerized Test Bank, powered by TestGen, comprised of nearly 7,000 questions, mostly algorithmically-generated, which

allows for multiple versions of a single test or quiz.

• Instructor’s Solution Manual with complete solutions to all problems.

• Student Solution Manual with complete solutions to half the odd-numbered problems.

• Graphing Calculator Manual, to help students get the most out of their graphing calculators, and to show how they can apply the

numerical and graphing functions of their calculators to their study of calculus.

• Additional Material, elaborating specially marked points in the text and password-protected electronic versions of the instructor

ancillaries, can be found at www.WileyPLUS.com.
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To Students: How to Learn from this Book
• This book may be different from other math textbooks that you have used, so it may be helpful to know about some of the differences

in advance. This book emphasizes at every stage the meaning (in practical, graphical or numerical terms) of the symbols you are

using. There is much less emphasis on “plug-and-chug” and using formulas, and much more emphasis on the interpretation of these

formulas than you may expect. You will often be asked to explain your ideas in words or to explain an answer using graphs.

• The book contains the main ideas of calculus in plain English. Your success in using this book will depend on your reading,

questioning, and thinking hard about the ideas presented. Although you may not have done this with other books, you should plan

on reading the text in detail, not just the worked examples.

• There are very few examples in the text that are exactly like the homework problems. This means that you can’t just look at a

homework problem and search for a similar–looking “worked out” example. Success with the homework will come by grappling

with the ideas of calculus.

• Many of the problems that we have included in the book are open-ended. This means that there may be more than one approach

and more than one solution, depending on your analysis. Many times, solving a problem relies on common sense ideas that are not

stated in the problem but which you will know from everyday life.

• Some problems in this book assume that you have access to a graphing calculator or computer. There are many situations where you

may not be able to find an exact solution to a problem, but you can use a calculator or computer to get a reasonable approximation.

• This book attempts to give equal weight to four methods for describing functions: graphical (a picture), numerical (a table of values)

algebraic (a formula), and verbal. Sometimes you may find it easier to translate a problem given in one form into another. The best

idea is to be flexible about your approach: if one way of looking at a problem doesn’t work, try another.

• Students using this book have found discussing these problems in small groups very helpful. There are a great many problems

which are not cut-and-dried; it can help to attack them with the other perspectives your colleagues can provide. If group work is

not feasible, see if your instructor can organize a discussion session in which additional problems can be worked on.

• You are probably wondering what you’ll get from the book. The answer is, if you put in a solid effort, you will get a real un-

derstanding of one of the most important accomplishments of the millennium—calculus—as well as a real sense of the power of

mathematics in the age of technology.
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1.1 FUNCTIONS AND CHANGE

In mathematics, a function is used to represent the dependence of one quantity upon another.

Let’s look at an example. In 2015, Boston, Massachusetts, had the highest annual snowfall,

110.6 inches, since recording started in 1872. Table 1.1 shows one 14-day period in which the city

broke another record with a total of 64.4 inches.1

Table 1.1 Daily snowfall in inches for Boston, January 27 to February 9, 2015

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Snowfall 22.1 0.2 0 0.7 1.3 0 16.2 0 0 0.8 0 0.9 7.4 14.8

You may not have thought of something so unpredictable as daily snowfall as being a function,

but it is a function of day, because each day gives rise to one snowfall total. There is no formula

for the daily snowfall (otherwise we would not need a weather bureau), but nevertheless the daily

snowfall in Boston does satisfy the definition of a function: Each day, t, has a unique snowfall, S,

associated with it.

We define a function as follows:

A function is a rule that takes certain numbers as inputs and assigns to each a definite output

number. The set of all input numbers is called the domain of the function and the set of

resulting output numbers is called the range of the function.

The input is called the independent variable and the output is called the dependent variable. In

the snowfall example, the domain is the set of days {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} and the

range is the set of daily snowfalls {0, 0.2, 0.7, 0.8, 0.9, 1.3, 7.4, 14.8, 16.2, 22.1}. We call the function

f and write S = f (t). Notice that a function may have identical outputs for different inputs (Days 8

and 9, for example).

Some quantities, such as a day or date, are discrete, meaning they take only certain isolated

values (days must be integers). Other quantities, such as time, are continuous as they can be any

number. For a continuous variable, domains and ranges are often written using interval notation:

The set of numbers t such that a ≤ t ≤ b is called a closed interval and written [a, b].

The set of numbers t such that a < t < b is called an open interval and written (a, b).

The Rule of Four: Tables, Graphs, Formulas, and Words

Functions can be represented by tables, graphs, formulas, and descriptions in words. For example,

the function giving the daily snowfall in Boston can be represented by the graph in Figure 1.1, as

well as by Table 1.1.

2 4 6 8 10 12 14
0

5

10

15

20

25

day

snowfall (inches)

Figure 1.1: Boston snowfall, starting January 27, 2015

As another example of a function, consider the snowy tree cricket. Surprisingly enough, all such

crickets chirp at essentially the same rate if they are at the same temperature. That means that the

chirp rate is a function of temperature. In other words, if we know the temperature, we can determine

1w2.weather.gov/climate/xmacis.php?wfo=box, accessed June 2015.
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Figure 1.2: Cricket chirp rate versus temperature

the chirp rate. Even more surprisingly, the chirp rate, C , in chirps per minute, increases steadily with

the temperature, T , in degrees Fahrenheit, and can be computed by the formula

C = 4T − 160

to a fair level of accuracy. We write C = f (T ) to express the fact that we think of C as a function of

T and that we have named this function f . The graph of this function is in Figure 1.2.

Notice that the graph of C = f (T ) in Figure 1.2 is a solid line. This is because C = f (T ) is

a continuous function. Roughly speaking, a continuous function is one whose graph has no breaks,

jumps, or holes. This means that the independent variable must be continuous. (We give a more

precise definition of continuity of a function in Section 1.7.)

Examples of Domain and Range
If the domain of a function is not specified, we usually take it to be the largest possible set of real

numbers. For example, we usually think of the domain of the function f (x) = x2 as all real numbers.

However, the domain of the function g(x) = 1∕x is all real numbers except zero, since we cannot

divide by zero.

Sometimes we restrict the domain to be smaller than the largest possible set of real numbers.

For example, if the function f (x) = x2 is used to represent the area of a square of side x, we restrict

the domain to nonnegative values of x.

Example 1 The function C = f (T ) gives chirp rate as a function of temperature. We restrict this function to

temperatures for which the predicted chirp rate is positive, and up to the highest temperature ever

recorded at a weather station, 134◦F.2 What is the domain of this function f?

Solution If we consider the equation

C = 4T − 160

simply as a mathematical relationship between two variables C and T , any T value is possible.

However, if we think of it as a relationship between cricket chirps and temperature, then C cannot

be less than 0. Since C = 0 leads to 0 = 4T − 160, and so T = 40◦F, we see that T cannot be less

than 40◦F. (See Figure 1.2.) In addition, we are told that the function is not defined for temperatures

above 134◦. Thus, for the function C = f (T ) we have

Domain = All T values between 40◦F and 134◦F

= All T values with 40 ≤ T ≤ 134

= [40, 134].

Example 2 Find the range of the function f , given the domain from Example 1. In other words, find all possible

values of the chirp rate, C , in the equation C = f (T ).

Solution Again, if we consider C = 4T − 160 simply as a mathematical relationship, its range is all real C

values. However, when thinking of the meaning of C = f (T ) for crickets, we see that the function

predicts cricket chirps per minute between 0 (at T = 40◦F) and 376 (at T = 134◦F). Hence,

Range = All C values from 0 to 376

= All C values with 0 ≤ C ≤ 376

= [0, 376].

2www.guinnessworldrecords.com, accessed January 2017.
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In using the temperature to predict the chirp rate, we thought of the temperature as the indepen-

dent variable and the chirp rate as the dependent variable. However, we could do this backward, and

calculate the temperature from the chirp rate. From this point of view, the temperature is dependent

on the chirp rate. Thus, which variable is dependent and which is independent may depend on your

viewpoint.

Linear Functions

The chirp-rate function, C = f (T ), is an example of a linear function. A function is linear if its

slope, or rate of change, is the same at every point. The rate of change of a function that is not linear

may vary from point to point.

Olympic and World Records

During the early years of the Olympics, the height of the men’s winning pole vault increased ap-

proximately 20 cm every four years. Table 1.2 shows that the height started at 330 cm in 1900, and

increased by the equivalent of 5 cm a year. So the height was a linear function of time from 1900

to 1912. If y is the winning height in centimeters and t is the number of years since 1900, then y is

predicted approximately by

y = f (t) = 330 + 5t.

Since y = f (t) increases with t, we say that f is an increasing function. The coefficient 5 tells us

the rate, in centimeters per year, at which the height increases.

Table 1.2 Men’s Olympic pole vault winning height (approximate)

Year 1900 1904 1908 1912

Height (centimeters) 330 350 370 390

This rate of increase is the slope of the line in Figure 1.3. The slope is given by the ratio

Slope =
Rise

Run
=

370 − 350

8 − 4
=

20

4
= 5 centimeters/year.

Calculating the slope (rise/run) using any other two points on the line gives the same value.

What about the constant 330? This represents the initial height in 1900, when t = 0. Geometri-

cally, 330 is the intercept on the vertical axis.

4 8 12

330

350

370

390
f (t) = 330 + 5t

✲✛
Run = 4

✻
❄

Rise = 20

t (years since 1900)

y (height in cm)

Figure 1.3: Olympic pole vault records

You may wonder whether the linear trend continues beyond 1912. Not surprisingly, it does not

give a good prediction. The formula y = 330 + 5t predicts that the height in the 2016 Olympics

would be 910 centimeters, which is considerably higher than the actual value of 603 centimeters.

There is clearly a danger in extrapolating too far from the given data. You should also observe that

the data in Table 1.2 is discrete, because it is given only at specific points (every four years). However,

we have treated the variable t as though it were continuous, because the function y = 330+5t makes
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sense for all values of t. The graph in Figure 1.3 is of the continuous function because it is a solid

line, rather than four separate points representing the years in which the Olympics were held.

As the pole vault heights have increased over the years, the time to run the mile has decreased.

If y is the world record time to run the mile, in seconds, and t is the number of years since 1900,

then records show that, approximately,

y = g(t) = 260 − 0.39t.

The 260 tells us that the world record was 260 seconds in 1900 (at t = 0). The slope, −0.39, tells

us that the world record decreased by about 0.39 seconds per year. We say that g is a decreasing

function.

Difference Quotients and Delta Notation

We use the symbol Δ (the Greek letter capital delta) to mean “change in,” so Δx means change in x

and Δy means change in y.

The slope of a linear function y = f (x) can be calculated from values of the function at two

points, given by x1 and x2, using the formula

m =
Rise

Run
=

Δy

Δx
=

f (x2) − f (x1)

x2 − x1
.

The quantity (f (x2) − f (x1))∕(x2 − x1) is called a difference quotient because it is the quotient of

two differences. (See Figure 1.4.) Since m = Δy∕Δx, the units of m are y-units over x-units.

x1 x2

y = f (x)

✲✛
Run= x2 − x1

✻

❄

Rise = f (x2) − f (x1)

x

y

(x2, f (x2))

(x1, f (x1))

Figure 1.4: Difference quotient =
f (x2) − f (x1)

x2 − x1

Families of Linear Functions

A linear function has the form

y = f (x) = b + mx.

Its graph is a line such that

• m is the slope, or rate of change of y with respect to x.

• b is the vertical intercept, or value of y when x is zero.

Notice that if the slope, m, is zero, we have y = b, a horizontal line.

To recognize that a table of x and y values comes from a linear function, y = b+mx, look for

differences in y-values that are constant for equally spaced x-values.

Formulas such as f (x) = b + mx, in which the constants m and b can take on various values,

give a family of functions. All the functions in a family share certain properties—in this case, all the
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graphs are straight lines. The constants m and b are called parameters; their meaning is shown in

Figures 1.5 and 1.6. Notice that the greater the magnitude of m, the steeper the line.

y = x
y = 2x

y = 0.5x

x

y

y = −x
y = −2x

y = −0.5x

Figure 1.5: The family y = mx

(with b = 0)

x

y = −2 + x

y = −1 + x

y = x

y = 1 + x

y = 2 + x

y

Figure 1.6: The family y = b + x

(with m = 1)

Increasing versus Decreasing Functions

The terms increasing and decreasing can be applied to other functions, not just linear ones. See

Figure 1.7. In general,

A function f is increasing if the values of f (x) increase as x increases.

A function f is decreasing if the values of f (x) decrease as x increases.

The graph of an increasing function climbs as we move from left to right.

The graph of a decreasing function falls as we move from left to right.

A function f (x) is monotonic if it increases for all x or decreases for all x.

Increasing Decreasing

Figure 1.7: Increasing and decreasing functions

Proportionality

A common functional relationship occurs when one quantity is proportional to another. For example,

the area, A, of a circle is proportional to the square of the radius, r, because

A = f (r) = �r2.

We say y is (directly) proportional to x if there is a nonzero constant k such

that

y = kx.

This k is called the constant of proportionality.

We also say that one quantity is inversely proportional to another if one is proportional to the

reciprocal of the other. For example, the speed, v, at which you make a 50-mile trip is inversely

proportional to the time, t, taken, because v is proportional to 1∕t:

v = 50
(

1

t

)

=
50

t
.
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Summary for Section 1.1

• Definition of function: a rule which takes numbers as inputs and assigns to each input exactly

one output number.

• The set of all input numbers is called the domain of the function and the set of resulting output

numbers is called the range of the function.

• Function notation: y = f (t), where t is the independent variable and y is the dependent

variable.

• A linear function has values of y that change at a constant rate with the values of x.

• Formula for linear functions:

y = b
⏟⏟⏟

Initial value

+ m
⏟⏟⏟

Slope

⋅x

• The graph of a linear function is a line.

∙ b is the vertical intercept, or y-intercept, and gives the value of y for x = 0.

∙ m is the slope of the line, and gives the rate of change of y with respect to x:

m =
Δy

Δx
.

• Formulas such as f (x) = b + mx, in which the constants m and b can take on various values,

represent a family of functions.

• A function f is increasing if the values of f (x) increase as x increases.

• A function f is decreasing if the values of f (x) decrease as x increases.

• A function f is monotonic if it increases for all x or decreases for all x.

• Proportionality: We say y is (directly) proportional to x if there is a nonzero constant k such

that y = kx and k is called the constant of proportionality.

Exercises and Problems for Section 1.1

EXERCISES

1. The population of a city, P , in millions, is a function of

t, the number of years since 2020, so P = f (t). Explain

the meaning of the statement f (5) = 8 in terms of the

population of this city.

2. The pollutant PCB (polychlorinated biphenyl) can af-

fect the thickness of pelican eggshells. Thinking of the

thickness, T , of the eggshells, in mm, as a function of

the concentration, P , of PCBs in ppm (parts per mil-

lion), we have T = f (P ). Explain the meaning of

f (200) in terms of thickness of pelican eggs and con-

centration of PCBs.

3. Describe what Figure 1.8 tells you about an assembly

line whose productivity is represented as a function of

the number of workers on the line.

productivity

number of workers

Figure 1.8

4. Match the graphs in Figure 1.9 with the following equa-

tions. (Note that the x and y scales may be unequal.)

(a) y = x − 5 (b) −3x + 4 = y

(c) 5 = y (d) y = −4x − 5

(e) y = x + 6 (f) y = x∕2

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

x

y(VI)

Figure 1.9
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5. Match the graphs in Figure 1.10 with the following

equations. (Note that the x and y scales may be un-

equal.)

(a) y = −2.72x (b) y = 0.01 + 0.001x

(c) y = 27.9 − 0.1x (d) y = 0.1x − 27.9

(e) y = −5.7 − 200x (f) y = x∕3.14

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

x

y(VI)

Figure 1.10

For Exercises 6–9, find an equation for the line that passes

through the given points.

6. (0, 0) and (1, 1) 7. (0, 2) and (2, 3)

8. (−2, 1) and (2, 3) 9. (−1, 0) and (2, 6)

For Exercises 10–13, determine the slope and the y-intercept

of the line whose equation is given.

10. 2y + 5x − 8 = 0 11. 7y + 12x − 2 = 0

12. −4y + 2x + 8 = 0 13. 12x = 6y + 4

14. Estimate the slope and the equation of the line in Fig-

ure 1.11.

5 10

2

4

x

y

Figure 1.11

15. Find an equation for the line with slope m through the

point (a, c).

16. Find a linear function that generates the values in Ta-

ble 1.3.

Table 1.3

x 5.2 5.3 5.4 5.5 5.6

y 27.8 29.2 30.6 32.0 33.4

For Exercises 17–19, use the facts that parallel lines have

equal slopes and that the slopes of perpendicular lines are

negative reciprocals of one another.

17. Find an equation for the line through the point (2, 1)

which is perpendicular to the line y = 5x − 3.

18. Find equations for the lines through the point (1, 5) that

are parallel to and perpendicular to the line with equa-

tion y + 4x = 7.

19. Find equations for the lines through the point (a, b) that

are parallel and perpendicular to the line y = mx + c,

assuming m ≠ 0.

For Exercises 20–23, give the approximate domain and

range of each function. Assume the entire graph is shown.

20.

1 3 5

1

3

5

y = f (x)

x

y 21.

1 3 5

2

4

6

y = f (x)

x

y

22.

−2 2

−2

2

y = f (x)

x

y 23.

1 3 5

1

3

5
y = f (x)

x

y

Find the domain and range in Exercises 24–25.

24. y = x2 + 2 25. y =
1

x2 + 2

26. If f (t) =
√

t2 − 16, find all values of t for which f (t)

is a real number. Solve f (t) = 3.

In Exercises 27–31, write a formula representing the func-

tion.

27. The volume of a sphere is proportional to the cube of

its radius, r.

28. The average velocity, v, for a trip over a fixed distance,

d, is inversely proportional to the time of travel, t.

29. The strength, S, of a beam is proportional to the square

of its thickness, ℎ.

30. The energy,E, expended by a swimming dolphin is pro-

portional to the cube of the speed, v, of the dolphin.

31. The number of animal species, N , of a certain body

length, l, is inversely proportional to the square of l.
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PROBLEMS

32. In December 2010, the snowfall in Minneapolis was un-

usually high,3 leading to the collapse of the roof of the

Metrodome. Figure 1.12 gives the snowfall, S, in Min-

neapolis for December 6–15, 2010.

(a) How do you know that the snowfall data represents

a function of date?

(b) Estimate the snowfall on December 12.

(c) On which day was the snowfall more than 10

inches?

(d) During which consecutive two-day interval was the

increase in snowfall largest?

6 7 8 9 10 11 12 13 14 15

5

10

15

t (date)

S (inches)

Figure 1.12

33. The value of a car, V = f (a), in thousands of dollars,

is a function of the age of the car, a, in years.

(a) Interpret the statement f (5) = 6.

(b) Sketch a possible graph of V against a. Is f an in-

creasing or decreasing function? Explain.

(c) Explain the significance of the horizontal and ver-

tical intercepts in terms of the value of the car.

34. Which graph in Figure 1.13 best matches each of the

following stories?4 Write a story for the remaining

graph.

(a) I had just left home when I realized I had forgotten

my books, so I went back to pick them up.

(b) Things went fine until I had a flat tire.

(c) I started out calmly but sped up when I realized I

was going to be late.

distance
from home

time

(I) distance
from home

time

(II)

distance
from home

time

(III) distance
from home

time

(IV)

Figure 1.13

In Problems 35–38, the function S = f (t) gives the aver-

age annual sea level, S, in meters above a fixed reference

level, in Aberdeen, Scotland,5 as a function of t, the number

of years before 2020. Write a mathematical expression that

represents the given statement.

35. In 2018 the average annual sea level in Aberdeen was

7.088 meters.

36. The average annual sea level in Aberdeen in 2020.

37. The average annual sea level in Aberdeen was the same

in 1949 and 2000.

38. The average annual sea level in Aberdeen decreased by

11 millimeters from 2017 to 2018.

Problems 39–42 ask you to plot graphs based on the follow-

ing story: “As I drove down the highway this morning, at first

traffic was fast and uncongested, then it crept nearly bumper-

to-bumper until we passed an accident, after which traffic

flow went back to normal until I exited.”

39. Driving speed against time on the highway

40. Distance driven against time on the highway

41. Distance from my exit vs time on the highway

42. Distance between cars vs distance driven on the high-

way

43. An object is put outside on a cold day at time t = 0

minutes. Its temperature, H = f (t), in ◦C, is graphed

in Figure 1.14.

(a) What does the statement f (30) = 10mean in terms

of temperature? Include units for 30 and for 10 in

your answer.

(b) Explain what the vertical intercept, a, and the hor-

izontal intercept, b, represent in terms of tempera-

ture of the object and time outside.

b

a

t (min)

H (◦C)

Figure 1.14

44. A rock is dropped from a window and falls to the ground

below. The height, s (in meters), of the rock above

ground is a function of the time, t (in seconds), since

the rock was dropped, so s = f (t).

(a) Sketch a possible graph of s as a function of t.

(b) Explain what the statement f (7) = 12 tells us

about the rock’s fall.

(c) The graph drawn as the answer for part (a) should

have a horizontal and vertical intercept. Interpret

each intercept in terms of the rock’s fall.

3http://www.crh.noaa.gov/mpx/Climate/DisplayRecords.php
4Adapted from Jan Terwel, “Real Math in Cooperative Groups in Secondary Education”, Cooperative Learning in Math-

ematics, ed. Neal Davidson, p. 234 (Reading: Addison Wesley, 1990).
5www.psmsl.org, accessed August 12, 2019.
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45. You drive at a constant speed from Chicago to Detroit,

a distance of 275 miles. About 120 miles from Chicago

you pass through Kalamazoo, Michigan. Sketch a graph

of your distance from Kalamazoo as a function of time.

46. US imports of crude oil and petroleum were increas-

ing between 1992 and 2007.6 There were many ups and

downs, but the general trend is shown by the line in Fig-

ure 1.15.

(a) Find the slope of the line. Include its units of mea-

surement.

(b) Write an equation for the line. Define your vari-

ables, including their units.

(c) Assuming the trend continues, when does the lin-

ear model predict imports will reach 18 million

barrels per day? Do you think this is a reliable pre-

diction? Give reasons.

1992 1996 2000 2004 2008
4

5

6

7

8

9

10

11

12

13

14

year

US oil imports
(million barrels per day)

Figure 1.15

Problems 47–49 use Figure 1.16 showing how the quantity,

Q, of grass (kg/hectare) in different parts of Namibia de-

pended on the average annual rainfall, r, (mm), in two dif-

ferent years.7

100 200 300 400 500 600

1000

2000

3000

4000

5000

6000
1939

1997

rainfall (mm)

quantity of grass (kg/hectare)

Figure 1.16

47. (a) For 1939, find the slope of the line, including units.

(b) Interpret the slope in this context.

(c) Find the equation of the line.

48. (a) For 1997, find the slope of the line, including units.

(b) Interpret the slope in this context.

(c) Find the equation of the line.

49. Which of the two functions in Figure 1.16 has the

larger difference quotient ΔQ∕Δr? What does this tell

us about grass in Namibia?

50. For t in years since 1950, the quantity of carbon dioxide

in the atmosphere, in ppm (parts per million), is pre-

dicted to be

g(t) = 300 + 1.4t.

(a) Find g(10), g(20) and g(100).

(b) Suppose another model predicts the quantity of

carbon dioxide to be

ℎ(t) = 300 + 1.5t.

Find ℎ(10), ℎ(20) and ℎ(100).

(c) Do the functions g(t) and ℎ(t) differ in their inter-

cept or in their slope? Does this lead to a larger

difference in values of g(t) and ℎ(t) for small t or

for large t? (Use your answers to parts (a) and (b)

to decide.)

51. Marmots are large squirrels that hibernate in the winter

and come out in the spring. Figure 1.17 shows the date

(days after Jan 1) that they are first sighted each year in

Colorado as a function of the average minimum daily

temperature for that year.8

(a) Find the slope of the line, including units.

(b) What does the sign of the slope tell you about mar-

mots?

(c) Use the slope to determine how much difference

6◦C warming makes to the date of first appearance

of a marmot.

(d) Find the equation of the line.

8 10 12 14 16 18 20 22 24
90

100

110

120

130

140

150

mean minimum
temperature (◦C)

day of first
marmot sighting

Figure 1.17

52. In Colorado spring has arrived when the bluebell first

flowers. Figure 1.18 shows the date (days after Jan 1)

that the first flower is sighted in one location as a func-

tion of the first date (days after Jan 1) of bare (snow-

free) ground.9

(a) If the first date of bare ground is 140, how many

days later is the first bluebell flower sighted?

(b) Find the slope of the line, including units.

(c) What does the sign of the slope tell you about blue-

bells?

(d) Find the equation of the line.

6www.theoildrum.com/node/2767, accessed August 16th, 2019.
7David Ward and Ben T. Ngairorue, “Are Namibia’s Grasslands Desertifying?”, Journal of Range Management 53, 2000,

138–144.
8David W. Inouye, Billy Barr, Kenneth B. Armitage, and Brian D. Inouye, “Climate Change is Affecting Altitudinal

Migrants and Hibernating Species”, PNAS 97, 2000, 1630–1633.
9Ibid.
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110120 130 140150 160 170
130

140

150

160

170

180

day of first
bare ground

day of first
bluebell flower

Figure 1.18

53. On March 5, 2015, Capracotta, Italy, received 256 cm

(100.787 inches) of snow in 18 hours.10

(a) Assuming the snow fell at a constant rate and there

were already 100 cm of snow on the ground, find

a formula for f (t), in cm, for the depth of snow as

a function of t hours since the snowfall began on

March 5.

(b) What are the domain and range of f?

54. In a Washington town, the charge for commercial waste

collection is $694.55 for 5 tons and $1098.32 for 8 tons

of waste.

(a) Find a linear formula for the cost, C , of waste col-

lection as a function of the weight, w, in tons.

(b) What is the slope of the line found in part (a)? Give

units and interpret your answer in terms of the cost

of waste collection.

(c) What is the vertical intercept of the line found in

part (a)? Give units and interpret your answer in

terms of the cost of waste collection.

55. For tax purposes, you may have to report the value of

your assets, such as cars or refrigerators. The value you

report drops with time. “Straight-line depreciation” as-

sumes that the value is a linear function of time. If a

$950 refrigerator depreciates completely in seven years,

find a formula for its value as a function of time.

56. Residents of the town of Maple Grove who are con-

nected to the municipal water supply are billed a fixed

amount monthly plus a charge for each cubic foot of wa-

ter used. A household using 1000 cubic feet was billed

$40, while one using 1600 cubic feet was billed $55.

(a) What is the charge per cubic foot?

(b) Write an equation for the total cost of a resident’s

water as a function of cubic feet of water used.

(c) How many cubic feet of water used would lead to

a bill of $100?

57. A company rents cars at $40 a day and 15 cents a mile.

Its competitor’s cars are $50 a day and 10 cents a mile.

(a) For each company, give a formula for the cost of

renting a car for a day as a function of the distance

traveled.

(b) On the same axes, graph both functions.

(c) How should you decide which company is

cheaper?

58. A controversial 1992 Danish study11 reported that

men’s average sperm count decreased from 113 million

per milliliter in 1940 to 66 million per milliliter in 1990.

(a) Express the average sperm count, S, as a linear

function of the number of years, t, since 1940.

(b) A man’s fertility is affected if his sperm count

drops below about 20 million per milliliter. If the

linear model found in part (a) is accurate, in what

year will the average male sperm count fall below

this level?

59. Let f (t) be the number of US billionaires in year t.

(a) Express the following statements12 in terms of f .

(i) In 2001 there were 272 US billionaires.

(ii) In 2019 there were 607 US billionaires.

(b) Find the average yearly increase in the number of

US billionaires from 2001 to 2019. Express this us-

ing f .

(c) Assuming the yearly increase remains constant,

find a formula predicting the number of US billion-

aires in year t.

60. The cost of planting seed is usually a function of the

number of acres sown. The cost of the equipment is a

fixed cost because it must be paid regardless of the num-

ber of acres planted. The costs of supplies and labor

vary with the number of acres planted and are called

variable costs. Suppose the fixed costs are $10,000 and

the variable costs are $200 per acre. Let C be the total

cost, measured in thousands of dollars, and let x be the

number of acres planted.

(a) Find a formula for C as a function of x.

(b) Graph C against x.

(c) Which feature of the graph represents the fixed

costs? Which represents the variable costs?

61. An airplane uses a fixed amount of fuel for takeoff, a

(different) fixed amount for landing, and a third fixed

amount per mile when it is in the air. How does the to-

tal quantity of fuel required depend on the length of the

trip? Write a formula for the function involved. Explain

the meaning of the constants in your formula.

10iceagenow.info, accessed April 2015.
11“Investigating the Next Silent Spring,” US News and World Report, pp. 50–52 (March 11, 1996).
12www.forbes.com/billionaires, accessed August 15, 2019.
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62. For the line y = f (x) in Figure 1.19, evaluate

(a) f (423) − f (422) (b) f (517) − f (513)

400 500 600 700

2000

4000

6000

8000

x

y

Figure 1.19

3000 4000 5000 6000

50

60

70

80

x

y

Figure 1.20

63. For the line y = g(x) in Figure 1.20, evaluate

(a) g(4210) − g(4209) (b) g(3760) − g(3740)

64. Let V (t) be the average speed, in miles per hour, for a

journey of 100 miles taking t hours. See Figure 1.21.

(a) Find V (1) and V (2). Give units.

(b) Do you think it is true for all t that

V (t + 1) = V (t) + 1?

If so, give an argument. If not, give a counterexam-

ple.

(c) Answer the same question as part (b), but with

V (t + 1) = V (t) + V (1).

1 2 3

50

100

150

V (t)

t (hrs)

speed (mph)

Figure 1.21

65. The percentage of people who have heard some news t

days after it was announced is N(t). See Figure 1.22.

(a) Find N(1) and N(2).

(b) Do you think it is true for all t that

N(t + 1) = N(t) + 1?

If so, give an argument. If not, give a counterexam-

ple.

(c) Answer the same question as part (b), but with

N(t + 1) = N(t) +N(1).

1 2 3

25

50

75

100 N(t)

t (days)

percent

Figure 1.22

66. An alternative to petroleum-based diesel fuel, biodiesel,

is derived from renewable resources such as food crops,

algae, and animal oils. The table shows the recent an-

nual percent growth in US biodiesel exports.13

(a) Find the largest time interval over which the per-

centage growth in the US exports of biodiesel was

an increasing function of time. Interpret what in-

creasing means, practically speaking, in this case.

(b) Find the largest time interval over which the actual

US exports of biodiesel was an increasing function

of time. Interpret what increasing means, practi-

cally speaking, in this case.

Year 2012 2013 2014 2015 2016 2017 2018

% growth over 69.9 53.0 −57.8 5.93 0.33 6.20 10.10

previous yr

67. Hydroelectric power is electric power generated by the

force of moving water. Figure 1.23 shows14 the annual

percent growth in hydroelectric power consumption by

the US industrial sector between 2008 and 2018.

(a) Find the largest time interval over which the per-

centage growth in the US consumption of hydro-

electric power was an increasing function of time.

Interpret what increasing means, practically speak-

ing, in this case.

(b) Find the largest time interval over which the actual

US consumption of hydroelectric power was a de-

creasing function of time. Interpret what decreas-

ing means, practically speaking, in this case.

2010 2012 2014 2016 2018

−20

−10

10

20

year

percent growth
over previous year

Figure 1.23

13www.eia.doe.gov, accessed August 19, 2019.
14Yearly values have been joined with line segments to highlight trends in the data; however, values in between years should

not be inferred from the segments. From www.eia.doe.gov, accessed August 19, 2019.
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68. Solar panels are arrays of photovoltaic cells that convert

solar radiation into electricity. The table shows the an-

nual percent change in the US price per watt of a solar

panel.15

(a) Find the largest time interval over which the per-

centage growth in the US price per watt of a so-

lar panel was a decreasing function of time. Inter-

pret what decreasing means, practically speaking,

in this case.

(b) Find the largest time interval over which the ac-

tual price per watt of a solar panel was a decreasing

function of time. Interpret what decreasing means,

practically speaking, in this case.

Year 2005 2006 2007 2008 2009 2010

% growth over previous yr 6.7 9.7 −3.7 3.6 −20.1 −29.7

69. Table 1.4 shows the average annual sea level, S, in me-

ters, in Aberdeen, Scotland,16 as a function of time, t,

measured in years before 2014.

Table 1.4

t 0 25 50 75 100 125

S 7.071 7.083 6.990 6.964 6.985 6.900

(a) What was the average sea level in Aberdeen in

2014?

(b) In what year was the average sea level 7.083 me-

ters? 6.985 meters?

(c) Table 1.5 gives the average sea level, S, in Ab-

erdeen as a function of the year, x. Complete the

missing values.

Table 1.5

x 1889 ? 1939 1964 1989 2014

S ? 6.985 ? 6.990 ? ?

70. The table gives the required standard weight, w, in kilo-

grams, of American soldiers, aged between 21 and 27,

for height, ℎ, in centimeters.17

(a) How do you know that the data in this table could

represent a linear function?

(b) Find weight, w, as a linear function of height, ℎ.

What is the slope of the line? What are the units

for the slope?

(c) Find height, ℎ, as a linear function of weight, w.

What is the slope of the line? What are the units

for the slope?

ℎ (cm) 172 176 180 184 188 192 196

w (kg) 79.7 82.4 85.1 87.8 90.5 93.2 95.9

71. Table 1.6 shows the pressure P , in torr,18 at a depth of

ℎ meters below the surface of a lake.

(a) Explain why P could be a linear function of ℎ.

(b) Find pressure, P , as a linear function of height ℎ

and give practical interpretations of the slope and

vertical intercept.

(c) Use part (b) to approximate the depth at which the

pressure is twice that at the surface of the lake.

Table 1.6

ℎ (m) 6 8 10 12 14 16

P (torr) 1201 1348 1495 1642 1789 1936

72. A $25,000 vehicle depreciates $2000 a year as it ages.

Repair costs are $1500 per year.

(a) Write formulas for each of the two linear functions

at time t, value, V (t), and repair costs to date, C(t).

Graph them.

(b) One strategy is to replace a vehicle when the total

cost of repairs is equal to the current value. Find

this time.

(c) Another strategy is to replace the vehicle when the

value of the vehicle is some percent of the original

value. Find the time when the value is 6%.

73. A bakery owner knows that customers buy a total of q

cakes when the price, p, is no more than p = d(q) =

20 − q∕20 dollars. She is willing to make and supply

as many as q cakes at a price of p = s(q) = 11 + q∕40

dollars each. (The graphs of the functions d(q) and s(q)

are called a demand curve and a supply curve, respec-

tively.) The graphs of d(q) and s(q) are in Figure 1.24.

(a) Why, in terms of the context, is the slope of d(q)

negative and the slope of s(q) positive?

(b) Is each of the ordered pairs (q, p) a solution to the

inequality p ≤ 20 − q∕20? Interpret your answers

in terms of the context.

(60, 18) (120, 12)

(c) Graph in the qp-plane the solution set of the sys-

tem of inequalities p ≤ 20 − q∕20, p ≥ 11 + q∕40.

What does this solution set represent in terms of

the context?

(d) What is the rightmost point of the solution set you

graphed in part (c)? Interpret your answer in terms

of the context.

40 80 120 160 200

5

10

15

20

25
d(q) = 20 − q∕20

s(q) = 11 + q∕40

q

p

Figure 1.24

15We use the official price per peak watt, which uses the maximum number of watts a solar panel can produce under ideal

conditions. From www.eia.doe.gov, accessed March 29, 2015.
16www.psmsl.org, accessed August 19, 2019.
17Adapted from usmilitary.about.com, accessed March 29, 2015.
18A torr is a unit of pressure.
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74. (a) Consider the functions graphed in Figure 1.25(a).

Find the coordinates of C .

(b) Consider the functions in Figure 1.25(b). Find the

coordinates of C in terms of b.

y = x2

(0, 2)

(1, 1)

C

(a) y

x

y = x2

(0, b)

(1, 1)

C

(b) y

x

Figure 1.25

75. When Galileo was formulating the laws of motion, he

considered the motion of a body starting from rest and

falling under gravity. He originally thought that the ve-

locity of such a falling body was proportional to the dis-

tance it had fallen.

What do the experimental data in Table 1.7 tell you

about Galileo’s hypothesis? What alternative hypothe-

sis is suggested by the two sets of data in Table 1.7 and

Table 1.8?

Table 1.7

Distance (ft) 0 1 2 3 4

Velocity (ft/sec) 0 8 11.3 13.9 16

Table 1.8

Time (sec) 0 1 2 3 4

Velocity (ft/sec) 0 32 64 96 128

Strengthen Your Understanding

In Problems 76–80, explain what is wrong with the state-

ment.

76. For constants m and b, the slope of the linear function

y = b + mx is m = Δx∕Δy.

77. The lines x = 3 and y = 3 are both linear functions of

x.

78. The line y − 3 = 0 has slope 1 in the xy-plane.

79. Values of y on the graph of y = 0.5x−3 increase more

slowly than values of y on the graph of y = 0.5 − 3x.

80. The equation y = 2x + 1 indicates that y is directly

proportional to x with a constant of proportionality 2.

In Problems 81–82, give an example of:

81. A linear function with a positive slope and a negative

x-intercept.

82. A formula representing the statement “q is inversely

proportional to the cube root of p and has a positive

constant of proportionality.”

In Problems 83–88, is the statement true or false? Give an

explanation for your answer.

83. For any two points in the plane, there is a linear function

whose graph passes through them.

84. If y = f (x) is a linear function, then increasing x by 1

unit changes the corresponding y by m units, where m

is the slope.

85. The linear functions y = −x + 1 and x = −y + 1 have

the same graph.

86. The linear functions y = 2 − 2x and x = 2 − 2y have

the same graph.

87. If y is a linear function of x, then the ratio y∕x is con-

stant for all points on the graph at which x ≠ 0.

88. If y = f (x) is a linear function, then increasing x by 2

units adds m + 2 units to the corresponding y, where m

is the slope.

89. Which of the following functions has its domain iden-

tical with its range?

(a) f (x) = x2 (b) g(x) =
√

x

(c) ℎ(x) = x3 (d) i(x) = |x|

1.2 EXPONENTIAL FUNCTIONS

Population Growth

The population of Burkina Faso, a sub-Saharan African country,19 is given in Table 1.9. To see how

the population is growing, we look at the increase in population in the third column. If the population

had been growing linearly, all the numbers in the third column would be the same.

19www.worldometers.inf, accessed August 19, 2019.
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Table 1.9 Population of Burkina Faso

(estimated), 2009–2018

Year Population Change in

(millions) population (millions)

2009 15.141

2010 15.605
0.464

2011 16.081
0.476

2012 16.572
0.490

2013 17.073
0.502

2014 17.586
0.513

2015 18.111
0.525

2016 18.646
0.535

2017 19.193
0.547

2018 19.751
0.559

−10 10 20 30 40 50

20

40

60

t (years since 2009)

P (population in millions)

P = 15.141(1.03)t

Figure 1.26: Population of Burkina Faso (estimated):

Exponential growth

Suppose we divide each year’s population by the previous year’s population. For example,

Population in 2010

Population in 2009
=

15.605 million

15.141 million
= 1.03

Population in 2011

Population in 2010
=

16.081 million

15.605 million
= 1.03.

The fact that both calculations give 1.03 shows the population grew by about 3% between 2009

and 2010 and between 2010 and 2011. Similar calculations for other years show that the population

grew by a factor of about 1.03, or 3%, every year. Whenever we have a constant growth factor (here

1.03), we have exponential growth. The population t years after 2009 is given by the exponential

function

P = 15.141(1.03)t.

If we assume that the formula holds for 50 years, the population graph has the shape shown in

Figure 1.26. Since the population is growing faster and faster as time goes on, the graph is bending

upward; we say it is concave up. Even exponential functions which climb slowly at first, such as this

one, eventually climb extremely quickly.

To recognize that a table of t and P values comes from an exponential function, look for ratios

of P values that are constant for equally spaced t values.

Concavity

We have used the term concave up20 to describe the graph in Figure 1.26. In words:

The graph of a function is concave up if it bends upward as we move left to right; it is con-

cave down if it bends downward. (See Figure 1.27 for four possible shapes.) A line is neither

concave up nor concave down.

Concave
up

Concave
down

Figure 1.27: Concavity of a graph

20In Chapter 2 we consider concavity in more depth.
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Elimination of a Drug from the Body

Now we look at a quantity which is decreasing exponentially instead of increasing. When a patient is

given medication, the drug enters the bloodstream. As the drug passes through the liver and kidneys,

it is metabolized and eliminated at a rate that depends on the particular drug. For the antibiotic

ampicillin, approximately 40% of the drug is eliminated every hour. A typical dose of ampicillin is

250 mg. SupposeQ = f (t), whereQ is the quantity of ampicillin, in mg, in the bloodstream at time t

hours since the drug was given. At t = 0, we have Q = 250. Since every hour the amount remaining

is 60% of the previous amount, we have

f (0) = 250

f (1) = 250(0.6)

f (2) = (250(0.6))(0.6) = 250(0.6)2,

and after t hours,

Q = f (t) = 250(0.6)t.

This is an exponential decay function. Some values of the function are in Table 1.10; its graph is in

Figure 1.28.

Notice the way in which the function in Figure 1.28 is decreasing. Each hour a smaller quantity

of the drug is removed than in the previous hour. This is because as time passes, there is less of the

drug in the body to be removed. Compare this to the exponential growth in Figure 1.26, where each

step upward is larger than the previous one. Notice, however, that both graphs are concave up.

Table 1.10 Drug

elimination

t (hours) Q (mg)

0 250

1 150

2 90

3 54

4 32.4

5 19.4

1 2 3 4 5

50

100

150

200

250

t (hours)

Q (mg)

Figure 1.28: Drug elimination: Exponential decay

The General Exponential Function

We say P is an exponential function of t with base a if

P = P0a
t,

where P0 is the initial quantity (when t = 0) and a is the factor by which P changes when t

increases by 1.

If a > 1, we have exponential growth; if 0 < a < 1, we have exponential decay.

Provided a > 0, the largest possible domain for the exponential function is all real numbers. The

reason we do not want a ≤ 0 is that, for example, we cannot define a1∕2 if a < 0. Also, we do not

usually have a = 1, since P = P01
t = P0 is then a constant function.

The value of a is closely related to the percent growth (or decay) rate. For example, if a = 1.03,

then P is growing at 3%; if a = 0.94, then P is decaying at 6%, so the growth rate is r = a − 1.
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Example 1 Suppose that Q = f (t) is an exponential function of t. If f (20) = 88.2 and f (23) = 91.4:

(a) Find the base. (b) Find the growth rate. (c) Evaluate f (25).

Solution (a) Let

Q = Q0a
t.

Substituting t = 20, Q = 88.2 and t = 23, Q = 91.4 gives two equations for Q0 and a:

88.2 = Q0a
20 and 91.4 = Q0a

23.

Dividing the two equations enables us to eliminate Q0:

91.4

88.2
=

Q0a
23

Q0a
20

= a3.

Solving for the base, a, gives

a =
(

91.4

88.2

)1∕3

= 1.012.

(b) Since a = 1.012, the growth rate is 1.012 − 1 = 0.012 = 1.2%.

(c) We want to evaluate f (25) = Q0a
25 = Q0(1.012)

25. First we find Q0 from the equation

88.2 = Q0(1.012)
20.

Solving gives Q0 = 69.5. Thus,

f (25) = 69.5(1.012)25 = 93.6.

Half-Life and Doubling Time

Radioactive substances, such as uranium, decay exponentially. A certain percentage of the mass

disintegrates in a given unit of time; the time it takes for half the mass to decay is called the half-life

of the substance.

A well-known radioactive substance is carbon-14, which is used to date organic objects. When

a piece of wood or bone was part of a living organism, it accumulated small amounts of radioactive

carbon-14. Once the organism dies, it no longer picks up carbon-14. Using the half-life of carbon-14

(about 5730 years), we can estimate the age of the object. We use the following definitions:

The half-life of an exponentially decaying quantity is the time required for the quantity to be

reduced by a factor of one half.

The doubling time of an exponentially increasing quantity is the time required for the quantity

to double.

The Family of Exponential Functions

The formula P = P0a
t gives a family of exponential functions with positive parameters P0 (the

initial quantity) and a (the base, or growth/decay factor). The base tells us whether the function is

increasing (a > 1) or decreasing (0 < a < 1). Since a is the factor by which P changes when

t is increased by 1, large values of a mean fast growth; values of a near 0 mean fast decay. (See

Figures 1.29 and 1.30.) All members of the family P = P0a
t are concave up.
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1 2 3 4 5 6 7

10

20

30

40

t

P

10t
5t 3t 2t

(1.5)t

Figure 1.29: Exponential growth: P = at, for a > 1

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

t

P

(0.1)t
(0.5)t (0.8)t

(0.9)t

(0.95)t

Figure 1.30: Exponential decay: P = at, for 0 < a < 1

Example 2 Figure 1.31 is the graph of three exponential functions. What can you say about the values of the six

constants a, b, c, d, p, q?

Solution All the constants are positive. Since a, c, p represent y-intercepts, we see that a = c because these

graphs intersect on the y-axis. In addition, a = c < p, since y = p ⋅ qx crosses the y-axis above the

other two.

Since y = a ⋅ bx is decreasing, we have 0 < b < 1. The other functions are increasing, so 1 < d

and 1 < q.

y = p ⋅ qx

y = c ⋅ dx

y = a ⋅ bx

x

y

Figure 1.31: Three exponential functions

Exponential Functions with Base e

The most frequently used base for an exponential function is the famous number e = 2.71828… .

This base is used so often that you will find an ex button on most scientific calculators. At first glance,

this is all somewhat mysterious. Why is it convenient to use the base 2.71828…? The full answer

to that question must wait until Chapter 3, where we show that many calculus formulas come out

neatly when e is used as the base. We often use the following result:

Any exponential growth function can be written, for some a > 1 and k > 0, in the form

P = P0a
t or P = P0e

kt

and any exponential decay function can be written, for some 0 < a < 1 and −k < 0, as

Q = Q0a
t or Q = Q0e

−kt,

where P0 and Q0 are the initial quantities.

We say that P and Q are growing or decaying at a continuous21 rate of k. (For exam-

ple, k = 0.02 corresponds to a continuous rate of 2%.)

21The reason that k is called the continuous rate is explored in detail in Chapter 11.
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Example 3 Convert the functions P = e0.5t and Q = 5e−0.2t into the form y = y0a
t. Use the results to explain

the shape of the graphs in Figures 1.32 and 1.33.

1 2 3 4 5 6 7

10

20

30

t

P

1

P = e0.5t

Figure 1.32: An exponential growth function

2 4 6 8 10

1

2

3

4

5

t

Q

Q = 5e−0.2t

Figure 1.33: An exponential decay function

Solution We have

P = e0.5t = (e0.5)t = (1.65)t.

Thus, P is an exponential growth function with P0 = 1 and a = 1.65. The function is increasing and

its graph is concave up, similar to those in Figure 1.29. Also,

Q = 5e−0.2t = 5(e−0.2)t = 5(0.819)t,

so Q is an exponential decay function with Q0 = 5 and a = 0.819. The function is decreasing and

its graph is concave up, similar to those in Figure 1.30.

Example 4 The quantity, Q, of a drug in a patient’s body at time t is represented for positive constants S and

k by the function Q = S(1 − e−kt). For t ≥ 0, describe how Q changes with time. What does S

represent?

Solution The graph ofQ is shown in Figure 1.34. Initially none of the drug is present, but the quantity increases

with time. Since the graph is concave down, the quantity increases at a decreasing rate. This is

realistic because as the quantity of the drug in the body increases, so does the rate at which the body

excretes the drug. Thus, we expect the quantity to level off. Figure 1.34 shows that S is the saturation

level. The line Q = S is called a horizontal asymptote.

1 2 3 4 5
t (time in hours)

S

Q (quantity of drug) Saturation level
✠

Figure 1.34: Buildup of the quantity of a drug in body

Summary for Section 1.2

• We say that P is an exponential function of t with base a if

P = P0a
t.

∙ P0 is the initial quantity (when t = 0).

∙ a is the factor by which P changes when t increases by 1.

• If a > 1, we have exponential growth.

• If 0 < a < 1, we have exponential decay.

• To recognize that a table of t and P values comes from an exponential function, look for ratios

of P values that are constant for equally-spaced t values.
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• The graph of a function is concave up if it bends upward as we move left to right; it is concave

down if it bends downward.

• The half-life of an exponentially decaying quantity is the time required for the quantity to be

reduced by a factor of one half.

• The doubling time of an exponentially increasing quantity is the time required for the quantity

to double.

• The formula P = P0a
t gives a family of exponential functions with parameters P0 (the initial

quantity) and a (the base). In practice, the most commonly used base is the number e = 2.71828.

• Any exponential growth function can be written, for some a > 1 and k > 0, in the form

P = P0a
t or P = P0e

kt

and any exponential decay function can be written, for some 0 < a < 1 and −k < 0, as

Q = Q0a
t or Q = Q0e

−kt,

where P0 and Q0 are the initial quantities.

∙ We say that P and Q are growing or decaying at a continuous rate of k.

Exercises and Problems for Section 1.2

EXERCISES

In Exercises 1–4, decide whether the graph is concave up,

concave down, or neither.

1.

x

2.

x

3.

x

4.
x

The functions in Exercises 5–8 represent exponential growth

or decay. What is the initial quantity? What is the growth

rate? State if the growth rate is continuous.

5. P = 5(1.07)t 6. P = 7.7(0.92)t

7. P = 3.2e0.03t 8. P = 15e−0.06t

Write the functions in Exercises 9–12 in the form P = P0a
t.

Which represent exponential growth and which represent ex-

ponential decay?

9. P = 15e0.25t 10. P = 2e−0.5t

11. P = P0e
0.2t 12. P = 7e−�t

In Exercises 13–14, let f (t) = Q0a
t = Q0(1 + r)t.

(a) Find the base, a.

(b) Find the percentage growth rate, r.

13. f (5) = 75.94 and f (7) = 170.86

14. f (0.02) = 25.02 and f (0.05) = 25.06

15. A town has a population of 1000 people at time t = 0.

In each of the following cases, write a formula for the

population, P , of the town as a function of year t.

(a) The population increases by 50 people a year.

(b) The population increases by 5% a year.

16. An air-freshener starts with 30 grams and evaporates

over time. In each of the following cases, write a for-

mula for the quantity, Q grams, of air-freshener remain-

ing t days after the start and sketch a graph of the func-

tion. The decrease is:

(a) 2 grams a day (b) 12% a day

17. For which pairs of consecutive points in Figure 1.35 is

the function graphed:

(a) Increasing and concave up?

(b) Increasing and concave down?

(c) Decreasing and concave up?

(d) Decreasing and concave down?

A

B

C

D

E

F
G

H

I

x

Figure 1.35
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18. The table gives the average temperature in Wallingford,

Connecticut, for the first 10 days in March.

(a) Over which intervals was the average temperature

increasing? Decreasing?

(b) Find a pair of consecutive intervals over which the

average temperature was increasing at a decreas-

ing rate. Find another pair of consecutive intervals

over which the average temperature was increasing

at an increasing rate.

Day 1 2 3 4 5 6 7 8 9 10

◦F 42◦ 42◦ 34◦ 25◦ 22◦ 34◦ 38◦ 40◦ 49◦ 49◦

PROBLEMS

19. (a) Which (if any) of the functions in the following ta-

ble could be linear? Find formulas for those func-

tions.

(b) Which (if any) of these functions could be expo-

nential? Find formulas for those functions.

x f (x) g(x) ℎ(x)

−2 12 16 37

−1 17 24 34

0 20 36 31

1 21 54 28

2 18 81 25

In Problems 20–21, find all the tables that have the given

characteristic.

(A)
x 0 40 80 160

y 2.2 2.2 2.2 2.2

(B)
x −8 −4 0 8

y 51 62 73 95

(C)
x −4 −3 4 6

y 18 0 4.5 −2.25

(D)
x 3 4 5 6

y 18 9 4.5 2.25

20. y could be a linear function of x.

21. y could be an exponential function of x.

22. Table 1.11 shows some values of a linear function f and

an exponential function g. Find exact values (not deci-

mal approximations) for each of the missing entries.

Table 1.11

x 0 1 2 3 4

f (x) 10 ? 20 ? ?

g(x) 10 ? 20 ? ?

23. Match the functions ℎ(s), f (s), and g(s), whose values

are in Table 1.12, with the formulas

y = a(1.1)s , y = b(1.05)s , y = c(1.03)s,

assuming a, b, and c are constants. Note that the func-

tion values have been rounded to two decimal places.

Table 1.12

s ℎ(s) s f (s) s g(s)

2 1.06 1 2.20 3 3.47

3 1.09 2 2.42 4 3.65

4 1.13 3 2.66 5 3.83

5 1.16 4 2.93 6 4.02

6 1.19 5 3.22 7 4.22

24. Each of the functions g, ℎ, k in Table 1.13 is increas-

ing, but each increases in a different way. Which of the

graphs in Figure 1.36 best fits each function?

(a) (b)

(c)

Figure 1.36

Table 1.13

t g(t) ℎ(t) k(t)

1 23 10 2.2

2 24 20 2.5

3 26 29 2.8

4 29 37 3.1

5 33 44 3.4

6 38 50 3.7

25. Each of the functions in Table 1.14 decreases, but each

decreases in a different way. Which of the graphs in Fig-

ure 1.37 best fits each function?

(a) (b)

(c)

Figure 1.37

Table 1.14

x f (x) g(x) ℎ(x)

1 100 22.0 9.3

2 90 21.4 9.1

3 81 20.8 8.8

4 73 20.2 8.4

5 66 19.6 7.9

6 60 19.0 7.3
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26. Figure 1.38 shows Q = 50(1.2)t, Q = 50(0.6)t, Q =

50(0.8)t, and Q = 50(1.4)t. Match each formula to a

graph.
(I) (II)

(III)

(IV)
t

Q

Figure 1.38

In Problems 27–32, give a possible formula for the function.

27.

3

y

x

(2, 12)

28.

18
(2, 8)

x

y

29. y

x
(1, 6)

(2, 18)

30.

−2

8

(1, 4)

x

y

31. y

x

(−1, 8) (1, 2)

32.

4

y

(1, 2)

x

33. The table gives the number of North American houses

(millions) with analog cable TV.22

(a) Plot the number of houses, H , in millions, with ca-

ble TV versus year, Y .

(b) Could H be a linear function of Y ? Why or why

not?

(c) Could H be an exponential function of Y ? Why or

why not?

Year 2010 2011 2012 2013 2014 2015

Houses 18.3 13 7.8 3.9 1 0.5

34. When a new product is advertised, more and more peo-

ple try it. However, the rate at which new people try it

slows as time goes on.

(a) Graph the total number of people who have tried

such a product against time.

(b) What do you know about the concavity of the

graph?

35. Sketch reasonable graphs for the following. Pay partic-

ular attention to the concavity of the graphs.

(a) The total revenue generated by a car rental busi-

ness, plotted against the amount spent on advertis-

ing.

(b) The temperature of a cup of hot coffee standing in

a room, plotted as a function of time.

36. (a) A population, P , grows at a continuous rate of 2%

a year and starts at 1 million. Write P in the form

P = P0e
kt, with P0, k constants.

(b) Plot the population in part (a) against time.

37. A 2008 study of 300 oil fields producing a total of 84

million barrels per day reported that daily production

was decaying at a continuous rate of 9.1% per year.23

Find the estimated production in these fields in 2025 if

the decay continues at the same rate.

38. In 2017, the world’s population reached 7.41 billion24

and was increasing at a rate of 1.1% per year. Assume

that this growth rate remains constant. (In fact, the

growth rate has been decreasing since 2008.)

(a) Write a formula for the world population (in bil-

lions) as a function of the number of years since

2017.

(b) Estimate the population of the world in the year

2025.

(c) Sketch world population as a function of years

since 2017. Use the graph to estimate the doubling

time of the population of the world.

39. The population of Nevada was 3.0 million in 2018 and

2.7 million in 2010. Assuming an exponential model:

(a) Write the population of Nevada in the form N =

N0a
t, where N is the population of Nevada in mil-

lions, N0 and a are constants, and t is time in years

since 2010.

(b) What was the estimated population of Nevada in

2000?

40. Aircraft require longer takeoff distances, called take-

off rolls, at high-altitude airports because of diminished

air density. The table shows how the takeoff roll for a

certain light airplane depends on the airport elevation.

(Takeoff rolls are also strongly influenced by air tem-

perature; the data shown assume a temperature of 0◦

C.) Determine a formula for this particular aircraft that

gives the takeoff roll as an exponential function of air-

port elevation.

Elevation (ft) Sea level 1000 2000 3000 4000

Takeoff roll (ft) 670 734 805 882 967

22http://www.statista.com, accessed May 2015.
23International Energy Agency, World Energy Outlook, 2008.
24www.indexmundi.com, accessed August 20, 2019.
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41. One of the main contaminants of a nuclear accident,

such as that at Chernobyl, is strontium-90, which decays

exponentially at a continuous rate of approximately

2.47% per year. After the Chernobyl disaster, it was sug-

gested that it would be about 100 years before the region

would again be safe for human habitation. What percent

of the original strontium-90 would still remain then?

42. The decrease in the number of colonies of honey bees,

essential to pollinate crops providing one quarter of US

food consumption, worries policy makers. US beekeep-

ers say that over the three winter months a 5.9% decline

in the number of colonies per month is economically

sustainable, but higher rates are not.25

(a) Assuming a constant percent colony loss, which

function I–III could describe a winter monthly

colony loss trend that is economically sustainable?

Assume y is the number of US bee colonies, t is

time in months, and a is a positive constant.

I. y = a(1.059)t II. y = a(0.962)t

III. y = a(0.935)t

(b) What is the annual bee colony trend described by

each of the functions in part (a)?

43. Let f (t) = 3ekt and g(t) = ae2kt for positive constants

k and a.

(a) Is there a value of a such that g(t) = 2f (t) for all

t? If so, what is it?

(b) Is there a value of a such that g(t) = (f (t))2? If so,

what is it?

44. A certain region has a population of 10,000,000 and an

annual growth rate of 2%. Estimate the doubling time

by guessing and checking.

45. According to the EPA, sales of electronic devices in the

US doubled between 1997 and 2009, when 438 million

electronic devices sold.26

(a) Find an exponential function, S(t), to model sales

in millions since 1997.

(b) What was the annual percentage growth rate be-

tween 1997 and 2009?

46. (a) Estimate graphically the doubling time of the

exponentially growing population shown in Fig-

ure 1.39. Check that the doubling time is indepen-

dent of where you start on the graph.

(b) Show algebraically that if P = P0a
t doubles be-

tween time t and time t + d, then d is the same

number for any t.

1 2 3 4 5 6 7 8 9

20,000

40,000

60,000

80,000

time (years)

population

Figure 1.39

47. A deposit of P0 into a bank account has a doubling time

of 50 years. No other deposits or withdrawals are made.

(a) How much money is in the bank account after 50

years? 100 years? 150 years? (Your answer will in-

volve P0.)

(b) How many times does the amount of money dou-

ble in t years? Use this to write a formula for P , the

amount of money in the account after t years.

48. A 325 mg aspirin has a half-life ofH hours in a patient’s

body.

(a) How long does it take for the quantity of aspirin

in the patient’s body to be reduced to 162.5 mg?

To 81.25 mg? To 40.625 mg? (Note that 162.5 =

325∕2, etc. Your answers will involve H .)

(b) How many times does the quantity of aspirin, A

mg, in the body halve in t hours? Use this to give

a formula for A after t hours.

49. (a) The half-life of radium-226 is 1620 years. If the

initial quantity of radium is Q0, explain why the

quantity, Q, of radium left after t years, is given by

Q = Q0 (0.999572)
t
.

(b) What percentage of the original amount of radium

is left after 500 years?

50. In the early 1960s, radioactive strontium-90 was re-

leased during atmospheric testing of nuclear weapons

and got into the bones of people alive at the time. If

the half-life of strontium-90 is 29 years, what fraction

of the strontium-90 absorbed in 1960 remained in peo-

ple’s bones in 2010? [Hint: Write the function in the

form Q = Q0(1∕2)
t∕29.]

51. The amount of a 10-gram sample of cesium-137 re-

maining after t years is given by f (t) = 10(1∕2)t∕30

grams. Find the half-life and the continuous rate of de-

cay of cesium-137.

52. Food bank usage in Britain grew rapidly from 2015 to

2019. The number of emergency three-day food parcels

given by the Trussell Trust, in millions, is estimated to

25“A Key to America’s Crops Is Disappearing at a Staggering Rate,” www.businessinsider.com, accessed January 2016.
26http://www.epa.gov/osw/conserve/materials/ecycling/docs/summarybaselinereport2011.pdf, accessed March 2015.
27Estimates for the Trussell Trust: www.trusselltrust.org/stats, accessed August 2019.
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be N(t) = 1.109e0.12t , where t is the number of years

since 2015.27

(a) What does the 1.109 represent in this context? Give

units.

(b) What is the continuous growth rate of parcels per

year?

(c) What is the annual percent growth rate of parcels

per year?

(d) Using only your answer for part (c), decide if the

doubling time is more or less than 1 year.

53. Figure 1.40 shows the concentration of a drug in the

body, f (t) = a − bekt, over time, t:

(a) What does the constant a represent in this context?

(b) What is the sign of the constant a?

(c) What is the relation between the constants a and b?

(d) What is the sign of the constant k?

a

f (t)

t

Figure 1.40

54. The remaining charge on a capacitor t seconds after dis-

charge through a circuit is q = f (t) microcoulombs

(�C). Table 1.15 gives approximate values of f .

(a) Explain why f appears to be roughly exponential

and find an approximate formula for f.

(b) Approximate when the charge remaining on the ca-

pacitor is half its initial value.

(c) What is the approximate continuous decay rate of

the charge on the capacitor?

Table 1.15

t (sec) 0 1 2 3 4

f (t) (�C) 60 46.7 36.4 28.3 22.1

55. Atmospheric pressure decreases exponentially as eleva-

tion increases, measured from 760 torr28 at ground level

to 341 torr at an elevation of 5.6 kilometers.

(a) Find a formula for the atmospheric pressure, p, at

an elevation of ℎ km.

(b) By what percentage does atmospheric pressure de-

crease for each 1 km increase in elevation?

(c) At what elevation is atmospheric pressure 100

torr?

Problems 56–57 concern biodiesel, a fuel derived from re-

newable resources such as food crops, algae, and animal oils.

Table 1.16 shows the percent change over the previous year

in US biodiesel consumption.29

Table 1.16

Year 2012 2013 2014 2015 2016 2017 2018

% change over

previous year
1.47 58.95 −0.84 5.43 39.56 −4.80 −4.48

56. (a) According to the US Department of Energy, the US

consumed 899million gallons of biodiesel in 2012.

Approximately how much biodiesel (in millions of

gallons) did the US consume in 2013? In 2014?

(b) Graph the points showing the annual US con-

sumption of biodiesel, in millions of gallons of

biodiesel, for the years 2012 to 2018. Label the

scales on the horizontal and vertical axes.

57. (a) True or false: The annual US consumption of

biodiesel grew exponentially from 2012 to 2018.

Justify your answer without doing any calcula-

tions.

(b) According to this data, in which year did US con-

sumption have the greatest percentage

(a) Growth? (b) Decline?

58. Hydroelectric power is electric power generated by the

force of moving water. Table 1.17 shows the percent

change over the previous year in hydroelectric power

generated in the US.30

(a) According to the US Department of Energy, the

US generated about 2.686 quadrillion31 BTUs of

hydroelectric power in 2013. Approximately how

much hydroelectric power (in quadrillion BTUs)

did the US consume in 2014? In 2015?

(b) Graph the points showing the annual US consump-

tion of hydroelectric power, in quadrillion BTUs,

for the years 2013 to 2018. Label the scales on the

horizontal and vertical axes.

(c) According to this data, when did the largest yearly

increase, in quadrillion BTUs, in the US consump-

tion of hydroelectric power occur? What was this

increase?

Table 1.17

Year 2013 2014 2015 2016 2017 2018

% change over

previous year
−2.87 −3.42 −3.97 7.52 12.14 −2.84

28A torr is a unit of pressure.
29www.eia.doe.gov, accessed August 20, 2019.
30From www.eia.doe.gov, accessed September 16, 2019.
311 quadrillion BTU=1015 BTU.
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Problems 59–60 concern wind power, which has been used

for centuries to propel ships and mill grain. Modern wind

power is obtained from windmills that convert wind energy

into electricity. Figure 1.41 shows the annual percent growth

in US wind power consumption32 between 2013 and 2018.

For example, the 20% growth rate in 2013 indicates there

was 20% more wind power consumed in 2013 than in 2012.

2014 2016 2018

4

8

12

16

20

year

percent growth
over previous year

Figure 1.41

59. (a) According to the US Department of Energy, the

US consumption of wind power was 1601 trillion

BTUs in 2013. How much wind power did the US

consume in 2014? In 2015?

(b) Graph the points showing the annual US consump-

tion of wind power, in trillion BTUs, for the years

2013 to 2018. Label the scales on the horizontal

and vertical axes.

(c) Based on this data, in what year did the largest

yearly increase, in trillion BTUs, in the US con-

sumption of wind power occur? What was this in-

crease?

60. (a) According to Figure 1.41, in which years did the

US consumption of wind power energy increase by

at least 10% over the previous year? Decrease by at

least 10%?

(b) True or false: The US consumption of wind power

energy grew by more than 40% from the beginning

of 2015 to the end of 2018.

61. (a) The exponential functions in Figure 1.42 have

b, d, q positive. Which of the constants a, c, and

p must be positive?

(b) Which of the constants a, b, c, d, p, and q must

be between 0 and 1?

(c) Which two of the constants a, b, c, d, p, and q

must be equal?

(d) What information about the constants a and b does

the point (1, 1) provide?

(1, 1)

y = a ⋅ bxy = p ⋅ qx

y = c ⋅ dx

x

y

Figure 1.42

Strengthen Your Understanding

In Problems 62–65, explain what is wrong with the state-

ment.

62. A quantity that doubles daily has an exponential growth

rate of 200% per day.

63. The function y = e−0.25x is decreasing and its graph is

concave down.

64. The function y = 2x is increasing, and its graph is con-

cave up.

65. The points (0, 1), (1, e), (2, 2e), and (3, 3e) are all on the

graph of y = ex.

In Problems 66–70, give an example of:

66. A decreasing exponential function with a vertical inter-

cept of �.

67. A formula representing the statement “q decreases at a

constant percent rate, and q = 2.2 when t = 0.”

68. A function that is increasing at a constant percent rate

and that has the same vertical intercept as f (x) =

0.3x + 2.

69. A function with a horizontal asymptote at y = −5 and

range y > −5.

70. An exponential function that grows slower than y = ex

for x > 0.

Are the statements in Problems 71–78 true or false? Give an

explanation for your answer.

71. The function f (x) = e2x∕(2e5x) is exponential.

72. The function y = 2 + 3e−t has a y-intercept of y = 3.

73. The function y = 5 − 3e−4t has a horizontal asymptote

of y = 5.

74. If y = f (x) is an exponential function and if increasing

x by 1 increases y by a factor of 5, then increasing x by

2 increases y by a factor of 10.

75. If y = Abx and increasing x by 1 increases y by a factor

of 3, then increasing x by 2 increases y by a factor of 9.

76. An exponential function can be decreasing.

77. If a and b are positive constants, b ≠ 1, then y = a+abx

has a horizontal asymptote.

78. The function y = 20∕(1 + 2e−kt), with k > 0, has a

horizontal asymptote at y = 20.

32Yearly values have been joined with line segments to highlight trends in the data. Actual values in between years should

not be inferred from the segments. From www.eia.doe.gov, accessed September 18, 2019.
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1.3 NEW FUNCTIONS FROM OLD

Shifts and Stretches

The graph of a constant multiple of a given function is easy to visualize: each y-value is stretched

or shrunk by that multiple. For example, consider the function f (x) and its multiples y = 3f (x) and

y = −2f (x). Their graphs are shown in Figure 1.43. The factor 3 in the function y = 3f (x) stretches

each f (x) value by multiplying it by 3; the factor −2 in the function y = −2f (x) stretches f (x) by

multiplying by 2 and reflects it across the x-axis. You can think of the multiples of a given function

as a family of functions.

3

−3

y

x

y = 3f (x)

y = −2f (x)

y = f (x)

Figure 1.43: Multiples of the function f (x)

4

y

x

y = x2 + 4

y = x2

2
x

y

y = (x − 2)2

y = x2

Figure 1.44: Graphs of y = x2 with y = x2 + 4 and y = (x − 2)2

It is also easy to create families of functions by shifting graphs. For example, y − 4 = x2 is the

same as y = x2+4, which is the graph of y = x2 shifted up by 4. Similarly, y = (x−2)2 is the graph

of y = x2 shifted right by 2. (See Figure 1.44.)

• Multiplying a function by a constant, c, stretches the graph vertically (if c > 1) or shrinks

the graph vertically (if 0 < c < 1). A negative sign (if c < 0) reflects the graph across the

x-axis, in addition to shrinking or stretching.

• Replacing y by (y − k) moves a graph up by k (down if k is negative).

• Replacing x by (x − ℎ) moves a graph to the right by ℎ (to the left if ℎ is negative).

Composite Functions

If oil is spilled from a tanker, the area of the oil slick grows with time. Suppose that the oil slick is

always a perfect circle. Then the area, A, of the oil slick is a function of its radius, r:

A = f (r) = �r2.

The radius is also a function of time, because the radius increases as more oil spills. Thus, the area,

being a function of the radius, is also a function of time. If, for example, the radius is given by

r = g(t) = 1 + t,

then the area is given as a function of time by substitution:

A = �r2 = �(1 + t)2.

We are thinking of A as a composite function or a “function of a function,” which is written

A = f (g(t))
⏟⏟⏟

Composite function;

f is outside function,
g is inside function

= �(g(t))2 = �(1 + t)2.

To calculate A using the formula �(1 + t)2, the first step is to find 1 + t, and the second step is to

square and multiply by �. The first step corresponds to the inside function g(t) = 1 + t, and the

second step corresponds to the outside function f (r) = �r2.
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Example 1 If f (x) = x2 and g(x) = x − 2, find each of the following:

(a) f (g(3)) (b) g(f (3)) (c) f (g(x)) (d) g(f (x))

Solution (a) Since g(3) = 1, we have f (g(3)) = f (1) = 1.

(b) Since f (3) = 9, we have g(f (3)) = g(9) = 7. Notice that f (g(3)) ≠ g(f (3)).

(c) f (g(x)) = f (x − 2) = (x − 2)2.

(d) g(f (x)) = g(x2) = x2 − 2. Again, notice that f (g(x)) ≠ g(f (x)).

Notice that the horizontal shift in Figure 1.44 can be thought of as a composition f (g(x)) = (x−2)2.

Example 2 Express each of the following functions as a composition:

(a) ℎ(t) = (1 + t3)27 (b) k(y) = e−y
2

(c) l(y) = −(ey)2

Solution In each case think about how you would calculate a value of the function. The first stage of the

calculation gives you the inside function, and the second stage gives you the outside function.

(a) For (1 + t3)27, the first stage is cubing and adding 1, so an inside function is g(t) = 1 + t3. The

second stage is taking the 27th power, so an outside function is f (y) = y27. Then

f (g(t)) = f (1 + t3) = (1 + t3)27.

In fact, there are lots of different answers: g(t) = t3 and f (y) = (1 + y)27 is another possibility.

(b) To calculate e−y
2

we square y, take its negative, and then take e to that power. So if g(y) = −y2

and f (z) = ez, then we have

f (g(y)) = e−y
2
.

(c) To calculate −(ey)2, we find ey, square it, and take the negative. Using the same definitions of f

and g as in part (b), the composition is

g(f (y)) = −(ey)2.

Since parts (b) and (c) give different answers, we see the order in which functions are composed

is important.

Odd and Even Functions: Symmetry

There is a certain symmetry apparent in the graphs of f (x) = x2 and g(x) = x3 in Figure 1.45. For

each point (x, x2) on the graph of f , the point (−x, x2) is also on the graph; for each point (x, x3)

on the graph of g, the point (−x,−x3) is also on the graph. The graph of f (x) = x2 is symmetric

about the y-axis, whereas the graph of g(x) = x3 is symmetric about the origin. The graph of any

polynomial involving only even powers of x has symmetry about the y-axis, while polynomials

with only odd powers of x are symmetric about the origin. Consequently, any functions with these

symmetry properties are called even and odd, respectively.

−x x

f (x) = x2

x

Even
function

(−x, x2) (x, x2)
−x

x

g(x) = x3

x

Odd
function

(−x,−x3)

(x, x3)

Figure 1.45: Symmetry of even and odd functions
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For any function f ,

f is an even function if f (−x) = f (x) for all x.

f is an odd function if f (−x) = −f (x) for all x.

For example, g(x) = ex
2

is even and ℎ(x) = x1∕3 is odd. However, many functions do not have

any symmetry and are neither even nor odd.

Inverse Functions

On August 26, 2005, the runner Kenenisa Bekele33 of Ethiopia set a still-standing world record for

the 10,000-meter race. His times, in seconds, at 2000-meter intervals are recorded in Table 1.18,

where t = f (d) is the number of seconds Bekele took to complete the first d meters of the race. For

example, Bekele ran the first 4000 meters in 629.98 seconds, so f (4000) = 629.98. The function f

was useful to athletes planning to compete with Bekele.

Let us now change our point of view and ask for distances rather than times. If we ask how

far Bekele ran during the first 629.98 seconds of his race, the answer is clearly 4000 meters. Going

backward in this way from numbers of seconds to numbers of meters givesf−1, the inverse function34

of f . We write f−1(629.98) = 4000. Thus, f−1(t) is the number of meters that Bekele ran during

the first t seconds of his race. See Table 1.19, which contains values of f−1.

The independent variable for f is the dependent variable for f−1, and vice versa. The domains

and ranges of f and f−1 are also interchanged. The domain of f is all distances d such that 0 ≤ d ≤

10000, which is the range of f−1. The range of f is all times t such that 0 ≤ t ≤ 1577.53, which is

the domain of f−1.

Table 1.18 Bekele’s running time

d (meters) t = f (d) (seconds)

0 0.00

2000 315.63

4000 629.98

6000 944.66

8000 1264.63

10000 1577.53

Table 1.19 Distance run by Bekele

t (seconds) d = f
−1
(t) (meters)

0.00 0

315.63 2000

629.98 4000

944.66 6000

1264.63 8000

1577.53 10000

Which Functions Have Inverses?

If a function has an inverse, we say it is invertible. Let’s look at a function which is not invertible.

Consider the flight of the Mercury spacecraft Freedom 7, which carried Alan Shepard, Jr. into space

in May 1961. Shepard was the first American to journey into space. After launch, his spacecraft rose

to an altitude of 116 miles, and then came down into the sea. The function f (t) giving the altitude in

miles t minutes after lift-off does not have an inverse. To see why it does not, try to decide on a value

for f−1(100), which should be the time when the altitude of the spacecraft was 100 miles. However,

there are two such times, one when the spacecraft was ascending and one when it was descending.

(See Figure 1.46.)

The reason the altitude function does not have an inverse is that the altitude has the same value

for two different times. The reason the Bekele time function did have an inverse is that each running

time, t, corresponds to a unique distance, d.

33https://www.worldathletics.org/records/by-category/world-records, accessed January 10, 2020.
34The notation f−1 represents the inverse function, which is not the same as the reciprocal, 1∕f .
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t1 t2

100

116

t (min)

d (miles)

f (t)

Figure 1.46: Two times, t1 and t2, at which

altitude of spacecraft is 100 miles
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Figure 1.47: A function which has an

inverse

Figure 1.47 suggests when an inverse exists. The original function, f , takes us from an x-value

to a y-value, as shown in Figure 1.47. Since having an inverse means there is a function going from

a y-value to an x-value, the crucial question is whether we can get back. In other words, does each

y-value correspond to a unique x-value? If so, there’s an inverse; if not, there is not. This principle

may be stated geometrically, as follows:

A function has an inverse if (and only if) its graph intersects any horizontal line at most once.

For example, the functionf (x) = x2 does not have an inverse because many horizontal lines intersect

the parabola twice.

Definition of an Inverse Function

If the function f is invertible, its inverse is defined as follows:

f−1(y) = x means y = f (x).

Formulas for Inverse Functions

If a function is defined by a formula, it is sometimes possible to find a formula for the inverse function.

In Section 1.1, we looked at the snowy tree cricket, whose chirp rate, C , in chirps per minute, is

approximated at the temperature, T , in degrees Fahrenheit, by the formula

C = f (T ) = 4T − 160.

So far we have used this formula to predict the chirp rate from the temperature. But it is also possible

to use this formula backward to calculate the temperature from the chirp rate.

Example 3 Find the formula for the function giving temperature in terms of the number of cricket chirps per

minute; that is, find the inverse function f−1 such that

T = f−1(C).

Solution Since C is an increasing function, f is invertible. We know C = 4T − 160. We solve for T , giving

T =
C

4
+ 40,

so

f−1(C) =
C

4
+ 40.
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Graphs of Inverse Functions

The function f (x) = x3 is increasing everywhere and so has an inverse. To find the inverse, we solve

y = x3

for x, giving

x = y1∕3.

The inverse function is

f−1(y) = y1∕3

or, if we want to call the independent variable x,

f−1(x) = x1∕3.

The graphs of y = x3 and y = x1∕3 are shown in Figure 1.48. Notice that these graphs are the

reflections of one another across the line y = x. For example, (8, 2) is on the graph of y = x1∕3

because 2 = 81∕3, and (2, 8) is on the graph of y = x3 because 8 = 23. The points (8, 2) and (2, 8)

are reflections of one another across the line y = x.

In general, we have the following result.

If the x- and y-axes have the same scales, the graph of f−1 is the reflection

of the graph of f across the line y = x.
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x

y
y = x3 y = x

y = x1∕3

x3

x1∕3

Figure 1.48: Graphs of inverse functions, y = x3 and y = x1∕3, are reflections across the line y = x

Summary for Section 1.3

• Stretches of graphs: Multiplying a function by a constant, c,

∙ stretches the graph vertically (if c > 1) or

∙ shrinks the graph vertically (if 0 < c < 1).

∙ A negative sign (if c < 0) reflects the graph across the x-axis, in addition to shrinking or

stretching.

• Shifted graphs:

∙ Replacing y by (y − k) moves a graph up by k (down if k is negative).

∙ Replacing x by (x − ℎ) moves a graph to the right by ℎ (to the left if ℎ is negative).

• Composite functions: The function f (g(t)) is a “function of a function,” or a composite func-

tion, in which there is an inside function and an outside function.

• Symmetry: For any function f ,

∙ f is an even function if f (−x) = f (x) for all x.

∙ f is an odd function if f (−x) = −f (x) for all x.

• Inverse functions: A function has an inverse if (and only if) its graph intersects any horizontal

line at most once.

∙ If the function f is invertible, its inverse is defined as follows: f−1(y) = x means y = f (x).

∙ If the x- and y-axes have the same scales, the graph of f−1 is the reflection of the graph of

f across the line y = x.
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Exercises and Problems for Section 1.3

EXERCISES

For the functions f in Exercises 1–3, graph:

(a) f (x + 2) (b) f (x − 1) (c) f (x) − 4

(d) f (x + 1) + 3 (e) 3f (x) (f) −f (x) + 1

1.

−2 −1 0 1 2

1

2

3

4 f (x)

x

2.

−2 −1 0 1 2

1

2

3

4

f (x)

x

3.

−2 2
−2

2

4
f (x)

x

In Exercises 4–7, use Figure 1.49 to graph the functions.
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5
−1

2

m(t)

t

Figure 1.49

4. n(t) = m(t) + 2 5. p(t) = m(t − 1)
6. k(t) = m(t + 1.5)

7. w(t) = m(t − 0.5) − 2.5

8. Use Figure 1.50 to graph each of the following. Label

any intercepts or asymptotes that can be determined.

(a) y = f (x) + 3 (b) y = 2f (x)

(c) y = f (x + 4) (d) y = 4 − f (x)

−5 −3 −1 2 5

−1

1

2

x

y

Figure 1.50

For the functions f and g in Exercises 9–12, find

(a) f (g(1)) (b) g(f (1)) (c) f (g(x))

(d) g(f (x)) (e) f (t)g(t)

9. f (x) = x2, g(x) = x + 1

10. f (x) =
√

x + 4, g(x) = x2

11. f (x) = ex, g(x) = x2

12. f (x) = 1∕x, g(x) = 3x + 4

In Exercises 13–16, find f (g(x)) − g(f (x)).

13. f (x) = x2, g(x) =
√

x, x > 0.

14. f (x) = 3x, g(x) = 2x.

15. f (x) = 3x + 1, g(x) = 2x.

16. f (x) = x2, g(x) = ex.

17. If f (x) = x2 + 1, find and simplify:

(a) f (t + 1) (b) f (t2 + 1) (c) f (2)

(d) 2f (t) (e) (f (t))2 + 1

18. For g(x) = x2 + 2x + 3, find and simplify:

(a) g(2 + ℎ) (b) g(2)

(c) g(2 + ℎ) − g(2)

Simplify the quantities in Exercises 19–22 using m(z) = z2.

19. m(z + 1) − m(z) 20. m(z + ℎ) −m(z)

21. m(z) − m(z − ℎ) 22. m(z + ℎ) −m(z − ℎ)

Are the functions in Exercises 23–30 even, odd, or neither?

23. f (x) = x6 + x3 + 1 24. f (x) = x3 + x2 + x

25. f (x) = x4 − x2 + 3 26. f (x) = x3 + 1

27. f (x) = 2x 28. f (x) = ex
2−1

29. f (x) = x(x2 − 1) 30. f (x) = ex − x

For Exercises 31–32, decide if the function y = f (x) is in-

vertible.

31.

f

y

x

32.

x

y

f

For Exercises 33–35, use a graph of the function to decide

whether or not it is invertible.

33. f (x) = x2 + 3x + 2 34. f (x) = x3 − 5x + 10

35. f (x) = x3 + 5x + 10

36. Let p be the price of an item and q be the number of

items sold at that price, where q = f (p). What do the

following quantities mean in terms of prices and quan-

tities sold?

(a) f (25) (b) f−1(30)

37. Let C = f (A) be the cost, in dollars, of building a store

of area A square feet. In terms of cost and square feet,

what do the following quantities represent?

(a) f (10,000) (b) f−1(20,000)



32 Chapter 1 FOUNDATION FOR CALCULUS: FUNCTIONS AND LIMITS

38. Let f (x) be the temperature (◦F) when the column of

mercury in a particular thermometer is x inches long.

What is the meaning of f−1(75) in practical terms?

39. (a) Write an equation for a graph obtained by verti-

cally stretching the graph of y = x2 by a factor

of 2, followed by a vertical upward shift of 1 unit.

Sketch it.

(b) What is the equation if the order of the transforma-

tions (stretching and shifting) in part (a) is inter-

changed?

(c) Are the two graphs the same? Explain the effect of

reversing the order of transformations.

PROBLEMS

40. How does the graph of Q = S(1 − e−kt) in Example 4

on page 19 relate to the graph of the exponential decay

function, y = Se−kt?

In Problems 41–42 find possible formulas for the graphs us-

ing shifts of x2 or x3.

41.

x

y

(−1, 3)

42.

x

y

(2,−1)

In Problems 43–46, use Figure 1.51 to estimate the function

value or explain why it cannot be done.

50

100
u(x)

x

50

100

v(x)

x

Figure 1.51

43. u(v(10)) 44. u(v(40))

45. v(u(10)) 46. v(u(40))

For Problems 47–52, use the graphs in Figure 1.52.
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3
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f (x)

−3 3

−3

3

x

g(x)

Figure 1.52

47. Estimate f (g(1)). 48. Estimate g(f (2)).

49. Estimate f (f (1)). 50. Graph f (g(x)).

51. Graph g(f (x)). 52. Graph f (f (x)).

For Problems 53–56, determine functions f and g such that

ℎ(x) = f (g(x)). (Note: There is more than one correct an-

swer. Do not choose f (x) = x or g(x) = x.)

53. ℎ(x) = (x + 1)3 54. ℎ(x) = x3 + 1

55. ℎ(x) =
√

x2 + 4 56. ℎ(x) = e2x

57. A tree of height y meters has, on average, B branches,

where B = y−1. Each branch has, on average, n leaves,

where n = 2B2 −B. Find the average number of leaves

on a tree as a function of height.

58. A spherical balloon is growing with radius r = 3t + 1,

in centimeters, for time t in seconds. Find the volume

of the balloon at 3 seconds.

59. Complete the following table with values for the func-

tions f , g, and ℎ, given that:

(a) f is an even function.

(b) g is an odd function.

(c) ℎ is the composition ℎ(x) = g(f (x)).

x f (x) g(x) ℎ(x)

−3 0 0

−2 2 2

−1 2 2

0 0 0

1

2

3

60. Write a table of values for f−1, where f is as given be-

low. The domain of f is the integers from 1 to 7. State

the domain of f−1.

x 1 2 3 4 5 6 7

f (x) 3 −7 19 4 178 2 1

61. (a) Use Figure 1.53 to estimate f−1(2).

(b) Sketch a graph of f−1 on the same axes.
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−4

4
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x
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Figure 1.53

For Problems 62–65, decide if the function f is invertible.

62. f (d) is the total number of gallons of fuel an airplane

has used by the end of d minutes of a particular flight.

63. f (t) is the number of customers in Saks Fifth Avenue

at t minutes past noon on December 18, 2014.

64. f (n) is the number of students in your calculus class

whose birthday is on the nth day of the year.

65. f (w) is the cost of mailing a letter weighing w grams.
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In Problems 66–70, interpret the expression in terms of car-

bon footprint, a measure of the environmental impact in kilo-

grams of greenhouse gas (GHG) emissions. Assume that a

bottle of drinking water that travels d km from its production

source has a carbon footprint f (d) kg of GHGs.35

66. f (150) 67. f (8700) = 0.25

68. f−1(1.1) 69. f (150) + f (0)

70.
f (1500) − f (150)

1500 − 150

In Problems 71–74 the functions r = f (t) and V = g(r) give

the radius and the volume of a commercial hot air balloon

being inflated for testing. The variable t is in minutes, r is

in feet, and V is in cubic feet. The inflation begins at t = 0.

In each case, give a mathematical expression that represents

the given statement.

71. The volume of the balloon t minutes after inflation be-

gan.

72. The volume of the balloon if its radius were twice as

big.

73. The time that has elapsed when the radius of the balloon

is 30 feet.

74. The time that has elapsed when the volume of the bal-

loon is 10,000 cubic feet.

75. The cost of producing q articles is given by the function

C = f (q) = 100 + 2q.

(a) Find a formula for the inverse function.

(b) Explain in practical terms what the inverse func-

tion tells you.

76. Figure 1.54 shows f (t), the number (in millions) of mo-

tor vehicles registered36 in the world in the year t.

(a) Is f invertible? Explain.

(b) What is the meaning of f−1(400) in practical

terms? Evaluate f−1(400).

(c) Sketch the graph of f−1.
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Figure 1.54

77. Figure 1.55 is a graph of the function f (t). Here f (t)

is the depth in meters below the Atlantic Ocean floor

where t million-year-old rock can be found.37

(a) Evaluate f (15), and say what it means in practical

terms.

(b) Is f invertible? Explain.

(c) Evaluate f−1(120), and say what it means in prac-

tical terms.

(d) Sketch a graph of f−1.
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78. Figure 1.56 shows graphs of four useful functions: the

step, the sign, the ramp, and the absolute value. We have

step(x) =
{

0 if x < 0

1 if x ≥ 0
.

Match the remaining three graphs with the following

formulas in terms of the step function.

(a) x step(x)

(b) step(x) − step(−x)

(c) x step(x) − x step(−x)

−100 100
−1

1

step(x)

x

−100 100
−1

1

sign(x)

x

−100 100

100

ramp(x)

x

−100 100

100

abs(x)

x

Figure 1.56

35For the data in Problems 67–70, see www.triplepundit.com, accessed March 1, 2015.
36www.earth-policy.org, accessed June 5, 2011. In 2000, about 30% of the registered vehicles were in the US.
37Data of Dr. Murlene Clark based on core samples drilled by the research ship Glomar Challenger, taken from Initial

Reports of the Deep Sea Drilling Project.
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Strengthen Your Understanding

In Problems 79–83, explain what is wrong with the state-

ment.

79. The graph of f (x) = −(x + 1)3 is the graph of g(x) =

−x3 shifted right by 1 unit.

80. The functions f (x) = 3x and g(x) = x3 are inverses of

each other.

81. f (x) = 3x+5 and g(x) = −3x−5 are inverse functions

of each other.

82. The function f (x) = ex is its own inverse.

83. The inverse of f (x) = x is f−1(x) = 1∕x.

In Problems 84–87, give an example of:

84. An invertible function whose graph contains the point

(0, 3).

85. An even function whose graph does not contain the

point (0, 0).

86. An increasing function f (x) whose values are greater

than those of its inverse function f−1(x) for x > 0.

87. Two functions f (x) and g(x) such that moving the

graph of f to the left 2 units gives the graph of g and

moving the graph of f up 3 also gives the graph of g.

Are the statements in Problems 88–97 true or false? Give an

explanation for your answer.

88. The composition of the exponential functions f (x) =

2x and g(x) = 3x is exponential.

89. The graph of f (x) = 100(10x) is a horizontal shift of

the graph of g(x) = 10x.

90. If f is an increasing function, then f−1 is an increasing

function.

91. If a function is even, then it does not have an inverse.

92. If a function is odd, then it does not have an inverse.

93. The function f (x) = e−x
2

is decreasing for all x.

94. If g(x) is an even function then f (g(x)) is even for every

function f (x).

95. If f (x) is an even function then f (g(x)) is even for ev-

ery function g(x).

96. There is a function which is both even and odd.

97. The composition of two linear functions is linear.

In Problems 98–101, suppose f is an increasing function and

g is a decreasing function. Give an example of functions f

and g for which the statement is true, or say why such an

example is impossible.

98. f (x) + g(x) is decreasing for all x.

99. f (x) − g(x) is decreasing for all x.

100. f (x)g(x) is decreasing for all x.

101. f (g(x)) is increasing for all x.

1.4 LOGARITHMIC FUNCTIONS

In Section 1.2, we approximated the population of Burkina Faso (in millions) by the function

P = f (t) = 15.141(1.03)t,

where t is the number of years since 2009. Now suppose that instead of calculating the population

at time t, we ask when the population will reach 20 million. We want to find the value of t for which

20 = f (t) = 15.141(1.03)t.

We use logarithms to solve for a variable in an exponent.

Logarithms to Base 10 and to Base e

We define the logarithm function, log10 x, to be the inverse of the exponential function, 10x, as

follows:

The logarithm to base 10 of x, written log10 x, is the power of 10 we need to get x. In other

words,

log10 x = c means 10c = x.

We often write logx in place of log10 x.

The other frequently used base is e. The logarithm to base e is called the natural logarithm of

x, written lnx and defined to be the inverse function of ex, as follows:
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The natural logarithm of x, written lnx, is the power of e needed to get x. In other words,

lnx = c means ec = x.

Values of logx are in Table 1.20. Because no power of 10 gives 0, log 0 is undefined. The graph

of y = logx is shown in Figure 1.57. The domain of y = logx is positive real numbers; the range is

all real numbers. In contrast, the inverse function y = 10x has domain all real numbers and range all

positive real numbers. The graph of y = logx has a vertical asymptote at x = 0, whereas y = 10x

has a horizontal asymptote at y = 0.

One big difference between y = 10x and y = logx is that the exponential function grows ex-

tremely quickly whereas the log function grows extremely slowly. However, logx does go to infinity,

albeit slowly, as x increases. Since y = logx and y = 10x are inverse functions, the graphs of the

two functions are reflections of one another across the line y = x, provided the scales along the x-

and y-axes are equal.

Table 1.20 Values for logx and 10x

x log x

0 undefined

1 0

2 0.3

3 0.5

4 0.6

⋮ ⋮

10 1

x 10x

0 1

1 10

2 100

3 103

4 104

⋮ ⋮

10 1010

2 4 6 8 10

2

4

6

8

10

x

y
y = 10x

y = log x

(1, 10)

(1, 0)

(10, 1)
(0, 1) ✲

Exponential: grows quickly

Log: grows slowly

✻

✛

❄

Figure 1.57: Graphs of log x and 10x

The graph of y = ln x in Figure 1.58 has roughly the same shape as the graph of y = logx. The

x-intercept is x = 1, since ln 1 = 0. The graph of y = ln x also climbs very slowly as x increases.

Both graphs, y = logx and y = ln x, have vertical asymptotes at x = 0.

1 10

1

x

y

y = ln x

Figure 1.58: Graph of the natural logarithm

The following properties of logarithms may be deduced from the properties of exponents:

Properties of Logarithms

Note that logx and lnx are not defined when x is negative or 0.

1. log(AB) = logA + logB

2. log
(

A

B

)

= logA − logB

3. log (Ap) = p logA

4. log (10x) = x

5. 10logx = x

1. ln (AB) = lnA + lnB

2. ln
(

A

B

)

= lnA − lnB

3. ln (Ap) = p lnA

4. ln ex = x

5. eln x = x

In addition, log 1 = 0 because 100 = 1, and ln 1 = 0 because e0 = 1.
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Solving Equations Using Logarithms

Logs are frequently useful when we have to solve for unknown exponents, as in the next examples.

Example 1 Find t such that 2t = 7.

Solution First, notice that we expect t to be between 2 and 3 (because 22 = 4 and 23 = 8). To calculate t, we

take logs to base 10 of both sides. (Natural logs could also be used.)

log(2t) = log 7.

Then use the third property of logs, which says log(2t) = t log 2, and get:

t log 2 = log 7.

Using a calculator to find the logs gives

t =
log 7

log 2
≈ 2.81.

Example 2 Find when the population of Burkina Faso reaches 20 million by solving 20 = 15.141(1.03)t.

Solution Dividing both sides of the equation by 15.141, we get

20

15.141
= (1.03)t.

Now take logs of both sides:

log
(

20

15.141

)

= log(1.03t).

Using the fact that log(At) = t logA, we get

log
(

20

15.141

)

= t log(1.03).

Solving this equation using a calculator to find the logs, we get

t =
log(20∕15.141)

log(1.03)
= 9.42 years,

which is between t = 9 and t = 10. This value of t corresponds to the year 2018.

Example 3 Traffic pollution is harmful to school-age children. The concentration of carbon monoxide, CO, in the

air near a busy road is a function of distance from the road. The concentration decays exponentially

at a continuous rate of 3.3% per meter.38 At what distance from the road is the concentration of CO

half what it is on the road?

Solution If C0 is the concentration of CO on the road, then the concentration x meters from the road is

C = C0e
−0.033x.

38Rickwood, P. and Knight, D. (2009). “The Health Impacts of Local Traffic Pollution on Primary School Age Children”,

State of Australian Cities 2009 Conference Proceedings, www.be.unsw.edu.au, accessed March 24, 2016.
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We want to find the value of x making C = C0∕2, that is,

C0e
−0.033x =

C0

2
.

Dividing by C0 and then taking natural logs yields

ln
(

e−0.033x
)

= −0.033x = ln
(

1

2

)

= −0.6931,

so

x = 21 meters.

At 21 meters from the road the concentration of CO in the air is half the concentration on the road.

In Example 3 the decay rate was given. However, in many situations where we expect to find

exponential growth or decay, the rate is not given. To find it, we must know the quantity at two

different times and then solve for the growth or decay rate, as in the next example.

Example 4 The population of Mexico was 100.3 million in 2000 and 124.6 million in 2017.39 Assuming it

increases exponentially, find a formula for the population of Mexico as a function of time.

Solution If we measure the population, P , in millions and time, t, in years since 2000, we can say

P = P0e
kt = 100.3ekt,

where P0 = 100.3 is the initial value of P . We find k by using the fact that P = 124.6 when t = 17,

so

124.6 = 100.3ek⋅17.

To find k, we divide both sides by 100.3, giving

124.6

100.3
= 1.24227 = e17k.

Now take natural logs of both sides:

ln(1.24227) = ln(e17k).

Using a calculator and the fact that ln(e17k) = 17k, this becomes

0.2169 = 17k.

So

k = 0.013,

and therefore

P = 100.3e0.013t.

Since k = 0.013 = 1.3%, the population of Mexico was growing at a continuous rate of 1.3% per

year.

In Example 4 we chose to use e for the base of the exponential function representing Mexico’s

population, making clear that the continuous growth rate was 1.3%. If we had wanted to emphasize

the annual growth rate, we could have expressed the exponential function in the form P = P0a
t.

39www.indexmundi.com, accessed September 10, 2019.
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Example 5 Give a formula for the inverse of the following function (that is, solve for t in terms of P ):

P = f (t) = 15.141(1.03)t.

Solution We want a formula expressing t as a function of P . Take logs:

logP = log(15.141(1.03)t).

Since log(AB) = logA + logB, we have

logP = log 15.141 + log((1.03)t).

Now use log(At) = t logA:

logP = log 15.141 + t log 1.03.

Solve for t in two steps, using a calculator at the final stage:

t log 1.03 = logP − log 15.141

t =
logP

log 1.03
−

log 15.141

log 1.03
= 77.8985 logP − 91.9322.

Thus,

f−1(P ) = 77.8985 logP − 91.9322.

Note that

f−1(20) = 77.8985(log20) − 91.9322 = 9.42,

which agrees with the result of Example 2.

Summary for Section 1.4

• The logarithm to base 10 of x, written log10 x, is the power of 10 we need to get x. In other

words,

log10 x = c means 10c = x.

We often write logx in place of log10 x.

• The natural logarithm of x, written ln x, is the power of e needed to get x. In other words,

ln x = c means ec = x.

• Properties of logarithms:

∙ log(AB) = logA + logB

∙ log
(

A

B

)

= logA − logB

∙ log (Ap) = p logA

∙ log (10x) = x

∙ 10logx = x

∙ ln (AB) = lnA + lnB

∙ ln
(

A

B

)

= lnA − lnB

∙ ln (Ap) = p lnA

∙ ln ex = x

∙ eln x = x

Exercises and Problems for Section 1.4

EXERCISES

In Exercises 1–6, simplify the expression completely.

1. eln(1∕2) 2. 10log(AB)

3. 5eln(A
2) 4. ln(e2AB)

5. ln (1∕e) + ln(AB) 6. 2 ln
(

eA
)

+ 3 lnBe

For Exercises 7–18, solve for x using logs.

7. 3x = 11 8. 17x = 2

9. 20 = 50(1.04)x 10. 4 ⋅ 3x = 7 ⋅ 5x

11. 7 = 5e0.2x 12. 2x = ex+1
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13. 50 = 600e−0.4x 14. 2e3x = 4e5x

15. 7x+2 = e17x 16. 10x+3 = 5e7−x

17. 2x − 1 = elnx
2

18. 4e2x−3 − 5 = e

For Exercises 19–24, solve for t. Assume a and b are posi-

tive, a and b ≠ 1, and k is nonzero.

19. a = bt 20. P = P0 a
t

21. Q = Q0 a
nt 22. P0 a

t = Q0 b
t

23. a = bet 24. P = P0 e
kt

In Exercises 25–28, put the functions in the form P = P0e
kt.

25. P = 15(1.5)t 26. P = 10(1.7)t

27. P = 174(0.9)t 28. P = 4(0.55)t

Find the inverse function in Exercises 29–31.

29. p(t) = (1.04)t 30. f (t) = 50e0.1t

31. f (t) = 1 + ln t

PROBLEMS

32. The exponential function y(x) = Ce�x satisfies the con-

ditions y(0) = 2 and y(1) = 1. Find the constants C

and �. What is y(2)?

For Problems 33–34, find k such that p = p0e
kt has the given

doubling time.

33. 10 34. 0.4

35. Write f (t) = ln t+2.3 as the natural log of one quantity

(that is, as ln(___)).

36. A culture of bacteria originally numbers 500. After 2

hours there are 1500 bacteria in the culture. Assuming

exponential growth, how many are there after 6 hours?

37. One hundred kilograms of a radioactive substance de-

cay to 40 kg in 10 years. How much remains after 20

years?

38. The population of the US was 282.2million in 2000 and

327.2 million in 2018.40 Assuming exponential growth,

(a) In what year is the population expected to go over

350 million?

(b) What population is predicted for the 2020 census?

39. The population of a region is growing exponentially.

There were 40,000,000 people in 2005 (t = 0) and

48,000,000 in 2015. Find an expression for the popula-

tion at any time t, in years. What population would you

predict for the year 2020? What is the doubling time?

40. Oil consumption in China grew exponentially41 from

11.986 million barrels per day in 2015 to 13.525 million

barrels per day in 2018. Assuming exponential growth

continues at the same rate, what will oil consumption

be in 2025?

41. The concentration of the car exhaust fume nitrous ox-

ide, NO2, in the air near a busy road is a function of

distance from the road. The concentration decays expo-

nentially at a continuous rate of 2.54% per meter.42 At

what distance from the road is the concentration of NO2

half what it is on the road?

42. For children and adults with diseases such as asthma,

the number of respiratory deaths per year increases by

0.33% when pollution particles increase by a micro-

gram per cubic meter of air.43

(a) Write a formula for the number of respiratory

deaths per year as a function of quantity of pollu-

tion in the air. (Let Q0 be the number of deaths per

year with no pollution.)

(b) What quantity of air pollution results in twice as

many respiratory deaths per year as there would be

without pollution?

43. The number of alternative fuel vehicles44 running on

E85, a fuel that is up to 85% plant-derived ethanol,

increased exponentially in the US between 2012 and

2017.

(a) By what percent did the number of E85-powered

vehicles grow from 2012 to 2017?

(b) Assuming exponential growth of the form Aert,

where t is years since 2012, find r and A, and fill

in the missing table values.

(c) Use this exponential model to estimate the number

of E85-powered vehicles in the US in 2011.

Year 2012 2013 2014 2015 2016 2017

E85 vehicles 302,341 ? ? ? ? 393,553

44. A cup of coffee contains 100 mg of caffeine, which

leaves the body at a continuous rate of 17% per hour.

(a) Write a formula for the amount, A mg, of caffeine

in the body t hours after drinking a cup of coffee.

(b) Graph the function from part (a). Use the graph to

estimate the half-life of caffeine.

(c) Use logarithms to find the half-life of caffeine.

40data.worldbank.org, accessed September 10, 2019.
41Based on www.ceicdata.com, accessed September, 2019.
42P. Rickwood, and D. Knight, “The Health Impacts of Local Traffic Pollution on Primary School Age Children”, State of

Australian Cities 2009 Conference Proceedings, www.be.unsw.edu.au, accessed September 12, 2019.
43R. D. Brook, B. Franklin, W. Cascio, Y. Hong, G. Howard, M. Lipsett, R. Luepker, M. Mittleman, J. Samet, and S. C.

Smith, “Air Pollution and Cardiovascular Disease.” Circulation, 2004;109:2655–2671.
44www.eia.gov, accessed September 18, 2019.
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45. Persistent organic pollutants (POPs) are a serious envi-

ronmental hazard. Figure 1.59 shows their natural decay

over time in human fat.45

(a) How long does it take for the concentration to de-

crease from 100 units to 50 units?

(b) How long does it take for the concentration to de-

crease from 50 units to 25 units?

(c) Explain why your answers to parts (a) and (b) sug-

gest that the decay may be exponential.

(d) Find an exponential function that models concen-

tration, C , as a function of t, the number of years

since 1970.

1970 1975 1980 1985 1990 1995 2000

25

50

75

100

year

concentration units

Figure 1.59

46. At time t hours after taking the cough suppressant hy-

drocodone bitartrate, the amount, A, in mg, remaining

in the body is given by A = 10(0.82)t.

(a) What was the initial amount taken?

(b) What percent of the drug leaves the body each

hour?

(c) How much of the drug is left in the body 6 hours

after the dose is administered?

(d) How long is it until only 1 mg of the drug remains

in the body?

47. Why does snowfall in the northeastern US seem to be

increasing, in spite of global warming? The explanation

lies in the fact that warm air can hold more moisture

than cold air; a 1◦F increase in temperature enables air

to hold roughly 4% more moisture.46 Since the oceans

are warming, the air above them contains more mois-

ture and dumps more snow or rain when over land.

(a) Find a model expressing the quantity, Q, of mois-

ture that can be held in air as a function of temper-

ature, T , in ◦F. Let Q0 be the quantity at 32◦F.

(b) Compare the quantities of moisture that air can

hold at 14◦F and 50◦F by computing their propor-

tions.

(c) What temperature increase doubles the amount of

water that can be held?

48. Different isotopes (versions) of the same element can

have very different half-lives. With t in years, the decay

of plutonium-240 is described by the formula

Q = Q0e
−0.00011t,

whereas the decay of plutonium-242 is described by

Q = Q0e
−0.0000018t.

Find the half-lives of plutonium-240 and

plutonium-242.

49. The size of an exponentially growing bacteria colony

doubles in 5 hours. How long will it take for the num-

ber of bacteria to triple?

50. Air pressure, P , decreases exponentially with height, ℎ,

above sea level. If P0 is the air pressure at sea level and

ℎ is in meters, then

P = P0e
−0.00012ℎ.

(a) At the top of Denali, height 6194 meters (about

20,320 feet), what is the air pressure, as a percent

of the pressure at sea level?

(b) The maximum cruising altitude of an ordinary

commercial jet is around 12,000 meters (about

39,000 feet). At that height, what is the air pres-

sure, as a percent of the sea level value?

51. With time, t, in years since the start of 1980, textbook

prices have increased at 6.7% per year while inflation

has been 3.3% per year.47 Assume both rates are con-

tinuous growth rates.

(a) Find a formula for B(t), the price of a textbook in

year t if it cost $B0 in 1980.

(b) Find a formula for P (t), the price of an item in year

t if it cost $P0 in 1980 and its price rose according

to inflation.

(c) A textbook cost $50 in 1980. When is its price pre-

dicted to be double the price that would have re-

sulted from inflation alone?

52. In November 2010, a “tiger summit” was held in St.

Petersburg, Russia.48 In 1900, there were 100,000 wild

tigers worldwide; in 2010 the number was 3200.

(a) Assuming the tiger population has decreased ex-

ponentially, find a formula for f (t), the number of

wild tigers t years since 1900.

(b) Between 2000 and 2010, the number of wild tigers

decreased by 40%. Is this percentage larger or

smaller than the decrease in the tiger population

predicted by your answer to part (a)?

45K.C. Jones, P. de Voogt, “Persistent Organic Pollutants (POPs): State of the Science,” Environmental Pollution 100, 1999,

pp. 209–221.
46http://theconversation.com/does-global-warming-mean-more-or-less-snow-36936, accessed September 2015.
47Data from “Textbooks Headed for Ash Heap of History”, http://educationtechnews.com, Vol 5, 2010.
48“Tigers Would be Extinct in Russia if Unprotected,” Yahoo! News, Nov. 21, 2010.
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53. In 2017, the populations of China and India were ap-

proximately 1.379 and 1.282 billion people,49 respec-

tively. However, the annual population growth rate of

China was 0.41% while the population of India was

growing by 1.17% each year. If these growth rates re-

main constant, when will the population of India exceed

that of China?

54. The revenue of Apple® went from $54.5 billion in 2013

to $74.6 billion50 in 2015. Find an exponential function

to model the revenue as a function of years since 2013.

What is the continuous percent growth rate, per year, of

revenue?

55. The world population was 6.9 billion at the end of 2010

and is predicted to reach 9 billion by the end of 2050.51

(a) Assuming the population is growing exponentially,

what is the continuous growth rate per year?

(b) The United Nations celebrated the “Day of 6 Bil-

lion” on October 12, 1999, and “Day of 7 Billion”

on October 31, 2011. Using the growth rate in part

(a), when is the “Day of 8 Billion” predicted to be?

56. In the early 1920s, Germany had tremendously high in-

flation, called hyperinflation. Photographs of the time

show people going to the store with wheelbarrows full

of money. If a loaf of bread cost 1∕4 marks in 1919 and

2,400,000 marks in 1922, what was the average yearly

inflation rate between 1919 and 1922?

57. In 2010, there were about 246 million vehicles (cars

and trucks) and about 308.7 million people in the US.52

The number of vehicles grew 15.5% over the previous

decade, while the population has been growing at 9.7%

per decade. If the growth rates remain constant, when

will there be, on average, one vehicle per person?

58. Tiny marine organisms reproduce at different rates.

Phytoplankton doubles in population twice a day, but

foraminifera doubles every five days. If the two popula-

tions are initially the same size and grow exponentially,

how long does it take for

(a) The phytoplankton population to be double the

foraminifera population.

(b) The phytoplankton population to be 1000 times the

foraminifera population.

59. A picture supposedly painted by Vermeer (1632–1675)

contains 99.5% of its carbon-14 (half-life 5730 years).

From this information decide whether the picture is a

fake. Explain your reasoning.

60. Cyanide is used in solution to isolate gold in a mine.53

This may result in contaminated groundwater near the

mine, which needs to be filtered. Table 1.21 gives the

concentration, c(t) (in parts per million), of cyanide in

the groundwater, where t is in years since 2017.

(a) Find an exponential model for c(t).

(b) Use the model in part (a) to find the number of

years it takes for the cyanide concentration to fall

to 10 ppm.

(c) If the filtering process removing the cyanide is

sped up so that the new model is D(t) = c(2t), find

D(t).

(d) If the cyanide removal was started three years ear-

lier, but run at the speed of part (a), find a new

model, E(t).

Table 1.21

t (years) 0 1 2

c(t) (ppm) 25.0 21.8 19.01

61. In 2015, Nepal had two massive earthquakes, the first

measuring 7.8 on the Richter scale and the second mea-

suring 7.3. The Richter scale compares the strength,

W , of the seismic waves of an earthquake with the

strength, W0, of the waves of a standard earthquake giv-

ing a Richter rating of R = log
(

W ∕W0

)

. By what fac-

tor were the seismic waves in Nepal’s first earthquake

stronger than the seismic waves in

(a) A standard earthquake?

(b) The second Nepal earthquake?

62. Find the equation of the line l in Figure 1.60.

log 2
x

l
f (x) = 10x

Figure 1.60

63. Figure 1.61 shows f (x) = loge x and g(x) = log10 x.

(a) What is the x-intercept of the graphs?

(b) Which graph is which? (Answer both for x greater

and for x smaller than the x-intercept.)

A

B

C D

x

Figure 1.61
49www.indexmundi.com, accessed September 12, 2019.
50techcrunch.com, accessed April 2, 2015.
51“Reviewing the Bidding on the Climate Files”, in About Dot Earth, New York Times, Nov. 19, 2010.
52http://www.autoblog.com/2010/01/04/report-number-of-cars-in-the-u-s-dropped-by-four-million-in-20/ and

http://2010.census.gov/news/releases/operations/cb10-cn93.html, accessed February 2012.
53www.waterboards.ca.gov, accessed September 16, 2019.
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64. Without a calculator or computer, match the functions

ex, ln x, x2, and x1∕2 to their graphs in Figure 1.62.

x

AB

C
D

Figure 1.62

65. A quantity, Q, grows exponentially, Q = Q0e
kt. If you

double k, does the doubling time double? If not, what

change takes place?

66. Is there a difference between ln(ln(x)) and ln2(x)?

(Note: ln2(x) is another way of writing (lnx)2.)

67. If ℎ(x) = ln(x + a), where a > 0, what is the effect of

increasing a on

(a) The y-intercept? (b) The x-intercept?

68. If ℎ(x) = ln(x + a), where a > 0, what is the effect of

increasing a on the vertical asymptote?

69. If g(x) = ln(ax + 2), where a ≠ 0, what is the effect of

increasing a on

(a) The y-intercept? (b) The x-intercept?

70. If f (x) = a ln(x + 2), what is the effect of increasing a

on the vertical asymptote?

71. If g(x) = ln(ax + 2), where a ≠ 0, what is the effect of

increasing a on the vertical asymptote?

72. Show that the growth rate k of the exponential function

f (t) = P0e
kt, with P0 > 0, can be computed from two

values of f by a difference quotient of the form:

k =
lnf (t2) − ln f (t1)

t2 − t1
.

Strengthen Your Understanding

In Problems 73–78, explain what is wrong with the state-

ment.

73. The function − log |x| is odd.

74. For all x > 0, the value of ln(100x) is 100 times larger

than lnx.

75. lnx > log x.

76. ln(A + B) = (lnA)(lnB).

77. ln(A + B) = lnA + lnB.

78.
1

lnx
= ex

In Problems 79–81, give an example of:

79. A function that grows slower than y = log x for x > 1.

80. A function f (x) such that ln(f (x)) is only defined for

x < 0.

81. A function with a vertical asymptote at x = 3 and de-

fined only for x > 3.

Are the statements in Problems 82–85 true or false? Give an

explanation for your answer.

82. The graph of f (x) = lnx is concave down.

83. The graph of g(x) = log(x − 1) crosses the x-axis at

x = 1.

84. The inverse function of y = log x is y = 1∕ log x.

85. If a and b are positive constants, then y = ln(ax + b)

has no vertical asymptote.

1.5 TRIGONOMETRIC FUNCTIONS

Trigonometry originated as part of the study of triangles. The name tri-gon-o-metry means the mea-

surement of three-cornered figures, and the first definitions of the trigonometric functions were in

terms of triangles. However, the trigonometric functions can also be defined using the unit circle, a

definition that makes them periodic, or repeating. Many naturally occurring processes are also pe-

riodic. The water level in a tidal basin, the blood pressure in a heart, an alternating current, and the

position of the air molecules transmitting a musical note all fluctuate regularly. Such phenomena can

be represented by trigonometric functions.

Radians
There are two commonly used ways to represent the input of the trigonometric functions: radians

and degrees. The formulas of calculus, as you will see, are neater in radians than in degrees.

An angle of 1 radian is defined to be the angle at the center of a unit circle which cuts off an

arc of length 1, measured counterclockwise. (See Figure 1.63(a).) A unit circle has radius 1.

An angle of 2 radians cuts off an arc of length 2 on a unit circle. A negative angle, such as −1∕2

radians, cuts off an arc of length 1∕2, but measured clockwise. (See Figure 1.63(b).)
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(a)

1 radian

Arc length = 1
1

⑥
(b) Arc length = 2

−
1

2
rad

Arc length =
1

2

1
2 radians

✙

☛

Figure 1.63: Radians defined using unit circle

It is useful to think of angles as rotations, since then we can make sense of angles larger than

360◦; for example, an angle of 720◦ represents two complete rotations counterclockwise. Since one

full rotation of 360◦ cuts off an arc of length 2�, the circumference of the unit circle, it follows that

360◦ = 2� radians, so 180◦ = � radians.

In other words, 1 radian = 180◦∕�, so one radian is about 60◦. The word radians is often dropped,

so if an angle or rotation is referred to without units, it is understood to be in radians.

Radians are useful for computing the length of an arc in any circle. If the circle has radius r and

the arc cuts off an angle �, as in Figure 1.64, then we have the following relation:

Arc length = s = r�.
s

r

�

Figure 1.64: Arc length of a sector of a circle

The Sine and Cosine Functions

The two basic trigonometric functions—the sine and cosine—are defined using a unit circle. In

Figure 1.65, an angle of t radians is measured counterclockwise around the circle from the point

(1, 0). If P has coordinates (x, y), we define

cos t = x and sin t = y.

We assume that the angles are always in radians unless specified otherwise.

Since the equation of the unit circle is x2+y2 = 1, writing cos2 t for (cos t)2, we have the identity

cos2 t + sin2 t = 1.

As t increases and P moves around the circle, the values of sin t and cos t oscillate between 1 and

−1, and eventually repeat as P moves through points where it has been before. If t is negative, the

angle is measured clockwise around the circle.

Amplitude, Period, and Phase

The graphs of sine and cosine are shown in Figure 1.66. Notice that sine is an odd function, and

cosine is even. The maximum and minimum values of sine and cosine are +1 and −1, because those

are the maximum and minimum values of y and x on the unit circle. After the point P has moved

around the complete circle once, the values of cos t and sin t start to repeat; we say the functions are

periodic.
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For any periodic function of time, the

• Amplitude is half the distance between the maximum and minimum values (if it exists).

• Period is the smallest time needed for the function to execute one complete cycle.

The amplitude of cos t and sin t is 1, and the period is 2�. Why 2�? Because that’s the value of

t when the point P has gone exactly once around the circle. (Remember that 360◦ = 2� radians.)

✻

❄

y

✲✛x (1, 0)

(0, 1)
P x = cos t

y = sin t

t

Figure 1.65: The definitions of sin t and

cos t

−3� −2� −� � 2� 3�

−1

1
sin t ✻

❄

Amplitude = 1

✲✛ Period = 2�

cos t

t

Figure 1.66: Graphs of cos t and sin t

In Figure 1.66, we see that the sine and cosine graphs are exactly the same shape, only shifted

horizontally. Since the cosine graph is the sine graph shifted �∕2 to the left,

cos t = sin(t + �∕2).

Equivalently, the sine graph is the cosine graph shifted �∕2 to the right, so

sin t = cos(t − �∕2).

We say that the phase difference or phase shift between sin t and cos t is �∕2.

Functions whose graphs are the shape of a sine or cosine curve are called sinusoidal functions.

To describe arbitrary amplitudes and periods of sinusoidal functions, we use functions of the

form

f (t) = A sin(Bt) and g(t) = A cos(Bt),

where |A| is the amplitude and 2�∕|B| is the period.

The graph of a sinusoidal function is shifted horizontally by a distance |ℎ| when t is replaced

by t − ℎ or t + ℎ.

Functions of the form f (t) = A sin(Bt) + C and g(t) = A cos(Bt) + C have graphs which are

shifted vertically by C and oscillate about this value.

Example 1 Find and show on a graph the amplitude and period of the functions

(a) y = 5 sin(2t) (b) y = −5 sin
(

t

2

)

(c) y = 1 + 2 sin t

Solution (a) From Figure 1.67, you can see that the amplitude of y = 5 sin(2t) is 5 because the factor of 5

stretches the oscillations up to 5 and down to −5. The period of y = sin(2t) is �, because when

t changes from 0 to �, the quantity 2t changes from 0 to 2�, so the sine function goes through

one complete oscillation.

(b) Figure 1.68 shows that the amplitude of y = −5 sin (t∕2) is again 5, because the negative sign
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reflects the oscillations in the t-axis, but does not change how far up or down they go. The period

of y = −5 sin (t∕2) is 4� because when t changes from 0 to 4�, the quantity t∕2 changes from 0

to 2�, so the sine function goes through one complete oscillation.

(c) The 1 shifts the graph y = 2 sin t up by 1. Since y = 2 sin t has an amplitude of 2 and a period

of 2�, the graph of y = 1 + 2 sin t goes up to 3 and down to −1, and has a period of 2�. (See

Figure 1.69.) Thus, y = 1 + 2 sin t also has amplitude 2.

−� �

2�

5

t

y
y = 5 sin 2t

✻

❄

Amplitude

✲✛Period

Figure 1.67: Amplitude = 5, period = �

−� 2� 4�

5
y = −5 sin(t∕2)

t

y

✻

❄

Amplitude

✲✛ Period

Figure 1.68: Amplitude = 5,

period = 4�

� 2�
−1

1

3

t

y
y = 1 + 2 sin t

✻

❄

Amplitude

✲✛ Period

Figure 1.69: Amplitude = 2, period = 2�

Example 2 Find possible formulas for the following sinusoidal functions.

−6� 12�6�

g(t)

−3

3

t

(a)

−1 1 2 3 4

−2

f (t)
2

t

(b)

−5� � 7� 13�

−3

3

t

ℎ(t)(c)

Solution (a) This function looks like a sine function with amplitude 3, so g(t) = 3 sin(Bt). Since the function

executes one full oscillation between t = 0 and t = 12�, when t changes by 12�, the quantity

Bt changes by 2�. This means B ⋅ 12� = 2�, so B = 1∕6. Therefore, g(t) = 3 sin(t∕6) has the

graph shown.

(b) This function looks like an upside-down cosine function with amplitude 2, so f (t) = −2 cos(Bt).

The function completes one oscillation between t = 0 and t = 4. Thus, when t changes by 4, the

quantity Bt changes by 2�, so B ⋅ 4 = 2�, or B = �∕2. Therefore, f (t) = −2 cos(�t∕2) has the

graph shown.

(c) This function looks like the function g(t) in part (a), but shifted a distance of � to the right. Since

g(t) = 3 sin(t∕6), we replace t by (t − �) to obtain ℎ(t) = 3 sin[(t − �)∕6].

Example 3 On October 14, 2019, high tide in Boston was at midnight. The water level at high tide was 9.8 feet;

later, at low tide, it was 0.6 feet. Assuming the next high tide is at 12 noon and that the height of the

water is given by a sine or cosine curve, find a formula for the water level in Boston as a function of

time.

Solution Let y be the water level in feet, and let t be the time measured in hours from midnight. The oscillations

have amplitude 4.6 feet (= (9.8−0.6)∕2) and period 12, so 12B = 2� and B = �∕6. Since the water

is highest at midnight, when t = 0, the oscillations are best represented by a cosine function. (See

Figure 1.70.) We can say

Height above average = 4.6 cos
(

�

6
t

)

.
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Since the average water level was 5.2 feet (= (9.8 + 0.6)∕2), we shift the cosine up by adding 5.2:

y = 5.2 + 4.6 cos
(

�

6
t

)

.

12mid. 6 am 12 noon

12

6 pm 12 mid.

24

5.2

9.8

t

y

y = 5.2 + 4.6 cos
(

�

6
t

)

Figure 1.70: Function approximating the tide in Boston on October 14, 2019

Example 4 Of course, there’s something wrong with the assumption in Example 3 that the next high tide is at

noon. If so, the high tide would always be at noon or midnight, instead of progressing slowly through

the day, as in fact it does. The interval between successive high tides actually averages about 12 hours

24 minutes. Using this, give a more accurate formula for the height of the water as a function of time.

Solution The period is 12 hours 24 minutes = 12.4 hours, so B = 2�∕12.4, giving

y = 5.2 + 4.6 cos
(

2�

12.4
t

)

= 5.2 + 4.6 cos(0.507t).

Example 5 Use the information from Example 4 to write a formula for the water level in Boston on a day when

the high tide is at 2 pm.

Solution When the high tide is at midnight,

y = 5.2 + 4.6 cos(0.507t).

Since 2 pm is 14 hours after midnight, we replace t by (t − 14). Therefore, on a day when the high

tide is at 2 pm,

y = 5.2 + 4.6 cos(0.507(t− 14)).

The Tangent Function

If t is any number with cos t ≠ 0, we define the tangent function as follows:

tan t =
sin t

cos t
.

Figure 1.65 on page 44 shows the geometrical meaning of the tangent function: tan t is the slope

of the line through the origin (0, 0) and the point P = (cos t, sin t) on the unit circle.
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The tangent function is undefined wherever cos t = 0, namely, at t = ±�∕2, ±3�∕2, . . . , and it

has a vertical asymptote at each of these points. The function tan t is positive where sin t and cos t

have the same sign. The graph of the tangent is shown in Figure 1.71.

−� �

−10

10

t

tan t

✲✛ Period

Figure 1.71: The tangent function

−� �

−10

10

t

3 tan t

tan t

✲

✲

✲✛ Period

Figure 1.72: Multiple of tangent

The tangent function has period �, because it repeats every � units. Does it make sense to talk

about the amplitude of the tangent function? Not if we’re thinking of the amplitude as a measure of

the size of the oscillation, because the tangent becomes infinitely large near each vertical asymptote.

We can still multiply the tangent by a constant, but that constant no longer represents an amplitude.

(See Figure 1.72.)

The Inverse Trigonometric Functions

On occasion, you may need to find a number with a given sine. For example, you might want to find

x such that

sinx = 0

or such that

sin x = 0.3.

The first of these equations has solutions x = 0,±�, ±2�, . . . . The second equation also has infinitely

many solutions. Using a calculator and a graph, we get

x ≈ 0.305, 2.84, 0.305± 2�, 2.84 ± 2�,… .

For each equation, we pick out the solution between −�∕2 and �∕2 as the preferred solution.

For example, the preferred solution to sin x = 0 is x = 0, and the preferred solution to sin x = 0.3 is

x = 0.305. We define the inverse sine, written “arcsin” or “sin−1,” as the function which gives the

preferred solution.

For −1 ≤ y ≤ 1,

arcsin y = x

means sinx = y with −
�

2
≤ x ≤

�

2
.

Thus the arcsine is the inverse function to the piece of the sine function having domain [−�∕2, �∕2].

(See Table 1.22 and Figure 1.73.) On a calculator, the arcsine function54 is usually denoted by sin−1 .

54Note that sin−1 x = arcsin x is not the same as (sin x)−1 = 1∕ sin x.
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Table 1.22 Values of sin x and sin−1 x

x sin x

−
�

2
−1.000

−1.0 −0.841

−0.5 −0.479

0.0 0.000

0.5 0.479

1.0 0.841
�

2
1.000

x sin−1 x

−1.000 −
�

2

−0.841 −1.0

−0.479 −0.5

0.000 0.0

0.479 0.5

0.841 1.0

1.000
�

2

−
�

2
−1 1 �

2

−
�

2

−1

1

�

2 y = sin−1 x

y = sin x

x

Figure 1.73: The arcsine function

The inverse tangent, written “arctan” or “tan−1,” is the inverse function for the piece of the

tangent function having the domain −�∕2 < x < �∕2. On a calculator, the inverse tangent is usually

denoted by tan−1 . The graph of the arctangent is shown in Figure 1.75.

For any y,

arctan y = x

means tanx = y with −
�

2
< x <

�

2
.

The inverse cosine function, written “arccos” or “cos−1,” is discussed in Problem 75. The range

of the arccosine function is 0 ≤ x ≤ �.

−
�

2

�

2

−1

1

y = tanx

x

Figure 1.74: The tangent function

−1 1

−
�

2

�

2

y = tan−1 x

x

Figure 1.75: The arctangent function

Summary for Section 1.5

• An angle of 1 radian is defined to be the angle at the center of a unit circle which cuts off an

arc of length 1, measured counterclockwise. A unit circle has radius 1.

• If the circle has radius r and the arc cuts off an angle �, then Arc length = s = r�.

• The sine and cosine functions: Both are defined using a unit circle.

∙ If P with coordinates (x, y) corresponds to the point on the unit circle with an angle of t

radians measured counterclockwise around the circle from the point (1, 0), then

cos t = x and sin t = y.

∙ cos2 t + sin2 t = 1

• Amplitude and period: Functions whose values repeat at regular intervals are called periodic.

For any periodic function of time, the

∙ Amplitude is half the distance between the maximum and minimum values (if it exists).

∙ Period is the smallest time needed for the function to execute one complete cycle.

• Functions whose graphs are the shape of a sine or cosine curve are called sinusoidal functions.

To describe arbitrary amplitudes and periods of sinusoidal functions, we use functions of the

form f (t) = A sin(Bt) and g(t) = A cos(Bt), where |A| is the amplitude and 2�∕|B| is the

period.
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∙ The graph of a sinusoidal function is shifted horizontally by a distance |ℎ|when t is replaced

by t − ℎ or t + ℎ.

∙ Functions of the form f (t) = A sin(Bt) + C and g(t) = A cos(Bt) + C have graphs which

are shifted vertically by C and oscillate about this value.

• The tangent function: tan t =
sin t

cos t
• The inverse trigonometric functions:

∙ For −1 ≤ y ≤ 1, arcsin y = x means sin x = y with −
�

2
≤ x ≤

�

2
.

∙ For any y, arctan y = x means tanx = y with −
�

2
< x <

�

2
.

Exercises and Problems for Section 1.5

EXERCISES

For Exercises 1–9, draw the angle using a ray through the

origin, and determine whether the sine, cosine, and tangent

of that angle are positive, negative, zero, or undefined.

1.
3�

2
2. 2� 3.

�

4

4. 3� 5.
�

6
6.

4�

3

7.
−4�

3
8. 4 9. −1

Find the period and amplitude in Exercises 10–13.

10. y = 7 sin(3t) 11. z = 3 cos(u∕4) + 5

12. w = 8 − 4 sin(2x + �) 13. r = 0.1 sin(�t) + 2

For Exercises 14–23, find a possible formula for each graph.

14.

8�

2

x

y 15.

6�

5

x

y

16.

�

4

x

y 17.

20�

8

x

y

18.

3

6

−5

5

x

y 19.

−
4�

5

4�

5

−2

2

x

y

20.

−2� 2�

1

3

x

y 21.

−9

9

18

−3

3

x

y

22.

8�

2

4

x

y 23.

4 8

3

6

x

y

In Exercises 24–29, calculate the quantity without using the

the trigonometric functions on a calculator. You are given

that sin (�∕12) = 0.259 and cos (�∕5) = 0.809. You may

want to draw a picture showing the angles involved.

24. cos (−
�

5
) 25. sin

�

5
26. cos

�

12

27. sin (−�∕12) 28. tan �∕12 29. tan �∕5

In Exercises 30–34, find a solution to the equation if possi-

ble. Give the answer in exact form and in decimal form.

30. 2 = 5 sin(3x) 31. 1 = 8 cos(2x + 1) − 3

32. 8 = 4 tan(5x) 33. 1 = 8 tan(2x + 1) − 3

34. 8 = 4 sin(5x)

35. What is the period of the earth’s revolution around the

sun?

36. What is the approximate period of the moon’s revolu-

tion around the earth?

37. When a car’s engine makes less than about 200 revo-

lutions per minute, it stalls. What is the period of the

rotation of the engine when it is about to stall?

38. A compact disc spins at a rate of 200 to 500 revolutions

per minute. What are the equivalent rates measured in

radians per second?

39. Find the angle, in degrees, that a wheelchair ramp

makes with the ground if the ramp rises 1 foot over a

horizontal distance of

(a) 12 ft, the normal requirement55

(b) 8 ft, the steepest ramp legally permitted

(c) 20 ft, the recommendation if snow can be expected

on the ramp

55www.modular-wheelchair-ramps.com, accessed September 16, 2019.
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PROBLEMS

40. (a) Use a graphing calculator or computer to estimate

the period of 2 sin � + 3 cos(2�).

(b) Explain your answer, given that the period of sin �

is 2� and the period of cos(2�) is �.

41. Without a calculator or computer, match the formulas

with the graphs in Figure 1.76.

(a) y = 2 cos (t − �∕2) (b) y = 2 cos t

(c) y = 2 cos (t + �∕2)

2�

2

−2

t

y

✛ f (t)

✛ g(t)

✛ ℎ(t)

Figure 1.76

42. Figure 1.77 shows four periodic functions of the family

f (t) = A cos(B(t−ℎ)), all with the same amplitude and

period but with different horizontal shifts.

(a) Find the value of A.

(b) Find the value of B.

(c) Which graph corresponds to each of the following

values of ℎ: 0, 20, 50, 60?

100 200

−20

0

20

t

(I)

100 200

−20

0

20

t

(II)

100 200

−20

0

20

t

(III)

100 200

−20

0

20

t

(IV)

Figure 1.77

In Problems 43–49, graph the given function on the axes in

Figure 1.78.

k−k 2�−2�

k

−k

2�

−2�

x

y

Figure 1.78

43. y = k sinx 44. y = −k cos x

45. y = k(cos x) + k 46. y = k(sin x) − k

47. y = k sin(x − k) 48. y = k cos(x + k)

49. y = k sin(2�x∕k)

50. Coober Pedy is a town in Australia that mines most of

the world’s opals (precious gemstones). Because of the

scorching heat, much of the population lives in under-

ground “dugouts.” The Coober Pedy monthly high tem-

peratures are shown in Figure 1.79, with H(n) the tem-

perature in month n, where n = 1 is January. We fit the

data with a function,

H(n) = A cos(Bn) + C.

(a) What does the value of C represent and what is its

value?

(b) What does the value of A represent and what is its

value?

(c) What is the value of B?

(d) Graph the data and the function.

1 3 5 7 9 11

18.4

27.5

36.7

n (months)

temperature (◦C)

Figure 1.79

For Problems 51–54, use Figure 1.80 to estimate the given

value for f (t) = A cos(B(t − ℎ)) + C , which approximates

the plotted average monthly water temperature of the Mis-

sissippi River in Louisiana.56

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

t (months)

water temperature (◦C)

f (t)

Figure 1.80

51. C 52. A 53. B 54. ℎ

56waterdata.usgs.gov/nwis, accessed September 16, 2019.
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For Problems 55–58, use Figure 1.80 to estimate the given

value for f (t) = A sin(B(t − ℎ)) + C , which approximates

the plotted average monthly water flow of the Mississippi

River.57

1 2 3 4 5 6 7 8 9 101112
0

200

400

600

800

t (months)

water flow (1000s of ft3 per second)

Figure 1.81

55. C 56. A 57. B 58. ℎ

59. The visitors’ guide to St. Petersburg, Florida, contains

the chart shown in Figure 1.82 to advertise their good

weather. Fit a trigonometric function approximately to

the data, where H is temperature in degrees Fahrenheit,

and the independent variable is time in months. In or-

der to do this, you will need to estimate the amplitude

and period of the data, and when the maximum occurs.

(There are many possible answers to this problem, de-

pending on how you read the graph.)

Jan Feb Mar Apr May June July Aug Sept Oct Nov DecH (◦F)

50◦

60◦

70◦

80◦

90◦

100◦

Figure 1.82: “St. Petersburg...where we’re famous for our wonderful

weather and year-round sunshine.” (Reprinted with permission)

60. What is the difference between sin x2, sin2 x, and

sin(sin x)? Express each of the three as a composition.

(Note: sin2 x is another way of writing (sinx)2.)

61. On the graph of y = sin x, points P and Q are at con-

secutive lowest and highest points. Find the slope of the

line through P and Q.

62. A population of animals oscillates sinusoidally between

a low of 700 on January 1 and a high of 900 on July 1.

(a) Graph the population against time.

(b) Find a formula for the population as a function of

time, t, in months since the start of the year.

63. The desert temperature, H , oscillates daily between

40◦F at 5 am and 80◦F at 5 pm. Write a possible for-

mula for H in terms of t, measured in hours from 5 am.

64. The depth of water in a tank oscillates sinusoidally once

every 6 hours. If the smallest depth is 5.5 feet and the

largest depth is 8.5 feet, find a possible formula for the

depth in terms of time in hours.

65. The voltage, V , of an electrical outlet in a home as a

function of time, t (in seconds), is V = V0 cos (120�t).

(a) What is the period of the oscillation?

(b) What does V0 represent?

(c) Sketch the graph of V against t. Label the axes.

66. The power output, P , of a solar panel varies with the po-

sition of the sun. Let P = 10 sin � watts, where � is the

angle between the sun’s rays and the panel, 0 ≤ � ≤ �.

On a typical summer day in Ann Arbor, Michigan, the

sun rises at 6 am and sets at 8 pm and the angle is

� = �t∕14, where t is time in hours since 6 am and

0 ≤ t ≤ 14.

(a) Write a formula for a function, f (t), giving the

power output of the solar panel (in watts) t hours

after 6 am on a typical summer day in Ann Arbor.

(b) Graph the function f (t) in part (a) for 0 ≤ t ≤ 14.

(c) At what time is the power output greatest? What is

the power output at this time?

(d) On a typical winter day in Ann Arbor, the sun rises

at 8 am and sets at 5 pm. Write a formula for a

function, g(t), giving the power output of the so-

lar panel (in watts) t hours after 8 am on a typical

winter day.

67. A baseball hit at an angle of � to the horizontal with

initial velocity v0 has horizontal range, R, given by

R =
v2
0

g
sin(2�).

Here g is the acceleration due to gravity. Sketch R as a

function of � for 0 ≤ � ≤ �∕2. What angle gives the

maximum range? What is the maximum range?

68. (a) Match the functions ! = f (t), ! = g(t), ! = ℎ(t),

! = k(t), whose values are in the table, with the

functions with formulas:

(i) ! = 1.5 + sin t (ii) ! = 0.5 + sin t

(iii) ! = −0.5 + sin t (iv) ! = −1.5 + sin t

(b) Based on the table, what is the relationship be-

tween the values of g(t) and k(t)? Explain this rela-

tionship using the formulas you chose for g and k.

(c) Using the formulas you chose for g and ℎ, explain

why all the values of g are positive, whereas all the

values of ℎ are negative.

t f (t) t g(t) t ℎ(t) t k(t)

6.0 −0.78 3.0 1.64 5.0 −2.46 3.0 0.64

6.5 −0.28 3.5 1.15 5.1 −2.43 3.5 0.15

7.0 0.16 4.0 0.74 5.2 −2.38 4.0 −0.26

7.5 0.44 4.5 0.52 5.3 −2.33 4.5 −0.48

8.0 0.49 5.0 0.54 5.4 −2.27 5.0 −0.46

57www.americaswetlandresources.com, accessed September 16, 2019.
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69. For a boat to float in a tidal bay, the water must be at

least 2.5 meters deep. The depth of water around the

boat, d(t), in meters, where t is measured in hours since

midnight, is

d(t) = 5 + 4.6 sin(0.5t).

(a) What is the period of the tides in hours?

(b) If the boat leaves the bay at midday, what is the lat-

est time it can return before the water becomes too

shallow?

70. The Bay of Fundy in Canada has the largest tides in the

world. The difference between low and high water lev-

els is 15 meters (nearly 50 feet). At a particular point

the depth of the water, y meters, is given as a function

of time, t, in hours since midnight by

y = D +A cos (B(t − C)) .

(a) What is the physical meaning of D?

(b) What is the value of A?

(c) What is the value of B? Assume the time between

successive high tides is 12.4 hours.

(d) What is the physical meaning of C?

71. Match graphs A-D in Figure 1.83 with the functions

below. Assume a, b, c and d are positive constants.

f (t) = sin t + b ℎ(t) = sin t + ect + d

g(t) = sin t + at + b r(t) = sin t − ect + b

C

B
A

D
t

Figure 1.83

72. In Figure 1.84, the blue curve shows monthly mean car-

bon dioxide (CO2) concentration, in parts per million

(ppm) at Mauna Loa Observatory, Hawaii, as a func-

tion of t, in months, since December 2013. The black

curve shows the monthly mean concentration adjusted

for seasonal CO2 variation.58

(a) Approximately how much did the monthly mean

CO2 increase between December 2013 and De-

cember 2018?

(b) Find the average monthly rate of increase of the

monthly mean CO2 between December 2013 and

December 2018. Use this information to find a lin-

ear function that approximates the black curve.

(c) The seasonal CO2 variation between December

2013 and December 2018 can be approximated by

a sinusoidal function. What is the approximate pe-

riod of the function? What is its amplitude? Give a

formula for the function.

(d) The blue curve may be approximated by a func-

tion of the form ℎ(t) = f (t) + g(t), where f (t) is

sinusoidal and g(t) is linear. Using your work in

parts (b) and (c), find a possible formula for ℎ(t).

Graph ℎ(t) using the scale in Figure 1.84.

12 24 36 48 60

395

400

405

410

415

t (months
since Dec 2013)

ppm

Figure 1.84

73. Find the area of the trapezoidal cross-section of the ir-

rigation canal shown in Figure 1.85.

��

✻

❄

ℎ

✲✛ w

Figure 1.85

74. Graph y = sin x, y = 0.4, and y = −0.4.

(a) From the graph, estimate to one decimal place all

the solutions of sin x = 0.4 with −� ≤ x ≤ �.

(b) Use a calculator to find arcsin(0.4). What is the

relation between arcsin(0.4) and each of the solu-

tions you found in part (a)?

(c) Estimate all the solutions to sin x = −0.4 with

−� ≤ x ≤ � (again, to one decimal place).

(d) What is the relation between arcsin(0.4) and each

of the solutions you found in part (c)?

75. This problem introduces the arccosine function, or in-

verse cosine, denoted by cos−1 on most calculators.

(a) Using a calculator set in radians, make a table of

values, to two decimal places, of g(x) = arccos x,

for x = −1,−0.8,−0.6,… , 0,… , 0.6, 0.8, 1.

(b) Sketch the graph of g(x) = arccos x.

(c) Why is the domain of the arccosine the same as the

domain of the arcsine?

(d) What is the range of the arccosine?

(e) Why is the range of the arccosine not the same as

the range of the arcsine?

58www.esrl.noaa.gov/gmd/ccgg/trends, accessed March, 2019. Monthly means joined by segments to highlight trends.
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Strengthen Your Understanding

In Problems 76–79, explain what is wrong with the state-

ment.

76. The functions f (x) = 3 cos x and g(x) = cos 3x have

the same period.

77. For the function f (x) = sin(Bx)withB > 0, increasing

the value of B increases the period.

78. The function y = sin x cos x is periodic with period 2�.

79. For positive A, B, C , the maximum value of the func-

tion y = A sin(Bx) + C is y = A.

In Problems 80–81, give an example of:

80. A sine function with period 23.

81. A cosine function which oscillates between values of

1200 and 2000.

Are the statements in Problems 82–98 true or false? Give an

explanation for your answer.

82. The family of functions y = a sin x, with a a positive

constant, all have the same period.

83. The family of functions y = sin ax, a a positive con-

stant, all have the same period.

84. The function f (�) = cos � − sin � is increasing on

0 ≤ � ≤ �∕2.

85. The function f (t) = sin(0.05�t) has period 0.05.

86. If t is in seconds, g(t) = cos(200�t) executes 100 cycles

in one second.

87. The function f (�) = tan(� − �∕2) is not defined at

� = �∕2, 3�∕2, 5�∕2….

88. sin |x| = sin x for −2� < x < 2�

89. sin |x| = | sin x| for −2� < x < 2�

90. cos |x| = | cos x| for −2� < x < 2�

91. cos |x| = cos x for −2� < x < 2�

92. The function f (x) = sin(x2) is periodic, with period

2�.

93. The function g(�) = esin � is periodic.

94. If f (x) is a periodic function with period k, then

f (g(x)) is periodic with period k for every function

g(x).

95. If g(x) is a periodic function, then f (g(x)) is periodic

for every function f (x).

96. The function f (x) = | sinx| is even.

97. sin−1(sin t) = t for all t.

98. The function f (t) = sin−1(sin t) is periodic with period

2�.

1.6 POWERS, POLYNOMIALS, AND RATIONAL FUNCTIONS

Power Functions

A power function is a function in which the dependent variable is proportional to a power of the

independent variable:

A power function has the form

f (x) = kxp, where k and p are constant.

For example, the volume, V , of a sphere of radius r is given by

V = g(r) =
4

3
�r3.

As another example, the gravitational force, F , on a unit mass at a distance r from the center of the

earth is given by Newton’s Law of Gravitation, which says that, for some positive constant k,

F =
k

r2
or F = kr−2.

We consider the graphs of the power functionsxn, with n a positive integer. Figures 1.86 and 1.87

show that the graphs fall into two groups: odd and even powers. For n greater than 1, the odd powers
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have a “seat” at the origin and are increasing everywhere else. The even powers are first decreasing

and then increasing. For large x, the higher the power of x, the faster the function climbs.

−2 −1

1 2

−10

−5

5

10

x

x5 x3

x

Figure 1.86: Odd powers of x: “Seat”-

shaped for n > 1
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x

x4
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Figure 1.87: Even powers of x:
⋃

-shaped

Exponentials and Power Functions: Which Dominate?

In everyday language, the word exponential is often used to imply very fast growth. But do expo-

nential functions always grow faster than power functions? To determine what happens “in the long

run,” we often want to know which functions dominate as x gets arbitrarily large.

Let’s consider y = 2x and y = x3. The close-up view in Figure 1.88(a) shows that between x = 2

and x = 4, the graph of y = 2x lies below the graph of y = x3. The far-away view in Figure 1.88(b)

shows that the exponential function y = 2x eventually overtakes y = x3. Figure 1.88(c), which gives

a very far-away view, shows that, for large x, the value of x3 is insignificant compared to 2x. Indeed,

2x is growing so much faster than x3 that the graph of 2x appears almost vertical in comparison to

the more leisurely climb of x3.

We say that Figure 1.88(a) gives a local view of the functions’ behavior, whereas Figure 1.88(c)

gives a global view.

In fact, every exponential growth function eventually dominates every power function. Although

an exponential function may be below a power function for some values of x, if we look at large

enough x-values, ax (with a > 1) will eventually dominate xn, no matter what n is.

(a)

1 2 3 4

10

20

x

y

x3 2x

Close up
(Local)

(b)

5 10

1,000

2,000

x

y

2x x3

(c)

5 10 15

5,000

104

x

y

2x

x3

Far away
(Global)

Figure 1.88: Comparison of y = 2x and y = x3: Notice that y = 2x eventually dominates y = x3

Polynomials

Polynomials are the sums of power functions with nonnegative integer exponents:

y = p(x) = anx
n + an−1x

n−1 +⋯ + a1x + a0.

Here n is a nonnegative integer called the degree of the polynomial, and an, an−1,… , a1, a0 are

constants, with leading coefficient an ≠ 0. An example of a polynomial of degree n = 3 is

y = p(x) = 2x3 − x2 − 5x − 7.
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Quadratic
(n = 2)

Cubic
(n = 3)

Quartic
(n = 4)

Quintic
(n = 5)

Figure 1.89: Graphs of typical polynomials of degree n

In this case a3 = 2, a2 = −1, a1 = −5, and a0 = −7. The shape of the graph of a polynomial depends

on its degree; typical graphs are shown in Figure 1.89. These graphs correspond to a positive coef-

ficient for xn; a negative leading coefficient turns the graph upside down. Notice that the quadratic

“turns around” once, the cubic “turns around” twice, and the quartic (fourth degree) “turns around”

three times. An nth-degree polynomial “turns around” at most n − 1 times (where n is a positive

integer), but there may be fewer turns.

Example 1 Find possible formulas for the polynomials whose graphs are in Figure 1.90.

−2 2

4

x

f (x)(a)

−3 1 2

−12

x

g(x)
(b)

−3 2
x

ℎ(x)

(c)

Figure 1.90: Graphs of polynomials

Solution (a) This graph appears to be a parabola, turned upside down, and moved up by 4, so

f (x) = −x2 + 4.

The negative sign turns the parabola upside down and the +4 moves it up by 4. Notice that this

formula does give the correct x-intercepts since 0 = −x2+4 has solutions x = ±2. These values

of x are called zeros of f .

We can also solve this problem by looking at the x-intercepts first, which tell us that f (x)

has factors of (x + 2) and (x − 2). So

f (x) = k(x + 2)(x − 2).

To find k, use the fact that the graph has a y-intercept of 4, so f (0) = 4, giving

4 = k(0 + 2)(0 − 2),

or k = −1. Therefore, f (x) = −(x + 2)(x − 2), which multiplies out to −x2 + 4.

Note that f (x) = 4 − x4∕4 also has the same basic shape, but is flatter near x = 0. There

are many possible answers to these questions.

(b) This looks like a cubic with factors (x + 3), (x − 1), and (x − 2), one for each intercept:

g(x) = k(x + 3)(x− 1)(x − 2).

Since the y-intercept is −12, we have

−12 = k(0 + 3)(0 − 1)(0 − 2).

So k = −2, and we get the cubic polynomial

g(x) = −2(x + 3)(x − 1)(x − 2).
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(c) This also looks like a cubic with zeros at x = 2 and x = −3. Notice that at x = 2 the graph of

ℎ(x) touches the x-axis but does not cross it, whereas at x = −3 the graph crosses the x-axis.

We say that x = 2 is a double zero, but that x = −3 is a single zero.

To find a formula for ℎ(x), imagine the graph of ℎ(x) to be slightly lower down, so that the

graph has one x-intercept near x = −3 and two near x = 2, say at x = 1.9 and x = 2.1. Then a

formula would be

ℎ(x) ≈ k(x + 3)(x − 1.9)(x − 2.1).

Now move the graph back to its original position. The zeros at x = 1.9 and x = 2.1 move toward

x = 2, giving

ℎ(x) = k(x + 3)(x− 2)(x − 2) = k(x + 3)(x − 2)2.

The double zero leads to a repeated factor, (x − 2)2. Notice that when x > 2, the factor (x − 2)2

is positive, and when x < 2, the factor (x − 2)2 is still positive. This reflects the fact that ℎ(x)

does not change sign near x = 2. Compare this with the behavior near the single zero at x = −3,

where ℎ does change sign.

We cannot find k, as no coordinates are given for points off of the x-axis. Any positive value

of k stretches the graph vertically but does not change the zeros, so any positive k works.

Example 2 Using a calculator or computer, graph y = x4 and y = x4 − 15x2 − 15x for −4 ≤ x ≤ 4 and for

−20 ≤ x ≤ 20. Set the y range to −100 ≤ y ≤ 100 for the first domain, and to −100 ≤ y ≤ 200,000

for the second. What do you observe?

Solution From the graphs in Figure 1.91 we see that close up (−4 ≤ x ≤ 4) the graphs look different; from far

away, however, they are almost indistinguishable. The reason is that the leading terms (those with the

highest power of x) are the same, namely x4, and for large values of x, the leading term dominates

the other terms.

−4 4

−100

100

x

y

y = x4

Close-up
or

Local

−4

4

−100

100

x

y

y = x4 − 15x2 − 15x

Far away
or

Global

−20 20

2 ⋅ 105

x

y

y = x4

−20 20

2 ⋅ 105

x

y

y = x4 − 15x2 − 15x

Figure 1.91: Local and global views of y = x4 and y = x4 − 15x2 − 15x

Rational Functions

Rational functions are ratios of polynomials, p and q:

f (x) =
p(x)

q(x)
.
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Example 3 Look at a graph and explain the behavior of y =
1

x2 + 4
.

Solution The function is even, so the graph is symmetric about the y-axis. As x gets larger, the denominator

gets larger, making the value of the function closer to 0. Thus the graph gets arbitrarily close to the

x-axis as x increases without bound. See Figure 1.92.

x

y

Figure 1.92: Graph of y =
1

x2+4

In the previous example, we say that y = 0 (i.e. the x-axis) is a horizontal asymptote. Writing

“→” to mean “tends to,” we have y → 0 as x → ∞ and y → 0 as x → −∞.

If the graph of y = f (x) approaches a horizontal line y = L as x → ∞ or x → −∞, then the

line y = L is called a horizontal asymptote.59 This occurs when

f (x) → L as x → ∞ or f (x) → L as x → −∞.

If the graph of y = f (x) approaches the vertical line x = K as x → K from one side or the

other, that is, if

y → ∞ or y → −∞ when x → K,

then the line x = K is called a vertical asymptote.

The graphs of rational functions may have vertical asymptotes where the denominator is zero.

For example, the function in Example 3 has no vertical asymptotes as the denominator is never

zero. The function in Example 4 has two vertical asymptotes corresponding to the two zeros in the

denominator.

Rational functions have horizontal asymptotes if f (x) approaches a finite number as x → ∞ or

x → −∞. We call the behavior of a function as x → ±∞ its end behavior.

Example 4 Look at a graph and explain the behavior of y =
3x2 − 12

x2 − 1
, including end behavior.

Solution Factoring gives

y =
3x2 − 12

x2 − 1
=

3(x + 2)(x − 2)

(x + 1)(x − 1)

so x = ±1 are vertical asymptotes. If y = 0, then 3(x + 2)(x − 2) = 0 or x = ±2; these are the

x-intercepts. Note that zeros of the denominator give rise to the vertical asymptotes, whereas zeros

of the numerator give rise to x-intercepts. Substituting x = 0 gives y = 12; this is the y-intercept.

The function is even, so the graph is symmetric about the y-axis.

To see what happens as x → ±∞, look at the y-values in Table 1.23. Clearly y is getting closer

to 3 as x gets large positively or negatively. Alternatively, realize that as x → ±∞, only the highest

powers of x matter. For large x, the 12 and the 1 are insignificant compared to x2, so

y =
3x2 − 12

x2 − 1
≈

3x2

x2
= 3 for large x.

59We are assuming that f (x) gets arbitrarily close to L as x → ∞.
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So y → 3 as x → ±∞, and therefore the horizontal asymptote is y = 3. See Figure 1.93. Since,

for x > 1, the value of (3x2 − 12)∕(x2 − 1) is less than 3, the graph lies below its asymptote. (Why

doesn’t the graph lie below y = 3 when −1 < x < 1?)

Table 1.23 Values of

y =
3x2−12

x2−1

x y =
3x2−12

x2−1

±10 2.909091

±100 2.999100

±1000 2.999991

−4 4
−10

20

x

y

Horizontal asymptote
y = 3

Vertical asymptote
x = 1

Vertical asymptote
x = −1

Figure 1.93: Graph of the function y =
3x2−12

x2−1

Summary for Section 1.6

• Power functions: A power function f (x) = kxp, where k and p are constant.

• Polynomials: Sums of power functions with nonnegative integer exponents are called polyno-

mials. With an, an−1, . . . , a0 constants, polynomials are functions of the form

y = p(x) = anx
n + an−1x

n−1 +⋯ + a1x + a0.

∙ n is a nonnegative integer called the degree of the polynomial.

∙ an is a nonzero number called the leading coefficient.

∙ anx
n is the leading term.

• Rational functions are ratios of polynomials, p and q: f (x) =
p(x)

q(x)

• Asymptotes: If the graph of y = f (x)

∙ approaches a horizontal line y = L as x → ∞ or x → −∞, then the line y = L is called a

horizontal asymptote.

∙ approaches the vertical line x = K as x → K from one side or the other, that is, if

y → ∞ or y → −∞ when x → K,

then the line x = K is called a vertical asymptote.

Exercises and Problems for Section 1.6 Online Resource: Additional Problems for Section 1.6
EXERCISES

For Exercises 1–2, what happens to the value of the function

as x → ∞ and as x → −∞?

1. y = 0.25x3 + 3 2. y = 2 ⋅ 104x

In Exercises 3–10, determine the end behavior of each func-

tion as x → +∞ and as x → −∞.

3. f (x) = −10x4

4. f (x) = 3x5

5. f (x) = 5x4 − 25x3 − 62x2 + 5x + 300

6. f (x) = 1000 − 38x + 50x2 − 5x3

7. f (x) =
3x2 + 5x + 6

x2 − 4

8. f (x) =
10 + 5x2 − 3x3

2x3 − 4x + 12

9. f (x) = 3x−4

10. f (x) = ex

In Exercises 11–16, which function dominates as x → ∞?

11. 1000x4 or 0.2x5

12. 10e0.1x or 5000x2

13. 100x5 or 1.05x

14. 2x4 or 10x3 + 25x2 + 50x + 100

15. 20x4 + 100x2 + 5x or 25 − 40x2 + x3 + 3x5

16.
√

x or ln x

17. Each of the graphs in Figure 1.94 is of a polynomial.

The windows are large enough to show end behavior.

(a) What is the minimum possible degree of the poly-

nomial?
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(b) Is the leading coefficient of the polynomial positive

or negative?

(I) (II) (III)

(IV) (V)

Figure 1.94

Find cubic polynomials for the graphs in Exercises 18–19.

18.

−2 1 5

2

x

19.

−2 2

4

x

Find possible formulas for the graphs in Exercises 20–23.

20.

−3 1 4
x

21.

−3 4
x

22.

−2 1 3 5
x

23.

−2 2 5
x

In Exercises 24–26, choose the functions that are in the given

family, assuming a, b, and c are positive constants.

f (x) =
√

x4 + 16 g(x) = ax23

ℎ(x) = −
1

5x−2
p(x) =

a3bx

c

q(x) =
ab2

c
r(x) = −x + b −

√

cx4

24. Exponential 25. Quadratic 26. Linear

In Exercises 27–32, choose each of the families the given

function is in, assuming a is a positive integer and b and c

are positive constants.

I. Exponential II. Power

III. Polynomial IV. Rational

27. f (x) =
ax

b
+ c 28. g(x) = ax2 +

b

x2

29. ℎ(x) = b

(

x

c

)a

30. k(x) = bxa

31. j(x) = ax−1 +
b

x
32. l(x) =

(

a + b

c

)2x

In Exercises 33–40, which of the following functions have

the given property?

I. y =
x2 − 2

x2 + 2
II. y =

x2 + 2

x2 − 2
III. y = (x−1)(1−x)(x+1)2 IV. y = x3 − x

V. y = x −
1

x
VI. y = (x2 − 2)(x2 + 2)

33. A polynomial of degree 3.

34. A polynomial of degree 4.

35. A rational function that is not a polynomial.

36. Exactly two distinct zeros.

37. Exactly one vertical asymptote.

38. More than two distinct zeros.

39. Exactly two vertical asymptotes.

40. A horizontal asymptote.

In Exercises 41–44, which, if any, of x = 1, 2, 3 are zeros,

and which, if any, are asymptotes of the function?

41. (x − 1)(x − 2)(x − 3) 42.
x − 3

(x − 1)(x − 2)

43.
(x − 1)(x − 3)

x − 2
44.

1

x − 1
+

1

x − 3

For Exercises 45–48, assuming the window is large enough

to show end behavior, identify the graph as that of a rational

function, exponential function or logarithmic function.

45. 46.

47. 48.

PROBLEMS

49. How many distinct roots can a polynomial of degree 5

have? (List all possibilities.) Sketch a possible graph for

each case.

50. Find a calculator window in which the graphs of f (x) =

x3 + 1000x2 + 1000 and g(x) = x3 − 1000x2 − 1000

appear indistinguishable.
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51. A cubic polynomial with positive leading coefficient is

shown in Figure 1.95 for −10 ≤ x ≤ 10 and −10 ≤

y ≤ 10. What can be concluded about the total number

of zeros of this function? What can you say about the

location of each of the zeros? Explain.

−10 −5 5 10

−10

−5

5

10

x

y

Figure 1.95

52. (a) If f (x) = ax2+ bx+ c, what can you say about the

values of a, b, and c if:

(i) (1, 1) is on the graph of f (x)?

(ii) (1, 1) is the vertex of the graph of f (x)? (Hint:

The axis of symmetry is x = −b∕(2a).)

(iii) The y-intercept of the graph is (0, 6)?

(b) Find a quadratic function satisfying all three con-

ditions.

53. A box of fixed volume V has a square base with side

length x. Write a formula for the height, ℎ, of the box

in terms of x and V . Sketch a graph of ℎ versus x.

54. A closed cylindrical can of fixed volume V has radius r.

(a) Find the surface area, S, as a function of r.

(b) What happens to the value of S as r → ∞?

(c) Sketch a graph of S against r, if V = 10 cm3.

55. The DuBois formula relates a person’s surface area s,

in m2, to weight w, in kg, and height ℎ, in cm, by

s = 0.01w0.25ℎ0.75.

(a) What is the surface area of a person who weighs

65 kg and is 160 cm tall?

(b) What is the weight of a person whose height is

180 cm and who has a surface area of 1.5 m2?

(c) For people of fixed weight 70 kg, solve for ℎ as a

function of s. Simplify your answer.

56. According to Car and Driver, an Alfa Romeo going at

70 mph requires 148 feet to stop.60 Assuming that the

stopping distance is proportional to the square of ve-

locity, find the stopping distances required by an Alfa

Romeo going at 35 mph and at 140 mph.

57. Poiseuille’s Law gives the rate of flow, R, of a gas

through a cylindrical pipe in terms of the radius of the

pipe, r, for a fixed drop in pressure between the two ends

of the pipe.

(a) Find a formula for Poiseuille’s Law, given that the

rate of flow is proportional to the fourth power of

the radius.

(b) If R = 400 cm3/sec in a pipe of radius 3 cm for a

certain gas, find a formula for the rate of flow of

that gas through a pipe of radius r cm.

(c) What is the rate of flow of the same gas through a

pipe with a 5 cm radius?

58. A pomegranate is thrown from ground level straight up

into the air at time t = 0 with velocity 64 feet per sec-

ond. Its height at time t seconds is f (t) = −16t2 + 64t.

Find the time it hits the ground and the time it reaches

its highest point. What is the maximum height?

59. The height of an object above the ground at time t is

given by

s = v0t −
g

2
t2,

where v0 is the initial velocity and g is the acceleration

due to gravity.

(a) At what height is the object initially?

(b) How long is the object in the air before it hits the

ground?

(c) When will the object reach its maximum height?

(d) What is that maximum height?

60. The rate, R, at which a population in a confined space

increases is proportional to the product of the current

population, P , and the difference between the carrying

capacity, L, and the current population. (The carrying

capacity is the maximum population the environment

can sustain.)

(a) Write R as a function of P .

(b) Sketch R as a function of P .

In Problems 61–65, the length of a plant, L, is a function of

its mass, M . A unit increase in a plant’s mass stretches the

plant’s length more when the plant is small, and less when

the plant is large.61 Assuming M > 0, decide if the function

agrees with the description.

61. L = 2M1∕4 62. L = 0.2M3 +M4

63. L = 2M−1∕4 64. L =
4(M + 1)2 − 4

(M + 1)2

65. L =
10(M + 1)2 − 1

(M + 1)3

60http://www.caranddriver.com/alfa-romeo/4c, accessed September 18, 2019.
61Niklas, K. and Enquist, B., “Invariant Scaling Relationships for Interspecific Plant Biomass Production Rates and Body

Size”, PNAS, Feb 27, 2001.
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In Problems 66–68, find all horizontal and vertical asymp-

totes for each rational function.

66. f (x) =
5x − 2

2x + 3
67. f (x) =

x2 + 5x + 4

x2 − 4

68. f (x) =
5x3 + 7x − 1

x3 − 27

69. For each function, fill in the blanks in the statements:

f (x) → as x → −∞,

f (x) → as x → +∞.

(a) f (x) = 17 + 5x2 − 12x3 − 5x4

(b) f (x) =
3x2 − 5x + 2

2x2 − 8
(c) f (x) = ex

70. A rational function y = f (x) is graphed in Figure 1.96.

If f (x) = g(x)∕ℎ(x) with g(x) and ℎ(x) both quadratic

functions, give possible formulas for g(x) and ℎ(x).

1

y = 2
y

y = f (x)

x

Figure 1.96

71. After running 3miles at a speed of xmph, a man walked

the next 6 miles at a speed that was 2 mph slower. Ex-

press the total time spent on the trip as a function of x.

What horizontal and vertical asymptotes does the graph

of this function have?

72. Which of the functions I–III meet each of the following

descriptions? There may be more than one function for

each description, or none at all.

(a) Horizontal asymptote of y = 1.

(b) The x-axis is a horizontal asymptote.

(c) Symmetric about the y-axis.

(d) An odd function.

(e) Vertical asymptotes at x = ±1.

I. y =
x − 1

x2 + 1
II. y =

x2 − 1

x2 + 1
III. y =

x2 + 1

x2 − 1

73. Values of three functions are given in Table 1.24,

rounded to two decimal places. One function is of the

form y = abt, one is of the form y = ct2, and one is of

the form y = kt3. Which function is which?

Table 1.24

t f (t) t g(t) t ℎ(t)

2.0 4.40 1.0 3.00 0.0 2.04

2.2 5.32 1.2 5.18 1.0 3.06

2.4 6.34 1.4 8.23 2.0 4.59

2.6 7.44 1.6 12.29 3.0 6.89

2.8 8.62 1.8 17.50 4.0 10.33

3.0 9.90 2.0 24.00 5.0 15.49

74. Use a graphing calculator or a computer to graph y =

x4 and y = 3x. Determine approximate domains and

ranges that give each of the graphs in Figure 1.97.

x

y

x4 3x
(a)

x

y

x4

3x

(b)

x

y

x4

3x
(c)

Figure 1.97

75. Consider the point P at the intersection of the circle

x2+y2 = 2a2 and the parabola y = x2∕a in Figure 1.98.

If a is increased, the point P traces out a curve. For

a > 0, find the equation of this curve.

x

y

P

y = x2∕a

x2 + y2 = 2a2

Figure 1.98

76. When an object of mass m moves with a velocity v that

is small compared to the velocity of light, c, its energy

is given approximately by

E ≈
1

2
mv2.

If v is comparable in size to c, then the energy must be

computed by the exact formula

E = mc2

(

1
√

1 − v2∕c2
− 1

)

.

(a) Plot a graph of both functions for E against v for

0 ≤ v ≤ 5 ⋅ 108 and 0 ≤ E ≤ 5 ⋅ 1017. Take m = 1

kg and c = 3 ⋅ 108 m/sec. Explain how you can

predict from the exact formula the position of the

vertical asymptote.

(b) What do the graphs tell you about the approxima-

tion? For what values of v does the first formula

give a good approximation to E?

77. If y = 100x−0.2 and z = lnx, explain why y is an expo-

nential function of z.
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Strengthen Your Understanding

In Problems 78–83, explain what is wrong with the state-

ment.

78. The graph of a polynomial of degree 5 cuts the horizon-

tal axis five times.

79. A fourth-degree polynomial tends to infinity as x → ∞.

80. A rational function has a vertical asymptote.

81. x5 > x3 for x > 0

82. Every rational function has a horizontal asymptote.

83. A function cannot cross its horizontal asymptote.

In Problems 84–89, give an example of:

84. A polynomial of degree 3 whose graph cuts the hori-

zontal axis three times to the right of the origin.

85. A rational function with horizontal asymptote y = 3.

86. A rational function that is not a polynomial and that has

no vertical asymptote.

87. A function that has a vertical asymptote at x = −7�.

88. A function that has exactly 17 vertical asymptotes.

89. A function that has a vertical asymptote which is

crossed by a horizontal asymptote.

Are the statements in Problems 90–93 true or false? Give an

explanation for your answer.

90. Every polynomial of even degree has a least one real

zero.

91. Every polynomial of odd degree has a least one real

zero.

92. The composition of two quadratic functions is

quadratic.

93. For x > 0 the graph of the rational function f (x) =
5(x3 − x)

x2 + x
is a line.

94. List the following functions in order from smallest to

largest as x → ∞ (that is, asx increases without bound).

(a) f (x) = −5x (b) g(x) = 10x

(c) ℎ(x) = 0.9x (d) k(x) = x5

(e) l(x) = �x

1.7 INTRODUCTION TO LIMITS AND CONTINUITY

In this section we switch focus from families of functions to an intuitive introduction to continuity

and limits. Limits are central to a full understanding of calculus.

The Idea of Continuity

Roughly speaking, a function is continuous on an interval if its graph has no breaks, jumps, or holes

in that interval. A function is continuous at a point if nearby values of the independent variable give

nearby values of the function. Most real-world phenomena are modeled using continuous functions.

The Graphical Viewpoint: Continuity on an Interval

A continuous function has a graph which can be drawn without lifting the pencil from the paper.

Example: The functionf (x) = 3x3−x2+2x−1 is continuous on any interval. (See Figure 1.99.)

Example: The function f (x) = 1∕x is not defined at x = 0. It is continuous on any interval not

containing 0. (See Figure 1.100.)

Example: A company rents cars for $7 per hour or fraction thereof, so it costs $7 for a trip of

one hour or less, $14 for a trip between one and two hours, and so on. If p(x) is the price of trip

lasting x hours, then its graph (in Figure 1.101) is a series of steps. This function is not continuous

on any open interval containing a positive integer because the graph jumps at these points.

−2 −1 1 2

−5

5 f (x)

x

Figure 1.99: The graph of

f (x) = 3x3 − x2 + 2x − 1

f (x) =
1

x

x

Figure 1.100: Not continuous

on any interval containing 0

1 2 3

7

14

21
p(x)

x (hours)

dollars

Figure 1.101: Cost of renting a car
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The Numerical Viewpoint: Continuity at a Point

In practical work, continuity of a function at a point is important because it means that small errors

in the independent variable lead to small errors in the value of the function. Conversely, if a function

is not continuous at a point, a small error in input measurement can lead to an enormous error in

output.

Example: Suppose that f (x) = x2 and that we want to compute f (�). Knowing f is continuous

tells us that taking x = 3.14 should give a good approximation to f (�), and that we can get as

accurate an approximation to f (�) as we want by using enough decimals of �.

Example: If p(x) is the price of renting a car graphed in Figure 1.101, then p(0.99) = p(1) =$7,

whereas p(1.01) =$14, because as soon as we pass one hour, the price jumps to $14. So a small

difference in time can lead to a significant difference in the cost. Hence p is not continuous at x = 1.

As we see from its graph, this also means it is not continuous on any open interval including x = 1.

We express continuity at a point by saying that if f (x) is continuous at x = c, the values of f (x)

approach f (c) as x approaches c.

Example 1 Investigate the continuity of f (x) = x2 at x = 2.

Solution From Table 1.25, it appears that the values of f (x) = x2 approach f (2) = 4 as x approaches 2. Thus

f appears to be continuous at x = 2.

Table 1.25 Values of x2 near x = 2

x 1.9 1.99 1.999 2.001 2.01 2.1

x2 3.61 3.96 3.996 4.004 4.04 4.41

Which Functions Are Continuous?

Most of the functions we have seen are continuous everywhere they are defined. For example, expo-

nential functions, polynomials, and the sine and cosine are continuous everywhere. Rational func-

tions are continuous on any interval in which their denominators are not zero. Functions created by

adding, multiplying, or composing continuous functions are also continuous.62

The Idea of a Limit

Continuity at a point describes behavior of a function near a point, as well as at the point. To find

the value of a function at a point we can just evaluate the function there. To focus on what happens

to the values of a function near a point, we introduce the concept of limit. First some notation:

We write lim
x→c

f (x) = L if the values of f (x) approach L as x approaches c.

How should we find the limit L, or even know whether such a number exists? We look for trends

in the values of f (x) as x gets closer to c, but x ≠ c. A graph from a calculator or computer often

helps.

62For more details, see Theorem 1.8 in Section 1.8.
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Example 2 Use a graph to estimate lim
�→0

(

sin �

�

)

. (Use radians.)

�
−2� −� � 2�

1

f (�) =
sin �

�

Figure 1.102: Find the limit as � → 0

Solution Figure 1.102 shows that as � approaches 0 from either side, the value of sin �∕� appears to approach

1, suggesting that lim
�→0

(sin �∕�) = 1. Zooming in on the graph near � = 0 provides further support

for this conclusion. Notice that sin �∕� is undefined at � = 0.

Figure 1.102 suggests that lim
�→0

(sin �∕�) = 1, but to be sure we need to be more precise about

words like “approach” and “close.”

Definition of Limit

By the beginning of the 19th century, calculus had proved its worth, and there was no doubt about the

correctness of its answers. However, it was not until the work of the French mathematician Augustin

Cauchy (1789–1857) that calculus was put on a rigorous footing. Cauchy gave a formal definition of

the limit, similar to the following:

A function f is defined on an interval around c, except perhaps at the point x = c. We define

the limit of the function f (x) as x approaches c, written lim
x→c

f (x), to be a number L (if one

exists) such that f (x) is as close to L as we want whenever x is sufficiently close to c (but

x ≠ c). If L exists, we write

lim
x→c

f (x) = L.

Note that this definition ensures a limit, if it exists, cannot have more than one value.

Finding Limits

As we saw in Example 2, we can often estimate the value of a limit from its graph. We can also

estimate a limit by using a table of values. However, no matter how closely we zoom in on a graph

at a point or how close to a point we evaluate a function, there are always points closer, so in using

these techniques for estimating limits we are never completely sure we have the exact answer. In

Example 4 and Section 1.9 we show how a limit can be found exactly using algebra.

Definition of Continuity

In Example 2 we saw that the values of sin �∕� approach 1 as � approaches 0. However, sin �∕� is not

continuous at � = 0 since its graph has a hole there; see Figure 1.102. This illustrates an important

difference between limits and continuity: a limit is only concerned with what happens near a point

but continuity depends on what happens near a point and at that point. We now give a more precise

definition of continuity using limits.
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The function f is continuous at x = c if f is defined at x = c and if

lim
x→c

f (x) = f (c).

In other words, f (x) is as close as we want to f (c) provided x is close enough to c. The

function is continuous on an interval [a, b] if it is continuous at every point in the interval.63

The Intermediate Value Theorem

Continuous functions have many useful properties. For example, to locate the zeros of a continuous

function, we can look for intervals where the function changes sign.

Example 3 What do the values in Table 1.26 tell you about the zeros of f (x) = cosx − 2x2?

Table 1.26

x f (x)

0 1.00

0.2 0.90

0.4 0.60

0.6 0.11

0.8 −0.58

1.0 −1.46

0.2 0.4 0.6 0.8 1

−1

1

x

f (x) = cos x − 2x2

Figure 1.103: Zeros occur where the graph of a

continuous function crosses the horizontal axis

Solution Since f (x) is the difference of two continuous functions, it is continuous. Since f is positive at

x = 0.6 and negative at x = 0.8, and its graph has no breaks, the graph must cross the axis between

these points. We conclude that f (x) = cosx−2x2 has at least one zero in the interval 0.6 < x < 0.8.

Figure 1.103 suggests that there is only one zero in the interval 0 ≤ x ≤ 1, but we cannot be sure of

this from a graph or a table of values.

In the previous example, we concluded that f (x) = cosx − 2x2 has a zero between x = 0 and

x = 1 because it changed from positive to negative without skipping values in between—in other

words, because it is continuous. If it were not continuous, the graph could jump across the x-axis,

changing sign but not creating a zero. For example, f (x) = 1∕x has opposite signs at x = −1 and

x = 1, but no zeros for −1 ≤ x ≤ 1 because of the break at x = 0. (See Figure 1.100.)

More generally, the intuitive notion of continuity tells us that, as we follow the graph of a contin-

uous function f from some point (a, f (a)) to another point (b, f (b)), then f takes on all intermediate

values between f (a) and f (b). (See Figure 1.104.) The formal statement of this property is known

as the Intermediate Value Theorem, and is a powerful tool in theoretical proofs in calculus.

Theorem 1.1: Intermediate Value Theorem

Suppose f is continuous on a closed interval [a, b]. If k is any number between f (a) and f (b),

then there is at least one number c in [a, b] such that f (c) = k.

a c b

k

(a, f (a))

(b, f (b))

x

Figure 1.104: The Intermediate Value Theorem guarantees

that a continuous f takes on the value k

63If c is an endpoint of the interval, we can define continuity at x = c using one-sided limits at c; see Section 1.8.
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Finding Limits Exactly Using Continuity and Algebra

The concept of limit is critical to a formal justification of calculus, so an understanding of limit

outside the context of continuity is important. We have already seen how to use a graph or a table of

values to estimate a limit. We now see how to find the exact value of a limit.

Limits of Continuous Functions

In Example 1, the limit of f (x) = x2 at x = 2 is the same as f (2). This is becausef (x) is a continuous

function at x = 2, and this is precisely the definition of continuity:

Limits of Continuous Functions

If a function f (x) is continuous at x = c, the limit is the value of f (x) there:

lim
x→c

f (x) = f (c).

Thus, to find the limits for a continuous function: Substitute c.

Limits of Functions Which Are Not Continuous

If a function is not continuous at a point x = c it is still possible for the limit to exist, but it can be

hard to find. Sometimes such limits can be computed using algebra.

Example 4 Use a graph to estimate lim
x→3

x2 − 9

x − 3
and then use algebra to find the limit exactly.

Solution Evaluating (x2 − 9)∕(x − 3) at x = 3 gives us 0∕0, so the function is undefined at x = 3, shown

as a hole in Figure 1.105. However, we see that as x approaches 3 from either side, the value of

(x2 − 9)∕(x − 3) appears to approach 6, suggesting the limit is 6.

To find this limit exactly, we first use algebra to rewrite the function. We have

x2 − 9

x − 3
=

(x + 3)(x − 3)

x − 3
.

Since x ≠ 3 in the limit, we can cancel the common factor x − 3 to see

lim
x→3

x2 − 9

x − 3
= lim

x→3

(x + 3)(x − 3)

x − 3
= lim

x→3
(x + 3).

Since x + 3 is continuous, we have

lim
x→3

x2 − 9

x − 3
= lim

x→3
(x + 3) = 3 + 3 = 6.

3

6

x

f (x) =
x2−9

x−3

Figure 1.105: Find the limit as x → 3

If a function is continuous at a point, then its limit must exist at that point. Example 4 illustrates

that the existence of a limit is not enough to guarantee continuity.
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More precisely, as we can see from Figure 1.105, the function f (x) = (x2 − 9)∕(x − 3) is not

continuous at x = 3 as there is a hole in its graph at that point. However, Example 4 shows that the

limit lim
x→3

f (x) does exist and is equal to 6. This is because for a function f (x) to be continuous at

a point x = c, the limit has to exist at x = c, the function has to be defined at x = c and the limit

has to equal the function. In this case, even though the limit does exist, the function does not have a

value at x = 3, so it cannot be continuous there.

When Limits Do Not Exist

Whenever there is no number L such that lim
x→c

f (x) = L, we say lim
x→c

f (x) does not exist. The fol-

lowing three examples show some of the ways in which a limit may fail to exist.

Example 5 Use a graph to explain why lim
x→2

|x − 2|

x − 2
does not exist.

Solution As we see in Figure 1.106, the value of f (x) =
|x − 2|

x − 2
approaches−1 as x approaches2 from the left

and the value of f (x) approaches 1 as x approaches 2 from the right. This means if lim
x→2

|x − 2|

x − 2
= L

then L would have to be both 1 and −1. Since L cannot have two different values, the limit does not

exist.

2

−1

1

x

Figure 1.106: Graph of

f (x) = |x − 2|∕(x − 2)

x

Figure 1.107: Graph of g(x) = 1∕x2

−
1

2�

1

2�

x

Figure 1.108: Graph of ℎ(x) = sin (1∕x)

Example 6 Use a graph to explain why lim
x→0

1

x2
does not exist.

Solution As x approaches zero, g(x) = 1∕x2 becomes arbitrarily large, so it cannot approach any finite number

L. See Figure 1.107. Therefore we say 1∕x2 has no limit as x → 0.

Since 1∕x2 gets arbitrarily large on both sides of x = 0, we can write lim
x→0

1∕x2 = ∞. The limit

still does not exist since it does not approach a real number L, but we can use limit notation to

describe its behavior. This behavior may also be described as “diverging to infinity.”

Example 7 Explain why lim
x→0

sin
(

1

x

)

does not exist.

Solution The sine function has values between −1 and 1. The graph of ℎ(x) = sin (1∕x) in Figure 1.108

oscillates more and more rapidly as x → 0. There are x-values approaching 0 where sin(1∕x) = −1.

There are also x-values approaching 0 where sin(1∕x) = 1. So if the limit existed, it would have to

be both −1 and 1. Thus, the limit does not exist.

Notice that in all three examples, the function is not continuous at the given point. This is because

continuity requires the existence of a limit, so failure of a limit to exist at a point automatically means

a function is not continuous there.
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Summary for Section 1.7

• A function f is defined on an interval around c, except perhaps at the point x = c. We define the

limit of the function f (x) as x approaches c, written lim
x→c

f (x), to be a number L (if one exists)

such that f (x) is as close to L as we want whenever x is sufficiently close to c (but x ≠ c). If L

exists, we write

lim
x→c

f (x) = L.

• The function f is continuous at x = c if f is defined at x = c and if

lim
x→c

f (x) = f (c).

In other words, f (x) is as close as we want to f (c) provided x is close enough to c. The function

is continuous on an interval [a, b] if it is continuous at every point in the interval.

• Intermediate value theorem: Suppose f is continuous on a closed interval [a, b]. If k is any

number between f (a) and f (b), then there is at least one number c in [a, b] such that f (c) = k.

• Limits of continuous functions: If a function f (x) is continuous at x = c, the limit is the value

of f (x) there:

lim
x→c

f (x) = f (c).

Thus, to find the limits for a continuous function: Substitute c.

Exercises and Problems for Section 1.7

EXERCISES

1. (a) Using Figure 1.109, find all values of x for which

f is not continuous.

(b) List the largest open intervals on which f is con-

tinuous.

−3 −2 −1 1 2 3
x

f (x)

Figure 1.109

1 2 3 4 5 6
x

f (x)

Figure 1.110

2. (a) Using Figure 1.110, find all values of x for which

f is not continuous.

(b) List the largest open intervals on which f is con-

tinuous.

3. Use the graph of f (x) in Figure 1.111 to give approx-

imate values for the following limits (if they exist). If

the limit does not exist, say so.

(a) lim
x→−3

f (x) (b) lim
x→−2

f (x) (c) lim
x→−1

f (x)

(d) lim
x→0

f (x) (e) lim
x→1

f (x) (f) lim
x→3

f (x)

−4 −3 −2 −1 1 2 3 4
−1

1

2

3 f (x)

x

Figure 1.111

In Exercises 4–5, the graph of y = f (x) is given.

(a) Give the x-values where f (x) is not continuous.

(b) Does the limit of f (x) exist at each x-value where f (x)

is not continuous? If so, give the value of the limit.

4.

−3 −2 −1 1 2 3 4

−4
−3
−2
−1

1
2
3
4
5

x

f (x)

Figure 1.112

5.

1 2 3 4 5 6−1−2−3

−6
−5
−4
−3
−2
−1

1
2
3

x

f (x)

Figure 1.113

6. Assume f (x) is continuous on an interval around x = 0,

except possibly at x = 0. What does the table of values

suggest as the value of lim
x→0

f (x)? Does the limit defi-

nitely have this value?

x −0.1 −0.01 0.01 0.1

f (x) 1.987 1.999 1.999 1.987
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7. Assume g(t) is continuous on an interval around t = 3,

except possibly at t = 3. What does the table of val-

ues suggest as the value of lim
t→3

g(t)? Does the limit def-

initely have this value?

t 2.9 2.99 3.01 3.1

g(t) 0.948 0.995 1.005 1.049

In Exercises 8–9,

(a) Make a table of values of f (x) for x = −0.1, −0.01,

0.01, and 0.1.

(b) Use the table to estimate lim
x→0

f (x).

8. f (x) =
sin(5x)

x
9. f (x) =

e3x − 1

x

10. Use a table of values to estimate lim
x→1

(5 + lnx).

In Exercises 11–16, is the function continuous on the inter-

val?

11.
1

x − 2
on [−1, 1] 12.

1

x − 2
on [0, 3]

13.
1

√

2x − 5
on [3, 4] 14. 2x + x−1 on [−1, 1]

15.
1

cos x
on [0, �] 16.

esin �

cos �
on [−

�

4
,
�

4
]

17. Are the following functions continuous? Explain.

(a) f (x) =
{

x x ≤ 1

x2 1 < x

(b) g(x) =
{

x x ≤ 3

x2 3 < x

18. Let f be the function given by

f (x) =

{

4 − x 0 ≤ x ≤ 3

x2 − 8x + 17 3 < x < 5

12 − 2x 5 ≤ x ≤ 6

.

(a) Find all values of x for which f is not continuous.

(b) List the largest open intervals on which f is con-

tinuous.

In Exercises 19–22, show there is a number c, with 0 ≤ c ≤

1, such that f (c) = 0.

19. f (x) = x3 + x2 − 1 20. f (x) = ex − 3x

21. f (x) = x − cos x 22. f (x) = 2x − 1∕x

In Exercises 23–28, use algebra to find the limit exactly.

23. lim
x→2

x2 − 4

x − 2
24. lim

x→−3

x2 − 9

x + 3

25. lim
x→1

x2 + 4x − 5

x − 1
26. lim

x→1

x2 − 4x + 3

x2 + 3x − 4

27. lim
x→1

x2 + 4

x + 8
28. lim

ℎ→0

(5 + ℎ)2 − 52

ℎ

For Exercises 29–30, find the value of the constant k such

that

29. lim
x→5

(kx + 10) = 20 30. lim
x→2

(x + 6)(x − k)

x2 + x
= 4

In Exercises 31–34 find k so that the function is continuous

on any interval.

31. f (x) =
{

kx x ≤ 3

5 3 < x

32. f (x) =
{

kx 0 ≤ x < 2

3x2 2 ≤ x

33. ℎ(x) =
{

kx 0 ≤ x < 1

x + 3 1 ≤ x ≤ 5.

34. g(t) =
{

t + k t ≤ 5

kt 5 < t

PROBLEMS

35. Which of the following are continuous functions of

time?

(a) The quantity of gas in the tank of a car on a journey

between New York and Boston.

(b) The number of students enrolled in a class during

a semester.

(c) The age of the oldest person alive.

36. An electrical circuit switches instantaneously from a 6-

volt battery to a 12-volt battery 7 seconds after being

turned on. Graph the battery voltage against time. Give

formulas for the function represented by your graph.

What can you say about the continuity of this func-

tion?

37. A stone dropped from the top of a cliff falls freely for

5 seconds before it hits the ground. Figure 1.114 shows

the speed v = f (t) (in meters/sec) of the stone as a

function of time t in seconds for 0 ≤ t ≤ 7.

(a) Is f continuous? Explain your answer in the con-

text of the problem.

(b) Sketch a graph of the height, ℎ = g(t), of the stone

for 0 ≤ t ≤ 7. Is g continuous? Explain.

5 7
t

v

f (t)

Figure 1.114
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38. Beginning at time t = 0, a car undergoing a crash test

accelerates for two seconds, maintains a constant speed

for one second, and then crashes into a test barrier at

t = 3 seconds.

(a) Sketch a possible graph of v = f (t), the speed of

the car (in meters/sec) after t seconds, on the inter-

val 0 ≤ t ≤ 4.

(b) Is the function f in part (a) continuous? Explain

your answer in the context of this problem.

39. Discuss the continuity of the function g graphed in Fig-

ure 1.115 and defined as follows:

g(�) =

⎧

⎪

⎨

⎪

⎩

sin �

�
for � ≠ 0

1∕2 for � = 0.

−2� −� � 2�

1

�

g(�)
1

2

Figure 1.115

40. Is the following function continuous on [−1, 1]?

f (x) =

⎧

⎪

⎨

⎪

⎩

x

|x|
x ≠ 0

0 x = 0

Estimate the limits in Problems 41–42 graphically.

41. lim
x→0

|x|

x
42. lim

x→0
x ln |x|

In Problems 43–48, use a graph to estimate the limit. Use

radians unless degrees are indicated by �◦.

43. lim
�→0

sin (2�)

�
44. lim

�→0

sin �◦

�◦

45. lim
ℎ→0

eℎ − 1

ℎ
46. lim

ℎ→0

e5ℎ − 1

ℎ

47. lim
ℎ→0

2ℎ − 1

ℎ
48. lim

ℎ→0

cos(3ℎ) − 1

ℎ

In Problems 49–56, find the limit.

49. lim
x→4

2x2 − 32

x + 4
50. lim

x→−4

2x2 − 32

x + 4

51. lim
x→0

3x − 1

sin x
52. lim

x→4

√

x − 2

x − 4

53. lim
x→−1

x4 − x2

x + 1
54. lim

x→2

16 − 8x

2x − 4

55. lim
x→0

1 − 3x

ex − 1
56. lim

x→2

4x − 16

2x − 4

In Problems 57–62, find a value of k, if any, making ℎ(x)

continuous on [0, 5].

57. ℎ(x) =
{

k cos x 0 ≤ x ≤ �

12 − x � < x

58. ℎ(x) =
{

kx 0 ≤ x ≤ 1

2kx + 3 1 < x ≤ 5.

59. ℎ(x) =
{

k sin x 0 ≤ x ≤ �

x + 4 � < x ≤ 5.

60. ℎ(x) =

{

ekx 0 ≤ x < 2

x + 1 2 ≤ x ≤ 5.

61. ℎ(x) =

{

0.5x 0 ≤ x < 1

sin(kx) 1 ≤ x ≤ 5.

62. ℎ(x) =
{

ln(kx + 1) 0 ≤ x ≤ 2

x + 4 2 < x ≤ 5.

63. (a) Use Figure 1.116 to decide at what points f (x) is

not continuous.

(b) At what points is the function |f (x)| not continu-

ous?

2 4 6

−3

3

x

f (x)

Figure 1.116

64. For t in months, a population, in thousands, is approxi-

mated by a continuous function

P (t) =
{

ekt 0 ≤ t ≤ 12

100 t > 12.

(a) What is the initial value of the population?

(b) What must be the value of k?

(c) Describe in words how the population is changing.

65. A 0.6ml dose of a drug is injected into a patient steadily

for half a second. At the end of this time, the quantity,Q,

of the drug in the body starts to decay exponentially at

a continuous rate of 0.2% per second. Using formulas,

expressQ as a continuous function of time, t in seconds.

In Problems 66–69, at what values of x is the function not

continuous? If possible, give a value for the function at each

point of discontinuity so the function is continuous every-

where.

66. f (x) =
x2 − 1

x + 1
67. g(x) =

x2 − 4x − 5

x − 5

68. f (z) =
z2 − 11z + 18

2z − 18
69. q(t) =

−t3 + 9t

t2 − 9
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In Problems 70–73, is the function continuous for all x? If

not, say where it is not continuous and explain in what way

the definition of continuity is not satisfied.

70. f (x) = 1∕x

71. f (x) =
{

|x|∕x x ≠ 0

0 x = 0

72. f (x) =
{

x∕x x ≠ 0

1 x = 0

73. f (x) =
{

2x∕x x ≠ 0

3 x = 0

74. Graph three different functions, continuous on

0 ≤ x ≤ 1, and with the values in the table. The first

function is to have exactly one zero in [0, 1], the second

is to have at least two zeros in the interval [0.6, 0.8],

and the third is to have at least two zeros in the interval

[0, 0.6].

x 0 0.2 0.4 0.6 0.8 1.0

f (x) 1.00 0.90 0.60 0.11 −0.58 −1.46

75. Let p(x) be a cubic polynomial with p(5) < 0, p(10) >

0, and p(12) < 0. What can you say about the number

and location of zeros of p(x)?

76. (a) What does a graph of y = ex and y = 4−x2 tell you

about the solutions to the equation ex = 4 − x2?

(b) Evaluate f (x) = ex+x2−4 at x = −4,−3,−2,−1,

0, 1, 2, 3, 4. In which intervals do the solutions to

ex = 4 − x2 lie?

77. (a) Does f (x) satisfy the conditions for the Intermedi-

ate Value Theorem on 0 ≤ x ≤ 2 if

f (x) =

{

ex 0 ≤ x ≤ 1

4 + (x − 1)2 1 < x ≤ 2?

(b) What are f (0) and f (2)? Can you find a value of

k between f (0) and f (2) such that the equation

f (x) = k has no solution? If so, what is it?

78. Let g(x) be continuous with g(0) = 3, g(1) = 8,

g(2) = 4. Use the Intermediate Value Theorem to ex-

plain why g(x) is not invertible.

79. By graphing y = (1 + x)1∕x, estimate lim
x→0

(1 + x)1∕x.

You should recognize the answer you get. What does

the limit appear to be?

80. Investigate lim
ℎ→0

(1 + ℎ)1∕ℎ numerically.

81. Let f (x) = sin(1∕x).

(a) Find a sequence of x-values that approach 0 such

that sin(1∕x) = 0.

[Hint: Use the fact that sin(�) = sin(2�) =

sin(3�) = … = sin(n�) = 0.]

(b) Find a sequence of x-values that approach 0 such

that sin(1∕x) = 1.

[Hint: Use the fact that sin(n�∕2) = 1 if n =

1, 5, 9,… .]

(c) Find a sequence of x-values that approach 0 such

that sin(1∕x) = −1.

(d) Explain why your answers to any two of parts (a)–

(c) show that lim
x→0

sin(1∕x) does not exist.

Strengthen Your Understanding

In Problems 82–84, explain what is wrong with the state-

ment.

82. For any function f (x), if f (a) = 2 and f (b) = 4, the

Intermediate Value Theorem says that f takes on the

value 3 for some x between a and b.

83. If f (x) is continuous on 0 ≤ x ≤ 2 and if f (0) = 0 and

f (2) = 10, the Intermediate Value Theorem says that

f (1) = 5.

84. If lim
x→c

f (x) exists, then f (x) is continuous at x = c.

In Problems 85–88, give an example of:

85. A function which is defined for all x and continuous

everywhere except at x = 15.

86. A function to which the Intermediate Value Theorem

does not apply on the interval −1 ≤ x ≤ 1.

87. A function that is continuous on [0, 1] but not continu-

ous on [1, 3].

88. A function that is increasing but not continuous on

[0, 10].

Are the statements in Problems 89–91 true or false? Give an

explanation for your answer.

89. If a function is not continuous at a point, then it is not

defined at that point.

90. If f is continuous on the interval [0, 10] and f (0) = 0

and f (10) = 100, then f (c) cannot be negative for c in

[0, 10].

91. If f (x) is not continuous on the interval [a, b], then f (x)

must omit at least one value between f (a) and f (b).

1.8 EXTENDING THE IDEA OF A LIMIT

In Section 1.7, we introduced the idea of limit to describe the behavior of a function close to a point.

We now extend limit notation to describe a function’s behavior to values on only one side of a point

and around an asymptote, and we extend limits to combinations of functions.
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One-Sided Limits

When we write

lim
x→2

f (x),

we mean the number that f (x) approaches as x approaches 2 from both sides. We examine values of

f (x) as x approaches 2 through values greater than 2 (such as 2.1, 2.01, 2.003) and values less than

2 (such as 1.9, 1.99, 1.994). If we want x to approach 2 only through values greater than 2, we write

lim
x→2+

f (x)

for the number that f (x) approaches (assuming such a number exists). Similarly,

lim
x→2−

f (x)

denotes the number (if it exists) obtained by letting x approach 2 through values less than 2. We call

lim
x→2+

f (x) a right-hand limit and lim
x→2−

f (x) a left-hand limit.

For the function graphed in Figure 1.117, we have

lim
x→2−

f (x) = L1 lim
x→2+

f (x) = L2.

2

L1

L2

f (x)

x

Figure 1.117: Left- and right-hand limits at x = 2

Observe that in this example L1 ≠ L2; that is, f (x) approaches different values as x approaches 2

from the left and from the right. Because of this, lim
x→2

f (x) does not exist, since there is no single

value that f (x) approaches for all values of x close to 2.

Example 1 Find each of the following limits or explain why it does not exist:

(a) lim
x→2

|x − 2|

x − 2
(b) lim

x→2+

|x − 2|

x − 2
(c) lim

x→2−

|x − 2|

x − 2

Solution (a) In Example 5 of Section 1.7 we saw that lim
x→2

|x − 2|

x − 2
does not exist as it would have to take two

different values. (See Figure 1.118.) However, it is still possible that the one-sided limits exist.

2

−1

1

x

y

Figure 1.118: Limit of y = |x − 2|∕(x − 2) does not

exist at x = 2

(b) To determine lim
x→2+

|x − 2|

x − 2
, we look at the values of |x− 2|∕(x− 2) for values of x greater than

2. When x > 2,
|x − 2|

x − 2
=

x − 2

x − 2
= 1.
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So as x approaches 2 from the right, the value of |x − 2|∕(x − 2) is always 1. Therefore,

lim
x→2+

|x − 2|

x − 2
= 1.

(c) If x < 2, then
|x − 2|

x − 2
=

−(x − 2)

x − 2
= −1.

So as x approaches 2 from the left, the value of |x − 2|∕(x − 2) is always −1. Therefore,

lim
x→2−

|x − 2|

x − 2
= −1.

Limits and Asymptotes

We can use limit notation to describe the asymptotes of a function.

Horizontal Asymptotes and Limits

Sometimes we want to know what happens to f (x) as x gets large, that is, the end behavior of f .

If f (x) stays as close to a number L as we please when x is sufficiently large, then we write

lim
x→∞

f (x) = L.

Similarly, if f (x) stays as close to L as we please when x is negative and has a sufficiently

large absolute value, then we write

lim
x→−∞

f (x) = L.

The symbol ∞ does not represent a number. Writing x → ∞ means that we consider arbitrarily

large values of x. If the limit of f (x) as x → ∞ or x → −∞ is L, we say that the graph of f has

y = L as a horizontal asymptote.

Example 2 Investigate lim
x→∞

1

x
and lim

x→−∞

1

x
.

Solution A graph of f (x) = 1∕x in a large window shows 1∕x approaching zero as x grows large in magnitude

in either the positive or the negative direction (see Figure 1.119). This is as we would expect, since

dividing 1 by larger and larger numbers yields answers which are closer and closer to zero. This

suggests that

lim
x→∞

1

x
= lim

x→−∞

1

x
= 0,

and that f (x) = 1∕x has y = 0 as a horizontal asymptote as x → ±∞.

There are many quantities in fields such as finance and medicine which change over time, t, and

knowing the end behavior, or the limit of the quantity as t → ∞, can be extremely important.
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x

f (x) =
1

x

Figure 1.119: Limits describe the

asymptotes of f (x) = 1∕x

x

f (x) =
1

x2

Figure 1.120: Vertical asymptote of

f (x) = 1∕x2 at x = 0

Example 3 Total sales P (t) of an app (in thousands) t months after the app was introduced is given in Table 1.27

and can be modeled by P (t) =
532

1 + 869e−0.8t
.

(a) Use Table 1.27 to estimate and interpret lim
t→∞

P (t).

(b) Find lim
t→∞

P (t) using the model.

Table 1.27 Total sales of an app for increasing t

t (months) 8 12 16 20 24 28

P (t) (sales in 1000s) 217.685 502.429 530.727 531.948 531.998 531.999

Solution (a) From Table 1.27, it appears that as t gets larger, P (t) approaches 532. This makes sense as over

time there is a limit on the number of people who are interested in the app. So the maximum

potential sales for this app are estimated to be 532 thousand.

(b) As t gets large, e−0.8t gets close to zero, so P (t) gets close to 532∕(1 + 0). This suggests

lim
t→∞

532

1 + 869e−0.8t
= 532.

Vertical Asymptotes and Limits

In Section 1.7, we wrote lim
x→0

1∕x2 = ∞ because 1∕x2 becomes arbitrarily large on both sides of

zero; see Figure 1.120. Similarly, if a function becomes arbitrarily large in magnitude but negative

on both sides of a point, we can say its limit at that point is −∞. In each case, the limit does not exist

since values of 1∕x2 do not approach a real number; we are just able to use limit notation to describe

its behavior.

We cannot say the same for 1∕x, even though it also has a vertical asymptote at x = 0, since

the behavior of 1∕x as x approaches 0 from the right does not match the behavior as x approaches

0 from the left. We can, however, use one-sided limit notation to describe this type of behavior; that

is, we write lim
x→0+

1

x
= ∞ and lim

x→0−

1

x
= −∞.

Example 4 Describe the behavior of f (t) =
3 + 4t

t + 2
near t = −2.

Solution From Figure 1.121, we can see that as t approaches −2 from the right, f (t) approaches −∞. There-

fore, we can say that

lim
t→−2+

f (t) = −∞.

On the other hand, as t approaches −2 from the left, f (t) gets arbitrarily large. Therefore,

lim
t→−2−

f (t) = ∞.

Since neither of the one-sided limits exists, the limit lim
t→−2

f (t) does not exist either.
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−10 10

−10

10

f (t) =
3+4t

t+2

t = −2

t

Figure 1.121: Behavior of f (t) near t = −2

Limits and Continuity for Combinations of Functions
The following properties of limits allow us to extend our knowledge of the limiting behavior of two

functions to their sums and products, and sometimes to their quotients. These properties hold for both

one- and two-sided limits, as well as limits at infinity (when x → ∞ or x → −∞). They underlie

many limit calculations, though we may not acknowledge them explicitly.

Theorem 1.2: Properties of Limits

Assuming all the limits on the right-hand side exist:

1. If b is a constant, then lim
x→c

(bf (x)) = b

(

lim
x→c

f (x)
)

.

2. lim
x→c

(f (x) + g(x)) = lim
x→c

f (x) + lim
x→c

g(x).

3. lim
x→c

(f (x)g(x)) =
(

lim
x→c

f (x)
)(

lim
x→c

g(x)
)

.

4. lim
x→c

f (x)

g(x)
=

lim
x→c

f (x)

lim
x→c

g(x)
, provided lim

x→c
g(x) ≠ 0.

5. For any constant k, lim
x→c

k = k.

6. lim
x→c

x = c.

Since a function is continuous at a point only when it has a limit there, the properties of limits

lead to similar properties of continuity for combinations of functions.

Theorem 1.3: Continuity of Sums, Products, and Quotients of Functions

If f and g are continuous on an interval and b is a constant, then, on that same interval,

1. bf (x) is continuous.

2. f (x) + g(x) is continuous.

3. f (x)g(x) is continuous.

4. f (x)∕g(x) is continuous, provided g(x) ≠ 0 on the interval.

We prove the third of these properties.

Proof Let c be any point in the interval. We must show that lim
x→c

(f (x)g(x)) = f (c)g(c). Since f (x) and

g(x) are continuous, we know that lim
x→c

f (x) = f (c) and lim
x→c

g(x) = g(c). So, by the third property

of limits in Theorem 1.2,

lim
x→c

(f (x)g(x)) =
(

lim
x→c

f (x)
)(

lim
x→c

g(x)
)

= f (c)g(c).

Since c was chosen arbitrarily, we have shown that f (x)g(x) is continuous at every point in the

interval.
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Continuity also extends to compositions and inverses of functions.

Theorem 1.4: Continuity of Composite and Inverse Functions

If f and g are continuous, then

1. if the composite function f (g(x)) is defined on an interval, then f (g(x)) is continuous on

that interval.

2. if f has an inverse function f−1, then f−1 is continuous.

Example 5 Use Theorems 1.3 and 1.4 to explain why the function is continuous.

(a) f (x) = x2 cos x (b) g(x) = ln x (c) ℎ(x) = sin(ex)

Solution (a) Since y = x2 and y = cos x are continuous everywhere, by Theorem 1.3 their product f (x) =

x2 cos x is continuous everywhere.

(b) Since y = ex is continuous everywhere it is defined and ln x is the inverse function of ex, by

Theorem 1.4, g(x) = lnx is continuous everywhere it is defined.

(c) Since y = sin x and y = ex are continuous everywhere, by Theorem 1.4 their composition,

ℎ(x) = sin(ex), is continuous.

Summary for Section 1.8

• One-sided limits: When we write lim
x→c

f (x), we mean the number that f (x) approaches as x

approaches c from both sides. If we want x to approach c only through values greater than

c, we write lim
x→c+

f (x) for the number that f (x) approaches (assuming such a number exists).

Similarly, lim
x→c−

f (x) denotes the number (if it exists) obtained by letting x approach c through

values less than c. We call lim
x→c+

f (x) a right-hand limit and lim
x→c−

f (x) a left-hand limit.

• Horizontal asymptotes and limits: If f (x) stays as close to a number L as we please when x is

sufficiently large, then we write lim
x→∞

f (x) = L. Similarly, if f (x) stays as close toL as we please

when x is negative and has a sufficiently large absolute value, then we write lim
x→−∞

f (x) = L. In

either scenario, we say that the graph of f has y = L as a horizontal asymptote.

• Properties of limits: Assuming all the limits on the right-hand side exist:

∙ If b is a constant, then lim
x→c

(bf (x)) = b

(

lim
x→c

f (x)
)

.

∙ lim
x→c

(f (x) + g(x)) = lim
x→c

f (x) + lim
x→c

g(x).

∙ lim
x→c

(f (x)g(x)) =
(

lim
x→c

f (x)
)(

lim
x→c

g(x)
)

.

∙ lim
x→c

f (x)

g(x)
=

lim
x→c

f (x)

lim
x→c

g(x)
, provided lim

x→c
g(x) ≠ 0.

∙ For any constant k, lim
x→c

k = k.

∙ lim
x→c

x = c.

• Continuity of sums, products, and quotients of functions: If f and g are continuous on an

interval and b is a constant, then, on that same interval,

∙ bf (x) is continuous.

∙ f (x) + g(x) is continuous.

∙ f (x)g(x) is continuous.

∙ f (x)∕g(x) is continuous, provided g(x) ≠ 0 on the interval.

• Continuity of composite and inverse functions:

∙ if the composite function f (g(x)) is defined on an interval, then f (g(x)) is continuous on

that interval.

∙ if f has an inverse function f−1, then f−1 is continuous.
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Exercises and Problems for Section 1.8 Online Resource: Additional Problems for Section 1.8
EXERCISES

1. Use Figure 1.122 to find the limits or explain why they

don’t exist.

(a) lim
x→−1+

f (x) (b) lim
x→0−

f (x) (c) lim
x→0

f (x)

(d) lim
x→1−

f (x) (e) lim
x→1

f (x) (f) lim
x→2−

f (x)

−2 3
−1

4

f (x)

x

Figure 1.122

1 2 3

−1

1

2

f (x)

x

Figure 1.123

2. Use Figure 1.123 to estimate the following limits, if

they exist.

(a) lim
x→1−

f (x) (b) lim
x→1+

f (x) (c) lim
x→1

f (x)

(d) lim
x→2−

f (x) (e) lim
x→2+

f (x) (f) lim
x→2

f (x)

3. Use Figure 1.124 to find each of the following or ex-

plain why they don’t exist.

(a) f (−2) (b) f (0) (c) lim
x→−4+

f (x)

(d) lim
x→−2−

f (x) (e) lim
x→−2+

f (x) (f) lim
x→0

f (x)

(g) lim
x→2

f (x) (h) lim
x→4−

f (x)

−4 −2 2 4

−4

−2

2

4

x

y

f (x)

Figure 1.124

4. Use Figure 1.125 to find each of the following or ex-

plain why they don’t exist.

(a) f (0) (b) f (4) (c) lim
x→−2−

f (x)

(d) lim
x→−2+

f (x) (e) lim
x→−2

f (x) (f) lim
x→0

f (x)

(g) lim
x→2−

f (x) (h) lim
x→2+

f (x) (i) lim
x→2

f (x)

(j) lim
x→4

f (x)

−4 6

−4

4

x

y

f (x)

Figure 1.125

5. Use Figure 1.126 to estimate the following limits.

(a) lim
x→∞

f (x) (b) lim
x→−∞

f (x)

−2 8

−5

5

f (x)

x

Figure 1.126

In Exercises 6–8, calculate the limit using the limit proper-

ties and lim
x→2

f (x) = 7, lim
x→2

g(x) = −4, lim
x→2

ℎ(x) =
1

2
.

6. lim
x→2

(f (x) − 2ℎ(x)) 7. lim
x→2

(g(x))2

8. lim
x→2

f (x)

g(x) ⋅ ℎ(x)

In Exercises 9–14, find the limit, given limx→c f (x) = 27

and limx→c g(x) = 3.

9. lim
x→c

(f (x) + g(x)) 10. lim
x→c

(f (x) − g(x))

11. lim
x→c

(f (x)g(x)) 12. lim
x→c

(

f (x)

g(x)

)

13. lim
x→c

10(f (x) − g(x)) 14. lim
x→c

(g(x))2

15. Using Figures 1.127 and 1.128, estimate

(a) lim
x→1−

(f (x) + g(x)) (b) lim
x→1+

(f (x) + 2g(x))

(c) lim
x→1−

f (x)g(x) (d) lim
x→1+

f (x)

g(x)

(1, 3)

(1, 4)

1 2

f (x)

0

2

4

x

Figure 1.127

(1, 1)

(1, 5)

1 2

g(x)

0

2

4

6

x

Figure 1.128
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In Exercises 16–21, draw a possible graph of f (x). Assume

f (x) is defined and continuous for all real x.

16. lim
x→∞

f (x) = −∞ and lim
x→−∞

f (x) = −∞

17. lim
x→∞

f (x) = −∞ and lim
x→−∞

f (x) = ∞

18. lim
x→∞

f (x) = 1 and lim
x→−∞

f (x) = ∞

19. lim
x→∞

f (x) = −∞ and lim
x→−∞

f (x) = 3

20. lim
x→∞

f (x) = ∞ and lim
x→−1

f (x) = 2

21. lim
x→3

f (x) = 5 and lim
x→−∞

f (x) = ∞

In Exercises 22–34, find the limits using your understanding

of the end behavior of each function.

22. lim
x→∞

x2 23. lim
x→−∞

x2 24. lim
x→−∞

x3

25. lim
x→∞

x3 26. lim
x→∞

ex 27. lim
x→∞

e−x

28. lim
x→∞

5−x 29. lim
x→∞

√

x 30. lim
x→∞

ln x

31. lim
x→∞

x−2 32. lim
x→−∞

x−2 33. lim
x→−∞

x−3

34. lim
x→∞

(

1

2

)x

In Exercises 35–40, give lim
x→−∞

f (x) and lim
x→+∞

f (x).

35. f (x) = −x4

36. f (x) = 5 + 21x − 2x3

37. f (x) = x5 + 25x4 − 37x3 − 200x2 + 48x + 10

38. f (x) =
3x3 + 6x2 + 45

5x3 + 25x + 12
39. f (x) = 8x−3

40. f (x) = 25e0.08x

41. Does f (x) =
|x|

x
have right or left limits at 0? Is f (x)

continuous?

In Exercises 42–44, use algebra to evaluate

lim
x→a+

f (x), lim
x→a−

f (x), and lim
x→a

f (x) if they exist. Sketch a

graph to confirm your answers.

42. a = 4, f (x) =
|x − 4|

x − 4

43. a = 2, f (x) =
|x − 2|

x

44. a = 3, f (x) =

⎧

⎪

⎨

⎪

⎩

x2 − 2, 0 < x < 3

2, x = 3

2x + 1, 3 < x

In Exercises 45–48, can f (1) be defined to make f (x) con-

tinuous at x = 1? If so, what is the value of f (1)?

45. f (x) =

{

x2 + 1 if x < 1

2x if x > 1

46. f (x) =

{

4 − x2 if x < 1

x + 1 if x > 1

47. f (x) =

{

x − 1 if x < 1

2 − 2x if x > 1

48. f (x) =

⎧

⎪

⎨

⎪

⎩

1

1 − x
if x < 1

x if x > 1

PROBLEMS

49. By graphing y = (1 + 1∕x)x, estimate lim
x→∞

(1 + 1∕x)x.

You should recognize the answer you get.

50. Investigate lim
x→∞

(1 + 1∕x)x numerically.

51. (a) Sketch f (x) = e1∕(x
2+0.0001) around x = 0.

(b) Is f (x) continuous at x = 0? Use properties of

continuous functions to confirm your answer.

52. What does a calculator suggest about lim
x→0+

xe1∕x? Does

the limit appear to exist? Explain.

In Problems 53–62, evaluate lim
x→∞

for the function.

53. f (x) =
x + 3

2 − x
54. f (x) =

� + 3x

�x − 3

55. f (x) =
x − 5

5 + 2x2
56. f (x) =

x2 + 2x − 1

3 + 3x2

57. f (x) =
x2 + 4

x + 3
58. f (x) =

2x3 − 16x2

4x2 + 3x3

59. f (x) =
x4 + 3x

x4 + 2x5
60. f (x) =

3ex + 2

2ex + 3

61. f (x) =
2−x + 5

3−x + 7
62. f (x) =

2e−x + 3

3e−x + 2

63. (a) Sketch the graph of a continuous function f with

all of the following properties:

(i) f (0) = 2

(ii) f (x) is decreasing for 0 ≤ x ≤ 3

(iii) f (x) is increasing for 3 < x ≤ 5

(iv) f (x) is decreasing for x > 5

(v) f (x) → 9 as x → ∞

(b) Is it possible that the graph of f is concave down

for all x > 6? Explain.

64. Sketch the graph of a function f with all of the follow-

ing properties:

(i) f (0) = 2 (ii) f (4) = 2

(iii) lim
x→−∞

f (x) = 2 (iv) lim
x→0

f (x) = 0

(v) lim
x→2

f (x) = ∞ (vi) lim
x→4−

f (x) = 2

(vii) lim
x→4+

f (x) = −2
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65. Sketch the graph of a function f with all of the follow-

ing properties:

(i) f (−2) = 1 (ii) f (2) = −2

(iii) f (3) = 3 (iv) lim
x→−∞

f (x) = −2

(v) lim
x→−1−

f (x) = −∞ (vi) lim
x→−1+

f (x) = ∞

(vii) lim
x→2

f (x) = 1 (viii) lim
x→3−

f (x) = 3

(ix) lim
x→3+

f (x) = 2 (x) lim
x→∞

f (x) = 1

66. The graph of f (x) has a horizontal asymptote at y =

−4, a vertical asymptote at x = 3, and no other asymp-

totes.

(a) Find a value of a such that lim
x→a

f (x) does not exist.

(b) If lim
x→∞

f (x) exists, what is its value?

67. A patient takes a 100 mg dose of a drug once daily for

four days starting at time t = 0 (t in days). Figure 1.129

shows a graph of Q = f (t), the amount of the drug in

the patient’s body, in mg, after t days.

(a) Estimate and interpret each of the following:

(i) lim
t→1−

f (t) (ii) lim
t→1+

f (t)

(b) For what values of t is f not continuous? Explain

the meaning of the points of discontinuity.

4

200

t (days)

Q (mg)

Figure 1.129

68. If p(x) is the function on page 62 giving the price of

renting a car, explain why lim
x→1

p(x) does not exist.

69. Evaluate lim
x→3

x2 + 5x

x + 9
using the limit properties. State

the property you use at each step.

70. Let lim
x→∞

f (x) = ∞ and lim
x→∞

g(x) = ∞. Give possible

formulas for f (x) and g(x) if

(a) lim
x→∞

f (x)

g(x)
= ∞ (b) lim

x→∞

f (x)

g(x)
= 3

(c) lim
x→∞

f (x)

g(x)
= 0

71. (a) Rewrite
1

x − 5
−

10

x2 − 25
in the form f (x)∕g(x)

for polynomials f (x) and g(x).

(b) Evaluate the limit lim
x→5

(

1

x − 5
−

10

x2 − 25

)

.

(c) Explain why you cannot use Property 4 of the limit

properties to evaluate lim
x→5

(

1

x − 5
−

10

x2 − 25

)

.

In Problems 72–73, modify the definition of limit on page 64

to give a definition of each of the following.

72. A right-hand limit

73. A left-hand limit

74. Use Theorem 1.2 on page 75 to explain why if f and

g are continuous on an interval, then so are f + g, fg,

and f∕g (assuming g(x) ≠ 0 on the interval).

Strengthen Your Understanding

In Problems 75–76, explain what is wrong with the state-

ment.

75. If P (x) and Q(x) are polynomials, P (x)∕Q(x) must be

continuous for all x.

76. lim
x→1

x − 1

|x − 1|
= 1

In Problems 77–78, give an example of:

77. A rational function that has a limit at x = 1 but is not

continuous at x = 1.

78. A function f (x) where

lim
x→∞

f (x) = 2 and lim
x→−∞

f (x) = −2.

In Problems 79–83, let limx→3 f (x) = 7. Is the statement true

or false? If it is true, explain how you know. If it is false, give

a counterexample.

79. lim
x→3

(xf (x)) = 21.

80. If g(3) = 4, then lim
x→3

(f (x)g(x)) = 28.

81. If lim
x→3

g(x) = 5, then lim
x→3

(f (x) + g(x)) = 12.

82. If lim
x→3

(f (x) + g(x)) = 12, then lim
x→3

g(x) = 5.

83. If lim
x→3

g(x) does not exist, then lim
x→3

(f (x)g(x)) does not

exist.

In Problems 84–89, is the statement true or false? Assume

that limx→7+ f (x) = 2 and limx→7− f (x) = −2. Explain.

84. lim
x→7

f (x) exists. 85. lim
x→7

(f (x))2 exists.

86.

lim
x→7+

f (x)

lim
x→7−

f (x)
exists.

87. The function (f (x))2 is continuous at x = 7.

88. If f (7) = 2, the function f (x) is continuous at x = 7.

89. If f (7) = 2, the function (f (x))2 is continuous at

x = 7.
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In Problems 90–91, let f (x) = (1∕x) sin(1∕x). Is the state-

ment true or false? Explain.

90. The function f (x) has horizontal asymptote y = 0.

91. The function f (x) has a vertical asymptote at x = 0.

1.9 FURTHER LIMIT CALCULATIONS USING ALGEBRA

Sections 1.7 and 1.8 are sufficient for the later chapters of this book. In this optional section we

explore further algebraic calculations of limits.

Limits of Quotients

In calculus we often encounter limits of the form lim
x→c

f (x)∕g(x)where f (x) and g(x) are continuous.

There are three types of behavior for this type of limit:

• When g(c) ≠ 0, the limit can be evaluated by substitution.

• When g(c) = 0 but f (c) ≠ 0, the limit does not exist.

• When g(c) = 0 and f (c) = 0, the limit may or may not exist and can take any value.

We explore each these behaviors in more detail. When g(c) ≠ 0, by Theorem 1.3, the limit can be

found by substituting:

lim
x→c

f (x)

g(x)
=

f (c)

g(c)
.

When g(c) = 0, the situation is more complicated as substitution cannot be used.

Example 1 Evaluate the following limit or explain why it does not exist:

lim
x→3

x + 1

x − 3
.

Solution If we try to evaluate at x = 3, we get 4∕0, which is undefined. Figure 1.130 shows that as x approaches

3 from the right, the function becomes arbitrarily large, and as x approaches 3 from the left, the

function becomes arbitrarily large but negative, so this limit does not exist.

3
x

y

Figure 1.130: Limit of y = (x + 1)∕(x − 3) does not exist at x = 3

The limit in Example 1 does not exist because as x approaches 3, the denominator gets close to

zero and the numerator gets close to 4. This means we are dividing a number close to 4 by a smaller

and smaller number, resulting in a larger and larger number. This observation holds in general: for

continuous functions, if g(c) = 0 but f (c) ≠ 0, then lim
x→c

f (x)∕g(x) does not exist.

Limits of the Form 0∕0 and Holes in Graphs

In Example 4 of Section 1.7 we saw that when both f (c) = 0 and g(c) = 0, so we have a limit of the

form 0∕0, the limit can exist. We now explore limits of this form in more detail.
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Example 2 Evaluate the following limit or explain why it does not exist:

lim
x→3

x2 − x − 6

x − 3
.

Solution If we try to evaluate at x = 3, we get 0∕0, which is undefined. Figure 1.131 suggests that as x

approaches 3, the function gets close to 5, which suggests the limit is 5.

3

5

x

y

Figure 1.131: Graph of y = (x2 − x − 6)∕(x − 3) is

the same as the graph of y = x+ 2 except at x = 3

This limit is similar to the one we saw in Example 4 of Section 1.7, so we check it algebraically

using a similar method. Since the numerator factors as x2 − x− 6 = (x− 3)(x+ 2) and x ≠ 3 in the

limit, we can cancel the common factor x − 3. We have:

lim
x→3

x2 − x − 6

x − 3
= lim

x→3

(x − 3)(x + 2)

x − 3
Factoring the numerator

= lim
x→3

(x + 2) Canceling (x − 3) since x ≠ 3

= 3 + 2 = 5 Substituting x = 3 since x + 2 is continuous

Even though f (x) = x2 − x − 6 and g(x) = x − 3 approach 0 as x approaches 3, the limit in

Example 2 exists and is equal to 5 because the values of f (x) are approximately 5 times the value of

g(x) near x = 3.

Using a Function with the Same Values to Evaluate a Limit

The limit in Example 2 exists because provided x ≠ 3 we have

x2 − x − 6

x − 3
= x + 2,

so their limits are the same. This means their graphs are identical except at x = 3 where the first

has a hole, and the second passes through (3, 5). The key point is that when two functions take the

same values close to but not necessarily at x = c, then their limits are the same at x = c. We use this

observation in the following example.

Example 3 Evaluate the following limits or explain why they don’t exist:

(a) lim
ℎ→0

(3 + ℎ)2 − 32

ℎ
(b) lim

x→4

x − 4
√

x − 2
(c) lim

x→1

x − 1

x2 − 2x + 1
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Solution (a) At ℎ = 0, we get 0∕0, so the function is undefined. We calculate algebraically:

lim
ℎ→0

(3 + ℎ)2 − 32

ℎ
= lim

ℎ→0

32 + 6ℎ + ℎ2 − 32

ℎ
Expanding the numerator

= lim
ℎ→0

6ℎ + ℎ2

ℎ

= lim
ℎ→0

(6 + ℎ) Canceling ℎ since ℎ ≠ 0

= 6 + 0 = 6. Substituting ℎ = 0 since 6 + ℎ is continuous

The limit exists because y =
(3 + ℎ)2 − 32

ℎ
has the same values as the continuous function

y = 6 + ℎ except at ℎ = 0. If we were to sketch their graphs, they would be identical except at

ℎ = 0 where the rational function has a hole.

(b) At x = 4, we have 0∕0, so the function is undefined. We decide to multiply in the numerator and

denominator by
√

x + 2 because that creates a factor of x − 4 in the denominator:

lim
x→4

x − 4
√

x − 2
= lim

x→4

(

x − 4
√

x − 2

)(
√

x + 2
√

x + 2

)

Multiplying by 1 does not change the limit

= lim
x→4

(x − 4)(
√

x + 2)

(
√

x − 2)(
√

x + 2)

= lim
x→4

(x − 4)(
√

x + 2)

x − 4
Expanding the denominator

= lim
x→4

(
√

x + 2) Canceling (x − 4) since x ≠ 4

=
√

4 + 2 = 4. Substituting x = 4 since
√

x + 2 is continuous

Once again, we see that the limit exists because the function y =
x − 4
√

x − 2
has the same values

as the continuous function y =
√

x + 2 except at x = 4. If we were to sketch their graphs, they

would be identical except at x = 4 where the former has a hole.

(c) At x = 1, we get 0∕0, so the function is undefined. We try to calculate algebraically:

lim
x→1

x − 1

x2 − 2x + 1
= lim

x→1

x − 1

(x − 1)2
Factoring the denominator

= lim
x→1

1

(x − 1)
Canceling (x − 1) since x ≠ 1

So the function y =
x − 1

x2 − 2x + 1
takes the same values as y =

1

x − 1
except at x = 1, so it must

have the same limit. Since the limit of the denominator of y = 1∕(x− 1) is 0 and the numerator

is 1 at x = 1, this limit does not exist. The limit is of the same form as in Example 1.

Although the limit in part (c) of Example 3 did not exist, we used the same idea as in the other

examples to show this. The values of y =
x − 1

x2 − 2x + 1
are equal to the values of y =

1

x − 1
except

at x = 1, so instead we considered the limit of 1∕(x − 1) at x = 1.
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Finding Limits Using a New Variable

In order to evaluate the limit lim
x→4

x − 4
√

x − 2
algebraically in Example 3, we needed an additional step

to eliminate the square root in the denominator. After this step, the process was identical to the other

examples. Another way to find this limit is to use a new variable to eliminate the square root.

Example 4 By letting t =
√

x, evaluate the limit

lim
x→4

x − 4
√

x − 2
.

Solution If we let t =
√

x, we look for the limit as t approaches 2, since as x gets closer to 4, the value of t

gets closer to 2. We calculate step by step algebraically:

lim
x→4

x − 4
√

x − 2
= lim

t→2

t2 − 4

t − 2
Letting t =

√

x

= lim
t→2

(t − 2)(t+ 2)

t − 2
Factoring the numerator

= lim
t→2

(t + 2) Canceling (t − 2) since t ≠ 2

= 2 + 2 = 4. Evaluating the limit by substituting t = 2 since t + 2 is continuous

Calculating Limits at Infinity

Algebraic techniques can also be used to evaluate limits at infinity and one-sided limits.

Example 5 Evaluate the limit

lim
y→∞

3 + 4y

y + 2
.

Solution The limits of the numerator and the denominator do not exist as y grows arbitrarily large since both

also grow arbitrarily large. However, dividing numerator and denominator by the highest power of

y occurring enables us to see that the limit does exist:

lim
y→∞

3 + 4y

y + 2
= lim

y→∞

3∕y + 4

1 + 2∕y
Dividing numerator and denominator by y

=
0 + 4

1 + 0
= 4 Since 1∕y → 0 as y → ∞

In Example 5, as y goes to infinity, the limit of neither the numerator nor of the denominator

exists; however, the limit of the quotient does exist. The reason for this is that though both numerator

and denominator grow without bound, the constants 3 and 2 are insignificant for large y-values. Thus,

3 + 4y behaves like 4y and 2 + y behaves like y, so (3 + 4y)∕(y + 2) behaves like 4y∕y.

The Squeeze Theorem

There are some limits for which the techniques we already have cannot be used. For example, if

f (x) = x2 cos(1∕x), then f (x) is undefined at x = 0. This means f is not continuous at x = 0, so

we cannot evaluate the limit by substitution. Also, there is no obvious function g(x) with the same

values as f (x) close to x = 0 that we could use to calculate the limit. From Figure 1.132, it looks as

if the limit does exist and equals 0, so we need a new way to check this is indeed the limit.
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f (x) = x2 cos(1∕x)

x

Figure 1.132: Find limx→0 f (x)

f (x)

a(x)

b(x)

x

Figure 1.133: Graph of f (x) is squeezed

between b(x) = −x2 and a(x) = x2

From Figure 1.133, we can see that the graph of a(x) = x2 is always above f (x) and b(x) = −x2

is always below f (x), so f (x) is always between a(x) and b(x). Since a(x) and b(x) both get closer

and closer to 0 as x gets closer to 0, the values of f (x) are “squeezed" between them and must have

the same limit. Thus, we conclude lim
x→0

f (x) = 0.

Our calculation of this limit is an illustration of the Squeeze Theorem:

Theorem 1.5: The Squeeze Theorem

If b(x) ≤ f (x) ≤ a(x) for all x close to x = c except possibly at x = c, and lim
x→c

b(x) = L =

lim
x→c

a(x), then

lim
x→c

f (x) = L.

The Squeeze Theorem can also be used to find limits at infinity.

Example 6 After driving over a speed bump at t = 0 seconds a car bounces up and down so the height of its

body from the ground in inches is given by ℎ(t) = 7 + e−0.5t sin(2�t). Find and interpret lim
t→∞

ℎ(t).

Solution Since −1 ≤ sin(2�t) ≤ 1 for all t, we have

7 − e−0.5t ≤ ℎ(t) ≤ 7 + e−0.5t,

so we try the Squeeze Theorem with a(t) = 7 + e−0.5t and b(t) = 7 − e−0.5t. We have:

lim
t→∞

a(t) = lim
t→∞

(7 + e−0.5t) = lim
t→∞

(

7 +
1

e0.5t

)

Rewriting e−0.5t as 1∕e0.5t

= lim
t→∞

7 = 7. Since 1∕e0.5t → 0 as t → ∞

Similarly lim
t→∞

b(t) = 7, so by the Squeeze Theorem, lim
t→∞

ℎ(t) = 7. This value makes sense as over

time the shock absorbers of the car will lessen the bouncing until the height stabilizes to 7 inches.

Summary for Section 1.9

• There are three types of behavior for limits lim
x→c

f (x)∕g(x) where f (x) and g(x) are continuous:

∙ When g(c) ≠ 0, the limit can be evaluated by substitution.

∙ When g(c) = 0 but f (c) ≠ 0, the limit does not exist.

∙ When g(c) = 0 and f (c) = 0, the limit may or may not exist and can take any value. We

use algebraic techniques to evaluate such limits.
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• The squeeze theorem: If b(x) ≤ f (x) ≤ a(x) for all x close to x = c except possibly at x = c,

and lim
x→c

b(x) = L = lim
x→c

a(x), then

lim
x→c

f (x) = L.

Exercises and Problems for Section 1.9

EXERCISES

In Exercises 1–3, find the limit.

1. lim
x→0

3x2

x2
2. lim

x→0

3x2

x
3. lim

x→0

3x2

x4

For Exercises 4–23, use algebra to simplify the expression

and find the limit.

4. lim
x→3

x2 − 3x

x − 3
5. lim

t→0

t4 + t2

2t3 − 9t2

6. lim
x→0

x3 − 3x

x
√

2x + 3
7. lim

x→−4

x + 4

2x2 + 5x − 12

8. lim
y→1

y2 − 5y + 4

y − 1
9. lim

x→1

x2 + 2x − 3

x2 − 3x + 2

10. lim
t→−2

2t2 + 3t − 2

t2 + 5t + 6
11. lim

x→3

x2 − 9

x2 + x − 12

12. lim
y→−1

2y2 + y − 1

3y2 + 2y − 1
13. lim

ℎ→0

(3 + ℎ)2 − 9

ℎ

14. lim
x→−3

(x + 5)2 − 4

x2 − 9
15. lim

x→
√

3

5x2 − 15

x4 − 9

16. lim
x→2

2∕x − 1

x − 2
17. lim

t→3

1∕t − 1∕3

t − 3

18. lim
t→0

1∕(t + 1) − 1

t
19. lim

ℎ→0

1∕(4 + ℎ) − 1∕4

ℎ

20. lim
z→1

√

z − 1

z − 1
21. lim

ℎ→0

√

9 + ℎ − 3

ℎ

22. lim
x→0

4x − 1

2x − 1
23. lim

ℎ→0

(1 + ℎ)4 − 1

ℎ

In Exercises 24–26, for the given constant c and functions

f (x) and g(x), answer the following:

(a) Is the limit lim
x→c

f (x)

g(x)
of the form 0∕0?

(b) Find lim
x→c

f (x)

g(x)
.

24. c = 4, f (x) = 2x − 1, g(x) = x−2

25. c = 1, f (x) = 2x3 + x2 − 3x, g(x) = x2 + 3x − 4

26. c = 3, f (x) = x2 − 3x, g(x) =
√

x + 1 − 2

In Exercises 27–34, use algebra to evaluate the limit.

27. lim
z→∞

5z2 + 2z + 1

2z3 − z2 + 9
28. lim

x→∞

x + 7x2 − 11

3x2 − 2x

29. lim
t→∞

4et + 3e−t

5et + 2e
30. lim

x→∞

2x+1

3x−1

31. lim
x→∞

23x+2

3x+3
32. lim

x→∞
xe−x

33. lim
t→∞

(4et)(7e−t) 34. lim
t→∞

t−2 ⋅ sin t

In Exercises 35–36, multiply by
√

4 + ℎ + 2 in numerator

and denominator and use algebra to find the limit.

35. lim
ℎ→0

√

4 + ℎ − 2

ℎ
36. lim

ℎ→0

1∕
√

4 + ℎ − 1∕2

ℎ

37. Find lim
x→−1

f (x) if, for allx,−4x+6 ≤ f (x) ≤ x2−2x+7.

38. Find lim
x→0

f (x) if, for all x, 4 cos(2x) ≤ f (x) ≤ 3x2 + 4.

39. Find lim
x→∞

f (x) if, for x > 0,

4x2 − 5

x2
≤ f (x) ≤

4x6 + 3

x6
.

PROBLEMS

In Problems 40–51, find all values for the constant k such

that the limit exists.

40. lim
x→4

x2 − k2

x − 4
41. lim

x→1

x2 − kx + 4

x − 1

42. lim
x→−2

x2 + 4x + k

x + 2
43. lim

x→5

x2 − kx + 5

x2 − 2x − 15

44. lim
x→0

ek + 2x − 8

ex − 1
45. lim

x→1

k2 − 40x − 9

lnx

46. lim
x→∞

x2 + 3x + 5

4x + 1 + xk
47. lim

x→−∞

e2x − 5

ekx + 3

48. lim
x→∞

x3 − 6

xk + 3
49. lim

x→∞

ekx + 11

e5x − 3

50. lim
x→∞

3kx + 6

32x + 4
51. lim

x→−∞

3kx + 6

32x + 4
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In Problems 52–57, use the indicated new variable to evalu-

ate the limit.

52. lim
y→4

√

y − 2

y − 4
, let t =

√

y

53. lim
x→9

x −
√

x − 6
√

x − 3
, let t =

√

x

54. lim
ℎ→0

√

1 + ℎ − 1

ℎ
, let t =

√

1 + ℎ

55. lim
x→1

3
√

x − 1

x − 1
, let t = 3

√

x

56. lim
x→0

e3x − e2x

ex − 1
, let t = ex

57. lim
x→∞

2e3x − 1

5e3x + ex + 1
, let t = ex

58. Use the Squeeze Theorem to prove lim
x→∞

sin x

x
= 0.

59. Use the Squeeze Theorem to prove lim
x→∞

1

x + e−x
= 0.

In Problems 60–63, use the Squeeze Theorem to calculate

the limit.

60. lim
x→∞

cos2 x

2x + 1
61. lim

x→0
x4 sin(1∕x)

62. lim
x→∞

x
√

x3 + 1
63. lim

x→∞

1

x + 2 cos2 x

In Problems 64–65, use the squeeze theorem to find the limit

if it exists.

64. lim
x→0

(

x2 sin
(

1

x

)

+ 1
)

65. lim
x→0

sin
(

1

x

)

+ 2

66. Let lim
x→∞

f (x) = 0 and lim
x→∞

g(x) = 0. Give possible for-

mulas for f (x) and g(x) if

(a) lim
x→∞

f (x)

g(x)
= 0

(b) lim
x→∞

f (x)

g(x)
= 1

(c) lim
x→∞

f (x)

g(x)
= ∞

In Problems 67–70, for the given constant c and function

f (x), find a function g(x) that has a hole in its graph at x = c

but f (x) = g(x) everywhere else that f (x) is defined. Give

the coordinates of the hole.

67. f (x) = x2 + 1, c = 3 68. f (x) = x2 + 1, c = 0

69. f (x) = lnx, c = 1 70. f (x) = sin x, c = �

In Problems 71–76, for the given m and n, evaluate lim
x→1

f (x)

or explain why it does not exist, where

f (x) =
(x − 1)n

(x − 1)m
.

71. n = 3, m = 2 72. n = 2, m = 3 73. n = 2, m = 2

74. n and m are positive integers with n > m.

75. n and m are positive integers with m > n.

76. n and m are positive integers with m = n.

77. For any f (x), where −
1

x
≤ f (x) ≤

1

x
, find values of c

and L for which the Squeeze Theorem can be applied.

Strengthen Your Understanding

In Problems 78–79, explain what is wrong with the state-

ment.

78. If f (x) =
x2 − 1

x + 1
and g(x) = x − 1, then f = g.

79. If f (1) = 0 and g(1) = 1, then

lim
x→1

f (x)

g(x)
=

0

1
= 0.

Are the statements in Problems 80–87 true or false? Explain.

80. If b(x) ≤ f (x) ≤ a(x) and lim
x→0

b(x) = −1, lim
x→0

a(x) = 1,

then −1 ≤ lim
x→0

f (x) ≤ 1.

81. If 0 ≤ f (x) ≤ a(x) and lim
x→0

a(x) = 0, then

lim
x→0

f (x) = 0.

82. If b(x) ≤ f (x) ≤ a(x) and lim
x→0

b(x) = lim
x→0

f (x) then

lim
x→0

f (x) = lim
x→0

a(x).

83. If lim
x→0

g(x) = 0 then lim
x→0

f (x)

g(x)
= ∞.

84. If lim
x→0

g(x) = 0 and lim
x→0

f (x) ≠ 0 then lim
x→0

f (x)

g(x)
= ∞.

85. If lim
x→0

f (x)

g(x)
exists, then lim

x→0
f (x) exists and lim

x→0
g(x) ex-

ists.

86. If lim
x→0

f (x)

g(x)
exists, and lim

x→0
g(x) exists then lim

x→0
f (x) ex-

ists.

87. If lim
x→c+

g(x) = 1 and lim
x→c−

g(x) = −1 and lim
x→c

f (x)

g(x)
ex-

ists, then lim
x→c

f (x) = 0.
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2.1 HOW DO WE MEASURE SPEED?

The speed of an object at an instant in time is surprisingly difficult to define precisely. Consider the

statement: “At the instant it crossed the finish line, the horse was traveling at 42 mph.” How can such

a claim be substantiated? A photograph taken at that instant will show the horse motionless—it is

no help at all. There is some paradox in trying to study the horse’s motion at a particular instant in

time, since by focusing on a single instant we stop the motion!

Problems of motion were of central concern to Zeno and other philosophers as early as the

fifth century B.C. The modern approach, made famous by Newton’s calculus, is to stop looking for a

simple notion of speed at an instant, and instead to look at speed over small time intervals containing

the instant. This method sidesteps the philosophical problems mentioned earlier but introduces new

ones of its own.

We illustrate the ideas discussed above with an idealized example, called a thought experiment.

It is idealized in the sense that we assume that we can make measurements of distance and time as

accurately as we wish.

A Thought Experiment: Average and Instantaneous Velocity

We look at the speed of a small object (say, a grapefruit) that is thrown straight upward into the

air at t = 0 seconds. The grapefruit leaves the thrower’s hand at high speed, slows down until it

reaches its maximum height, and then speeds up in the downward direction and finally, “Splat!”

(See Figure 2.1.)

Suppose that we want to determine the speed, say, at t = 1 second. Table 2.1 gives the height, y,

of the grapefruit above the ground as a function of time. During the first second the grapefruit travels

90−6 = 84 feet, and during the second second it travels only 142−90 = 52 feet. Hence the grapefruit

traveled faster over the first interval, 0 ≤ t ≤ 1, than the second interval, 1 ≤ t ≤ 2.

Start Ground

“Splat!”

✻

Velocity
positive ❄

Velocity
negative

Figure 2.1: The grapefruit’s path is

straight up and down

Table 2.1 Height of the grapefruit above the ground

t (sec) 0 1 2 3 4 5 6

y (feet) 6 90 142 162 150 106 30

Velocity Versus Speed

From now on, we will distinguish between velocity and speed. Suppose an object moves along a

line. We pick one direction to be positive and say that the velocity is positive if it is in that direction,

and negative if it is in the opposite direction. For the grapefruit, upward is positive and downward is

negative. (See Figure 2.1.) Speed is the magnitude of the velocity and so is always positive or zero.

If s(t) is the position of an object at time t, then the average velocity of the object over the

interval a ≤ t ≤ b is

Average velocity =
Change in position

Change in time
=

s(b) − s(a)

b − a
.

In words, the average velocity of an object over an interval is the net change in position during

the interval divided by the change in time.
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Example 1 Compute the average velocity of the grapefruit over the interval 4 ≤ t ≤ 5. What is the significance

of the sign of your answer?

Solution During this one-second interval, the grapefruit moves (106−150) = −44 feet. Therefore the average

velocity is −44∕(5 − 4) = −44 ft/sec. The negative sign means the height is decreasing and the

grapefruit is moving downward.

Example 2 Compute the average velocity of the grapefruit over the interval 1 ≤ t ≤ 3.

Solution Average velocity = (162 − 90)∕(3 − 1) = 72∕2 = 36 ft/sec.

The average velocity is a useful concept since it gives a rough idea of the behavior of the grape-

fruit: If two grapefruits are hurled into the air, and one has an average velocity of 10 ft/sec over the

interval 0 ≤ t ≤ 1 while the second has an average velocity of 100 ft/sec over the same interval, the

second one is moving faster.

But average velocity over an interval does not solve the problem of measuring the velocity of

the grapefruit at exactly t = 1 second. To get closer to an answer to that question, we have to look

at what happens near t = 1 in more detail. The data1 in Figure 2.2 shows the average velocity over

small intervals on either side of t = 1.

Notice that the average velocity before t = 1 is slightly more than the average velocity after

t = 1. We expect to define the velocity at t = 1 to be between these two average velocities. As the

size of the interval shrinks, the values of the velocity before t = 1 and the velocity after t = 1 get

closer together. In the smallest interval in Figure 2.2, both velocities are 68.0 ft/sec (to one decimal

place), so we define the velocity at t = 1 to be 68.0 ft/sec (to one decimal place).

✯

❥

✒

❘

t = 1.001
y = 90.068

t = 0.999
y = 89.932

t = 1.01
y = 90.678

t = 0.99
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t = 0.9
y = 83.04

t = 1.1
y = 96.64

1 11
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⎪

⎩
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velocity

69.6 ft/sec

Figure 2.2: Average velocities over intervals on either side of t = 1: showing successively smaller intervals

Of course, if we calculate to more decimal places, the average velocities before and after t = 1

would no longer agree. To calculate the velocity at t = 1 to more decimal places of accuracy, we take

smaller and smaller intervals on either side of t = 1 until the average velocities agree to the number

of decimal places we want. In this way, we can estimate the velocity at t = 1 to any accuracy.

1The data is in fact calculated from the formula y = 6 + 100t − 16t2.
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Defining Instantaneous Velocity Using Limit Notation

When we take smaller and smaller intervals, it turns out that the average velocities get closer and

closer to 68 ft/sec. It seems natural, then, to define instantaneous velocity at the instant t = 1 to

be 68 ft/sec. Its definition depends on our being convinced that smaller and smaller intervals give

averages that come arbitrarily close to 68; that is, the average speed approaches 68 ft/sec as a limit.

Notice how we have replaced the original difficulty of computing velocity at a point by a search

for an argument to convince ourselves that the average velocities approach a limit as the time intervals

shrink in size. Showing that the limit is exactly 68 requires the definition of the limit given on page 64

in Section 1.7.

To define instantaneous velocity at an arbitrary point t = a, we use the same method as for t = 1.

On small intervals of size ℎ around t = a, we calculate

Average velocity =
s(a + ℎ) − s(a)

ℎ
.

The instantaneous velocity is the number that the average velocities approach as the intervals de-

crease in size, that is, as ℎ becomes smaller. So we make the following definition:

Let s(t) be the position at time t. Then the instantaneous velocity at t = a is defined as

Instantaneous velocity

at t = a
= lim

ℎ→0

s(a + ℎ) − s(a)

ℎ
.

In words, the instantaneous velocity of an object at time t = a is given by the limit of the

average velocity over an interval, as the interval shrinks around a.

This limit refers to the number that the average velocities approach as the intervals shrink. To

estimate the limit, we look at intervals of smaller and smaller, but never zero, length.

Visualizing Velocity: Slope of Curve

Now we visualize velocity using a graph of height as a function of time. The cornerstone of the idea

is the fact that, on a very small scale, most functions look almost like straight lines. Imagine taking

the graph of a function near a point and “zooming in” to get a close-up view. (See Figure 2.3.) The

more we zoom in, the more the curve appears to be a straight line. We call the slope of this line the

slope of the curve at the point.

Curve More linear Almost completely
linear

✸

s

✸

s

Slope of line
= Slope of

curve atP
P P P ✛

Figure 2.3: Estimating the slope of the curve at the point by “zooming in”

To visualize the instantaneous velocity, we think about how we calculated it. We took average

velocities over small intervals containing t = 1. Two such velocities are represented by the slopes of
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the lines in Figure 2.4. As the length of the interval shrinks, the slope of the line gets closer to the

slope of the curve at t = 1.

1 2 3.5
t

y
y = s(t)

Slope= Average velocity
over 1 ≤ t ≤ 3.5

✛

Slope= Average velocity
over 1 ≤ t ≤ 2

✛
Slope of curve =
Instantaneous
velocity at t = 1

✲

Figure 2.4: Average velocities over small intervals

The instantaneous velocity is the slope of the curve at a point.

Let’s go back to the grapefruit. Figure 2.5 shows the height of the grapefruit plotted against

time. (Note that this is not a picture of the grapefruit’s path, which is straight up and down.)

How can we visualize the average velocity on this graph? Suppose y = s(t). We consider the

interval 1 ≤ t ≤ 2 and the expression

Average velocity =
Change in position

Change in time
=

s(2) − s(1)

2 − 1
=

142 − 90

1
= 52 ft/sec.

Now s(2) − s(1) is the change in position over the interval, and it is marked vertically in Figure 2.5.

The 1 in the denominator is the time elapsed and is marked horizontally in Figure 2.5. Therefore,

Average velocity =
Change in position

Change in time
= Slope of line joining B and C .

(See Figure 2.5.) A similar argument shows the following:

The average velocity over any time interval a ≤ t ≤ b is the slope of the line joining the

points on the graph of s(t) corresponding to t = a and t = b.

Figure 2.5 shows how the grapefruit’s velocity varies during its journey. At points A and B the

curve has a large positive slope, indicating that the grapefruit is traveling up rapidly. PointD is almost

at the top: the grapefruit is slowing down. At the peak, the slope of the curve is zero: the fruit has

slowed to zero velocity for an instant in preparation for its return to earth. At point E the curve has

a small negative slope, indicating a slow velocity of descent. Finally, the slope of the curve at point

G is large and negative, indicating a large downward velocity that is responsible for the “Splat!”

1 2 3 4 5 6

90

142

t (time)

y (height)

y = s(t)

A

B

C

D
E

F

G

Velocity zero

Grapefruit
moving

fast
(upward)

Grapefruit
moving
fast
(downward)

✠

❘
✠

✲✛ 1

✻

❄
s(2) − s(1)

Figure 2.5: The height, y, of the grapefruit at time t
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Using Limits to Compute the Instantaneous Velocity

Suppose we want to calculate the instantaneous velocity for s(t) = t2 at t = 3. We must find:

lim
ℎ→0

s(3 + ℎ) − s(3)

ℎ
= lim

ℎ→0

(3 + ℎ)2 − 9

ℎ
.

We show two possible approaches.

Example 3 Estimate lim
ℎ→0

(3 + ℎ)2 − 9

ℎ
numerically.

Solution The limit is the value approached by this expression as ℎ approaches 0. The values in Table 2.2 seem

to be converging to 6 as ℎ → 0. So it is a reasonable guess that

lim
ℎ→0

(3 + ℎ)2 − 9

ℎ
= 6.

However, we cannot be sure that the limit is exactly 6 by looking at the table. To calculate the limit

exactly requires algebra.

Table 2.2 Values of
(

(3 + ℎ)2 − 9
)

∕ℎ near ℎ = 0

ℎ −0.1 −0.01 −0.001 0.001 0.01 0.1
(

(3 + ℎ)2 − 9
)

∕ℎ 5.9 5.99 5.999 6.001 6.01 6.1

Example 4 Use algebra to find lim
ℎ→0

(3 + ℎ)2 − 9

ℎ
.

Solution Expanding the numerator gives

(3 + ℎ)2 − 9

ℎ
=

9 + 6ℎ + ℎ2 − 9

ℎ
=

6ℎ + ℎ2

ℎ
.

Since taking the limit as ℎ → 0 means looking at values of ℎ near, but not equal, to 0, we can cancel

ℎ, giving

lim
ℎ→0

(3 + ℎ)2 − 9

ℎ
= lim

ℎ→0
(6 + ℎ).

As ℎ approaches 0, the values of (6 + ℎ) approach 6, so

lim
ℎ→0

(3 + ℎ)2 − 9

ℎ
= lim

ℎ→0
(6 + ℎ) = 6.

Summary for Section 2.1

• If s(t) is the position of an object at time t, then the average velocity of the object over the

interval a ≤ t ≤ b is

Average velocity =
Change in position

Change in time
=

s(b) − s(a)

b − a
.

∙ The average velocity over any time interval a ≤ t ≤ b is the slope of the line joining the

points on the graph of s(t) corresponding to t = a and t = b.

• Let s(t) be the position at time t. Then the instantaneous velocity at t = a is defined as

Instantaneous velocity

at t = a
= lim

ℎ→0

s(a + ℎ) − s(a)

ℎ
.

∙ The instantaneous velocity is the slope of the curve at a point.
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Exercises and Problems for Section 2.1

EXERCISES

1. The distance, s, a car has traveled on a trip is shown

in the table as a function of the time, t, since the trip

started. Find the average velocity between t = 2 and

t = 5.

t (hours) 0 1 2 3 4 5

s (km) 0 45 135 220 300 400

2. The table gives the position of a particle moving along

the x-axis as a function of time in seconds, where x is

in meters. What is the average velocity of the particle

from t = 0 to t = 4?

t 0 2 4 6 8

x(t) −2 4 −6 −18 −14

3. The table gives the position of a particle moving along

the x-axis as a function of time in seconds, where x is in

angstroms. What is the average velocity of the particle

from t = 2 to t = 8?

t 0 2 4 6 8

x(t) 0 14 −6 −18 −4

4. Starting from home, a car drives along a straight

east/west highway. Table 2.3 gives the car’s distance,

d, east from home as a function of time, t.

(a) Find the average velocity of the car over the fol-

lowing intervals:

(i) 0 ≤ t ≤ 0.5, (ii) 0.5 ≤ t ≤ 1,

(iii) 3 ≤ t ≤ 3.5, (iv) 3.5 ≤ t ≤ 4.

(b) What is the average velocity of the car over the in-

terval 0 ≤ t ≤ 5? What does this tell you about the

car’s movement?

Table 2.3

t (hours) 0 0.5 1 2 3 3.5 4 5

d (miles) 0 10 40 70 65 25 0 0

5. Figure 2.6 shows a particle’s distance from a point as a

function of time, t. What is the particle’s average veloc-

ity from t = 0 to t = 3?

2 4

1

3

5
s(t)

t (sec)

distance (meters)

Figure 2.6

2 4

1

3

5

7
s(t)

t (sec)

distance (meters)

Figure 2.7

6. Figure 2.7 shows a particle’s distance from a point as a

function of time, t. What is the particle’s average veloc-

ity from t = 1 to t = 3?

7. An observer tracks the distance a plane has rolled along

the runway after touching down. Figure 2.8 shows this

distance, x, in thousands of feet, as a function of time, t,

in seconds since touchdown. Find the average velocity

of the plane over the following time intervals:

(a) Between 0 and 20 seconds.

(b) Between 20 and 40 seconds.

10 20 30 40

1

2

3

4

5

6

t (sec)

x (1000s of ft)

Figure 2.8

8. At time t in seconds, a particle’s distance s(t), in mi-

crometers (�m), from a point is given by s(t) = et − 1.

What is the average velocity of the particle from t = 2

to t = 4?

9. At time t in seconds, a particle’s distance s(t), in cen-

timeters, from a point is given by s(t) = 4+3 sin t. What

is the average velocity of the particle from t = �∕3 to

t = 7�∕3?

10. In a time of t seconds, a particle moves a distance of s

meters from its starting point, where s = 3t2.

(a) Find the average velocity between t = 1 and t =

1 + ℎ if:

(i) ℎ = 0.1, (ii) ℎ = 0.01, (iii) ℎ = 0.001.

(b) Use your answers to part (a) to estimate the instan-

taneous velocity of the particle at time t = 1.

11. In a time of t seconds, a particle moves a distance of s

meters from its starting point, where s = 4t3.

(a) Find the average velocity between t = 0 and t = ℎ

if:

(i) ℎ = 0.1, (ii) ℎ = 0.01, (iii) ℎ = 0.001.

(b) Use your answers to part (a) to estimate the instan-

taneous velocity of the particle at time t = 0.

12. In a time of t seconds, a particle moves a distance of s

meters from its starting point, where s = sin(2t).

(a) Find the average velocity between t = 1 and t =

1 + ℎ if:

(i) ℎ = 0.1, (ii) ℎ = 0.01, (iii) ℎ = 0.001.

(b) Use your answers to part (a) to estimate the instan-

taneous velocity of the particle at time t = 1.
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13. The distance, in feet, traveled by a bike is given by

d = tt, for t in seconds and 1.5 ≤ t ≤ 2.5. Estimate

the instantaneous velocity of the bike at t = 2 seconds.

14. A car is driven at a constant speed. Sketch a graph of

the distance the car has traveled as a function of time.

15. A car is driven at an increasing speed. Sketch a graph of

the distance the car has traveled as a function of time.

16. A car starts at a high speed, and its speed then decreases

slowly. Sketch a graph of the distance the car has trav-

eled as a function of time.

Exercises 17–18 shows the distance, s(t), in feet of a scooter

from home at time t seconds. Find its velocity between

(a) t = 0 and t = 1. (b) t = 1 and t = 2.

(c) t = 2 and t = 3.

17.

1 2 3

5

10
s(t)

t (sec)

feet 18.

1 2 3

−5

5 s(t)

t (sec)

feet

PROBLEMS

In Problems 19–24, estimate the limit by substituting smaller

and smaller values of ℎ. For trigonometric functions, use ra-

dians. Give answers to one decimal place.

19. lim
ℎ→0

(3 + ℎ)3 − 27

ℎ
20. lim

ℎ→0

cos ℎ − 1

ℎ

21. lim
ℎ→0

7ℎ − 1

ℎ
22. lim

ℎ→0

e1+ℎ − e

ℎ

23. lim
ℎ→0

sinℎ

ℎ
24. lim

ℎ→0

√

1 + ℎ − 1

ℎ

25. Match the points labeled on the curve in Figure 2.9 with

the given slopes.

Slope Point

−3

−1

0

1∕2

1

2

A
B

C
D

E

F

Figure 2.9

26. For the function shown in Figure 2.10, at what labeled

points is the slope of the graph positive? Negative? At

which labeled point does the graph have the greatest

(i.e., most positive) slope? The least slope (i.e., nega-

tive and with the largest magnitude)?

A

B
CD

E

F

Figure 2.10

27. For the graph y = f (x) in Figure 2.11, arrange the fol-

lowing numbers from smallest to largest:

• The slope of the graph at A.

• The slope of the graph at B.

• The slope of the graph at C .

• The slope of the line AB.

• The number 0.

• The number 1.

x

y = x

B
C

y = f (x)

A

y

Figure 2.11

28. The graph of f (t) in Figure 2.12 gives the position of a

particle at time t. List the following quantities in order,

smallest to largest.

• A, average velocity between t = 1 and t = 3,

• B, average velocity between t = 5 and t = 6,

• C , instantaneous velocity at t = 1,

• D, instantaneous velocity at t = 3,

• E, instantaneous velocity at t = 5,

• F , instantaneous velocity at t = 6.

1 2 3 4 5 6

1

2

3

4

t

f (t)

Figure 2.12

29. Find the average velocity over the interval 0 ≤ t ≤ 0.2,

and estimate the velocity at t = 0.2 of a car whose po-

sition, s, is given by the following table.

t (sec) 0 0.2 0.4 0.6 0.8 1.0

s (ft) 0 0.5 1.8 3.8 6.5 9.6

30. Let s(t) be the height, in feet, of an apple above the sur-

face of the earth at time t in seconds for 0 ≤ t ≤ 2, and

let v(t) be the velocity of the apple at time t. See Fig-

ure 2.13. The height of a pear above the ground at time

t is p(t) = s(t)+10. Let w(t) be the velocity of the pear.

Compare the motion of the apple and the pear.

(a) Do they start at the same time? Do they start at

the same place? How are their positions related at

time t?
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(b) How are the velocities v(t) and w(t) related?

1 2

10

s(t)

t (seconds)

feet

Figure 2.13

31. Figure 2.14 shows f (t) and g(t), the positions of two

cars with respect to time, t, in minutes.

(a) Describe how the velocity of each car is changing

during the time shown.

(b) Find an interval over which the cars have the same

average velocity.

(c) Which of the following statements are true?

(i) Sometime in the first half minute, the two cars

are traveling at the same instantaneous veloc-

ity.

(ii) During the second half minute (from t = 1∕2

to t = 1), there is a time that the cars are trav-

eling at the same instantaneous velocity.

(iii) The cars are traveling at the same velocity at

t = 1 minute.

(iv) There is no time during the period shown that

the cars are traveling at the same velocity.

0.5 1

f (t)

g(t)

t (minutes)

y (feet)

Figure 2.14

32. A particle moves at varying velocity along a line and

s = f (t) represents the particle’s distance from a point

as a function of time, t. Sketch a possible graph for f if

the average velocity of the particle between t = 2 and

t = 6 is the same as the instantaneous velocity at t = 5.

33. A particle moves along a line with varying velocity. At

time t the particle is at a distance s = f (t) from a fixed

point on the line. Sketch a possible graph for f if the

average velocity of the particle between t = 0 and t = 5

is the same as its instantaneous velocity at exactly two

times between t = 0 and t = 5.

34. A ball is tossed into the air from a bridge, and its height,

y (in feet), above the ground t seconds after it is thrown

is given by

y = f (t) = −16t2 + 50t + 36.

(a) How high above the ground is the bridge?

(b) What is the average velocity of the ball for the first

second?

(c) Approximate the velocity of the ball at t = 1 sec-

ond.

(d) Graph f , and determine the maximum height the

ball reaches. What is the velocity at the time the

ball is at the peak?

(e) Use the graph to decide at what time, t, the ball

reaches its maximum height.

In Problems 35–38, use algebra to evaluate the limit.

35. lim
ℎ→0

(2 + ℎ)2 − 4

ℎ
36. lim

ℎ→0

(1 + ℎ)3 − 1

ℎ

37. lim
ℎ→0

3(2 + ℎ)2 − 12

ℎ
38. lim

ℎ→0

(3+ℎ)2 − (3−ℎ)2

2ℎ

Strengthen Your Understanding

In Problems 39–41, explain what is wrong with the state-

ment.

39. Velocity and speed are the same.

40. Since limℎ→0(2 + ℎ)2 = 4, we have

lim
ℎ→0

(2 + ℎ)2 − 22

ℎ
= 0.

41. The particle whose position is shown in Figure 2.15 has

velocity at time t = 4 greater than the velocity at t = 2.

1 2 3 4 5 6

1

2

3

4

t

f (t)

Figure 2.15
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In Problems 42–43, give an example of:

42. A function which has a negative instantaneous velocity

for t < 0 and a positive instantaneous velocity for t > 0.

43. A function giving the position of a particle that has the

same speed at t = −1 and t = 1 but different velocities.

Are the statements in Problems 44–48 true or false? Give an

explanation for your answer.

44. If a car is going 50 miles per hour at 2 pm and 60 miles

per hour at 3 pm, then it travels between 50 and 60 miles

during the hour between 2 pm and 3 pm.

45. If a car travels 80 miles between 2 and 4 pm, then its

velocity is close to 40 mph at 2 pm.

46. If the time interval is short enough, then the average

velocity of a car over the time interval and the instanta-

neous velocity at a time in the interval can be expected

to be close.

47. If an object moves with the same average velocity over

every time interval, then its average velocity equals its

instantaneous velocity at any time.

48. The formula Distance traveled = Average velocity ×

Time is valid for every moving object for every time

interval.

2.2 THE DERIVATIVE AT A POINT

Average Rate of Change

In Section 2.1, we looked at the change in height divided by the change in time; this ratio is called

the difference quotient. Now we define the rate of change of a function f that depends on a variable

other than time. We say:

Average rate of change of f

over the interval from a to a + ℎ
=

f (a + ℎ) − f (a)

ℎ
.

The numerator, f (a + ℎ) − f (a), measures the change in the value of f over the interval from a to

a+ ℎ. The difference quotient is the change in f divided by the change in the independent variable,

which we call x. Although the interval is no longer necessarily a time interval, we still talk about the

average rate of change of f over the interval. If we want to emphasize the independent variable, we

talk about the average rate of change of f with respect to x.

Instantaneous Rate of Change: The Derivative

We define the instantaneous rate of change of a function at a point in the same way that we defined

instantaneous velocity: we look at the average rate of change over smaller and smaller intervals. This

instantaneous rate of change is called the derivative of f at a, denoted by f ′(a).

The derivative of f at a, written f ′(a), is defined as

Rate of change

of f at a
= f ′(a) = lim

ℎ→0

f (a + ℎ) − f (a)

ℎ
.

If the limit exists, then f is said to be differentiable at a.

To emphasize that f ′(a) is the rate of change of f (x) as the variable x changes, we call f ′(a) the

derivative of f with respect to x at x = a. When the function y = s(t) represents the position of an

object, the derivative s′(t) is the velocity.
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Example 1 Scientists in North Africa, analyzing where to plant trees, found that the volume of wood that grows

on a square kilometer, in meters3, is approximated, for r cm rainfall per year and 60 ≤ r ≤ 120, by2

V (r) = 0.2r2 − 20r + 600.

(a) Calculate the average rate of change of V with respect to r over the intervals 90 ≤ r ≤ 100 and

100 ≤ r ≤ 110.

(b) By choosing small values for ℎ, estimate the instantaneous rate of change of V with respect to r

at r = 100 cm.

Solution (a) Using the formula for the average rate of change gives

Average rate of change of volume

for 90 ≤ r ≤ 100
=

V (100) − V (90)

10
=

600 − 420

10
= 18 meter3∕cm.

Average rate of change of volume

for 100 ≤ r ≤ 110
=

V (110) − V (100)

10
=

820 − 600

10
= 22 meter3∕cm.

So we see that the average rate of change of the volume of wood grown on a square kilometer

increases as the rainfall increases.

(b) With ℎ = 0.1 and ℎ = −0.1, we have the difference quotients

V (100.1) − V (100)

0.1
= 20.02 m3∕cm and

V (99.9) − V (100)

−0.1
= 19.98 m3∕cm.

With ℎ = 0.01 and ℎ = −0.01,

V (100.01) − V (100)

0.01
= 20.002 m3∕cm and

V (99.99) − V (100)

−0.01
= 19.998 m3∕cm.

These difference quotients suggest that when the yearly rainfall is 100 cm, the instantaneous

rate of change of the volume of wood grown on a square kilometer is about 20 meter3 per cm

of rainfall. To confirm that the instantaneous rate of change of the function is exactly 20, that is,

V ′(100) = 20, we would need to take the limit as ℎ → 0.

Visualizing the Derivative: Slope of Curve and Slope of Tangent

As with velocity, we can visualize the derivative f ′(a) as the slope of the graph of f at x = a. In

addition, there is another way to think of f ′(a).Consider the difference quotient (f (a+ℎ)−f (a))∕ℎ.

The numerator,f (a+ℎ)−f (a), is the vertical distance marked in Figure 2.16 and ℎ is the horizontal

distance, so

Average rate of change of f =
f (a + ℎ) − f (a)

ℎ
= Slope of line AB.

As ℎ becomes smaller, the line AB approaches the tangent line to the curve at A. (See Figure 2.17.)

We say

Instantaneous rate of change

of f at a
= lim

ℎ→0

f (a + ℎ) − f (a)

ℎ
= Slope of tangent at A.

2Sepp, C., “Is Urban Forestry a Solution to the Energy Crises of Sahelian Cities?”, www.cabdirect.org, accessed September

25, 2019.
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a a + ℎ
x

A

B

f (x)

Slope = Average rate
of change

=
f (a+ℎ)−f (a)

ℎ

❄

✻

❄

f (a + ℎ) − f (a)

✲✛ ℎ

Figure 2.16: Visualizing the average rate of

change of f

a
x

A
B

B

B

B

f (x)

Slope = Derivative = f ′(a)

✻

Figure 2.17: Visualizing the instantaneous

rate of change of f

The derivative at point A can be interpreted as:

• The slope of the curve at A.

• The slope of the tangent line to the curve at A.

The slope interpretation is often useful in gaining rough information about the derivative, as the

following examples show.

Example 2 Is the derivative of sin x at x = � positive or negative?

Solution Looking at a graph of sin x in Figure 2.18 (remember, x is in radians), we see that a tangent line

drawn at x = � has negative slope. So the derivative at this point is negative.

3� 4�
x

� 2�

−1

1 f (x) = sinxNegative slope✛

Figure 2.18: Tangent line to sin x at x = �

Recall that if we zoom in on the graph of a function y = f (x) at the point x = a, we usually

find that the graph looks like a straight line with slope f ′(a).

Example 3 By zooming in on the point (0, 0)on the graph of the sine function, estimate the value of the derivative

of sin x at x = 0, with x in radians.

Solution Figure 2.19 shows graphs of sinx with smaller and smaller scales. On the interval −0.1 ≤ x ≤ 0.1,

the graph looks like a straight line of slope 1. Thus, the derivative of sin x at x = 0 is about 1.

−3 3

−3

3

x

f (x) = sin x

−1 1

−1

1

x

f (x) = sin x

−0.1 0.1

−0.1

0.1

x

f (x) = sin x

Figure 2.19: Zooming in on the graph of sin x near x = 0 shows the derivative is about 1 at x = 0
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Later we will show that the derivative of sinx at x = 0 is exactly 1. (See page 169 in Section 3.5.)

From now on we will assume that this is so. This simple result is one of the reasons we choose to use

radians when doing calculus with trigonometric functions. If we had done Example 3 in degrees, the

derivative of sinx would have turned out to be a much messier number. (See Problem 31, page 103.)

Estimating the Derivative

Example 4 Estimate the value of the derivative of f (x) = 2x at x = 0 graphically and numerically.

Solution Graphically: Figure 2.20 indicates that the graph is concave up. Assuming this, the slope at A is

between the slope of BA and the slope of AC . Since

Slope of line BA =
(20 − 2−1)

(0 − (−1))
=

1

2
and Slope of line AC =

(21 − 20)

(1 − 0)
= 1,

we know that at x = 0 the derivative of 2x is between 1∕2 and 1.

Numerically: To estimate the derivative at x = 0, we look at values of the difference quotient

f (0 + ℎ) − f (0)

ℎ
=

2ℎ − 20

ℎ
=

2ℎ − 1

ℎ

for small ℎ. Table 2.4 shows some values of 2ℎ together with values of the difference quotients. (See

Problem 79 (available online) for what happens for very small values of ℎ.)

−1 1

1

2

x

A

B

C

f (x) = 2x

❄

Slope =
1

2

❄

Slope = 1

Tangent line
Slope = f ′(0)

✛

Figure 2.20: Graph of y = 2x showing the

derivative at x = 0

Table 2.4 Numerical values for difference quotient of 2x

at x = 0

ℎ 2
ℎ

Difference quotient:
2
ℎ
−1

ℎ

−0.0003 0.999792078 0.693075

−0.0002 0.999861380 0.693099

−0.0001 0.999930688 0.693123

0 1

0.0001 1.00006932 0.693171

0.0002 1.00013864 0.693195

0.0003 1.00020797 0.693219

The concavity of the curve tells us that difference quotients calculated with negative ℎ’s are

smaller than the derivative, and those calculated with positive ℎ’s are larger. From Table 2.4 we see

that the derivative is between 0.693123 and 0.693171. To three decimal places, f ′(0) = 0.693.

Example 5 Find an approximate equation for the tangent line to f (x) = 2x at x = 0.

Solution From the previous example, we know the slope of the tangent line is about 0.693 at x = 0. Since the

tangent line has y-intercept 1, its equation is

y = 0.693x+ 1.
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Computing the Derivative Algebraically

The graph of f (x) = 1∕x in Figure 2.21 leads us to expect that f ′(2) is negative. To compute f ′(2)

exactly, we use algebra.

1 2 3

1

f (x) = 1∕x

✠

Slope = f ′(2)

x

Figure 2.21: Tangent line to f (x) = 1∕x at x = 2

Example 6 Find the derivative of f (x) = 1∕x at the point x = 2.

Solution The derivative is the limit of the difference quotient, so we look at

f ′(2) = lim
ℎ→0

f (2 + ℎ) − f (2)

ℎ
.

Using the formula for f and simplifying gives

f ′(2) = lim
ℎ→0

1

ℎ

(

1

2 + ℎ
−

1

2

)

= lim
ℎ→0

(

2 − (2 + ℎ)

2ℎ(2 + ℎ)

)

= lim
ℎ→0

−ℎ

2ℎ(2 + ℎ)
.

Since the limit only examines values of ℎ close to, but not equal to, zero, we can cancel ℎ. We get

f ′(2) = lim
ℎ→0

−1

2(2 + ℎ)
= −

1

4
.

Thus, f ′(2) = −1∕4. The slope of the tangent line in Figure 2.21 is −1∕4.

Summary for Section 2.2

• Average rate of change of f over the interval from a to a + ℎ =
f (a + ℎ) − f (a)

ℎ
.

• The instantaneous rate of change of a function at a point is defined as the average rate of change

over smaller and smaller intervals. This instantaneous rate of change is called the derivative of

f at a.

• The derivative of f at a, written f ′(a), is defined as

Rate of change

of f at a
= f ′(a) = lim

ℎ→0

f (a + ℎ) − f (a)

ℎ
.

If the limit exists, then f is said to be differentiable at a.

• The derivative at point A can be interpreted as:

∙ The slope of the curve at A.

∙ The slope of the tangent line to the curve at A.
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Exercises and Problems for Section 2.2 Online Resource: Additional Problems for Section 2.2
EXERCISES

1. The table shows values of f (x) = x3 near x = 2 (to

three decimal places). Use it to estimate f ′(2).

x 1.998 1.999 2.000 2.001 2.002

x
3

7.976 7.988 8.000 8.012 8.024

2. By choosing small values for ℎ, estimate the instanta-

neous rate of change of the function f (x) = x3 with

respect to x at x = 1.

3. The income that a company receives from selling an

item is called the revenue. Production decisions are

based, in part, on how revenue changes if the quantity

sold changes; that is, on the rate of change of revenue

with respect to quantity sold. Suppose a company’s rev-

enue, in dollars, is given by R(q) = 100q−10q2 , where

q is the quantity sold in kilograms.

(a) Calculate the average rate of change of R with

respect to q over the intervals 1 ≤ q ≤ 2 and

2 ≤ q ≤ 3.

(b) By choosing small values for ℎ, estimate the in-

stantaneous rate of change of revenue with respect

to change in quantity at q = 2 kilograms.

4. The amount of a 10-gram sample of cesium-137 re-

maining after t years is given by f (t) = 10(1∕2)t∕30

grams.

(a) Find the average rate of decay of the sample during

the first six years.

(b) Estimate the instantaneous rate of decay of the

sample at t = 0.

5. (a) Make a table of values rounded to two decimal

places for the function f (x) = ex for x =

1, 1.5, 2, 2.5, and 3. Then use the table to answer

parts (b) and (c).

(b) Find the average rate of change of f (x) between

x = 1 and x = 3.

(c) Use average rates of change to approximate the in-

stantaneous rate of change of f (x) at x = 2.

6. (a) Make a table of values, rounded to two decimal

places, for f (x) = log x (that is, log base 10) with

x = 1, 1.5, 2, 2.5, 3. Then use this table to answer

parts (b) and (c).

(b) Find the average rate of change of f (x) between

x = 1 and x = 3.

(c) Use average rates of change to approximate the in-

stantaneous rate of change of f (x) at x = 2.

7. If f (x) = x3 + 4x, estimate f ′(3) using a table with

values of x near 3, spaced by 0.001.

8. Graph f (x) = sin x, and use the graph to decide

whether the derivative of f (x) at x = 3� is positive

or negative.

9. For the function f (x) = log x, estimate f ′(1). From the

graph of f (x), would you expect your estimate to be

greater than or less than f ′(1)?

10. Estimate f ′(2) for f (x) = 3x. Explain your reasoning.

11. The graph of y = f (x) is shown in Figure 2.22. Which

is larger in each of the following pairs?

(a) Average rate of change: Between x = 1 and x = 3,

or between x = 3 and x = 5?

(b) f (2) or f (5)?

(c) f ′(1) or f ′(4)?

1 2 3 4 5

1

2

3

4

5

x

y
y = f (x)

Figure 2.22

12. Use Figure 2.23 to decide which is larger in each of the

following pairs.

(a) Average rate of change between x = 0 and x = 2

or between x = 2 and x = 4?

(b) g(1) or g(4)?

(c) g′(2) or g′(4)?

1 2 3 4 5 6 7

g(x)

x

Figure 2.23

13. Figure 2.24 shows the graph of f . Match the derivatives

in the table with the points a, b, c, d, e.

ba c d e

f

x

Figure 2.24

x f ′(x)

0

0.5

2

−0.5

−2
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14. Label points A,B, C, D,E, and F on the graph of y =

f (x) in Figure 2.25.

(a) Point A is a point on the curve where the derivative

is negative.

(b) Point B is a point on the curve where the value of

the function is negative.

(c) Point C is a point on the curve where the derivative

is largest.

(d) Point D is a point on the curve where the derivative

is zero.

(e) Points E and F are different points on the curve

where the derivative is about the same.

x

y

y = f (x)

Figure 2.25

15. (a) Using Figure 2.26, find the sign of f ′(−1), f ′(0),

f ′(1), f ′(2), f ′(3).

(b) Arrange the derivatives in part (a) in ascending or-

der.

−1 1 2 3

f (x)

x

Figure 2.26

In Exercises 16–20, interpret the expression in terms of Arc-

tic Sea ice extent, the area of sea covered by ice.3 Let E(x)

and F (t) be the Arctic Sea ice extent, both in millions of

square kilometers, as a function of time, x, in years, since

February 2000, and time, t, in days, since January 1, 2019.

16. E(19) = 14.4 17. E(9) = 14.9

18.
E(19) −E(9)

19 − 9
= −0.04

19. F (31) = 14.11

20.
F (59) − F (31)

59 − 31
= 0.015

PROBLEMS

21. Suppose that f (x) is a function with f (100) = 35 and

f ′(100) = 3. Estimate f (102).

22. Show how to represent the following on Figure 2.27.

(a) f (4) (b) f (4) − f (2)

(c)
f (5) − f (2)

5 − 2
(d) f ′(3)

1 2 3 4 5
x

f (x)

Figure 2.27

23. For each of the following pairs of numbers, use Fig-

ure 2.27 to decide which is larger. Explain your answer.

(a) f (3) or f (4)?

(b) f (3) − f (2) or f (2) − f (1)?

(c)
f (2) − f (1)

2 − 1
or

f (3) − f (1)

3 − 1
?

(d) f ′(1) or f ′(4)?

24. With the function f given by Figure 2.27, arrange the

following quantities in ascending order:

0, f ′(2), f ′(3), f (3) − f (2)

25. The function in Figure 2.28 has f (4) = 25 and f ′(4) =

1.5. Find the coordinates of the points A, B, C .

A

B

C

x

3.9 4 4.2

f (x)

Tangent line

Figure 2.28

26. Use Figure 2.29 to fill in the blanks in the following

statements about the function g at point B.

(a) g( ) = (b) g′( ) =

(1.95, 5.02)

(2, 5)

B
g(x)

Tangent line

Figure 2.29

3Sea ice extent definition and data values from nsidc.org/data/seaice_index/archives, accessed September 25, 2019.
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27. (a) In Figure 2.30, which line, OA, BA, or CA, has

slope f (x)∕x for some x? For what value of x?

(b) Which is larger

(i) f ′(2) or f (2)∕2?

(ii) 2f ′(2) or f (2)?

1 2

f (x)

A

B

C

O
x

Figure 2.30

28. Consider the function shown in Figure 2.31.

(a) Write an expression involving f for the slope of

the line joining A and B.

(b) Draw the tangent line at C . Compare its slope to

the slope of the line in part (a).

(c) Are there any other points on the curve at which the

slope of the tangent line is the same as the slope

of the tangent line at C? If so, mark them on the

graph. If not, why not?

a c b

f

A

C

B

Figure 2.31

29. (a) If f is even and f ′(10) = 6, what is f ′(−10)?

(b) If f is any even function and f ′(0) exists, what is

f ′(0)?

30. If g is an odd function and g′(4) = 5, what is g′(−4)?

31. (a) Estimate f ′(0) if f (x) = sin x, with x in degrees.

(b) In Example 3 on page 98, we found that the deriva-

tive of sin x at x = 0 was 1. Why do we get a differ-

ent result here? (This problem shows why radians

are almost always used in calculus.)

32. Find the equation of the tangent line to f (x) = x2 + x

at x = 3. Sketch the function and this tangent line.

33. Estimate the instantaneous rate of change of the func-

tion f (x) = x ln x at x = 1 and at x = 2. What do

these values suggest about the concavity of the graph

between 1 and 2?

34. Estimate the derivative of f (x) = xx at x = 2.

35. The population, P (t), of China, in billions, can be ap-

proximated by4

P (t) = 1.434(1.0043)t ,

where t is the number of years since the start of 2019.

According to this model, how fast was the population

growing at the start of 2019 and at the start of 2020?

Give your answers in millions of people per year.

36. The US population5 officially reached 300 million on

October 17, 2006 and was gaining 1 person each 11

seconds. If f (t) is the US population in millions t years

after October 17, 2006, find f (0) and f ′(0).

37. The total revenue, R, in dollars, received by a company

from the sales of q items is R = f (q) = ln(1 + 500q2).

(a) Find the revenue received from the sale of 20 items.

(b) Estimate f ′(20). What does this tell you about rev-

enues?

38. The pressure, P , in atmospheres, of V liters of a fixed

quantity of an ideal gas held at constant temperature is

P = f (V ) = 120∕V . Find f (10) and estimate f ′(10).

What do your answers tell you about the pressure and

volume of the gas?

39. The atmospheric pressure, P , at a point ℎ kilometers

above the surface of the earth is P = f (ℎ) = 760e−ℎ∕7

torr.6 Find f (1) and estimate f ′(1). What do your an-

swers tell you about the pressure?

40. Table 2.5 gives values of the atmospheric pressure P =

f (ℎ), in torr,7 at a point ℎ kilometers above the surface

of the earth.

(a) Estimate f ′(1) and f ′(4). What do your estimates

tell you about the pressure?

(b) Does atmospheric pressure decrease faster at

higher altitudes or at lower altitudes? Explain.

Table 2.5

ℎ (km) 0 0.5 1 1.5 2 2.5

P (torr) 760 708 659 613 571 532

ℎ (km) 3 3.5 4 4.5 5

P (torr) 495 461 429 400 372

41. Table 2.6 shows the amount, Q = f (t) grams, of a

50-gram sample of cesium-137 remaining after t years.

How much of the original sample remains after 10

years, and about how fast is it decaying at that time?

Table 2.6

t (years) 0 5 10 15 20 25

f (t) (grams) 50 44.5 39.7 35.4 31.5 28.1

4www.worldometers.info, accessed September 25, 2019.
5en.wikinews.org/wiki/US_population_reaches_300_million, accessed September 25, 2019.
6A torr is a unit of pressure.
7A torr is a unit of pressure.
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42. Figure 2.32 shows the remaining charge q = f (t) in

microcoulombs (�C) on a capacitor, t seconds after dis-

charge through a circuit. Estimate the remaining charge

on the capacitor after t = 7 seconds and its rate of dis-

sipation at this time. Include units with your answer.

2 4 6 8 10

20

40

60

80

t

q

Figure 2.32

For Problems 43–46, estimate the change in y for the given

change in x.

43. y = f (x), f ′(100) = 0.4, x increases from 100 to 101

44. y = f (x), f ′(12) = 30, x increases from 12 to 12.2

45. y = g(x), g′(250) = −0.5, x increases from 250 to

251.5

46. y = p(x), p′(400) = 2, x decreases from 400 to 398

47. (a) Graph f (x) =
1

2
x2 and g(x) = f (x) + 3 on the

same set of axes. What can you say about the slopes

of the tangent lines to the two graphs at the point

x = 0? x = 2? Any point x = x0?

(b) Explain why adding a constant value, C , to any

function does not change the value of the slope of

its graph at any point. [Hint: Let g(x) = f (x) +C ,

and calculate the difference quotients for f and g.]

Use algebra to evaluate the limits in Problems 48–51.

48. lim
ℎ→0

(−3 + ℎ)2 − 9

ℎ
49. lim

ℎ→0

(2 − ℎ)3 − 8

ℎ

50. lim
ℎ→0

1∕(1 + ℎ) − 1

ℎ
51. lim

ℎ→0

1∕(1 + ℎ)2 − 1

ℎ

For Problems 52–56, estimate the value of f ′(1) by substitut-

ing small values for ℎ. Then use algebra to find f ′(1) exactly.

52. f (x) = 3x + 1 53. f (x) = x2 + x + 1

54. f (x) =
√

x 55. f (x) =
1

x + 1

56. f (x) = 2x + x−1

In Problems 57–62, find the derivative algebraically.

57. f (x) = 5x2 at x = 10 58. f (x) = x3 at x = −2

59. g(t) = t2 + t at t = −1 60. f (x) = x3 + 5 at x = 1

61. g(x) = 1∕x at x = 2 62. g(z) = z−2, find g′(2)

For Problems 63–66, find the equation of the line tangent to

the function at the given point.

63. f (x) = 5x2 at x = 10 64. f (x) = x3 at x = −2

65. f (x) = x at x = 20 66. f (x) = 1∕x2 at (1, 1)

Strengthen Your Understanding

In Problems 67–68, explain what is wrong with the state-

ment.

67. For the function f (x) = log x we have f ′(0.5) < 0.

68. The derivative of a function f (x) at x = a is the tangent

line to the graph of f (x) at x = a.

In Problems 69–70, give an example of:

69. A continuous function which is always increasing and

positive.

70. A linear function with derivative 2 at x = 0.

Are the statements in Problems 71–73 true or false? Give an

explanation for your answer.

71. You cannot be sure of the exact value of a derivative

of a function at a point using only the information in a

table of values of the function. The best you can do is

find an approximation.

72. If you zoom in (with your calculator) on the graph of

y = f (x) in a small interval around x = 10 and see

a straight line, then the slope of that line equals the

derivative f ′(10).

73. If f (x) is concave up, then

f ′(a) < (f (b) − f (a))∕(b − a) for a < b.

74. Assume that f is an odd function and that f ′(2) = 3,

then f ′(−2) =

(a) 3 (b) −3

(c) 1∕3 (d) −1∕3
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2.3 THE DERIVATIVE FUNCTION

In the previous section we looked at the derivative of a function at a fixed point. Now we consider

what happens at a variety of points. The derivative generally takes on different values at different

points and is itself a function.

First, remember that the derivative of a function at a point tells us the rate at which the value of

the function is changing at that point. Geometrically, we can think of the derivative as the slope of

the curve or of the tangent line at the point.

Example 1 Estimate the derivative of the function f (x) graphed in Figure 2.33 at x = −2,−1, 0, 1, 2, 3, 4, 5.

−2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

4

5

x

Figure 2.33: Estimating the derivative graphically as the slope of the tangent line

Solution From the graph we estimate the derivative at any point by placing a straightedge so that it forms the

tangent line at that point, and then using the grid squares to estimate the slope of the straightedge. For

example, the tangent at x = −1 is drawn in Figure 2.33, and has a slope of about 2, so f ′(−1) ≈ 2.

Notice that the slope at x = −2 is positive and fairly large; the slope at x = −1 is positive but smaller.

At x = 0, the slope is negative, by x = 1 it has become more negative, and so on. Some estimates

of the derivative are listed in Table 2.7. You should check these values. Are they reasonable? Is the

derivative positive where you expect? Negative?

Table 2.7 Estimated values of derivative of function in Figure 2.33

x −2 −1 0 1 2 3 4 5

f ′(x) 6 2 −1 −2 −2 −1 1 4

Notice that for every x-value, there’s a corresponding value of the derivative. Therefore, the

derivative is itself a function of x.

For any function f , we define the derivative function, f ′, by

f ′(x) = Rate of change of f at x = lim
ℎ→0

f (x + ℎ) − f (x)

ℎ
.

For every x-value for which this limit exists, we say f is differentiable at that x-value. If the

limit exists for all x in the domain of f , we say f is differentiable everywhere. Most functions we

meet are differentiable at every point in their domain, except perhaps for a few isolated points.
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The Derivative Function: Graphically

Example 2 Sketch the graph of the derivative of the function shown in Figure 2.33.

Solution We plot the values of the derivative in Table 2.7 and connect them with a smooth curve to obtain

the estimate of the derivative function in Figure 2.34. Values of the derivative function give slopes

of the original graph.

−2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

4

5

x

f ′(x)

f (x)

Figure 2.34: Function (colored) and derivative (black) from Example 1

Check that this graph of f ′ makes sense: Where the values of f ′ are positive, f is increasing

(x < −0.3 or x > 3.8) and where f ′ is negative, f is decreasing. Notice that at the points where

f has large positive slope, such as x = −2, the graph of the derivative is far above the x-axis, as it

should be, since the value of the derivative is large there. At points where the slope is gentler, such

as x = −1, the graph of f ′ is closer to the x-axis, since the derivative is smaller.

What Does the Derivative Tell Us Graphically?

Where f ′ is positive, the tangent line to f is sloping up; where f ′ is negative, the tangent line to f

is sloping down. If f ′ = 0 everywhere, then the tangent line to f is horizontal everywhere, and f is

constant. We see that the sign of f ′ tells us whether f is increasing or decreasing.

If f ′ > 0 on an interval, then f is increasing over that interval.

If f ′ < 0 on an interval, then f is decreasing over that interval.

Moreover, the magnitude of the derivative gives us the magnitude of the rate of change; so if f ′ is

large (positive or negative), then the graph of f is steep (up or down), whereas if f ′ is small the

graph of f slopes gently. With this in mind, we can learn about the behavior of a function from the

behavior of its derivative.

The Derivative Function: Numerically

If we are given values of a function instead of its graph, we can estimate values of the derivative.

Example 3 Table 2.8 gives values of c(t), the concentration (�g/cm3) of a drug in the bloodstream at time t

(min). Construct a table of estimated values for c′(t), the rate of change of c(t) with respect to time.

Table 2.8 Concentration as a function of time

t (min) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c(t) (�g/cm3) 0.84 0.89 0.94 0.98 1.00 1.00 0.97 0.90 0.79 0.63 0.41
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Solution We estimate values of c′ using the values in the table. To do this, we have to assume that the data

points are close enough together that the concentration does not change wildly between them. From

the table, we see that the concentration is increasing between t = 0 and t = 0.4, so we expect a

positive derivative there. However, the increase is quite slow, so we expect the derivative to be small.

The concentration does not change between 0.4 and 0.5, so we expect the derivative to be roughly

0 there. From t = 0.5 to t = 1.0, the concentration starts to decrease, and the rate of decrease gets

larger and larger, so we expect the derivative to be negative and of greater and greater magnitude.

Using the data in the table, we estimate the derivative using the difference quotient:

c′(t) ≈
c(t + ℎ) − c(t)

ℎ
.

Since the data points are 0.1 apart, we use ℎ = 0.1, giving, for example,

c′(0) ≈
c(0.1) − c(0)

0.1
=

0.89 − 0.84

0.1
= 0.5 �g/cm3/min.

c′(0.1) ≈
c(0.2) − c(0.1)

0.1
=

0.94 − 0.89

0.1
= 0.5 �g/cm3/min.

See Table 2.9. Notice that the derivative has small positive values until t = 0.4, where it is roughly

0, and then it gets more and more negative, as we expected. The slopes are graphed in Figure 2.35.

Table 2.9 Estimated

derivative of concentration

t c′(t)

0 0.5

0.1 0.5

0.2 0.4

0.3 0.2

0.4 0.0

0.5 −0.3

0.6 −0.7

0.7 −1.1

0.8 −1.6

0.9 −2.2

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

c(t)

Slope = 0.5
✻ ✻

Slope = 0

✻

Slope = −2.2 ✲

Figure 2.35: Graph of concentration as a function of time

Improving Numerical Estimates for the Derivative

In the previous example, the estimate for the derivative at 0.2 used the interval to the right; we found

the average rate of change between t = 0.2 and t = 0.3. However, we could equally well have gone

to the left and used the rate of change between t = 0.1 and t = 0.2 to approximate the derivative at

0.2. For a more accurate result, we could average these slopes and say

c′(0.2) ≈
1

2

(

Slope to left

of 0.2
+

Slope to right

of 0.2

)

=
0.5 + 0.4

2
= 0.45.

In general, averaging the slopes leads to a more accurate answer.

Derivative Function: From a Formula

If we are given a formula for f , can we come up with a formula for f ′? We often can, as shown in

the next example. Indeed, much of the power of calculus depends on our ability to find formulas for

the derivatives of all the functions we described earlier. This is done systematically in Chapter 3.
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Derivative of a Constant Function

The graph of a constant function f (x) = k is a horizontal line, with a slope of 0 everywhere. There-

fore, its derivative is 0 everywhere. (See Figure 2.36.)

If f (x) = k, then f ′(x) = 0.

x

f (x) = k

Slope = 0
✒

Figure 2.36: A constant function

Derivative of a Linear Function

We already know that the slope of a straight line is constant. This tells us that the derivative of a

linear function is constant.

If f (x) = b + mx, then f ′(x) = Slope = m.

Derivative of a Power Function

Example 4 Find a formula for the derivative of f (x) = x2.

Solution Before computing the formula for f ′(x) algebraically, let’s try to guess the formula by looking for a

pattern in the values of f ′(x). Table 2.10 contains values of f (x) = x2 (rounded to three decimals),

which we can use to estimate the values of f ′(1), f ′(2), and f ′(3).

Table 2.10 Values of f (x) = x2 near x = 1, x = 2, x = 3 (rounded to three decimals)

x x2

0.999 0.998

1.000 1.000

1.001 1.002

1.002 1.004

x x2

1.999 3.996

2.000 4.000

2.001 4.004

2.002 4.008

x x2

2.999 8.994

3.000 9.000

3.001 9.006

3.002 9.012

Near x = 1, the value of x2 increases by about 0.002 each time x increases by 0.001, so

f ′(1) ≈
0.002

0.001
= 2.

Similarly, near x = 2 and x = 3, the value of x2 increases by about 0.004 and 0.006, respectively,

when x increases by 0.001. So

f ′(2) ≈
0.004

0.001
= 4 and f ′(3) ≈

0.006

0.001
= 6.

Knowing the value of f ′ at specific points can never tell us the formula for f ′, but it certainly can

be suggestive: Knowing f ′(1) ≈ 2, f ′(2) ≈ 4, f ′(3) ≈ 6 suggests that f ′(x) = 2x.

The derivative is calculated by forming the difference quotient and taking the limit as ℎ goes to

zero. The difference quotient is

f (x + ℎ) − f (x)

ℎ
=

(x + ℎ)2 − x2

ℎ
=

x2 + 2xℎ + ℎ2 − x2

ℎ
=

2xℎ + ℎ2

ℎ
.
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Since ℎ never actually reaches zero, we can cancel it in the last expression to get 2x + ℎ. The limit

of this as ℎ goes to zero is 2x, so

f ′(x) = lim
ℎ→0

(2x + ℎ) = 2x.

Example 5 Calculate f ′(x) if f (x) = x3.

Solution We look at the difference quotient

f (x + ℎ) − f (x)

ℎ
=

(x + ℎ)3 − x3

ℎ
.

Multiplying out gives (x + ℎ)3 = x3 + 3x2ℎ + 3xℎ2 + ℎ3, so

f ′(x) = lim
ℎ→0

x3 + 3x2ℎ + 3xℎ2 + ℎ3 − x3

ℎ
= lim

ℎ→0

3x2ℎ + 3xℎ2 + ℎ3

ℎ
.

Since in taking the limit as ℎ → 0, we consider values of ℎ near, but not equal to, zero, we can cancel

ℎ, giving

f ′(x) = lim
ℎ→0

3x2ℎ + 3xℎ2 + ℎ3

ℎ
= lim

ℎ→0
(3x2 + 3xℎ + ℎ2).

As ℎ → 0, the value of (3xℎ + ℎ2) → 0, so

f ′(x) = lim
ℎ→0

(3x2 + 3xℎ + ℎ2) = 3x2.

The previous two examples show how to compute the derivatives of power functions of the form

f (x) = xn, when n is 2 or 3. We can use the Binomial Theorem to show the power rule for a positive

integer n:

If f (x) = xn then f ′(x) = nxn−1.

This result is in fact valid for any real value of n.

Summary for Section 2.3

• For any function f , we define the derivative function, f ′, by

f ′(x) = Rate of change of f at x = lim
ℎ→0

f (x + ℎ) − f (x)

ℎ
.

For every x-value for which this limit exists, we say f is differentiable at that x-value. If the

limit exists for all x in the domain of f , we say f is differentiable everywhere.

• If f ′ > 0 on an interval, then f is increasing over that interval.

• If f ′ < 0 on an interval, then f is decreasing over that interval.

• Derivative of a constant function: If f (x) = k, then f ′(x) = 0.

• Derivative of a linear function: If f (x) = b + mx, then f ′(x) = Slope = m.

• Derivative of a power function: If f (x) = xn then f ′(x) = nxn−1.
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Exercises and Problems for Section 2.3 Online Resource: Additional Problems for Section 2.3
EXERCISES

1. (a) Estimate f ′(2) using the values of f in the table.

(b) For what values of x does f ′(x) appear to be posi-

tive? Negative?

x 0 2 4 6 8 10 12

f (x) 10 18 24 21 20 18 15

2. Find approximate values for f ′(x) at each of the x-

values given in the following table.

x 0 5 10 15 20

f (x) 100 70 55 46 40

3. Values of f (x) are in the table. Where in the interval

−12 ≤ x ≤ 9 does f ′(x) appear to be the greatest?

Least?

x −12 −9 −6 −3 0 3 6 9

f (x) 1.02 1.05 1.12 1.14 1.15 1.14 1.12 1.06

For Exercises 4–13, graph the derivative of the given func-

tion.

4.

−4 4

−4

4

x

y 5.

−4 4

−4

4

x

y

6.

−4 4

−4

4

x

y 7.

−4

4

−4

4

x

y

8.

−4 4

−4

4

x

y 9.

−4 4

−4

4

y

x

10.

−4 4

−4

4

x

y 11.

−4 4

−4

4

x

y

12.

−4 4

−4

4

x

y 13.

−4 4

−4

4

x

y

For Exercises 14–19, sketch the graph of f (x), and use this

graph to sketch the graph of f ′(x).

14. f (x) = 5x 15. f (x) = x2

16. f (x) = x(x − 1) 17. f (x) = ex

18. f (x) = cos x 19. f (x) = ln x

In Exercises 20–21, find a formula for the derivative using

the power rule. Confirm it using difference quotients.

20. k(x) = 1∕x 21. l(x) = 1∕x2

In Exercises 22–27, find a formula for the derivative of the

function using the difference quotient.

22. g(x) = 2x2 − 3 23. m(x) = 1∕(x + 1)

24. g(x) = 4x − 5 25. g(x) = x2 + 2x + 1

26. g(x) = x3 + 1 27. g(x) = 1∕
√

x

PROBLEMS

Problems 28–31 show a graph of f (x) for −1 ≤ x ≤ 1.

(a) What is/are the sign(s) of f ′(x) as x increases from −1

to 1?

(b) Consider the graph of g(x) = −f (x). What is/are the

sign(s) of g′(x) as x increases from −1 to 1?

(c) Consider the graph of ℎ(x) = f (x) + 2. What is/are the

sign(s) of ℎ′(x) as x increases from −1 to 1?

28.

−1 1

f (x)

x

29.

−1 1

f (x)

x

30.

−1 1

f (x)

x

31.

−1 1

f (x)

x
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32. In each case, graph a smooth curve whose slope meets

the condition.

(a) Everywhere positive and increasing gradually.

(b) Everywhere positive and decreasing gradually.

(c) Everywhere negative and increasing gradually (be-

coming less negative).

(d) Everywhere negative and decreasing gradually

(becoming more negative).

33. Draw a possible graph of y = f (x) given the following

information about its derivative.

• f ′(x) > 0 for x < −1

• f ′(x) < 0 for x > −1

• f ′(x) = 0 at x = −1

34. For f (x) = lnx, construct tables, rounded to four dec-

imals, near x = 1, x = 2, x = 5, and x = 10. Use the

tables to estimate f ′(1), f ′(2), f ′(5), and f ′(10). Then

guess a general formula for f ′(x).

35. Given the numerical values shown, find approximate

values for the derivative of f (x) at each of the x-values

given. Where is the rate of change of f (x) positive?

Where is it negative? Where does the rate of change

of f (x) seem to be greatest?

x 0 1 2 3 4 5 6 7 8

f (x) 18 13 10 9 9 11 15 21 30

36. Values of x and g(x) are given in the table. For what

value of x does g′(x) appear to be closest to 3?

x 2.7 3.2 3.7 4.2 4.7 5.2 5.7 6.2

g(x) 3.4 4.4 5.0 5.4 6.0 7.4 9.0 11.0

37. In the graph of f in Figure 2.37, at which of the labeled

x-values is

(a) f (x) greatest? (b) f (x) least?

(c) f ′(x) greatest? (d) f ′(x) least?

x1

x2 x3

x4 x5

x6

x

f (x)

Figure 2.37

For Problems 38–47, sketch the graph of f ′(x).

38.

−3 3

−3

3 f (x)

x

39.

1 2

−2

−1

1

2

x

f (x)

40.

2 4

f (x)

x

41.

1 2
x

f (x)

42.

4
x

f (x) 43.

x

f (x)

44.

−3 3

−4

4 f (x)

x

45.

−1 1 2 3
x

f (x)

46.

−1 1 2 3 4 5 6
x

f (x)
47.

x

f (x)

In Problems 48–51, match f ′ with the corresponding f

in Figure 2.38.

−1 1
x

(I)

−1 1
x

(II)

−1 1
x

(III)

−1 1
x

(IV)

−1 1
x

(V)

Figure 2.38

48.

−1 1

f ′(x)

x

49.

−1 1

f ′(x)

x
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50.

−1 1

f ′(x)

x

51.

−1 1

f ′(x)

x

52. Roughly sketch the shape of the graph of a quadratic

polynomial, f , if it is known that:

• (1, 3) is on the graph of f .

• f ′(0) = 3, f ′(2) = 1, f ′(3) = 0.

53. A vehicle moving along a straight road has distance f (t)

from its starting point at time t. Which of the graphs

in Figure 2.39 could be f ′(t) for the following scenar-

ios? (Assume the scales on the vertical axes are all the

same.)

(a) A bus on a popular route, with no traffic

(b) A car with no traffic and all green lights

(c) A car in heavy traffic conditions

t

(I)

t

(II)

t

(III)

Figure 2.39

54. A child inflates a balloon, admires it for a while and

then lets the air out at a constant rate. If V (t) gives the

volume of the balloon at time t, then Figure 2.40 shows

V ′(t) as a function of t. At what time does the child:

(a) Begin to inflate the balloon?

(b) Finish inflating the balloon?

(c) Begin to let the air out?

(d) What would the graph of V ′(t) look like if the child

had alternated between pinching and releasing the

open end of the balloon, instead of letting the air

out at a constant rate?

3 6 9 12 15 18

1

−2

t

V ′(t)

Figure 2.40

55. Figure 2.41 shows a graph of voltage across an electri-

cal capacitor as a function of time. The current is pro-

portional to the derivative of the voltage; the constant

of proportionality is positive. Sketch a graph of the cur-

rent as a function of time.

time

voltage

Figure 2.41

56. An empty tank is first filled and then drained of water.

Figure 2.42 shows the volume V = f (t) m3, of water in

the tank, t minutes after it begins to be filled.

(a) How long does it take to fill the tank, and how fast

is it being filled during this time?

(b) How fast is water draining from the tank at t = 7

minutes? Include units.

(c) Graph f ′(t), the derivative of f . Label the axes

with the appropriate units.

5 10 15 20
0

1

2

3

4

5

t

V

Figure 2.42

57. Figure 2.43 is the graph of f ′, the derivative of a func-

tion f . On what interval(s) is the function f

(a) Increasing? (b) Decreasing?

x1

x2

x3
x4 x5

f ′

x

Figure 2.43: Graph of f ′, not f

58. The derivative of f is the spike function in Figure 2.44.

What can you say about the graph of f?

t

f ′(t)

Figure 2.44

59. The population of a herd of deer is modeled by

P (t) = 4000 + 500 sin
(

2�t −
�

2

)

where t is measured in years from January 1.

(a) How does this population vary with time? Sketch

a graph of P (t) for one year.
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(b) Use the graph to decide when in the year the pop-

ulation is a maximum. What is that maximum? Is

there a minimum? If so, when?

(c) Use the graph to decide when the population is

growing fastest. When is it decreasing fastest?

(d) Estimate roughly how fast the population is chang-

ing on the first of July.

60. The graph in Figure 2.45 shows the accumulated federal

debt since 1980. Sketch the derivative of this function.

What does it represent?8

2005 2010 2015
5

10

15

20

year

debt (trillions of dollars)

Figure 2.45

Strengthen Your Understanding

In Problems 61–63, explain what is wrong with the state-

ment.

61. The graph of the derivative of the function f (x) = cos x

is always above the x-axis.

62. A function, f, whose graph is above the x-axis for all

x has a positive derivative for all x.

63. If f ′(x) = g′(x) then f (x) = g(x).

In Problems 64–65, give an example of:

64. A function representing the position of a particle which

has positive velocity for 0 < t < 0.5 and negative ve-

locity for 0.5 < t < 1.

65. A family of linear functions all with the same deriva-

tive.

Are the statements in Problems 66–69 true or false? Give an

explanation for your answer.

66. The derivative of a linear function is constant.

67. If g(x) is a vertical shift of f (x), then f ′(x) = g′(x).

68. If f ′(x) is increasing, then f (x) is also increasing.

69. If f (a) ≠ g(a), then f ′(a) ≠ g′(a).

2.4 INTERPRETATIONS OF THE DERIVATIVE

We have seen the derivative interpreted as a slope and as a rate of change. In this section, we illustrate

the process of obtaining other interpretations.

An Alternative Notation for the Derivative

So far we have used the notation f ′ to stand for the derivative of the function f . An alternative

notation for derivatives was introduced by the German mathematician Gottfried Wilhelm Leibniz

(1646–1716). If the variable y depends on the variable x, that is, if

y = f (x),

then he wrote dy∕dx for the derivative, so

dy

dx
= f ′(x).

Leibniz’s notation is quite suggestive if we think of the letter d in dy∕dx as standing for “small

difference in … .” For small changes Δx and Δy in x and y, the notation dy∕dx reminds us that the

derivative is a limit of ratios of the form

Difference in y-values

Difference in x-values
=

Δy

Δx
.

Although not formally correct, it can be helpful to think of dy∕dx as a small change in y divided by

a small change in x. That is, when Δx is small,

dy

dx
≈

Δy

Δx
.

Formally, the separate entities dy and dx have no independent meaning: they are all part of one

notation. On the other hand, many scientists and mathematicians think of dy and dx as separate

entities representing “infinitesimally” small differences in y and x, even though it is difficult to say

exactly how small “infinitesimal” is.

8Data from www.treasurydirect.gov, accessed April 20, 2020.
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Another way to view the notation dy∕dx is to think of d∕dx as a single symbol meaning “the

derivative with respect to x of ….” So dy∕dx can be viewed as

d

dx
(y), meaning “the derivative with respect to x of y.”

Using Units to Interpret the Derivative

The notation dy∕dx makes it easy to see the units for the derivative: the units for y divided by the

units for x. The units often suggest the interpretation of the derivative.

For example, suppose s = f (t) gives the distance, in meters, of a body from a fixed point as a

function of time, t, in seconds. Suppose we know that f ′(2) = 10. We can write this same fact in

Leibniz notation as
ds

dt

|

|

|

|t=2

= 10.

The Leibniz notation reminds us that the units of this derivative are meters per second. Then

ds

dt

|

|

|

|t=2

= f ′(2) = 10 meters/sec

tells us that when t = 2 seconds, the body is moving at an instantaneous velocity of 10 meters/sec.

This means that if the body continued to move at this speed for one more second, it would move 10

more meters. Thus, for a time increment Δt, the distance moved would be given by

Δs ≈ f ′(2) ⋅ Δt that is, Δs ≈ 10 ⋅ Δt.

In practice, however, the velocity of the body may not remain 10 meters/sec for long, so the approx-

imation is only reliable for small Δt.

Example 1 The cost of extracting T tons of ore from a copper mine is C = f (T ) dollars. What does it mean to

say that f ′(2000) = 100?

Solution In the Leibniz notation,

f ′(2000) =
dC

dT

|

|

|

|T=2000

= 100.

Since C is measured in dollars and T is measured in tons, dC∕dT is measured in dollars per ton.

For small ΔT , we have

ΔC ≈ 100ΔT .

So the statement f ′(2000) = 100 says that when 2000 tons of ore have already been extracted from

the mine, the additional cost ΔC of extracting the next ton (ΔT = 1) is approximately $100.

As another example, if 5 tons is a small increase, we use this relationship to approximate the

additional cost of increasing production by 5 tons above 2000:

Additional cost = ΔC ≈ 100ΔT = 100 ⋅ 5 = 500 dollars.

We see that the derivative, 100, acts as a multiplier, converting Δt tons into ΔC in dollars.

Example 2 The cost C (in dollars) of building a house A square feet in area is given by the function C = f (A).

What is the practical interpretation of the function f ′(A)?

Solution In the Leibniz notation,

f ′(A) =
dC

dA
.

This is a cost divided by an area, so it is measured in dollars per square foot. You can think of dC

as the extra cost of building an extra dA square feet of house. Then you can think of dC∕dA as the
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additional cost per square foot. So if you are planning to build a house A square feet in area, f ′(A)

is the cost per square foot of the extra area involved in building a slightly larger house, and is called

the marginal cost. The marginal cost of adding one more square foot is probably smaller than the

average cost per square foot for the entire house, since once you are already set up to build a large

house, the cost of adding one square foot is likely to be small.

Example 3 If q = f (p) gives the number of pounds of sugar produced by a manufacturer when the price per

pound is p cents, then what are the units and the meaning of the statement f ′(30) = 50?

Solution We have

f ′(30) =
dq

dp

|

|

|

|p=30

= 50,

so the units of f ′(30) are pounds per cent. This says that when the price is 30c/, the quantity produced

is increasing at 50 pounds/cent. Thus, if the price increased by one cent from 30c/ to 31c/, the quantity

produced would increase by approximately 50 pounds.

Example 4 Water is flowing through a pipe at a constant rate of 10 cubic feet per second. Interpret this rate as

the derivative of some function.

Solution You might think at first that the statement has something to do with the velocity of the water, but in

fact a flow rate of 10 cubic feet per second could be achieved either with very slowly moving water

through a large pipe, or with very rapidly moving water through a narrow pipe. If we look at the

units—cubic feet per second—we realize that we are being given the rate of change of a quantity

measured in cubic feet. But a cubic foot is a measure of volume, so we are being told the rate of

change of a volume. One way to visualize this is to imagine all the water that is flowing through the

pipe ending up in a tank somewhere. Let V (t) be the volume of water in the tank at time t. Then we

are being told that the rate of change of V (t) is 10, or

V ′(t) =
dV

dt
= 10.

Example 5 Let N = g(t) be the estimated number of alternative-fueled cars9 in use in the US, in thousands,

where t is the number of years since 2015. Explain the meaning of the statements:

(a) g′(4) = 400 (b) g−1(10,220) = 4 (c) (g−1)′(10,220) = 0.0025

Solution (a) The units of N are thousands of cars, the units of t are years, so the units of g′(t) are thousand

cars per year. Thus, the statement g′(4) = 400 tells us that in the year 2019, the number of

alternative-fueled cars was increasing at 400,000 per year. Thus, in one more year after 2019

we would expect the number of alternative-fueled vehicles in use in the US to increase by about

400,000 cars.

(b) The statement g−1(10,220) = 4, which is equivalent to g(4) = 10,220, tells us that the year in

which the number of alternative-fueled cars was 10,220,000 was 2019.

(c) The units of (g−1)′(V ) are years per thousand cars. The statement (g−1)′(10,220) = 0.0025 tells

us that when the number of alternative-fueled cars was 10,220,000, it took about 0.0025 years,

or about 22 hours, for the number of alternative-fueled cars to grow by a thousand cars.

9Estimates based on data on www.eia.gov, accessed February 27, 2020.
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Summary for Section 2.4

• An alternative notation for the derivative:
dy

dx
= f ′(x)

• The units for the derivative
dy

dx
: The units for y divided by the units for x.

Exercises and Problems for Section 2.4 Online Resource: Additional Problems for Section 2.4
EXERCISES

1. At time t (in hours) there are Q = g(t) cubic meters

of water in a reservoir. Which expression (i)–(vi) rep-

resents the statement that the amount of water rises by

13 cubic meters per hour at time t = 15?

(i) g(13) = 15 (ii) g(15) = 13

(iii) g′(13) = 15 (iv) g′(15) = 13

2. The cost, C (in dollars), to produce g gallons of a chem-

ical can be expressed as C = f (g). Using units, explain

the meaning of the following statements in terms of the

chemical:

(a) f (200) = 1300 (b) f ′(200) = 6

3. The time for a chemical reaction, T (in minutes), is

a function of the amount of catalyst present, a (in

milliliters), so T = f (a).

(a) If f (5) = 18, what are the units of 5? What are the

units of 18? What does this statement tell us about

the reaction?

(b) If f ′(5) = −3, what are the units of 5? What are

the units of −3? What does this statement tell us?

4. The temperature, T , in degrees Fahrenheit, of a cold

yam placed in a hot oven is given by T = f (t), where t

is the time in minutes since the yam was put in the oven.

(a) What is the sign of f ′(t)? Why?

(b) What are the units of f ′(20)? What is the practical

meaning of the statement f ′(20) = 2?

5. The temperature, H , in degrees Celsius, of a cup of cof-

fee placed on the kitchen counter is given by H = f (t),

where t is in minutes since the coffee was put on the

counter.

(a) Is f ′(t) positive or negative? Give a reason for your

answer.

(b) What are the units of f ′(20)? What is its practical

meaning in terms of the temperature of the coffee?

6. High internet download speeds generally cost more in

fees. Let c = f (s) be the monthly cost in dollars for a

speed of s megabytes per second, Mbps.

(a) In words with units, give interpretations of

(i) f (10) = 40 (ii) f ′(10) = 2.

(b) Is f (s) an increasing or decreasing function of s?

7. The cost, C (in dollars), to produce q quarts of ice cream

is C = f (q). In each of the following statements, what

are the units of the two numbers? In words, what does

each statement tell us?

(a) f (200) = 600 (b) f ′(200) = 2

8. An economist is interested in how the price of a certain

item affects its sales. At a price of $p, a quantity, q, of

the item is sold. If q = f (p), explain the meaning of

each of the following statements:

(a) f (150) = 2000 (b) f ′(150) = −25

9. The atmospheric pressure at a point ℎ meters above the

surface of the earth is P = f (ℎ) torr.10 Give practical

interpretations of the following statements.

(a) f (500) = 708. (b) f ′(500) = −0.101.

10. Let S(t) be the amount of water, measured in acre-

feet,11 that is stored in a reservoir in week t.

(a) What are the units of S ′(t)?

(b) What is the practical meaning of S ′(t) > 0? What

circumstances might cause this situation?

11. A company’s cost to make q shoes is C = f (q) dollars.

(a) Explain the meaning of the following statements.

(i) f (10) = 250. (ii) f ′(10) = 7.

(b) What is the practical meaning of f ′(q)?

12. Suppose C(r) is the total cost of paying off a car loan

borrowed at an annual interest rate of r%. What are the

units of C ′(r)? What is the practical meaning of C ′(r)?

What is its sign?

13. Let f (x) be the elevation in feet of the Mississippi River

x miles from its source. What are the units of f ′(x)?

What can you say about the sign of f ′(x)?

In Exercises 14–18, give the units and sign of the derivative.

14. ℎ′(t), where ℎ(t) is the altitude of a parachutist, in feet,

t seconds after he jumps out of a plane.

15. f ′(t), where f (t) is the temperature of a room, in de-

grees Celsius, t minutes after a heater is turned on.

16. P ′(r), where P (r) is the monthly payment on a car loan,

in dollars, if the annual interest rate is r%.

17. T ′(v), where T (v) is the time, in minutes, that it takes

to drive from Tucson to Phoenix at a constant speed of

v miles per hour.

18. W ′(x), where W (x) is the work required, in joules, to

stretch a spring x cm beyond its natural length.

10A torr is a unit of pressure.
11An acre-foot is the amount of water it takes to cover one acre of area with 1 foot of water.
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19. Suppose P (t) is the monthly payment, in dollars, on a

mortgage which will take t years to pay off. What are the

units of P ′(t)? What is the practical meaning of P ′(t)?

What is its sign?

20. After investing $1000 at an annual interest rate of 2%

compounded continuously for t years, your balance is

$B, where B = f (t). What are the units of dB∕dt?

What is the financial interpretation of dB∕dt?

21. Investing $1000 at an annual interest rate of r%, com-

pounded continuously, for 10 years gives you a balance

of $B, where B = g(r). Give a financial interpretation

of the statements:

(a) g(2) ≈ 1221.

(b) g′(2) ≈ 122. What are the units of g′(2)?

22. Let
dV

dr

|

|

|

|

|r=2

= 16.

(a) For small Δr, write an approximate equation relat-

ing ΔV and Δr near r = 2.

(b) Estimate ΔV if Δr = 0.1.

(c) Let V = 32 when r = 2. Estimate V when r = 2.1.

23. Let R = f (S) and f ′(10) = 3.

(a) For small ΔS, write an approximate equation re-

lating ΔR and ΔS near S = 10.

(b) Estimate the change inR ifS changes fromS = 10

to S = 10.2.

(c) Let f (10) = 13. Estimate f (10.2).

24. Let y = f (x) with f (3) = 5 and f ′(3) = 9.

(a) For small Δx, write an approximate equation relat-

ing Δy and Δx near x = 3.

(b) Estimate f (2.9).

25. The wind speed, W , in meters per second, at a dis-

tance x km from the center of a hurricane is given by

W = ℎ(x).

(a) Give the the units of dW ∕dx.

(b) For a certain hurricane, ℎ′(15) > 0. What does this

tell you about the hurricane?

26. Meteorologists define the temperature lapse rate to be

−dT ∕dz where T is the air temperature in Celsius at

altitude z kilometers above the ground.

(a) What are the units of the lapse rate?

(b) What is the practical meaning of a lapse rate of 6.5?

PROBLEMS

27. If t is the number of years since 2019, the population,

P , of China,12 in billions, can be approximated by the

function

P = f (t) = 1.434(1.0043)t .

Estimate f (3) and f ′(3), giving units. What do these

two numbers tell you about the population of China?

28. A city grew in population throughout the 1980s and

into the early 1990s. The population was at its largest in

1995, and then shrank until 2010. Let P = f (t) repre-

sent the population of the city t years since 1980. Sketch

graphs of f (t) and f ′(t), labeling the units on the axes.

29. Let Δx be small, and y = f (x), y = g(x), y = ℎ(x), y =

k(x) be functions with

f ′(1) = 3, g′(1) = 0.3, ℎ′(1) = −0.3, k′(1) = −3.

(a) For Δx positive, for which functions is Δy > Δx?

(b) For which functions is |Δy| < |Δx|?

30. Analysis of satellite data indicates that the Greenland

ice sheet lost approximately 2900 gigatons (gt) of mass

between March 2002 and September 2014. The mean

mass loss rate for 2013–14 was 6 gt/year; the rate for

2012–13 was 474 gt/year.13

(a) What derivative does this tell us about? Define the

function and give units for each variable.

(b) What numerical statement can you make about the

derivative? Give units.

31. A laboratory study investigating the relationship be-

tween diet and weight in adult humans found that the

weight of a subject, W , in pounds, was a function,

W = f (c), of the average number of Calories per day,

c, consumed by the subject.

(a) In terms of diet and weight, interpret the state-

ments f (1800) = 155, f ′(2000) = 0.0003, and

f−1(162) = 2200.

(b) What are the units of f ′(c) = dW ∕dc?

32. An economist is interested in how the price of a certain

commodity affects its sales. Suppose that at a price of

$p, a quantity q of the commodity is sold. If q = f (p),

explain in economic terms the meaning of the state-

ments f (10) = 240,000 and f ′(10) = −29,000.

33. The cost of resurfacing a playground of area A square

feet is C(A) dollars. With units, interpret

(a) C(140) = 2100 (b) C ′(140) = 10

(c) C(140)∕140 = 15

34. Let W (ℎ) be an invertible function which tells how

many gallons of water an oak tree of height ℎ feet uses

on a hot summer day. Give practical interpretations for

each of the following quantities or statements.

(a) W (50) (b) W −1(40) (c) W ′(5) = 3

35. The population of Mexico in millions is P = f (t),

where t is the number of years since 2014. Explain the

meaning of the statements:

(a) f ′(−6) = 1.35 (b) f−1(113.2) = −5

(c) (f−1)′(113.2) = 0.74

12www.worldometers.info, accessed September 25, 2019.
13www.arctic.noaa.gov, accessed April 3, 2015.
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36. Let f (t) be the number of centimeters of rainfall that

has fallen since midnight, where t is the time in hours.

Interpret the following in practical terms, giving units.

(a) f (10) = 3.1 (b) f−1(5) = 16

(c) f ′(10) = 0.4 (d) (f−1)′(5) = 2

37. Water is flowing into a tank; the depth, in feet, of the

water at time t in hours is ℎ(t). Interpret, with units, the

following statements.

(a) ℎ(5) = 3 (b) ℎ′(5) = 0.7

(c) ℎ−1(5) = 7 (d) (ℎ−1)′(5) = 1.2

38. As the altitude of an object increases, the pressure of

the earth’s atmosphere on the object decreases. Let

P = f (ℎ) denote the atmospheric pressure, in kilopas-

cals (kPa), at an altitude of ℎ thousand meters above

sea level. Interpret each of the following statements in

terms of altitude and atmospheric pressure.

(a) f (1) = 88 (b) f ′(1) = −11.5

(c) f−1(10) = 17.6 (d) (f−1)′(10) = −0.76

39. As the distance of an object from the surface of the

earth increases, the weight of the object decreases. Let

w = f (d) be the weight of an object, in Newtons, at a

distance of d kilometers above the earth’s surface. Inter-

pret each of the following quantities in terms of weight

and distance from the surface of the earth. Then, decide

whether the quantity is positive or negative, and explain

your answer.

(a) f (80) (b) f ′(80)

(c) f−1(200) (d) (f−1)′(200)

40. The acceleration a, in meters/second2, of a child on a

merry-go-round depends on her distance, r meters from

the center, and her speed v, in meters per second. When

v is constant, a is a function of r, so a = f (r). When

r is constant, a is a function of v, so a = g(v). Explain

what each of the following statements means in terms

of the child.

(a) f ′(2) = −1 (b) g′(2) = 2

41. An ideal gas held at constant temperature expands as

pressure on it decreases. For a particular sample of an

ideal gas held at constant temperature, we have V =

f (P ), where V is liters of volume of the sample, and P

is the pressure of the gas, in atmospheres.

(a) What is the sign of f ′(P )? Explain your answer.

(b) Give a practical interpretation of the statement

f ′(5) = −4.2.

42. The amount (in grams) of a 20-gram sample of cesium-

137 remaining after t years is given by Q = f (t).

(a) Find and interpret f (0).

(b) What is the sign of f ′(t)? Explain.

(c) Give a practical interpretation of the statement

f ′(0) = −0.46.

43. A dam of width w meters holds back a 10-meter-high

column of water (see Figure 2.46). The total force on

the dam is given by F = g(w) kilonewtons (kN). What

does the statement g′(10) = 490 mean in practical

terms?

✻

❄

10 m

w

✛

✛

Figure 2.46

44. Let F = g(A) be the force, in kilonewtons (kN) on a

surface of area A m2 due to atmospheric pressure. In-

terpret the statement g′(10) = 101 in this context.

45. If g(v) is the fuel efficiency, in miles per gallon, of a

car going at v miles per hour, what are the units of

g′(90)? What is the practical meaning of the statement

g′(55) = −0.54?

46. The function P (d) gives the total electricity, in kWh,

that a solar array has generated between the start of the

year and the end of the d th day of the year. For each

statement below, give a mathematical equation in terms

of P , its inverse, or derivatives.

(a) The array had generated 3500 kWh of electricity

by the end of January 4.

(b) At the end of January 4, the array was generating

electricity at a rate of 1000 kWh per day.

(c) When the array had generated 5000 kWh of elec-

tricity, it took approximately half a day to generate

an additional 1000 kWh of electricity.

(d) At the end of January 30, it took approximately one

day to generate an additional 2500 kWh of electric-

ity.

47. Let P be the total petroleum reservoir on Earth in the

year t. (In other words, P represents the total quantity

of petroleum, including what’s not yet discovered, on

Earth at time t.) Assume that no new petroleum is being

made and that P is measured in barrels. What are the

units of dP∕dt? What is the meaning of dP∕dt? What

is its sign? How would you set about estimating this

derivative in practice? What would you need to know

to make such an estimate?

48. (a) If you jump out of an airplane without a parachute,

you fall faster and faster until air resistance causes

you to approach a steady velocity, called the ter-

minal velocity. Sketch a graph of your velocity

against time.

(b) Explain the concavity of your graph.

(c) Assuming air resistance to be negligible at t = 0,

what natural phenomenon is represented by the

slope of the graph at t = 0?
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49. Let W be the amount of water, in gallons, in a bathtub

at time t, in minutes.

(a) What are the meaning and units of dW ∕dt?

(b) The bathtub is full of water at time t0, so that

W (t0) > 0. Subsequently, at time tp > t0, the plug

is pulled. Is dW ∕dt positive, negative, or zero:

(i) For t0 < t < tp?

(ii) After the plug is pulled, but before the tub is

empty?

(iii) When all the water has drained from the tub?

50. The Arctic Sea ice extent, the area of sea covered by

ice, grows over the winter months, typically from Oc-

tober to March. Let F (t) be the Arctic Sea ice extent,

in million of square kilometers, as a function of time,

t, in days since January 1, 2018. Then F ′(t) = 0.08 on

January 1, 2019.14

(a) Give the units of the 0.08, and interpret the number

in practical terms.

(b) Estimate ΔF , the change in F , between January

1 and January 4, 2019. Explain what this tells us

about Arctic Sea ice.

51. The depth, ℎ (in mm), of the water runoff down a slope

during a steady rain is a function of the distance, x (in

meters), from the top of the slope,15 so ℎ = f (x). We

have f ′(15) = 0.02.

(a) What are the units of the 15?

(b) What are the units of the 0.02?

(c) About how much difference in runoff depth is there

between two points around 15 meters down the

slope if one of them is 4 meters farther from the

top of the slope than the other?

52. Average leaf width, w (in mm), in tropical Australia16

is a function of the average annual rainfall, r (in mm),

so w = f (r). We have f ′(1500) = 0.0218.

(a) What are the units of the 1500?

(b) What are the units of the 0.0218?

(c) About how much difference in average leaf width

would you find in two forests whose average annual

rainfalls are near 1500 mm but differ by 200 mm?

53. When an ice dam for a glacial lake breaks, the maximal

outflow rate, Q in meters3∕sec is a function of V , the

volume of the lake (in millions of meters3).

(a) What are the units of dQ∕dV ?

(b) Observation shows that dQ∕dV |V =12 = 22. About

how much is the difference in maximal outflow

when dams break in two lakes with volumes near

12 ⋅ 106 meters3 if one of them has volume

500,000 meters3 greater than the other?

54. The growth rate, R (in cell divisions per hour), of the E.

coli bacterium is a function of C (in units of 10−4 M),

the concentration of glucose in the solution containing

the bacteria. (1 M is 1 mole of glucose per liter of solu-

tion.)17

(a) What are the units of dR∕dC?

(b) Observation shows the dR∕dC|C=1.5 = 0.1. What

are the units of the 1.5?

(c) Two populations are growing in glucose solutions

near 1.5 ⋅ 10−4 M, but one is 0.2 ⋅ 10−4 M more

concentrated than the other. How much difference

is there between the bacteria cell division rates?

55. A company’s revenue from car sales, C (in thousands

of dollars), is a function of advertising expenditure, a,

in thousands of dollars, so C = f (a).

(a) What does the company hope is true about the sign

of f ′?

(b) What does the statement f ′(100) = 2 mean in

practical terms? How about f ′(100) = 0.5?

(c) Suppose the company plans to spend about

$100,000 on advertising. If f ′(100) = 2, should

the company spend more or less than $100,000 on

advertising? What if f ′(100) = 0.5?

56. In September 2019 in the US, there was one birth every

8 seconds, one death every 12 seconds, and one new

international migrant every 33 seconds.18

(a) Let f (t) be the population of the US, where t is

time in seconds measured from the start of Septem-

ber 2019. Find f ′(0). Give units.

(b) To the nearest second, how long did it take for

the US population to add one person in September

2019?

57. During the 1970s and 1980s, the buildup of chlorofluo-

rocarbons (CFCs) created a hole in the ozone layer over

Antarctica. After the 1987 Montreal Protocol, an agree-

ment to phase out CFC production, the ozone hole has

shrunk. The ODGI (ozone depleting gas index) shows

the level of CFCs present.19 Let O(t) be the ODGI

for Antarctica in year t; then O(2016) = 81.6 and

O′(2016) = −1.4. Assuming that the ODGI decreases

at a constant rate, estimate when the ozone hole will

have recovered, which occurs when ODGI = 0.

14Sea ice extent definition and data values from nsidc.org/data/seaice_index/archives, accessed September 25, 2019.
15R. S. Anderson and S. P. Anderson, Geomorphology (Cambridge: CUP, 2010), p. 369.
16H. Shugart, Terrestrial Ecosystems in Changing Environments (Cambridge: CUP, 1998), p. 145.
17Jacques Monod, “The Growth of Bacterial Cultures”, Annu. Rev. Microbiol. 1949.3: 371–394.
18www.census.gov, accessed September 25, 2019.
19www.esrl.noaa.gov/gmd/odgi, accessed September 25, 2019.
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58. Figure 2.47 shows the yearly production possibility

curve y = f (x), for an economy that produces x thou-

sand skis and y thousand snowboards. A point (x, y) ly-

ing on the curve indicates a point of maximum produc-

tion, where all productive capacity is being harnessed.

(a) Estimate f (25). What does that tell you about the

economy’s output?

(b) Note that f is a decreasing function. What does

this mean in economic terms?

(c) Estimate f ′(25). What does that tell you about the

economy’s output?

10 20 30 40 50 60
0

10

20

30

40

x

y

Figure 2.47

59. When you breathe, a muscle (called the diaphragm)

reduces the pressure around your lungs and they ex-

pand to fill with air. The table shows the volume of a

lung as a function of the reduction in pressure from the

diaphragm. Pulmonologists (lung doctors) define the

compliance of the lung as the derivative of this func-

tion.20

(a) What are the units of compliance?

(b) Estimate the maximum compliance of the lung.

(c) Explain why the compliance gets small when the

lung is nearly full (around 1 liter).

Pressure reduction Volume

(cm of water) (liters)

0 0.20

5 0.29

10 0.49

15 0.70

20 0.86

25 0.95

30 1.00

Strengthen Your Understanding

In Problems 60–62, explain what is wrong with the state-

ment.

60. If the position of a car at time t is given by s(t) then the

velocity of the car is s′(t) and the units of s′ are meters

per second.

61. A spherical balloon originally contains 3 liters of air

and it is leaking 1% of its volume per hour. If r(t) is the

radius of the balloon at time t then r′(t) > 0.

62. A laser printer takes T (P ) minutes to produce P pages,

so the derivative
dT

dP
is measured in pages per minute.

In Problems 63–64, give an example of:

63. A function whose derivative is measured in

years/dollar.

64. A function whose derivative is measured in miles/day.

Are the statements in Problems 65–68 true or false? Give an

explanation for your answer.

65. By definition, the instantaneous velocity of an object

equals a difference quotient.

66. If y = f (x), then
dy

dx

|

|

|

|x=a

= f ′(a).

67. If f (t) is the quantity in grams of a chemical produced

after t minutes and g(t) is the same quantity in kilo-

grams, then f ′(t) = 1000g′(t).

68. If f (t) is the quantity in kilograms of a chemical pro-

duced after t minutes and g(t) is the quantity in kilo-

grams produced after t seconds, then f ′(t) = 60g′(t).

For Problems 69–70, assume g(v) is the fuel efficiency, in

miles per gallon, of a car going at a speed of v miles per

hour.

69. What are the units of g′(v) =
dg

dv
? There may be more

than one option.

(a) (miles)2∕(gal)(hour)

(b) hour∕gal

(c) gal∕hour

(d) (gal)(hour)∕(miles)2

(e) (miles/gallon)∕(miles/hour)

70. What is the practical meaning of g′(55) = −0.54?

There may be more than one option.

(a) When the car is going 55 mph, the rate of change of

the fuel efficiency decreases to approximately 0.54

miles/gal.

(b) When the car is going 55 mph, the rate of change

of the fuel efficiency decreases by approximately

0.54 miles/gal.

(c) If the car speeds up from 55 mph to 56 mph, then

the fuel efficiency is approximately −0.54 miles

per gallon.

(d) If the car speeds up from 55 mph to 56 mph,

then the car becomes less fuel efficient by approx-

imately 0.54 miles per gallon.

20en.wikipedia.org, accessed September 25, 2019.
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2.5 THE SECOND DERIVATIVE

Second and Higher Derivatives

Since the derivative is itself a function, we can consider its derivative. For a functionf , the derivative

of its derivative is called the second derivative, and written f ′′ (read “f double-prime”) or y′′. If

y = f (x), the second derivative can also be written as
d2y

dx2
, which means

d

dx

(

dy

dx

)

, the derivative

of
dy

dx
. We can also differentiate the second derivative to get the third derivative written as f ′′′(x)

or
d3y

dx3
. In fact, we can take the nth derivative written as f (n)(x) or

dny

dxn
for any integer n ≥ 1.

What Do Derivatives Tell Us?

Recall that the derivative of a function tells you whether a function is increasing or decreasing:

• If f ′ > 0 on an interval, then f is increasing over that interval.

• If f ′ < 0 on an interval, then f is decreasing over that interval.

If f ′ is always positive on an interval or always negative on an interval, then f is monotonic over

that interval.

Since f ′′ is the derivative of f ′,

• If f ′′ > 0 on an interval, then f ′ is increasing over that interval.

• If f ′′ < 0 on an interval, then f ′ is decreasing over that interval.

What does it mean for f ′ to be increasing or decreasing? An example in which f ′ is increasing

is shown in Figure 2.48, where the curve is bending upward, or is concave up. In the example shown

in Figure 2.49, in which f ′ is decreasing, the graph is bending downward, or is concave down. These

figures suggest the following result:

If f ′′ > 0 on an interval, then f ′ is increasing, so the graph of f is concave up there.

If f ′′ < 0 on an interval, then f ′ is decreasing, so the graph of f is concave down there.

f ′ < 0 f ′ > 0

f ′′ > 0
Concave up

Figure 2.48: Meaning of f ′′: The slope of f increases from left to right, f ′′ is positive, and f is concave up

f ′ > 0 f ′ < 0

f ′′ < 0
Concave down

Figure 2.49: Meaning of f ′′: The slope of f decreases from left to right, f ′′ is negative, and f is concave down

Warning! The graph of a function f can be concave up everywhere and yet have f ′′ = 0 at

some point. For instance, the graph of f (x) = x4 in Figure 2.50 is concave up, but it can be shown

that f ′′(0) = 0. If we are told that the graph of a function f is concave up, we can be sure that f ′′

is not negative, that is f ′′ ≥ 0, but not that f ′′ is positive, f ′′ > 0.
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f ′′ = 0

☛ x

Figure 2.50: Graph of f (x) = x4

If the graph of f is concave up and f ′′ exists on an interval, then f ′′ ≥ 0 there.

If the graph of f is concave down and f ′′ exists on an interval, then f ′′ ≤ 0 there.

Example 1 For the functions graphed in Figure 2.51, what can be said about the sign of the second derivative?

t t t

f

g

ℎ(a) (b) (c)

Figure 2.51: What signs do the second derivatives have?

Solution (a) The graph of f is concave up everywhere, so f ′′ ≥ 0 everywhere.

(b) The graph of g is concave down everywhere, so g′′ ≤ 0 everywhere.

(c) For t < 0, the graph of ℎ is concave down, so ℎ′′ ≤ 0 there. For t > 0, the graph of ℎ is concave

up, so ℎ′′ ≥ 0 there.

Example 2 Sketch the second derivative f ′′ for the function f of Example 1 on page 105, graphed with its

derivative, f ′, in Figure 2.52. Relate the resulting graph of f ′′ to the graphs of f and f ′.

−2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

4

5

x

f ′(x)

f (x)

Figure 2.52: Function, f in color; derivative, f ′, in black

−2 −1 1 2 3 4 5

−4

−3

−2

−1

1

2

3

4 f ′′(x)

x

Figure 2.53: Graph of f ′′

Solution We want to sketch the derivative of f ′. We do this by estimating the slopes of f ′ and plotting them,

obtaining Figure 2.53.

We observe that where f ′′ > 0, the graph of f is concave up and f ′ is increasing, and that

where f ′′ < 0, the graph of f is concave down and f ′ is decreasing. Where f ′′(x) = 0, the graph

of f changes from concave down to concave up, and f ′ changes from decreasing to increasing.
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Interpretation of the Second Derivative as a Rate of Change

If we think of the derivative as a rate of change, then the second derivative is a rate of change of a

rate of change. If the second derivative is positive, the rate of change of f is increasing; if the second

derivative is negative, the rate of change of f is decreasing.

The second derivative can be a matter of practical concern. A 2009 article21 reported that al-

though the US economy was shrinking, the rate of decrease had slowed. (The derivative of the size of

the economy was negative and the second derivative was positive). The article continued, “although

the economy is spiralling down, it is doing so more slowly.”

Example 3 A population, P , growing in a confined environment often follows a logistic growth curve, like that

shown in Figure 2.54. Relate the sign of d2P∕dt2 to how the rate of growth, dP∕dt, changes over

time. What are practical interpretations of t0 and L?

t0

L

t

P

Figure 2.54: Logistic growth curve

Solution For t < t0, the rate of growth, dP∕dt, is increasing and d2P∕dt2 ≥ 0. At t0, the rate dP∕dt is a

maximum. In other words, at time t0 the population is growing fastest. For t > t0, the rate of growth,

dP∕dt, is decreasing and dP 2∕dt2 ≤ 0. At t0, the curve changes from concave up to concave down,

and d2P∕dt2 = 0 there.

The quantity L represents the limiting value of the population as t → ∞. Biologists call L the

carrying capacity of the environment.

Example 4 Tests on the 2018 Chevy Corvette ZR1 sports car gave the results22 in Table 2.11.

(a) Estimate dv∕dt for the time intervals shown.

(b) What can you say about the sign of d2v∕dt2 over the period shown?

Table 2.11 Velocity of 2018 Chevy Corvette ZR1

Time, t (sec) 0 3 6 9 12

Velocity, v (meters/sec) 0 27 44 56 63

Solution (a) For each time interval we can calculate the average rate of change of velocity. For example, from

t = 0 to t = 3 we have

dv

dt
≈ Average rate of change of velocity =

27 − 0

3 − 0
= 9

m/sec

sec
.

Estimated values of dv∕dt are in Table 2.12.

21The Economist, February 19, 2009, Washington, DC, “The second derivative may be turning positive” ,

www.economist.com/node/13145616, accessed September 26, 2019.
22Adapted from data in https://fastestlaps.com/models/chevrolet-corvette-zr1-n-a, accessed September 30, 2019.
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(b) Since the values of dv∕dt are decreasing between the points shown, we expect d2v∕dt2 ≤ 0.

The graph of v against t in Figure 2.55 supports this; it is concave down. The fact that dv∕dt > 0

tells us that the car is speeding up; the fact that d2v∕dt2 ≤ 0 tells us that the rate of increase

decreased (actually, did not increase) over this time period.

Table 2.12 Estimates for dv∕dt (meters/sec/sec)

Time interval (sec) 0 − 3 3 − 6 6 − 9 9 − 12

Average rate of change (dv∕dt) 9.00 5.67 4.00 2.33 3 6 9 12

20

40

60

80

t (sec)

v (meters/sec)

Figure 2.55: Velocity of 2018 Chevy Corvette

ZR1

Velocity and Acceleration

When a car is speeding up, we say that it is accelerating. We define acceleration as the rate of change

of velocity with respect to time. If v(t) is the velocity of an object at time t, we have

Average acceleration

from t to t + ℎ
=

v(t + ℎ) − v(t)

ℎ
,

Instantaneous acceleration = v′(t) = lim
ℎ→0

v(t + ℎ) − v(t)

ℎ
.

If the term velocity or acceleration is used alone, it is assumed to be instantaneous. Since velocity is

the derivative of position, acceleration is the second derivative of position. Summarizing:

If y = s(t) is the position of an object at time t, then

• Velocity: v(t) =
dy

dt
= s′(t).

• Acceleration: a(t) =
d2y

dt2
= s′′(t) = v′(t).

Example 5 A particle is moving along a straight line; its acceleration is zero only once. Its distance, s, to the

right of a fixed point is given by Figure 2.56. Estimate:

(a) When the particle is moving to the right and when it is moving to the left.

(b) When the acceleration of the particle is zero, when it is negative, and when it is positive.



2.5 THE SECOND DERIVATIVE 125

1 2
t (time)

s (distance)

s increasing

❄

Particle stops moving to right

✠

Concave up ✲

s increasing✛

Acceleration changes from
negative to positive

✠

Figure 2.56: Distance of particle to right of a fixed point

Solution (a) The particle is moving to the right whenever s is increasing. From the graph, this appears to be

for 0 < t <
2

3
and for t > 2. For

2

3
< t < 2, the value of s is decreasing, so the particle is moving

to the left.

(b) Since the acceleration is zero only once, this must be when the curve changes concavity, at about

t =
4

3
. Then the acceleration is negative for t <

4

3
, since the graph is concave down there, and

the acceleration is positive for t >
4

3
, since the graph is concave up there.

Summary for Section 2.5

• For a function f , the derivative of its derivative is called the second derivative, and written f ′′

(read “f double-prime”) or y′′. If y = f (x), the second derivative can also be written as
d2y

dx2
,

which means
d

dx

(

dy

dx

)

, the derivative of
dy

dx
. The second derivative is a rate of change of a

rate of change.

• If f ′′ > 0 on an interval, then f ′ is increasing, so the graph of f is concave up there.

• If f ′′ < 0 on an interval, then f ′ is decreasing, so the graph of f is concave down there.

• Velocity and acceleration: If y = s(t) is the position of an object at time t, then

∙ Velocity: v(t) =
dy

dt
= s′(t).

∙ Acceleration: a(t) =
d2y

dt2
= s′′(t) = v′(t).

Exercises and Problems for Section 2.5 Online Resource: Additional Problems for Section 2.5
EXERCISES

1. Fill in the blanks:

(a) If f ′′ is positive on an interval, then f ′ is

on that interval, and f is

on that interval.

(b) If f ′′ is negative on an interval, then f ′

is on that interval, and f is

on that interval.

2. For the function graphed in Figure 2.57, are the follow-

ing nonzero quantities positive or negative?

(a) f (2) (b) f ′(2) (c) f ′′(2)

2

4

−1

1

x

f (x)

Figure 2.57
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3. At one of the labeled points on the graph in Figure 2.58

both dy∕dx and d2y∕dx2 are positive. Which is it?

A B

C
D E

y

x

Figure 2.58

4. At exactly two of the labeled points in Figure 2.59, the

derivative f ′ is 0; the second derivative f ′′ is not zero

at any of the labeled points. On a copy of the table, give

the signs of f , f ′, f ′′ at each marked point.

B
C

A D

Figure 2.59

Point f f ′ f ′′

A

B

C

D

5. Graph the functions described in parts (a)–(d).

(a) First and second derivatives everywhere positive.

(b) Second derivative everywhere negative; first

derivative everywhere positive.

(c) Second derivative everywhere positive; first

derivative everywhere negative.

(d) First and second derivatives everywhere negative.

6. Sketch the graph of a function whose first derivative

is everywhere negative and whose second derivative is

positive for some x-values and negative for other x-

values.

7. Sketch the graph of the height of a particle against time

if velocity is positive and acceleration is negative.

For Exercises 8–13, give the signs of the first and second

derivatives for the function. Each derivative is either posi-

tive everywhere, zero everywhere, or negative everywhere.

8.

1

1

x

f (x)

9.

1

1

f (x)

x

10.

1

1

x

f (x)

11.

x

f (x)

12.

1−1
f (x)

x
13.

1

1
x

f (x)

14. The position of a particle moving along the x-axis is

given by s(t) = 5t2 +3. Use difference quotients to find

the velocity v(t) and acceleration a(t).

PROBLEMS

15. The table gives the motor vehicles registered in the

United States, C = f (t), in millions,23 in the US in the

year t.

(a) Do f ′(t) and f ′′(t) appear to be positive or negative

during the period 2011–2017?

(b) Do f ′(t) and f ′′(t) appear to be positive or negative

during the period 2005–2009?

(c) Estimate f ′(2017). Using units, interpret your an-

swer in terms of passenger cars.

t 2005 2007 2009 2011 2013 2015 2017

C 247.4 254.4 254.2 253.1 255.9 263.6 272.5

16. An accelerating sports car goes from 0 mph to 60 mph

in five seconds. Its velocity is given in the following ta-

ble, converted from miles per hour to feet per second,

so that all time measurements are in seconds. (Note: 1

mph is 22/15 ft/sec.) Find the average acceleration of

the car over each of the first two seconds.

Time, t (sec) 0 1 2 3 4 5

Velocity, v(t) (ft/sec) 0 30 52 68 80 88

23www.statista.com, accessed September 26, 2019.
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17. A small plane is taking off from a runway at a regional

airport. The plane’s ground velocity increases through-

out the first 20 seconds. Table 2.13 gives the ground

velocity, in meters per second, at two-second intervals.

(a) Graph the data.

(b) From the graph, estimate when the plane is accel-

erating the fastest and estimate that acceleration.

Table 2.13

Time (sec) 0 2 4 6 8 10

Velocity (m/s) 2.7 2.7 4 6.3 8.5 11.6

Time (sec) 12 14 16 18 20

Velocity (m/s) 13.4 17.4 21.9 29.1 32.6

18. Sketch the curves described in (a)–(c):

(a) Slope is positive and increasing at first but then is

positive and decreasing.

(b) The first derivative of the function whose graph is

in part (a).

(c) The second derivative of the function whose graph

is in part (a).

In Problems 19–24, graph the second derivative of the func-

tion.

19.

−4 4

−4

4

x

y 20.

−4 4

−4

4

x

y

21.

−4 4

−4

4

x

y 22.

−4 4

−4

4

x

y

23.

−4 4

−4

4

x

y 24.

−4 4

−4

4

x

y

25. Let P (t) represent the price of a share of stock of a

corporation at time t. What does each of the following

statements tell us about the signs of the first and second

derivatives of P (t)?

(a) “The price of the stock is rising faster and faster.”

(b) “The price of the stock is close to bottoming out.”

26. The concentration, N(t), of nitrous oxide (a greenhouse

gas) in the air is increasing faster with time, t.24

(a) What is the sign of

(i) N ′(t)? (ii) N ′′(t)?

(b) Which is larger

(i) N(10) or N(20)? (ii) N ′(10) or N ′(20)?

27. Prices rose and then leveled off. If the average price

level is p(t), where t is time:

(a) What is the sign of

(i) p′(t)? (ii) p′′(t)?

(b) Which is larger

(i) p′(5) or p′(10)? (ii) p(2)−p(1) or p(7)−p(6)?

28. A headline in the New York Times on December 14,

2014, read:25

“A Steep Slide in Law School Enrollment Ac-

celerates”

(a) What function is the author talking about?

(b) Draw a possible graph for the function.

(c) In terms of derivatives, what is the headline say-

ing?

29. The Arctic Sea ice extent, the area of the sea covered

by ice, grows seasonally over the winter months each

year, typically from October to March, and is modeled

by G(t), in millions of square kilometers, t months after

October 1, 2018.26

(a) What is the sign of G′(t) for 0 < t < 4?

(b) Suppose G′′(t) < 0 for 0 < t < 4. What does this

tell us about how the Arctic Sea ice extent grows?

(c) Sketch a graph of G(t) for 0 ≤ t ≤ 4, given that

G(0) = 5.054, G(4) = 14.114, and G′′ is as in part

(b). Label your axes, including units.

24www.n2olevels.org, accessed Dec 21, 2019
25dealbook.nytimes.com/2014/, accessed September 26, 2019.
26Data on the Arctic Sea ice extent was recorded daily in 2018 and is archived at http://nsidc.org/arcticseaicenews/2018/,

accessed September 30, 2019.
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30. In economics, total utility refers to the total satisfac-

tion from consuming some commodity. According to

the economist Paul Samuelson:27

As you consume more of the same good, the

total (psychological) utility increases. How-

ever, . . .with successive new units of the good,

your total utility will grow at a slower and

slower rate because of a fundamental tendency

for your psychological ability to appreciate

more of the good to become less keen.

(a) Sketch the total utility as a function of the number

of units consumed.

(b) In terms of derivatives, what is Samuelson saying?

31. “Winning the war on poverty” has been described cyn-

ically as slowing the rate at which people are slipping

below the poverty line. Assuming that this is happen-

ing:

(a) Graph the total number of people in poverty against

time.

(b) If N is the number of people below the poverty

line at time t, what are the signs of dN∕dt and

d2N∕dt2? Explain.

32. An industry is being charged by the Environmental Pro-

tection Agency (EPA) with dumping unacceptable lev-

els of toxic pollutants in a lake. Over a period of several

months, an engineering firm makes daily measurements

of the rate at which pollutants are being discharged into

the lake. The engineers produce a graph similar to either

Figure 2.60(a) or Figure 2.60(b). For each case, give an

idea of what argument the EPA might make in court

against the industry and in the industry’s defense.

nowa year ago
time

rate of discharge(a)

nowa year ago
time

rate of discharge(b)

Figure 2.60

In Problems 33–38, the length of a plant, L, is a function of

its mass, M , so L = f (M). A unit increase in a plant’s mass

stretches the plant’s length more when the plant is small, and

less when the plant is large. Assuming M > 0, decide if f ′

agrees with this description.

33. f ′ is constant 34. f ′ is negative

35. f ′ is decreasing 36. f ′ is increasing

37. f ′(M) = 0.4M + 0.3M2

38. f ′(M) = 0.25∕M3∕4

39. At which of the marked x-values in Figure 2.61 can the

following statements be true?

(a) f (x) < 0

(b) f ′(x) < 0

(c) f (x) is decreasing

(d) f ′(x) is decreasing

(e) Slope of f (x) is positive

(f) Slope of f (x) is increasing

x1 x2 x3

x4 x5

f (x)

x

Figure 2.61

40. Figure 2.62 gives the position, f (t), of a particle at time

t. At which of the marked values of t can the following

statements be true?

(a) The position is positive

(b) The velocity is positive

(c) The acceleration is positive

(d) The position is decreasing

(e) The velocity is decreasing

t1 t2

t3 t4 t5

f (t)

t

Figure 2.62

In Problems 41–43, use Figure 2.63 to determine which of

the two values is greater.

1 2 3 4 5 6 7 8
x

f (x)

Figure 2.63

41. f ′(0) or f ′(4)? 42. f ′(2) or f ′(6)?

43. f ′′(1) or f ′′(3)?

27From Paul A. Samuelson, Economics, 11th edition (New York: McGraw-Hill, 1981).
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44. The graph of f ′ (not f ) is given in Figure 2.64. At

which of the marked values of x is

(a) f (x) greatest? (b) f (x) least?

(c) f ′(x) greatest? (d) f ′(x) least?

(e) f ′′(x) greatest? (f) f ′′(x) least?

x1 x2 x3 x4 x5 x6

x

f ′(x)

Figure 2.64: Graph of f ′, not f

For Problems 45–46, sketch the graph of one continuous

function f that has all of the indicated properties.

45. • f ′(x) > 0 for 0 < x < 3 and 8 < x < 12

f ′(x) < 0 for 3 < x < 8

• f ′′(x) > 0 for 5 < x < 9

f ′′(x) < 0 for 0 < x < 5 and 9 < x < 12

• lim
x→∞

f (x) = 2

46. • f ′(x) > 0 for −2 < x < 2

f ′(x) < 0 for −6 < x < −2 and 2 < x < 6

• f ′′(x) > 0 for −3 < x < 0 and 3 < x < 6

f ′′(x) < 0 for −6 < x < −3 and 0 < x < 3

• lim
x→−∞

f (x) = 2 and lim
x→∞

f (x) = 3

47. (a) The line y = b + mx is tangent to the graph of

f at x = 5. Given that f (5) = 7, the derivative

f ′(5) = 3, and f ′′(5) = −2, find m and b.

(b) Near x = 5, does the graph of f lie above or below

the line from part (a)?

48. On the interval 2 ≤ x ≤ 6, the graph of y = f (x) lies

below the x-axis, rises from left to right, and is concave

down. For each quantity (a)–(f), is it positive, negative,

zero, or is there not enough information to decide?

(a) f (3) (b) f ′(3)

(c) f ′′(3) (d) f (5) − f (3)

(e) f ′(5) − f ′(3) (f) f ′′(5) − f ′′(3)

49. A function f has f (5) = 20, f ′(5) = 2, and f ′′(x) < 0,

for x ≥ 5. Which of the following are possible values

for f (7) and which are impossible?

(a) 26 (b) 24 (c) 22

50. Chlorofluorocarbons (CFCs) were used as propellants

in spray cans until their buildup in the atmosphere

started destroying the ozone, which protects us from

ultraviolet rays. Since the 1987 Montreal Protocol (an

agreement to curb CFCs), the CFCs in the atmosphere

above the US have been reduced from a high of 1908

parts per trillion (ppt) in 2000 to 1638 ppt in 2014.28

The reduction has been approximately linear. Let C(t)

be the concentration of CFCs in ppt in year t.

(a) Find C(2000) and C(2014).

(b) Estimate C ′(2000) and C ′(2014).

(c) Assuming C(t) is linear, find a formula for C(t).

(d) When is C(t) expected to reach 1500 ppt, the level

before CFCs were introduced?

(e) If you were told that in the future, C(t) would not

be exactly linear, and that C ′′(t) > 0, would your

answer to part (d) be too early or too late?

51. (a) Using the graph of f ′ in Figure 2.65, for what val-

ues of x is f increasing?

(b) For what values of x is f concave up?

(c) For what values of x is f ′′′(x) > 0?

f ′

x

Figure 2.65: Graph of f ′

Strengthen Your Understanding

In Problems 52–53, explain what is wrong with the state-

ment.

52. A function that is not concave up is concave down.

53. When the acceleration of a car is zero, the car is not

moving.

In Problems 54–55, give an example of:

54. A function that has a nonzero first derivative but zero

second derivative.

55. A function for which f ′(0) = 0 but f ′′(0) ≠ 0.

Are the statements in Problems 56–60 true or false? Give an

explanation for your answer.

56. If f ′′(x) > 0 then f ′(x) is increasing.

57. The instantaneous acceleration of a moving particle at

time t is the limit of difference quotients.

58. A function which is monotonic on an interval is either

increasing or decreasing on the interval.

59. The function f (x) = x3 is monotonic on any interval.

60. The function f (x) = x2 is monotonic on any interval.

28www.esrl.noaa.gov/gmd/odgi, accessed October 15, 2019.
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2.6 DIFFERENTIABILITY

What Does It Mean for a Function to Be Differentiable?

A function is differentiable at a point if it has a derivative there. In other words:

The function f is differentiable at x if

lim
ℎ→0

f (x + ℎ) − f (x)

ℎ
exists.

Thus, the graph of f has a nonvertical tangent line at x. The value of the limit and the slope

of the tangent line are the derivative of f at x.

Occasionally we meet a function which fails to have a derivative at a few points. A function fails

to be differentiable at a point if:

• The function is not continuous at the point.

• The graph has a sharp corner at that point.

• The graph has a vertical tangent line.

Figure 2.66 shows a function which appears to be differentiable at all points except x = a and

x = b. There is no tangent at A because the graph has a corner there. As x approaches a from the

left, the slope of the line joining P to A converges to some positive number. As x approaches a from

the right, the slope of the line joining P to A converges to some negative number. Thus the slopes

approach different numbers as we approach x = a from different sides. Therefore the function is not

differentiable at x = a. At B, the graph has a vertical tangent. As x approaches b, the slope of the

line joining B to Q does not approach a limit; it just keeps growing larger and larger. Again, the limit

defining the derivative does not exist and the function is not differentiable at x = b.

a b
x

f

P

A

Q

B

Figure 2.66: A function which is not differentiable at A or B

f (x) = |x|

x

Figure 2.67: Graph of absolute value function,

showing point of non-differentiability at x = 0

Examples of Nondifferentiable Functions

An example of a function whose graph has a corner is the absolute value function defined as follows:

f (x) = |x| =
{

x if x ≥ 0,

−x if x < 0.

This function is called piecewise linear because each part of it is linear. Its graph is in Figure 2.67.

Near x = 0, even close-up views of the graph of f (x) look the same, so this is a corner which can’t

be straightened out by zooming in.
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Example 1 Try to compute the derivative of the function f (x) = |x| at x = 0. Is f differentiable there?

Solution To find the derivative at x = 0, we want to look at

lim
ℎ→0

f (ℎ) − f (0)

ℎ
= lim

ℎ→0

|ℎ| − 0

ℎ
= lim

ℎ→0

|ℎ|

ℎ
.

As ℎ approaches 0 from the right, ℎ is positive, so |ℎ| = ℎ, and the ratio is always 1. As ℎ approaches

0 from the left, ℎ is negative, so |ℎ| = −ℎ, and the ratio is −1. Since the limits are different from

each side, the limit of the difference quotient does not exist. Thus, the absolute value function is not

differentiable at x = 0. The limits of 1 and −1 correspond to the fact that the slope of the right-hand

part of the graph is 1, and the slope of the left-hand part is −1.

Example 2 Investigate the differentiability of f (x) = x1∕3 at x = 0.

Solution This function is smooth at x = 0 (no sharp corners) but appears to have a vertical tangent there. (See

Figure 2.68.) Looking at the difference quotient at x = 0, we see

lim
ℎ→0

(0 + ℎ)1∕3 − 01∕3

ℎ
= lim

ℎ→0

ℎ1∕3

ℎ
= lim

ℎ→0

1

ℎ2∕3
.

As ℎ → 0 the denominator becomes small, so the fraction grows without bound. Hence, the function

fails to have a derivative at x = 0.

Example 3 Consider the function given by the formulas

g(x) =
{

x + 1 if x ≤ 1

3x − 1 if x > 1.

Draw the graph of g. Is g continuous? Is g differentiable at x = 1?

Solution The graph in Figure 2.69 has no breaks in it, so the function is continuous. However, the graph has

a corner at x = 1 which no amount of magnification will remove. To the left of x = 1, the slope is

1; to the right of x = 1, the slope is 3. Thus, the difference quotient at x = 1 has no limit, so the

function g is not differentiable at x = 1.

−8 −4 4 8

−2

2

x

f (x) = x1∕3

Figure 2.68: Continuous function not

differentiable at x = 0: Vertical tangent

1 2 3

2

4

6

x

g(x)

Figure 2.69: Continuous function not

differentiable at x = 1

The Relationship Between Differentiability and Continuity

The fact that a function which is differentiable at a point has a tangent line suggests that the function

is continuous there, as the next theorem shows.
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Theorem 2.1: A Differentiable Function Is Continuous

If f (x) is differentiable at a point x = a, then f (x) is continuous at x = a.

Proof We assume f is differentiable at x = a. Then we know that f ′(a) exists where

f ′(a) = lim
x→a

f (x) − f (a)

x − a
.

To show that f is continuous at x = a, we want to show that limx→a f (x) = f (a). We calculate

limx→a(f (x) − f (a)), hoping to get 0. By algebra, we know that for x ≠ a,

f (x) − f (a) = (x − a) ⋅
f (x) − f (a)

x − a
.

Taking the limits, we have

lim
x→a

(f (x) − f (a)) = lim
x→a

(

(x − a)
f (x) − f (a)

x − a

)

=
(

lim
x→a

(x − a)
)

⋅

(

lim
x→a

f (x) − f (a)

x − a

)

(By Theorem 1.2, Property 3)

= 0 ⋅ f ′(a) = 0. (Since f ′(a) exists)

Thus we know that lim
x→a

f (x) = f (a), which means f (x) is continuous at x = a.

Summary for Section 2.6

• The function f is differentiable at x if

lim
ℎ→0

f (x + ℎ) − f (x)

ℎ
exists.

Thus, the graph of f has a nonvertical tangent line at x. The value of the limit and the slope of

the tangent line are the derivative of f at x.

• A function fails to be differentiable at a point if:

∙ The function is not continuous at the point.

∙ The graph has a sharp corner at that point.

∙ The graph has a vertical tangent line.

• Differentiability and continuity: If f (x) is differentiable at a point x = a, then f (x) is contin-

uous at x = a.

Exercises and Problems for Section 2.6

EXERCISES

For the graphs in Exercises 1–2, list the x-values for which

the function appears to be

(a) Not continuous. (b) Not differentiable.

1.

1 2 3 4 5

f (x)

x

2.

1 2 3 4 5 6

g(x)

x

In Exercises 3–4, does the function appear to be differen-

tiable on the interval of x-values shown?

3.

x

f (x) 4.

x

f (x)
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In Exercises 5–7, decide if the function is differentiable at

x = 0. Try zooming in on a graphing calculator, or calculat-

ing the derivative f ′(0) from the definition.

5. f (x) = x ⋅ |x|

6. f (x) =

{

−2x for x < 0

x2 for x ≥ 0

7. f (x) =

{

(x + 1)2 for x < 0

2x + 1 for x ≥ 0

PROBLEMS

Decide if the functions in Problems 8–10 are differentiable

at x = 0. Try zooming in on a graphing calculator, or calcu-

lating the derivative f ′(0) from the definition.

8. f (x) = (x + |x|)2 + 1

9. f (x) =

{

x sin(1∕x) + x for x ≠ 0

0 for x = 0

10. f (x) =

{

x2 sin(1∕x) for x ≠ 0

0 for x = 0

11. In each of the following cases, sketch the graph of a

continuous function f (x) with the given properties.

(a) f ′′(x) > 0 for x < 2 and for x > 2 and f ′(2) is

undefined.

(b) f ′′(x) > 0 for x < 2 and f ′′(x) < 0 for x > 2 and

f ′(2) is undefined.

12. Look at the graph of f (x) = (x2 + 0.0001)1∕2 shown

in Figure 2.70. The graph of f appears to have a sharp

corner at x = 0. Do you think f has a derivative at

x = 0?

−20 −10 0 10 20

10

20

x

f (x)

Figure 2.70

13. The acceleration due to gravity, g, varies with height

above the surface of the earth in a certain way. If you

go down below the surface of the earth, g varies in a

different way. It can be shown that g is given by

g =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

GMr

R3
for r < R

GM

r2
for r ≥ R,

where R is the radius of the earth, M is the mass of

the earth, G is the gravitational constant, and r is the

distance to the center of the earth.

(a) Sketch a graph of g against r.

(b) Is g a continuous function of r? Explain your an-

swer.

(c) Is g a differentiable function of r? Explain your an-

swer.

14. An electric charge, Q, in a circuit is given as a function

of time, t, by

Q =

{

C for t ≤ 0

Ce−t∕RC for t > 0,

where C and R are positive constants. The electric cur-

rent, I , is the rate of change of charge, so

I =
dQ

dt
.

(a) Is the charge, Q, a continuous function of time?

(b) Do you think the current, I , is defined for all times,

t? [Hint: To graph this function, take, for example,

C = 1 and R = 1.]

15. A magnetic field, B, is given as a function of the dis-

tance, r, from the center of a wire as follows:

B =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r

r0
B0 for r ≤ r0

r0

r
B0 for r > r0.

(a) Sketch a graph of B against r. What is the meaning

of the constant B0?

(b) Is B continuous at r = r0? Give reasons.

(c) Is B differentiable at r = r0? Give reasons.

16. A cable is made of an insulating material in the shape of

a long, thin cylinder of radius r0. It has electric charge

distributed evenly throughout it. The electric field, E,

at a distance r from the center of the cable is given by

E =

⎧

⎪

⎨

⎪

⎩

kr for r ≤ r0

k
r2
0

r
for r > r0.

(a) Is E continuous at r = r0?

(b) Is E differentiable at r = r0?

(c) Sketch a graph of E as a function of r.

17. Graph the function defined by

g(r) =
{

1 + cos (�r∕2) for −2 ≤ r ≤ 2

0 for r < −2 or r > 2.

(a) Is g continuous at r = 2? Explain your answer.

(b) Do you think g is differentiable at r = 2? Explain

your answer.
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18. The potential, �, of a charge distribution at a point on

the y-axis is given by

� =

⎧

⎪

⎨

⎪

⎩

2��
(

√

y2 + a2 − y

)

for y ≥ 0

2��
(

√

y2 + a2 + y

)

for y < 0,

where � and a are positive constants. [Hint: To graph

this function, take, for example, 2�� = 1 and a = 1.]

(a) Is � continuous at y = 0?

(b) Do you think � is differentiable at y = 0?

19. Sometimes, odd behavior can be hidden beneath the

surface of a rather normal-looking function. Consider

the following function:

f (x) =

{

0 if x < 0

x2 if x ≥ 0.

(a) Sketch a graph of this function. Does it have any

vertical segments or corners? Is it differentiable ev-

erywhere? If so, sketch the derivative f ′ of this

function. [Hint: You may want to use the result of

Example 4 on page 108.]

(b) Is the derivative function, f ′(x), differentiable ev-

erywhere? If not, at what point(s) is it not differen-

tiable? Draw the second derivative of f (x) wher-

ever it exists. Is the second derivative function,

f ′′(x), differentiable? Continuous?

20. Figure 2.71 shows graphs of four useful but nondif-

ferentiable functions: the step, the sign, the ramp, and

the absolute value. Match the graphs with differentiable

versions of these functions, called soft versions.

(a) ex∕(ex + e−x)

(b) xex∕(ex + e−x)

(c) (ex − e−x)∕(ex + e−x)

(d) (xex − xe−x)∕(ex + e−x)

−100 100
−1

1

Step(x)

x

−100 100
−1

1

Sign(x)

x

−100 100

100

Ramp(x)

x

−100 100

100

Abs(x)

x

Figure 2.71

Strengthen Your Understanding

In Problems 21–22, explain what is wrong with the state-

ment.

21. A function f that is not differentiable at x = 0 has a

graph with a sharp corner at x = 0.

22. If f is not differentiable at a point then it is not contin-

uous at that point.

In Problems 23–25, give an example of:

23. A continuous function that is not differentiable at x = 2.

24. An invertible function that is not differentiable at x = 0.

25. A rational function that has zeros at x = ±1 and is not

differentiable at x = ±2.

Are the statements in Problems 26–30 true or false? If a

statement is true, give an example illustrating it. If a state-

ment is false, give a counterexample.

26. There is a function which is continuous on [1, 5] but not

differentiable at x = 3.

27. If a function is differentiable, then it is continuous.

28. If a function is continuous, then it is differentiable.

29. If a function is not continuous, then it is not differen-

tiable.

30. If a function is not differentiable, then it is not continu-

ous.

31. Which of the following would be a counterexample to

the statement: “If f is differentiable at x = a then f is

continuous at x = a”?

(a) A function which is not differentiable at x = a but

is continuous at x = a.

(b) A function which is not continuous at x = a but is

differentiable at x = a.

(c) A function which is both continuous and differen-

tiable at x = a.

(d) A function which is neither continuous nor differ-

entiable at x = a.

Online Resource: Review Problems and Projects
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3.1 POWERS AND POLYNOMIALS

Derivative of a Constant Times a Function

Figure 3.1 shows the graph of y = f (x) and of three multiples: y = 3f (x), y =
1

2
f (x), and y =

−2f (x). What is the relationship between the derivatives of these functions? In other words, for a

particular x-value, how are the slopes of these graphs related?

x

y

❑

Slope = m

f (x)

x

y

❑

Slope = 3m

3f (x)

x

y

❑

Slope = m∕2

f (x)∕2

x

y

❨

Slope = −2m

−2f (x)

Figure 3.1: A function and its multiples: Derivative of multiple is multiple of derivative

Multiplying the value of a function by a constant stretches or shrinks the original graph (and

reflects it across the x-axis if the constant is negative). This changes the slope of the curve at each

point. If the graph has been stretched, the “rises” have all been increased by the same factor, whereas

the “runs” remain the same. Thus, the slopes are all steeper by the same factor. If the graph has been

shrunk, the slopes are all smaller by the same factor. If the graph has been reflected across the x-axis,

the slopes will all have their signs reversed. In other words, if a function is multiplied by a constant,

c, so is its derivative:

Theorem 3.1: Derivative of a Constant Multiple

If f is differentiable and c is a constant, then

d

dx
[cf (x)] = cf ′(x).

Proof Although the graphical argument makes the theorem plausible, to prove it we must use the definition

of the derivative:

d

dx
[cf (x)] = lim

ℎ→0

cf (x + ℎ) − cf (x)

ℎ
= lim

ℎ→0
c
f (x + ℎ) − f (x)

ℎ

= c lim
ℎ→0

f (x + ℎ) − f (x)

ℎ
= cf ′(x).

We can take c across the limit sign by the properties of limits (part 1 of Theorem 1.2 on page 75).

Derivatives of Sums and Differences
Suppose we have two functions, f (x) and g(x), with the values listed in Table 3.1. Values of the sum

f (x) + g(x) are given in the same table.

Table 3.1 Sum of functions

x f (x) g(x) f (x) + g(x)

0 100 0 100

1 110 0.2 110.2

2 130 0.4 130.4

3 160 0.6 160.6

4 200 0.8 200.8
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We see that adding the increments of f (x) and the increments of g(x) gives the increments of

f (x) + g(x). For example, as x increases from 0 to 1, f (x) increases by 10 and g(x) increases by

0.2, while f (x) + g(x) increases by 110.2 − 100 = 10.2. Similarly, as x increases from 3 to 4, f (x)

increases by 40 and g(x) by 0.2, while f (x) + g(x) increases by 200.8 − 160.6 = 40.2.

From this example, we see that the rate at which f (x)+g(x) is increasing is the sum of the rates

at which f (x) and g(x) are increasing. Similar reasoning applies to the difference, f (x) − g(x). In

terms of derivatives:

Theorem 3.2: Derivative of Sum and Difference

If f and g are differentiable, then

d

dx
[f (x) + g(x)] = f ′(x) + g′(x) and

d

dx
[f (x) − g(x)] = f ′(x) − g′(x).

Proof Using the definition of the derivative:

d

dx
[f (x) + g(x)] = lim

ℎ→0

[f (x + ℎ) + g(x + ℎ)] − [f (x) + g(x)]

ℎ

= lim
ℎ→0

⎡

⎢

⎢

⎢

⎢

⎣

f (x + ℎ) − f (x)

ℎ
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Limit of this is f ′(x)

+
g(x + ℎ) − g(x)

ℎ
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Limit of this is g′(x)

⎤

⎥

⎥

⎥

⎥

⎦

= f ′(x) + g′(x).

We have used the fact that the limit of a sum is the sum of the limits, part 2 of Theorem 1.2 on

page 75. The proof for f (x) − g(x) is similar.

Powers of x

In Chapter 2 we showed that

f ′(x) =
d

dx
(x2) = 2x and g′(x) =

d

dx
(x3) = 3x2.

The graphs of f (x) = x2 and g(x) = x3 and their derivatives are shown in Figures 3.2 and 3.3.

Notice f ′(x) = 2x has the behavior we expect. It is negative for x < 0 (when f is decreasing), zero

for x = 0, and positive for x > 0 (when f is increasing). Similarly, g′(x) = 3x2 is zero when x = 0,

but positive everywhere else, as g is increasing everywhere else.

−5 5

−10

10

20

x

y
f (x) = x2

f ′(x) = 2x

Figure 3.2: Graphs of f (x) = x2 and

its derivative f ′(x) = 2x

−3 3

−20

−10

10

20

x

y

g(x) = x3

g′(x) = 3x2

Figure 3.3: Graphs of g(x) = x3 and its

derivative g′(x) = 3x2

These examples are special cases of the power rule, which we justify for any positive integer n

on page 139:
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The Power Rule

For any constant real number n,

d

dx
(xn) = nxn−1.

Problem 124 (available online) asks you to show that this rule holds for negative integral powers;

such powers can also be differentiated using the quotient rule (Section 3.3). In Section 3.6 we indicate

how to justify the power rule for powers of the form 1∕n.

Example 1 Use the power rule to differentiate (a)
1

x3
, (b) x1∕2, (c)

1
3
√

x
.

Solution (a) For n = −3:
d

dx

(

1

x3

)

=
d

dx
(x−3) = −3x−3−1 = −3x−4 = −

3

x4
.

(b) For n = 1∕2:
d

dx

(

x1∕2
)

=
1

2
x(1∕2)−1 =

1

2
x−1∕2 =

1

2
√

x
.

(c) For n = −1∕3:
d

dx

(

1
3
√

x

)

=
d

dx

(

x−1∕3
)

= −
1

3
x(−1∕3)−1 = −

1

3
x−4∕3 = −

1

3x4∕3
.

Example 2 Use the definition of the derivative to justify the power rule for n = −2: Show
d

dx
(x−2) = −2x−3.

Solution Provided x ≠ 0, we have

d

dx

(

x−2
)

=
d

dx

(

1

x2

)

= lim
ℎ→0

⎛

⎜

⎜

⎝

1

(x+ℎ)2
−

1

x2

ℎ

⎞

⎟

⎟

⎠

= lim
ℎ→0

1

ℎ

[

x2 − (x + ℎ)2

(x + ℎ)2x2

]

(Combining fractions
over a common
denominator)

= lim
ℎ→0

1

ℎ

[

x2 − (x2 + 2xℎ + ℎ2)

(x + ℎ)2x2

]

(Multiplying
out)

= lim
ℎ→0

−2xℎ − ℎ2

ℎ(x + ℎ)2x2
(Simplifying numerator)

= lim
ℎ→0

−2x − ℎ

(x + ℎ)2x2
(Dividing numerator

and denominator by ℎ)

=
−2x

x4
(Letting ℎ → 0)

= −2x−3.

The graphs of x−2 and its derivative,−2x−3, are shown in Figure 3.4. Does the graph of the derivative

have the features you expect?
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x−2

x

−2x−3

x

Figure 3.4: Graphs of x−2 and its derivative, −2x−3

Justification of
d

dx

(

x
n
)

= nx
n−1, for n a Positive Integer

To calculate the derivatives of x2 and x3, we had to expand (x + ℎ)2 and (x + ℎ)3. To calculate the

derivative of xn, we must expand (x + ℎ)n. Let’s look back at the previous expansions:

(x + ℎ)2 = x2 + 2xℎ + ℎ2, (x + ℎ)3 = x3 + 3x2ℎ + 3xℎ2 + ℎ3,

and multiply out a few more examples:

(x + ℎ)4 = x4 + 4x3ℎ + 6x2ℎ2 + 4xℎ3 + ℎ4,

(x + ℎ)5 = x5 + 5x4ℎ + 10x3ℎ2 + 10x2ℎ3 + 5xℎ4 + ℎ5.
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Terms involving ℎ2 and higher powers of ℎ

In general, we can say

(x + ℎ)n = xn + nxn−1ℎ +⋯ + ℎn.
⏟⏟⏟

Terms involving ℎ2 and higher powers of ℎ

We have just seen this is true for n = 2, 3, 4, 5. It can be proved in general using the Binomial

Theorem (see www.WileyPLUS.com). Now to find the derivative,

d

dx
(xn) = lim

ℎ→0

(x + ℎ)n − xn

ℎ

= lim
ℎ→0

(xn + nxn−1ℎ +⋯ + ℎn) − xn

ℎ

= lim
ℎ→0

nxn−1ℎ +

Terms involving ℎ2 and higher powers of ℎ

⏞⏞⏞

⋯ + ℎn

ℎ
.

When we factor out ℎ from terms involving ℎ2 and higher powers of ℎ, each term will still have an

ℎ in it. Factoring and dividing, we get:

d

dx
(xn) = lim

ℎ→0

ℎ(nxn−1 +⋯ + ℎn−1)

ℎ
= lim

ℎ→0
(nxn−1 +

Terms involving ℎ and higher powers of ℎ

⏞⏞⏞⏞⏞⏞⏞

⋯ + ℎn−1).

But as ℎ → 0, all terms involving an ℎ will go to 0, so

d

dx
(xn) = lim

ℎ→0
(nxn−1 +⋯ + ℎn−1

⏟⏞⏞⏟⏞⏞⏟

These terms go to 0

) = nxn−1.
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Derivatives of Polynomials

Now that we know how to differentiate powers, constant multiples, and sums, we can differentiate

any polynomial.

Example 3 Find the derivatives of (a) 5x2 + 3x + 2, (b)
√

3x7 −
x5

5
+ �.

Solution (a)
d

dx
(5x2 + 3x + 2) = 5

d

dx
(x2) + 3

d

dx
(x) +

d

dx
(2)

= 5 ⋅ 2x + 3 ⋅ 1 + 0 (Since the derivative of a constant,
d

dx
(2), is zero.)

= 10x + 3.

(b)
d

dx

(

√

3x7 −
x5

5
+ �

)

=
√

3
d

dx
(x7) −

1

5

d

dx
(x5) +

d

dx
(�)

=
√

3 ⋅ 7x6 −
1

5
⋅ 5x4 + 0 (Since � is a constant, d�∕dx = 0.)

= 7
√

3x6 − x4.

We can also use the rules we have seen so far to differentiate expressions that are not polynomials.

Example 4 Differentiate (a) 5
√

x −
10

x2
+

1

2
√

x
. (b) 0.1x3 + 2x

√

2.

Solution (a)
d

dx

(

5
√

x −
10

x2
+

1

2
√

x

)

=
d

dx

(

5x1∕2 − 10x−2 +
1

2
x−1∕2

)

= 5 ⋅
1

2
x−1∕2 − 10(−2)x−3 +

1

2

(

−
1

2

)

x−3∕2

=
5

2
√

x
+

20

x3
−

1

4x3∕2
.

(b)
d

dx
(0.1x3 + 2x

√

2) = 0.1
d

dx
(x3) + 2

d

dx
(x

√

2) = 0.3x2 + 2
√

2x
√

2−1.

Example 5 Find the second derivative and interpret its sign for

(a) f (x) = x2, (b) g(x) = x3, (c) k(x) = x1∕2.

Solution (a) If f (x) = x2, then f ′(x) = 2x, so f ′′(x) =
d

dx
(2x) = 2. Since f ′′ is always positive, f is

concave up, as expected for a parabola opening upward. (See Figure 3.5.)

(b) If g(x) = x3, then g′(x) = 3x2, so g′′(x) =
d

dx
(3x2) = 3

d

dx
(x2) = 3 ⋅ 2x = 6x. This is positive

for x > 0 and negative for x < 0, which means x3 is concave up for x > 0 and concave down

for x < 0. (See Figure 3.6.)

(c) If k(x) = x1∕2, then k′(x) =
1

2
x(1∕2)−1 =

1

2
x−1∕2, so

k′′(x) =
d

dx

(

1

2
x−1∕2

)

=
1

2
⋅ (−

1

2
)x−(1∕2)−1 = −

1

4
x−3∕2.
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Now k′ and k′′ are only defined on the domain of k, that is, x ≥ 0. When x > 0, we see that

k′′(x) is negative, so k is concave down. (See Figure 3.7.)

−2 2

4

x

f ′′ > 0

Figure 3.5: f (x) = x2 has

f ′′(x) = 2

−2 2

−8

8

x

g′′ > 0

g′′ < 0

Figure 3.6: g(x) = x3 has

g′′(x) = 6x

4

2

x

k′′ < 0

Figure 3.7: k(x) = x1∕2 has

k′′(x) = −
1

4
x−3∕2

Example 6 If the position of a body, in meters, is given as a function of time t, in seconds, by

s = −4.9t2 + 5t + 6,

find the velocity and acceleration of the body at time t.

Solution The velocity, v, is the derivative of the position:

v =
ds

dt
=

d

dt
(−4.9t2 + 5t + 6) = −9.8t+ 5,

and the acceleration, a, is the derivative of the velocity:

a =
dv

dt
=

d

dt
(−9.8t+ 5) = −9.8.

Note that v is in meters/second and a is in meters/second2.

The Tangent Line Approximation for Power Functions

The derivative f ′(a) is the slope of the function y = f (x) at x = a—that is, f ′(a) is the slope of

the tangent line to the graph of y = f (x) at x = a. Thus the equation of the tangent line is, for some

constant b,

y = b + f ′(a)x.

This equation is usually written in a form obtained from the difference quotient

f ′(a) =
y − f (a)

x − a
.

Multiplying by (x − a) gives f ′(a)(x− a) = y − f (a), so we can write

y = f (a)
⏟⏟⏟

Value at a

+ f ′(a)(x− a)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Change from a to x

.

Since the tangent line lies close to the graph of the function for values of x close to a, we approximate

the function value, f (x), by the y-value on the tangent line, giving the following:

Tangent Line Approximation

For x near a:

f (x) ≈ f (a) + f ′(a)(x − a).
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In the following example, we see how the tangent line can be used to approximate the wind

power generated at different wind speeds.

Example 7 The powerP generated by a wind turbine is proportional to the cube of the wind speed, v, soP = kv3,

where k is a constant that depends on the size and design. The North Hoyle wind turbine1off the coast

of Wales, UK, has k = 2 for power in kilowatts (kw) and wind speed in meters/sec (mps).

(a) Find the tangent line approximation to P = 2v3 at v = 10 mps.

(b) Use this tangent line to estimate the power generated when v = 12 mps and when v = 9.5 mps.

Solution Since P = 2v3, the derivative is dP∕dv = 6v2.

(a) At v = 10 we have P = 2 ⋅ 103 = 2000 kw and dP∕dv = 6 ⋅ 102 = 600 kw/mps. Thus, the

tangent line approximation is

P ≈ 2000 + 600(v− 10).

(b) When v = 12 and v = 9.5, substituting gives

P ≈ 2000 + 600(12 − 10)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
600(2)=1200

= 3200 kw.

P ≈ 2000 + 600(9.5 − 10)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
600(−0.5)=−300

= 1700 kw.

Notice that the derivative, 600 kw/mps, acts as a multiplier, converting the increase in wind speed,

Δv = 2 mps, into an increase in power, ΔP = 600 ⋅ 2 = 1200 kw. Similarly, the decrease in wind

speed Δv = −0.5 mps is converted to a decrease in power ΔP = −300 kw.

For comparison, the exact values are P = 2 ⋅ 123 = 3456 kw and P = 2 ⋅ 9.53 = 1714.75 kw.

Summary for Section 3.1

• Derivative of a constant times a function: If f is differentiable and c is a constant, then
d

dx
[cf (x)] = cf ′(x).

• Derivative of sum and difference: If f and g are differentiable, then
d

dx
[f (x) + g(x)] =

f ′(x) + g′(x) and
d

dx
[f (x) − g(x)] = f ′(x) − g′(x).

• The power rule: For any constant real number n,
d

dx
(xn) = nxn−1.

• Tangent line approximation: For x near a: f (x) ≈ f (a) + f ′(a)(x− a).

Exercises and Problems for Section 3.1 Online Resource: Additional Problems for Section 3.1
EXERCISES

1. Let f (x) = 7. Using the definition of the derivative,

show that f ′(x) = 0 for all values of x.

2. Let f (x) = 17x+11. Use the definition of the derivative

to calculate f ′(x).

For Exercises 3–5, determine if the derivative rules from this

section apply. If they do, find the derivative. If they don’t ap-

ply, indicate why.

3. y = 3x 4. y = x3 5. y = x�

For Exercises 6–47, find the derivatives of the given func-

tions. Assume that a, b, c, and k are constants.

6. y = x12 7. y = x11

8. y = −x−11 9. y = x−12

10. y = x3.2 11. y = x−3∕4

12. y = x4∕3 13. y = x3∕4

1http://www.raeng.org.uk/publications/other/23-wind-turbine, Royal Academy of Engineering. Accessed January 7, 2016.
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14. y = x2 + 5x + 7 15. f (t) = t3−3t2+8t−4

16. f (x) =
1

x4
17. g(t) =

1

t5

18. f (z) = −
1

z6.1
19. y =

1

r7∕2

20. y =
√

x 21. f (x) = 4
√

x

22. ℎ(�) =
1
3
√

�
23. f (x) =

√

1

x3

24. ℎ(x) = ln eax 25. y = 4x3∕2 − 5x1∕2

26. f (t) = 3t2 − 4t + 1 27. y = z2 +
1

2z

28. f (x) = 5x4 +
1

x2
29. ℎ(w) = −2w−3 + 3

√

w

30. y = 3t5 − 5
√

t +
7

t
31. y = 3t2 +

12
√

t
−

1

t2

32. y =
√

x(x + 1) 33. y = t3∕2(2 +
√

t)

34. ℎ(t) =
3

t
+

4

t2
35. ℎ(�) = �(�−1∕2 − �−2)

36. y =
x2 + 1

x
37. f (z) =

z2 + 1

3z

38. g(x) =
x2 +

√

x + 1

x3∕2
39. y =

� − 1
√

�

40. g(t) =

√

t(1 + t)

t2
41. j(x) =

x3

a
+

a

b
x2 − cx

42. f (x) =
ax + b

x
43. ℎ(x) =

ax + b

c

44. V =
4

3
�r2b 45. w = 3ab2q

46. y = ax2 + bx + c 47. P = a + b
√

t

In Exercises 48–53, use the tangent line approximation.

48. Given f (4) = 5, f ′(4) = 7, approximate f (4.02).

49. Given f (4) = 5, f ′(4) = 7, approximate f (3.92).

50. Given f (5) = 3, f ′(5) = −2, approximate f (5.03).

51. Given f (3) = −4, f ′(3) = −2 approximate f (2.99).

52. Given f (x) = x4 − x2 + 3 approximate f (1.04).

53. Given f (x) = x3 + x2 − 6, approximate f (0.97).

PROBLEMS

For Problems 54–59, determine if the derivative rules from

this section apply. If they do, find the derivative. If they don’t

apply, indicate why.

54. y = (x + 3)1∕2 55. y = �x

56. g(x) = x� − x−� 57. y = 3x2 + 4

58. y =
1

3x2 + 4
59. y =

1

3z2
+

1

4

60. If f (x) = (3x + 8)(2x − 5), find f ′(x) and f ′′(x).

61. Find the equation of the line tangent to the graph of f

at (1, 1), where f is given by f (x) = 2x3 − 2x2 + 1.

62. Find the equation of the line tangent to y = x2 +3x−5

at x = 2.

63. Find the equation of the line tangent to f (x) at x = 2,

if

f (x) =
x3

2
−

4

3x
.

64. (a) Find the equation of the tangent line to f (x) = x3

at the point where x = 2.

(b) Graph the tangent line and the function on the same

axes. If the tangent line is used to estimate values

of the function near x = 2, will the estimates be

overestimates or underestimates?

65. (a) Use Figure 3.8 to rank the quantities

f ′(−1), f ′(0), f ′(1), f ′(4) from smallest to largest.

(b) Confirm your answer by calculating the quantities

using the formula, f (x) = x3 − 3x2 + 2x + 10.

−2 −1 1 2 3 4 5

−20

−10

10

20

30

40 f (x)

x

Figure 3.8

66. The graph of y = x3 − 9x2 − 16x + 1 has a slope of 5

at two points. Find the coordinates of the points.

67. On what intervals is the graph of f (x) = x4 − 4x3 both

decreasing and concave up?

68. For what values of x is the function y = x5 − 5x both

increasing and concave up?

69. (a) Find the eighth derivative of f (x) = x7 + 5x5 −

4x3 + 6x − 7. Think ahead!

(The nth derivative, f (n)(x), is the result of differ-

entiating f (x) n times.)

(b) Find the seventh derivative of f (x).
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In Problems 70–73:

(a) Find the derivative of the function at x = −1.

(b) Find the second derivative of the function at x = −1.

(c) Use your answers to parts (a) and (b) to match the func-

tion to one of the graphs in Figure 3.9, each of which is

shown centered on the point (−1,−1).

(I) (II)

(III) (IV)

Figure 3.9

70. k(x) = x3 − x − 1

71. f (x) = 2x3 + 3x2 − 2

72. g(x) = x4 − x2 − 2x − 3

73. ℎ(x) = 2x4 + 8x3 + 15x2 + 14x + 4

74. With t in years since 2016, the height of a sand dune (in

centimeters) is f (t) = 700 − 3t2. Find f (5) and f ′(5).

Using units, explain what each means in terms of the

sand dune.

75. A 500-meter-wide dam is holding back an H-meter-

high column of water. (See Figure 3.10.) The total force

on the dam is F (H) = 2450H2 kilonewtons (kN). Find

F ′(50). What does your answer tell you about the force

on the dam?

✻

❄

H

500m ✛

✛

Figure 3.10

76. A 50-gram mass moving around a circle of radius 20

cm and center P at a constant speed of v cm/sec experi-

ences a force of F = v2∕40 millinewtons (mN) toward

the center of the circle. See Figure 3.11.

(a) Does the force increase or decrease as the speed of

the mass increases?

(b) Find
dF

dv

|

|

|

|v=8

. Interpret your answer in this context.

P

20 cm

✻

✒
50 gm

v⃗

Figure 3.11

P

r

✻
10 cm∕sec

✒
50 gm

Figure 3.12

77. A 50-gram mass moving at a constant speed of 10

cm/sec around a circle with centerP experiences a force

of F = 50∕r millinewtons (mN) toward the center of

the circle, where r is the radius of the circle, in cm. See

Figure 3.12.

(a) Does the force increase or decrease as the radius of

the circle increases?

(b) Find
dF

dr

|

|

|

|r=10

. Interpret your answer in this con-

text.

78. The pressure of a sample of an ideal gas held at a con-

stant temperature is P = f (V ) = 100∕V atmospheres,

where V is the volume of the gas sample, in liters. Find

f (6) and f ′(6). What do your answers tell you about

the pressure and volume of the sample?

79. A rubber balloon contains neon. As the air pressure, P

(in atmospheres), outside the balloon increases, the vol-

ume of gas, V (in liters), in the balloon decreases ac-

cording to V = f (P ) = 25∕P .

(a) Evaluate and interpret f (2), including units.

(b) Evaluate and interpret f ′(2), including units.

(c) Assuming that the pressure increases at a constant

rate, does the volume of the balloon decrease faster

when the pressure is 1 atmosphere or when the

pressure is 2 atmospheres? Justify your answer.

80. A ball is dropped from the top of the Empire State build-

ing to the ground below. The height, y, of the ball above

the ground (in feet) is given as a function of time, t (in

seconds), by

y = 1250 − 16t2.

(a) Find the velocity of the ball at time t. What is the

sign of the velocity? Why is this to be expected?

(b) Show that the acceleration of the ball is a constant.

What are the value and sign of this constant?

(c) When does the ball hit the ground, and how fast

is it going at that time? Give your answer in feet

per second and in miles per hour (1 ft/sec = 15/22

mph).
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81. At a time t seconds after it is thrown up in the air, a

tomato is at a height of f (t) = −4.9t2 +25t+3 meters.

(a) What is the average velocity of the tomato during

the first 2 seconds? Give units.

(b) Find (exactly) the instantaneous velocity of the

tomato at t = 2. Give units.

(c) What is the acceleration at t = 2?

(d) How high does the tomato go?

(e) How long is the tomato in the air?

82. Let f (t) and g(t) give, respectively, the amount of wa-

ter (in acre-feet) in two different reservoirs on day t.

Suppose that f (0) = 2000, g(0) = 1500 and that

f ′(0) = 11, g′(0) = 13.5. Let ℎ(t) = f (t) − g(t).

(a) Evaluate ℎ(0) and ℎ′(0). What do these quantities

tell you about the reservoir?

(b) Assume ℎ′ is constant for 0 ≤ t ≤ 250. Does ℎ

have any zeros? What does this tell you about the

reservoirs?

83. A jökulhlaup is the rapid draining of a glacial lake

when an ice dam bursts. The maximum outflow rate,

Q (in m3∕sec), during a jökulhlaup is given2 in terms

of its volume, v (in km3), before the dam-break by

Q = 7700v0.67.

(a) Find
dQ

dv
.

(b) Evaluate
dQ

dv

|

|

|

|

|v=0.1

. Include units. What does this

derivative mean for glacial lakes?

84. When the acceleration due to gravity is g = 9.8m/sec2,

the pressure ℎ meters below the surface of a fluid of

density � kg/m3 is P = 1.013 × 105 + �gℎ pascals.

(a) Find
dP

dℎ

|

|

|

|ℎ=1

for water, which has density � =

1000 kg/m3. Interpret your answer.

(b) For ℎ = 1, find
dP

d�

|

|

|

|�=500

. Interpret your answer.

85. (a) For y = kxn, show that near any point x = a, we

have Δy∕y ≈ nΔx∕a.

(b) Interpret this relationship in terms of percent

change in y and x.

In Problems 86–89, use the fact that for a power function

y = kxn, for small changes, the percent change in output y

is approximately n times the percent change in input x. (See

Problem 85.)

86. An error of 5% in the measurement of the radius r of a

circle leads to what percent error in the area A?

87. If we want to measure the volume V of a sphere ac-

curate to 3%, how accurately must we measure the ra-

dius r?

88. The stopping distance s, in feet, of a car traveling v mph

is s = v2∕20. An increase of 10% in the speed of the car

leads to what percent increase in the stopping distance?

89. The average wind speed in Hyannis, MA, in August is

9 mph. In nearby Nantucket, it is 10 mph. What per-

cent increase in power, P , is there for a wind turbine

in Nantucket compared to Hyannis in August? Assume

P = kv3, where v is wind speed.

90. The depth, ℎ (in mm), of the water runoff down a slope

during steady rain3 is a function of the distance, x (in

meters), from the top of the slope, ℎ = f (x) = 0.07x2∕3.

(a) Find f ′(x).

(b) Find f ′(30). Include units.

(c) Explain how you can use your answer to part (b) to

estimate the difference in runoff depths between a

point 30 meters down the slope and a point 6 me-

ters farther down.

91. If M is the mass of the earth and G is a constant, the

acceleration due to gravity, g, at a distance r from the

center of the earth is given by

g =
GM

r2
.

(a) Find dg∕dr.

(b) What is the practical interpretation (in terms of ac-

celeration) of dg∕dr? Why would you expect it to

be negative?

(c) You are told that M = 6 ⋅1024 and G = 6.67 ⋅10−20

where M is in kilograms, r in kilometers, and g in

km∕sec2. What is the value of dg∕dr at the surface

of the earth (r = 6400 km)? Include units.

(d) What does this tell you about whether or not it is

reasonable to assume g is constant near the surface

of the earth?

92. Water drains from a spout in a cylindrical tank at a

speed of v = f (ℎ) =
√

2gℎ meters per second, where

g = 9.8 m/sec2 is the acceleration due to gravity and

ℎ m is the vertical distance from the spout to the top

of the water, see Figure 3.13. Find f (1) and f ′(1) and

explain what they mean in the context of the problem.

✻

❄

ℎ

Figure 3.13

2J. J. Clague and W. H. Mathews, “The Magnitude of Jökulhlaups”, Journal of Glaciology, 12, no. 66, pp. 501–504.
3R. S. Anderson and S. P. Anderson, Geomorphology, p. 369 (Cambridge: CUP).



146 Chapter 3 SHORT-CUTS TO DIFFERENTIATION

93. The period, T , of a pendulum is given in terms of its

length, l, by

T = 2�

√

l

g
,

where g is the acceleration due to gravity (a constant).

(a) Find dT ∕dl.

(b) What is the sign of dT ∕dl? What does this tell you

about the period of pendulums?

94. (a) Use the formula for the area of a circle of radius r,

A = �r2, to find dA∕dr.

(b) The result from part (a) should look familiar. What

does dA∕dr represent geometrically?

(c) Use the difference quotient to explain the observa-

tion you made in part (b).

95. Suppose W is proportional to r3. The derivative

dW ∕dr is proportional to what power of r?

96. Find values of a and b so that y = ax2+ b goes through

the point (2, 22) and has slope 12 at the point.

97. Given a power function of the form f (x) = axn, with

f ′(2) = 3 and f ′(4) = 24, find n and a.

98. Find the value of k so that f (x) has slope of 1 at x = 2

if

f (x) =
3x − k

x2
, x > 0.

99. (a) Find the value of a making f (x) continuous at

x = 1:

f (x) =
{

ax 0 ≤ x ≤ 1

x2 + 3 1 < x ≤ 2.

(b) With the value of a you found in part (a), does f (x)

have a derivative at every point in 0 < x < 2? Ex-

plain.

Strengthen Your Understanding

In Problems 100–101, explain what is wrong with the state-

ment.

100. The only function that has derivative 2x is x2.

101. The derivative of f (x) = 1∕x2 is f ′(x) = 1∕(2x).

In Problems 102–104, give an example of:

102. Two functions f (x) and g(x) such that

d

dx
(f (x) + g(x)) = 2x + 3.

103. A function whose derivative is g′(x) = 2x and whose

graph has no x-intercepts.

104. A function which has second derivative equal to 6 ev-

erywhere.

In Problems 105–107, is the statement true or false? Give an

explanation for your answer.

105. The derivative of a polynomial is always a polynomial.

106. The derivative of �∕x2 is −�∕x.

107. If f ′(2) = 3.1 and g′(2) = 7.3, then the graph of

f (x) + g(x) has slope 10.4 at x = 2.

In Problems 108–109, is the statement true or false? You are

told that f ′′ and g′′ exist and that f and g are concave up

for all x. If a statement is true, explain how you know. If a

statement is false, give a counterexample.

108. f (x) + g(x) is concave up for all x.

109. f (x) − g(x) cannot be concave up for all x.

3.2 THE EXPONENTIAL FUNCTION

What do we expect the graph of the derivative of the exponential function f (x) = ax to look like?

The exponential function in Figure 3.14 increases slowly for x < 0 and more rapidly for x > 0, so

the values of f ′ are small for x < 0 and larger for x > 0. Since the function is increasing for all

values of x, the graph of the derivative must lie above the x-axis. It appears that the graph of f ′ may

resemble the graph of f itself.

x

f (x) = ax

Figure 3.14: f (x) = ax, with a > 1
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In this section we see that f ′(x) = k ⋅ ax, where k is a constant, so in fact f ′(x) is proportional

to f (x). This property of exponential functions makes them particularly useful in modeling because

many quantities have rates of change which are proportional to themselves. For example, the simplest

model of population growth has this property.

Derivatives of Exponential Functions and the Number e

We start by calculating the derivative of g(x) = 2x, which is given by

g′(x) = lim
ℎ→0

(

2x+ℎ − 2x

ℎ

)

= lim
ℎ→0

(

2x2ℎ − 2x

ℎ

)

= lim
ℎ→0

2x
(

2ℎ − 1

ℎ

)

= lim
ℎ→0

(

2ℎ − 1

ℎ

)

⋅ 2x. (Since x and 2x are fixed during this calculation)

To find limℎ→0(2
ℎ − 1)∕ℎ, see Table 3.2, where we have substituted values of ℎ near 0. The table

suggests that the limit exists and has value 0.693. Let us call the limit k, so k = 0.693. Then

d

dx
(2x) = k ⋅ 2x = 0.693 ⋅ 2x.

So the derivative of 2x is proportional to 2x with constant of proportionality 0.693. A similar

calculation shows that the derivative of f (x) = ax is

f ′(x) = lim
ℎ→0

(

ax+ℎ − ax

ℎ

)

= lim
ℎ→0

(

aℎ − 1

ℎ

)

⋅ ax.

Table 3.2

ℎ (2ℎ − 1)∕ℎ

−0.1 0.6697

−0.01 0.6908

−0.001 0.6929

0.001 0.6934

0.01 0.6956

0.1 0.7177

Table 3.3

a k = limℎ→0
aℎ−1

ℎ

2 0.693

3 1.099

4 1.386

5 1.609

6 1.792

7 1.946

Table 3.4

ℎ (1 + ℎ)1∕ℎ

−0.001 2.7196422

−0.0001 2.7184178

−0.00001 2.7182954

0.00001 2.7182682

0.0001 2.7181459

0.001 2.7169239

The quantity limℎ→0(a
ℎ − 1)∕ℎ is also a constant, although the value of the constant depends

on a. Writing k = limℎ→0(a
ℎ − 1)∕ℎ, we see that the derivative of f (x) = ax is proportional to ax:

d

dx
(ax) = k ⋅ ax.

For particular values of a, we can estimate k by substituting values ofℎ near 0 into the expression

(aℎ − 1)∕ℎ. Table 3.3 shows the results. Notice that for a = 2, the value of k is less than 1, while

for a = 3, 4, 5,…, the values of k are greater than 1. The values of k appear to be increasing, so we

guess that there is a value of a between 2 and 3 for which k = 1. If so, we have found a value of a

with the remarkable property that the function ax is equal to its own derivative.

So let us look for such an a. This means we want to find a such that

lim
ℎ→0

aℎ − 1

ℎ
= 1, or, for small ℎ,

aℎ − 1

ℎ
≈ 1.

Solving for a, we can estimate a as follows:

aℎ − 1 ≈ ℎ, or aℎ ≈ 1 + ℎ, so a ≈ (1 + ℎ)1∕ℎ.

Taking small values of ℎ, as in Table 3.4, we see a ≈ 2.718…. This is the number e introduced in

Chapter 1. In fact, it can be shown that if

e = lim
ℎ→0

(1 + ℎ)1∕ℎ = 2.718… then lim
ℎ→0

eℎ − 1

ℎ
= 1.
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This means that ex is its own derivative:

d

dx
(ex) = ex.

Figure 3.15 shows the graphs 2x, 3x, and ex together with their derivatives. Notice that the

derivative of 2x is below the graph of 2x, since k < 1 there, and the graph of the derivative of 3x

is above the graph of 3x, since k > 1 there. With e ≈ 2.718, the function ex and its derivative are

identical.

Note on Round-Off Error and Limits

If we try to evaluate (1 + ℎ)1∕ℎ on a calculator by taking smaller and smaller values of ℎ, the values

of (1 + ℎ)1∕ℎ at first get closer to 2.718…. However, they will eventually move away again because

of the round-off error (that is, errors introduced by the fact that the calculator can only hold a certain

number of digits).

As we try smaller and smaller values of ℎ, how do we know when to stop? Unfortunately, there is

no fixed rule. A calculator can only suggest the value of a limit, but can never confirm that this value

is correct. In this case, it looks like the limit is 2.718… because the values of (1 + ℎ)1∕ℎ approach

this number for a while. To be sure this is correct, we have to find the limit analytically.

f (x) = 2x

f ′(x) ≈ (0.69)2x

x

ex and its derivative

x

g(x) = 3x

g′(x) ≈ (1.1)3x

x

Figure 3.15: Graphs of the functions 2x, ex, and 3x and their derivatives

A Formula for the Derivative of ax

To get a formula for the derivative of ax, we must calculate

f ′(x) = lim
ℎ→0

ax+ℎ − ax

ℎ
=

(

lim
ℎ→0

aℎ − 1

ℎ

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
k

ax.

However, without knowing the value of a, we can’t use a calculator to estimate k. We take a different

approach, rewriting a = eln a, so

lim
ℎ→0

aℎ − 1

ℎ
= lim

ℎ→0

(eln a)ℎ − 1

ℎ
= lim

ℎ→0

e(ln a)ℎ − 1

ℎ
.

To evaluate this limit, we use a limit that we already know:

lim
ℎ→0

eℎ − 1

ℎ
= 1.

In order to use this limit, we substitute t = (ln a)ℎ. Since t approaches 0 as ℎ approaches 0, we have

lim
ℎ→0

e(ln a)ℎ − 1

ℎ
= lim

t→0

et − 1

(t∕ ln a)
= lim

t→0

(

ln a ⋅
et − 1

t

)

= ln a

(

lim
t→0

et − 1

t

)

= (ln a) ⋅ 1 = ln a.
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Thus, we have

f ′(x) = lim
ℎ→0

ax+ℎ − ax

ℎ
=

(

lim
ℎ→0

aℎ − 1

ℎ

)

ax = (ln a)ax.

In Section 3.6 we obtain the same result by another method. We conclude that:

d

dx
(ax) = (ln a)ax.

Thus, for any a, the derivative of ax is proportional to ax. The constant of proportionality is ln a. The

derivative of ax is equal to ax if the constant of proportionality is 1, that is, if ln a = 1, then a = e.

The fact that the constant of proportionality is 1 when a = e makes e a particularly convenient base

for exponential functions.

Example 1 Differentiate 2 ⋅ 3x + 5ex.

Solution
d

dx
(2 ⋅ 3x + 5ex) = 2

d

dx
(3x) + 5

d

dx
(ex) = 2 ln 3 ⋅ 3x + 5ex ≈ (2.1972)3x + 5ex.

We can now use the new differentiation formula to compute rates.

Example 2 The population of the world in billions can be modeled by the function f (t) = 6.91(1.011)t, where

t is years since 2010. Find and interpret f (0) and f ′(0).

Solution We have f (t) = 6.91(1.011)t so f ′(t) = 6.91(ln 1.011)(1.011)t = 0.0756(1.011)t. Therefore,

f (0) = 6.91 billion people

and

f ′(0) = 0.0756 billion people per year.

In 2010, the population of the world was 6.91 billion people and was increasing at a rate of 0.0756

billion, or 75.6 million, people per year.

Summary for Section 3.2

•
d

dx
(ex) = ex

•
d

dx
(ax) = (ln a)ax

Exercises and Problems for Section 3.2 Online Resource: Additional Problems for Section 3.2
EXERCISES

In Exercises 1–25, find the derivatives of the functions . As-

sume that a and k are constants.

1. f (x) = 2ex + x2 2. y = 5t2 + 4et

3. f (x) = a5x 4. f (x) = 12ex + 11x

5. y = 5x2 + 2x + 3 6. f (x) = 2x + 2 ⋅ 3x

7. y = 4 ⋅ 10x − x3 8. z = (ln 4)ex

9. y =
3x

3
+

33
√

x
10. y = 2x +

2

x3

11. z = (ln 4)4x 12. f (t) = (ln 3)t

13. y = 5 ⋅ 5t + 6 ⋅ 6t 14. ℎ(z) = (ln 2)z

15. f (x) = e2 + xe 16. y = �2 + �x

17. f (x) = e� + �x 18. f (x) = �x + x�
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19. f (x) = ek + kx 20. f (x) = e1+x

21. f (t) = et+2 22. f (�) = ek� − 1

23. y(x) = ax + xa 24. f (x) = x�2 + (�2)x

25. g(x) = 2x −
1
3
√

x
+ 3x − e

In Exercises 26–28, find formulas for f ′′ and f ′′′.

26. f (x) = 2x 27. f (t) = 5t+1

28. f (v) =
√

v + 3v

PROBLEMS

In Problems 29–39, can the functions be differentiated using

the rules developed so far? Differentiate if you can; other-

wise, indicate why the rules discussed so far do not apply.

29. y = x2 + 2x 30. y =
√

x − (
1

2
)x

31. y = x2
⋅ 2x 32. f (s) = 5ses

33. y = ex+5 34. y = e5x

35. y = 4(x
2) 36. f (z) = (

√

4)z

37. f (�) = 4
√

� 38. f (x) = 4(3
x)

39. y =
2x

x

40. Find the equation for the tangent line to the graph of

f (x) = 3ex + 2 at x = 1.

41. (a) Find the line perpendicular to the tangent line to

y = 2ex + 3 at x = 0.

(b) Where does this line cross the x-axis?

42. (a) Use Figure 3.16 to rank the quantities

f ′(1), f ′(2), f ′(3) from smallest to largest.

(b) Confirm your answer by calculating the quantities

using the formula, f (x) = 2ex − 3x2
√

x.

1 2 3 4

−8

−4

4

8 f (x)

x

Figure 3.16

43. An animal population is given by P (t) = 300(1.044)t

where t is the number of years since the study of the

population began. Find P ′(5) and interpret your result.

44. With a yearly inflation rate of 2%, prices are given by

P = P0(1.02)
t,

where P0 is the price in dollars when t = 0 and t is time

in years. Suppose P0 = 1. How fast (in cents/year) are

prices rising when t = 10?

45. After a storm, a high-pressure system moves into Du-

luth, Minnesota. The air pressure t hours after noon is

given by P (t) = 1050 − 44(0.94)t mb (millibars). Find

the air pressure and the rate at which it is increasing at

3 pm. Include units.

46. The value of an automobile purchased in 2020 can be

approximated by the function V (t) = 30(0.85)t, where

t is the time, in years, from the date of purchase, and

V (t) is the value, in thousands of dollars.

(a) Evaluate and interpret V (4), including units.

(b) Find an expression for V ′(t), including units.

(c) Evaluate and interpret V ′(4), including units.

(d) Use V (t), V ′(t), and any other considerations you

think are relevant to write a paragraph in support of

or in opposition to the following statement: “From

a monetary point of view, it is best to keep this ve-

hicle as long as possible.”

47. With t in years since the start of 2018, worldwide an-

nual extraction of copper is 21(1.05)t million tonnes.4

(a) How fast is the annual extraction changing at time

t? Give units.

(b) How fast is the annual extraction changing at the

start of 2025?

(c) Suppose annual extraction changes at the rate

found in part (b) for the five years 2025–2030. By

how much does the annual extraction change over

this period?

(d) Is your answer to part (c) larger or smaller than the

change in annual extraction approximated by the

model 21(1.05)t?

48. Food bank usage in Britain has grown rapidly in recent

years. The number of emergency three-day food parcels

given by the Trussell Trust, in thousands, is estimated5

to be N(t) = 931(1.145)t, where t is the number of

years since 2015.

(a) At what rate is the number of food bank users

changing at time t? Give units.

(b) Does this rate of change increase or decrease with

time?

4prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/mcs2019_all.pdf, accessed September

26, 2019.
5Estimates for the Trussell Trust: www.trusselltrust.org/stats, accessed August 2019.
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49. In July 2017, the population of Mexico was 125 million

and growing 1.12% annually, while the population of

the US was 327 million and growing 0.81% annually.6

(a) Find the Mexican growth rate in people/year in

2017.

(b) Find the US growth rate, measured the same way,

and use it to determine which population was grow-

ing faster in 2017.

50. Some antique furniture increased very rapidly in price

over the past decade. For example, the price of a partic-

ular rocking chair is well approximated by

V = 75(1.35)t,

where V is in dollars and t is in years since 2000. Find

the rate, in dollars per year, at which the price is increas-

ing at time t.

51. Find the quadratic polynomial g(x) = ax2 + bx + c

which best fits the function f (x) = ex at x = 0, in the

sense that

g(0) = f (0), and g′(0) = f ′(0), and g′′(0) = f ′′(0).

Using a computer or calculator, sketch graphs of f and

g on the same axes. What do you notice?

Strengthen Your Understanding

In Problems 52–53, explain what is wrong with the state-

ment.

52. The derivative of f (x) = 2x is f ′(x) = x2x−1.

53. The derivative of f (x) = �e is f ′(x) = e�e−1.

In Problems 54–55, give an example of:

54. An exponential function for which the derivative is al-

ways negative.

55. A function f such that f ′′′(x) = f (x).

Are the statements in Problems 56–58 true or false? Give an

explanation for your answer.

56. If f (x) is increasing, then f ′(x) is increasing.

57. There is no function such that f ′(x) = f (x) for all x.

58. If f (x) is defined for all x, then f ′(x) is defined for all x.

3.3 THE PRODUCT AND QUOTIENT RULES

We now know how to find derivatives of powers and exponentials, and of sums and constant multiples

of functions. This section shows how to find the derivatives of products and quotients.

Using � Notation

To express the difference quotients of general functions, some additional notation is helpful. We

write Δf , read “delta f ,” for a small change in the value of f at the point x,

Δf = f (x + ℎ) − f (x).

In this notation, the derivative is the limit of the ratio Δf∕ℎ:

f ′(x) = lim
ℎ→0

Δf

ℎ
.

The Product Rule

Suppose we know the derivatives of f (x) and g(x) and want to calculate the derivative of the product,

f (x)g(x). The derivative of the product is calculated by taking the limit, namely,

d[f (x)g(x)]

dx
= lim

ℎ→0

f (x + ℎ)g(x + ℎ) − f (x)g(x)

ℎ
.

To picture the quantity f (x+ ℎ)g(x+ ℎ) − f (x)g(x), imagine the rectangle with sides f (x+ ℎ) and

g(x + ℎ) in Figure 3.17, where Δf = f (x + ℎ) − f (x) and Δg = g(x + ℎ) − g(x). Then

f (x + ℎ)g(x + ℎ) − f (x)g(x) = (Area of whole rectangle) − (Unshaded area)

= Area of the three shaded rectangles

= Δf ⋅ g(x) + f (x) ⋅ Δg + Δf ⋅ Δg.

Now divide by ℎ:

f (x + ℎ)g(x + ℎ) − f (x)g(x)

ℎ
=

Δf

ℎ
⋅ g(x) + f (x) ⋅

Δg

ℎ
+

Δf ⋅ Δg

ℎ
.

6www.indexmundi.com, accessed September 27, 2019.
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Δf

Area = f (x) ⋅ g(x)

Δg

Area = Δf ⋅ g(x) Area = Δf ⋅ Δg

Area = f (x) ⋅ Δg

❄ ✠

✛

✻

❄

f (x)

✻
❄

✻

❄

f (x + ℎ)

✲✛ g(x) ✲✛

✲✛ g(x + ℎ)

Figure 3.17: Illustration for the product rule (with Δf , Δg positive)

To evaluate the limit as ℎ → 0, we examine the three terms on the right separately. Notice that

lim
ℎ→0

Δf

ℎ
⋅ g(x) = f ′(x)g(x) and lim

ℎ→0
f (x) ⋅

Δg

ℎ
= f (x)g′(x).

In the third term we multiply the top and bottom by ℎ to get
Δf

ℎ
⋅

Δg

ℎ
⋅ ℎ. Then,

lim
ℎ→0

Δf ⋅ Δg

ℎ
= lim

ℎ→0

Δf

ℎ
⋅

Δg

ℎ
⋅ ℎ = lim

ℎ→0

Δf

ℎ
⋅ lim
ℎ→0

Δg

ℎ
⋅ lim
ℎ→0

ℎ = f ′(x) ⋅ g′(x) ⋅ 0 = 0.

Therefore, we conclude that

lim
ℎ→0

f (x + ℎ)g(x + ℎ) − f (x)g(x)

ℎ
= lim

ℎ→0

(

Δf

ℎ
⋅ g(x) + f (x) ⋅

Δg

ℎ
+

Δf ⋅ Δg

ℎ

)

= lim
ℎ→0

Δf

ℎ
⋅ g(x) + lim

ℎ→0
f (x) ⋅

Δg

ℎ
+ lim

ℎ→0

Δf ⋅ Δg

ℎ

= f ′(x)g(x) + f (x)g′(x).

Thus we have proved the following rule:

Theorem 3.3: The Product Rule

If u = f (x) and v = g(x) are differentiable, then

(fg)′ = f ′g + fg′.

The product rule can also be written

d(uv)

dx
=

du

dx
⋅ v + u ⋅

dv

dx
.

In words:

The derivative of a product is the derivative of the first times the second plus the first

times the derivative of the second.

Another justification of the product rule is given in Problem 62 of Section 3.9 (available online).

Example 1 Differentiate (a) x2ex, (b) (3x2 + 5x)ex, (c)
ex

x2
.
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Solution (a)
d(x2ex)

dx
=

(

d(x2)

dx

)

ex + x2
d(ex)

dx
= 2xex + x2ex = (2x + x2)ex.

(b)
d((3x2 + 5x)ex)

dx
=

(

d(3x2 + 5x)

dx

)

ex + (3x2 + 5x)
d(ex)

dx

= (6x + 5)ex + (3x2 + 5x)ex = (3x2 + 11x + 5)ex.

(c) First we must write
ex

x2
as the product x−2ex:

d

dx

(

ex

x2

)

=
d(x−2ex)

dx
=

(

d(x−2)

dx

)

ex + x−2
d(ex)

dx

= −2x−3ex + x−2ex = (−2x−3 + x−2)ex.

The Quotient Rule

Suppose we want to differentiate a function of the form Q(x) = f (x)∕g(x). (Of course, we have to

avoid points where g(x) = 0.) We want a formula for Q′ in terms of f ′ and g′.

Assuming that Q(x) is differentiable, we can use the product rule on f (x) = Q(x)g(x):

f ′(x) = Q′(x)g(x) +Q(x)g′(x)

= Q′(x)g(x) +
f (x)

g(x)
g′(x).

Solving for Q′(x) gives

Q′(x) =

f ′(x) −
f (x)

g(x)
g′(x)

g(x)
.

Multiplying the top and bottom by g(x) to simplify gives

d

dx

(

f (x)

g(x)

)

=
f ′(x)g(x) − f (x)g′(x)

(g(x))2
.

So we have the following rule:

Theorem 3.4: The Quotient Rule

If u = f (x) and v = g(x) are differentiable, then

(

f

g

)′

=
f ′g − fg′

g2
,

or equivalently,

d

dx

(

u

v

)

=

du

dx
⋅ v − u ⋅

dv

dx

v2
.

In words:

The derivative of a quotient is the derivative of the numerator times the denominator

minus the numerator times the derivative of the denominator, all over the denomina-

tor squared.
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Example 2 Differentiate (a)
5x2

x3 + 1
, (b)

1

1 + ex
, (c)

ex

x2
.

Solution (a)

d

dx

(

5x2

x3 + 1

)

=

(

d

dx
(5x2)

)

(x3 + 1) − 5x2
d

dx
(x3 + 1)

(x3 + 1)2
=

10x(x3 + 1) − 5x2(3x2)

(x3 + 1)2

=
−5x4 + 10x

(x3 + 1)2
.

(b)

d

dx

(

1

1 + ex

)

=

(

d

dx
(1)

)

(1 + ex) − 1
d

dx
(1 + ex)

(1 + ex)2
=

0(1 + ex) − 1(0 + ex)

(1 + ex)2

=
−ex

(1 + ex)2
.

(c) This is the same as part (c) of Example 1, but this time we do it by the quotient rule.

d

dx

(

ex

x2

)

=

(

d(ex)

dx

)

x2 − ex
(

d(x2)

dx

)

(x2)2
=

exx2 − ex(2x)

x4

= ex
(

x2 − 2x

x4

)

= ex
(

x − 2

x3

)

.

This is, in fact, the same answer as before, although it looks different. Can you show that it is

the same?

Summary for Section 3.3

• The product rule: If u = f (x) and v = g(x) are differentiable, then

(fg)′ = f ′g + fg′.

The product rule can also be written

d(uv)

dx
=

du

dx
⋅ v + u ⋅

dv

dx
.

• The quotient rule: If u = f (x) and v = g(x) are differentiable, then

(

f

g

)′

=
f ′g − fg′

g2
,

or equivalently,

d

dx

(

u

v

)

=

du

dx
⋅ v − u ⋅

dv

dx

v2
.

Exercises and Problems for Section 3.3 Online Resource: Additional Problems for Section 3.3
EXERCISES

1. If f (x) = x2(x3 + 5), find f ′(x) two ways: by using the

product rule and by multiplying out before taking the

derivative. Do you get the same result? Should you?

2. If f (x) = 2x ⋅ 3x, find f ′(x) two ways: by using the

product rule and by using the fact that 2x ⋅ 3x = 6x. Do

you get the same result?
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For Exercises 3–30, find the derivative. It may be to your

advantage to simplify first. Assume that a, b, c, and k are

constants.

3. f (x) = xex 4. y = x ⋅ 2x

5. y =
√

x ⋅ 2x 6. y = (t2 + 3)et

7. f (x) = (x2 −
√

x)3x 8. y = (t3 − 7t2 + 1)et

9. f (x) =
x

ex
10. g(x) =

25x2

ex

11. y =
t + 1

2t
12. g(w) =

w3.2

5w

13. q(r) =
3r

5r + 2
14. g(t) =

t − 4

t + 4

15. z =
3t + 1

5t + 2
16. z =

t2 + 5t + 2

t + 3

17. f (t) = 2tet −
1
√

t
18. f (x) =

x2 + 3

x

19. w =
y3 − 6y2 + 7y

y
20. g(t) =

4

3 +
√

t

21. f (z) =
z2 + 1
√

z
22. w =

5 − 3z

5 + 3z

23. ℎ(r) =
r2

2r + 1
24. f (z) =

3z2

5z2 + 7z

25. w(x) =
17ex

2x
26. ℎ(p) =

1 + p2

3 + 2p2

27. f (x) =
x2 + 3x + 2

x + 1
28. f (x) =

ax + b

cx + k

29. f (x) = (2 − 4x − 3x2)(6xe − 3�)

30. f (x) = (3x2 + �)(ex − 4)

PROBLEMS

In Problems 31–33, use Figure 3.18 and the product or quo-

tient rule to estimate the derivative, or state why the rules

of this section do not apply. The graph of f (x) has a sharp

corner at x = 2.

1 2 3 4

1

2

3

4

g(x)

f (x)

x

y

Figure 3.18

31. Let ℎ(x) = f (x) ⋅ g(x). Find:

(a) ℎ′(1) (b) ℎ′(2) (c) ℎ′(3)

32. Let k(x) = f (x)∕g(x). Find:

(a) k′(1) (b) k′(2) (c) k′(3)

33. Let j(x) = g(x)∕f (x). Find:

(a) j′(1) (b) j′(2) (c) j′(3)

For Problems 34–39, let ℎ(x) = f (x) ⋅ g(x), and k(x) =

f (x)∕g(x), and l(x) = g(x)∕f (x). Use Figure 3.19 to esti-

mate the derivatives.

−3 3

−3

3

x

f (x)

−3 3

−3

3

x

g(x)

Figure 3.19

34. ℎ′(1) 35. k′(1) 36. ℎ′(2)

37. k′(2) 38. l′(1) 39. l′(2)

40. Differentiate f (t) = e−t by writing it as f (t) =
1

et
.

41. Differentiate f (x) = e2x by writing it as f (x) = ex ⋅ ex.

42. Differentiate f (x) = e3x by writing it as f (x) = ex ⋅ e2x

and using the result of Problem 41.

43. For what intervals is f (x) = xex concave up?

44. For what intervals is g(x) =
1

x2 + 1
concave down?

45. Find the equation of the tangent line to the graph of

f (x) = 5xex at the point at which x = 0.

46. Find the equation of the tangent line to the graph of

f (x) = x3ex at the point at which x = 2.

47. Find the equation of the tangent line to the graph of

f (x) =
2x − 5

x + 1
at the point at which x = 0.

In Problems 48–51, the functions f (x), g(x), and ℎ(x) are

differentiable for all values of x. Find the derivative of each

of the following functions, using symbols such as f (x) and

f ′(x) in your answers as necessary.

48. x2f (x) 49. 4x(f (x) + g(x))

50.
f (x)

g(x) + 1
51.

f (x)g(x)

ℎ(x)

52. The differentiable functions f and g have the values in

the table. For each of the following functions ℎ, find

ℎ′(2).

(a) ℎ(x) = f (x) + g(x) (b) ℎ(x) = f (x)g(x)

(c) ℎ(x) =
f (x)

g(x)

x f (x) g(x) f ′(x) g′(x)

2 3 4 5 −2
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53. If H(3) = 1, H ′(3) = 3, F (3) = 5, F ′(3) = 4, find:

(a) G′(3) if G(z) = F (z) ⋅H(z)

(b) G′(3) if G(w) = F (w)∕H(w)

In Problems 54–59, use the table to evaluate the derivatives

x 2 3 5

f (x) 5 7 10

f ′(x) 1 2 3

g(x) 4 3 2

g′(x) −3 −4 −7

54. f ′(2) + g′(2) 55. f ′(2 + 3)

56. (fg)′(5) 57.

(

f

g

)′

(3)

58. (fg)′(2) − (gf )′(2) 59.

(

f

g

)′

(2)−

(

g

f

)′

(2)

60. Find the slope of the line tangent to ℎ(x) = f (x)g(x) at

x = 3, given that the line tangent to the graph of f (x)

at x = 3 is y = 2x−1, and the line tangent to the graph

of g(x) at x = 3 is y = 13 − 3x.

61. Find a possible formula for a function y = f (x) such

that f ′(x) = 10x9ex + x10ex.

62. The density of veins on leaves tells us about a region’s

past climate. Scientists measure vein density, V , in mm

per mm2, by estimating the average distance, x, in mm,

between veins on a leaf, and using the formula:7

V = f (x) =
0.629

x
+ 1.073.

(a) Calculate f ′(x) using the power rule.

(b) Calculate f ′(x) using the quotient rule.

(c) What are the units of f ′(x)?

(d) Calculate f ′(1) and interpret the meaning of your

answer in practical terms.

63. The quantity, q, of a skateboard sold depends on the

selling price, p, in dollars, so we write q = f (p). You

are given that f (140) = 15,000 and f ′(140) = −100.

(a) What do f (140) = 15,000 and f ′(140) = −100

tell you about the sales of skateboards?

(b) The total revenue, R, earned by the sale of skate-

boards is given by R = pq. Find
dR

dp

|

|

|

|

|p=140

.

(c) What is the sign of
dR

dp

|

|

|

|

|p=140

? If the skateboards

are currently selling for $140, what happens to rev-

enue if the price is increased to $141?

64. A museum has decided to sell one of its paintings and

to invest the proceeds. If the picture is sold between the

years 2015 and 2025 and the money from the sale is

invested in a bank account earning 2% interest per year

compounded annually, thenB(t), the balance in the year

2025, depends on the year, t, in which the painting is

sold and the sale price P (t). If t is measured from the

year 2015 so that 0 ≤ t ≤ 10, then

B(t) = P (t)(1.02)10−t.

(a) Explain why B(t) is given by this formula.

(b) Show that the formula for B(t) is equivalent to

B(t) = (1.02)10
P (t)

(1.02)t
.

(c) Find B′(5), given that P (5) = 150,000 dollars and

P ′(5) = 2000 dollars∕year.

65. Let f (v) be the gas consumption (in liters/km) of a car

going at velocity v (in km/hr). In other words, f (v) tells

you how many liters of gas the car uses to go one kilo-

meter, if it is going at velocity v. You are told that

f (80) = 0.05 and f ′(80) = 0.0005.

(a) Let g(v) be the distance the same car goes on one

liter of gas at velocity v. What is the relationship

between f (v) and g(v)? Find g(80) and g′(80).

(b) Let ℎ(v) be the gas consumption in liters per hour.

In other words, ℎ(v) tells you how many liters of

gas the car uses in one hour if it is going at velocity

v. What is the relationship between ℎ(v) and f (v)?

Find ℎ(80) and ℎ′(80).

(c) How would you explain the practical meaning of

the values of these functions and their derivatives

to a driver who knows no calculus?

66. The manager of a political campaign uses two func-

tions to predict fund-raising: N(t) gives the number of

donors on day t of the campaign, and A(t) gives the av-

erage donation, in dollars, per donor on day t.

(a) Let P (t) be the total money raised on day t of the

campaign. How are P (t), N(t), and A(t) related?

(b) Explain how it is possible for the number of donors

to decrease, yet the total money raised to increase.

Interpret your answer using the product rule.

(c) On the third day of the campaign there are 300

donors, each contributing an average of 100 dol-

lars. If each day there are 3 fewer donors, use the

product rule to explain what the campaign manager

must do to ensure the total money raised does not

change from the third day to the fourth day.

7http://www.ncbi.nlm.nih.gov/pubmed/24725225. B. Blonder and B. J. Enquist, “Inferring Climate from Angiosperm

Leaf Venation Networks”, accessed September 26, 2019.
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67. A mutual fund holds N(t) million shares of a company

with total value A(t) million dollars, where t is in days

after January 1, 2016.

(a) Express P (t), the price per share, in terms of N(t)

and A(t).

(b) What should the mutual fund do to increase A(t)

over time even if the value of each share, P (t), de-

creases?

(c) On January 1, 2016, the fund holds 2million shares

with a total value of 32 million dollars. If the price

per share is dropping at a rate of $0.23 per day, use

the quotient rule to explain how the fund should

set the rate of sale or purchase of shares so that the

total value does not change.

68. A patient’s total cholesterol level, T (t), and good

cholesterol level, G(t), at t weeks after January 1,

2016, are measured in milligrams per deciliter of blood

(mg/dl). The cholesterol ratio, R(t) = G(t)∕T (t), is

used to gauge the safety of a patient’s cholesterol, with

risk of cholesterol-related illnesses being minimized

when R(t) > 1∕5 (that is, good cholesterol is at least

1∕5 of total cholesterol).

(a) Explain how it is possible for total cholesterol of

the patient to increase but the cholesterol ratio to

remain constant.

(b) On January 1, the patient’s total cholesterol level is

120 mg/dl and good cholesterol level is 30 mg/dl.

Though R > 1∕5, the doctor prefers that the

patient’s good cholesterol increase to 40 mg/dl,

so prescribes a diet starting January 1 which in-

creases good cholesterol by 1 mg/dl per week with-

out changing the cholesterol ratio. What is the rate

of change of total cholesterol the first week of the

diet?

69. On day t, a company sells q(t) shirts at a price of p(t)

dollars. Table 3.5 shows the daily price of shirts.

(a) Express R(t), the company’s revenue on day t, in

terms of p(t) and q(t).

(b) On day t = 10, the company sells 475 shirts, and

the quantity sold is falling at a rate of 2 shirts per

day. Find R(10) and estimate R′(10) and interpret

these quantities in the context of the problem.

Table 3.5

t (days) 0 10 20 30 40 50

p(t) ($) 50 52 55 60 62 63

Strengthen Your Understanding

In Problems 70–72, explain what is wrong with the state-

ment.

70. The derivative of f (x) = x2ex is f ′(x) = 2xex.

71. Differentiating f (x) = x∕(x + 1) by the quotient rule

gives

f ′(x) =
x

d

dx
(x + 1) − (x + 1)

d

dx
(x)

(x + 1)2
.

72. The quotient f (x) = (x + 1)∕e−x cannot be differenti-

ated using the product rule.

In Problems 73–74, give an example of:

73. A function involving a sine and an exponential that can

be differentiated using the product rule or the quotient

rule.

74. A function f (x) that can be differentiated both using

the product rule and in some other way.

Are the statements in Problems 75–77 true or false? Give an

explanation for your answer.

75. Let f and g be two functions whose second derivatives

are defined. Then

(fg)′′ = fg′′ + f ′′g.

76. If the function f (x)∕g(x) is defined but not differen-

tiable at x = 1, then either f (x) or g(x) is not differen-

tiable at x = 1.

77. Suppose that f ′′ and g′′ exist and f and g are concave

up for all x, then f (x)g(x) is concave up for all x.

78. Which of the following would be a counterexample to

the product rule?

(a) Two differentiable functions f and g satisfying

(fg)′ = f ′g′.

(b) A differentiable function f such that (xf (x))′ =

xf ′(x) + f (x).

(c) A differentiable function f such that (f (x)2)′ =

2f (x).

(d) Two differentiable functions f and g such that

f ′(a) = 0 and g′(a) = 0 and fg has positive slope

at x = a.

In Problems 79–82, let f (x) = g(x)ℎ(x), with g′(2) = 0.5

and ℎ′(2) = 0.7. Either explain why the given statement is

true, or provide values for the unknown terms in the product

rule to show that it can be false.

79. Since g′(2)< 1and ℎ′(2)<1, we must have f ′(2)<1.

80. Since g′(2) ≠ 0 and ℎ′(2) ≠ 0, the only way f ′(2) = 0

is if both g(2) = 0 and ℎ(2) = 0.

81. Since g′(2) and ℎ′(2) are both positive, f ′(2) must also

be positive.

82. If g(2) = 0, then f ′(2) is half the value of ℎ(2).



158 Chapter 3 SHORT-CUTS TO DIFFERENTIATION

3.4 THE CHAIN RULE

The chain rule enables us to differentiate composite functions such as
√

x2 + 1 or e−x
2
. Before seeing

a formula, let’s think about the derivative of a composite function in a practical situation.

Intuition Behind the Chain Rule

Imagine we are moving straight upward in a hot air balloon. Let y be our distance from the ground.

The temperature, H , is changing as a function of altitude, so H = f (y). How does our temperature

change with time?

The rate of change of our temperature is affected both by how fast the temperature is changing

with altitude (about 16◦F per mile), and by how fast we are climbing (say 2 mph). Then our tempera-

ture changes by 16◦ for every mile we climb, and since we move 2 miles in an hour, our temperature

changes by 16 ⋅ 2 = 32 degrees in an hour.

Since temperature is a function of height, H = f (y), and height is a function of time, y = g(t),

we can think of temperature as a composite function of time, H = f (g(t)), with f as the outside

function and g as the inside function. The example suggests the following result, which turns out to

be true:

Rate of change

of composite function
=

Rate of change

of outside function
×

Rate of change

of inside function

The Derivative of a Composition of Functions

We now obtain a formula for the chain rule. Suppose f (g(x)) is a composite function, with f being

the outside function and g being the inside. Let us write

z = g(x) and y = f (z), so y = f (g(x)).

Then a small change in x, called Δx, generates a small change in z, called Δz. In turn, Δz generates

a small change in y called Δy. Provided Δx and Δz are not zero, we can say:

Δy

Δx
=

Δy

Δz
⋅

Δz

Δx
.

Since
dy

dx
= lim

Δx→0

Δy

Δx
, this suggests that in the limit as Δx, Δy, and Δz get smaller and smaller, we

have:

The Chain Rule

dy

dx
=

dy

dz
⋅

dz

dx
.

In other words:

The rate of change of a composite function is the product of the rates of change of

the outside and inside functions.

Since
dy

dz
= f ′(z) and

dz

dx
= g′(x), we can also write

d

dx
f (g(x)) = f ′(z) ⋅ g′(x).

Substituting z = g(x), we can rewrite this as follows:
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Theorem 3.5: The Chain Rule

If f and g are differentiable functions, then

d

dx
f (g(x)) = f ′(g(x)) ⋅ g′(x).

In words:

The derivative of a composite function is the product of the derivatives of the outside

and inside functions. The derivative of the outside function must be evaluated at the

inside function.

A justification of the chain rule is given in Problem 63 of Section 3.9 (available online). The following

example shows how units confirm that the rate of change of a composite function is the product of

the rates of change of the outside and inside functions.

Example 1 The length, L, in micrometers (�m), of steel depends on the air temperature, H◦C, and the temper-

ature H depends on time, t, measured in hours. If the length of a steel bridge increases by 0.2 �m

for every degree increase in temperature, and the temperature is increasing at 3◦C per hour, how fast

is the length of the bridge increasing? What are the units for your answer?

Solution We want to know how much the length of the bridge changes in one hour; this rate is in �m/hr.

We are told that the length of the bridge changes by 0.2 �m for each degree that the temperature

changes, and that the temperature changes by 3◦C each hour. Thus, in one hour, the length of the

bridge changes by 0.2 ⋅ 3 = 0.6 �m.

Now we do the same calculation using derivative notation and the chain rule. We know that

Rate length increasing with respect to temperature =
dL

dH
= 0.2 �m∕◦C

Rate temperature increasing with respect to time =
dH

dt
= 3◦C∕hr.

We want to calculate the rate at which the length is increasing with respect to time, or dL∕dt. We

think of L as a function of H, and H as a function of t. The chain rule tells us that

dL

dt
=

dL

dH
⋅

dH

dt
=
(

0.2
�m
◦C

)

⋅

(

3
◦C

hr

)

= 0.6 �m/hr.

Thus, the length is increasing at 0.6 �m/hr. Notice that the units work out as we expect.

Example 1 shows us how to interpret the chain rule in practical terms. The next examples show

how the chain rule is used to compute derivatives of functions given by formulas.

Example 2 Find the derivatives of the following functions:

(a) (x2 + 1)100 (b)
√

3x2 + 5x − 2 (c)
1

x2 + x4
(d) e3x (e) ex

2

Solution (a) Here z = g(x) = x2 + 1 is the inside function; f (z) = z100 is the outside function. Now

g′(x) = 2x and f ′(z) = 100z99, so

d

dx
((x2 + 1)100) = 100z99 ⋅ 2x = 100(x2 + 1)99 ⋅ 2x = 200x(x2 + 1)99.

(b) Here z = g(x) = 3x2 + 5x − 2 and f (z) =
√

z, so g′(x) = 6x + 5 and f ′(z) =
1

2
√

z
. Hence
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d

dx
(
√

3x2 + 5x − 2) =
1

2
√

z
⋅ (6x + 5) =

1

2
√

3x2 + 5x − 2
⋅ (6x + 5).

(c) Let z = g(x) = x2 + x4 and f (z) = 1∕z, so g′(x) = 2x + 4x3 and f ′(z) = −z−2 = −
1

z2
. Then

d

dx

(

1

x2 + x4

)

= −
1

z2
(2x + 4x3) = −

2x + 4x3

(x2 + x4)2
.

We could have done this problem using the quotient rule. Try it and see that you get the same

answer!

(d) Let z = g(x) = 3x and f (z) = ez. Then g′(x) = 3 and f ′(z) = ez, so

d

dx

(

e3x
)

= ez ⋅ 3 = 3e3x.

(e) To figure out which is the inside function and which is the outside, notice that to evaluate ex
2

we

first evaluate x2 and then take e to that power. This tells us that the inside function is z = g(x) =

x2 and the outside function is f (z) = ez. Therefore, g′(x) = 2x, and f ′(z) = ez, giving

d

dx
(ex

2
) = ez ⋅ 2x = ex

2
⋅ 2x = 2xex

2
.

To differentiate a complicated function, we may have to use the chain rule more than once, as

in the following example.

Example 3 Differentiate: (a)
√

e−x∕7 + 5 (b)
(

1 − e2
√

t
)19

Solution (a) Let z = g(x) = e−x∕7 + 5 be the inside function; let f (z) =
√

z be the outside function. Now

f ′(z) =
1

2
√

z
, but we need the chain rule to find g′(x).

We choose inside and outside functions whose composition is g(x). Let u = ℎ(x) = −x∕7

and k(u) = eu + 5 so g(x) = k(ℎ(x)) = e−x∕7 + 5. Then ℎ′(x) = −1∕7 and k′(u) = eu, so

g′(x) = eu ⋅

(

−
1

7

)

= −
1

7
e−x∕7.

Using the chain rule to combine the derivatives of f (z) and g(x), we have

d

dx
(
√

e−x∕7 + 5) =
1

2
√

z

(

−
1

7
e−x∕7

)

= −
e−x∕7

14
√

e−x∕7 + 5
.

(b) Let z = g(t) = 1 − e2
√

t be the inside function and f (z) = z19 be the outside function. Then

f ′(z) = 19z18 but we need the chain rule to differentiate g(t).

Now we choose u = ℎ(t) = 2
√

t and k(u) = 1 − eu, so g(t) = k(ℎ(t)). Then ℎ′(t) =

2 ⋅
1

2
t−1∕2 =

1
√

t
and k′(u) = −eu, so

g′(t) = −eu ⋅
1
√

t
= −

e2
√

t

√

t
.

Using the chain rule to combine the derivatives of f (z) and g(t), we have

d

dx
(1 − e2

√

t)19 = 19z18

(

−
e2

√

t

√

t

)

= −19
e2

√

t

√

t

(

1 − e2
√

t
)18

.
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It is often faster to use the chain rule without introducing new variables, as in the following

examples.

Example 4 Differentiate

√

1 + e
√

3+x2 .

Solution The chain rule is needed three times:

d

dx

(

√

1 + e
√

3+x2

)

=
1

2

(

1 + e

√

3+x2
)−1∕2

⋅

d

dx

(

1 + e

√

3+x2
)

=
1

2

(

1 + e

√

3+x2
)−1∕2

⋅ e

√

3+x2
⋅

d

dx

(√

3 + x2
)

=
1

2

(

1 + e

√

3+x2
)−1∕2

⋅ e

√

3+x2
⋅

1

2

(

3 + x2
)−1∕2

⋅

d

dx

(

3 + x2
)

=
1

2

(

1 + e

√

3+x2
)−1∕2

⋅ e

√

3+x2
⋅

1

2

(

3 + x2
)−1∕2

⋅ 2x.

Example 5 Find the derivative of e2x by the chain rule and by the product rule.

Solution Using the chain rule, we have

d

dx
(e2x) = e2x ⋅

d

dx
(2x) = e2x ⋅ 2 = 2e2x.

Using the product rule, we write e2x = ex ⋅ ex. Then

d

dx
(e2x) =

d

dx
(exex) =

(

d

dx
(ex)

)

ex + ex
(

d

dx
(ex)

)

= ex ⋅ ex + ex ⋅ ex = 2e2x.

Using the Product and Chain Rules to Differentiate a Quotient

If you prefer, you can differentiate a quotient by the product and chain rules, instead of by the quotient

rule. The resulting formulas may look different, but they will be equivalent.

Example 6 Find k′(x) if k(x) =
x

x2 + 1
.

Solution One way is to use the quotient rule:

k′(x) =
1 ⋅ (x2 + 1) − x ⋅ (2x)

(x2 + 1)2

=
1 − x2

(x2 + 1)2
.

Alternatively, we can write the original function as a product,

k(x) = x
1

x2 + 1
= x ⋅ (x2 + 1)−1,
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and use the product rule:

k′(x) = 1 ⋅ (x2 + 1)−1 + x ⋅

d

dx

[

(x2 + 1)−1
]

.

Now use the chain rule to differentiate (x2 + 1)−1, giving

d

dx

[

(x2 + 1)−1
]

= −(x2 + 1)−2 ⋅ 2x =
−2x

(x2 + 1)2
.

Therefore,

k′(x) =
1

x2 + 1
+ x ⋅

−2x

(x2 + 1)2
=

1

x2 + 1
−

2x2

(x2 + 1)2
.

Putting these two fractions over a common denominator gives the same answer as the quotient rule.

Summary for Section 3.4

• The chain rule: If f and g are differentiable functions, then

d

dx
f (g(x)) = f ′(g(x)) ⋅ g′(x).

Exercises and Problems for Section 3.4 Online Resource: Additional Problems for Section 3.4
EXERCISES

In Exercises 1–57, find the derivatives. Assume that a, b, and

c are constants.

1. f (x) = (x + 1)99 2. w = (t3 + 1)100

3. g(x) = (4x2 + 1)7 4. f (x) =
√

1 − x2

5. y =
√

ex + 1 6. w = (
√

t + 1)100

7. ℎ(w) = (w4 − 2w)5 8. s(t) = (3t2 + 4t + 1)3

9. w(r) =
√

r4 + 1 10. k(x) = (x3 + ex)4

11. f (x) = e2x
(

x2 + 5x
)

12. y = e3w∕2

13. g(x) = e�x 14. B = 15e0.20t

15. w = 100e−x
2

16. f (�) = 2−�

17. y = �(x+2) 18. g(x) = 3(2x+7)

19. f (t) = te5−2t 20. p(t) = e4t+2

21. v(t) = t2e−ct 22. g(t) = e(1+3t)
2

23. w = e
√

s 24. y = e−4t

25. y =
√

s3 + 1 26. y = te−t
2

27. f (z) =
√

ze−z 28. z(x) =
3
√

2x + 5

29. z = 25t−3 30. w =
√

(x2
⋅ 5x)3

31. f (y) =
√

10(5−y) 32. f (z) =

√

z

ez

33. y =

√

z

2z
34. y =

(

x2 + 2

3

)2

35. ℎ(x) =

√

√

√

√

x2 + 9

x + 3
36. y =

ex − e−x

ex + e−x

37. y =
1

e3x + x2
38. ℎ(z) =

(

b

a + z2

)4

39. f (x) =
1

√

x3 + 1
40. f (z) =

1

(ez + 1)2

41. w = (t2 + 3t)(1 − e−2t) 42. ℎ(x) = 2e
3x

43. f (x) = 6e5x + e−x
2

44. f (x) = e−(x−1)
2

45. f (w) = (5w2 + 3)ew
2

46. f (�) = (e� + e−�)−1

47. y =
√

e−3t
2
+ 5 48. z = (te3t + e5t)9

49. f (y) = ee
(y2)

50. f (t) = 2e−2e
2t

51. f (x) = (ax2 + b)3 52. f (t) = aebt

53. f (x) = axe−bx 54. g(�) = e�e
−2�

55. y = ae−be
−cx

56. y = (ex − e−x)
2

57. y =
(

x2 + 5
)3 (

3x3 − 2
)2
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PROBLEMS

In Problems 58–61, use Figure 3.20 and the chain rule to es-

timate the derivative, or state why the chain rule does not

apply. The graph of f (x) has a sharp corner at x = 2.

1 2 3 4

1

2

3

4

g(x)

f (x)

x

Figure 3.20

58. Let ℎ(x) = f (g(x)). Find:

(a) ℎ′(1) (b) ℎ′(2) (c) ℎ′(3)

59. Let u(x) = g(f (x)). Find:

(a) u′(1) (b) u′(2) (c) u′(3)

60. Let v(x) = f (f (x)). Find:

(a) v′(1) (b) v′(2) (c) v′(3)

61. Let w(x) = g(g(x)). Find:

(a) w′(1) (b) w′(2) (c) w′(3)

In Problems 62–65, use Figure 3.21 to evaluate the deriva-

tive.

80

80

0

f (x)

x

800

80

g(x)

x

Figure 3.21

62.
d

dx
f (g(x))|x=30 63.

d

dx
f (g(x))|x=70

64.
d

dx
g(f (x))|x=30 65.

d

dx
g(f (x))|x=70

66. (a) Differentiate f (x) = (kx + 1)e2x.

(b) What is the slope of f (x) at x = 1?

67. Find the equation of the tangent line to f (x) = (x−1)3

at the point where x = 2.

68. Find the equation of the line tangent to y = f (x) at

x = 1, where f (x) = 6e5x + e−x
2
.

69. Find the equation of the line tangent to f (t) = 100e−0.3t

at t = 2.

70. (a) For constant b, find the derivative of f (x) where

f (x) =
e2x − b

ex
.

(b) What is the y-intercept of f (x)? (Your answer will

involve b.)

(c) What value of b makes the slope 12 at the y-

intercept?

71. (a) What value of b gives a vertical intercept of 5 if k

is a constant and

f (x) =
kx

e3x
+ b?

(b) In addition, the tangent line to the graph of f (x) at

x = 0 has equation

y = 4x + 5.

What is the value of k?

72. For what values of x is the graph of y = e−x
2

concave

down?

73. For what intervals is f (x) = xe−x concave down?

74. Suppose f (x) = (2x + 1)10(3x − 1)7. Find a formula

for f ′(x). Decide on a reasonable way to simplify your

result, and find a formula for f ′′(x).

75. Find a possible formula for a function m(x) such that

m′(x) = x5
⋅ e(x

6).

76. What value of k, if any, makes the graphs of f (x) = ekx

and g(x) = 3x+1 tangent where they cross the vertical

axis?

77. Given F (2) = 1, F ′(2) = 5, F (4) = 3, F ′(4) = 7 and

G(4) = 2, G′(4) = 6, G(3) = 4, G′(3) = 8, find:

(a) H(4) if H(x) = F (G(x))

(b) H ′(4) if H(x) = F (G(x))

(c) H(4) if H(x) = G(F (x))

(d) H ′(4) if H(x) = G(F (x))

(e) H ′(4) if H(x) = F (x)∕G(x)

78. Given f (x) with f (1) = 2 and f ′(1) = 5, find

(a) g′(1) if g(x) = (f (x))3

(b) ℎ′(1) if ℎ(x) = f (x3)

79. Given f (x) with f (2) = 7 and f ′(2) = 3 and f ′(4) =

−2, find

(a) g′(2) if g(x) = (f (x))2

(b) ℎ′(2) if ℎ(x) = f (x2)

80. A particle is moving on the x-axis, where x is in cen-

timeters. Its velocity, v, in cm/sec, when it is at the point

with coordinate x is given by

v = x2 + 3x − 2.

Find the acceleration of the particle when it is at the

point x = 2. Give units in your answer.

81. A fish population is approximated by P (t) = 10e0.6t,

where t is in months. Calculate and use units to explain

what each of the following tells us about the population:

(a) P (12) (b) P ′(12)
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82. The world’s population8 is about f (t) = 7.41e0.011t bil-

lion, where t is time in years since July 2017. Find f (0),

f ′(0), f (10), and f ′(10). Using units, interpret your an-

swers in terms of population.

83. Third-quarter net sales for the Hershey Company9 , in

billion dollars, in t years from 2018 can be approxi-

mated by f (t) = 2.08e0.023t. Find f (3) and f ′(3). Give

units and interpret in terms of Hershey sales.

84. For t in years since 2018, daily oil consumption in

China, in thousand of barrels, was approximated by10

B = 13.525e0.052t .

(a) Is daily oil consumption increasing or decreasing

with time?

(b) How fast is oil consumption changing at time t?

85. The balance in a bank account t years after money is

deposited is given by f (t) = 5000e0.02t dollars.

(a) How much money was deposited? What is the in-

terest rate of the account?

(b) Find f (10) and f ′(10). Give units and interpret in

terms of balance in the account.

86. The atmospheric pressure ℎ kilometers above the sur-

face of the earth is P = f (ℎ) = 760e−ℎ∕7 torr.11 Find

f (2) and f ′(2). What do these quantities tell you about

pressure and elevation?

87. For t ≥ 0 in minutes, the temperature, H , of a pot of

soup in degrees Celsius is12

H = 5 + 95e−0.054t.

(a) Is the temperature increasing or decreasing with

time?

(b) How fast is the temperature changing at time t?

Give units.

88. The charge remaining in a capacitor initially holding

60 microcoulombs (�C), t seconds after it is discharged

through a circuit, is q(t) = 60e−t∕4 �C.

(a) Find q′(t), the electrical current in the circuit, as a

function of t.

(b) When is the magnitude of the electrical current the

greatest? What is its value at this time?

89. The kinetic energy, in joules, of an m-kg object mov-

ing at velocity v m/sec is E =
1

2
mv2. Table 3.6 shows

the velocity of a 1000-kg car during a 2-second inter-

val. Estimate how fast the kinetic energy of the car is

increasing at t = 1 second.

Table 3.6

t (sec) 0 0.5 1 1.5 2

v (m/sec) 0 2.3 3.5 4.5 6.3

90. The total force, F kilonewtons (kN), on a 500-meter-

wide dam holding back water in a reservoir H meters

deep is F = 2450H2 . Table 3.7 shows water depths

during a flood. Estimate how fast the total force on the

dam is increasing at t = 2 days.

Table 3.7

t (days) 0 1 2 3 4 5

H (meters) 10 10.5 11.3 11.8 12 11.7

91. A yam is put in a hot oven, maintained at a constant

temperature 200◦C. At time t = 30 minutes, the tem-

perature T of the yam is 120◦ and is increasing at an

(instantaneous) rate of 2◦/min. Newton’s law of cooling

(or, in our case, warming) tells us that the temperature

at time t is

T (t) = 200 − ae−bt.

Find a and b.

92. The 2010 census13 determined the population of the US

was 308.75 million on April 1, 2010. If the population

was increasing exponentially at a rate of 2.85 million

per year on that date, find a formula for the population

as a function of time, t, in years since that date.

93. If you invest P dollars in a bank account at an annual

interest rate of r%, then after t years you will have B

dollars, where

B = P

(

1 +
r

100

)t

.

(a) Find dB∕dt, assuming P and r are constant. In

terms of money, what does dB∕dt represent?

(b) Find dB∕dr, assuming P and t are constant. In

terms of money, what does dB∕dr represent?

94. The theory of relativity predicts that an object whose

mass is m0 when it is at rest will appear heavier when

moving at speeds near the speed of light. When the ob-

ject is moving at speed v, its mass m is given by

m =
m0

√

1 − (v2∕c2)
, where c is the speed of light.

(a) Find dm∕dv.

(b) In terms of physics, what does dm∕dv tell you?

8www.indexmundi.com, accessed September 27, 2019.
9www.marketscreener.com, accessed September 26, 2019.

10Based on www.ceicdata.com, accessed September 27, 2019.
11A torr is a unit of pressure.
12Based on http://www.ugrad.math.ubc.ca/coursedoc/math100/notes/diffeqs/cool.html. Accessed September 27, 2019.
13www.census.gov, accessed September, 2019.
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95. Since the 1950s, the carbon dioxide concentration in the

air has been recorded at the Mauna Loa Observatory

in Hawaii.14 A graph of this data is called the Keeling

Curve, after Charles Keeling, who started recording the

data. With t in years since 1950, fitting functions to the

data gives three models for the carbon dioxide concen-

tration in parts per million (ppm):

f (t) = 303 + 1.3t

g(t) = 304e0.0038t

ℎ(t) = 0.0135t2 + 0.5133t + 310.5.

(a) What family of function is used in each model?

(b) Find the rate of change of carbon dioxide in 2020

in each of the three models. Give units.

(c) Arrange the three models in increasing order of the

rates of change they give for 2020. (Which model

predicts the smallest rate of change in 2020? Which

predicts the largest?)

(d) Consider the same three models for all positive

time t. Will the ordering in part (c) remain the same

for all t? If not, how will it change?

Strengthen Your Understanding

In Problems 96–98, explain what is wrong with the state-

ment.

96. The derivative of g(x) = (ex + 2)5 is

g′(x) = 5(ex + 2)4.

97. The derivative of w(x) = ex
2

is w′(x) = ex
2
.

98. If f (x) = ℎ(g(x)) and ℎ′(3) = 0, then f ′(3) = 0.

In Problems 99–100, give an example of:

99. A function involving a sine and an exponential that re-

quires the chain rule to differentiate.

100. A function that can be differentiated both using the

chain rule and by another method.

Are the statements in Problems 101–104 true or false? If a

statement is true, explain how you know. If a statement is

false, give a counterexample.

101. If f (x) = ℎ(g(x)) and g′(2) = 0, then f ′(2) = 0.

102. (fg)′(x) is never equal to f ′(x)g′(x).

103. If the derivative of f (g(x)) is equal to the derivative of

f (x) for all x, then g(x) = x for all x.

104. Suppose that f ′′ and g′′ exist and that f and g are con-

cave up for all x, then f (g(x)) is concave up for all x.

3.5 THE TRIGONOMETRIC FUNCTIONS

Derivatives of the Sine and Cosine

Since the sine and cosine functions are periodic, their derivatives must be periodic also. (Why?) Let’s

look at the graph of f (x) = sinx in Figure 3.22 and estimate the derivative function graphically.

−2� −� � 2� 3� 4�

−1

1

x

f (x) = sin x

Figure 3.22: The sine function

First we might ask where the derivative is zero. (At x = ±�∕2, ±3�∕2, ±5�∕2, etc.) Then ask

where the derivative is positive and where it is negative. (Positive for −�∕2 < x < �∕2; negative for

�∕2 < x < 3�∕2, etc.) Since the largest positive slopes are at x = 0, 2�, and so on, and the largest

negative slopes are at x = �, 3�, and so on, we get something like the graph in Figure 3.23.

−2� −� � 2� 3� 4�

−1

1

x

f ′(x)

Figure 3.23: Derivative of f (x) = sin x

14www.esrl.noaa.gov/gmd/ccgg/, accessed January 14, 2020.
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The graph of the derivative in Figure 3.23 looks suspiciously like the graph of the cosine func-

tion. This might lead us to conjecture, quite correctly, that the derivative of the sine is the cosine.

Of course, we cannot be sure, just from the graphs, that the derivative of the sine really is the

cosine. However, for now we’ll assume that the derivative of the sine is the cosine and confirm the

result at the end of the section.

One thing we can do now is to check that the derivative function in Figure 3.23 has amplitude

1 (as it ought to if it is the cosine). That means we have to convince ourselves that the derivative of

f (x) = sin x is 1 when x = 0. The next example suggests that this is true when x is in radians.

Example 1 Using a calculator set in radians, estimate the derivative of f (x) = sin x at x = 0.

Solution Since f (x) = sinx,

f ′(0) = lim
ℎ→0

sin(0 + ℎ) − sin 0

ℎ
= lim

ℎ→0

sinℎ

ℎ
.

Table 3.8 contains values of (sinℎ)∕ℎ which suggest that this limit is 1, so we estimate

f ′(0) = lim
ℎ→0

sin ℎ

ℎ
= 1.

Table 3.8

ℎ (radians) −0.1 −0.01 −0.001 −0.0001 0.0001 0.001 0.01 0.1

(sinℎ)∕ℎ 0.99833 0.99998 1.0000 1.0000 1.0000 1.0000 0.99998 0.99833

Warning: It is important to notice that in the previous exampleℎwas in radians; any conclusions we

have drawn about the derivative of sinx are valid only when x is in radians. If you find the derivative

with ℎ in degrees, you get a different result.

Example 2 Starting with the graph of the cosine function, sketch a graph of its derivative.

Solution The graph of g(x) = cos x is in Figure 3.24(a). Its derivative is 0 at x = 0,±�,±2�, and so on; it is

positive for −� < x < 0, � < x < 2�, and so on; and it is negative for 0 < x < �, 2� < x < 3�,

and so on. The derivative is in Figure 3.24(b).

−2� −� � 2� 3� 4�

−1

1

x

g(x) = cos x(a)

−2� −�

� 2� 3� 4�

−1

1

x

g′(x)(b)

Figure 3.24: g(x) = cos x and its derivative, g′(x)

As we did with the sine, we use the graphs to make a conjecture. The derivative of the cosine in

Figure 3.24(b) looks exactly like the graph of sine, except it is reflected across the x-axis. But how

can we be sure that the derivative is − sinx?
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Example 3 Use the relation
d

dx
(sinx) = cosx to show that

d

dx
(cosx) = − sin x.

Solution Since the cosine function is the sine function shifted to the left by �∕2 (that is, cosx = sin (x + �∕2)),

we expect the derivative of the cosine to be the derivative of the sine, shifted to the left by �∕2.

Differentiating using the chain rule, we have

d

dx
(cosx) =

d

dx

(

sin
(

x +
�

2

))

= cos
(

x +
�

2

)

.

But cos(x + �∕2) is the cosine shifted to the left by �∕2, which gives a sine curve reflected across

the x-axis. So we have
d

dx
(cosx) = cos

(

x +
�

2

)

= − sin x.

At the end of this section and in Problems 90 and 91 (available online), we show that our con-

jectures for the derivatives of sin x and cosx are correct. Thus, we have:

For x in radians,
d

dx
(sinx) = cosx and

d

dx
(cos x) = − sinx.

Example 4 Differentiate (a) 2 sin(3�), (b) cos2 x, (c) cos(x2), (d) e− sin t.

Solution Use the chain rule:

(a)
d

d�
(2 sin(3�)) = 2

d

d�
(sin(3�)) = 2(cos(3�))

d

d�
(3�) = 2(cos(3�))3 = 6 cos(3�).

(b)
d

dx
(cos2 x) =

d

dx

(

(cosx)2
)

= 2(cosx) ⋅
d

dx
(cosx) = 2(cosx)(− sinx) = −2 cosx sinx.

(c)
d

dx

(

cos(x2)
)

= − sin(x2) ⋅
d

dx
(x2) = −2x sin(x2).

(d)
d

dt
(e− sin t) = e− sin t d

dt
(− sin t) = −(cos t)e− sin t.

Derivative of the Tangent Function

Since tanx = sin x∕ cos x, we differentiate tanx using the quotient rule. Writing (sinx)′ for d(sinx)∕dx,

we have:

d

dx
(tanx) =

d

dx

(

sin x

cos x

)

=
(sinx)′(cosx) − (sinx)(cosx)′

cos2 x
=

cos2 x + sin2 x

cos2 x
=

1

cos2 x
.

For x in radians,
d

dx
(tanx) =

1

cos2 x
.

The graphs of f (x) = tanx and f ′(x) = 1∕ cos2 x are in Figure 3.25. Is it reasonable that f ′ is

always positive? Are the asymptotes of f ′ where we expect?
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−� �

1
x

f (x) = tan x✛

f ′(x) =
1

cos2 x

✠

Figure 3.25: The function tan x and its derivative

0

Q

✛ x + ℎ
P

x

A

1ℎ

✻

❄

sinx

✻

❄

sin(x + ℎ)

✲✛ cos x

Figure 3.26: Unit circle showing sin(x + ℎ) and sin x

Example 5 Differentiate (a) 2 tan(3t), (b) tan(1 − �), (c)
1 + tan t

1 − tan t
.

Solution (a) Use the chain rule:
d

dt
(2 tan(3t)) = 2

1

cos2(3t)

d

dt
(3t) =

6

cos2(3t)
.

(b) Use the chain rule:

d

d�
(tan(1 − �)) =

1

cos2(1 − �)
⋅

d

d�
(1 − �) = −

1

cos2(1 − �)
.

(c) Use the quotient rule:

d

dt

(

1 + tan t

1 − tan t

)

=

d

dt
(1 + tan t)(1 − tan t) − (1 + tan t)

d

dt
(1 − tan t)

(1 − tan t)2

=

1

cos2 t
(1 − tan t) − (1 + tan t)

(

−
1

cos2 t

)

(1 − tan t)2

=
2

cos2 t ⋅ (1 − tan t)2
.

Example 6 The Bay of Fundy in Canada is known for extreme tides. The depth of the water, y, in meters can be

modeled as a function of time, t, in hours after midnight, by

y = 10 + 7.5 cos(0.507t).

How quickly is the depth of the water rising or falling at 6:00 am and at 9:00 am?

Solution To find how fast the water depth is changing, we compute the derivative of y, using the chain rule:

dy

dt
= −7.5(0.507) sin(0.507t) = −3.8025 sin(0.507t).

When t = 6, we have
dy

dt
= −3.8025 sin(0.507 ⋅ 6) = −0.378 meters/hour. So the tide is falling

at 0.378 meters/hour.

When t = 9, we have
dy

dt
= −3.8025 sin(0.507 ⋅ 9) = 3.760 meters/hour. So the tide is rising at

3.760 meters/hour.
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Informal Justification of d

dx

(

sinx
)

= cosx

Consider the unit circle in Figure 3.26. To find the derivative of sinx, we need to estimate

sin(x + ℎ) − sin x

ℎ
.

In Figure 3.26, the quantity sin(x + ℎ) − sin x is represented by the length QA. The arc QP is of

length ℎ, so
sin(x + ℎ) − sin x

ℎ
=

QA

Arc QP
.

Now, if ℎ is small, QAP is approximately a right triangle because the arc QP is almost a straight

line. Furthermore, using geometry, we can show that angle AQP = x + ℎ. For small ℎ, we have

sin(x + ℎ) − sin x

ℎ
=

QA

Arc QP
≈ cos(x + ℎ).

As ℎ → 0, the approximation gets better, so

d

dx
(sin x) = lim

ℎ→0

sin(x + ℎ) − sinx

ℎ
= cosx.

Other derivations of this result are given in Problems 90 and 91 (available online).

Summary for Section 3.5

• For x in radians,

d

dx
(sin x) = cos x,

d

dx
(cosx) = − sinx,

d

dx
(tanx) =

1

cos2 x

Exercises and Problems for Section 3.5 Online Resource: Additional Problems for Section 3.5
EXERCISES

1. Construct a table of values for cos x, x = 0, 0.1, 0.2,… ,

0.6. Using the difference quotient, estimate the deriva-

tive at these points (use ℎ = 0.001), and compare it with

− sinx.

In Exercises 2–49, find the derivatives of the functions. As-

sume a, b, and c are constants.

2. r(�) = sin � + cos � 3. s(�) = cos � sin �

4. z = cos(4�) 5. f (x) = sin(3x)

6. y = 5 sin(3t) 7. P = 4 cos(2t)

8. g(x) = sin(2 − 3x) 9. R(x) = 10 − 3 cos(�x)

10. g(�) = sin2(2�) − �� 11. g(t) = (2 + sin(�t))3

12. f (x) = x2 cos x 13. w = sin(et)

14. f (x) = ecos x 15. f (y) = esin y

16. z = �ecos � 17. R(�) = esin(3�)

18. g(�) = sin(tan �) 19. w(x) = tan(x2)

20. f (x) =
√

1 − cos x 21. f (x) =
√

3 + sin(8x)

22. f (x) = cos(sin x) 23. f (x) = tan(sin x)

24. k(x) =
√

(sin(2x))3 25. f (x) = 2x sin(3x)

26. y = e� sin(2�) 27. f (x) = e−2x ⋅ sinx

28. z =
√

sin t 29. y = sin5 �

30. g(z) = tan(ez) 31. z = tan(e−3�)

32. w = e−sin � 33. Q = cos(e2x)

34. ℎ(t) = t cos t + tan t 35. f (�) = cos � + 3 sin �

36. k(�) = sin5 � cos3 � 37. f (�) = �3 cos �

38. y = cos2 w + cos(w2) 39. y = sin(sin x+cos x)

40. y = sin(2x) ⋅ sin(3x) 41. P =
cos t

t3

42. t(�) =
cos �

sin �
43. f (x) =

√

√

√

√

1 − sinx

1 − cos x

44. r(y) =
y

cos y + a
45. G(x) =

sin2 x + 1

cos2 x + 1

46. y = a sin(bt) + c 47. P = a cos(bt + c)

48. y = x2ex sin x 49. y = x3e5x sin(2x)
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PROBLEMS

In Problems 50–52, find formulas for f ′′ and f ′′′.

50. f (x) = sin(2x) 51. f (�) = � cos �

52. f (u) = e2u sin u

53. Is the graph of y = sin(x4) increasing or decreasing

when x = 10? Is it concave up or concave down?

54. Find the line tangent to f (t) = 3 sin(2t) + 5 at the point

where t = �.

55. Find the line tangent to f (x) = 3x+cos(5x) at the point

where x = 0.

56. Find the line tangent to f (t) = 8 + sin(3t) at the point

where t = 0.

57. (a) Graph y = cos x and y = sin x for 0 ≤ x ≤ �∕2.

(b) Where do the two curves intersect? (Give the exact

value in radians.)

(c) Are the two tangent lines at the point of intersec-

tion perpendicular? Explain.

58. Find the 50th derivative of y = cos x.

59. Find a function F (x) satisfying F ′(x) = sin(4x).

60. Let f (x) = sin2 x + cos2 x.

(a) Find f ′(x) using the formula for f (x) and deriva-

tive formulas from this section. Simplify your an-

swer.

(b) Use a trigonometric identity to check your answer

to part (a). Explain.

61. On page 45 the depth, y, in feet, of water in Boston Har-

bor is given in terms of t, the number of hours since

midnight, by

y = 5 + 4.9 cos
(

�

6
t

)

.

(a) Find dy∕dt. What does dy∕dt represent, in terms

of water level?

(b) For 0 ≤ t ≤ 24, when is dy∕dt zero? (Figure 1.70

on page 46 may be helpful.) Explain what it means

(in terms of water level) for dy∕dt to be zero.

62. A population that varies seasonally is given for t in

months from January 1 by

p(t) = 200 sin
(

�

6
t

)

+ 500.

(a) When is the population a maximum?

(b) When is the population increasing fastest?

63. A boat at anchor is bobbing up and down in the sea. The

vertical distance, y, in feet, between the sea floor and the

boat is given as a function of time, t, in minutes, by

y = 15 + sin(2�t).

(a) Find the vertical velocity, v, of the boat at time t.

(b) Make rough sketches of y and v against t.

64. The voltage, V , in volts, in an electrical outlet is given

as a function of time, t, in seconds, by the function

V = 156 cos(120�t).

(a) Give an expression for the rate of change of voltage

with respect to time.

(b) Is the rate of change ever zero? Explain.

(c) What is the maximum value of the rate of change?

65. An oscillating mass of m gm at the end of a spring is at

a distance y from its equilibrium position given by

y = A sin

((

√

k

m

)

t

)

.

The constant k measures the stiffness of the spring.

(a) Find a time at which the mass is farthest from its

equilibrium position. Find a time at which the mass

is moving fastest. Find a time at which the mass is

accelerating fastest.

(b) What is the period, T , of the oscillation?

(c) Find dT ∕dm. What does the sign of dT ∕dm tell

you?

66. With t in years, the population of a herd of deer is rep-

resented by

P (t) = 4000 + 500 sin
(

2�t −
�

2

)

.

(a) How does this population vary with time? Graph

P (t) for one year.

(b) When in the year the population is a maximum?

What is that maximum? Is there a minimum? If so,

when?

(c) When is the population growing fastest? When is

it decreasing fastest?

(d) How fast is the population changing on July 1?

67. An environmentalist reports that the depth of the water

in a new reservoir is approximated by

ℎ = d(t) =

{

kt 0 ≤ t ≤ 2

50 + sin(0.1t) t > 2,

where t is in weeks since the date the reservoir was com-

pleted and ℎ is in meters.

(a) During what period was the reservoir filling at a

constant rate? What was that rate?

(b) In this model, is the rate at which the water level is

changing defined for all times t > 0? Explain.
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68. Normal human body temperature fluctuates with a

rhythm tied to our sleep cycle.15 If H(t) is body tem-

perature in degrees Celsius at time t in hours since 9

am, then H(t) may be modeled by

H(t) = 36.8 + 0.6 sin
(

�

12
t

)

.

(a) Calculate H ′(t) and give units.

(b) Calculate H ′(4) and H ′(12), then interpret the

meaning of your answers in everyday terms.

In Problems 69–72, find and interpret the value of the ex-

pression in practical terms. Let C(t) be the concentration of

carbon dioxide in parts per million (ppm) in the air as a func-

tion of time, t, in months since December 1, 2013:16

C(t) = 3.5 sin
(

�t

6

)

+ 398 +
t

5
.

69. C ′(48) 70. C ′(72)

71. C ′(42) 72.
C(72) − C(0)

72

73. A rubber duck bounces up and down in a pool after a

stone is dropped into the water. The height of the duck,

in inches, above the equilibrium position of the water is

given as a function of time t, in seconds, by

d(t) = e−t (cos t + sin t) .

(a) Find and interpret the practical meaning of the

derivative d′(t).

(b) Determine when d′(t) = 0 for t ≥ 0. What can you

say about the duck when d′(t) = 0?

(c) Determine lim
t→∞

d(t) and explain why this limit

makes sense in practical terms.

74. The metal bar of length l in Figure 3.27 has one end at-

tached at the point P to a circle of radius a. Point Q at

the other end can slide back and forth along the x-axis.

(a) Find x as a function of �.

(b) Assume lengths are in centimeters and the angular

velocity (d�∕dt) is 2 radians/second counterclock-

wise. Find the velocity at which the point Q is mov-

ing when

(i) � = �∕2, (ii) � = �∕4.

✛

O

P

Q✲✛ x

l
a

� ✛

Figure 3.27

75. Let f (x) = e−x sinx.

(a) Find the derivative f ′(x).

(b) Explain why f ′(x) = 0 at precisely the same points

where tan x = 1.

Strengthen Your Understanding

In Problems 76–77, explain what is wrong with the state-

ment.

76. The derivative of n(x) = sin(cos x) is n′(x) =

cos(− sin x).

77. The derivative of f (x) = sin(sinx) is f ′(x) =

(cos x)(sinx) + (sinx)(cos x).

In Problems 78–79, give an example of:

78. A trigonometric function whose derivative must be cal-

culated using the chain rule.

79. A function f (x) such that f ′′(x) = −f (x).

Are the statements in Problems 80–82 true or false? Give an

explanation for your answer.

80. The derivative of tan � is periodic.

81. If a function is periodic, with period c, then so is its

derivative.

82. The only functions whose fourth derivatives are equal

to cos t are of the form cos t + C , where C is any con-

stant.

3.6 THE CHAIN RULE AND INVERSE FUNCTIONS

In this section we will use the chain rule to calculate the derivatives of fractional powers, logarithms,

exponentials, and the inverse trigonometric functions.17 The same method is used to obtain a formula

for the derivative of a general inverse function.

15Model based on data from circadian.org, accessed September 28, 2019.
16Based on data from Mauna Loa, Hawaii, at esrl.noaa.gov/gmd/ccgg/trends/, accessed September 29, 2019.
17It requires a separate justification, not given here, that these functions are differentiable.
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Finding the Derivative of an Inverse Function: Derivative of x1∕2

Earlier we calculated the derivative of xn with n an integer, but we have been using the result for

non-integer values of n as well. We now confirm that the power rule holds for n = 1∕2 by calculating

the derivative of f (x) = x1∕2 using the chain rule. Since

(f (x))2 = x,

the derivative of (f (x))2 and the derivative of x must be equal, so

d

dx
(f (x))2 =

d

dx
(x).

We can use the chain rule with f (x) as the inside function to obtain:

d

dx
(f (x))2 = 2f (x) ⋅ f ′(x) = 1.

Solving for f ′(x) gives

f ′(x) =
1

2f (x)
=

1

2x1∕2
,

or
d

dx
(x1∕2) =

1

2x1∕2
=

1

2
x−1∕2.

A similar calculation can be used to obtain the derivative of x1∕n where n is a positive integer.

Derivative of lnx

We use the chain rule to differentiate an identity involving ln x. Since eln x = x, we have

d

dx
(elnx) =

d

dx
(x),

eln x ⋅
d

dx
(lnx) = 1. (Since ex is outside function and ln x is inside function)

Solving for d(lnx)∕dx gives
d

dx
(lnx) =

1

eln x
=

1

x
,

so

d

dx
(lnx) =

1

x
.

Example 1 Differentiate (a) ln(x2 + 1) (b) t2 ln t (c)
√

1 + ln(1 − y).

Solution (a) Using the chain rule:

d

dx

(

ln(x2 + 1)
)

=
1

x2 + 1

d

dx
(x2 + 1) =

2x

x2 + 1
.

(b) Using the product rule:

d

dt
(t2 ln t) =

d

dt
(t2) ⋅ ln t + t2

d

dt
(ln t) = 2t ln t + t2 ⋅

1

t
= 2t ln t + t.
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(c) Using the chain rule:

d

dy

(

√

1 + ln(1 − y)
)

=
d

dy
(1 + ln(1 − y))1∕2

=
1

2
(1 + ln(1 − y))−1∕2 ⋅

d

dy
(1 + ln(1 − y)) (Using the chain rule)

=
1

2
√

1 + ln(1 − y)
⋅

1

1 − y
⋅

d

dy
(1 − y) (Using the chain rule again)

=
−1

2(1 − y)
√

1 + ln(1 − y)
.

Derivative of ax

In Section 3.2, we saw that the derivative of ax is proportional to ax. Now we see another way of

calculating the constant of proportionality. We use the identity

ln(ax) = x ln a.

Differentiating both sides, using
d

dx
(lnx) =

1

x
and the chain rule, and remembering that ln a is a

constant, we obtain:
d

dx
(ln ax) =

1

ax
⋅

d

dx
(ax) = ln a.

Solving gives the result we obtained earlier:

d

dx
(ax) = (ln a)ax.

Derivatives of Inverse Trigonometric Functions

In Section 1.5 we defined arcsinx as the angle between −�∕2 and �∕2 (inclusive) whose sine

is x. Similarly, arctanx as the angle strictly between −�∕2 and �∕2 whose tangent is x. To find
d

dx
(arctanx) we use the identity tan(arctanx) = x. Differentiating using the chain rule gives

1

cos2(arctanx)
⋅

d

dx
(arctanx) = 1,

so
d

dx
(arctanx) = cos2(arctanx).

Using the identity 1 + tan2 � =
1

cos2 �
, and replacing � by arctanx, we have

cos2(arctanx) =
1

1 + tan2(arctanx)
=

1

1 + x2
.

Thus we have

d

dx
(arctanx) =

1

1 + x2
.

By a similar argument, we obtain the result:

d

dx
(arcsinx) =

1
√

1 − x2
.
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Example 2 Differentiate (a) arctan(t2) (b) arcsin(tan �).

Solution Use the chain rule:

(a)
d

dt

(

arctan(t2)
)

=
1

1 + (t2)2
⋅

d

dt
(t2) =

2t

1 + t4
.

(b)
d

dt
(arcsin(tan �)) =

1
√

1 − (tan �)2
⋅

d

d�
(tan �) =

1
√

1 − tan2 �
⋅

1

cos2 �
.

Derivative of a General Inverse Function

Each of the previous results gives the derivative of an inverse function. In general, if a function f

has a differentiable inverse, f−1, we find its derivative by differentiating f (f−1(x)) = x by the chain

rule:

d

dx

(

f
(

f−1(x)
))

= 1

f ′
(

f−1(x)
)

⋅

d

dx

(

f−1(x)
)

= 1

so

d

dx

(

f−1(x)
)

=
1

f ′(f−1(x))
.

Thus, the derivative of the inverse is the reciprocal of the derivative of the original function, but

evaluated at the point f−1(x) instead of the point x.

Example 3 Figure 3.28 shows f (x) and f−1(x). Using Table 3.9, find

(a) (i) f (2) (ii) f−1(2) (iii) f ′(2) (iv) (f−1)′(2)

(b) The equation of the tangent lines at the points P and Q.

(c) What is the relationship between the two tangent lines?

Table 3.9

x f (x) f ′(x)

0 1 0.7

1 2 1.4

2 4 2.8

3 8 5.5

4 8

4

8
P

Q

f (x)

f−1(x)

x

y

Figure 3.28Solution (a) Reading from the table, we have

(i) f (2) = 4.

(ii) f−1(2) = 1.

(iii) f ′(2) = 2.8.

(iv) To find the derivative of the inverse function, we use

(f−1)′(2) =
1

f ′(f−1(2))
=

1

f ′(1)
=

1

1.4
= 0.714.

Notice that the derivative off−1 is the reciprocal of the derivative of f . However, the deriva-
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tive of f−1 is evaluated at 2, while the derivative of f is evaluated at 1, where f−1(2) = 1

and f (1) = 2.

(b) At the point P , we have f (3) = 8 and f ′(3) = 5.5, so the equation of the tangent line at P is

y − 8 = 5.5(x − 3).

At the point Q, we have f−1(8) = 3, so the slope at Q is

(f−1)′(8) =
1

f ′(f−1(8))
=

1

f ′(3)
=

1

5.5
.

Thus, the equation of the tangent line at Q is

y − 3 =
1

5.5
(x − 8).

(c) The two tangent lines have reciprocal slopes, and the points (3, 8) and (8, 3) are reflections of one

another across the line y = x. Thus, the two tangent lines are reflections of one another across

the line y = x.

Summary for Section 3.6

•
d

dx
(lnx) =

1

x

•
d

dx
(ax) = (ln a)ax

•
d

dx
(arctanx) =

1

1 + x2

•
d

dx
(arcsinx) =

1
√

1 − x2

• Derivative of general inverse function:
d

dx

(

f−1(x)
)

=
1

f ′(f−1(x))

Exercises and Problems for Section 3.6 Online Resource: Additional Problems for Section 3.6
EXERCISES

For Exercises 1–41, find the derivative. It may be to your

advantage to simplify before differentiating. Assume a, b, c,

and k are constants.

1. f (t) = ln(t2 + 1) 2. f (x) = ln(1 − x)

3. f (x) = ln(5x2 + 3) 4. y = 2x2 + 3 ln x

5. y = arcsin(x + 1) 6. f (x) = arctan(3x)

7. P = 3 ln(x2+5x+3) 8. Q = a ln(bx + c)

9. f (x) = ln(e2x) 10. f (x) = eln(e
2x2+3)

11. f (x) = ln(1 − e−x) 12. f (�) = ln(sin�)

13. f (x) = ln(ex + 1) 14. y = x lnx − x + 2

15. j(x) = ln(eax + b) 16. y = x3 ln x

17. ℎ(w) = w3 ln(10w) 18. f (x) = ln(e7x)

19. f (x) = e(lnx)+1 20. f (�) = ln(cos �)

21. f (t) = ln(eln t) 22. f (y) = arcsin(y2)

23. s(x) = arctan(2 − x) 24. g(�) = sin(arcsin �)

25. g(t) = earctan(3t
2) 26. g(t) = cos(ln t)

27. ℎ(z) = zln 2 28. ℎ(w) = w arcsinw

29. f (x) = eln(kx) 30. r(t) = arcsin(2t)

31. j(x) = cos
(

sin−1 x
)

32. f (x) = cos(arctan 3x)

33. f (z) =
1

ln z
34. g(t) =

ln(kt) + t

ln(kt) − t

35. f (x) = ln(sinx+cos x) 36. f (t) = ln(ln t)+ln(ln 2)

37. f (w) = 6
√

w +
1

w2
+ 5 lnw

38. y = 2x(ln x + ln 2) − 2x + e
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39. f (x) = cos(arcsin(x + 1))

40. a(t) = ln
(

1 − cos t

1 + cos t

)4

41. T (u) = arctan
(

u

1 + u

)

PROBLEMS

42. Let f (x) = ln(3x).

(a) Find f ′(x) and simplify your answer.

(b) Use properties of logs to rewrite f (x) as a sum of

logs.

(c) Differentiate the result of part (b). Compare with

the result in part (a).

43. On what intervals is ln(x2 + 1) concave up?

44. Is there a value of kmaking the slope of f (x) = ln(2kx)

equal to 12 at x = 1?

45. Find the value of k making the slope of f (x) equal to

12 at x = 1, given

f (x) = ln(2x − k).

46. Use the chain rule to obtain the formula for
d

dx
(arcsin x).

47. Using the chain rule, find
d

dx
(logx).

(Recall log x = log10 x.)

48. To compare the acidity of different solutions, chemists

use the pH (which is a single number, not the product

of p and H). The pH is defined in terms of the concen-

tration, x, of hydrogen ions in the solution as

pH = − log x.

Find the rate of change of pH with respect to hydrogen

ion concentration when the pH is 2. [Hint: Use the re-

sult of Problem 47.]

49. The number of years, T , it takes an investment of $1000

to grow to $F in an account which pays 5% interest

compounded continuously is given by

T = g(F ) = 20 ln(0.001F ).

Find g(5000) and g′(5000). Give units with your an-

swers and interpret them in terms of money in the ac-

count.

50. A firm estimates that the total revenue, R, in dollars,

received from the sale of q goods is given by

R = ln(1 + 1000q2).

The marginal revenue, MR, is the rate of change of the

total revenue as a function of quantity. Calculate the

marginal revenue when q = 10.

51. After t years Q = f (t) = 50(1∕2)t∕30 gives the remain-

ing amount, in grams, of a 50-gram sample of cesium-

137. How fast is the sample decaying after t = 5 years?

52. Average leaf width, w (in mm), in tropical Australia18

is a function of the average annual rainfall, x (in mm).

We have w = f (x) = 32.7 ln(x∕244.5).

(a) Find f ′(x).

(b) Find f ′(2000). Include units.

(c) Explain how you can use your answer to part (b)

to estimate the difference in average leaf widths in

a forest whose average annual rainfall is 2000 mm

and one whose annual rainfall is 150 mm more.

53. (a) Find the equation of the tangent line to y = ln x at

x = 1.

(b) Use it to calculate approximate values for ln(1.1)

and ln(2).

(c) Using a graph, explain whether the approximate

values are smaller or larger than the true values.

Would the same result have held if you had used the

tangent line to estimate ln(0.9) and ln(0.5)? Why?

54. (a) For x > 0, find and simplify the derivative of

f (x) = arctan x + arctan(1∕x).

(b) What does your result tell you about f?

55. (a) Given that f (x) = x3, find f ′(2).

(b) Find f−1(x).

(c) Use your answer from part (b) to find (f−1)′(8).

(d) How could you have used your answer from part

(a) to find (f−1)′(8)?

56. (a) For f (x) = 2x5 + 3x3 + x, find f ′(x).

(b) How can you use your answer to part (a) to deter-

mine if f (x) is invertible?

(c) Find f (1).

(d) Find f ′(1).

(e) Find (f−1)′(6).

57. Imagine you are zooming in on the graph of each of the

following functions near the origin:

y = x y =
√

x

y = x2 y = sinx

y = x sin x y = tan x

y =
√

x∕(x + 1) y = x3

y = ln(x + 1) y =
1

2
ln(x2 + 1)

y = 1 − cos x y =
√

2x − x2

Which of them look the same? Group together those

functions which become indistinguishable, and give the

equations of the lines they look like.

18H. H. Shugart, Terrestrial Ecosystems in Changing Environments, p. 145 (Cambridge: CUP, 1998).
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In Problems 58–61, use Figure 3.29 to find a point x where

ℎ(x) = n(m(x)) has the given derivative.

100

100

0

m(x)

x

100

100

0

n(x)

x

Figure 3.29

58. ℎ′(x) = −2 59. ℎ′(x) = 2

60. ℎ′(x) = 1 61. ℎ′(x) = −1

In Problems 62–64, use Figure 3.30 to estimate the deriva-

tives.

10 20 30 40

5

10

15

20

0

f (x)

x

10 20 30 40

0.2

0.4

0.6

0.8

0

f ′(x)

x

Figure 3.30

62. (f−1)′(5) 63. (f−1)′(10) 64. (f−1)′(15)

In Problems 65–67, use Figure 3.31 to calculate the deriva-

tive.

(2, 5)

(2.1, 5.3)

f (x)

Figure 3.31

65. ℎ′(2) if ℎ(x) = (f (x))3

66. k′(2) if k(x) = (f (x))−1

67. g′(5) if g(x) = f−1(x)

68. Use the table and the fact that f (x) is invertible and dif-

ferentiable everywhere to find (f−1)′(3).

x f (x) f ′(x)

3 1 7

6 2 10

9 3 5

69. At a particular location, f (p) is the number of gallons

of gas sold when the price is p dollars per gallon.

(a) What does the statement f (2) = 4023 tell you

about gas sales?

(b) Find and interpret f−1(4023).

(c) What does the statement f ′(2) = −1250 tell you

about gas sales?

(d) Find and interpret (f−1)′(4023)

70. Let P = f (t) give the US population19 in millions in

year t.

(a) What does the statement f (2017) = 327 tell you

about the US population?

(b) Find and interpret f−1(327). Give units.

(c) What does the statement f ′(2017) = 2.65 tell you

about the population? Give units.

(d) Evaluate and interpret (f−1)′(327). Give units.

71. Figure 3.32 shows the number of motor vehicle regis-

trations, f (t), in millions, in the world.20 With t in years

since 1960 and using units, estimate and interpret

(a) f (40) (b) f ′(40)

(c) f−1(750) (d) (f−1)′(750)

1960 1970 1980 1990 2000 2010

200

400

600

800

1000

1200

year

registrations
(millions)

Figure 3.32

72. Using Figure 3.33, where f ′(2) = 2.1, f ′(4) = 3.0,

f ′(6) = 3.7, f ′(8) = 4.2, find (f−1)′(8).

2 4 6 8

8

16

24

x

f (x)

Figure 3.33

19www.indexmundi.com, accessed September 29, 2019.
20en.wikipedia.org, accessed September 29, 2019.
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Strengthen Your Understanding

In Problems 73–75, explain what is wrong with the state-

ment.

73. If w(x) = ln(1 + x4) then w′(x) = 1∕(1 + x4).

74. The derivative of f (x) = ln(ln x) is

f ′(x) =
1

x
lnx + lnx

1

x
=

2 lnx

x
.

75. Given f (2) = 6, f ′(2) = 3, and f−1(3) = 4, we have

(f−1)′(2) =
1

f−1(f ′(2))
=

1

f−1(3)
=

1

4
.

In Problems 76–79, give an example of:

76. A function that is equal to a constant multiple of its

derivative but that is not equal to its derivative.

77. A function whose derivative is c∕x, where c is a con-

stant.

78. A function f (x) for which f ′(x) = f ′(cx), where c is a

constant.

79. A function f such that
d

dx

(

f−1(x)
)

=
1

f ′(x)
= 1.

Are the statements in Problems 80–81 true or false? Give an

explanation for your answer.

80. The graph of ln(x2) is concave up for x > 0.

81. If f (x) has an inverse function, g(x), then the derivative

of g(x) is 1∕f ′(x).

3.7 IMPLICIT FUNCTIONS

In earlier chapters, most functions were written in the form y = f (x); here y is said to be an explicit

function of x. An equation such as

x2 + y2 = 4

is said to give y as an implicit function of x. Its graph is the circle in Figure 3.34. Since there are

x-values which correspond to two y-values, y is not a function of x on the whole circle. Solving for y

gives

y = ±
√

4 − x2,

where y =
√

4 − x2 represents the top half of the circle and y = −
√

4 − x2 represents the bottom

half. So y is a function of x on the top half, and y is a different function of x on the bottom half.

But let’s consider the circle as a whole. The equation does represent a curve which has a tangent

line at each point. The slope of this tangent can be found by differentiating the equation of the circle

with respect to x:
d

dx
(x2) +

d

dx
(y2) =

d

dx
(4).

If we think of y as a function of x and use the chain rule, we get

2x + 2y
dy

dx
= 0.

Solving gives
dy

dx
= −

x

y
.

−2 2

−2

2

x

y

Negative slope = −x∕y

Positive slope = −x∕y

Top half:

y =
√

4 − x2

Bottom half:

y = −
√

4 − x2

Figure 3.34: Graph of x2 + y2 = 4

7

2

x

y

Curve has slope 2∕5 here✛

Figure 3.35: Graph of y3 − xy = −6 and its

tangent line at (7, 2)
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The derivative here depends on both x and y (instead of just on x). This is because for many x-values

there are two y-values, and the curve has a different slope at each one. Figure 3.34 shows that for

x and y both positive, we are on the top right quarter of the curve and the slope is negative (as the

formula predicts). For x positive and y negative, we are on the bottom right quarter of the curve and

the slope is positive (as the formula predicts).

Differentiating the equation of the circle has given us the slope of the curve at all points except

(2, 0) and (−2, 0), where the tangent is vertical. In general, this process of implicit differentiation

leads to a derivative whenever the expression for the derivative does not have a zero in the denomi-

nator.

Example 1 Make a table of x and approximate y-values for the equation y3 − xy = −6 near x = 7, y = 2. Your

table should include the x-values 6.8, 6.9, 7.0, 7.1, and 7.2.

Solution We would like to solve for y in terms of x, but we cannot isolate y by factoring. There is a formula

for solving cubics, somewhat like the quadratic formula, but it is too complicated to be useful here.

Instead, first observe that x = 7, y = 2 does satisfy the equation. (Check this!) Now find dy∕dx by

implicit differentiation:

d

dx
(y3) −

d

dx
(xy) =

d

dx
(−6)

3y2
dy

dx
− 1 ⋅ y − x

dy

dx
= 0 (Differentiating with respect to x)

3y2
dy

dx
− x

dy

dx
= y

(3y2 − x)
dy

dx
= y (Factoring out

dy

dx
)

dy

dx
=

y

3y2 − x
.

When x = 7 and y = 2, we have
dy

dx
=

2

12 − 7
=

2

5
.

(See Figure 3.35.) The equation of the tangent line at (7, 2) is

y − 2 =
2

5
(x − 7)

or

y = 0.4x − 0.8.

Since the tangent lies very close to the curve near the point (7, 2), we use the equation of the tangent

line to calculate the following approximate y-values:

x 6.8 6.9 7.0 7.1 7.2

Approximate y 1.92 1.96 2.00 2.04 2.08

Notice that although the equation y3 − xy = −6 leads to a curve which is difficult to deal with

algebraically, it still looks like a straight line locally.
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Example 2 Find all points where the tangent line to y3 − xy = −6 is either horizontal or vertical.

Solution From the previous example,
dy

dx
=

y

3y2 − x
. The tangent is horizontal when the numerator of dy∕dx

equals 0, so y = 0. Since we also must satisfy y3 − xy = −6, we get 03 − x ⋅ 0 = −6, which is

impossible. We conclude that there are no points on the curve where the tangent line is horizontal.

The tangent is vertical when the denominator of dy∕dx is 0, giving 3y2− x = 0. Thus, x = 3y2

at any point with a vertical tangent line. Again, we must also satisfy y3 − xy = −6, so

y3 − (3y2)y = −6,

−2y3 = −6,

y =
3
√

3 ≈ 1.442.

We can then find x by substituting y =
3
√

3 in y3 − xy = −6. We get 3 − x(
3
√

3) = −6, so x =

9∕(
3
√

3) ≈ 6.240. So the tangent line is vertical at (6.240, 1.442).

Using implicit differentiation and the expression for dy∕dx to locate the points where the tangent

is vertical or horizontal, as in the previous example, is a first step in obtaining an overall picture of

the curve y3 − xy = −6. However, filling in the rest of the graph, even roughly, by using the sign of

dy∕dx to tell us where the curve is increasing or decreasing can be difficult.

Summary for Section 3.7

• Implicit differentiation: The slope of the tangent to a curve with equation f (x, y) = c can be

found by differentiating the equation of the curve with respect to x. We keep in mind that y is a

function of x, so when differentiating the terms that involve y we use the chain rule.

Exercises and Problems for Section 3.7 Online Resource: Additional Problems for Section 3.7

EXERCISES

For Exercises 1–21, find dy∕dx. Assume a, b, c are con-

stants.

1. x2 + y2 =
√

7 2. x2 + y3 = 8

3. x2 + xy − y3 = xy2 4. x2 + y2 + 3x− 5y = 25

5. xy + x + y = 5 6. x2y − 2y + 5 = 0

7. x2y3 − xy = 6 8.
√

x = 5
√

y

9.
√

x +
√

y = 25 10. xy − x − 3y − 4 = 0

11. 6x2 + 4y2 = 36 12. ax2 − by2 = c2

13. lnx + ln(y2) = 3 14. x ln y + y3 = ln x

15. sin(xy) = 2x + 5 16. ecos y = x3 arctan y

17. arctan(x2y) = xy2 18. ex
2
+ ln y = 0

19. (x − a)2 + y2 = a2 20. x2∕3 + y2∕3 = a2∕3

21. sin(ay) + cos(bx) = xy

In Exercises 22–25, find the slope of the tangent to the curve

at the point specified.

22. x2 + y2 = 1 at (0, 1)

23. sin(xy) = x at (1, �∕2)

24. x3 + 2xy + y2 = 4 at (1, 1)

25. x3 + 5x2y + 2y2 = 4y + 11 at (1, 2)

For Exercises 26–30, find the equations of the tangent lines

to the following curves at the indicated points.

26. xy2 = 1 at (1,−1) 27. ln(xy) = 2x at (1, e2)

28. y2 =
x2

xy − 4
at (4, 2) 29. y =

x

y + a
at (0, 0)

30. x2∕3 + y2∕3 = a2∕3 at (a, 0)
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PROBLEMS

31. (a) Find dy∕dx given that x2 + y2 − 4x + 7y = 15.

(b) Under what conditions on x and/or y is the tangent

line to this curve horizontal? Vertical?

32. (a) Find the slope of the tangent line to the ellipse

x2

25
+

y2

9
= 1 at the point (x, y).

(b) Are there any points where the slope is not defined?

33. (a) Find the slope of the tangent line to the circle

x2 + y2 = 25 at (3, 4).

(b) Which other point on the circle has the same slope?

34. (a) On the curve x2y2 = 4, which points have x = 1?

Which have x = −1?

(b) Find y′ for x2y2 = 4.

(c) Find the slopes of the tangent lines at each of the

points where x = 1 or x = −1.

35. (a) Find all points on y2 + xy + x2 = 1 with x = 1.

(b) Find dy∕dx for y2 + xy + x2 = 1.

(c) Find the slope of the tangent line to y2+xy+x2 = 1

at each point with x = 1.

36. Find the equations of the tangent lines at x = 2 to the

ellipse

(x − 2)2

16
+

y2

4
= 1.

37. (a) Find the equations of the tangent lines to the circle

x2 + y2 = 25 at the points where x = 4.

(b) Find the equations of the normal lines to this circle

at the same points. (The normal line is perpendic-

ular to the tangent line at that point.)

(c) At what point do the two normal lines intersect?

38. Find the equation of the tangent line to the curve y = x2

at x = 1. Show that this line is also a tangent to a circle

centered at (8, 0) and find the equation of this circle.

39. If y = arcsin x then x = sin y. Use implicit differentia-

tion on x = sin y to show that

d

dx
arcsin x =

1
√

1 − x2

.

40. Show that the power rule for derivatives applies to ra-

tional powers of the form y = xm∕n by raising both sides

to the nth power and using implicit differentiation.

41. At pressure P atmospheres, a certain fraction f of a

gas decomposes. The quantities P and f are related,

for some positive constant K , by the equation

4f 2P

1 − f 2
= K.

(a) Find df∕dP .

(b) Show that df∕dP < 0 always. What does this

mean in practical terms?

42. For constants a, b, n, R, Van der Waal’s equation relates

the pressure, P , to the volume, V , of a fixed quantity of

a gas at constant temperature T :

(

P +
n2a

V 2

)

(V − nb) = nRT .

Find the rate of change of volume with pressure,

dV ∕dP .

Strengthen Your Understanding

In Problems 43–44, explain what is wrong with the state-

ment.

43. If y = sin(xy) then dy∕dx = y cos(xy).

44. The formula dy∕dx = −x∕y gives the slope of the cir-

cle x2+y2 = 10 at every point in the plane except where

y = 0.

In Problems 45–46, give an example of:

45. A formula for dy∕dx leading to a vertical tangent at

y = 2 and a horizontal tangent at x = ±2.

46. A curve that has two horizontal tangents at the same

x-value, but no vertical tangents.

47. True or false? Explain your answer: If y satisfies the

equation y2 + xy − 1 = 0, then dy∕dx exists every-

where.

3.8 HYPERBOLIC FUNCTIONS

There are two combinations of ex and e−x which are used so often in engineering that they are

given their own name. They are the hyperbolic sine, abbreviated sinh, and the hyperbolic cosine,

abbreviated cosh. They are defined as follows:

Hyperbolic Sine and Cosine

coshx =
ex + e−x

2
sinh x =

ex − e−x

2
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Properties of Hyperbolic Functions

The graphs of coshx and sinhx are given in Figures 3.36 and 3.37 together with the graphs of

multiples of ex and e−x. The graph of coshx is called a catenary; it is the shape of a hanging cable.

−3 −2 −1 1 2 3

−3

−2

−1

2

3

4

y =
1

2
exy =

1

2
e−x

y = cosh(x)

x

y

Figure 3.36: Graph of y = cosh x

−3 3

−3

−2

−1

1

2

3

4

y =
1

2
ex

y = −
1

2
e−x

y = sinh(x)

x

y

Figure 3.37: Graph of y = sinh x

The graphs suggest that the following results hold:

cosh 0 = 1 sinh 0 = 0

cosh(−x) = coshx sinh(−x) = − sinhx

To show that the hyperbolic functions really do have these properties, we use their formulas.

Example 1 Show that (a) cosh(0) = 1 (b) cosh(−x) = coshx

Solution (a) Substituting x = 0 into the formula for coshx gives

cosh 0 =
e0 + e−0

2
=

1 + 1

2
= 1.

(b) Substituting −x for x gives

cosh(−x) =
e−x + e−(−x)

2
=

e−x + ex

2
= coshx.

Thus, we know that coshx is an even function.

Example 2 Describe and explain the behavior of coshx as x → ∞ and x → −∞.

Solution From Figure 3.36, it appears that as x → ∞, the graph of coshx resembles the graph of
1

2
ex. Simi-

larly, as x → −∞, the graph of coshx resembles the graph of
1

2
e−x. This behavior is explained by

using the formula for coshx and the facts that e−x → 0 as x → ∞ and ex → 0 as x → −∞:

As x → ∞, coshx =
ex + e−x

2
→

1

2
ex.

As x → −∞, coshx =
ex + e−x

2
→

1

2
e−x.
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Identities Involving cosh x and sinh x

The reason the hyperbolic functions have names that remind us of the trigonometric functions is that

they share similar properties. A familiar identity for trigonometric functions is

(cosx)2 + (sin x)2 = 1.

To discover an analogous identity relating (coshx)2 and (sinhx)2, we first calculate

(coshx)2 =
(

ex + e−x

2

)2

=
e2x + 2exe−x + e−2x

4
=

e2x + 2 + e−2x

4

(sinhx)2 =
(

ex − e−x

2

)2

=
e2x − 2exe−x + e−2x

4
=

e2x − 2 + e−2x

4
.

If we add these expressions, the resulting right-hand side contains terms involving both e2x and e−2x.

If, however, we subtract the expressions for (coshx)2 and (sinhx)2, we obtain a simple result:

(coshx)2 − (sinhx)2 =
e2x + 2 + e−2x

4
−

e2x − 2 + e−2x

4
=

4

4
= 1.

Thus, writing cosh2 x for (coshx)2 and sinh2 x for (sinhx)2, we have the identity

cosh2 x − sinh2 x = 1

This identity shows us how the hyperbolic functions got their name. Suppose (x, y) is a point

in the plane and x = cosh t and y = sinh t for some t. Then the point (x, y) lies on the hyperbola

x2 − y2 = 1.

Extending the analogy to the trigonometric functions, we define

Hyperbolic Tangent

tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x

Derivatives of Hyperbolic Functions

We calculate the derivatives using the fact that
d

dx
(ex) = ex. The results are again reminiscent of

the trigonometric functions. For example,

d

dx
(coshx) =

d

dx

(

ex + e−x

2

)

=
ex − e−x

2
= sinhx.

We find
d

dx
(sinhx) similarly, giving the following results:

d

dx
(coshx) = sinhx

d

dx
(sinhx) = coshx

Example 3 Compute the derivative of tanhx.

Solution Using the quotient rule gives

d

dx
(tanhx) =

d

dx

(

sinh x

coshx

)

=
(coshx)2 − (sinhx)2

(coshx)2
=

1

cosh2 x
.
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Summary for Section 3.8

• Hyperbolic sine and cosine: coshx =
ex + e−x

2
and sinhx =

ex − e−x

2
.

• Properties of hyperbolic functions:

∙ cosh 0 = 1

∙ sinh 0 = 0

∙ cosh(−x) = coshx

∙ sinh(−x) = − sinhx

∙ cosh2 x − sinh2 x = 1

• Hyperbolic tangent: tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x

• Derivatives of hyperbolic functions:

∙
d

dx
(coshx) = sinh x

∙
d

dx
(sinhx) = coshx

Exercises and Problems for Section 3.8 Online Resource: Additional Problems for Section 3.8
EXERCISES

In Exercises 1–15, find the derivative of the function.

1. y = sinh(3z + 5) 2. g(y) = cosh(1 + 2y3)

3. y = cosh(2x) 4. g(t) = cosh2 t

5. f (t) = cosh(sinh t) 6. f (�) = cosh(tanh �)

7. f (t) = t3 sinh t 8. ℎ(�) = (�2 + �) cosh �

9. y = sinh x cosh x 10. y = cosh(3t) sinh(4t)

11. y = tanh(12 + 18x) 12. f (t) = cosh(et
2
)

13. g(�) = ln (cosh(1 + �))

14. f (y) = sinh (sinh(3y))

15. f (t) = cosh2 t − sinh2 t

16. Show that d(sinh x)∕dx = cosh x.

17. Show that sinh 0 = 0.

18. Show that sinh(−x) = − sinh(x).

In Exercises 19–20, simplify the expressions.

19. cosh(ln t) 20. sinh(ln t)

PROBLEMS

21. Describe and explain the behavior of sinh x as x → ∞

and as x → −∞.

22. If x = cosh t and y = sinh t, explain why the point

(x, y) always lies on the curve x2 − y2 = 1. (This curve

is called a hyperbola and gave this family of functions

its name.)

23. Is there an identity analogous to sin(2x) = 2 sinx cos x

for the hyperbolic functions? Explain.

24. Is there an identity analogous to cos(2x) = cos2 x −

sin2 x for the hyperbolic functions? Explain.

Prove the identities in Problems 25–26.

25. cosh(A + B) = coshA coshB + sinhA sinhB

26. sinh(A + B) = sinhA coshB + coshA sinhB

In Problems 27–30, find the limit of the function as x → ∞.

27.
sinh(2x)

cosh(3x)
28.

e2x

sinh(2x)

29.
sinh(x2)

cosh(x2)
30.

cosh(2x)

sinh(3x)

31. For what values of k is lim
x→∞

e−3x cosh kx finite?

32. For what values of k is lim
x→∞

sinh kx

cosh 2x
finite?

33. The cable between the two towers of a power line hangs

in the shape of the curve

y =
T

w
cosh

(

wx

T

)

,

where T is the tension in the cable at its lowest point

and w is the weight of the cable per unit length. This

curve is called a catenary.

(a) Suppose the cable stretches between the points x =

−T ∕w and x = T ∕w. Find an expression for the

“sag” in the cable. (That is, find the difference be-

tween the height of the cable at the highest and low-

est points.)
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(b) Show that the shape of the cable satisfies the equa-

tion

d2y

dx2
=

w

T

√

1 +

(

dy

dx

)2

.

34. The St. Louis Arch can be approximated by using a

function of the form y = b − a cosh(x∕a). Putting the

origin on the ground in the center of the arch and the y-

axis upward, find an approximate equation for the arch

given the dimensions shown in Figure 3.38. (In other

words, find a and b.)

✻

❄

615 ft

✲✛ 530 ft

Figure 3.38

35. The inverse hyperbolic tangent is defined by

y = arctanh x if tanh y = x.

Find the derivative of arctanh x.

Strengthen Your Understanding

In Problems 36–39, explain what is wrong with the state-

ment.

36. The function f (x) = cosh x is periodic.

37. The derivative of the function f (x) = cosh x is f ′(x) =

− sinh x.

38. cosh2 x + sinh2 x = 1.

39. tanh x → ∞ as x → ∞.

In Problems 40–42, give an example of:

40. A hyperbolic function which is concave up.

41. A value of k such that lim
x→∞

ekx cosh x does not exist.

42. A function involving the hyperbolic cosine that passes

through the point (1, 3).

Are the statements in Problems 43–47 true or false? Give an

explanation for your answer.

43. The function tanh x is odd, that is, tanh(−x) =

− tanh x.

44. The 100th derivative of sinh x is cosh x.

45. sinh x + cosh x = ex.

46. The function sinh x is periodic.

47. The function sinh2 x is concave down everywhere.

3.9 LINEAR APPROXIMATION AND THE DERIVATIVE

The Tangent Line Approximation

When we zoom in on the graph of a differentiable function, it looks like a straight line. In fact, the

graph is not exactly a straight line when we zoom in; however, its deviation from straightness is so

small that it can’t be detected by the naked eye. Let’s examine what this means. The straight line that

we think we see when we zoom in on the graph of f (x) at x = a has slope equal to the derivative,

f ′(a), so the equation is

y = f (a) + f ′(a)(x − a).

The fact that the graph looks like a line means that y is a good approximation to f (x). (See Fig-

ure 3.39.) This suggests the following definition:

The Tangent Line Approximation

Suppose f is differentiable at a. Then, for values of x near a, the tangent line approximation

to f (x) is

f (x) ≈ f (a) + f ′(a)(x − a).

The expression f (a) + f ′(a)(x − a) is called the local linearization of f near x = a. We are

thinking of a as fixed, so that f (a) and f ′(a) are constant.

The error, E(x), in the approximation is defined by

E(x) = f (x) − f (a) − f ′(a)(x− a).
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a x
x

Tangent
line

✻

❄

✠

Error E(x)

✻

❄
f (a)

✻

❄
f (a)

✲✛ x − a

✻
❄
f ′(a)(x − a)

True value f (x)

✛ Approximation

Figure 3.39: The tangent line approximation and its error

It can be shown that the tangent line approximation is the best linear approximation to f near a. See

Problem 64 (available online).

Example 1 What is the tangent line approximation for f (x) = sinx near x = 0?

Solution The tangent line approximation of f near x = 0 is

f (x) ≈ f (0) + f ′(0)(x − 0).

If f (x) = sin x, then f ′(x) = cos x, so f (0) = sin 0 = 0 and f ′(0) = cos 0 = 1, and the approxima-

tion is

sin x ≈ x.

This means that, near x = 0, the function f (x) = sin x is well approximated by the function y = x.

If we zoom in on the graphs of the functions sinx and x near the origin, we won’t be able to tell them

apart. (See Figure 3.40.)

−
�

2

�

2

y = sinx

y = x

−1

1

x

y

Figure 3.40: Tangent line approximation to y = sinx

Example 2 What is the local linearization of ekx near x = 0?

Solution If f (x) = ekx, then f (0) = 1 and, by the chain rule, f ′(x) = kekx, so f ′(0) = kek⋅0 = k. Thus

f (x) ≈ f (0) + f ′(0)(x− 0)
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becomes

ekx ≈ 1 + kx.

This is the tangent line approximation to ekx near x = 0. In other words, if we zoom in on the

functions f (x) = ekx and y = 1 + kx near the origin, we won’t be able to tell them apart.

Estimating the Error in the Approximation

Let us look at the error,E(x), which is the difference between f (x) and the local linearization. (Look

back at Figure 3.39.) The fact that the graph of f looks like a line as we zoom in means that not only

is E(x) small for x near a, but also that E(x) is small relative to (x − a). To demonstrate this, we

prove the following theorem about the ratio E(x)∕(x − a).

Theorem 3.6: Differentiability and Local Linearity

Suppose f is differentiable at x = a and E(x) is the error in the tangent line approximation,

that is:

E(x) = f (x) − f (a) − f ′(a)(x− a).

Then

lim
x→a

E(x)

x − a
= 0.

Proof Using the definition of E(x), we have

E(x)

x − a
=

f (x) − f (a) − f ′(a)(x − a)

x − a
=

f (x) − f (a)

x − a
− f ′(a).

Taking the limit as x → a and using the definition of the derivative, we see that

lim
x→a

E(x)

x − a
= lim

x→a

(

f (x) − f (a)

x − a
− f ′(a)

)

= f ′(a) − f ′(a) = 0.

Theorem 3.6 says that E(x) approaches 0 faster than (x− a). For the function in Example 3, we

see that E(x) ≈ k(x − a)2 for constant k if x is near a.

Example 3 Let E(x) be the error in the tangent line approximation to f (x) = x3 − 5x + 3 for x near 2.

(a) What does a table of values for E(x)∕(x − 2) suggest about limx→2 E(x)∕(x − 2)?

(b) Make another table to see that E(x) ≈ k(x− 2)2. Estimate the value of k. Check that a possible

value is k = f ′′(2)∕2.

Solution (a) Since f (x) = x3 − 5x + 3, we have f ′(x) = 3x2 − 5, and f ′′(x) = 6x. Thus, f (2) = 1 and

f ′(2) = 3 ⋅ 22 − 5 = 7, so the tangent line approximation for x near 2 is

f (x) ≈ f (2) + f ′(2)(x − 2)

f (x) ≈ 1 + 7(x − 2).

Thus,

E(x) = True value − Approximation = (x3 − 5x + 3) − (1 + 7(x − 2)).



188 Chapter 3 SHORT-CUTS TO DIFFERENTIATION

The values of E(x)∕(x − 2) in Table 3.10 suggest that E(x)∕(x − 2) approaches 0 as x → 2.

(b) Notice that if E(x) ≈ k(x − 2)2, then E(x)∕(x − 2)2 ≈ k. Thus we make Table 3.11 showing

values of E(x)∕(x − 2)2. Since the values are all approximately 6, we guess that k = 6 and

E(x) ≈ 6(x − 2)2.

Since f ′′(2) = 12, our value of k satisfies k = f ′′(2)∕2.

Table 3.10

x E(x)∕(x − 2)

2.1 0.61

2.01 0.0601

2.001 0.006001

2.0001 0.00060001

Table 3.11

x E(x)∕(x − 2)2

2.1 6.1

2.01 6.01

2.001 6.001

2.0001 6.0001

The relationship between E(x) and f ′′(x) that appears in Example 3 holds more generally. If

f (x) satisfies certain conditions, it can be shown that the error in the tangent line approximation

behaves near x = a as

E(x) ≈
f ′′(a)

2
(x − a)2.

This is part of a general pattern for obtaining higher-order approximations called Taylor polynomials,

which are studied in Chapter 10.

Why Differentiability Makes a Graph Look Straight

We use the properties of the error E(x) to understand why differentiability makes a graph look

straight when we zoom in.

Example 4 Consider the graph of f (x) = sin x near x = 0, and its linear approximation computed in Example 1.

Show that there is an interval around 0 with the property that the distance from f (x) = sinx to the

linear approximation is less than 0.1|x| for all x in the interval.

Solution The linear approximation of f (x) = sinx near 0 is y = x, so we write

sinx = x + E(x).

Since sinx is differentiable at x = 0, Theorem 3.6 tells us that

lim
x→0

E(x)

x
= 0.

If we take � = 1∕10, then the definition of limit guarantees that there is a � > 0 such that
|

|

|

|

E(x)

x

|

|

|

|

< 0.1 for all |x| < �.

In other words, for x in the interval (−�, �), we have |x| < �, so

|E(x)| < 0.1|x|.

(See Figure 3.41.)
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−� �0

✻❄|E(x)| < 0.1|x|

✛ y = x
❄

y = sin x

x

Figure 3.41: Graph of y = sin x and its linear approximation y = x, showing a window in

which the magnitude of the error, |E(x)|, is less than 0.1|x| for all x in the window

We can generalize from this example to explain why differentiability makes the graph of f look

straight when viewed over a small graphing window. Suppose f is differentiable at x = a. Then we

know lim
x→a

|

|

|

|

E(x)

x − a

|

|

|

|

= 0. So, for any � > 0, we can find a � small enough so that

|

|

|

|

E(x)

x − a

|

|

|

|

< �, for a − � < x < a + �.

So, for any x in the interval (a − �, a + �), we have

|E(x)| < �|x − a|.

Thus, the error, E(x), is less than � times |x − a|, the distance between x and a. So, as we zoom in

on the graph by choosing smaller �, the deviation, |E(x)|, of f from its tangent line shrinks, even

relative to the scale on the x-axis. So, zooming makes a differentiable function look straight.

Summary for Section 3.9

• The tangent line approximation: Suppose f is differentiable at a. Then, for values of x near

a, the tangent line approximation to f (x) is

f (x) ≈ f (a) + f ′(a)(x − a).

The expression f (a) + f ′(a)(x− a) is called the local linearization of f near x = a.

• The error, E(x), in the approximation is defined by

E(x) = f (x) − f (a) − f ′(a)(x− a).

• Suppose f is differentiable at x = a and E(x) is the error in the tangent line approximation.

Then lim
x→a

E(x)

x − a
= 0.

Exercises and Problems for Section 3.9 Online Resource: Additional Problems for Section 3.9
EXERCISES

1. Find the tangent line approximation for
√

1 + x near

x = 0.

2. What is the tangent line approximation to ex near

x = 0?

3. Find the tangent line approximation to 1∕x near x = 1.

4. Find the local linearization of f (x) = x2 near x = 1.

5. What is the local linearization of ex
2

near x = 1?

6. Find the tangent line approximation for f (x) = x sin x

near x = �∕2.

7. Show that 1 − x∕2 is the tangent line approximation to

1∕
√

1 + x near x = 0.

8. Show that e−x ≈ 1 − x near x = 0.

9. Local linearization gives values too small for the func-

tion x2 and too large for the function
√

x. Draw pictures

to explain why.

10. Using a graph like Figure 3.40, estimate to one decimal

place the magnitude of the error in approximating sin x

by x for −1 ≤ x ≤ 1. Is the approximation an over- or

an underestimate?
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11. For x near 0, local linearization gives

ex ≈ 1 + x.

Using a graph, decide if the approximation is an over-

or underestimate, and estimate to one decimal place the

magnitude of the error for −1 ≤ x ≤ 1.

PROBLEMS

12. (a) Find the best linear approximation, L(x), to f (x) =

ex near x = 0.

(b) What is the sign of the error, E(x) = f (x) − L(x)

for x near 0?

(c) Find the true value of the function at x = 1. What is

the error? (Give decimal answers.) Illustrate with

a graph.

(d) Before doing any calculations, explain which you

expect to be larger, E(0.1) or E(1), and why.

(e) Find E(0.1).

13. (a) Find the tangent line approximation to sinx near

x = 0.

(b) Is the tangent line approximation above or below

the value of sin x?

14. (a) Find the tangent line approximation to cos x at

x = �∕4.

(b) Use a graph to explain how you know whether the

tangent line approximation is an under- or overes-

timate for 0 ≤ x ≤ �∕2.

(c) To one decimal place, estimate the error in the ap-

proximation for 0 ≤ x ≤ �∕2.

15. Suppose f (x) has f (50) = 99.5 and f ′(50) = 0.2.

(a) Find a linear function that approximates f (x) for x

near 50.

(b) Give an estimate for x such that f (x) = 100.

(c) What should be true of the graph of f for your es-

timate in part (b) to be fairly accurate?

16. The graphs in Figure 3.42 have the same window and

the same scale. Use local linearization at x = 0 to match

each graph with a formula (a)–(d).

(a) ℎ(x) = x3 − 3x2 + 3x

(b) g(x) = x2∕3

(c) k(x) = 2x2 − 4x

(d) f (x) = ex − 1

(I) (II)

(III) (IV)

Figure 3.42

17. (a) Graph f (x) = x3 − 3x2 + 3x + 1.

(b) Find and add to your sketch the local linearization

to f (x) at x = 2.

(c) Mark on your sketch the true value of f (1.5), the

tangent line approximation to f (1.5) and the error

in the approximation.

18. (a) Show that 1+kx is the local linearization of (1+x)k

near x = 0.

(b) Someone claims that the square root of 1.1 is about

1.05. Without using a calculator, do you think that

this estimate is about right?

(c) Is the actual number above or below 1.05?

19. Figure 3.43 shows f (x) and its local linearization at

x = a. What is the value of a? Of f (a)? Is the approxi-

mation an under- or overestimate? Use the linearization

to approximate the value of f (1.2).

21

f (x)

y = 2x − 1

x

y

Figure 3.43

In Problems 20–21, the equation has a solution near x = 0.

By replacing the left side of the equation by its linearization,

find an approximate value for the solution.

20. ex + x = 2 21. x + ln(1 + x) = 0.2

22. (a) Find the tangent line approximation near x = 0 to

f (x) = 1∕(1 − x).

(b) Use it to approximate 1∕0.99.

23. (a) Given that f (20) = 3, the derivative f ′(20) = −4,

and f ′′(20) = 6, use local linearization to estimate

f (20.2).

(b) Is your answer to part (a) likely to be an over- or

underestimate?

24. (a) Given that f (7) = 13 and f ′(7) = −0.38, estimate

f (7.1).

(b) Suppose also f ′′(x) < 0 for all x. Does this make

your answer to part (a) an under- or overestimate?
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25. A function g has g(3) = 7 and g(3.001) − g(3) =

0.0025.

(a) Estimate g′(3).

(b) Using the estimate from part (a), find the tangent

line approximation to g(x) at x = 3 and use it to

estimate g(3.1).

(c) If g′′(x) > 0 for 3 ≤ x ≤ 3.1, is the value for

g(3.1) found in part (b) an underestimate, an over-

estimate, exact or is there not enough information

to decide?

26. (a) Explain why the following equation has a solution

near 0:

et = 0.02t + 1.098.

(b) Replace et by its linearization near 0. Solve the new

equation to get an approximate solution to the orig-

inal equation.

27. The speed of sound in dry air is

f (T ) = 331.3

√

1 +
T

273.15
meters∕second

where T is the temperature in degrees Celsius. Find a

linear function that approximates the speed of sound for

temperatures near 0◦C.

28. Live phytoplankton of diameter x micrometers sink in

the ocean at a rate of u = 0.021x1.177 meters per day.21

The rate is important, because when phytoplankton are

too deep they do not have enough light to carry on pho-

tosynthesis.

(a) Find du∕dx.

(b) Evaluate du∕dx|x=300 . Include units. Explain the

meaning of this derivative for phytoplankton.

(c) Use the derivative to estimate the difference in

the sinking rates of phytoplankton of diameters

280 and 310 micrometers.

(d) Give the tangent line approximation for the phyto-

plankton sinking rate for diameters near 300 mi-

crometers.

29. The generation time for an organism is the time from

its birth until it begins to reproduce. For marine or-

ganisms from bacteria to whales,22 the generation time,

G, in days, is a function of their length, L, in cm:

G = 40.9L0.579.

(a) Find dG∕dL.

(b) Evaluate dG∕dL|L=1. Include units. Explain the

meaning of this derivative for generation times.

(c) Use the derivative to estimate the difference in

generation times of organisms of lengths 0.9 and

1.1 cm.

(d) Give the tangent line approximation for the gener-

ation time for lengths near 1 cm.

30. Air pressure at sea level is 30 inches of mercury. At an

altitude of ℎ feet above sea level, the air pressure, P , in

inches of mercury, is given by

P = 30e−3.23×10
−5ℎ.

(a) Sketch a graph of P against ℎ.

(b) Find the equation of the tangent line at ℎ = 0.

(c) A rule of thumb used by travelers is that air pres-

sure drops about 1 inch for every 1000-foot in-

crease in height above sea level. Write a formula

for the air pressure given by this rule of thumb.

(d) What is the relation between your answers to parts

(b) and (c)? Explain why the rule of thumb works.

(e) Are the predictions made by the rule of thumb too

large or too small? Why?

31. Competition between iOS devices and Android devices

was fierce after Android devices came to market in

2008. By the end of August 2010, Android cell phone

users had increased to 10.9 million, from 866,000 a

year earlier.23 During the same period, iPhone users in-

creased to 13.5 million, up from 7.8 million from a year

earlier. Let A(t) be the number of Android users, in mil-

lions, at time t in years since the end of August 2009.

Let P (t) be the number of iPhone users in millions.

(a) Estimate A′(0). Give units.

(b) Estimate P ′(0). Give units.

(c) Using the tangent line approximation, when were

the numbers of Android and iPhone users predicted

to be the same?

(d) What assumptions did you make in part (c)?

32. When it is holding back 10 meters of water, the force

on a dam is 245,000 kilonewtons (kN) and increasing

at 49,000 kN per meter (m) increase in the height of

the water. Estimate the total force on the dam at a water

height of 10.2 m.

33. The charge remaining in a capacitor initially holding

40 microcoulombs (�C), t seconds after it is discharged

through a circuit, is q(t) = 40e−t∕6 �C.

(a) Find the linear approximation of q at t = 0.

(b) Use part (a) to estimate the charge in the capacitor

at t = 0.2 and t = 0.4 seconds.

34. The volume, V (in liters), of a sample of an ideal gas

held at a constant temperature is V = f (P ) = 110∕P ,

where P is the gas’s pressure (in atmospheres).

(a) Find the linear approximation for f at P = 5.

(b) Use part (a) to estimate the volume at pressures of

5.1 and 5.2 atmospheres.

21Adapted from M. Denny, How the Ocean Works (Princeton: Princeton University Press, 2008), pp. 76 and 104.
22Adapted from M. Denny, How the Ocean Works (Princeton: Princeton University Press, 2008), p. 124.
23“Apple Readies Verizon iPhone”, Wall Street Journal, October 7, 2010.
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35. Table 3.12 shows the water storedS(t), in acre-feet,24 of

Lake Sonoma, a reservoir in Northern California, from

March 2014 until April 201525. With t in months, let

t = 0 be March 2014.

(a) Find a linear approximation for the water stored

near t = 2 and use it to approximate the water

stored in October 2014.

(b) Find and use an appropriate linear approximation

to estimate the water stored in October 2015.

Table 3.12

t 0 1 2 3 4 5 6

S(t) 182,566 185,569 179,938 171,770 163,150 154,880 147,391

t 7 8 9 10 11 12 13

S(t) 141,146 136,553 191,296 189,093 218,354 216,019 212,740

36. Small water bugs swim in groups as protection against

attacks from fish. In one observational study, the num-

ber, a, of attacks per individual bug per hour depended

on the group size, s, according to the model26 a =

120s−1.118. The model is appropriate for group sizes

from 1 to 100.

(a) How many attacks are expected on an individual

bug per hour if swimming in a group of size 10?

20? 50?

(b) Find da∕ds.

(c) Evaluate da∕ds|s=50. Include units.

(d) Find a linear approximation for a as a function of

s for group sizes near 50 bugs.

(e) Use your linear approximation to estimate the dif-

ference in number of attacks between groups of 48

and 53 bugs. Compare your answer with the dif-

ference obtained using the original power function

model.

37. If C (in units of 10−4 molar) is the concentration of glu-

cose in a solution, then E. coli bacteria in the solution

grow at a rate, R (in cell divisions per hour), given by27

R =
1.35C

0.22 + C
cell divisions per hour.

(a) Find the growth rate of bacteria growing in 2 ⋅10−4

molar glucose solution. Include units.

(b) Find dR∕dC .

(c) Find dR∕dC|C=2 . Include units.

(d) Find the tangent line approximation of the growth

rate for bacteria growing in glucose concentrations

near 2 ⋅ 10−4 molar.

(e) Use the tangent line approximation to estimate the

growth rate in a 2.2 ⋅ 10−4 molar glucose solution.

Compare it with the growth rate from the original

model.

38. Writing g for the acceleration due to gravity, the period,

T , of a pendulum of length l is given by

T = 2�

√

l

g
.

(a) Show that if the length of the pendulum changes

by Δl, the change in the period, ΔT , is given by

ΔT ≈
T

2l
Δl.

(b) If the length of the pendulum increases by 2%, by

what percent does the period change?

39. Suppose now the length of the pendulum in Problem 38

remains constant, but that the acceleration due to grav-

ity changes.

(a) Use the method of the preceding problem to relate

ΔT approximately to Δg, the change in g.

(b) If g increases by 1%, find the percent change in T .

40. Suppose f has a continuous positive second derivative

for all x. Which is larger, f (1+Δx) or f (1)+f ′(1)Δx?

Explain.

41. Suppose f ′(x) is a differentiable decreasing function

for all x. In each of the following pairs, which number

is the larger? Give a reason for your answer.

(a) f ′(5) and f ′(6)

(b) f ′′(5) and 0

(c) f (5 + Δx) and f (5) + f ′(5)Δx

Problems 42–44 investigate the motion of a projectile shot

from a cannon. The fixed parameters are the acceleration

of gravity, g = 9.8 m∕sec2, and the muzzle velocity, v0 =

500 m∕sec, at which the projectile leaves the cannon. The

angle �, in degrees, between the muzzle of the cannon and

the ground can vary.

42. The range of the projectile is

f (�) =
v2
0

g
sin

��

90
wq = 25,510 sin

��

90
meters.

(a) Find the range with � = 20◦.

(b) Find a linear function of � that approximates the

range for angles near 20◦.

(c) Find the range and its approximation from part (b)

for 21◦.

24An acre-foot is the amount of water it takes to cover one acre of area with 1 foot of water.
25http://cdec.water.ca.gov, accessed May 28, 2015.
26W. A. Foster and J. E. Treherne, “Evidence for the Dilution Effect in the Selfish Herd from Fish Predation on a Marine

Insect,” Nature 293 (October, 1981), pp. 466–467.
27Jacques Monod, “The Growth of Bacterial Cultures,” Annual Review of Microbiology, 3 (1949), pp. 371–394.
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43. The time that the projectile stays in the air is

t(�) =
2v0

g
sin

��

180
= 102 sin

��

180
seconds.

(a) Find the time in the air for � = 20◦.

(b) Find a linear function of � that approximates the

time in the air for angles near 20◦.

(c) Find the time in air and its approximation from

part (b) for 21◦.

44. At its highest point the projectile reaches a peak altitude

given by

ℎ(�) =
v2
0

2g
sin2

��

180
= 12,755 sin2

��

180
meters.

(a) Find the peak altitude for � = 20◦.

(b) Find a linear function of � that approximates the

peak altitude for angles near 20◦.

(c) Find the peak altitude and its approximation from

part (b) for 21◦.

In Problems 45–47, find the local linearization of f (x) near

0 and use this to approximate the value of a.

45. f (x) = (1 + x)r, a = (1.2)3∕5

46. f (x) = ekx, a = e0.3

47. f (x) =
√

b2 + x, a =
√

26

In Problems 48–52, find a formula for the error E(x) in the

tangent line approximation to the function near x = a. Using

a table of values for E(x)∕(x − a) near x = a, find a value

of k such that E(x)∕(x− a) ≈ k(x− a). Check that, approx-

imately, k = f ′′(a)∕2 and that E(x) ≈ (f ′′(a)∕2)(x − a)2.

48. f (x) = x4, a = 1 49. f (x) = cos x, a = 0

50. f (x) = ex, a = 0 51. f (x) =
√

x, a = 1

52. f (x) = lnx, a = 1

Strengthen Your Understanding

In Problems 53–54, explain what is wrong with the state-

ment.

53. To approximate f (x) = ex, we can always use the linear

approximation f (x) = ex ≈ x + 1.

54. The linear approximation for F (x) = x3 +1 near x = 0

is an underestimate for the function F for all x, x ≠ 0.

In Problems 55–57, give an example of:

55. Two different functions that have the same linear ap-

proximation near x = 0.

56. A non-polynomial function that has the tangent line ap-

proximation f (x) ≈ 1 near x = 0.

57. A function that does not have a linear approximation at

x = −1.

58. Let f be a differentiable function and let L be the lin-

ear function L(x) = f (a) + k(x − a) for some constant

a. Decide whether the following statements are true or

false for all constants k. Explain your answer.

(a) L is the local linearization for f near x = a,

(b) If lim
x→a

(f (x) − L(x)) = 0, then L is the local lin-

earization for f near x = a.

3.10 THEOREMS ABOUT DIFFERENTIABLE FUNCTIONS

A Relationship Between Local and Global: The Mean Value Theorem

We often want to infer a global conclusion (for example, f is increasing on an interval) from local

information (for example, f ′ is positive at each point on an interval). The following theorem relates

the average rate of change of a function on an interval (global information) to the instantaneous rate

of change at a point in the interval (local information).

Theorem 3.7: The Mean Value Theorem

If f is continuous on a ≤ x ≤ b and differentiable on a < x < b, then there exists a number

c, with a < c < b, such that

f ′(c) =
f (b) − f (a)

b − a
.

In other words, f (b) − f (a) = f ′(c)(b − a).
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To understand this theorem geometrically, look at Figure 3.44. Join the points on the curve

where x = a and x = b with a secant line and observe that

Slope of secant line =
f (b) − f (a)

b − a
.

Now consider the tangent lines drawn to the curve at each point between x = a and x = b. In

general, these lines have different slopes. For the curve shown in Figure 3.44, the tangent line at

x = a is flatter than the secant line. Similarly, the tangent line at x = b is steeper than the secant line.

However, there appears to be at least one point between a and b where the slope of the tangent line

to the curve is precisely the same as the slope of the secant line. Suppose this occurs at x = c. Then

Slope of tangent line = f ′(c) =
f (b) − f (a)

b − a
.

The Mean Value Theorem tells us that the point x = c exists, but it does not tell us how to find c.

Problems 79 and 80 (available online) in Section 4.2 show how the Mean Value Theorem can

be derived.

a c b
x

❘

Secant line: Slope =
f (b) − f (a)

b − a

■
Tangent line: Slope = f ′(c)

(a, f (a))

(b, f (b))

f (x)

Figure 3.44: The point c with f ′(c) =
f (b)−f (a)

b−a

If f satisfies the conditions of the Mean Value Theorem on a < x < b and f (a) = f (b) = 0,

the Mean Value Theorem tells us that there is a point c, with a < c < b, such that f ′(c) = 0. This

result is called Rolle’s Theorem.

The Increasing Function Theorem

We say that a function f is increasing on an interval if, for any two numbers x1 and x2 in the

interval such that x1 < x2, we have f (x1) < f (x2). If instead we have f (x1) ≤ f (x2), we say f is

nondecreasing.

Theorem 3.8: The Increasing Function Theorem

Suppose that f is continuous on a ≤ x ≤ b and differentiable on a < x < b.

• If f ′(x) > 0 on a < x < b, then f is increasing on a ≤ x ≤ b.

• If f ′(x) ≥ 0 on a < x < b, then f is nondecreasing on a ≤ x ≤ b.

Proof Suppose a ≤ x1 < x2 ≤ b. By the Mean Value Theorem, there is a number c, with x1 < c < x2,

such that

f (x2) − f (x1) = f ′(c)(x2 − x1).

If f ′(c) > 0, this says f (x2) − f (x1) > 0, which means f is increasing. If f ′(c) ≥ 0, this says

f (x2) − f (x1) ≥ 0, which means f is nondecreasing.

It may seem that something as simple as the Increasing Function Theorem should follow imme-

diately from the definition of the derivative, and you may be surprised that the Mean Value Theorem

is needed.
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The Constant Function Theorem

If f is constant on an interval, then we know that f ′(x) = 0 on the interval. The following theorem

is the converse.

Theorem 3.9: The Constant Function Theorem

Suppose that f is continuous on a ≤ x ≤ b and differentiable on a < x < b. If f ′(x) = 0 on

a < x < b, then f is constant on a ≤ x ≤ b.

Proof The proof is the same as for the Increasing Function Theorem, only in this case f ′(c) = 0 so f (x2)−

f (x1) = 0. Thus f (x2) = f (x1) for a ≤ x1 < x2 ≤ b, so f is constant.

A proof of the Constant Function Theorem using the Increasing Function Theorem is given in

Problems 23 and 31.

The Racetrack Principle

Theorem 3.10: The Racetrack Principle28

Suppose that g and ℎ are continuous on a ≤ x ≤ b and differentiable on a < x < b, and that

g′(x) ≤ ℎ′(x) for a < x < b.

• If g(a) = ℎ(a), then g(x) ≤ ℎ(x) for a ≤ x ≤ b.

• If g(b) = ℎ(b), then g(x) ≥ ℎ(x) for a ≤ x ≤ b.

The Racetrack Principle has the following interpretation. We can think of g(x) and ℎ(x) as the po-

sitions of two racehorses at time x, with horse ℎ always moving faster than horse g. If they start

together, horse ℎ is ahead during the whole race. If they finish together, horse g was ahead during

the whole race.

Proof Consider the function f (x) = ℎ(x) − g(x). Since f ′(x) = ℎ′(x) − g′(x) ≥ 0, we know that f is

nondecreasing by the Increasing Function Theorem. So f (x) ≥ f (a) = ℎ(a) − g(a) = 0. Thus

g(x) ≤ ℎ(x) for a ≤ x ≤ b. This proves the first part of the Racetrack Principle. Problem 30 asks for

a proof of the second part.

Example 1 Explain graphically why ex ≥ 1 + x for all values of x. Then use the Racetrack Principle to prove

the inequality.

28Based on W. Davis, H. Porta, J. Uhl, The Racetrack Principle, in Calculus & Mathematica (Reading, MA: Addison-

Wesley, 1994).
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Solution The graph of the function y = ex is concave up everywhere and the equation of its tangent line at the

point (0, 1) is y = x + 1. (See Figure 3.45.) Since the graph always lies above its tangent, we have

the inequality

ex ≥ 1 + x.

1

x

y
y = ex

y = x + 1

Figure 3.45: Graph showing that ex ≥ 1 + x

Now we prove the inequality using the Racetrack Principle. Let g(x) = 1 + x and ℎ(x) = ex.

Then g(0) = ℎ(0) = 1. Furthermore, g′(x) = 1 and ℎ′(x) = ex. Hence g′(x) ≤ ℎ′(x) for x ≥ 0. So

by the Racetrack Principle, with a = 0, we have g(x) ≤ ℎ(x), that is, 1 + x ≤ ex.

For x ≤ 0 we have ℎ′(x) ≤ g′(x). So by the Racetrack Principle, with b = 0, we have g(x) ≤

ℎ(x), that is, 1 + x ≤ ex.

Summary for Section 3.10

• The mean value theorem: If f is continuous on a ≤ x ≤ b and differentiable on a < x < b,

then there exists a number c, with a < c < b, such that

f ′(c) =
f (b) − f (a)

b − a
.

In other words, f (b) − f (a) = f ′(c)(b − a).

• The increasing function theorem: Suppose that f is continuous on a ≤ x ≤ b and differen-

tiable on a < x < b.

∙ If f ′(x) > 0 on a < x < b, then f is increasing on a ≤ x ≤ b.

∙ If f ′(x) ≥ 0 on a < x < b, then f is nondecreasing on a ≤ x ≤ b.

• Constant function theorem: Suppose that f is continuous on a ≤ x ≤ b and differentiable on

a < x < b. If f ′(x) = 0 on a < x < b, then f is constant on a ≤ x ≤ b.

• Racetrack principle: Suppose that g and ℎ are continuous on a ≤ x ≤ b and differentiable on

a < x < b, and that g′(x) ≤ ℎ′(x) for a < x < b.

∙ If g(a) = ℎ(a), then g(x) ≤ ℎ(x) for a ≤ x ≤ b.

∙ If g(b) = ℎ(b), then g(x) ≥ ℎ(x) for a ≤ x ≤ b.

Exercises and Problems for Section 3.10

EXERCISES

In Exercises 1–5, decide if the statements are true or false.

Give an explanation for your answer.

1. Let f (x) = [x], the greatest integer less than or equal to

x. Then f ′(x) = 0, so f (x) is constant by the Constant

Function Theorem.

2. If a < b and f ′(x) is positive on [a, b] then f (a) < f (b).

3. If f (x) is increasing and differentiable on the interval

[a, b], then f ′(x) > 0 on [a, b].

4. The Racetrack Principle can be used to justify the state-

ment that if two horses start a race at the same time, the

horse that wins must have been moving faster than the

other throughout the race.



3.10 THEOREMS ABOUT DIFFERENTIABLE FUNCTIONS 197

5. Two horses start a race at the same time and one runs

slower than the other throughout the race. The Race-

track Principle can be used to justify the fact that the

slower horse loses the race.

In Exercises 6–9, does the function graphed appear to satisfy

the hypotheses of the Mean Value Theorem on the interval

[a, b]? Does it satisfy the conclusion?

6.

a b
x

f (x) 7.

a b

f (x)

x

8.

a b

f (x)

x

9.

a b

f (x)
x

In Exercises 10–11, can the Increasing Function Theorem be

used to draw a conclusion about f (x) on a ≤ x ≤ b? If so,

what conclusion?

10.

a b

f (x)

x

11.

a b

f (x)

x

PROBLEMS

In Problems 12–15, does the function satisfy the hypothe-

ses of the Mean Value Theorem on the interval? If so, find

a number c that satisfies the conclusion of the Mean Value

Theorem.

12. f (x) = ex, a = 0, b = 2

13. f (x) = x3, a = −1, b = 2

14. f (x) =

{

−x2, −1 ≤ x ≤ 0

2x − x2, 0 < x ≤ 2
, a = −1, b = 2

15. f (x) = |x|, a = −2, b = 1

16. Applying the Mean Value Theorem with a = 2, b = 7

to the function in Figure 3.46 leads to c = 4. What is

the equation of the tangent line at 4?

(2, 5)

(4, 8)

(7, 9)

Figure 3.46

17. Applying the Mean Value Theorem with a = 3, b = 13

to the function in Figure 3.47 leads to the point c shown.

What is the value of f ′(c)? What can you say about the

values of f ′(x1) and f ′(x2)?

f (x)

(3, 12)
x1

c

x2

(13, 7)

Figure 3.47

18. Let p(x) = x5 +8x4 −30x3 +30x2 −31x+22. What is

the relationship between p(x) and f (x) = 5x4 +32x3 −

90x2 + 60x − 31? What do the values of p(1) and p(2)

tell you about the values of f (x)?

19. Let p(x) be a seventh-degree polynomial with 7 distinct

zeros. How many zeros does p′(x) have?

20. Use the Racetrack Principle and the fact that sin 0 = 0

to show that sin x ≤ x for all x ≥ 0.

21. Use the Racetrack Principle to show that ln x ≤ x−1.

22. Use the fact that lnx and ex are inverse functions to

show that the inequalities ex ≥ 1+x and ln x ≤ x−1

are equivalent for x > 0.

23. State a Decreasing Function Theorem, analogous to the

Increasing Function Theorem. Deduce your theorem

from the Increasing Function Theorem. [Hint: Apply

the Increasing Function Theorem to −f .]

24. Dominic drove from Phoenix to Tucson on Interstate

10, a distance of 116 miles. The speed limit on this high-

way varies between 55 and 75miles per hour. He started

his trip at 11:44 pm and arrived in Tucson at 1:12 am.

Prove that Dominic was speeding at some point during

his trip.
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In Problems 25–28, use one of the theorems in this section

to prove the statements.

25. If f ′(x) ≤ 1 for all x and f (0) = 0, then f (x) ≤ x for

all x ≥ 0.

26. If f ′′(t) ≤ 3 for all t and f (0) = f ′(0) = 0, then

f (t) ≤
3

2
t2 for all t ≥ 0.

27. If f ′(x) = g′(x) for all x and f (5) = g(5), then

f (x) = g(x) for all x.

28. If f is differentiable and f (0) < f (1), then there is a

number c, with 0 < c < 1, such that f ′(c) > 0.

29. The position of a particle on the x-axis is given by

s = f (t); its initial position and velocity are f (0) = 3

and f ′(0) = 4. The acceleration is bounded by 5 ≤

f ′′(t) ≤ 7 for 0 ≤ t ≤ 2. What can we say about the

position f (2) of the particle at t = 2?

30. Suppose that g and ℎ are continuous on [a, b] and dif-

ferentiable on (a, b). Prove that if g′(x) ≤ ℎ′(x) for

a < x < b and g(b) = ℎ(b), then ℎ(x) ≤ g(x) for

a ≤ x ≤ b.

31. Deduce the Constant Function Theorem from the In-

creasing Function Theorem and the Decreasing Func-

tion Theorem. (See Problem 23.)

32. Prove that if f ′(x) = g′(x) for all x in (a, b), then

there is a constant C such that f (x) = g(x) + C on

(a, b). [Hint: Apply the Constant Function Theorem to

ℎ(x) = f (x) − g(x).]

33. Suppose that f ′(x) = f (x) for all x. Prove that f (x) =

Cex for some constant C . [Hint: Consider f (x)∕ex.]

34. Suppose that f is continuous on [a, b] and differentiable

on (a, b) and that m ≤ f ′(x) ≤ M on (a, b). Use the

Racetrack Principle to prove that f (x)−f (a) ≤ M(x−

a) for all x in [a, b], and that m(x−a) ≤ f (x)−f (a) for

allx in [a, b]. Conclude thatm ≤ (f (b)−f (a))∕(b−a) ≤

M . This is called the Mean Value Inequality. In words:

If the instantaneous rate of change of f is between m

and M on an interval, so is the average rate of change

of f over the interval.

35. Suppose that f ′′(x) ≥ 0 for all x in (a, b). We will show

the graph of f lies above the tangent line at (c, f (c)) for

any c with a < c < b.

(a) Use the Increasing Function Theorem to prove that

f ′(c) ≤ f ′(x) for c ≤ x < b and that f ′(x) ≤ f ′(c)

for a < x ≤ c.

(b) Use (a) and the Racetrack Principle to conclude

that f (c) + f ′(c)(x − c) ≤ f (x), for a < x < b.

Strengthen Your Understanding

In Problems 36–38, explain what is wrong with the state-

ment.

36. The Mean Value Theorem applies to f (x) = |x|, for

−2 < x < 2.

37. The following function satisfies the conditions of the

Mean Value Theorem on the interval [0, 1]:

f (x) =

{

x if 0 < x ≤ 1

1 if x = 0.

38. If f ′(x) = 0 on a < x < b, then by the Constant Func-

tion Theorem f is constant on a ≤ x ≤ b.

In Problems 39–43, give an example of:

39. An interval where the Mean Value Theorem applies

when f (x) = ln x.

40. An interval where the Mean Value Theorem does not

apply when f (x) = 1∕x.

41. A continuous function f on the interval [−1, 1] that

does not satisfy the conclusion of the Mean Value The-

orem.

42. A function f that is differentiable on the interval (0, 2),

but does not satisfy the conclusion of the Mean Value

Theorem on the interval [0, 2].

43. A function that is differentiable on (0, 1) and not con-

tinuous on [0, 1], but which satisfies the conclusion of

the Mean Value Theorem.

Are the statements in Problems 44–47 true or false for a func-

tion f whose domain is all real numbers? If a statement is

true, explain how you know. If a statement is false, give a

counterexample.

44. If f ′(x) ≥ 0 for all x, then f (a) ≤ f (b)whenever a ≤ b.

45. If f ′(x) ≤ g′(x) for all x, then f (x) ≤ g(x) for all x.

46. If f ′(x) = g′(x) for all x, then f (x) = g(x) for all x.

47. If f ′(x) ≤ 1 for all x and f (0) = 0, then f (x) ≤ x for

all x.
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4.1 USING FIRST AND SECOND DERIVATIVES

What Derivatives Tell Us About a Function and Its Graph

In Chapter 2, we saw the following connection between the derivatives of a function and the function

itself:

• If f ′ > 0 on an interval, then f is increasing on that interval.

• If f ′ < 0 on an interval, then f is decreasing on that interval.

If f ′ is always positive on an interval or always negative on an interval, then f is monotonic over

that interval.

• If f ′′ > 0 on an interval, then the graph of f is concave up on that interval.

• If f ′′ < 0 on an interval, then the graph of f is concave down on that interval.

Now that we have formulas for the derivatives of the elementary functions, we can do more with

these principles than we could in Chapter 2.

When we graph a function on a computer or calculator, we see only part of the picture, and we

may miss some significant features. Information given by the first and second derivatives can help

identify regions with interesting behavior.

Example 1 Use the first and second derivatives to analyze the function f (x) = x3 − 9x2 − 48x + 52.

Solution Since f is a cubic polynomial, we expect a graph that is roughly S-shaped. We use the derivative to

determine where the function is increasing and where it is decreasing. The derivative of f is

f ′(x) = 3x2 − 18x − 48.

To find where f ′ > 0 or f ′ < 0, we first find where f ′ = 0, that is, where

3x2 − 18x − 48 = 0.

Factoring, we get

3(x + 2)(x − 8) = 0, so x = −2 or x = 8.

Since f ′ = 0 only at x = −2 and x = 8, and since f ′ is continuous, f ′ cannot change sign on any

of the three intervals x < −2, or −2 < x < 8, or 8 < x.

How can we tell the sign of f ′ on each of these intervals? One way is to pick a point and

substitute into f ′. For example, since f ′(−3) = 33 > 0, we know f ′ is positive for x < −2, so f

is increasing for x < −2. Similarly, since f ′(0) = −48 and f ′(10) = 72, we know that f decreases

between x = −2 and x = 8 and increases for x > 8. Summarizing:

f ′ = 0

x = −2

f ′ = 0

x = 8

f ′ > 0

f increasing ↗

f ′ < 0

f decreasing ↘

f ′ > 0

f increasing ↗
x

We find that f (−2) = 104 and f (8) = −396. Hence on the interval −2 < x < 8 the function

decreases from a high of 104 to a low of −396. One more point on the graph is easy to get: the y

intercept, f (0) = 52. This gives us three points on the graph and tells us where it slopes up and

where it slopes down. See Figure 4.1.

To determine concavity, we use the second derivative. We have

f ′′(x) = 6x − 18.

Thus, f ′′(x) < 0 when x < 3 and f ′′(x) > 0 when x > 3, so the graph of f is concave down for

x < 3 and concave up for x > 3. At x = 3, we have f ′′(x) = 0. See Figure 4.1. Summarizing:
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f ′′ < 0

f concave down
⋂

f ′′ > 0

f concave up
⋃

f ′′ = 0

x = 3

As expected, the graph in Figure 4.1 is concave down for x < 3 and concave up for x > 3.

−10 10 20

52

−400

400

x

f increasing f decreasing f increasing

Local maximum
(−2, 104)
✲

Local minimum
(8,−396)

✛

(3,−146)

Figure 4.1: Useful graph of f (x) = x3 − 9x2 − 48x + 52

Local Maxima and Minima

We are often interested in points such as those marked in Figure 4.1 as local maximum and local

minimum. We have the following definition:

Suppose p is a point in the domain of f :

• f has a local minimum at p if f (p) is less than or equal to the values of f for points near

p.

• f has a local maximum at p if f (p) is greater than or equal to the values of f for points

near p.

We use the adjective “local” because we are describing only what happens near p. Local maxima

and minima are sometimes called local extrema.

How Do We Detect a Local Maximum or Minimum?

In the preceding example, the points x = −2 and x = 8, where f ′(x) = 0, played a key role in

leading us to local maxima and minima. We give a name to such points:

For any function f , a point p in the domain of f where f ′(p) = 0 or f ′(p) is undefined is

called a critical point of the function. In addition, the point (p, f (p)) on the graph of f is also

called a critical point. A critical value of f is the value, f (p), at a critical point, p.

Notice that “critical point of f” can refer either to points in the domain of f or to points on the graph

of f . You will know which meaning is intended from the context.

Geometrically, at a critical point where f ′(p) = 0, the line tangent to the graph of f at p is

horizontal. At a critical point where f ′(p) is undefined, there is no horizontal tangent to the graph—

there’s either a vertical tangent or no tangent at all. (For example, x = 0 is a critical point for the

absolute value function f (x) = |x|.) However, most of the functions we work with are differentiable

everywhere, and therefore most of our critical points are of the f ′(p) = 0 variety.
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The critical points divide the domain of f into intervals within which the sign of the derivative

remains the same, either positive or negative. Therefore, if f is defined on the interval between two

successive critical points, its graph cannot change direction on that interval; it is either increasing

or decreasing. The following result, which is proved on page 206, tells us that all local maxima and

minima which are not at endpoints occur at critical points.

Theorem 4.1: Local Extrema and Critical Points

Suppose f is defined on an interval and has a local maximum or minimum at the point x = a,

which is not an endpoint of the interval. If f is differentiable at x = a, then f ′(a) = 0. Thus,

a is a critical point.

Warning! Not every critical point is a local maximum or local minimum. Consider f (x) = x3,

which has a critical point at x = 0. (See Figure 4.2.) The derivative, f ′(x) = 3x2, is positive on both

sides of x = 0, so f increases on both sides of x = 0, and there is neither a local maximum nor a

local minimum at x = 0.

x

f (x) = x3

Critical point

■

Figure 4.2: Critical point which is not a local maximum or minimum

Testing for Local Maxima and Minima at a Critical Point

If f ′ has different signs on either side of a critical point p, with f ′(p) = 0, then the graph changes

direction at p and looks like one of those in Figure 4.3. So we have the following criterion:

The First-Derivative Test for Local Maxima and Minima

Suppose p is a critical point of a continuous function f . Moving from left to right:

• If f ′ changes from negative to positive at p, then f has a local minimum at p.

• If f ′ changes from positive to negative at p, then f has a local maximum at p.

p

Local min
f ′(p) = 0f decreasing

f ′ < 0
f increasing
f ′ > 0

p

Local max
f ′(p) = 0

f increasing
f ′ > 0

f decreasing
f ′ < 0

Figure 4.3: Changes in direction at a critical point, p: Local maxima and minima

Example 2 Use a graph of the function f (x) =
1

x(x − 1)
to observe its local maxima and minima. Confirm your

observation analytically.
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Solution The graph in Figure 4.4 suggests that this function has no local minima but that there is a local

maximum at about x = 1∕2. Confirming this analytically means using the formula for the derivative

to show that what we expect is true. Since f (x) = (x2 − x)−1, we have

f ′(x) = −1(x2 − x)−2(2x − 1) = −
2x − 1

(x2 − x)2
.

So f ′(x) = 0 where 2x − 1 = 0. Thus, the only critical point in the domain of f is x = 1∕2.

Furthermore, f ′(x) > 0 where 0 < x < 1∕2, and f ′(x) < 0 where 1∕2 < x < 1. Thus, f

increases for 0 < x < 1∕2 and decreases for 1∕2 < x < 1. According to the first-derivative test, the

critical point x = 1∕2 is a local maximum.

For −∞ < x < 0 or 1 < x < ∞, there are no critical points and no local maxima or minima.

Although 1∕(x(x − 1)) → 0 both as x → ∞ and as x → −∞, we don’t say 0 is a local minimum

because 1∕ (x(x − 1)) never actually equals 0.

Notice that although f ′ > 0 everywhere that it is defined for x < 1∕2, the function f is not

increasing throughout this interval. The problem is that f and f ′ are not defined at x = 0, so we

cannot conclude that f is increasing when x < 1∕2.

1
x

(
1

2
,−4)

f (x) =
1

x(x−1)

Figure 4.4: Find local maxima and minima

x

f (x) = sin x + 2ex

Figure 4.5: Explain the absence of local

maxima and minima for x ≥ 0

Example 3 The graph of f (x) = sin x+2ex is in Figure 4.5. Using the derivative, explain why there are no local

maxima or minima for x > 0.

Solution Local maxima and minima can occur only at critical points. Now f ′(x) = cosx + 2ex, which is

defined for all x. We know cos x is always between −1 and 1, and 2ex > 2 for x > 0, so f ′(x) cannot

be 0 for any x > 0. Therefore there are no local maxima or minima there.

The Second-Derivative Test for Local Maxima and Minima

Knowing the concavity of a function can also be useful in testing if a critical point is a local maximum

or a local minimum. Suppose p is a critical point of f , with f ′(p) = 0, so that the graph of f has

a horizontal tangent line at p. If the graph is concave up at p, then f has a local minimum at p.

Likewise, if the graph is concave down, f has a local maximum. (See Figure 4.6.) This suggests:

Local min

Concave up
f ′′ > 0

Local max

Concave down
f ′′ < 0

Figure 4.6: Local maxima and minima and concavity
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The Second-Derivative Test for Local Maxima and Minima

• If f ′(p) = 0 and f ′′(p) > 0 then f has a local minimum at p.

• If f ′(p) = 0 and f ′′(p) < 0 then f has a local maximum at p.

• If f ′(p) = 0 and f ′′(p) = 0 then the test tells us nothing.

Example 4 Classify as local maxima or local minima the critical points of f (x) = x3 − 9x2 − 48x + 52.

Solution As we saw in Example 1 on page 200,

f ′(x) = 3x2 − 18x − 48

and the critical points of f are x = −2 and x = 8. We have

f ′′(x) = 6x − 18.

Thus f ′′(8) = 30 > 0, so f has a local minimum at x = 8. Since f ′′(−2) = −30 < 0, f has a local

maximum at x = −2.

Warning! The second-derivative test does not tell us anything if both f ′(p) = 0 and f ′′(p) = 0.

For example, if f (x) = x3 and g(x) = x4, both f ′(0) = f ′′(0) = 0 and g′(0) = g′′(0) = 0. The

point x = 0 is a minimum for g but is neither a maximum nor a minimum for f . However, the first-

derivative test is still useful. For example, g′ changes sign from negative to positive at x = 0, so we

know g has a local minimum there.

Concavity and Inflection Points
Investigating points where the slope changes sign led us to critical points. Now we look at points

where the concavity changes.

A point, p, at which the graph of a continuous function, f , changes concavity is called an

inflection point of f .

The words “inflection point of f” can refer either to a point in the domain of f or to a point on the

graph of f . The context of the problem will tell you which is meant.

How Do We Detect an Inflection Point?
To identify candidates for an inflection point of a continuous function, we often use the second

derivative.

Suppose f ′′ is defined on both sides of a point p:

• If f ′′ is zero or undefined at p, then p is a possible inflection point.

• To test whether p is an inflection point, check whether f ′′ changes sign at p.

The following example illustrates how local maxima and minima and inflection points are found.

Example 5 For x ≥ 0, find the local maxima and minima and inflection points for g(x) = xe−x and graph g.

Solution Taking derivatives and simplifying, we have

g′(x) = (1 − x)e−x and g′′(x) = (x − 2)e−x.
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So x = 1 is a critical point, and g′ > 0 for x < 1 and g′ < 0 for x > 1. Hence g increases to a

local maximum at x = 1 and then decreases. Since g(0) = 0 and g(x) > 0 for x > 0, there is a local

minimum at x = 0. Also, g(x) → 0 as x → ∞. There is an inflection point at x = 2 since g′′ < 0 for

x < 2 and g′′ > 0 for x > 2. The graph is in Figure 4.7.

Local min
1 2

x

g increasing
Concave down

Critical point
Local max

g decreasing
Concave down

Inflection point

g decreasing
Concave up

Figure 4.7: Graph of g(x) = xe−x

Warning! Not every point x where f ′′(x) = 0 (or f ′′ is undefined) is an inflection point (just

as not every point where f ′ = 0 is a local maximum or minimum). For instance, f (x) = x4 has

f ′′(x) = 12x2 so f ′′(0) = 0, but f ′′ > 0 when x < 0 and when x > 0, so there is no change in

concavity at x = 0. See Figure 4.8.

f ′′ = 0 but
no inflection
point here

☛ x

Figure 4.8: Graph of f (x) = x4

Inflection Points and Local Maxima and Minima of the Derivative

Inflection points can also be interpreted in terms of first derivatives. Applying the first-derivative

test for local maxima and minima to f ′, we obtain the following result:

Suppose a function f has a continuous derivative. If f ′′ changes sign at p, then f has an

inflection point at p, and f ′ has a local minimum or a local maximum at p.

Figure 4.9 shows two inflection points. Notice that the curve crosses the tangent line at these

points and that the slope of the curve is a maximum or a minimum there.

p

Concave up
f ′′ > 0

Point of
inflection

f ′′(p) = 0

■

Maximum slope

Concave down
f ′′ < 0

■ ✒

p

Concave up
f ′′ > 0

Point of
inflection
f ′′(p) = 0

✒

Minimum slope

Figure 4.9: Change in concavity at p: Points of inflection
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Example 6 Water is being poured into the vase in Figure 4.10 at a constant rate, measured in volume per unit

time. Graph y = f (t), the depth of the water against time, t. Explain the concavity and indicate the

inflection points.

Solution At first the water level, y, rises slowly because the base of the vase is wide, and it takes a lot of water

to make the depth increase. However, as the vase narrows, the rate at which the water is

rising increases. Thus, y is increasing at an increasing rate and the graph is concave up. The rate of

increase in the water level is at a maximum when the water reaches the middle of the vase, where

the diameter is smallest; this is an inflection point. After that, the rate at which y increases decreases

again, so the graph is concave down. (See Figure 4.11.)

Figure 4.10: A vase

Inflection point,
corresponding to
narrowest point of vase

y (depth of water)

t (time)

Concave up

Concave down

✛

Figure 4.11: Graph of depth of water in the vase, y,

against time, t

Showing Local Extrema Are at Critical Points

We now prove Theorem 4.1, which says that inside an interval, local maxima and minima can only

occur at critical points. Suppose that f has a local maximum at x = a. Assuming that f ′(a) is

defined, the definition of the derivative gives

f ′(a) = lim
ℎ→0

f (a + ℎ) − f (a)

ℎ
.

Since this is a two-sided limit, we have

f ′(a) = lim
ℎ→0−

f (a + ℎ) − f (a)

ℎ
= lim

ℎ→0+

f (a + ℎ) − f (a)

ℎ
.

By the definition of local maximum, f (a + ℎ) ≤ f (a) for all sufficiently small ℎ. Thus f (a + ℎ) −

f (a) ≤ 0 for sufficiently small ℎ. The denominator, ℎ, is negative when we take the limit from the

left and positive when we take the limit from the right. Thus

lim
ℎ→0−

f (a + ℎ) − f (a)

ℎ
≥ 0 and lim

ℎ→0+

f (a + ℎ) − f (a)

ℎ
≤ 0.

Since both these limits are equal to f ′(a), we have f ′(a) ≥ 0 and f ′(a) ≤ 0, so we must have

f ′(a) = 0. The proof for a local minimum at x = a is similar.
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Summary for Section 4.1

• Local extrema: Suppose p is a point in the domain of f :

∙ f has a local minimum at p if f (p) is less than or equal to the values of f for points near p.

∙ f has a local maximum at p if f (p) is greater than or equal to the values of f for points

near p.

• For any function f , a point p in the domain of f where f ′(p) = 0 or f ′(p) is undefined is called

a critical point of the function. A critical value of f is the value, f (p), at a critical point, p.

• Local extrema and critical points: Suppose f is defined on an interval and has a local maxi-

mum or minimum at the pointx = a,which is not an endpoint of the interval. Iff is differentiable

at x = a, then f ′(a) = 0. Thus, a is a critical point.

• The first-derivative test for local maxima and minima: Suppose p is a critical point of a

continuous function f . Moving from left to right:

∙ If f ′ changes from negative to positive at p, then f has a local minimum at p.

∙ If f ′ changes from positive to negative at p, then f has a local maximum at p.

• The second-derivative test for local maxima and minima:

∙ If f ′(p) = 0 and f ′′(p) > 0 then f has a local minimum at p.

∙ If f ′(p) = 0 and f ′′(p) < 0 then f has a local maximum at p.

∙ If f ′(p) = 0 and f ′′(p) = 0 then the test tells us nothing.

• Concavity and inflection points: A point, p, at which the graph of a continuous function, f ,

changes concavity is called an inflection point of f .

• Suppose f ′′ is defined on both sides of a point p:

∙ If f ′′ is zero or undefined at p, then p is a possible inflection point.

∙ To test whether p is an inflection point, check whether f ′′ changes sign at p.

∙ If f ′′ changes sign at p, then f has an inflection point at p, and f ′ has a local minimum or

a local maximum at p.

Exercises and Problems for Section 4.1 Online Resource: Additional Problems for Section 4.1
EXERCISES

1. Indicate all critical points on the graph of f in Fig-

ure 4.12 and determine which correspond to local max-

ima of f , which to local minima, and which to neither.

x

f (x)

Figure 4.12

2. Graph a function which has exactly one critical point,

at x = 2, and exactly one inflection point, at x = 4.

3. Graph a function with exactly two critical points, one

of which is a local minimum and the other is neither a

local maximum nor a local minimum.

In Exercises 4–8, use derivatives to find the critical points

and inflection points.

4. f (x) = x3 − 9x2 + 24x + 5

5. f (x) = x5 − 10x3 − 8 6. f (x) = x5 + 15x4 + 25

7. f (x) = 5x − 3 lnx 8. f (x) = 4xe3x

In Exercises 9–12, find all critical points and then use the

first-derivative test to determine local maxima and minima.

Check your answer by graphing.

9. f (x) = 3x4 − 4x3 + 6 10. f (x) = (x2 − 4)7

11. f (x) = (x3 − 8)4 12. f (x) =
x

x2 + 1

In Exercises 13–16, find all critical points and then use the

second-derivative test to determine local maxima and min-

ima.

13. f (x) = 9 + 6x2 − x3 14. f (x) = x4 − 18x2 + 10

15. f (x) = e−2x
2

16. f (x) = 2x − 5 ln x

In Exercises 17–20, find the critical points of the function

and classify them as local maxima or minima or neither.

17. g(x) = xe−3x 18. ℎ(x) = x + 1∕x

19. f (x) = sinx − 0.5x 20. f (x) = sin x + cos x
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21. (a) Use a graph to estimate the x-values of any critical

points and inflection points of f (x) = e−x
2
.

(b) Use derivatives to find the x-values of any critical

points and inflection points exactly.

In Exercises 22–25, the function f is defined for all x. Use

the graph of f ′ to decide:

(a) Over what intervals is f increasing? Decreasing?

(b) Does f have local maxima or minima? If so, which, and

where?

22.

x

f ′(x)
23.

x

f ′(x)

24.

2 4
x

f ′(x)
25.

❘
−1

1
x

f ′(x)

In Exercises 26–31, the values of a, b, c are positive. Choose

the graph in Figure 4.13 that could represent the function

and give the values of a, b, c. How many critical points are

shown?

−2−1 2
x

(I)

−2 −1 1 2
x

(II)

−2 −1 1 2
x

(III)

−2 −1 1 2
x

IV

−2 −1 1 2
x

(V)

−2 1 2
x

(VI)

Figure 4.13

26. y = (x − a)(x − b)(x + c)

27. y = (x − a)(x + b)(x + c)

28. y = −(x − a)(x − b)(x + c)

29. y = −(x − a)(x + b)(x + c)

30. y =
(x + a)(x − b)

x − c

31. y = −
(x + a)(x − b)

x + cPROBLEMS

32. (a) If a is a positive constant, find all critical points of

f (x) = x3 − ax.

(b) Find the value of a so that f has local extrema at

x = ±2.

33. (a) If a is a constant, find all critical points of f (x) =

5ax − 2x2.

(b) Find the value of a so that f has a local maximum

at x = 6.

34. (a) If b is a positive constant and x > 0, find all critical

points of f (x) = x − b ln x.

(b) Use the second-derivative test to determine

whether the function has a local maximum or local

minimum at each critical point.

35. (a) If a is a nonzero constant, find all critical points of

f (x) =
a

x2
+ x.

(b) Use the second-derivative test to show that if a is

positive then the graph has a local minimum, and if

a is negative then the graph has a local maximum.

36. (a) Show that if a is a positive constant, then x = 0 is

the only critical point of f (x) = x + a
√

x.

(b) Use derivatives to show that f is increasing and its

graph is concave down for all x > 0.

37. If U and V are positive constants, find all critical points

of

F (t) = Uet + V e−t.

38. Figure 4.14 is the graph of a derivative f ′. On the graph,

mark the x-values that are critical points of f . At which

critical points does f have local maxima, local minima,

or neither?

x

Figure 4.14

39. Figure 4.14 is the graph of a derivative f ′. On the graph,

mark the x-values that are inflection points of f .

40. Figure 4.14 is the graph of a second derivative f ′′. On

the graph, mark the x-values that are inflection points

of f .

41. (a) Figure 4.15 shows the graph of f . Which of the x-

valuesA,B,C ,D,E, F , andG appear to be critical

points of f?

(b) Which appear to be inflection points of f?

(c) How many local maxima does f appear to have?

How many local minima?
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B C D E F GA
x

Figure 4.15

42. Figure 4.15 shows the graph of the derivative, f ′.

(a) Which of the x-values A, B, C , D, E, F , and G

appear to be critical points of f?

(b) Which appear to be inflection points of f?

(c) How many local maxima does f appear to have?

How many local minima?

For Problems 43–46, sketch a possible graph of y = f (x),

using the given information about the derivatives y′ = f ′(x)

and y′′ = f ′′(x). Assume that the function is defined and

continuous for all real x.

43.

✲✛

✛ ✲ x

x

y′ = 0y′ = 0

y′′ < 0y′′ > 0y′′ < 0

y′ < 0y′ > 0y′ > 0

y′′ = 0y′′ = 0

x2 x3x1

44.

✲✛

✛ ✲ x

x

y′′ < 0y′′ > 0y′′ < 0y′′ > 0

y′ < 0

y′′ = 0y′′ = 0y′′ = 0

x2 x3x1

45.

✲✛

✛ ✲ x

x

y′ = 0y′ undefined

y′′ > 0y′′ > 0

y′ > 0y′ < 0y′ > 0

y′′ undefined

x2x1

46.

✲✛

✛ ✲ x

x

y′ = 2

y′′ > 0y′′ = 0

y′ > 0y′ = 2

y′′ = 0

x1

47. Suppose f has a continuous derivative whose values

are given in the following table.

(a) Estimate the x-coordinates of critical points of f

for 0 ≤ x ≤ 10.

(b) For each critical point, indicate if it is a local max-

imum of f , local minimum, or neither.

x 0 1 2 3 4 5 6 7 8 9 10

f ′(x) 5 2 1 −2 −5 −3 −1 2 3 1 −1

48. (a) The following table gives values of the differen-

tiable function y = f (x). Estimate the x-values of

critical points of f (x) on the interval 0 < x < 10.

Classify each critical point as a local maximum,

local minimum, or neither.

(b) Now assume that the table gives values of the con-

tinuous function y = f ′(x) (instead of f (x)). Es-

timate and classify critical points of the function

f (x).

x 0 1 2 3 4 5 6 7 8 9 10

y 1 2 1 −2 −5 −3 −1 2 3 1 −1

49. If water is flowing at a constant rate (i.e., constant vol-

ume per unit time) into the vase in Figure 4.16, sketch

a graph of the depth of the water against time. Mark on

the graph the time at which the water reaches the corner

of the vase.

Figure 4.16 Figure 4.17

50. If water is flowing at a constant rate (that is, constant

volume per unit time) into the Grecian urn in Fig-

ure 4.17, sketch a graph of the depth of the water against

time. Mark on the graph the time at which the water

reaches the widest point of the urn.

51. Find and classify the critical points of f (x) = x3(1−x)4

as local maxima and minima.

52. If m, n ≥ 2 are integers, find and classify the critical

points of f (x) = xm(1 − x)n.

53. The rabbit population on a small Pacific island is ap-

proximated by

P =
2000

1 + e5.3−0.4t

with t measured in years since 1774, when Captain

James Cook left 10 rabbits on the island.

(a) Graph P . Does the population level off?

(b) Estimate when the rabbit population grew most

rapidly. How large was the population at that time?

(c) What natural causes could lead to the shape of the

graph of P ?

54. Find values of a and b so that f (x) = x2 + ax+ b has a

local minimum at the point (6,−5).
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55. Find the value of a so that f (x) = xeax has a critical

point at x = 3.

56. Find values of a and b so that f (x) = axebx has

f (1∕3) = 1 and f has a local maximum at x = 1∕3.

57. For a function f and constant k ≠ 0, we have

f ′(x) = −k2xe−0.5x
2∕k2

f ′′(x) = (x2 − k2)e−0.5x
2∕k2 .

(a) What is the only critical point of f?

(b) How many inflection points does the graph of f

have?

(c) Is the critical point of f a local maximum, local

minimum, or neither?

58. Graph f (x) = x + sin x, and determine where f is in-

creasing most rapidly and least rapidly.

59. You might think the graph of f (x) = x2 + cos x should

look like a parabola with some waves on it. Sketch the

actual graph of f (x) using a calculator or computer. Ex-

plain what you see using f ′′(x).

Problems 60–61 show graphs of the three functions f , f ′,

f ′′. Identify which is which.

60.

A

B

C

x

61.
A

A

B

B

C

x

Problems 62–63 show graphs of f , f ′, f ′′. Each of these

three functions is either odd or even. Decide which functions

are odd and which are even. Use this information to identify

which graph corresponds to f , which to f ′, and which to f ′′.

62. I II III

x

63.

I

II

III

x

64. Figure 4.18 shows the graph of two functions f and g,

their sum f +g, and the derivative of their sum (f +g)′.

Identify which is which.

A

B

C

D
x

y

Figure 4.18

65. Use the derivative formulas and algebra to find the in-

tervals where f (x) = (x+ 50)∕(x2 +525) is increasing

and the intervals where it is decreasing. It is possible,

but difficult, to solve this problem by graphing f ; de-

scribe the difficulty.

Strengthen Your Understanding

In Problems 66–69, explain what is wrong with the state-

ment.

66. An increasing function has no inflection points.

67. For any function f , if f ′′(0) = 0, there is an inflection

point at x = 0.

68. If p is a critical point, and f ′ is negative to the left of p

and positive to the right of p, and if f ′′(p) exists, then

f ′′(p) > 0.

69. If f has exactly two critical points, then one is a local

maximum and the other is a local minimum.

In Problems 70–73, give an example of:

70. A function which has no critical points on the interval

between 0 and 1.

71. A function, f , which has a critical point at x = 1 but

for which f ′(1) ≠ 0.

72. A function with local maxima and minima at an infinite

number of points.

73. A function f that has a local maximum at x = a and

for which f ′′(a) is not negative.
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Are the statements in Problems 74–82 true or false for a func-

tion f whose domain is all real numbers? If a statement is

true, explain how you know. If a statement is false, give a

counterexample.

74. A local minimum of f occurs at a critical point of f .

75. If x = p is not a critical point of f , then x = p is not a

local maximum of f .

76. A local maximum of f occurs at a point where

f ′(x) = 0.

77. If x = p is not a local maximum of f , then x = p is not

a critical point of f .

78. If f ′(p) = 0, then f has a local minimum or local max-

imum at x = p.

79. If f ′ is continuous and f has no critical points, then f

is everywhere increasing or everywhere decreasing.

80. If f ′′ is continuous and the graph of f has an inflection

point at x = p, then f ′′(p) = 0.

81. A critical point of f must be a local maximum or min-

imum of f .

82. Every cubic polynomial has an inflection point.

In Problems 83–86, give an example of a function f that

makes the statement true, or say why such an example is im-

possible. Assume that f ′′ exists everywhere.

83. f is concave up and f (x) is positive for all x.

84. f is concave down and f (x) is positive for all x.

85. f is concave down and f (x) is negative for all x.

86. f is concave up and f (x) is negative for all x.

87. Given that f ′(x) is continuous everywhere and changes

from negative to positive at x = a, which of the follow-

ing statements must be true?

(a) a is a critical point of f (x)

(b) f (a) is a local maximum

(c) f (a) is a local minimum

(d) f ′(a) is a local maximum

(e) f ′(a) is a local minimum

4.2 OPTIMIZATION

The largest and smallest values of a quantity often have practical importance. For example, automo-

bile engineers want to construct a car that uses the smallest amount of fuel, scientists want to calculate

which wavelength carries the maximum radiation at a given temperature, and urban planners want to

design traffic patterns to minimize delays. Such problems belong to the field of mathematics called

optimization. The next three sections show how the derivative provides an efficient way of solving

many optimization problems.

Global Maxima and Minima

The single greatest (or least) value of a function f over a specified domain is called the global

maximum (or minimum) of f . Recall that the local maxima and minima tell us where a function

is locally largest or smallest. Now we are interested in where the function is absolutely largest or

smallest in a given domain. We make the following definition:

Suppose p is a point in the domain of f :

• f has a global minimum at p if f (p) is less than or equal to all values of f .

• f has a global maximum at p if f (p) is greater than or equal to all values of f .

Global maxima and minima are sometimes called extrema or optimal values.

Existence of Global Extrema

The following theorem describes when global extrema are guaranteed to exist:

Theorem 4.2: The Extreme Value Theorem

If f is continuous on the closed interval a ≤ x ≤ b, then f has a global maximum and a

global minimum on that interval.

For a proof of Theorem 4.2, see www.WileyPLUS.com.
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How Do We Find Global Maxima and Minima?

If f is a continuous function defined on a closed interval a ≤ x ≤ b (that is, an interval containing its

endpoints), then Theorem 4.2 guarantees that global maxima and minima exist. Figure 4.19 illustrates

that the global maximum or minimum of f occurs either at a critical point or at an endpoint of the

interval, x = a or x = b. These points are the candidates for global extrema.

a b
x

Local min

✻

Local max

✾
❄

Local min,
global min

✻

Global max,
local max

✛

Figure 4.19: Global maximum and minimum on a closed interval a ≤ x ≤ b

Global Maxima and Minima on a Closed Interval: Test the Candidates

For a continuous function f on a closed interval a ≤ x ≤ b:

• Find the critical points of f in the interval.

• Evaluate the function at the critical points and at the endpoints, a and b. The largest value

of the function is the global maximum; the smallest value is the global minimum.

If the function is defined on an open interval a < x < b (that is, an interval not including

its endpoints) or on all real numbers, there may or may not be a global maximum or minimum. For

example, there is no global maximum in Figure 4.20 because the function has no actual largest value.

The global minimum in Figure 4.20 coincides with the local minimum. There is a global minimum

but no global maximum in Figure 4.21.

Global Maxima and Minima on an Open Interval or on All Real Numbers

For a continuous function, f , find the value of f at all the critical points and sketch a graph.

Look at values of f when x approaches the endpoints of the interval, or approaches ±∞, as

appropriate. If there is only one critical point, look at the sign of f ′ on either side of the critical

point.

a b
x

Local and global minimum

✻

No global
maximum

Figure 4.20: Global minimum on

a < x < b

x

Local
min

✻

Local max

✻

Local min,
global min

❄

No global
maximum

Figure 4.21: Global minimum when the

domain is all real numbers
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Example 1 Find the global maxima and minima of f (x) = x3 − 9x2 − 48x + 52 on the following intervals:

(a) −5 ≤ x ≤ 12 (b) −5 ≤ x ≤ 14 (c) −5 ≤ x < ∞.

Solution (a) We have previously obtained the critical points x = −2 and x = 8 using

f ′(x) = 3x2 − 18x − 48 = 3(x + 2)(x − 8).

We evaluate f at the critical points and the endpoints of the interval:

f (−5) = (−5)3 − 9(−5)2 − 48(−5) + 52 = −58

f (−2) = 104

f (8) = −396

f (12) = −92.

Comparing these function values, we see that the global maximum on [−5, 12] is 104 and occurs

at x = −2, and the global minimum on [−5, 12] is −396 and occurs at x = 8.

(b) For the interval [−5, 14], we compare

f (−5) = −58, f (−2) = 104, f (8) = −396, f (14) = 360.

The global maximum is now 360 and occurs at x = 14, and the global minimum is still −396

and occurs at x = 8. Since the function is increasing for x > 8, changing the right-hand end of

the interval from x = 12 to x = 14 alters the global maximum but not the global minimum. See

Figure 4.22.

(c) Figure 4.22 shows that for −5 ≤ x < ∞ there is no global maximum, because we can make f (x)

as large as we please by choosing x large enough. The global minimum remains −396 at x = 8.

(−5,−58)

(−2, 104)

(8,−396)

(12,−92)

(14, 360)

x

y

Figure 4.22: Graph of f (x) = x3 − 9x2 − 48x + 52

�∕2
−0.5

0.5

x

y

Figure 4.23: Graph of

g(x) = x − sin(2x)

Example 2 Find the global maximum and minimum of g(x) = x − sin(2x) on the interval 0 ≤ x ≤ �∕2.

Solution Since g(x) = x−sin(2x) is continuous and the interval 0 ≤ x ≤ �∕2 is closed, there must be a global

maximum and minimum. The possible candidates are critical points in the interval and endpoints.

Since there are no points where g′(x) is undefined, we solve g′(x) = 0 to find all the critical points:

g′(x) = 1 − 2 cos(2x) = 0,

so cos(2x) = 1∕2. Therefore 2x = �∕3, 5�∕3,…. Thus the only critical point in the interval is

x = �∕6. We compare values of g at the critical points and the endpoints:

g(0) = 0, g(�∕6) = �∕6 −
√

3∕2 = −0.342, g(�∕2) = �∕2 = 1.571.

Thus the global maximum is 1.571 at x = �∕2 and the global minimum is −0.342 at x = �∕6. See

Figure 4.23.
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Example 3 Jared is coughing. The speed, v(r), in meters/sec, with which he expels air depends on the radius, r,

of his windpipe, given for 0 ≤ r ≤ 9 in millimeters (mm) by

v(r) = 0.1(9 − r)r2.

What value of r maximizes the speed? For what value is the speed minimized?

Solution Notice that v(0) = v(9) = 0, and that v(r) is positive for 0 < r < 9. Therefore the maximum occurs

somewhere between r = 0 and r = 9. Since

v(r) = 0.1(9 − r)r2 = 0.9r2 − 0.1r3,

the derivative is

v′(r) = 1.8r − 0.3r2 = 0.3r(6 − r).

The derivative is zero if r = 0 or r = 6. These are the critical points of v. We already know v(0) =

v(9) = 0, and

v(6) = 0.1(9 − 6)62 = 10.8 meters/sec.

Thus, v has a global maximum at r = 6 mm. The global minimum of v = 0 meters/sec occurs at

both endpoints r = 0 mm and r = 9 mm.

In applications, the function being optimized often contains a parameter whose value depends

on the situation, and the maximum or minimum depends on the parameter.

Example 4 (a) For a positive constant b, the surge function f (t) = te−bt gives the quantity of a drug in the body

for time t ≥ 0. Find the global maximum and minimum of f (t) for t ≥ 0.

(b) Find the value of b making t = 10 the global maximum.

Solution (a) Differentiating and factoring gives

f ′(t) = 1 ⋅ e−bt − bte−bt = (1 − bt)e−bt,

so there is a critical point at t = 1∕b.

The sign of f ′ is determined by the sign of (1 − bt), so f ′ is positive to the left of t = 1∕b

and negative to the right of t = 1∕b. Since f increases to the left of t = 1∕b and decreases to the

right of t = 1∕b, the global maximum occurs at t = 1∕b. In addition, f (0) = 0 and f (t) ≥ 0 for

all t ≥ 0, so the global minimum occurs at t = 0. Thus

The global maximum value is f
(

1

b

)

=
1

b
e−b(1∕b) =

e−1

b
.

The global minimum value is f (0) = 0.

(b) Since t = 10 gives the global maximum, we have 1∕b = 10, so b = 0.1. See Figure 4.24.

10 20

Global maximum

❘

Global minimum
f (t) = te−0.1t

t

Figure 4.24: Graph of f (t) = te−bt for b = 0.1



4.2 OPTIMIZATION 215

Example 5 When an arrow is shot into the air, its range, R, is defined as the horizontal distance from the archer

to the point where the arrow hits the ground. If the ground is horizontal and we neglect air resistance,

it can be shown that

R =
v0

2 sin(2�)

g
,

where v0 is the initial velocity of the arrow, g is the (constant) acceleration due to gravity, and � is

the angle above horizontal, so 0 ≤ � ≤ �∕2. (See Figure 4.25.) What angle � maximizes R?

Ground

Archer

❘

✒

�

v0

✲✛ R

Figure 4.25: Arrow’s path

Solution We can find the maximum of this function without using calculus. The maximum value of R occurs

when sin(2�) = 1, so � = arcsin(1)∕2 = �∕4, giving R = v2
0
∕g.

Let’s see how we can do the same problem with calculus. We want to find the global maximum

of R for 0 ≤ � ≤ �∕2. First we look for critical points:

dR

d�
= 2

v2
0
cos(2�)

g
.

Setting dR∕d� equal to 0, we get

0 = cos(2�), or 2� = ±
�

2
,±

3�

2
,±

5�

2
,…

so �∕4 is the only critical point in the interval 0 ≤ � ≤ �∕2. The range at � = �∕4 is R = v0
2∕g.

Now we check the value of R at the endpoints � = 0 and � = �∕2. Since R = 0 at each endpoint

(the arrow is shot horizontally or vertically), the critical point � = �∕4 is both a local and a global

maximum on 0 ≤ � ≤ �∕2. Therefore, the arrow goes farthest if shot at an angle of �∕4, or 45◦.

Finding Upper and Lower Bounds

The problem of finding the bounds of a function is closely related to finding maxima and minima.

In Example 1 on page 213, the value of f (x) on the interval [−5, 12] ranges from −396 to 104. Thus

−396 ≤ f (x) ≤ 104,

and we say that −396 is a lower bound for f and 104 is an upper bound for f on [−5, 12]. (See

Appendix A for more on bounds.) Of course, we could also say that

−400 ≤ f (x) ≤ 150,

so that f is also bounded below by −400 and above by 150 on [−5, 12]. However, we consider the

−396 and 104 to be the best possible bounds because they describe most accurately how the function

f (x) behaves on [−5, 12].
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Example 6 An object on a spring oscillates about its equilibrium position at y = 0. See Figure 4.26. Its displace-

ment, y, from equilibrium is given as a function of time, t, by

y = e−t cos t.

Find the greatest distance the object goes above and below the equilibrium for t ≥ 0.

Solution We are looking for bounds for y as a function of t. What does the graph look like? We think of it

as a cosine curve with a decreasing amplitude of e−t; in other words, it is a cosine curve squashed

between the graphs of y = e−t and y = −e−t, forming a wave with lower and lower crests and

shallower and shallower troughs. (See Figure 4.27.)

❄
y

Equilibrium

Figure 4.26: Object on spring

(y < 0 below equilibrium)

�

2

� 3�

2

−1

1

t

y
y = 1

y = −1y = −e−t

y = e−t

y = e−t cos t

✮

Figure 4.27: f (t) = e−t cos t for t ≥ 0

From the graph, we see that for t ≥ 0, the curve lies between the horizontal lines y = −1 and

y = 1. This means that −1 and 1 are bounds:

−1 ≤ e−t cos t ≤ 1.

The line y = 1 is the best possible upper bound because the graph comes up that high at t = 0.

However, we can find a better lower bound if we find the global minimum value of y for t ≥ 0;

this minimum occurs in the first trough between t = �∕2 and t = 3�∕2 because later troughs are

squashed closer to the t-axis. At the minimum, dy∕dt = 0. The product rule gives

dy

dt
= (−e−t) cos t + e−t(− sin t) = −e−t(cos t + sin t) = 0.

Since e−t is never 0, we have

cos t + sin t = 0, so
sin t

cos t
= −1.

The smallest positive solution of

tan t = −1 is t =
3�

4
.

Thus, the global minimum we see on the graph occurs at t = 3�∕4. The value of y there is

y = e−3�∕4 cos
(

3�

4

)

≈ −0.07.

The greatest distance the object goes below equilibrium is 0.07. Thus, for all t ≥ 0,

−0.07 ≤ e−t cos t ≤ 1.

Notice how much smaller in magnitude the lower bound is than the upper. This is a reflection of how

quickly the factor e−t causes the oscillation to die out.
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Summary for Section 4.2

• Suppose p is a point in the domain of f :

∙ f has a global minimum at p if f (p) is less than or equal to all values of f .

∙ f has a global maximum at p if f (p) is greater than or equal to all values of f .

• The Extreme Value Theorem: If f is continuous on the closed interval a ≤ x ≤ b, then f has

a global maximum and a global minimum on that interval.

• Finding global maxima and minima on a closed interval: For a continuous function f on a

closed interval a ≤ x ≤ b:

∙ Find the critical points of f in the interval.

∙ Evaluate the function at the critical points and at the endpoints, a and b. The largest value

of the function is the global maximum; the smallest value is the global minimum.

• Finding global maxima and minima on an open interval or on all real numbers: For a

continuous function, f , find the value of f at all the critical points and sketch a graph. Look at

values of f when x approaches the endpoints of the interval, or approaches±∞, as appropriate.

If there is only one critical point, look at the sign of f ′ on either side of the critical point.

Exercises and Problems for Section 4.2 Online Resource: Additional Problems for Section 4.2
EXERCISES

For Exercises 1–2, indicate all critical points and endpoints

on the given graphs. Determine which correspond to local

minima, local maxima, global minima, global maxima, or

none of these. (Note that the graphs are on closed intervals.)

1.

1 2 3 4 5

4

8

x

y 2.

2 4 6 8 10

2

4

x

y

3. For x > 0, find the x-value and the corresponding y-

value that maximizes y = 25 + 6x2 − x3, by

(a) Estimating the values from a graph of y.

(b) Finding the values using calculus.

In Exercises 4–10, find the global maximum and minimum

for the function on the closed interval.

4. f (x) = x3 − 3x2 + 20, −1 ≤ x ≤ 3

5. f (x) = x4 − 8x2, −3 ≤ x ≤ 1

6. f (x) = xe−x
2∕2, −2 ≤ x ≤ 2

7. f (x) = 3x1∕3 − x, −1 ≤ x ≤ 8

8. f (x) = x − 2 ln(x + 1), 0 ≤ x ≤ 2

9. f (x) = x2 − 2|x|, −3 ≤ x ≤ 4

10. f (x) =
x + 1

x2 + 3
, −1 ≤ x ≤ 2

In Exercises 11–13, find the value(s) of x for which:

(a) f (x) has a local maximum or local minimum. Indicate

which are maxima and which are minima.

(b) f (x) has a global maximum or global minimum.

11. f (x) = x10 − 10x, and 0 ≤ x ≤ 2

12. f (x) = x − ln x, and 0.1 ≤ x ≤ 2

13. f (x) = sin2 x − cos x, and 0 ≤ x ≤ �

In Exercises 14–21, find the exact global maximum and min-

imum values of the function. The domain is all real numbers

unless otherwise specified.

14. g(x) = 4x − x2 − 5

15. f (x) = x + 1∕x for x > 0

16. g(t) = te−t for t > 0

17. f (x) = x − ln x for x > 0

18. f (t) =
t

1 + t2

19. f (t) = (sin2 t + 2) cos t

20. f (x) = 2ex + 3e−x

21. f (x) = e3x − e2x

In Exercises 22–27, find the best possible bounds for the

function.

22. x3 − 4x2 + 4x, for 0 ≤ x ≤ 4

23. e−x
2
, for |x| ≤ 0.3

24. x3e−x, for x ≥ 0

25. x + sin x, for 0 ≤ x ≤ 2�

26. ln(1 + x), for x ≥ 0

27. ln(1 + x2), for −1 ≤ x ≤ 2
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PROBLEMS

28. Figure 4.28 shows a function f . Does f have a global

maximum? A global minimum? If so, where? Assume

that f (x) is defined for all x and that the graph does not

change concavity outside the window shown.

B C D E F GA
x

Figure 4.28

29. Figure 4.28 shows a derivative, f ′. Does the function

f have a global maximum? A global minimum? If so,

where? Assume that f (x) and f ′(x) are defined for all

x and that the graph of f ′(x) does not change concavity

outside the window shown.

Problems 30–33 show a derivative f ′ on −2 ≤ x ≤ 2. On

this interval, what are the local maxima and minima for the

function f? Estimate where the global maxima and minima

are on this interval. Are there any points of inflection?

30.

−2 −1 1 2

f ′

x

31.

−2 −1 1 2

f ′

x

32.

−2 −1 1 2

f ′

x

33.

−2 −1 1 2

f ′

x

34. A grapefruit is tossed straight up with an initial velocity

of 50 ft/sec. The grapefruit is 5 feet above the ground

when it is released. Its height, in feet, at time t seconds

is given by

y = −16t2 + 50t + 5.

How high does it go before returning to the ground?

35. Find the value(s) of x that give critical points of y =

ax2 + bx + c, where a, b, c are constants. Under what

conditions on a, b, c is the critical value a maximum?

A minimum?

36. What value of w minimizes S if S−5pw = 3qw2−6pq

and p and q are positive constants?

37. If Ar2−bC2−ACr+D = 0, for what value(s) of r does

D have a critical point if all other quantities are nonzero

constants?

38. At what value(s) of T does Q = AT (S − T ) have a

critical point? Assume A and S are nonzero constants.

39. For a positive constant a, find the values of x that give

critical points of y if

1

y
=

x

a + 4x2
.

40. Let y = at2e−bt with a and b positive constants. For

t ≥ 0, what value of t maximizes y? Sketch the curve if

a = 1 and b = 1.

41. For some positive constant C , a patient’s temperature

change, T , due to a dose, D, of a drug is given by

T =
(

C

2
−

D

3

)

D2.

(a) What dosage maximizes the temperature change?

(b) The sensitivity of the body to the drug is defined

as dT ∕dD. What dosage maximizes sensitivity?

42. A warehouse selling cement has to decide how often

and in what quantities to reorder. It is cheaper, on av-

erage, to place large orders, because this reduces the

ordering cost per unit. On the other hand, larger orders

mean higher storage costs. The warehouse always re-

orders cement in the same quantity, q. The total weekly

cost, C , of ordering and storage is given by

C =
a

q
+ bq, where a, b are positive constants.

(a) Which of the terms, a∕q and bq, represents the or-

dering cost and which represents the storage cost?

(b) What value of q gives the minimum total cost?

43. A company has 100 units to spend for equipment and

labor combined. The company spends x on equipment

and 100 − x on labor, enabling it to produce Q items

where

Q = 5x0.3(100 − x)0.8.

How much should the company spend on equipment to

maximize production Q? On labor? What is the maxi-

mum production Q?

44. The impact of a drug is a measure of its effect, for ex-

ample, the reduction in blood pressure, loss of weight,

or the duration of a headache. The impact, I , generally

depends on the dose, D, given.1 Two possible impact

functions, valid for 0 ≤ D ≤ 300, are

I = f (D) = D
√

300 +D I = g(D) = D
√

300 −D.

(a) Which function, f or g, has a critical point for

D > 0?

(b) For f and g, what dose gives the maximum impact

on 0 ≤ D ≤ 300?

45. A chemical reaction converts substance A to substance

Y . At the start of the reaction, the quantity of A present

is a grams. At time t seconds later, the quantity of

Y present is y grams. The rate of the reaction, in

grams/sec, is given by

Rate = ky(a − y), k is a positive constant.

1www.brynmawr.edu/math/people/vandiver/documents/Optimization.pdf and prezi.com/fqwwg6tcuqqp/calculus-in-

medicine/. Accessed December 2016.
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(a) For what values of y is the rate nonnegative? Graph

the rate against y.

(b) For what values of y is the rate a maximum?

46. The potential energy, U , of a particle moving along the

x-axis is given by

U = b

(

a2

x2
−

a

x

)

,

where a and b are positive constants and x > 0. What

value of x minimizes the potential energy?

47. For positive constants A and B , the force between two

atoms in a molecule is given by

f (r) = −
A

r2
+

B

r3
,

where r > 0 is the distance between the atoms. What

value of r minimizes the force between the atoms?

48. When an electric current passes through two resistors

with resistance r1 and r2, connected in parallel, the

combined resistance, R, can be calculated from the

equation
1

R
=

1

r1
+

1

r2
,

where R, r1, and r2 are positive. Assume that r2 is con-

stant.

(a) Show that R is an increasing function of r1.

(b) Where on the interval a ≤ r1 ≤ b does R take its

maximum value?

49. The bending moment M of a beam, supported at one

end, at a distance x from the support is given by

M =
1

2
wLx −

1

2
wx2,

where L is the length of the beam, and w is the uniform

load per unit length. Find the point on the beam where

the moment is greatest.

50. As an epidemic spreads through a population, the num-

ber of infected people, I , is expressed as a function of

the number of susceptible people, S, by

I = k ln

(

S

S0

)

− S + S0 + I0, for k, S0, I0 > 0.

(a) Find the maximum number of infected people.

(b) The constant k is a characteristic of the particular

disease; the constants S0 and I0 are the values of

S and I when the disease starts. Which of the fol-

lowing affects the maximum possible value of I?

Explain.

• The particular disease, but not how it starts.

• How the disease starts, but not the particular

disease.

• Both the particular disease and how it starts.

51. Two points on the curve y =
x3

1 + x4
have opposite x-

values, x and −x. Find the points making the slope of

the line joining them greatest.

52. The function y = t(x) is positive and continuous with a

global maximum at the point (3, 3). Graph t(x) if t′(x)

and t′′(x) have the same sign for x < 3, but opposite

signs for x > 3.

53. Figure 4.29 gives the derivative of g(x) on −2 ≤ x ≤ 2.

(a) Write a few sentences describing the behavior of

g(x) on this interval.

(b) Does the graph of g(x) have any inflection points?

If so, give the approximate x-coordinates of their

locations. Explain your reasoning.

(c) What are the global maxima and minima of g on

[−2, 2]?

(d) If g(−2) = 5, what do you know about g(0) and

g(2)? Explain.

−2 −1 1 2
x

g′(x)

Figure 4.29

54. Figure 4.30 shows the second derivative of ℎ(x) for

−2 ≤ x ≤ 1. If ℎ′(−1) = 0 and ℎ(−1) = 2,

(a) Explain why ℎ′(x) is never negative on this inter-

val.

(b) Explain why ℎ(x) has a global maximum at x = 1.

(c) Sketch a possible graph of ℎ(x) for −2 ≤ x ≤ 1.

−2

−1 1

1

x

ℎ′′(x)

Figure 4.30

55. Figure 4.31 shows f (x) = e3x and g(x) = e−2x.

(a) Explain why the graphs intersect only at x = 0.

(b) Use your answer to part (a) to find the minimum

value of ℎ(x) = 2e3x + 3e−2x.

−3 −2 −1 1 2 3

−1

1

f (x) = e3x

g(x) = e−2x

x

Figure 4.31
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56. Figure 4.32 shows f (x) = cos(3x) and g(x) =

− cos(2x) on the interval 0 ≤ x ≤ �.

(a) Show that the graphs intersect at x = �∕5, x =

3�∕5, and x = �.

(b) Use the graphs and part (a) to find the maximum

and minimum value of ℎ(x) = 2 sin(3x)+3 sin(2x)

on 0 ≤ x ≤ �.

�

2
�

−1

1
f (x) = cos 3x

g(x) = − cos 2x

x

Figure 4.32

57. You are given the n numbers a1, a2, a3,⋯ , an. Show

that the average of these numbers gives the minimum

of

D(x) = (x−a1)
2+(x−a2)

2+(x−a3)
2+⋯+(x−an)

2.

Strengthen Your Understanding

In Problems 58–60, explain what is wrong with the state-

ment.

58. The function f (x) = (x − 1)2(x − 2), 0 ≤ x ≤ 3 has a

global maximum at x = 1.

59. The global minimum of f (x) = x4 on any closed inter-

val a ≤ x ≤ b occurs at x = 0.

60. The best possible bounds for f (x) = 1∕(1 − x) on the

interval 0 ≤ x ≤ 2 are f (0) ≤ f (x) ≤ f (2).

In Problems 61–64, give an example of:

61. A function which has a global maximum at x = 0 and

a global minimum at x = 1 on the interval 0 ≤ x ≤ 1

but no critical points in between x = 0 and x = 1.

62. A function for which the global maximum is equal to

the global minimum.

63. An interval where the best possible bounds for f (x) =

x2 are 2 ≤ f (x) ≤ 5.

64. A differentiable function f with best possible bounds

−1 ≤ f (x) ≤ 1 on the interval −4 ≤ x ≤ 4.

In Problems 65–69, let f (x) = x2. Decide if the following

statements are true or false. Explain your answer.

65. f has an upper bound on the interval (0, 2).

66. f has a global maximum on the interval (0, 2).

67. f does not have a global minimum on the interval (0, 2).

68. f does not have a global minimum on any interval

(a, b).

69. f has a global minimum on any interval [a, b].

70. Which of the following statements is implied by the

statement “If f is continuous on [a, b] then f has a

global maximum on [a, b]?”

(a) If f has a global maximum on [a, b] then f must

be continuous on [a, b].

(b) If f is not continuous on [a, b] then f does not have

a global maximum on [a, b].

(c) If f does not have a global maximum on [a, b] then

f is not continuous on [a, b].

Are the statements in Problems 71–75 true of false? Give an

explanation for your answer.

71. Since the function f (x) = 1∕x is continuous for x > 0

and the interval (0, 1) is bounded, f has a maximum on

the interval (0, 1).

72. The Extreme Value Theorem says that only continu-

ous functions have global maxima and minima on every

closed, bounded interval.

73. The global maximum of f (x) = x2 on every closed in-

terval is at one of the endpoints of the interval.

74. A function can have two different upper bounds.

75. If a differentiable function f (x) has a global maximum

on the interval 0 ≤ x ≤ 10 at x = 0, then f ′(0) ≤ 0.

4.3 OPTIMIZATION AND MODELING

Finding global maxima and minima is often made possible by having a formula for the function to be

maximized or minimized. The process of translating a problem into a function with a known formula

is called mathematical modeling. The examples that follow give the flavor of modeling.

Example 1 What are the dimensions of an aluminum can that holds 40 in3 of juice and that uses the least mate-

rial? Assume that the can is cylindrical, and is capped on both ends.
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Solution It is often a good idea to think about a problem in general terms before trying to solve it. Since we’re

trying to use as little material as possible, why not make the can very small, say, the size of a peanut?

We can’t, since the can must hold 40 in3. If we make the can short, to try to use less material in the

sides, we’ll have to make it fat as well, so that it can hold 40 in3. See Figure 4.33(a).

✲

✲

✻❄ℎ

✻

❄

ℎ
(a)

(b)

r

r

Large r, small ℎ Small r, large ℎ

Figure 4.33: Various cylindrical-shaped cans

Table 4.1 Height, ℎ, and

material, M , used in can for

various choices of radius, r

r (in) ℎ (in) M (in2)

0.2 318.31 400.25

1 12.73 86.28

2 3.18 65.13

3 1.41 83.22

4 0.80 120.53

10 0.13 636.32

If we try to save material by making the top and bottom small, the can has to be tall to accommo-

date the 40 in3 of juice. So any savings we get by using a small top and bottom may be outweighed

by the height of the sides. See Figure 4.33(b).

Table 4.1 gives the height ℎ and amount of material M used in the can for some choices of the

radius, r. You can see that r and ℎ change in opposite directions, and that more material is used at

the extremes (very large or very small r) than in the middle. It appears that the radius needing the

smallest amount of material, M , is somewhere between 1 and 3 inches. Thinking of M as a function

of the radius, r, we get the graph in Figure 4.34. The graph shows that the global minimum we want

is at a critical point.

Both the table and the graph were obtained from a mathematical model, which in this case is

a formula for the material used in making the can. Finding such a formula depends on knowing the

geometry of a cylinder, in particular its area and volume. We have

M = Material used in the can = Material in ends + Material in the side

where

Material in ends = 2 ⋅ Area of a circle with radius r = 2 ⋅ �r2,

Material in the side = Area of curved side of cylinder with height ℎ and radius r = 2�rℎ.

We have

M = 2�r2 + 2�rℎ.

However,ℎ is not independent of r: if r grows,ℎ shrinks, and vice versa. To find the relationship,

we use the fact that the volume of the cylinder, �r2ℎ, is equal to the constant 40 in3:

Volume of can = �r2ℎ = 40, giving ℎ =
40

�r2
.

1 2 3 4
0

50

100

r (in)

M (in2)

Figure 4.34: Total material used in can, M ,

as a function of radius, r
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This means

Material in the side = 2�rℎ = 2�r
40

�r2
=

80

r
.

Thus we obtain the formula for the total material, M , used in a can of radius r if the volume is 40

in3:

M = 2�r2 +
80

r
.

The domain of this function is all r > 0 because the radius of the can cannot be negative or zero.

To find the minimum of M , we look for critical points:

dM

dr
= 4�r −

80

r2
= 0 at a critical point, so 4�r =

80

r2
.

Therefore,

�r3 = 20, so r =
(

20

�

)1∕3

= 1.85 inches,

which agrees with the graph in Figure 4.34. We also have

ℎ =
40

�r2
=

40

�(1.85)2
= 3.7 inches.

The material used is M = 2�(1.85)2 + 80∕1.85 = 64.7 in2.

To confirm that we have found the global minimum, we look at the formula for dM∕dr. For

small r, the −80∕r2 term dominates and for large r, the 4�r term dominates, so dM∕dr is negative

for r < 1.85 and positive for r > 1.85. Thus, M is decreasing for r < 1.85 and increasing for

r > 1.85, so the global minimum occurs at r = 1.85.

Practical Tips for Modeling Optimization Problems

1. Make sure that you know what quantity or function is to be optimized.

2. If possible, make several sketches showing how the elements that vary are related. Label

your sketches clearly by assigning variables to quantities which change.

3. Try to obtain a formula for the function to be optimized in terms of the variables that

you identified in the previous step. If necessary, eliminate from this formula all but one

variable. Identify the domain over which this variable varies.

4. Find the critical points and evaluate the function at these points and the endpoints (if

relevant) to find the global maxima and∕or minima.

The next example, another problem in geometry, illustrates this approach.

Example 2 Alaina wants to get to the bus stop as quickly as possible. The bus stop is across a grassy park, 2000

feet west and 600 feet north of her starting position. Alaina can walk west along the edge of the park

on the sidewalk at a speed of 6 ft/sec. She can also travel through the grass in the park, but only at a

rate of 4 ft/sec. What path gets her to the bus stop the fastest?
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Solution (a) (b) (c)

Park Park Park

Bus stop Bus stop Bus stop

✻

❄

600 ft

✲✛ 2000 ft ✲✛ 2000 ft ✲✛ 2000 ft

✲✛
1000 ft

✲✛
1000 ft

■

✛

✻

✛

❑

Figure 4.35: Three possible paths to the bus stop

We might first think that she should take a path that is the shortest distance. Unfortunately, the

path that follows the shortest distance to the bus stop is entirely in the park, where her speed is

slow. (See Figure 4.35(a).) That distance is
√

20002 + 6002 = 2088 feet, which takes her about 522

seconds to traverse. She could instead walk quickly the entire 2000 feet along the sidewalk, which

leaves her just the 600-foot northward journey through the park. (See Figure 4.35(b).) This method

would take 2000∕6 + 600∕4 ≈ 483 seconds total walking time.

But can she do even better? Perhaps another combination of sidewalk and park gives a shorter

travel time. For example, what is the travel time if she walks 1000 feet west along the sidewalk and

the rest of the way through the park? (See Figure 4.35(c).) The answer is about 458 seconds.

We make a model for this problem. We label the distance that Alaina walks west along the

sidewalk x and the distance she walks through the park y, as in Figure 4.36. Then the total time, t, is

t = tsidewalk + tpark.

Since

Time = Distance∕Speed,

and she can walk 6 ft/sec on the sidewalk and 4 ft/sec in the park, we have

t =
x

6
+

y

4
.

Now, by the Pythagorean Theorem, y =
√

(2000 − x)2 + 6002. Therefore

t =
x

6
+

√

(2000 − x)2 + 6002

4
for 0 ≤ x ≤ 2000.

We can find the critical points of this function analytically. (See Problem 17 on page 228.) Alterna-

tively, we can graph the function on a calculator and estimate the critical point, which is x ≈ 1463

feet. This gives a minimum total time of about 445 seconds.

✲✛ (2000 − x) ✲✛ x

✻

❄

600

Bus stop

y =
√

(2000 − x)2 + 6002

■

✛

Figure 4.36: Modeling time to bus stop
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Example 3 Figure 4.37 shows the curves y =
√

x, x = 9, y = 0, and a rectangle with vertical sides at x = a and

x = 9. Find the dimensions of the rectangle having the maximum possible area.

a 9
x

y =
√

x

y

Figure 4.37: Find the rectangle of maximum area

with one corner on y =
√

x

Solution We want to choose a to maximize the area of the rectangle with corners at (a,
√

a) and (9,
√

a). The

area of this rectangle is given by

R = Height ⋅ Length =
√

a(9 − a) = 9a1∕2 − a3∕2.

We are restricted to 0 ≤ a ≤ 9. To maximize this area, we first set dR∕da = 0 to find critical points:

dR

da
=

9

2
a−1∕2 −

3

2
a1∕2 = 0

9

2
√

a
=

3
√

a

2

18 = 6a

a = 3.

Notice that R = 0 at the endpoints a = 0 and a = 9, and R is positive between these values. Since

a = 3 is the only critical point, the rectangle with the maximum area has length 9−3 = 6 and height
√

3.

Example 4 A closed box has a fixed surface area A and a square base with side x.

(a) Find a formula for the volume, V , of the box as a function of x. What is the domain of V ?

(b) Graph V as a function of x.

(c) Find the maximum value of V .

Solution (a) The height of the box is ℎ, as shown in Figure 4.38. The box has six sides, four with area xℎ and

two, the top and bottom, with area x2. Thus,

4xℎ + 2x2 = A.

So

ℎ =
A − 2x2

4x
.

Then, the volume, V , is given by

V = x2ℎ = x2
(

A − 2x2

4x

)

=
x

4

(

A − 2x2
)

=
A

4
x −

1

2
x3.

Since the area of the top and bottom combined must be less than A, we have 2x2 ≤ A. Thus, the

domain of V is 0 ≤ x ≤
√

A∕2.
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(b) Figure 4.39 shows the graph for x ≥ 0. (Note that A is a positive constant.)

x
x

ℎ

Figure 4.38: Box with

base of side x, height

ℎ, surface area A, and

volume V

√

A

2

V =
A

4
x −

1

2
x3

x

V

Figure 4.39: Volume, V , against

length of side of base, x

(c) To find the maximum, we differentiate, regarding A as a constant:

dV

dx
=

A

4
−

3

2
x2 = 0

so

x = ±

√

A

6
.

Since x ≥ 0 in the domain of V , we use x =
√

A∕6. Figure 4.39 indicates that at this value of

x, the volume is a maximum.

From the formula, we see that dV ∕dx > 0 for x <
√

A∕6, so V is increasing, and that

dV ∕dx < 0 for x >
√

A∕6, so V is decreasing. Thus, x =
√

A∕6 gives the global maximum.

Evaluating V at x =
√

A∕6 and simplifying, we get

V =
A

4

√

A

6
−

1

2

(

√

A

6

)3

=
(

A

6

)3∕2

.

Example 5 A light is suspended at a height ℎ above the floor. (See Figure 4.40.) The illumination at the point

P is inversely proportional to the square of the distance from the point P to the light and directly

proportional to the cosine of the angle �. How far from the floor should the light be to maximize the

illumination at the point P ?

Light

O

r

P

�

Floor

10 m

✻

❄

ℎ

Figure 4.40: How high should the light be?
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Solution If the illumination is represented by I and r is the distance from the light to the point P , then we

know that for some k ≥ 0,

I =
k cos �

r2
.

Since r2 = ℎ2 + 102 and cos � = ℎ∕r = ℎ∕
√

ℎ2 + 102, we have, for ℎ ≥ 0,

I =
kℎ

(ℎ2 + 102)3∕2
.

To find the height at which I is maximized, we differentiate using the quotient rule:

dI

dℎ
=

k(ℎ2 + 102)3∕2 − kℎ(
3

2
(ℎ2 + 102)1∕2(2ℎ))

[(ℎ2 + 102)3∕2]2

=
(ℎ2 + 102)1∕2[k(ℎ2 + 102) − 3kℎ2]

(ℎ2 + 102)3

=
k(ℎ2 + 102) − 3kℎ2

(ℎ2 + 102)5∕2

=
k(102 − 2ℎ2)

(ℎ2 + 102)5∕2
.

Setting dI∕dℎ = 0 for ℎ ≥ 0 gives

102 − 2ℎ2 = 0

ℎ =
√

50 meters.

Since dI∕dℎ > 0 for ℎ <
√

50 and dI∕dℎ < 0 for ℎ >
√

50, there is a local maximum at ℎ =
√

50

meters. There is only one critical point, so the global maximum of I occurs at that point. Thus, the

illumination is greatest if the light is suspended at a height of
√

50 ≈ 7 meters above the floor.

A Graphical Example: Minimizing Gas Consumption

Next we look at an example in which a function is given graphically and the optimum values are

read from a graph. We already know how to estimate the optimum values of f (x) from a graph of

f (x)—read off the highest and lowest values. In this example, we see how to estimate the optimum

value of the quantity f (x)∕x from a graph of f (x) against x. The question we investigate is how to

set driving speeds to maximize fuel efficiency.2

Example 6 Gas consumption, g (in gallons/hour), as a function of velocity, v (in mph), is given in Figure 4.41.

What velocity minimizes the gas consumption per mile, represented by g∕v?

20 30 40 50 60

1

1.5

2

v (mph)

g (gal/hour)

Figure 4.41: Gas consumption versus velocity

2Adapted from Peter D. Taylor, Calculus: The Analysis of Functions (Toronto: Wall & Emerson, 1992).



4.3 OPTIMIZATION AND MODELING 227

Solution Figure 4.42 shows that g∕v is the slope of the line from the origin to the point P . Where on the

curve should P be to make the slope a minimum? From the possible positions of the line shown in

Figure 4.42, we see that the slope of the line is both a local and global minimum when the line is

tangent to the curve. From Figure 4.43, we can see that the velocity at this point is about 50 mph.

Thus to minimize gas consumption per mile, we should drive about 50 mph.

1

1.5

2

g (gal/hour)

v (mph)

P

✲✛ v

✻

❄

g

Slope =
g

v
(gal/mi) ✲

Figure 4.42: Graphical representation of gas

consumption per mile, g∕v

20 30 40 50 60

1

1.5

2

v (mph)

g (gal/hour)

Minimum gas per mile, g∕v

■

Figure 4.43: Velocity for maximum fuel efficiency

Summary for Section 4.3

• Practical tips for modeling optimization problems:

∙ Make sure that you know what quantity or function is to be optimized.

∙ If possible, make several sketches showing how the elements that vary are related. Label

your sketches clearly by assigning variables to quantities which change.

∙ Try to obtain a formula for the function to be optimized in terms of the variables that you

identified in the previous step. If necessary, eliminate from this formula all but one variable.

Identify the domain over which this variable varies.

∙ Find the critical points and evaluate the function at these points and the endpoints (if rele-

vant) to find the global maxima and∕or minima.

Exercises and Problems for Section 4.3

EXERCISES

1. The sum of two nonnegative numbers is 100. What is

the maximum value of the product of these two num-

bers?

2. The product of two positive numbers is 784. What is the

minimum value of their sum?

3. The sum of two times one nonnegative number and five

times another is 600. What is the maximum value of the

product of these two numbers?

4. The sum of three nonnegative numbers is 36, and one of

the numbers is twice one of the other numbers. What is

the maximum value of the product of these three num-

bers?

5. The perimeter of a rectangle is 64 cm. Find the lengths

of the sides of the rectangle giving the maximum area.

6. If you have 100 feet of fencing and want to enclose a

rectangular area up against a long, straight wall, what

is the largest area you can enclose?

In Exercises 7–10, find the dimensions of the solid with the

minimum surface area, given that the volume is 8 cm3.

7. A closed rectangular box, with a square base x by x cm

and height ℎ cm.

8. An open-topped rectangular box, with a square base x

by x cm and height ℎ cm.

9. A closed cylinder with radius r cm and height ℎ cm.

10. A cylinder open at one end with radius r cm and height

ℎ cm.
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In Exercises 11–12, find the x-value maximizing the shaded

area. One vertex is on the graph of f (x) = x2∕3−50x+1000,

where 0 ≤ x ≤ 20.

11.

0 x 20

(x, f (x))

12.

0 20

(x, f (x))

13. A rectangle has one side on the x-axis and two vertices

on the curve

y =
1

1 + x2
.

Find the vertices of the rectangle with maximum area.

14. A right triangle has one vertex at the origin and one ver-

tex on the curve y = e−x∕3 for 1 ≤ x ≤ 5. One of the

two perpendicular sides is along the x-axis; the other is

parallel to the y-axis. Find the maximum and minimum

areas for such a triangle.

15. A rectangle has one side on the x-axis, one side on the

y-axis, one vertex at the origin and one on the curve

y = e−2x for x ≥ 0. Find the

(a) Maximum area (b) Minimum perimeter

PROBLEMS

16. The product of two positive numbers is a fixed number

k. What is the minimum possible value of their sum?

17. Find analytically the exact critical point of the function

which represents the time, t, to walk to the bus stop in

Example 2. Recall that t is given by

t =
x

6
+

√

(2000 − x)2 + 6002

4
.

18. Of all rectangles with given area, A, which has the

shortest diagonals?

19. A rectangle is to have a fixed perimeter k. Find the

lengths of the sides that maximize its area.

20. A rectangular beam is cut from a cylindrical log of ra-

dius 30 cm. The strength of a beam of width w and

height ℎ is proportional to wℎ2. (See Figure 4.44.) Find

the width and height of the beam of maximum strength.

w

ℎ

30

Figure 4.44

In Problems 21–22 a vertical line divides a region into two

pieces. Find the value of the coordinate x that maximizes the

product of the two areas.

21.

0 x 1

2

22.

0 x 1

2

In Problems 23–25 the figures are made of rectangles and

semicircles.

(a) Find a formula for the area.

(b) Find a formula for the perimeter.

(c) Find the dimensions x and y that maximize the area

given that the perimeter is 100.

23.

x

y

24.

x

y

25.

x

y

26. A piece of wire of length L cm is cut into two pieces.

One piece, of length x cm, is made into a circle; the rest

is made into a square.

(a) Find the value of x that makes the sum of the areas

of the circle and square a minimum. Find the value

of x giving a maximum.

(b) For the values of x found in part (a), show that the

ratio of the length of wire in the square to the length

of wire in the circle is equal to the ratio of the area

of the square to the area of the circle.3

(c) Are the values of x found in part (a) the only values

of x for which the ratios in part (b) are equal?

In Problems 27–30, find the minimum and maximum values

of the expression where x and y are lengths in Figure 4.45

and 0 ≤ x ≤ 10.

x

y

✲✛ 10

✻

❄

5

Figure 4.45

27. x 28. y 29. x + 2y 30. 2x + y

3From Sally Thomas.
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31. Which point on the curve y =
√

1 − x is closest to the

origin?

32. Which point on the curve y =
√

x + 2 is closest to the

origin? What is the minimum distance from the origin?

33. Which point on the curve y =
√

5x + 15 is closest to

the origin? What is the minimum distance from the ori-

gin?

34. Find the point(s) on the ellipse

x2

9
+ y2 = 1

(a) Closest to the point (2, 0).

(b) Closest to the focus (
√

8, 0).

[Hint: Minimize the square of the distance—this avoids

square roots.]

35. What are the dimensions of the closed cylindrical can

that has surface area 280 square centimeters and con-

tains the maximum volume?

36. A hemisphere of radius 1 sits on a horizontal plane. A

cylinder stands with its axis vertical, the center of its

base at the center of the sphere, and its top circular rim

touching the hemisphere. Find the radius and height of

the cylinder of maximum volume.

37. A smokestack deposits soot on the ground with a con-

centration inversely proportional to the square of the

distance from the stack. With two smokestacks 20 miles

apart, the concentration of the combined deposits on

the line joining them, at a distance x from one stack,

is given by

S =
k1

x2
+

k2

(20 − x)2

where k1 and k2 are positive constants which depend

on the quantity of smoke each stack is emitting. If k1 =

7k2, find the point on the line joining the stacks where

the concentration of the deposit is a minimum.

38. In a chemical reaction, substance A combines with sub-

stance B to form substance Y . At the start of the re-

action, the quantity of A present is a grams, and the

quantity of B present is b grams. At time t seconds af-

ter the start of the reaction, the quantity of Y present is

y grams. Assume a < b and y ≤ a. For certain types of

reactions, the rate of the reaction, in grams/sec, is given

by

Rate = k(a − y)(b − y), k is a positive constant.

(a) For what values of y is the rate nonnegative? Graph

the rate against y.

(b) Use your graph to find the value of y at which the

rate of the reaction is fastest.

39. A wave of wavelength � traveling in deep water has

speed, v, given for positive constants c and k, by

v = k

√

�

c
+

c

�
.

As � varies, does such a wave have a maximum or min-

imum velocity? If so, what is it? Explain.

40. A circular ring of wire of radius r0 lies in a plane per-

pendicular to the x-axis and is centered at the origin.

The ring has a positive electric charge spread uniformly

over it. The electric field in the x-direction, E, at the

point x on the axis is given by

E =
kx

(

x2 + r2
0

)3∕2
for k > 0.

At what point on the x-axis is the field greatest? Least?

41. A woman pulls a sled which, together with its load, has

a mass of m kg. If her arm makes an angle of � with her

body (assumed vertical) and the coefficient of friction

(a positive constant) is �, the least force, F , she must

exert to move the sled is given by

F =
mg�

sin � + � cos �
.

If � = 0.15, find the maximum and minimum values of

F for 0 ≤ � ≤ �∕2. Give answers as multiples of mg.

42. Four equally massive particles can be made to rotate,

equally spaced, around a circle of radius r. This is phys-

ically possible provided the radius and period T of the

rotation are chosen so that the following action function

is at its global minimum:

A(r) =
r2

T
+

T

r
, r > 0.

(a) Find the radius r at which A(r) has a global mini-

mum.

(b) If the period of the rotation is doubled, determine

whether the radius of the rotation increases or de-

creases, and by approximately what percentage.

43. You run a small furniture business. You sign a deal with

a customer to deliver up to 400 chairs, the exact number

to be determined by the customer later. The price will

be $90 per chair up to 300 chairs, and above 300, the

price will be reduced by $0.25 per chair (on the whole

order) for every additional chair over 300 ordered. What

are the largest and smallest revenues your company can

make under this deal?

44. The cost of fuel to propel a boat through the water

(in dollars per hour) is proportional to the cube of the

speed. A certain ferry boat uses $100 worth of fuel per

hour when cruising at 10 miles per hour. Apart from

fuel, the cost of running this ferry (labor, maintenance,

and so on) is $675 per hour. At what speed should it

travel so as to minimize the cost per mile traveled?

45. A business sells an item at a constant rate of r units

per month. It reorders in batches of q units, at a cost of

a + bq dollars per order. Storage costs are k dollars per

item per month, and, on average, q∕2 items are in stor-

age, waiting to be sold. [Assume r, a, b, k are positive

constants.]

(a) How often does the business reorder?
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(b) What is the average monthly cost of reordering?

(c) What is the total monthly cost, C , of ordering and

storage?

(d) Obtain Wilson’s lot size formula, the optimal batch

size which minimizes cost.

46. A bird such as a starling feeds worms to its young. To

collect worms, the bird flies to a site where worms are to

be found, picks up several in its beak, and flies back to

its nest. The loading curve in Figure 4.46 shows how the

number of worms (the load) a starling collects depends

on the time it has been searching for them.4 The curve

is concave down because the bird can pick up worms

more efficiently when its beak is empty; when its beak

is partly full, the bird becomes much less efficient. The

traveling time (from nest to site and back) is represented

by the distance PO in Figure 4.46. The bird wants to

maximize the rate at which it brings worms to the nest,

where

Rate worms arrive =
Load

Traveling time + Searching time
.

(a) Draw a line in Figure 4.46 whose slope is this rate.

(b) Using the graph, estimate the load which maxi-

mizes this rate.

(c) If the traveling time is increased, does the optimal

load increase or decrease? Why?

O

P

4

8

time

load
(number of worms)

Number of worms

Searching timeTraveling time

Figure 4.46

47. On the same side of a straight river are two towns, and

the townspeople want to build a pumping station,S. See

Figure 4.47. The pumping station is to be at the river’s

edge with pipes extending straight to the two towns.

Where should the pumping station be located to min-

imize the total length of pipe?

Town 1

Town 2

1 mile

4 miles

S

✲✛ 4 miles✲✛x

Figure 4.47

48. A pigeon is released from a boat (point B in Fig-

ure 4.48) floating on a lake. Because of falling air over

the cool water, the energy required to fly one meter over

the lake is twice the corresponding energy e required for

flying over the bank (e = 3 joule/meter). To minimize

the energy required to fly from B to the loft, L, the pi-

geon heads to a point P on the bank and then flies along

the bank to L. The distance AL is 2000 m, and AB is

500 m.

(a) Express the energy required to fly from B to L via

P as a function of the angle � (the angle BPA).

(b) What is the optimal angle �?

(c) Does your answer change if AL, AB, and e have

different numerical values?

B

A P L

�

Lake

Figure 4.48

49. To get the best view of the Statue of Liberty in Fig-

ure 4.49, you should be at the position where � is a

maximum. If the statue stands 92 meters high, includ-

ing the pedestal, which is 46 meters high, how far from

the base should you be? [Hint: Find a formula for � in

terms of your distance from the base. Use this function

to maximize �, noting that 0 ≤ � ≤ �∕2.]

�

©Wesley Hitt/Getty Images

Figure 4.49

50. A light ray starts at the origin and is reflected off a mir-

ror along the line y = 1 to the point (2, 0). See Fig-

ure 4.50. Fermat’s Principle says that light’s path min-

imizes the time of travel.5 The speed of light is a con-

stant.

(a) Using Fermat’s Principle, find the optimal position

of P .

(b) Using your answer to part (a), derive the Law of

Reflection, that �1 = �2.

4Alex Kacelnick (1984). Reported by J. R. Krebs and N. B. Davies, An Introduction to Behavioural Ecology (Oxford:

Blackwell, 1987).
5http://en.wikipedia.org, accessed September 29, 2019.



4.3 OPTIMIZATION AND MODELING 231

(2, 0) = Q
End

(0, 0)
Start

1

�1 �2

P = (x, 1)
Mirror

x

y

Figure 4.50

51. (a) For which positive number x is x1∕x largest? Jus-

tify your answer.

[Hint: You may want to write x1∕x = eln(x
1∕x).]

(b) For which positive integer n is n1∕n largest? Justify

your answer.

(c) Use your answer to parts (a) and (b) to decide

which is larger: 31∕3 or �1∕� .

52. The arithmetic mean of two numbers a and b is defined

as (a + b)∕2; the geometric mean of two positive num-

bers a and b is defined as
√

ab.

(a) For two positive numbers, which of the two means

is larger? Justify your answer.

[Hint: Define f (x) = (a+x)∕2−
√

ax for fixed a.]

(b) For three positive numbers a, b, c, the arithmetic

and geometric mean are (a + b + c)∕3 and
3
√

abc,

respectively. Which of the two means of three num-

bers is larger? [Hint: Redefine f (x) for fixed a and

b.]

53. A line goes through the origin and a point on the curve

y = x2e−3x, for x ≥ 0. Find the maximum slope of such

a line. At what x-value does it occur?

Problems 54–59 concern the average cost of manufacturing

a quantity q of a good, which is defined as a(q) = C(q)∕q.

Graphically, the average cost is the slope of the line going

through the origin and the point (q, C(q)), since

a(q) =
C(q)

q
=

C(q) − 0

q − 0
.

54. Mark on the cost graph in Figure 4.51 the quantity at

which the average cost is minimized.

C(q)

q (quantity)

$ (cost)

Figure 4.51

55. (a) For the cost curve in Figure 4.52, estimate the av-

erage cost at q = 25 and represent it graphically.

(b) At approximately what value of q is average cost

minimized?

10 20 30 40 50

100

200

300

400

500

C(q)

q (quantity)

C (cost)

Figure 4.52

56. Figure 4.53 shows cost with q = 10,000 marked.

(a) Find the average cost when the production level is

10,000 units and interpret it.

(b) Represent your answer to part (a) graphically.

(c) At approximately what production level is average

cost minimized?

10,000

10,000

20,000

q (quantity)

C(q)
C (cost)

Figure 4.53

57. The total cost of production, in thousands of dollars, is

C(q) = q3 − 12q2 + 60q, where q is in thousands and

0 ≤ q ≤ 8.

(a) Graph C(q). Estimate visually the quantity at

which average cost is minimized.

(b) Determine analytically the exact value of q at

which average cost is minimized.

58. For each cost function, C(q), in Figure 4.54, is there a

value of q at which average cost is minimized? If so,

indicate at approximately what point on the graph.

q

C(a)

q

C(b)

q

C(c)

q

C(d)

Figure 4.54
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59. Graph the average cost function corresponding to the

total cost function shown in Figure 4.55.

C(q)

q (quantity)

C (cost)

Figure 4.55

60. The distance, s, traveled by a cyclist who starts at 1 pm

is given in Figure 4.56. Time, t, is in hours since noon.

(a) Explain why the quantity s∕t is represented by the

slope of a line from the origin to the point (t, s) on

the graph.

(b) Estimate the time at which the quantity s∕t is a

maximum.

(c) What is the relationship between the quantity s∕t

and the instantaneous speed of the cyclist at the

time you found in part (b)?

1 2 3 4 5

20

40

t (hours)

s (km)

Figure 4.56

61. When birds lay eggs, they do so in clutches of several at

a time. When the eggs hatch, each clutch gives rise to a

brood of baby birds. We want to determine the clutch

size which maximizes the number of birds surviving

to adulthood per brood. If the clutch is small, there are

few baby birds in the brood; if the clutch is large, there

are so many baby birds to feed that most die of star-

vation. The number of surviving birds per brood as a

function of clutch size is shown by the benefit curve in

Figure 4.57.6

(a) Estimate the clutch size which maximizes the num-

ber of survivors per brood.

(b) Suppose also that there is a biological cost to hav-

ing a larger clutch: the female survival rate is re-

duced by large clutches. This cost is represented by

the dotted line in Figure 4.57. If we take cost into

account by assuming that the optimal clutch size

in fact maximizes the vertical distance between the

curves, what is the new optimal clutch size?

5 10 15

clutch
size

benefit
or cost Cost: adult mortality

Benefit: number
of surviving young

❄

✛

Figure 4.57

62. Let f (v) be the amount of energy consumed by a flying

bird, measured in joules per second (a joule is a unit of

energy), as a function of its speed v (in meters/sec). Let

a(v) be the amount of energy consumed by the same

bird, measured in joules per meter.

(a) Suggest a reason in terms of the way birds fly for

the shape of the graph of f (v) in Figure 4.58.

(b) What is the relationship between f (v) and a(v)?

(c) Where on the graph is a(v) a minimum?

(d) Should the bird try to minimize f (v) or a(v) when

it is flying? Why?

f (v)

v, speed (m/sec)

energy (joules/sec)

Figure 4.58

63. The forward motion of an aircraft in level flight is re-

duced by two kinds of forces, known as induced drag

and parasite drag. Induced drag is a consequence of

the downward deflection of air as the wings produce

lift. Parasite drag results from friction between the air

and the entire surface of the aircraft. Induced drag is

inversely proportional to the square of speed and para-

site drag is directly proportional to the square of speed.

The sum of induced drag and parasite drag is called total

drag. The graph in Figure 4.59 shows a certain aircraft’s

induced drag and parasite drag functions.

(a) Sketch the total drag as a function of air speed.

(b) Estimate two different air speeds which each result

in a total drag of 1000 pounds. Does the total drag

function have an inverse? What about the induced

and parasite drag functions?

(c) Fuel consumption (in gallons per hour) is roughly

proportional to total drag. Suppose you are low on

fuel and the control tower has instructed you to en-

ter a circular holding pattern of indefinite duration

to await the passage of a storm at your landing field.

At what air speed should you fly the holding pat-

tern? Why?

6Data from C. M. Perrins and D. Lack, reported by J. R. Krebs and N. B. Davies, An Introduction to Behavioural Ecology

(Oxford: Blackwell, 1987).
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100 200 300 400 500 600

1

2

3

✛ Parasite
Drag

✛ Induced
Drag

speed
(miles/hour)

drag (thousands of lbs)

Figure 4.59

64. Let f (v) be the fuel consumption, in gallons per hour,

of a certain aircraft as a function of its airspeed, v, in

miles per hour. A graph of f (v) is given in Figure 4.60.

(a) Let g(v) be the fuel consumption of the same air-

craft, but measured in gallons per mile instead of

gallons per hour. What is the relationship between

f (v) and g(v)?

(b) For what value of v is f (v) minimized?

(c) For what value of v is g(v) minimized?

(d) Should a pilot try to minimize f (v) or g(v)?

200 400 600

25

50

75

100

f (v)

v
(miles/hour)

fuel consumption
(gallons/hour)

Figure 4.60

65. Figure 4.61 shows the wheat crop yield, in tons, from

one hectare of land as a function of the quantity of

seeds planted, in kilograms.7 The yield initially in-

creases with the quantity of seed, but then levels off,

meaning there is little benefit from continuing to in-

crease the quantity of seed. Estimate the quantity of

seed that maximizes the yield per kilogram of seed.

25 50 75 100 125 150

1

2

3

seed (kg)

crop yield (tons)

Figure 4.61

66. The total cost of manufacturing a product is a func-

tion of the size of the batches in which it is produced

(for example, making a thousand cars at once instead

of 10 batches of 100). The production cost per unit is

the sum of the transaction cost (resources required to

produce each unit in a batch, smaller for larger batches)

and the holding cost (cost of storage, delays, inventory

decay). In parts (a) and (b), is there a batch size that

optimizes production costs by minimizing total cost? If

so, at which of the points A,B, C , D or E does it occur?

AB C D E

❄

Transaction
cost

✛ Holding
cost

batch
size

cost per unit(a)

A B C D E

✠

Transaction
cost

✠

Holding
cost

batch
size

cost per unit(b)

Problems 67–68 use the fact that a physical system is in sta-

ble equilibrium if the total energy, E, is a local minimum.8

67. A mass m hanging on the end of a spring extends its

length by y. See Figure 4.62. For g, the acceleration

due to gravity, and positive constant k, the total energy

is

E =
1

2
ky2 − mgy.

Is there a length that gives a stable equilibrium position

for a constant mass m? If so, what is it?

Spring unextended

Mass m

✻

❄

y

Figure 4.62

7The kg of seed per hectare is called the seed rate. Adapted from http://www.fao.org/3/y5146e/y5146e07.htm, accessed

September 12, 2019.
8Based on J. Meriam and L. Kraige, Engineering Mechanics: Statics (New York: Wiley, 1992).
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68. The top of a rod of mass m and length l slides ver-

tically, while the bottom end is attached to a spring

and only slides horizontally. See Figure 4.63, where

0 ≤ � ≤ �∕2. For g, the acceleration due to gravity,

and positive constant k, the total energy in terms of the

angle � is given by

E =
1

2
kl2 sin2 � +

1

2
mgl cos �.

(a) Find the critical points for E.

(b) Show that if k > mg∕(2l) there is a stable equilib-

rium at � = 0.

(c) Show that if cos � = mg∕(2kl), then

d2E

d�2
= kl2

(

(

mg

2kl

)2

− 1

)

.

What does this tell you about a stable equilibrium

at this point?

✛

✛

�

❘

Spring
unextended

✒
l

Figure 4.63

Strengthen Your Understanding

In Problems 69–71, explain what is wrong with the state-

ment.

69. If A is the area of a rectangle of sides x and 2x, for

0 ≤ x ≤ 10, the maximum value of A occurs where

dA∕dx = 0.

70. An open box is made from a 20-inch-square piece of

cardboard by cutting squares of side ℎ from the corners

and folding up the edges, giving the box in Figure 4.64.

To find the maximum volume of such a box, we work

on the domain ℎ ≥ 0.

(20 − 2ℎ)
(20 − 2ℎ)

ℎ

Figure 4.64: Box of volume V = ℎ(20 − 2ℎ)2

71. The solution of an optimization problem modeled by a

quadratic function occurs at the vertex of the quadratic.

In Problems 72–74, give an example of:

72. The sides of a rectangle with perimeter 20 cm and area

smaller than 10 cm2.

73. A context for a modeling problem where you are given

that xy = 120 and you are minimizing the quantity

2x + 6y.

74. A modeling problem where you are minimizing the cost

of the material in a cylindrical can of volume 250 cubic

centimeters.

4.4 FAMILIES OF FUNCTIONS AND MODELING

In Chapter 1, we saw that the graph of one function can tell us about the graphs of many others. The

graph of y = x2 tells us, indirectly, about the graphs of y = x2 + 2, y = (x + 2)2, y = 2x2, and

countless other functions. We say that all functions of the form y = a(x + b)2 + c form a family of

functions; their graphs are similar to that of y = x2, except for shifts and stretches determined by the

values of a, b, and c. The constants a, b, c are called parameters. Different values of the parameters

give different members of the family.

The Bell-Shaped Curve: y = e
−(x−a)2∕b

The family of bell-shaped curves includes the family of normal density functions, used in probability

and statistics.9 We assume that b > 0. See Section 8.8 for applications of the normal distribution.

First we let b = 1 and examine the role of a.

9Probabilists divide our function by a constant,
√

�b, to get the normal density.
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Example 1 Graph y = e−(x−a)
2

for a = −2, 0, 2 and explain the role of a in the shape of the graph.

Solution See Figure 4.65. The role of the parameter a is to shift the graph of y = e−x
2

to the right or left.

Notice that the value of y is always positive. Since y → 0 as x → ±∞, the x-axis is a horizontal

asymptote. Thus y = e−(x−a)
2

is the family of horizontal shifts of the bell-shaped curve y = e−x
2
.

−2 2

1 ✠

y = e−x
2

y = e−(x+2)
2 ✛ y = e−(x−2)

2

x

y

Figure 4.65: Bell-shaped curves with center a:

Family y = e−(x−a)
2

We now consider the role of the parameter b by studying the family with a = 0.

Example 2 Find the critical points and points of inflection of y = e−x
2∕b.

Solution To investigate the critical points and points of inflection, we calculate

dy

dx
= −

2x

b
e−x

2∕b

and, using the product rule, we get

d2y

dx2
= −

2

b
e−x

2∕b −
2x

b

(

−
2x

b
e−x

2∕b
)

=
2

b

(

2x2

b
− 1

)

e−x
2∕b.

Critical points occur where dy∕dx = 0, that is, where

dy

dx
= −

2x

b
e−x

2∕b = 0.

Since e−x
2∕b is never zero, the only critical point is x = 0. At that point, y = 1 and d2y∕dx2 < 0.

Hence, by the second-derivative test, there is a local maximum at x = 0, and this is also a global

maximum.

Inflection points occur where the second derivative changes sign; thus, we start by finding values

of x for which d2y∕dx2 = 0. Since e−x
2∕b is never zero, d2y∕dx2 = 0 when

2x2

b
− 1 = 0.

Solving for x gives

x = ±

√

b

2
.

Looking at the expression for d2y∕dx2, we see that d2y∕dx2 is negative for x = 0, and positive as

x → ±∞. Therefore the concavity changes at x = −
√

b∕2 and at x =
√

b∕2, so we have inflection

points at x = ±
√

b∕2.
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Returning to the two-parameter family y = e−(x−a)
2∕b, we conclude that there is a maximum at

x = a, obtained by horizontally shifting the maximum at x = 0 of y = e−x
2∕b by a units. There

are inflection points at x = a ±
√

b∕2 obtained by shifting the inflection points x = ±
√

b∕2 of

y = e−x
2∕b by a units. (See Figure 4.66.) At the inflection points y = e−1∕2 ≈ 0.6.

With this information we can see the effect of the parameters. The parameter a determines the

location of the center of the bell and the parameter b determines how narrow or wide the bell is. (See

Figure 4.67.) If b is small, then the inflection points are close to a and the bell is sharply peaked

near a; if b is large, the inflection points are farther away from a and the bell is spread out.

a
a −

√

b

2
a +

√

b

2

1

x

y

Inflection
point

Maximum

Inflection
point

✲ ✛

Figure 4.66: Graph of y = e−(x−a)
2∕b: bell-shaped

curve with peak at x = a

a

1

x

y
b large

b small

✠

✠

Figure 4.67: Graph of y = e−(x−a)
2∕b for fixed a

and various b

Modeling with Families of Functions

One reason for studying families of functions is their use in mathematical modeling. Confronted

with the problem of modeling some phenomenon, a crucial first step involves recognizing families

of functions which might fit the available data.

Motion Under Gravity: y = −4.9t2 + v0t+ y0

The position of an object moving vertically under the influence of gravity can be described by a

function in the two-parameter family

y = −4.9t2 + v0t + y0

where t is time in seconds and y is the distance in meters above the ground. Why do we need the

parameters v0 and y0? Notice that at time t = 0 we have y = y0. Thus the parameter y0 gives the

height above ground of the object at time t = 0. Since dy∕dt = −9.8t + v0, the parameter v0 gives

the velocity of the object at time t = 0. From this equation we see that dy∕dt = 0 when t = v0∕9.8.

This is the time when the object reaches its maximum height.

Example 3 Give a function describing the position of a projectile launched upward from ground level with an

initial velocity of 50 m/sec. How high does the projectile rise?

Solution We have y0 = 0 and v0 = 50, so the height of the projectile after t seconds is y = −4.9t2 +

50t. It reaches its maximum height when t = 50∕9.8 = 5.1 seconds, and its height at that time is

−4.9(5.1)2 + 50(5.1) = 127.5, or about 128 meters.

Exponential Model with a Limit: y = a(1 − e
−bx)

We consider a, b > 0. The graph of one member, with a = 2 and b = 1, is in Figure 4.68. Such a graph

represents a quantity which is increasing but leveling off. For example, a body dropped in a thick

fluid speeds up initially, but its velocity levels off as it approaches a terminal velocity. Similarly, if a

pollutant pouring into a lake builds up toward a saturation level, its concentration may be described

in this way. The graph also represents the temperature of an object in an oven.
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1 2 3

1

2

x

y

y = 2(1 − e−x)

Figure 4.68: One member of the family

y = a(1 − e−bx), with a = 2, b = 1

1 2 3

1

2

3

4
a = 4

a = 3

a = 2

a = 1

x

y

Figure 4.69: Fixing b = 1 gives

y = a(1 − e−x), graphed for

various a

2

y

x

b large

b small

✲
■

Figure 4.70: Fixing a = 2 gives

y = 2(1 − e−bx), graphed for various b

Example 4 Describe the effect of varying the parameters a and b on the graph of y = a(1 − e−bx).

Solution First examine the effect on the graph of varyinga. Fix b at some positive number, say b = 1. Substitute

different values for a and look at the graphs in Figure 4.69. We see that as x gets larger, y approaches

a from below, so a is an upper bound for this function. Analytically, this follows from the fact that

e−bx → 0 as x → ∞. Physically, the value of a represents the terminal velocity of a falling body or

the saturation level of the pollutant in the lake.

Now examine the effect of varying b on the graph. Fix a at some positive number, say a = 2.

Substitute different values for b and look at the graphs in Figure 4.70. The parameter b determines

how sharply the curve rises and how quickly it gets close to the line y = a.

Let’s confirm the last observation in Example 4 analytically. For y = a(1 − e−bx), we have

dy∕dx = abe−bx, so the slope of the tangent to the curve at x = 0 is ab. For larger b, the curve rises

more rapidly at x = 0. How long does it take the curve to climb halfway up from y = 0 to y = a?

When y = a∕2, we have

a(1 − e−bx) =
a

2
, which leads to x =

ln 2

b
.

If b is large then (ln 2)∕b is small, so in a short distance the curve is already halfway up to a. If b is

small, then (ln 2)∕b is large and we have to go a long way out to get up to a∕2. See Figure 4.71.

ln 2

b

a

2

a

x

y

b large

y = abx

ln 2

b

a

2

a

x

y
y = abx

b small

Figure 4.71: Tangent at x = 0 to y = a(1 − e−bx), with fixed a, and large and small b

The following example illustrates an application of this family.

Example 5 The number, N , of people who have heard a rumor spread by mass media by time t is modeled by

N(t) = a(1 − e−bt).

There are 200,000 people in the population who hear the rumor eventually. If 10% of them heard it

the first day, find a and b, assuming t is measured in days.
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Solution Since lim
t→∞

N(t) = a, we have a = 200,000. When t = 1, we have N = 0.1(200,000) = 20,000

people, so substituting into the formula gives

N(1) = 20,000 = 200,000
(

1 − e−b(1)
)

.

Solving for b gives

0.1 = 1 − e−b

e−b = 0.9

b = − ln 0.9 = 0.105.

The Logistic Model: y = L∕(1 +Ae
−kt)

The logistic family models the growth of a population limited by the environment. (See Section 11.7.)

We assume that L,A, k > 0 and we look at the roles of each of the three parameters in turn.

5 10
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L = 10

L = 20

L = 30

t

y

Figure 4.72: Varying L:

Graph of y = L∕(1 + Ae−kt) with

A = 50, k = 1
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Figure 4.73: Varying A:

Graph of y = L∕(1 +Ae−kt) with

L = 30, k = 1
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Figure 4.74: Varying k:

Graph of y = L∕(1 + Ae−kt) with

L = 30, A = 50

Logistic curves with varying values of L are shown in Figure 4.72. The values of y level off as

t → ∞ because Ae−kt → 0 as t → ∞. Thus, as t increases, the values of y approach L. The line

y = L is a horizontal asymptote, called the limiting value or carrying capacity, and representing the

maximum sustainable population. The parameter L stretches or shrinks the graph vertically.

In Figure 4.73 we investigate the effect of the parameter A, with k and L fixed. The parameter

A alters the point at which the curve cuts the y-axis—larger values of A move the y-intercept closer

to the origin. At t = 0 we have y = L∕(1 + A), confirming that increasing A decreases the value of

y at t = 0.

Figure 4.74 shows the effect of the parameter k. With L and A fixed, we see that varying k

affects the rate at which the function approaches the limiting value L. If k is small, the graph rises

slowly; if k is large, the graph rises steeply. At t = 0, we have dy∕dt = LAk∕(1 +A)2, so the initial

slope of a logistic curve is proportional to k.

The graphs suggest that none of the curves has a critical point for t > 0. Some curves appear to

have a point of inflection; others have none. To investigate, we take derivatives:

dy

dt
=

LAke−kt

(1 + Ae−kt)2
.

Since every factor of dy∕dt is positive, the first derivative is always positive. Thus, there are no

critical points and the function is always increasing.
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Using a computer algebra system or the quotient rule, we find

d2y

dt2
=

LAk2e−kt(−1 + Ae−kt)

(1 + Ae−kt)3
.

SinceL,A, k, e−kt, and the denominator are always positive, the sign of d2y∕dt2 is determined by the

sign of (−1+Ae−kt). Points of inflection may occur where d2y∕dt2 = 0. This is where −1+Ae−kt =

0, or

Ae−kt = 1.

At this value of t,

y =
L

1 + Ae−kt
=

L

1 + 1
=

L

2
.

In Problem 48 on page 242, we see that d2y∕dt2 changes sign at y = L∕2. Since the concavity

changes at y = L∕2, there is a point of inflection when the population is half the carrying capacity.

If the initial population isL∕2 or above, there is no inflection point. (See the top graph in Figure 4.73.)

To find the value of t at the inflection point, we solve for t in the equation

Ae−kt = 1

t =
ln(1∕A)

−k
=

lnA

k
.

Thus, increasing the value of A moves the inflection point to the right. (See the bottom two graphs

in Figure 4.73.)

Summary for Section 4.4

• Modeling with families of functions:

∙ The bell-shaped curve: y = e−(x−a)
2∕b

∙ Modeling motion under gravity: y = −4.9t2 + v0t + y0, where y0 gives the height above

ground of the object at time t = 0 and v0 gives the velocity of the object at time t = 0.

∙ Exponential model with a limit: y = a(1 − e−bx)

∙ The logistic model: y = L∕(1 + Ae−kt), where L is called the limiting value or carrying

capacity, and represents the maximum sustainable population.

Exercises and Problems for Section 4.4

EXERCISES

In Exercises 1–6, investigate the one-parameter family of

functions. Assume that a is positive.

(a) Graph f (x) using three different values for a.

(b) Using your graph in part (a), describe the critical points

of f and how they appear to move as a increases.

(c) Find a formula for the x-coordinates of the critical

point(s) of f in terms of a.

1. f (x) = (x − a)2 2. f (x) = x3 − ax

3. f (x) = ax3 − x 4. f (x) = x − a
√

x

5. f (x) = x2e−ax

6. f (x) =
a

x2
+ x for x > 0

7. Figure 4.75 shows f (x) = 1 + e−ax for a = 1, 2, 5.

Without a calculator, identify the graphs by looking at

f ′(0).

0.5 1 1.5 2

0.5

1

1.5

2

A
BC

x

Figure 4.75



240 Chapter 4 USING THE DERIVATIVE

8. Figure 4.76 shows f (x) = xe−ax for a = 1, 2, 3. With-

out a calculator, identify the graphs by locating the crit-

ical points of f (x).

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4
A

B

C
x

Figure 4.76

9. Consider the family

y =
A

x + B
.

(a) If B = 0, what is the effect of varying A on the

graph?

(b) If A = 1, what is the effect of varying B?

(c) On one set of axes, graph the function for several

values of A and B.

10. If A and B are positive constants, find all critical points

of

f (w) =
A

w2
−

B

w
.

In Exercises 11–16, investigate the given two parameter fam-

ily of functions. Assume that a and b are positive.

(a) Graph f (x) using b = 1 and three different values for a.

(b) Graph f (x) using a = 1 and three different values for b.

(c) In the graphs in parts (a) and (b), how do the critical

points of f appear to move as a increases? As b in-

creases?

(d) Find a formula for the x-coordinates of the critical

point(s) of f in terms of a and b.

11. f (x) = (x − a)2 + b 12. f (x) = x3 − ax2 + b

13. f (x) = ax(x − b)2 14. f (x) =
ax

x2 + b

15. f (x) =
√

b − (x − a)2

16. f (x) =
a

x
+ bx for x > 0

PROBLEMS

17. Figure 4.77 shows f (x) = x + a2∕x for a = 1, 2, and

a third positive integer value of a. Without a calculator,

identify the graphs and the third value of a.

2 4 6 8 10
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A

x

Figure 4.77

18. Figure 4.78 shows f (x) = x+a sin x for positive values

of a. Explain why any two of the curves intersect at the

same points on 0 ≤ x ≤ 7.

1 2 3 4 5 6 7
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4

6

8

10

x

Figure 4.78

19. For −2 ≤ a ≤ 2, a family of functions is given by

y = (4 − a2)x.

(a) How can you see that this is a family of lines?

(b) What is the maximum slope of the lines in this fam-

ily?

(c) Sketch graphs for a = 0, 1, 2.

20. (a) For what value(s) of a does the family y = ax2−6x

have a local minimum at x = 1?

(b) Is x = 1 a global minimum for this value of a?

(c) What is the value of y at the global minimum?

21. (a) Sketch graphs of y = xe−bx for b = 1, 2, 3, 4. De-

scribe the graphical significance of b.

(b) Find the coordinates of the critical point of y =

xe−bx and use it to confirm your answer to part (a).

22. (a) Graph y = f (x) =
√

x + A using three different

values for the constant A ≥ 1.

(b) What is the domain of f (x)?

(c) Find the value of x that gives the point on the curve

closest to the origin. Does the answer depend onA?

23. For b a positive constant and n an even integer, n ≥ 2,

find the critical points of f (x) = x(x − b)n. Illustrate

the effects of the parameters b and n with graphs.

24. (a) Graph f (x) = x + a sin x for a = 0.5 and a = 3.

(b) For what values of a is f (x) increasing for all x?

25. (a) Graph f (x) = x2 + a sin x for a = 1 and a = 20.

(b) For what values of a is f (x) concave up for all x?

26. Let y = a cosh(x∕a) for a > 0. Sketch graphs for

a = 1, 2, 3. Describe in words the effect of increasing a.
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27. Let f (x) = bxe1+bx, where b is constant and b > 0.

(a) What is the x-coordinate of the critical point of f?

(b) Is the critical point a local maximum or a local min-

imum?

(c) Show that the y-coordinate of the critical point

does not depend on the value of b.

28. Let ℎ(x) = e−x + kx, where k is any constant. For what

value(s) of k does ℎ have

(a) No critical points?

(b) One critical point?

(c) A horizontal asymptote?

29. Let g(x) = x − kex, where k is any constant. For what

value(s) of k does the function g have a critical point?

30. Show that f (x) = x − k
√

x, with k a positive constant

and x ≥ 0, has a local minimum at a point whose x-

coordinate is 1∕4 of the way between its x-intercepts.

31. For any constant a, let f (x) = ax − x lnx for x > 0.

(a) What is the x-intercept of the graph of f (x)?

(b) Graph f (x) for a = −1 and a = 1.

(c) For what values of a does f (x) have a critical point

for x > 0? Find the coordinates of the critical point

and decide if it is a local maximum, a local mini-

mum, or neither.

32. Let f (x) = x2 + cos(kx), for k > 0.

(a) Graph f for k = 0.5, 1, 3, 5. Find the smallest num-

ber k at which you see points of inflection in the

graph of f .

(b) Explain why the graph of f has no points of in-

flection if k ≤
√

2, and infinitely many points of

inflection if k >
√

2.

(c) Explain why f has only a finite number of critical

points, no matter what the value of k.

33. Let f (x) = ex − kx, for k > 0.

(a) Graph f for k = 1∕4, 1∕2, 1, 2, 4. Describe what

happens as k changes.

(b) Show that f has a local minimum at x = ln k.

(c) Find the value of k for which the local minimum is

the largest.

34. Let f (x) = eax − e−bx for positive constants a and b.

Explain why f is always increasing.

35. Let f (x) = e−ax + ebx for non-zero constants a and b.

Explain why the graph of f is always concave up.

36. Let f (x) = ax4 − bx for positive constants a and b.

Explain why the graph of f is always concave up.

37. Let f (x) = a lnx − bx, for positive constants a and b.

Explain why there is an interval on which f is increas-

ing and an interval on which f is decreasing.

38. Let f (x) = ax3 − bx for positive constants a and b. Ex-

plain why there is an interval on which f is increasing

and another interval on which it is decreasing.

39. Let f (x) = ax4 − bx2 for positive constants a and b.

Explain why there is an interval on which the graph of

f is concave up and an interval on which the graph of

f is concave down.

40. (a) Find all critical points of f (x) = x3 − ax + b.

(b) Under what conditions on a and b does this func-

tion have no critical points?

(c) Under what conditions on a and b does this func-

tion have exactly one critical point? What is the one

critical point, and is it a local maximum, a local

minimum, or neither?

(d) Under what conditions on a and b does this func-

tion have exactly two critical points? What are

they? Which are local maxima, which are local

minima, and which are neither?

(e) Is it ever possible for this function to have more

than two critical points? Explain.

41. Figure 4.79 shows graphs of four members of the family

f (x) =
Ae−x + Bex

e−x + ex
.

(a) What value does f (x) approach as x → ∞? As

x → −∞?

(b) Explain the graphical significance of A and B.

(c) Which graph corresponds to each pair of values for

(A,B): (−2, 5), (7, 0), (8,−4), (2, 6)?

−50 50
−5

5

10

x

y(I)

−50 50
−5

5

10

x

y(II)

−50 50
−5

5

10

x

y(III)

−50 50
−5

5

10

x

y(IV)

Figure 4.79

42. Figure 4.80 shows graphs of four members of the family

f (x) =
Axe−x + Bxex

e−x + ex
.

(a) What value does f (x) approach as x → ∞? As

x → −∞?

(b) Explain the graphical significance of A and B.

(c) Which graph corresponds to each pair of values for

(A,B): (2, 1), (−1, 2), (−2, 0), (−1,−2)?
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Figure 4.80

43. Consider the surge function y = axe−bx for a, b > 0.

(a) Find the local maxima, local minima, and points of

inflection.

(b) How does varying a and b affect the shape of the

graph?

(c) On one set of axes, graph this function for several

values of a and b.

44. Sketch several members of the family y = e−ax sin bx

for b = 1, and describe the graphical significance of the

parameter a.

45. Sketch several members of the family y = e−ax sin bx

for a = 1, and describe the graphical significance of

the parameter b.

46. If a > 0, b > 0, show that f (x) = a(1 − e−bx) is every-

where increasing and everywhere concave down.

47. Find a formula for the family of cubic polynomials with

an inflection point at the origin. How many parameters

are there?

48. (a) Derive formulas for the first and second derivatives

of the logistic function:

y =
L

1 +Ae−kt
for L,A, and k positive constants.

(b) Derive a formula for the t value of any inflection

point(s).

(c) Use the second derivative to determine the concav-

ity on either side of any inflection points.

In Problems 49–60, find a formula for the function.

49. A function of the form y = a(1 − e−bx) with a, b > 0

and a horizontal asymptote of y = 5.

50. A function of the form y = be−(x−a)
2∕2 with its maxi-

mum at the point (0, 3).

51. A curve of the form y = e−(x−a)
2∕b for b > 0 with a local

maximum at x = 2 and points of inflection at x = 1 and

x = 3.

52. A logistic curve with carrying capacity of 12, y-

intercept of 4, and point of inflection at (0.5, 6).

53. A function of the form y =
a

1 + be−t
with y-intercept 2

and an inflection point at t = 1.

54. A cubic polynomial with a critical point at x = 2, an in-

flection point at (1, 4), and a leading coefficient of 1.

55. A fourth-degree polynomial whose graph is symmetric

about the y-axis, has a y-intercept of 0, and global max-

ima at (1, 2) and (−1, 2).

56. A function of the form y = a sin(bt2) whose first critical

point for positive t occurs at t = 1 and whose derivative

is 3 when t = 2.

57. A function of the form y = a cos(bt2)whose first critical

point for positive t occurs at t = 1 and whose derivative

is −2 when t = 1∕
√

2.

58. A function of the form y = ae−x + bx with the global

minimum at (1, 2).

59. A function of the form y = bxe−ax with a local maxi-

mum at (3, 6).

60. A function of the form y = at + b∕t, with a local mini-

mum (3, 12) and a local maximum at (−3,−12).

61. A family of functions is given by

r(x) =
1

a + (x − b)2
.

(a) For what values of a and b does the graph of r

have a vertical asymptote? Where are the vertical

asymptotes in this case?

(b) Find values of a and b so that the function r has a

local maximum at the point (3, 5).

62. (a) Find all critical points of f (x) = x4 + ax2 + b.

(b) Under what conditions on a and b does this func-

tion have exactly one critical point? What is the one

critical point, and is it a local maximum, a local

minimum, or neither?

(c) Under what conditions on a and b does this func-

tion have exactly three critical points? What are

they? Which are local maxima and which are lo-

cal minima?

(d) Is it ever possible for this function to have two criti-

cal points? No critical points? More than three crit-

ical points? Give an explanation in each case.

63. Let y = Aex + Be−x for any constants A, B.

(a) Sketch the graph of the function for

(i) A = 1, B = 1 (ii) A = 1, B = −1

(iii) A = 2, B = 1 (iv) A = 2, B = −1

(v) A = −2, B = −1 (vi) A = −2, B = 1

(b) Describe in words the general shape of the graph if

A and B have the same sign. What effect does the

sign of A have on the graph?

(c) Describe in words the general shape of the graph if

A and B have different signs. What effect does the

sign of A have on the graph?

(d) For what values of A and B does the function have

a local maximum? A local minimum? Justify your

answer using derivatives.
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64. The temperature, T , in ◦C, of a yam put into a 200◦C

oven is given as a function of time, t, in minutes, by

T = a(1 − e−kt) + b.

(a) If the yam starts at 20◦C, find a and b.

(b) If the temperature of the yam is initially increasing

at 2◦C per minute, find k.

65. For positive a, b, the potential energy, U , of a particle

is

U = b

(

a2

x2
−

a

x

)

for x > 0.

(a) Find the intercepts and asymptotes.

(b) Compute the local maxima and minima.

(c) Sketch the graph.

66. The force, F , on a particle with potential energy U is

given by

F = −
dU

dx
.

Using the expression for U in Problem 65, graph F and

U on the same axes, labeling intercepts and local max-

ima and minima.

67. The Lennard-Jones model predicts the potential energy

V (r) of a two-atom molecule as a function of the dis-

tance r between the atoms to be

V (r) =
A

r12
−

B

r6
, r > 0,

where A and B are positive constants.

(a) Evaluate limr→0+ V (r), and interpret your answer.

(b) Find the critical point of V (r). Is it a local maxi-

mum or local minimum?

(c) The inter-atomic force is given by F (r) = −V ′(r).

At what distance r is the inter-atomic force

zero? (This is called the equilibrium size of the

molecule.)

(d) Describe how the parameters A and B affect the

equilibrium size of the molecule.

68. For positive A,B, the force between two atoms is a

function of the distance, r, between them:

f (r) = −
A

r2
+

B

r3
r > 0.

(a) What are the zeros and asymptotes of f?

(b) Find the coordinates of the critical points and in-

flection points of f .

(c) Graph f .

(d) Illustrating your answers with a sketch, describe

the effect on the graph of f of:

(i) Increasing B, holding A fixed

(ii) Increasing A, holding B fixed

69. An organism has size W at time t. For positive con-

stants A, b, and c, the Gompertz growth function gives

W = Ae−e
b−ct

, t ≥ 0.

(a) Find the intercepts and asymptotes.

(b) Find the critical points and inflection points.

(c) Graph W for various values of A, b, and c.

(d) A certain organism grows fastest when it is about

1/3 of its final size. Would the Gompertz growth

function be useful in modeling its growth? Explain.

Strengthen Your Understanding

In Problems 70–71, explain what is wrong with the state-

ment.

70. Every function of the form f (x) = x2 + bx + c, where

b and c are constants, has two zeros.

71. Every function of the form f (x) = a∕x + bx, where a

and b are nonzero constants, has two critical points.

In Problems 72–75, give an example of:

72. A family of quadratic functions which has zeros at x =

0 and x = b.

73. A member of the family f (x) = ax3 − bx that has no

critical points.

74. A family of functions, f (x), depending on a parameter

a, such that each member of the family has exactly one

critical point.

75. A family of functions, g(x), depending on two parame-

ters, a and b, such that each member of the family has

exactly two critical points and one inflection point. You

may want to restrict a and b.

76. Let f (x) = ax + b∕x. Suppose a and b are positive.

What happens to f (x) as b increases?

(a) The critical points move further apart.

(b) The critical points move closer together.

(c) The critical values move further apart.

(d) The critical values move closer together.

77. Let f (x) = ax + b∕x. Suppose a and b are positive.

What happens to f (x) as a increases?

(a) The critical points move further apart.

(b) The critical points move closer together.

(c) The critical values move further apart.

(d) The critical values move closer together.
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4.5 APPLICATIONS TO MARGINALITY

Management decisions within a particular business usually aim at maximizing profit for the company.

In this section we see how the derivative can be used to maximize profit. Profit depends on both

production cost and revenue (or income) from sales. We begin by looking at the cost and revenue

functions.

The cost function, C(q), gives the total cost of producing a quantity q of some good.

What sort of function do we expect C to be? The more goods that are made, the higher the total

cost, so C is an increasing function. In fact, cost functions usually have the general shape shown

in Figure 4.81. The intercept on the C-axis represents the fixed costs, which are incurred even if

nothing is produced. (This includes, for instance, the machinery needed to begin production.) The

cost function increases quickly at first and then more slowly because producing larger quantities of

a good is usually more efficient than producing smaller quantities—this is called economy of scale.

At still higher production levels, the cost function starts to increase faster again as resources become

scarce, and sharp increases may occur when new factories have to be built. Thus, the graph of C(q)

may start out concave down and become concave up later on.

q (quantity)

C (cost)

Figure 4.81: Cost as a function of quantity

The revenue function, R(q), gives the total revenue received by a firm from selling a quantity

q of some good.

Revenue is income obtained from sales. If the price per item is p, and the quantity sold is q, then

Revenue = Price × Quantity, so R = pq.

If the price per item does not depend on the quantity sold, then the graph of R(q) is a straight line

through the origin with slope equal to the price p. See Figure 4.82. In practice, for large values of q,

the market may become glutted, causing the price to drop, giving R(q) the shape in Figure 4.83.

R (revenue)

q (quantity)

Figure 4.82: Revenue: Constant price

q (quantity)

R (revenue)

Figure 4.83: Revenue: Decreasing price

The profit is usually written as �. (Economists use � to distinguish it from the price, p; this �

has nothing to do with the area of a circle, and merely stands for the Greek equivalent of the letter

“p.”) The profit resulting from producing and selling q items is defined by

Profit = Revenue − Cost, so �(q) = R(q) − C(q).
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Example 1 If cost, C , and revenue, R, are given by the graph in Figure 4.84, for what production quantities, q,

does the firm make a profit? Approximately what production level maximizes profit?

130 q0 215
q

$

C
R

Figure 4.84: Costs and revenues for Example 1

Solution The firm makes a profit whenever revenues are greater than costs, that is, when R > C . The graph of

R is above the graph of C approximately when 130 < q < 215. Production between q = 130 units

and q = 215 units generates a profit. The vertical distance between the cost and revenue curves is

largest at q0, so q0 units gives maximum profit.

Marginal Analysis

Many economic decisions are based on an analysis of the costs and revenues “at the margin.” Let’s

look at this idea through an example.

Suppose we are running an airline and we are trying to decide whether to offer an additional

flight. How should we decide? We’ll assume that the decision is to be made purely on financial

grounds: if the flight will make money for the company, it should be added. Obviously we need to

consider the costs and revenues involved. Since the choice is between adding this flight and leaving

things the way they are, the crucial question is whether the additional costs incurred are greater or

smaller than the additional revenues generated by the flight. These additional costs and revenues are

called the marginal costs and marginal revenues.

SupposeC(q) is the function giving the total cost of running q flights. If the airline had originally

planned to run 100 flights, its costs would be C(100). With the additional flight, its costs would be

C(101). Therefore,

Additional cost “at the margin” = C(101) − C(100).

Now

C(101) − C(100) =
C(101) − C(100)

101 − 100
,

and this quantity is the average rate of change of cost between 100 and 101 flights. In Figure 4.85

the average rate of change is the slope of the line joining the C(100) and C(101) points on the graph.

If the graph of the cost function is not curving fast near the point, the slope of this line is close to

the slope of the tangent line there. Therefore, the average rate of change is close to the instantaneous

rate of change. Since these rates of change are not very different, many economists choose to define

marginal cost, MC , as the instantaneous rate of change of cost with respect to quantity:

Marginal cost = MC = C ′(q) so Marginal cost ≈ C(q + 1) − C(q).
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100 101
q

C(q)

Slope= C(101) − C(100)

Slope= C ′(100)

The slopes of the
two lines are close

⎫

⎪

⎬

⎪

⎭

Figure 4.85: Marginal cost: Slope of one of these lines

Similarly, if the revenue generated by q flights is R(q) and the number of flights increases from

100 to 101, then

Additional revenue “at the margin” = R(101) −R(100).

Now R(101) − R(100) is the average rate of change of revenue between 100 and 101 flights. As

before, the average rate of change is usually almost equal to the instantaneous rate of change, so

economists often define:

Marginal revenue = MR = R′(q) so Marginal revenue ≈ R(q + 1) −R(q).

We often refer to total cost, C , and total revenue, R, to distinguish them from marginal cost,

MC , and marginal revenue, MR. If the words cost and revenue are used alone, they are understood

to mean total cost and total revenue.

Example 2 If C(q) and R(q) for the airline are given in Figure 4.86, should the company add the 101st flight?

Solution The marginal revenue is the slope of the revenue curve, and the marginal cost is the slope of the cost

curve at the point 100. From Figure 4.86, you can see that the slope at the point A is smaller than

the slope at B, so MC < MR. This means that the airline will make more in extra revenue than it

will spend in extra costs if it runs another flight, so it should go ahead and run the 101st flight.

R(q)

C(q)

q = 100

A

B

Slope = MC

Slope = MR

✛

✛

Figure 4.86: Should the company add the 101st flight?

Since MC and MR are derivative functions, they can be estimated from the graphs of total cost

and total revenue.

Example 3 If R and C are given by the graphs in Figure 4.87, sketch graphs of MR = R′(q) and MC = C ′(q).
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$

q

R

$

q

C

100

Figure 4.87: Total revenue and total cost for Example 3

Solution The revenue graph is a line through the origin, with equation

R = pq

where p is the price, which is a constant. The slope is p and

MR = R′(q) = p.

The total cost is increasing, so the marginal cost is always positive (above the q-axis). For small q

values, the total cost curve is concave down, so the marginal cost is decreasing. For larger q, say

q > 100, the total cost curve is concave up and the marginal cost is increasing. Thus the marginal

cost has a minimum at about q = 100. (See Figure 4.88.)

$/unit

q (quantity)

MR = R′

100

$/unit

q (quantity)

MC = C ′

Figure 4.88: Marginal revenue and costs for Example 3

Maximizing Profit
Now let’s look at how to maximize profit, given functions for total revenue and total cost.

Example 4 Find the maximum profit if the total revenue and total cost are given, for 0 ≤ q ≤ 200, by the curves

R and C in Figure 4.89.

q (quantity)
40 80 120 160 200

60

80

q (quantity)

$ (thousands)

C

R

✻
✻

✻

❄

Figure 4.89: Maximum profit at q = 140



248 Chapter 4 USING THE DERIVATIVE

Solution The profit is represented by the vertical difference between the curves and is marked by the vertical

arrows on the graph. When revenue is below cost, the company is taking a loss; when revenue is

above cost, the company is making a profit. We can see that the profit is largest at about q = 140,

so this is the production level we’re looking for. To be sure that the local maximum is a global

maximum, we need to check the endpoints. At q = 0 and q = 200, the profit is negative, so the

global maximum is indeed at q = 140.

To find the actual maximum profit, we estimate the vertical distance between the curves at

q = 140. This gives a maximum profit of $80,000 − $60,000 = $20,000.

Suppose we wanted to find the minimum profit. In this example, we must look at the endpoints,

when q = 0 or q = 200. We see the minimum profit is negative (a loss), and it occurs at q = 0.

Maximum Profit Occurs Where MR = MC

In Example 4, observe that at q = 140 the slopes of the two curves in Figure 4.89 are equal. To the

left of q = 140, the revenue curve has a larger slope than the cost curve, and the profit increases as

q increases. The company will make more money by producing more units, so production should

increase toward q = 140. To the right of q = 140, the slope of the revenue curve is less than the slope

of the cost curve, and the profit is decreasing. The company will make more money by producing

fewer units so production should decrease toward q = 140. At the point where the slopes are equal,

the profit has a local maximum; otherwise the profit could be increased by moving toward that point.

Since the slopes are equal at q = 140, we have MR = MC there.

Now let’s look at the general situation. To maximize or minimize profit over an interval, we

optimize the profit, �, where

�(q) = R(q) − C(q).

We know that global maxima and minima can only occur at critical points or at endpoints of an

interval. To find critical points of �, look for zeros of the derivative:

�′(q) = R′(q) − C ′(q) = 0.

So

R′(q) = C ′(q),

that is, the slopes of the revenue and cost curves are equal. This is the same observation that we made

in the previous example. In economic language,

The maximum (or minimum) profit can occur where

Marginal cost = Marginal revenue.

Of course, maximal or minimal profit does not have to occur where MR = MC ; there are also

the endpoints to consider.

Example 5 Find the quantity q which maximizes profit if the total revenue, R(q), and total cost, C(q), are given

in dollars by

R(q) = 5q − 0.003q2

C(q) = 300 + 1.1q,

where 0 ≤ q ≤ 800 units. What production level gives the minimum profit?
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Solution We look for production levels that give marginal revenue = marginal cost:

MR = R′(q) = 5 − 0.006q

MC = C ′(q) = 1.1.

So 5 − 0.006q = 1.1, giving

q = 3.9∕0.006 = 650 units.

Does this value of q represent a local maximum or minimum of �? We can tell by looking at

production levels of 649 units and 651 units. When q = 649 we have MR = $1.106, which is

greater than the (constant) marginal cost of $1.10. This means that producing one more unit will

bring in more revenue than its cost, so profit will increase. When q = 651, MR = $1.094, which

is less than MC , so it is not profitable to produce the 651st unit. We conclude that q = 650 is a

local maximum for the profit function �. The profit earned by producing and selling this quantity is

�(650) = R(650) − C(650) = $967.50.

To check for global maxima we need to look at the endpoints. If q = 0, the only cost is $300

(the fixed costs) and there is no revenue, so �(0) = −$300. At the upper limit of q = 800, we

have �(800) = $900. Therefore, the maximum profit is at the production level of 650 units, where

MR = MC . The minimum profit (a loss) occurs when q = 0 and there is no production at all.

Summary for Section 4.5

• The cost function, C(q), gives the total cost of producing a quantity q of some good.

• The revenue function, R(q), gives the total revenue received by a firm from selling a quantity q

of some good. Revenue is income obtained from sales. If the price per item is p, and the quantity

sold is q, then R = pq.

• Profit = Revenue − Cost, so �(q) = R(q) − C(q).

• Marginal cost = MC = C ′(q), so Marginal cost ≈ C(q + 1) − C(q).

• Marginal revenue = MR = R′(q), so Marginal revenue ≈ R(q + 1) −R(q).

• Maximizing profit: The maximum (or minimum) profit can occur where

Marginal cost = Marginal revenue.

Exercises and Problems for Section 4.5 Online Resource: Additional Problems for Section 4.5
EXERCISES

1. Total cost and revenue are approximated by the func-

tions C = 5000 + 2.4q and R = 4q, both in dollars.

Identify the fixed cost, marginal cost per item, and the

price at which this item is sold.

2. Total cost is C = 8500 + 4.65q and total revenue is

R = 5.15q, both in dollars, where q represents the quan-

tity produced.

(a) What is the fixed cost?

(b) What is the marginal cost per item?

(c) What is the price at which this item is sold?

(d) For what production levels does this company

make a profit?

(e) How much does the company make for each addi-

tional unit sold?

3. When production is 4500, marginal revenue is $8 per

unit and marginal cost is $9.25 per unit. Do you expect

maximum profit to occur at a production level above or

below 4500? Explain.

4. Figure 4.90 shows cost and revenue. For what produc-

tion levels is the profit function positive? Negative? Es-

timate the production at which profit is maximized.

5 10 15

100

200

300

400
C(q)

R(q)

q (thousands)

$ (thousands)

Figure 4.90
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5. Figure 4.91 gives cost and revenue. What are fixed

costs? What quantity maximizes profit, and what is the

maximum profit earned?

q (quantity)
100

1.1

2.5

3.7

q (quantity)

$ (millions)

C
R

✻
✻

✻

❄

Figure 4.91

6. Figure 4.92 shows cost and revenue for producing q

units. For the production levels in (a)–(d), is the com-

pany making or losing money? Should the company be

increasing or decreasing production to increase profits?

(a) q = 75 (b) q = 150

(c) q = 225 (d) q = 300

100 200 300

500

1000

1500

2000
C(q)

R(q)

q (thousands)

$ (thousands)

Figure 4.92

In Exercises 7–10, give the cost, revenue, and profit func-

tions.

7. An online seller of T-shirts pays $500 to start up the

website and $6 per T-shirt, then sells the T-shirts for

$12 each.

8. A car wash operator pays $35,000 for a franchise, then

spends $10 per car wash, which costs the consumer $15.

9. A couple running a house-cleaning business invests

$5000 in equipment, and they spend $15 in supplies to

clean a house, for which they charge $60.

10. A lemonade stand operator sets up the stand for free in

front of the neighbor’s house, makes 5 quarts of lemon-

ade for $4, then sells each 8-oz cup for 25 cents.

11. The revenue from selling q items is R(q) = 500q − q2,

and the total cost is C(q) = 150+10q. Write a function

that gives the total profit earned, and find the quantity

which maximizes the profit.

12. Revenue is given by R(q) = 450q and cost is given by

C(q) = 10,000 + 3q2. At what quantity is profit maxi-

mized? What is the total profit at this production level?

13. The revenue earned by selling q units of a product at

a price p dollars per unit is R = pq. The relationship

between p and q is q = 400 − p.

(a) Find the price that maximizes revenue.

(b) What is the revenue at this price?

14. A company estimates that the total revenue, R, in dol-

lars, received from the sale of q items is R = ln(1 +

1000q2). Calculate and interpret the marginal revenue

if q = 10.

15. Table 4.2 shows cost, C(q), and revenue, R(q).

(a) At approximately what production level, q, is profit

maximized? Explain your reasoning.

(b) What is the price of the product?

(c) What are the fixed costs?

Table 4.2

q 0 500 1000 1500 2000 2500 3000

R(q) 0 1500 3000 4500 6000 7500 9000

C(q) 3000 3800 4200 4500 4800 5500 7400

16. Table 4.3 shows marginal cost, MC , and marginal rev-

enue, MR.

(a) Use the marginal cost and marginal revenue at a

production of q = 5000 to determine whether

production should be increased or decreased from

5000.

(b) Estimate the production level that maximizes

profit.

Table 4.3

q 5000 6000 7000 8000 9000 10,000

MR 60 58 56 55 54 53

MC 48 52 54 55 58 63
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PROBLEMS

17. Let C(q) be the total cost of producing a quantity q of a

certain product. See Figure 4.93.

(a) What is the meaning of C(0)?

(b) Describe in words how the marginal cost changes

as the quantity produced increases.

(c) Explain the concavity of the graph (in terms of eco-

nomics).

(d) Explain the economic significance (in terms of

marginal cost) of the point at which the concavity

changes.

(e) Do you expect the graph of C(q) to look like this

for all types of products?

$

q

C(q)

Figure 4.93

18. When production is 2000, marginal revenue is $4 per

unit and marginal cost is $3.25 per unit. Do you expect

maximum profit to occur at a production level above or

below 2000? Explain.

19. If C ′(500) = 75 and R′(500) = 100, should the quan-

tity produced be increased or decreased from q = 500

in order to increase profits?

20. An online seller of knitted sweaters finds that it costs

$35 to make her first sweater. Her cost for each addi-

tional sweater goes down until it reaches $25 for her

100th sweater, and after that it starts to rise again. If she

can sell each sweater for $35, is the quantity sold that

maximizes her profit less than 100? Greater than 100?

21. The marginal revenue and marginal cost for a certain

item are graphed in Figure 4.94. Do the following quan-

tities maximize profit for the company? Explain your

answer.

(a) q = a (b) q = b

ba

MR

MC

q

$/unit

Figure 4.94

22. The total cost C(q) of producing q goods is given by:

C(q) = 0.01q3 − 0.6q2 + 13q.

(a) What is the fixed cost?

(b) What is the maximum profit if each item is sold for

$7? (Assume you sell everything you produce.)

(c) Suppose exactly 34 goods are produced. They all

sell when the price is $7 each, but for each $1 in-

crease in price, 2 fewer goods are sold. Should the

price be raised, and if so by how much?

23. A company manufactures only one product. The quan-

tity, q, of this product produced per month depends on

the amount of capital, K , invested (i.e., the number of

machines the company owns, the size of its building,

and so on) and the amount of labor, L, available each

month. We assume that q can be expressed as a Cobb-

Douglas production function:

q = cK�L� ,

where c, �, � are positive constants, with 0 < � < 1

and 0 < � < 1. In this problem we will see how the

Russian government could use a Cobb-Douglas func-

tion to estimate how many people a newly privatized

industry might employ. A company in such an indus-

try has only a small amount of capital available to it

and needs to use all of it, so K is fixed. Suppose L is

measured in man-hours per month, and that each man-

hour costs the company w rubles (a ruble is the unit of

Russian currency). Suppose the company has no other

costs besides labor, and that each unit of the good can be

sold for a fixed price of p rubles. How many man-hours

of labor per month should the company use in order to

maximize its profit?

24. An agricultural worker in Uganda is planting clover to

increase the number of bees making their home in the

region. There are 100 bees in the region naturally, and

for every acre put under clover, 20 more bees are found

in the region.

(a) Draw a graph of the total number, N(x), of bees

as a function of x, the number of acres devoted to

clover.

(b) Explain, both geometrically and algebraically, the

shape of the graph of:

(i) The marginal rate of increase of the number

of bees with acres of clover, N ′(x).

(ii) The average number of bees per acre of

clover, N(x)∕x.
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25. If you invest x dollars in a certain project, your return

is R(x). You want to choose x to maximize your return

per dollar invested,10 which is

r(x) =
R(x)

x
.

(a) The graph of R(x) is in Figure 4.95, withR(0) = 0.

Illustrate on the graph that the maximum value of

r(x) is reached at a point at which the line from the

origin to the point is tangent to the graph of R(x).

(b) Also, the maximum of r(x) occurs at a point at

which the slope of the graph of r(x) is zero. On the

same axes as part (a), sketch r(x). Illustrate that the

maximum of r(x) occurs where its slope is 0.

(c) Show, by taking the derivative of the formula for

r(x), that the conditions in part (a) and (b) are

equivalent: the x-value at which the line from the

origin is tangent to the graph of R is the same as

the x-value at which the graph of r has zero slope.

R(x)

x

$

Figure 4.95

Problems 26–27 involve the average cost of manufacturing

a quantity q of a good, which is defined to be

a(q) =
C(q)

q
.

26. Figure 4.96 shows the cost of production, C(q), as a

function of quantity produced, q.

(a) For some q0, sketch a line whose slope is the

marginal cost, MC , at that point.

(b) For the same q0, explain why the average cost a(q0)

can be represented by the slope of the line from that

point on the curve to the origin.

(c) Use the method of Example 6 on page 226 to ex-

plain why, at the value of q which minimizes a(q),

the average and marginal costs are equal.

$

q

C(q)

Figure 4.96

27. The average cost per item to produce q items is given

by

a(q) = 0.01q2 − 0.6q + 13, for q > 0.

(a) What is the total cost, C(q), of producing q goods?

(b) What is the minimum marginal cost? What is the

practical interpretation of this result?

(c) At what production level is the average cost a min-

imum? What is the lowest average cost?

(d) Compute the marginal cost at q = 30. How does

this relate to your answer to part (c)? Explain this

relationship both analytically and in words.

Problems 28–30, show a method of maximizing or minimiz-

ing a quantity subject to a condition. Such constrained opti-

mization problems are also solved in multivariable calculus

using Lagrange multipliers.11

28. Minimize x2 + y2 while satisfying x + y = 4 using the

following steps.

(a) Graph x + y = 4. On the same axes, graph

x2 + y2 = 1, x2 + y2 = 4, x2 + y2 = 9.

(b) Explain why the minimum value of x2 + y2 on

x + y = 4 occurs at the point at which a graph of

x2+y2 = Constant is tangent to the line x+y = 4.

(c) Using your answer to part (b) and implicit differen-

tiation to find the slope of the circle, find the min-

imum value of x2 + y2 such that x + y = 4.

29. The quantity Q of an item which can be produced from

quantities x and y of two raw materials is given by

Q = 10xy at a cost of C = x + 2y thousand dollars.

If the budget for raw materials is 10 thousand dollars,

find the maximum production using the following steps.

(a) Graph x + 2y = 10 in the first quadrant. On the

same axes, graph Q = 10xy = 100, Q = 10xy =

200, and Q = 10xy = 300.

(b) Explain why the maximum production occurs at a

point at which a production curve is tangent to the

cost line C = 10.

(c) Using your answer to part (b) and implicit differen-

tiation to find the slope of the curve, find the max-

imum production under this budget.

10From Peter D. Taylor, Calculus: The Analysis of Functions (Toronto: Wall & Emerson, 1992).
11Kelly Black, “Putting Constraints in Optimization for First-Year Calculus Students,” pp. 310–312, SIAM Review, Vol.

39, No. 2, June 1997.
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30. With quantities x and y of two raw materials available,

Q = x1∕2y1∕2 thousand items can be produced at a cost

of C = 2x + y thousand dollars. Using the following

steps, find the minimum cost to produce 1 thousand

items.

(a) Graph x1∕2y1∕2 = 1. On the same axes, graph

2x + y = 2, 2x + y = 3, and 2x + y = 4.

(b) Explain why the minimum cost occurs at a point at

which a cost line is tangent to the production curve

Q = 1.

(c) Using your answer to part (b) and implicit differen-

tiation to find the slope of the curve, find the min-

imum cost to meet this production level.

Strengthen Your Understanding

In Problems 31–33, explain what is wrong with the state-

ment.

31. IfC(100) = 90 andR(100) = 150, increasing the quan-

tity produced from 100 increases profit.

32. If MC(200) = 10 and MR(200) = 10, the company is

maximizing profit.

33. For the cost, C , and revenue, R, in Figure 4.97, profit is

maximized when the quantity produced is about 3,500

units.

5 10 15

100

200

300 R

C

q (thousands)

$ (thousands)

Figure 4.97

In Problems 34–35, give an example of:

34. A quantity, q, in Figure 4.97 where MC > MR.

35. Cost and revenue curves such that the item can never be

sold for a profit.

36. Which is correct? A company generally wants to

(a) Maximize revenue

(b) Maximize marginal revenue

(c) Minimize cost

(d) Minimize marginal cost

(e) None of the above

37. Which is correct? A company can increase its profit by

increasing production if, at its current level of produc-

tion,

(a) Marginal revenue − Marginal cost > 0

(b) Marginal revenue − Marginal cost = 0

(c) Marginal revenue − Marginal cost < 0

(d) Marginal revenue − Marginal cost is increasing

4.6 RATES AND RELATED RATES

Derivatives represent rates of change. In this section, we see how to calculate rates in a variety of

situations.

Example 1 A spherical snowball is melting. Its radius decreases at a constant rate of 2 cm per minute from an

initial value of 70 cm. How fast is the volume decreasing half an hour later?

Solution The radius, r, starts at 70 cm and decreases at 2 cm/min. At time t minutes since the start,

r = 70 − 2t cm.

The volume of the snowball is given by

V =
4

3
�r3 =

4

3
�(70 − 2t)3 cm3.

The rate at which the volume is changing at time t is

dV

dt
=

4

3
� ⋅ 3(70 − 2t)2(−2) = −8�(70 − 2t)2 cm3/min.

The volume is measured in cm3, and time is in minutes, so after half an hour t = 30, and

dV

dt

|

|

|

|t=30

= −8�(70 − 2 ⋅ 30)2 = −800� cm3/min.

Thus, the rate at which the volume is changing is −800� ≈ −2500 cm3/min, so it is decreasing at a

rate of about 2500 cm3/min.
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Example 2 A skydiver of mass m jumps from a plane at time t = 0. Under certain assumptions, the distance,

s(t), he has fallen in time t is given by

s(t) =
m2g

k2

(

kt

m
+ e−kt∕m − 1

)

for some positive constant k.

(a) Find s′(0) and s′′(0) and interpret in terms of the skydiver.

(b) Relate the units of s′(t) and s′′(t) to the units of t and s(t).

Solution (a) Differentiating using the chain rule gives

s′(t) =
m2g

k2

(

k

m
+ e−kt∕m

(

−
k

m

))

=
mg

k

(

1 − e−kt∕m
)

s′′(t) =
mg

k
(−ekt∕m)

(

−
k

m

)

= ge−kt∕m.

Since e−k⋅0∕m = 1, evaluating at t = 0 gives

s′(0) =
mg

k
(1 − 1) = 0 and s′′(0) = g.

The first derivative of distance is velocity, so the fact that s′(0) = 0 tells us that the skydiver starts

with zero velocity. The second derivative of distance is acceleration, so the fact that s′′(0) = g

tells us that the skydiver’s initial acceleration is g, the acceleration due to gravity.

(b) The units of velocity, s′(t), and acceleration, s′′(t), are given by

Units of s′(t) are
Units of s(t)

Units of t
=

Units of distance

Units of time
; for example, meters/sec.

Units of s′′(t) are
Units of s′(t)

Units of t
=

Units of distance

(Units of time)2
; for example, meters/sec2.

Related Rates

In Example 1, the radius of the snowball decreased at a constant rate. A more realistic scenario is

that the radius decreases at a varying rate. In this case, we may not be able to write a formula for V

as a function of t. However, we may still be able to calculate dV ∕dt, as in the following example.

Example 3 A spherical snowball melts in such a way that the instant at which its radius is 20 cm, its radius is

decreasing at 3 cm/min. At what rate is the volume of the ball of snow changing at that instant?

Solution Since the snowball is spherical, we again have that

V =
4

3
�r3.

We can no longer write a formula for r in terms of t, but we know that

dr

dt
= −3 when r = 20.

We want to know dV ∕dt when r = 20. Think of r as an (unknown) function of t and differentiate

the expression for V with respect to t using the chain rule:

dV

dt
=

4

3
� ⋅ 3r2

dr

dt
= 4�r2

dr

dt
.
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At the instant at which r = 20 and dr∕dt = −3, we have

dV

dt
= 4� ⋅ 202 ⋅ (−3) = −4800� ≈ −15,080 cm3∕min.

So the volume of the ball is decreasing at a rate of 15,080 cm3 per minute at the moment when r = 20

cm. Notice that we have sidestepped the problem of not knowing r as a function of t by calculating

the derivatives only at the moment we are interested in.

Example 4 Figure 4.98 shows the fuel consumption, g, in miles per gallon (mpg), of a car traveling at v mph.

At one moment, the car was going 70 mph and its deceleration was 8000 miles/hour2. How fast was

the fuel consumption changing at that moment? Include units.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

v (mph)

g (mpg)

Figure 4.98: Fuel consumption versus velocity

Solution Acceleration is rate of change of velocity, dv∕dt, and we are told that the deceleration is 8000

miles/hour2, so we know dv∕dt = −8000 when v = 70. We want dg∕dt. The chain rule gives

dg

dt
=

dg

dv
⋅

dv

dt
.

The value of dg∕dv is the slope of the curve in Figure 4.98 at v = 70. Since the points (30, 40) and

(100, 20) lie approximately on the tangent to the curve at v = 70, we can estimate the derivative

dg

dv
≈

20 − 40

100 − 30
= −

2

7
mpg/mph.

Thus,
dg

dt
=

dg

dv
⋅

dv

dt
≈ −

2

7
(−8000) ≈ 2300 mpg/hr.

In other words, fuel consumption is increasing at about 2300∕60 ≈ 38 mpg per minute. Since we

approximated dg∕dv, we can only get a rough estimate for dg∕dt.

A famous problem involves the rate at which the top of a ladder slips down a wall as the foot of

the ladder moves.

Example 5 (a) A 3-meter ladder stands against a high wall. The foot of the ladder moves outward at a constant

speed of 0.1 meter/sec. When the foot is 1 meter from the wall, how fast is the top of the ladder

falling? What about when the foot is 2 meters from the wall?

(b) If the foot of the ladder moves out at a constant speed, how does the speed at which the top falls

change as the foot gets farther out?
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Solution (a) Let the foot be x meters from the base of the wall and let the top be y meters from the base. See

Figure 4.99. Then, since the ladder is 3 meters long, by Pythagoras’ Theorem,

x2 + y2 = 32 = 9.

Thinking of x and y as functions of t, we differentiate with respect to t using the chain rule:

2x
dx

dt
+ 2y

dy

dt
= 0.

We are interested in the moment at which dx∕dt = 0.1 and x = 1. We want to know dy∕dt, so

we solve, giving
dy

dt
= −

x

y

dx

dt
.

When the foot of the ladder is 1 meter from the wall, x = 1 and y =
√

9 − 12 =
√

8, so

dy

dt
= −

1
√

8
0.1 = −0.035 meter/sec.

Thus, the top falls at 0.035 meter/sec.

When the foot is 2 meters from the wall, x = 2 and y =
√

9 − 22 =
√

5, so

dy

dt
= −

2
√

5
0.1 = −0.089 meter/sec.

Thus, the top falls at 0.089 meter/sec. Notice that the top falls faster when the base of the ladder

is farther from the wall.

✲✛ x

✻

❄

y

Ladder
3 meters

Ground

Wall

Figure 4.99: Side view of ladder standing against wall (x, y in meters)

(b) As the foot of the ladder moves out, x increases and y decreases. Looking at the expression

dy

dt
= −

x

y

dx

dt
,

we see that if dx∕dt is constant, the magnitude of dy∕dt increases as the foot gets farther out.

Thus, the top falls faster and faster.
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Example 6 An airplane, flying at 450 km/hr at a constant altitude of 5 km, is approaching a camera mounted

on the ground. Let � be the angle of elevation above the ground at which the camera is pointed. See

Figure 4.100. When � = �∕3, how fast does the camera have to rotate in order to keep the plane in

view?

Solution Suppose the camera is at point C and the plane is vertically above point B. Let x km be the distance

between B and C . The fact that the plane is moving horizontally toward C at 450 km/hr means that

x is decreasing and dx∕dt = −450 km/hr. From Figure 4.100, we see that tan � = 5∕x.

Differentiating tan � = 5∕x with respect to t and using the chain rule gives

1

cos2 �

d�

dt
= −5x−2

dx

dt
.

We want to calculate d�∕dt when � = �∕3. At that moment, cos � = 1∕2 and tan � =
√

3, so

x = 5∕
√

3. Substituting gives

1

(1∕2)2
d�

dt
= −5

(

5
√

3

)−2

⋅ (−450)

d�

dt
= 67.5 radians/hour.

Since there are 60 minutes in an hour, the camera must turn at roughly 1 radian per minute if it is to

remain pointed at the plane. With 1 radian ≈ 60◦, this is a rotation of about one degree per second.

✛

C

Camera Ground
x B

5 km

Plane

�

Figure 4.100: Plane approaching a camera at C (side view; x in km)

Summary for Section 4.6

• Rates can be calculated in a variety of situations.

∙ Rate of change of volume of a melting snowball

∙ Velocity and acceleration of a skydiver

• Related rates problems involve finding a rate at which a quantity changes by relating that quan-

tity to other quantities whose rates of change are known.
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Exercises and Problems for Section 4.6 Online Resource: Additional Problems for Section 4.6
EXERCISES

1. With time, t, in minutes, the temperature, H , in degrees

Celsius, of a bottle of water put in the refrigerator at

t = 0 is given by

H = 4 + 16e−0.02t.

How fast is the water cooling initially? After 10 min-

utes? Give units.

2. The world population12 P , in billions, is approximately

P = 7.41e0.011t,

where t is in years since July 1, 2017. At what rate was

the world’s population increasing on that date? Give

your answer in millions of people per year.

3. If x2 + y2 = 25 and dx∕dt = 6, find dy∕dt when y is

positive and

(a) x = 0 (b) x = 3 (c) x = 4

4. If xy = 100 and dx∕dt = 5, find dy∕dt when

(a) x = 10 (b) x = 25 (c) x = 50

5. With length, l, in meters, the period T , in seconds, of a

pendulum is given by

T = 2�

√

l

9.8
.

(a) How fast does the period increase as l increases?

(b) Does this rate of change increase or decrease as l

increases?

6. The Dubois formula relates a person’s surface area, s,

in meters2, to weight, w, in kg, and height, ℎ, in cm, by

s = 0.01w0.25ℎ0.75.

(a) What is the surface area of a person who weighs

60 kg and is 150 cm tall?

(b) The person in part (a) stays constant height but in-

creases in weight by 0.5 kg∕year. At what rate is his

surface area increasing when his weight is 62 kg?

7. The elastic potential energy, in joules, stored in a spring

stretched x meters from its equilibrium position is

U = 160x2 .

How fast is its potential energy increasing if, at t = 0

seconds, the spring is 1 meter from its equilibrium po-

sition and is being stretched at 0.03 meters/sec?

8. A plane is climbing at 500 feet per minute, and the air

temperature outside the plane is falling at 2◦C per 1000

feet. What is the rate of change (as a function of time)

of the air temperature just outside the plane?

9. If � is the angle between a line through the origin and

the positive x-axis, the area, in cm2, of part of a rose

petal is

A =
9

16
(4� − sin(4�)).

If the angle � is increasing at a rate of 0.2 radians per

minute, at what rate is the area changing when � =

�∕4?

10. Atmospheric pressure decays exponentially as altitude

increases. With pressure, P , in inches of mercury and

altitude, ℎ, in feet above sea level, we can approximate

P = 30e−3.23×10
−5ℎ.

(a) At what altitude is the atmospheric pressure 25

inches of mercury?

(b) A glider measures the pressure to be 25 inches

of mercury and experiences a pressure increase of

0.1 inches of mercury per minute. At what rate is

it changing altitude?

11. At a height of ℎ meters above the surface of the earth,

the atmospheric pressure in torr13 is approximated by

P = 760e−ℎ∕7000.

A plane ascends from an altitude of 4000 meters at 550

meters per minute at t = 0 minutes. How fast is the at-

mospheric pressure outside the plane decreasing at this

time?

12. The gravitational force, F , on a rocket at a distance, r,

from the center of the earth is given by

F =
k

r2
,

where k = 1013 newton ⋅ km2. When the rocket is 104

km from the center of the earth, it is moving away at 0.2

km/sec. How fast is the gravitational force changing at

that moment? Give units. (A newton is a unit of force.)

13. The power, P , dissipated when a 9-volt battery is put

across a resistance of R ohms is given by

P =
81

R
.

What is the rate of change of power with respect to re-

sistance?

14. A voltage V across a resistance R generates a current

I =
V

R

in amps. A constant voltage of 9 volts is put across a

resistance that is increasing at a rate of 0.2 ohms per

second when the resistance is 5 ohms. At what rate is

the current changing?

12www.indexmundi.com, accessed September 30, 2019.
13A torr is a unit of pressure.
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15. The volume, V in liters, and the pressure, P in atmo-

spheres, of a sample of an ideal gas held at a constant

temperature is

V =
120

P
.

If the pressure is being increased at a constant rate of

1 atmosphere per minute, how fast is the volume of the

gas changing when its pressure is 5 atmospheres?

16. The kinetic energy, in megajoules, of an object of mass

m kg moving at velocity v km/sec is

E =
1

2
mv2.

An asteroid of mass 2⋅1014 kg is falling toward the sun at

100 km/sec and accelerating at 0.5 km/sec2 when t = 0

seconds. How fast is the kinetic energy of the asteroid

increasing at that time?

17. The potential, �, of a charge distribution at a point on

the positive x-axis is given, for x in centimeters, by

� = 2�
(
√

x2 + 4 − x

)

.

A particle at x = 3 is moving to the left at a rate of

0.2 cm∕sec. At what rate is its potential changing?

18. The average cost per item, C , in dollars, of manufactur-

ing a quantity q of cell phones is given by

C =
a

q
+ b where a, b are positive constants.

(a) Find the rate of change of C as q increases. What

are its units?

(b) If production increases at a rate of 100 cell phones

per week, how fast is the average cost changing? Is

the average cost increasing or decreasing?

19. A pyramid has height ℎ and a square base with side x.

The volume of a pyramid is V =
1

3
x2ℎ. If the height re-

mains fixed and the side of the base is decreasing by

0.002 meter/yr, at what rate is the volume decreasing

when the height is 120 meters and the width is 150 me-

ters?

20. A thin uniform rod of length l cm and a small particle

lie on a line separated by a distance of a cm. If K is

a positive constant and F is measured in newtons, the

gravitational force between them is

F =
K

a(a + l)
.

(a) If a is increasing at the rate 2 cm/min when a = 15

and l = 5, how fast is F decreasing?

(b) If l is decreasing at the rate 2 cm/min when a = 15

and l = 5, how fast is F increasing?

PROBLEMS

In Problems 21–24, use Figure 4.101 showing the altitude of

a plane as a function of the time since takeoff and air pressure

as a function of altitude.14 How fast is air pressure changing

outside the plane at the given moment in its flight?

1 2 3

35,000

(
1

15
, 7000)

(0.5, 35,000)

(2.5, 35,000)

time since take off (hours)

altitude (feet)

35,000

1

0.22

altitude (feet)

pressure (atmospheres)

Figure 4.101

21. 1 hour after takeoff 22. 2 minutes after takeoff

23. 10 minutes after takeoff

24. 2.75 hours after takeoff

25. A rectangle has one side of 10 cm. How fast is the area

of the rectangle changing at the instant when the other

side is 12 cm and increasing at 3 cm per minute?

26. A rectangle has one side of 8 cm. How fast is the diag-

onal of the rectangle changing at the instant when the

other side is 6 cm and increasing at 3 cm per minute?

27. A right triangle has one leg of 7 cm. How fast is its area

changing at the instant that the other leg has length 10

cm and is decreasing at 2 cm per second?

28. The area, A, of a square is increasing at 3 cm2 per

minute. How fast is the side length of the square chang-

ing when A = 576 cm2?

29. Car A is driving east toward an intersection. Car B has

already gone through the same intersection and is head-

ing north. At what rate is the distance between the cars

changing at the instant when car A is 40 miles from

the intersection and traveling at 50 mph and car B is

30 miles from the intersection and traveling at 60 mph?

Are the cars getting closer together or farther apart at

this time?

14Change in air pressure with respect to altitude is not quite linear, but this approximation is fairly close to real air pressure.
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30. Car A is driving south, away from an intersection. Car

B is approaching the intersection and is moving west.

At what rate is the distance between the cars changing

at the instant when car A is 40 miles from the intersec-

tion and traveling at 55 mph and car B is 30 miles from

the intersection and traveling at 45 mph? Are the cars

getting closer together or farther apart at this time?

31. A dose, D, of a drug causes a temperature change, T ,

in a patient. For C a positive constant, T is given by

T =
(

C

2
−

D

3

)

D2.

(a) What is the rate of change of temperature change

with respect to dose?

(b) For what doses does the temperature change in-

crease as the dose increases?

32. When a company spends L thousand dollars on labor

and K thousand dollars on equipment, it produces P

units:

P = 500L0.3K0.7.

(a) How many units are produced when labor spend-

ing is L = 85 and equipment spending is K = 50?

(b) The company decides to keep equipment expen-

ditures constant at K = 50, but to increase la-

bor expenditures by 2 thousand dollars per year. At

what rate is the quantity of items produced chang-

ing when labor spending is L = 90?

33. An item costs $500 at time t = 0 and costs $P in year

t. When inflation is r% per year, the price is given by

P = 500ert∕100.

(a) If r is a constant, at what rate is the price rising (in

dollars per year)

(i) Initially? (ii) After 2 years?

(b) Now suppose that r is increasing by 0.3 per year

when r = 4 and t = 2. At what rate (dollars per

year) is the price increasing at that time?

34. A 50-gram mass moving on a circle of radius r cm at

a velocity of v cm/sec experiences a force toward the

center of the circle of

F =
50v2

r
millinewtons.

How fast must the velocity change to maintain a con-

stant force when t = 0 seconds, velocity v = 25 cm/sec,

and radius r = 10 cm, while r is increasing by 1 cm/sec?

35. A 10 m ladder leans against a vertical wall and the bot-

tom of the ladder slides away from the wall at a rate of

0.5 m/sec. How fast is the top of the ladder sliding down

the wall when the bottom of the ladder is

(a) 4 m from the wall? (b) 8 m from the wall?

36. Gasoline is pouring into a vertical cylindrical tank of

radius 3 feet. When the depth of the gasoline is 4 feet,

the depth is increasing at 0.2 ft∕sec. How fast is the vol-

ume of gasoline changing at that instant?

37. Water is being pumped into a vertical cylinder of

radius 5 meters and height 20 meters at a rate of

3 meters3∕min. How fast is the water level rising when

the cylinder is half full?

38. A spherical snowball is melting. Its radius is decreasing

at 0.2 cm per hour when the radius is 15 cm. How fast

is its volume decreasing at that time?

39. The radius of a spherical balloon is increasing by 2

cm/sec. At what rate is air being blown into the balloon

at the moment when the radius is 10 cm? Give units in

your answer.

40. If two electrical resistances, R1 and R2, are connected

in parallel, their combined resistance, R, is given by

1

R
=

1

R1

+
1

R2

.

Suppose R1 is held constant at 10 ohms, and that R2 is

increasing at 2 ohms per minute when R2 is 20 ohms.

How fast is R changing at that moment?

41. For positive constants A and B, the force, F , between

two atoms in a molecule at a distance r apart is given

by

F = −
A

r2
+

B

r3
.

(a) How fast does force change as r increases? What

type of units does it have?

(b) If at some time t the distance is changing at a rate k,

at what rate is the force changing with time? What

type of units does this rate of change have?

42. For positive constants k and g, the velocity, v, of a par-

ticle of mass m at time t is given by

v =
mg

k

(

1 − e−kt∕m
)

.

At what rate is the velocity changing at time 0? At

t = 1? What do your answers tell you about the mo-

tion?

The flow of a liquid drug being infused through a tube (called

a catheter) into a patient is given by Poiseuille’s Law,

Q =
�Pr4

8�l
,

where Q is the flow rate (volume per unit time), P is the

pressure difference between the ends of the tube, r is the ra-

dius of the infusion tube and l is its length.15 The quantity �

is the viscosity (stickiness) of the liquid, a positive constant.

15From openanesthesia.org. Accessed Dec 21, 2019.



4.6 RATES AND RELATED RATES 261

43. (a) Thinking of r, l, � as constants, find dQ∕dP . What

is its sign?

(b) Why do clinics and hospitals hang the liquid to be

infused high on a stand instead of level with the

patient?

44. (a) Thinking of P , �, l as constants, find dQ∕dr. Is it

positive or negative?

(b) Thinking of P , �, r as constants, find dQ∕dl. Is it

positive or negative?

(c) What do your answer to parts (a) and (b) tell you

about how to increase the flow rate? Should the ra-

dius of the tube be increased or decreased? What

about the length?

45. When I amperes of current flow through an electrical

circuit over a resistor with resistance R ohms, the volt-

age drop, in volts, over the resistor is

V = IR.

How fast must the resistance R change to maintain a

constant voltage drop of 20 volts if the current is 0.01

amps and is increasing at 0.005 amps per minute?

46. The circulation time of a mammal (that is, the aver-

age time it takes for all the blood in the body to cir-

culate once and return to the heart) is proportional to

the fourth root of the body mass of the mammal. The

constant of proportionality is 17.40 if circulation time

is in seconds and body mass is in kilograms. The body

mass of a growing child is 45 kg and is increasing at a

rate of 0.1 kg/month. What is the rate of change of the

circulation time of the child?

47. A certain quantity of gas occupies a volume of 20 cm3

at a pressure of 1 atmosphere. The gas expands without

the addition of heat, so, for some constant k, its pres-

sure, P , and volume, V , satisfy the relation

PV 1.4 = k.

(a) Find the rate of change of pressure with volume.

Give units.

(b) The volume is increasing at 2 cm3∕min when the

volume is 30 cm3. At that moment, is the pressure

increasing or decreasing? How fast? Give units.

48. The metal frame of a rectangular box has a square base.

The horizontal rods in the base are made out of one

metal and the vertical rods out of a different metal. If

the horizontal rods expand at a rate of 0.001 cm/hr and

the vertical rods expand at a rate of 0.002 cm/hr, at what

rate is the volume of the box expanding when the base

has an area of 9 cm2 and the volume is 180 cm3?

49. A ruptured oil tanker causes a circular oil slick on the

surface of the ocean. When its radius is 150 meters, the

radius of the slick is expanding by 0.1 meter/minute and

its thickness is 0.02 meter. At that moment:

(a) How fast is the area of the slick expanding?

(b) The circular slick has the same thickness every-

where, and the volume of oil spilled remains fixed.

How fast is the thickness of the slick decreasing?

50. A potter forms a piece of clay into a cylinder. As he rolls

it, the length, L, of the cylinder increases and the radius,

r, decreases. If the length of the cylinder is increasing

at 0.1 cm per second, find the rate at which the radius

is changing when the radius is 1 cm and the length is 5

cm.

51. A cone-shaped coffee filter of radius 6 cm and depth 10

cm contains water, which drips out through a hole at the

bottom at a constant rate of 1.5 cm3 per second.

(a) If the filter starts out full, how long does it take to

empty?

(b) Find the volume of water in the filter when the

depth of the water is ℎ cm.

(c) How fast is the water level falling when the depth

is 8 cm?

52. Water is being poured into the cone-shaped container in

Figure 4.102. When the depth of the water is 2.5 in, it is

increasing at 3 in/min. At that time, how fast is the sur-

face area, A, that is covered by water increasing? [Hint:

A = �rs, where r, s are as shown.]

✲✛ 4”

✻

❄

4”

✲✛ 4”

✻

❄

4”

✲✛ r
✻

❄
ℎ

✛

✛

s

Figure 4.102: Cone and cross section

53. Grit, which is spread on roads in winter, is stored in

mounds which are the shape of a cone. As grit is added

to the top of a mound at 2 cubic meters per minute, the

angle between the slant side of the cone and the verti-

cal remains 45◦. How fast is the height of the mound

increasing when it is half a meter high? [Hint: Volume

V = �r2ℎ∕3, where r is radius and ℎ is height.]

54. A gas station stands at the intersection of a north-south

road and an east-west road. A police car is traveling to-

ward the gas station from the east, chasing a stolen truck

which is traveling north away from the gas station. The

speed of the police car is 100 mph at the moment it is 3

miles from the gas station. At the same time, the truck

is 4 miles from the gas station going 80 mph. At this

moment:

(a) Is the distance between the car and truck increasing

or decreasing? How fast? (Distance is measured

along a straight line joining the car and the truck.)

(b) How does your answer change if the truck is going

70 mph instead of 80 mph?
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55. The London Eye is a large Ferris wheel that has diam-

eter 135 meters and revolves continuously. Passengers

enter the cabins at the bottom of the wheel and com-

plete one revolution in about 27 minutes. One minute

into the ride a passenger is rising at 0.06 meters per sec-

ond. How fast is the horizontal motion of the passenger

at that moment?

56. Point P moves around the unit circle.16 (See Fig-

ure 4.103.) The angle �, in radians, changes with time

as shown in Figure 4.104.

(a) Estimate the coordinates of P when t = 2.

(b) When t = 2, approximately how fast is the point P

moving in the x-direction? In the y-direction?

P

� x

y

Figure 4.103

2 4 6 8 10

1

3

5

7

t

�

Figure 4.104

57. On February 14, 2007, paraglider Eva Wisnierska17

was caught in a freak thunderstorm over Australia and

carried upward at a speed of about 3000 ft/min. Ta-

ble 4.4 gives the temperature at various heights. Ap-

proximately how fast (in ◦F/min) was her temperature

decreasing when she was at 4000 feet?

Table 4.4

y (thousand ft) 2 4 6 8 10 12 14 16

H (◦F) 60 52 38 31 23 16 9 2

58. Coroners estimate time of death using the rule of thumb

that a body cools about 2◦F during the first hour after

death and about 1◦F for each additional hour. Assuming

an air temperature of 68◦F and a living body tempera-

ture of 98.6◦F, the temperature T (t) in ◦F of a body at

a time t hours since death is given by

T (t) = 68 + 30.6e−kt.

(a) For what value of k will the body cool by 2◦F in

the first hour?

(b) Using the value of k found in part (a), after how

many hours will the temperature of the body be de-

creasing at a rate of 1◦F per hour?

(c) Using the value of k found in part (a), show that,

24 hours after death, the coroner’s rule of thumb

gives approximately the same temperature as the

formula.

59. A train is traveling at 0.8 km/min along a long straight

track, moving in the direction shown in Figure 4.105. A

movie camera, 0.5 km away from the track, is focused

on the train.

(a) Express z, the distance between the camera and the

train, as a function of x.

(b) How fast is the distance from the camera to the

train changing when the train is 1 km from the cam-

era? Give units.

(c) How fast is the camera rotating (in radians/min) at

the moment when the train is 1 km from the cam-

era?

0 x km Train

z km

Camera

0.5 km

✲

Figure 4.105

60. A lighthouse is 2 km from the long, straight coastline

shown in Figure 4.106. Find the rate of change of the

distance of the spot of light from the point O with re-

spect to the angle �.

Lighthouse

Spot of light

�

O Shoreline

✠
Beam of light✻

❄

2 km

Figure 4.106

61. When the growth of a spherical cell depends on the flow

of nutrients through the surface, it is reasonable to as-

sume that the growth rate, dV ∕dt, is proportional to

the surface area, S. Assume that for a particular cell

dV ∕dt =
1

3
S. At what rate is its radius r increasing?

62. A circular region is irrigated by a 20 meter long pipe,

fixed at one end and rotating horizontally, spraying wa-

ter. One rotation takes 5 minutes. A road passes 30 me-

ters from the edge of the circular area. See Figure 4.107.

(a) How fast is the end of the pipe, P , moving?

16Based on an idea from Caspar Curjel.
17en.wikipedia.org, accessed September 30, 2019.
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(b) How fast is the distance PQ changing when � is

�∕2? When � is 0?

20
m 0

P

Q

�

✻

❄

30 m

Road

Figure 4.107

63. For the amusement of the guests, some hotels have ele-

vators on the outside of the building. One such hotel is

300 feet high. You are standing by a window 100 feet

above the ground and 150 feet away from the hotel, and

the elevator descends at a constant speed of 30 ft/sec,

starting at time t = 0, where t is time in seconds. Let �

be the angle between the line of your horizon and your

line of sight to the elevator. (See Figure 4.108.)

(a) Find a formula for ℎ(t), the elevator’s height above

the ground as it descends from the top of the hotel.

(b) Using your answer to part (a), express � as a func-

tion of time t and find the rate of change of � with

respect to t.

(c) The rate of change of � is a measure of how fast

the elevator appears to you to be moving. At what

height is the elevator when it appears to be moving

fastest?

✻

❄

✛ ✲

❨

❥

❄

✻

❄

✻

300 ft

100 ft

150 ft

ℎ(t)
�

Elevator

Figure 4.108

64. In a romantic relationship between Angela and Brian,

who are unsuited for each other, a(t) represents the af-

fection Angela has for Brian at time t days after they

meet, while b(t) represents the affection Brian has for

Angela at time t. If a(t) > 0 then Angela likes Brian; if

a(t) < 0 then Angela dislikes Brian; if a(t) = 0 then An-

gela neither likes nor dislikes Brian. Their affection for

each other is given by the relation (a(t))2 + (b(t))2 = c,

where c is a constant.

(a) Show that a(t) ⋅ a′(t) = −b(t) ⋅ b′(t).

(b) At any time during their relationship, the rate per

day at which Brian’s affection for Angela changes

is b′(t) = −a(t). Explain what this means if Angela

(i) Likes Brian, (ii) Dislikes Brian.

(c) Use parts (a) and (b) to show that a′(t) = b(t). Ex-

plain what this means if Brian

(i) Likes Angela, (ii) Dislikes Angela.

(d) If a(0) = 1 and b(0) = 1 who first dislikes the

other?

Strengthen Your Understanding

In Problems 65–66, explain what is wrong with the state-

ment.

65. If the radius, R, of a circle increases at a constant rate,

its diameter, D, increases at the same constant rate.

66. If two variables x and y are functions of t and are related

by the equation y = 1 − x2, then dy∕dt = −2x.

In Problems 67–68, give an example of:

67. Two functions f and g where y = f (x) and x = g(t)

such that dy∕dt and dx∕dt are both constant.

68. Two functions g and f where x = g(t) and y = f (x)

such that dx∕dt is constant and dy∕dt is not constant.

Are the statements in Problems 69–70 true of false? Give an

explanation for your answer.

69. If the radius of a circle is increasing at a constant rate,

then so is the circumference.

70. If the radius of a circle is increasing at a constant rate,

then so is the area.

71. The light in the lighthouse in Figure 4.109 rotates at 2

revolutions per minute. To calculate the speed at which

the spot of light moves along the shore, it is best to dif-

ferentiate:

(a) r2 = 52 + x2 (b) x = r sin �

(c) x = 5 tan � (d) r2 = 22 + x2

x miles

r miles �

❘

Beam of
light

Lighthouse

5 miles

Shore

Figure 4.109
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4.7 L’HOPITAL’S RULE, GROWTH, AND DOMINANCE

Suppose we want to calculate the exact value of the limit

lim
x→0

e2x − 1

x
.

Substituting x = 0 gives us 0∕0, which is undefined:

e2(0) − 1

0
=

1 − 1

0
=

0

0
.

Substituting values of x near 0 gives us an approximate value for the limit.

However, the limit can be calculated exactly using local linearity. Suppose we let f (x) be the

numerator, so f (x) = e2x − 1, and g(x) be the denominator, so g(x) = x. Then f (0) = 0 and

f ′(x) = 2e2x, so f ′(0) = 2. When we zoom in on the graph of f (x) = e2x − 1 near the origin, we

see its tangent line y = 2x shown in Figure 4.110. We are interested in the ratio f (x)∕g(x), which is

approximately the ratio of the y-values in Figure 4.110. So, for x near 0,

f (x)

g(x)
=

e2x − 1

x
≈

2x

x
=

2

1
=

f ′(0)

g′(0)
.

As x → 0, this approximation gets better, and we have

lim
x→0

e2x − 1

x
= 2.

✻
❄
x

✻

❄

2x

x

y = 2x: Approximates graph of f

y = x: Graph of g

Figure 4.110: Ratio (e2x − 1)∕x is approximated by

ratio of slopes as we zoom in near the origin

a

x

Approximate graph of g

Approximate graph of f

✻

❄

f ′(a)(x − a)
✻
❄
g′(a)(x − a)

Figure 4.111: Ratio f (x)∕g(x) is approximated by

ratio of slopes, f ′(a)∕g′(a), as we zoom in at a

L’Hopital’s Rule

If f (a) = g(a) = 0, we can use the same method to investigate limits of the form

lim
x→a

f (x)

g(x)
.

As in the previous case, we zoom in on the graphs of f (x) and g(x). Figure 4.111 shows that both

graphs cross the x-axis at x = a. This suggests that the limit of f (x)∕g(x) as x → a is the ratio of

slopes, giving the following result:

L’Hopital’s rule:18 If f and g are differentiable, f (a) = g(a) = 0, and g′(a) ≠ 0, then

lim
x→a

f (x)

g(x)
=

f ′(a)

g′(a)
.

Example 1 Use l’Hopital’s rule to confirm that lim
x→0

sin x

x
= 1.

18The marquis Guillaume de l’Hospital (1661–1704) was a French nobleman who wrote the first calculus text.
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Solution Let f (x) = sin x and g(x) = x. Then f (0) = g(0) = 0 and f ′(x) = cos x and g′(x) = 1. Thus,

lim
x→0

sin x

x
=

cos 0

1
= 1.

If we also have f ′(a) = g′(a) = 0, then we can use the following result:

More general form of l’Hopital’s rule: If f and g are differentiable and f (a) = g(a) = 0,

then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right exists.

Example 2 Calculate lim
t→0

et − 1 − t

t2
.

Solution Let f (t) = et −1− t and g(t) = t2. Then f (0) = e0 −1−0 = 0 and g(0) = 0, and f ′(t) = et −1 and

g′(t) = 2t. So

lim
t→0

et − 1 − t

t2
= lim

t→0

et − 1

2t
.

Since f ′(0) = g′(0) = 0, the ratio f ′(0)∕g′(0) is not defined. So we use l’Hopital’s rule again:

lim
t→0

et − 1 − t

t2
= lim

t→0

et − 1

2t
= lim

t→0

et

2
=

1

2
.

We can also use l’Hopital’s rule in cases involving infinity.

L’Hopital’s rule applies to limits involving infinity, provided f and g are differentiable.

For a any real number or ±∞:

• When limx→a f (x) = ±∞ and limx→a g(x) = ±∞,

or

• When lim
x→∞

f (x) = lim
x→∞

g(x) = 0.

it can be shown that:

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right-hand side exists.

The next example shows how this version of l’Hopital’s rule is used.

Example 3 Calculate lim
x→∞

5x + e−x

7x
.

Solution Let f (x) = 5x + e−x and g(x) = 7x. Then lim
x→∞

f (x) = lim
x→∞

g(x) = ∞, and f ′(x) = 5 − e−x and

g′(x) = 7, so

lim
x→∞

5x + e−x

7x
= lim

x→∞

(5 − e−x)

7
=

5

7
.

L’Hopital’s rule can also be applied to one-sided limits.
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Dominance: Powers, Polynomials, Exponentials, and Logarithms

In Chapter 1, we see that some functions are much larger than others as x → ∞. For positive functions

f and g, we say that g dominates f as x → ∞ if lim
x→∞

f (x)

g(x)
= 0. L’Hopital’s rule gives us an easy

way of checking this.

Example 4 Check that x1∕2 dominates lnx as x → ∞.

Solution We apply l’Hopital’s rule to (lnx)∕x1∕2:

lim
x→∞

ln x

x1∕2
= lim

x→∞

1∕x

1

2
x−1∕2

.

To evaluate this limit, we simplify and get

lim
x→∞

1∕x

1

2
x−1∕2

= lim
x→∞

2x1∕2

x
= lim

x→∞

2

x1∕2
= 0.

Therefore we have

lim
x→∞

ln x

x1∕2
= 0,

which tells us that x1∕2 dominates lnx as x → ∞.

Example 5 Check that any exponential function of the form ekx (with k > 0) dominates any power function of

the form Axp (with A and p positive) as x → ∞.

Solution We apply l’Hopital’s rule repeatedly to Axp∕ekx:

lim
x→∞

Axp

ekx
= lim

x→∞

Apxp−1

kekx
= lim

x→∞

Ap(p− 1)xp−2

k2ekx
= ⋯

Keep applying l’Hopital’s rule until the power of x is no longer positive. Then the limit of the nu-

merator must be a finite number, while the limit of the denominator must be ∞. Therefore we have

lim
x→∞

Axp

ekx
= 0,

so ekx dominates Axp.

Recognizing the Form of a Limit

Although expressions like 0∕0 and ∞∕∞ have no numerical value, they are useful in describing the

form of a limit. We can also use l’Hopital’s rule to calculate some limits of the form 0 ⋅∞, ∞−∞,

1∞, 00, and ∞0.

Example 6 Calculate lim
x→∞

xe−x.

Solution Since lim
x→∞

x = ∞ and lim
x→∞

e−x = 0, we see that

xe−x → ∞ ⋅ 0 as x → ∞.
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Rewriting

∞ ⋅ 0 as
∞
1

0

=
∞

∞

gives a form whose value can be determined using l’Hopital’s rule, so we rewrite the function xe−x

as

xe−x =
x

ex
→

∞

∞
as x → ∞.

Taking f (x) = x and g(x) = ex gives f ′(x) = 1 and g′(x) = ex, so

lim
x→∞

xe−x = lim
x→∞

x

ex
= lim

x→∞

1

ex
= 0.

A Famous Limit

In the following example, l’Hopital’s rule is applied to calculate a limit that can be used to define e.

Example 7 Evaluate lim
x→∞

(

1 +
1

x

)x

.

Solution As x → ∞, we see that
(

1 +
1

x

)x

→ 1∞, a form whose value in this context is to be determined.

Since ln 1∞ = ∞ ⋅ ln 1 = ∞ ⋅ 0, we write

y =
(

1 +
1

x

)x

and find the limit of ln y:

lim
x→∞

ln y = lim
x→∞

ln
(

1 +
1

x

)x

= lim
x→∞

x ln
(

1 +
1

x

)

= ∞ ⋅ 0.

As in the previous example, we rewrite

∞ ⋅ 0 as
0
1

∞

=
0

0
,

which suggests rewriting

lim
x→∞

x ln
(

1 +
1

x

)

as lim
x→∞

ln(1 + 1∕x)

1∕x
.

Since limx→∞ ln(1 + 1∕x) = 0 and limx→∞(1∕x) = 0, we can use l’Hopital’s rule with f (x) =

ln(1 + 1∕x) and g(x) = 1∕x. We have

f ′(x) =
1

1 + 1∕x

(

−
1

x2

)

and g′(x) = −
1

x2
,

so

lim
x→∞

ln y = lim
x→∞

ln(1 + 1∕x)

1∕x
= lim

x→∞

1

1 + 1∕x

(

−
1

x2

)/(

−
1

x2

)

= lim
x→∞

1

1 + 1∕x
= 1.

Since limx→∞ ln y = 1, we have

lim
x→∞

y = e1 = e.
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Example 8 Put the following limits in a form that can be evaluated using l’Hopital’s rule:

(a) lim
x→0+

x lnx (b) lim
x→∞

x1∕x (c) lim
x→0+

xx (d) lim
x→0

1

x
−

1

sinx

Solution (a) We have

lim
x→0+

x lnx = 0 ⋅∞.

We can rewrite

0 ⋅∞ as
∞

1∕0
=

∞

∞
.

This corresponds to rewriting

lim
x→0+

x lnx as lim
x→0+

lnx

1∕x
.

This is an ∞∕∞ form that can be evaluated using l’Hopital’s rule. (Note that we could also have

written

0 ⋅∞ as
0

1∕∞
=

0

0
,

but this leads to rewriting

lim
x→0+

x lnx as lim
x→0+

x

1∕lnx
.

It turns out that l’Hopital’s rule fails to simplify this limit.)

(b) In this case we have a ∞0 form, so we take the logarithm and get a 0 ⋅∞ form:

lim
x→∞

ln(x1∕x) = lim
x→∞

1

x
ln x = lim

x→∞

lnx

x
.

This is an ∞∕∞ form that can be evaluated using l’Hopital’s rule. Once we get the answer, we

exponentiate it to get the original limit.

(c) Since limx→0+ x = 0, this is a 00 form. If we take the logarithm, we get

ln 00 = 0 ⋅ ln 0 = 0 ⋅∞.

This corresponds to the limit

lim
x→0+

lnxx = lim
x→0+

x lnx,

which is considered in part (a).

(d) We have

lim
x→0

1

x
−

1

sin x
=

1

0
−

1

0
= ∞ −∞.

Limits like this can often be calculated by adding the fractions:

lim
x→0

1

x
−

1

sin x
= lim

x→0

sinx − x

x sinx
,

giving a 0∕0 form that can be evaluated using l’Hopital’s rule twice.

Summary for Section 4.7

• L’Hopital’s rule: If f and g are differentiable and f (a) = g(a) = 0, then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right exists.
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• L’Hopital’s rule applies to limits involving infinity, provided f and g are differentiable.

For a any real number or ±∞:

∙ When lim
x→a

f (x) = ±∞ and lim
x→a

g(x) = ±∞,

∙ When lim
x→∞

f (x) = lim
x→∞

g(x) = 0.

it can be shown that:

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right-hand side exists.

• Dominance: For positive functionsf and g, we say that g dominatesf as x → ∞ if lim
x→∞

f (x)

g(x)
=

0. L’Hopital’s rule gives us an easy way of checking this.

• L’Hopital’s rule can be used to calculate some limits of the form 0 ⋅∞, ∞−∞, 1∞, 00, and ∞0.

• A famous limit: lim
x→∞

(

1 +
1

x

)x

= e

Exercises and Problems for Section 4.7

EXERCISES

In Exercises 1–12, for each limit, indicate whether

l’Hopital’s rule applies. You do not have to evaluate the lim-

its.

1. lim
x→0

sin x

5x
2. lim

x→2

2ex − x

x

3. lim
x→1

x2 − 3x + 2

x2 − 1
4. lim

x→0

e2x − 1

cos x

5. lim
x→0

cos x

x
6. lim

x→0

e3x − 1

sin x

7. lim
x→1

x2 − 2x + 5

x2 − 1
8. lim

x→2

x2 − 4

3x − 6

9. lim
x→0

2ex − 2

cos x − 1
10. lim

x→0

cos x − 1

ex

11. lim
x→0

ex

sin x
12. lim

x→0

sinx − x

x2

In Exercises 13–38, find the limit. Use l’Hopital’s rule if it

applies.

13. lim
x→2

x − 2

x2 − 4
14. lim

x→1

x2 + 3x − 4

x − 1

15. lim
x→1

x6 − 1

x4 − 1
16. lim

x→0

ex − 1

sinx

17. lim
x→0

sin x

ex
18. lim

x→1

ln x

x − 1

19. lim
x→0

e4x − 1

cos x
20. lim

x→1

xa − 1

xb − 1
, b ≠ 0

21. lim
x→a

3
√

x − 3
√

a

x − a
, a ≠ 0 22. lim

x→3

x2 − 9

x − 3

23. lim
x→1

x3 − 5x2 + 4

3x2 + 4x − 7
24. lim

x→2

x3 − x2 − 4

5x2 − 10x

25. lim
x→1

2x5 − 2

3x4 − 3x
26. lim

x→0

cos x − 1

3x

27. lim
x→0

sinx + 5x

8x
28. lim

x→0

e3x − 1

5x

29. lim
x→0

sin(5x)

3x2
30. lim

x→1

x2 − 1

4x3 − 2

31. lim
x→0

e5x

cos x − 1
32. lim

x→0

3x

cos x

33. lim
x→1

3x2 + 4

x2 + 3x + 5
34. lim

x→∞

sin x

x

35. lim
x→∞

lnx

x
36. lim

x→∞

(ln x)3

x2

37. lim
x→∞

5x + 1

ex
38. lim

x→∞

x2 − 4

3x2 + 5x + 1

In Exercises 39–42, which function dominates as x → ∞?

39. x5 and 0.1x7 40. 0.01x3 and 50x2

41. ln(x + 3) and x0.2 42. x10 and e0.1x
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PROBLEMS

43. The functions f and g and their tangent lines at (4, 0)

are shown in Figure 4.112. Find lim
x→4

f (x)

g(x)
.

4

f (x)

g(x)

y = −0.7(x − 4)

y = 1.4(x − 4)

x

y

Figure 4.112

For Problems 44–47, find the sign of lim
x→a

f (x)

g(x)
from the fig-

ure.

44.

a

f (x)

g(x)

x

45.

a

f (x)

g(x)

x

46.

a

f (x)

g(x)

x

Assume f ′′(a) ≠ 0, g′′(a) ≠ 0

47. f (x)

g(x)

a

Assume f ′′′(a) ≠ 0, g′′′(a) ≠ 0

x

In Problems 48–49, use l’Hopital’s rule to find the value of

k such that

48. lim
x→1

x2 − (k + 1)x + k

x − 1
= 5

49. lim
�→0

sin(k�)

3�
= −7

In Problems 50–53, based on your knowledge of the behav-

ior of the numerator and denominator, predict the value of

the limit. Then find each limit using l’Hopital’s rule.

50. lim
x→0

x2

sin x
51. lim

x→0

sin2 x

x

52. lim
x→0

sin x

x1∕3
53. lim

x→0

x

(sinx)1∕3

In Problems 54–59, describe the form of the limit (0∕0,

∞∕∞, ∞ ⋅ 0, ∞ − ∞, 1∞, 00, ∞0, or none of these). Does

l’Hopital’s rule apply? If so, explain how.

54. lim
x→∞

x

ex
55. lim

x→1

x

x − 1

56. lim
t→∞

(

1

t
−

2

t2

)

57. lim
t→0+

1

t
−

1

et − 1

58. lim
x→0

(1 + x)x 59. lim
x→∞

(1 + x)1∕x

In Problems 60–73 determine whether the limit exists, and

where possible evaluate it.

60. lim
x→1

lnx

x2 − 1
61. lim

t→�

sin2 t

t − �

62. lim
n→∞

n
√

n 63. lim
x→0+

x ln x

64. lim
x→0

sinh(2x)

x
65. lim

x→0

1 − cosh(3x)

x

66. lim
x→1−

cos−1 x

x − 1
67. lim

x→0

(

1

x
−

1

sin x

)

68. lim
t→0+

(

2

t
−

1

et − 1

)

69. lim
t→0

(

1

t
−

1

et − 1

)

70. lim
x→∞

(

1 + sin
(

3

x

))x

71. lim
t→0

sin2 At

cosAt − 1
, A ≠ 0

72. lim
t→∞

et − tn, where n is a

positive integer

73. lim
x→0+

xa lnx, where a is

a positive constant.

In Problems 74–76, explain why l’Hopital’s rule cannot be

used to calculate the limit. Then evaluate the limit if it exists.

74. lim
x→1

sin(2x)

x
75. lim

x→0

cos x

x

76. lim
x→∞

e−x

sinx

In Problems 77–79, evaluate the limit using the fact that

lim
n→∞

(

1 +
1

n

)n

= e.

77. lim
x→0+

(1 + x)1∕x 78. lim
n→∞

(

1 +
2

n

)n

79. lim
x→0+

(1 + kx)t∕x; k > 0
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80. Show that lim
n→∞

(

1 −
1

n

)n

= e−1.

81. Use the result of Problem 80 to evaluate

lim
n→∞

(

1 −
�

n

)n

.

In Problems 82–84, evaluate the limits where

f (t) =

(

3t + 5t

2

)1∕t

for t ≠ 0.

82. lim
t→−∞

f (t) 83. lim
t→+∞

f (t) 84. lim
t→0

f (t)

In Problems 85–88, evaluate the limits as x approaches 0.

85.
sinh(2x)

x
86.

1 − cosh(3x)

x

87.
1 − cosh(5x)

x2
88.

x − sinh(x)

x3

Problems 89–91 are examples Euler used to illustrate

l’Hopital’s rule. Find the limit.

89. lim
x→0

ex − 1 − ln(1 + x)

x2

90. lim
x→�∕2

1 − sinx + cos x

sin x + cos x − 1

91. lim
x→1

xx − x

1 − x + ln x

Strengthen Your Understanding

In Problems 92–93, explain what is wrong with the state-

ment.

92. There is a positive integer n such that function xn dom-

inates ex as x → ∞.

93. L’Hopital’s rule shows that

lim
x→∞

5x + cos x

x
= 5.

In Problems 94–95, give an example of:

94. A limit of a rational function for which l’Hopital’s rule

cannot be applied.

95. A function f such that L’Hopital’s rule can be applied

to find

lim
x→∞

f (x)

lnx
.

96. Is the following statement true of false? If g′(a) ≠ 0,

then lim
x→a

f (x)

g(x)
=

f ′(a)

g′(a)
. Give an explanation for your

answer.

97. Which of the limits cannot be computed with

l’Hopital’s rule?

(a) lim
x→0

sinx

x
(b) lim

x→0

cos x

x

(c) lim
x→0

x

sin x
(d) lim

x→∞

x

ex

4.8 PARAMETRIC EQUATIONS

Representing Motion in the Plane

To represent the motion of a particle in the xy-plane we use two equations, one for the x-coordinate

of the particle, x = f (t), and another for the y-coordinate, y = g(t). Thus at time t the particle is at

the point (f (t), g(t)). The equation for x describes the right-left motion; the equation for y describes

the up-down motion. The equations for x and y are called parametric equations with parameter t.

Example 1 Describe the motion of the particle whose coordinates at time t are x = cos t and y = sin t.

Solution Since (cos t)2+(sin t)2 = 1, we have x2+y2 = 1. That is, at any time t the particle is at a point (x, y)

on the unit circle x2 + y2 = 1. We plot points at different times to see how the particle moves on

the circle. (See Figure 4.113 and Table 4.5.) The particle completes one full trip counterclockwise

around the circle every 2� units of time. Notice how the x-coordinate goes repeatedly back and forth

from −1 to 1 while the y-coordinate goes repeatedly up and down from −1 to 1. The two motions

combine to trace out a circle.



272 Chapter 4 USING THE DERIVATIVE

t = 0 t = 2�

t = �∕2

t = �

t = 3�∕2

y

x

Figure 4.113: The circle parameterized by

x = cos t, y = sin t

Table 4.5 Points on the circle with x = cos t,

y = sin t

t x y

0 1 0

�∕2 0 1

� −1 0

3�∕2 0 −1

2� 1 0

Example 2 Figure 4.114 shows the graphs of two functions, f (t) and g(t). Describe the motion of the particle

whose coordinates at time t are x = f (t) and y = g(t).

1 2 3 4

1 f (t)

t

x

1 2 3 4

1 g(t)

t

y

Figure 4.114: Graphs of x = f (t) and y = g(t) used to trace out the path (f (t), g(t)) in Figure 4.115

Solution Between times t = 0 and t = 1, the x-coordinate goes from 0 to 1, while the y-coordinate stays

fixed at 0. So the particle moves along the x-axis from (0, 0) to (1, 0). Then, between times t = 1

and t = 2, the x-coordinate stays fixed at x = 1, while the y-coordinate goes from 0 to 1. Thus, the

particle moves along the vertical line from (1, 0) to (1, 1). Similarly, between times t = 2 and t = 3,

it moves horizontally back to (0, 1), and between times t = 3 and t = 4 it moves down the y-axis to

(0, 0). Thus, it traces out the square in Figure 4.115.

1

1

x

y

t = 0
t = 4 t = 1

t = 2t = 3

Figure 4.115: The square parameterized by (f (t), g(t))
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Different Motions Along the Same Path

Example 3 Describe the motion of the particle whose x and y coordinates at time t are given by the equations

x = cos(3t), y = sin(3t).

Solution Since (cos(3t))2 + (sin(3t))2 = 1, we have x2 + y2 = 1, giving motion around the unit circle. But

from Table 4.6, we see that the particle in this example is moving three times as fast as the particle

in Example 1. (See Figure 4.116.)

y

x

t = 3�∕6

t = 2�∕6

t = �∕6

t = 0 t = 4�∕6

Figure 4.116: The circle parameterized by

x = cos(3t), y = sin(3t)

Table 4.6 Points on circle with

x = cos(3t), y = sin(3t)

t x y

0 1 0

�∕6 0 1

2�∕6 −1 0

3�∕6 0 −1

4�∕6 1 0

Example 3 is obtained from Example 1 by replacing t by 3t; this is called a change in parameter.

If we make a change in parameter, the particle traces out the same curve (or a part of it) but at a

different speed or in a different direction.

Example 4 Describe the motion of the particle whose x and y coordinates at time t are given by

x = cos(e−t
2
), y = sin(e−t

2
).

Solution As in Examples 1 and 3, we have x2 + y2 = 1, so the motion lies on the unit circle. As time t goes

from −∞ (way back in the past) to 0 (the present) to ∞ (way off in the future), e−t
2

goes from near 0

to 1 back to near 0. So (x, y) = (cos(e−t
2
), sin(e−t

2
)) goes from near (1, 0) to (cos 1, sin 1) and back

to near (1, 0). The particle does not actually reach the point (1, 0). (See Figure 4.117 and Table 4.7.)

t = 0

t = −1, t = 1

t = −100, t = 1001 radian

(cos 1, sin 1)

(1, 0)
x

y

Figure 4.117: The circle parameterized by

x = cos (e−t
2
), y = sin (e−t

2
)

Table 4.7 Points on circle

with x = cos(e−t
2
),

y = sin(e−t
2
)

t x y

−100 ∼ 1 ∼ 0

−1 0.93 0.36

0 0.54 0.84

1 0.93 0.36

100 ∼ 1 ∼ 0
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Motion in a Straight Line

An object moves with constant speed along a straight line through the point (x0, y0). Both the x-

and y-coordinates have a constant rate of change. Let a = dx∕dt and b = dy∕dt. Then at time t the

object has coordinates x = x0 + at, y = y0 + bt. (See Figure 4.118.) Notice that a represents the

change in x in one unit of time, and b represents the change in y. Thus the line has slope m = b∕a.

t = −1
t = 0

t = 1

t = 2
(x0 − a, y0 − b)

(x0, y0)
(x0 + a, y0 + b)

(x0 + 2a, y0 + 2b)

(0, 0)

Figure 4.118: The line x = x0 + at, y = y0 + bt

This yields the following:

Parametric Equations for a Straight Line

An object moving along a line through the point (x0, y0), with dx∕dt = a and dy∕dt = b, has

parametric equations

x = x0 + at, y = y0 + bt.

The slope of the line is m = b∕a.

Example 5 Find parametric equations for:

(a) The line passing through the points (2,−1) and (−1, 5).

(b) The line segment from (2,−1) to (−1, 5).

Solution (a) Imagine an object moving with constant speed along a straight line from (2,−1) to (−1, 5),

making the journey from the first point to the second in one unit of time. Then dx∕dt = ((−1)−

2)∕1 = −3 and dy∕dt = (5 − (−1))∕1 = 6. Thus the parametric equations are

x = 2 − 3t, y = −1 + 6t.

(b) In the parameterization in part (a), t = 0 corresponds to the point (2,−1) and t = 1 corresponds

to the point (−1, 5). So the parameterization of the segment is

x = 2 − 3t, y = −1 + 6t, 0 ≤ t ≤ 1.

There are many other possible parametric equations for this line.

Speed and Velocity

An object moves along a straight line at a constant speed, with dx∕dt = a and dy∕dt = b. In one

unit of time, the object moves a units horizontally and b units vertically. Thus, by the Pythagorean

Theorem, it travels a distance
√

a2 + b2. So its speed is

Speed =
Distance traveled

Time taken
=

√

a2 + b2

1
=
√

a2 + b2.
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For general motion along a curve with varying speed, we make the following definition:

The instantaneous speed of a moving object is defined to be

Speed =

√

(

dx

dt

)2

+

(

dy

dt

)2

.

The quantity vx = dx∕dt is the instantaneous velocity in the x-direction; vy = dy∕dt is the

instantaneous velocity in the y-direction. The velocity vector v⃗ is written v⃗ = vxi⃗ + vyj⃗ .

The quantities vx and vy are called the components of the velocity in the x- and y-directions.

The velocity vector v⃗ is a useful way to keep track of the velocities in both directions using one

mathematical object. The symbols i⃗ and j⃗ represent vectors of length one in the positive x and

y-directions, respectively. For more about vectors, see Appendix D.

Example 6 A particle moves along a curve in the xy-plane with x(t) = 2t+ et and y(t) = 3t−4, where t is time.

Find the velocity vector and speed of the particle when t = 1.

Solution Differentiating gives
dx

dt
= 2 + et,

dy

dt
= 3.

When t = 1 we have vx = 2 + e, vy = 3. So the velocity vector is v⃗ = (2 + e)i⃗ + 3j⃗ and the speed

is
√

(2 + e)2 + 32 =
√

13 + 4e + e2 = 5.591.

Example 7 A particle moves in the xy-plane with x = 2t3−9t2+12t and y = 3t4−16t3+18t2, where t is time.

(a) At what times is the particle

(i) Stopped? (ii) Moving parallel to the x- or y- axis?

(b) Find the speed of the particle at time t.

Solution (a) Differentiating gives

dx

dt
= 6t2 − 18t+ 12,

dy

dt
= 12t3 − 48t2 + 36t.

We are interested in the points at which dx∕dt = 0 or dy∕dt = 0. Solving gives

dx

dt
= 6(t2 − 3t + 2) = 6(t− 1)(t − 2) so

dx

dt
= 0 if t = 1 or t = 2.

dy

dt
= 12t(t2 − 4t + 3) = 12t(t− 1)(t − 3) so

dy

dt
= 0 if t = 0, t = 1, or t = 3.

(i) The particle is stopped if both dx∕dt and dy∕dt are 0, which occurs at t = 1.

(ii) The particle is moving parallel to the x-axis if dy∕dt = 0 but dx∕dt ≠ 0. This occurs at

t = 0 and t = 3. The particle is moving parallel to the y-axis if dx∕dt = 0 but dy∕dt ≠ 0.

This occurs at t = 2.

(b) We have

Speed =

√

(

dx

dt

)2

+

(

dy

dt

)2

=
√

(6t2 − 18t+ 12)2 + (12t3 − 48t2 + 36t)2.
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Example 8 A child is sitting on a Ferris wheel of diameter 10 meters, making one revolution every 2 minutes.

Find the speed of the child

(a) Using geometry. (b) Using a parameterization of the motion.

Solution (a) The child moves at a constant speed around a circle of radius 5 meters, completing one revolution

every 2 minutes. One revolution around a circle of radius 5 is a distance of 10�, so the child’s

speed is 10�∕2 = 5� ≈ 15.7 m/min. See Figure 4.119.

5m

5 m Speed
15.7 m/min

Speed
15.7 m/min

Figure 4.119: Motion of a child on a Ferris wheel at two different times is represented by the

arrows. The direction of each arrow is the direction of motion at that time.

(b) The Ferris wheel has radius 5 meters and completes 1 revolution counterclockwise every 2 min-

utes. If the origin is at the center of the circle and we measure x and y in meters, the motion is

parameterized by equations of the form

x = 5 cos(!t), y = 5 sin(!t),

where! is chosen to make the period 2 minutes. Since the period of cos(!t) and sin(!t) is 2�∕!,

we must have
2�

!
= 2, so ! = �.

Thus, for t in minutes, the motion is described by the equations

x = 5 cos(�t), y = 5 sin(�t).

So the speed is given by

Speed =

√

(

dx

dt

)2

+

(

dy

dt

)2

=

√

(−5�)2 sin2(�t) + (5�)2 cos2(�t) = 5�

√

sin2(�t) + cos2(�t) = 5� ≈ 15.7 m/min,

which agrees with the speed we calculated in part (a).

Tangent Lines

To find the tangent line at a point (x0, y0) to a curve given parametrically, we find the straight line

motion through (x0, y0) with the same velocity in the x and y directions as a particle moving along

the curve.
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Example 9 Find the tangent line at the point (1, 2) to the curve defined by the parametric equations

x = t3, y = 2t.

Solution At time t = 1 the particle is at the point (1, 2). The velocity in the x-direction at time t is vx =

dx∕dt = 3t2, and the velocity in the y-direction is vy = dy∕dt = 2. So at t = 1 the velocity in the

x-direction is 3 and the velocity in the y-direction is 2. Thus the tangent line has parametric equations

x = 1 + 3t, y = 2 + 2t.

Parametric Representations of Curves in the Plane

Sometimes we are more interested in the curve traced out by the particle than we are in the motion

itself. In that case we call the parametric equations a parameterization of the curve. As we can see

by comparing Examples 1 and 3, two different parameterizations can describe the same curve in the

xy-plane. Though the parameter, which we usually denote by t, may not have physical meaning, it

is often helpful to think of it as time.

Example 10 Give a parameterization of the semicircle of radius 1 shown in Figure 4.120.

−1 1

1

−1

x

y

Figure 4.120: Parameterization of

semicircle for Example 10

1

2
−

1

2

−1

1

x

y

Figure 4.121: Parameterization of the

ellipse 4x2 + y2 = 1 for Example 11

Solution We can use the equations x = cos t and y = sin t for counterclockwise motion in a circle, from

Example 1 on page 271. The particle passes (0, 1) at t = �∕2, moves counterclockwise around the

circle, and reaches (0,−1) at t = 3�∕2. So a parameterization is

x = cos t, y = sin t,
�

2
≤ t ≤

3�

2
.

To find the xy-equation of a curve given parametrically, we eliminate the parameter t in the

parametric equations. In the previous example, we use the Pythagorean identity, so

cos2 t + sin2 t = 1 gives x2 + y2 = 1.

Example 11 Give a parameterization of the ellipse 4x2 + y2 = 1 shown in Figure 4.121.

Solution Since (2x)2 + y2 = 1, we adapt the parameterization of the circle in Example 1. Replacing x by 2x

gives the equations 2x = cos t, y = sin t. A parameterization of the ellipse is thus

x =
1

2
cos t, y = sin t, 0 ≤ t ≤ 2�.
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We usually require that the parameterization of a curve go from one end of the curve to the

other without retracing any portion of the curve. This is different from parameterizing the motion of

a particle, where, for example, a particle may move around the same circle many times.

Parameterizing the Graph of a Function

The graph of any function y = f (x) can be parameterized by letting the parameter t be x:

x = t, y = f (t).

Example 12 Give parametric equations for the curve y = x3 − x. In which direction does this parameterization

trace out the curve?

Solution Let x = t, y = t3 − t. Thus, y = t3 − t = x3 − x. Since x = t, as time increases the x-coordinate

moves from left to right, so the particle traces out the curve y = x3 − x from left to right.

Curves Given Parametrically

Some complicated curves can be graphed more easily using parametric equations; the next example

shows such a curve.

Example 13 Assume t is time in seconds. Sketch the curve traced out by the particle whose motion is given by

x = cos(3t), y = sin(5t).

Solution The x-coordinate oscillates back and forth between 1 and −1, completing 3 oscillations every 2�

seconds. The y-coordinate oscillates up and down between 1 and −1, completing 5 oscillations ev-

ery 2� seconds. Since both the x- and y-coordinates return to their original values every 2� seconds,

the curve is retraced every 2� seconds. The result is a pattern called a Lissajous figure. (See Fig-

ure 4.122.)

−1 1

−1

1

x

y

Figure 4.122: A Lissajous figure: x = cos(3t), y = sin(5t)

Slope and Concavity of Parametric Curves

Suppose we have a curve traced out by the parametric equations x = f (t), y = g(t). To find the

slope at a point on the curve, we could, in theory, eliminate the parameter t and then differentiate the

function we obtain. However, the chain rule gives us an easier way.

Suppose the curve traced out by the parametric equations is represented by y = ℎ(x). (It may

be represented by an implicit function.) Thinking of x and y as functions of t, the chain rule gives

dy

dt
=

dy

dx
⋅

dx

dt
,
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so we obtain the slope of the curve as a function of t:

Slope of curve =
dy

dx
=

dy∕dt

dx∕dt
.

We can find the second derivative, d2y∕dx2, by a similar method and use it to investigate the

concavity of the curve. The chain rule tells us that if w is any differentiable function of x, then

dw

dx
=

dw∕dt

dx∕dt
.

For w = dy∕dx, we have

dw

dx
=

d

dx

(

dy

dx

)

=
d2y

dx2
,

so the chain rule gives the second derivative at any point on a parametric curve:

d2y

dx2
=

d

dt

(

dy

dx

)/

dx

dt
.

Example 14 If x = cos t, y = sin t, find the point corresponding to t = �∕4, the slope of the curve at the point,

and d2y∕dx2 at the point.

Solution The point corresponding to t = �∕4 is (cos(�∕4), sin(�∕4)) =
(

1∕
√

2, 1∕
√

2
)

.

To find the slope, we use
dy

dx
=

dy∕dt

dx∕dt
=

cos t

− sin t
,

so when t = �∕4,

Slope =
cos(�∕4)

− sin(�∕4)
= −1.

Thus, the curve has slope −1 at the point (1∕
√

2, 1∕
√

2). This is as we would expect, since the curve

traced out is the circle of Example 1.

To find d2y∕dx2, we use w = dy∕dx = −(cos t)∕(sin t), so

d2y

dx2
=

d

dt

(

−
cos t

sin t

)

/

(− sin t) = −
(− sin t)(sin t) − (cos t)(cos t)

sin2 t
⋅

(

−
1

sin t

)

= −
1

sin3 t
.

Thus, at t = �∕4

d2y

dx2

|

|

|

|t=�∕4

= −
1

(sin(�∕4))3
= −2

√

2.

Since the second derivative is negative, the concavity is negative. This is as expected, since the point

is on the top half of the circle where the graph is bending downward.
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Summary for Section 4.8

• Parametric equations: To represent the motion of a particle in the xy-plane we use two equa-

tions, one for the x-coordinate of the particle, x = f (t), and another for the y-coordinate,

y = g(t). The equations for x and y are called parametric equations with parameter t.

• Parametric equations for a straight line: An object moving along a line through the point

(x0, y0), with dx∕dt = a and dy∕dt = b, has parametric equations x = x0 + at, y = y0 + bt.

The slope of the line is m = b∕a.

• The instantaneous speed of a moving object is defined to be

Speed =

√

(

dx

dt

)2

+

(

dy

dt

)2

.

The quantity vx = dx∕dt is the instantaneous velocity in the x-direction; vy = dy∕dt is the

instantaneous velocity in the y-direction. The velocity vector v⃗ is written v⃗ = vxi⃗ + vy j⃗ .

• Slope and concavity of parametric curves:

∙ Slope of curve =
dy

dx
=

dy∕dt

dx∕dt

∙
d2y

dx2
=

d

dt

(

dy

dx

)/

dx

dt
.

Exercises and Problems for Section 4.8 Online Resource: Additional Problems for Section 4.8
EXERCISES

For Exercises 1–4, use the graphs of f and g to describe

the motion of a particle whose position at time t is given by

x = f (t), y = g(t).

1.

1 2 3 4

−1

1

t

x
f (t)

1 2 3 4

−1

1

t

y
g(t)

2.

1 2 3 4

1

2

t

x

f (t)

1 2 3 4

1

2

t

y

g(t)

3.

1 2 3 4

1

2

t

x

f (t)

1 2 3 4

−1

1

t

y g(t)

4.

1 2 3 4

−1

1

t

x

f (t)

1 2 3 4

−1

1

t

y

g(t)

In Exercises 5–11, write a parameterization for the curves in

the xy-plane.

5. A circle of radius 3 centered at the origin and traced out

clockwise.

6. A vertical line through the point (−2,−3).

7. A circle of radius 5 centered at the point (2, 1) and

traced out counterclockwise.

8. A circle of radius 2 centered at the origin traced clock-

wise starting from (−2, 0) when t = 0.

9. The line through the points (2,−1) and (1, 3).

10. An ellipse centered at the origin and crossing the x-axis

at ±5 and the y-axis at ±7.

11. An ellipse centered at the origin, crossing the x-axis at

±3 and the y-axis at ±7. Start at the point (−3, 0) and

trace out the ellipse counterclockwise.
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Exercises 12–17 give parameterizations of the unit circle or

a part of it. Describe in words how the circle is traced out,

including when and where the particle is moving clockwise

and when and where the particle is moving counterclock-

wise.

12. x = sin t, y = cos t

13. x = cos t, y = −sin t

14. x = cos(t2), y = sin(t2)

15. x = cos(t3 − t), y = sin(t3 − t)

16. x = cos(ln t), y = sin(ln t)

17. x = cos(cos t), y = sin(cos t)

In Exercises 18–20, what curves do the parametric equations

trace out? Find the equation for each curve.

18. x = 2 + cos t, y = 2 − sin t

19. x = 2 + cos t, y = 2 − cos t

20. x = 2 + cos t, y = cos2 t

In Exercises 21–26, the parametric equations describe the

motion of a particle. Find an equation of the curve along

which the particle moves.

21. x = 3t + 1

y = t − 4

22. x = t2 + 3

y = t2 − 2

23. x = t + 4

y = t2 − 3

24. x = cos 3t

y = sin 3t

25. x = 3 cos t

y = 3 sin t

26. x = 2 + 5 cos t

y = 7 + 5 sin t

27. A curve is parameterized for 0 ≤ t ≤ 1 by

x = t2

y = t6.

Find the slope of the curve in the xy-plane in terms of t.

In Exercises 28–30, find an equation of the tangent line to

the curve for the given value of t.

28. x = t3 − t, y = t2 when t = 2

29. x = t2 − 2t, y = t2 + 2t when t = 1

30. x = sin(3t), y = sin(4t) when t = �

For Exercises 31–34, find the speed for the given motion of

a particle. Find any times when the particle comes to a stop.

31. x = t2, y = t3

32. x = cos(t2), y = sin(t2)

33. x = cos 2t, y = sin t

34. x = t2 − 4t, y = t3 − 12t

35. Find parametric equations for the tangent line at t = 2

for Problem 31.

PROBLEMS

Problems 36–37 show motion twice around a square, be-

ginning at the origin at time t = 0 and parameterized by

x = f (t), y = g(t). Sketch possible graphs of f and g con-

sisting of line segments.

36.

1

1

x

y

t = 0
t = 16
t = 32

t = 1
t = 17

t = 8
t = 24

t = 9
t = 25

37.

1

1

x

y

t = 0
t = 16
t = 32

t = 1
t = 17

t = 2
t = 18

t = 3
t = 19

38. A line is parameterized by x = 10 + t and y = 2t.

(a) What part of the line do we get by restricting t to

t < 0?

(b) What part of the line do we get by restricting t to

0 ≤ t ≤ 1?

39. A line is parameterized by x = 2 + 3t and y = 4 + 7t.

(a) What part of the line is obtained by restricting t to

nonnegative numbers?

(b) What part of the line is obtained if t is restricted to

−1 ≤ t ≤ 0?

(c) How should t be restricted to give the part of the

line to the left of the y-axis?

40. (a) Explain how you know that the following two pairs

of equations parameterize the same line:

x = 2 + t, y = 4 + 3t and x = 1 − 2t, y = 1 − 6t.

(b) What are the slope and y intercept of this line?

41. Describe the similarities and differences among the mo-

tions in the plane given by the following three pairs of

parametric equations:

(a) x = t, y = t2 (b) x = t2, y = t4

(c) x = t3, y = t6.
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42. What can you say about the values of a, b and k if the

equations

x = a + k cos t, y = b + k sin t, 0 ≤ t ≤ 2�,

trace out the following circles in Figure 4.123?

(a) C1 (b) C2 (c) C3

10

−10

10
C2

C1

C3

x

y

Figure 4.123

43. Suppose a, b, c, d, m, n, p, q > 0. Match each pair of

parametric equations with one of the lines l1, l2, l3, l4
in Figure 4.124.

I.

{

x = a + ct,

y = −b + dt.
II.

{

x = m + pt,

y = n − qt.

l1

l2

l3

l4

x

y

Figure 4.124

44. Describe in words the curve represented by the para-

metric equations

x = 3 + t3, y = 5 − t3.

45. (a) Sketch the parameterized curve x = t cos t, y =

t sin t for 0 ≤ t ≤ 4�.

(b) By calculating the position at t = 2 and t = 2.01,

estimate the speed at t = 2.

(c) Use derivatives to calculate the speed at t = 2 and

compare your answer to part (b).

46. The position of a particle at time t is given by x = et

and y = 2e2t.

(a) Find dy∕dx in terms of t.

(b) Eliminate the parameter and write y in terms of x.

(c) Using your answer to part (b), find dy∕dx in terms

of x.

47. At time t, the position of a particle moving on a curve

is given by x(t) = t2 + 4 and y(t) = 3t + 5. At t = 1:

(a) What is the position of the particle?

(b) What is the slope of the curve?

(c) What is the speed of the particle?

48. At time t, the position of a particle moving on a curve

is given by x(t) = 3t2 − 1 and y(t) = t2 − 3t. At t = 2:

(a) What is the position of the particle?

(b) What is the slope of the curve?

(c) What is the speed of the particle?

49. There are many ways to parameterize the same line.

(a) Give the constant-speed parameterization of a line

if t = 0 and t = 1 correspond to the first and second

points, respectively, on the line:

(i) (2, 1); (5, 10) (ii) (3, 4); (−1,−8)

(b) Show that parts (i) and (ii) parameterize the same

line by finding the equation of each line in slope-

intercept form y = b + mx.

50. For x and y in meters, the motion of a particle is given

by

x = t3 − 3t, y = t2 − 2t,

where the y-axis is vertical and the x-axis is horizontal.

(a) Does the particle ever come to a stop? If so, when

and where?

(b) Is the particle ever moving straight up or down? If

so, when and where?

(c) Is the particle ever moving straight horizontally

right or left? If so, when and where?

51. A curve is parameterized for 0 ≤ t ≤ 1 by

x = cos(2�t(1 − t))

y = sin(2�t(1 − t)).

(a) Show that this curve lies on the unit circle.

(b) Where does the particle start and end?

(c) What is the speed at time t?

(d) When, if ever, does the particle stop? If so, where?

52. At time t, the position of a particle moving on a curve

is given by x = e2t − e−2t and y = 3e2t + e−2t.

(a) Find all values of t at which the curve has

(i) A horizontal tangent.

(ii) A vertical tangent.

(b) Find dy∕dx in terms of t.

(c) Find lim
t→∞

dy∕dx.



4.8 PARAMETRIC EQUATIONS 283

53. Figure 4.125 shows the graph of a parameterized curve

x = f (t), y = f ′(t) for a function f (t).

(a) Is f (t) an increasing or decreasing function?

(b) As t increases, is the curve traced from P to Q or

from Q to P ?

(c) Is f (t) concave up or concave down?

1 2 3 4 5

2

4

6

8

10
P

Q
x

y

Figure 4.125

54. At time t, the position of a particle is x(t) = 5 sin(2t)

and y(t) = 4 cos(2t), with 0 ≤ t < 2�.

(a) Graph the path of the particle for 0 ≤ t < 2�, indi-

cating the direction of motion.

(b) Find the position and velocity of the particle when

t = �∕4.

(c) How many times does the particle pass through the

point found in part (b)?

(d) What does your answer to part (b) tell you about

the direction of the motion relative to the coordi-

nate axes when t = �∕4?

(e) What is the speed of the particle at time t = �?

55. Two particles move in the xy-plane. At time t, the po-

sition of particle A is given by x(t) = 4t − 4 and

y(t) = 2t − k, and the position of particle B is given

by x(t) = 3t and y(t) = t2 − 2t − 1.

(a) If k = 5, do the particles ever collide? Explain.

(b) Find k so that the two particles do collide.

(c) At the time that the particles collide in part (b),

which particle is moving faster?

56. (a) Find d2y∕dx2 for x = t3 + t, y = t2.

(b) Is the curve concave up or down at t = 1?

57. (a) An object moves along the path x = 3t and y =

cos(2t), where t is time. Write the equation for the

line tangent to this path at t = �∕3.

(b) Find the smallest positive value of t for which the

y-coordinate is a local maximum.

(c) Find d2y∕dx2 when t = 2. What does this tell you

about the concavity of the graph at t = 2?

58. The position of a particle at time t is given by x = et+3

and y = e2t + 6et + 9.

(a) Find dy∕dx in terms of t.

(b) Find d2y∕dx2. What does this tell you about the

concavity of the graph?

(c) Eliminate the parameter and write y in terms of x.

(d) Using your answer from part (c), find dy∕dx and

d2y∕dx2 in terms of x. Show that these answers

are the same as the answers to parts (a) and (b).

59. A particle moves in the xy-plane with position at time

t given by x = sin t and y = cos(2t) for 0 ≤ t < 2�.

(a) At what time does the particle first touch the x-

axis? What is the speed of the particle at that time?

(b) Is the particle ever at rest?

(c) Discuss the concavity of the graph.

60. At time t, a projectile launched with angle of elevation

� and initial velocity v0 has position x(t) = (v0 cos �)t

and y(t) = (v0 sin �)t−
1

2
gt2, where g is the acceleration

due to gravity.

(a) A football player kicks a ball at an angle of 36◦

above the ground with an initial velocity of 60

feet per second. Write the parametric equations for

the position of the football at time t seconds. Use

g = 32 ft/sec2.

(b) Graph the path that the football follows.

(c) How long does it take for the football to hit the

ground? How far is it from the spot where the foot-

ball player kicked it?

(d) What is the maximum height the football reaches

during its flight?

(e) At what speed is the football traveling 1 second af-

ter it was kicked?
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Strengthen Your Understanding

In Problems 61–62, explain what is wrong with the state-

ment.

61. The line segment from (2, 2) to (0, 0) is parameterized

by x = 2t, y = 2t, 0 ≤ t ≤ 1.

62. A circle of radius 2 centered at (0, 1) is parameterized

by x = 2 cos �t, y = 2 sin �t, 0 ≤ t ≤ 2.

In Problems 63–64, give an example of:

63. A parameterization of a quarter circle centered at the

origin of radius 2 in the first quadrant.

64. A parameterization of the line segment between (0, 0)

and (1, 2).

Are the statements in Problems 65–66 true of false? Give an

explanation for your answer.

65. The curve given parametrically by x = f (t) and y =

g(t) has no sharp corners if f and g are differentiable.

66. If a curve is given parametrically by x = cos(t2), y =

sin(t2), then its slope is tan(t2).

Online Resource: Review Problems and Projects
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5.1 HOW DO WE MEASURE DISTANCE TRAVELED?

For positive constant velocities, we can find the distance a moving object travels using the formula

Distance = Velocity × Time.

In this section we see how to estimate the distance when the velocity is not a constant.

A Thought Experiment: How Far Did the Car Go?

Velocity Data Every Two Seconds

A car is moving with increasing velocity along a straight road. Table 5.1 shows the velocity every

two seconds:

Table 5.1 Velocity of car every two seconds

Time (sec) 0 2 4 6 8 10

Velocity (ft/sec) 20 30 38 44 48 50

How far has the car traveled? Since we don’t know how fast the car is moving at every moment,

we can’t calculate the distance exactly, but we can make an estimate. The velocity is increasing, so

the car is going at least 20 ft/sec for the first two seconds. Since Distance = Velocity×Time, the car

goes at least 20 ⋅ 2 = 40 feet during the first two seconds. Likewise, it goes at least 30 ⋅ 2 = 60 feet

during the next two seconds, and so on. During the ten-second period it goes at least

20 ⋅ 2 + 30 ⋅ 2 + 38 ⋅ 2 + 44 ⋅ 2 + 48 ⋅ 2 = 360 feet.

Thus, 360 feet is an underestimate of the total distance traveled during the ten seconds.

To get an overestimate, we can reason this way: Since the velocity is increasing, during the first

two seconds, the car’s velocity is at most 30 ft/sec, so it moved at most 30 ⋅ 2 = 60 feet. In the next

two seconds it moved at most 38 ⋅ 2 = 76 feet, and so on. Thus, over the ten-second period it moved

at most

30 ⋅ 2 + 38 ⋅ 2 + 44 ⋅ 2 + 48 ⋅ 2 + 50 ⋅ 2 = 420 feet.

Therefore,

360 feet ≤ Total distance traveled ≤ 420 feet.

There is a difference of 60 feet between the upper and lower estimates.

Velocity Data Every One Second

What if we want a more accurate estimate? Then we make more frequent velocity measurements,

say every second, as in Table 5.2.

As before, we get a lower estimate for each second by using the velocity at the beginning of that

second. During the first second the velocity is at least 20 ft/sec, so the car travels at least 20 ⋅ 1 = 20

feet. During the next second the car moves at least 26 feet, and so on. We have

New lower estimate = 20 ⋅ 1 + 26 ⋅ 1 + 30 ⋅ 1 + 34 ⋅ 1 + 38 ⋅ 1

+ 41 ⋅ 1 + 44 ⋅ 1 + 46 ⋅ 1 + 48 ⋅ 1 + 49 ⋅ 1

= 376 feet.

Table 5.2 Velocity of car every second

Time (sec) 0 1 2 3 4 5 6 7 8 9 10

Velocity (ft/sec) 20 26 30 34 38 41 44 46 48 49 50
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Notice that this lower estimate is greater than the old lower estimate of 360 feet.

We get a new upper estimate by considering the velocity at the end of each second. During the

first second the velocity is at most 26 ft/sec, so the car moves at most 26 ⋅ 1 = 26 feet; in the next

second it moves at most 30 feet, and so on.

New upper estimate = 26 ⋅ 1 + 30 ⋅ 1 + 34 ⋅ 1 + 38 ⋅ 1 + 41 ⋅ 1

+ 44 ⋅ 1 + 46 ⋅ 1 + 48 ⋅ 1 + 49 ⋅ 1 + 50 ⋅ 1

= 406 feet.

This is less than the old upper estimate of 420 feet. Now we know that

376 feet ≤ Total distance traveled ≤ 406 feet.

The difference between upper and lower estimates is now 30 feet, half of what it was before. By

halving the interval of measurement, we have halved the difference between the upper and lower

estimates.

Visualizing Distance on the Velocity Graph: Two-Second Data

We can represent both upper and lower estimates on a graph of the velocity. The graph also shows

how changing the time interval between velocity measurements changes the accuracy of our esti-

mates.

The velocity can be graphed by plotting the two-second data in Table 5.1 and drawing a curve

through the data points. (See Figure 5.1.) The area of the first dark rectangle is 20 ⋅2 = 40, the lower

estimate of the distance moved during the first two seconds. The area of the second dark rectangle is

30 ⋅ 2 = 60, the lower estimate for the distance moved in the next two seconds. The total area of the

dark rectangles represents the lower estimate for the total distance moved during the ten seconds.

If the dark and light rectangles are considered together, the first area is 30 ⋅ 2 = 60, the upper

estimate for the distance moved in the first two seconds. The second area is 38 ⋅ 2 = 76, the upper

estimate for the next two seconds. The upper estimate for the total distance is represented by the

sum of the areas of the dark and light rectangles. Therefore, the area of the light rectangles alone

represents the difference between the two estimates.

To visualize the difference between the two estimates, look at Figure 5.1 and imagine the light

rectangles all pushed to the right and stacked on top of each other. This gives a rectangle of width 2

and height 30. The height, 30, is the difference between the initial and final values of the velocity:

30 = 50 − 20. The width, 2, is the time interval between velocity measurements.

Visualizing Distance on the Velocity Graph: One-Second Data

Figure 5.2 shows the velocities measured every second. The area of the dark rectangles again repre-

sents the lower estimate, and the area of the dark and light rectangles together represent the upper

2 4 6 8 10
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20

30

40

50

time

velocity

✻

❄

30 (= 50 − 20)

Difference
between
estimates

Overestimate
of distance

(area of dark and
light rectangles)

Underestimate
of distance

(area of dark
rectangles)

✲✛ 2

Figure 5.1: Velocity measured every 2 seconds
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Figure 5.2: Velocity measured every second

estimate. As before, the difference between the two estimates is represented by the area of the light

rectangles. This difference can be calculated by stacking the light rectangles vertically, giving a rect-

angle of the same height as before but of half the width. Its area is therefore half what it was before.

Again, the height of this stack is 50 − 20 = 30, but its width is now 1.

Example 1 What would be the difference between the upper and lower estimates if the velocity were given every

tenth of a second? Every hundredth of a second? Every thousandth of a second?

Solution Every tenth of a second: Difference between estimates = (50 − 20)(1∕10) = 3 feet.

Every hundredth of a second: Difference between estimates = (50 − 20)(1∕100) = 0.3 feet.

Every thousandth of a second: Difference between estimates = (50 − 20)(1∕1000) = 0.03 feet.

Example 2 How frequently must the velocity be recorded in order to estimate the total distance traveled to within

0.1 feet?

Solution The difference between the velocity at the beginning and end of the observation period is 50− 20 =

30. If the time between successive measurements is Δt, then the difference between the upper and

lower estimates is (30)Δt. We want

(30)Δt < 0.1,

or

Δt <
0.1

30
= 0.0033.

So if the measurements are made less than 0.0033 seconds apart, the distance estimate is accurate to

within 0.1 feet.

Visualizing Distance on the Velocity Graph: Area Under Curve

As we make more frequent velocity measurements, the rectangles used to estimate the distance trav-

eled fit the curve more closely. See Figures 5.3 and 5.4. In the limit, as the number of subdivisions

increases, we see that the distance traveled is given by the area between the velocity curve and the

horizontal axis. See Figure 5.5. In general:

If the velocity is positive, the total distance traveled is the area under the velocity curve.
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Figure 5.5: Distance traveled is area

under curve

Example 3 With time t in seconds, the velocity of a bicycle, in feet per second, is given by v(t) = 5t. How far

does the bicycle travel in the first 3 seconds after t = 0?

Solution The velocity is linear. See Figure 5.6. The distance traveled is the area between the line v(t) = 5t

and the t-axis. Since this region is a triangle of height 15 and base 3,

Distance traveled = Area of triangle =
1

2
⋅ 15 ⋅ 3 = 22.5 feet.

3

15

v(t) = 5t

time, t (sec)

velocity (ft∕sec)

Figure 5.6: Shaded area represents distance traveled

Positive and Negative Velocity: Change in Position Versus Total Distance Traveled

In our thought experiment, we considered only motion in one direction; velocity was always positive.

However if the car turns around and heads in the opposite direction, we say the velocity is negative.

Then some terms in the sum are negative: Positive terms represent motion in the original direction,

while negative terms represent motion in the opposite direction.

The sum now gives the change in position of the car, rather than the distance traveled. The

change in position tells us how far the car is from its starting point and in which direction. To find

the distance traveled, we take the absolute value of all terms in the sum.

Example 4 A particle moves along the y-axis with velocity 30 cm/sec for 5 seconds and velocity −10 cm/sec for

the next 5 seconds. Positive velocity indicates upward motion; negative velocity represents downward

motion. Explain what is represented by the sums

(a) 30 ⋅ 5 + (−10) ⋅ 5 (b) 30 ⋅ 5 + 10 ⋅ 5
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Solution The particle moves upward at 30 cm/sec for 5 seconds, then turns around and moves downward at

10 cm/sec for 5 seconds. Thus the particle

Moves upward: 30 ⋅ 5 = 150 cm

Moves downward: 10 ⋅ 5 = 50 cm.

(a) The sum 30 ⋅ 5 + (−10) ⋅ 5 is the distance moved upward minus the distance moved downward,

representing

Change in position = 30 ⋅ 5 + (−10) ⋅ 5 = 150 − 50 = 100 cm upward.

(b) The sum 30 ⋅ 5 + 10 ⋅ 5 is the distance moved upward plus the distance moved downward,

representing

Distance traveled = 30 ⋅ 5 + 10 ⋅ 5 = 150 + 50 = 200 cm.

Figure 5.7 shows the velocity versus time. The area of the rectangle above the t-axis represents

the distance moved upward, while the area of the rectangle below the t-axis represents the distance

moved downward. The difference in their areas gives the change in position; the sum of their areas

gives the total distance traveled.

5

10

−10

30

✛ Area = 150 Upward motion

■
Area = 50 Downward motion

t (sec)

v (cm/sec)

Figure 5.7: Areas give change in position and distance

traveled

As we saw in Example 4, when velocity is negative as well as positive, there are two different

sums. The sum using the velocity (positive and negative terms) gives change in position; the sum

using the absolute value of velocity, that is, speed (all positive terms), gives total distance traveled.

In terms of area:

If the velocity can be negative as well as positive, then

• Change in position is given by the area above axis minus area below the axis

• Distance traveled is given by the area above axis plus area below the axis

Left and Right Sums

We now write the estimates for the distance traveled by the car in new notation. Let v = f (t) denote

any nonnegative velocity function. We want to find the distance traveled between times t = a and

t = b. We take measurements of f (t) at equally spaced times t0, t1, t2, . . . , tn, with time t0 = a and

time tn = b. The time interval between any two consecutive measurements is

Δt =
b − a

n
,
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where Δt means the change, or increment, in t.

During the first time interval, from t0 and t1, the velocity can be approximated by f (t0), so the

distance traveled is approximately

f (t0)Δt.

During the second time interval, the velocity is about f (t1), so the distance traveled is about

f (t1)Δt.

Continuing in this way and adding all the estimates, we get an estimate for the total distance traveled.

In the last interval, the velocity is approximately f (tn−1), so the last term is f (tn−1)Δt:

Total distance traveled

between t = a and t = b
≈ f (t0)Δt + f (t1)Δt + f (t2)Δt +⋯ + f (tn−1)Δt.

This is called a left-hand sum because we used the value of velocity from the left end of each time

interval. It is represented by the sum of the areas of the rectangles in Figure 5.8.

We can also calculate a right-hand sum by using the value of the velocity at the right end of

each time interval. In that case the estimate for the first interval is f (t1)Δt, for the second interval it

is f (t2)Δt, and so on. The estimate for the last interval is now f (tn)Δt, so

Total distance traveled

between t = a and t = b
≈ f (t1)Δt + f (t2)Δt + f (t3)Δt +⋯ + f (tn)Δt.

The right-hand sum is represented by the area of the rectangles in Figure 5.9.

If f is an increasing function, as in Figures 5.8 and 5.9, the left-hand sum is an underestimate

and the right-hand sum is an overestimate of the total distance traveled. If f is decreasing, as in

Figure 5.10, then the roles of the two sums are reversed.

Accuracy of Estimates

For either increasing or decreasing velocity functions, the exact value of the distance traveled lies

somewhere between the two estimates. Thus, the accuracy of our estimate depends on how close

these two sums are. For a function which is increasing throughout or decreasing throughout the

interval [a, b]:

|

|

|

|

|

Difference between
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|

|

|

|

|

=
|

|

|

|

|

Difference between

f (a) and f (b)

|

|

|

|

|

⋅ Δt = |f (b) − f (a)| ⋅ Δt.

a = t0 t1 t2 tn−1 tn = b
t

v
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Figure 5.8: Left-hand sums
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Figure 5.9: Right-hand sums
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v = f (t)

v
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t
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Figure 5.10: Left and right sums if f is decreasing

(Absolute values make the differences nonnegative.) In Figure 5.10, the area of the light rectangles

is the difference between estimates. By making the time interval, Δt, between measurements small

enough, we can make this difference between lower and upper estimates as small as we like.

Summary for Section 5.1

• If the velocity is positive, the total distance traveled is the area under the velocity curve.

• If the velocity can be negative as well as positive, then

∙ Change in position is given by the area above axis minus area below the axis

∙ Distance traveled is given by the area above axis plus area below the axis

• Let v = f (t) denote any nonnegative velocity function. We want to find the distance traveled

between times t = a and t = b. We take measurements of f (t) at equally spaced times t0, t1,

t2, . . . , tn, with time t0 = a and time tn = b. The time interval between any two consecutive

measurements is

Δt =
b − a

n
,

where Δt means the change, or increment, in t.

Total distance traveled

between t = a and t = b
≈ f (t0)Δt + f (t1)Δt + f (t2)Δt +⋯ + f (tn−1)Δt.

This is called a left-hand sum.

Total distance traveled

between t = a and t = b
≈ f (t1)Δt + f (t2)Δt + f (t3)Δt +⋯ + f (tn)Δt.

This is called a right-hand sum.
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Exercises and Problems for Section 5.1 Online Resource: Additional Problems for Section 5.1
EXERCISES

1. Figure 5.11 shows the velocity of a car for 0 ≤ t ≤ 12

and the rectangles used to estimate the distance trav-

eled.

(a) Do the rectangles represent a left or a right sum?

(b) Do the rectangles lead to an upper or a lower esti-

mate?

(c) What is the value of n?

(d) What is the value of Δt?

(e) Give an approximate value for the estimate.

120

4

t

Figure 5.11

2. Figure 5.12 shows the velocity of a car for 0 ≤ t ≤ 24

and the rectangles used to estimate the distance trav-

eled.

(a) Do the rectangles represent a left or a right sum?

(b) Do the rectangles lead to an upper or a lower esti-

mate?

(c) What is the value of n?

(d) What is the value of Δt?

(e) Estimate the distance traveled.

0 24

12

t

Figure 5.12

3. Figure 5.13 shows the velocity of an object for 0 ≤ t ≤

6. Calculate the following estimates of the distance the

object travels between t = 0 and t = 6, and indicate

whether each result is an upper or lower estimate of the

distance traveled.

(a) A left sum with n = 2 subdivisions

(b) A right sum with n = 2 subdivisions

1 2 3 4 5 6
0

2

4

6

8

10
v(t)

t (sec)

m/sec

Figure 5.13

4. Figure 5.14 shows the velocity of an object for 0 ≤ t ≤

8. Calculate the following estimates of the distance the

object travels between t = 0 and t = 8, and indicate

whether each is an upper or lower estimate of the dis-

tance traveled.

(a) A left sum with n = 2 subdivisions

(b) A right sum with n = 2 subdivisions

2 4 6 8
0
2
4
6
8

10
12
14

v(t)

t (hours)

km/hr

Figure 5.14

5. Figure 5.15 shows the velocity, v, of an object (in me-

ters/sec). Estimate the total distance the object traveled

between t = 0 and t = 6.

1 2 3 4 5 6

10

20

30

40

t (sec)

v (m∕sec)

Figure 5.15

Exercises 6–9 show the velocity v(t) in ft/sec of an object

moving on the number line, with positive velocities moving

to the right. How far is the object at t = 4 seconds from its

starting point, the origin?

6.

4

10
v(t)

t (sec)

ft/sec 7.

4

10

v(t)

t (sec)

ft/sec

8.

1 2 3 4
−10

10

t (sec)

ft/sec 9.

4
−10

10

t (sec)

ft/sec
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Exercises 10–13 show the velocity, in cm/sec, of a particle

moving along a number line, with positive velocities moving

to the right. Find the change in position and total distance

traveled between times t = 0 and t = 5 seconds.

10.

3 5

2

−3

v(t)

t (sec)

11.

5

10

v(t)

t (sec)

12.

5

−3
v(t)

t (sec)

13.

4

5

−2

8

v(t)

t (sec)

14. A bicyclist traveling at 20 ft/sec puts on the brakes to

slow down at a constant rate, coming to a stop in 3 sec-

onds.

(a) Figure 5.16 shows the velocity of the bike during

braking. What are the values of a and b in the fig-

ure?

(b) How far does the bike travel while braking?

a

b

t (secs)

velocity (ft/sec)

Figure 5.16

15. A bicyclist accelerates at a constant rate, from 0 ft/sec

to 15 ft/sec in 10 seconds.

(a) Figure 5.17 shows the velocity of the bike while it

is accelerating. What is the value of b in the figure?

(b) How far does the bike travel while it is accelerat-

ing?

10

b

t (secs)

velocity (ft/sec)

Figure 5.17

16. A car accelerates at a constant rate from 44 ft/sec to 88

ft/sec in 5 seconds.

(a) Figure 5.18 shows the velocity of the car while it

is accelerating. What are the values of a, b and c in

the figure?

(b) How far does the car travel while it is accelerating?

c

a

b

t (secs)

velocity (ft/sec)

Figure 5.18

17. A car slows down at a constant rate from 90 ft/sec to 20

ft/sec in 12 seconds.

(a) Figure 5.19 shows the velocity of the car while it

is slowing down. What are the values of a, b and c

in the figure?

(b) How far does the car travel while it is slowing

down?

c

a

b

t (secs)

velocity (ft/sec)

Figure 5.19

18. The velocity v(t) in Table 5.3 is increasing, 0 ≤ t ≤ 12.

(a) Find an upper estimate for the total distance trav-

eled using

(i) n = 4 (ii) n = 2

(b) Which of the two answers in part (a) is more accu-

rate? Why?

(c) Find a lower estimate of the total distance traveled

using n = 4.

Table 5.3

t 0 3 6 9 12

v(t) 34 37 38 40 45
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19. The velocity v(t) in Table 5.4 is decreasing, 2 ≤ t ≤ 12.

Using n = 5 subdivisions to approximate the total dis-

tance traveled, find

(a) An upper estimate (b) A lower estimate

Table 5.4

t 2 4 6 8 10 12

v(t) 44 42 41 40 37 35

20. A car comes to a stop five seconds after the driver ap-

plies the brakes. While the brakes are on, the velocities

in the table are recorded.

(a) Give lower and upper estimates of the distance the

car traveled after the brakes were applied.

(b) On a sketch of velocity against time, show the

lower and upper estimates of part (a).

(c) Find the difference between the estimates. Explain

how this difference can be visualized on the graph

in part (b).

Time since brakes applied (sec) 0 1 2 3 4 5

Velocity (ft/sec) 88 60 40 25 10 0

21. Table 5.5 gives the ground speed of a small plane ac-

celerating for takeoff. Find upper and lower estimates

for the distance traveled by the plane during takeoff.

Table 5.5

Time (sec) 0 2 4 6 8 10

Speed (m/s) 2.7 2.7 4 6.3 8.5 11.6

Time (sec) 12 14 16 18 20

Speed (m/s) 13.4 17.4 21.9 29.1 32.6

22. Figure 5.20 shows the velocity of a particle, in cm/sec,

along a number line for time −3 ≤ t ≤ 3.

(a) Describe the motion in words: Is the particle

changing direction or always moving in the same

direction? Is the particle speeding up or slowing

down?

(b) Make over- and underestimates of the distance

traveled for −3 ≤ t ≤ 3.

−4 −3 −2 −1 0 1 2 3 4

1

2

4

t

Figure 5.20

23. At time, t, in seconds, your velocity, v, in me-

ters/second, is given by

v(t) = 1 + t2 for 0 ≤ t ≤ 6.

Use Δt = 2 to estimate the distance traveled during this

time. Find the upper and lower estimates, and then av-

erage the two.

24. For time, t, in hours, 0 ≤ t ≤ 1, a bug is crawling at a

velocity, v, in meters/hour given by

v =
1

1 + t
.

Use Δt = 0.2 to estimate the distance that the bug

crawls during this hour. Find an overestimate and an

underestimate. Then average the two to get a new esti-

mate.

25. The velocity of a car, in ft/sec, is v(t) = 10t for t in

seconds, 0 ≤ t ≤ 6.

(a) Use Δt = 2 to give upper and lower estimates for

the distance traveled. What is their average?

(b) Find the distance traveled using the area under

the graph of v(t). Compare it to your answer for

part (a).

26. A particle moves with velocity v(t) = 3 − t along the

x-axis, with time t in seconds, 0 ≤ t ≤ 4.

(a) Use Δt = 1 to give upper and lower estimates for

the total displacement. What is their average?

(b) Graph v(t). Give the total displacement.

27. Use the expressions for left and right sums on page 291

and Table 5.6.

(a) If n = 4, what is Δt? What are t0, t1, t2, t3, t4? What

are f (t0), f (t1), f (t2), f (t3), f (t4)?

(b) Find the left and right sums using n = 4.

(c) If n = 2, what is Δt? What are t0, t1, t2? What are

f (t0), f (t1), f (t2)?

(d) Find the left and right sums using n = 2.

Table 5.6

t 15 17 19 21 23

f (t) 10 13 18 20 30

28. Use the expressions for left and right sums on page 291

and Table 5.7.

(a) If n = 4, what is Δt? What are t0, t1, t2, t3, t4? What

are f (t0), f (t1), f (t2), f (t3), f (t4)?

(b) Find the left and right sums using n = 4.

(c) If n = 2, what is Δt? What are t0, t1, t2? What are

f (t0), f (t1), f (t2)?

(d) Find the left and right sums using n = 2.

Table 5.7

t 0 4 8 12 16

f (t) 25 23 22 20 17
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PROBLEMS

29. Roger runs a marathon. His friend Jeff rides behind him

on a bicycle and clocks his speed every 15 minutes.

Roger starts out strong, but after an hour and a half he

is so exhausted that he has to stop. Jeff’s data follow:

Time since start (min) 0 15 30 45 60 75 90

Speed (mph) 12 11 10 10 8 7 0

(a) Assuming that Roger’s speed is never increasing,

give upper and lower estimates for the distance

Roger ran during the first half hour.

(b) Give upper and lower estimates for the distance

Roger ran in total during the entire hour and a half.

(c) How often would Jeff have needed to measure

Roger’s speed in order to find lower and upper es-

timates within 0.1 mile of the actual distance he

ran?

30. The velocity of a particle moving along the x-axis is

given by f (t) = 6 − 2t cm/sec. Use a graph of f (t) to

find the exact change in position of the particle from

time t = 0 to t = 4 seconds.

In Problems 31–34, find the difference between the upper

and lower estimates of the distance traveled at velocity f (t)

on the interval a ≤ t ≤ b for n subdivisions.

31. f (t) = 5t + 8, a = 1, b = 3, n = 100

32. f (t) = 25 − t2, a = 1, b = 4, n = 500

33. f (t) = sin t, a = 0, b = �∕2, n = 100

34. f (t) = e−t
2∕2, a = 0, b = 2, n = 20

35. A 2015 Porsche 918 Spyder accelerates from 0 to 88

ft/sec (60 mph) in 2.2 seconds, the fastest acceleration

of any car available for retail sale in 2015.1

(a) Assuming that the acceleration is constant, graph

the velocity from t = 0 to t = 2.2 seconds.

(b) How far does the car travel during this time?

36. A baseball thrown directly upward at 96 ft/sec has ve-

locity v(t) = 96 − 32t ft/sec at time t seconds.

(a) Graph the velocity from t = 0 to t = 6.

(b) When does the baseball reach the peak of its flight?

How high does it go?

(c) How high is the baseball at time t = 5?

37. Figure 5.21 gives your velocity during a trip starting

from home. Positive velocities take you away from

home and negative velocities take you toward home.

Where are you at the end of the 5 hours? When are you

farthest from home? How far away are you at that time?

1 2 3 4 5

−20

−10

10

20

30

40

t (hours)

v (km/hr)

Figure 5.21

38. When an aircraft attempts to climb as rapidly as possi-

ble, its climb rate decreases with altitude. (This occurs

because the air is less dense at higher altitudes.) The

table shows performance data for a single-engine air-

craft.

Altitude (1000 ft) 0 1 2 3 4 5

Climb rate (ft/min) 925 875 830 780 730 685

Altitude (1000 ft) 6 7 8 9 10

Climb rate (ft/min) 635 585 535 490 440

(a) Calculate upper and lower estimates for the time

required for this aircraft to climb from sea level to

10,000 ft.

(b) If climb rate data were available in increments of

500 ft, what would be the difference between a

lower and upper estimate of climb time based on

20 subdivisions?

39. Table 5.8 shows the upward vertical velocity v(t), in

ft/min, of a small plane at time t seconds during a short

flight.

(a) When is the plane going up? Going down?

(b) If the airport is located 110 ft above sea level, esti-

mate the maximum altitude the plane reaches dur-

ing the flight.

Table 5.8

t v(t) t v(t)

0 10 100 −140

10 20 110 −180

20 60 120 0

30 490 130 −820

40 890 140 −930

50 980 150 −780

60 830 160 −940

70 970 170 −540

80 300 180 −230

90 10 190 0

1K. C. Colwell, “First Test: 2015 Porsche 918 Spyder,” Car and Driver, August 1, 2014.
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40. A bicyclist is pedaling along a straight road for one

hour with a velocity v shown in Figure 5.22. She starts

out five kilometers from the lake and positive velocities

take her toward the lake. [Note: The vertical lines on the

graph are at 10-minute (1∕6-hour) intervals.]

(a) Does the cyclist ever turn around? If so, at what

time(s)?

(b) When is she going the fastest? How fast is she go-

ing then? Toward the lake or away?

(c) When is she closest to the lake? Approximately

how close to the lake does she get?

(d) When is she farthest from the lake? Approximately

how far from the lake is she then?

(e) What is the total distance she traveled?

10 20 30 40 50 60

−25

−20

−15

−10

−5

0

5

10

t(minutes)

v (km/hr)

Figure 5.22

41. Two cars travel in the same direction along a straight

road. Figure 5.23 shows the velocity, v, of each car at

time t. CarB starts 2 hours after carA and car B reaches

a maximum velocity of 50 km/hr.

(a) For approximately how long does each car travel?

(b) Estimate car A’s maximum velocity.

(c) Approximately how far does each car travel?

Car A

Car B

t (hr)

v (km/hr)

Figure 5.23

42. Two cars start at the same time and travel in the same

direction along a straight road. Figure 5.24 gives the ve-

locity, v, of each car as a function of time, t. Which car:

(a) Attains the larger maximum velocity?

(b) Stops first?

(c) Travels farther?

Car A

Car B

t (hr)

v (km/hr)

Figure 5.24

43. A car initially going 50 ft/sec brakes at a constant rate

(constant negative acceleration), coming to a stop in 5

seconds.

(a) Graph the velocity from t = 0 to t = 5.

(b) How far does the car travel?

(c) How far does the car travel if its initial velocity is

doubled, but it brakes at the same constant rate?

44. A vehicle moving with velocity v has a stopping dis-

tance proportional to v2.

(a) If a car going 20mi/hr has a stopping distance of 50

feet, what is its stopping distance going 40 mi/hr?

What about 60 mi/hr?

(b) After applying the brakes, a van going 30 ft/sec

stops in 5 seconds and has v = 30 − 6t. Explain

why the stopping distance is given by the area un-

der the graph of v against t.

(c) By looking at areas under graphs of v, explain why

a van with the same deceleration as the van in part

(b) but an initial speed of 60 ft/sec has a stopping

distance 4 times as far.

45. A woman drives 10 miles, accelerating uniformly from

rest to 60 mph. Graph her velocity versus time. How

long does it take for her to reach 60 mph?

46. An object has zero initial velocity and a constant accel-

eration of 32 ft/sec2. Find a formula for its velocity as

a function of time. Use left and right sums with Δt = 1

to find upper and lower bounds on the distance that the

object travels in four seconds. Find the precise distance

using the area under the curve.
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Strengthen Your Understanding

In Problems 47–48, explain what is wrong with the state-

ment.

47. If a car accelerates from 0 to 50 ft/sec in 10 seconds,

then it travels 250 ft.

48. For any acceleration, you can estimate the total distance

traveled by a car in 1 second to within 0.1 feet by record-

ing its velocity every 0.1 second.

In Problems 49–50, give an example of:

49. A velocity function f and an interval [a, b] such that the

distance denoted by the right-hand sum for f on [a, b]

is less than the distance denoted by the left-hand sum,

no matter what the number of subdivisions.

50. A velocity f (t) and an interval [a, b] such that at least

100 subdivisions are needed in order for the difference

between the upper and lower estimates to be less than

or equal to 0.1.

Are the statements in Problems 51–53 true or false? Give an

explanation for your answer.

51. For an increasing velocity function on a fixed time in-

terval, the left-hand sum with a given number of subdi-

visions is always less than the corresponding right-hand

sum.

52. For a decreasing velocity function on a fixed time inter-

val, the difference between the left-hand sum and right-

hand sum is halved when the number of subdivisions is

doubled.

53. For a given velocity function on a given interval, the dif-

ference between the left-hand sum and right-hand sum

gets smaller as the number of subdivisions gets larger.

5.2 THE DEFINITE INTEGRAL

In Section 5.1, we saw how distance traveled can be approximated by a sum of areas of rectangles.

We also saw how the approximation improves as the width of the rectangles gets smaller. In this

section, we construct these sums for any function f , whether or not it represents a velocity.

Sigma Notation

Suppose f (t) is a continuous function for a ≤ t ≤ b. We divide the interval from a to b into n equal

subdivisions, and we call the width of an individual subdivision Δt, so

Δt =
b − a

n
.

Let t0, t1, t2, . . . , tn be endpoints of the subdivisions. Both the left-hand and right-hand sums can be

written more compactly using sigma, or summation, notation. The symbol
∑

is a capital sigma, or

Greek letter “S.” We write

Right-hand sum = f (t1)Δt + f (t2)Δt +⋯ + f (tn)Δt =

n
∑

i=1

f (ti)Δt.

The
∑

tells us to add terms of the form f (ti)Δt. The “i = 1” at the base of the sigma sign tells us

to start at i = 1, and the “n” at the top tells us to stop at i = n.

In the left-hand sum we start at i = 0 and stop at i = n − 1, so we write

Left-hand sum = f (t0)Δt + f (t1)Δt +⋯ + f (tn−1)Δt =

n−1
∑

i=0

f (ti)Δt.

Taking the Limit to Obtain the Definite Integral

Now we take the limit of these sums as n goes to infinity. If f is continuous for a ≤ t ≤ b, the

limits of the left- and right-hand sums exist and are equal. The definite integral is the limit of these

sums. A formal definition of the definite integral is given in the online supplement to the text at

www.WileyPLUS.com.
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Suppose f is continuous for a ≤ t ≤ b. The definite integral of f from a to b, written

∫

b

a

f (t) dt,

is the limit of the left-hand or right-hand sums with n subdivisions of a ≤ t ≤ b as n gets

arbitrarily large, that is, as Δt → 0. In other words,

∫

b

a

f (t) dt = lim
n→∞

(Left-hand sum) = lim
n→∞

(

n−1
∑

i=0

f (ti)Δt

)

and

∫

b

a

f (t) dt = lim
n→∞

(Right-hand sum) = lim
n→∞

(

n
∑

i=1

f (ti)Δt

)

.

Each of these sums is called a Riemann sum, f is called the integrand, and a and b are called

the limits of integration.

The “∫ ” notation comes from an old-fashioned “S,” which stands for “sum” in the same way that
∑

does. The “dt” in the integral comes from the factor Δt. Notice that the limits on the
∑

symbol

are 0 and n − 1 for the left-hand sum, and 1 and n for the right-hand sum, whereas the limits on the

∫ sign are a and b.

Computing a Definite Integral

In practice, we often approximate definite integrals numerically using a calculator or computer. They

use programs which compute sums for larger and larger values of n, and eventually give a value for

the integral. Some (but not all) definite integrals can be computed exactly. However, any definite

integral can be approximated numerically.

In the next example, we see how numerical approximation works. For each value of n, we show

an over- and an underestimate for the integral ∫
2

1
(1∕t) dt. As we increase the value of n, the over- and

underestimates get closer together, trapping the value of the integral between them. By increasing

the value of n sufficiently, we can calculate the integral to any desired accuracy.

Example 1 Calculate the left-hand and right-hand sums with n = 2 for
∫

2

1

1

t
dt. What is the relation between

the left- and right-hand sums for n = 10 and n = 250 and the integral?

Solution Here a = 1 and b = 2, so for n = 2, Δt = (2 − 1)∕2 = 0.5. Therefore, t0 = 1, t1 = 1.5 and t2 = 2.

(See Figure 5.25.) We have

Left-hand sum = f (1)Δt + f (1.5)Δt = 1(0.5) +
1

1.5
(0.5) = 0.8333,

Right-hand sum = f (1.5)Δt+ f (2)Δt =
1

1.5
(0.5) +

1

2
(0.5) = 0.5833.

In Figure 5.25 we see that the left-hand sum is bigger than the area under the curve and the right-hand

sum is smaller. So the area under the curve f (t) = 1∕t from t = 1 to t = 2 is between them:

0.5833 <
∫

2

1

1

t
dt < 0.8333.

Since 1∕t is decreasing, when n = 10 in Figure 5.26 we again see that the left-hand sum is larger

than the area under the curve, and the right-hand sum smaller. A calculator or computer gives

0.6688 <
∫

2

1

1

t
dt < 0.7188.
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t

f (t) =
1

t

1 1.5 2

Figure 5.25: Approximating ∫
2

1

1

t
dt with

n = 2

t

f (t) =
1

t

1 1.5 2

Figure 5.26: Approximating ∫
2

1

1

t
dt with

n = 10

1 1.5 2

f (t) =
1

t

t

Figure 5.27: Shaded area is exact

value of ∫
2

1

1

t
dt

The left- and right-hand sums trap the exact value of the integral between them. As the subdivisions

become finer, the left- and right-hand sums get closer together.

When n = 250, a calculator or computer gives

0.6921 <
∫

2

1

1

t
dt < 0.6941.

So, to two decimal places, we can say that

∫

2

1

1

t
dt ≈ 0.69.

The exact value is known to be
∫

2

1

1

t
dt = ln 2 = 0.693147…. See Figure 5.27.

The Definite Integral as an Area
If f (x) is positive we can interpret each term f (x0)Δx, f (x1)Δx,… in a left- or right-hand Riemann

sum as the area of a rectangle. See Figure 5.28. As the width Δx of the rectangles approaches zero,

the rectangles fit the curve of the graph more exactly, and the sum of their areas gets closer and closer

to the area under the curve shaded in Figure 5.29. This suggests that:

When f (x) ≥ 0 and a < b:

Area under graph of f and above x-axis

between a and b
=
∫

b

a

f (x) dx.

a b
x

f (x)

✛✛

Δx

Figure 5.28: Area of rectangles

approximating the area under the curve

a b
x

f (x)
Area = ∫

b

a
f (x) dx

❘

Figure 5.29: The definite integral ∫
b

a
f (x) dx
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Example 2 Consider the integral
∫

1

−1

√

1 − x2 dx.

(a) Interpret the integral as an area, and find its exact value.

(b) Estimate the integral using a calculator or computer. Compare your answer to the exact value.

Solution (a) The integral is the area under the graph of y =
√

1 − x2 between −1 and 1. See Figure 5.30.

Rewriting this equation as x2 + y2 = 1, we see that the graph is a semicircle of radius 1 and

area �∕2 = 1.5707963….

(b) A calculator gives the value of the integral as 1.5707963… .

x

y

−1 1

Area= ∫
1

−1

√

1 − x2 dx✛

Figure 5.30: Area interpretation of ∫
1

−1

√

1 − x2 dx

When f (x) Is Not Positive

We have assumed in drawing Figure 5.29 that the graph of f (x) lies above the x-axis. If the graph

lies below the x-axis, then each value of f (x) is negative, so each f (x)Δx is negative, and the area

gets counted negatively. In that case, the definite integral is the negative of the area.

When f (x) is positive for some x values and negative for others, and a < b:

∫

b

a

f (x) dx is the sum of areas above the x-axis, counted positively, and areas below the

x-axis, counted negatively.

Example 3 How does the definite integral
∫

1

−1

(x2 − 1) dx relate to the area between the parabola y = x2 − 1

and the x-axis?

Solution A calculator gives ∫
1

−1
(x2 − 1) dx = −1.33. Since the parabola lies below the axis between x = −1

and x = 1 (see Figure 5.31), the area between the parabola and the x-axis is approximately 1.33.

−1 1

−1

x

y
y = x2 − 1

Area = 1.33 and

∫
1

−1
(x2 − 1) dx = −1.33

✛

Figure 5.31: Integral ∫
1

−1
(x2 − 1) dx is negative of shaded area

−1

1

y

√

�

√

2�
x

y = sin(x2)

A1 = 0.89

A2 = 0.46

✛

✲

Figure 5.32: Integral ∫

√

2�

0
sin(x2) dx = A1 −A2
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Example 4 Consider the definite integral
∫

√

2�

0

sin(x2) dx.

(a) Interpret the integral in terms of areas.

(b) Find the total area between sin(x2) and the x-axis for 0 ≤ x ≤
√

2�.

Solution (a) The integral is the area above the x-axis, A1, minus the area below the x-axis, A2. See Fig-

ure 5.32. Estimating the integral with a calculator gives

∫

√

2�

0

sin(x2) dx = 0.43.

The graph of y = sin(x2) crosses the x-axis where x2 = �, that is, at x =
√

�. The next crossing

is at x =
√

2�. Breaking the integral into two parts and calculating each one separately gives

∫

√

�

0

sin(x2) dx = 0.89 and
∫

√

2�

√

�

sin(x2) dx = −0.46.

So A1 = 0.89 and A2 = 0.46. Then, as we would expect,

∫

√

2�

0

sin(x2) dx = A1 − A2 = 0.89 − 0.46 = 0.43.

(b) The total area between sin(x2) and the x-axis is the sum of the two areas

A1 + A2 = 0.89 + 0.46 = 1.35.

More General Riemann Sums

Left- and right-hand sums are special cases of Riemann sums. For a general Riemann sum we allow

subdivisions to have different lengths. Also, instead of evaluating f only at the left or right endpoint

of each subdivision, we allow it to be evaluated anywhere in the subdivision. Thus, a general Riemann

sum has the form

n
∑

i=1

Value of f (t) at some point in ith subdivision × Length of ith subdivision.

(See Figure 5.33.) As before, we let t0, t1,… , tn be the endpoints of the subdivisions, so the length

of the ith subdivision is Δti = ti− ti−1. For each i we choose a point ci in the ith subinterval at which

to evaluate f , leading to the following definition:

A general Riemann sum for f on the interval [a, b] is a sum of the form

n
∑

i=1

f (ci)Δti,

where a = t0<t1<⋯<tn= b and, for i = 1,… , n, Δti = ti − ti−1, and ti−1 ≤ ci ≤ ti.
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a ti ci ti+1 b

f (t)

✲✛Δti

✻

❄

f (ci)

t

Figure 5.33: A general Riemann sum approximating ∫
b

a
f (t) dt

The definite integral is defined as the limit of the Riemann sum as the longest subinterval tends

to 0. If f is continuous, we can make a general Riemann sum as close as we like to the value of

the definite integral by making the interval lengths small enough. Thus, in approximating definite

integrals or in proving theorems about them, we can use general Riemann sums rather than left- or

right-hand sums. Generalized Riemann sums are especially useful in establishing properties of the

definite integral; see www.WileyPLUS.com.

Summary for Section 5.2

• Suppose f is continuous for a ≤ t ≤ b. The definite integral of f from a to b, written

∫

b

a

f (t) dt,

is the limit of the left-hand or right-hand sums with n subdivisions of a ≤ t ≤ b as n gets

arbitrarily large, that is, as Δt → 0. In other words,

∫

b

a

f (t) dt = lim
n→∞

(Left-hand sum) = lim
n→∞

(

n−1
∑

i=0

f (ti)Δt

)

and

∫

b

a

f (t) dt = lim
n→∞

(Right-hand sum) = lim
n→∞

(

n
∑

i=1

f (ti)Δt

)

.

Each of these sums is called a Riemann sum, f is called the integrand, and a and b are called

the limits of integration.

• When f (x) ≥ 0 and a < b:

Area under graph of f and above x-axis

between a and b
=
∫

b

a

f (x) dx.

• When f (x) is positive for some x values and negative for others, and a < b:

∫

b

a

f (x) dx is the sum of areas above the x-axis, counted positively, and areas below the x-axis,

counted negatively.

• A general Riemann sum for f on the interval [a, b] is a sum of the form

n
∑

i=1

f (ci)Δti,

where a = t0<t1<⋯<tn= b and, for i = 1,… , n, Δti = ti − ti−1, and ti−1 ≤ ci ≤ ti.
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Exercises and Problems for Section 5.2 Online Resource: Additional Problems for Section 5.2
EXERCISES

In Exercises 1–2, rectangles have been drawn to approximate

∫
6

0
g(x) dx.

(a) Do the rectangles represent a left or a right sum?

(b) Do the rectangles lead to an upper or a lower estimate?

(c) What is the value of n?

(d) What is the value of Δx?

1.

6

g(x)

x

2.

6

g(x)

x

3. Figure 5.34 shows a Riemann sum approximation with

n subdivisions to ∫
b

a
f (x) dx.

(a) Is it a left- or right-hand approximation? Would the

other one be larger or smaller?

(b) What are a, b, n and Δx?

20
x

Figure 5.34

4. Figure 5.35 shows a Riemann sum approximation with

n subdivisions to ∫
b

a
f (x) dx.

(a) Is it a left- or right-hand approximation? Would the

other one be larger or smaller?

(b) What are a, b, n, and Δx?

2 6
x

y

Figure 5.35

5. Using Figure 5.36, draw rectangles representing each of

the following Riemann sums for the function f on the

interval 0 ≤ t ≤ 8. Calculate the value of each sum.

(a) Left-hand sum with Δt = 4

(b) Right-hand sum with Δt = 4

(c) Left-hand sum with Δt = 2

(d) Right-hand sum with Δt = 2

2 4 6 8

4

8

12

16

20
24

28

32

f (t)

t

Figure 5.36

6. Use the table to estimate ∫
40

0
f (x)dx. What values of n

and Δx did you use?

x 0 10 20 30 40

f (x) 350 410 435 450 460

7. Use the table to estimate ∫
12

0
f (x) dx.

x 0 3 6 9 12

f (x) 32 22 15 11 9

8. Use the table to estimate ∫
15

0
f (x) dx.

x 0 3 6 9 12 15

f (x) 50 48 44 36 24 8

9. Write out the terms of the right-hand sum with n = 5

that could be used to approximate
∫

7

3

1

1 + x
dx. Do not

evaluate the terms or the sum.

10. Use Figure 5.37 to estimate ∫
20

0
f (x) dx.

4 8 12 16 20

1

2

3

4

5

f (x)

x

Figure 5.37

11. Use Figure 5.38 to estimate ∫
15

−10
f (x)dx.

−10 0 10

10

20

30

x

f (x)

Figure 5.38
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12. Using Figure 5.39, estimate ∫
5

−3
f (x)dx.

−3 −1 2 4

5

−20

−10

10

x

f (x)

Figure 5.39

13. For each interval, draw the rectangle for a left-hand Rie-

mann sum under the curve y = 4−(x−1)2 withΔx = 1.

Is your answer an over- or underestimate of the area un-

der the curve on this interval?

(a) 1 ≤ x ≤ 2 (b) 4 ≤ x ≤ 5

In Exercises 14–19, use a calculator or a computer to find

the value of the definite integral.

14.
∫

4

1

(x2 + x) dx 15.
∫

3

0

2xdx

16.
∫

1

−1

e−x
2
dx 17.

∫

3

0

ln(y2 + 1) dy

18.
∫

1

0

sin(t2)dt 19.
∫

4

3

√

ez + z dz

20. For f (x) = 3x + 2, evaluate the Riemann sums:

(a)

3
∑

i=0

f
(

xi

)

Δx where Δx = 2, x0 = 3

(b)

2
∑

i=1

f
(

xi

)

Δx where Δx = 3, x0 = 7

(c)

4
∑

i=1

f
(

xi

)

Δx where Δx = 0.5, x0 = −5

21. For g(x) = 4x − 1, evaluate the Riemann sums:

(a)

3
∑

i=0

g
(

xi

)

Δx where Δx = 3, x0 = 2

(b)

4
∑

i=1

g
(

xi

)

Δx where Δx = 2, x0 = 4

(c)

5
∑

i=2

g
(

xi

)

Δx where Δx = 3, x0 = 1

22. For ℎ(x) =
1

2
x + 5 evaluate the Riemann sums:

(a)

4
∑

i=0

ℎ
(

xi

)

Δx where Δx = 2, x0 = 2

(b)

5
∑

i=2

ℎ
(

xi

)

Δx where Δx = 3, x0 = 0

(c)

7
∑

i=4

ℎ
(

xi

)

Δx where Δx = 2, x0 = 1

23. Use Table 5.9 to evaluate the Riemann sums:

(a)

n−1
∑

i=0

f
(

ti
)

Δt where t0 = 3, tn = 15, n = 4

(b)

n
∑

i=1

f
(

ti
)

Δt where t0 = 3, tn = 15, n = 3

(c)

n
∑

i=1

f
(

ti
)

Δt where t0 = 5, tn = 13, n = 4

Table 5.9

t 3 4 5 6 7 8 9

f (t) −40 −17 4 23 40 55 68

t 10 11 12 13 14 15

f (t) 79 88 95 100 103 104

PROBLEMS

24. The graph of f (t) is in Figure 5.40. Which of the fol-

lowing four numbers could be an estimate of ∫
1

0
f (t)dt

accurate to two decimal places? Explain your choice.

I. −98.35 II. 71.84 III. 100.12 IV. 93.47

0.5 1.0

20

40

60

80

100 f (t)

t

Figure 5.40

25. (a) What is the total area between the graph of f (x)

in Figure 5.41 and the x-axis, between x = 0 and

x = 5?

(b) What is ∫
5

0
f (x) dx?

3

5

✠

Area = 7

✒

Area = 6

x

f (x)

Figure 5.41
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26. Find the total area between y = 4 − x2 and the x-axis

for 0 ≤ x ≤ 3.

27. (a) Find the total area between f (x) = x3 − x and the

x-axis for 0 ≤ x ≤ 3.

(b) Find
∫

3

0

f (x)dx.

(c) Are the answers to parts (a) and (b) the same? Ex-

plain.

In Problems 28–34, find the area of the region between the

curve and the horizontal axis

28. Under y = 6x3 − 2 for 5 ≤ x ≤ 10.

29. Under y = cos t for 0 ≤ t ≤ �∕2.

30. Under y = lnx for 1 ≤ x ≤ 4.

31. Under y = 2 cos(t∕10) for 1 ≤ t ≤ 2.

32. Under y = cos
√

x for 0 ≤ x ≤ 2.

33. Under the curve y = 7 − x2 and above the x-axis.

34. Above the curve y = x4 − 8 and below the x-axis.

35. Use Figure 5.42 to find the values of

(a) ∫
b

a
f (x) dx (b) ∫

c

b
f (x) dx

(c) ∫
c

a
f (x) dx (d) ∫

c

a
|f (x)| dx

a b c

f (x)

✠

Area = 13

■
Area = 2

x

Figure 5.42

36. Given ∫
0

−2
f (x) dx = 4 and Figure 5.43, estimate:

(a) ∫
2

0
f (x) dx (b) ∫

2

−2
f (x) dx

(c) The total shaded area.

−2 2
−2

2

f (x)

x

Figure 5.43

37. (a) Using Figure 5.44, find ∫
0

−3
f (x) dx.

(b) If the area of the shaded region is A, estimate

∫
4

−3
f (x) dx.

−4 −3 −2 −1 1 2 3

4

5

−1

1

x

f (x)

Figure 5.44

38. Use Figure 5.45 to find the values of

(a) ∫
2

0
f (x) dx (b) ∫

7

3
f (x) dx

(c) ∫
7

2
f (x) dx (d) ∫

8

5
f (x) dx

2 4 6 8 10
−2

−1

1

2
f (x)

x

Figure 5.45: Graph consists of a semicircle and

line segments

In Problems 39–42, find the integral by finding the area of

the region between the curve and the horizontal axis.

39.
∫

10

0

(x − 5) dx 40.
∫

8

0

(6 − 2x) dx

41.
∫

6

−8

(

1

2
x + 3

)

dx 42.
∫

1

−10

− 4x − 16

3
dx

43. (a) Graph f (x) = x(x + 2)(x − 1).

(b) Find the total area between the graph and the x-axis

between x = −2 and x = 1.

(c) Find ∫
1

−2
f (x) dx and interpret it in terms of areas.

44. Compute the definite integral ∫
4

0
cos

√

xdx and inter-

pret the result in terms of areas.

45. Without computation, decide if ∫
2�

0
e−x sin xdx is pos-

itive or negative. [Hint: Sketch e−x sin x.]

46. Estimate ∫
1

0
e−x

2
dx using n = 5 rectangles to form a

(a) Left-hand sum (b) Right-hand sum

In Problems 47–54, estimate the integral using a left-hand

sum and a right-hand sum with the given value of n.

47.
∫

12

0

x2 dx, n = 4 48.
∫

8

−2

1

4
x4 dx, n = 5
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49.
∫

8

−1

2x dx, n = 3 50.
∫

4

−4

(

1

2x
+ 1

)

dx,

n = 4

51.
∫

3

1

3

x
dx, n = 4 52.

∫

�

0

sin xdx, n = 4

53.
∫

7

5.5

(x2 + 3x) dx, n =

3

54.
∫

4

1

√

x dx, n = 3

55. (a) On a sketch of y = lnx, represent the left Riemann

sum with n = 2 approximating ∫
2

1
lnx dx. Write

out the terms in the sum, but do not evaluate it.

(b) On another sketch, represent the right Riemann

sum with n = 2 approximating ∫
2

1
lnx dx. Write

out the terms in the sum, but do not evaluate it.

(c) Which sum is an overestimate? Which sum is an

underestimate?

56. For f (x), which is decreasing on 0 ≤ x ≤ 10, does

the sum 2f (2) + 2f (4) + 2f (6) + 2f (8) over- or un-

derestimate the given integral, or is there not enough

information to decide?

(a)
∫

10

2

f (x) dx (b)
∫

8

0

f (x) dx

57. (a) Draw the rectangles that give the left-hand sum ap-

proximation to ∫
�

0
sinx dx with n = 2.

(b) Repeat part (a) for ∫
0

−�
sin xdx.

(c) From your answers to parts (a) and (b), what is

the value of the left-hand sum approximation to

∫
�

−�
sin xdx with n = 4?

58. (a) Use a calculator or computer to find ∫
6

0
(x2+1) dx.

Represent this value as the area under a curve.

(b) Estimate ∫
6

0
(x2+1) dx using a left-hand sum with

n = 3. Represent this sum graphically on a sketch

of f (x) = x2 + 1. Is this sum an overestimate or

underestimate of the true value found in part (a)?

(c) Estimate ∫
6

0
(x2+1) dx using a right-hand sum with

n = 3. Represent this sum on your sketch. Is this

sum an overestimate or underestimate?

59. (a) Graph f (x) =
{

1 − x 0 ≤ x ≤ 1

x − 1 1 < x ≤ 2.

(b) Find
∫

2

0

f (x) dx.

(c) Calculate the 4-term left Riemann sum approxima-

tion to the definite integral. How does the approx-

imation compare to the exact value?

60. Estimate ∫
2

1
x2 dx using left- and right-hand sums with

four subdivisions. How far from the true value of the

integral could your estimate be?

61. Without computing the sums, find the difference be-

tween the right- and left-hand Riemann sums if we use

n = 500 subintervals to approximate ∫
1

−1
(2x3 + 4) dx.

In Problems 62–67, the limit is either a right-hand or left-

hand Riemann sum
∑

f (ti)Δt. For the given choice of ti,

write the limit as a definite integral.

62. lim
n→∞

n
∑

i=1

(

i

n

)2 (1

n

)

; ti =
i

n

63. lim
n→∞

n−1
∑

i=0

2
(

3i

n

)(

3

n

)

; ti =
3i

n

64. lim
n→∞

n−1
∑

i=0

1

n
e1+i∕n; ti = 1 +

i

n

65. lim
n→∞

n
∑

i=1

(

7
(

i

2n

)2

+ 3

)

1

2n
; ti =

i

2n

66. lim
n→∞

n−1
∑

i=0

5 cos
(

�i

n

)

�

n
; ti =

�i

n

67. lim
n→∞

n
∑

i=1

3

n

√

(

1 +
3i

n

)2

+
(

1 +
3i

n

)

; ti = 1 +
3i

n

In Problems 68–71, express the given limit of a Riemann

sum as a definite integral and then evaluate the integral.

68. lim
n→∞

n
∑

i=1

2
(

3i

n

)

⋅

3

n
69. lim

n→∞

n−1
∑

i=0

√

4i

n
⋅

4

n

70. lim
n→∞

n−1
∑

i=0

√

4 −
(

2i

n

)2

⋅

2

n

71. lim
n→∞

n
∑

i=1

(

8
(

1 +
i

n

)

− 8
)

⋅

1

n

In Problems 72–75, use Figure 5.46 to find limits a and b in

the interval [0, 5] with a < b satisfying the given condition.

1 2 3 4 5

f (x)

x

Figure 5.46

72.
∫

b

0

f (x) dx is largest 73.
∫

4

a

f (x) dx is smallest

74.
∫

b

a

f (x) dx is largest 75.
∫

b

a

f (x) dx is smallest
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Strengthen Your Understanding

In Problems 76–78, explain what is wrong with the state-

ment.

76. For any function, ∫
3

1
f (x) dx is the area between the the

graph of f and the x-axis on 1 ≤ x ≤ 3.

77. The left-hand sum with 10 subdivisions for the integral

∫
2

1
sin(x) dx is

0.1 (sin(1) + sin(1.1) +⋯ + sin(2)) .

78.
∫

1

1

ex ln(x2 + cos(x2)) dx = e ln 2.

In Problems 79–80, give an example of:

79. A function f and an interval [a, b] such that ∫
b

a
f (x) dx

is negative.

80. A function f such that ∫
3

1
f (x) dx < ∫

2

1
f (x) dx.

In Problems 81–83 decide whether the statement is true or

false. Justify your answer.

81. On the interval a ≤ t ≤ b, the integral of the velocity is

the total distance traveled from t = a to t = b.

82. A 4-term left-hand Riemann sum approximation cannot

give the exact value of a definite integral.

83. If f (x) is decreasing and g(x) is increasing, then

∫
b

a
f (x) dx ≠ ∫

b

a
g(x) dx.

In Problems 84–86, is the statement true for all continuous

functions f (x) and g(x)? Explain your answer.

84. ∫
2

0
f (x) dx ≤ ∫

3

0
f (x) dx.

85. ∫
2

0
f (x) dx = ∫

2

0
f (t) dt.

86. If ∫
6

2
f (x) dx ≤ ∫

6

2
g(x) dx, then f (x) ≤ g(x) for

2 ≤ x ≤ 6.

In Problems 87–88, graph a continuous function f (x) ≥ 0

on [0, 10] with the given properties.

87. The maximum value taken on by f (x) for 0 ≤ x ≤ 10

is 1. In addition ∫
10

0
f (x) dx = 5.

88. The maximum value taken on by f (x) for 0 ≤ x ≤ 10

is 5. In addition ∫
10

0
f (x) dx = 1.

5.3 THE FUNDAMENTAL THEOREM AND INTERPRETATIONS

The Notation and Units for the Definite Integral

Just as the Leibniz notation dy∕dx for the derivative reminds us that the derivative is the limit of

a ratio of differences, the notation for the definite integral recalls the meaning of the integral. The

symbol

∫

b

a

f (x) dx

reminds us that an integral is a limit of sums of terms of the form “f (x) times a small difference in

x.” Officially, dx is not a separate entity, but a part of the whole integral symbol. Just as one thinks of

d∕dx as a single symbol meaning “the derivative with respect to x of… ,” one can think of ∫
b

a
… dx

as a single symbol meaning “the integral of … with respect to x.”

However, many scientists and mathematicians informally think of dx as an “infinitesimally”

small bit of x multiplied by f (x). This viewpoint is often the key to interpreting the meaning of a

definite integral.

For example, if f (t) is the velocity of a moving particle at time t, then f (t) dt may be thought of

informally as velocity × time, giving the distance traveled by the particle during a small bit of time

dt. The integral ∫
b

a
f (t) dt may then be thought of as the sum of all these small distances, giving the

net change in position of the particle between t = a and t = b. The notation for the integral suggests

units for the value of the integral. Since the terms being added up are products of the form “f (x)

times a difference in x,” the unit of measurement for ∫
b

a
f (x) dx is the product of the units for f (x)

and the units for x. For example, if f (t) is velocity in meters/second and t is time in seconds, then

∫

b

a

f (t) dt

has units of (meters/sec) ×( sec) = meters. This is what we expect, since the value of this integral

represents change in position.
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As another example, graph y = f (x) with the same units of measurement of length along the

x- and y-axes, say cm. Then f (x) and x are measured in the same units, so

∫

b

a

f (x) dx

is measured in square units of cm × cm = cm2. Again, this is what we would expect since in this

context the integral represents an area.

The Fundamental Theorem of Calculus

We have seen that change in position can be calculated as the limit of Riemann sums of the velocity

function v = f (t). Thus, change in position is given by the definite integral ∫
b

a
f (t) dt. If we let F (t)

denote the position function, then the change in position can also be written as F (b) − F (a). Thus

we have:

∫

b

a

f (t) dt =
Change in position from

t = a to t = b
= F (b) − F (a)

We also know that the position F and velocity f are related using derivatives: F ′(t) = f (t).

Thus, we have uncovered a connection between the integral and derivative, which is so important

that it is called the Fundamental Theorem of Calculus. It applies to any functionF with a continuous

derivative f = F ′.

Theorem 5.1: The Fundamental Theorem of Calculus2

If f is continuous on the interval [a, b] and f (t) = F ′(t), then

∫

b

a

f (t) dt = F (b) − F (a).

To understand the Fundamental Theorem of Calculus, think of f (t) = F ′(t) as the rate of change

of the quantity F (t). To calculate the total change in F (t) between times t = a and t = b, we divide

the interval a ≤ t ≤ b into n subintervals, each of length Δt. For each small interval, we estimate the

change in F (t), written ΔF , and add these. In each subinterval we assume the rate of change of F (t)

is approximately constant, so that we can say

ΔF ≈ Rate of change of F × Time elapsed.

For the first subinterval, from t0 to t1, the rate of change of F (t) is approximately F ′(t0), so

ΔF ≈ F ′
(

t0
)

Δt.

Similarly, for the second interval

ΔF ≈ F ′
(

t1
)

Δt.

Summing over all the subintervals, we get

Total change in F (t)

between t = a and t = b
=

n−1
∑

i=0

ΔF ≈

n−1
∑

i=0

F ′
(

ti
)

Δt.

We have approximated the change in F (t) as a left-hand sum.

However, the total change in F (t) between the times t = a and t = b is simply F (b) − F (a).

Taking the limit as n goes to infinity converts the Riemann sum to a definite integral and suggests

the following interpretation of the Fundamental Theorem of Calculus:3

2This result is sometimes called the First Fundamental Theorem of Calculus, to distinguish it from the Second Fundamental

Theorem of Calculus discussed in Section 6.4.
3We could equally well have used a right-hand sum, since the definite integral is their common limit.
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F (b) − F (a) =
Total change in F (t)

between t = a and t = b
=
∫

b

a

F ′(t) dt.

In words, the definite integral of a rate of change gives the total change.

This argument does not, however, constitute a proof of the Fundamental Theorem. The errors

in the various approximations must be investigated using the definition of limit. A proof is given in

Section 6.4 where we learn how to construct antiderivatives using the Second Fundamental Theorem

of Calculus.

Example 1 If F ′(t) = f (t) and f (t) is velocity in miles∕hour, with t in hours, what are the units of ∫
b

a
f (t) dt

and F (b) − F (a)?

Solution Since the units of f (t) are miles∕hour and the units of t are hours, the units of ∫
b

a
f (t) dt are

(miles∕hour) × hours = miles. Since F measures change in position, the units of F (b) − F (a)

are miles. As expected, the units of ∫
b

a
f (t) dt and F (b) − F (a) are the same.

The Definite Integral of a Rate of Change: Applications of the Fundamental Theorem

Many applications are based on the Fundamental Theorem, which tells us that the definite integral

of a rate of change gives the total change.

Example 2 Let F (t) represent a bacteria population which is 5million at time t = 0. After t hours, the population

is growing at an instantaneous rate of 2t million bacteria per hour. Estimate the total increase in the

bacteria population during the first hour, and the population at t = 1.

Solution Since the rate at which the population is growing is F ′(t) = 2t, we have

Change in population = F (1) − F (0) =
∫

1

0

2t dt.

Using a calculator to evaluate the integral, we find

Change in population =
∫

1

0

2t dt = 1.44 million bacteria.

Since F (0) = 5, the population at t = 1 is given by

Population = F (1) = F (0) +
∫

1

0

2t dt = 5 + 1.44 = 6.44million.

The following example uses the fact that the definite integral of the velocity gives the change in

position, or, if the velocity is positive, the total distance traveled.

Example 3 Two cars start from rest at a traffic light and accelerate for several minutes. Figure 5.47 shows their

velocities as a function of time.

(a) Which car is ahead after one minute? (b) Which car is ahead after two minutes?
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1 2

3000

t (min)

v (ft/min)

Car 1

Car 2

Figure 5.47: Velocities of two cars in Example 3. Which is ahead when?

Solution (a) For the first minute car 1 goes faster than car 2, and therefore car 1 must be ahead at the end of

one minute.

(b) At the end of two minutes the situation is less clear, since car 1 was going faster for the first

minute and car 2 for the second. However, if v = f (t) is the velocity of a car after t minutes,

then, since the integral of velocity is distance traveled, we know that

Distance traveled in two minutes =
∫

2

0

f (t) dt,

This definite integral may also be interpreted as the area under the graph of f between 0 and 2.

Since the area in Figure 5.47 representing the distance traveled by car 2 is clearly larger than the

area for car 1, we know that car 2 has traveled farther than car 1.

Example 4 Biological activity in water is reflected in the rate at which carbon dioxide,CO2, is added or removed.

Plants take CO2 out of the water during the day for photosynthesis and put CO2 into the water at

night. Animals put CO2 into the water all the time as they breathe. Figure 5.48 shows the rate of

change of the CO2 level in a pond.4 At dawn, there were 2.600 mmol of CO2 per liter of water.

(a) At what time was the CO2 level lowest? Highest?

(b) Estimate how much CO2 enters the pond during the night (t = 12 to t = 24).

(c) Estimate the CO2 level at dusk (twelve hours after dawn).

(d) Does the CO2 level appear to be approximately in equilibrium?

t (hours)

6 12 18 24
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

rate
(mmol/liter per hour)

Time (hours past dawn)

Figure 5.48: Rate at which CO2 enters a pond over a 24-hour period

4Data from R. J. Beyers, “The Pattern of Photosynthesis and Respiration in Laboratory Microsystems” Mem. 1st. Ital.

Idrobiol. (1965).
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Solution Let f (t) be the rate at which CO2 is entering the water at time t and let F (t) be the concentration of

CO2 in the water at time t, so F ′(t) = f (t).

(a) From Figure 5.48, we see f (t) is negative for 0 ≤ t ≤ 12, so the CO2 level is decreasing during

this interval (daytime). Since f (t) is positive for 12 < t < 24, the CO2 level is increasing during

this interval (night). The CO2 is lowest at t = 12 (dusk) and highest at t = 0 and t = 24 (dawn).

(b) We want to calculate the total change in the CO2 level in the pond, F (24) − F (12). By the

Fundamental Theorem of Calculus,

F (24) − F (12) =
∫

24

12

f (t) dt.

We use values of f (t) from the graph (displayed in Table 5.10) to construct a left Riemann sum

approximation to this integral with n = 6, Δt = 2:

∫

24

12

f (t) dt ≈ f (12) ⋅ 2 + f (14) ⋅ 2 + f (16) ⋅ 2 +⋯ + f (22) ⋅ 2

≈ (0.000)2 + (0.045)2 + (0.035)2 +⋯ + (0.012)2 = 0.278.

Thus, between t = 12 and t = 24,

Change in CO2 level = F (24) − F (12) =
∫

24

12

f (t) dt ≈ 0.278 mmol/liter.

(c) To find the CO2 level at t = 12, we use the Fundamental Theorem to estimate the change in CO2

level during the day:

F (12) − F (0) =
∫

12

0

f (t) dt

Using a left Riemann sum as in part (b), we have

F (12) − F (0) =
∫

12

0

f (t) dt ≈ −0.328.

Since initially there were F (0) = 2.600 mmol/liter, we have

F (12) = F (0) − 0.328 = 2.272 mmol/liter.

(d) The amount of CO2 removed during the day is represented by the area of the region below the

t-axis; the amount of CO2 added during the night is represented by the area above the t-axis.

These areas look approximately equal, so the CO2 level is approximately in equilibrium.

Using Riemann sums to estimate these areas, we find that about 0.278 mmol∕l of CO2 was

released into the pond during the night and about 0.328 mmol∕l of CO2 was absorbed from the

pond during the day. These quantities are sufficiently close that the difference could be due to

measurement error, or to errors from the Riemann sum approximation.

Table 5.10 Rate, f (t), at which CO2 is entering or leaving water (read from Figure 5.48)

t f (t) t f (t) t f (t) t f (t) t f (t) t f (t)

0 0.000 4 −0.039 8 −0.026 12 0.000 16 0.035 20 0.020

2 −0.044 6 −0.035 10 −0.020 14 0.045 18 0.027 22 0.012
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Calculating Definite Integrals: Computational Use of the Fundamental Theorem

The Fundamental Theorem of Calculus owes its name to its central role in linking rates of change

(derivatives) to total change. However, the Fundamental Theorem also provides an exact way of

computing certain definite integrals.

Example 5 Compute
∫

3

1

2x dx by two different methods.

Solution Using left- and right-hand sums, we can approximate this integral as accurately as we want. With

n = 100, for example, the left sum is 7.96 and the right sum is 8.04. Using n = 500, we learn

7.992 <
∫

3

1

2x dx < 8.008.

The Fundamental Theorem, on the other hand, allows us to compute the integral exactly. We take

f (x) = 2x. We know that if F (x) = x2, then F ′(x) = 2x. So we use f (x) = 2x and F (x) = x2 and

obtain

∫

3

1

2x dx = F (3) − F (1) = 32 − 12 = 8.

Notice that to use the Fundamental Theorem to calculate a definite integral, we need to know

the antiderivative, F . Chapter 6 discusses how antiderivatives are computed.

Summary for Section 5.3

• The fundamental theorem of calculus: If f is continuous on the interval [a, b] and f (t) =

F ′(t), then

∫

b

a

f (t) dt = F (b) − F (a).

• The definite integral of a rate of change gives the total change:

F (b) − F (a) =
Total change in F (t)

between t = a and t = b
=
∫

b

a

F ′(t) dt.

Exercises and Problems for Section 5.3 Online Resource: Additional Problems for Section 5.3
EXERCISES

1. If f (t) is measured in dollars per year and t is measured

in years, what are the units of ∫
b

a
f (t) dt?

2. If f (t) is measured in meters/second2 and t is measured

in seconds, what are the units of ∫
b

a
f (t) dt?

3. If f (x) is measured in pounds and x is measured in feet,

what are the units of ∫
b

a
f (x) dx?

In Exercises 4–7, explain in words what the integral repre-

sents and give units.

4. ∫
3

1
v(t) dt, where v(t) is velocity in meters/sec and t is

time in seconds.

5. ∫
6

0
a(t) dt, where a(t) is acceleration in km/hr2 and t is

time in hours.

6. ∫
2011

2005
f (t) dt, where f (t) is the rate at which world pop-

ulation is growing in year t, in billion people per year.

7. ∫
5

0
s(x) dx, where s(x) is rate of change of salinity

(salt concentration) in gm/liter per cm in sea water, and

where x is depth below the surface of the water in cm.

8. For the two cars in Example 3, page 310, estimate:

(a) The distances moved by car 1 and car 2 during the

first minute.

(b) The time at which the two cars have gone the same

distance.

9. For f (t) = F ′(t), given that F (8) = 19 and F (12) = 5,

find ∫
12

8
f (t) dt.
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In Exercises 10–15, let f (t) = F ′(t). Write the integral

∫
b

a
f (t) dt and evaluate it using the Fundamental Theorem

of Calculus.

10. F (t) = t2; a = 1, b = 3

11. F (t) = 3t2 + 4t; a = 2, b = 5

12. F (t) = ln t; a = 1, b = 5

13. F (t) = sin t; a = 0, b = �∕2

14. F (t) = 7 ⋅ 4t; a = 2, b = 3

15. F (t) = tan t; a = −�∕4, b = �∕4

In Exercises 16–19, find the definite integral using the Fun-

damental Theorem of Calculus and the antiderivative, F (t),

given.

16.
∫

5

1

8t dt, F (t) = 4t2

17.
∫

2

−1

3t2 − 2t dt, F (t) = t3 − t2

18.
∫

�

0

sin t dt, F (t) = − cos t

19.
∫

−2

−3

et dt, F (t) = et

PROBLEMS

20. (a) Differentiate x3 + x.

(b) Use the Fundamental Theorem of Calculus to find

∫

2

0

(3x2 + 1) dx.

21. (a) What is the derivative of sin t?

(b) The velocity of a particle at time t is v(t) = cos t.

Use the Fundamental Theorem of Calculus to find

the total distance traveled by the particle between

t = 0 and t = �∕2.

22. (a) If F (t) =
1

2
sin2 t, find F ′(t).

(b) Find
∫

0.4

0.2

sin t cos t dt two ways:

(i) Numerically.

(ii) Using the Fundamental Theorem of Calculus.

23. (a) If F (x) = ex
2
, find F ′(x).

(b) Find
∫

1

0

2xex
2
dx two ways:

(i) Numerically.

(ii) Using the Fundamental Theorem of Calculus.

In Problems 24–27, find the area between f (t) and the t-axis

for 0 ≤ t ≤ 5 using the Fundamental Theorem of Calcu-

lus. Compare your answer with what you get using areas of

triangles.

24. f (t) = t 25. f (t) = 6t

26. f (t) = −2t 27. f (t) = 10 − 2t

28. Pollution is removed from a lake at a rate of f (t) kg∕day

on day t.

(a) Explain the meaning of the statement f (12) = 500.

(b) If ∫
15

5
f (t) dt = 4000, give the units of the 5, the

15, and the 4000.

(c) Give the meaning of ∫
15

5
f (t) dt = 4000.

29. Oil leaks out of a tanker at a rate of r = f (t) gallons per

minute, where t is in minutes. Write a definite integral

expressing the total quantity of oil which leaks out of

the tanker in the first hour.

30. Water is leaking out of a tank at a rate of R(t) gal-

lons/hour, where t is measured in hours.

(a) Write a definite integral that expresses the total

amount of water that leaks out in the first two

hours.

(b) In Figure 5.49, shade the region whose area repre-

sents the total amount of water that leaks out in the

first two hours.

(c) Give an upper and lower estimate of the total

amount of water that leaks out in the first two

hours.

1 2

2

1

t

R(t)

Figure 5.49

31. As coal deposits are depleted, it becomes necessary to

strip-mine larger areas for each ton of coal. Figure 5.50

shows the number of acres of land per million tons of

coal that will be defaced during strip-mining as a func-

tion of the number of million tons removed, starting

from the present day.

(a) Estimate the total number of acres defaced in ex-

tracting the next 4 million tons of coal (measured

from the present day). Draw four rectangles under

the curve, and compute their area.

(b) Re-estimate the number of acres defaced using

rectangles above the curve.

(c) Use your answers to parts (a) and (b) to get a better

estimate of the actual number of acres defaced.
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Figure 5.50

32. The rate at which the world’s oil is consumed (in bil-

lions of barrels per year) is given by r = f (t), where t

is in years and t = 0 is the start of 2004.

(a) Write a definite integral representing the total

quantity of oil consumed between the start of 2004

and the start of 2009.

(b) Between 2004 and 2009, the rate was modeled by

r = 32e0.05t. Using a left-hand sum with five sub-

divisions, find an approximate value for the total

quantity of oil consumed between the start of 2004

and the start of 2009.

(c) Interpret each of the five terms in the sum from

part (b) in terms of oil consumption.

33. A bungee jumper leaps off the starting platform at time

t = 0 and rebounds once during the first 5 seconds.

With velocity measured downward, for t in seconds and

0 ≤ t ≤ 5, the jumper’s velocity is approximated5 by

v(t) = −4t2 + 16t meters/sec.

(a) How many meters does the jumper travel during

the first five seconds?

(b) Where is the jumper relative to the starting position

at the end of the five seconds?

(c) What does ∫
5

0
v(t) dt represent in terms of the

jump?

34. The table gives annual US emissions, H(t), of “super

greenhouse gases,” in millions of metric tons of carbon-

dioxide equivalent.6 Let t be in years since 2000.

(a) What are the units and meaning of ∫
14

2
H(t) dt?

(b) Estimate ∫
14

2
H(t) dt.

Year 2002 2004 2006 2008 2010 2012 2014

H(t) 142.3 139.6 144.1 157.5 164.0 170.1 180.1

35. Figure 5.51 shows the force, F (x), in newtons, needed

to move a crate 5 meters along a surface that gets

progressively smoother. Estimate ∫
5

0
F (x) dx, the total

work done in moving the crate. Include units in your

answer.

1 2 3 4 5

F (x)

2

4

6

8

10

x (m)

F (N)

Figure 5.51

36. Table 5.11 gives r(t), the rate in meters3/sec that wa-

ter is entering a lake at time t in seconds. Estimate the

amount of water entering or leaving the lake between

t = 60 and t = 62 using a

(a) Left-hand Riemann sum

(b) Right-hand Riemann sum

Table 5.11

t (sec) 60.0 60.5 61.0 61.5 62.0

r(t) (m3/sec) 3 4 6 7 10

37. An old rowboat has sprung a leak. Water is flowing into

the boat at a rate, r(t), given in the table.

(a) Compute upper and lower estimates for the volume

of water that has flowed into the boat during the 15

minutes.

(b) Draw a graph to illustrate the lower estimate.

t minutes 0 5 10 15

r(t) liters/min 12 20 24 16

38. Annual coal production in the US (in billions of tons per

year) is given in the table.7 Estimate the total amount

of coal produced in the US between 2005 and 2017. If

r = f (t) is the rate of coal production t years since

2005, write an integral to represent the 2005–2017 coal

production.

Year 2005 2007 2009 2011 2013 2015 2017

Rate 1.132 1.147 1.075 1.096 0.985 0.897 0.775

5Based on www.itforus.oeiizk.waw.pl/tresc/activ//modules/bj.pdf. Accessed February 12, 2012.
6Includes HFCs (hydrofluorocarbons), PFCs (perfluorocarbons), SF6 (sulfur hexafluoride), and NF3 (nitrogen trifluoride).

www.epa.gov/climate-indicators, accessed October 3, 2019.
7Based on www.eia.gov/coal/annual/pdf/table_es1.pdf, accessed October 3, 2019.
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39. The amount of waste a company produces, W , in tons

per week, is approximated by W = 3.75e−0.008t, where

t is in weeks since January 1, 2016. Waste removal for

the company costs $150∕ton. How much did the com-

pany pay for waste removal during the year 2016?

40. A two-day environmental cleanup started at 9 am on the

first day. The number of workers fluctuated as shown in

Figure 5.52. If the workers were paid $10 per hour, how

much was the total personnel cost of the cleanup?

8 16 24 32 40 48

10

20

30

40

50

hours

workers

Figure 5.52

41. In Problem 40, suppose workers were paid $10 per hour

for work between 9 am and 5 pm and $15 per hour for

work during the rest of the day. What would the total

personnel costs have been under these conditions?

42. Figure 5.53 shows solar radiation, in watts per square

meter (w/m2), in Santa Rosa, California, throughout a

typical January day.8 Estimate the daily energy pro-

duced, in kwh, by a 20-square-meter solar array located

in Santa Rosa if it converts 18% of solar radiation into

energy.

4 8 12 16 20

100

200

300

400

time (hrs past midnight)

solar radiation (w/m2)

Figure 5.53

43. A warehouse charges its customers $5 per day for ev-

ery 10 cubic feet of space used for storage. Figure 5.54

records the storage used by one company over a month.

How much will the company have to pay?

10 20 30

10,000

20,000

30,000

days

cubic feet

Figure 5.54

44. Let r(t) = 30e−0.2t give the rate in meters3/sec that wa-

ter is entering a reservoir at time t seconds. How much

water has entered the reservoir in the first 15 seconds?

Use the fact that Q′(t) = r(t) where Q(t) = −150e−0.2t .

45. A cup of coffee at 90◦C is put into a 20◦C room when

t = 0. The coffee’s temperature is changing at a rate of

r(t) = −7e−0.1t ◦C per minute, with t in minutes. Esti-

mate the coffee’s temperature when t = 10.

46. LetF (t) be the number of gallons of oil that have leaked

out of a tank in t hours, where F ′(t) = 400 ⋅2−t∕10 . Esti-

mate how much oil leaks out between t = 5 and t = 25.

47. Water is pumped out of a holding tank at a rate of

5 − 5e−0.12t liters/minute, where t is in minutes since

the pump is started. If the holding tank contains 1000

liters of water when the pump is started, how much wa-

ter does it hold one hour later?

48. The concentration of a medication in the plasma

changes at a rate of ℎ(t) mg/ml per hour, t hours after

the delivery of the drug.

(a) Explain the meaning of the statement ℎ(1) = 50.

(b) There is 250 mg/ml of the medication present at

time t = 0 and ∫
3

0
ℎ(t) dt = 480. What is the

plasma concentration of the medication present

three hours after the drug is administered?

Problems 49–50 concern the graph of f ′ in Figure 5.55.

1 2 3 4

f ′(x)

x

Figure 5.55: Graph of f ′, not f

49. Which is greater, f (0) or f (1)?

50. List the following in increasing order:
f (4) − f (2)

2
, f (3) − f (2), f (4) − f (3).

51. A force F parallel to the x-axis is given by the graph in

Figure 5.56. Estimate the work, W , done by the force,

where W = ∫
16

0
F (x) dx.

4 8 10

14 16

−2

−1

1

2

x (meter)

force (newton)

F

Figure 5.56

52. Let f (1) = 7, f ′(t) = e−t
2
. Use left- and right-hand

sums of 5 rectangles each to estimate f (2).

8Based on California Data Exchange Center, CURRENT CONDITIONS. Retreived from: cdec.water.ca.gov/, accessed

October 3, 2019.
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53. Figure 5.57 shows a continuous function f . Rank the

following integrals in ascending numerical order.

(i) ∫
2

0
f (x) dx (ii) ∫

1

0
f (x) dx

(iii) ∫
2

0
(f (x))1∕2 dx (iv) ∫

2

0
(f (x))2 dx.

0 1 2

100

x

f (x)

Figure 5.57

54. The graphs in Figure 5.58 represent the velocity, v, of

a particle moving along the x-axis for time 0 ≤ t ≤ 5.

The vertical scales of all graphs are the same. Identify

the graph showing which particle:

(a) Has a constant acceleration.

(b) Ends up farthest to the left of where it started.

(c) Ends up the farthest from its starting point.

(d) Experiences the greatest initial acceleration.

(e) Has the greatest average velocity.

(f) Has the greatest average acceleration.

5
t

v(I)

t

v

5

(II)

t

v

5

(III)

t

v

5

(IV)

t

v

5

(V)

Figure 5.58

55. Figure 5.59 shows y = r(t), the rate in meters3/sec that

water enters a reservoir at t seconds. Does the reser-

voir’s level rise or fall between:

(a) t = 5 and t = 9? (b) t = 9 and t = 12?

(c) t = 0 and t = 5?

3 5 9 12 15

−3

2
y = r(t)

t

y

Figure 5.59

56. A mouse moves back and forth in a straight tunnel, at-

tracted to bits of cheddar cheese alternately introduced

to and removed from the ends (right and left) of the

tunnel. The graph of the mouse’s velocity, v, is given

in Figure 5.60, with positive velocity corresponding to

motion toward the right end. Assume that the mouse

starts (t = 0) at the center of the tunnel.

(a) Use the graph to estimate the time(s) at which:

(i) The mouse changes direction.

(ii) The mouse is moving most rapidly to the

right; to the left.

(iii) The mouse is farthest to the right of center;

farthest to the left.

(iv) The mouse’s speed (i.e., the magnitude of its

velocity) is decreasing.

(v) The mouse is at the center of the tunnel.

(b) What is the total distance the mouse traveled?
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20
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Figure 5.60

In Problems 57–58, oil is pumped from a well at a rate of r(t)

barrels per day, with t in days. Assume r′(t) < 0 and t0 > 0.

57. What does the value of ∫
t0

0
r(t) dt tell us about the oil

well?

58. Rank in order from least to greatest:

∫

2t0

0

r(t) dt,
∫

2t0

t0

r(t) dt,
∫

3t0

2t0

r(t) dt.

59. Height velocity graphs are used by endocrinologists to

follow the progress of children with growth deficien-

cies. Figure 5.61 shows the height velocity curves of an

average boy and an average girl between ages 3 and 18.

(a) Which curve is for girls and which is for boys? Ex-

plain how you can tell.

(b) About how much does the average boy grow be-

tween ages 3 and 10?

(c) The growth spurt associated with adolescence and

the onset of puberty occurs between ages 12 and 15

for the average boy and between ages 10 and 12.5

for the average girl. Estimate the height gained by

each average child during this growth spurt.

(d) When fully grown, about how much taller is the av-

erage man than the average woman? (The average

boy and girl are about the same height at age 3.)
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Figure 5.61

60. Figure 5.62 shows the rate of change in the average

plasma concentration of the drug Omeprazole (in ng/ml

per hour) for six hours after the first dose is adminis-

tered using two different capsules: immediate-release

and delayed-release.9

(a) Which graph corresponds to which capsule?

(b) Do the two capsules provide the same maximum

concentration? If not, which provides the larger

maximum concentration?

1 2 3 4 5 6

−1000

1000

2000

3000

A

B

t (hours)

rate (ng/mL per hour)

Figure 5.62

61. Table 5.12 shows the monthly change in water stored in

Lake Sonoma, California, from March through Novem-

ber 2014. The change is measured in acre-feet per

month.10 On March 1, the water stored was 182,566

acre-feet. Let S(t) be the total water, in acre-feet, stored

in month t, where t = 0 is March.

(a) Find and interpret S(0) and S(3).

(b) Approximately when do maximum and minimum

values of S(t) occur?

(c) Does S(t) appear to have inflection points? If so,

approximately when?

Table 5.12 Change in water in acre-feet per month

Month Mar Apr May June July

Change in water 3003 −5631 −8168 −8620 −8270

Month Aug Sept Oct Nov

Change in water −7489 −6245 −4593 54,743

In Problems 62–64, evaluate the expressions using Ta-

ble 5.13. Give exact values if possible; otherwise, make the

best possible estimates using left-hand Riemann sums.

Table 5.13

t 0.0 0.1 0.2 0.3 0.4 0.5

f (t) 0.3 0.2 0.2 0.3 0.4 0.5

g(t) 2.0 2.9 5.1 5.1 3.9 0.8

62.
∫

0.5

0

f (t) dt 63.
∫

0.5

0.2

g′(t) dt

64.
∫

0.3

0

g (f (t)) dt

In Problems 65–67, let C(n) be a city’s cost, in millions of

dollars, for plowing the roads when n inches of snow have

fallen. Let c(n) = C ′(n). Evaluate the expressions and in-

terpret your answers in terms of the cost of plowing snow,

given

c′(n) < 0,
∫

15

0

c(n) dn = 7.5, c(15) = 0.7,

c(24) = 0.4, C(15) = 8, C(24) = 13.

65.
∫

24

15

c(n) dn 66. C(0)

67. c(15) +
∫

24

15

c′(n) dn

Problems 68–70 refer to a May 2, 2010, article:11

“The crisis began around 10 am yesterday when a

10-foot wide pipe in Weston sprang a leak, which

worsened throughout the afternoon and eventually

cut off Greater Boston from the Quabbin Reservoir,

where most of its water supply is stored. . .Before

water was shut off to the ruptured pipe [at 6:40

pm], brown water had been roaring from a mas-

sive crater [at a rate of] 8 million gallons an hour

rushing into the nearby Charles River.”

Let r(t) be the rate in gallons/hr that water flowed from the

pipe t hours after it sprang its leak. The integers in each prob-

lem are values of t.

68. Which is larger:
∫

2

0

r(t) dt or
∫

4

2

r(t) dt?

9Adapted from C. W. Howden, “Review article: “Immediate-Release Proton-Pump Inhibitor Therapy—Potential Advan-

tages", Alimentary Pharmacology and Therapeutics, Vol 22, Issue s3 (2005).
10Data from http://cdec.water.ca.gov/cgi-progs/stationInfo?station_id=WRS, accessed June, 2015. An acre-foot is the

amount of water it takes to cover one acre of area with 1 foot of water.
11“A catastrophic rupture hits region’s water system,” The Boston Globe, May 2, 2010.
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69. Which is larger:
∫

4

0

r(t) dt or 4r(4)?

70. Give a reasonable overestimate of
∫

8

0

r(t) dt.

In Problems 71–73, list the expressions (I)–(III) in order

from smallest to largest, where r(t) is the hourly rate that an

animal burns calories and R(t) is the total number of calo-

ries burned since time t = 0. Assume r(t) > 0 and r′(t) < 0

for 0 ≤ t ≤ 12. The integers in each problem are values of t.

71. Letting t0 = 0, t100 = 12:

I.

99
∑

i=0

r
(

ti
)

Δt II.

100
∑

i=1

r
(

ti
)

Δt III.
∫

12

0

r(t) dt

72. I. R(10) II. R(12) III. R(10)+r(10)⋅2

73. I.
∫

8

5

r(t) dt II.
∫

11

8

r(t) dt III. R(12)−R(9)

Strengthen Your Understanding

In Problems 74–75, explain what is wrong with the state-

ment.

74. If f (t) represents the rate, in lbs per year, at which a

dog gains weight t years after it is born, then ∫
4

0
f (t)dt

represents the weight of the dog when the dog is four

years old.

75. If f (x) =
√

x the Fundamental Theorem of Calculus

states that ∫
9

4

√

x dx =
√

9 −
√

4.

In Problems 76–77, give an example of:

76. A function f (x) and limits of integration a and b such

that ∫
b

a
f (x) dx = e4 − e2.

77. The graph of a velocity function of a car that travels 200

miles in 4 hours.

78. True or false? The units for an integral of a function

f (x) are the same as the units for f (x).

5.4 THEOREMS ABOUT DEFINITE INTEGRALS

Properties of the Definite Integral

For the definite integral ∫
b

a
f (x) dx, we have so far only considered the case a < b. We now allow

a ≥ b. We still set x0 = a, xn = b, and Δx = (b − a)∕n. As before, we have ∫
b

a
f (x)dx =

limn→∞

∑n

i=1 f (xi)Δx.

Theorem 5.2: Properties of Limits of Integration

If a, b, and c are any numbers and f is a continuous function, then

1.
∫

a

b

f (x) dx = −
∫

b

a

f (x) dx.

2.
∫

c

a

f (x) dx +
∫

b

c

f (x) dx =
∫

b

a

f (x) dx.

In words:

1. The integral from b to a is the negative of the integral from a to b.

2. The integral from a to c plus the integral from c to b is the integral from a to b.

By interpreting the integrals as areas, we can justify these results for f ≥ 0. In fact, they are

true for all functions for which the integrals make sense.

Why is ∫ a

b
f (x)dx = −∫ b

a
f (x)dx?

By definition, both integrals are approximated by sums of the form
∑

f (xi)Δx. The only difference

in the sums for ∫
a

b
f (x) dx and ∫

b

a
f (x) dx is that in the first Δx = (a − b)∕n = −(b − a)∕n and

in the second Δx = (b − a)∕n. Since everything else about the sums is the same, we must have

∫
a

b
f (x) dx = − ∫

b

a
f (x) dx.
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a c b
x

f (x)

Figure 5.63: Additivity of the definite

integral (a < c < b)

a b c
x

f (x)

Figure 5.64: Additivity of the definite

integral (a < b < c)

Why is ∫ c

a
f (x)dx+ ∫ b

c
f (x)dx = ∫ b

a
f (x)dx?

Suppose a < c < b. Figure 5.63 suggests that ∫
c

a
f (x) dx+ ∫

b

c
f (x) dx = ∫

b

a
f (x) dx since the area

under f from a to c plus the area under f from c to b together make up the whole area under f from

a to b.

This property holds for all numbers a, b, and c, not just those satisfying a < c < b. (See

Figure 5.64.) For example, the area under f from 3 to 6 is equal to the area from 3 to 8 minus the

area from 6 to 8, so

∫

6

3

f (x) dx =
∫

8

3

f (x) dx −
∫

8

6

f (x) dx =
∫

8

3

f (x) dx +
∫

6

8

f (x) dx.

Example 1 Given that ∫
1.25

0
cos(x2) dx = 0.98 and ∫

1

0
cos(x2) dx = 0.90, what are the values of the following

integrals? (See Figure 5.65.)

(a)
∫

1.25

1

cos(x2) dx (b)
∫

1

−1

cos(x2) dx (c)
∫

−1

1.25

cos(x2) dx

−1 1

−1.25 1.25

−1

1

x

✻ ✻

Figure 5.65: Graph of f (x) = cos(x2)

Solution (a) Since, by the additivity property,

∫

1.25

0

cos(x2) dx =
∫

1

0

cos(x2) dx +
∫

1.25

1

cos(x2) dx,

we get

0.98 = 0.90 +
∫

1.25

1

cos(x2) dx,

so

∫

1.25

1

cos(x2) dx = 0.08.

(b) By the additivity property, we have

∫

1

−1

cos(x2) dx =
∫

0

−1

cos(x2) dx +
∫

1

0

cos(x2) dx.
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By the symmetry of cos(x2) about the y-axis,

∫

0

−1

cos(x2) dx =
∫

1

0

cos(x2) dx = 0.90.

So

∫

1

−1

cos(x2) dx = 0.90 + 0.90 = 1.80.

(c) Using both properties in Theorem 5.2, we have

∫

−1

1.25

cos(x2) dx = −
∫

1.25

−1

cos(x2) dx = −

(

∫

0

−1

cos(x2) dx +
∫

1.25

0

cos(x2) dx

)

= −(0.90 + 0.98) = −1.88.

Theorem 5.3: Properties of Sums and Constant Multiples of the Integrand

Let f and g be continuous functions and let c be a constant.

1.
∫

b

a

(f (x) ± g(x)) dx =
∫

b

a

f (x) dx ±
∫

b

a

g(x) dx.

2.
∫

b

a

cf (x) dx = c
∫

b

a

f (x) dx.

In words:

1. The integral of the sum (or difference) of two functions is the sum (or difference) of their

integrals.

2. The integral of a constant times a function is that constant times the integral of the func-

tion.

Why Do These Properties Hold?

Both can be visualized by thinking of the definite integral as the limit of a sum of areas of rectangles.

For property 1, suppose that f and g are positive on the interval [a, b] so that the area under

f (x)+g(x) is approximated by the sum of the areas of rectangles like the one shaded in Figure 5.66.

The area of this rectangle is

(f (xi) + g(xi))Δx = f (xi)Δx + g(xi)Δx.

Since f (xi)Δx is the area of a rectangle under the graph of f , and g(xi)Δx is the area of a rectangle

under the graph of g, the area under f (x) + g(x) is the sum of the areas under f (x) and g(x).

For property 2, notice that multiplying a function by c stretches or shrinks the graph in the

vertical direction by a factor of c. Thus, it stretches or shrinks the height of each approximating

rectangle by c, and hence multiplies the area by c.

a b
✲ ✛

Δx

x

f (x) + g(x)

f (x)✻

❄

f (xi)

✻

❄

g(xi)

Figure 5.66: Area = ∫
b

a
[f (x) + g(x)] dx = ∫

b

a
f (x) dx + ∫

b

a
g(x) dx
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Example 2 Evaluate the definite integral
∫

2

0

(1 + 3x) dx exactly.

Solution We can break this integral up as follows:

∫

2

0

(1 + 3x) dx =
∫

2

0

1 dx +
∫

2

0

3x dx =
∫

2

0

1 dx + 3
∫

2

0

x dx.

From Figures 5.67 and 5.68 and the area interpretation of the integral, we see that

∫

2

0

1 dx =
Area of

rectangle
= 2 and

∫

2

0

x dx =
Area of

triangle
=

1

2
⋅ 2 ⋅ 2 = 2.

Therefore,

∫

2

0

(1 + 3x) dx =
∫

2

0

1 dx + 3
∫

2

0

x dx = 2 + 3 ⋅ 2 = 8.

2

1

2

x

y

∫

2

0

1 dx = 2

y = 1

Figure 5.67: Area representing ∫
2

0
1 dx

y = x

∫

2

0

xdx = 2

2

2

x

y

Figure 5.68: Area representing ∫
2

0
xdx

Area Between Curves

Theorem 5.3 enables us to find the area of a region between curves. We have the following result:

If the graph of f (x) lies above the graph of g(x) for a ≤ x ≤ b, then

Area between f and g

for a ≤ x ≤ b
=
∫

b

a

(f (x) − g(x)) dx.

Example 3 Find the area of the shaded region in Figure 5.69.

f (x) = −x2 + 4x − 1

g(x) = x2 − 4x + 5

x

Figure 5.69: Area between two parabolas
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Solution The curves cross where

x2 − 4x + 5 = −x2 + 4x − 1

2x2 − 8x + 6 = 0

2(x − 1)(x − 3) = 0

x = 1, 3.

Since f (x) = −x2 + 4x − 1 is above g(x) = x2 − 4x + 5 for x between 1 and 3, we find the shaded

area by subtraction:

Area =
∫

3

1

f (x) dx −
∫

3

1

g(x) dx =
∫

3

1

(f (x) − g(x)) dx

=
∫

3

1

((−x2 + 4x − 1) − (x2 − 4x + 5)) dx

=
∫

3

1

(−2x2 + 8x − 6) dx = 2.667.

Using Symmetry to Evaluate Integrals

Symmetry can be useful in evaluating definite integrals. An even function is symmetric about the

y-axis. An odd function is symmetric about the origin. Figures 5.70 and 5.71 suggest the following

results for continuous functions:

If f is even, then
∫

a

−a

f (x) dx = 2
∫

a

0

f (x) dx. If g is odd, then
∫

a

−a

g(x) dx = 0.

−a a

f (x)

x

Figure 5.70: For an even function,

∫
a

−a
f (x) dx = 2 ∫

a

0
f (x) dx

−a

a

g(x)

x

Figure 5.71: For an odd function,

∫
a

−a
g(x) dx = 0

Example 4 Given that ∫
�

0 sin t dt = 2, find (a)
∫

�

−�

sin t dt (b)
∫

�

−�

| sin t| dt

Solution Graphs of sin t and | sin t| are in Figures 5.72 and 5.73.

(a) Since sin t is an odd function

∫

�

−�

sin t dt = 0.

(b) Since | sin t| is an even function

∫

�

−�

| sin t| dt = 2
∫

�

0

| sin t| dt = 4.
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−�

�

−1

1

t

y

Figure 5.72

−� �

−1

1

t

y

Figure 5.73

Comparing Integrals

Suppose we have constants m and M such that m ≤ f (x) ≤ M for a ≤ x ≤ b. We say f is bounded

above by M and bounded below by m. Then the graph of f lies between the horizontal lines y = m

and y = M . So the definite integral lies between m(b − a) and M(b − a). See Figure 5.74.

Suppose f (x) ≤ g(x) for a ≤ x ≤ b, as in Figure 5.75. Then the definite integral of f is less

than or equal to the definite integral of g. This leads us to the following results:

a b

M

m

f (x)

y

x

Figure 5.74: The area under the graph of f

lies between the areas of the rectangles

a b
x

Total
shaded
area

=
∫

b

a

g(x) dx

Dark
shaded
area

=
∫

b

a

f (x) dx

g(x)

f (x)

Figure 5.75: If f (x) ≤ g(x) then ∫
b

a
f (x) dx ≤ ∫

b

a
g(x) dx

Theorem 5.4: Comparison of Definite Integrals

Let f and g be continuous functions.

1. If m ≤ f (x) ≤ M for a ≤ x ≤ b, then m(b − a) ≤
∫

b

a

f (x) dx ≤ M(b − a).

2. If f (x) ≤ g(x) for a ≤ x ≤ b, then
∫

b

a

f (x) dx ≤
∫

b

a

g(x) dx.

Example 5 Explain why
∫

√

�

0

sin(x2) dx ≤
√

�.

Solution Since sin (x2) ≤ 1 for all x (see Figure 5.76), part 2 of Theorem 5.4 gives

∫

√

�

0

sin(x2) dx ≤
∫

√

�

0

1 dx =
√

�.
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√

�

−1

1

x

y

y = sin(x2)

Figure 5.76: Graph showing that ∫

√

�

0
sin(x2) dx <

√

�

The Definite Integral as an Average

We know how to find the average of n numbers: Add them and divide by n. But how do we find the

average value of a continuously varying function? Let us consider an example. Suppose f (t) is the

temperature at time t, measured in hours since midnight, and that we want to calculate the average

temperature over a 24-hour period. One way to start is to average the temperatures at n equally spaced

times, t1, t2,… , tn, during the day.

Average temperature ≈
f (t1) + f (t2) +⋯ + f (tn)

n
.

The larger we make n, the better the approximation. We can rewrite this expression as a Riemann

sum over the interval 0 ≤ t ≤ 24 if we use the fact that Δt = 24∕n, so n = 24∕Δt:

Average temperature ≈
f (t1) + f (t2) +⋯ + f (tn)

24∕Δt

=
f (t1)Δt + f (t2)Δt +⋯ + f (tn)Δt

24

=
1

24

n
∑

i=1

f (ti)Δt.

As n → ∞, the Riemann sum tends toward an integral, and 1∕24 of the sum also approximates the

average temperature better. It makes sense, then, to write

Average temperature = lim
n→∞

1

24

n
∑

i=1

f (ti)Δt =
1

24 ∫

24

0

f (t) dt.

We have found a way of expressing the average temperature over an interval in terms of an integral.

Generalizing for any function f , if a < b, we define

Average value of f

from a to b
=

1

b − a ∫

b

a

f (x) dx.

How to Visualize the Average on a Graph

The definition of average value tells us that

(Average value of f ) ⋅ (b − a) =
∫

b

a

f (x) dx.
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a b
x

f (x)

Area under curve =
Area of rectangle

✲✛ b − a

✻

❄

Average
value
of f

Figure 5.77: Area and average value

Let’s interpret the integral as the area under the graph of f. Then the average value of f is the height

of a rectangle whose base is (b − a) and whose area is the same as the area under the graph of f.

(See Figure 5.77.)

Example 6 Suppose that C(t) represents the daily cost of heating your house, measured in dollars per day, where

t is time measured in days and t = 0 corresponds to January 1, 2015. Interpret
∫

90

0

C(t) dt and

1

90 − 0 ∫

90

0

C(t) dt.

Solution The units for the integral
∫

90

0

C(t) dt are (dollars/day)×(days) = dollars. The integral represents the

total cost in dollars to heat your house for the first 90 days of 2015, namely the months of January,

February, and March. The second expression is measured in (1/days)(dollars) or dollars per day, the

same units as C(t). It represents the average cost per day to heat your house during the first 90 days

of 2015.

Example 7 In the year 2018, the population of Nevada12 was modeled by the function

P = f (t) = 3.035(1.021)t,

where P is in millions of people and t is in years since 2018. Use this function to predict the average

population of Nevada between the years 2015 and 2025.

Solution We want the average value of f (t) between t = −3 and t = 7. This is given by

Average population =
1

7 − (−3) ∫

7

−3

f (t) dt =
1

10
(31.70) = 3.170.

We used a calculator to evaluate the integral. The average population of Nevada between 2015 and

2025 is predicted to be about 3.170 million people.

12worldpopulationreview.com, accessed October 3, 2019.
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Summary for Section 5.4

• Properties of limits of integration: If a, b, and c are any numbers and f is a continuous func-

tion, then

∙
∫

a

b

f (x) dx = −
∫

b

a

f (x) dx.

∙
∫

c

a

f (x) dx +
∫

b

c

f (x) dx =
∫

b

a

f (x) dx.

• Properties of sums and constant multiples of the integrand: Let f and g be continuous func-

tions and let c be a constant.

∙
∫

b

a

(f (x) ± g(x)) dx =
∫

b

a

f (x) dx ±
∫

b

a

g(x) dx.

∙
∫

b

a

cf (x) dx = c
∫

b

a

f (x) dx.

• Area between curves: If the graph of f (x) lies above the graph of g(x) for a ≤ x ≤ b, then

Area between f and g

for a ≤ x ≤ b
=
∫

b

a

(f (x) − g(x)) dx.

• Symmetry for evaluating integrals: Let f be a continuous function.

∙ If f is an even function,
∫

a

−a

f (x) dx = 2
∫

a

0

f (x) dx.

∙ If f is an odd function,
∫

a

−a

g(x) dx = 0.

• Comparison of definite integrals:

∙ If m ≤ f (x) ≤ M for a ≤ x ≤ b, then m(b − a) ≤
∫

b

a

f (x) dx ≤ M(b − a).

∙ If f (x) ≤ g(x) for a ≤ x ≤ b, then
∫

b

a

f (x) dx ≤
∫

b

a

g(x) dx.

•
Average value of f

from a to b
=

1

b − a ∫

b

a

f (x) dx.

Exercises and Problems for Section 5.4 Online Resource: Additional Problems for Section 5.4
EXERCISES

In Exercises 1–6, find the integral, given that ∫
b

a
f (x) dx =

8, ∫
b

a
(f (x))2 dx = 12, ∫

b

a
g(t) dt = 2, and ∫

b

a
(g(t))2 dt = 3.

1. ∫
b

a
(f (x) + g(x)) dx 2. ∫

b

a
cf (z) dz

3. ∫
b

a

(

(f (x))2 − (g(x))2
)

dx

4. ∫
b

a
(f (x))2 dx − (∫

b

a
f (x) dx)2

5. ∫
b

a

(

c1g(x) + (c2f (x))
2
)

dx

6. ∫
b+5

a+5
f (x − 5) dx

In Exercises 7–10, find the average value of the function over

the given interval.

7. g(t) = 1+ t over [0, 2] 8. g(t) = et over [0, 10]

9. f (x) = 2 over [a, b] 10. f (x)=4x+7 over [1,3]

11. (a) Using Figure 5.78, find ∫
6

1
f (x) dx.

(b) What is the average value of f on [1, 6]?

1 2 3 4 5 6

1

2

3
f (x)

x

Figure 5.78

12. How do the units for the average value of f relate to the

units for f (x) and the units for x?
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Find the area of the regions in Exercises 13–20.

13. Under y = ex and above y = 1 for 0 ≤ x ≤ 2.

14. Under y = 5 ln(2x) and above y = 3 for 3 ≤ x ≤ 5.

15. Between y = x2 and y = x3 for 0 ≤ x ≤ 1.

16. Between y = x1∕2 and y = x1∕3 for 0 ≤ x ≤ 1.

17. Between y = sinx + 2 and y = 0.5 for 6 ≤ x ≤ 10.

18. Between y = cos t and y = sin t for 0 ≤ t ≤ �.

19. Between y = e−x and y = 4(x − x2).

20. Between y = e−x and y = ln x for 1 ≤ x ≤ 2.

In Exercises 21–24, without evaluating them, decide which

of the two definite integrals is smaller.

21. ∫
1

0
x dx and ∫

1

0
x2 dx

22. ∫
2

1
x dx and ∫

2

1
x2 dx

23. ∫
3

2
cos(x) dx and ∫

3

2
xdx

24. ∫
−1

−2
x3 dx and ∫

−1

−2
ex dx

PROBLEMS

25. Figure 5.79 shows an even function f (x). Find

(a) ∫
4

0
f (x) dx (b) ∫

2

−2
f (x) dx (c) ∫

2

−4
f (x) dx

−4 −2 2 4

f (x)

❄

Area=8

✻

Area=4

x

y

Figure 5.79

26. (a) Let ∫
3

0
f (x)dx = 6. What is the average value of

f (x) on the interval x = 0 to x = 3?

(b) If f (x) is even, what is ∫
3

−3
f (x)dx? What is the

average value of f (x) on the interval x = −3 to

x = 3?

(c) If f (x) is odd, what is ∫
3

−3
f (x)dx? What is the

average value of f (x) on the interval x = −3 to

x = 3?

27. Using Figure 5.80, write ∫
3

0
f (x) dx in terms of

∫
1

−1
f (x) dx and ∫

3

1
f (x) dx.

−2 0 2 4

8

x

f (x)

Figure 5.80

28. (a) Assume a ≤ b. Use geometry to construct a for-

mula in terms of a and b for

∫

b

a

1 dx.

(b) Use the result of part (a) to find:

(i) ∫
5

2
1 dx (ii) ∫

8

−3
1 dx (iii) ∫

3

1
23 dx

29. Given ∫
5

1
f (x) dx = 5, ∫

9

1
f (x) dx = 3, ∫

9

3
f (x) dx =

4, evaluate:

(a) ∫
9

5
f (x) dx (b) ∫

5

3
f (x) dx (c) ∫

1

3
f (x) dx

30. Given that ∫
5

2
f (x) dx = 7, ∫

7

2
f (x) dx = 12 and

∫
10

5
f (x) dx = 4, evaluate:

(a) ∫
10

2
f (x) dx (b) ∫

5

2
2f (x) dx

(c) ∫
7

5
f (x) dx (d) ∫

5

2
(f (x) + 1) dx

31. If ∫
5

2
(2f (x) + 3) dx = 17, find ∫

5

2
f (x) dx.

32. (a) Given that ∫
5

3
g(x) dx = 7, find

(i) ∫
5

3
2g(x) dx (ii) ∫

3

5
g(x) dx

(b) What values of a and b allow you to calculate

∫
b

a
g(x − 6) dx from the information in part (a)?

In Problems 33–38, find the integral given that

∫
4

1
f (t) dt = 5, ∫

9

4
f (t) dt = −3, ∫

6

5
f (t) dt = 7,

∫
9

6
f (t) dt = 1, and ∫

4

1
g(t) dt = −2.

33.
∫

9

1

f (t) dt 34.
∫

4

1

(f (t) + g(t)) dt

35.
∫

1

4

g(t) dt 36.
∫

6

5

3f (t) dt

37.
∫

5

4

f (t) dt 38.
∫

4

1

(2f (t) − g(t)) dt

In Problems 39–41, use
∫

3

1

f (x) dx = 5 and
∫

3

1

g(x) dx = 2

to find the integrals or the value of the constant c.

39.
∫

3

1

(f (x) + g(x)) dx

40.
∫

3

1

(3f (x) − 7g(x)) dx

41. Find the value of c making
∫

3

1

cf (x) dx = 20
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42. Let r(t) be the rate in meters3/sec that water enters a

reservoir at time t seconds. Given that ∫
9

5
r(t) dt = 24,

at what average rate does water enter or leave the reser-

voir on the interval 5 ≤ t ≤ 9?

43. The depth in feet of the sea water against a sea wall at

time t in hours since midnight is

d = 10 + 5 sin
(

�

12
t

)

.

(a) Find the average depth of the water between mid-

night and noon.

(b) Find the average depth of the water over 24 hours.

44. The value, V , of a Tiffany lamp, worth $225 in 1975,

increases at 15% per year. Its value in dollars t years

after 1975 is given by

V = 225(1.15)t.

Find the average value of the lamp over the period

1975–2010.

45. (a) Assume that 0 ≤ a ≤ b. Use geometry to construct

a formula in terms of a and b for

∫

b

a

x dx.

(b) Use the result of part (a) to find:

(i) ∫
5

2
xdx (ii) ∫

8

−3
xdx (iii) ∫

3

1
5xdx

46. If f (x) is odd and ∫
3

−2
f (x) dx = 30, find ∫

3

2
f (x) dx.

47. If f (x) is even and ∫
2

−2
(f (x) − 3) dx = 8, find

∫
2

0
f (x) dx.

48. Without any computation, find
∫

�∕4

−�∕4

x3 cos x2 dx.

49. If the average value of f on the interval 2 ≤ x ≤ 5 is 4,

find ∫
5

2
(3f (x) + 2) dx.

50. Suppose ∫
3

1
3x2 dx = 26 and ∫

3

1
2x dx = 8. What is

∫
3

1
(x2 − x) dx?

51. Figure 5.81 shows the rate, f (x), in thousands of al-

gae per hour, at which a population of algae is growing,

where x is in hours.

(a) Estimate the average value of the rate over the in-

terval x = −1 to x = 3.

(b) Estimate the total change in the population over the

interval x = −3 to x = 3.

−3 3

3

−3

f (x)

x

Figure 5.81

52. (a) Using Figure 5.82, estimate ∫
3

−3
f (x) dx.

(b) Which of the following average values of f (x) is

larger?

(i) Between x = −3 and x = 3

(ii) Between x = 0 and x = 3

−4

4

−4

4

f (x)
x

Figure 5.82

53. A bar of metal is cooling from 1000◦C to room temper-

ature, 20◦C. The temperature, H , of the bar t minutes

after it starts cooling is given, in ◦C, by

H = 20 + 980e−0.1t.

(a) Find the temperature of the bar at the end of one

hour.

(b) Find the average value of the temperature over the

first hour.

(c) Is your answer to part (b) greater or smaller than

the average of the temperatures at the beginning

and the end of the hour? Explain this in terms of

the concavity of the graph of H .

54. In 2017, the population of Mexico13 was growing at

1.12% a year. Assuming that this growth rate contin-

ues into the future and that t is in years since 2017, the

Mexican population, P , in millions, is given by

P = 125(1.0112)t .

(a) Predict the average population of Mexico between

2017 and 2050.

(b) Find the average of the population in 2017 and the

predicted population in 2050.

(c) Explain, in terms of the concavity of the graph of

P , why your answer to part (b) is larger or smaller

than your answer to part (a).

55. (a) Using a graph, decide if the area under y = e−x
2∕2

between 0 and 1 is more or less than 1.

(b) Find the area.

13www.indexmundi.com, accessed October 3, 2019.
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56. Without computation, show that 2 ≤
∫

2

0

√

1 + x3 dx ≤ 6.

In Problems 57–59, let f (x) =
√

25 − x2. Without evaluat-

ing the definite integral, give upper and lower bounds.

57. ∫
3

0
f (x) dx 58. ∫

4

3
f (x) dx 59. ∫

4

0
f (x) dx

60. Without calculating the integral, explain why the fol-

lowing statements are false.

(a)
∫

−1

−2

ex
2
dx = −3 (b)

∫

1

−1

|

|

|

|

cos(x + 2)

1 + tan2 x

|

|

|

|

dx = 0

For Problems 61–64, mark the quantity on a copy of the

graph of f in Figure 5.83.

a b
x

f (x)

Figure 5.83

61. A length representing f (b) − f (a).

62. A slope representing
f (b) − f (a)

b − a
.

63. An area representing F (b) − F (a), where F ′ = f .

64. A length roughly approximating

F (b) − F (a)

b − a
, where F ′ = f.

65. Using Figure 5.84, is each expression positive, nega-

tive, zero, or is there not enough information to decide?

1 3 5 7 9 11 13

−5
−3
−1
1
3
5

7

f (x)

x

Figure 5.84

(a)
∫

8

3

f (x) dx (b)
∫

0

6

f (x) dx

(c)
∫

12

8

(f (x) + 6) dx (d)
∫

3

0

f (x + 3) dx

66. Using the graph of f in Figure 5.85, arrange the follow-

ing quantities in increasing order, from least to greatest.

(i) ∫
1

0
f (x) dx (ii) ∫

2

1
f (x) dx

(iii) ∫
2

0
f (x) dx (iv) ∫

3

2
f (x) dx

(v) − ∫
2

1
f (x) dx (vi) The number 0

(vii) The number 20 (viii) The number −10

1 2 3

−10

10 f (x)

x

Figure 5.85

67. (a) Using Figures 5.86 and 5.87, find the average value

on 0 ≤ x ≤ 2 of

(i) f (x) (ii) g(x) (iii) f (x)⋅g(x)

(b) Is the following statement true? Explain your an-

swer.

Average(f ) ⋅ Average(g) = Average(f ⋅ g)

1 2

1 f (x)

x

Figure 5.86

1 2

1 g(x)

x

Figure 5.87

68. (a) Without computing any integrals, explain why the

average value of f (x) = sin x on [0, �] must be

between 0.5 and 1.

(b) Compute this average.

69. Figure 5.88 shows the standard normal distribution

from statistics, which is given by

1
√

2�
e−x

2∕2.

Statistics books often contain tables such as the follow-

ing, which show the area under the curve from 0 to b

for various values of b.

✛ Area = 1
√

2�
∫
b

0
e−x

2∕2 dx

0 b
x

Figure 5.88
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b
1

√

2�
∫
b

0
e−x

2∕2 dx

1 0.3413

2 0.4772

3 0.4987

4 0.5000

Use the information given in the table and the symme-

try of the curve about the y-axis to find:

(a)
1

√

2� ∫

3

1

e−x
2∕2 dx (b)

1
√

2� ∫

3

−2

e−x
2∕2 dx

In Problems 70–71, evaluate the expression, if possible,

or say what additional information is needed, given that

∫
4

−4
g(x) dx = 12.

70.
∫

4

0

g(x) dx 71.
∫

4

−4

g(−x) dx

In Problems 72–75, evaluate the expression if possible, or

say what extra information is needed, given ∫
7

0
f (x) dx =

25.

72.

√

∫

7

0

f (x) dx 73.
∫

3.5

0

f (x) dx

74.
∫

5

−2

f (x + 2) dx 75.
∫

7

0

(f (x) + 2) dx

For Problems 76–78, assuming F ′ = f , mark the quantity

on a copy of Figure 5.89.

a b
x

F (x)

Figure 5.89

76. A slope representing f (a).

77. A length representing
∫

b

a

f (x) dx.

78. A slope representing
1

b − a ∫

b

a

f (x) dx.

Strengthen Your Understanding

In Problems 79–81, explain what is wrong with the state-

ment.

79. If f (x) is a continuous function on [a, b] such that

∫
b

a
f (x)dx ≥ 0, then f (x) ≥ 0 for all x in [a, b].

80. If f (x) is a continuous function on the interval [a, b],

then ∫
b

a
(5 + 3f (x)) dx = 5 + 3 ∫

b

a
f (x) dx.

81. If f (t) is the population of fish in a lake on day t, then

the average population over a 6-month period is given

by

1

6 ∫

6

0

f (t) dt.

In Problems 82–84, give an example of:

82. A continuous function f (x) on the interval [0, 1] such

that ∫
1

0
2f (x) dx < ∫

1

0
f (x) dx.

83. A continuous function f (x) on the interval [0, 4] such

that ∫
4

0
f (x) dx = 0, but f (x) is not equal to 0 every-

where on [0, 4].

84. An expression involving a definite integral that can be

interpreted as the average speed for a car over a 5-hour

journey.

In Problems 85–100, are the statements true for all continu-

ous functions f (x) and g(x)? Give an explanation for your

answer.

85. If ∫
2

0
(f (x) + g(x)) dx = 10 and ∫

2

0
f (x) dx = 3, then

∫
2

0
g(x) dx = 7.

86. If ∫
2

0
(f (x) + g(x)) dx = 10, then ∫

2

0
f (x) dx = 3 and

∫
2

0
g(x) dx = 7.

87. If ∫
2

0
f (x) dx = 6, then ∫

4

0
f (x) dx = 12.

88. If ∫
2

0
f (x) dx = 6 and g(x) = 2f (x),

then ∫
2

0
g(x) dx = 12.

89. If ∫
2

0
f (x) dx = 6 and ℎ(x) = f (5x),

then ∫
2

0
ℎ(x) dx = 30.

90. If a = b, then ∫
b

a
f (x) dx = 0.

91. If a ≠ b, then ∫
b

a
f (x) dx ≠ 0.

92. ∫
2

1
f (x) dx + ∫

3

2
g(x) dx = ∫

3

1
(f (x) + g(x)) dx.

93. ∫
1

−1
f (x) dx = 2 ∫

1

0
f (x) dx.

94. If f (x) ≤ g(x) on the interval [a, b], then the average

value of f is less than or equal to the average value of

g on the interval [a, b].
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95. The average value of f on the interval [0, 10] is the av-

erage of the average value of f on [0, 5] and the average

value of f on [5, 10].

96. If a < c < d < b, then the average value of f on the

interval [c, d] is less than the average value of f on the

interval [a, b].

97. Suppose that A is the average value of f on the inter-

val [1, 4] and B is the average value of f on the inter-

val [4, 9]. Then the average value of f on [1, 9] is the

weighted average (3∕8)A + (5∕8)B.

98. On the interval [a, b], the average value of f (x) + g(x)

is the average value of f (x) plus the average value of

g(x).

99. The average value of the product, f (x)g(x), of two

functions on an interval equals the product of the av-

erage values of f (x) and g(x) on the interval.

100. The units of the average value of a function f on an

interval are the same as the units of f .

101. Which of the following statements follow directly from

the rule

∫

b

a

(f (x) + g(x)) dx =
∫

b

a

f (x) dx +
∫

b

a

g(x) dx?

(a) If ∫
b

a
(f (x)+g(x)) dx = 5+7, then ∫

b

a
f (x) dx = 5

and ∫
b

a
g(x) dx = 7.

(b) If ∫
b

a
f (x) dx = ∫

b

a
g(x) dx = 7, then ∫

b

a
(f (x) +

g(x)) dx = 14.

(c) If ℎ(x) = f (x) + g(x), then ∫
b

a
(ℎ(x) − g(x)) dx =

∫
b

a
ℎ(x) dx − ∫

b

a
g(x) dx.

Online Resource: Review Problems and Projects
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6.1 ANTIDERIVATIVES GRAPHICALLY AND NUMERICALLY

The Family of Antiderivatives

If the derivative of F is f , we call F an antiderivative of f . For example, since the derivative of x2

is 2x, we say that

x2 is an antiderivative of 2x.

Notice that 2x has many antiderivatives, since x2 + 1, x2 + 2, and x2 + 3, all have derivative 2x. In

fact, if C is any constant, we have

d

dx
(x2 + C) = 2x + 0 = 2x,

so any function of the form x2 + C is an antiderivative of 2x. The function f (x) = 2x has a family

of antiderivatives.

Let us look at another example. If v is the velocity of a car and s is its position, then v = ds∕dt

and s is an antiderivative of v. As before, s+C is an antiderivative of v for any constant C . In terms

of the car, adding C to s is equivalent to adding C to the odometer reading. Adding a constant to the

odometer reading simply means measuring distance from a different starting point, which does not

alter the car’s velocity.

Visualizing Antiderivatives Using Slopes

Suppose we have the graph of f ′, and we want to sketch an approximate graph of f . We are looking

for the graph of f whose slope at any point is equal to the value of f ′ there. Where f ′ is above

the x-axis, f is increasing; where f ′ is below the x-axis, f is decreasing. If f ′ is increasing, f is

concave up; if f ′ is decreasing, f is concave down.

Example 1 The graph of f ′ is given in Figure 6.1. Sketch a graph of f in the cases when f (0) = 0 and f (0) = 1.

Solution For 0 ≤ x ≤ 2, the function f has a constant slope of 1, so the graph of f is a straight line. For

2 ≤ x ≤ 4, the function f is increasing but more and more slowly; it has a maximum at x = 4 and

decreases thereafter. (See Figure 6.2.) The solutions with f (0) = 0 and f (0) = 1 start at different

points on the vertical axis but have the same shape.

1 2 3 4 5

1

x0

f ′(x)

Figure 6.1: Graph of f ′

1 2 3 4 5

2

3

4

x

f (0) = 1

f (0) = 0

f (x)

f (x)

Figure 6.2: Two different f ’s which

have the same derivative f ′

Example 2 Sketch a graph of the antiderivative F of f (x) = e−x
2

satisfying F (0) = 0.

Solution The graph of f (x) = e−x
2

is shown in Figure 6.3. The slope of the antiderivative F (x) is given

by f (x). Since f (x) is always positive, the antiderivative F (x) is always increasing. Since f (x) is

increasing for negative x, we know that F (x) is concave up for negative x. Since f (x) is decreasing

for positive x, we know that F (x) is concave down for positive x. Since f (x) → 0 as x → ±∞, the

graph of F (x) levels off at both ends. See Figure 6.4.
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−2 −1 1 2

1

x

f (x) = e−x
2

Figure 6.3: Graph of f (x) = e−x
2

F (x)
x

Figure 6.4: An antiderivative F (x) of

f (x) = e−x
2

Example 3 For the function f ′ given in Figure 6.5, sketch a graph of three antiderivative functions f , one with

f (0) = 0, one with f (0) = 1, and one with f (0) = 2.

Solution To graph f , start at the point on the vertical axis specified by the initial condition and move with

slope given by the value of f ′ in Figure 6.5. Different initial conditions lead to different graphs for

f , but for a given x-value they all have the same slope (because the value of f ′ is the same for each).

Thus, the different f curves are obtained from one another by a vertical shift. See Figure 6.6.

• Where f ′ is positive (1 < x < 3), we see f is increasing; where f ′ is negative (0 < x < 1 or

3 < x < 4), we see f is decreasing.

• Where f ′ is increasing (0 < x < 2), we see f is concave up; where f ′ is decreasing

(2 < x < 4), we see f is concave down.

• Where f ′ = 0, we see f has a local maximum at x = 3 and a local minimum at x = 1.

• Where f ′ has a maximum (x = 2), we see f has a point of inflection.

1 2 3 4

−2

2

x0

f ′(x)

Figure 6.5: Slope function, f ′

f (x)

f (x)

f (x)

1 2 3 4
−1

f (0) = 0

f (0) = 1

f (0) = 2

3

x

Figure 6.6: Antiderivatives f

Computing Values of an Antiderivative Using Definite Integrals
A graph of f ′ shows where f is increasing and where f is decreasing. We can calculate the actual

value of the function f using the Fundamental Theorem of Calculus (Theorem 5.1 on page 309): If

f ′ is continuous, then

∫

b

a

f ′(x) dx = f (b) − f (a).

If we know f (a), we can estimate f (b) by computing the definite integral using area or Riemann

sums.

Example 4 Figure 6.7 is the graph of the derivative f ′(x) of a function f (x). It is given that f (0) = 100. Sketch

the graph of f (x), showing all critical points and inflection points of f and giving their coordinates.

10 20 30

−10

10

20

x

f ′(x)

Figure 6.7: Graph of derivative
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Solution The critical points of f occur at x = 0, x = 20, and x = 30, where f ′(x) = 0. The inflection points

of f occur at x = 10 and x = 25, where f ′(x) has a maximum or minimum. To find the coordinates

of the critical points and inflection points of f , we evaluate f (x) for x = 0, 10, 20, 25, 30. Using the

Fundamental Theorem, we can express the values of f (x) in terms of definite integrals. We evaluate

the definite integrals using the areas of triangular regions under the graph of f ′(x), remembering

that areas below the x-axis are subtracted. (See Figure 6.8.)

10 20 30

−10

10

20

x

f ′(x)

Shaded area

= ∫
10

0
f ′(x) dx

Figure 6.8: Finding f (10) = f (0) + ∫
10

0
f ′(x) dx

0 10 20 30

100

200

300

x

■

■

❘
✠

■

Critical point (0, 100)

f (x)

Inflection point
(10, 200)

Critical point
(20, 300) Inflection point

(25, 275)

Critical point
(30, 250)

Figure 6.9: Graph of f (x)

Since f (0) = 100, the Fundamental Theorem gives us the following values of f , which are marked

in Figure 6.9.

f (10) = f (0) +
∫

10

0

f ′(x) dx = 100 + (shaded area in Figure 6.8) = 100 +
1

2
(10)(20) = 200,

f (20) = f (10) +
∫

20

10

f ′(x) dx = 200 +
1

2
(10)(20) = 300,

f (25) = f (20) +
∫

25

20

f ′(x) dx = 300 −
1

2
(5)(10) = 275,

f (30) = f (25) +
∫

30

25

f ′(x) dx = 275 −
1

2
(5)(10) = 250.

Example 5 Suppose F ′(t) = t cos t and F (0) = 2. Find F (b) at the points b = 0, 0.1, 0.2, …, 1.0.

Solution We apply the Fundamental Theorem with f (t) = t cos t and a = 0 to get values for F (b):

F (b) − F (0) =
∫

b

0

F ′(t) dt =
∫

b

0

t cos t dt.

Since F (0) = 2, we have

F (b) = 2 +
∫

b

0

t cos t dt.

Calculating the definite integral ∫
b

0
t cos t dt numerically for b = 0, 0.1, 0.2, … , 1.0 gives the values

for F in Table 6.1.

Table 6.1 Approximate values for F

b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F (b) 2.000 2.005 2.020 2.044 2.077 2.117 2.164 2.216 2.271 2.327 2.382

Notice that F (b) appears to be increasing between b = 0 and b = 1. This could have been

predicted from the fact that t cos t, the derivative of F (t), is positive for t between 0 and 1.
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Summary for Section 6.1

• An antiderivative of a function f (x) is a function F (x) such that F ′(x) = f (x).

∙ The family of antiderivatives includes an infinite number of functions F (x) + C for any

constant C , provided F ′(x) = f (x).

• We can visualize the graph of f (x) by looking at the graph of f ′(x).

∙ The graph of f is increasing when f ′ is positive, decreasing when f ′ is negative.

∙ The graph of f is concave up when f ′ is increasing, concave down when f ′ is decreasing,

and linear over intervals where f ′ is horizontal.

∙ The vertical intercept for the graph of f depends on the constant C.

• Using the graph of f ′ and the fundamental theorem of calculus,

∫

b

a

f ′(x) dx = f (b) − f (a),

we can approximate f (b) if we know f (a). Use Riemann sums or the area under the graph of

f ′ to estimate f (b).

Exercises and Problems for Section 6.1 Online Resource: Additional Problems for Section 6.1
EXERCISES

1. Fill in the blanks in the following statements, assuming

that F (x) is an antiderivative of f (x):

(a) If f (x) is positive over an interval, then F (x) is

_______ over the interval.

(b) If f (x) is increasing over an interval, then F (x) is

_______ over the interval.

2. Use Figure 6.10 and the fact that P = 0 when t = 0 to

find values of P when t = 1, 2, 3, 4 and 5.

1 2 3 4 5

−1

1

t

dP∕dt

Figure 6.10

3. Use Figure 6.11 and the fact that P = 2 when t = 0 to

find values of P when t = 1, 2, 3, 4 and 5.

1 2 3 4 5

−1

1

t

dP∕dt

Figure 6.11

4. Let G′(t) = g(t) and G(0) = 4. Use Figure 6.12 to find

the values of G(t) at t = 5, 10, 20, 25.

5 10 15 20 25
−2

2

4

g(t)

t

Figure 6.12

In Exercises 5–12, sketch two functions F such that F ′ = f .

In one case let F (0) = 0 and in the other, let F (0) = 1.

5.

1

−1

1 f (x)

x

6.

1

−1

1

f (x)

x

7.

1

−1

1

f (x)

x

8.
f (x)

1
x

1

−1

9.

1
x

f (x)
1

−1

10.
f (x)

1
x

1

−1

11.
f (x)

1
x

1

−1

12.

1

−1

1

f (x)

x

13. Let F (x) be an antiderivative of f (x), with F (0) = 50

and ∫
5

0
f (x) dx = 12. What is F (5)?

14. Let F (x) be an antiderivative of f (x), with F (1) = 20

and ∫
4

1
f (x) dx = −7. What is F (4)?



338 Chapter 6 CONSTRUCTING ANTIDERIVATIVES

PROBLEMS

15. Let F (x) be an antiderivative of f (x).

(a) If ∫
5

2
f (x) dx = 4 and F (5) = 10, find F (2).

(b) If ∫
100

0
f (x) dx = 0, what is the relationship be-

tween F (100) and F (0)?

16. (a) Evaluate ∫
4

0
f (x) dx for f (x) in Figure 6.13.

(b) Let F (x) be an antiderivative of f (x). Is F (x) in-

creasing or decreasing on the interval 0 ≤ x ≤ 4?

(c) If F (0) = 20, what is F (4)?

1 2 3 4

1

2

3

f (x)

x

Figure 6.13

17. (a) Evaluate ∫
4

0
f (x) dx for f (x) in Figure 6.14.

(b) Let F (x) be an antiderivative of f (x). If F (0) =

100, what is F (4)?

1 2 3 4

−12

−8

−4

0

4

f (x)

x

Figure 6.14

Problems 18–21 show the function f whose antiderivative

F has F (0) = 0. Find the value of c that makes F (5) = 0.

18.

2 5

−16

c
f (t)

t

19.

1 4 5
−c

c

20
f (t)

t

20.

c 2c 5

−30

10
f (t)

t

21.

c 5−
�

6

f (t)

t

22. If F (0) = 5 and F (x) is an antiderivative of f (x) =

3e−x
2
, use a calculator to find F (2).

23. If G(1) = 50 and G(x) is an antiderivative of g(x) =

lnx, use a calculator to find G(4).

24. Estimate f (x) for x = 2, 4, 6, using the given values

of f ′(x) and the fact that f (0) = 100.

x 0 2 4 6

f ′(x) 10 18 23 25

25. Estimate f (x) for x = 2, 4, 6, using the given values

of f ′(x) and the fact that f (0) = 50.

x 0 2 4 6

f ′(x) 17 15 10 2

26. Using Figure 6.15, sketch a graph of an antiderivative

G(t) of g(t) satisfying G(0) = 5. Label each critical

point of G(t) with its coordinates.

✛ Area = 16

✻

Area = 8

❄

Area = 2

g(t)

1 2 3 4 5
t

Figure 6.15

27. Use Figure 6.16 and the fact that F (2) = 3 to sketch the

graph of F (x). Label the values of at least four points.

1 2 3 4 5 6 7 8
x

F ′(x)

✠

Area = 2

■

Area = 7

✠

Area = 4

Figure 6.16

28. Figure 6.17 shows the rate of change of the concen-

tration of adrenaline, in micrograms per milliliter per

minute, in a person’s body. Sketch a graph of the con-

centration of adrenaline, in micrograms per milliliter,

in the body as a function of time, in minutes.

1 2 3 4 5 6 7 8
t (minutes)

rate of change of adrenaline
concentration (�g/ml/min)

Figure 6.17
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29. The graph in Figure 6.18 records the spillage rate at a

toxic waste treatment plant over the 50 minutes it took

to plug the leak.

(a) Complete the table for the total quantity spilled in

liters in time t minutes since the spill started.

Time t (min) 0 10 20 30 40 50

Quantity (liters) 0

(b) Graph the total quantity leaked against time for the

entire fifty minutes. Label axes and include units.

10 20 30 40 50

10

20

time (min)

leak rate
(liters/sec)

Figure 6.18

30. Two functions, f (x) and g(x), are shown in Figure 6.19.

Let F and G be antiderivatives of f and g, respectively.

On the same axes, sketch graphs of the antiderivatives

F (x) and G(x) satisfyingF (0) = 0 and G(0) = 0. Com-

pare F and G, including a discussion of zeros and x-

and y-coordinates of critical points.

f (x)

g(x)

x

1 2 3 4

Figure 6.19

31. Let F (x) be an antiderivative of f (x) = 1 − x2.

(a) On what intervals is F (x) increasing?

(b) On what intervals is the graph of F (x) concave up?

In Problems 32–35, sketch two functions F with F ′(x) =

f (x). In one, let F (0) = 0; in the other, let F (0) = 1. Mark

x1, x2, and x3 on the x-axis of your graph. Identify local

maxima, minima, and inflection points of F (x).

32.

x
x1 x2 x3

f (x)

33.

x1 x2 x3

f (x)

x

34.

x1 x2 x3

x

f (x)
35.

x1

x2 x3

f (x)

x

36. A particle moves back and forth along the x-axis. Fig-

ure 6.20 approximates the velocity of the particle as

a function of time. Positive velocities represent move-

ment to the right and negative velocities represent

movement to the left. The particle starts at the point

x = 5. Graph the distance of the particle from the ori-

gin, with distance measured in kilometers and time in

hours.

1 2 3 4 5 6

−10

10

t (hr)

v (km/hr)

Figure 6.20

37. Assume f ′ is given by the graph in Figure 6.21. Sup-

pose f is continuous and that f (0) = 0.

(a) Find f (3) and f (7).

(b) Find all x with f (x) = 0.

(c) Sketch a graph of f over the interval 0 ≤ x ≤ 7.

1 2 3 4 5 6 7

−2

−1

1

2

x

f ′(x)

Figure 6.21
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38. Urologists are physicians who specialize in the health

of the bladder. In a common diagnostic test, urologists

monitor the emptying of the bladder using a device that

produces two graphs. In one of the graphs the flow rate

(in milliliters per second) is measured as a function of

time (in seconds). In the other graph, the volume emp-

tied from the bladder is measured (in milliliters) as a

function of time (in seconds). See Figure 6.22.

(a) Which graph is the flow rate and which is the vol-

ume?

(b) Which one of these graphs is an antiderivative of

the other?

5 10 15 20 25 30
seconds

(I)

5 10 15 20 25 30
seconds

(II)

Figure 6.22

39. The Quabbin Reservoir in the western part of Mas-

sachusetts provides most of Boston’s water. The graph

in Figure 6.23 represents the flow of water in and out of

the Quabbin Reservoir throughout 2016.

(a) Sketch a graph of the quantity of water in the reser-

voir, as a function of time.

(b) When, in the course of 2016, was the quantity of

water in the reservoir largest? Smallest? Mark and

label these points on the graph you drew in part (a).

(c) When was the quantity of water increasing most

rapidly? Decreasing most rapidly? Mark and label

these times on both graphs.

(d) By July 2017 the quantity of water in the reservoir

was about the same as in January 2016. Draw plau-

sible graphs for the flow into and the flow out of the

reservoir for the first half of 2017.

Jan (2016) April July Oct Jan (2017)

rate of flow
(millions of gallons/day)

Outflow

Inflow

Figure 6.23

40. The birth rate, B, in births per hour, of a bacteria popu-

lation is given in Figure 6.24. The curve markedD gives

the death rate, in deaths per hour, of the same popula-

tion.

(a) Explain what the shape of each of these graphs tells

you about the population.

(b) Use the graphs to find the time at which the net rate

of increase of the population is at a maximum.

(c) At time t = 0 the population has size N . Sketch

the graph of the total number born by time t. Also

sketch the graph of the number alive at time t. Es-

timate the time at which the population is a maxi-

mum.

5 10 15 20
time (hours)

bacteria/hour

B

D

Figure 6.24

Strengthen Your Understanding

In Problems 41–42, explain what is wrong with the state-

ment.

41. Let F (x) be an antiderivative of f (x). If f (x) is every-

where increasing, then F (x) ≥ 0.

42. If F (x) and G(x) are both antiderivatives of f (x), then

H(x) = F (x) + G(x) must also be an antiderivative of

f (x).

In Problems 43–44, give an example of:

43. A graph of a function f (x) such that ∫
2

0
f (x) dx = 0.

44. A graph of a function f (x) whose antiderivative is in-

creasing everywhere.

Are the statements in Problems 45–46 true or false? Give an

explanation for your answer.

45. A function f (x) has at most one derivative.

46. If f (t) is a linear function with positive slope, then an

antiderivative, F , is a linear function.
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6.2 CONSTRUCTING ANTIDERIVATIVES ANALYTICALLY

What Is an Antiderivative of f (x) = 0?

A function whose derivative is zero everywhere on an interval must have a horizontal tangent line at

every point of its graph, and the only way this can happen is if the function is constant. Alternatively,

if we think of the derivative as a velocity, and if the velocity is always zero, then the object is standing

still; the position function is constant. A rigorous proof of this result using the definition of the

derivative is surprisingly subtle. (See the Constant Function Theorem on page 195.)

If F ′(x) = 0 on an interval, then F (x) = C on this interval, for some constant C .

What Is the Most General Antiderivative of f ?

We know that if a function f has an antiderivative F , then it has a family of antiderivatives of the

form F (x) + C , where C is any constant. You might wonder if there are any others. To decide,

suppose that we have two functions F and G with F ′ = f and G′ = f : that is, F and G are both

antiderivatives of the same function f . Since F ′ = G′ we have (G−F )′ = 0. But this means that we

must have G−F = C , so G(x) = F (x) +C , where C is a constant. Thus, any two antiderivatives of

the same function differ only by a constant.

If F and G are both antiderivatives of f on an interval, then G(x) = F (x) + C .

The Indefinite Integral

All antiderivatives of f (x) are of the form F (x) + C . We introduce a notation for the general an-

tiderivative that looks like the definite integral without the limits and is called the indefinite integral:

∫
f (x) dx = F (x) + C.

It is important to understand the difference between

∫

b

a

f (x) dx and
∫

f (x) dx.

The first is a number and the second is a family of functions. The word “integration” is frequently

used for the process of finding the antiderivative as well as of finding the definite integral. The context

usually makes clear which is intended.

What Is an Antiderivative of f (x) = k?

If k is a constant, the derivative of kx is k, so we have

An antiderivative of k is kx.

Using the indefinite integral notation, we have

If k is constant,

∫
k dx = kx + C.



342 Chapter 6 CONSTRUCTING ANTIDERIVATIVES

Finding Antiderivatives

Finding antiderivatives of functions is like taking square roots of numbers: if we pick a number at

random, such as 7 or 493, we may have trouble finding its square root without a calculator. But if we

happen to pick a number such as 25 or 64, which we know is a perfect square, then we can find its

square root exactly. Similarly, if we pick a function which we recognize as a derivative, then we can

find its antiderivative easily.

For example, to find an antiderivative of f (x) = x, notice that 2x is the derivative of x2; this

tells us that x2 is an antiderivative of 2x. If we divide by 2, then we guess that

An antiderivative of x is
x2

2
.

To check this statement, take the derivative of x2∕2:

d

dx

(

x2

2

)

=
1

2
⋅

d

dx
x2 =

1

2
⋅ 2x = x.

What about an antiderivative of x2? The derivative of x3 is 3x2, so the derivative of x3∕3 is

3x2∕3 = x2. Thus,

An antiderivative of x2 is
x3

3
.

The pattern looks like

An antiderivative of xn is
xn+1

n + 1
.

(We assume n ≠ −1, or we would have x0∕0, which does not make sense.) It is easy to check this

formula by differentiation:

d

dx

(

xn+1

n + 1

)

=
(n + 1)xn

n + 1
= xn.

In indefinite integral notation, we have shown that

∫
xn dx =

xn+1

n + 1
+ C, n ≠ −1.

What about when n = −1? In other words, what is an antiderivative of 1∕x? Fortunately, we

know a function whose derivative is 1∕x, namely, the natural logarithm. Thus, since

d

dx
(lnx) =

1

x
,

we know that

∫

1

x
dx = lnx + C, for x > 0.

If x < 0, then ln x is not defined, so it can’t be an antiderivative of 1∕x. In this case, we can try

ln(−x):
d

dx
ln(−x) = (−1)

1

−x
=

1

x
so

∫

1

x
dx = ln(−x) + C, for x < 0.

This means ln x is an antiderivative of 1∕x if x > 0, and ln(−x) is an antiderivative of 1∕x if x < 0.

Since |x| = x when x > 0 and |x| = −x when x < 0, we can collapse these two formulas into:

An antiderivative of
1

x
is ln |x|.
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Therefore

∫

1

x
dx = ln |x| + C.

Since the exponential function is its own derivative, it is also its own antiderivative; thus

∫
ex dx = ex + C.

Also, antiderivatives of the sine and cosine are easy to guess. Since

d

dx
sin x = cos x and

d

dx
cosx = − sin x,

we get

∫
cosx dx = sinx + C and

∫
sin x dx = − cosx + C.

Example 1 Find
∫

(3x + x2) dx.

Solution We know that x2∕2 is an antiderivative of x and that x3∕3 is an antiderivative of x2, so we expect

∫
(3x + x2) dx = 3

(

x2

2

)

+
x3

3
+ C.

You should always check your antiderivatives by differentiation—it’s easy to do. Here

d

dx

(

3

2
x2 +

x3

3
+ C

)

=
3

2
⋅ 2x +

3x2

3
= 3x + x2.

The preceding example illustrates that the sum and constant multiplication rules of differentia-

tion work in reverse:

Theorem 6.1: Properties of Antiderivatives: Sums and Constant Multiples

In indefinite integral notation,

1.
∫

(f (x) ± g(x)) dx =
∫

f (x) dx ±
∫

g(x) dx

2.
∫

cf (x) dx = c
∫

f (x) dx.

In words,

1. An antiderivative of the sum (or difference) of two functions is the sum (or difference) of

their antiderivatives.

2. An antiderivative of a constant times a function is the constant times an antiderivative of

the function.

These properties are analogous to the properties for definite integrals given on page 321 in

Section 5.4, even though definite integrals are numbers and antiderivatives are functions.
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Example 2 Find
∫

(sin x + 3 cosx) dx.

Solution We break the antiderivative into two terms:

∫
(sin x + 3 cosx) dx =

∫
sin x dx + 3

∫
cos x dx = − cosx + 3 sinx + C.

Check by differentiating:

d

dx
(− cosx + 3 sinx + C) = sinx + 3 cosx.

Using Antiderivatives to Compute Definite Integrals

As we saw in Section 5.3, the Fundamental Theorem of Calculus gives us a way of calculating definite

integrals. Denoting F (b) − F (a) by F (x)|
|

b

a
, the theorem says that if F ′ = f and f is continuous,

then

∫

b

a

f (x) dx = F (x)
|

|

|

|

b

a

= F (b) − F (a).

To find ∫
b

a
f (x) dx, we first find F , and then calculate F (b) − F (a). This method of computing

definite integrals gives an exact answer. However, the method only works in situations where we can

find the antiderivative F (x). This is not always easy; for example, none of the functions we have

encountered so far is an antiderivative of sin(x2).

Example 3 Compute
∫

2

1

3x2 dx using the Fundamental Theorem.

Solution Since F (x) = x3 is an antiderivative of f (x) = 3x2,

∫

2

1

3x2 dx = F (x)
|

|

|

|

2

1

= F (2) − F (1),

gives

∫

2

1

3x2 dx = x3
|

|

|

|

2

1

= 23 − 13 = 7.

Notice in this example we used the antiderivative x3, but x3 +C works just as well because the

constant C cancels out:

∫

2

1

3x2 dx = (x3 + C)
|

|

|

|

2

1

= (23 + C) − (13 + C) = 7.

Example 4 Compute
∫

�∕4

0

1

cos2 �
d� exactly.

Solution We use the Fundamental Theorem. Since F (�) = tan � is an antiderivative of f (�) = 1∕ cos2 �, we

get

∫

�∕4

0

1

cos2 �
d� = tan �

|

|

|

|

�∕4

0

= tan
(

�

4

)

− tan(0) = 1.
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Summary for Section 6.2

• The indefinite integral, denoted

∫
f (x) dx

is the family of functions F (x) + C where F ′(x) = f (x).

• Some antiderivatives can be found analytically. Some basic antiderivatives are:

∙
∫

k dx = kx + C, for k a constant

∙
∫

xn dx =
xn+1

n + 1
+ C, n ≠ −1

∙
∫

1

x
dx = ln |x| + C

∙
∫

ex dx = ex + C

∙
∫

cosx dx = sin x + C

∙
∫

sinx dx = − cosx + C

• Some properties of antiderivatives:

∙
∫

(f (x) ± g(x)) dx =
∫

f (x) dx ±
∫

g(x) dx

∙
∫

cf (x) dx = c
∫

f (x) dx

Exercises and Problems for Section 6.2 Online Resource: Additional Problems for Section 6.2
EXERCISES

1. If p′(x) = q(x), write a statement involving an integral

sign giving the relationship between p(x) and q(x).

2. If u′(x) = v(x), write a statement involving an integral

sign giving the relationship between u(x) and v(x).

3. Which of (I)–(V) are antiderivatives of f (x) = ex∕2?

I. ex∕2 II. 2ex∕2 III. 2e(1+x)∕2

IV. 2ex∕2 + 1 V. ex
2∕4

4. Which of (I)–(V) are antiderivatives of f (x) = 1∕x?

I. ln x II. −1∕x2 III. ln x + ln 3

IV. ln(2x) V. ln(x + 1)

5. Which of (I)–(V) are antiderivatives of

f (x) = 2 sin x cos x?

I. −2 sin x cos x II. 2 cos2 x − 2 sin2 x

III. sin2 x IV. −cos2 x

V. 2 sin2 x + cos2 x

In Exercises 6–21, find an antiderivative.

6. f (x) = 5 7. f (t) = 5t

8. f (x) = x2 9. g(t) = t2 + t

10. g(z) =
√

z 11. ℎ(z) =
1

z

12. r(t) =
1

t2
13. ℎ(t) = cos t

14. g(z) =
1

z3
15. q(y) = y4 +

1

y

16. f (z) = ez 17. g(t) = sin t

18. f (t) = 2t2 + 3t3 + 4t4 19. f (x) = 5x −
√

x

20. f (t) =
t2 + 1

t
21. p(t) = t3 −

t2

2
− t

In Exercises 22–33, find the general antiderivative.

22. f (t) = 6t 23. ℎ(x) = x3 − x

24. f (x) = x2 − 4x + 7 25. g(t) =
√

t

26. r(t) = t3 + 5t − 1 27. f (z) = z + ez

28. g(x) = sin x + cos x 29. ℎ(x) = 4x3 − 7

30. g(x) =
5

x3
31. p(t) = 2 + sin t

32. p(t) =
1
√

t
33. ℎ(t) =

7

cos2 t

In Exercises 34–41, find an antiderivativeF (x) withF ′(x) =

f (x) and F (0) = 0. Is there only one possible solution?

34. f (x) = 3 35. f (x) = 2x

36. f (x) = −7x 37. f (x) = 2 + 4x + 5x2
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38. f (x) =
1

4
x 39. f (x) = x2

40. f (x) =
√

x 41. f (x) = sinx

42. One antiderivative of p(t) = 4t3 is P (t) = t4. If Q(t) is

another antiderivative with Q(2) = 25, find Q(t).

In Exercises 43–56, find the indefinite integrals.

43.
∫

(5x + 7) dx 44.
∫

(

4t +
1

t

)

dt

45.
∫

(2 + cos t) dt 46.
∫

7ex dx

47.
∫

(3ex + 2 sin x) dx 48.
∫

(4ex − 3 sin x) dx

49.
∫

(

5x2 + 2
√

x

)

dx 50.
∫

(x + 3)2 dx

51.
∫

8
√

x
dx 52.

∫

(

3

t
−

2

t2

)

dt

53.
∫

(ex + 5) dx 54.
∫

t3(t2 + 1) dt

55.
∫

(

√

x3 −
2

x

)

dx 56.
∫

(

x + 1

x

)

dx

In Exercises 57–66, evaluate the definite integrals exactly [as

in ln(3�)], using the Fundamental Theorem, and numerically

[ln(3�) ≈ 2.243]:

57.
∫

3

0

(x2 + 4x + 3) dx 58.
∫

3

1

1

t
dt

59.
∫

�∕4

0

sinx dx 60.
∫

1

0

2ex dx

61.
∫

2

0

3ex dx 62.
∫

5

2

(x3 − �x2) dx

63.
∫

1

0

sin � d� 64.
∫

2

1

1 + y2

y
dy

65.
∫

2

0

(

x3

3
+ 2x

)

dx 66.
∫

�∕4

0

(sin t + cos t) dt

In Exercises 67–76, decide if the statement is true or false

by differentiating the right-hand side.

67.
∫

(8x2 − 4x + 3) dx =
8

3
x3 − 2x2 + 3x + C

68.
∫

(

3
√

x +
5

x2

)

dx = 2x3∕2 +
5

x
+ C

69.
∫

√

x2 + 1 dx =
(

x2 + 1
)3∕2

+ C

70.
∫

x−2 dx = −
1

x
+ C

71.
∫

x−1 dx = −1x0 + C = −1 + C

72.
∫

e2x dx = 2e2x + C

73.
∫

ex
2
dx = 2x ⋅ ex

2
+ C

74.
∫

3 cos xdx = 3 sin x + C

75.
∫

5 sin
(

x

5

)

dx = 5 cos
(

x

5

)

+ C

76.
∫

x cos xdx =
x2

2
sinx + C

In Exercises 77–80,

(a) Calculate the integral.

(b) Differentiate with respect to a.

(c) What do you notice?

77.
∫

a

1

(

2t + t2
)

dt 78.
∫

a

−�

cos t dt

79.
∫

10

a

1

t
dt, a > 0 80.

∫

6

a

e2t dt

PROBLEMS

81. Use the Fundamental Theorem to find the area under

f (x) = x2 between x = 0 and x = 3.

82. Find the exact area of the region bounded by the x-axis

and the graph of y = x3 − x.

83. Calculate the exact area above the graph of y =

1

2

(

3

�
x

)2

and below the graph of y = cos x. The curves

intersect at x = ±�∕3.

84. Find the exact area of the shaded region in Figure 6.25

between y = 3x2 − 3 and the x-axis.

1 3
x

y = 3x2 − 3

Figure 6.25
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85. (a) Find the exact area between f (x) = x3−7x2+10x,

the x-axis, x = 0, and x = 5.

(b) Find ∫
5

0
(x3 − 7x2 + 10x) dx exactly and interpret

this integral in terms of areas.

86. Find the exact area between the curve y = ex − 2 and

the x-axis for 0 ≤ x ≤ 2.

87. Find the exact area between the curves y = x2 and

y = 2 − x2.

88. Find the exact area between y = x2 and y = x.

89. Use the Fundamental Theorem to find the area between

f (x) = 2x and g(x) = 6 − x from the vertical axis to

their point of intersection.

90. Find the exact area between the x-axis and the graph of

f (x) = (x − 1)(x − 2)(x − 3).

91. The area under 1∕
√

x on the interval 1 ≤ x ≤ b is

equal to 6. Find the value of b using the Fundamental

Theorem.

92. Use the Fundamental Theorem to find the value of b if

the area under the graph of f (x) = 8x between x = 1

and x = b is equal to 192. Assume b > 1.

93. Find the exact positive value of c which makes the area

under the graph of y = c(1 − x2) and above the x-axis

equal to 1.

94. Sketch the parabola y = x(x − �) and the curve y =

sin x, showing their points of intersection. Find the ex-

act area between the two graphs.

95. Find the exact average value of f (x) =
√

x on the in-

terval 0 ≤ x ≤ 9. Illustrate your answer on a graph of

f (x) =
√

x.

96. (a) What is the average value of f (t) = sin t over

0 ≤ t ≤ 2�? Why is this a reasonable answer?

(b) Find the average of f (t) = sin t over 0 ≤ t ≤ �.

97. Let ∫ q(x) dx = Q(x)+C where Q(3) = 12. Given that

∫
8

3
q(x) dx = 5, find Q(8).

98. Water is pumped into a cylindrical tank, standing verti-

cally, at a decreasing rate given at time t minutes by

r(t) = 120 − 6t ft3∕min for 0 ≤ t ≤ 10.

The tank has radius 5 ft and is empty when t = 0. Find

the depth of water in the tank at t = 4.

99. A car moves along a straight line with velocity, in

feet/second, given by

v(t) = 6 − 2t for t ≥ 0.

(a) Describe the car’s motion in words. (When is it

moving forward, backward, and so on?)

(b) The car’s position is measured from its starting

point. When is it farthest forward? Backward?

(c) Find s, the car’s position measured from its starting

point, as a function of time.

100. In drilling an oil well, the total cost, C , consists of

fixed costs (independent of the depth of the well) and

marginal costs, which depend on depth; drilling be-

comes more expensive, per meter, deeper into the earth.

Suppose the fixed costs are 1,000,000 riyals (the riyal is

the unit of currency of Saudi Arabia), and the marginal

costs are

C ′(x) = 4000 + 10x riyals/meter,

where x is the depth in meters. Find the total cost of

drilling a well x meters deep.

101. With the density of water � = 1000 kg/m3 and accel-

eration due to gravity g = 9.8 m/sec2, a w-meter-wide

dam holding back an H-meter-high column of water

experiences a force of

F =
∫

H

0

�g(H − y)wdy newtons.

Find the force on an 800-meter-wide dam that is hold-

ing back a 100-meter column of water.

102. The restoring force due to a spring stretched x meters

from its equilibrium position is F (x) = 100x newtons.

The integral ∫
b

a
F (x) dx gives the work, in joules, re-

quired to stretch this spring from a meters beyond its

equilibrium position to b from equilibrium.

(a) Find and interpret ∫
1

0
F (x) dx.

(b) Find and interpret ∫
2

1
F (x) dx.

(c) Explain, in terms of springs, why it makes sense

that ∫
2

1
F (x) dx is bigger than ∫

1

0
F (x) dx.

103. For t in hours after noon, electricity use P , in kilowatts

(a rate of electricity use), is

P = f (t) = (1∕50)(30t2 − 5t3 + 10).

(a) How fast is the electricity usage increasing, in

kw/hr, at 2:30 pm?

(b) When is the electricity usage the greatest between

noon and 6 pm?

(c) How much total electricity, in kilowatt-hours, is

used between noon and 6 pm?

(d) What is the average electricity usage between noon

and 6 pm, in kilowatts?

104. A helicopter rotor slows down at a constant rate from

350 revs/min to 260 revs/min in 1.5 minutes.

(a) Find the angular acceleration (i.e. change in

rev/min) during this time interval. What are the

units of this acceleration?

(b) Assuming the angular acceleration remains con-

stant, how long does it take for the rotor to stop?

(Measure time from the moment when speed was

350 revs/min.)

(c) How many revolutions does the rotor make be-

tween the time the angular speed was 350 revs/min

and stopping?
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105. Use the fact that (xx)′ = xx(1+ln x) to evaluate exactly:

∫

3

1

xx(1 + ln x) dx.

106. The indefinite integral of f (x) = xe−x∕k is

∫
f (x) dx = −ke−x∕k(x + k) + C.

Let k = 3, and let F (x) be the antiderivative of f (x)

whose graph has a y-intercept of 5. Find the value of C .

107. Assuming that ∫ g(x) dx = G(x)+C , where G(4) = 9,

G(6) = 4, and G(9) = 6, evaluate the definite integral:

(a)
∫

4

6

g(x) dx (b)
∫

9

6

7g(x) dx

(c)
∫

9

4

(g(x) + 3) dx

For Problems 108–110, let ∫ g(x) dx = G(x)+C . Which of

(I)–(III), if any, is equal to the given integral?

108.
∫

g(2x) dx

I. 0.5G(0.5x) + C II. 0.5G(2x) + C

III. 2G(0.5x) + C

109.
∫

cos (G(x)) g(x) dx

I. sin (G(x)) g(x) + C II. sin (G(x))G(x) + C

III. sin (G(x)) + C

110.
∫

xg(x) dx

I. G
(

x2
)

+ C II. xG(x) + C III.
1

2
x2G(x)+C

Strengthen Your Understanding

In Problems 111–112, explain what is wrong with the state-

ment.

111.
∫

3x2 + 1

2x
dx =

x3 + x

x2
+ C

112. For all n,
∫

xn dx =
xn+1

n + 1
+ C.

In Problems 113–114, give an example of:

113. Two different functions F (x) and G(x) that have the

same derivative.

114. A function f (x) whose antiderivative F (x) has a graph

which is a line with negative slope.

Are the statements in Problems 115–123 true or false? Give

an explanation for your answer.

115. An antiderivative of 3
√

x + 1 is 2(x + 1)3∕2.

116. An antiderivative of 3x2 is x3 + �.

117. An antiderivative of 1∕x is ln |x| + ln 2.

118. An antiderivative of e−x
2

is −e−x
2
∕2x.

119. ∫ f (x) dx = (1∕x) ∫ xf (x) dx.

120. IfF (x) is an antiderivative off (x) andG(x) = F (x)+2,

then G(x) is an antiderivative of f (x).

121. If F (x) and G(x) are two antiderivatives of f (x) for

−∞ < x < ∞ and F (5) > G(5), then F (10) > G(10).

122. If F (x) is an antiderivative of f (x) and G(x) is an an-

tiderivative of g(x), then F (x)⋅G(x) is an antiderivative

of f (x) ⋅ g(x).

123. If F (x) and G(x) are both antiderivatives of f (x) on an

interval, then F (x) − G(x) is a constant function.

6.3 DIFFERENTIAL EQUATIONS AND MOTION

An equation of the form

dy

dx
= f (x)

is an example of a differential equation. Finding the general solution to the differential equation

means finding the general antiderivative y = F (x) + C with F ′(x) = f (x). Chapter 11 gives more

details.

Example 1 Find and graph the general solution of the differential equation

dy

dx
= 2x.
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Solution We are asking for a function whose derivative is 2x. One antiderivative of 2x is

y = x2.

The general solution is therefore

y = x2 + C,

where C is any constant. Figure 6.26 shows several curves in this family.

−4 −2 2 4

−4

5

10

15

20

C = −4

C = 0
C = 2

C = 4

x

y

Figure 6.26: Solution curves of dy∕dx = 2x

How Can We Pick One Solution to the Differential Equation
dy

dx
= f (x) ?

Picking one antiderivative is equivalent to selecting a value ofC . To do this, we need an extra piece of

information, usually that the solution curve passes through a particular point (x0, y0). The differential

equation plus the extra condition

dy

dx
= f (x), y(x0) = y0

is called an initial value problem. (The initial condition y(x0) = y0 is shorthand for y = y0 when

x = x0.) An initial value problem usually has a unique solution, called the particular solution.

Example 2 Find the solution of the initial value problem

dy

dx
= 2x, y(3) = 5.

Solution We have already seen that the general solution to the differential equation is y = x2 + C . The initial

condition allows us to determine the constant C . Substituting y(3) = 5 gives

5 = y(3) = 32 + C,

so C is given by

C = −4.

Thus, the (unique) solution is

y = x2 − 4

Figure 6.26 shows this particular solution, marked C = −4.
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Equations of Motion

We now use differential equations to analyze the motion of an object falling freely under the influence

of gravity. It has been known since Galileo’s time that an object moving under the influence of gravity

(ignoring air resistance) has constant acceleration, g. In the most frequently used units, its value is

approximately

g = 9.8 m∕sec2, or g = 32 f t∕sec2.

Thus, if v is the upward velocity and t is the time, we have the differential equation

dv

dt
= −g.

The negative sign represents the fact that positive velocity is measured upward, whereas gravity acts

downward.

Example 3 A stone is dropped from a 100-foot-high building. Find, as functions of time, its position and velocity.

When does it hit the ground, and how fast is it going at that time?

Solution Suppose t is measured in seconds from the time when the stone was dropped. If we measure distance,

s, in feet above the ground, then the velocity, v, is in ft/sec upward, and the acceleration due to gravity

is 32 ft/sec2 downward, so we have the differential equation

dv

dt
= −32.

From what we know about antiderivatives, the general solution is

v = −32t + C,

where C is some constant. Since v = C when t = 0, the constant C represents the initial velocity,

v0. The fact that the stone is dropped rather than thrown tells us that the initial velocity is zero, so

the initial condition is v0 = 0. Substituting gives

0 = −32(0) + C so C = 0.

Thus,

v = −32t.

But now we can write a second differential equation:

v =
ds

dt
= −32t.

The general solution is

s = −16t2 +K,

where K is another constant.

Since the stone starts at the top of the building, we have the initial condition s = 100 when

t = 0. Substituting gives

100 = −16(02) + K, so K = 100,

and therefore

s = −16t2 + 100.

Thus, we have found both v and s as functions of time.

The stone hits the ground when s = 0, so we must solve

0 = −16t2 + 100,
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giving t2 = 100∕16 or t = ±10∕4 = ±2.5 sec. Since t must be positive, t = 2.5 sec. At that time,

v = −32(2.5) = −80 ft/sec. (The velocity is negative because we are considering moving up as

positive and down as negative.) After the stone hits the ground, the differential equation no longer

applies.

Example 4 An object is thrown vertically upward with a speed of 10 m/sec from a height of 2 meters above the

ground. Find the highest point it reaches and the time when it hits the ground.

Solution We must find the position as a function of time. In this example, the velocity is in m/sec, so we use

g = 9.8 m/sec2. Measuring distance in meters upward from the ground, we have the differential

equation
dv

dt
= −9.8.

As before, v is a function whose derivative is constant, so

v = −9.8t+ C.

Since the initial velocity is 10 m/sec upward, we know that v = 10 when t = 0. Substituting gives

10 = −9.8(0) + C so C = 10.

Thus,

v = −9.8t+ 10.

To find s, we use

v =
ds

dt
= −9.8t+ 10

and look for a function that has −9.8t+ 10 as its derivative. The general solution is

s = −4.9t2 + 10t+ K,

where K is any constant. To find K , we use the fact that the object starts at a height of 2 meters

above the ground, so s = 2 when t = 0. Substituting gives

2 = −4.9(0)2 + 10(0) + K, so K = 2,

and therefore

s = −4.9t2 + 10t + 2.

The object reaches its highest point when the velocity is 0, so at that time

v = −9.8t+ 10 = 0.

This occurs when

t =
10

9.8
≈ 1.02 sec.

When t = 1.02 seconds,

s = −4.9(1.02)2 + 10(1.02) + 2 ≈ 7.10 meters.

So the maximum height reached is 7.10 meters. The object reaches the ground when s = 0:

0 = −4.9t2 + 10t+ 2.

Solving this using the quadratic formula gives

t ≈ −0.18 and t ≈ 2.22 sec.

Since the time at which the object hits the ground must be positive, t ≈ 2.22 seconds.
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History of the Equations of Motion

The problem of a body moving freely under the influence of gravity near the surface of the earth in-

trigued mathematicians and philosophers from Greek times onward and was finally solved by Galileo

and Newton. The question to be answered was: How do the velocity and the position of the body

vary with time? We define s to be the position, or height, of the body above a fixed point (often

ground level), v is the velocity of the body measured upward, and a is the acceleration. The velocity

and position at time t = 0 are represented by v0 and s0 respectively. We assume that the acceleration

of the body is a constant, −g (the negative sign means that the acceleration is downward), so

dv

dt
= a = −g.

Problem 34 asks you to show that the motion satisfies

v = −gt + v0,

s = −
g

2
t2 + v0t + s0.

Our derivation of the formulas for the velocity and the position of the body hides an almost 2000-

year struggle to understand the mechanics of falling bodies, from Aristotle’s Physics to Galileo’s

Dialogues Concerning Two New Sciences.

Though it is an oversimplification of his ideas, we can say that Aristotle’s conception of motion

was primarily in terms of change of position. This seems entirely reasonable; it is what we commonly

observe, and this view dominated discussions of motion for centuries. But it misses a subtlety that

was brought to light by Descartes, Galileo, and, with a different emphasis, by Newton. That subtlety

is now usually referred to as the principle of inertia.

This principle holds that a body traveling undisturbed at constant velocity in a straight line

will continue in this motion indefinitely. Stated another way, it says that one cannot distinguish in

any absolute sense (that is, by performing an experiment) between being at rest and moving with

constant velocity in a straight line. If you are reading this book in a closed room and have no external

reference points, there is no experiment that will tell you, one way or the other, whether you are at

rest or whether you, the room, and everything in it are moving with constant velocity in a straight

line. Therefore, as Newton saw, an understanding of motion should be based on change of velocity

rather than change of position. Since acceleration is the rate of change of velocity, it is acceleration

that must play a central role in the description of motion.

Newton placed a new emphasis on the importance of forces. Newton’s laws of motion do not

say what a force is, they say how it acts. His first law is the principle of inertia, which says what

happens in the absence of a force—there is no change in velocity. His second law says that a force

acts to produce a change in velocity, that is, an acceleration. It states that F = ma, where m is the

mass of the object, F is the net force, and a is the acceleration produced by this force.

Galileo demonstrated that a body falling under the influence of gravity does so with constant

acceleration. Assuming we can neglect air resistance, this constant acceleration is independent of

the mass of the body. This last fact was the outcome of Galileo’s famous observation around 1600

that a heavy ball and a light ball dropped off the Leaning Tower of Pisa hit the ground at the same

time. Whether or not he actually performed this experiment, Galileo presented a very clear thought

experiment in the Dialogues to prove the same point. (This point was counter to Aristotle’s more

common-sense notion that the heavier ball would reach the ground first.) Galileo showed that the

mass of the object did not appear as a variable in the equation of motion. Thus, the same constant-

acceleration equation applies to all bodies falling under the influence of gravity.

Nearly a hundred years after Galileo’s experiment, Newton formulated his laws of motion and

gravity, which gave a theoretical explanation of Galileo’s experimental observation that the accel-

eration due to gravity is independent of the mass of the body. According to Newton, acceleration is

caused by force, and in the case of falling bodies, that force is the force of gravity.
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Summary for Section 6.3

• An equation of the form
dy

dx
= f (x)

is an example of a differential equation. Its general solution is

y = F (x) + C, with F ′(x) = f (x).

• We can often find a particular solution to the differential equation given an initial condition.

A differential equation with initial condition (x0, y0) indicates that we are given a point on the

solution curve and is denoted
dy

dx
= f (x), (x0, y0).

• A particular solution for the equation of motion is given by

s = −
g

2
t2 + v0t + s0

where g is the constant of gravity, v0 is the velocity at t = 0, and s0 is the position of the object

at t = 0.

Exercises and Problems for Section 6.3 Online Resource: Additional Problems for Section 6.3
EXERCISES

1. Show that y = xe−x +2 is a solution of the initial value

problem

dy

dx
= (1 − x)e−x, y(0) = 2.

2. Show that y = sin(2t), for 0 ≤ t < �∕4, is a solution to

the initial value problem

dy

dt
= 2

√

1 − y2, y(0) = 0.

In Exercises 3–8, find the general solution to the differential

equation.

3.
dy

dx
= 2x 4.

dy

dt
= t2

5.
dy

dx
= x3 + 5x4 6.

dy

dt
= et

7.
dy

dx
= cos x 8.

dy

dx
=

1

x
, x > 0

In Exercises 9–12, find the solution of the initial value prob-

lem.

9.
dy

dx
= 3x2, y(0) = 5

10.
dy

dx
= x5 + x6, y(1) = 2

11.
dy

dx
= ex, y(0) = 7

12.
dy

dx
= sinx, y(0) = 3

PROBLEMS

13. A rock is thrown downward with velocity 10 ft∕sec

from a bridge 100 ft above the water. How fast is the

rock going when it hits the water?

14. A water balloon launched from the roof of a building

at time t = 0 has vertical velocity v(t) = −32t + 40

feet/sec at time t seconds, with v > 0 corresponding to

upward motion.

(a) If the roof of the building is 30 feet above the

ground, find an expression for the height of the wa-

ter balloon above the ground at time t.

(b) What is the average velocity of the balloon between

t = 1.5 and t = 3 seconds?

(c) A 6-foot person is standing on the ground. How

fast is the water balloon falling when it strikes the

person on the top of the head?

15. A car starts from rest at time t = 0 and accelerates at

−0.6t+ 4 meters/sec2 for 0 ≤ t ≤ 12. How long does it

take for the car to go 100 meters?

16. Ice is forming on a pond at a rate given by

dy

dt
= k

√

t,

where y is the thickness of the ice in inches at time t

measured in hours since the ice started forming, and k

is a positive constant. Find y as a function of t.
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17. A revenue R(p) is obtained by a farmer from selling

grain at price p dollars/unit. The marginal revenue is

given by R′(p) = 25 − 2p.

(a) Find R(p). Assume the revenue is zero when the

price is zero.

(b) For what prices does the revenue increase as the

price increases? For what prices does the revenue

decrease as price increases?

18. A firm’s marginal cost function is MC = 3q2 +6q +9.

(a) Write a differential equation for the total cost,C(q).

(b) Find the total cost function if the fixed costs are

400.

19. A tomato is thrown upward from a bridge 25 m above

the ground at 40 m/sec.

(a) Give formulas for the acceleration, velocity, and

height of the tomato at time t.

(b) How high does the tomato go, and when does it

reach its highest point?

(c) How long is it in the air?

20. A car going 80 ft/sec (about 55 mph) brakes to a stop in

five seconds. Assume the deceleration is constant.

(a) Graph the velocity against time, t, for 0 ≤ t ≤ 5

seconds.

(b) Represent, as an area on the graph, the total dis-

tance traveled from the time the brakes are applied

until the car comes to a stop.

(c) Find this area and hence the distance traveled.

(d) Now find the total distance traveled using antidif-

ferentiation.

21. An object is shot vertically upward from the ground

with an initial velocity of 160 ft/sec.

(a) At what rate is the velocity decreasing? Give units.

(b) Explain why the graph of velocity of the object

against time (with upward positive) is a line.

(c) Using the starting velocity and your answer to

part (b), find the time at which the object reaches

the highest point.

(d) Use your answer to part (c) to decide when the ob-

ject hits the ground.

(e) Graph the velocity against time. Mark on the graph

when the object reaches its highest point and when

it lands.

(f) Find the maximum height reached by the object by

considering an area on the graph.

(g) Now express velocity as a function of time, and

find the greatest height by antidifferentiation.

22. A stone thrown upward from the top of a 320-foot cliff

at 128 ft/sec eventually falls to the beach below.

(a) How long does the stone take to reach its highest

point?

(b) What is its maximum height?

(c) How long before the stone hits the beach?

(d) What is the velocity of the stone on impact?

23. A 727 jet needs to attain a speed of 200 mph to take

off. If it can accelerate from 0 to 200 mph in 30 sec-

onds, how long must the runway be? (Assume constant

acceleration.)

24. A cat, walking along the window ledge of a New York

apartment, knocks off a flower pot, which falls to the

street 200 feet below. How fast is the flower pot travel-

ing when it hits the street? (Give your answer in ft/sec

and in mph, given that 1 ft/sec = 15/22 mph.)

25. An Acura NSX going at 70 mph stops in 157 feet. Find

the acceleration, assuming it is constant.

26. (a) Find the general solution of the differential equa-

tion dy∕dx = 2x + 1.

(b) Sketch a graph of at least three solutions.

(c) Find the solution satisfying y(1) = 5. Graph this

solution with the others from part (b).

27. (a) Find and graph the general solution of the differ-

ential equation

dy

dx
= sinx + 2.

(b) Find the solution of the initial value problem

dy

dx
= sinx + 2, y(3) = 5.

28. On the moon, the acceleration due to gravity is about

1.6 m/sec2 (compared to g ≈ 9.8 m/sec2 on earth). If

you drop a rock on the moon (with initial velocity 0),

find formulas for:

(a) Its velocity, v(t), at time t.

(b) The distance, s(t), it falls in time t.

29. (a) Imagine throwing a rock straight up in the air. What

is its initial velocity if the rock reaches a maximum

height of 100 feet above its starting point?

(b) Now imagine being transplanted to the moon and

throwing a moon rock vertically upward with the

same velocity as in part (a). How high will it go?

(On the moon, g = 5 ft/sec2.)

30. An object is dropped from a 400-foot tower. When does

it hit the ground and how fast is it going at the time of

the impact?

31. The object in Problem 30 falls off the same 400-foot

tower. What would the acceleration due to gravity have

to be to make it reach the ground in half the time?

32. A ball that is dropped from a window hits the ground

in five seconds. How high is the window? (Give your

answer in feet.)

33. On the moon the acceleration due to gravity is 5 ft/sec2.

An astronaut jumps into the air with an initial upward

velocity of 10 ft/sec. How high does he go? How long

is the astronaut off the ground?
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34. Assume the acceleration of a moving body is −g and its

initial velocity and position are v0 and s0 respectively.

Find velocity, v, and position, s, as a function of t.

35. A particle of mass, m, acted on by a force, F , moves in

a straight line. Its acceleration, a, is given by Newton’s

Law:

F = ma.

The work, W , done by a constant force when the parti-

cle moves through a displacement, d, is

W = Fd.

The velocity, v, of the particle as a function of time, t, is

given in Figure 6.27. What is the sign of the work done

during each of the time intervals: [0, t1], [t1, t2], [t2, t3],

[t3, t4],[t2, t4]?

t1 t2 t3 t4

t

v

Figure 6.27

Strengthen Your Understanding

In Problems 36–39, explain what is wrong with the state-

ment.

36. A rock dropped from a 400-foot cliff takes twice as long

to hit the ground as it would if it were dropped from a

200-foot cliff.

37. The function y = cos(t2) is a solution to the initial value

problem
dy

dt
= − sin(t2), y(0) = 1.

38. Two solutions to a differential equation dy∕dx = f (x)

have graphs which cross at the initial value.

39. A differential equation cannot have a constant solution.

In Problems 40–42, give an example of:

40. Two different solutions to the differential equation

dy

dt
= t + 3.

41. A differential equation that has solution y = cos (5x).

42. A differential equation that has a solution that is de-

creasing for all t.

Are the statements in Problems 43–51 true or false? Give an

explanation for your answer.

43. If F (x) is an antiderivative of f (x), then y = F (x) is a

solution to the differential equation dy∕dx = f (x).

44. If y = F (x) is a solution to the differential equation

dy∕dx = f (x), then F (x) is an antiderivative of f (x).

45. If an object has constant nonzero acceleration, then the

position of the object as a function of time is a quadratic

polynomial.

46. In an initial value problem for the differential equation

dy∕dx = f (x), the value of y at x = 0 is always speci-

fied.

47. If f (x) is positive for all x, then there is a solution of

the differential equation dy∕dx = f (x) where y(x) is

positive for all x.

48. If f (x) > 0 for all x, then every solution of the differen-

tial equation dy∕dx = f (x) is an increasing function.

49. If two solutions of a differential equation dy∕dx =

f (x) have different values at x = 3, then they have dif-

ferent values at every x.

50. If the function y = f (x) is a solution of the differ-

ential equation dy∕dx = sin x∕x, then the function

y = f (x) + 5 is also a solution.

51. There is only one solution y(t) to the initial value prob-

lem dy∕dt = 3t2, y(1) = �.

6.4 SECOND FUNDAMENTAL THEOREM OF CALCULUS

Suppose f is an elementary function, that is, a combination of constants, powers of x, sin x, cosx, ex,

and lnx. Then we have to be lucky to find an antiderivative F which is also an elementary function.

But if we can’t find F as an elementary function, how can we be sure that F exists at all? In this

section we use the definite integral to construct antiderivatives.

Construction of Antiderivatives Using the Definite Integral

Consider the function f (x) = e−x
2
. Its antiderivative,F , is not an elementary function, but we would

still like to find a way of calculating its values. Assuming F exists, we know from the Fundamental

Theorem of Calculus that

F (b) − F (a) =
∫

b

a

e−t
2
dt.



356 Chapter 6 CONSTRUCTING ANTIDERIVATIVES

Setting a = 0 and replacing b by x, we have

F (x) − F (0) =
∫

x

0

e−t
2
dt.

Suppose we want the antiderivative that satisfies F (0) = 0. Then we get

F (x) =
∫

x

0

e−t
2
dt.

This is a formula for F . For any value of x, there is a unique value for F (x), so F is a function. For

any fixed x, we can calculate F (x) numerically. For example,

F (2) =
∫

2

0

e−t
2
dt = 0.88208… .

Notice that our expression for F is not an elementary function; we have created a new function using

the definite integral. The next theorem says that this method of constructing antiderivatives works

in general. This means that if we define F by

F (x) =
∫

x

a

f (t) dt,

then F must be an antiderivative of f .

Theorem 6.2: Construction Theorem for Antiderivatives

(Second Fundamental Theorem of Calculus) If f is a continuous function on an interval,

and if a is any number in that interval, then the function F defined on the interval as follows

is an antiderivative of f :

F (x) =
∫

x

a

f (t) dt.

Proof Our task is to show that F , defined by this integral, is an antiderivative of f . We want to show that

F ′(x) = f (x). By the definition of the derivative,

F ′(x) = lim
ℎ→0

F (x + ℎ) − F (x)

ℎ
.

To gain some geometric insight, let’s suppose f is positive and ℎ is positive. Then we can visualize

F (x) =
∫

x

a

f (t) dt and F (x + ℎ) =
∫

x+ℎ

a

f (t) dt

as areas, which leads to representing

F (x + ℎ) − F (x) =
∫

x+ℎ

x

f (t) dt

as a difference of two areas. From Figure 6.28, we see that F (x + ℎ) − F (x) is roughly the area of a

rectangle of height f (x) and width ℎ (shaded darker in Figure 6.28), so we have

F (x + ℎ) − F (x) ≈ f (x)ℎ,

hence
F (x + ℎ) − F (x)

ℎ
≈ f (x).

More precisely, we can use Theorem 5.4 on comparing integrals on page 324 to conclude that

mℎ ≤
∫

x+ℎ

x

f (t) dt ≤ Mℎ,

where m is the greatest lower bound for f on the interval from x to x + ℎ and M is the least upper

bound on that interval. (See Figure 6.29.) Hence

mℎ ≤ F (x + ℎ) − F (x) ≤ Mℎ,
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a x x + ℎ

f
Area = F (x)

Area = F (x + ℎ) − F (x)
≈ f (x)ℎ

✻

❄

f (x)
❄ ✛

Figure 6.28: F (x + ℎ) − F (x) is area of roughly rectangular

region

a x x + ℎ

f
Area = F (x)

M
m

✻

❄

f (x)

❄

Figure 6.29: Upper and lower bounds

for F (x + ℎ) − F (x)

so

m ≤
F (x + ℎ) − F (x)

ℎ
≤ M.

Since f is continuous, both m and M approach f (x) as ℎ approaches zero. Thus

f (x) ≤ lim
ℎ→0

F (x + ℎ) − F (x)

ℎ
≤ f (x).

Thus both inequalities must actually be equalities, so we have the result we want:

f (x) = lim
ℎ→0

F (x + ℎ) − F (x)

ℎ
= F ′(x).

Relationship Between the Construction Theorem and the Fundamental Theorem of Calculus

If F is constructed as in Theorem 6.2, then we have just shown that F ′ = f . Suppose G is any other

antiderivative of f , so G′ = f , and therefore F ′ = G′. Since the derivative of F − G is zero, the

Constant Function Theorem on page 195 tells us that F − G is a constant, so F (x) = G(x) + C .

Since we know F (a) = 0 (by the definition of F ), we can write

∫

b

a

f (t) dt = F (b) = F (b) − F (a) = (G(b) + C) − (G(a) + C) = G(b) −G(a).

This result, that the definite integral ∫
b

a
f (t) dt can be evaluated using any antiderivative of f , is the

(First) Fundamental Theorem of Calculus. Thus, we have shown that the First Fundamental Theorem

of Calculus can be obtained from the Construction Theorem (the Second Fundamental Theorem of

Calculus).

Using the Construction Theorem for Antiderivatives
The construction theorem enables us to write down antiderivatives of functions that do not have

elementary antiderivatives. For example, an antiderivative of (sinx)∕x is

F (x) =
∫

x

0

sin t

t
dt.

Notice that F is a function; we can calculate its values to any degree of accuracy.1 This function

already has a name: it is called the sine-integral, and it is denoted Si(x).

Example 1 Construct a table of values of Si(x) for x = 0, 1, 2, 3.

Solution Using numerical methods, we calculate the values of Si(x) = ∫
x

0 (sin t)∕t dt given in Table 6.2. Since

the integrand is undefined at t = 0, we took the lower limit as 0.00001 instead of 0.

Table 6.2 A table of values of Si(x)

x 0 1 2 3

Si(x) 0 0.95 1.61 1.85

1You may notice that the integrand, (sin t)∕t, is undefined at t = 0; such improper integrals are treated in more detail in

Chapter 7.
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The reason the sine-integral has a name is that some scientists and engineers use it all the time

(for example, in optics). For them, it is just another common function like sine or cosine. Its derivative

is given by
d

dx
Si(x) =

sin x

x
.

Example 2 Find the derivative of x Si(x).

Solution Using the product rule,

d

dx
(x Si(x)) =

(

d

dx
x

)

Si(x) + x

(

d

dx
Si(x)

)

= 1 ⋅ Si(x) + x
sin x

x

= Si(x) + sin x.

Summary for Section 6.4

• Not all integrals have an antiderivative that is an elementary function. The construction theo-

rem for antiderivatives gives a method for creating an antiderivative. The construction theorem

is also referred to as the second fundamental theorem of calculus.

• The construction theorem for antiderivatives or second fundamental of calculus:

If f is a continuous function on an interval, and if a is any number in that interval, then the

function F defined on the interval as follows is an antiderivative of f :

F (x) =
∫

x

a

f (t) dt.

• One example of a function defined using the construction Theorem is the sine integral, named

because it is commonly used by scientists and engineers. The sine integral, denoted Si(x), is

defined as

Si(x) =
∫

x

0

sin t

t
dt.

Exercises and Problems for Section 6.4 Online Resource: Additional Problems for Section 6.4
EXERCISES

1. For x = 0, 0.5, 1.0, 1.5, and 2.0, make a table of values

for I(x) = ∫
x

0

√

t4 + 1 dt.

2. Assume that F ′(t) = sin t cos t and F (0) = 1. FindF (b)

for b = 0, 0.5, 1, 1.5, 2, 2.5, and 3.

3. (a) Continue the table of values for Si(x) =

∫
x

0
(sin t∕t) dt on page 357 for x = 4 and x = 5.

(b) Why is Si(x) decreasing between x = 4 and x = 5?

In Exercises 4–6, write an expression for the function, f (x),

with the given properties.

4. f ′(x) = sin(x2) and f (0) = 7

5. f ′(x) = (sinx)∕x and f (1) = 5

6. f ′(x) = Si(x) and f (0) = 2

In Exercises 7–10, let F (x) = ∫
x

0
f (t) dt. Graph F (x) as a

function of x.

7.

t

f (t) 8.

f (t)

t

9.

t

f (t) 10.

t

f (t)
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Find the derivatives in Exercises 11–16.

11.
d

dx ∫

x

0

cos(t2) dt 12.
d

dt ∫

t

4

sin(
√

x) dx

13.
d

dx ∫

x

1

(1 + t)200 dt 14.
d

dx ∫

x

2

ln(t2 + 1) dt

15.
d

dx ∫

x

0.5

arctan(t2) dt 16.
d

dx

[

Si(x2)
]

PROBLEMS

In Problems 17–20, is the function increasing or decreasing

at x = 2?

17. F (x) =
∫

x

0

cos
(

t2
)

dt

18. F (x) =
∫

x

−1

e−t
2
dt

19. F (x) =
∫

x

1

√

1 +
√

t dt

20. F (x) =
∫

x

0

sin(cos t) dt

21. Find intervals where the graph of F (x) = ∫
x

0
e−t

2
dt is

concave up and concave down.

22. Use properties of the function f (x) = xe−x to deter-

mine the number of values x that make F (x) = 0, given

F (x) = ∫
x

1
f (t) dt.

For Problems 23–25, let F (x) = ∫
x

0
sin(t2) dt.

23. Approximate F (x) for x = 0, 0.5, 1, 1.5, 2, 2.5.

24. Using a graph of F ′(x), decide whereF (x) is increasing

and where F (x) is decreasing for 0 ≤ x ≤ 2.5.

25. Does F (x) have a maximum value for 0 ≤ x ≤ 2.5? If

so, at what value of x does it occur, and approximately

what is that maximum value?

26. Use Figure 6.30 to sketch a graph of F (x) = ∫
x

0
f (t) dt.

Label the points x1, x2, x3.

x1 x2 x3

f (x)
x

Figure 6.30

27. The graph of the derivative F ′ of some function F is

given in Figure 6.31. If F (20) = 150, estimate the max-

imum value attained by F .

20 40

60

−10

10

20

x

F ′(x)

Figure 6.31

28. (a) Let F (x) = ∫
x

5
f (t) dt, with f in Figure 6.32. Find

the x-value at which the maximum value of F oc-

curs.

(b) What is the maximum value of F ?

5 10 15 20 25
−3

3

6

f (t)

t

Figure 6.32

29. Let g(x) = ∫
x

0
f (t) dt. Using Figure 6.33, find

(a) g(0) (b) g′(1)

(c) The interval where g is concave up.

(d) The value of x where g takes its maximum on the

interval 0 ≤ x ≤ 8.

2 4 6 8

−2

−1

1

2

3

t

f (t)

Figure 6.33

30. Let F (x) = ∫
x

0
sin(2t) dt.

(a) Evaluate F (�).

(b) Draw a sketch to explain geometrically why the an-

swer to part (a) is correct.

(c) For what values of x is F (x) positive? negative?

31. Let F (x) = ∫
x

2
(1∕ln t) dt for x ≥ 2.

(a) Find F ′(x).

(b) Is F increasing or decreasing? What can you say

about the concavity of its graph?

(c) Sketch a graph of F (x).

In Problems 32–33, find the value of the function with the

given properties.

32. F (1), where F ′(x) = e−x
2

and F (0) = 2

33. G(−1), where G′(x) = cos(x2) and G(0) = −3
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In Problems 34–37, estimate the value of each expression,

given w(t) = ∫
t

0
q(x) dx and v(t) = ∫

t

0
q′(x) dx. Table 6.3

gives values for q(x), a function with negative first and sec-

ond derivatives. Are your answers under- or overestimates?

Table 6.3

x 0.0 0.1 0.2 0.3 0.4 0.5

q(x) 5.3 5.2 4.9 4.5 3.9 3.1

34. w(0.4) 35. v(0.4)

36. w′(0.4) 37. v′(0.4)

In Problems 38–41, use the chain rule to calculate the deriva-

tive.

38.
d

dx ∫

x2

0

ln(1 + t2) dt 39.
d

dt ∫

sin t

1

cos(x2) dx

40.
d

dt ∫

4

2t

sin(
√

x) dx 41.
d

dx ∫

x2

−x2
et

2
dt

In Problems 42–45, find the given quantities. The error func-

tion, erf(x), is defined by

erf(x) =
2

√

� ∫

x

0

e−t
2
dt.

42.
d

dx
(x erf (x)) 43.

d

dx
(erf(

√

x))

44.
d

dx

(

∫
x3

0
e−t

2
dt

)

45.
d

dx

(

∫
x3

x
e−t

2
dt

)

46. In year x, the forested area in hectares of an island is

f (x) = 820 +
∫

x

0

r(t) dt,

where r(t) has only one zero, at t = 40. Let r′(40) < 0,

f (40) = 1170 and ∫
40

30
r(x) dx = 82.

(a) What is the maximum forested area?

(b) How large is the forested area in year t = 30?

47. Let F (x) = ∫
x

0
p(t) dt and G(x) = ∫

x

3
p(t) dt, where

F (3) = 5 and G(5) = 7. Find each of the following.

(a) G(0) (b) F (0)

(c) F (5) (d) kwhereG(x) = F (x)+k

Strengthen Your Understanding

In Problems 48–50, explain what is wrong with the state-

ment.

48.
d

dx ∫

5

0

t2 dt = x2.

49. F (x) =
∫

x

−2

t2 dt has a local minimum at x = 0.

50. For the function f (x) shown in Figure 6.34, F (x) =

∫
x

0
f (t) dt has a local minimum at x = 2.

−1 1 2 3

f (x)

x

Figure 6.34:

In Problems 51–52, give an example of:

51. A function, F (x), constructed using the Second Fun-

damental Theorem of Calculus such that F is a nonde-

creasing function and F (0) = 0.

52. A function G(x), constructed using the Second Funda-

mental Theorem of Calculus, such that G is concave up

and G(7) = 0.

Are the statements in Problems 53–58 true or false? Give an

explanation for your answer.

53. Every continuous function has an antiderivative.

54. ∫
x

0
sin(t2) dt is an antiderivative of sin(x2).

55. If F (x) = ∫
x

0
f (t) dt, then F (5) − F (3) = ∫

5

3
f (t)dt.

56. If F (x) = ∫
x

0
f (t) dt, then F (x) must be increasing.

57. If F (x) = ∫
x

0
f (t) dt and G(x) = ∫

x

2
f (t) dt, then

F (x) = G(x) + C .

58. If F (x) = ∫
x

0
f (t) dt and G(x) = ∫

x

0
g(t) dt, then

F (x) + G(x) = ∫
x

0
(f (t) + g(t)) dt.

Online Resource: Review Problems and Projects
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7.1 INTEGRATION BY SUBSTITUTION

In Chapter 3, we learned rules to differentiate any function obtained by combining constants, powers

of x, sin x, cosx, ex, and ln x, using addition, multiplication, division, or composition of functions.

Such functions are called elementary.

In this chapter, we introduce several methods of antidifferentiation. However, there is a great

difference between looking for derivatives and looking for antiderivatives. Every elementary func-

tion has elementary derivatives, but most elementary functions—such as
√

x3 + 1, (sin x)∕x, and

e−x
2
—do not have elementary antiderivatives.

All commonly occurring antiderivatives can be found with a computer algebra system (CAS).

However, just as it is useful to be able to calculate 3 + 4 without a calculator, we usually calculate

some antiderivatives by hand.

The Guess-and-Check Method

A good strategy for finding simple antiderivatives is to guess an answer (using knowledge of differ-

entiation rules) and then check the answer by differentiating it. If we get the expected result, then

we’re done; otherwise, we revise the guess and check again.

The method of guess-and-check is useful in reversing the chain rule. According to the chain

rule,

d

dx
(f (g(x))) = f ′

⏟⏟⏟

Derivative of outside↗

(

Inside

⏞⏞⏞

g(x) ) ⋅ g′(x)
⏟⏟⏟

↖
Derivative of inside

.

Thus, any function which is the result of applying the chain rule is the product of two factors: the

“derivative of the outside” and the “derivative of the inside.” If a function has this form, its an-

tiderivative is f (g(x)).

Example 1 Find
∫

3x2 cos(x3) dx.

Solution The function 3x2 cos(x3) looks like the result of applying the chain rule: there is an “inside” function

x3 and its derivative 3x2 appears as a factor. Since the outside function is a cosine which has a sine

as an antiderivative, we guess sin(x3) for the antiderivative. Differentiating to check gives

d

dx
(sin(x3)) = cos(x3) ⋅ (3x2).

Since this is what we began with, we know that

∫
3x2 cos(x3) dx = sin(x3) + C.

The basic idea of this method is to try to find an inside function whose derivative appears as a

factor. This works even when the derivative is missing a constant factor, as in the next example.

Example 2 Find
∫

x3
√

x4 + 5 dx.

Solution Here the inside function is x4 + 5, and its derivative appears as a factor, with the exception of a

missing 4. Thus, the integrand we have is more or less of the form

g′(x)
√

g(x),
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with g(x) = x4 + 5. Since x3∕2∕(3∕2) is an antiderivative of the outside function
√

x, we might

guess that an antiderivative is

(g(x))3∕2

3∕2
=

(x4 + 5)3∕2

3∕2
.

Let’s check and see:

d

dx

(

(x4 + 5)3∕2

3∕2

)

=
3

2

(x4 + 5)1∕2

3∕2
⋅ 4x3 = 4x3(x4 + 5)1∕2,

so
(x4 + 5)3∕2

3∕2
is too big by a factor of 4. The correct antiderivative is

1

4

(x4 + 5)3∕2

3∕2
=

1

6
(x4 + 5)3∕2.

Thus

∫
x3
√

x4 + 5 dx =
1

6
(x4 + 5)3∕2 + C.

As a final check:

d

dx

(

1

6
(x4 + 5)3∕2

)

=
1

6
⋅

3

2
(x4 + 5)1∕2 ⋅ 4x3 = x3(x4 + 5)1∕2.

As we see in the preceding example, antidifferentiating a function often involves “correcting

for” constant factors: if differentiation produces an extra factor of 2, antidifferentiation will require

a factor of
1

2
.

The Method of Substitution
When the integrand is complicated, it helps to formalize this guess-and-check method as follows:

To Make a Substitution

Let w be the “inside function” and dw = w′(x) dx =
dw

dx
dx.

Let’s redo the first example using a substitution.

Example 3 Find
∫

3x2 cos(x3) dx.

Solution As before, we look for an inside function whose derivative appears—in this case x3. We let w = x3.

Then dw = w′(x) dx = 3x2 dx. The original integrand can now be completely rewritten in terms of

the new variable w:

∫
3x2 cos(x3) dx =

∫
cos (x3)

⏟⏟⏟
w

⋅ 3x2 dx
⏟⏟⏟

dw

=
∫

coswdw = sinw + C = sin(x3) + C.

By changing the variable to w, we can simplify the integrand. We now have cosw, which can be

antidifferentiated more easily. The final step, after antidifferentiating, is to convert back to the original

variable, x.

Why Does Substitution Work?

The substitution method makes it look as if we can treat dw and dx as separate entities, even cancel-

ing them in the equation dw = (dw∕dx)dx. Let’s see why this works. Suppose we have an integral
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of the form ∫ f (g(x))g′(x) dx, where g(x) is the inside function and f (x) is the outside function.

If F is an antiderivative of f , then F ′ = f , and by the chain rule
d

dx
(F (g(x))) = f (g(x))g′(x).

Therefore,

∫
f (g(x))g′(x) dx = F (g(x)) + C.

Now write w = g(x) and dw∕dx = g′(x) on both sides of this equation:

∫
f (w)

dw

dx
dx = F (w) + C.

On the other hand, knowing that F ′ = f tells us that

∫
f (w) dw = F (w) + C.

Thus, the following two integrals are equal:

∫
f (w)

dw

dx
dx =

∫
f (w) dw.

Substituting w for the inside function and writing dw = w′(x)dx leaves the indefinite integral

unchanged.

Let’s revisit the second example that we did by guess-and-check.

Example 4 Find
∫

x3
√

x4 + 5 dx.

Solution The inside function is x4 + 5, with derivative 4x3. The integrand has a factor of x3, and since the

only thing missing is a constant factor, we try

w = x4 + 5.

Then

dw = w′(x) dx = 4x3 dx,

giving
1

4
dw = x3 dx.

Thus,

∫
x3
√

x4 + 5 dx =
∫

√

w
1

4
dw =

1

4 ∫
w1∕2 dw =

1

4
⋅

w3∕2

3∕2
+ C =

1

6
(x4 + 5)3∕2 + C.

Once again, we get the same result as with guess-and-check.

Warning

We saw in the preceding example that we can apply the substitution method when a constant

factor is missing from the derivative of the inside function. However, we may not be able

to use substitution if anything other than a constant factor is missing. For example, setting

w = x4 + 5 to find

∫
x2
√

x4 + 5 dx

does us no good because x2 dx is not a constant multiple of dw = 4x3 dx. Substitution works

if the integrand contains the derivative of the inside function, to within a constant factor.
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Some people prefer the substitution method over guess-and-check since it is more systematic,

but both methods achieve the same result. For simple problems, guess-and-check can be faster.

Example 5 Find
∫

ecos � sin � d�.

Solution We let w = cos � since its derivative is − sin � and there is a factor of sin � in the integrand. This

gives

dw = w′(�) d� = − sin � d�,

so

−dw = sin � d�.

Thus

∫
ecos � sin � d� =

∫
ew (−dw) = (−1)

∫
ew dw = −ew + C = −ecos � + C.

Example 6 Find
∫

et

1 + et
dt.

Solution Observing that the derivative of 1 + et is et, we see w = 1 + et is a good choice. Then dw = et dt,

so that

∫

et

1 + et
dt =

∫

1

1 + et
et dt =

∫

1

w
dw = ln |w| + C

= ln |1 + et| + C

= ln(1 + et) + C. (Since (1 + et) is always positive.)

Since the numerator is et dt, we might also have tried w = et. This substitution leads to the integral

∫ (1∕(1+w))dw, which is better than the original integral but requires another substitution, u = 1+w,

to finish. There are often several different ways of doing an integral by substitution.

Notice the pattern in the previous example: having a function in the denominator and its deriva-

tive in the numerator leads to a natural logarithm. The next example follows the same pattern.

Example 7 Find
∫

tan � d�.

Solution Recall that tan � = (sin �)∕(cos �). If w = cos �, then dw = − sin � d�, so

∫
tan � d� =

∫

sin �

cos �
d� =

∫

−dw

w
= − ln |w| + C = − ln | cos �| + C.

One way to think of integration is in terms of standard forms whose antiderivatives are known.

Substitution is useful for putting a complicated integral in a standard form.

Example 8 Give a substitution w and constants k, n so that the following integral has the form ∫ kwn dw:

∫
ex cos3(ex) sin(ex) dx.
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Solution We notice that one of the factors in the integrand is (cos(ex))3, so if we let w = cos(ex), this factor

is w3. Then dw = (− sin(ex))ex dx, so

∫
ex cos3(ex) sin(ex) dx =

∫
cos3(ex)(sin(ex))ex dx =

∫
w3 (−dw).

Therefore, we choose w = cos(ex) and then k = −1, n = 3.

Definite Integrals by Substitution

Example 9 Compute
∫

2

0

xex
2
dx.

Solution To evaluate this definite integral using the Fundamental Theorem of Calculus, we first need to find

an antiderivative of f (x) = xex
2
. The inside function is x2, so we let w = x2. Then dw = 2x dx, so

1

2
dw = x dx. Thus,

∫
xex

2
dx =

∫
ew

1

2
dw =

1

2
ew + C =

1

2
ex

2
+ C.

Now we find the definite integral

∫

2

0

xex
2
dx =

1

2
ex

2 |
|

|

|

2

0

=
1

2
(e4 − e0) =

1

2
(e4 − 1).

There is another way to look at the same problem. After we established that

∫
xex

2
dx =

1

2
ew + C,

our next two steps were to replace w by x2, and then x by 2 and 0. We could have directly replaced

the original limits of integration, x = 0 and x = 2, by the corresponding w limits. Since w = x2,

the w limits are w = 02 = 0 (when x = 0) and w = 22 = 4 (when x = 2), so we get

∫

x=2

x=0

xex
2
dx =

1

2 ∫

w=4

w=0

ew dw =
1

2
ew

|

|

|

|

4

0

=
1

2

(

e4 − e0
)

=
1

2
(e4 − 1).

As we would expect, both methods give the same answer.

To Use Substitution to Find Definite Integrals

Either

• Compute the indefinite integral, expressing an antiderivative in terms of the original vari-

able, and then evaluate the result at the original limits,

or

• Convert the original limits to new limits in terms of the new variable and do not convert

the antiderivative back to the original variable.

Example 10 Evaluate
∫

�∕4

0

tan3 �

cos2 �
d�.
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Solution To use substitution, we must decide what w should be. There are two possible inside functions, tan �

and cos �. Now
d

d�
(tan �) =

1

cos2 �
and

d

d�
(cos �) = − sin �,

and since the integral contains a factor of 1∕ cos2 � but not of sin �, we try w = tan �. Then

dw = (1∕ cos2 �)d�. When � = 0, w = tan 0 = 0, and when � = �∕4, w = tan(�∕4) = 1,

so

∫

�∕4

0

tan3 �

cos2 �
d� =

∫

�∕4

0

(tan �)3 ⋅
1

cos2 �
d� =

∫

1

0

w3 dw =
1

4
w4

|

|

|

|

1

0

=
1

4
.

Example 11 Evaluate
∫

3

1

dx

5 − x
.

Solution Let w = 5 − x, so dw = −dx. When x = 1, w = 4, and when x = 3, w = 2, so

∫

3

1

dx

5 − x
=
∫

2

4

−dw

w
= − ln |w|

|

|

|

|

2

4

= − (ln 2 − ln 4) = ln
(

4

2

)

= ln 2 = 0.693.

Notice that we write the limit w = 4 at the bottom of the second integral, even though it is larger

than w = 2, because w = 4 corresponds to the lower limit x = 1.

More Complex Substitutions

In the examples of substitution presented so far, we guessed an expression for w and hoped to find

dw (or some constant multiple of it) in the integrand. What if we are not so lucky? It turns out that it

often works to let w be some messy expression contained inside, say, a cosine or under a root, even

if we cannot see immediately how such a substitution helps.

Example 12 Find
∫

√

1 +
√

x dx.

Solution This time, the derivative of the inside function is nowhere to be seen. Nevertheless, we tryw = 1 +
√

x.

Then w − 1 =
√

x, so (w − 1)2 = x. Therefore 2(w − 1) dw = dx. We have

∫

√

1 +
√

xdx =
∫

√

w 2(w − 1) dw = 2
∫

w1∕2(w − 1) dw

= 2
∫

(w3∕2 −w1∕2) dw = 2
(

2

5
w5∕2 −

2

3
w3∕2

)

+ C

= 2
(

2

5
(1 +

√

x)5∕2 −
2

3
(1 +

√

x)3∕2
)

+ C.

Notice that the substitution in the preceding example again converts the inside of the messiest

function into something simple. In addition, since the derivative of the inside function is not waiting

for us, we have to solve for x so that we can get dx entirely in terms of w and dw.

Example 13 Find
∫

(x + 7)
3
√

3 − 2xdx.
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Solution The inside function is 3 − 2x, with derivative −2. However, instead of a factor of −2, the integrand

contains the factor (x+7), but substituting w = 3−2x turns out to help anyway. Then dw = −2 dx,

so (−1∕2) dw = dx. Now we must convert everything to w, including x + 7. If w = 3 − 2x, then

2x = 3 −w, so x = 3∕2 −w∕2, and therefore we can write x + 7 in terms of w. Thus

∫
(x + 7)

3
√

3 − 2xdx =
∫

(

3

2
−

w

2
+ 7

)

3
√

w

(

−
1

2

)

dw

= −
1

2 ∫

(

17

2
−

w

2

)

w1∕3 dw

= −
1

4 ∫
(17 −w)w1∕3 dw

= −
1

4 ∫
(17w1∕3 −w4∕3) dw

= −
1

4

(

17
w4∕3

4∕3
−

w7∕3

7∕3

)

+ C

= −
1

4

(

51

4
(3 − 2x)4∕3 −

3

7
(3 − 2x)7∕3

)

+ C.

We see, looking back over the solution, that the reason this substitution works is that it converts
3
√

3 − 2x, the messiest part of the integrand, to 3
√

w, which can be combined with the other factor

and then integrated.

Summary for Section 7.1

• A function F is an antiderivative of f if F ′ = f . Check an antiderivative by differentiating it.

• The method of integration by substitution reverses the chain rule.

• To find ∫ f (x) dx with the substitution w = w(x), transform both the integrand f (x) and the

differential dx. For the differential, use the formula dw = (dw∕dx) dx.

• When evaluating a definite integral by substitution, you can either use the original limits or

convert the limits to the new variable.

Exercises and Problems for Section 7.1 Online Resource: Additional Problems for Section 7.1
EXERCISES

1. Use substitution to express each of the following inte-

grals as a multiple of ∫
b

a
(1∕w) dw for some a and b.

Then evaluate the integrals.

(a)
∫

1

0

x

1 + x2
dx (b)

∫

�∕4

0

sin x

cos x
dx

2. (a) Find the derivatives of sin(x2 + 1) and sin(x3 + 1).

(b) Use your answer to part (a) to find antiderivatives

of:

(i) x cos(x2 + 1) (ii) x2 cos(x3 + 1)

(c) Find the general antiderivatives of:

(i) x sin(x2 + 1) (ii) x2 sin(x3 + 1)

Find the integrals in Exercises 3–50. Check your answers by

differentiation.

3.
∫

e3x dx 4.
∫

tet
2
dt

5.
∫

e−x dx 6.
∫

25e−0.2t dt

7.
∫

sin(2x) dx 8.
∫

t cos(t2) dt

9.
∫

sin(3 − t) dt 10.
∫

xe−x
2
dx

11.
∫

(r + 1)3 dr 12.
∫

y(y2 + 5)8 dy

13.
∫

x2(1 + 2x3)2 dx 14.
∫

t2(t3 − 3)10 dt

15.
∫

x(x2 + 3)2 dx 16.
∫

x(x2 − 4)7∕2 dx

17.
∫

y2(1 + y)2 dy 18.
∫

(2t − 7)73 dt

19.
∫

x2ex
3+1 dx 20.

∫
(x2 + 3)2 dx

21.
∫

1
√

4 − x

dx 22.
∫

dy

y + 5
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23.
∫

e−0.1t+4 dt 24.
∫

tan(� + 1) d�

25.
∫

sin �(cos � + 5)7 d� 26.
∫

√

cos 3t sin 3t dt

27.
∫

sin6 � cos � d� 28.
∫

sin3 � cos � d�

29.
∫

sin6(5�) cos(5�) d� 30.
∫

tan(2x) dx

31.
∫

(ln z)2

z
dz 32.

∫

et + 1

et + t
dt

33.
∫

(t + 1)2

t2
dt 34.

∫

y

y2 + 4
dy

35.
∫

dx

1 + 2x2
36.

∫

dx
√

1 − 4x2

37.
∫

cos
√

x
√

x
dx 38.

∫

e
√

y

√

y
dy

39.
∫

1 + ex

√

x + ex
dx 40.

∫

ex

2 + ex
dx

41.
∫

x + 1

x2 + 2x + 19
dx 42.

∫

t

1 + 3t2
dt

43.
∫

ex − e−x

ex + e−x
dx 44.

∫

x cos(x2)
√

sin(x2)
dx

45.
∫

sinh 3t dt 46.
∫

cosh x dx

47.
∫

cosh(2w + 1) dw 48.
∫

(sinh z)ecosh z dz

49.
∫

cosh2 x sinh x dx 50.
∫

x cosh x2 dx

For the functions in Exercises 51–58, find the general an-

tiderivative. Check your answers by differentiation.

51. p(t) = �t3 + 4t 52. f (x) = sin 3x

53. f (x) = 2x cos(x2) 54. r(t) = 12t2 cos(t3)

55. f (x) = sin(2 − 5x) 56. f (x) = esinx cos x

57. f (x) =
x

x2 + 1
58. f (x) =

1

3 cos2(2x)

For Exercises 59–66, use the Fundamental Theorem to cal-

culate the definite integrals.

59.
∫

�

0

cos(x + �) dx 60.
∫

1∕2

0

cos(�x) dx

61.
∫

�∕2

0

e−cos � sin � d� 62.
∫

2

1

2xex
2
dx

63.
∫

4

1

e
√

x

√

x
dx 64.

∫

e−2

−1

1

t + 2
dt

65.
∫

4

1

cos
√

x
√

x
dx 66.

∫

2

0

x

(1 + x2)2
dx

For Exercises 67–72, evaluate the definite integrals. When-

ever possible, use the Fundamental Theorem of Calculus,

perhaps after a substitution. Otherwise, use numerical meth-

ods.

67.
∫

3

−1

(x3 + 5x) dx 68.
∫

1

−1

1

1 + y2
dy

69.
∫

3

1

1

x
dx 70.

∫

3

1

dt

(t + 7)2

71.
∫

2

−1

√

x + 2 dx 72.
∫

2

1

sin t

t
dt

Find the integrals in Exercises 73–80.

73.
∫

y
√

y + 1 dy 74.
∫

z(z + 1)1∕3 dz

75.
∫

t2 + t
√

t + 1
dt 76.

∫

dx

2 + 2
√

x

77.
∫

x2
√

x − 2 dx 78.
∫

(z + 2)
√

1 − z dz

79.
∫

t
√

t + 1
dt 80.

∫

3x − 2
√

2x + 1
dx

PROBLEMS

In Problems 81–84, give an expression for p(x) so the inte-

gral can be evaluated using substitution. Do not evaluate the

integral.

81.
∫

p(x)ex
4
dx 82.

∫
x sin (p(x)) dx

83.
∫

p(x) sin4 xdx 84.
∫

cos (p(x))

x
dx

85. Show that the following integral can be calculated by

multiplying the numerator and denominator by et and

using a substitution:

∫

1

1 + e−t
dt.
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In Problems 86–89, show the two integrals are equal using a

substitution.

86.
∫

�∕3

0

3 sin2(3x) dx =
∫

�

0

sin2(y) dy

87.
∫

2

1

2 ln(s2 + 1) ds =
∫

4

1

ln(t + 1)
√

t
dt

88.
∫

e

1

(lnw)3 dw =
∫

1

0

z3ez dz

89.
∫

�

0

x cos(� − x) dx =
∫

�

0

(� − t) cos t dt

90. Using the substitution w = x2, find a function g(w)

such that ∫

√

b
√

a
dx = ∫

b

a
g(w) dw for all 0 < a < b.

91. Using the substitution w = ex, find a function g(w)

such that ∫
b

a
e−xdx = ∫

eb

ea
g(w)dw for all a < b.

In Problems 92–98, evaluate the integral. Your answer

should not contain f , which is a differentiable function with

the following values:

x 0 1 �/2 e 3

f (x) 5 7 8 10 11

f ′(x) 2 4 6 9 12

92.
∫

1

0

f ′(x) sin f (x) dx 93.
∫

3

1

f ′(x)ef (x) dx

94.
∫

3

1

f ′(x)

f (x)
dx 95.

∫

1

0

exf ′(ex) dx

96.
∫

e

1

f ′(lnx)

x
dx 97.

∫

1

0

f ′(x)(f (x))2 dx

98.
∫

�∕2

0

sinx ⋅ f ′(cos x) dx

In Problems 99–102, find an expression for the integral

which contains g but no integral sign.

99.
∫

g′(x)(g(x))4 dx 100.
∫

g′(x)eg(x) dx

101.
∫

g′(x) sin g(x) dx 102.
∫

g′(x)
√

1 + g(x) dx

In Problems 103–105, the method of substitution is used to

rewrite the integral in the form ∫ kwn dw. State the values

of the constants k and n.

103.
∫

(

x4 + 5
)7
x3 dx where w = x4 + 5.

104.
∫

cos 2x

sin 2x
dx where w = sin 2x.

105.
∫

e−x
√

1 + e−x dx where w = 1 + e−x.

In Problems 106–108, find a substitution w and constants

k, n so that the integral has the form ∫ kwn dw.

106.
∫

x2
√

1 − 4x3 dx 107.
∫

cos t

sin t
dt

108.
∫

2x dx
(

x2 − 3
)2

In Problems 109–113, find a substitution w and a constant k

so that the integral has the form ∫ kew dw.

109.
∫

xe−x
2
dx 110.

∫
esin� cos�d�

111.
∫

√

erdr 112.
∫

z2 dz

e−z
3

113.
∫

e2te3t−4 dt

114. Integrate:

(a)
∫

1
√

x
dx (b)

∫

1
√

x + 1
dx

(c)
∫

1
√

x + 1
dx

115. If appropriate, evaluate the following integrals by sub-

stitution. If substitution is not appropriate, say so, and

do not evaluate.

(a)
∫

x sin(x2) dx (b)
∫

x2 sinx dx

(c)
∫

x2

1 + x2
dx (d)

∫

x

(1 + x2)2
dx

(e)
∫

x3ex
2
dx (f)

∫

sinx

2 + cos x
dx

In Problems 116–122, find the exact area.

116. Under f (x) = xex
2

between x = 0 and x = 2.

117. Under f (x) = 1∕(x + 1) between x = 0 and x = 2.

118. Under f (x) = sinh(x∕2) between x = 0 and x = 2.

119. Under f (�) = (e�+1)3 for 0 ≤ � ≤ 2.

120. Between et and et+1 for 0 ≤ t ≤ 2.

121. Between y = ex, y = 3, and the y-axis.

122. Under one arch of the curve V (t) = V0 sin(!t), where

V0 > 0 and ! > 0.

123. Find the area inside the asteroid in Figure 7.1 given that

∫

1

0

(1 − x2∕3)3∕2dx =
3�

32
.

−a a

−a

a

x2∕3 + y2∕3 = a2∕3

x

y

Figure 7.1
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124. Find the exact average value of f (x) = 1∕(x + 1) on

the interval x = 0 to x = 2. Sketch a graph showing the

function and the average value.

125. Let g(x) = f (2x). Show that the average value of f on

the interval [0, 2b] is the same as the average value of g

on the interval [0, b].

126. Suppose ∫
2

0
g(t) dt = 5. Calculate the following:

(a)
∫

4

0

g(t∕2) dt (b)
∫

2

0

g(2 − t) dt

127. Suppose ∫
1

0
f (t) dt = 3. Calculate the following:

(a)
∫

0.5

0

f (2t) dt (b)
∫

1

0

f (1 − t) dt

(c)
∫

1.5

1

f (3 − 2t) dt

In Problems 128–129, evaluate the definite integral given

that ∫
1

−1
f (x) dx = 38.

128.
∫

3�∕2

�

f (cos 2x) sin 2x dx

129.
∫

√

2

−
√

2

f
(

x2 − 3
)

xdx

130. (a) Calculate exactly: ∫
�

−�
cos2 � sin � d�.

(b) Calculate the exact area under the curve

y = cos2 � sin � between � = 0 and � = �.

131. Find ∫ 4x(x2 + 1) dx using two methods:

(a) Do the multiplication first, and then antidifferenti-

ate.

(b) Use the substitution w = x2 + 1.

(c) Explain how the expressions from parts (a) and (b)

are different. Are they both correct?

132. (a) Find ∫ sin � cos � d�.

(b) You probably solved part (a) by making the sub-

stitution w = sin � or w = cos �. (If not, go back

and do it that way.) Now find ∫ sin � cos � d� by

making the other substitution.

(c) There is yet another way of finding this integral

which involves the trigonometric identities

sin(2�) = 2 sin � cos �

cos(2�) = cos2 � − sin2 �.

Find ∫ sin � cos � d� using one of these identities

and then the substitution w = 2�.

(d) You should now have three different expressions

for the indefinite integral ∫ sin � cos � d�. Are they

really different? Are they all correct? Explain.

For Problems 133–136, find a substitution w and constants

a, b, k so that the integral has the form ∫
b

a
kf (w) dw.

133.
∫

5

−2

f
(

x2
)

xdx 134.
∫

�

0

f (cos x) sinx dx

135.
∫

9

1

f

(

6x
√

x

)

√

x dx

136.
∫

5

2

f
(

ln
(

x2 + 1
))

x

x2 + 1
dx

In Problems 137–140, given that f (x) = F ′(x), use Ta-

ble 7.1 to evaluate the expression correct to three decimals

places.

Table 7.1

x 0 0.5 1 1.5 2 2.5 3

F (x) 2 3 16 21 24 26 31

137.
∫

√

3

1

f
(

x2
)

xdx 138.
∫

�∕2

�∕6

f (sin x) cos x dx

139.
∫

0.5

0

eF (x)f (x) dx 140.
∫

3

1

f (x)

F (x)
dx

141. Find possible formulas for f (x) and g(x) given that

∫
g (f (x)) g(x) dx = sin (sinx) + C.

142. Find possible formulas for f (x) and g(x) given that

∫
f (g(x)) g(x) ⋅

1
√

x
dx = sin

(

e
√

x
)

+ C.

143. Find the solution of the initial value problem

y′ = tan x + 1, y(0) = 1.

144. Let Im,n = ∫
1

0
xm(1−x)ndx for constant m, n. Show that

Im,n = In,m.

145. Let f (t) be the velocity in meters/second of a car at time

t in seconds. Give an integral for the change in the po-

sition of the car

(a) Over the time interval 0 ≤ t ≤ 60.

(b) In terms of time T in minutes, over the same time

interval.

146. With t in years since 1790, the US population in mil-

lions can be approximated by

P =
192

1 + 48e−0.0317t
.

Based on this model, what was the average US popula-

tion between 1900 and 1950?
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147. Over the past fifty years the carbon dioxide level in the

atmosphere has increased. Carbon dioxide is believed to

drive temperature, so predictions of future carbon diox-

ide levels are important. If C(t) is carbon dioxide level

in parts per million (ppm) and t is time in years since

1980, three possible models are:1

I C ′(t) = 1.73

II C ′(t) = 1.24 + 0.03t

III C ′(t) = 1.4e0.005t

(a) Given that the carbon dioxide level was 339 ppm

in 1980, find C(t) for each model.

(b) Find the carbon dioxide level in 2030 predicted by

each model.

148. Let f (t) be the rate of flow, in cubic meters per hour, of

a flooding river at time t in hours. Give an integral for

the total flow of the river

(a) Over the 3-day period 0 ≤ t ≤ 72.

(b) In terms of time T in days over the same 3-day pe-

riod.

149. With t in years since July, 2017, the population, P ,

of the world in billions2 can be modeled by P =

7.41e0.011t.

(a) What does this model predict for the world popu-

lation in July 2025? In 2030?

(b) Use the Fundamental Theorem to predict the aver-

age population of the world between July 2020 and

July 2030.

150. In 2019, the US population was 329 million; the

doubling time was 99 years. With t in years since

2019, the population is predicted to grow at a rate of

2.303e0.007t million people per year.

(a) Use this rate to calculate the predicted change in

population over the 99 years between 2019 and

2118. (Give your answer to the nearest million.)

(b) Why is the result to part (a) expected?

151. Water is pouring in or out of a water tank at a varying

rate. For t in minutes, 0 ≤ t ≤ 2, the depth of the water

in the tank is changing at a rate of

r(t) = sin(�t) meters/min.

(a) For what values of t is the depth of the water

increasing? Decreasing? When does it reach the

maximum depth?

(b) Find the maximum depth reached by the water.

152. Oil is leaking out of a ruptured tanker at the rate of

r(t) = 50e−0.02t thousand liters per minute.

(a) At what rate, in liters per minute, is oil leaking out

at t = 0? At t = 60?

(b) How many liters leak out during the first hour?

153. The volume of water in a leaking irrigation tank after t

hours is V = f (t) = 350(12 − 0.0125t)2 cm3.

(a) How much water drains from the tank in the first

200 hours?

(b) What is the average rate at which water drains from

the tank during the first 200 hours?

(c) How fast is water draining from the tank at t = 200

hours?

(d) What is the average volume of water in the tank

during the first 200 hours?

154. At the start of 2018, the world’s known copper reserves

were 830 million tons. With t in years since the start of

2018, copper has been mined at a rate given by 21e0.05t

million tons per year.3

(a) Assuming that copper continues to be extracted

at the same rate, write an expression for the total

quantity mined in the first T years after the start of

2018.

(b) Under these assumptions, when is the world pre-

dicted to run out of copper?

155. Throughout much of the 20th century, the yearly con-

sumption of electricity in the US increased exponen-

tially at a continuous rate of 7% per year. Assume this

trend continues and that the electrical energy consumed

in 1900 was 1.4 million megawatt-hours.

(a) Write an expression for yearly electricity consump-

tion as a function of time, t, in years since 1900.

(b) Find the average yearly electrical consumption

throughout the 20th century.

(c) During what year was electrical consumption clos-

est to the average for the century?

(d) Without doing the calculation for part (c), how

could you have predicted which half of the century

the answer would be in?

156. An electric current, I(t), flowing out of a capacitor, de-

cays according to I(t) = I0e
−t, where t is time. Find the

charge, Q(t), remaining in the capacitor at time t. The

initial charge is Q0 and Q(t) is related to I(t) by

Q′(t) = −I(t).

1Based on data from www.esrl.noaa.gov/gmd/ccgg, accessed October 7, 2019.
2www.indexmundi.com, accessed October 7, 2019.
3Data from http://minerals.usgs.gov/minerals/pubs/commodity/, accessed October 7, 2019.
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Strengthen Your Understanding

In Problems 157–159, explain what is wrong with the state-

ment.

157. ∫ (f (x))2 dx = (f (x))3∕3 + C .

158. ∫ cos(x2) dx = sin(x2)∕(2x) + C .

159. ∫
�∕2

0
cos(3x) dx = (1∕3) ∫

�∕2

0
coswdw.

In Problems 160–161, give an example of:

160. A possible f (�) so that the following integral can be

integrated by substitution:

∫
f (�)ecos � d�.

161. An indefinite integral involving sin(x3−3x) that can be

evaluated by substitution.

In Problems 162–164, decide whether the statements are true

or false. Give an explanation for your answer.

162. ∫ f ′(x) cos(f (x)) dx = sin(f (x)) + C .

163. ∫ (1∕f (x)) dx = ln |f (x)| + C .

164. ∫ t sin(5 − t2) dt can be evaluated using substitution.

7.2 INTEGRATION BY PARTS

The method of substitution reverses the chain rule. Now we introduce integration by parts, which is

based on the product rule.

Example 1 Find
∫

xex dx.

Solution We are looking for a function whose derivative is xex. The product rule might lead us to guess xex,

because we know that the derivative has two terms, one of which is xex:

d

dx
(xex) =

d

dx
(x)ex + x

d

dx
(ex) = ex + xex.

Of course, our guess is wrong because of the extra ex. But we can adjust our guess by subtracting

ex; this leads us to try xex − ex. Let’s check it:

d

dx
(xex − ex) =

d

dx
(xex) −

d

dx
(ex) = ex + xex − ex = xex.

It works, so
∫

xex dx = xex − ex + C .

Example 2 Find
∫

� cos � d�.

Solution We guess the antiderivative is � sin � and use the product rule to check:

d

d�
(� sin �) =

d(�)

d�
sin � + �

d

d�
(sin �) = sin � + � cos �.

To correct for the extra sin � term, we must subtract from our original guess something whose deriva-

tive is sin �. Since
d

d�
(cos �) = − sin �, we try:

d

d�
(� sin � + cos �) =

d

d�
(� sin �) +

d

d�
(cos �) = sin � + � cos � − sin � = � cos �.

Thus,
∫

� cos � d� = � sin � + cos � + C .
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The General Formula for Integration by Parts

We can formalize the process illustrated in the last two examples in the following way. We begin

with the product rule:
d

dx
(uv) = u′v + uv′

where u and v are functions of x with derivatives u′ and v′, respectively. We rewrite this as:

uv′ =
d

dx
(uv) − u′v

and then integrate both sides:

∫
uv′ dx =

∫

d

dx
(uv) dx −

∫
u′v dx.

Since an antiderivative of
d

dx
(uv) is just uv, we get the following formula:

Integration by Parts

∫
uv′ dx = uv −

∫
u′v dx.

This formula is useful when the integrand can be viewed as a product and when the integral on

the right-hand side is simpler than that on the left. In effect, we were using integration by parts in the

previous two examples. In Example 1, we let xex = (x) ⋅ (ex) = uv′, and choose u = x and v′ = ex.

Thus, u′ = 1 and v = ex, so

∫
(x)

⏟⏟⏟
u

(ex)
⏟⏟⏟

v′

dx = (x)
⏟⏟⏟

u

(ex)
⏟⏟⏟

v

−
∫

(1)
⏟⏟⏟

u′

(ex)
⏟⏟⏟

v

dx = xex − ex + C.

So uv represents our first guess, and ∫ u′v dx represents the correction to our guess.

Notice what would have happened if, instead of v = ex, we took v = ex + C1. Then

∫
xex dx = x(ex + C1) − ∫

(ex + C1) dx

= xex + C1x − ex − C1x + C

= xex − ex + C,

as before. Thus, it is not necessary to include an arbitrary constant in the antiderivative for v; any

antiderivative will do.

What would have happened if we had picked u and v′ the other way around? If u = ex and

v′ = x, then u′ = ex and v = x2∕2. The formula for integration by parts then gives

∫
xex dx =

x2

2
ex −

∫

x2

2
⋅ ex dx,

which is true but not helpful since the integral on the right is worse than the one on the left. To use

this method, we must choose u and v′ to make the integral on the right easier to find than the integral

on the left.
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How to Choose u and v
′

• Whatever you let v′ be, you need to be able to find v.

• It helps if u′ is simpler than u (or at least no more complicated than u).

• It helps if v is simpler than v′ (or at least no more complicated than v′).

If we pick v′ = x in Example 1, then v = x2∕2, which is certainly “worse” than v′.

There are some examples which don’t look like good candidates for integration by parts because

they don’t appear to involve products, but for which the method works well. Such examples often

involve lnx or the inverse trigonometric functions. Here is one:

Example 3 Find
∫

3

2

ln x dx.

Solution This does not look like a product unless we write ln x = (1)(lnx). Then we might say u = 1 so

u′ = 0, which certainly makes things simpler. But if v′ = lnx, what is v? If we knew, we would not

need integration by parts. Let’s try the other way: if u = lnx, u′ = 1∕x and if v′ = 1, v = x, so

∫

3

2

(lnx)
⏟⏟⏟

u

(1)
⏟⏟⏟

v′

dx = (lnx)
⏟⏟⏟

u

(x)
⏟⏟⏟

v

|

|

|

|

3

2

−
∫

3

2

(

1

x

)

⏟⏟⏟

u′

⋅ (x)
⏟⏟⏟

v

dx

= x lnx
|

|

|

|

3

2

−
∫

3

2

1 dx = (x lnx − x)
|

|

|

|

3

2

= 3 ln 3 − 3 − 2 ln 2 + 2 = 3 ln 3 − 2 ln 2 − 1.

Notice that when doing a definite integral by parts, we must remember to put the limits of

integration (here 2 and 3) on the uv term (in this case x lnx) as well as on the integral ∫ u′v dx.

Example 4 Find
∫

x6 lnx dx.

Solution View x6 lnx as uv′ where u = ln x and v′ = x6. Then v =
1

7
x7 and u′ = 1∕x, so integration by parts

gives us:

∫
x6 ln x dx =

∫
(lnx)x6 dx = (lnx)

(

1

7
x7
)

−
∫

1

7
x7 ⋅

1

x
dx

=
1

7
x7 lnx −

1

7 ∫
x6 dx

=
1

7
x7 lnx −

1

49
x7 + C.

In Example 4 we did not choose v′ = ln x, because it is not immediately clear what v would

be. In fact, we used integration by parts in Example 3 to find the antiderivative of lnx. Also, using

u = lnx, as we have done, gives u′ = 1∕x, which can be considered simpler than u = lnx. This

shows that u does not have to be the first factor in the integrand (here x6).

Example 5 Find
∫

x2 sin 4x dx.
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Solution If we let v′ = sin 4x, then v = −
1

4
cos 4x, which is no worse than v′. Also letting u = x2, we get

u′ = 2x, which is simpler than u = x2. Using integration by parts:

∫
x2 sin 4xdx = x2

(

−
1

4
cos 4x

)

−
∫

2x
(

−
1

4
cos 4x

)

dx

= −
1

4
x2 cos 4x +

1

2 ∫
x cos 4xdx.

The trouble is, we still have to grapple with ∫ x cos 4xdx. This can be done by using integration by

parts again with a new u and v, namely u = x and v′ = cos 4x:

∫
x cos 4xdx = x

(

1

4
sin 4x

)

−
∫

1 ⋅
1

4
sin 4xdx

=
1

4
x sin 4x −

1

4
⋅

(

−
1

4
cos 4x

)

+ C

=
1

4
x sin 4x +

1

16
cos 4x + C.

Thus,

∫
x2 sin 4xdx = −

1

4
x2 cos 4x +

1

2 ∫
x cos 4xdx

= −
1

4
x2 cos 4x +

1

2

(

1

4
x sin 4x +

1

16
cos 4x + C

)

= −
1

4
x2 cos 4x +

1

8
x sin 4x +

1

32
cos 4x + C.

Notice that, in this example, each time we used integration by parts, the exponent of x went down

by 1. In addition, when the arbitrary constant C is multiplied by
1

2
, it is still represented by C .

Example 6 Find
∫

cos2 � d�.

Solution Using integration by parts with u = cos �, v′ = cos � gives u′ = − sin �, v = sin �, so we get

∫
cos2 � d� = cos � sin � +

∫
sin2 � d�.

Substituting sin2 � = 1 − cos2 � leads to

∫
cos2 � d� = cos � sin � +

∫
(1 − cos2 �) d�

= cos � sin � +
∫

1 d� −
∫

cos2 � d�.

Looking at the right side, we see that the original integral has reappeared. If we move it to the left,

we get

2
∫

cos2 � d� = cos � sin � +
∫

1 d� = cos � sin � + � + C.

Dividing by 2 gives

∫
cos2 � d� =

1

2
cos � sin � +

1

2
� + C.

Problem 62 asks you to do this integral by another method.
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The previous example illustrates a useful technique: Use integration by parts to transform the

integral into an expression containing another copy of the same integral, possibly multiplied by a

coefficient, then solve for the original integral.

Example 7 Use integration by parts twice to find
∫

e2x sin(3x) dx.

Solution Using integration by parts with u = e2x and v′ = sin(3x) gives u′ = 2e2x, v = −
1

3
cos(3x), so we get

∫
e2x sin(3x) dx = −

1

3
e2x cos(3x) +

2

3 ∫
e2x cos(3x) dx.

On the right side we have an integral similar to the original one, with the sine replaced by a cosine.

Using integration by parts on that integral in the same way gives

∫
e2x cos(3x) dx =

1

3
e2x sin(3x) −

2

3 ∫
e2x sin(3x) dx.

Substituting this into the expression we obtained for the original integral gives

∫
e2x sin(3x) dx = −

1

3
e2x cos(3x) +

2

3

(

1

3
e2x sin(3x) −

2

3 ∫
e2x sin(3x) dx

)

= −
1

3
e2x cos(3x) +

2

9
e2x sin(3x) −

4

9 ∫
e2x sin(3x) dx.

The right side now has a copy of the original integral, multiplied by −4∕9. Moving it to the left, we

get
(

1 +
4

9

)

∫
e2x sin(3x) dx = −

1

3
e2x cos(3x) +

2

9
e2x sin(3x).

Dividing through by the coefficient on the left, (1+4∕9) = 13∕9, and adding a constant of integration

C , we get

∫
e2x sin(3x) dx =

9

13

(

−
1

3
e2x cos(3x) +

2

9
e2x sin(3x)

)

+ C

=
1

13
e2x (2 sin(3x) − 3 cos(3x)) + C.

Example 8 Use a computer algebra system to investigate ∫ sin(x2) dx.

Solution It can be shown that sin(x2) has no elementary antiderivative. A computer algebra system gives an

antiderivative involving a non-elementary function, the Fresnel Integral, which you may not recog-

nize.

Summary for Section 7.2

• Integration by parts is based on the product rule.

• To integrate by parts, use the formula

∫
uv′ dx = uv −

∫
u′v dx.

• Some integrals require integrating by parts more than once.
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Exercises and Problems for Section 7.2 Online Resource: Additional Problems for Section 7.2
EXERCISES

1. Use integration by parts to express ∫ x2exdx in terms

of

(a)
∫

x3exdx (b)
∫

xexdx

2. Write arctan x = 1 ⋅ arctan x to find ∫ arctan x dx.

Find the integrals in Exercises 3–37.

3.
∫

t sin t dt 4.
∫

t2 sin t dt

5.
∫

te5t dt 6.
∫

t2e5t dt

7.
∫

pe−0.1p dp 8.
∫

(z + 1)e2z dz

9.
∫

x lnx dx 10.
∫

x3 ln x dx

11.
∫

q5 ln 5q dq 12.
∫

�2 cos 3� d�

13.
∫

sin2 � d� 14.
∫

cos2(3� + 1) d�

15.
∫

(ln t)2 dt 16.
∫

ln(x2) dx

17.
∫

y
√

y + 3 dy 18.
∫

(t + 2)
√

2 + 3t dt

19.
∫

(�+1) sin(�+1) d� 20.
∫

z

ez
dz

21.
∫

lnx

x2
dx 22.

∫

y
√

5 − y
dy

23.
∫

t + 7
√

5 − t
dt 24.

∫
x(lnx)4 dx

25.
∫

y
√

1 − y dy 26.
∫

r(ln r)2 dr

27.
∫

arcsinwdw 28.
∫

arctan 7z dz

29.
∫

x arctan x2 dx 30.
∫

x3ex
2
dx

31.
∫

x5 cos x3 dx 32.
∫

x sinh x dx

33.
∫

(x − 1) cosh x dx 34.
∫

e
√

x dx

35.
∫

�5 cos �3 d�

36.
∫

(2x + 1)2 ln(2x + 1) dx

37.
∫

e1∕x

x3
dx

Evaluate the integrals in Exercises 38–45 both exactly [e.g.

ln(3�)] and numerically [e.g. ln(3�) ≈ 2.243].

38.
∫

5

1

ln t dt 39.
∫

5

3

x cos x dx

40.
∫

10

0

ze−z dz 41.
∫

3

1

t ln t dt

42.
∫

1

0

arctan y dy 43.
∫

5

0

ln(1 + t) dt

44.
∫

1

0

arcsin z dz 45.
∫

1

0

u arcsin u2 du

46. For each of the following integrals, indicate whether in-

tegration by substitution or integration by parts is more

appropriate. Do not evaluate the integrals.

(a)
∫

x sin x dx (b)
∫

x2

1 + x3
dx

(c)
∫

xex
2
dx (d)

∫
x2 cos(x3) dx

(e)
∫

1
√

3x + 1
dx (f)

∫
x2 sin xdx

(g)
∫

lnx dx

47. Find ∫
2

1
ln xdx numerically. Find ∫

2

1
lnx dx using an-

tiderivatives. Check that your answers agree.

PROBLEMS

In Problems 48–51, give an expression for p(x) so the inte-

gral can be evaluated using integration by parts once. Do not

evaluate the integral.

48.
∫

p(x) cos (2x) dx 49.
∫

xep(x) dx

50.
∫

p(x)ex
3
dx 51.

∫
x3 sin (p(x)) dx

In Problems 52–54, using properties of ln, find a substi-

tution w and constant k so that the integral has the form

∫ k lnwdw.

52.
∫

ln
(

(5 − 3x)2
)

dx 53.
∫

ln

(

1
√

4 − 5x

)

dx

54.
∫

ln
(

(ln x)3
)

x
dx

In Problems 55–60, find the exact area.

55. Under y = te−t for 0 ≤ t ≤ 2.

56. Under f (z) = arctan z for 0 ≤ z ≤ 2.

57. Under f (y) = arcsin y for 0 ≤ y ≤ 1.
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58. Between y = lnx and y = ln(x2) for 1 ≤ x ≤ 2.

59. Between f (t) = ln(t2 − 1) and g(t) = ln(t − 1) for

2 ≤ t ≤ 3.

60. Under the first arch of f (x) = x sin x.

61. In Exercise 13, you evaluated ∫ sin2 � d� using inte-

gration by parts. (If you did not do it by parts, do so

now!) Redo this integral using the identity sin2 � =

(1 − cos 2�)∕2. Explain any differences in the form of

the answer obtained by the two methods.

62. Compute ∫ cos2 � d� in two different ways and explain

any differences in the form of your answers. (The iden-

tity cos2 � = (1 + cos 2�)∕2 may be useful.)

63. Use integration by parts twice to find ∫ ex sinx dx.

64. Use integration by parts twice to find ∫ e� cos � d�.

65. Use the results from Problems 63 and 64 and integra-

tion by parts to find ∫ xex sin xdx.

66. Use the results from Problems 63 and 64 and integra-

tion by parts to find ∫ �e� cos � d�.

67. Find

(a) ∫
2

0
e−x∕k dx (b) ∫

2

0
xe−x∕k dx

68. If f is a twice differentiable function, find

∫
f ′′(x) ln x dx +

∫

f (x)

x2
dx

(Your answer should contain f , but no integrals.)

69. Iff is a twice differentiable function, find ∫ xf ′′(x) dx.

(Your answer should contain f , but no integrals.)

In Problems 70–73, derive the given formulas.

70.
∫

xnex dx = xnex − n
∫

xn−1ex dx

71.
∫

xn cos ax dx =
1

a
xn sin ax−

n

a ∫
xn−1 sin ax dx

72.
∫

xn sin ax dx = −
1

a
xn cos ax +

n

a ∫
xn−1 cos ax dx

73.
∫

cosn x dx =
1

n
cosn−1 x sin x+

n − 1

n ∫
cosn−2 x dx

74. Integrating eax sin bx by parts twice gives

∫
eax sin bx dx = eax(A sin bx + B cos bx) + C.

(a) Find the constants A and B in terms of a and b.

[Hint: Don’t actually perform the integration.]

(b) Evaluate ∫ eax cos bx dx by modifying the method

in part (a). [Again, do not perform the integration.]

75. Use the table with f (x) = F ′(x) to find
∫

5

0

xf ′(x) dx.

x 0 1 2 3 4 5

f (x) 2 −5 −6 −1 10 27

F (x) 10 8 2 −2 2 20

76. Find ∫
3

2
f (x)g′(x) dx, given that ∫

3

2
f ′(x)g(x) dx =

1.3 and the values in the table:

x f (x) f ′(x) g(x) g′(x)

2 5 −1 0.2 3

3 7 −2 0.1 2

77. Find possible formulas for f (x) and g(x) given that

∫
x3g′(x) dx = f (x)g(x) −

∫
x2 cos x dx.

78. Let f be a function with f (0) = 6, f (1) = 5, and

f ′(1) = 2. Evaluate the integral ∫
1

0
xf ′′(x) dx.

79. Given ℎ(x) = f (x)
√

x and g′(x) = f (x)∕
√

x, rewrite

in terms of ℎ(x) and g(x):

∫
f ′(x)

√

xdx.

Your answer should not include integrals, f (x), ℎ′(x),

or g′(x).

80. Given that f (7) = 0 and ∫
7

0
f (x) dx = 5, evaluate

∫

7

0

xf ′(x) dx.

81. Let F (a) be the area under the graph of y = x2e−x be-

tween x = 0 and x = a, for a > 0.

(a) Find a formula for F (a).

(b) Is F an increasing or decreasing function?

(c) Is F concave up or concave down for 0 < a < 2?

82. At time t in minutes, t ≥ 0, the rate at which water is

flowing into a lake is V ′(t) = te−t thousand cubic me-

ters per minute. How much water has flowed into the

lake by t = 1?

83. At time t in hours, 0 ≤ t ≤ 1, a 2.5 kg log is burning on

a camp fire at rate of 6 ln(1 + t) kg per hour.

(a) How much of the log is burned between t = 0 and

t = 1?

(b) If none of the log has been burned at t = 0, how

much remains at t = 1?

84. The concentration, C , in ng/ml, of a drug in the blood

as a function of the time, t, in hours since the drug was

administered is given by C = 15te−0.2t. The area under

the concentration curve is a measure of the overall ex-

posure of a person to the drug. Find the total exposure

provided by the drug between t = 0 and t = 3.

85. Given ℎ(x) = f (x) ln |x| and g′(x) =
f (x)

x
, rewrite

∫
f ′(x) ln |x| dx. in terms of ℎ(x) and g(x).
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86. The error function, erf (x), is defined by

erf(x) =
2

√

� ∫

x

0

e−t
2
dt.

(a) Let u = erf(x). Use integration by parts to write

∫
erf(x) dx = uv −

∫
v u′ dx. Give u′ and v′.

(b) Evaluate the integral
∫

v u′ dx from part (a) by

making a substitution w. Give the values of w and

dw.

(c) Use your answers to parts (a) and (b) to find

∫
erf(x) dx. Your answer may involve erf(x).

87. The Eulerian logarithmic integral Li(x) is defined4 as

Li(x) =
∫

x

2

1

ln t
dt. Letting u = Li(x) and v = ln x, use

integration by parts to evaluate
∫

Li(x)x−1 dx. Your

answer will involve Li(x).

Strengthen Your Understanding

In Problems 88–90, explain what is wrong with the state-

ment.

88. To integrate ∫ t ln t dt by parts, use u = t, v′ = ln t.

89. The integral ∫ arctan xdx cannot be evaluated using

integration by parts since the integrand is not a product

of two functions.

90. Using integration by parts, we can show that

∫
f (x) dx = xf ′(x) −

∫
xf ′(x) dx.

In Problems 91–93, give an example of:

91. An integral using only powers of � and sin � which can

be evaluated using integration by parts twice.

92. An integral that requires three applications of integra-

tion by parts.

93. An integral of the form ∫ f (x)g(x) dx that can be eval-

uated using integration by parts either with u = f (x) or

with u = g(x).

In Problems 94–96, decide whether the statements are true

or false. Give an explanation for your answer.

94. ∫ t sin(5 − t) dt can be evaluated by parts.

95. The integral ∫ t2e3−t dt can be done by parts.

96. When integrating by parts, it does not matter which fac-

tor we choose for u.

7.3 TABLES OF INTEGRALS

Today, many integrals are done using a CAS. Traditionally, the antiderivatives of commonly used

functions were compiled in a table, such as the one in the back of this book. Other tables include

CRC Standard Mathematical Tables (Boca Raton, Fl: CRC Press). The key to using these tables is

being able to recognize the general class of function that you are trying to integrate, so you can know

in what section of the table to look.

Warning: This section involves long division of polynomials and completing the square. You may

want to review these topics!

Using the Table of Integrals

Part I of the table inside the back cover gives the antiderivatives of the basic functions xn, ax,

ln x, sin x, cosx, and tanx. (The antiderivative for lnx is found using integration by parts and is a

special case of the more general formula III-13.) Most of these are already familiar.

Part II of the table contains antiderivatives of functions involving products of ex, sinx, and

cos x. All of these antiderivatives were obtained using integration by parts.

Example 1 Find
∫

sin 7z sin 3z dz.

Solution Since the integrand is the product of two sines, we should use II-10 in the table,

∫
sin 7z sin 3z dz = −

1

40
(7 cos 7z sin 3z − 3 cos 3z sin 7z) + C.

4http://en.wikipedia.org/wiki/Logarithmic_integral_function#Offset_logarithmic_integral, accessed October 7, 2019.
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Part III of the table contains antiderivatives for products of a polynomial and ex, sin x, or cos x.

It also has an antiderivative for xn lnx, which can easily be used to find the antiderivatives of the

product of a general polynomial and ln x. Each reduction formula is used repeatedly to reduce the

degree of the polynomial until a zero-degree polynomial is obtained.

Example 2 Find
∫

(x5 + 2x3 − 8)e3x dx.

Solution Since p(x) = x5 + 2x3 − 8 is a polynomial multiplied by e3x, this is of the form in III-14. Now

p′(x) = 5x4 + 6x2 and p′′(x) = 20x3 + 12x, and so on, giving

∫
(x5 + 2x3 − 8)e3x dx = e3x

(

1

3
(x5 + 2x3 − 8) −

1

9
(5x4 + 6x2) +

1

27
(20x3 + 12x)

−
1

81
(60x2 + 12) +

1

243
(120x) −

1

729
⋅ 120

)

+ C.

Here we have the successive derivatives of the original polynomial x5 + 2x3 − 8, occurring with

alternating signs and multiplied by successive powers of 1/3.

Part IV of the table contains reduction formulas for the antiderivatives of cosn x and sinn x,

which can be obtained by integration by parts. When n is a positive integer, formulas IV-17 and

IV-18 can be used repeatedly to reduce the power n until it is 0 or 1.

Example 3 Find
∫

sin6 � d�.

Solution Use IV-17 repeatedly:

∫
sin6 � d� = −

1

6
sin5 � cos � +

5

6 ∫
sin4 � d�

∫
sin4 � d� = −

1

4
sin3 � cos � +

3

4 ∫
sin2 � d�

∫
sin2 � d� = −

1

2
sin � cos � +

1

2 ∫
1 d�.

Calculate ∫ sin2 � d� first, and use this to find ∫ sin4 � d�; then calculate ∫ sin6 � d�. Putting this

all together, we get

∫
sin6 � d� = −

1

6
sin5 � cos � −

5

24
sin3 � cos � −

15

48
sin � cos � +

15

48
� + C.

The last item in Part IV of the table is not a formula: it is advice on how to antidifferentiate

products of integer powers of sinx and cosx. There are various techniques to choose from, depending

on the nature (odd or even, positive or negative) of the exponents.

Example 4 Find
∫

cos3 t sin4 t dt.

Solution Here the exponent of cos t is odd, so IV-23 recommends making the substitution w = sin t. Then

dw = cos t dt. To make this work, we’ll have to separate off one of the cosines to be part of dw.

Also, the remaining even power of cos t can be rewritten in terms of sin t by using cos2 t = 1−sin2 t =

1 −w2, so that
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∫
cos3 t sin4 t dt =

∫
cos2 t sin4 t cos t dt

=
∫

(1 −w2)w4 dw =
∫

(w4 −w6) dw

=
1

5
w5 −

1

7
w7 + C =

1

5
sin5 t −

1

7
sin7 t + C.

Example 5 Find
∫

cos2 x sin4 x dx.

Solution In this example, both exponents are even. The advice given in IV-23 is to convert to all sines or all

cosines. We’ll convert to all sines by substituting cos2 x = 1 − sin2 x, and then we’ll multiply out

the integrand:

∫
cos2 x sin4 x dx =

∫
(1 − sin2 x) sin4 x dx =

∫
sin4 x dx −

∫
sin6 x dx.

In Example 3 we found ∫ sin4 x dx and ∫ sin6 x dx. Put them together to get

∫
cos2 x sin4 x dx = −

1

4
sin3 x cosx −

3

8
sinx cosx +

3

8
x

−
(

−
1

6
sin5 x cosx −

5

24
sin3 x cosx −

15

48
sin x cosx +

15

48
x

)

+ C

=
1

6
sin5 x cosx −

1

24
sin3 x cosx −

3

48
sinx cosx +

3

48
x + C.

The last two parts of the table are concerned with quadratic functions: Part V has expressions

with quadratic denominators; Part VI contains square roots of quadratics. The quadratics that appear

in these formulas are of the form x2 ± a2 or a2 − x2, or in factored form (x− a)(x− b), where a and

b are different constants. Quadratics can be converted to these forms by factoring or completing the

square.

Preparing to Use the Table: Transforming the Integrand
To use the integral table, we often need to manipulate or reshape integrands to fit entries in the table.

The manipulations that tend to be useful are factoring, long division, completing the square, and

substitution.

Factoring

Example 6 Find
∫

3x + 7

x2 + 6x + 8
dx.

Solution In this case we factor the denominator to get it into a form in the table:

x2 + 6x + 8 = (x + 2)(x + 4).

Now in V-27 we let a = −2, b = −4, c = 3, and d = 7, to obtain

∫

3x + 7

x2 + 6x + 8
dx =

1

2
(ln |x + 2| − (−5) ln |x + 4|) + C.
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Long Division

Example 7 Find
∫

x2

x2 + 4
dx.

Solution A good rule of thumb when integrating a rational function whose numerator has a degree greater

than or equal to that of the denominator is to start by doing long division. This results in a polynomial

plus a simpler rational function as a remainder. Performing long division here, we obtain:

x2

x2 + 4
= 1 −

4

x2 + 4
.

Then, by V-24 with a = 2, we obtain:

∫

x2

x2 + 4
dx =

∫
1 dx − 4

∫

1

x2 + 4
dx = x − 4 ⋅

1

2
arctan

x

2
+ C.

Completing the Square to Rewrite the Quadratic in the Form w
2 + a

2

Example 8 Find
∫

1

x2 + 6x + 14
dx.

Solution By completing the square, we can get this integrand into a form in the table:

x2 + 6x + 14 = (x2 + 6x + 9) − 9 + 14

= (x + 3)2 + 5.

Let w = x + 3. Then dw = dx and so the substitution gives

∫

1

x2 + 6x + 14
dx =

∫

1

w2 + 5
dw =

1
√

5
arctan

w
√

5
+ C =

1
√

5
arctan

x + 3
√

5
+ C,

where the antidifferentiation uses V-24 with a2 = 5.

Substitution

Getting an integrand into the right form to use a table of integrals involves substitution and a variety

of algebraic techniques.

Example 9 Find
∫

et sin(5t + 7) dt.

Solution This looks similar to II-8. To make the correspondence more complete, let’s try the substitution

w = 5t + 7. Then dw = 5 dt, so dt =
1

5
dw. Also, t = (w − 7)∕5. Then the integral becomes

∫
et sin(5t + 7) dt =

∫
e(w−7)∕5 sinw

dw

5

=
e−7∕5

5 ∫
ew∕5 sinwdw. (Since e(w−7)∕5 = ew∕5e−7∕5 and e−7∕5 is a constant.)
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Now we can use II-8 with a =
1

5
and b = 1 to write

∫
ew∕5 sinwdw =

1

(1∕5)2 + 12
ew∕5

(

sinw

5
− cosw

)

+ C,

so

∫
et sin(5t + 7) dt =

e−7∕5

5

(

25

26
e(5t+7)∕5

(

sin(5t + 7)

5
− cos(5t+ 7)

))

+ C

=
5et

26

(

sin(5t+ 7)

5
− cos(5t + 7)

)

+ C.

Example 10 Find a substitution w and constants k, n so that the following integral has the form ∫ kwn lnwdw

found in III-13:

∫

ln(x + 1) + ln(x − 1)
√

x2 − 1
x dx

Solution First we use properties of ln to simplify the integral:

∫

ln(x + 1) + ln(x − 1)
√

x2 − 1
x dx =

∫

ln((x + 1)(x − 1))
√

x2 − 1
x dx =

∫

ln(x2 − 1)
√

x2 − 1
x dx.

Let w = x2 − 1, dw = 2x dx, so that x dx = (1∕2) dw. Then

∫

ln(x2 − 1)
√

x2 − 1
x dx =

∫
w−1∕2 lnw

1

2
dw =

∫

1

2
w−1∕2 lnwdw,

so k = 1∕2, n = −1∕2.

Summary for Section 7.3

• To find an antiderivative using a table of integrals, you may have to first transform the integrand.

• Possible transformation actions include

◦ Factoring

◦ Long division

◦ Completing the square

◦ Substitution

Exercises and Problems for Section 7.3 Online Resource: Additional Problems for Section 7.3
EXERCISES

For Exercises 1–14, say which formula, if any, to apply from

the table of integrals. Give the values of any constants.

1.
∫

x1∕2e3x dx 2.
∫

cos 3x sin 4x dx

3.
∫

sin4 xdx 4.
∫

e5x sin 2x dx

5.
∫

ex ln x dx 6.
∫

lnx dx

7.
∫

1

x2 − 3x − 4
dx 8.

∫

cos x

x
dx

9.
∫

√

x2 − 9 dx 10.
∫

√

x3 + 8dx

11.
∫

sin ex dx 12.
∫

x2 sin 2x dx

13.
∫

4x − 2

x2 + 9
dx 14.

∫

4x − 2

x2 − 9
dx
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For Exercises 15–54, antidifferentiate using the table of in-

tegrals. You may need to transform the integrand first.

15.
∫

x5 lnx dx 16.
∫

e−3� cos � d�

17.
∫

x3 sin 5x dx 18.
∫

(x2 + 3) ln x dx.

19.
∫

(x3 + 5)2 dx. 20.
∫

sinw cos4 wdw

21.
∫

sin4 xdx 22.
∫

x3e2x dx

23.
∫

x2e3x dx 24.
∫

x2ex
3
dx

25.
∫

x4e3x dx 26.
∫

u5 ln(5u) du

27.
∫

1

3 + y2
dy 28.

∫

dx

9x2 + 16

29.
∫

dx
√

25 − 16x2

30.
∫

dx
√

9x2 + 25

31.
∫

sin 3� cos 5� d� 32.
∫

sin 3� sin 5� d�

33.
∫

1

cos3 x
dx 34.

∫

t2 + 1

t2 − 1
dt

35.
∫

e5x sin 3x dx 36.
∫

cos 2y cos 7y dy

37.
∫

y2 sin 2y dy 38.
∫

x3 sin x2 dx

39.
∫

1

cos4 7x
dx 40.

∫

1

sin3 3�
d�

41.
∫

1

sin2 2�
d� 42.

∫

1

cos5 x
dx.

43.
∫

1

x2 + 4x + 3
dx 44.

∫

1

x2 + 4x + 4
dx

45.
∫

dz

z(z − 3)
46.

∫

dy

4 − y2

47.
∫

1

1 + (z + 2)2
dz 48.

∫

1

y2 + 4y + 5
dy

49.
∫

sin3 xdx 50.
∫

tan4 xdx

51.
∫

sinh3 x cosh2 x dx 52.
∫

sinh2 x cosh3 x dx

53.
∫

sin3 3� cos2 3� d� 54.
∫

ze2z
2
cos(2z2) dz

For Exercises 55–64, evaluate the definite integrals. When-

ever possible, use the Fundamental Theorem of Calculus,

perhaps after a substitution. Otherwise, use numerical meth-

ods.

55.
∫

�∕12

0

sin(3�) d� 56.
∫

�

−�

sin 5x cos 6x dx

57.
∫

2

1

(x− 2x3) ln xdx 58.
∫

1

0

√

3 − x2 dx

59.
∫

1

0

1

x2 + 2x + 1
dx 60.

∫

1

0

dx

x2 + 2x + 5

61.
∫

1∕
√

2

0

x
√

1 − x4

dx 62.
∫

1

0

(x + 2)

(x + 2)2 + 1
dx

63.
∫

�∕3

�∕4

dx

sin3 x
64.

∫

−1

−3

dx
√

x2 + 6x + 10

PROBLEMS

65. For t ≥ 0, with t in seconds, a particle is moving with

velocity

v(t) = e−�t cos(�t∕2) cm/sec.

What is its change in position between t = 0 sec and

t = 3 sec?

In Problems 66–67, using properties of ln, find a substitution

w and constants k, n so that the integral has the form

∫
kwn lnwdw.

66.
∫

(2x + 1)3 ln(2x + 1) dx

67.
∫

(2x + 1)3 ln
1

√

2x + 1
dx

68. To make projections for a population in the future, we

calculate the following integral. With L constant, find

its value:

∫

dP

P (L − P )
.

In Problems 69–71, find constants a, b, c, m, n so that the in-

tegral is in one of the following forms from a table of inte-

grals.5 Give the form (i)–(iii) you use.

(i)
∫

dx

ax2 + bx + c
(ii)

∫

mx + n

ax2 + bx + c
dx

(iii)
∫

dx
(

ax2 + bx + c
)n , n > 0

69.
∫

dx

5 −
x

4
−

x2

6

70.
∫

dx

2x +
5

7 + 3x

71.
∫

dx

(x2 − 5x + 6)3(x2 − 4x + 4)2(x2 − 6x + 9)2

5http://en.wikipedia.org/wiki/List_of_integrals_of_rational_functions, accessed October 7, 2019.
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In Problems 72–73, find constants a, b, � so that the integral

has the form found in some tables of integrals:6

∫

e2�x

ae�x + b
dx.

72.
∫

e6x

4 + e3x+1
dx 73.

∫

e8x

4e4x + 5e6x
dx

74. According to a table of integrals,6

∫
x2ebx dx = ebx

(

x2

b
−

2x

b2
+

2

b3

)

+ C.

(a) Find a substitution w and constant k so that the in-

tegral ∫ x5ebx
2
dx can be rewritten in the form

∫
kw2ebw dw.

(b) Evaluate the integral in terms of x. Your answer

may involve the constant b.

75. Show that for all integers m and n, with m ≠ ±n,

∫
�

−�
sinm� sin n� d� = 0.

76. Show that for all integers m and n, with m ≠ ±n,

∫
�

−�
cosm� cos n� d� = 0.

77. Water pipelines sometimes spring leaks, and water es-

capes until the leak is repaired.

(a) At t days after a leak is detected, water leaks from

a pipeline at an estimated rate of

r(t) = 1 −
1

√

t2 + 1
thousands of gallons per day.

By finding a derivative or looking at a graph, ex-

plain why this rate could represent a new leak. In

the long run, if the leak is not fixed, what happens

to r(t)?

(b) What is the shape of the graph of V (t), the total

volume of water that has escaped by time t?

(c) Find a formula for V (t).

Strengthen Your Understanding

In Problems 78–82, explain what is wrong with the state-

ment.

78. The table of integrals cannot be used to find
∫

dt

7 − t2
.

79. If a > 0, then ∫ 1∕(x2 + 4x + a) dx always involves

arctan.

80. By Formula II-8 of the table with a = 1, b = 1,

∫
ex sin xdx =

1

2
ex(sin x − cos x) + C.

Therefore

∫
e2x+1 sin(2x + 1) dx =

1

2
e2x+1(sin(2x + 1) − cos(2x + 1)) + C.

81. The integral ∫ sinx cos x dx with a = 1, b = 1 is unde-

fined according to Table Formula II-12 since, for a ≠ b,

∫
sin(ax) cos(bx) dx =

1

b2 − a2
(b sin(ax) sin(bx) + a cos(ax) cos(bx)) + C.

82. The table can be used to evaluate ∫ sinx∕x dx .

In Problems 83–84, give an example of:

83. An indefinite integral involving a square root that can

be evaluated by first completing a square.

84. An indefinite integral involving sinx that can be evalu-

ated with a reduction formula

In Problems 85–88, decide whether the statements are true

or false. Give an explanation for your answer.

85. ∫ sin7 � cos6 � d� can be written as a polynomial with

cos � as the variable.

86. ∫ 1∕(x2 + 4x + 5) dx involves a natural logarithm.

87. ∫ 1∕(x2 + 4x − 5) dx involves an arctangent.

88. ∫ x−1((lnx)2 + (ln x)3) dx is a polynomial with ln x as

the variable.

7.4 ALGEBRAIC IDENTITIES AND TRIGONOMETRIC SUBSTITUTIONS

Although not all functions have elementary antiderivatives, many do. In this section we introduce

two powerful methods of integration which show that large classes of functions have elementary

antiderivatives. The first is the method of partial fractions, which depends on an algebraic identity

and allows us to integrate rational functions. The second is the method of trigonometric substitutions,

which allows us to handle expressions involving the square root of a quadratic polynomial. Some of

the formulas in the table of integrals can be derived using the techniques of this section.

6http://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions, accessed October 7, 2019.
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Method of Partial Fractions

The integral of some rational functions can be obtained by splitting the integrand into partial frac-

tions. For example, to find

∫

1

(x − 2)(x − 5)
dx,

the integrand is split into partial fractions with denominators (x − 2) and (x − 5). We write

1

(x − 2)(x − 5)
=

A

x − 2
+

B

x − 5
,

where A and B are constants that need to be found. Multiplying by (x− 2)(x− 5) gives the identity

1 = A(x − 5) + B(x − 2)

so

1 = (A + B)x − 5A − 2B.

Since this equation holds for all x, the constant terms on both sides must be equal.7 Similarly, the

coefficients of x on both sides must be equal. So

−5A − 2B = 1

A + B = 0.

Solving these equations gives A = −1∕3, B = 1∕3. Thus,

1

(x − 2)(x − 5)
=

−1∕3

x − 2
+

1∕3

x − 5
.

(Check the answer by writing the right-hand side over the common denominator (x − 2)(x − 5).)

Example 1 Use partial fractions to integrate
∫

1

(x − 2)(x − 5)
dx.

Solution We split the integrand into partial fractions, each of which can be integrated:

∫

1

(x − 2)(x − 5)
dx =

∫

(

−1∕3

x − 2
+

1∕3

x − 5

)

dx = −
1

3
ln |x − 2| +

1

3
ln |x − 5| + C.

You can check that using formula V-26 in the integral table gives the same result.

This method can be used to derive formulas V-29 and V-30 in the integral table. A similar

method works on rational functions whenever the denominator of the integrand factors into distinct

linear factors and the numerator has degree less than the denominator.

Example 2 Find
∫

x + 2

x2 + x
dx.

Solution We factor the denominator and split the integrand into partial fractions:

x + 2

x2 + x
=

x + 2

x(x + 1)
=

A

x
+

B

x + 1
.

7We have not shown that the equation holds for x = 2 and x = 5, but these values do not affect the argument.
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Multiplying by x(x + 1) gives the identity

x + 2 = A(x + 1) + Bx

= (A + B)x + A.

Equating constant terms and coefficients of x gives A = 2 and A+B = 1, so B = −1. Then we split

the integrand into two parts and integrate:

∫

x + 2

x2 + x
dx =

∫

(

2

x
−

1

x + 1

)

dx = 2 ln |x| − ln |x + 1| + C.

The next example illustrates what to do if there is a repeated factor in the denominator.

Example 3 Calculate
∫

10x − 2x2

(x − 1)2(x + 3)
dx using partial fractions of the form

A

x − 1
,

B

(x − 1)2
,

C

x + 3
.

Solution We are given that the squared factor, (x − 1)2, leads to partial fractions of the form:

10x − 2x2

(x − 1)2(x + 3)
=

A

x − 1
+

B

(x − 1)2
+

C

x + 3
.

Multiplying through by (x − 1)2(x + 3) gives

10x − 2x2 = A(x − 1)(x + 3) + B(x + 3) + C(x − 1)2

= (A + C)x2 + (2A + B − 2C)x − 3A + 3B + C.

Equating the coefficients of x2 and x and the constant terms, we get the simultaneous equations:

A + C = −2

2A + B − 2C = 10

−3A + 3B + C = 0.

Solving gives A = 1, B = 2, C = −3. Thus, we obtain three integrals which can be evaluated:

∫

10x − 2x2

(x − 1)2(x + 3)
dx =

∫

(

1

x − 1
+

2

(x − 1)2
−

3

x + 3

)

dx

= ln |x − 1| −
2

(x − 1)
− 3 ln |x + 3| + K.

For the second integral, we use the fact that ∫ 2∕(x− 1)2dx = 2 ∫ (x− 1)−2dx = −2(x− 1)−1 +K .

If there is a quadratic in the denominator which cannot be factored, we need an expression of

the form Ax + B in the numerator, as the next example shows.

Example 4 Find
∫

2x2 − x − 1

(x2 + 1)(x − 2)
dx using partial fractions of the form

Ax + B

x2 + 1
and

C

x − 2
.

Solution We are given that the quadratic denominator, (x2 + 1), which cannot be factored further, has a nu-

merator of the form Ax + B, so we have

2x2 − x − 1

(x2 + 1)(x − 2)
=

Ax + B

x2 + 1
+

C

x − 2
.
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Multiplying by (x2 + 1)(x − 2) gives

2x2 − x − 1 = (Ax + B)(x − 2) + C(x2 + 1)

= (A + C)x2 + (B − 2A)x+ C − 2B.

Equating the coefficients of x2 and x and the constant terms gives the simultaneous equations

A + C = 2

B − 2A = −1

C − 2B = −1.

Solving gives A = B = C = 1, so we rewrite the integral as follows:

∫

2x2 − x − 1

(x2 + 1)(x− 2)
dx =

∫

(

x + 1

x2 + 1
+

1

x − 2

)

dx.

This identity is useful provided we can perform the integration on the right-hand side. The first

integral can be done if it is split into two; the second integral is similar to those in the previous

examples. We have

∫

2x2 − x − 1

(x2 + 1)(x − 2)
dx =

∫

x

x2 + 1
dx +

∫

1

x2 + 1
dx +

∫

1

x − 2
dx.

To calculate ∫ (x∕(x2 + 1)) dx, substitute w = x2 + 1, or guess and check. The final result is

∫

2x2 − x − 1

(x2 + 1)(x − 2)
dx =

1

2
ln |x2 + 1| + arctanx + ln |x − 2| +K.

The next example shows what to do if the numerator has degree larger than the denominator.

Example 5 Calculate
∫

x3 − 7x2 + 10x + 1

x2 − 7x + 10
dx using long division before integrating.

Solution The degree of the numerator is greater than the degree of the denominator, so we divide first:

x3 − 7x2 + 10x + 1

x2 − 7x + 10
=

x(x2 − 7x + 10) + 1

x2 − 7x + 10
= x +

1

x2 − 7x + 10
.

The remainder, in this case 1∕(x2 − 7x + 10), is a rational function on which we try to use partial

fractions. We have
1

x2 − 7x + 10
=

1

(x − 2)(x − 5)

so in this case we use the result of Example 1 to obtain

∫

x3 − 7x2 + 10x + 1

x2 − 7x + 10
dx =

∫

(

x +
1

(x − 2)(x − 5)

)

dx =
x2

2
−
1

3
ln |x− 2|+

1

3
ln |x− 5|+C.

Many, though not all, rational functions can be integrated by the strategy suggested by the pre-

vious examples.
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Strategy for Integrating a Rational Function,
P (x)

Q(x)

• If degree of P (x) ≥ degree of Q(x), try long division and the method of partial fractions

on the remainder.

• If Q(x) is the product of distinct linear factors, use partial fractions of the form

A

(x − c)
.

• If Q(x) contains a repeated linear factor, (x − c)n, use partial fractions of the form

A1

(x − c)
+

A2

(x − c)2
+⋯ +

An

(x − c)n
.

• If Q(x) contains an unfactorable quadratic q(x), try a partial fraction of the form

Ax + B

q(x)
.

To use this method, we must be able to integrate each partial fraction. We can integrate terms

of the form A∕(x − c)n using the power rule (if n > 1) and logarithms (if n = 1). Next we see how

to integrate terms of the form (Ax + B)∕q(x), where q(x) is an unfactorable quadratic.

Trigonometric Substitutions

Section 7.1 showed how substitutions could be used to transform complex integrands. Now we see

how substitution of sin � or tan � can be used for integrands involving square roots of quadratics or

unfactorable quadratics.

Sine Substitutions

Substitutions involving sin � make use of the Pythagorean identity, cos2 � + sin2 � = 1, to simplify

an integrand involving
√

a2 − x2.

Example 6 Find
∫

1
√

1 − x2
dx using the substitution x = sin �.

Solution If x = sin �, then dx = cos � d�, and substitution converts 1 − x2 to a perfect square:

∫

1
√

1 − x2
dx =

∫

1
√

1 − sin2 �

cos � d� =
∫

cos �
√

cos2 �
d�.

Now either
√

cos2 � = cos � or
√

cos2 � = − cos �, depending on the values taken by �. If we choose

−�∕2 ≤ � ≤ �∕2, then cos � ≥ 0, so
√

cos2 � = cos �. Then

∫

cos �
√

cos2 �
d� =

∫

cos �

cos �
d� =

∫
1 d� = � + C = arcsinx + C.

The last step uses the fact that � = arcsinx if x = sin � and −�∕2 ≤ � ≤ �∕2.

From now on, when we substitute sin �, we assume that the interval −�∕2 ≤ � ≤ �∕2 has been

chosen. Notice that the previous example is the case a = 1 of formula VI-28. The next example

illustrates how to choose the substitution when a ≠ 1.
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Example 7 Use a trigonometric substitution to find
∫

1
√

4 − x2
dx.

Solution This time we choose x = 2 sin �, with −�∕2 ≤ � ≤ �∕2, so that 4 − x2 becomes a perfect square:

√

4 − x2 =
√

4 − 4 sin2 � = 2
√

1 − sin2 � = 2
√

cos2 � = 2 cos �.

Then dx = 2 cos � d�, so substitution gives

∫

1
√

4 − x2
dx =

∫

1

2 cos �
2 cos � d� =

∫
1 d� = � + C = arcsin

(

x

2

)

+ C.

The general rule for choosing a sine substitution is:

To simplify
√

a2 − x2, for constant a, try x = a sin �, with −�∕2 ≤ � ≤ �∕2.

Notice
√

a2 − x2 is only defined on the interval [−a, a]. Assuming that the domain of the inte-

grand is [−a, a], the substitution x = a sin �, with −�∕2 ≤ � ≤ �∕2, is valid for all x in the domain,

because its range is [−a, a] and it has an inverse � = arcsin(x∕a) on [−a, a].

Example 8 Find the area of the ellipse 4x2 + y2 = 9.

Solution Solving for y shows that y =
√

9 − 4x2 gives the upper half of the ellipse. From Figure 7.2, we see

by symmetry that

Area = 4
∫

3∕2

0

√

9 − 4x2 dx.

To decide which trigonometric substitution to use, we write the integrand as

√

9 − 4x2 = 2

√

9

4
− x2 = 2

√

(

3

2

)2

− x2.

This suggests that we should choose x = (3∕2) sin �, so that dx = (3∕2) cos� d� and

√

9 − 4x2 = 2

√

(

3

2

)2

−
(

3

2

)2

sin2 � = 2
(

3

2

)√

1 − sin2 � = 3 cos �.

When x = 0, � = 0, and when x = 3∕2, � = �∕2, so

4
∫

3∕2

0

√

9 − 4x2 dx = 4
∫

�∕2

0

3 cos �
(

3

2

)

cos � d� = 18
∫

�∕2

0

cos2 � d�.

Using Example 6 on page 376 or formula IV-18, we find

∫
cos2 � d� =

1

2
cos � sin � +

1

2
� + C.

So we have

Area = 4
∫

3∕2

0

√

9 − 4x2 dx =
18

2
(cos � sin � + �)

|

|

|

|

�∕2

0

= 9
(

0 +
�

2

)

=
9�

2
.



392 Chapter 7 INTEGRATION

−
3

2

3

2

y =
√

9 − 4x2

y = −
√

9 − 4x2

x

y

Figure 7.2: The ellipse 4x2 + y2 = 9

In Example 8, we did not return to the original variable x after making the substitution because

we had also converted the limits of the definite integral. However, if we are calculating an indefi-

nite integral, we have to return to the original variable. In the next example, we see how a triangle

representing the substitution can be useful.

Example 9 Find the indefinite integral
∫

√

9 − 4x2 dx corresponding to Example 8.

Solution From Example 8, we know if x = (3∕2) sin �, then dx = (3∕2) cos� d�, so

∫

√

9 − 4x2 dx =
∫

3 cos � ⋅
3

2
cos � d� =

9

2

(

1

2
cos � sin � +

1

2
�

)

+ C.

To rewrite the antiderivative in terms of the original variable x, we use the fact that sin � = 2x∕3 to

write � = arcsin(2x∕3). To express cos � in terms of x, we draw the right triangle in Figure 7.3 with

opposite side 2x and hypotenuse 3, so sin � = 2x∕3. Then we use the Pythagorean Theorem to see

that cos � =
√

9 − 4x2∕3, so

∫

√

9 − 4x2 dx =
9

4
cos � sin � +

9

4
� + C

=
9

4
⋅

2x

3
⋅

√

9 − 4x2

3
+

9

4
arcsin

2x

3
+ C =

x
√

9 − 4x2

2
+

9

4
arcsin

2x

3
+ C.

√

9 − 4x2

2x
3

�

Figure 7.3: Triangle with sin � = 2x∕3

Tangent Substitutions

Integrals involving a2+x2 may be simplified by a substitution involving tan � and the trigonometric

identities tan � = sin �∕ cos � and cos2 � + sin2 � = 1.
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Example 10 Find
∫

1

x2 + 9
dx using the substitution x = 3 tan �.

Solution If x = 3 tan �, then dx = (3∕ cos2 �) d�, so

∫

1

x2 + 9
dx =

∫

(

1

9 tan2 � + 9

)(

3

cos2 �

)

d� =
1

3 ∫

1
(

sin2 �

cos2 �
+ 1

)

cos2 �

d�

=
1

3 ∫

1

sin2 � + cos2 �
d� =

1

3 ∫
1 d� =

1

3
� + C =

1

3
arctan

(

x

3

)

+ C.

To simplify a2 + x2 or
√

a2 + x2, for constant a, try x = a tan �, with −�∕2 < � < �∕2.

Note that a2 + x2 and
√

a2 + x2 are defined on (−∞,∞). Assuming that the domain of the

integrand is (−∞,∞), the substitution x = a tan �, with −�∕2 < � < �∕2, is valid for all x in the

domain, because its range is (−∞,∞) and it has an inverse � = arctan(x∕a) on (−∞,∞).

Example 11 Use a tangent substitution to show that the following two integrals are equal:

∫

1

0

√

1 + x2 dx =
∫

�∕4

0

1

cos3 �
d�.

What area do these integrals represent?

Solution We put x = tan �, with −�∕2 < � < �∕2, so that dx = (1∕ cos2 �) d�, and

√

1 + x2 =

√

1 +
sin2 �

cos2 �
=

√

cos2 � + sin2 �

cos2 �
=

1

cos �
.

When x = 0, � = 0, and when x = 1, � = �∕4, so

∫

1

0

√

1 + x2 dx =
∫

�∕4

0

(

1

cos �

)

(

1

cos2 �

)

d� =
∫

�∕4

0

1

cos3 �
d�.

The integral ∫
1

0

√

1 + x2 dx represents the area under the hyperbola y2 − x2 = 1 in Figure 7.4.

1

y =
√

1 + x2

y = −
√

1 + x2

x

y

Figure 7.4: The hyperbola y2 − x2 = 1
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Completing the Square to Use a Trigonometric Substitution

To make a trigonometric substitution, we may first need to complete the square.

Example 12 Find
∫

3
√

2x − x2
dx.

Solution To use a sine or tangent substitution, the expression under the square root sign should be in the form

a2 + x2 or a2 − x2. Completing the square, we get

2x − x2 = 1 − (x − 1)2.

This suggests we substitute x − 1 = sin �, or x = sin � + 1. Then dx = cos � d�, and

∫

3
√

2x − x2
dx =

∫

3
√

1 − (x − 1)2
dx =

∫

3
√

1 − sin2 �

cos � d�

=
∫

3

cos �
cos � d� =

∫
3 d� = 3� + C.

Since x − 1 = sin �, we have � = arcsin(x − 1), so

∫

3
√

2x − x2
dx = 3 arcsin(x − 1) + C.

Example 13 Find
∫

1

x2 + x + 1
dx.

Solution Completing the square, we get

x2 + x + 1 =
(

x +
1

2

)2

+
3

4
=
(

x +
1

2

)2

+

(
√

3

2

)2

.

This suggests we substitute x + 1∕2 = (
√

3∕2) tan �, or x = −1∕2 + (
√

3∕2) tan �. Then dx =

(
√

3∕2)(1∕ cos2 �) d�, so

∫

1

x2 + x + 1
dx =

∫

⎛

⎜

⎜

⎝

1

(x +
1

2
)2 +

3

4

⎞

⎟

⎟

⎠

(
√

3

2

1

cos2 �

)

d�

=

√

3

2 ∫

⎛

⎜

⎜

⎝

1
3

4
tan2 � +

3

4

⎞

⎟

⎟

⎠

(

1

cos2 �

)

d� =
2
√

3 ∫

1

(tan2 � + 1) cos2 �
d�

=
2
√

3
∫

1

sin2 � + cos2 �
d� =

2
√

3
∫

1 d� =
2
√

3
� + C.

Since x + 1∕2 = (
√

3∕2) tan �, we have � = arctan((2∕
√

3)x + 1∕
√

3), so

∫

1

x2 + x + 1
dx =

2
√

3
arctan

(

2
√

3
x +

1
√

3

)

+ C.
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Alternatively, using a computer algebra system gives8

2 tan−1

(

2x + 1
√

3

)

√

3
,

essentially the same as we obtained by hand. You can check either answer by differentiation.

Summary for Section 7.4

• The integral ∫ P (x)∕Q(x) dx of a rational function can be done with partial fractions.

◦ If the degree of P (x) < the degree of Q(x), split P (x)∕Q(x) into partial fractions.

◦ If the degree of P (x) ≥ the degree of Q(x), first do long division, then split the remainder

into partial fractions.

• The form of the partial fractions depends on the denominator Q(x):

◦ If Q(x) is a product of distinct linear factors, use partial fractions of the form A∕(x − c).

◦ If Q(x) contains an unfactorable and unrepeated quadratic q(x), use a partial fraction of the

form
Ax + b

q(x)
.

◦ If Q(x) = (x − c)n, use

A1

x − c
+

A2

(x − c)2
+⋯ +

A2

(x − c)n
.

• Integrands involving square roots of quadratics or unfactorable quadratics can sometimes be

integrated with a trigonometric substitution.

Exercises and Problems for Section 7.4 Online Resource: Additional Problems for Section 7.4
EXERCISES

Split the functions in Exercises 1–7 into partial fractions.

1.
x + 1

6x + x2
2.

20

25 − x2

3.
1

w4 −w3
4.

2y

y3 − y2 + y − 1

5.
8

y3 − 4y
6.

2(1 + s)

s(s2 + 3s + 2)

7.
2

s4 − 1

In Exercises 8–14, find the antiderivative of the function in

the given exercise.

8. Exercise 1 9. Exercise 2

10. Exercise 3 11. Exercise 4

12. Exercise 5 13. Exercise 6

14. Exercise 7

In Exercises 15–19, evaluate the integral.

15.
∫

3x2 − 8x + 1

x3 − 4x2 + x + 6
dx; use

A

x − 2
+

B

x + 1
+

C

x − 3
.

16.
∫

dx

x3 − x2
; use

A

x
+

B

x2
+

C

x − 1
.

17.
∫

10x + 2

x3 − 5x2 + x − 5
dx; use

A

x − 5
+

Bx + C

x2 + 1
.

18.
∫

x4 + 12x3 + 15x2 + 25x + 11

x3 + 12x2 + 11x
dx;

use division and
A

x
+

B

x + 1
+

C

x + 11
.

19.
∫

x4 + 3x3 + 2x2 + 1

x2 + 3x + 2
dx; use division.

8wolframalpha.com, accessed January 11, 2011.
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In Exercises 20–24, use the substitution to find the integral.

20.
∫

√

1 − 4y2dy, y =
1

2
sin �

21.
∫

1
√

9 − 4x2

dx, x =
3

2
sin t

22.
∫

1

(9 + t2)3∕2
dt, t = 3 tan �

23.
∫

1
√

4x − 3 − x2

dx, x = sin t + 2

24.
∫

1

x2 + 4x + 5
dx, x = tan t − 2

25. Which of the following integrals are best done by a

trigonometric substitution, and what substitution?

(a)
∫

√

9 − x2 dx (b)
∫

x
√

9 − x2 dx

26. Give a substitution (not necessarily trigonometric)

which could be used to compute the following integrals:

(a)
∫

x
√

x2 + 10
dx (b)

∫

1
√

x2 + 10
dx

PROBLEMS

27. Find a value of k and a substitution w such that

∫

12x − 2

(3x + 2)(x − 1)
dx = k

∫

dw

w
.

28. Find values of A and B such that

∫

12x − 2

(3x + 2)(x − 1)
dx =

∫

Adx

3x + 2
+
∫

B dx

x − 1
.

29. Write the integral
∫

2x + 9

(3x + 5)(4 − 5x)
dx in the form

∫

cx + d

(x − a)(x − b)
dx. Give the values of the constants

a, b, c, d. You need not evaluate the integral.

30. Write the integral
∫

dx
√

12 − 4x2

in the form

∫

k dx
√

a2 − x2

. Give the values of the positive constants

a and k. You need not evaluate the integral.

31. (a) Evaluate
∫

3x + 6

x2 + 3x
dx by partial fractions.

(b) Show that your answer to part (a) agrees with the

answer you get by using the integral tables.

In Problems 32–39, complete the square and give a substitu-

tion (not necessarily trigonometric) which could be used to

compute the integral.

32.
∫

1

x2 + 2x + 2
dx 33.

∫

1

x2 + 6x + 25
dx

34.
∫

dy

y2 + 3y + 3
35.

∫

x + 1

x2 + 2x + 2
dx

36.
∫

4
√

2z − z2
dz 37.

∫

z − 1
√

2z − z2
dz

38.
∫

(t + 2) sin(t2 + 4t + 7) dt

39.
∫

(2 − �) cos(�2 − 4�)d�

In Problems 40–55, calculate the integral.

40.
∫

1

(x − 5)(x − 3)
dx 41.

∫

1

(x + 2)(x + 3)
dx

42.
∫

1

(x + 7)(x − 2)
dx 43.

∫

x

x2 − 3x + 2
dx

44.
∫

dz

z2 + z
45.

∫

dx

x2 + 5x + 4

46.
∫

dP

3P − 3P 2
47.

∫

3x + 1

x2 − 3x + 2
dx

48.
∫

y + 2

2y2 + 3y + 1
dy 49.

∫

x + 1

x3 + x
dx

50.
∫

x − 2

x2 + x4
dx 51.

∫

y2

25 + y2
dy

52.
∫

dz

(4 − z2)3∕2
53.

∫

10

(s + 2)(s2 + 1)
ds

54.
∫

1

x2 + 4x + 13
dx 55.

∫

ex dx

(ex − 1)(ex + 2)

56. Figure 7.5 and the trigonometric substitution x =

k sin � is used to rewrite ∫
√

49 − 4x2 dx.

(a) Find C . (b) Find k.

√

49 − 4x2

2xC

�

Figure 7.5
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In Problems 57–68, evaluate the indefinite integral, using a

trigonometric substitution and a triangle to express the an-

swer in terms of x.

57.
∫

1

x2
√

1 + x2

dx 58.
∫

x2

√

9 − x2

dx

59.
∫

√

1 − 4x2

x2
dx 60.

∫

√

25 − 9x2

x
dx

61.
∫

1

x
√

9 − 4x2

dx 62.
∫

1

x
√

1 + 16x2

dx

63.
∫

1

x2
√

4 − x2

dx 64.
∫

1

(25 + 4x2)3∕2
dx

65.
∫

1

(16 − x2)3∕2
dx 66.

∫

x2

(1 + 9x2)3∕2
dx

67.
∫

√

x2 + 4

x4
dx 68.

∫

x3

√

4 − x2

dx

In Problems 69–74, find the exact area of the region.

69. Bounded by y = 3x∕((x − 1)(x − 4)), y = 0, x = 2,

x = 3.

70. Bounded by y = (3x2 + x)∕((x2 + 1)(x + 1)),

y = 0, x = 0, x = 1.

71. Bounded by y = x2∕
√

1 − x2, y = 0, x = 0, x = 1∕2.

72. Bounded by y = x3∕
√

4 − x2, y = 0, x = 0, x =
√

2.

73. Bounded by y = 1∕
√

x2 + 9, y = 0, x = 0, x = 3.

74. Bounded by y = 1∕(x
√

x2 + 9),

y = 0, x =
√

3, x = 3.

Calculate the integrals in Problems 75–77 by partial frac-

tions and then by using the indicated substitution. Show that

the results you get are the same.

75.
∫

dx

1 − x2
; substitution x = sin �.

76.
∫

2x

x2 − 1
dx; substitution w = x2 − 1.

77.
∫

3x2 + 1

x3 + x
dx; substitution w = x3 + x.

78. (a) Show
∫

1

sin2 �
d� = −

1

tan �
+ C .

(b) Calculate
∫

dy

y2
√

5 − y2
.

In Problems 79–81, solve without using integral tables.

79. Calculate the integral
∫

1

(x − a)(x − b)
dx for

(a) a ≠ b (b) a = b

80. Calculate the integral
∫

x

(x − a)(x − b)
dx for

(a) a ≠ b (b) a = b

81. Calculate the integral
∫

1

x2 − a
dx for

(a) a > 0 (b) a = 0 (c) a < 0

82. A rumor is spread in a school. For 0 < a < 1 and b > 0,

the time t at which a fraction p of the school population

has heard the rumor is given by

t(p) =
∫

p

a

b

x(1 − x)
dx.

(a) Evaluate the integral to find an explicit formula for

t(p). Write your answer so it has only one ln term.

(b) At time t = 0 one percent of the school population

(p = 0.01) has heard the rumor. What is a?

(c) At time t = 1 half the school population (p = 0.5)

has heard the rumor. What is b?

(d) At what time has 90% of the school population

(p = 0.9) heard the rumor?

Strengthen Your Understanding

In Problems 83–84, explain what is wrong with the state-

ment.

83. To integrate

∫

1

(x − 1)2(x − 2)
dx

using a partial fraction decomposition, let

1

(x − 1)2(x − 2)
=

A

(x − 1)2
+

B

x − 2
.

84. Use the substitution x = 2 sin � to integrate the follow-

ing integral:

∫

1

(x2 + 4)3∕2
dx.

In Problems 85–88, give an example of:

85. A rational function whose antiderivative is not a ratio-

nal function.

86. An integral whose evaluation requires factoring a cu-

bic.

87. A linear polynomial P (x) and a quadratic polynomial

Q(x) such that the rational function P (x)∕Q(x) does

not have a partial fraction decomposition of the form

P (x)

Q(x)
=

A

x − r
+

B

x − s

for some constants A, B, r, and s.

88. An integral that can be made easier to evaluate by using

the trigonometric substitution x =
3

2
sin �.
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In Problems 89–90, decide whether the statements are true

or false. Give an explanation for your answer.

89. The integral
∫

1
√

9 − t2
dt can be made easier to eval-

uate by using the substitution t = 3 tan �.

90. To calculate
∫

1

x3 + x2
dx, we can split the integrand

into

∫

(

A

x
+

B

x2
+

C

x + 1

)

dx

For Problems 91–92, which technique is useful in evaluating

the integral?

(a) Integration by parts (b) Partial fractions

(c) Long division (d) Completing the square

(e) A trig substitution (f) Other substitutions

91.
∫

x2

√

1 − x2

dx 92.
∫

x2

1 − x2
dx

7.5 NUMERICAL METHODS FOR DEFINITE INTEGRALS

Many functions do not have elementary antiderivatives. To evaluate the definite integrals of such

functions, we cannot use the Fundamental Theorem; we must use numerical methods. We know

how to approximate a definite integral numerically using left- and right-hand Riemann sums; in this

section, we introduce more accurate methods.

The Midpoint Rule

In the left- and right-hand Riemann sums, the heights of the rectangles are found using the left-hand

or right-hand endpoints, respectively, of the subintervals. For the midpoint rule, we use the midpoint

of each of the subintervals.

For example, in approximating ∫
2

1
f (x)dx by a Riemann sum with two subdivisions, we first

divide the interval 1 ≤ x ≤ 2 into two pieces. The midpoint of the first subinterval is 1.25 and the

midpoint of the second is 1.75. The heights of the two rectangles are f (1.25) and f (1.75), respec-

tively. (See Figure 7.6.) The Riemann sum is

f (1.25)0.5 + f (1.75)0.5.

Figure 7.6 shows that evaluating f at the midpoint of each subdivision often gives a better approxi-

mation to the area under the curve than evaluating f at either end.

x
1 1.25 1.75 2

✻

❄

f (1.25)

✻

❄

f (1.75)

✲✛0.5

✲✛0.5 f (x)

Figure 7.6: Midpoint rule with two subdivisions

Thus, we have three ways of estimating an integral using a Riemann sum:

1. The left rule uses the left endpoint of each subinterval.

2. The right rule uses the right endpoint of each subinterval.

3. The midpoint rule uses the midpoint of each subinterval.

We write LEFT(n), RIGHT(n), and MID(n) to denote the results obtained by using these rules

with n subdivisions.
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Example 1 For
∫

2

1

1

x
dx, compute LEFT(2), RIGHT(2) and MID(2), and compare your answers with the exact

value of the integral.

Solution For n = 2 subdivisions of the interval [1, 2], we use Δx = 0.5. Then, to four decimal places,

LEFT(2) = f (1)(0.5) + f (1.5)(0.5) =
1

1
(0.5) +

1

1.5
(0.5) = 0.8333

RIGHT(2) = f (1.5)(0.5) + f (2)(0.5) =
1

1.5
(0.5) +

1

2
(0.5) = 0.5833

MID(2) = f (1.25)(0.5) + f (1.75)(0.5) =
1

1.25
(0.5) +

1

1.75
(0.5) = 0.6857.

All three Riemann sums in this example are approximating

∫

2

1

1

x
dx = lnx

|

|

|

|

2

1

= ln 2 − ln 1 = ln 2 = 0.6931.

With only two subdivisions, the left and right rules give quite poor approximations but the midpoint

rule is already fairly close to the exact answer. Figures 7.7(a) and (b) show that the midpoint rule

is more accurate than the left and right rules because the error to the left of the midpoint tends to

cancel the error to the right of the midpoint.

1 2
x

f (x) =
1

x

(a)

Left rule

❄

Right rule

❄

1 2
x

f (x) =
1

x

Midpoint rule

❄

(b)

1 2
x

f (x) =
1

x

(c)

Trapezoid rule

❄

Figure 7.7: Left, right, midpoint, and trapezoid approximations to ∫
2

1

1

x
dx

The Trapezoid Rule

We have just seen how the midpoint rule can have the effect of balancing out the errors of the left

and right rules. Another way of balancing these errors is to average the results from the left and right

rules. This approximation is called the trapezoid rule:

TRAP(n) =
LEFT(n) + RIGHT(n)

2
.

The trapezoid rule averages the values of f at the left and right endpoints of each subinterval and

multiplies byΔx. This is the same as approximating the area under the graph of f in each subinterval

by a trapezoid (see Figure 7.8).
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x0 x1

f (x0) f (x1)

Area =
f (x0)+f (x1)

2
Δx

f (x)

✛

x

✛ ✲Δx

Figure 7.8: Area used in the trapezoid rule

Example 2 For
∫

2

1

1

x
dx, compare the trapezoid rule with two subdivisions with the left, right, and midpoint

rules.

Solution In the previous example we got LEFT(2) = 0.8333 and RIGHT(2) = 0.5833. The trapezoid rule is

the average of these, so TRAP(2) = 0.7083. (See Figure 7.7(c).) The exact value of the integral is

0.6931, so the trapezoid rule is better than the left or right rules. The midpoint rule is still the best,

in this example, since MID(2) = 0.6857.

Is the Approximation an Over- or Underestimate?

It is useful to know when a rule is producing an overestimate and when it is producing an underes-

timate. In Chapter 5 we saw that if the integrand is increasing, the left rule underestimates and the

right rule overestimates the integral. If the integrand is decreasing, the roles reverse. Now we see

how concavity relates to the errors in the trapezoid and midpoint rules.

The Trapezoid Rule

If the graph of the function is concave down on [a, b], then each trapezoid lies below the graph and the

trapezoid rule underestimates. If the graph is concave up on [a, b], the trapezoid rule overestimates.

(See Figure 7.9.)

f concave down:

Trapezoid underestimates

f concave up:

Trapezoid overestimates

Figure 7.9: Error in the trapezoid rule

The Midpoint Rule

To understand the relationship between the midpoint rule and concavity, take a rectangle whose top

intersects the curve at the midpoint of a subinterval. Draw a tangent to the curve at the midpoint;

this gives a trapezoid. See Figure 7.10. (This is not the same trapezoid as in the trapezoid rule.)

The midpoint rectangle and the new trapezoid have the same area, because the shaded triangles in

Figure 7.10 are congruent. Hence, if the graph of the function is concave down, the midpoint rule

overestimates; if the graph is concave up, the midpoint rule underestimates. (See Figure 7.11.)
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If the graph of f is concave down on [a, b], then

TRAP(n) ≤
∫

b

a

f (x) dx ≤ MID(n).

If the graph of f is concave up on [a, b], then

MID(n) ≤
∫

b

a

f (x) dx ≤ TRAP(n).

Figure 7.10: Midpoint rectangle and

trapezoid with same area

f concave down:

Midpoint overestimates

f concave up:

Midpoint underestimates

Figure 7.11: Error in the midpoint rule

When we compute an approximation, we are always concerned about the error, namely the

difference between the exact answer and the approximation. We usually do not know the exact error;

if we did, we would also know the exact answer. We take

Error = Actual value − Approximate value.

The errors for some methods are much smaller than those for others. In general, the midpoint and

trapezoid rules are more accurate than the left or right rules. Comparing the errors in the midpoint

and trapezoid rules suggests an even better method, called Simpson’s rule.

Error in Left and Right Rules

We work with the example ∫
2

1
(1∕x) dx because we know the exact value of this integral (ln 2) and

we can investigate the behavior of the errors.

Let us see what happens to the error in the left and right rules as we increase n. The results

are in Table 7.2. A positive error indicates that the Riemann sum is less than the exact value, ln 2.

Notice that the errors for the left and right rules have opposite signs but are approximately equal in

magnitude. (See Figure 7.12.) This leads us to want to average the left and right rules; this average

is the trapezoid rule.

There is another pattern to the errors in Table 7.2. If we compute the ratio of the errors in

Table 7.3, we see that the error9 in both the left and right rules decreases by a factor of about 5 as n

increases by a factor of 5.

Table 7.2 Errors for the left and right rule

approximation to ∫
2

1
1

x
dx = ln 2 ≈ 0.6931471806

n
Error in

left rule

Error in

right rule

2 −0.1402 0.1098

10 −0.0256 0.0244

50 −0.0050 0.0050

250 −0.0010 0.0010

Right rule
underestimate

✲ Left rule
overestimate

✛

f (x) =
1

x

Figure 7.12: Errors in left and right sums

9The values in Table 7.2 are rounded to 4 decimal places; those in Table 7.3 were computed using more decimal places

and then rounded.
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There is nothing special about the number 5; the same holds for any factor. To get one extra

digit of accuracy in any calculation, we must make the error 1∕10 as big, so we must increase n by

a factor of 10. In fact, for the left or right rules, each extra digit of accuracy requires about 10 times

the work.

Table 7.3 Ratio of the errors as n increases for ∫
2

1
1

x
dx

Ratio of errors

in left rule

Ratio of errors

in right rule

Error(2)
/

Error(10) 5.47 4.51

Error(10)
/

Error(50) 5.10 4.90

Error(50)
/

Error(250) 5.02 4.98

Error in Trapezoid and Midpoint Rules

Table 7.4 shows that the trapezoid and midpoint rules generally produce better approximations to

∫
2

1
(1∕x) dx than the left and right rules.

Again there is a pattern to the errors. For each n, the midpoint rule is noticeably better than the

trapezoid rule; the error for the midpoint rule, in absolute value, seems to be about half the error of

the trapezoid rule. To see why, compare the shaded areas in Figure 7.13. Also, notice in Table 7.4

that the errors for the two rules have opposite signs; this is due to concavity.

Table 7.4 The errors for the trapezoid and

midpoint rules for ∫
2

1
1

x
dx

n
Error in

trapezoid rule

Error in

midpoint rule

2 −0.0152 0.0074

10 −0.00062 0.00031

50 −0.0000250 0.0000125

250 −0.0000010 0.0000005

Midpoint
error

✲
Trapezoid
error

✛

f (x) =
1

x

Figure 7.13: Errors in the midpoint and

trapezoid rules

We are interested in how the errors behave as n increases. Table 7.5 gives the ratios of the errors

for each rule. For each rule, we see that as n increases by a factor of 5, the error decreases by a factor

of about 25 = 52. In fact, it can be shown that this squaring relationship holds for any factor, so

increasing n by a factor of 10 will decrease the error by a factor of about 100 = 102. Reducing the

error by a factor of 100 is equivalent to adding two more decimal places of accuracy to the result.

In other words: In the trapezoid or midpoint rules, each extra 2 digits of accuracy requires about 10

times the work.

Table 7.5 Ratios of the errors as n increases for ∫
2

1
1

x
dx

Ratio of errors in

trapezoid rule

Ratio of errors in

midpoint rule

Error(2)
/

Error(10) 24.33 23.84

Error(10)
/

Error(50) 24.97 24.95

Error(50)
/

Error(250) 25.00 25.00
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Simpson’s Rule

Observing that the trapezoid error has the opposite sign and about twice the magnitude of the mid-

point error, we may guess that a weighted average of the two rules, with the midpoint rule weighted

twice the trapezoid rule, has a smaller error. This approximation is called Simpson’s rule10:

SIMP(n) =
2 ⋅MID(n) + TRAP(n)

3
.

Table 7.6 gives the errors for Simpson’s rule. Notice how much smaller the errors are than the previ-

ous errors. Of course, it is a little unfair to compare Simpson’s rule at n = 50, say, with the previous

rules, because Simpson’s rule must compute the value of f at both the midpoint and the endpoints

of each subinterval and hence involves evaluating the function at twice as many points.

We see in Table 7.6 that as n increases by a factor of 5, the errors decrease by a factor of about

600, or about 54. Again this behavior holds for any factor, so increasing n by a factor of 10 decreases

the error by a factor of about 104. In other words: In Simpson’s rule, each extra 4 digits of accuracy

requires about 10 times the work.

Table 7.6 The errors for Simpson’s

rule and the ratios of the errors

n Error Ratio

2 −0.0001067877

10 −0.0000001940
550.15

50 −0.0000000003
632.27

Alternate Approach to Numerical Integration: Approximating by Lines and Parabolas

These rules for numerical integration can be obtained by approximating f (x) on subintervals by a

function:

• The left and right rules use constant functions.

• The trapezoid and midpoint rules use linear functions.

• Simpson’s rule uses quadratic functions.

Problems 78 and 79 (available online) show how a quadratic approximation leads to Simpson’s rule.

Summary for Section 7.5

• Use a numerical method to integrate a function that does not have an elementary antiderivative.

• Subdivide the interval of integration into subintervals.

◦ Left and right rules: Riemann sums

Evaluate the function at left or right endpoints of each subinterval.

Extra 1 digit of accuracy requires 10 times the work.

◦ Midpoint rule

Evaluate the function at the midpoint of each subinterval.

Extra 2 digits of accuracy requires 10 times the work.

◦ Trapezoid rule

Average the values of the function at the left and right endpoints of each subinterval.

Extra 2 digits of accuracy requires 10 times the work.

◦ Simpson’s rule

Take weighted average of the results of using the midpoint and trapezoid rules.

SIMP =
2 ⋅ MID + TRAP

3
.

Extra 4 digits of accuracy requires 10 times the work.
10Some books and computer programs use slightly different terminology for Simpson’s rule; what we call n = 50, they

call n = 100.
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Exercises and Problems for Section 7.5 Online Resource: Additional Problems for Section 7.5
EXERCISES

In Exercises 1–6, sketch the area given by the following ap-

proximations to ∫
b

a
f (x)dx. Identify each approximation as

an overestimate or an underestimate.

(a) LEFT(2) (b) RIGHT(2)

(c) TRAP(2) (d) MID(2)

1.

a b
x

f (x)
2.

a b
x

f (x)

3.

a b
x

f (x) 4.

a b
x

f (x)

5. a b

f (x)

x
6. a b

f (x)

x

7. Calculate the following approximations to ∫
6

0
x2dx.

(a) LEFT(2) (b) RIGHT(2)

(c) TRAP(2) (d) MID(2)

8. Estimate ∫
6

0
x2dx using SIMP(2).

9. (a) Find LEFT(2) and RIGHT(2) for ∫
4

0
(x2 + 1) dx.

(b) Illustrate your answers to part (a) graphically. Is

each approximation an underestimate or overesti-

mate?

10. (a) Find MID(2) and TRAP(2) for ∫
4

0
(x2 + 1) dx.

(b) Illustrate your answers to part (a) graphically. Is

each approximation an underestimate or overesti-

mate?

(c) Find SIMP(2). Compare your value with the exact

value of the integral.

In Exercises 11–13, calculate the following approximations

to the integral.

(a) LEFT(2) (b) RIGHT(2)

(c) TRAP(2) (d) MID(2)

(e) SIMP(2)

11. ∫
�

0
sin � d�. 12. ∫

12

4

√

x5 − 200 dx

13. ∫
4

0
x4 dx

PROBLEMS

14. Use Table 7.7 to estimate ∫
2

1
g(t) dt by MID(5).

Table 7.7

t 1.0 1.1 1.2 1.3 1.4 1.5

g(t) −2.1 −2.9 −3.4 −3.7 −3.6 −3.2

t 1.6 1.7 1.8 1.9 2.0 2.1

g(t) −2.5 −1.7 −0.7 0.5 2.1 4.1

15. Compute MID(4) for the integral ∫
2

0
f (x) dx using the

values in Table 7.8.

Table 7.8

x 0 0.25 0.50 0.75 1.00 1.25

f (x) 2.3 5.8 7.8 9.3 10.3 10.8

x 1.50 1.75 2.00 2.25 2.50 2.75

f (x) 10.8 10.3 9.3 7.8 5.8 3.3

In Problems 16–20, use Table 7.9.

Table 7.9

t 0.0 0.1 0.2 0.3 0.4

g(t) 1.87 2.64 3.34 3.98 4.55

t 0.5 0.6 0.7 0.8 0.9

g(t) 5.07 5.54 5.96 6.35 6.69

16. Estimate ∫
0.6

0.2
g(t) dt using a left-hand sum with n = 4.

17. Estimate ∫
0.9

0
g(t) dt using a right-hand sum with n = 3.

18. Estimate ∫
0.6

0
g(t) dt using a midpoint sum with n = 3.

19. Assuming g(t) is increasing and does not change con-

cavity, which methods underestimate ∫
0.9

0
g(t) dt?

I. Left-hand sum II. Right-hand sum

III. Midpoint rule IV. Trapezoid rule

20. Evaluate ∫
0.4

0.2
g′(2t) dt exactly.
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21. Table 7.10 gives values of f (x), an increasing, concave-

down function. Estimate ∫
2

0
f (x) dx using the given

method with n = 4. Does the method give an under-

or an overestimate?

(a) A left-hand sum

(b) The trapezoid rule

(c) The midpoint rule

Table 7.10

x 0.00 0.25 0.50 0.75 1.0

f (x) −20.0 −13.6 −8.3 −3.8 0.0

x 1.25 1.50 1.75 2.00

f (x) 3.2 5.9 8.1 10.0

In Problems 22–23, find the approximations to ∫
3

2
(1∕x2) dx.

22. TRAP(2) 23. MID(2)

24. (a) Estimate ∫
1

0
1∕(1 + x2) dx by subdividing the in-

terval into eight parts using:

(i) the left Riemann sum

(ii) the right Riemann sum

(iii) the trapezoidal rule

(b) Since the exact value of the integral is �∕4, you

can estimate the value of � using part (a). Explain

why your first estimate is too large and your second

estimate too small.

25. Using the table, estimate the total distance traveled from

time t = 0 to time t = 6 using LEFT, RIGHT, and

TRAP.

Time, t 0 1 2 3 4 5 6

Velocity, v 3 4 5 4 7 8 11

26. Using Figure 7.14, order the following approximations

to the integral ∫
3

0
f (x)dx and its exact value from

smallest to largest:

LEFT(n), RIGHT(n), MID(n), TRAP(n), Exact value.

3

f (x)

0
x

Figure 7.14

27. (a) What is the exact value of ∫
2

0
(x3 + 3x2) dx?

(b) Find SIMP(n) for n = 2, 4, 100. What do you no-

tice?

28. The results from the left, right, trapezoid, and midpoint

rules used to approximate ∫
1

0
g(t) dt, with the same

number of subdivisions for each rule, are as follows:

0.601, 0.632, 0.633, 0.664.

(a) Using Figure 7.15, match each rule with its approx-

imation.

(b) Between which two consecutive approximations

does the true value of the integral lie?

1
t

g(t)

Figure 7.15

29. The graph y = e−x
2∕2 is concave down on −1 < x < 1.

(a) Without calculation, identify the following as the

values of ∫
1

0
e−x

2∕2dx, and the approximations

LEFT(1), RIGHT(1), MID(1), TRAP(1):

0.368, 0.684, 0.856, 0.882, 1.

(b) Without calculation, find the values of LEFT(1),

RIGHT(1), MID(1), TRAP(1) for ∫
0

−1
e−x

2∕2dx.

30. (a) Without calculation, explain which of the follow-

ing values must be equal to each other: ∫
7

0
xdx, the

approximations LEFT(2), RIGHT(2), MID(2),

TRAP(2).

(b) Find the values of LEFT(2), RIGHT(2), MID(2),

TRAP(2), ∫
7

0
xdx.

31. The table shows approximations to ∫
2

1
f (x) dx for an

increasing f .

(a) The value of TRAP(5) or MID(5) in the table is

incorrect. Which one? Find the correct value.

(b) The concavity of the graph of f does not change

on [1, 2]. Is it concave up or down?

(c) Find the value SIMP(5).

LEFT(5) RIGHT(5) TRAP(5) MID(5) SIMP(5)

0.3153 0.4539 0.3890 0.3871
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In Problems 32–35, decide which approximation—left,

right, trapezoid, or midpoint—is guaranteed to give an over-

estimate for ∫
5

0
f (x) dx, and which is guaranteed to give an

underestimate. (There may be more than one.)

32.

5

f (x)

x

33.

5

f (x)

x

34.

5

f (x)

x

35.

5

f (x)

x

36. Consider the integral ∫
4

0
3
√

xdx.

(a) Estimate the value of the integral using MID(2).

(b) Use the Fundamental Theorem of Calculus to find

the exact value of the definite integral.

(c) What is the error for MID(2)?

(d) Use your knowledge of how errors change and

your answer to part (c) to estimate the error for

MID(20).

(e) Use your answer to part (d) to estimate the approx-

imation MID(20).

37. Using a fixed number of subdivisions, we approximate

the integrals of f and g on the interval in Figure 7.16.

(a) For which function, f or g, is LEFT more accu-

rate? RIGHT? Explain.

(b) For which function, f or g, is TRAP more accu-

rate? MID? Explain.

f (x)

g(x)
x

Figure 7.16

38. (a) Values for f (x) are in the table. Of LEFT, RIGHT,

TRAP, which is most likely to give the best esti-

mate of ∫
12

0
f (x) dx? Estimate the integral using

this method.

(b) Assume f (x) is continuous with no critical points

or points of inflection on the interval 0 ≤ x ≤ 12.

Is the estimate found in part (a) an over- or under-

estimate? Explain.

x 0 3 6 9 12

f (x) 100 97 90 78 55

39. Table 7.11 gives approximations to an integral whose

true value is 7.621372.

(a) Does the integrand appear to be increasing or de-

creasing? Concave up or concave down?

(b) Fill in the errors for n = 3 in the middle column in

Table 7.11.

(c) Estimate the errors for n = 30 and fill in the right-

hand column in Table 7.11.

Table 7.11

Approximation n = 3 Error n = 3 Error n = 30

LEFT 5.416101

RIGHT 9.307921

TRAP 7.362011

MID 7.742402

SIMP 7.615605

40. Approximations to a definite integral are given in Ta-

ble 7.12; the exact value of the integral is 0.69315. Fill

in the errors for n = 2 and estimate the errors when

n = 20.

Table 7.12

Approximation n = 2 Error n = 2 Error n = 20

LEFT 0.83333

RIGHT 0.58333

TRAP 0.70833

MID 0.68571

SIMP 0.69325

In Problems 41–42, we make numerical approximations to

∫

1

0

f (x) dx,
∫

1

0

g(x) dx,
∫

1

0

ℎ(x) dx.

For each of the three approximation methods, rank the abso-

lute values of the errors from smallest to largest. (Use n = 1)

(a) Left sum (b) Right sum

(c) Trapezoid rule

41.

1

1

f

g
ℎ

x

42.

1

1

f

g

ℎ

x



7.5 NUMERICAL METHODS FOR DEFINITE INTEGRALS 407

43. (a) What is the exact value of ∫
1

0
7x6 dx?

(b) Find LEFT(5), RIGHT(5), TRAP(5), MID(5), and

SIMP(5), and compute the error for each.

(c) Repeat part (b) with n = 10 (instead of n = 5).

(d) For each rule in part (b), compute the ratio of the

error for n = 5 divided by the error for n = 10. Are

these values expected?

44. (a) What is the exact value of ∫
4

0
ex dx?

(b) Find LEFT(2), RIGHT(2), TRAP(2), MID(2), and

SIMP(2). Compute the error for each.

(c) Repeat part (b) with n = 4 (instead of n = 2).

(d) For each rule in part (b), as n goes from n = 2 to

n = 4, does the error go down approximately as

you would expect?

45. (a) Find the exact value of ∫
2�

0
sin � d�.

(b) Explain, using pictures, why the MID(1) and

MID(2) approximations to this integral give the ex-

act value.

(c) Does MID(3) give the exact value of this integral?

How about MID(n)? Explain.

46. The probability that the height of a randomly selected

woman is between ℎ1 and ℎ2 inches is given by

∫

ℎ2

ℎ1

1

3
√

2�
e−(x−64)

2∕18 dx.

Use the trapezoid rule to estimate the probability that a

randomly selected woman has a height between 66 and

69 inches.

47. To investigate the relationship between the integrand

and the errors in the left and right rules, imagine in-

tegrating a linear function. For one subinterval of inte-

gration, sketch lines with small f ′ and large f ′. How

do the errors compare?

48. To investigate the relationship between the integrand

and the errors in the midpoint and trapezoid rules, imag-

ine an integrand whose graph is concave down over one

subinterval of integration. Sketch graphs where f ′′ has

small magnitude and where f ′′ has large magnitude.

How do the errors compare?

49. A computer takes 3 seconds to compute a particular

definite integral accurate to 2 decimal places. Approx-

imately how long does it take the computer to get 10

decimal places of accuracy using each of the following

rules? Give your answer in seconds and in appropriate

time units (minutes, hours, days, or years).

(a) LEFT (b) MID (c) SIMP

50. The width, in feet, at various points along the fairway

of a hole on a golf course is given in Figure 7.17. If one

pound of fertilizer covers 200 square feet, estimate the

amount of fertilizer needed to fertilize the fairway.

0110105100
100

105110
95

85

✻
80

0

10009008007006005004003002001000

Figure 7.17

51. The current in a circuit is a measure of the amount of

electrical charge that flows past a given point per unit

time. Table 7.13 gives values of I = f (t), the current

in microCoulombs per second (�C/sec) in a circuit.

(a) How much current is flowing through the circuit at

t = 4 seconds?

(b) Use the trapezoid rule to estimate how much to-

tal charge, in �C, passes a particular point in this

circuit between t = 0 and t = 10 seconds.

(c) Estimate how fast the electrical current is decreas-

ing at t = 4 seconds.

(d) Estimate the average electrical current in the cir-

cuit between t = 0 and t = 10 seconds.

Table 7.13

t (sec) 0 2 4 6 8 10

f (t) (�C/sec) 16.0 10.7 7.19 4.82 3.23 2.17

Problems 52–56 involve approximating ∫
b

a
f (x) dx.

52. Show RIGHT(n) = LEFT(n) + f (b)Δx − f (a)Δx.

53. Show TRAP(n) = LEFT(n) +
1

2
(f (b) − f (a)) Δx.

54. Show LEFT(2n) =
1

2
(LEFT(n) + MID(n)) .

55. Check that the equations in Problems 52 and 53 hold

for ∫
2

1
(1∕x) dx when n = 10.

56. Suppose that a = 2, b = 5, f (2) = 13, f (5) = 21 and

that LEFT(10) = 3.156 and MID(10) = 3.242. Use

Problems 52–54 to compute RIGHT(10), TRAP(10),

LEFT(20), RIGHT(20), and TRAP(20).



408 Chapter 7 INTEGRATION

Strengthen Your Understanding

In Problems 57–60, explain what is wrong with the state-

ment.

57. The midpoint rule never gives the exact value of a def-

inite integral.

58. TRAP(n) → 0 as n → ∞.

59. For any integral, TRAP(n) ≥ MID(n).

60. If, for a certain integral, it takes 3 nanoseconds to im-

prove the accuracy of TRAP from one digit to three dig-

its, then it also takes 3 nanoseconds to improve the ac-

curacy from 8 digits to 10 digits.

In Problems 61–62, give an example of:

61. A continuous function f (x) on the interval [0, 1] such

that RIGHT(10) < ∫
1

0
f (x)dx < MID(10).

62. A continuous function f (x) on the interval [0, 10] such

that TRAP(40) > TRAP(80).

In Problems 63–64, decide whether the statements are true

or false. Give an explanation for your answer.

63. The midpoint rule approximation to ∫
1

0
(y2 − 1) dy is

always smaller than the exact value of the integral.

64. The trapezoid rule approximation is never exact.

The left and right Riemann sums of a function f on the

interval [2, 6] are denoted by LEFT(n) and RIGHT(n), re-

spectively, when the interval is divided into n equal parts.

In Problems 65–75, decide whether the statements are true

for all continuous functions, f . Give an explanation for your

answer.

65. If n = 10, then the subdivision size is Δx = 1∕10.

66. If we double the value of n, we make Δx half as large.

67. LEFT(10) ≤ RIGHT(10)

68. As n approaches infinity, LEFT(n) approaches 0.

69. LEFT(n) − RIGHT(n) = (f (2) − f (6))Δx.

70. Doubling n decreases the difference LEFT(n) −

RIGHT(n) by exactly the factor 1∕2.

71. If LEFT(n) = RIGHT(n) for all n, then f is a constant

function.

72. The trapezoid estimate TRAP(n) = (LEFT(n) +

RIGHT(n))∕2 is always closer to ∫
6

2
f (x)dx than

LEFT(n) or RIGHT(n).

73. ∫
6

2
f (x) dx lies between LEFT(n) and RIGHT(n).

74. If LEFT(2) < ∫
b

a
f (x) dx, then LEFT(4) <

∫
b

a
f (x) dx.

75. If 0 < f ′ < g′ everywhere, then the error in approxi-

mating ∫
b

a
f (x) dx by LEFT(n) is less than the error in

approximating ∫
b

a
g(x) dx by LEFT(n).

7.6 IMPROPER INTEGRALS

Our original discussion of the definite integral ∫
b

a
f (x) dx assumed that the interval a ≤ x ≤ b was

of finite length and that f was continuous. Integrals that arise in applications do not necessarily have

these nice properties. In this section we investigate a class of integrals, called improper integrals, in

which one limit of integration is infinite or the integrand is unbounded. As an example, to estimate

the mass of the earth’s atmosphere, we might calculate an integral which sums the mass of the air

up to different heights. In order to represent the fact that the atmosphere does not end at a specific

height, we let the upper limit of integration get larger and larger, or tend to infinity.

We consider improper integrals with positive integrands since they are the most common.

One Type of Improper Integral: When the Limit of Integration Is Infinite

Here is an example of an improper integral:

∫

∞

1

1

x2
dx.

To evaluate this integral, we first compute the definite integral ∫
b

1
(1∕x2) dx:

∫

b

1

1

x2
dx = −x−1

|

|

|

|

b

1

= −
1

b
+

1

1
.
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Now take the limit as b → ∞. Since

lim
b→∞∫

b

1

1

x2
dx = lim

b→∞

(

−
1

b
+ 1

)

= 1,

we say that the improper integral ∫
∞

1
(1∕x2) dx converges to 1.

If we think in terms of areas, the integral ∫
∞

1
(1∕x2) dx represents the area under f (x) = 1∕x2

from x = 1 extending infinitely far to the right. (See Figure 7.18(a).) It may seem strange that this

region has finite area. What our limit computations are saying is that

When b = 10:
∫

10

1

1

x2
dx = −

1

x

|

|

|

|

10

1

= −
1

10
+ 1 = 0.9

When b = 100:
∫

100

1

1

x2
dx = −

1

100
+ 1 = 0.99

When b = 1000:
∫

1000

1

1

x2
dx = −

1

1000
+ 1 = 0.999

and so on. In other words, as b gets larger and larger, the area between x = 1 and x = b tends to 1.

See Figure 7.18(b). Thus, it does make sense to declare that ∫
∞

1 (1∕x2) dx = 1.

1
x

Area = ∫
∞

1

1

x2
dx

y =
1

x2

✠

y(a)

1 b
x

y(b)

Area = ∫
b

1

1

x2
dx ;

now let b → ∞

y =
1

x2

✠

Figure 7.18: Area representation of improper integral

Of course, in another example, we might not get a finite limit as b gets larger and larger. In that

case we say the improper integral diverges.

Suppose f (x) is positive for x ≥ a.

If lim
b→∞∫

b

a

f (x) dx is a finite number, we say that
∫

∞

a

f (x) dx converges and define

∫

∞

a

f (x) dx = lim
b→∞∫

b

a

f (x) dx.

Otherwise, we say that
∫

∞

a

f (x) dx diverges. We define
∫

b

−∞

f (x) dx similarly.

Similar definitions apply if f (x) is negative.
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Example 1 Does the improper integral
∫

∞

1

1
√

x
dx converge or diverge?

Solution We consider

∫

b

1

1
√

x
dx =

∫

b

1

x−1∕2 dx = 2x1∕2
|

|

|

|

b

1

= 2b1∕2 − 2.

We see that ∫
b

1
(1∕

√

x) dx grows without bound as b → ∞. We have shown that the area under the

curve in Figure 7.19 is not finite. Thus we say the integral ∫
∞

1
(1∕

√

x) dx diverges. We could also

say ∫
∞

1 (1∕
√

x) dx = ∞.

Notice that f (x) → 0 as x → ∞ does not guarantee convergence of ∫
∞

a
f (x) dx.

1 2 3
x

y

y =
1
√

x

Area representing

∫
∞

1

dx
√

x
not finite

✠

Figure 7.19: ∫
∞

1

1
√

x
dx diverges

What is the difference between the functions 1∕x2 and 1∕
√

x that makes the area under the graph

of 1∕x2 approach 1 as x → ∞, whereas the area under 1∕
√

x grows very large? Both functions

approach 0 as x grows, so as b grows larger, smaller bits of area are being added to the definite

integral. The difference between the functions is subtle: the values of the function 1∕
√

x don’t shrink

fast enough for the integral to have a finite value. Of the two functions, 1∕x2 drops to 0 much faster

than 1∕
√

x, and this feature keeps the area under 1∕x2 from growing beyond 1.

Example 2 Find
∫

∞

0

e−5x dx.

Solution First we consider ∫
b

0
e−5x dx:

∫

b

0

e−5x dx = −
1

5
e−5x

|

|

|

|

b

0

= −
1

5
e−5b +

1

5
.

Since e−5b =
1

e5b
, this term tends to 0 as b approaches infinity, so ∫

∞

0
e−5x dx converges. Its value

is

∫

∞

0

e−5x dx = lim
b→∞∫

b

0

e−5x dx = lim
b→∞

(

−
1

5
e−5b +

1

5

)

= 0 +
1

5
=

1

5
.

Since e5x grows very rapidly, we expect that e−5x will approach 0 rapidly. The fact that the area

approaches 1∕5 instead of growing without bound is a consequence of the speed with which the

integrand e−5x approaches 0.
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Example 3 Determine for which values of the exponent, p, the improper integral
∫

∞

1

1

xp
dx diverges.

Solution For p ≠ 1,

∫

b

1

x−p dx =
1

−p + 1
x−p+1

|

|

|

|

b

1

=

(

1

−p + 1
b−p+1 −

1

−p + 1

)

.

The important question is whether the exponent of b is positive or negative. If it is negative, then

as b approaches infinity, b−p+1 approaches 0. If the exponent is positive, then b−p+1 grows without

bound as b approaches infinity. What happens if p = 1? In this case we get

∫

∞

1

1

x
dx = lim

b→∞
ln x

|

|

|

|

b

1

= lim
b→∞

ln b − ln 1.

Since ln b becomes arbitrarily large as b approaches infinity, the integral grows without bound. We

conclude that ∫
∞

1
(1∕xp) dx diverges precisely when p ≤ 1. For p > 1 the integral has the value

∫

∞

1

1

xp
dx = lim

b→∞∫

b

1

1

xp
dx = lim

b→∞

(

1

−p + 1
b−p+1 −

1

−p + 1

)

= −

(

1

−p + 1

)

=
1

p − 1
.

Application of Improper Integrals to Energy

The energy, E, required to separate two charged particles, originally a distance a apart, to a distance

b, is given by the integral

E =
∫

b

a

kq1q2

r2
dr

where q1 and q2 are the magnitudes of the charges and k is a constant. If q1 and q2 are in coulombs,

a and b are in meters, and E is in joules, the value of the constant k is 9 ⋅ 109.

Example 4 A hydrogen atom consists of a proton and an electron, with opposite charges of magnitude 1.6 ⋅10−19

coulombs. Find the energy required to take a hydrogen atom apart (that is, to move the electron from

its orbit to an infinite distance from the proton). Assume that the initial distance between the electron

and the proton is the Bohr radius, RB = 5.3 ⋅ 10−11 meter.

Solution Since we are moving from an initial distance of RB to a final distance of∞, the energy is represented

by the improper integral

E =
∫

∞

RB

k
q1q2

r2
dr = kq1q2 lim

b→∞∫

b

RB

1

r2
dr

= kq1q2 lim
b→∞

−
1

r

|

|

|

|

b

RB

= kq1q2 lim
b→∞

(

−
1

b
+

1

RB

)

=
kq1q2

RB

.

Substituting numerical values, we get

E =
(9 ⋅ 109)(1.6 ⋅ 10−19)2

5.3 ⋅ 10−11
≈ 4.35 ⋅ 10−18 joules.

This is about the amount of energy needed to lift a speck of dust 0.000000025 inch off the ground.

(In other words, not much!)
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What happens if the limits of integration are −∞ and ∞? In this case, we break the integral at

any point and write the original integral as a sum of two new improper integrals.

For a positive function f (x), we can use any (finite) number c to define

∫

∞

−∞

f (x) dx =
∫

c

−∞

f (x) dx +
∫

∞

c

f (x) dx.

If either of the two new improper integrals diverges, we say the original integral diverges.

Only if both of the new integrals have a finite value do we add the values to get a finite value

for the original integral.

It is not hard to show that the preceding definition does not depend on the choice for c.

Another Type of Improper Integral: When the Integrand Becomes Infinite

There is another way for an integral to be improper. The interval may be finite but the function may

be unbounded near some points in the interval. For example, consider ∫
1

0 (1∕
√

x) dx. Since the graph

of y = 1∕
√

x has a vertical asymptote at x = 0, the region between the graph, the x-axis, and the

lines x = 0 and x = 1 is unbounded. Instead of extending to infinity in the horizontal direction as

in the previous improper integrals, this region extends to infinity in the vertical direction. See Fig-

ure 7.20(a). We handle this improper integral in a similar way as before: we compute ∫
1

a
(1∕

√

x) dx

for values of a slightly larger than 0 and look at what happens as a approaches 0 from the positive

side. (This is written as a → 0+.)

First we compute the integral:

∫

1

a

1
√

x
dx = 2x1∕2

|

|

|

|

1

a

= 2 − 2a1∕2.

1
x

Area = ∫
1

0

dx
√

x

✠
1
√

x

(a)

1a
x

Area = ∫
1

a

dx
√

x
;

now let a → 0

✠
1
√

x

(b)

Figure 7.20: Area representation of improper integral

Now we take the limit:

lim
a→0+ ∫

1

a

1
√

x
dx = lim

a→0+
(2 − 2a1∕2) = 2.

Since the limit is finite, we say the improper integral converges, and that

∫

1

0

1
√

x
dx = 2.

Geometrically, what we have done is to calculate the finite area between x = a and x = 1 and take the

limit as a tends to 0 from the right. See Figure 7.20(b). Since the limit exists, the integral converges

to 2. If the limit did not exist, we would say the improper integral diverges.
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Example 5 Investigate the convergence of
∫

2

0

1

(x − 2)2
dx.

Solution This is an improper integral since the integrand tends to infinity as x approaches 2 and is undefined

at x = 2. Since the trouble is at the right endpoint, we replace the upper limit by b, and let b tend

to 2 from the left. This is written b → 2−, with the “−” signifying that 2 is approached from below.

See Figure 7.21.

∫

2

0

1

(x − 2)2
dx = lim

b→2− ∫

b

0

1

(x − 2)2
dx = lim

b→2−
(−1)(x − 2)−1

|

|

|

|

b

0

= lim
b→2−

(

−
1

(b − 2)
−

1

2

)

.

Therefore, since lim
b→2−

(

−
1

b − 2

)

does not exist, the integral diverges.

2
x

y =
1

(x−2)2

y

Figure 7.21: Shaded area represents ∫
2

0

1

(x−2)2
dx

Suppose f (x) is positive and continuous on a ≤ x < b and tends to infinity as x → b.

If lim
c→b− ∫

c

a

f (x) dx is a finite number, we say that
∫

b

a

f (x) dx converges and define

∫

b

a

f (x) dx = lim
c→b− ∫

c

a

f (x) dx.

Otherwise, we say that
∫

b

a

f (x) dx diverges.

When f (x) tends to infinity as x approaches a, we define convergence in a similar way. In

addition, an integral can be improper because the integrand tends to infinity inside the interval of

integration rather than at an endpoint. In this case, we break the given integral into two (or more)

improper integrals so that the integrand tends to infinity only at endpoints.

Suppose that f (x) is positive and continuous on [a, b] except at the point c. If f (x) tends to

infinity as x → c, then we define

∫

b

a

f (x) dx =
∫

c

a

f (x) dx +
∫

b

c

f (x) dx.

If either of the two new improper integrals diverges, we say the original integral diverges.

Only if both of the new integrals have a finite value do we add the values to get a finite value

for the original integral.
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Example 6 Investigate the convergence of
∫

2

−1

1

x4
dx.

Solution See Figure 7.22. The trouble spot is x = 0, rather than x = −1 or x = 2. We break the given improper

integral into two improper integrals each of which has x = 0 as an endpoint:

∫

2

−1

1

x4
dx =

∫

0

−1

1

x4
dx +

∫

2

0

1

x4
dx.

We can now use the previous technique to evaluate the new integrals, if they converge. Since

∫

2

0

1

x4
dx = lim

a→0+
−
1

3
x−3

|

|

|

|

2

a

= lim
a→0+

(

−
1

3

)

(

1

8
−

1

a3

)

the integral ∫
2

0
(1∕x4) dx diverges. Thus, the original integral diverges. A similar computation shows

that ∫
0

−1
(1∕x4) dx also diverges.

It is easy to miss an improper integral when the integrand tends to infinity inside the interval.

For example, it is fundamentally incorrect to say that ∫
2

−1
(1∕x4) dx = −

1

3
x−3

|

|

|

2

−1
= −

1

24
−

1

3
= −

3

8
.

−1 2
x

y

y =
1

x4

Figure 7.22: Shaded area

represents ∫
2

−1

1

x4
dx

64
x

y

y =
1

(x−4)2∕3

Figure 7.23: Shaded area represents ∫
6

0

1

(x−4)2∕3
dx

Example 7 Find
∫

6

0

1

(x − 4)2∕3
dx.

Solution Figure 7.23 shows that the trouble spot is at x = 4, so we break the integral at x = 4 and consider

the separate parts. We have

∫

4

0

1

(x − 4)2∕3
dx = lim

b→4−
3(x − 4)1∕3

|

|

|

|

b

0

= lim
b→4−

(

3(b− 4)1∕3 − 3(−4)1∕3
)

= 3(4)1∕3.

Similarly,

∫

6

4

1

(x − 4)2∕3
dx = lim

a→4+
3(x − 4)1∕3

|

|

|

|

6

a

= lim
a→4+

(

3 ⋅ 21∕3 − 3(a − 4)1∕3
)

= 3(2)1∕3.

Since both of these integrals converge, the original integral converges:

∫

6

0

1

(x − 4)2∕3
dx = 3(4)1∕3 + 3(2)1∕3 = 8.542.
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Finally, there is a question of what to do when an integral is improper at both endpoints. In this

case, we just break the integral at any interior point of the interval. The original integral diverges if

either or both of the new integrals diverge.

Example 8 Investigate the convergence of
∫

∞

0

1

x2
dx.

Solution This integral is improper both because the upper limit is ∞ and because the function is undefined at

x = 0. We break the integral into two parts at, say, x = 1. We know by Example 3 that ∫
∞

1
(1∕x2) dx

has a finite value. However, the other part, ∫
1

0 (1∕x
2) dx, diverges since:

∫

1

0

1

x2
dx = lim

a→0+
−x−1

|

|

|

|

1

a

= lim
a→0+

(

1

a
− 1

)

.

Therefore
∫

∞

0

1

x2
dx diverges as well.

Summary for Section 7.6

• An integral ∫
b

a
f (x) dx is improper if

◦ a or b is infinite

◦ f (x) approaches infinity as x approaches a or b

• By definition,

∫

∞

a

f (x) dx = lim
b→∞∫

b

a

f (x) dx.

• By definition, if f (a) is infinite, then

∫

b

a

f (x) dx = lim
c→a+ ∫

b

c

f (x) dx.

If f (b) is infinite, then

∫

b

a

f (x) dx = lim
c→b− ∫

c

a

f (x) dx.

• An improper integral either converges or diverges.

Exercises and Problems for Section 7.6 Online Resource: Additional Problems for Section 7.6
EXERCISES

1. Which of the following integrals are improper?

(a)
∫

2

−2

x2 dx (b)
∫

∞

2

x−2 dx (c)
∫

2

1

1
3
√

x
dx

(d)
∫

2

−∞

x2 dx (e)
∫

2

−1

x−2 dx (f)
∫

∞

2

1
3
√

x
dx

2. Shade the area represented by:

(a) ∫
∞

1
(1∕x2) dx (b) ∫

1

0
(1∕

√

x) dx

3. Evaluate the improper integral ∫
∞

0
e−0.4xdx and sketch

the area it represents.

4. (a) Use a calculator or computer to estimate

∫
b

0
xe−xdx for b = 5, 10, 20.

(b) Use your answers to part (a) to estimate the value

of ∫
∞

0
xe−xdx, assuming it is finite.

5. (a) Sketch the the area represented by the improper in-

tegral ∫
∞

−∞
e−x

2
dx.

(b) Use a calculator or computer to estimate

∫
a

−a
e−x

2
dx for a = 1,2,3,4,5.

(c) Use the answers to part (b) to estimate the value of

∫
∞

−∞
e−x

2
dx, assuming it is finite.
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In Exercises 6–40, calculate the integral if it converges. You

may calculate the limit by appealing to the dominance of one

function over another, or by l’Hopital’s rule.

6.
∫

∞

1

1

5x + 2
dx 7.

∫

∞

1

1

(x + 2)2
dx

8.
∫

1

0

ln xdx 9.
∫

∞

0

e−
√

x dx

10.
∫

∞

0

xe−x
2
dx 11.

∫

∞

1

e−2x dx

12.
∫

∞

0

x

ex
dx 13.

∫

∞

1

x

4 + x2
dx

14.
∫

0

−∞

ex

1 + ex
dx 15.

∫

∞

−∞

dz

z2 + 25

16.
∫

∞

1

z

(1 + z2)3
dz 17.

∫

∞

0

z

3 + z2
dz

18.
∫

4

0

1
√

x
dx 19.

∫

�∕2

�∕4

sin x
√

cos x
dx

20.
∫

1

0

1

v
dv 21.

∫

1

0

x4 + 1

x
dx

22.
∫

∞

1

1

x2 + 1
dx 23.

∫

∞

1

1
√

x2 + 1
dx

24.
∫

∞

0

dt
√

t + 1
25.

∫

1

−1

dt
√

t + 1

26.
∫

4

0

−1

u2 − 16
du 27.

∫

∞

1

y

y4 + 1
dy

28.
∫

∞

2

dx

x lnx
29.

∫

1

0

ln x

x
dx

30.
∫

20

16

1

y2 − 16
dy 31.

∫

�

0

1
√

x
e−

√

x dx

32.
∫

∞

3

dx

x(ln x)2
33.

∫

2

0

1
√

4 − x2

dx

34.
∫

∞

4

dx

(x − 1)2
35.

∫

∞

4

dx

x2 − 1

36.
∫

∞

7

dy
√

y − 5
37.

∫

3

0

y dy
√

9 − y2

38.
∫

∞

0

te−2tdt 39.
∫

�∕2

0

tan � d�

40.
∫

6

3

d�

(4 − �)2

PROBLEMS

41. Find a formula (not involving integrals) for

f (x) =
∫

x

−∞

et dt.

42. In statistics we encounter P (x), a function defined by

P (x) =
1

√

� ∫

x

0

e−t
2
dt.

Use a calculator or computer to evaluate

(a) P (1) (b) P (∞)

43. Find the area under the curve y = xe−x for x ≥ 0.

44. Find the area under the curve y = 1∕ cos2 t between

t = 0 and t = �∕2.

45. Find ∫
∞

0
xe−x∕k dx where k is a positive constant.

In Problems 46–49, evaluate f (3).

46. f (x) =
∫

∞

0

x−tdt 47. f (x) =
∫

∞

1

t−xdt

48. f (x) =
∫

∞

0

xe−xt dt 49. f (x)=
∫

∞

0

2txe−tx
2
dt

50. The rate, r, at which people get sick during an epidemic

of the flu can be approximated by r = 1000te−0.5t ,

where r is measured in people/day and t is measured

in days since the start of the epidemic.

(a) Sketch a graph of r as a function of t.

(b) When are people getting sick fastest?

(c) How many people get sick altogether?

51. After a dam in a stream is removed at time t = 0 hours,

water flows at a rate of

r(t) =
1000t

(

1 + t2
)2

cubic meters per hour.

Find the total quantity of water that flows for all t ≥ 0.

52. Find the energy required to separate opposite electric

charges of magnitude 1 coulomb. The charges are ini-

tially 1 meter apart and one is moved infinitely far from

the other. (The definition of energy is on page 411.)

53. The probability that a light bulb manufactured by a

company lasts at least a hundred hours is

∫

∞

a

0.012e−0.012t dt.

The CEO claims that 90% of the company’s light bulbs

last at least 1000 hours. Is this statement accurate?
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54. Given that ∫
∞

−∞
e−x

2
dx =

√

�, calculate the exact value

of

∫

∞

−∞

e−(x−a)
2∕b dx.

55. Assuming g(x) is a differentiable function whose val-

ues are bounded for all x, derive Stein’s identity, which

is used in statistics:

∫

∞

−∞

g′(x)e−x
2∕2 dx =

∫

∞

−∞

xg(x)e−x
2∕2 dx.

56. Given that

∫

∞

0

x4ex

(ex − 1)2
dx =

4�4

15

evaluate

∫

∞

0

x4e2x

(e2x − 1)2
dx.

57. Let x0 = a = ln 3, xn = b,Δx = (b − a)∕n, xi =

x0 + iΔx. Evaluate

lim
b→∞

(

lim
n→∞

n
∑

i=1

e−xiΔx

)

58. Let x0 = a = 4, xn = b,Δx = (b− a)∕n, xi = x0 + iΔx.

Evaluate

lim
b→∞

(

lim
n→∞

n
∑

i=1

1

x2
i

Δx

)

Strengthen Your Understanding

In Problems 59–60, explain what is wrong with the state-

ment.

59. If both ∫
∞

1
f (x) dx and ∫

∞

1
g(x) dx diverge, then so

does ∫
∞

1
f (x)g(x) dx.

60. If ∫
∞

1
f (x) dx diverges, then limx→∞ f (x) ≠ 0.

In Problems 61–62, give an example of:

61. A function f (x), continuous for x ≥ 1, such that

limx→∞ f (x) = 0, but ∫
∞

1
f (x)dx diverges.

62. A function f (x), continuous at x = 2 and x = 5, such

that the integral ∫
5

2
f (x) dx is improper and divergent.

In Problems 63–65, is the calculation correct? Explain.

63.
∫

1

−2

x−3 dx = −
1

2
x−2

|

|

|

|

|

1

−2

= −
1

2

(

1 −
1

4

)

= −
3

8
.

64.
∫

1

−2

x3 dx =
1

4
x4
|

|

|

|

|

1

−2

=
1

4
(1 − 16) = −

15

4
.

65.
∫

1

2

x−3 dx = −
1

2
x−2

|

|

|

|

|

1

2

= −
1

2

(

1 −
1

4

)

= −
3

8
.

In Problems 66–71, decide whether the statements are true

or false. Give an explanation for your answer.

66. If f is continuous for all x and ∫
∞

0
f (x) dx converges,

then so does ∫
∞

a
f (x) dx for all positive a.

67. If f (x) is a positive periodic function, then∫
∞

0
f (x) dx

diverges.

68. If f (x) is continuous and positive for x > 0 and if

limx→∞ f (x) = 0, then ∫
∞

0
f (x) dx converges.

69. If f (x) is continuous and positive for x > 0 and if

limx→∞ f (x) = ∞, then ∫
∞

0
(1∕f (x)) dx converges.

70. If ∫
∞

0
f (x) dx and ∫

∞

0
g(x) dx both converge, then

∫
∞

0
(f (x) + g(x)) dx converges.

71. If ∫
∞

0
f (x) dx and ∫

∞

0
g(x) dx both diverge, then

∫
∞

0
(f (x) + g(x)) dx diverges.

In Problems 72–75, decide whether the statement is true or

false. Assume that f is continuous for all real numbers and

that ∫
∞

0
f (x) dx converges. Let a be any positive number.

Give an explanation for your answer.

72. ∫
∞

0
af (x) dx converges.

73. ∫
∞

0
f (ax) dx converges.

74. ∫
∞

0
f (a + x) dx converges.

75. ∫
∞

0
(a + f (x)) dx converges.

7.7 COMPARISON OF IMPROPER INTEGRALS

Making Comparisons

Sometimes it is difficult to find the exact value of an improper integral by antidifferentiation, but it

may be possible to determine whether an integral converges or diverges. The key is to compare the

given integral to one whose behavior we already know. Let’s look at an example.
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Example 1 Determine whether
∫

∞

1

1
√

x3 + 5
dx converges.

Solution First, let’s see what this integrand does as x → ∞. For large x, the 5 becomes insignificant compared

with the x3, so
1

√

x3 + 5
≈

1
√

x3
=

1

x3∕2
.

Since

∫

∞

1

1
√

x3
dx =

∫

∞

1

1

x3∕2
dx = lim

b→∞∫

b

1

1

x3∕2
dx = lim

b→∞
−2x−1∕2

|

|

|

|

b

1

= lim
b→∞

(

2 − 2b−1∕2
)

= 2,

the integral ∫
∞

1
(1∕x3∕2) dx converges. So we expect our integral to converge as well.

In order to confirm this, we observe that for 0 ≤ x3 ≤ x3 + 5, we have

1
√

x3 + 5
≤

1
√

x3
.

and so for b ≥ 1,

∫

b

1

1
√

x3 + 5
dx ≤

∫

b

1

1
√

x3
dx.

1
x

y

y =
1

√

x3

y =
1

√

x3+5

Total shaded area = ∫
∞

1

dx
√

x3

Dark shaded area = ∫
∞

1

1
√

x3+5
dx

Figure 7.24: Graph showing ∫
∞

1

1
√

x3+5
dx ≤ ∫

∞

1

dx
√

x3

(See Figure 7.24.) Since ∫
b

1
(1∕

√

x3 + 5) dx increases as b approaches infinity but is always smaller

than ∫
b

1
(1∕x3∕2) dx < ∫

∞

1
(1∕x3∕2) dx = 2, we know ∫

∞

1
(1∕

√

x3 + 5) dx must have a finite value

less than 2. Thus,

∫

∞

1

dx
√

x3 + 5
converges to a value less than 2.

Notice that we first looked at the behavior of the integrand as x → ∞. This is useful because

the convergence or divergence of the integral is determined by what happens as x → ∞.
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The Comparison Test for
∫

∞

a

f (x) dx

Assume f (x) is positive. Making a comparison involves two stages:

1. Guess, by looking at the behavior of the integrand for large x, whether the integral con-

verges or not. (This is the “behaves like” principle.)

2. Confirm the guess by comparison with a positive function g(x):

• If f (x) ≤ g(x) and ∫
∞

a
g(x) dx converges, then ∫

∞

a
f (x) dx converges.

• If g(x) ≤ f (x) and ∫
∞

a
g(x) dx diverges, then ∫

∞

a
f (x) dx diverges.

Example 2 Decide whether
∫

∞

4

dt

(ln t) − 1
converges or diverges.

Solution Since ln t grows without bound as t → ∞, the−1 is eventually going to be insignificant in comparison

to ln t. Thus, as far as convergence is concerned,

∫

∞

4

1

(ln t) − 1
dt behaves like

∫

∞

4

1

ln t
dt.

Does ∫
∞

4
(1∕ ln t) dt converge or diverge? Since ln t grows very slowly, 1∕ ln t goes to zero very

slowly, and so the integral probably does not converge. We know that (ln t) − 1 < ln t < t for all

positive t. So, provided t > e, we take reciprocals:

1

(ln t) − 1
>

1

ln t
>

1

t
.

Since ∫
∞

4
(1∕t) dt diverges, we conclude that

∫

∞

4

1

(ln t) − 1
dt diverges.

How Do We Know What to Compare With?

In Examples 1 and 2, we investigated the convergence of an integral by comparing it with an easier

integral. How did we pick the easier integral? This is a matter of trial and error, guided by any

information we get by looking at the original integrand as x → ∞. We want the comparison integrand

to be easy and, in particular, to have a simple antiderivative.

Useful Integrals for Comparison

•
∫

∞

1

1

xp
dx converges for p > 1 and diverges for p ≤ 1.

•
∫

1

0

1

xp
dx converges for p < 1 and diverges for p ≥ 1.

•
∫

∞

0

e−axdx converges for a > 0.

Of course, we can use any function for comparison, provided we can determine its behavior.
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Example 3 Investigate the convergence of
∫

∞

1

(sinx) + 3
√

x
dx.

Solution Since it looks difficult to find an antiderivative of this function, we try comparison. What happens

to this integrand as x → ∞? Since sin x oscillates between −1 and 1,

2
√

x
=

−1 + 3
√

x
≤

(sinx) + 3
√

x
≤

1 + 3
√

x
=

4
√

x
,

the integrand oscillates between 2∕
√

x and 4∕
√

x. (See Figure 7.25.)

What do ∫
∞

1
(2∕

√

x) dx and ∫
∞

1
(4∕

√

x) dx do? As far as convergence is concerned, they cer-

tainly do the same thing, and whatever that is, the original integral does it too. It is important to

notice that
√

x grows very slowly. This means that 1∕
√

x gets small slowly, which means that con-

vergence is unlikely. Since
√

x = x1∕2, the result in the preceding box (with p =
1

2
) tells us that

∫
∞

1
(1∕

√

x) dx diverges. So the comparison test tells us that the original integral diverges.

1
x

b

y

✠

y =
(sinx)+3

√

x

✠

y =
2
√

x
✠

y =
4
√

x

Total shaded area = ∫
b

1

(sinx)+3
√

x
dx

Dark shaded area = ∫
b

1

2
√

x
dx

Figure 7.25: Graph showing ∫
b

1

2
√

x
dx ≤ ∫

b

1

(sinx)+3
√

x
dx, for b ≥ 1

Notice that there are two possible comparisons we could have made in Example 3:

2
√

x
≤

(sin x) + 3
√

x
or

(sin x) + 3
√

x
≤

4
√

x
.

Since both ∫
∞

1
(2∕

√

x) dx and ∫
∞

1
(4∕

√

x) dx diverge, only the first comparison is useful. Knowing

that an integral is smaller than a divergent integral is of no help whatsoever!

The next example shows what to do if the comparison does not hold throughout the interval of

integration.

Example 4 Show
∫

∞

1

e−x
2∕2 dx converges.

Solution We know that e−x
2∕2 goes very rapidly to zero as x → ∞, so we expect this integral to con-

verge. Hence we look for some larger integrand which has a convergent integral. One possibility

is ∫
∞

1
e−x dx, because e−x has an elementary antiderivative and ∫

∞

1
e−x dx converges. What is the
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relationship between e−x
2∕2 and e−x? We know that for x ≥ 2,

x ≤
x2

2
so −

x2

2
≤ −x,

and so, for x ≥ 2,

e−x
2∕2 ≤ e−x.

Since this inequality holds only for x ≥ 2, we split the interval of integration into two pieces:

∫

∞

1

e−x
2∕2 dx =

∫

2

1

e−x
2∕2 dx +

∫

∞

2

e−x
2∕2 dx.

Now ∫
2

1
e−x

2∕2 dx is finite (it is not improper) and ∫
∞

2
e−x

2∕2 dx is finite by comparison with ∫
∞

2
e−x dx.

Therefore, ∫
∞

1
e−x

2∕2 dx is the sum of two finite pieces and therefore must be finite.

The previous example illustrates the following general principle:

If f is positive and continuous on [a, b],

∫

∞

a

f (x) dx and
∫

∞

b

f (x) dx

either both converge or both diverge.

In particular, when the comparison test is applied to ∫
∞

a
f (x) dx, the inequalities for f (x) and

g(x) do not need to hold for all x ≥ a but only for x greater than some value, say b.

Summary for Section 7.7

• Sometimes you can determine whether an improper integral is convergent or divergent by com-

parison with an integral of known behavior.

• Three useful comparison integrals:

◦

∫

∞

1

1

xp
dx converges for p > 1 and diverges for p ≤ 1.

◦

∫

1

0

1

xp
dx converges for p < 1 and diverges for p ≥ 1.

◦

∫

∞

0

e−axdx converges for a > 0.

• Try to guess whether an integral converges by deciding if it behaves like one of the useful com-

parison integrals as x approaches ∞.

• More formally, if f (x) and g(x) are positive functions, and

◦ If f (x) ≤ g(x) and ∫
∞

a
g(x) dx converges, then ∫

∞

a
f (x) dx converges.

◦ If g(x) ≤ f (x) and ∫
∞

a
g(x) dx diverges, then ∫

∞

a
f (x) dx diverges.
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Exercises and Problems for Section 7.7

EXERCISES

In Exercises 1–9, use the box on page 419 and the behavior

of rational and exponential functions as x → ∞ to predict

whether the integrals converge or diverge.

1.
∫

∞

1

x2

x4 + 1
dx 2.

∫

∞

2

x3

x4 − 1
dx

3.
∫

∞

1

x2 + 1

x3 + 3x + 2
dx 4.

∫

∞

1

1

x2 + 5x + 1
dx

5.
∫

∞

1

x

x2 + 2x + 4
dx 6.

∫

∞

1

x2 − 6x + 1

x2 + 4
dx

7.
∫

∞

1

5x + 2

x4 + 8x2 + 4
dx 8.

∫

∞

1

1

e5t + 2
dt

9.
∫

∞

1

x2 + 4

x4 + 3x2 + 11
dx

In Exercises 10–13, what, if anything, does the comparison

tell us about the convergence of the integral?

10.
∫

∞

1

sin2 x

x2
dx, compare with

1

x2

11.
∫

∞

1

sin2 x

x
dx, compare with

1

x

12.
∫

1

0

sin2 x

x2
dx, compare with

1

x2

13.
∫

1

0

sin2 x
√

x
dx, compare with

1
√

x

In Exercises 14–29, decide if the improper integral con-

verges or diverges.

14.
∫

∞

50

dz

z3
15.

∫

∞

1

dx

1 + x

16.
∫

∞

1

dx

x3 + 1
17.

∫

8

5

6
√

t − 5
dt

18.
∫

1

0

1

x19∕20
dx 19.

∫

5

−1

dt

(t + 1)2

20.
∫

∞

−∞

du

1 + u2
21.

∫

∞

1

du

u + u2

22.
∫

∞

1

d�
√

�2 + 1
23.

∫

∞

2

d�
√

�3 + 1

24.
∫

1

0

d�
√

�3 + �

25.
∫

∞

0

dy

1 + ey

26.
∫

∞

1

2 + cos�

�2
d� 27.

∫

∞

0

dz

ez + 2z

28.
∫

�

0

2 − sin�

�2
d� 29.

∫

∞

4

3 + sin�

�
d�

PROBLEMS

30. The graphs of y = 1∕x, y = 1∕x2 and the functions

f (x), g(x), ℎ(x), and k(x) are shown in Figure 7.26.

(a) Is the area between y = 1∕x and y = 1∕x2 on the

interval from x = 1 to∞ finite or infinite? Explain.

(b) Using the graph, decide whether the integral of

each of the functions f (x), g(x), ℎ(x) and k(x) on

the interval from x = 1 to ∞ converges, diverges,

or whether it is impossible to tell.

1

k(x)

✛ 1∕x2

✛ 1∕xf (x)

ℎ(x)

g(x)

Figure 7.26

31. For f (x) in Figure 7.27, both ∫
∞

a
f (x) dx and

∫
a

0
f (x) dx converge. Decide if the following integrals

converge, diverge, or could do either. Assume that 0 <

g(x) < f (x) for x > a and 0 < f (x) < g(x) for x < a.

(a) ∫
∞

a
g(x) dx (b) ∫

a

0
g(x) dx

(c) ∫
∞

0
f (x) dx (d) ∫

∞

0
g(x) dx

(e) ∫
∞

a
(f (x) − g(x)) dx (f)

∫

∞

a

1

f (x)
dx

(g) ∫
∞

a
(f (x))2 dx

a

✠
f (x)

✠
g(x)

x

Figure 7.27
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32. Suppose ∫
∞

a
f (x) dx converges. What does Figure 7.28

suggest about the convergence of ∫
∞

a
g(x) dx?

a

✠

f (x)

g(x)

x

Figure 7.28

For what values of p do the integrals in Problems 33–34 con-

verge or diverge?

33.
∫

∞

2

dx

x(ln x)p
34.

∫

2

1

dx

x(lnx)p

35. (a) Find an upper bound for

∫

∞

3

e−x
2
dx.

[Hint: e−x
2
≤ e−3x for x ≥ 3.]

(b) For any positive n, generalize the result of part (a)

to find an upper bound for

∫

∞

n

e−x
2
dx

by noting that nx ≤ x2 for x ≥ n.

36. A factory discharges a pollutant into the ocean at a rate

r(t) kg/day for time t ≥ 2, with t in days, forever.

(a) What does comparison with 1∕xp tell you about

values of the constant k for which the total quantity

discharged converges to a finite value if

r(t) =
1

(t2 + 1)k
?

(b) What does comparison with 1∕xp tell you about

values of the constant m for which the total quan-

tity discharged diverges if

r(t) =
1

(t2 − 1)m
?

37. In a storm, water flows out of a lake at a varying rate. It

has been proposed that the volume of water that leaves

the lake during time 1 ≤ t ≤ b is modeled by

∫

b

1

(3 + cos t)

t
dt.

(a) Using comparison with 1∕t, decide if the integral

converges or diverges as b → ∞.

(b) If no water flows into the lake, what does your an-

swer to part (a) tell you about whether the model

can be correct for all b > 1?

38. In Planck’s Radiation Law, we encounter the integral

∫

∞

1

dx

x5(e1∕x − 1)
.

(a) Explain why a graph of the tangent line to et at

t = 0 tells us that for all t

1 + t ≤ et.

(b) Substituting t = 1∕x, show that for all x ≠ 0

e1∕x − 1 >
1

x
.

(c) Use the comparison test to show that the original

integral converges.

Strengthen Your Understanding

In Problems 39–42, explain what is wrong with the state-

ment.

39. ∫
∞

1
1∕(x3 + sin x) dx converges by comparison with

∫
∞

1
1∕x3 dx.

40. ∫
∞

1
1∕(x

√

2 + 1) dx is divergent.

41. If 0 ≤ f (x) ≤ g(x) and ∫
∞

0
g(x) dx diverges then by

the comparison test ∫
∞

0
f (x) dx diverges.

42. Let f (x) > 0. If ∫
∞

1
f (x) dx is convergent then so is

∫
∞

1
1∕f (x) dx.

In Problems 43–44, give an example of:

43. A continuous function f (x) for x ≥ 1 such that the im-

proper integral ∫
∞

1
f (x)dx can be shown to converge

by comparison with the integral ∫
∞

1
3∕(2x2) dx.

44. A positive, continuous function f (x) such that

∫
∞

1
f (x)dx diverges and

f (x) ≤
3

7x − 2 sin x
, for x ≥ 1.

In Problems 45–50, decide whether the statements are true

or false. Give an explanation for your answer.

45. The integral
∫

∞

0

1

ex + x
dx converges.

46. The integral
∫

1

0

1

x2 − 3
dx diverges.
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47. If f (x) < g(x) for all x and a < b, then

∫

b

a

f (x) dx <
∫

b

a

g(x) dx.

48. If f (x) < g(x) for all x and ∫
∞

a
g(x) dx converges, then

∫
∞

a
f (x) dx converges.

49. If |f (x)| < |g(x)| for all x and a < b, then

∫

b

a

f (x) dx <
∫

b

a

g(x) dx.

50. If |f (x)| < |g(x)| for all x and if ∫
∞

a
|g(x)| dx con-

verges, then ∫
∞

a
|f (x)| dx converges.

Online Resource: Review Problems and Projects
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8.1 AREAS AND VOLUMES

In Chapter 5, we calculated areas under graphs using definite integrals. We obtained the integral

by slicing up the region, constructing a Riemann sum, and then taking a limit. In this section, we

calculate areas of other regions, as well as volumes, using definite integrals. To obtain the integral,

we again slice up the region and construct a Riemann sum.

Finding Areas by Slicing

Example 1 Use horizontal slices to set up a definite integral to calculate the area of the isosceles triangle in

Figure 8.1.

✛

✛

5 cm

✲✛ 10 cm

Figure 8.1: Isosceles triangle

✲✛ 10

✻

❄

ℎi

✻❄Δℎ

✻

❄

(5 − ℎi)

✲✛ wi

✻

❄

5

Figure 8.2: Horizontal slices of isosceles triangle

Solution Notice that we can find the area of a triangle without using an integral; we will use this to check the

result from integration:

Area =
1

2
Base ⋅ Height = 25 cm2.

To calculate the area using horizontal slices we divide the region into strips; see Figure 8.2. A typical

strip is approximately a rectangle of length wi and width Δℎ, so

Area of strip ≈ wiΔℎ cm2.

To get wi in terms of ℎi, the height above the base, use the similar triangles in Figure 8.2:

wi

10
=

5 − ℎi

5
wi = 2(5 − ℎi) = 10 − 2ℎi.

Summing the areas of the strips gives the Riemann sum approximation:

Area of triangle ≈

n
∑

i=1

wiΔℎ =

n
∑

i=1

(10 − 2ℎi)Δℎ cm2.

Taking the limit as n → ∞, the width of a strip shrinks, and we get the integral:

Area of triangle = lim
n→∞

n
∑

i=1

(10 − 2ℎi)Δℎ =
∫

5

0

(10 − 2ℎ) dℎ cm2.

Evaluating the integral gives

Area of triangle =
∫

5

0

(10 − 2ℎ) dℎ = (10ℎ − ℎ2)
|

|

|

|

5

0

= 25 cm2.

This agrees with the result we get using Area =
1

2
Base ⋅ Height .
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Notice that the limits in the definite integral are the limits for the variable ℎ. Once we decide to

slice the triangle horizontally, we know that a typical slice has thickness Δℎ, so ℎ is the variable in

our definite integral, and the limits must be values of ℎ.

Example 2 Use horizontal slices to set up a definite integral representing the area of the semicircle of radius

7 cm in Figure 8.3.

✲✛ 7 cm

Figure 8.3: Semicircle

✲✛ 7

✲✛ wi

7
ℎi

✻

❄
Δℎ

Figure 8.4: Horizontal slices of semicircle

Solution As in Example 1, to calculate the area using horizontal slices, we divide the region into strips; see

Figure 8.4. A typical strip at height ℎi above the base has width wi and thickness Δℎ, so

Area of strip ≈ wiΔℎ cm2.

To get wi in terms of ℎi, we use the Pythagorean Theorem in Figure 8.4:

ℎ2
i
+
(wi

2

)2

= 72,

so

wi =

√

4(72 − ℎ2
i
) = 2

√

49 − ℎ2
i
.

Summing the areas of the strips gives the Riemann sum approximation:

Area of semicircle ≈

n
∑

i=1

wiΔℎ =

n
∑

i=1

2

√

49 − ℎ2
i
Δℎ cm2.

Taking the limit as n → ∞, the width of strip shrinks, that is Δℎ → 0, and we get the integral:

Area of semicircle = lim
n→∞

n
∑

i=1

2

√

49 − ℎ2
i
Δℎ = 2

∫

7

0

√

49 − ℎ2 dℎ cm2.

Using the table of integrals VI-30 and VI-28, or a calculator or computer, gives

Area of semicircle = 2 ⋅
1

2

(

ℎ
√

49 − ℎ2 + 49 arcsin
(

ℎ

7

))

|

|

|

|

7

0

= 49 arcsin 1 =
49

2
� = 76.97 cm2.

As a check, notice that the area of the whole circle of radius 7 is � ⋅ 72 = 49� cm2.

Finding Volumes by Slicing

To calculate the volume of a solid using Riemann sums, we chop the solid into slices whose volumes

we can estimate.

Let’s see how we might slice a cone standing with the vertex uppermost. We could divide the

cone vertically into arch-shaped slices; see Figure 8.5. We could also divide the cone horizontally,

giving coin-shaped slices; see Figure 8.6.
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Figure 8.5: Cone cut into

vertical slices

Figure 8.6: Cone cut into

horizontal slices

To calculate the volume of the cone, we choose the circular slices because it is easier to estimate

the volumes of the coin-shaped slices.

Example 3 Use horizontal slicing to find the volume of the cone in Figure 8.7.

Figure 8.7: Cone

✲✛ 10

✻

❄

ℎi

✻

❄
Δℎ

✻

❄

(5 − ℎi)

✲✛ wi

Figure 8.8: Vertical cross-section of cone in

Figure 8.7

Solution Each slice is a circular disk of thickness Δℎ. See Figure 8.7. The disk at height ℎi above the base has

radius ri =
1

2
wi. From Figure 8.8 and the previous example, we have

wi = 10 − 2ℎi so ri = 5 − ℎi.

Each slice is approximately a cylinder of radius ri and thickness Δℎ, so

Volume of slice ≈ �r2
i
Δℎ = �(5 − ℎi)

2Δℎ cm3.

Summing over all slices, we have

Volume of cone ≈

n
∑

i=1

�(5 − ℎi)
2Δℎ cm3.

Taking the limit as n → ∞, so Δℎ → 0, gives

Volume of cone = lim
n→∞

n
∑

i=1

�(5 − ℎi)
2Δℎ =

∫

5

0

�(5 − ℎ)2 dℎ cm3.

The integral can be evaluated using the substitution u = 5− ℎ or by multiplying out (5 − ℎ)2. Using

the substitution, we have

Volume of cone =
∫

5

0

�(5 − ℎ)2dℎ = −
�

3
(5 − ℎ)3

|

|

|

|

5

0

=
125

3
� cm3.

Note that the sum represented by the
∑

sign is over all the strips. To simplify the notation, in

the future, we will not write limits for
∑

or subscripts on the variable, since all we want is the final

expression for the definite integral. We now calculate the volume of a hemisphere by slicing.
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Example 4 Set up and evaluate an integral giving the volume of the hemisphere of radius 7 cm in Figure 8.9.

Figure 8.9: Slicing to find the volume

of a hemisphere

ℎ 7

r

Figure 8.10: Vertical cut through center of hemisphere

showing relation between r and ℎ

Solution We will not use the formula
4

3
�r3 for the volume of a sphere. However, our approach can be used to

derive that formula.

Divide the hemisphere into horizontal slices of thickness Δℎ cm. (See Figure 8.9.) Each slice is

circular. Let r be the radius of the slice at height ℎ, so

Volume of slice ≈ �r2Δℎ cm3.

We express r in terms of ℎ using the Pythagorean Theorem as in Example 2. From Figure 8.10, we

have

ℎ2 + r2 = 72,

so

r =
√

72 − ℎ2 =
√

49 − ℎ2.

Thus,

Volume of slice ≈ �r2Δℎ = �(72 − ℎ2) Δℎ cm3.

Summing the volumes of all slices gives:

Volume ≈
∑

�r2 Δℎ =
∑

�(72 − ℎ2) Δℎ cm3.

As the thickness of each slice tends to zero, the sum becomes a definite integral. Since the radius of

the hemisphere is 7, we know that ℎ varies from 0 to 7, so these are the limits of integration:

Volume =
∫

7

0

�(72 − ℎ2) dℎ = �

(

72ℎ −
1

3
ℎ3
)

|

|

|

|

7

0

=
2

3
�73 = 718.4 cm3.

Notice that the volume of the hemisphere is half of
4

3
�73 cm3, as we expected.

We now use slicing to find the volume of a pyramid. We do not use the formula, V =
1

3
b2 ⋅ ℎ,

for the volume of a pyramid of height ℎ and square base of side length b, but our approach can be

used to derive that formula.

Example 5 When it was built more than 4500 years ago, the Great Pyramid of Giza in Cairo, Egypt, had a height

of 481 feet and a square base 756 feet by 756 feet.1 Compute its original volume, in cubic feet.

Solution We slice the pyramid horizontally, creating square slices with thickness Δℎ. The bottom layer is

a square slice 756 feet by 756 feet and volume about (756)2Δℎ ft3. As we move up the pyramid,

the layers have shorter side lengths. We divide the height into n subintervals of length Δℎ. See

1Its current height is 455 feet. See https://en.wikipedia.org/wiki/Great_Pyramid_of_Giza, accessed October 7, 2019.
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Figure 8.11. Let s be the side length of the slice at height ℎ; then

Volume of slice ≈ s2Δℎ ft3.

s✻

❄
ℎ

✻

❄

481 ft
❄

Volume of slice
≈ s2Δℎ

756 ft

Figure 8.11: The Great Pyramid

✻

❄

481 ft

✲✛ s

✲✛ 756 ft

✻

❄

481 − ℎ

✻

❄
ℎ

Figure 8.12: Cross-section relating s and ℎ

We express s as a function of ℎ using the vertical cross-section in Figure 8.12. By similar trian-

gles, we get
s

756
=

(481 − ℎ)

481
.

Thus,

s =
(

756

481

)

(481 − ℎ),

and the total volume, V , is approximated by adding the volumes of the n layers:

V ≈
∑

s2Δℎ =
∑

((

756

481

)

(481 − ℎ)
)2

Δℎ ft3.

As the thickness of each slice tends to zero, the sum becomes a definite integral. Finally, since ℎ

varies from 0 to 481, the height of the pyramid, we have

V =
∫

481

0

((

756

481

)

(481 − ℎ)
)2

dℎ =
(

756

481

)2

∫

481

0

(481 − ℎ)2 dℎ

=
(

756

481

)2
(

−
(481 − ℎ)3

3

)

|

|

|

|

481

0

=
(

756

481

)2 (481)3

3
=

1

3
(756)2(481) ≈ 92 million ft3.

Note that V =
1

3
(756)2(481) =

1

3
b2 ⋅ ℎ, as expected.

Summary for Section 8.1

• The method of slicing enables you to set up a definite integral to compute the area of a region

in the plane or the volume of a region in space.

• Divide the region into thin parallel slices of thickness Δℎ by slicing it perpendicular to the

ℎ-axis. Suppose there are slices for each ℎ-value in the range a ≤ ℎ ≤ b.

• For a region in the plane, find the width w(ℎ) of the slice at position ℎ. The area of the slice is

approximately w(ℎ)Δℎ and

Area of region =
∫

b

a

w(ℎ) dℎ.

• For a region in space, find the area A(ℎ) of the slice at position ℎ. The volume of the slice is

approximately A(ℎ)Δℎ and

Volume of region =
∫

b

a

A(ℎ) dℎ.
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Exercises and Problems for Section 8.1

EXERCISES

1. (a) Write a Riemann sum approximating the area of

the region in Figure 8.13, using vertical strips as

shown.

(b) Evaluate the corresponding integral.

Δx 3

6 y = 2x

x

y

Figure 8.13

2. (a) Write a Riemann sum approximating the area of

the region in Figure 8.14, using vertical strips as

shown.

(b) Evaluate the corresponding integral.

Δx 6

9 y = −x2 + 6x

x

y

Figure 8.14

3. (a) Write a Riemann sum approximating the area of

the region in Figure 8.15, using horizontal strips

as shown.

(b) Evaluate the corresponding integral.

3

✻
❄Δy

9

y = x2

x

y

Figure 8.15

4. (a) Write a Riemann sum approximating the area of

the region in Figure 8.16, using horizontal strips

as shown.

(b) Evaluate the corresponding integral.

3

Δy

6 y = 2x

x

y

Figure 8.16

In Exercises 5–13, find an expression for the approximate

area of the shaded strip in the figure as it would appear in

a Riemann sum. Then write a definite integral representing

the area of the whole region and evaluate it exactly.

5. ✲✛ 5

✻

❄

3

✲✛ x

Δx

6.

✻

❄

3

✲✛ 6

✲ ✛
Δx

✲✛ x

7.

✻

❄

3

✲✛ 6

✲ ✛
Δx

✲✛ x
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8.

✻

❄
Δℎ

✻

❄

ℎ

✲✛ 3

✻

❄

5

9.

✻

❄
Δℎ

✻
❄
ℎ

3

10.

x2 + y2 = 10

✻

❄
Δy

x

y

11.
y = 4

y = |x|

✻
❄Δy

x

y

12.
y = x

y =
√

x

✻

❄
Δy

x

y

13.

3x + y = 6

y = x2 − 4

✲ ✛Δx

x

y

14. (a) Match the regions I–IV in Figure 8.17 with the re-

gions A −D:

• A: Bounded by y + x = 2, y = x, x = 2

• B: Bounded by y + x = 2, y = x, y = 2

• C: Bounded by y + x = 2, y = x, x = 0

• D: Bounded by y + x = 2, y = x, y = 0

(b) Write integrals representing the areas of the re-

gions II and III using vertical strips. Do not evalu-

ate.

I

IV

III

II

2

2

x

y

Figure 8.17

In Exercises 15–23, write a Riemann sum and then a def-

inite integral representing the volume of the region, using

the slice shown. Evaluate the integral exactly. (Regions are

parts of cones, cylinders, spheres, pyramids, and triangular

prisms.)

15. ✛ ✛9 cm

✛ ✛x ✛✛

Δx

✛

✛

4 cm

16. ✛ ✛6 cm

✲✛ x
✲✛
Δx

✻

❄

4 cm
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17. ✛ ✛6 cm

✲✛
x

Δx

✻

❄

4 cm

18.

✻

❄

5 cm

✲✛ 4 cm

✻❄Δ y

✻

❄

y

19.

✛
✛

10 m✛ ✛7 m

✻
❄
y
✻

❄
Δ y

✻

❄

7 m

20.

✲✛ 10 mm

✻

❄

5 mm
✻

❄
y

✻❄Δ y

21.

✛

✛

2 m

✛

✛

2 m

✛

✛

y

✻
❄

Δy

✛

✛

2 m

22.

23.

PROBLEMS

24. Figure 8.18 shows a trapezoid whose left and right

edges have equal length.

(a) Find a formula in terms of ℎi and Δℎ for the area

of the shaded rectangle.

(b) The trapezoid is cut into n = 10 such strips of equal

width, where the bottom edge of strip i = 0 is at

ℎ0 = 0. Find the area of strip i = 7.

10

6

ℎi✻❄

✻

❄

3
Δℎ

Figure 8.18

25. The volume of the hemisphere of radius R = 10 can be

approximated using n = 20 cylindrical slices of equal

thickness Δℎ and radius ri as illustrated in Figure 8.19.

(a) What is the thickness Δℎ of each slice?

(b) What is the height ℎ8 of the slice i = 8?

(c) What is the radius r8 of slice i = 8?

(d) Find the volume of slice i = 8.

R

Δℎ

✲✛ ri

✻

❄
ℎi

Figure 8.19
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In Problems 26–29, the integral represents the area of either

a triangle or part of a circle, and the variable of integration

measures a distance. Say which shape is represented, and

give the base and height of the triangle or the radius of the

circle. Make a sketch to support your answer showing the

variable and all other relevant quantities.

26.
∫

1

0

3x dx 27.
∫

9

−9

√

81 − x2 dx

28.
∫

√

15

0

√

15 − ℎ2 dℎ 29.
∫

7

0

5
(

1 −
ℎ

7

)

dℎ

30. The integral
∫

1

0

(x − x2) dx gives the area of a region

between two curves in the plane. Sketch this region.

In Problems 31–34, construct and evaluate definite inte-

gral(s) representing the area of the region described, using:

(a) Vertical slices (b) Horizontal slices

31. Enclosed by y = x2 and y = 3x.

32. Enclosed by y = 2x and y = 12 − x and the y-axis.

33. Enclosed by y = x2 and y = 6 − x and the x-axis.

34. Enclosed by y = 2x and x = 5 and y = 6 and the

x-axis.

For Problems 35–36, Figure 8.20 shows f (x) = 2 ⋅ 2x and

g(x) = 3x. The shaded area can be found by integrating ei-

ther with respect to x, using thin vertical slices of width Δx

like the one labeled A, or with respect to y, using thin hori-

zontal slices of height Δy like the one labeled B.

0.4

4

f (x) = 2 ⋅ 2x

g(x) = 3x
A

B

Δx

Δy

x

y

Figure 8.20

35. Estimate the area of strip A using a rectangle whose

lower left corner lies on the graph of g(x) at x1 = 0.4,

whose upper left corner lies on the graph of f (x), and

whose width is Δx = 0.1.

36. Estimate the area of strip B using a rectangle whose

lower left corner lies on the graph of f (x) at y2 = 4,

whose lower right corner lies on the graph of g(x), and

whose height is Δy = 0.25.

In Problems 37–41, the integral represents the volume of a

hemisphere, sphere, or cone, and the variable of integration

is a length. Say which shape is represented; give the radius

of the hemisphere or sphere or the radius and height of the

cone. Make a sketch showing the variable and all relevant

quantities.

37.
∫

12

0

�(144 − ℎ2) dℎ 38.
∫

12

0

�(x∕3)2dx

39. 2
∫

8

0

�
(

64 − ℎ2
)

dℎ 40.
∫

6

0

�(3 − y∕2)2dy

41.
∫

2

0

�(22−(2−y)2) dy

42. A cone with base radius 4 and height 16 standing with

its vertex upward is cut into 32 horizontal slices of equal

thickness Δℎ.

(a) Find Δℎ.

(b) Find a formula relating the radius of the cone r at

height ℎ above the base.

(c) What is the approximate volume of the bottom

slice?

(d) What is the height of the ninth slice from the bot-

tom?

(e) What is the approximate volume of the ninth slice?

43. A hemisphere with a horizontal base of radius 4 is cut

parallel to the base into 20 slices of equal thickness.

(a) What is the thickness Δℎ of each slice?

(b) What is the approximate volume of the slice at

height ℎ above the base?

44. Find the volume of a sphere of radius r by slicing.

45. Set up and evaluate an integral to find the volume of a

cone of height 12 m and base radius 3 m.

46. Find, by slicing, a formula for the volume of a cone of

height ℎ and base radius r.

47. Figure 8.21 shows a solid with both rectangular and tri-

angular cross-sections.

(a) Slice the solid parallel to the triangular faces.

Sketch one slice and calculate its volume in terms

of x, the distance of the slice from one end. Then

write and evaluate an integral giving the volume of

the solid.

(b) Repeat part (a) for horizontal slices. Instead of x,

use ℎ, the distance of a slice from the top.
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Figure 8.21

48. A rectangular lake is 150 km long and 3 km wide. The

vertical cross-section through the lake in Figure 8.22

shows that the lake is 0.2 km deep at the center. (These

are the approximate dimensions of Lake Mead, a large

reservoir providing water to California, Nevada, and

Arizona.) Set up and evaluate a definite integral giving

the total volume of water in the lake.

✲✛ 3 km

✻

❄

0.2 km

Figure 8.22: Not to scale

49. A dam has a rectangular base 1400 meters long and 160

meters wide. Its cross-section is shown in Figure 8.23.

(The Grand Coulee Dam in Washington state is roughly

this size.) By slicing horizontally, set up and evaluate a

definite integral giving the volume of material used to

build this dam.

✲✛ 160 m

✻

❄

150 m

✲✛10 m

Figure 8.23: Not to scale

50. (a) Set up and evaluate an integral giving the volume

of a pyramid of height 10 m and square base 8 m

by 8 m.

(b) The pyramid in part (a) is cut off at a height of 6

m. See Figure 8.24. Find the volume.

✛

✛

8 m

✛

✛

8 m

✛

✛

6 m

Figure 8.24

51. The exterior of a holding tank is a cylinder with radius

3 m and height 6 m; the interior is cone-shaped; Fig-

ure 8.25 shows its cross-section. Using an integral, find

the volume of material needed to make the tank.

Tank

Solid

✲✛ 3 m

✻

❄

6 m

Figure 8.25

In Problems 52–55, the given volume has a horizontal base.

Let ℎ be the height above the base of a slice with thick-

ness Δℎ. Which of (I)–(VI) approximates the volume of this

slice?

I. �
√

16 − ℎ2Δℎ II.
�

25
(20 − ℎ)

2 Δℎ

III. 25� (20 − ℎ)2 Δℎ IV. �
(

16 − ℎ2
)

Δℎ

V.
1

25
(20 − ℎ)2 Δℎ VI. 25 (20 − ℎ)2 Δℎ

52. A cone of height 20 and base radius 4.

53. A cone of height 20 and base radius 100.

54. A pyramid whose base is a square of side 4 and whose

height is 20.

55. A hemisphere of radius 4.

Strengthen Your Understanding

In Problems 56–57, explain what is wrong with the state-

ment.

56. To find the area between the line y = 2x, the y-axis,

and the line y = 8 using horizontal slices, evaluate the

integral ∫
8

0
2y dy.

57. The volume of the sphere of radius 10 centered at the

origin is given by the integral ∫
10

−10
�
√

102 − x2 dx.

In Problems 58–59, give an example of:

58. A region in the plane where it is easier to compute the

area using horizontal slices than it is with vertical slices.

Sketch the region.

59. A triangular region in the plane for which both horizon-

tal and vertical slices work just as easily.
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In Problems 60–65, are the statements true or false? Give an

explanation for your answer.

60. The integral ∫
3

−3
�(9 − x2) dx represents the volume of

a sphere of radius 3.

61. The integral ∫
ℎ

0
�(r− y) dy gives the volume of a cone

of radius r and height ℎ.

62. The integral ∫
r

0
�
√

r2 − y2 dy gives the volume of a

hemisphere of radius r.

63. A cylinder of radius r and length l is lying on its side.

Horizontal slicing tells us that the volume is given by

∫
r

−r
2l
√

r2 − y2 dy.

64. A cone of height 10 has a horizontal base with ra-

dius 50. If ℎ is the height of a horizontal slice of

thickness Δℎ, the slice’s volume is approximated by

� (50 − 5ℎ)2 Δℎ.

65. A semicircle of radius 10 has a horizontal base. If ℎ

is the height of a horizontal strip of thickness Δℎ, the

strip’s area is approximated by 2
√

100 − ℎ2Δℎ.

8.2 APPLICATIONS TO GEOMETRY

In Section 8.1, we calculated volumes using slicing and definite integrals. In this section, we use the

same method to calculate the volumes of more complicated regions as well as the length of a curve.

The method is summarized in the following steps:

To Compute a Volume or Length Using an Integral

• Divide the solid (or curve) into small pieces whose volume (or length) we can easily

approximate;

• Add the contributions of all the pieces, obtaining a Riemann sum that approximates the

total volume (or length);

• Take the limit as the number of terms in the sum tends to infinity, giving a definite integral

for the total volume (or total length);

• Evaluate the definite integral, either exactly or approximately.

In the previous section, all the slices we created were disks or rectangles. We now look at dif-

ferent ways of generating volumes whose cross-sections include circles, rectangles, and also rings.

Volumes of Revolution

One way to create a solid having circular cross-sections is to revolve a region in the plane around a

line, giving a solid of revolution, as in the following examples.

Example 1 The region bounded by the curve y = e−x and the x-axis between x = 0 and x = 1 is revolved

around the x-axis. Find the volume of this solid of revolution.

Solution We slice the region perpendicular to the x-axis, giving circular disks of thickness Δx. See Fig-

ure 8.26. The radius of the disk is y = e−x, so:

Volume of the slice ≈ �y2 Δx = �(e−x)2Δx,

Total volume ≈
∑

�y2Δx =
∑

� (e−x)
2 Δx.

As the thickness of each slice tends to zero, we get:

Total volume =
∫

1

0

�(e−x)2 dx = �
∫

1

0

e−2x dx = �

(

−
1

2

)

e−2x
|

|

|

|

1

0

= �

(

−
1

2

)

(e−2 − e0) =
�

2
(1 − e−2) ≈ 1.36.
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Figure 8.26: A thin strip rotated around the x-axis to form a circular slice Figure 8.27: A table leg

Example 2 A table leg in Figure 8.27 has a circular cross section with radius r cm at a height of y cm above the

ground given by r = 3 + cos(�y∕25). Find the volume of the table leg.

Solution The table leg is formed by rotating the curve r = 3+cos(�y∕25) around the y-axis. Slicing the table

leg horizontally gives circular disks of thickness Δy and radius r = 3 + cos(�y∕25).

To set up a definite integral for the volume, we find the volume of a typical slice:

Volume of slice ≈ �r2Δy = �

(

3 + cos
(

�

25
y

))2

Δy.

Summing over all slices gives the Riemann sum approximation:

Total volume =
∑

�

(

3 + cos
(

�

25
y

))2

Δy.

Taking the limit as Δy → 0 gives the definite integral:

Total volume = lim
Δy→0

∑

�

(

3 + cos
(

�

25
y

))2

Δy =
∫

100

0

�

(

3 + cos
(

�

25
y

))2

dy.

Evaluating the integral numerically gives:

Total volume =
∫

100

0

�

(

3 + cos
(

�

25
y

))2

dy = 2984.5 cm3.

Example 3 The region bounded by the curves y = x and y = x2 is rotated about the line y = 3. Compute the

volume of the resulting solid.

Figure 8.28: Cutaway view of volume

showing inner and outer radii

Figure 8.29: One slice (a

disk-with-a-hole)



438 Chapter 8 USING THE DEFINITE INTEGRAL

Solution The solid is shaped like a bowl with the base removed. See Figure 8.28. To compute the volume, we

divide the area in the xy-plane into thin vertical strips of thickness Δx, as in Figure 8.30.

1

1

3

x
✲ ✛
Δx

y

y = x

y = x2

✻

❄

rout = 3 − x2

y = 3

✻

❄

rin = 3 − x

Axis of rotation

Figure 8.30: The region for Example 3

As each strip is rotated around the line y = 3, it sweeps out a slice shaped like a circular disk with

a hole in it. See Figure 8.29. This disk-with-a-hole has an inner radius of rin = 3 − x and an outer

radius of rout = 3 − x2. Think of the slice as a circular disk of radius rout from which has been

removed a smaller disk of radius rin. Then:

Volume of slice ≈ �r2out Δx − �r2
in
Δx = �(3 − x2)2Δx − �(3 − x)2Δx.

Adding the volumes of all the slices, we have:

Total volume = V ≈
∑

(

�r2out − �r2
in

)

Δx =
∑

(

�(3 − x2)2 − �(3 − x)2
)

Δx.

We let Δx, the thickness of each slice, tend to zero to obtain a definite integral. Since the curves

y = x and y = x2 intersect at x = 0 and x = 1, these are the limits of integration:

V =
∫

1

0

(

�(3 − x2)2 − �(3 − x)2
)

dx = �
∫

1

0

(

(9 − 6x2 + x4) − (9 − 6x + x2)
)

dx

= �
∫

1

0

(6x − 7x2 + x4) dx = �

(

3x2 −
7x3

3
+

x5

5

)

|

|

|

|

1

0

≈ 2.72.

Volumes of Regions of Known Cross Section

We now calculate the volume of a solid constructed by a different method. Starting with a region in

the xy-plane as a base, the solid is built by standing squares, semicircles, or triangles vertically on

edge in this region.

Example 4 Find the volume of the solid whose base is the region in the xy-plane bounded by the curves y = x2

and y = 8 − x2 and whose cross-sections perpendicular to the x-axis are squares with one side in

the xy-plane. (See Figure 8.31.)
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Figure 8.31: The solid for Example 4 Figure 8.32: A slice of the solid for Example 4

Solution We view the solid as a loaf of bread sitting on the xy-plane and made up of square slices. A typical

slice of thickness Δx is shown in Figure 8.32. The side length, s, of the square is the distance (in the

y direction) between the two curves, so s = (8 − x2) − x2 = 8 − 2x2, giving

Volume of slice ≈ s2Δx = (8 − 2x2)2Δx.

Thus

Total volume = V ≈
∑

s2Δx =
∑

(8 − 2x2)2Δx.

As the thickness Δx of each slice tends to zero, the sum becomes a definite integral. Since the curves

y = x2 and y = 8 − x2 intersect at x = −2 and x = 2, these are the limits of integration. We have

V =
∫

2

−2

(8 − 2x2)2 dx =
∫

2

−2

(64 − 32x2 + 4x4) dx

=
(

64x −
32

3
x3 +

4

5
x5
)

|

|

|

|

2

−2

=
2048

15
≈ 136.5.

Arc Length

A definite integral can be used to compute the arc length, or length, of a curve. To compute the

length of the curve y = f (x) from x = a to x = b, where a < b, we divide the curve into small

pieces, each one approximately straight.

x

y = f (x)

✲✛ Δx

✻

❄

Δy ≈ f ′(x)Δx

Length ≈
√

1 + (f ′(x))2Δx

❘

Figure 8.33: Length of a small piece of curve approximated using Pythagoras’ theorem

Figure 8.33 shows that a small change Δx corresponds to a small change Δy ≈ f ′(x) Δx. The

length of the piece of the curve is approximated by

Length ≈
√

(Δx)2 + (Δy)2 ≈

√

(Δx)2 + (f ′(x) Δx)2 =
√

1 + (f ′(x))2Δx.
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Thus, the arc length of the entire curve is approximated by a Riemann sum:

Arc length ≈
∑

√

1 + (f ′(x))2 Δx.

Since x varies between a and b, as we let Δx tend to zero, the sum becomes the definite integral:

For a < b, the arc length of the curve y = f (x) from x = a to x = b is given by

Arc length =
∫

b

a

√

1 + (f ′(x))2 dx.

Example 5 Set up and evaluate an integral to compute the length of the curve y = x3 from x = 0 to x = 5.

Solution If f (x) = x3, then f ′(x) = 3x2, so

Arc length =
∫

5

0

√

1 + (3x2)2 dx.

Although the formula for the arc length of a curve is easy to apply, the integrands it generates

often do not have elementary antiderivatives. Evaluating the integral numerically, we find the arc

length to be 125.68. To check that the answer is reasonable, notice that the curve starts at (0, 0) and

goes to (5, 125), so its length must be at least the length of a straight line between these points, or
√

52 + 1252 = 125.10. (See Figure 8.34.)

5

125

x

y
y = x3

Length ≈ 125.10

Length ≈ 125.68❄ ✛

Figure 8.34: Arc length of y = x3 (Note: The picture is distorted because the

scales on the two axes are quite different.)

Distance and Arc Length on a Parametric Curve

A particle moving along a curve in the plane given by the parametric equations x = f (t), y = g(t),

where t is time, has velocity dx∕dt in the x-direction and dy∕dt in the y-direction. Thus its speed is

given by:

Speed =

√

(

dx

dt

)2

+

(

dy

dt

)2

.

We find the distance the particle moves along curve by integrating the speed, giving the following

result:
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If a particle’s position (x, y) is given by differentiable functions of time, t, for a ≤ t ≤ b, then

Distance traveled along curve =
∫

b

a

√

(

dx

dt

)2

+

(

dy

dt

)2

dt.

If the particle does not retrace any part of its path, then distance traveled is also the arc length

of the parametric curve.

Example 6 Find the circumference of the ellipse given by the parametric equations

x = 2 cos t, y = sin t, 0 ≤ t ≤ 2�.

Solution The parameterization goes once around the ellipse for 0 ≤ t ≤ 2�, so using numerical integration

we calculate:

Circumference =
∫

2�

0

√

(

dx

dt

)2

+

(

dy

dt

)2

dt =
∫

2�

0

√

(−2 sin t)2 + (cos t)2 dt

=
∫

2�

0

√

4 sin2 t + cos2 t dt = 9.69.

Since the ellipse is inscribed in a circle of radius 2 and circumscribes a circle of radius 1, we expect

the length of the ellipse to be between 2�(2) ≈ 12.57 and 2�(1) ≈ 6.28, so 9.69 is reasonable.

Example 7 At time t, with 0 ≤ t ≤ 1, a particle has position x = 4(t − t2) and y = 4(t − t2).

(a) Find the distance traveled by the particle during this time interval.

(b) How does your answer to part (a) relate to the length of the curve?

(c) What is the displacement of the particle between t = 0 and t = 1?

Solution (a) Since dx∕dt = 4(1 − 2t) and dy∕dt = 4(1 − 2t), we have

Distance traveled =
∫

1

0

√

(4(1 − 2t))2 + (4(1 − 2t))2 dt

= 4
√

2
∫

1

0

√

(1 − 2t)2 dt = 4
√

2
∫

1

0

|1 − 2t| dt = 2
√

2.

(b) The particle travels along the line y = x between (0, 0) and (1, 1). See Figure 8.35. The length

of this curve is
√

2, only half the answer to part (a). This is because the particle travels over the

line segment twice, once between t = 0 and t = 1∕2 and again in the other direction between

t = 1∕2 and t = 1.

(c) The displacement in both the x-direction and y-direction is 0, since the particle is at the same

point at t = 1 as at t = 0.

✒

✠(0, 0)

(1, 1)

t = 0
t = 1

t = 1∕2

x

y

Figure 8.35: Path of particle: x = y = 4(t − t2) for 0 ≤ t ≤ 1
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Summary for Section 8.2

• A solid of revolution is obtained by revolving a region in the plane around a line, for example

around the x-axis. Its volume can be obtained by the method of slicing perpendicular to the line.

• If the slice at position x is a disk of radius r(x), then its area is �r2 and

Volume of solid =
∫

b

a

�(r(x))2 dx.

• If the slice at position x is a disk of radius R(x) with a hole of radius r(x) removed, then its area

is �R2 − �r2 and

Volume of solid =
∫

b

a

�((R(x))2 − (r(x))2) dx.

• The arc length of the curve y = f (x) from x = a to x = b is

Arc length =
∫

b

a

√

1 + (f ′(x))2 dx.

• If the motion of a particle in the plane is given by parametric equations x = f (t), y = g(t) during

times a ≤ t ≤ b, then

Distance traveled =
∫

b

a

√

(

dx

dt

)2

+

(

dy

dt

)2

dt.

If the particle does not retrace any part of its path, then the distance traveled is also the arc

length of the parametric curve.

Exercises and Problems for Section 8.2 Online Resource: Additional Problems for Section 8.2
EXERCISES

1. (a) The region in Figure 8.36 is rotated around the x-

axis. Using the strip shown, write an integral giv-

ing the volume.

(b) Evaluate the integral.

Δx 3

6 y = 2x

x

y

Figure 8.36

2. (a) The region in Figure 8.37 is rotated around the x-

axis. Using the strip shown, write an integral giv-

ing the volume.

(b) Evaluate the integral.

Δx 6

9 y = −x2 + 6x

x

y

Figure 8.37

3. (a) The region in Figure 8.38 is rotated around the y-

axis. Using the strip shown, write an integral giv-

ing the volume.

(b) Evaluate the integral.

3

✻
❄Δy

9

y = x2

x

y

Figure 8.38

4. (a) The region in Figure 8.39 is rotated around the y-

axis. Write an integral giving the volume.

(b) Evaluate the integral.

3

Δy

6 y = 2x

x

y

Figure 8.39
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In Exercises 5–14, the region is rotated around the x-axis.

Find the volume.

5. Bounded by y = x2, y = 0, x = 0, x = 1.

6. Bounded by y = (x + 1)2, y = 0, x = 1, x = 2.

7. Bounded by y = 4 − x2, y = 0, x = −2, x = 0.

8. Bounded by y =
√

x + 1, y = 0, x = −1, x = 1.

9. Bounded by y = ex, y = 0, x = −1, x = 1.

10. Bounded by y = cos x, y = 0, x = 0, x = �∕2.

11. Bounded by y = 1∕(x + 1), y = 0, x = 0, x = 1.

12. Bounded by y =
√

cosh 2x, y = 0, x = 0, x = 1.

13. Bounded by y = x2, y = x, x = 0, x = 1.

14. Bounded by y = e3x, y = ex, x = 0, x = 1.

In Exercises 15–18, the region is rotated around the y-axis.

Write, then evaluate, an integral giving the volume.

15. Bounded by y = 3x, x = 0, y = 6.

16. Bounded by y = 3x, y = 0, x = 2.

17. Bounded by y = lnx, y = 0, x = 2.

18. Bounded by y = lnx, x = 0, y = ln 2 and y = 0.

For Exercises 19–24, find the arc length of the graph of the

function from x = 0 to x = 2.

19. f (x) = x2∕2 20. f (x) = cos x

21. f (x) = ln(x + 1) 22. f (x) =
√

x3

23. f (x) =
√

4 − x2 24. f (x) = cosh x

In Exercises 25–28, find the length of the parametric curve.

25. x = 3 + 5t, y = 1 + 4t for 1 ≤ t ≤ 2. Explain why your

answer is reasonable.

26. x = cos(et), y = sin(et) for 0 ≤ t ≤ 1. Explain why

your answer is reasonable.

27. x = cos(3t), y = sin(5t) for 0 ≤ t ≤ 2�.

28. x = cos3 t, y = sin3 t, for 0 ≤ t ≤ 2�.

PROBLEMS

In Problems 29–32, set up definite integral(s) to find the vol-

ume obtained when the region between y = x2 and y = 5x is

rotated about the given axis. Do not evaluate the integral(s).

29. The x-axis 30. The y-axis

31. The line y = −4 32. The line x = −3

In Problems 33–36 set up, but do not evaluate, an integral

that represents the volume obtained when the region in the

first quadrant is rotated about the given axis.

33. Bounded by y = 3
√

x, x = 4y. Axis x = 9.

34. Bounded by y = 3
√

x, x = 4y. Axis y = 3.

35. Bounded by y = 0, x = 9, y =
1

3
x. Axis y = −2.

36. Bounded by y = 0, x = 9, y =
1

3
x. Axis x = −1.

37. Find the length of one arch of y = sin x.

38. Find the perimeter of the region bounded by y = x and

y = x2.

39. (a) Find (in terms of a) the area of the region bounded

by y = ax2, the x-axis, and x = 2. Assume a > 0.

(b) If this region is rotated about the x-axis, find the

volume of the solid of revolution in terms of a.

40. (a) Find (in terms of b) the area of the region between

y = e−bx and the x-axis, between x = 0 and x = 1.

Assume b > 0.

(b) If this region is rotated about the x-axis, find the

volume of the solid of revolution in terms of b.

For Problems 41–43, sketch the solid obtained by rotating

each region around the indicated axis. Using the sketch,

show how to approximate the volume of the solid by a Rie-

mann sum, and hence find the volume.

41. Bounded by y = x3, x = 1, y = −1. Axis: y = −1.

42. Bounded by y =
√

x, x = 1, y = 0. Axis: x = 1.

43. Bounded by the first arch of y = sinx, y = 0. Axis: x

axis.

Problems 44–49 concern the region bounded by y = x2,

y = 1, and the y-axis, for x ≥ 0. Find the volume of the

solid.

44. The solid obtained by rotating the region around the y-

axis.

45. The solid obtained by rotating the region about the x-

axis.

46. The solid obtained by rotating the region about the line

y = −2.

47. The solid whose base is the region and whose cross-

sections perpendicular to the x-axis are squares.

48. The solid whose base is the region and whose cross-

sections perpendicular to the x-axis are semicircles.

49. The solid whose base is the region and whose cross-

sections perpendicular to the y-axis are equilateral tri-

angles.

For Problems 50–54 consider the region bounded by y = ex,

the x-axis, and the lines x = 0 and x = 1. Find the volume

of the solid.

50. The solid obtained by rotating the region about the x-

axis.
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51. The solid obtained by rotating the region about the hor-

izontal line y = −3.

52. The solid obtained by rotating the region about the hor-

izontal line y = 7.

53. The solid whose base is the given region and whose

cross-sections perpendicular to the x-axis are squares.

54. The solid whose base is the given region and whose

cross-sections perpendicular to the x-axis are semicir-

cles.

In Problems 55–58, the region is rotated around the y-axis.

Write, then evaluate, an integral or sum of integrals giving

the volume.

55. Bounded by y = 2x, y = 6 − x, y = 0.

56. Bounded by y = 2x, y = 6 − x, x = 0.

57. Bounded by y =
√

x, y = 2 −
√

x, y = 0.

58. Bounded by y =
√

x, y = 2 −
√

x, x = 0.

59. Consider the hyperbola x2 − y2 = 1 in Figure 8.40.

(a) The shaded region 2 ≤ x ≤ 3 is rotated around the

x-axis. What is the volume generated?

(b) What is the arc length with y ≥ 0 from x = 2 to

x = 3?

−3 −2 −1 1 2 3
x

y

Figure 8.40

60. Rotating the ellipse x2∕a2+y2∕b2 = 1 about the x-axis

generates an ellipsoid. Compute its volume.

61. Rotating the asteroid x2∕3 + y2∕3 = a2∕3 in Figure 8.41

about the x-axis generates a star-shaped solid. Compute

its volume.

−a a

−a

a

x

y

Figure 8.41

62. (a) A pie dish with straight sides is 9 inches across the

top, 7 inches across the bottom, and 3 inches deep.

See Figure 8.42. Compute the volume of this dish.

(b) Make a rough estimate of the volume in cubic

inches of a single cut-up apple, and estimate the

number of apples needed to make an apple pie that

fills this dish.

Figure 8.42

63. The design of boats is based on Archimedes’ Principle,

which states that the buoyant force on an object in water

is equal to the weight of the water displaced. Suppose

you want to build a sailboat whose hull is parabolic with

cross-section y = ax2, where a is a constant. Your boat

will have length L and its maximum draft (the max-

imum vertical depth of any point of the boat beneath

the water line) will be H . See Figure 8.43. Every cu-

bic meter of water weighs 10,000 newtons. What is the

maximum possible weight for your boat and cargo?

Figure 8.43

64. The region bounded by y = f (x) = 1∕x, the x-axis, and

the lines x = 1 and x = 2 is rotated about the x-axis,

forming a solid. Give an overestimate of its volume us-

ing a left-hand sum of two cylindrical slices of equal

thickness Δx = 0.5.

65. A tree trunk has a circular cross-section at every height;

its circumference is given in the following table. Esti-

mate the volume of the tree trunk using the trapezoid

rule.

Height (feet) 0 20 40 60 80 100 120

Circumference (feet) 26 22 19 14 6 3 1
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66. The circumference of a tree at different heights above

the ground is given in the table below. Assume that all

horizontal cross-sections of the tree are circles. Esti-

mate the volume of the tree.

Height (inches) 0 20 40 60 80 100 120

Circumference (inches) 31 28 21 17 12 8 2

67. Compute the perimeter of the region used for the base

of the solids in Problems 50–54.

68. (a) Use the following steps to estimate the arc length

of the curve y = f (x) = 2−x from x = 0 to x = 1.

(i) Graph y = f (x) for 0 ≤ x ≤ 1.

(ii) Sketch the line segment from (0, f (0)) to

(0.5, f (0.5)). What is its length?

(iii) Sketch the line segment from (0.5, f (0.5)) to

(1.0, f (1.0)). What is its length?

(iv) The sum of the lengths of the line segments

in (ii) and (iii) approximates the arc length of

the curve on this interval. Find this approxi-

mation. Is it an under- or overestimate?

(b) Is the estimate using a single line segment from

(0, f (0)) to (1, f (1)) more or less accurate than the

one found in part (a)?

69. Write an integral that represents the arc length of the

portion of the graph of f (x) = −x(x−4) that lies above

the x-axis. Do not evaluate the integral.

70. Find a curve y = g(x), such that when the region be-

tween the curve and the x-axis for 0 ≤ x ≤ � is re-

volved around the x-axis, it forms a solid with volume

given by

∫

�

0

�(4 − 4 cos2 x) dx.

[Hint: Use the identity sin2 x = 1 − cos2 x.]

In Problems 71–72, a hemisphere of radius a has its base on

the xy-plane, centered at the origin; the z-axis is vertically

upward. Using the given slices,

(a) Write an expression for the volume of a slice.

(b) Write an integral giving the volume of the hemisphere.

(c) Calculate the integral.

71. Vertical slices perpendicular to the x-axis.

72. Horizontal slices perpendicular to the z-axis.

In Problems 73–74, find the volume of the solid whose base

is the region in the first quadrant bounded by y = 4−x2, the

x-axis, and the y-axis, and whose cross-section in the given

direction is an equilateral triangle. Include a sketch of the

region and show how to find the area of a triangular cross-

section.

73. Perpendicular to the x-axis.

74. Perpendicular to the y-axis.

75. For k > 0, the volume of the solid created by rotating

the region bounded by y = kx(x − 2) and the x-axis

between x = 0 and x = 2 around the x-axis is 192�∕5.

Find k.

76. A particle moves in the xy-plane along the elliptical

path x = 2 cos t, y = sin t, where x and y are in cm

and 0 ≤ t ≤ �. Find the distance traveled by the parti-

cle.

77. A projectile moves along a path x = 20t , y = 20t −

4.9t2, where t is time in seconds, 0 ≤ t ≤ 5, and x and

y are in meters. Find the total distance traveled by the

projectile.

78. A small plane flies in a sinusoidal pattern at a con-

stant altitude over a river. The path of the plane is

y = 0.1 sin(30x), where 0 ≤ x ≤ 10 for x and y in

km. Find the total distance traveled by the plane during

the flight.

79. The arc length of y = f (x) from x = 2 to x = 12 is 20.

Find the arc length of g(x) = 4f (0.25x+1) from x = 4

to x = 44.

80. A particle starts at the origin and moves along the curve

y = 2x3∕2∕3 in the positive x-direction at a speed of 3

cm/sec, where x, y are in cm. Find the position of the

particle at t = 6.

81. A particle’s position along a circular path at time t with

0 ≤ t ≤ 3 is given by x = cos(�t) and y = sin(�t).

(a) Find the distance traveled by the particle over this

time interval.

(b) How does your answer in part (a) relate to the cir-

cumference of the circle?

(c) What is the particle’s displacement between t = 0

and t = 3?

82. A particle moves with velocity dx∕dt in the x-direction

and dy∕dt in the y-direction at time t in seconds, where

dx

dt
= − sin t and

dy

dt
= cos t.

(a) Find the change in position in the x and y-

coordinates between t = 0 and t = �.

(b) If the particle passes through (2, 3) at t = 0, find

its position at t = �.

(c) Find the distance traveled by the particle from time

t = 0 to t = �.

83. A particle moves with velocity dx∕dt in the x-direction

and dy∕dt in the y-direction at time t in seconds, where

dx

dt
= 3t2 and

dy

dt
= 12t.

(a) Find the change in position in the x and y-

coordinates between t = 0 and t = 3.

(b) If the particle passes through (−7, 11) at t = 0, find

its position at t = 3.

(c) Find the distance traveled by the particle from time

t = 0 to t = 3.
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84. An airplane takes off at t = 0 hours flying due north. It

takes 24 minutes for the plane to reach cruising altitude,

and during this time its ground speed (or horizontal ve-

locity), in mph, is

dx

dt
= 1250 −

1050

t + 1

and its vertical velocity, in mph, is

dy

dt
= −625t2 + 250t.

(a) What is the cruising altitude of the plane?

(b) What is the ground distance (or horizontal dis-

tance) covered from take off until cruising altitude?

(c) Find the total distance traveled by the plane from

take off until cruising altitude.

85. Rotate the bell-shaped curve y = e−x
2∕2 shown in Fig-

ure 8.44 around the y-axis, forming a hill-shaped solid

of revolution. By slicing horizontally, find the volume

of this hill.

1
y

x

y = e−x
2∕2

Figure 8.44

86. A bowl has the shape of the graph of y = x4 between the

points (1, 1) and (−1, 1) rotated about the y-axis. When

the bowl contains water to a depth of ℎ units, it flows

out through a hole in the bottom at a rate (volume/time)

proportional to
√

ℎ, with constant of proportionality 6.

(a) Show that the water level falls at a constant rate.

(b) Find how long it takes to empty the bowl if it is

originally full to the brim.

87. The hull of a boat has widths given by the following ta-

ble. Reading across a row of the table gives widths at

points 0, 10, . . . , 60 feet from the front to the back at a

certain level below waterline. Reading down a column

of the table gives widths at levels 0, 2, 4, 6, 8 feet be-

low waterline at a certain distance from the front. Use

the trapezoidal rule to estimate the volume of the hull

below waterline.

Front of boat ⟶ Back of boat

0 10 20 30 40 50 60

0 2 8 13 16 17 16 10

Depth 2 1 4 8 10 11 10 8

below 4 0 3 4 6 7 6 4

waterline 6 0 1 2 3 4 3 2

(in feet) 8 0 0 1 1 1 1 1

88. (a) Write an integral which represents the circumfer-

ence of a circle of radius r.

(b) Evaluate the integral, and show that you get the an-

swer you expect.

89. Find a curve y = f (x) whose arc length from x = 1 to

x = 4 is given by

∫

4

1

√

1 +
√

x dx.

90. Write a simplified expression that represents the arc

length of the concave-down portion of the graph of

f (x) = e−x
2
. Do not evaluate your answer.

91. Write an expression for the arc length of the portion of

the graph of f (x) = x4 − 8x3 + 18x2 + 3x + 7 that is

concave down. Do not simplify or evaluate the answer.

92. With x and b in meters, a chain hangs in the shape of

the catenary cosh x =
1

2
(ex + e−x) for −b ≤ x ≤ b. If

the chain is 10 meters long, how far apart are its ends?

93. The path of a robotic camera inspecting a suspension

bridge cable is y = a(ex∕a + e−x∕a)∕2 for −5 ≤ x ≤ 5

with a constant. Find, but do not evaluate, an integral

that gives the distance traveled by the camera.

Strengthen Your Understanding

In Problems 94–97, explain what is wrong with the state-

ment.

94. The solid obtained by rotating the region bounded by

the curves y = 2x and y = 3x between x = 0 and x = 5

around the x-axis has volume ∫
5

0
�(3x − 2x)2 dx.

95. The arc length of the curve y = sinx from x = 0 to

x = �∕4 is ∫
�∕4

0

√

1 + sin2 xdx.

96. The arc length of the curve y = x5 between x = 0 and

x = 2 is less than 32.

97. The circumference of a circle with parametric equations

x = cos(2�t), y = sin(2�t) is

∫

2

0

√

(−2� sin(2�t))2 + (2� cos(2�t))2 dt.

In Problems 98–101, give an example of:

98. A region in the plane which gives the same volume

whether rotated about the x-axis or the y-axis.

99. A region where the solid obtained by rotating the region

around the x-axis has greater volume than the solid ob-

tained by revolving the region around the y-axis.

100. Two different curves from (0, 0) to (10, 0) that have the

same arc length.

101. A function f (x) whose graph passes through the points

(0, 0) and (1, 1) and whose arc length between x = 0

and x = 1 is greater than
√

2.
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Are the statements in Problems 102–105 true or false? If a

statement is true, explain how you know. If a statement is

false, give a counterexample.

102. Of two solids of revolution, the one with the greater vol-

ume is obtained by revolving the region in the plane

with the greater area.

103. If f is differentiable on the interval [0, 10], then the arc

length of the graph of f on the interval [0, 1] is less than

the arc length of the graph of f on the interval [1, 10].

104. If f is concave up for all x and f ′(0) = 3∕4, then the

arc length of the graph of f on the interval [0, 4] is at

least 5.

105. If f is concave down for all x and f ′(0) = 3∕4, then

the arc length of the graph of f on the interval [0, 4] is

at most 5.

8.3 AREA AND ARC LENGTH IN POLAR COORDINATES

Many curves and regions in the plane are easier to describe in polar coordinates than in Cartesian

coordinates. Thus their areas and arc lengths are best found using integrals in polar coordinates.

A point, P , in the plane is often identified by its Cartesian coordinates (x, y), where x is the

horizontal distance to the point from the origin and y is the vertical distance.2 Alternatively, we

can identify the point, P , by specifying its distance, r, from the origin and the angle, �, shown in

Figure 8.45. The angle � is measured counterclockwise from the positive x-axis to the line joining

P to the origin. The labels r and � are called the polar coordinates of point P .

✻

❄

y

✲✛ x

(x, y)
P

y

x

r

�

Figure 8.45: Cartesian and polar coordinates for

the point P

−5 3

−5

4

6 P

QR

U

V

x

y

Figure 8.46: Points on the plane for

Example 1

Relation Between Cartesian and Polar Coordinates

From the right triangle in Figure 8.45, we see that

∙ x = r cos � and y = r sin �

∙ r =
√

x2 + y2 and tan � =
y

x
, x ≠ 0

The angle � is determined by the equations cos � = x∕
√

x2 + y2 and sin � = y∕
√

x2 + y2.

Warning: In general � ≠ tan−1(y∕x). It is not possible to determine which quadrant � is in from

the value of tan � alone.

Example 1 (a) Give Cartesian coordinates for the points with polar coordinates (r, �) given by P = (7, �∕3),

Q = (5, 0), R = (5, �).

(b) Give polar coordinates for the points with Cartesian coordinates (x, y) given by U = (3, 4) and

V = (0,−5).

Solution (a) See Figure 8.46. Point P is a distance of 7 from the origin. The angle � is �∕3 radians (60◦).

The Cartesian coordinates of P are

x = r cos � = 7 cos
�

3
=

7

2
and y = r sin � = 7 sin

�

3
=

7
√

3

2
.

2Cartesian coordinates can also be called rectangular coordinates.
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Point Q is located a distance of 5 units along the positive x-axis with Cartesian coordinates

x = r cos � = 5 cos 0 = 5 and y = r sin � = 5 sin 0 = 0.

For point R, which is on the negative x-axis,

x = r cos � = 5 cos� = −5 and y = r sin � = 5 sin� = 0.

(b) For U = (3, 4), we have r =
√

32 + 42 = 5 and tan � = 4∕3. A possible value for � is � =

arctan 4∕3 = 0.927 radians, or about 53◦. The polar coordinates of U are (5, 0.927). The point

V falls on the negative y-axis, so we can choose r = 5, � = 3�∕2 for its polar coordinates. In

this case, we cannot use tan � = y∕x to find �, because tan � = y∕x = −5∕0 is undefined.

Because the angle � can be allowed to wrap around the origin more than once, there are many

possibilities for the polar coordinates of a point. For the point V in Example 1, we can also choose

� = −�∕2 or � = 7�∕2, so that (5,−�∕2), (5, 7�∕2), and (5, 3�∕2) are all polar coordinates for V .

However, we often choose � between 0 and 2�.

Example 2 Give three possible sets of polar coordinates for the point P in Figure 8.47.

2 4

3�∕4
�∕2

�∕4

0

7�∕4
3�∕2

5�∕4

�

P

Figure 8.47

Solution Because r = 3 and � = �∕4, one set of polar coordinates for P is (3, �∕4). We can also use � =

�∕4 + 2� = 9�∕4 and � = �∕4 − 2� = −7�∕4, to get (3, 9�∕4) and (3,−7�∕4).

Graphing Equations in Polar Coordinates

The equations for certain graphs are much simpler when expressed in polar coordinates than in Carte-

sian coordinates. On the other hand, some graphs that have simple equations in Cartesian coordinates

have complicated equations in polar coordinates.

Example 3 (a) Describe in words the graphs of the equation y = 1 (in Cartesian coordinates) and the equation

r = 1 (in polar coordinates).

(b) Write the equation r = 1 using Cartesian coordinates. Write the equation y = 1 using polar

coordinates.

Solution (a) The equation y = 1 describes a horizontal line. Since the equation y = 1 places no restrictions

on the value of x, it describes every point having a y-value of 1, no matter what the value of

its x-coordinate. Similarly, the equation r = 1 places no restrictions on the value of �. Thus, it

describes every point having an r-value of 1, that is, having a distance of 1 from the origin. This

set of points is the unit circle. See Figure 8.48.
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r = 1

y

x

y = 1

Figure 8.48: The graph of the equation r = 1 is the unit circle because

r = 1 for every point regardless of the value of �. The graph of y = 1

is a horizontal line since y = 1 for any x

� 2�

−3�

2

�

2

5�

2

r = �

x

y

Figure 8.49: A graph of the

Archimedean spiral r = �

(b) Since r =
√

x2 + y2, we rewrite the equation r = 1 using Cartesian coordinates as
√

x2 + y2 =

1, or, squaring both sides, as x2 + y2 = 1. We see that the equation for the unit circle is simpler

in polar coordinates than it is in Cartesian coordinates.

On the other hand, since y = r sin �, we can rewrite the equation y = 1 in polar coordinates

as r sin � = 1, or, dividing both sides by sin �, as r = 1∕ sin �. We see that the equation for this

horizontal line is simpler in Cartesian coordinates than in polar coordinates.

Example 4 Graph the equation r = �. The graph is called an Archimedean spiral after the Greek mathematician

Archimedes who described its properties (although not by using polar coordinates).

Solution To construct this graph, use the values in Table 8.1. To help us visualize the shape of the spiral, we

convert the angles in Table 8.1 to degrees and the r-values to decimals. See Table 8.2.

Table 8.1 Points on the Archimedean spiral r = �, with � in radians

� 0
�

6

�

3

�

2

2�

3

5�

6
�

7�

6

4�

3

3�

2

r 0
�

6

�

3

�

2

2�

3

5�

6
�

7�

6

4�

3

3�

2

Table 8.2 Points on the Archimedean spiral r = �, with � in degrees

� 0 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦

r 0.00 0.52 1.05 1.57 2.09 2.62 3.14 3.67 4.19 4.71

Notice that as the angle � increases, points on the curve move farther from the origin. At 0◦, the

point is at the origin. At 30◦, it is 0.52 units away from the origin, at 60◦ it is 1.05 units away, and

at 90◦ it is 1.57 units away. As the angle winds around, the point traces out a curve that moves away

from the origin, giving a spiral. (See Figure 8.49.)

In our definition, r is positive. However, graphs of curves in polar coordinates are traditionally

drawn using negative values of r as well, because this makes the graphs symmetric. If an equation

r = f (�) gives a negative r-value, it is plotted in the opposite direction to �. See Examples 5 and 6

and Figures 8.50 and 8.52.
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Example 5 For a > 0 and n a positive integer, curves of the form r = a sin n� or r = a cos n� are called roses.

Graph the roses

(a) r = 3 sin 2� (b) r = 4 cos 3�

Solution (a) Using a calculator or making a table of values, we see that the graph is a rose with four petals,

each extending a distance of 3 from base to tip. See Figure 8.50. Negative values of r for �∕2 <

� < � and 3�∕2 < � < 2� give the petals in Quadrants II and IV. For example, � = 3�∕4 gives

r = −3, which is plotted 3 units from the origin in the direction opposite to � = 3�∕4, namely

in Quadrant IV.

(b) The graph is a rose with three petals, each extending 4 from base to tip. See Figure 8.51.

r = 3 sin 2�

x

y

Figure 8.50: Graph of r = 3 sin 2�

(petals in Quadrants II and IV have r < 0)

r = 4 cos 3�

x

y

Figure 8.51: Graph of r = 4 cos 3�

Example 6 Curves of the form r = a + b sin � or r = a + b cos � are called limaçons. Graph r = 1 + 2 cos � and

r = 3 + 2 cos �.

Solution See Figures 8.52 and 8.53. The equation r = 1+2 cos � leads to negative r values for some � values

between �∕2 and 3�∕2; these values give the inner loop in Figure 8.52. For example, � = � gives

r = −1, which is plotted 1 unit from the origin in the direction opposite to � = �, namely on the

positive x-axis. The equation r = 3 + 2 cos � does not lead to negative r-values.

r = 1 + 2 cos �

x

y

Figure 8.52: Graph of r = 1 + 2 cos �

(inner loop has r < 0)

r = 3 + 2 cos �

x

y

Figure 8.53: Graph of r = 3 + 2 cos �

Polar coordinates can be used with inequalities to describe regions that are obtained from circles.

Such regions are often much harder to represent in Cartesian coordinates.
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Example 7 Using inequalities, describe a compact disc with outer diameter 120 mm and inner diameter 15 mm.

Solution The compact disc lies between two circles of radius 7.5 mm and 60 mm. See Figure 8.54. Thus, if

the origin is at the center, the disc is represented by

7.5 ≤ r ≤ 60 and 0 ≤ � ≤ 2�.

60 mm

■
7.5 mm

x

y

Figure 8.54: Compact disc

�∕6

9′′

x

y

Figure 8.55: Pizza slice

Example 8 An 18-inch pizza is cut into 12 slices. Use inequalities to describe one of the slices.

Solution The pizza has radius 9 inches; the angle at the center is 2�∕12 = �∕6. See Figure 8.55. Thus, if the

origin is at the center of the original pizza, the slice is represented by

0 ≤ r ≤ 9 and 0 ≤ � ≤
�

6
.

Area in Polar Coordinates

We can use a definite integral to find the area of a region described in polar coordinates. As previ-

ously, we slice the region into small pieces, construct a Riemann sum, and take a limit to obtain the

definite integral. In this case, the slices are approximately circular sectors.

To calculate the area of the sector in Figure 8.56, we think of the area of the sector as a fraction

�∕2� of the area of the entire circle (for � in radians). Then

Area of sector =
�

2�
⋅ �r2 =

1

2
r2�.

�

r

Figure 8.56: Area of shaded sector

=
1

2
r2� (for � in radians)

�

❄

Δ�

x

y

Figure 8.57: Finding the area of the

limaçon r = 3 + 2 cos �
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Example 9 Use circular sectors to set up a definite integral to calculate the area of the region bounded by the

limaçon r = 3 + 2 cos �, for 0 ≤ � ≤ 2�. See Figure 8.57.

Solution The slices are not exactly circular sectors because the radius r depends on �. However,

Area of sector ≈
1

2
r2Δ� =

1

2
(3 + 2 cos �)2Δ�.

Thus, for the whole area,

Area of region ≈
∑ 1

2
(3 + 2 cos �)2Δ�.

Taking the limit as n → ∞ and Δ� → 0 gives the integral

Area =
∫

2�

0

1

2
(3 + 2 cos �)2 d�.

To compute this integral, we expand the integrand and use integration by parts or formula IV-18

from the table of integrals:

Area =
1

2 ∫

2�

0

(9 + 12 cos� + 4 cos2 �) d�

=
1

2

(

9� + 12 sin � +
4

2
(cos � sin � + �)

)

|

|

|

|

2�

0

=
1

2
(18� + 0 + 4�) = 11�.

The reasoning in Example 9 suggests a general area formula.

For a curve r = f (�), with f (�) ≥ 0, the area in Figure 8.58 is given by

Area of region enclosed =
1

2 ∫

�

�

f (�)2 d�.

�

r = f (�)

�
x

y

Figure 8.58: Area in polar

coordinates

r = 3 sin 2�

x

y

Figure 8.59: One petal of the rose

r = 3 sin 2� with 0 ≤ � ≤ �∕2

Example 10 Find the area of one petal of the four-petal rose r = 3 sin 2� in Figure 8.59.
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Solution The petal in the first quadrant is described by r = 3 sin 2� for 0 ≤ � ≤ �∕2, so

Area of shaded region =
1

2 ∫

�∕2

0

(3 sin 2�)2 d� =
9

2 ∫

�∕2

0

sin2 2� d�.

Using the substitution w = 2�, we rewrite the integral and use integration by parts or formula IV-17

from the table of integrals:

Area =
9

2 ∫

�∕2

0

sin2 2� d� =
9

4 ∫

�

0

sin2wdw

=
9

4

(

−
1

2
cosw sinw +

1

2
w

)

|

|

|

|

�

0

=
9

4
⋅

�

2
=

9�

8
.

Slope in Polar Coordinates

For a curve r = f (�), we can express x and y in terms of � as a parameter, giving

x = r cos � = f (�) cos � and y = r sin � = f (�) sin �.

To find the slope of the curve, we use the formula for the slope of a parametric curve

dy

dx
=

dy∕d�

dx∕d�
.

Example 11 Find the slope of the curve r = 3 sin 2� at � = �∕3.

Solution Expressing x and y in terms of �, we have

x = 3 sin(2�) cos � and y = 3 sin(2�) sin �.

The slope is given by
dy

dx
=

6 cos(2�) sin � + 3 sin(2�) cos�

6 cos(2�) cos � − 3 sin(2�) sin �
.

At � = �∕3, we have

dy

dx

|

|

|

|�=�∕3

=
6(−1∕2)(

√

3∕2) + 3(
√

3∕2)(1∕2)

6(−1∕2)(1∕2) − 3(
√

3∕2)(
√

3∕2)
=

√

3

5
.
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Arc Length in Polar Coordinates

We can calculate the arc length of the curve r = f (�) by expressing x and y in terms of � as a

parameter

x = f (�) cos � y = f (�) sin �

and using the formula for the arc length of a parametric curve:

Arc length =
∫

�

�

√

(

dx

d�

)2

+

(

dy

d�

)2

d�.

The calculations may be simplified by using the alternate form of the arc length integral in Prob-

lem 47.

Example 12 Find the arc length of one petal of the rose r = 3 sin 2� for 0 ≤ � ≤ �∕2. See Figure 8.59.

Solution The curve is given parametrically by

x = 3 sin(2�) cos � and y = 3 sin(2�) sin �.

Thus, calculating dx∕d� and dy∕d� and evaluating the integral on a calculator, we have:

Arc length =
∫

�∕2

0

√

(6 cos(2�) cos� − 3 sin(2�) sin �)2 + (6 cos(2�) sin � + 3 sin(2�) cos �)2 d�

= 7.266.

Summary for Section 8.3

• Cartesian coordinates (x, y) and polar coordinates (r, �) satisfy the equations

∙ x = r cos � and y = r sin �

∙ r =
√

x2 + y2 and tan � =
y

x
, x ≠ 0

∙ cos � = x∕
√

x2 + y2 and sin � = y∕
√

x2 + y2

• Some graphs, like roses and spirals, with simple polar coordinate equations r = f (�) are difficult

to describe in Cartesian coordinates.

• Consider the region between the curve r = f (�) and the rays � = � and � = �. Assuming

f (�) ≥ 0, we have

Area of region =
1

2 ∫

�

�

f (�)2 d�.

• The curve r = f (�) can also be given by the parametric equations

x = f (�) cos � y = f (�) cos �.

◦ The slope of the curve is
dy

dx
=

dy∕d�

dx∕d�
.

◦ Its arc length from � = � to � = � is

Arc length =
∫

�

�

√

(

dx

d�

)2

+

(

dy

d�

)2

d�.
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Exercises and Problems for Section 8.3

EXERCISES

Convert the polar coordinates in Exercises 1–4 to Cartesian

coordinates. Give exact answers.

1. (1, 2�∕3) 2. (
√

3,−3�∕4)

3. (2
√

3,−�∕6) 4. (2, 5�∕6)

Convert the Cartesian coordinates in Exercises 5–8 to polar

coordinates.

5. (1, 1) 6. (−1, 0)

7. (
√

6,−
√

2) 8. (−
√

3, 1)

9. (a) Make a table of values for the equation r = 1 −

sin �. Include � = 0, �∕3, �∕2, 2�∕3, �, ….

(b) Use the table to graph the equation r = 1− sin � in

the xy-plane. This curve is called a cardioid.

(c) At what point(s) does the cardioid r = 1−sin � in-

tersect a circle of radius 1/2 centered at the origin?

(d) Graph the curve r = 1 − sin 2� in the xy-plane.

Compare this graph to the cardioid r = 1 − sin �.

10. Graph the equation r = 1 − sin(n�), for n = 1, 2, 3, 4.

What is the relationship between the value of n and the

shape of the graph?

11. Graph the equation r = 1 − sin �, with 0 ≤ � ≤ n�, for

n = 2, 3, 4. What is the relationship between the value

of n and the shape of the graph?

12. Graph the equation r = 1−n sin �, for n = 2, 3, 4. What

is the relationship between the value of n and the shape

of the graph?

13. Graph the equation r = 1−cos �. Describe its relation-

ship to r = 1 − sin �.

14. Give inequalities that describe the flat surface of a

washer that is one inch in diameter and has an inner

hole with a diameter of 3/8 inch.

15. Graph the equation r = 1 − sin(2�) for 0 ≤ � ≤ 2�.

There are two loops. For each loop, give a restriction

on � that shows all of that loop and none of the other

loop.

16. A slice of pizza is one eighth of a circle of radius 1 foot.

The slice is in the first quadrant, with one edge along the

x-axis, and the center of the pizza at the origin. Give in-

equalities describing this region using:

(a) Polar coordinates (b) Rectangular coordinates

In Exercises 17–19, give inequalities for r and � which de-

scribe the following regions in polar coordinates.

17.

(2, 2)

(3, 3)

y = x

Circular
arcs

✕
❯

x

y

18.

✛ Circular
arc

(
√

3, 1)

(
√

3,−1)

y

x

19.

1 2

1

✒
Circular

arc

Note: Region extends indefinitely
in the y-direction.

x

y

20. Find the slope of the curve r = 2 at � = �∕4.

21. Find the slope of the curve r = e� at � = �∕2.

22. Find the slope of the curve r = 1 − cos � at � = �∕2.

23. Find the arc length of the curve r = e� from � = �∕2

to � = �.

24. Find the arc length of the curve r = �2 from � = 0 to

� = 2�.

PROBLEMS

25. (a) Sketch the region 3 ≤ r ≤ 4, �∕4 ≤ � ≤ 3�∕4.

(b) Use geometry to find the area of the region.

(c) Use geometry to find the perimeter of the region.

26. (a) Sketch the region 0 ≤ r ≤ 4, 3�∕4 ≤ � ≤ 5�∕4.

(b) Use geometry to find the area of the region.

(c) Use geometry to find the perimeter of the region.
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27. Sketch the polar region described by the following in-

tegral expression for area:

1

2 ∫

�∕3

0

sin2(3�) d�.

28. Find the area inside the spiral r = � for 0 ≤ � ≤ 2�.

29. Find the area between the two spirals r = � and r = 2�

for 0 ≤ � ≤ 2�.

30. Find the area inside the cardioid r = 1 + cos � for

0 ≤ � ≤ 2�.

31. (a) In polar coordinates, write equations for the line

x = 1 and the circle of radius 2 centered at the

origin.

(b) Write an integral in polar coordinates representing

the area of the region to the right of x = 1 and

inside the circle.

(c) Evaluate the integral.

32. Show that the area formula for polar coordinates gives

the expected answer for the area of the circle r = a for

0 ≤ � ≤ 2�.

33. Show that the arc length formula for polar coordinates

gives the expected answer for the circumference of the

circle r = a for 0 ≤ � ≤ 2�.

34. Find the area inside the circle r = 1 and outside the

cardioid r = 1 + sin �.

35. Find the area inside the cardioid r = 1 − sin � and out-

side the circle r = 1∕2.

36. Find the area lying outside r = 2 cos � and inside

r = 1 + cos �.

37. (a) Graph r = 2 cos � and r = 2 sin � on the same axes.

(b) Using polar coordinates, find the area of the region

shared by both curves.

38. For what value of a is the area enclosed by r = �, � = 0,

and � = a equal to 1?

39. (a) Sketch the bounded region inside the lemniscate

r2 = 4 cos 2� and outside the circle r =
√

2.

(b) Compute the area of the region described in

part (a).

40. Using Example 11 on page 453, find the equation of the

tangent line to the curve r = 3 sin 2� at � = �∕3.

41. Using Example 11 on page 453 and Figure 8.50, find

the points where the curve r = 3 sin 2� has horizontal

and vertical tangents.

42. For what values of � on the polar curve r = �, with

0 ≤ � ≤ 2�, are the tangent lines horizontal? Vertical?

43. (a) In Cartesian coordinates, write an equation for the

tangent line to r = 1∕� at � = �∕2.

(b) The graph of r = 1∕� has a horizontal asymptote

as � approaches 0. Find the equation of this asymp-

tote.

44. Find the maximum value of the y-coordinate of points

on the limaçon r = 1 + 2 cos �.

Find the arc length of the curves in Problems 45–46.

45. r = �, 0 ≤ � ≤ 2�

46. r = 1∕�, � ≤ � ≤ 2�

47. For the curve r = f (�) from � = � to � = �, show that

Arc length =
∫

�

�

√

(f ′(�))2 + (f (�))2 d�.

48. Find the arc length of the spiral r = � where 0 ≤ � ≤ �.

49. Find the arc length of part of the cardioid r = 1+ cos �

where 0 ≤ � ≤ �∕2.

Strengthen Your Understanding

In Problems 50–53, explain what is wrong with the state-

ment.

50. The point with Cartesian coordinates (x, y) has polar

coordinates r =
√

x2 + y2, � = tan−1(y∕x).

51. All points of the curve r = sin(2�) for �∕2 < � < � are

in quadrant II.

52. If the slope of the curve r = f (�) is positive, then

dr∕d� is positive.

53. Any polar curve that is symmetric about both the x and

y axes must be a circle, centered at the origin.

In Problems 54–57, give an example of:

54. Two different pairs of polar coordinates (r, �) that cor-

respond to the same point in the plane.

55. The equation of a circle in polar coordinates.

56. A polar curve r = f (�) that is symmetric about neither

the x-axis nor the y-axis.

57. A polar curve r = f (�) other than a circle that is sym-

metric about the x-axis.

8.4 DENSITY AND CENTER OF MASS

Density and How to Slice a Region

The examples in this section involve the idea of density. For example,

• A population density is measured in, say, people per mile (along the edge of a road), or people

per unit area (in a city), or bacteria per cubic centimeter (in a test tube).
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• The density of a substance (e.g. air, wood, or metal) is the mass of a unit volume of the substance

and is measured in, say, grams per cubic centimeter.

Suppose we want to calculate the total mass or total population, but the density is not constant over

a region.

To find total quantity from density: Divide the region into small pieces in such a way that

the density is approximately constant on each piece, and add the contributions of the pieces.

Example 1 The Massachusetts Turnpike (“the Pike”) starts in the middle of Boston and heads west. The number

of people living next to it varies as it gets farther from the city. Suppose that, x miles out of town,

the population density adjacent to the Pike is P = f (x) people/mile. Express the total population

living next to the Pike within 5 miles of Boston as a definite integral.

Solution Divide the Pike into segments of length Δx. The population density at the center of Boston is f (0);

let’s use that density for the first segment. This gives an estimate of

People living in first segment ≈ f (0) people∕ mile ⋅ Δxmile = f (0)Δx people.

Points west
5

Boston
0

✲✛
Δx

✲✛ x

Population ≈ f (x)Δx

❄

Figure 8.60: Population along the Massachusetts Turnpike

Similarly, the population in a typical segment x miles from the center of Boston is the population

density times the length of the interval, or roughly f (x) Δx. (See Figure 8.60.) The sum of all these

estimates gives the estimate

Total population ≈
∑

f (x) Δx.

Letting Δx → 0 gives

Total population = lim
Δx→0

∑

f (x) Δx =
∫

5

0

f (x) dx.

The 5 and 0 in the limits of the integral are the upper and lower limits of the interval over which we

are integrating.

Example 2 The air density ℎ meters above the earth’s surface is f (ℎ) kg/m3. Find the mass of a cylindrical

column of air 2 meters in diameter and 25 kilometers high, with base on the surface of the earth.

Solution The column of air is a circular cylinder 2 meters in diameter and 25 kilometers, or 25,000 meters,

high. First we must decide how we are going to slice this column. Since the air density varies with

altitude but remains constant horizontally, we take horizontal slices of air. That way, the density will

be more or less constant over the whole slice, being close to its value at the bottom of the slice. (See

Figure 8.61.)
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Figure 8.61: Slicing a column of air horizontally

A slice is a cylinder of heightΔℎ and diameter 2 m, so its radius is 1 m. We find the approximate

mass of the slice by multiplying its volume by its density. If the thickness of the slice is Δℎ, then its

volume is �r2 ⋅ Δℎ = �12 ⋅ Δℎ = �Δℎ m3. The density of the slice is given by f (ℎ). Thus,

Mass of slice ≈ Volume ⋅ Density = (�Δℎ m3)(f (ℎ) kg∕m3) = �Δℎ ⋅ f (ℎ) kg.

Adding these slices up yields a Riemann sum:

Total mass ≈
∑

�f (ℎ) Δℎ kg.

As Δℎ → 0, this sum approximates the definite integral:

Total mass =
∫

25,000

0

�f (ℎ) dℎ kg.

In order to get a numerical value for the mass of air, we need an explicit formula for the density

as a function of height, as in the next example.

Example 3 Find the mass of the column of air in Example 2 if the density of air at height ℎ is given by

P = f (ℎ) = 1.28e−0.000124ℎ kg/m3.

Solution Using the result of the previous example, we have

Mass =
∫

25,000

0

�1.28e−0.000124ℎ dℎ =
−1.28�

0.000124

(

e−0.000124ℎ
|

|

|

|

25,000

0

)

=
1.28�

0.000124

(

e0 − e−0.000124(25,000)
)

≈ 31,000 kg.

It requires some thought to figure out how to slice a region. The key point is that you want the

density to be nearly constant within each piece.

Example 4 The population density in Ringsburg is a function of the distance from the city center. At r miles

from the center, the density is P = f (r) people per square mile. Ringsburg is circular with radius 5

miles. Write a definite integral that expresses the total population of Ringsburg.

Solution We want to slice Ringsburg up and estimate the population of each slice. If we were to take straight-

line slices, the population density would vary on each slice, since it depends on the distance from the

city center. We want the population density to be pretty close to constant on each slice. We therefore

take slices that are thin rings around the center. (See Figure 8.62.) Since the ring is very thin, we

can approximate its area by straightening it into a thin rectangle. (See Figure 8.63.) The width of



8.4 DENSITY AND CENTER OF MASS 459

the rectangle is Δr miles, and its length is approximately equal to the circumference of the ring, 2�r

miles, so its area is about 2�rΔr mi2. Since

Population on ring ≈ Density ⋅ Area,

we get

Population on ring ≈ (f (r) people/mi2)(2�rΔr mi2) = f (r) ⋅ 2�rΔr people.

Adding the contributions from each ring, we get

Total population ≈
∑

2�rf (r) Δr people.

So

Total population =
∫

5

0

2�rf (r) dr people.

5

r

Δr

✲

✸

✻

Figure 8.62: Ringsburg

✲✛ 2�r

Width = Δr

Figure 8.63: Ring from Ringsburg (straightened out)

Note: You may wonder what happens if we calculate the area of the ring by subtracting the area of

the inner circle (�r2) from the area of the outer circle (�(r + Δr)2), giving

Area = �(r + Δr)2 − �r2.

Multiplying out and subtracting, we get

Area = �(r2 + 2rΔr + (Δr)2) − �r2

= 2�rΔr + �(Δr)2.

This expression differs from the one we used before by the�(Δr)2 term. However, asΔr becomes

very small, �(Δr)2 becomes much, much smaller. We say its smallness is of second order, since the

power of the small factor, Δr, is 2. In the limit as Δr → 0, we can ignore �(Δr)2.

Center of Mass

The center of mass of a mechanical system is important for studying its behavior when in motion.

For example, some sport utility vehicles and light trucks tend to tip over in accidents, because of

their high centers of mass.

In this section, we first define the center of mass for a system of point masses on a line. Then

we use the definite integral to extend this definition.

Point Masses

Two children on a seesaw, one twice the weight of the other, will balance if the lighter child is twice

as far from the pivot as the heavier child. Thus, the balance point is 2/3 of the way from the lighter

child and 1/3 of the way from the heavier child. This balance point is the center of mass of the
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mechanical system consisting of the masses of the two children (we ignore the mass of the seesaw

itself). See Figure 8.64.

To find the balance point, we use the displacement (signed distance) of each child from the pivot

to calculate the moment, where

Moment of mass about pivot = Mass × Displacement from pivot.

A moment represents the tendency of a child to turn the system about the pivot point; the seesaw

balances if the total moment is zero. Thus, the center of mass is the point about which the total

moment is zero.

Heavy child
mass 2m

Light child
mass m

Balance
point

✲✛ (1∕3)l ✲✛ (2∕3)l

❘

Seesaw

✲✛ l

Figure 8.64: Children on seesaw

2m m

✲✛ x̄ ✲✛ l − x̄
Center
of mass

Figure 8.65: Center of mass of point masses

Example 5 Calculate the position of the center of mass of the children in Figure 8.64 using moments.

Solution Suppose the center of mass in Figure 8.65 is at a distance of x̄ from the left end. The moment of the

left mass about the center of mass is −2mx̄ (it is negative since it is to the left of the center of mass);

the moment of the right mass about the center of mass is m(l − x̄). The system balances if

−2mx̄ + m(l − x̄) = 0 or ml − 3mx̄ = 0 so x̄ =
1

3
l.

Thus, the center of mass is l∕3 from the left end.

We use the same method to calculate the center of mass, x̄, of the system in Figure 8.66. The

sum of the moments of the three masses about x̄ is 0, so

m1(x1 − x̄) + m2(x2 − x̄) + m3(x3 − x̄) = 0.

Solving for x̄, we get

m1x̄ + m2x̄ + m3x̄ = m1x1 + m2x2 + m3x3

x̄ =
m1x1 + m2x2 + m3x3

m1 + m2 + m3

=

∑3
i=1 mixi

∑3
i=1 mi

.

Generalizing leads to the following formula:

The center of mass of a system of n point masses m1, m2,… , mn located at positions

x1, x2,… , xn along the x-axis is given by

x =

∑

ximi
∑

mi

.

The numerator is the sum of the moments of the masses about the origin; the denominator is the

total mass of the system.

m1

0

m2 m3

x2 x3x1

Figure 8.66: Discrete masses m1, m2, m3
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Example 6 Show that the definition of x gives the same answer as we found in Example 5.

Solution Suppose the origin is at the left end of the seesaw in Figure 8.64. The total mass of the system is

2m + m = 3m. We compute

x =

∑

ximi
∑

mi

=
1

3m
(2m ⋅ 0 + m ⋅ l) =

ml

3m
=

l

3
.

Continuous Mass Density

Instead of discrete masses arranged along the x-axis, suppose we have an object lying on the x-axis

between x = a and x = b. At point x, suppose the object has mass density (mass per unit length) of

�(x). To calculate the center of mass of such an object, divide it into n pieces, each of length Δx. On

each piece, the density is nearly constant, so the mass of the piece is given by density times length.

See Figure 8.67. Thus, if xi is a point in the ith piece,

Mass of the ith piece, mi ≈ �(xi)Δx.

a bxi

✲✛Δx

✠

Mass mi ≈ �(xi)Δx

x

Figure 8.67: Calculating the center of mass of an object of variable density, �(x)

Then the formula for the center of mass, x̄ =
∑

ximi∕
∑

mi, applied to the n pieces of the object

gives

x̄ =

∑

xi�(xi)Δx
∑

�(xi)Δx
.

In the limit as n → ∞ we have the following formula:

The center of mass x of an object lying along the x-axis between x = a and x = b is

x =
∫
b

a
x�(x) dx

∫
b

a
�(x) dx

,

where �(x) is the density (mass per unit length) of the object.

As in the discrete case, the denominator is the total mass of the object.

Example 7 Find the center of mass of a 2-meter rod lying on the x-axis with its left end at the origin if:

(a) The density is constant and the total mass is 5 kg. (b) The density is �(x) = 15x2 kg/m.
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Solution (a) Since the density is constant along the rod, we expect the balance point to be in the middle, that

is, x̄ = 1. To check this, we compute x̄. The density is the total mass divided by the length, so

�(x) = 5∕2 kg/m. Then

x̄ =
Moment

Mass
=

∫
2

0 x ⋅
5

2
dx

5
=

1

5
⋅

5

2
⋅

x2

2

|

|

|

|

2

0

= 1 meter.

(b) Since more of the mass of the rod is closer to its right end (the density is greatest there), we

expect the center of mass to be in the right half of the rod, that is, between x = 1 and x = 2. We

have

Total mass =
∫

2

0

15x2 dx = 5x3|
|

2

0 = 40 kg.

Thus,

x̄ =
Moment

Mass
=

∫
2

0
x ⋅ 15x2dx

40
=

15

40
⋅

x4

4

|

|

|

|

2

0

= 1.5 meter.

Two- and Three-Dimensional Regions

For a system of masses that lies in the plane, the center of mass is a point with coordinates (x̄, ȳ).

In three dimensions, the center of mass is a point with coordinates (x̄, ȳ, z̄). To compute the center

of mass in three dimensions, we use the following formulas in which Ax(x) is the area of a slice

perpendicular to the x-axis at x, and Ay(y) and Az(z) are defined similarly. In two dimensions,

we use the same formulas for x̄ and ȳ, but we interpret Ax(x) and Ay(y) as the lengths of strips

perpendicular to the x- and y-axes, respectively.

For a region of constant density �, the center of mass is given by

x̄ =
∫ x�Ax(x) dx

Mass
ȳ =

∫ y�Ay(y) dy

Mass
z̄ =

∫ z�Az(z) dz

Mass
.

The expression �Ax(x)Δx is the moment of a slice perpendicular to the x-axis. Thus, these for-

mulas are extensions of the formula for the one-dimensional case. In the two- and three-dimensional

case, we are assuming that the density � is constant. If the density is not constant, finding the center

of mass may require a double or triple integral from multivariable calculus.

Example 8 Find the coordinates of the center of mass of the isosceles triangle in Figure 8.68. The triangle has

constant density and mass m.

1

−
1

2

1

2

x

y

Figure 8.68: Find center of mass of this triangle

x
1

−
1

2

1

2

✻

❄

1

2
(1 − x)

■
Δx

x

y

Figure 8.69: Sliced triangle
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Solution Because the mass of the triangle is symmetrically distributed with respect to the x-axis, ȳ = 0. We

expect x̄ to be closer to x = 0 than to x = 1, since the triangle is wider near the origin.

The area of the triangle is
1

2
⋅ 1 ⋅ 1 =

1

2
. Thus, Density = Mass/Area = 2m. If we slice the

triangle into strips of width Δx, then the strip at position x has length Ax(x) = 2 ⋅
1

2
(1−x) = (1−x).

See Figure 8.69. So

Area of strip = Ax(x)Δx ≈ (1 − x)Δx.

Since the density is 2m, the center of mass is given by

x̄ =
∫ x�Ax(x) dx

Mass
=

∫
1

0 2mx(1 − x) dx

m
= 2

(

x2

2
−

x3

3

)

|

|

|

|

1

0

=
1

3
.

So the center of mass of this triangle is at the point (x̄, ȳ) = (1∕3, 0).

Example 9 Find the center of mass of a hemisphere of radius 7 cm and constant density �.

Solution Stand the hemisphere with its base horizontal in the xy-plane, with the center at the origin. Symmetry

tells us that its center of mass lies directly above the center of the base, so x̄ = ȳ = 0. Since the

hemisphere is wider near its base, we expect the center of mass to be nearer to the base than the top.

To calculate the center of mass, slice the hemisphere into horizontal disks, as in Figure 8.70. A

disk of thickness Δz at height z above the base has

Volume of disk = Az(z)Δz ≈ �(72 − z2)Δz cm3.

So, since the density is �,

z =
∫ z�Az(z) dz

Mass
=

∫
7

0
z��(72 − z2) dz

Mass
.

Since the total mass of the hemisphere is (
2

3
�73) �, we get

z̄ =
�� ∫

7

0
(72z − z3) dz

Mass
=

��
(

72z2∕2 − z4∕4
)

|

|

|

7

0

Mass
=

74

4
��

2

3
�73�

=
21

8
= 2.625 cm.

The center of mass of the hemisphere is 2.625 cm above the center of its base. As expected, it is

closer to the base of the hemisphere than its top.

Figure 8.70: Slicing to find the center of mass of a hemisphere
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Summary for Section 8.4

• A density function gives quantity per unit length, area, or volume.

• To find total quantity in a region from a density: divide the region into small pieces in such a

way that the density is approximately constant on each piece, approximate the quantity on each

piece, and add the contributions of the pieces. Doing this shows how to write a definite integral

for the total.

• The center of mass of a system of n point masses mi located at positions xi along the x-axis is

given by the quotient

x̄ =

∑

ximi
∑

mi

.

• The center of mass of an object lying along the x-axis between x = a and x = b with density

�(x) (mass per unit length) is given by the quotient

x̄ =
∫
b

a
x�(x) dx

∫
b

a
�(x) dx

.

• The center of mass of a region in the plane is a point with coordinates (x̄, ȳ), and for a region

in three dimensions it is a point with coordinates (x̄, ȳ, z̄).

If the density � is constant and the total mass is M , then

x̄ =
∫ x�Ax(x) dx

M

where

◦ If the region is in the plane, then Ax(x) is the length of the segment obtained by slicing the

region perpendicular to the x-axis at x.

◦ If the region is three dimensional, then Ax(x) is the area obtained by slicing the region

perpendicular to the x-axis at x.

Similar formulas hold for ȳ, and for z̄ for a three dimensional region.

Exercises and Problems for Section 8.4

EXERCISES

1. Find the mass of a rod of length 10 cm with density

�(x) = e−x gm/cm at a distance of x cm from the left

end.

2. A plate occupying the region 0 ≤ x ≤ 2, 0 ≤ y ≤ 3

has density � = 5 gm/cm2. Set up two integrals giving

the mass of the plate, one corresponding to strips in the

x-direction and the other corresponding to strips in the

y-direction.

3. A rod has length 2 meters. At a distance x meters from

its left end, the density of the rod is given by

�(x) = 2 + 6x gm∕m.

(a) Write a Riemann sum approximating the total mass

of the rod.

(b) Find the exact mass by converting the sum into an

integral.

4. If a rod lies along the x-axis between a and b, the mo-

ment of the rod is ∫
b

a
x�(x) dx, where �(x) is its density

in grams/meter at a position x meters. Find the moment

and center of mass of the rod in Exercise 3.

5. The density of cars (in cars per mile) down a 20-mile

stretch of the Pennsylvania Turnpike is approximated

by

�(x) = 300
(

2 + sin
(

4
√

x + 0.15
))

,

at a distance x miles from the Breezewood toll plaza.

(a) Sketch a graph of this function for 0 ≤ x ≤ 20.

(b) Write a Riemann sum that approximates the total

number of cars on this 20-mile stretch.

(c) Find the total number of cars on the 20-mile

stretch.

6. (a) Find a Riemann sum which approximates the total

mass of a 3 × 5 rectangular sheet, whose density

per unit area at a distance x from one of the sides

of length 5 is 1∕(1 + x4).

(b) Calculate the mass.

7. A point mass of 2 grams located 3 centimeters to the

left of the origin and a point mass of 5 grams located 4

centimeters to the right of the origin are connected by

a thin, light rod. Find the center of mass of the system.
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8. Find the center of mass of a system containing three

point masses of 5 gm, 3 gm, and 1 gm located respec-

tively at x = −10, x = 1, and x = 2.

9. Find the mass of the block 0 ≤ x ≤ 10, 0 ≤ y ≤ 3,

0 ≤ z ≤ 1, whose density, �, is given by

� = 2 − z for 0 ≤ z ≤ 1.

Exercises 10–12 give the density, in gm∕cm2, of a region in

the plane.

(a) Sketch the region. Divide it into strips for finding the

mass of the region.

(b) Set up a definite integral representing the mass.

(c) Evaluate the integral.

10. f (x) = 4 + x, where x, y are in cm, on 0 ≤ x ≤ 2,

0 ≤ y ≤ 3

11. f (y) = 4 + y, where x, y are in cm, on 0 ≤ x ≤ 2,

0 ≤ y ≤ 3

12. f (r) = 4 + r, where r is in cm, on 0 ≤ r ≤ 2

PROBLEMS

Problems 13–15 refer to a colony of bats which flies out of a

cave each night to eat insects. To estimate the colony’s size,

a naturalist counts samples of bats at different distances from

the cave. Table 8.3 gives n, her count per hectare, at a dis-

tance r km from the cave. For instance, she counts 300 bats in

one hectare at the cave’s mouth, and 219 bats in one hectare

one kilometer from the cave. The bat count r km from the

cave is the same in all directions. Note that 1 km2 = 100

hectares, written 100 ha.

Table 8.3

r 0 1 2 3 4 5

n 300 219 160 117 85 62

13. Give an overestimate of the number of bats between 3

and 4 km from the cave.

14. Give an underestimate of the number of bats between 3

and 4 km from the cave.

15. Letting n = f (r), write an integral in terms of f rep-

resenting the number of bats in the cave. Assume that

bats fly no farther away than 5 km from the cave. Do

not evaluate the integral.

16. Find the total mass of the triangular region in Fig-

ure 8.71, which has density �(x) = 1 + x grams/cm2.

−1 1

1

x (cm)

y (cm)

Figure 8.71

17. A rectangular plate is located with vertices at points

(0, 0), (2, 0), (2, 3) and (0, 3) in the xy-plane. The den-

sity of the plate at point (x, y) is �(y) = 2+y2 gm∕cm2

and x and y are in cm. Find the total mass of the plate.

18. A cardboard figure has the shape shown in Figure 8.72.

The region is bounded on the left by the line x = a, on

the right by the line x = b, above by f (x), and below by

g(x). If the density �(x) gm/cm2 varies only with x, find

an expression for the total mass of the figure, in terms

of f (x), g(x), and �(x).

a b
x

f (x)

g(x)

Figure 8.72

19. Circle City, a typical metropolis, is densely populated

near its center, and its population gradually thins out

toward the city limits. In fact, its population density is

10,000(3 − r) people/square mile at distance r miles

from the center.

(a) Assuming that the population density at the city

limits is zero, find the radius of the city.

(b) What is the total population of the city?

20. The density of oil in a circular oil slick on the surface

of the ocean at a distance r meters from the center of

the slick is given by �(r) = 50∕(1 + r) kg/m2.

(a) If the slick extends from r = 0 to r = 10,000 m,

find a Riemann sum approximating the total mass

of oil in the slick.

(b) Find the exact value of the mass of oil in the slick

by turning your sum into an integral and evaluating

it.

(c) Within what distance r is half the oil of the slick

contained?

21. The soot produced by a garbage incinerator spreads out

in a circular pattern. The depth, H(r), in millimeters, of

the soot deposited each month at a distance r kilometers

from the incinerator is given by H(r) = 0.115e−2r .

(a) Write a definite integral giving the total volume of

soot deposited within 5 kilometers of the incinera-

tor each month.

(b) Evaluate the integral you found in part (a), giving

your answer in cubic meters.
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22. The concentration of silt in a cylindrical well 2m across

and 20 m deep is 10 g/m3 at the surface (depth s = 0)

and increases linearly to 50 g/m3 at the bottom (depth

s = 20).

(a) Find a formula for the silt concentration C(s) as a

function of depth s. What is the silt concentration

in g/m3 at a depth of s = 10?

(b) How much silt would there be in the bottom me-

ter of the well assuming concentration does not

change from 50 g/m3? Is this an over or underesti-

mate?

(c) Approximate the silt in a horizontal slice of water

of thickness Δs at depth s.

(d) Set up and evaluate an integral to calculate the total

amount of silt in the well.

23. Three point masses of 4 gm each are placed at x = −6, 1

and 3. Where should a fourth point mass of 4 gm be

placed to make the center of mass at the origin?

24. A rod of length 3 meters with density �(x) = 1 + x2

grams/meter is positioned along the positive x-axis,

with its left end at the origin. Find the total mass and

the center of mass of the rod.

25. A rod with density �(x) = 2 + sin x lies on the x-axis

between x = 0 and x = �. Find the center of mass of

the rod.

26. A rod of length 1 meter has density �(x) = 1 + kx2

grams/meter, where k is a positive constant. The rod is

lying on the positive x-axis with one end at the origin.

(a) Find the center of mass as a function of k.

(b) Show that the center of mass of the rod satisfies

0.5 < x̄ < 0.75.

27. A rod of length 2 meters and density �(x) = 3−e−x kilo-

grams per meter is placed on the x-axis with its ends at

x = ±1.

(a) Will the center of mass of the rod be on the left or

right of the origin? Explain.

(b) Find the coordinate of the center of mass.

28. One half of a uniform circular disk of radius 1 meter

lies in the xy-plane with its diameter along the y-axis,

its center at the origin, and x > 0. The mass of the half-

disk is 3 kg. Find (x̄, ȳ).

29. A metal plate, with constant density 2 gm∕cm2, has a

shape bounded by the curve y = x2 and the x-axis, with

0 ≤ x ≤ 1 and x, y in cm.

(a) Find the total mass of the plate.

(b) Sketch the plate and decide, on the basis of the

shape, whether x̄ is less than or greater than 1∕2.

(c) Find x̄.

30. A metal plate, with constant density 5 gm∕cm2, has a

shape bounded by the curve y =
√

x and the x-axis,

with 0 ≤ x ≤ 1 and x, y in cm.

(a) Find the total mass of the plate.

(b) Find x̄ and ȳ.

31. An isosceles triangle with uniform density, altitude a,

and base b is placed in the xy-plane as in Figure 8.73.

Show that the center of mass is at x̄ = a∕3, ȳ = 0.

Hence show that the center of mass is independent of

the triangle’s base.

a

−
b

2

b

2

x

y

Figure 8.73

32. Find the center of mass of a cone of height 5 cm and

base diameter 10 cm with constant density � gm/cm3.

33. A solid is formed by rotating the region bounded by

the curve y = e−x and the x-axis between x = 0 and

x = 1, around the x-axis. It was shown in Example 1

on page 436 that the volume of this solid is �(1−e−2)∕2.

Assuming the solid has constant density �, find x̄ and

ȳ.

34. (a) Find the mass of a pyramid of constant density

� gm/cm3 with a square base of side 40 cm and

height 10 cm. [That is, the vertex is 10 cm above

the center of the base.]

(b) Find the center of mass of the pyramid.

35. The storage shed in Figure 8.74 is the shape of a half-

cylinder of radius r and length l.

(a) What is the volume of the shed?

(b) The shed is filled with sawdust whose density

(mass/unit volume) at any point is proportional to

the distance of that point from the floor. The con-

stant of proportionality is k. Calculate the total

mass of sawdust in the shed.

Figure 8.74

36. Water leaks out of a tank through a square hole with 1-

inch sides. At time t (in seconds) the velocity of water

flowing through the hole is v = g(t) ft/sec. Write a def-

inite integral that represents the total amount of water

lost in the first minute.
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37. An exponential model for the density of the earth’s at-

mosphere says that if the temperature of the atmosphere

were constant, then the density of the atmosphere as a

function of height, ℎ (in meters), above the surface of

the earth would be given by

�(ℎ) = 1.28e−0.000124ℎ kg/m3 .

(a) Write (but do not evaluate) a sum that approxi-

mates the mass of the portion of the atmosphere

from ℎ = 0 to ℎ = 100 m (i.e., the first 100 meters

above sea level). Assume the radius of the earth is

6400 km.

(b) Find the exact answer by turning your sum in

part (a) into an integral. Evaluate the integral.

38. The following table gives the density D (in gm/cm3)

of the earth at a depth x km below the earth’s surface.

The radius of the earth is about 6370 km. Find an up-

per and a lower bound for the earth’s mass such that

the upper bound is less than twice the lower bound. Ex-

plain your reasoning; in particular, what assumptions

have you made about the density?

x 0 1000 2000 2900 3000 4000 5000 6000 6370

D 3.3 4.5 5.1 5.6 10.1 11.4 12.6 13.0 13.0

Strengthen Your Understanding

In Problems 39–42, explain what is wrong with the state-

ment.

39. A 10 cm rod can have mass density given by f (x) =

x2 − 5x gm∕cm at a point x cm from one end.

40. The center of mass of a rod with density x2 gm∕cm for

0 ≤ x ≤ 10 is given by ∫
10

0
x3 dx.

41. If the center of mass of a rod is in the center of the rod,

then the density of the rod is constant.

42. A disk with radius 3 cm and density �(r) = 3 −

r gm∕cm2, where r is in centimeters from the center of

the disk, has total mass 27� gm.

In Problems 43–45, give an example of:

43. A mass density on a rod such that the rod is most dense

at one end but the center of mass is nearer the other end.

44. A rod of length 2 cm, whose density �(x) makes the

center of mass not at the center of the rod.

45. A rod of length 2 cm, whose density �(x) makes the

center of mass at the center of the rod.

In Problems 46–52, are the statements true or false? Give an

explanation for your answer.

46. To find the total population in a circular city, we always

slice it into concentric rings, no matter what the popu-

lation density function.

47. A city occupies a region in the xy-plane, with popula-

tion density �(y) = 1 + y. To set up an integral repre-

senting the total population in the city, we should slice

the region parallel to the y-axis.

48. The population density in a circular city of radius 2

depends on the distance r from the center by f (r) =

10−3r, so that the density is greatest at the center. Then

the population of the inner city, 0 ≤ r ≤ 1, is greater

than the population of the suburbs, 1 ≤ r ≤ 2.

49. The location of the center of mass of a system of three

masses on the x-axis does not change if all the three

masses are doubled.

50. The center of mass of a region in the plane cannot be

outside the region.

51. Particles are shot at a circular target. The density of par-

ticles hitting the target decreases with the distance from

the center. To set up a definite integral to calculate the

total number of particles hitting the target, we should

slice the region into concentric rings.

52. A metal rod of density f (x) lying along the x-axis from

x = 0 to x = 4 has its center of mass at x = 2. Then the

two halves of the rod on either side of x = 2 have equal

mass.

8.5 APPLICATIONS TO PHYSICS

Although geometric problems were a driving force for the development of the calculus in the seven-

teenth century, it was Newton’s spectacularly successful applications of the calculus to physics that

most clearly demonstrated the power of this new mathematics.

Work

In physics the word “work” has a technical meaning which is different from its everyday meaning.

Physicists say that if a constant force, F , is applied to some object to move it a distance, d, then

the force has done work on the object. The force must be parallel to the motion (in the same or the

opposite direction). We make the following definition:



468 Chapter 8 USING THE DEFINITE INTEGRAL

Work done = Force ⋅ Distance or W = F ⋅ d.

Notice that if we walk across a room holding a book, we do no work on the book, since the force

we exert on the book is vertical, but the motion of the book is horizontal. On the other hand, if we

lift the book from the floor to a table, we accomplish work.

There are several sets of units in common use. To measure work, we will generally use the two

sets of units, International (SI) and British, in the following table.

Force Distance Work

International (SI) units newton (nt) meter (m) joule (j)

British units pound (lb) foot (ft) foot-pound (ft-lb)

Conversions

1 lb = 4.45 nt

1 ft = 0.305 m

1 ft-lb = 1.36 joules

One joule of work is done when a force of 1 newton moves an object through 1 meter, so

1 joule = 1 newton-meter.

Example 1 Calculate the work done on an object when

(a) A force of 2 newtons moves it 12 meters. (b) A 3-lb force moves it 4 feet.

Solution (a) Work done = 2 nt ⋅ 12 m = 24 joules. (b) Work done = 3 lb ⋅ 4 ft = 12 ft-lb.

In the previous example, the force was constant and we calculated the work by multiplication.

In the next example, the force varies, so we need an integral. We divide up the distance moved and

sum to get a definite integral representing the work.

Example 2 Hooke’s Law says that the force, F , required to compress the spring in Figure 8.75 by a distance x,

in meters from its equilibrium position, is given by F = kx, for some constant k. Find the work done

in compressing the spring by 0.1 m if k = 8 nt/m.

Wall

✲✛ x

Equilibrium position

Figure 8.75: Compression of spring: Force is kx

Wall

0.1 ✲✛
Δx

✲✛ x

✛

Figure 8.76: Work done in compressing

spring a small distance Δx is kxΔx

Solution Since k is in newtons/meter and x is in meters, we have F = 8x newtons. Since the force varies with

x, we divide the distance moved into small increments, Δx, as in Figure 8.76. Then

Work done in moving through an increment ≈ FΔx = 8xΔx joules.

So, summing over all increments gives the Riemann sum approximation

Total work done ≈
∑

8xΔx.

Taking the limit as Δx → 0 gives

Total work done =
∫

0.1

0

8x dx = 4x2
|

|

|

|

0.1

0

= 0.04 joules.
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In general, if force is a function F (x) of position x, then in moving from x = a to x = b,

Work done =
∫

b

a

F (x) dx.

The Force Due to Gravity: Mass Versus Weight

When an object is lifted, work is done against the force exerted by gravity on the object. By Newton’s

Second Law, the downward gravitational force acting on a mass m is mg, where g is the acceleration

due to gravity. To lift the object, we need to exert a force equal to the gravitational force but in the

opposite direction.

In International units, g = 9.8 m/sec2, and we usually measure mass, m, in kilograms. In British

units, mass is seldom used. Instead, we usually talk about the weight of an object, which is the force

exerted by gravity on the object. Roughly speaking, the mass represents the quantity of matter in an

object, whereas the weight represents the force of gravity on it. The mass of an object is the same

everywhere, whereas the weight can vary if, for example, the object is moved to outer space where

gravitational forces are smaller.

When we are given the weight of an object, we do not multiply by g to find the gravitational

force as it has already been done. In British units, a pound is a unit of weight. In International units,

a kilogram is a unit of mass, and the unit of weight is a newton, where 1 newton = 1 kg ⋅ m/sec2.

Example 3 How much work is done in lifting

(a) A 5-pound book 3 feet off the floor? (b) A 1.5-kilogram book 2 meters off the floor?

Solution (a) The force due to gravity is 5 lb, so W = F ⋅ d = (5 lb)(3 ft) = 15 foot-pounds.

(b) The force due to gravity is mg = (1.5 kg)(g m/sec2), so

W = F ⋅ d = [(1.5 kg)(9.8 m/sec2)] ⋅ (2 m) = 29.4 joules.

In the previous example, work is found by multiplication. In the next example, different parts of

the object move different distances, so an integral is needed.

Example 4 A 28-meter uniform chain with a mass density of 2 kilograms per meter is dangling from the roof of

a building. How much work is needed to pull the chain up onto the top of the building?

Solution Since 1 meter of the chain has mass density 2 kg, the gravitational force per meter of chain is

(2 kg)(9.8m/sec2) = 19.6 newtons. Let’s divide the chain into small sections of length Δy, each

requiring a force of 19.6Δy newtons to move it against gravity. See Figure 8.77. If Δy is small, all

of this piece is hauled up approximately the same distance, namely y, so

Work done on the small piece ≈ (19.6Δy newtons)(ymeters) = 19.6yΔy joules.

The work done on the entire chain is given by the total of the work done on each piece:

Work done ≈
∑

19.6yΔy joules.

As Δy → 0, we obtain a definite integral. Since y varies from 0 to 28 meters, the total work is

Work done =
∫

28

0

(19.6y) dy = 9.8y2
|

|

|

|

28

0

= 7683.2 joules.
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Top of building

✻

❄

y

✻

❄
Δy

Figure 8.77: Chain for Example 4

Example 5 Calculate the work done in pumping oil from the cone-shaped tank in Figure 8.78 to the rim. The

oil has density 800 kg/m3 and its vertical depth is 10 m.

Figure 8.78: Cone-shaped tank containing

oil

Figure 8.79: Slicing the oil horizontally to compute

work

Solution We slice the oil horizontally because each part of such a slice moves the same vertical distance. Each

slice is approximately a circular disk with radius w∕2 m, so, with ℎ in meters,

Volume of slice ≈ �

(

w

2

)2

Δℎ =
�

4
w2Δℎ m3.

Force of gravity on slice = Density ⋅ g ⋅ Volume = 800g
�

4
w2Δℎ = 200�gw2Δℎ nt.

Since each part of the slice has to move a vertical distance of (20 − ℎ) m, we have

Work done on slice ≈ Force ⋅ Distance = 200�gw2Δℎ nt ⋅ (20 − ℎ) m

= 200�gw2(20 − ℎ)Δℎ joules.

To find w in terms of ℎ, we use the similar triangles in Figure 8.79:

w

ℎ
=

25

20
so w =

5

4
ℎ = 1.25ℎ.

Thus,

Work done on strip ≈ 200�g(1.25ℎ)2(20 − ℎ)Δℎ = 312.5�gℎ2(20 − ℎ)Δℎ joules.

Summing and taking the limit as Δℎ → 0 gives an integral with upper limit ℎ = 10, the depth of the

oil.

Total work = lim
Δℎ→0

∑

312.5�gℎ2(20 − ℎ)Δℎ =
∫

10

0

312.5�gℎ2(20 − ℎ) dℎ joules.
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Evaluating the integral using g = 9.8 m/sec2 gives

Total work = 312.5�g

(

20
ℎ3

3
−

ℎ4

4

)

|

|

|

|

|

10

0

= 1,302,083�g ≈ 4.0 ⋅ 107 joules.

In the following example, information is given in British units about the weight of the pyramid,

so we do not need to multiply by g to find the gravitational force.

Example 6 It is reported that the Great Pyramid of Egypt was built in 20 years. If the stone making up the

pyramid has a density of 200 pounds per cubic foot, find the total amount of work done in building

the pyramid. The pyramid is 481 feet high and has a square base 756 feet by 756 feet. Estimate how

many workers were needed to build the pyramid.

Solution We assume that the stones were originally located at the approximate height of the construction site.

Imagine the pyramid built in layers as we did in Example 5 on page 429.

By similar triangles, the layer at height ℎ has a side length s = 756(481 − ℎ)∕481 ft. (See

Figure 8.80.) The layer at height ℎ has a volume of s2Δℎ ft3, so its weight is 200s2Δℎ lb. This layer

is lifted through a height of ℎ, so

Work to lift layer = (200s2Δℎ lb)(ℎ ft) = 200s2ℎΔℎ ft-lb.

Substituting for s in terms of ℎ and summing over all layers gives

Total work ≈
∑

200s2 ℎΔℎ =
∑

200
(

756

481

)2

(481 − ℎ)2ℎΔℎ ft-lb.

Since ℎ varies from 0 to 481, as Δℎ → 0, we obtain

Total work =
∫

481

0

200
(

756

481

)2

(481 − ℎ)2ℎ dℎ ≈ 2.2 ⋅ 1012 foot-pounds.

We have calculated the total work done in building the pyramid; now we want to estimate the total

number of workers needed. Let’s assume every laborer worked 10 hours a day, 300 days a year, for 20

years. Assume that a typical worker lifted ten 50-pound blocks a distance of 4 feet every hour, thus

performing 2000 foot-pounds of work per hour (this is a very rough estimate). Then each laborer

performed (10)(300)(20)(2000) = 1.2 ⋅ 108 foot-pounds of work over a twenty-year period. Thus,

the number of workers needed was about (2.2 ⋅ 1012)∕(1.2 ⋅ 108), or about 18,000.

s✻
❄
ℎ

✻

❄

481 ft
❄

756 ft

Volume of slice ≈ s2Δℎ

Figure 8.80: Pyramid for Example 6
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Force and Pressure

We can use the definite integral to compute the force exerted by a liquid on a surface, for example,

the force of water on a dam. The idea is to get the force from the pressure. The pressure in a liquid

is the force per unit area exerted by the liquid. Two things you need to know about pressure are:

• At any point, pressure is exerted equally in all directions—up, down, sideways.

• Pressure increases with depth. (That is one of the reasons why deep sea divers have to take much

greater precautions than scuba divers.)

At a depth of ℎ meters, the pressure, p, exerted by the liquid, measured in newtons per square

meter, is given by computing the total weight of a column of liquid ℎ meters high with a base of 1

square meter. The volume of such a column of liquid is just ℎ cubic meters. If the liquid has density

� (mass per unit volume), then its weight per unit volume is �g, where g is the acceleration due to

gravity. The weight of the column of liquid is �gℎ, so

Pressure = Mass density ⋅ g ⋅ Depth or p = �gℎ.

Provided the pressure is constant over a given area, we also have the following relation:

Force = Pressure ⋅ Area.

The units and data we will generally use are given in the following table:

Density of water Force Area Pressure

SI units 1000 kg/m3 (mass) newton (nt) meter2 pascal (nt/m2)

British units 62.4 lb/ft3 (weight) pound (lb) foot2 lb/ft2

Conversions

1 lb = 4.45 nt

1ft2 = 0.093 m2

1 lb∕ft2 = 47.9 pa

In International units, the mass density of water is 1000 kg/m3, so the pressure at a depth of ℎ

meters is �gℎ = 1000 ⋅ 9.8ℎ = 9800ℎ nt/m2. See Figure 8.81.

In British units, the density of the liquid is usually given as a weight per unit volume, rather

than a mass per unit volume. In that case, we do not need to multiply by g because it has already

been done. For example, water weighs 62.4 lb/ft3, so the pressure at depth ℎ feet is 62.4ℎ lb/ft2. See

Figure 8.82.

✻

❄

ℎ m

✠

1 square meter

✠

Pressure here
= 9800ℎ nt/m2

❘

Surface
of water

Figure 8.81: Pressure exerted by column

of water (International units)

✻

❄

ℎ ft

✠

1 square foot

✠

Pressure here
= 62.4ℎ lb/ft2

❘

Surface
of water

Figure 8.82: Pressure exerted by a

column of water (British units)

If the pressure is constant over a surface, we calculate the force on the surface by multiplying

the pressure by the area of the surface. If the pressure is not constant, we divide the surface into small

pieces in such a way that the pressure is nearly constant on each one to obtain a definite integral for

the force on the surface. Since the pressure varies with depth, we divide the surface into horizontal

strips, each of which is at an approximately constant depth.
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Example 7 In 1912, the ocean liner Titanic sank to the bottom of the Atlantic, 12,500 feet (nearly 2.5 miles)

below the surface. Find the force on one side of a 100-foot square plate at the depth of the Titanic if

the plate is: (a) Lying horizontally (b) Standing vertically.

Solution (a) When the plate is horizontal, the pressure is the same at every point on the plate, so

Pressure = 62.4 lb/ft3 ⋅ 12,500 ft = 780,000 lb/ft2.

To imagine this pressure, convert to pounds per square inch, giving 780,000∕144 ≈ 5400 lb/in2.

For the horizontal plate

Force = 780,000 lb/ft2 ⋅ 1002 ft2 = 7.8 ⋅ 109 pounds.

(b) When the plate is vertical, only the bottom is at 12,500 feet; the top is at 12,400 feet. Dividing

into horizontal strips of width Δℎ, as in Figure 8.83, we have

Area of strip = 100Δℎ ft2.

Since the pressure on a strip at a depth of ℎ feet is 62.4ℎ lb/ft2,

Force on strip ≈ 62.4ℎ ⋅ 100Δℎ = 6240ℎΔℎ pounds.

Summing over all strips and taking the limit as Δℎ → 0 gives a definite integral. The strips vary

in depth from 12,400 to 12,500 feet, so

Total force = lim
Δℎ→0

∑

6240ℎΔℎ =
∫

12,500

12,400

6240ℎ dℎ pounds.

Evaluating the integral gives

Total force = 6240
ℎ2

2

|

|

|

|

12,500

12,400

= 3120(12,5002− 12,4002) = 7.77 ⋅ 109 pounds.

Notice that the answer to part (b) is smaller than the answer to part (a). This is because part

of the plate is at a smaller depth in part (b) than in part (a).

❘

Depth = 12,500 ft

✲Depth= 12,400 ft
✲✛ 100 ft

✻

❄
Δℎ

✻

❄

100 ft

Bottom
of ocean

Figure 8.83: Square plate at bottom of ocean; ℎ measured from surface of water

Example 8 Figure 8.84 shows a dam approximately the size of Hoover Dam, which stores water for California,

Nevada, and Arizona. Calculate:

(a) The water pressure at the base of the dam. (b) The total force of the water on the dam.
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✻

❄

220 m

✲✛ 200 m

✲✛ 400 m

Figure 8.84: Trapezoid-shaped dam

✻

❄

220 m

✲✛ 200 m

✲✛ 400 m

✻❄Δℎ

✻

❄

ℎ
✲✛ w

Figure 8.85: Dividing dam into horizontal strips

Solution (a) Since the density of water is � = 1000 kg/m3, at the base of the dam,

Water pressure = �gℎ = 1000 ⋅ 9.8 ⋅ 220 = 2.156 ⋅ 106 nt/m2.

(b) To calculate the force on the dam, we divide the dam into horizontal strips because the pressure

along each strip is approximately constant. See Figure 8.85. Since each strip is approximately

rectangular,

Area of strip ≈ wΔℎ m2.

The pressure at a depth of ℎ meters is �gℎ = 9800ℎ nt/m2. Thus,

Force on strip ≈ Pressure ⋅ Area = 9800ℎwΔℎ nt.

To find w in terms of ℎ, we use the fact that w decreases linearly from w = 400 when ℎ = 0 to

w = 200when ℎ = 220. Thusw is a linear function of ℎ, with slope (200−400)∕220 = −10∕11,

so

w = 400 −
10

11
ℎ.

Thus

Force on strip ≈ 9800ℎ
(

400 −
10

11
ℎ

)

Δℎ nt.

Summing over all strips and taking the limit as Δℎ → 0 gives

Total force on dam = lim
Δℎ→0

∑

9800ℎ
(

400 −
10

11
ℎ

)

Δℎ

=
∫

220

0

9800ℎ
(

400 −
10

11
ℎ

)

dℎ newtons.

Evaluating the integral gives

Total force = 9800
(

200ℎ2 −
10

33
ℎ3

)

|

|

|

|

220

0

= 6.32 ⋅ 1010 newtons.

In fact, Hoover Dam is not flat, as the problem assumed, but arched, to better withstand the

pressure.

Summary for Section 8.5

• In physics, work is done when an object is moved through a distance by a force.

Work done = Force ⋅ Distance.

• If force is a function F (x) of position x, then in moving from x = a to x = b

Work done =
∫

b

a

F (x) dx.
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• Two sets of units are commonly used.

Force Distance Work

International (SI) units newton (nt) meter (m) joule (j)

British units pound (lb) foot (ft) foot-pound (ft-lb)

• The force of gravity on a mass m, its weight, is mg where m may be given in kilograms and

g = 9.8 m∕sec2 is the acceleration of gravity. The units of mass and force are related by the

equation

1 newton = 1 kg ⋅ m∕sec2.

In British units, the unit of weight is the pound.

• Pressure is force on a surface per unit area. If the pressure is constant over an area, then the

total force on the area is

Force = Pressure ⋅ Area.

Units of pressure are nt∕m2 (pascals) and lb∕ft2.

• The pressure of a liquid of mass density � at depth ℎ is

Pressure = �gℎ.

For water, � = 1000 kg∕m3 and �g = 62.4 lb∕ft3.

• The total force exerted by a liquid on a submerged object can be obtained with an integral using

the method of horizontal slicing.

Exercises and Problems for Section 8.5 Online Resource: Additional Problems for Section 8.5
EXERCISES

1. Find the work done on a 40 lb suitcase when it is raised

9 inches.

2. Find the work done on a 20 kg suitcase when it is raised

30 centimeters.

3. A particle x feet from the origin has a force of x2 + 2x

pounds acting on it. What is the work done in moving

the object from the origin a distance of 1 foot?

In Exercises 4–6, the force, F , required to compress a spring

by a distance x meters is given by F = 3x newtons.

4. Find the work done in compressing the spring from

x = 1 to x = 2.

5. Find the work done to compress the spring to x = 3,

starting at the equilibrium position, x = 0.

6. (a) Find the work done in compressing the spring from

x = 0 to x = 1 and in compressing the spring from

x = 4 to x = 5.

(b) Which of the two answers is larger? Why?

7. A circular steel plate of radius 20 ft lies flat on the bot-

tom of a lake, at a depth of 150 ft. Find the force on the

plate due to the water pressure.

8. A fish tank is 2 feet long and 1 foot wide, and the depth

of the water is 1 foot. What is the force on the bottom

of the fish tank?

9. A child fills a bucket with sand so that the bucket and

sand together weigh 10 lbs, lifts it 2 feet up and then

walks along the beach, holding the bucket at a constant

height of 2 ft above the ground. How much work is done

on the bucket after the child has walked 100 ft?

10. The gravitational force on a 1 kg object at a distance

r meters from the center of the earth is F = 4 ⋅ 1014∕r2

newtons. Find the work done in moving the object from

the surface of the earth to a height of 106 meters above

the surface. The radius of the earth is 6.4 ⋅ 106 meters.

PROBLEMS

11. How much work is required to lift a 1000-kg satellite

from the surface of the earth to an altitude of 2 ⋅ 106 m?

The gravitational force is F = GMm∕r2, where M is

the mass of the earth, m is the mass of the satellite, and

r is the distance between them. The radius of the earth

is 6.4 ⋅ 106 m, its mass is 6 ⋅ 1024 kg, and in these units

the gravitational constant, G, is 6.67 ⋅ 10−11.

12. A worker on a scaffolding 75 ft above the ground needs

to lift a 500 lb bucket of cement from the ground to a

point 30 ft above the ground by pulling on a rope weigh-

ing 0.5 lb/ft. How much work is required?

13. An anchor weighing 100 lb in water is attached to a

chain weighing 3 lb/ft in water. Find the work done to

haul the anchor and chain to the surface of the water

from a depth of 25 ft.
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14. A 1000-lb weight is being lifted to a height 10 feet off

the ground. It is lifted using a rope which weighs 4 lb

per foot and which is being pulled up by construction

workers standing on a roof 30 feet off the ground. Find

the work done to lift the weight.

15. A 2000-lb cube of ice must be lifted 100 ft, and it is

melting at a rate of 4 lb per minute. If it can be lifted at

a rate of one foot every minute, find the work needed to

get the block of ice to the desired height.

16. A cylindrical garbage can of depth 3 ft and radius 1 ft

fills with rainwater up to a depth of 2 ft. How much work

would be done in pumping the water up to the top edge

of the can? (Water weighs 62.4 lb/ft3.)

17. A rectangular swimming pool 50 ft long, 20 ft wide, and

10 ft deep is filled with water to a depth of 9 ft. Use an

integral to find the work required to pump all the water

out over the top.

18. A water tank is in the form of a right circular cylinder

with height 20 ft and radius 6 ft. If the tank is half full

of water, find the work required to pump all of it over

the top rim.

19. The tank in Problem 18 is full of water. Find the work

required to pump all of it to a point 10 ft above the top

of the tank.

20. Water in a cylinder of height 10 ft and radius 4 ft is to

be pumped out. Find the work required if

(a) The tank is full of water and the water is to be

pumped over the top of the tank.

(b) The tank is full of water and the water must be

pumped to a height 5 ft above the top of the tank.

(c) The depth of water in the tank is 8 ft and the water

must be pumped over the top of the tank.

21. A water tank is in the shape of a right circular cone with

height 18 ft and radius 12 ft at the top. If it is filled with

water to a depth of 15 ft, find the work done in pumping

all of the water over the top of the tank. (The density of

water is � = 62.4 lb/ft3.)

22. A cone with height 12 ft and radius 4 ft, pointing down-

ward, is filled with water to a depth of 9 ft. Find the work

required to pump all the water out over the top.

23. A hemispherical bowl of radius 2 ft contains water to a

depth of 1 ft at the center. Let y be measured vertically

upward from the bottom of the bowl. Water has density

62.4 lb/ft3.

(a) Approximately how much work does it take to

move a horizontal slice of water at a distance y

from the bottom to the rim of the bowl?

(b) Write and evaluate an integral giving the work

done to move all the water to the rim of the bowl.

24. A point of mass m = 5 gm lies s = 30 cm from a uni-

form bar of mass M = 60 gm and length L = 120 cm.

The bar is divided into 240 segments of equal length

Δx. See Figure 8.86.

(a) What is the mass of each segment?

(b) The first segment is a distance x0 = 30 cm from

mass m. What is the distance x100 of the 101st seg-

ment from mass m?

(c) The total force exerted by the bar on the point is

lim
n→∞

n−1
∑

0

GmM

L
⋅

1

x2
i

Δx =
∫

b

a

kG

x2
dx,

where G is the gravitational constant. Give the val-

ues of a, b and k.

(d) Find the total force on the point exerted by the bar

leaving your answer in terms of G.

❄

Point of mass m = 5

❄

Bar of mass M = 60

s = 30

✲✛
✲✛

L = 120

Figure 8.86

25. A bucket of water of mass 20 kg is pulled at constant ve-

locity up to a platform 40 meters above the ground. This

takes 10 minutes, during which time 5 kg of water drips

out at a steady rate through a hole in the bottom. Find

the work needed to raise the bucket to the platform.

26. A gas station stores its gasoline in a tank under the

ground. The tank is a cylinder lying horizontally on its

side. (In other words, the tank is not standing vertically

on one of its flat ends.) If the radius of the cylinder is

4 feet, its length is 12 feet, and its top is 10 feet un-

der the ground, find the total amount of work needed

to pump the gasoline out of the tank. (Gasoline weighs

42 lb/ft3.)

27. (a) The trough in Figure 8.87 is full of water. Find the

force of the water on a triangular end.

(b) Find the work to pump all the water over the top.

Figure 8.87

28. The dam in Hannawa Falls, NY, on the Raquette River

is 60 feet across, 25 feet high, and approximately rect-

angular. Find the water force on the dam.
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29. What is the total force on the bottom and each side of a

full rectangular water tank that has length 20 ft, width

10 ft, and depth 15 ft?

30. A rectangular dam is 100 ft long and 50 ft high. If the

water is 40 ft deep, find the force of the water on the

dam.

31. A lobster tank in a restaurant is 4 ft long by 3 ft wide

by 2 ft deep. Find the water force on the bottom and on

each of the four sides.

32. The Three Gorges Dam started operation in China in

2008. With the largest electrical generating capacity in

the world, the dam is about 2000 m long and 180 m

high, and has created a lake longer than Lake Superior.3

Assume the dam is rectangular in shape.

(a) Estimate the water pressure at the base of the dam.

(b) Set up and evaluate a definite integral giving the

total force of the water on the dam.

33. On August 12, 2000, the Russian submarine Kursk sank

to the bottom of the sea, 350 feet below the surface. Find

the following at the depth of the Kursk.

(a) The water pressure in pounds per square foot and

pounds per square inch.

(b) The force on a 5-foot square metal sheet held

(i) Horizontally. (ii) Vertically.

34. The ocean liner Titanic lies under 12,500 feet of water

at the bottom of the Atlantic Ocean.

(a) What is the water pressure at the Titanic? Give

your answer in pounds per square foot and pounds

per square inch.

(b) Set up and calculate an integral giving the total

force on a circular porthole (window) of diameter 6

feet standing vertically with its center at the depth

of the Titanic.

35. Set up and calculate a definite integral giving the total

force on the dam shown in Figure 8.88, which is about

the size of the Aswan Dam in Egypt.

✲✛ 3600 m

✲✛ 3000 m

✻

❄

100 m

Figure 8.88

36. A climbing plane has vertical velocity v(ℎ)meters∕second,

where ℎ is its altitude in meters. Write a definite inte-

gral for the time it takes the plane to climb 7000 meters

from the ground.

37. Climbing a ladder at a constant rate, a painter sprays

1∕4 kg of paint per meter onto a pole from the ground up

to a height of 8 meters. Her sprayer starts on the ground

with 3 kg of paint and weighs 2 kg when empty.

(a) Find a formula for the mass of the sprayer with

paint as a function of ℎ, the height of the sprayer

above the ground.

(b) Approximate the work done by the painter in lift-

ing the sprayer from height ℎ to ℎ + Δℎ.

(c) Find total work done lifting the sprayer for one coat

of paint.

38. Old houses may contain asbestos, now known to be

dangerous; removal requires using a special vacuum. A

contractor climbs a ladder and sucks up asbestos at a

constant rate from a 10 m tall pipe covered by 0.2 kg/m

using a vacuum weighing 14 kg with a 1.2 kg capacity.

(a) Let ℎ be the height of the vacuum from the ground.

If the vacuum is empty at ℎ = 0, find a formula for

the mass of the vacuum and the asbestos inside as

a function of ℎ.

(b) Approximate the work done by the contractor in

lifting the vacuum from height ℎ to ℎ + Δℎ.

(c) At what height does the vacuum fill up?

(d) Find the total work done lifting the vacuum from

height ℎ = 0 until the vacuum fills.

(e) Assuming again an empty tank at ℎ = 0, find the

work done lifting the vacuum when removing the

remaining asbestos.

39. A skyrocket firework burns fuel as it climbs. Its mass,

m(ℎ) kg, at height ℎ m is given by

m(ℎ) = 0.96 +
0.065

1 + ℎ
.

(a) What is the mass of the rocket at ℎ = 0 just before

it is launched?

(b) Show that the mass decreases as the rocket climbs.

(c) What work would be required to lift the rocket 10m

if its mass did not decrease?

(d) Approximate the work done as the rocket goes

from height ℎ to ℎ + Δℎ.

(e) The rocket explodes at ℎ = 250 m. Find total work

done by the rocket from launch to explosion.

40. We define the electric potential at a distance r from

an electric charge q by q∕r. The electric potential of

a charge distribution is obtained by adding up the po-

tential from each point. Electric charge is sprayed (with

constant density � in units of charge/unit area) onto a

circular disk of radius a. Consider the axis perpendic-

ular to the disk and through its center. Find the electric

potential at the point P on this axis at a distance R from

the center. (See Figure 8.89.)

3en.wikipedia.org/wiki/Three_Gorges_Dam, accessed October 9, 2019.
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✛ Radius = a

P

R

Figure 8.89

41. A uniform, thin, circular disk of radius a and mass M

lies on a horizontal plane. The point P lies a distance y

directly above O, the center of the disk. Calculate the

gravitational force on a mass m at the point P. (See Fig-

ure 8.90.) Use the fact that the gravitational force ex-

erted on the mass m by a thin horizontal ring of radius

r, mass �, and center O is toward O and given by

F =
G�my

(r2 + y2)3∕2
, where G is constant.

P

y

O✛ ✛✛

✛

r

a

Figure 8.90

Strengthen Your Understanding

In Problems 42–44, explain what is wrong with the state-

ment.

42. A 20 meter rope with a mass of 30 kg dangles over the

edge of a cliff. Ignoring friction, the work required to

pull the rope to the top of the cliff is

Work = (30 kg)
(

9.8
m

sec2

)

(20 m) .

43. A cylindrical tank is 10 meters deep. It takes twice as

much work to pump all the oil out through the top of

the tank when the tank is full as when the tank is half

full.

44. Lifting a 10 kg rock 2 meters off the ground requires

20 joules of work.

In Problems 45–46, give an example of:

45. A situation where work can be computed as Force ×

Distance without doing an integral.

46. Two cylindrical tanks A and B such that it takes less

work to pump the water from tank A to a height of 10

meters than from tank B. Both tanks contain the same

volume of water and are less than 10 meters high.

In Problems 47–52, are the statements true or false? Give an

explanation for your answer.

47. It takes more work to lift a 20 lb weight 10 ft slowly

than to lift it the same distance quickly.

48. Work can be negative or positive.

49. The force on a rectangular dam is doubled if its length

stays the same and its depth is doubled.

50. To find the force of water on a vertical wall, we always

slice the wall horizontally, no matter what the shape of

the wall.

51. The force of a liquid on a wall can be negative or posi-

tive.

52. If the average value of the forceF (x) is 7 on the interval

1 ≤ x ≤ 4, then the work done by the force in moving

from x = 1 to x = 4 is 21.

8.6 APPLICATIONS TO ECONOMICS

On September 23, 2019, Greta Thunberg, a Swedish high school student, spoke to the UN calling on

world leaders to address climate change. Although there is much controversy about climate change,

temperatures and sea levels are in fact rising in much of the world and many people think they are

responsible for flooding, droughts, and fires.

Faced by rising water levels, some communities are considering building sea walls. By one

estimate, Florida needs to spend $76 billion on sea walls by 2040.4 To protect New York City, the

4https://www.climatecosts2040.org. Accessed January 9, 2020.
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mayor proposes extending the shoreline of lower Manhattan at a cost of $10 billion.5 While the costs

are huge, the costs of damage are also enormous. Hurricane Sandy, which hit New York in 2012,

caused $19 billion in damage in the city alone.

To compare today’s costs and future damages, we use present and future values, which allow us

to compare payments at widely different times. We can think of Florida as having two options: Build

a sea wall and avoid flooding, or not build a sea wall, invest the $76 billion, and pay for damages

when they occur in 2040.6 If invested, the amount Florida would have available to pay for damages

is called the future value of the $76 billion.

Suppose the interest rate is 2% compounded annually. Then 2040 is 20 years after 2020, so

Future value in 2040 = 76(1.02)20 = 112.932 billion dollars.

Suppose on the other hand we know the damage in 2040 would be only $100 billion. How much

would Florida have to invest in 2020 to be able to pay for the damage? This amount is called the

present value of the $100 billion. It is given by the solution, P , to

P (1.02)20 = 100;

that is,

Present value in 2020 =
100

(1.02)20
= 67.297 billion dollars.

We define the present and future values in general as follows:

• The future value, $B, of a payment, $P , is the amount to which the $P would have grown

if deposited in an interest-bearing bank account.

• The present value, $P , of a future payment, $B, is the amount which would have to be

deposited in a bank account today to produce exactly $B in the account at the relevant

time in the future.

With an interest rate of r per year, compounded annually, and a time period of t years, a deposit

of $P grows to a future balance of $B, where

B = P (1 + r)t, or equivalently, P =
B

(1 + r)t
.

Note that for a 3% interest rate, r = 0.03. If instead of annual compounding, we have continuous

compounding, we get the following result:

B = Pert, or equivalently, P =
B

ert
= Be−rt.

Example 1 Find the present value in 2020 of a disaster costing $200 billion in 2050. Use a 1% per year continuous

interest rate.

Solution Since 2050 is 30 years in the future, we have

Present value = 200e−0.01⋅30 = 148.164 billion dollars.

5https://www.bloomberg.com/news/articles/2019-03-14/de-blasio-seeks-to-flood-proof-lower-manhattan-by-adding-

land. Accessed January 9, 2020.
6We are considering a very simplified model: All the damages occur in 2040 and we ignore the human and social costs.
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Example 2 In 2007, a few months after their college graduation, three students with an initial loan of $375,000

started the Sweetgreen salad chain.7

Assume the loan was invested at 4% interest compounded continuously and measure time in

years from when the loan was taken.

(a) Assume the first expenditure was $100,000, made a year after they got the loan and their second

expenditure was $50,000, made one year later. How much money remained invested right after

the second expenditure was made? Give your answer to the nearest dollar.

(b) Assume the first scale-up was planned for two years after the second expenditure and was ex-

pected to cost $280,000. Do the founders have enough money? How much money remains from

the original loan at that time? Give your answer to the nearest dollar.

(c) What is the present value of the amount remaining before the scale-up?

Solution With time t in years since the loan was taken:

(a) Working in thousands of dollars:

Amount invested right before first expenditure = 375e0.4(1)

Amount remaining right after first expenditure = 375e0.04 − 100

Amount remaining right before second expenditure = (3750.04 − 100)e0.04(1)

Amount remaining right after second expenditure = (375e0.04 − 100)e0.04 − 50 = 252.152.

There is $252,152 invested right after the second expenditure.

(b) After the second expenditure there is $252,152 in the account. So the value two years later is

Amount remaining right before scale-up = 252,152e0.04(2) = 273,153 dollars

Thus, the founders would have $273,153 in the account right before the scale-up. The founders

would need $280,000 − 273,153 = $6847 more.

(c) Since the scale-up was at t = 4, we have

Present value = 273,153e−0.04(4) = 232,766.

Thus if invested at 4% interest compounded continually, $232,766 would grow to $273,153 in

four years time.

Present and Future Value of a Cost Stream

Now suppose that instead of one payment being made in 2020, the $76 billion for the Florida sea

wall is paid out continuously at a rate of 76∕20 = 3.8 billion dollars per year between 2020 and

2040. We expect the new future value to be less than $112.932 billion as some of the money has less

than 20 years to earn interest. We divide the payment stream into many small payments. Let t be time

in years since 2020 and Δt be the length of one interval. Between t and t + Δt, the amount spent is

3.8Δt and we can think of this payment as being at at the start of the interval. Thus, the 3.8Δt earns

interest for 20 − t years until 2040, so

Future value of Δt expenditure = 3.8Δt(1.02)20−t = 3.8(1.02)20−tΔt.

✲✛ t ✲✛ (20 − t)

20t + Δtt0

7https://en.wikipedia.org/wiki/Sweetgreen. Accessed January 12, 2020.
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Thus, adding all the subintervals from 2020 to 2040, we have

Total future value =
∑

3.8(1.02)20−tΔt.

Taking the limit as Δt → 0, we have an integral, which can be evaluated numerically:

Total future value =
∫

20

0

3.8(1.02)20−tdt = 93.250.

Example 3 Do a similar calculation to set up an integral giving the present value of the payment stream of $3.8

billion per year from 2020 to 2040 at 2% annual interest. Evaluate the integral and interpret its value.

Solution Let t be in years since 2020. As before, we divide the interval from 0 ≤ t ≤ 20 into subintervals of

length Δt. A typical subinterval is t years from 0, so

Present value of Δt expenditure = 3.8(1.02)−tΔt.

Total present value =
∑

3.8(1.02)−tΔt.

Taking the limit as Δt → 0, we have an integral, which can be evaluated numerically:

Total present value =
∫

20

0

3.8(1.02)−tdt = 62.755 billion dollars.

Thus, the present value of expenditures of $3.8 billion a year for 20 years is $62.755 billion. If we

invested $62.755 billion in 2020 at 2% interest per year, we could exactly make the payments.

Cost and Income Streams

In the previous example, the rate at which payments are made was a constant $3.8 billion per year.

More generally, the rate at which costs are incurred or payments are made may vary with time. In

this case, we write the rate as P (t). (Measured in dollars per year, for example.)

Present and Future Values of a Cost or Income Streams

We calculate the present value of the stream paid at a rate of P (t) dollars per year between now and

M years in the future, with interest compounded continuously. We use an argument similar to that

in the previous example and obtain the following results for the present and future values:

Present value =
∫

M

0

P (t)e−rtdt dollars.

Future value =
∫

M

0

P (t)er(M−t)dt dollars.

In addition, by writing er(M−t) = erM ⋅ e−rt and factoring out erM , we see that

Future value = erM ⋅ Present value.
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Example 4 (a) Find the annual rate of expenditure that if invested continuously between 2020 and 2050 would

be sufficient to pay for damages of $200 billion in 2050. Interest is 1% per year compounded

continuously.

(b) Find the present value of these expenditures.

Solution (a) We are looking for the rate, P , in billions of dollars per year, at which money is invested over

the 30 years. Thus, we have

Future value =
∫

30

0

Pe0.01(30−t)dt = P
∫

30

0

e0.01(30−t)dt.

Evaluating the integral gives ∫
30

0
e0.01(30−t)dt = 34.986, so

Future value = 200 = P ⋅ 34.986

so

Annual rate of expenditure = P =
200

34.986
= 5.717 billion dollars per year.

(b) The present value of these expenditures is 200e−0.01(30) = 148.164 billion dollars.

Example 5 In 2016, the OECD (Organization for Economic Cooperation and Development) published data sug-

gesting that worldwide health care costs due to outdoor air pollution were growing according to

21e0.0472t billion per year, where t is in years since 2015.8 What is the present value in 2015 of this

stream of costs between 2015 and 2060? Use a continuous interest rate of 1% per year.

Solution Since t is in years since t and 2060 is t = 45, we have, in billions of dollars,

Present value =
∫

45

0

21e0.0472te−0.01tdt =
∫

45

0

21e0.0372tdt =
21

0.0372
e0.0372t

|

|

|

|

45

0

= 2446.308.

Example 6 (a) Find the present and future values of a constant income stream of $1000 per year over a period

of 20 years, assuming an interest rate of 10% per year, compounded continuously.

(b) Compare the present values of the same stream with interest rates of 5% and 1%, compounded

continuously.

(c) Comparing the present values in parts (a) and (b), as the interest rate increases does the present

value increase or decrease for the same income stream?

Solution (a) Using P (t) = 1000 and r = 0.1, we have

Present value =
∫

20

0

1000e−0.1tdt = 1000

(

−
e−0.1t

0.1

)

|

|

|

|

20

0

= 10,000(1−e−2) ≈ 8646.65 dollars.

There are two ways to compute the future value. Using the present value of $8646.65, we have

Future value = 8646.65e0.1(20) = 63,890.58 dollars.

8https://www.oecd.org/environment/indicators-modelling-outlooks/the-economic-consequences-of-outdoor-air-

pollution-9789264257474-en.htm. Accessed January 10, 2020.



8.6 APPLICATIONS TO ECONOMICS 483

Alternatively, we can use the integral formula:

Future value =
∫

20

0

1000e0.1(20−t)dt =
∫

20

0

1000e2e−0.1tdt

= 1000e2
(

−
e−0.1t

0.1

)

|

|

|

|

20

0

= 10,000e2(1 − e−2) ≈ 63,890.58 dollars.

Notice that the total amount deposited is $1000 per year for 20 years, or $20,000. The additional

$43,895.58 of the future value comes from interest earned.

(b) Using P (t) = 1000 and r = 0.05, we have

Present value =
∫

20

0

1000e−0.05tdt = 1000

(

−
e−0.05t

0.05

)

|

|

|

|

20

0

= 12,642.41 dollars.

Using P (t) = 1000 and r = 0.01, we have

Present value =
∫

20

0

1000e−0.01tdt = 1000

(

−
e−0.01t

0.01

)

|

|

|

|

20

0

= 18,126.92 dollars.

(c) Looking at the present values, $8646.65, $12,642.41, $18,126.92, corresponding to interest rates

of 10%, 5%, 1%, we see that the bigger the interest rate, the smaller the present value of the same

income stream.

Time Horizon and Climate Change

The present value of future damage depends on the time horizon (how far in the future the damage

is predicted). Substantial damage far enough in the future has a small present value and may seem

unimportant.

Supply and Demand Curves
In a free market, the quantity of a certain item produced and sold can be described by the supply

and demand curves of the item. The supply curve shows the quantity of the item the producers will

supply at different price levels. It is usually assumed that as the price increases, the quantity supplied

will increase. The consumers’ behavior is reflected in the demand curve, which shows what quantity

of goods are bought at various prices. An increase in price is usually assumed to cause a decrease in

the quantity purchased. See Figure 8.91.

q∗ q1

p0

p∗

p1

Supply

Demand

q (quantity)

p (price/unit)

Figure 8.91: Supply and demand curves

It is assumed that the market settles to the equilibrium price and quantity, p∗ and q∗, where the

graphs cross. At equilibrium, a quantity q∗ of an item is produced and sold for a price of p∗ each.

Consumer and Producer Surplus
Notice that at equilibrium, a number of consumers have bought the item at a lower price than they

would have been willing to pay. (For example, there are some consumers who would have been

willing to pay prices up to p1.) Similarly, there are some suppliers who would have been willing to

produce the item at a lower price (down to p0, in fact). We define the following terms:
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• The consumer surplus measures the consumers’ gain from trade. It is the total amount

gained by consumers by buying the item at the current price rather than at the price they

would have been willing to pay.

• The producer surplus measures the suppliers’ gain from trade. It is the total amount

gained by producers by selling at the current price, rather than at the price they would

have been willing to accept.

In the absence of price controls, the current price is assumed to be the equilibrium price.

Both consumers and producers are richer for having traded. The consumer and producer surplus

measure how much richer they are.

Suppose that all consumers buy the good at the maximum price they are willing to pay. Divide

the interval from 0 to q∗ into subintervals of length Δq. Figure 8.92 shows that a quantity Δq of

items are sold at a price of about p1, another Δq are sold for a slightly lower price of about p2, the

next Δq for a price of about p3, and so on. Thus,

Consumers’ total expenditure ≈ p1Δq + p2Δq + p3Δq +⋯ =
∑

piΔq.

If D is the demand function given by p = D(q), and if all consumers who were willing to pay more

than p∗ paid as much as they were willing, then as Δq → 0, we would have

Consumer expenditure =
∫

q∗

0

D(q)dq =
Area under demand

curve from 0 to q∗.

Now if all goods are sold at the equilibrium price, the consumers’ actual expenditure is p∗q∗, the area

of the rectangle between the axes and the lines q = q∗ and p = p∗. Thus, if p∗ and q∗ are equilibrium

price and quantity, the consumer surplus is calculated as follows:

Consumer surplus =

(

∫

q∗

0

D(q)dq

)

− p∗q∗ =
Area under demand

curve above p = p∗.

q∗

p∗

p3

p2

p1

q (quantity)

p (price/unit)

Supply: p = S(q)

Demand: p = D(q)

✲ ✛Δq
. . .

Figure 8.92: Calculation of consumer surplus

q∗

p∗

q (quantity)

p (price/unit)

☛

Consumer surplus

☛

Producer surplus

Supply: p = S(q)

Demand: p = D(q)

Figure 8.93: Consumer and producer surplus

See Figure 8.93. Similarly, if the supply curve is given by the function p = S(q) and p∗ and q∗ are

equilibrium price and quantity, the producer surplus is calculated as follows:

Producer surplus = p∗q∗ −

(

∫

q∗

0

S(q)dq

)

=
Area between supply

curve and line p = p∗.
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Summary for Section 8.6

• The future value, B, of a payment, P , made today is the amount that P would grow to by the

future time if deposited today in an interest-bearing account.

• The present value, P , of a future payment,B, is the amount you must deposit in a bank account

today to produce B at the future time.

• The present value P and future value B at time t years in the future are related as follows:

◦ At interest rate r compounded annually, B = P (1 + r)t.

◦ At interest rate r compounded continuously, B = Pert.

• If an income stream of P (t) dollars∕year is deposited during M years and earns interest at a

continuous rate r, then the present and future values of the income stream are as follows:

Present value =
∫

M

0

P (t)e−rt dt

Future value =
∫

M

0

P (t)er(M−t) dt

Future value = erM ⋅ Present value.

• The supply curve p = S(q) gives the quantity q of an item producers will supply at various

prices p. The demand curve p = D(q) shows the quantity q of goods that consumers will buy at

various prices p. The intersection point (q∗, p∗) of the two curves gives the equilibrium quantity

q∗ and price p∗, the quantity and price to be expected in a free market situation.

• The consumer surplus is the total amount gained by consumers by buying at the current price

rather than at the price they would have been willing to pay. If the current price is p∗, then

Consumer surplus =

(

∫

q∗

0

D(q) dq

)

− p∗q∗.

• The producer surplus is the total amount gained by producers by selling at the current price

rather than at the price they would have been willing to accept. If the current price is p∗, then

Producer surplus = p∗q∗ −

(

∫

q∗

0

S(q) dq

)

.

Exercises and Problems for Section 8.6

EXERCISES

In Exercises 1–7, give an expression that represents the state-

ment. Do not simplify your expression.

1. The future value of single $C deposit, after 20 years, at

a 2% interest rate per year, compounded annually.

2. The present value of $C deposited 20 years from now,

at a 2% interest rate per year, compounded annually.

3. The present value of a deposit of $C , made 10 years

from now, with a 2% interest rate per year, compounded

continuously.

4. The present value of an income stream paying C dol-

lars/year for a period of 15 years, at a 2% interest rate

per year, compounded continuously.

5. The future value at the end of 15 years of an income

stream paying C dollars/year throughout the 15 years, at

a 2% interest rate per year, compounded continuously.

6. The future value, at the end of C years, of a series of

three $500 deposits, where the first deposit is made

now, the second a year from now, and the third two

years from now. Assume a 2% interest rate per year,

compounded continuously.

7. The continuous interest rate per year for a deposit $C

that will grow to $25,000 in 30 years.

8. Find the future value of an income stream of $2000 per

year, deposited into an account paying 2% interest per

year, compounded continuously, over a 15-year period.

9. Find the present and future values of an income stream

of $5000 a year, for a period of 5 years, if the continuous

interest rate is 4% per year.

10. (a) Find the present and future values of a constant in-

come stream of $100 per year over a period of 20

years, assuming a 10% annual interest rate per year,

compounded continuously.
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(b) How many years will it take for the balance to reach

$5000?

Exercises 11–13 concern a single investment of $10,000.

Find the continuous interest rate per year, yielding a future

value of $20,000 in the given time period.

11. 60 years 12. 20 years 13. 5 years

Exercises 14–17 involve a report in the Texas Observer9 that

estimated that annual storm-related losses along the Gulf

Coast attributable to climate change, particularly sea-level

rise, could increase over the next decade by up to $222 mil-

lion in 2030, and as much as $650 million in 2050.

14. Calculate the present value in 2020 of a single payment

which would be necessary to cover the additional cost

in 2030 assuming an interest rate of 2% compounded

annually.

15. Calculate the present value in 2020 of a single payment

which would be necessary to cover the additional cost

in 2050 assuming an interest rate of 1.5% compounded

continuously.

16. What interest rate would be needed for the single de-

posit of $150 million in 2020 to cover the additional

costs in 2030 assuming interest is compounded annu-

ally?

17. What interest rate would be needed for the single de-

posit of $300 million in 2020 to cover the additional

costs in 2050 assuming interest is compounded contin-

uously?

Exercises 18–20 concern a constant income stream that pays

a total of $20,000 over a certain time period with an interest

rate of 2% per year, compounded continuously. Find the rate

at which money is paid, in dollars/year, and the future value

of the stream at the end of the given time period.

18. 5 years 19. 10 years 20. 20 years

PROBLEMS

21. The Congressional Budget Office (CBO) estimates that

annual costs due to hurricane damage in coastal re-

gions will increase to $39 billion by 2075 with half

this cost attributed to climate change.10 Calculate the

present value in 2020 of a single sum payment to cover

the cost of the damage attributed to climate change in

2075 assuming an annual interest rate of 2%.

22. The combined impacts of sea level rise and storm surge

in the southeast US have the potential to cost11 up to

$60 billion each year in 2050 and up to $99 billion in

2090.

(a) Find the constant annual income stream necessary

from 2020 to 2050 to cover the cost in 2050. As-

sume an interest rate of 2%.

(b) Is the same income stream, through 2090, suffi-

cient to cover the costs in 2090?

23. A person deposits money into a retirement account,

which pays 5% interest per year compounded continu-

ously, at a rate of $5000 per year for 15 years. Calculate:

(a) The balance in the account at the end of the 15

years.

(b) The amount of money actually deposited into the

account.

(c) The interest earned during the 15 years.

24. A company expects a factory to make $200 million/year

for ten years, beginning in year t = 5. With a continuous

interest rate of 1% per year, what is the present value of

this income stream from t = 5 to t = 15?

25. With a continuous interest rate of 1.5% per year, a com-

pany expects the present value (in $ millions) of the

income stream from a new factory to be given by the

integral

∫

18

3

300e−0.015t dt.

(a) What income stream (in $ millions/year) does the

company expect the factory to make, once it comes

online?

(b) For how many years does the company expect the

factory to generate an income stream?

26. Draw a graph, with time in years on the horizontal axis,

of what an income stream might look like for a company

that sells sunscreen in the northeast United States.

27. On March 6, 2007, the Associated Press reported that

Ed Nabors had won half of a $390 million jackpot,

the largest lottery prize in US history at the time. Sup-

pose he was given the choice of receiving his $195 mil-

lion share paid out continuously over 20 years or one

lump sum of $120 million paid immediately. Based on

present value:

(a) Which option is better if the interest rate is 6% per

year, compounded continuously? An interest rate

of 3% per year?

(b) If Mr. Nabors chose the lump-sum option, what as-

sumption was he making about interest rates?

9July 28, 2015, www.texasobserver.org/climate-change-in-texas-will-cost-businesses-billions, accessed January 10, 2020.
10www.thebalance.com/hurricane-damage-economic-costs-4150369, accessed January 10, 2020
11nca2018.globalchange.gov/chapter/19/, accessed January 10, 2020.
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28. Find a constant income stream (in dollars per year)

which after 10 years has a future value of $20,000, as-

suming a continuous interest rate of 3% per year.

29. (a) A bank account earns 2% interest per year com-

pounded continuously. At what (constant, continu-

ous) rate must a parent deposit money into such an

account in order to save $100,000 in 15 years for a

child’s college expenses?

(b) If the parent decides instead to deposit a lump sum

now in order to attain the goal of $100,000 in 15

years, how much must be deposited now?

30. (a) If you deposit money continuously at a constant

rate of $4000 per year into a bank account that

earns 2% interest per year, how many years will it

take for the balance to reach $10,000?

(b) How many years would it take if the account had

$1000 in it initially?

31. A business associate who owes you $3000 offers to

pay you $2800 now, or else pay you three yearly in-

stallments of $1000 each, with the first installment paid

now. If you use only financial reasons to make your de-

cision, which option should you choose? Justify your

answer, assuming a 3% interest rate per year, com-

pounded continuously.

In Problems 32–35 find the continuous interest rate per year

that yields a future value of $18,000 in 20 years for each

$9000 investment.

32. A single $9000 deposit.

33. An initial $6000 deposit plus a second $3000 deposit

made three years after the first.

34. An initial $3000 deposit plus a second $6000 deposit

made three years after the first.

35. An income stream of $300 per year.

36. A family wants to save for college tuition for their

daughter. What continuous yearly interest rate r% is

needed in their savings account if their deposits of

$4800 per year are to grow to $100,000 in 15 years?

Assume that they make deposits continuously through-

out the year.

37. Big Tree McGee is negotiating his rookie contract with

a professional basketball team. They have agreed to a

three-year deal which will pay Big Tree a fixed amount

at the end of each of the three years, plus a signing

bonus at the beginning of his first year. They are still

haggling about the amounts and Big Tree must decide

between a big signing bonus and fixed payments per

year, or a smaller bonus with payments increasing each

year. The two options are summarized in the table. All

values are payments in millions of dollars.

Signing bonus Year 1 Year 2 Year 3

Option #1 6.0 2.0 2.0 2.0

Option #2 1.0 2.0 4.0 6.0

(a) Big Tree decides to invest all income in stock funds

which he expects to grow at a rate of 10% per

year, compounded continuously. He would like to

choose the contract option which gives him the

greater future value at the end of the three years

when the last payment is made. Which option

should he choose?

(b) Calculate the present value of each contract offer.

38. Sales of Version 6.0 of a computer software package

start out high and decrease exponentially. At time t, in

years, the sales are s(t) = 100e−t thousands of dol-

lars per year. After two years, Version 7.0 of the soft-

ware is released and replaces Version 6.0. Assuming

that all income from software sales is immediately in-

vested in government bonds which pay interest at a 4%

rate per year, compounded continuously, calculate the

total value of sales of Version 6.0 over the two-year pe-

riod.

39. An industrial site emits toxic pollutants that have both

human and financial costs. Here, we consider only the

financial impact. The emissions are predicted to trigger

additional health costs at a rate of C(t) = 100e0.01t mil-

lion dollars per year over the next 50 years. Only con-

sidering the additional health costs, what is the most

that should be spent now on preventing emissions? The

continuous interest rate is 3% per year.

40. Estimates of worldwide expenditures on adapting to cli-

mate change vary widely. UNFCC data suggest that be-

tween $700 bn and $1000 bn will be needed for the

decade 2030-2040.12 Suppose funds to meet this need

are set aside between 2020 and 2030 at a constant con-

tinuous rate of $P bn per year, earning interest at a con-

tinuous rate of 3% per year.

(a) Find the value of P to reach $700 bn by 2030.

(b) Find the value of P to reach $1000 bn by 2030.

(c) Find the present value in 2020 of the $700 bn and

the $1000 bn in 2030.

41. The value of some good wine increases with age. Thus,

if you are a wine dealer, you have the problem of decid-

ing whether to sell your wine now, at a price of $P a bot-

tle, or to sell it later at a higher price. Suppose you know

that the amount a wine-drinker is willing to pay for a

bottle of this wine t years from now is $P (1 + 20
√

t).

Assuming continuous compounding and a prevailing

interest rate of 5% per year, when is the best time to

sell your wine?

12UN Climate Change Conference, reported in https://www.independent.co.uk/environment/climate-change/annual-cost-

of-climate-change-will-be-163190bn-1778391.html, accessed May 2020.
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42. An oil company discovered an oil reserve of 100 mil-

lion barrels. For time t > 0, in years, the company’s

extraction plan is a linear declining function of time as

follows:

q(t) = a − bt,

where q(t) is the rate of extraction of oil in millions of

barrels per year at time t and b = 0.1 and a = 10.

(a) How long does it take to exhaust the entire reserve?

(b) The oil price is a constant $20 per barrel, the ex-

traction cost per barrel is a constant $10, and the

market interest rate is 10% per year, compounded

continuously. What is the present value of the com-

pany’s profit?

43. You are manufacturing a particular item. After t years,

the rate at which you earn a profit on the item is (2−0.1t)

thousand dollars per year. (A negative profit represents

a loss.) Interest is 3% per year, compounded continu-

ously,

(a) Write a Riemann sum approximating the present

value of the total profit earned up to a timeM years

in the future.

(b) Write an integral representing the present value in

part (a). (You need not evaluate this integral.)

(c) For what M is the present value of the stream of

profits on this item maximized? What is the present

value of the total profit earned up to that time?

44. In May 1991, Car and Driver described a Jaguar that

sold for $980,000. At that price only 50 have been sold.

It is estimated that 350 could have been sold if the price

had been $560,000. Assuming that the demand curve is

a straight line, and that $560,000 and 350 are the equi-

librium price and quantity, find the consumer surplus at

the equilibrium price.

45. Using Riemann sums, explain the economic signifi-

cance of ∫
q∗

0
S(q) dq to the producers.

46. Using Riemann sums, give an interpretation of pro-

ducer surplus, ∫
q∗

0
(p∗ − S(q)) dq, analogous to the in-

terpretation of consumer surplus.

47. In Figure 8.93, page 484, mark the regions represent-

ing the following quantities and explain their economic

meaning:

(a) p∗q∗ (b)
∫

q∗

0

D(q) dq

(c)
∫

q∗

0

S(q) dq (d)
∫

q∗

0

D(q) dq − p∗q∗

(e) p∗q∗ −
∫

q∗

0

S(q) dq (f)
∫

q∗

0

(D(q) −S(q)) dq

48. The dairy industry is an example of cartel pricing: the

government has set milk prices artificially high. On a

supply and demand graph, label p+, a price above the

equilibrium price. Using the graph, describe the effect

of forcing the price up to p+ on:

(a) The consumer surplus.

(b) The producer surplus.

(c) The total gains from trade (Consumer surplus +

Producer surplus).

49. Rent controls on apartments are an example of price

controls on a commodity. They keep the price artifi-

cially low (below the equilibrium price). Sketch a graph

of supply and demand curves, and label on it a price p−

below the equilibrium price. What effect does forcing

the price down to p− have on:

(a) The producer surplus?

(b) The consumer surplus?

(c) The total gains from trade (Consumer surplus +

Producer surplus)?

Strengthen Your Understanding

In Problems 50–53, explain what is wrong with the state-

ment.

50. The future value of an income stream of $2000 per year

after 10 years is $15,000, assuming a 3% continuous

interest rate per year.

51. The present value of a lump-sum payment S dollars one

year from now is greater with an interest rate of 4% per

year, compounded annually, than with an interest rate

of 3% per year compounded annually.

52. Payments are made at a constant rate of P dollars per

year over a two-year period. The present value of these

payments is 2Pe−2r, where r is the continuous interest

rate per year.

53. Producer surplus is measured in the same units as the

quantity, q.

In Problems 54–57, give an example of:

54. Supply and demand curves where producer surplus is

smaller than consumer surplus.

55. A continuous interest rate such that a $10,000 payment

in 10 years’ time has a present value of less than $5000.

56. An interest rate, compounded annually, and a present

value that correspond to a future value of $5000 one

year from now.

57. An interest rate, compounded annually, and a table of

values that shows how much money you would have

to put down in a single deposit t years from now, at

t = 0, 1, 2, 3, or 4, if you want to have $10,000 ten years

from now (ignoring inflation).
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8.7 DISTRIBUTION FUNCTIONS

Understanding the distribution of various quantities through the population is important to decision

makers. For example, the income distribution gives useful information about the economic structure

of a society. In this section we look at the distribution of ages in the US. To allocate funding for

education, health care, and social security, the government needs to know how many people are in

each age group. We will see how to represent such information by a density function.

US Age Distribution

The data in Table 8.4 shows how the ages of the US population were distributed in 2016.13 To

represent this information graphically, we use a type of histogram, with a vertical bar above each

age group constructed so that the area of each bar represents the fraction of the population in that

age group.14 The total area of all the rectangles is 100% = 1. We only consider people who are less

than 100 years old.15 For the 0–20 age group, the base of the rectangle is 20, and we want the area

to be 0.25, so the height must be 0.25∕20 = 0.0125. We treat ages as though they were continuously

distributed. The category 0–20, for example, contains people who are just one day short of their

twentieth birthday. (See Figure 8.94.)

Table 8.4 Distribution of ages in the

US in 2016

Age group

Fraction of

total population

0–20 25% = 0.25

20–40 27% = 0.27

40–60 27% = 0.27

60–80 17% = 0.17

80–100 4% = 0.04

20 40 60 80 100

0.015

0.010

0.005

age
(years)

fraction of population
per year of age

25%
=

0.25

27%
=

0.27

27%
=

0.27

17%
=

0.17
4% = 0.04

Figure 8.94: How ages were distributed in the US in 2016

Example 1 In 2016, estimate what fraction of the US population was:

(a) Between 20 and 60 years old. (b) Less than 10 years old.

(c) Between 75 and 80 years old. (d) Between 80 and 85 years old.

Solution (a) We add the fractions, so 0.27 + 0.27 = 0.54; that is, 54% of the US population was in this age

group.

(b) To find the fraction less than 10 years old, we could assume, for example, that the population

was distributed evenly over the 0–20 group. (This means we are assuming that babies were born

at a fairly constant rate over the last 20 years, which is probably reasonable.) If we make this

assumption, then we can say that the population less than 10 years old was about half that in the

0–20 group, that is, 0.125 of the total population. Notice that we get the same result by computing

the area of the rectangle from 0 to 10. (See Figure 8.95.)

(c) To find the population between 75 and 80 years old, since 0.17 of Americans in 2016 were in the

60-80 group, we might apply the same reasoning and say that
1

4
(0.17) = 0.0425 of the population

was in this age group. This result is represented as an area in Figure 8.95. The assumption that

13populationpyramid.net/, accessed October 7, 2019.
14There are other types of histogram which have frequency on the vertical axis.
15In fact, 0.02% of the population is over 100, but this is too small to be visible on the histogram.
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the population was evenly distributed is not a good one here; certainly there were more people

between the ages of 60 and 65 than between 75 and 80. Thus, the estimate of 0.0425 is certainly

too high.

(d) Again using the (faulty) assumption that ages in each group were distributed uniformly, we would

find that the fraction between 80 and 85 was
1

4
(0.04) = 0.01. (See Figure 8.95.) This estimate

is also poor—there were certainly more people in the 80–85 group than, say, the 95–100 group,

and so the 0.01 estimate is too low.

1010 20 40 60 75 80 85 100

0.015

0.010

0.005

age (years)

fraction of population
per year of age

0.27 0.27✲0.125

✠

0.0425

✠

0.01

Figure 8.95: Ages in the US in 2016—various subgroups (for Example 1)

Smoothing Out the Histogram

We could get better estimates if we had smaller age groups (each age group in Figure 8.94 is 20 years,

which is quite large). The more detailed data in Table 8.5 leads to the new histogram in Figure 8.96.

As we get more detailed information, the upper silhouette of the histogram becomes smoother, but

the area of any of the bars still represents the percentage of the population in that age group. Imagine,

in the limit, replacing the upper silhouette of the histogram by a smooth curve in such a way that

area under the curve above one age group is the same as the area in the corresponding rectangle. The

total area under the whole curve is again 100% = 1. (See Figure 8.96.)

Table 8.5 Ages in the US in 2016

(more detailed)

Age group

Fraction of

total population

0–10 12% = 0.12

10–20 13% = 0.13

20–30 14% = 0.14

30–40 13% = 0.13

40–50 13% = 0.13

50–60 14% = 0.14

60–70 11% = 0.11

70–80 6% = 0.06

80–90 3% = 0.03

90–100 1% = 0.01

20 40 60 80 100

0.015

0.010

0.005

age
(years)

fraction of population
per year of age

0.12 0.13
0.14

0.13 0.13
0.14

0.11

0.06

✠

0.03

✠

0.01

70 80

0.06

❄
❄

Shaded areas equal,
so area under curve ≈
area of rectangle

Figure 8.96: Smoothing out the age histogram
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The Age Density Function

If t is age in years, we define p(t), the age density function, to be a function which “smooths out” the

age histogram. This function has the property that

Fraction of population

between ages a and b
=

Area under graph of p

between a and b
=
∫

b

a

p(t)dt.

If a and b are the smallest and largest possible ages (say, a = 0 and b = 100), so that the ages

of all of the population are between a and b, then

∫

b

a

p(t)dt =
∫

100

0

p(t)dt = 1.

What does the age density functionp tell us? Notice that we have not talked about the meaning

of p(t) itself, but only of the integral ∫
b

a
p(t) dt. Let’s look at this in a bit more detail. Suppose, for

example, that p(10) = 0.013. This is not telling us that 0.013 of the population is precisely 10 years

old (where 10 years old means exactly 10, not 10
1

2
, not 10

1

4
, not 10.1). However, p(10) = 0.013

does tell us that for some small interval Δt around 10, the fraction of the population with ages in this

interval is approximately p(10) Δt = 0.013Δt.

The Probability Density Function

Suppose we are interested in how a certain characteristic, x, is distributed through a population. For

example, x might be height or age if the population is people, or might be wattage for a population

of light bulbs. Then we define a general density function with the following properties:

The function, p(x), is a probability density function, or pdf, if

Fraction of population for which

x is between a and b
=

Area under graph of p

between a and b
=
∫

b

a

p(x)dx.

∫

∞

−∞

p(x) dx = 1 and p(x) ≥ 0 for all x.

The density function must be nonnegative because its integral always gives a fraction of the

population. Also, the fraction of the population with x between −∞ and ∞ is 1 because the entire

population has the characteristic x between −∞ and ∞. The function p that was used to smooth

out the age histogram satisfies this definition of a density function. We do not assign a meaning

to the value p(x) directly, but rather interpret p(x) Δx as the fraction of the population with the

characteristic in a short interval of length Δx around x.

The density function is often approximated by formulas, as in the next example.

Example 2 Find formulas to approximate the density function, p, for the US age distribution. To reflect Fig-

ure 8.96, use a continuous function, constant at 0.0135 up to age 60 and then dropping linearly.

Solution We have p(t) = 0.0135 for 0 ≤ t < 60. For t ≥ 60, we need a linear function sloping down-

ward. Because p is continuous, we have p(60) = 0.0135. Because p is a density function we have

∫
100

0 p(t) dt = 1. Suppose b is as in Figure 8.97; then

∫

100

0

p(t) dt =
∫

60

0

p(t) dt +
∫

100

60

p(t) dt = 60(0.0135) +
1

2
(0.0135)b = 1,
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where ∫
100

60
p(t) dt is given by the area of the triangle. Solving for b gives b = 28.148. Thus the

slope of the line is −0.0135∕28.148 = −0.00048, so for 60 ≤ t ≤ 60 + 28.148 = 88.148, we have

p(t) − 0.0135 = −0.00048(t− 60),

p(t) = 0.0423 − 0.00048t.

According to this way of smoothing the data, there is no one over 88.148 years old, so p(t) = 0 for

t > 88.148.

60

100

0.0135

t (age in years)

fraction of population
per year of age

✲✛ b

✠
p(t) = 0.0135 here

p(t)

Figure 8.97: Age density function

Cumulative Distribution Function for Ages

Another way of showing how ages are distributed in the US is by using the cumulative distribution

function P (t), defined by

P (t) =
Fraction of population

of age less than t
=
∫

t

0

p(x) dx.

Thus, P is the antiderivative of p with P (0) = 0, and P (t) gives the area under the density curve

between 0 and t.

Notice that the cumulative distribution function is nonnegative and increasing (or at least non-

decreasing), since the number of people younger than age t increases as t increases. Another way

of seeing this is to notice that P ′ = p, and p is positive (or nonnegative). Thus the cumulative age

distribution is a function which starts with P (0) = 0 and increases as t increases. P (t) = 0 for t < 0

because, when t < 0, there is no one whose age is less than t. The limiting value of P , as t → ∞, is

1 since as t becomes very large (100 say), everyone is younger than age t, so the fraction of people

with age less than t tends toward 1. (See Figure 8.98.) Using the age density function developed in

Example 2, for t less than 60, the graph of P is a line, because p is constant there. For t > 60, the

graph of P levels off as p tends to 0.

10060

0.0135

x (age in years)

fraction of population
per year of age

✠

Area= P (t) = ∫
t

0
p(x) dx

p(x)

t 60 100

1

t (age in years)

fraction of
population

P (t)

Figure 8.98: P (t), a cumulative age distribution function, and its relation to p(x), an age density function
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Cumulative Distribution Function

A cumulative distribution function, or cdf, P (t), of a density function p, is defined by

P (t) =
∫

t

−∞

p(x) dx =
Fraction of population having

values of x below t.

Thus, P is an antiderivative of p, that is, P ′ = p.

Any cumulative distribution function has the following properties:

• P is increasing (or nondecreasing).

• lim
t→∞

P (t) = 1 and lim
t→−∞

P (t) = 0.

•
Fraction of population having

values of x between a and b
=
∫

b

a

p(x) dx = P (b) − P (a).

Summary for Section 8.7

• A probability density function, or pdf, is a function p(x) such that

Fraction of population for which

x is between a and b
=

Area under graph of p

between a and b
=
∫

b

a

p(x)dx.

• For a probability density function

∫

∞

−∞

p(x) dx = 1 and p(x) ≥ 0 for all x.

• A cumulative distribution function, or cdf, is a function P (t) such that

P (t) =
∫

t

−∞

p(x) dx =
Fraction of population having

values of x below t.

Thus, P is an antiderivative of p, that is, P ′ = p.

• A cumulative distribution has the following properties:

◦ P is increasing (or nondecreasing).

◦ lim
t→∞

P (t) = 1 and lim
t→−∞

P (t) = 0.

◦

Fraction of population having

values of x between a and b
=
∫

b

a

p(x) dx = P (b) − P (a).
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Exercises and Problems for Section 8.7

EXERCISES

1. Match the graphs of the density functions (a), (b), and

(c) with the graphs of the cumulative distribution func-

tions I, II, and III.

(a) (I)

(b)
(II)

(c) (III)

In Exercises 2–4, graph a density function and a cumulative

distribution function which could represent the distribution

of income through a population with the given characteris-

tics.

2. A large middle class.

3. Small middle and upper classes and many poor people.

4. Small middle class, many poor and many rich people.

Decide if the function graphed in Exercises 5–10 is a prob-

ability density function (pdf) or a cumulative distribution

function (cdf). Give reasons. Find the value of c. Sketch and

label the other function. (That is, sketch and label the cdf if

the problem shows a pdf, and the pdf if the problem shows

a cdf.)

5.

c

4

x

6.

4

c

x

7.

5

c

x

8.

0.5 1

c

2c

x

9.

2 4

c

3c

x

10.

1

c

x

11. Let p(x) be the density function for annual family in-

come, where x is in thousands of dollars. What is the

meaning of the statement p(70) = 0.05?

12. Find a density function p(x) such that p(x) = 0 when

x ≥ 5 and when x < 0, and is decreasing when

0 ≤ x ≤ 5.

PROBLEMS

13. Figure 8.99 shows the distribution of kinetic energy of

molecules in a gas at temperatures 300 kelvins and 500

kelvins. At higher temperatures, more of the molecules

in a gas have higher kinetic energies. Which graph cor-

responds to which temperature?

A

B

energy

Figure 8.99

14. A large number of people take a standardized test,

receiving scores described by the density function p

graphed in Figure 8.100. Does the density function im-

ply that most people receive a score near 50? Explain

why or why not.

10 20 30 40 50 60 70
x test scores

fraction of students
per test score

Figure 8.100
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15. An experiment is done to determine the effect of two

new fertilizers A and B on the growth of a species

of peas. The cumulative distribution functions of the

heights of the mature peas without treatment and treated

with each of A and B are graphed in Figure 8.101.

(a) About what height are most of the unfertilized

plants?

(b) Explain in words the effect of the fertilizers A and

B on the mature height of the plants.

1 2

A B

1

x height (meters)

fraction of
plants

❄

Unfertilized

Figure 8.101

16. The cumulative distribution function for heights (in me-

ters) of trees in a forest is F (x).

(a) Explain in terms of trees the meaning of the state-

ment F (7) = 0.6.

(b) Which is greater, F (6) or F (7)? Justify your an-

swer in terms of trees.

17. The density function for heights of American men, in

inches, is p(x). What is the meaning of the statement

p(68) = 0.2?

18. The fraction of the US population of age less than t is

P (t). Using Table 8.5 on page 490, make a table of val-

ues for P (t).

19. Figure 8.102 shows a density function and the corre-

sponding cumulative distribution function.16

(a) Which curve represents the density function and

which represents the cumulative distribution func-

tion? Give a reason for your choice.

(b) Put reasonable values on the tick marks on each of

the axes.

Figure 8.102

20. The density function and cumulative distribution func-

tion of heights of grass plants in a meadow are in Fig-

ures 8.103 and 8.104, respectively.

(a) There are two species of grass in the meadow, a

short grass and a tall grass. Explain how the graph

of the density function reflects this fact.

(b) Explain how the graph of the cumulative distri-

bution function reflects the fact that there are two

species of grass in the meadow.

(c) About what percentage of the grasses in the

meadow belong to the short grass species?

0.5 1 1.5 2
height
(meter)

fraction of plants
per meter of height

Figure 8.103

0.5 1 1.5 2

0.25

0.5

0.75

1

height
(meter)

fraction of plants

Figure 8.104

21. Let p(t) be the probability density function for the num-

ber of minutes t you must wait for the bus. Table 8.6

gives values of P (t) = ∫
t

0
p(x) dx.

(a) What is the probability you will wait between 10

and 20 minutes for a bus?

(b) What is more likely: waiting between 5 and 10 min-

utes, or waiting longer than 30 minutes?

Table 8.6

t 5 10 15 20 30 45 60

P (t) 35% 50% 60% 65% 80% 90% 95%

22. The probability that the height of a randomly selected

woman is less than x inches is given by

p(x) =
∫

x

0

1

3
√

2�
e−(t−64)

2∕18 dt.

Calculate p′(64). What does your answer mean about

women’s heights?

16Adapted from David A. Smith and Lawrence C. Moore, Calculus (Lexington: D.C. Heath, 1994).
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23. After measuring the duration of many telephone calls,

the telephone company found their data was well ap-

proximated by the density function p(x) = 0.4e−0.4x,

where x is the duration of a call, in minutes.

(a) What percentage of calls last between 1 and 2 min-

utes?

(b) What percentage of calls last 1 minute or less?

(c) What percentage of calls last 3 minutes or more?

(d) Find the cumulative distribution function.

24. Students at the University of California were surveyed

and asked their grade point average. (The GPA ranges

from 0 to 4, where 2 is just passing.) The distribution

of GPAs is shown in Figure 8.105.17

(a) Roughly what fraction of students are passing?

(b) Roughly what fraction of the students have honor

grades (GPAs above 3)?

(c) Why do you think there is a peak around 2?

(d) Sketch the cumulative distribution function.

0 1 2 3 4
GPA

fraction of students
per GPA

Figure 8.105

25. Figure 8.10617shows the distribution of elevation, in

miles, across the earth’s surface. Positive elevation de-

notes land above sea level; negative elevation shows

land below sea level (that is, the ocean floor).

(a) Describe in words the elevation of most of the

earth’s surface.

(b) Approximately what fraction of the earth’s surface

is below sea level?

−2 0 2 4−4
elevation (miles)

fraction of earth’s surface
per mile of elevation

Figure 8.106

26. Consider a population of individuals with a disease.

Suppose that t is the number of years since the onset of

the disease. The death density function, f (t) = cte−kt,

approximates the fraction of the sick individuals who

die in the time interval [t, t + Δt] as follows:

Fraction who die ≈ f (t)Δt = cte−ktΔt

where c and k are positive constants whose values de-

pend on the particular disease.

(a) Find the value of c in terms of k.

(b) If 40% of the population dies within 5 years, find c

and k.

(c) Find the cumulative death distribution function,

C(t). Give your answer in terms of k.

Strengthen Your Understanding

In Problems 27–33, explain what is wrong with the state-

ment.

27. If p(x) is a probability density function with p(1) =

0.02, then the probability that x takes the value 1 is

0.02.

28. If P (x) is a cumulative distribution function with

P (5) = 0.4, then the probability that x = 5 is 0.4.

29. The function p(t) = t2 is a density function.

30. The function p(x) = x2ex is a density function.

31. The function P (x) = x2ex is a cumulative distribution

function.

32. The function P (t) = e−t
2

is a cumulative distribution

function.

33. A probability density function is always increasing.

In Problems 34–37, give an example of:

34. A density function that is greater than zero on 0 ≤ x ≤

20 and zero everywhere else.

35. A cumulative distribution function that is piecewise lin-

ear.

36. A probability density function which is nonzero only

between x = 2 and x = 7.

37. A cumulative distribution function with P (3) = 0 and

P (7) = 1.

In Problems 38–39, are the statements true or false? Give an

explanation for your answer.

38. If p(x) = xe−x
2

for all x, then p(x) is a probability den-

sity function.

39. If p(x) = xe−x
2

for all x > 0 and p(x) = 0 for x ≤ 0,

then p(x) is a probability density function.

17Adapted from D. Freedman, R. Pisani, R. Purves, and A. Adikhari, Statistics, 2nd Edition (New York: Norton, 1991).
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8.8 PROBABILITY, MEAN, AND MEDIAN

Probability

Suppose we pick a member of the US population at random and ask what is the probability that the

person is between, say, the ages of 70 and 80. We saw in Table 8.5 on page 490 that 5% = 0.05 of

the population is in this age group. We say that the probability, or chance, that the person is between

70 and 80 is 0.05. Using any age density function p(t), we can define probabilities as follows:

Probability that a person is

between ages a and b
=

Fraction of population

between ages a and b
=
∫

b

a

p(t) dt.

Since the cumulative distribution function gives the fraction of the population younger than age

t, the cumulative distribution can also be used to calculate the probability that a randomly selected

person is in a given age group.

Probability that a person is

younger than age t
=

Fraction of population

younger than age t
= P (t) =

∫

t

0

p(x) dx.

In the next example, both a density function and a cumulative distribution function are used to

describe the same situation.

Example 1 Suppose you want to analyze the fishing industry in a small town. Each day, the boats bring back at

least 2 tons of fish, and never more than 8 tons.

(a) Using the density function describing the daily catch in Figure 8.107, find and graph the corre-

sponding cumulative distribution function and explain its meaning.

(b) What is the probability that the catch will be between 5 and 7 tons?

2 5 6 7 8

0.08
0.12

0.24

x (tons of fish)

fraction of days per
ton of caught fish

p(x)

Figure 8.107: Density function of daily catch

Solution (a) The cumulative distribution function P (t) is equal to the fraction of days on which the catch is

less than t tons of fish. Since the catch is never less than 2 tons, we have P (t) = 0 for t ≤ 2. Since

the catch is always less than 8 tons, we have P (t) = 1 for t ≥ 8. For t in the range 2 < t < 8, we
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must evaluate the integral

P (t) =
∫

t

−∞

p(x)dx =
∫

t

2

p(x)dx.

This integral equals the area under the graph of p(x) betweenx = 2 andx = t. It can be calculated

by noting that p(x) is given by the formula

p(x) =
{

0.04x for 2 ≤ x ≤ 6

−0.06x+ 0.6 for 6 < x ≤ 8

and p(x) = 0 for x < 2 or x > 8. Thus, for 2 ≤ t ≤ 6,

P (t) =
∫

t

2

0.04x dx = 0.04
x2

2

|

|

|

|

t

2

= 0.02t2 − 0.08.

And for 6 ≤ t ≤ 8,

P (t) =
∫

t

2

p(x) dx =
∫

6

2

p(x) dx+
∫

t

6

p(x) dx

= 0.64 +
∫

t

6

(−0.06x+ 0.6) dx = 0.64 +

(

−0.06
x2

2
+ 0.6x

)

|

|

|

|

t

6

= −0.03t2 + 0.6t− 1.88.

Thus

P (t) =

{

0.02t2 − 0.08 for 2 ≤ t ≤ 6

−0.03t2 + 0.6t− 1.88 for 6 < t ≤ 8.

In addition, P (t) = 0 for t < 2 and P (t) = 1 for 8 < t. (See Figure 8.108.)

2 5 6 7 8

0.2

0.4

0.6

0.8

1

P (t)

t (tons of fish)

fraction of days

Figure 8.108: Cumulative distribution of daily catch

2 5 6 7 8

0.08

0.12

0.24

x (tons of fish)

fraction of days per
ton of caught fish

p(x)

Figure 8.109: Shaded area represents the probability that

the catch is between 5 and 7 tons

(b) The probability that the catch is between 5 and 7 tons can be found using either the density func-

tion, p, or the cumulative distribution function, P . If we use the density function, this probability

can be represented by the shaded area in Figure 8.109, which is about 0.43:

Probability catch is

between 5 and 7 tons
=
∫

7

5

p(x) dx = 0.43.

The probability can be found from the cumulative distribution as follows:

Probability catch is

between 5 and 7 tons
= P (7) − P (5) = 0.85 − 0.42 = 0.43.
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The Median and Mean

It is often useful to be able to give an “average” value for a distribution. Two measures that are in

common use are the median and the mean.

The Median

A median of a quantity x distributed through a population is a value T such that half the

population has values of x less than (or equal to) T , and half the population has values of x

greater than (or equal to) T . Thus, a median T satisfies

∫

T

−∞

p(x) dx = 0.5,

where p is the density function. In other words, half the area under the graph of p lies to the

left of T .

Example 2 Find the median age in the US in 2016, using the age density function given by

p(t) =
{

0.0135 for 0 ≤ t ≤ 60

0.0423 − 0.00048t for 60 < t ≤ 88.148.

Solution We want to find the value of T such that

∫

T

−∞

p(t) dt =
∫

T

0

p(t) dt = 0.5.

Since p(t) = 0.0135 up to age 60, we have

Median = T =
0.5

0.0135
≈ 37.037 years.

(See Figure 8.110.)

6037.037

0.0135

t (age in years)

fraction of population
per year of age

0.5

✠
Median

p(t)

Figure 8.110: Median of age distribution

The Mean

Another commonly used average value is the mean. To find the mean of N numbers, you add the

numbers and divide the sum by N . For example, the mean of the numbers 1, 2, 7, and 10 is (1+ 2+
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t t + Δt
t (age)

✻

❄

p(t) Area= p(t)Δt✛

Figure 8.111: Shaded area is percentage of population with

age between t and t + Δt

7 + 10)∕4 = 5. The mean age of the entire US population is therefore defined as

Mean age =

∑

Ages of all people in the US

Total number of people in the US
.

Calculating the sum of all the ages directly would be an enormous task; we will approximate

the sum by an integral. The idea is to “slice up” the age axis and consider the people whose age is

between t and t + Δt. How many are there?

The fraction of the population between t and t + Δt is the area under the graph of p between

these points, which is well approximated by the area of the rectangle, p(t)Δt. (See Figure 8.111.)

If the total number of people in the population is N , then

Number of people with age

between t and t + Δt
≈ p(t)ΔtN.

The age of all of these people is approximately t:

Sum of ages of people

between age t and t + Δt
≈ tp(t)ΔtN.

Therefore, adding and factoring out an N gives us

Sum of ages of all people ≈
(

∑

tp(t)Δt
)

N.

In the limit, as we allow Δt to shrink to 0, the sum becomes an integral, so

Sum of ages of all people =

(

∫

100

0

tp(t)dt

)

N.

Therefore, with N equal to the total number of people in the US, and assuming no person is over

100 years old,

Mean age =
Sum of ages of all people in US

N
=
∫

100

0

tp(t)dt.

We can give the same argument for any18 density function p(x).

If a quantity has density function p(x),

Mean value of the quantity =
∫

∞

−∞

xp(x) dx.

18Provided all the relevant improper integrals converge.
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It can be shown that the mean is the point on the horizontal axis where the region under the

graph of the density function, if it were made out of cardboard, would balance.

Example 3 Find the mean age of the US population, using the density function of Example 2.

Solution The formula for p is

p(t) =

⎧

⎪

⎨

⎪

⎩

0 for t < 0

0.0135 for 0 ≤ t ≤ 60

0.0423 − 0.00048t for 60 < t ≤ 88.148

0 for t > 88.148.

Using these formulas, we compute

Mean age =
∫

100

0

tp(t)dt =
∫

60

0

t(0.0135)dt+
∫

88.148

60

t(0.0423 − 0.00048t)dt

= 0.0135
t2

2

|

|

|

|

60

0

+ 0.0423
t2

2

|

|

|

|

88.148

60

− 0.00048
t3

3

|

|

|

|

88.148

60

≈ 37.47 years.

The mean is shown is Figure 8.112.

37.47

t

fraction of population
per year of age

p(t)

Mean = Balance point

Figure 8.112: Mean of age distribution

Normal Distributions

How much rain do you expect to fall in your home town this year? If you live in Anchorage, Alaska,

the answer is something close to 15 inches (including the snow). Of course, you don’t expect exactly

15 inches. Some years have more than 15 inches, and some years have less. Most years, however, the

amount of rainfall is close to 15 inches; only rarely is it well above or well below 15 inches. What

does the density function for the rainfall look like? To answer this question, we look at rainfall data

over many years. Records show that the distribution of rainfall is well approximated by a normal

distribution. The graph of its density function is a bell-shaped curve which peaks at 15 inches and

slopes downward approximately symmetrically on either side.

Normal distributions are frequently used to model real phenomena, from grades on an exam

to the number of airline passengers on a particular flight. A normal distribution is characterized by

its mean, �, and its standard deviation, �. The mean tells us the location of the central peak. The

standard deviation tells us how closely the data is clustered around the mean. A small value of � tells

us that the data is close to the mean; a large � tells us the data is spread out. In the following formula

for a normal distribution, the factor of 1∕(�
√

2�) makes the area under the graph equal to 1.
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A normal distribution has a density function of the form

p(x) =
1

�
√

2�
e−(x−�)

2∕(2�2),

where � is the mean of the distribution and � is the standard deviation, with � > 0.

To model the rainfall in Anchorage, we use a normal distribution with � = 15 and � = 1. (See

Figure 8.113.)

13 15 17
x

p(x) =
1

√

2�
e−(x−15)

2∕2

(15,
1

√

2�
)

Figure 8.113: Normal distribution with � = 15 and � = 1

Example 4 For Anchorage’s rainfall, use the normal distribution with the density function with � = 15 and

� = 1 to compute the fraction of the years with rainfall between

(a) 14 and 16 inches, (b) 13 and 17 inches, (c) 12 and 18 inches.

Solution (a) The fraction of the years with annual rainfall between 14 and 16 inches is ∫
16

14
1

√

2�
e−(x−15)

2∕2 dx.

Since there is no elementary antiderivative for e−(x−15)
2∕2, we find the integral numerically. Its

value is about 0.68.

Fraction of years with rainfall

between 14 and 16 inches
=
∫

16

14

1
√

2�
e−(x−15)

2∕2 dx ≈ 0.68.

(b) Finding the integral numerically again:

Fraction of years with rainfall

between 13 and 17 inches
=
∫

17

13

1
√

2�
e−(x−15)

2∕2 dx ≈ 0.95.

(c)

Fraction of years with rainfall

between 12 and 18 inches
=
∫

18

12

1
√

2�
e−(x−15)

2∕2 dx ≈ 0.997.

Since 0.95 is so close to 1, we expect that most of the time the rainfall will be between 13 and 17

inches a year.

Among the normal distributions, the one having � = 0, � = 1 is called the standard normal

distribution. Values of the corresponding cumulative distribution function are published in tables.
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Summary for Section 8.8

• If the distribution of a quantity through a population is described by a pdf p(x), we say

Probability that x is

between a and b
=

Fraction of population for which

x is between a and b
=
∫

b

a

p(x) dx.

In terms of the cdf P (x),

Probability that x ≤ t =
Fraction of population

for which x ≤ t
= P (t) =

∫

t

−∞

p(x) dx.

• A median of a probability density function p(x) is a value T such that

∫

T

−∞

p(x) dx = 0.5 =
∫

∞

T

p(x) dx.

• The mean of a probability density function p(x) is given by

Mean =
∫

∞

−∞

xp(x) dx.

• A normal distribution has a probability density function of the form

p(x) =
1

�
√

2�
e−(x−�)

2∕(2�2)

where � is the mean of the distribution and � is the standard deviation, with � > 0.

• The graph of a normal pdf is a bell-shaped curve. The mean � gives the location of the central

peak. The standard deviation � tells us how wide or narrow the bell is.

Exercises and Problems for Section 8.8

EXERCISES

1. Show that the area under the fishing density function

in Figure 8.107 on page 497 is 1. Why is this to be ex-

pected?

2. Find the mean daily catch for the fishing data in Fig-

ure 8.107, page 497.

3. (a) Using a calculator or computer, sketch graphs of

the density function of the normal distribution

p(x) =
1

�
√

2�
e−(x−�)

2∕(2�2).

(i) For fixed � (say, � = 5) and varying � (say,

� = 1, 2, 3).

(ii) For varying � (say, � = 4, 5, 6) and fixed �

(say, � = 1).

(b) Explain how the graphs confirm that � is the mean

of the distribution and that � is a measure of how

closely the data is clustered around the mean.

In Exercises 4–6, a density function p(x) satisfying (I)–(IV)

gives the fraction of years with a given total annual snowfall

(in m) for a city.

I.
∫

0.5

0

p(x) dx = 0.1 II.
∫

2

0

p(x) dx = 0.3

III.
∫

2.72

0

p(x) dx = 0.5 IV.
∫

∞

0

xp(x) dx = 2.65

4. What is the median annual snowfall (in m)?

5. What is the mean snowfall (in m)?

6. What is the probability of an annual snowfall between

0.5 and 2 m?
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PROBLEMS

7. A screening test for susceptibility to diabetes reports a

numerical score between 0 to 100. A score greater than

50 indicates a potential risk, with some lifestyle training

recommended. Results from 200,000 people who were

tested show that:

• 75% received scores evenly distributed between 0

and 50.

• 25% received scores evenly distributed between 50

and 100.

The probability density function (pdf) is in Fig-

ure 8.114.

(a) Find the values of A and B that make this a proba-

bility density function.

(b) Find the median test score.

(c) Find the mean test score.

(d) Give a graph of the cumulative distribution func-

tion (cdf) for these test scores.

50 100

B

A

x (test score)

fraction of population
per test score point

Figure 8.114

In Problems 8–11, use Figure 8.115, a graph of p(x), a den-

sity function for the fraction of a region’s winters with a

given total snowfall (in m).

1 2 3 4
0

0.5

1
p(x)

snowfall (m)

fraction of years
per meter of snow

Figure 8.115

8. Which of the following events is most likely?

I. A winter has 3 m or more of snow?

II. A winter has 2 m or less of snow?

III. A winter with between 2 and 3 m of snow?

9. The shaded area is 0.8. What percentage of winters see

more than 3 meters of total snowfall?

10. What appears to be the smallest and largest total annual

snowfall?

11. If p(2.8) = 1.1, approximately what percentage of win-

ters see snowfall totals between 2.8 m and 3.0 m?

12. Figure 8.116 shows a density function for the mass (in

grams) of a certain species of fish in a lake.

(a) Approximately what percentage of the fish have a

mass in the range from 9 to 15 grams?

(b) Which number is closest to the median fish mass:

5, 8, 12, 15, or 17?

(c) Are there more fish with mass less than 5 grams or

fish with mass in the range from 15 to 25 grams?

5 10 15 20 25

0.03

0.06

0.09

mass
(grams)

fraction of fish
per gram of mass

Figure 8.116

13. A quantity x has density function p(x) = 0.5(2 − x) for

0 ≤ x ≤ 2 and p(x) = 0 otherwise. Find the mean and

median of x.

14. A quantity x has cumulative distribution function

P (x) = x − x2∕4 for 0 ≤ x ≤ 2 and P (x) = 0 for

x < 0 and P (x) = 1 for x > 2. Find the mean and

median of x.

15. The probability of a transistor failing between t = a

months and t = b months is given by c ∫
b

a
e−ctdt, for

some constant c.

(a) If the probability of failure within the first six

months is 10%, what is c?

(b) Given the value of c in part (a), what is the prob-

ability the transistor fails within the second six

months?

16. Suppose that x measures the time (in hours) it takes for

a student to complete an exam. All students are done

within two hours and the density function for x is

p(x) =
{

x3∕4 if 0 < x < 2

0 otherwise.

(a) What proportion of students take between 1.5 and

2.0 hours to finish the exam?

(b) What is the mean time for students to complete the

exam?

(c) Compute the median of this distribution.
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17. In 1950 an experiment was done observing the time

gaps between successive cars on the Arroyo Seco Free-

way.19 The data show that the density function of these

time gaps was given approximately by

p(x) = ae−0.122x

where x is the time in seconds and a is a constant.

(a) Find a.

(b) Find P , the cumulative distribution function.

(c) Find the median and mean time gap.

(d) Sketch rough graphs of p and P .

18. Consider a group of people who have received treat-

ment for a disease such as cancer. Let t be the survival

time, the number of years a person lives after receiving

treatment. The density function giving the distribution

of t is p(t) = Ce−Ct for some positive constant C .

(a) What is the practical meaning for the cumulative

distribution function P (t) = ∫
t

0
p(x)dx?

(b) The survival function, S(t), is the probability that

a randomly selected person survives for at least t

years. Find S(t).

(c) Suppose a patient has a 70% probability of surviv-

ing at least two years. Find C .

19. While taking a walk along the road where you live,

you accidentally drop your glove, but you don’t know

where. The probability density p(x) for having dropped

the glove x kilometers from home (along the road) is

p(x) = 2e−2x for x ≥ 0.

(a) What is the probability that you dropped it within

1 kilometer of home?

(b) At what distance y from home is the probability

that you dropped it within y km of home equal to

0.95?

20. The distribution of IQ scores can be modeled by a nor-

mal distribution with mean 100 and standard deviation

15.

(a) Write the formula for the density function of IQ

scores.

(b) Estimate the fraction of the population with IQ be-

tween 115 and 120.

21. The speeds of cars on a road are approximately nor-

mally distributed with a mean � = 58 km/hr and stan-

dard deviation � = 4 km/hr.

(a) What is the probability that a randomly selected car

is going between 60 and 65 km/hr?

(b) What fraction of all cars are going slower than 52

km/hr?

22. Consider the normal distribution, p(x).

(a) Show that p(x) is a maximum when x = �. What

is that maximum value?

(b) Show that p(x) has points of inflection where x =

� + � and x = � − �.

(c) Describe in your own words what � and � tell you

about the distribution.

23. For a normal population of mean 0, show that the frac-

tion of the population within one standard deviation of

the mean does not depend on the standard deviation.

[Hint: Use the substitution w = x∕�.]

24. Which of the following functions makes the most sense

as a model for the probability density representing the

time (in minutes, starting from t = 0) that the next cus-

tomer walks into a store?

(a) p(t) =
{

cos t 0 ≤ t ≤ 2�

et−2� t ≥ 2�
(b) p(t) = 3e−3t for t ≥ 0

(c) p(t) = e−3t for t ≥ 0

(d) p(t) = 1∕4 for 0 ≤ t ≤ 4

25. Let P (x) be the cumulative distribution function for the

household income distribution in the US in 2015.20 Val-

ues of P (x) are in the following table:

Income x (thousand $) 25 50 75 100 150

P (x) (%) 19.1 39.9 57.1 69.6 84.5

(a) What percent of the households made between

$50,000 and $75,000? More than $150,000?

(b) Approximately what was the median income?

(c) Is the statement “More than one-third of house-

holds made between $50,000 and $100,000" true

or false?

26. If we think of an electron as a particle, the function

P (r) = 1 − (2r2 + 2r + 1)e−2r

is the cumulative distribution function of the distance,

r, of the electron in a hydrogen atom from the center

of the atom. The distance is measured in Bohr radii. (1

Bohr radius = 5.29×10−11 m. Niels Bohr (1885–1962)

was a Danish physicist.)

For example, P (1) = 1 − 5e−2 ≈ 0.32 means that

the electron is within 1 Bohr radius from the center of

the atom 32% of the time.

(a) Find a formula for the density function of this dis-

tribution. Sketch the density function and the cu-

mulative distribution function.

(b) Find the median distance and the mean distance.

Near what value of r is an electron most likely to

be found?

(c) The Bohr radius is sometimes called the “radius of

the hydrogen atom.” Why?

19Reported by Daniel Furlough and Frank Barnes.
20wallethacks.com, accessed October 9, 2019.
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Strengthen Your Understanding

In Problems 27–28, explain what is wrong with the state-

ment.

27. A median T of a quantity distributed through a popu-

lation satisfies p(T ) = 0.5 where p is the density func-

tion.

28. The following density function has median 1:

p(x) =

⎧

⎪

⎨

⎪

⎩

0 for x < 0

2(1 − x) for 0 ≤ x ≤ 1

0 for x > 1.

In Problems 29–30, give an example of:

29. A distribution with a mean of 1∕2 and standard devia-

tion 1∕2.

30. A distribution with a mean of 1∕2 and median 1∕2.

In Problems 31–35, a quantity x is distributed through a pop-

ulation with probability density function p(x) and cumula-

tive distribution function P (x). Decide if each statement is

true or false. Give an explanation for your answer.

31. If p(10) = 1∕2, then half the population has x < 10.

32. If P (10) = 1∕2, then half the population has x < 10.

33. If p(10) = 1∕2, then the fraction of the population lying

between x = 9.98 and x = 10.04 is about 0.03.

34. If p(10) = p(20), then none of the population has x val-

ues lying between 10 and 20.

35. If P (10) = P (20), then none of the population has x

values lying between 10 and 20.

Online Resource: Review Problems and Projects
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9.1 SEQUENCES

A sequence1 is an infinite list of numbers s1, s2, s3,… , sn,…. We call s1 the first term, s2 the second

term; sn is the general term. For example, the sequence of squares, 1, 4, 9,… , n2,…, can be denoted

by the general term sn = n2. Thus, a sequence is a function whose domain is the positive integers, but

it is traditional to denote the terms of a sequence using subscripts, sn, rather than function notation,

s(n). In addition, we may talk about sequences whose general term has no simple formula, such as

the sequence 3, 3.1, 3.14, 3.141, 3.1415,…, in which sn gives the first n digits of �.

The Numerical, Algebraic, and Graphical Viewpoint

Just as we can view a function algebraically, numerically, graphically, or verbally, we can view se-

quences in different ways. We may give an algebraic formula for the general term. We may give the

numerical values of the first few terms of the sequence, suggesting a pattern for the later terms.

Example 1 Give the first six terms of the following sequences:

(a) sn =
n(n + 1)

2
(b) sn =

n + (−1)n

n

Solution (a) Substituting n = 1, 2, 3, 4, 5, 6 into the formula for the general term, we get

1 ⋅ 2

2
,
2 ⋅ 3

2
,
3 ⋅ 4

2
,
4 ⋅ 5

2
,
5 ⋅ 6

2
,
6 ⋅ 7

2
= 1, 3, 6, 10, 15, 21.

(b) Substituting n = 1, 2, 3, 4, 5, 6 into the formula for the general term, we get

1 − 1

1
,
2 + 1

2
,
3 − 1

3
,
4 + 1

4
,
5 − 1

5
,
6 + 1

6
= 0,

3

2
,
2

3
,
5

4
,
4

5
,
7

6
.

Example 2 Give a general term for the following sequences:

(a) 1, 2, 4, 8, 16, 32,… (b)
7

2
,
7

5
,
7

8
,
7

11
,
1

2
,
7

17
,…

Solution Although the first six terms do not determine the sequence, we can sometimes use them to guess a

possible formula for the general term.

(a) We have powers of 2, so we guess sn = 2n. When we check by substituting in n = 1, 2, 3, 4, 5, 6,

we get 2, 4, 8, 16, 32, 64, instead of 1, 2, 4, 8, 16, 32. We fix our guess by subtracting 1 from the

exponent, so the general term is

sn = 2n−1.

Substituting the first six values of n shows that the formula checks.

(b) In this sequence, the fifth term looks different from the others, whose numerators are all 7. We

can fix this by rewriting 1∕2 = 7∕14. The sequence of denominators is then 2, 5, 8, 11, 14, 17.

This looks like a linear function with slope 3, so we expect the denominator has formula 3n+ k

for some k. When n = 1, the denominator is 2, so

2 = 3 ⋅ 1 + k giving k = −1

and the denominator of sn is 3n − 1. Our general term is then

sn =
7

3n − 1
.

To check this, evaluate sn for n = 1,… , 6.

1In everyday English, the words “sequence” and “series” are used interchangeably. In mathematics, they have different

meanings and cannot be interchanged.
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There are two ways to visualize a sequence. One is to plot points with n on the horizontal axis

and sn on the vertical axis. The other is to label points on a number line s1, s2, s3, . . . . See Figure 9.1

for the sequence sn = 1 + (−1)n∕n.

2 4 6 8 10

1

n

sn

0

s1

1 2

s2s3 s4s5 s6
sn

Figure 9.1: The sequence sn = 1 + (−1)n∕n

Defining Sequences Recursively

Sequences can also be defined recursively, by giving an equation relating the nth term to the previous

terms and as many of the first few terms as are needed to get started.

Example 3 Give the first six terms of the recursively defined sequences.

(a) sn = sn−1 + 3 for n > 1 and s1 = 4

(b) sn = −3sn−1 for n > 1 and s1 = 2

(c) sn =
1

2
(sn−1 + sn−2) for n > 2 and s1 = 0, s2 = 1

(d) sn = nsn−1 for n > 1 and s1 = 1

Solution (a) When n = 2, we obtain s2 = s1+3 = 4+3 = 7. When n = 3, we obtain s3 = s2+3 = 7+3 = 10.

In words, we obtain each term by adding 3 to the previous term. The first six terms are

4, 7, 10, 13, 16, 19.

(b) Each term is −3 times the previous term, starting with s1 = 2. We have s2 = −3s1 = −3 ⋅2 = −6

and s3 = −3s2 = −3(−6) = 18. Continuing, we get

2, −6, 18, −54, 162, −486.

(c) Each term is the average of the previous two terms, starting with s1 = 0 and s2 = 1. We get

s3 = (s2+ s1)∕2 = (1+0)∕2 = 1∕2. Then s4 = (s3+ s2)∕2 = ((1∕2)+1)∕2 = 3∕4. Continuing,

we get

0, 1,
1

2
,
3

4
,
5

8
,
11

16
.

(d) Here s2 = 2s1 = 2 ⋅ 1 = 2 so s3 = 3s2 = 3 ⋅ 2 = 6 and s4 = 4s3 = 4 ⋅ 6 = 24. Continuing gives

1, 2, 6, 24, 120, 720.

The general term of part (d) of the previous example is given by sn = n(n−1)(n−2)⋯ 3 ⋅ 2 ⋅ 1,

which is denoted sn = n! and is called n factorial. We define 0! = 1.

We can also look at the first few terms of a sequence and try to guess a recursive definition by

looking for a pattern.

Example 4 Give a recursive definition of the following sequences.

(a) 1, 3, 7, 15, 31, 63,… (b) 1, 4, 9, 16, 25, 36,…
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Solution (a) Each term is twice the previous term plus one; for example, 7 = 2 ⋅ 3 + 1 and 63 = 2 ⋅ 31 + 1.

Thus, a recursive definition is

sn = 2sn−1 + 1 for n > 1 and s1 = 1.

There are other ways to define the sequence recursively. We might notice, for example, that the

differences of consecutive terms are powers of 2. Thus, we could also use

sn = sn−1 + 2n−1 for n > 1 and s1 = 1.

(b) We recognize the terms as the squares of the positive integers, but we are looking for a recursive

definition which relates consecutive terms. We see that

s2 = s1 + 3

s3 = s2 + 5

s4 = s3 + 7

s5 = s4 + 9,

so the differences between consecutive terms are consecutive odd integers. The difference be-

tween sn and sn−1 is 2n − 1, so a recursive definition is

sn = sn−1 + 2n − 1, for n > 1 and s1 = 1.

Recursively defined sequences, sometimes called recurrence relations, are powerful tools used

frequently in computer science, as well as in differential equations. Finding a formula for the general

term can be surprisingly difficult.

Convergence of Sequences
The limit of a sequence sn as n → ∞ is defined the same way as the limit of a function f (x) as

x → ∞; see also Problem 81 (available online).

The sequence s1, s2, s3,… , sn,… has a limit L, written lim
n→∞

sn = L, if sn is as close to L as

we please whenever n is sufficiently large. If a limit, L, exists, we say the sequence converges

to its limit L. If no limit exists, we say the sequence diverges.

To calculate the limit of a sequence, we use what we know about the limits of functions, includ-

ing the properties in Theorem 1.2 and the following facts:

• The sequence sn = xn converges to 0 if |x| < 1 and diverges if |x| > 1

• The sequence sn = 1∕np converges to 0 if p > 0

Example 5 Do the following sequences converge or diverge? If a sequence converges, find its limit.

(a) sn = (0.8)n (b) sn =
1 − e−n

1 + e−n
(c) sn =

n2 + 1

n
(d) sn = 1 + (−1)n

Solution (a) Since 0.8 < 1, the sequence converges by the first fact and the limit is 0.

(b) Since e−1 < 1, we have lim
n→∞

e−n = lim
n→∞

(e−1)n = 0 by the first fact. Thus, using the properties

of limits from Section 1.8, we have
lim
n→∞

1 − e−n

1 + e−n
=

1 − 0

1 + 0
= 1.

(c) Since (n2 + 1)∕n grows without bound as n → ∞, the sequence sn diverges.

(d) Since (−1)n alternates in sign, the sequence alternates between 0 and 2. Thus the sequence sn
diverges, since it does not get close to any fixed value.
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Convergence and Bounded Sequences

A sequence sn is bounded if there are numbers K and M such that K ≤ sn ≤ M for all terms. If

lim
n→∞

sn = L, then from some point on, the terms are bounded between L − 1 and L + 1. Thus we

have the following fact:

A convergent sequence is bounded.

On the other hand, a bounded sequence need not be convergent. In Example 5, we saw that

1+ (−1)n diverges, but it is bounded between 0 and 2. To ensure that a bounded sequence converges

we need to rule out this sort of oscillation. The following theorem gives a condition that ensures

convergence for a bounded sequence. A sequence sn is called monotone if it is either increasing, that

is sn < sn+1 for all n, or decreasing, that is sn > sn+1 for all n.

Theorem 9.1: Convergence of a Monotone, Bounded Sequence

If a sequence sn is bounded and monotone, it converges.

To understand this theorem graphically, see Figure 9.2. The sequence sn is increasing and

bounded above by M , so the values of sn must “pile up” at some number less than or equal to

M . This number is the limit.

s2 s3 s4 s5 Ms1

Figure 9.2: Values of sn for n = 1, 2,⋯ , 10

Example 6 The sequence sn = (1∕2)n is decreasing and bounded below by 0, so it converges. We have already

seen that it converges to 0.

Example 7 The sequence sn = (1 + 1∕n)n can be shown to be increasing and bounded (see Project 2 (available

online)). Theorem 9.1 then guarantees that this sequence has a limit, which turns out to be e. (In fact,

the sequence can be used to define e.)

Example 8 If sn = (1 + 1∕n)n, find s100 and s1000. How many decimal places agree with e?

Solution We have s100 = (1.01)100 = 2.7048 and s1000 = (1.001)1000 = 2.7169. Since e = 2.7183…,we see

that s100 agrees with e to one decimal place and s1000 agrees with e to two decimal places.

Summary for Section 9.1

• A sequence is an infinite list of numbers s1, s2, s3,… , sn,….

• Sequences can be defined explicitly by a formula for the general term sn, and they can be defined

recursively.

• A sequence s1, s2, s3,… is convergent with limit L if sn is as close to L as we please whenever

n is sufficiently large. We write limn→∞ sn = L. If no limit exists, the sequence diverges.

• A convergent sequence is bounded.

• If a sequence is bounded and monotone, it converges.
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Exercises and Problems for Section 9.1 Online Resource: Additional Problems for Section 9.1
EXERCISES

For Exercises 1–6, find the first five terms of the sequence

from the formula for sn, n ≥ 1.

1. 2n + 1 2. n + (−1)n

3.
2n

2n + 1
4. (−1)n

(

1

2

)n

5. (−1)n+1
(

1

2

)n−1

6.
(

1 −
1

n + 1

)n+1

In Exercises 7–12, find a formula for sn, n ≥ 1.

7. 4, 8, 16, 32, 64,… 8. 1, 3, 7, 15, 31,…

9. 2, 5, 10, 17, 26,… 10. 1, −3, 5, −7, 9,…

11. 1∕3, 2∕5, 3∕7, 4∕9, 5∕11,…

12. 1∕2, −1∕4, 1∕6, −1∕8, 1∕10,…

PROBLEMS

13. Match formulas (a)–(d) with graphs (I)–(IV).

(a) sn = 1 − 1∕n (b) sn = 1 + (−1)n∕n

(c) sn = 1∕n (d) sn = 1 + 1∕n

10

1

n

sn(I)

10

1

n

sn(II)

10

1

n

sn(III)

10

1

n

sn(IV)

14. Match formulas (a)–(e) with graphs (I)–(V).

(a) sn = 2 − 1∕n

(b) sn = (−1)n2 + 1∕n

(c) sn = 2 + (−1)n∕n

(d) sn = 2 + 1∕n

(e) sn = (−1)n2 + (−1)n∕n

−2 0 2
sn

(I)

−2 0 2
sn

(II)

−2 0 2
sn

(III)

−2 0 2
sn

(IV)

−2 0 2
sn

(V)

15. Match formulas (a)–(e) with descriptions (I)–(V) of the

behavior of the sequence as n → ∞.

(a) sn = n(n + 1) − 1

(b) sn = 1∕(n + 1)

(c) sn = 1 − n2

(d) sn = cos(1∕n)

(e) sn = (sin n)∕n

(I) Diverges to −∞

(II) Diverges to +∞

(III) Converges to 0 through positive numbers

(IV) Converges to 1

(V) Converges to 0 through positive and negative num-

bers

In Problems 16–27, does the sequence converge or diverge?

If it converges, find its limit.

16. 2n 17. (0.2)n

18. 3 + e−2n 19. (−0.3)n

20.
n

10
+

10

n
21.

2n

3n

22.
2n + 1

n
23.

(−1)n

n

24.
1

n
+ ln n 25.

2n + (−1)n5

4n − (−1)n3

26.
sin n

n
27. cos(�n)

In Problems 28–31, find the first six terms of the recursively

defined sequence.

28. sn = 2sn−1 + 3 for n > 1 and s1 = 1

29. sn = sn−1 + n for n > 1 and s1 = 1

30. sn = sn−1 +
(

1

2

)n−1

for n > 1 and s1 = 0

31. sn = sn−1 + 2sn−2 for n > 2 and s1 = 1, s2 = 5

In Problems 32–33, let a1 = 8, b1 = 5, and, for n > 1,

an = an−1 + 3n

bn = bn−1 + an−1.

32. Give the values of a2, a3, a4.

33. Give the values of b2, b3, b4, b5.

34. Suppose s1 = 0, s2 = 0, s3 = 1, and that sn =

sn−1 + sn−2 + sn−3 for n ≥ 4. The members of the re-

sulting sequence are called tribonacci numbers.2 Find

s4, s5,… , s10.

2http://en.wikipedia.org/wiki/Tribonacci_numbers, accessed October 10, 2019.



9.1 SEQUENCES 513

35. The recursive sequence rn is given by r0 = 0, r1 = 1,

r2n = rn, r2n+1 = rn + rn+1.

(a) Find r2 (b) Find r3

(c) Find r9 given that r4 = 1 and r5 = 3

In Problems 36–39, use the formula for sn to give the third

term of the sequence, s3.

36. sn = (−1)n2n−1 ⋅ n2 37. sn =

n
∑

k=0

3 ⋅ 2k

38. sn = 2 + 3sn−1, where

s0 = 5.

39. sn = ∫

1

1∕n

1

x2
dx

In Problems 40–45, find a recursive definition for the se-

quence.

40. 1, 3, 5, 7, 9,… 41. 2, 4, 6, 8, 10,…

42. 3, 5, 9, 17, 33,… 43. 1, 5, 14, 30, 55,…

44. 1, 3, 6, 10, 15,… 45. 1, 2,
3

2
,
5

3
,
8

5
,
13

8
,…

In Problems 46–48, show that the sequence sn satisfies the

recurrence relation.

46. sn = 3n − 2

sn = sn−1 + 3 for n > 1 and s1 = 1

47. sn = n(n + 1)∕2

sn = sn−1 + n for n > 1 and s1 = 1

48. sn = 2n2 − n

sn = sn−1 + 4n − 3 for n > 1 and s1 = 1

Problems 49–51 concern analog signals in electrical engi-

neering, which are continuous functions f (t), where t is

time. To digitize the signal, we sample f (t) everyΔt to form

the sequence sn = f (nΔt). For example, if f (t) = sin t with

t in seconds, sampling f every 1∕10 second produces the

sequence sin(1∕10), sin(2∕10), sin(3∕10),…. Give the first

6 terms of a sampling of the signal every Δt seconds.

49. f (t) = (t − 1)2, Δt = 0.5

50. f (t) = cos 5t, Δt = 0.1

51. f (t) =
sin t

t
, Δt = 1

In Problems 52–54, we smooth a sequence, s1, s2, s3,…, by

replacing each term sn by tn, the average of sn with its neigh-

boring terms

tn =
(sn−1 + sn + sn+1)

3
for n > 1.

Start with t1 = (s1 + s2)∕2, since s1 has only one neigh-

bor. Smooth the given sequence once and then smooth the

resulting sequence. What do you notice?

52. 18, −18, 18, −18, 18, −18, 18…

53. 0, 0, 0, 18, 0, 0, 0, 0…

54. 1, 2, 3, 4, 5, 6, 7, 8…

In Problems 55–58, for the function f define a sequence re-

cursively by xn = f (xn−1) for n > 1 and x1 = a. Depending

on f and the starting value a, this sequence may converge

to a limit L. If L exists, it has the property that f (L) = L.

For the functions and starting values given, use a calculator

to see if the sequence converges. [To obtain the terms of the

sequence, push the function button repeatedly.]

55. f (x) = cos x, a = 0 56. f (x) = e−x, a = 0

57. f (x) = sinx, a = 1 58. f (x) =
√

x, a = 0.5

59. Let Vn be the number of new SUVs sold in the US in

month n, where n = 1 is January 2016. In terms of

SUVs, what do the following represent?

(a) V10 (b) Vn − Vn−1

(c)
∑12

i=1
Vi and

∑n

i=1
Vi

60. (a) Let sn be the number of ancestors a person has n

generations ago. (Your ancestors are your parents,

grandparents, great-grandparents, etc.) What is s1?

s2? Find a formula for sn.

(b) For which n is sn greater than 6 billion, the current

world population? What does this tell you about

your ancestors?

61. For 1 ≤ n ≤ 10, find a formula for pn, the payment in

year n on a loan of $100,000. Interest is 5% per year,

compounded annually, and payments are made at the

end of each year for ten years. Each payment is $10,000

plus the interest on the amount of money outstanding.

62. (a) Cans are stacked in a triangle on a shelf. The bot-

tom row contains k cans, the row above contains

one can fewer, and so on, until the top row, which

has one can. How many rows are there? Find an, the

number of cans in the nth row, 1 ≤ n ≤ k (where

the top row is n = 1).

(b) Let Tn be the total number of cans in the top n rows.

Find a recurrence relation for Tn in terms of Tn−1.

(c) Show that Tn =
1

2
n(n + 1) satisfies the recurrence

relation.

63. You are deciding whether to buy a new or a two-year-

old car (of the same make) based on which will have

cost you less when you resell it at the end of three years.

Your cost consists of two parts: the loss in value of the

car and the repairs. A new car costs $20,000 and loses

12% of its value each year. Repairs are $400 the first

year and increase by 18% each subsequent year.

(a) For a new car, find the first three terms of the se-

quence dn giving the depreciation (loss of value) in

dollars in year n. Give a formula for dn.

(b) Find the first three terms of the sequence rn, the re-

pair cost in dollars for a new car in year n. Give a

formula for rn.

(c) Find the total cost of owning a new car for three

years.

(d) Find the total cost of owning the two-year-old car

for three years. Which should you buy?
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64. The Fibonacci sequence, first studied by the thirteenth-

century Italian mathematician Leonardo di Pisa, also

known as Fibonacci, is defined recursively by

Fn = Fn−1 + Fn−2 for n > 2 and F1 = 1, F2 = 1.

The Fibonacci sequence occurs in many branches of

mathematics and can be found in patterns of plant

growth (phyllotaxis).

(a) Find the first 12 terms.

(b) Show that the sequence of successive ratios

Fn+1∕Fn appears to converge to a number r satis-

fying the equation r2 = r + 1. (The number r was

known as the golden ratio to the ancient Greeks.)

(c) Let r satisfy r2 = r + 1. Show that the sequence

sn = Arn, where A is constant, satisfies the Fi-

bonacci equation sn = sn−1 + sn−2 for n > 2.

65. This problem defines the Calkin-Wilf-Newman se-

quence of positive rational numbers. The sequence is

remarkable because every positive rational number ap-

pears as one of its terms and none appears more than

once. Every real number x can be written as an integer

A plus a number B where 0 ≤ B < 1. For example, for

x = 12∕5 = 2 + 2∕5 we have A = 2 and B = 2∕5. For

x = 3 = 3 + 0 we have A = 3 and B = 0. Define the

function f (x) by

f (x) = A + (1 − B).

For example, f (12∕5) = 2 + (1 − 2∕5) = 13∕5 and

f (3) = 3 + (1 − 0) = 4.

(a) Evaluate f (x) for x = 25∕8, 13∕9, and �.

(b) Find the first six terms of the recursively defined

Calkin-Wilf-Newman sequence: sn = 1∕f (sn−1)

for n > 1 and s1 = 1.

Strengthen Your Understanding

In Problems 66–68, explain what is wrong with the state-

ment.

66. The sequence sn =
3n + 10

7n + 3
, which begins with the

terms
13

10
,
16

17
,
19

24
,
22

31
,… converges to 0 because the

terms of the sequence get smaller and smaller.

67. If a convergent sequence consists entirely of terms

greater than 2, then the limit of the sequence is greater

than 2.

68. If the convergent sequence has limit L and sn < 2 for

all n, then L < 2.

In Problems 69–70, give an example of:

69. An increasing sequence that converges to 0.

70. A monotone sequence that does not converge.

Decide if the statements in Problems 71–79 are true or false.

Give an explanation for your answer.

71. You can tell if a sequence converges by looking at the

first 1000 terms.

72. If the terms sn of a convergent sequence are all positive

then lim
n→∞

sn is positive.

73. If the sequence sn of positive terms is unbounded, then

the sequence has a term greater than a million.

74. If the sequence sn of positive terms is unbounded, then

the sequence has an infinite number of terms greater

than a million.

75. If a sequence sn is convergent, then the terms sn tend to

zero as n increases.

76. A monotone sequence cannot have both positive and

negative terms.

77. If a monotone sequence of positive terms does not con-

verge, then it has a term greater than a million.

78. If all terms sn of a sequence are less than a million, then

the sequence is bounded.

79. If a convergent sequence has sn ≤ 5 for all n, then

lim
n→∞

sn ≤ 5.

80. Which of the sequences I–IV is monotone and bounded

for n ≥ 1?

I. sn = 10 −
1

n

II. sn =
10n + 1

n
III. sn = cos n

IV. sn = ln n

(a) I

(b) I and II

(c) II and IV

(d) I, II, and III

9.2 GEOMETRIC SERIES

Adding the terms of a sequence produces a series. For example, we have the sequence1, 2, 3, 4, 5, 6,…

and the series 1 + 2 + 3 + 4 + 5 + 6 +⋯. This section introduces infinite series of constants, which

are sums of the form

1 +
1

2
+

1

3
+

1

4
+⋯

0.4 + 0.04 + 0.004 + 0.0004 +⋯ .
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The individual numbers, 1,
1

2
,
1

3
,… , or 0.4, 0.04,… , etc., are called terms in the series. To talk about

the sum of the series, we must first explain how to add infinitely many numbers.

Let us look at the repeated administration of a drug. In this example, the terms in the series

represent each dose; the sum of the series represents the drug level in the body in the long run.

Repeated Drug Dosage
A person with an ear infection is told to take antibiotic tablets regularly for several days. Since the

drug is being excreted by the body between doses, how can we calculate the quantity of the drug

remaining in the body at any particular time?

To be specific, let’s suppose the drug is ampicillin (a common antibiotic) taken in 250 mg doses

four times a day (that is, every six hours). It is known that at the end of six hours, about 4% of the

drug is still in the body. What quantity of the drug is in the body right after the tenth tablet? The

fortieth?

Let Qn represent the quantity, in milligrams, of ampicillin in the blood right after the nth tablet.

Then
Q1 = 250 = 250 mg

Q2 = 250(0.04)
⏟⏞⏞⏟⏞⏞⏟

Remnants of first tablet

+ 250
⏟⏟⏟

New tablet

= 260 mg

Q3 = Q2(0.04) + 250 = (250(0.04) + 250) (0.04) + 250

= 250(0.04)2 + 250(0.04)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Remnants of first and second tablets

+ 250
⏟⏟⏟

New tablet

= 260.4 mg

Q4 = Q3(0.04) + 250 =
(

250(0.04)2 + 250(0.04) + 250
)

(0.04) + 250

= 250(0.04)3 + 250(0.04)2 + 250(0.04)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Remnants of first, second, and third tablets

+ 250
⏟⏟⏟

New tablet

= 260.416 mg.

Looking at the pattern that is emerging, we guess that

Q10 = 250(0.04)9 + 250(0.04)8 + 250(0.04)7 +⋯ + 250(0.04)2 + 250(0.04) + 250.

Notice that there are 10 terms in this sum—one for every tablet—but that the highest power of

0.04 is the ninth, because no tablet has been in the body for more than 9 six-hour time periods. Now

suppose we actually want to find the numerical value of Q10. It seems that we have to add 10 terms—

fortunately, there’s a better way. Notice the remarkable fact that if you subtract (0.04)Q10 from Q10,

all but two terms drop out. First, multiplying by 0.04, we get

(0.04)Q10 = 250(0.04)10 + 250(0.04)9 + 250(0.04)8 +⋯ + 250(0.04)3 + 250(0.04)2 + 250(0.04).

Subtracting gives

Q10 − (0.04)Q10 = 250 − 250(0.04)10.

Factoring Q10 on the left and solving for Q10 gives

Q10(1 − 0.04) = 250
(

1 − (0.04)10
)

Q10 =
250

(

1 − (0.04)10
)

1 − 0.04
.

This is called the closed-form expression for Q10. It is easy to evaluate on a calculator, giving Q10 =

260.42 (to two decimal places). Similarly, Q40 is given in closed form by

Q40 =
250

(

1 − (0.04)40
)

1 − 0.04
.

Evaluating this on a calculator shows Q40 = 260.42, which is the same (to two decimal places) as

Q10. Thus after ten tablets, the value of Qn appears to have stabilized at just over 260 mg.

Looking at the closed forms for Q10 and Q40, we can see that, in general, Qn must be given by

Qn =
250 (1 − (0.04)n)

1 − 0.04
.
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What Happens as n → ∞?

What does this closed form for Qn predict about the long-run level of ampicillin in the body? As

n → ∞, the quantity (0.04)n → 0. In the long run, assuming that 250 mg continue to be taken every

six hours, the level right after a tablet is taken is given by

Qn =
250 (1 − (0.04)n)

1 − 0.04
→

250(1 − 0)

1 − 0.04
= 260.42.

The Geometric Series in General

In the previous example we encountered sums of the form a + ax + ax2 + ⋯ + ax8 + ax9 (with

a = 250 and x = 0.04). Such a sum is called a finite geometric series. A geometric series is one

in which each term is a constant multiple of the one before. The first term is a, and the constant

multiplier, or common ratio of successive terms, is x.

A finite geometric series has the form

a + ax + ax2 +⋯ + axn−2 + axn−1.

An infinite geometric series has the form

a + ax + ax2 +⋯ + axn−2 + axn−1 + axn +⋯ .

The “⋯” at the end of the second series tells us that the series is going on forever—in other words,

that it is infinite.

Sum of a Finite Geometric Series
The same procedure that enabled us to find the closed form for Q10 can be used to find the sum of

any finite geometric series. Suppose we write Sn for the sum of the first n terms, which means up to

the term containing xn−1:

Sn = a + ax + ax2 +⋯ + axn−2 + axn−1.

Multiply Sn by x:

xSn = ax + ax2 + ax3 +⋯ + axn−1 + axn.

Now subtract xSn from Sn, which cancels out all terms except for two, giving

Sn − xSn = a − axn

(1 − x)Sn = a(1 − xn).

Provided x ≠ 1, we can solve to find a closed form for Sn as follows:

The sum of a finite geometric series is given by

Sn = a + ax + ax2 +⋯ + axn−1 =
a(1 − xn)

1 − x
, provided x ≠ 1.

Note that the value of n in the formula for Sn is the number of terms in the sum Sn.

Sum of an Infinite Geometric Series
In the ampicillin example, we found the sum Qn and then let n → ∞. We do the same here. The sum

Qn, which shows the effect of the first n doses, is an example of a partial sum. The first three partial

sums of the series a + ax + ax2 +⋯ + axn−1 + axn +⋯ are

S1 = a

S2 = a + ax

S3 = a + ax + ax2.
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To find the sum of this infinite series, we consider the partial sum, Sn, of the first n terms. The

formula for the sum of a finite geometric series gives

Sn = a + ax + ax2 +⋯ + axn−1 =
a(1 − xn)

1 − x
.

What happens to Sn as n → ∞? It depends on the value of x. If |x| < 1, then xn → 0 as n → ∞, so

lim
n→∞

Sn = lim
n→∞

a(1 − xn)

1 − x
=

a(1 − 0)

1 − x
=

a

1 − x
.

Thus, provided |x| < 1, as n → ∞ the partial sums Sn approach a limit of a∕(1 − x). When this

happens, we define the sum S of the infinite geometric series to be that limit and say the series

converges to a∕(1 − x).

For |x| < 1, the sum of the infinite geometric series is given by

S = a + ax + ax2 +⋯ + axn−1 + axn +⋯ =
a

1 − x
.

If, on the other hand, |x| > 1, then xn and the partial sums have no limit as n → ∞ (if a ≠ 0).

In this case, we say the series diverges. If x > 1, the terms in the series become larger and larger in

magnitude, and the partial sums diverge to +∞ (if a > 0) or −∞ (if a < 0). When x < −1, the terms

become larger in magnitude, the partial sums oscillate as n → ∞, and the series diverges.

What happens when x = 1? The series is

a + a + a + a +⋯ ,

and if a ≠ 0, the partial sums grow without bound, and the series does not converge. When x = −1,

the series is

a − a + a − a + a −⋯ ,

and, if a ≠ 0, the partial sums oscillate between a and 0, and the series does not converge.

Example 1 For each of the following infinite geometric series, find several partial sums and the sum (if it exists).

(a) 1 +
1

2
+

1

4
+

1

8
+⋯ (b) 1 + 2 + 4 + 8 +⋯ (c) 6 − 2 +

2

3
−

2

9
+

2

27
−⋯

Solution (a) This series may be written

1 +
1

2
+
(

1

2

)2

+
(

1

2

)3

+⋯

which we can identify as a geometric series with a = 1 and x =
1

2
, so S =

1

1 − (1∕2)
= 2. Let’s

check this by finding the partial sums:

S1 = 1

S2 = 1 +
1

2
=

3

2
= 2 −

1

2

S3 = 1 +
1

2
+

1

4
=

7

4
= 2 −

1

4

S4 = 1 +
1

2
+

1

4
+

1

8
=

15

8
= 2 −

1

8
.
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The sequence of partial sums begins

1, 2 −
1

2
, 2 −

1

4
, 2 −

1

8
,… .

The formula for Sn gives

Sn =
1 − (

1

2
)n

1 −
1

2

= 2 −
(

1

2

)n−1

.

Thus, the partial sums are creeping up to the value S = 2, so Sn → 2 as n → ∞.

(b) The partial sums of this geometric series (with a = 1 and x = 2) grow without bound, so the

series has no sum:

S1 = 1

S2 = 1 + 2 = 3

S3 = 1 + 2 + 4 = 7

S4 = 1 + 2 + 4 + 8 = 15.

The sequence of partial sums begins

1, 3, 7, 15,… .

The formula for Sn gives

Sn =
1 − 2n

1 − 2
= 2n − 1.

(c) This is an infinite geometric series with a = 6 and x = −
1

3
. The partial sums,

S1 = 6.00, S2 = 4.00, S3 ≈ 4.67, S4 ≈ 4.44, S5 ≈ 4.52, S6 ≈ 4.49,

appear to be converging to 4.5. This turns out to be correct because the sum is

S =
6

1 − (−1∕3)
= 4.5.

Regular Deposits into a Savings Account
People who save money often do so by putting some fixed amount aside regularly. To be specific,

suppose $1000 is deposited every year in a savings account earning 5% a year, compounded annually.

What is the balance, Bn, in dollars, in the savings account right after the nth deposit?

As before, let’s start by looking at the first few years:

B1 = 1000

B2 = B1(1.05) + 1000 = 1000(1.05)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Original deposit

+ 1000
⏟⏟⏟

New deposit

B3 = B2(1.05) + 1000 = 1000(1.05)2 + 1000(1.05)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

First two deposits

+ 1000
⏟⏟⏟

New deposit

Observing the pattern, we see

Bn = 1000(1.05)n−1 + 1000(1.05)n−2 +⋯ + 1000(1.05) + 1000.

So Bn is a finite geometric series with a = 1000 and x = 1.05. Thus we have

Bn =
1000 (1 − (1.05)n)

1 − 1.05
.
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We can rewrite this so that both the numerator and denominator of the fraction are positive:

Bn =
1000 ((1.05)n − 1)

1.05 − 1
.

What Happens as n → ∞?

Common sense tells you that if you keep depositing $1000 in an account and it keeps earning interest,

your balance grows without bound. This is what the formula for Bn shows also: (1.05)n → ∞ as

n → ∞, so Bn has no limit. (Alternatively, observe that the infinite geometric series of which Bn is

a partial sum has x = 1.05, which is greater than 1, so the series does not converge.)

Summary for Section 9.2

• Adding the terms of a sequence produces a series.

• A finite geometric series has the form

a + ax + ax2 +⋯ + axn−2 + axn−1.

Its sum is given by Sn = a(1 − xn)∕(1 − x), provided x ≠ 1.

• An infinite geometric series has the form

a + ax + ax2 +⋯ + axn−2 + axn−1 + axn +⋯ .

For |x| < 1, its sum is given by S = a∕(1 − x). If |x| ≥ 1, the infinite series diverges.

Exercises and Problems for Section 9.2

EXERCISES

In Exercises 1–7, is a sequence or a series given?

1. 22 + 42 + 62 + 82 +⋯

2. 22, 42, 62, 82,…

3. 1,−2, 3,−4, 5,−6,…

4. 1 + −2, 3 + −4, 5 + −6, 7 + −8,…

5. 1 − 2 + 3 − 4 + 5 −⋯

6. 1 + 2 + 3 + 4 + 5 + 6 + 7 +⋯

7. −S1 + S2 − S3 + S4 − S5 +⋯

In Exercises 8–18, decide which of the following are geo-

metric series. For those which are, give the first term and

the ratio between successive terms. For those which are not,

explain why not.

8. 5 − 10 + 20 − 40 + 80 −⋯

9. 2 + 1 +
1

2
+

1

4
+

1

8
+⋯

10. 1 +
1

2
+

1

3
+

1

4
+

1

5
+⋯

11. 1 + x + 2x2 + 3x3 + 4x4 +⋯

12. 1 −
1

2
+

1

4
−

1

8
+

1

16
+⋯

13. 3 + 3z + 6z2 + 9z3 + 12z4 +⋯

14. 1 + 2z + (2z)2 + (2z)3 +⋯

15. 1 − y2 + y4 − y6 +⋯

16. 1 − x + x2 − x3 + x4 −⋯

17. z2 − z4 + z8 − z16 +⋯

18. y2 + y3 + y4 + y5 +⋯

In Exercises 19–23, state whether or not the series is geo-

metric. If it is geometric and converges, find the sum of the

series.

19.
1

3
+

4

9
+

16

27
+

64

81
20.

3

2
−

1

2
+

1

6
−

1

18
+

1

54
+⋯

21.
1

2
+

2

3
+

4

5
+

5

6
+⋯

22.

∞
∑

n=2

(−1)n

22n
23.

∞
∑

n=1

1
√

n

In Exercises 24–27, say how many terms are in the finite ge-

ometric series and find its sum.

24. 2 + 2(0.1) + 2(0.1)2 +⋯ + 2(0.1)25

25. 2(0.1) + 2(0.1)2 +⋯ + 2(0.1)10

26. 2(0.1)5 + 2(0.1)6 +⋯ + 2(0.1)13

27. 8 + 4 + 2 + 1 +
1

2
+⋯ +

1

210

In Exercises 28–30, find the sum of the geometric series.

28. 80 + 80 ⋅
3

5
+ 80

(

3

5

)2

+ 80
(

3

5

)3

+⋯

29. 80 + 80 ⋅
3

5
+ 80

(

3

5

)2

+ 80
(

3

5

)3

+⋯ + 80
(

3

5

)6

30. 80 − 80 ⋅
3

5
+ 80

(

3

5

)2

− 80
(

3

5

)3

+ 80
(

3

5

)4

−⋯
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In Exercises 31–34, find the sum of the infinite geometric

series.

31. 36 + 12 + 4 +
4

3
+

4

9
+⋯

32. −810 + 540 − 360 + 240 − 160 +⋯

33. 80 +
80
√

2
+ 40 +

40
√

2
+ 20 +

20
√

2
+⋯

34. e4 + e3.9 + e3.8 + e3.7 +⋯ .

In Exercises 35–38, find a closed form for the geometric se-

ries and determine for which values of x it converges.

35.

∞
∑

n=0

(5x)n 36.

∞
∑

n=0

(1 − x)n

37.

∞
∑

n=0

(1 − x∕2)n

2
38.

∞
∑

n=0

(1 − x∕3)n

3

PROBLEMS

In Problems 39–46, find the sum of the series. For what val-

ues of the variable does the series converge to this sum?

39. 1 + z∕2 + z2∕4 + z3∕8 +⋯

40. 1 + 3x + 9x2 + 27x3 +⋯

41. y − y2 + y3 − y4 +⋯

42. 2 − 4z + 8z2 − 16z3 +⋯

43. 3 + x + x2 + x3 +⋯

44. 4 + y + y2∕3 + y3∕9 +⋯

45. 8 + 8
(

x2 − 5
)

+ 8
(

x2 − 5
)2

+ 8
(

x2 − 5
)3

+⋯

46. 5 + 5
(

z3 − 8
)

+ 5
(

z3 − 8
)2

+ 5
(

z3 − 8
)3

+⋯

In Problems 47–49, for the given value of x determine

whether the infinite geometric series converges. If so, find

its sum:

3 + 3 cos x + 3 (cos x)2 + 3 (cos x)3 +⋯ .

47. x = 0 48. x = 2�∕3 49. x = �

50. Find x given that 5 + 5x + 5x2 + 5x3 +⋯ = 40.

51. Bill invests $200 at the start of each month for 24

months, starting now. If the investment yields 0.5% per

month, compounded monthly, what is its value at the

end of 24 months?

52. An annual contribution of $200 is made into a savings

account which earns 5% interest compounded annually.

How much money is in the account at the start of year

t = 25, just after the 25th deposit of $200 is made?

53. Once a day, 8 tons of pollutants are dumped into a

bay. Of this, 25% is removed by natural processes each

day. What happens to the quantity of pollutants in the

bay over time? Give the long-run quantity right after a

dump.

54. (a) The total reserves of a non-renewable resource are

400 million tons. Annual consumption, currently

25 million tons per year, is expected to rise by 1%

each year. After how many years will the reserves

be exhausted?

(b) Instead of increasing by 1% per year, suppose con-

sumption was decreasing by a constant percentage

per year. If existing reserves are never to be ex-

hausted, what annual percentage reduction in con-

sumption is required?

55. A repeating decimal can always be expressed as a frac-

tion. This problem shows how writing a repeating dec-

imal as a geometric series enables you to find the frac-

tion.

(a) Write the repeating decimal 0.232323. . . as a ge-

ometric series using the fact that 0.232323… =

0.23 + 0.0023 + 0.000023 +⋯.

(b) Use the formula for the sum of a geometric series

to show that 0.232323… = 23∕99.

56. One way of valuing a company is to calculate the

present value of all its future earnings. A farm expects

to sell $1000 worth of Christmas trees once a year for-

ever, with the first sale in the immediate future. What is

the present value of this Christmas tree business? The

interest rate is 1% per year, compounded continuously.

57. In 2016, chart phenomenon Adele signed the biggest

recording contract ever by a UK artist, valued at $130

million.3 Rather than a one-time payment, companies

often prefer to make a series of smaller payments spread

over a number of years. Suppose Adele was offered the

following choice, and that she deposits all payments

into a bank paying 3% interest compounded annually:

Option 1: Full payment on signing.

Option 2: An initial signing payment of $27 mil-

lion, annual payments of $27 million for 4 years

on the anniversary of the signing of the contract,

making a total payment of $135 million.

(a) In 2021, five years after the contract was signed,

calculate the future value of Option 1.

(b) Calculate the future value of Option 2 in 2021.

(c) Which contract is more lucrative?

3www.cnet.com/news/sony-music-reportedly-signs-adele-for-record-90m, accessed May 20, 2020.
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58. On May 31, 2019, Mike Trout signed a 12-year con-

tract for $426.5 million with the Los Angeles Angels.

The contract required annual payments of $36 million

for the first two years, and $35.45 million for each of

the remaining 10 years.4 The first payment was made at

the contract signing, and annually afterward. Find the

future value of this contract in 2031. Assume all pay-

ments are made into a bank account earning 2% a year,

compounded annually.

59. Peter wishes to create a retirement fund from which he

can draw $20,000 when he retires and the same amount

at each anniversary of his retirement for 10 years. He

plans to retire 20 years from now. What investment need

he make today if he can get a return of 5% per year, com-

pounded annually?

60. In 2018, the quantity of copper mined worldwide was

21 million tonnes and was increasing by 5% annually.

By the end of that year, the world’s known copper re-

serves were 830 million tonnes.5

(a) Write and sum a series giving the total quantity of

copper mined in the n years since 2018. Assume

the quantity mined each year continues to increase

at 5% per year, with the first increase in 2018.

(b) In what year are the reserves exhausted?

(c) How does the sum constructed in part (a) relate to

the integral ∫
n

0
21(1.05)t dt?

61. This problem shows another way of deriving the long-

run ampicillin level. (See page 515.) In the long run the

ampicillin levels off to Q mg right after each tablet is

taken. Six hours later, right before the next dose, there

will be less ampicillin in the body. However, if stabil-

ity has been reached, the amount of ampicillin that has

been excreted is exactly 250 mg because taking one

more tablet raises the level back to Q mg. Use this to

solve for Q.

62. On page 515, you saw how to compute the quantity Qn

mg of ampicillin in the body right after the nth tablet of

250 mg, taken once every six hours.

(a) Do a similar calculation for Pn, the quantity of

ampicillin (in mg) in the body right before the nth

tablet is taken.

(b) Express Pn in closed form.

(c) What is limn→∞ Pn? Is this limit the same as

limn→∞ Qn? Explain in practical terms why your

answer makes sense.

63. Figure 9.3 shows the quantity of the drug atenolol in the

blood as a function of time, with the first dose at time

t = 0. Atenolol is taken in 50 mg doses once a day to

lower blood pressure.

(a) If the half-life of atenolol in the blood is 6.3 hours,

what percentage of the atenolol present at the start

of a 24-hour period is still there at the end?

(b) Find expressions for the quantities Q0, Q1, Q2, Q3,

…, and Qn shown in Figure 9.3. Write the expres-

sion for Qn in closed form.

(c) Find expressions for the quantities P1, P2, P3, …,

and Pn shown in Figure 9.3. Write the expression

for Pn in closed form.

1 2 3 4 5

Q0

t (time, days)

q (quantity, mg)

Q1 Q2 Q3 Q4

P1 P2 P3 P4

Figure 9.3

64. Draw a graph like that in Figure 9.3 for 250 mg of ampi-

cillin taken every 6 hours, starting at time t = 0. Put on

the graph the values of Q1, Q2, Q3,… introduced in the

text on page 515 and the values of P1, P2, P3,… calcu-

lated in Problem 62.

65. In theory, drugs that decay exponentially always leave

a residue in the body. However, in practice, once the

drug has been in the body for 5 half-lives, it is regarded

as being eliminated.6 If a patient takes a tablet of the

same drug every 5 half-lives forever, what is the upper

limit to the amount of drug that can be in the body?

66. This problem shows how to estimate the cumulative ef-

fect of a tax cut on a country’s economy. Suppose the

government proposes a tax cut totaling $100 million.

We assume that all the people who get extra money

spend 80% of it and save 20%. Thus, of the extra in-

come generated by the tax cut, $100(0.8) million = $80

million is spent and becomes extra income to someone

else. These people also spend 80% of their additional

income, or $80(0.8) million, and so on. Calculate the

total additional spending created by such a tax cut.

67. The government proposes a tax cut of $100 million sim-

ilar to Problem 66, but that economists now predict

that people will spend 90% of their extra income and

save only 10%. How much additional spending would

be generated by the tax cut under these assumptions?

68. (a) What is the present value of a $1000 bond which

pays $50 a year for 10 years, starting one year from

now? Assume the interest rate is 5% per year, com-

pounded annually.

4https://www.usatoday.com/story/sports/mlb/2019/03/20/ohtani-mike-trout-surely-deserves-his-big-contract/39231963/
5Data from http://minerals.usgs.gov/minerals/pubs/commodity/, accessed October 7, 2019.
6www.news-medical.net, accessed October 10, 2019.
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(b) Since $50 is 5% of $1000, this bond is called a 5%

bond. What does your answer to part (a) tell you

about the relationship between the principal and

the present value of this bond if the interest rate

is 5%?

(c) If the interest rate is more than 5% per year, com-

pounded annually, which is larger: the principal or

the present value of the bond? Why is the bond then

described as trading at a discount?

(d) If the interest rate is less than 5% per year, com-

pounded annually, why is the bond described as

trading at a premium?

69. A ball is dropped from a height of 10 feet and bounces.

Each bounce is
3

4
of the height of the bounce before.

Thus, after the ball hits the floor for the first time, the

ball rises to a height of 10(
3

4
) = 7.5 feet, and after it

hits the floor for the second time, it rises to a height of

7.5(
3

4
) = 10(

3

4
)2 = 5.625 feet. (Assume that there is no

air resistance.)

(a) Find an expression for the height to which the ball

rises after it hits the floor for the nth time.

(b) Find an expression for the total vertical distance the

ball has traveled when it hits the floor for the first,

second, third, and fourth times.

(c) Find an expression for the total vertical distance

the ball has traveled when it hits the floor for the

nth time. Express your answer in closed form.

70. You might think that the ball in Problem 69 keeps

bouncing forever since it takes infinitely many bounces.

This is not true!

(a) Show that a ball dropped from a height of ℎ feet

reaches the ground in
1

4

√

ℎ seconds. (Assume g =

32 ft∕sec2.)

(b) Show that the ball in Problem 69 stops bouncing

after

1

4

√

10+
1

2

√

10

√

3

4

(

1

1 −
√

3∕4

)

≈ 11 seconds.

Strengthen Your Understanding

In Problems 71–73, explain what is wrong with the state-

ment.

71. The sequence 4, 1,
1

4
,
1

16
,… converges to

4

1 − 1∕4
=

16

3
.

72. The sum of the infinite geometric series 1 −
3

2
+

9

4
−

27

8
+⋯ is

1

1 + 3∕2
=

2

5
.

73. The following series is convergent:

0.000001 + 0.00001 + 0.0001 + 0.001 +⋯ .

In Problems 74–79, give an example of:

74. A geometric series that does not converge.

75. A geometric series in which a term appears more than

once.

76. A finite geometric series with four distinct terms whose

sum is 10.

77. An infinite geometric series that converges to 10.

78. Two geometric series whose sum is geometric.

79. Two geometric series whose sum is not geometric.

80. Which of the following geometric series converge?

(I) 20 − 10 + 5 − 2.5 +⋯

(II) 1 − 1.1 + 1.21 − 1.331 +⋯

(III) 1 + 1.1 + 1.21 + 1.331 +⋯

(IV) 1 + y2 + y4 + y6 +⋯ , for − 1 < y < 1

(a) (I) only

(b) (IV) only

(c) (I) and (IV)

(d) (II) and (IV)

(e) None of the other choices is correct.

9.3 CONVERGENCE OF SERIES

We now consider general series in which each term an is a number. The series can be written com-

pactly using a
∑

sign as follows:

∞
∑

n=1

an = a1 + a2 + a3 +⋯ + an +⋯ .

For any values of a and x, the geometric series is such a series, with general term an = axn−1.
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Partial Sums and Convergence of Series

As in Section 9.2, we define the partial sum, Sn, of the first n terms of a series as

Sn =

n
∑

i=1

ai = a1 + a2 +⋯ + an.

To investigate the convergence of the series, we consider the sequence of partial sums

S1, S2, S3,… , Sn,… .

If Sn has a limit as n → ∞, then we define the sum of the series to be that limit.

If the sequence Sn of partial sums converges to S, so lim
n→∞

Sn = S, then we say the series

∞
∑

n=1

an converges and that its sum is S. We write

∞
∑

n=1

an = S. If lim
n→∞

Sn does not exist, we say

that the series diverges.

The following example shows how a series leads to a sequence of partial sums and how we use

them to determine convergence.

Example 1 Investigate the convergence of the series with an = 1∕(n(n + 1)):

∞
∑

n=1

an =
1

2
+

1

6
+

1

12
+

1

20
+⋯ .

Solution In order to determine whether the series converges, we first find the partial sums:

S1 =
1

2

S2 =
1

2
+

1

6
=

2

3

S3 =
1

2
+

1

6
+

1

12
=

3

4

S4 =
1

2
+

1

6
+

1

12
+

1

20
=

4

5
⋮

It appears that Sn = n∕(n + 1) for each positive integer n. We check that this pattern continues by

assuming that Sn = n∕(n + 1) for a given integer n, adding an+1, and simplifying:

Sn+1 = Sn + an+1 =
n

n + 1
+

1

(n + 1)(n+ 2)
=

n2 + 2n + 1

(n + 1)(n + 2)
=

n + 1

n + 2
.

Thus the sequence of partial sums has formula Sn = n∕(n + 1), which converges to 1, so the series
∑∞

n=1 an converges to 1. That is, we can say that

1

2
+

1

6
+

1

12
+

1

20
+⋯ = 1.
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Visualizing Series

We can visualize the terms of the series in Example 1 as the heights of the bars in Figure 9.4. The

partial sums of the series are illustrated by stacking the bars on top of each other in Figure 9.5.

1 2 3 4 5

a = 1∕12
a = 1∕6

a = 1∕2

⋯ n

Figure 9.4: Terms of the series with

an = 1∕(n(n + 1))

1 2 3 4 5

S3 = 3∕4
S2 = 2∕3

S1 = 1∕2

1

⋯

S = 1

n

Figure 9.5: Partial sums of the series with

an = 1∕(n(n + 1))

Here are some properties that are useful in determining whether or not a series converges.

Theorem 9.2: Convergence Properties of Series

1. If

∞
∑

n=1

an and

∞
∑

n=1

bn converge and if k is a constant, then

•

∞
∑

n=1

(an + bn) converges to

∞
∑

n=1

an +

∞
∑

n=1

bn.

•

∞
∑

n=1

kan converges to k

∞
∑

n=1

an.

2. Changing a finite number of terms in a series does not change whether or not it converges,

although it may change the value of its sum if it does converge.

3. If lim
n→∞

an ≠ 0 or lim
n→∞

an does not exist, then

∞
∑

n=1

an diverges.

4. If

∞
∑

n=1

an diverges, then

∞
∑

n=1

kan diverges if k ≠ 0.

For proofs of these properties, see Problems 41–44. As with improper integrals, the convergence of a

series is determined by its behavior for large n. (See the “behaves like” principle on page 419.) From

Property 2 we see that, if N is a positive integer, then
∑∞

n=1 an and
∑∞

n=N an either both converge

or both diverge. Thus, if all we care about is the convergence of a series, we can omit the limits and

write
∑

an.

Example 2 Does the series
∑

(1 − e−n) converge?

Solution Since the terms in the series an = 1−e−n tend to 1, not 0, as n → ∞, the series diverges by Property 3

of Theorem 9.2.

Comparison of Series and Integrals

We investigate the convergence of some series by comparison with an improper integral. The har-

monic series is the infinite series
∞
∑

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+⋯ +

1

n
+⋯ .



9.3 CONVERGENCE OF SERIES 525

Convergence of this sum would mean that the sequence of partial sums

S1 = 1, S2 = 1 +
1

2
, S3 = 1 +

1

2
+

1

3
, ⋯ , Sn = 1 +

1

2
+

1

3
+⋯ +

1

n
, ⋯

tends to a limit as n → ∞. Let’s look at some values:

S1 = 1, S10 ≈ 2.93, S100 ≈ 5.19, S1000 ≈ 7.49, S10000 ≈ 9.79.

The growth of these partial sums is slow, but they do in fact grow without bound, so the harmonic

series diverges. This is justified in the following example and in Problem 62 (available online).

Example 3 Show that the harmonic series 1 + 1∕2 + 1∕3 + 1∕4 +⋯ diverges.

Solution The idea is to approximate ∫
∞

1
(1∕x) dx by a left-hand sum, where the terms 1, 1∕2, 1∕3,… are

heights of rectangles of base 1. In Figure 9.6, the sum of the areas of the 3 rectangles is larger than

the area under the curve between x = 1 and x = 4, and the same kind of relationship holds for the

first n rectangles. Thus, we have

Sn = 1 +
1

2
+

1

3
+⋯ +

1

n
>
∫

n+1

1

1

x
dx = ln(n + 1).

Since ln(n + 1) gets arbitrarily large as n → ∞, so do the partial sums, Sn. Thus, the partial sums

have no limit, so the series diverges.

1 2 3 4

✛ y = 1∕x

✠
Area= 1

✠

Area= 1∕2

✠
Area= 1∕3

Rectangles showing

1 +
1

2
+

1

3
> ∫

4

1

1

x
dx = ln 4

x

y

Figure 9.6: Comparing the harmonic series to ∫
∞

1
(1∕x) dx

Notice that the harmonic series diverges, even though lim
n→∞

an = lim
n→∞

(1∕n) = 0. Although

Property 3 of Theorem 9.2 guarantees
∑

an diverges if lim
n→∞

an ≠ 0, it is possible for
∑

an to either

converge or diverge if lim
n→∞

an = 0. When we have lim
n→∞

an = 0, we must investigate the series further

to determine whether it converges or diverges.

Example 4 By comparison with the improper integral ∫
∞

1
(1∕x2) dx, show that the following series converges:

∞
∑

n=1

1

n2
= 1 +

1

4
+

1

9
+⋯ .

Solution Since we want to show that

∞
∑

n=1

1∕n2 converges, we want to show that the partial sums of this series

tend to a limit. We do this by showing that the sequence of partial sums increases and is bounded

above, so Theorem 9.1 applies.

Each successive partial sum is obtained from the previous one by adding one more term in the

series. Since all the terms are positive, the sequence of partial sums is increasing.

To show that the partial sums of

∞
∑

n=1

1∕n2 are bounded, we consider the right-hand sum repre-

sented by the area of the rectangles in Figure 9.7. We start at x = 1, since the area under the curve
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is infinite for 0 ≤ x ≤ 1. The shaded rectangles in Figure 9.7 suggest that:

1

4
+

1

9
+

1

16
+⋯ +

1

n2
≤
∫

∞

1

1

x2
dx.

The area under the graph is finite, since

∫

∞

1

1

x2
dx = lim

b→∞∫

b

1

1

x2
dx = lim

b→∞

(

−
1

b
+ 1

)

= 1.

To get Sn, we add 1 to both sides, giving

Sn = 1 +
1

4
+

1

9
+

1

16
+⋯ +

1

n2
≤ 1 +

∫

∞

1

1

x2
dx = 2.

Thus, the increasing sequence of partial sums is bounded above by 2. Hence, by Theorem 9.1 the

sequence of partial sums converges, so the series converges.

1 2 3 4 ⋯

1∕16

1∕9

1∕4

1
y = 1∕x2

✠

Area = 1∕4

✠

Area = 1∕9

✠
Area = 1∕16

Area = 1∕25✠

Shaded rectangles show
1

4
+

1

9
+

1

16
+

1

25
<
∫

∞

1

1

x2
dx

x

y

Figure 9.7: Comparing
∑∞

n=1
1∕n2 to ∫

∞

1
(1∕x2) dx

Notice that we have shown that the series in the Example 4 converges, but we have not found its

sum. The integral gives us a bound on the partial sums, but it does not give us the limit of the partial

sums. Euler proved the remarkable fact that the sum is �2∕6.

The method of Examples 3 and 4 can be used to prove the following theorem. See Problem 61

(available online).

Theorem 9.3: The Integral Test

Suppose an = f (n), where f (x) is decreasing and positive.

• If
∫

∞

1

f (x) dx converges, then
∑

an converges.

• If
∫

∞

1

f (x) dx diverges, then
∑

an diverges.

Suppose f (x) is continuous. Then if f (x) is positive and decreasing for all x beyond some point,

say c, the integral test can be used.

The integral test allows us to analyze a family of series, the p-series, and see how convergence

depends on the parameter p.

Example 5 For what values of p does the series

∞
∑

n=1

1∕np converge?



9.3 CONVERGENCE OF SERIES 527

Solution If p ≤ 0, the terms in the series an = 1∕np do not tend to 0 as n → ∞. Thus the series diverges for

p ≤ 0.

If p > 0, we compare

∞
∑

n=1

1∕np to the integral ∫
∞

1
1∕xp dx. In Example 3 of Section 7.6 we saw

that the integral converges if p > 1 and diverges if p ≤ 1. By the integral test, we conclude that
∑

1∕np converges if p > 1 and diverges if p ≤ 1.

We can summarize Example 5 as follows:

The p-series

∞
∑

n=1

1∕np converges if p > 1 and diverges if p ≤ 1.

Summary for Section 9.3

• An infinite series has the form
∞
∑

n=1

an = a1 + a2 + a3 +⋯ + an +⋯ .

• The partial sum, Sn, of the series is the sum of its terms through an:

Sn =

n
∑

i=1

ai = a1 + a2 + a3 +⋯ + an.

• If the sequence Sn of partial sums converges to S, so lim
n→∞

Sn = S, then we say the series

∞
∑

n=1

an

converges and that its sum is S. We write

∞
∑

n=1

an = S. If lim
n→∞

Sn does not exist, we say that the

series diverges.

• If lim
n→∞

an ≠ 0 or lim
n→∞

an does not exist, then

∞
∑

n=1

an diverges.

• The integral test:

Suppose an = f (n), where f (x) is decreasing and positive.

◦ If
∫

∞

1

f (x) dx converges, then
∑

an converges.

◦ If
∫

∞

1

f (x) dx diverges, then
∑

an diverges.

• The p-series

∞
∑

n=1

1∕np converges if p > 1 and diverges if p ≤ 1.

Exercises and Problems for Section 9.3 Online Resource: Additional Problems for Section 9.3
EXERCISES

In Exercises 1–3, find the first five terms of the sequence of

partial sums.

1.

∞
∑

n=1

n 2.

∞
∑

n=1

(−1)n

n
3.

∞
∑

n=1

1

n(n + 1)

4. For the sequence ai = i(i+1) and the partial sum of its

first n terms Sn =
∑n

i=1
ai, find

(a) a4 (b) S4 (c) S50 − S49

In Exercises 5–8, use the integral test to decide whether the

series converges or diverges.

5.

∞
∑

n=1

1

(n + 2)2
6.

∞
∑

n=1

n

n2 + 1

7.

∞
∑

n=1

1

en
8.

∞
∑

n=2

1

n(ln n)2
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9. Use comparison with ∫
∞

1
x−3 dx to show that

∑∞

n=2
1∕n3 converges to a number less than or equal

to 1∕2.

10. Use comparison with ∫
∞

0
1∕(x2 + 1) dx to show that

∑∞

n=1
1∕(n2 + 1) converges to a number less than or

equal to �∕2.

In Exercises 11–13, explain why the integral test cannot be

used to decide if the series converges or diverges.

11.

∞
∑

n=1

n2 12.

∞
∑

n=1

(−1)n

n
13.

∞
∑

n=1

e−n sin n

PROBLEMS

In Problems 14–33, does the series converge or diverge?

14.

∞
∑

n=0

3

n + 2
15.

∞
∑

n=0

4

2n + 1

16.

∞
∑

n=0

2
√

2 + n
17.

∞
∑

n=0

2n

1 + n4

18.

∞
∑

n=0

2n

(1 + n2)2
19.

∞
∑

n=0

2n
√

4 + n2

20.

∞
∑

n=1

3

(2n − 1)2
21.

∞
∑

n=1

4

(2n + 1)3

22.

∞
∑

n=0

3

n2 + 4
23.

∞
∑

n=0

2

1 + 4n2

24.

∞
∑

n=1

n

n + 1
25.

∞
∑

n=0

n + 1

2n + 3

26.

∞
∑

n=1

(

(

1

2

)n

+
(

2

3

)n
)

27.

∞
∑

n=1

(

(

3

4

)n

+
1

n

)

28.

∞
∑

n=1

n + 2n

n2n
29.

∞
∑

n=1

ln n

n

30.

∞
∑

n=1

1

n(1 + ln n)
31.

∞
∑

n=3

n + 1

n2 + 2n + 2

32.

∞
∑

n=0

1

n2 + 2n + 2
33.

∞
∑

n=2

n ln n + 4

n2

34. Show that

∞
∑

n=1

1

ln(2n)
diverges.

35. Show that

∞
∑

n=1

1

(ln(2n))2
converges.

36. (a) Find the partial sum, Sn, of

∞
∑

n=1

ln
(

n + 1

n

)

.

(b) Does the series in part (a) converge or diverge?

37. (a) Show rln n = nln r for positive numbers n and r.

(b) For what values r > 0 does
∑∞

n=1
rln n converge?

38. Consider the series

∞
∑

k=1

1

k(k + 1)
=

1

1 ⋅ 2
+

1

2 ⋅ 3
+⋯.

(a) Show that
1

k
−

1

k + 1
=

1

k(k + 1)
.

(b) Use part (a) to find the partial sums S3, S10, and

Sn.

(c) Use part (b) to show that the sequence of partial

sums Sn, and therefore the series, converges to 1.

39. Consider the series

∞
∑

k=1

ln

(

k(k + 2)

(k + 1)2

)

= ln
(

1 ⋅ 3

2 ⋅ 2

)

+ ln
(

2 ⋅ 4

3 ⋅ 3

)

+⋯ .

(a) Show that the partial sum of the first three nonzero

terms S3 = ln (5∕8).

(b) Show that the partial sum Sn = ln

(

n + 2

2(n + 1)

)

.

(c) Use part (b) to show that the partial sums Sn, and

therefore the series, converge to ln (1∕2).

40. Let an = f (n) where f (x) > 0, f ′(x) < 0, and where

∫
∞

1
f (x) dx converges. Does the given series converge

or diverge, or is there not enough information to decide?

(a)

∞
∑

i=1

ai (b)

∞
∑

i=1

(

1 + ai
)

41. Show that if
∑

an and
∑

bn converge and if k is a con-

stant, then
∑

(an+bn),
∑

(an−bn), and
∑

kan converge.

42. Let N be a positive integer. Show that if an = bn for

n ≥ N , then
∑

an and
∑

bn either both converge, or

both diverge.

43. Show that if
∑

an converges, then lim
n→∞

an = 0. [Hint:

Consider limn→∞(Sn−Sn−1), where Sn is the nth partial

sum.]

44. Show that if
∑

an diverges and k ≠ 0, then
∑

kan di-

verges.

45. The series
∑

an converges. Explain, by looking at par-

tial sums, why the series
∑

(an+1 − an) also converges.

46. The series
∑

an diverges. Give examples that show the

series
∑

(an+1 − an) could converge or diverge.
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Strengthen Your Understanding

In Problems 47–50, explain what is wrong with the state-

ment.

47. The series
∑

(1∕n)2 converges because the terms ap-

proach zero as n → ∞.

48. The integral ∫
∞

1
(1∕x3) dx and the series

∑∞

n=1
1∕n3

both converge to the same value, 1∕2.

49. The series
∑∞

n=1
nk converges for k > 1 and diverges

for k ≤ 1.

50. Since e−x
2

has no elementary antiderivative, the series
∑∞

n=1
e−n

2
does not converge.

In Problems 51–52, give an example of:

51. A series
∑∞

n=1
an with limn→∞ an = 0, but such that

∑∞

n=1
an diverges.

52. A convergent series
∑∞

n=1
an, whose terms are all posi-

tive, such that the series
∑∞

n=1

√

an is not convergent.

Decide if the statements in Problems 53–60 are true or false.

Give an explanation for your answer.

53.

∞
∑

n=1

(1 + (−1)n) is a series of nonnegative terms.

54. If a series converges, then the sequence of partial sums

of the series also converges.

55. If
∑

|an + bn| converges, then
∑

|an| and
∑

|bn| con-

verge.

56. The series

∞
∑

n=1

2(−1)
n

converges.

57. If a series
∑

an converges, then the terms, an, tend to

zero as n increases.

58. If the terms, an, of a series tend to zero as n increases,

then the series
∑

an converges.

59. If
∑

an does not converge and
∑

bn does not converge,

then
∑

anbn does not converge.

60. If
∑

anbn converges, then
∑

an and
∑

bn converge.

9.4 TESTS FOR CONVERGENCE

Comparison of Series

In Section 7.7, we compared two integrals to decide whether an improper integral converged. In

Theorem 9.3 we compared an integral and a series. Now we compare two series.

Theorem 9.4: Comparison Test

Suppose 0 ≤ an ≤ bn for all n beyond a certain value.

• If
∑

bn converges, then
∑

an converges.

• If
∑

an diverges, then
∑

bn diverges.

Since an ≤ bn, the plot of the an terms lies under the plot of the bn terms. See Figure 9.8. The

comparison test says that if the total area for
∑

bn is finite, then the total area for
∑

an is finite also.

If the total area for
∑

an is not finite, then neither is the total area for
∑

bn.

1 2 3 4 5 n

a1

a2

a3

a4
a5

b1

b2

b3

b4
b5

bn

❘

an

. . . . . .

Figure 9.8: Each an is represented by the area of a dark rectangle, and each bn by a dark plus a light rectangle

Example 1 Use the comparison test to determine whether the series

∞
∑

n=1

1

n3 + 1
converges.
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Solution For n ≥ 1, we know that n3 ≤ n3 + 1, so

0 ≤
1

n3 + 1
≤

1

n3
.

Thus, every term in the series
∑∞

n=1 1∕(n
3 + 1) is less than or equal to the corresponding term

in
∑∞

n=1 1∕n
3. Since we saw that

∑∞
n=1 1∕n

3 converges as a p-series with p > 1, we know that
∑∞

n=1 1∕(n
3 + 1) converges.

Example 2 Decide whether the following series converge: (a)

∞
∑

n=1

n − 1

n3 + 3
(b)

∞
∑

n=1

6n2 + 1

2n3 − 1
.

Solution (a) Since the convergence is determined by the behavior of the terms for large n, we observe that

n − 1

n3 + 3
behaves like

n

n3
=

1

n2
as n → ∞.

Since
∑

1∕n2 converges, we guess that
∑

(n − 1)∕(n3 + 3) converges. To confirm this, we use

the comparison test. Since a fraction increases if its numerator is made larger or its denominator

is made smaller, we have

0 ≤
n − 1

n3 + 3
≤

n

n3
=

1

n2
for all n ≥ 1.

Thus, the series
∑

(n − 1)∕(n3 + 3) converges by comparison with
∑

1∕n2.

(b) First, we observe that

6n2 + 1

2n3 − 1
behaves like

6n2

2n3
=

3

n
as n → ∞.

Since
∑

1∕n diverges, so does
∑

3∕n, and we guess that
∑

(6n2 + 1)∕(2n3 − 1) diverges. To

confirm this, we use the comparison test. Since a fraction decreases if its numerator is made

smaller or its denominator is made larger, we have

0 ≤
6n2

2n3
≤

6n2 + 1

2n3 − 1
,

so

0 ≤
3

n
≤

6n2 + 1

2n3 − 1
.

Thus, the series
∑

(6n2 + 1)∕(2n3 − 1) diverges by comparison with
∑

3∕n.

Limit Comparison Test

The comparison test uses the relationship between the terms of two series, an ≤ bn, which can be

difficult to establish. However, the convergence or divergence of a series depends only on the long-

run behavior of the terms as n → ∞; this idea leads to the limit comparison test.

Example 3 Predict the convergence or divergence of

∑ n2 − 5

n3 + n + 2
.
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Solution As n → ∞, the highest-power terms in the numerator and denominator, n2 and n3, dominate. Thus

the term

an =
n2 − 5

n3 + n + 2

behaves, as n → ∞, like
n2

n3
=

1

n
.

Since the harmonic series
∑

1∕n diverges, we guess that
∑

an also diverges. However, the inequality

n2 − 5

n3 + n + 2
≤

1

n

is in the wrong direction to use with the comparison test to confirm divergence, since we need the

given series to be greater than a known divergent series.

The following test can be used to confirm a prediction of convergence or divergence, as in Ex-

ample 3, without inequalities.

Theorem 9.5: Limit Comparison Test

Suppose an > 0 and bn > 0 for all n. If

lim
n→∞

an

bn
= c where c > 0,

then the two series
∑

an and
∑

bn either both converge or both diverge.

The limit limn→∞ an∕bn = c captures the idea that an “behaves like” cbn as n → ∞.

Example 4 Use the limit comparison test to determine if the following series converge or diverge.

(a)
∑ n2 − 5

n3 + n + 2
(b)

∑

sin
(

1

n

)

Solution (a) We take an =
n2 − 5

n3 + n + 2
. Because an behaves like

n2

n3
=

1

n
as n → ∞ we take bn = 1∕n. We

have

lim
n→∞

an

bn
= lim

n→∞

1

1∕n
⋅

n2 − 5

n3 + n + 2
= lim

n→∞

n3 − 5n

n3 + n + 2
= 1.

The limit comparison test applies with c = 1. Since
∑

1∕n diverges, the limit comparison test

shows that
∑ n2 − 5

n3 + n + 2
also diverges.

(b) Since sin x ≈ x for x near 0, we know that sin (1∕n) behaves like 1∕n as n → ∞. Since sin(1∕n)

is positive for n ≥ 1, we can apply the limit comparison test with an = sin (1∕n) and bn = 1∕n.

We have

lim
n→∞

an

bn
= lim

n→∞

sin (1∕n)

1∕n
= 1.

Thus c = 1 and since
∑

1∕n diverges, the series
∑

sin (1∕n) also diverges.
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Series of Both Positive and Negative Terms
If
∑

an has both positive and negative terms, then its plot has rectangles lying both above and below

the horizontal axis. See Figure 9.9. The total area of the rectangles is no longer equal to
∑

an.

However, it is still true that if the total area of the rectangles above and below the axis is finite, then

the series converges. The area of the nth rectangle is |an|, so we have:

Theorem 9.6: Convergence of Absolute Values Implies Convergence

If
∑

|an| converges, then so does
∑

an.

Problem 148 (available online) shows how to prove this result.

Example 5 Explain how we know that the following series converges:

∞
∑

n=1

(−1)n−1

n2
= 1 −

1

4
+

1

9
−⋯ .

Solution Writing an = (−1)n−1∕n2, we have

|

|

an
|

|

=
|

|

|

|

|

(−1)n−1

n2

|

|

|

|

|

=
1

n2
.

The p-series
∑

1∕n2 converges, since p > 1, so
∑

(−1)n−1 ∕n2 converges.

n

an

a5
a4

a3

a2

a1

. . .
. . .

Figure 9.9: Representing a series with positive and negative terms

Comparison with a Geometric Series: The Ratio Test
A geometric series

∑

an has the property that the ratio an+1∕an is constant for all n. For many other

series, this ratio, although not constant, tends to a constant as n increases. In some ways, such series

behave like geometric series. In particular, a geometric series converges if the ratio |an+1∕an| < 1.

A non-geometric series also converges if the ratio |an+1∕an| tends to a limit which is less than 1.

This idea leads to the following test.

Theorem 9.7: The Ratio Test

For a series
∑

an, suppose the sequence of ratios |an+1|∕|an| has a limit:

lim
n→∞

|an+1|

|an|
= L.

• If L < 1, then
∑

an converges.

• If L > 1, or if L is infinite,7 then
∑

an diverges.

• If L = 1, the test does not tell us anything about the convergence of
∑

an.

7That is, the sequence |an+1|∕|an| grows without bound.
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Proof Here are the main steps in the proof. Suppose lim
n→∞

|an+1|

|an|
= L < 1. Let x be a number between L

and 1. Then for all sufficiently large n, say for all n ≥ k, we have

|an+1|

|an|
< x.

Then,

|ak+1| < |ak|x,

|ak+2| < |ak+1|x < |ak|x
2,

|ak+3| < |ak+2|x < |ak|x
3,

and so on. Thus, writing a = |ak|, we have for i = 1, 2, 3,… ,

|ak+i| < axi.

Now we can use the comparison test:
∑

|ak+i| converges by comparison with the geometric series
∑

axi. Since
∑

|ak+i| converges, Theorem 9.6 tells us that
∑

ak+i converges. So, by property 2 of

Theorem 9.2, we see that
∑

an converges too.

If L > 1, then for sufficiently large n, say n ≥ m,

|an+1| > |an|,

so the sequence |am|, |am+1|, |am+2|,…, is increasing. Thus, lim
n→∞

an ≠ 0, so
∑

an diverges (by The-

orem 9.2, property 3). The argument in the case that |an+1|∕|an| is unbounded is similar.

Example 6 Show that the following series converges:

∞
∑

n=1

1

n!
= 1 +

1

2!
+

1

3!
+⋯ .

Solution Since an = 1∕n! and an+1 = 1∕ (n + 1)!, we have

|

|

an+1
|

|

|

|

an
|

|

=
1∕(n + 1)!

1∕n!
=

n!

(n + 1)!
=

n(n − 1)(n − 2)⋯ 2 ⋅ 1

(n + 1)n(n − 1)⋯ 2 ⋅ 1
.

We cancel n(n − 1)(n − 2) ⋅ ⋯ ⋅ 2 ⋅ 1, giving

lim
n→∞

|an+1|

|an|
= lim

n→∞

n!

(n + 1)!
= lim

n→∞

1

n + 1
= 0.

Because the limit is 0, which is less than 1, the ratio test tells us that

∞
∑

n=1

1∕n! converges. In Chapter 10,

we see that the sum is e − 1.

Example 7 What does the ratio test tell us about the convergence of the following two series?

∞
∑

n=1

1

n
and

∞
∑

n=1

(−1)n−1

n
.

Solution Because |

|

(−1)n|
|

= 1, in both cases we have limn→∞
|

|

an+1∕an
|

|

= limn→∞ n∕(n + 1) = 1. The first

series is the harmonic series, which diverges. However, Example 8 will show that the second series

converges. Thus, if the ratio test gives a limit of 1, the ratio test does not tell us anything about the

convergence of a series.
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Alternating Series

A series is called an alternating series if the terms alternate in sign. For example,

∞
∑

n=1

(−1)n−1

n
= 1 −

1

2
+

1

3
−

1

4
+⋯ +

(−1)n−1

n
+⋯ .

The convergence of an alternating series can often be determined using the following test:

Theorem 9.8: Alternating Series Test

An alternating series of the form

∞
∑

n=1

(−1)n−1an = a1 − a2 + a3 − a4 +⋯ + (−1)n−1an +⋯

converges if

0 < an+1 < an for all n and lim
n→∞

an = 0.

Although we do not prove this result, we can see why it is reasonable. The first partial sum,

S1 = a1, is positive. The second, S2 = a1 − a2, is still positive, since a2 < a1, but S2 is smaller

than S1. (See Figure 9.10.) The next sum, S3 = a1 − a2 + a3, is greater than S2 but smaller than

S1. The partial sums oscillate back and forth, and since the distance between them tends to 0, they

eventually converge.

0 S2 S4 S3 S1

✛
✲

✛
✲

a4
a3
a2
a1

x

Figure 9.10: Partial sums, S1, S2, S3, S4 of an alternating series

Example 8 Show that the following alternating harmonic series converges:

∞
∑

n=1

(−1)n−1

n
.

Solution We have an = 1∕n and an+1 = 1∕(n + 1). Thus,

an+1 =
1

n + 1
<

1

n
= an for all n, and lim

n→∞
1∕n = 0.

Thus, the hypothesis of Theorem 9.8 is satisfied, so the alternating harmonic series converges.

Suppose S is the sum of an alternating series, so S = limn→∞ Sn. Then S is trapped between

any two consecutive partial sums, say S3 and S4 or S4 and S5, so

S2 < S4 < ⋯ < S < ⋯ < S3 < S1.

Thus, the error in using Sn to approximate the true sum S is less than the distance from Sn to Sn+1,

which is an+1. Stated symbolically, we have the following result:



9.4 TESTS FOR CONVERGENCE 535

Theorem 9.9: Error Bounds for Alternating Series

Let Sn =

n
∑

i=1

(−1)i−1ai be the nth partial sum of an alternating series and let S = lim
n→∞

Sn.

Suppose that 0 < an+1 < an for all n and limn→∞ an = 0. Then

|

|

S − Sn
|

|

< an+1.

Thus, providedSn converges to S by the alternating series test, the error in using Sn to approxi-

mateS is less than the magnitude of the first term of the series which is omitted in the approximation.

Example 9 Estimate the error in approximating the sum of the alternating harmonic series

∞
∑

n=1

(−1)n−1∕n by the

sum of the first nine terms.

Solution The ninth partial sum is given by

S9 = 1 −
1

2
+

1

3
−⋯ +

1

9
= 0.7456… .

The first term omitted is −1∕10, with magnitude 0.1. By Theorem 9.9, we know that the true value

of the sum differs from 0.7456… by less than 0.1.

Absolute and Conditional Convergence

We say that the series
∑

an is

• Absolutely convergent if
∑

an and
∑

|an| both converge.

• Conditionally convergent if
∑

an converges but
∑

|an| diverges.

Conditionally convergent series rely on cancellation between positive and negative terms for their

convergence.

Example: The series

∞
∑

n=1

(−1)n−1

n2
is absolutely convergent because the series converges and the

p-series
∑

1∕n2 also converges.

Example: The series

∞
∑

n=1

(−1)n−1

n
is conditionally convergent because the series converges but

the harmonic series
∑

1∕n diverges.

Absolutely and conditionally convergent series behave differently when their terms are reordered:

• Absolutely convergent series: Rearranging terms does not change the sum.

• Conditionally convergent series: Rearranging terms can change the sum to any number.8

See Problems 139, 140, and 141 (available online).

Summary for Section 9.4

• Comparison Test: Suppose 0 ≤ an ≤ bn for all n beyond a certain value.

◦ If
∑

bn converges, then
∑

an converges.

◦ If
∑

an diverges, then
∑

bn diverges.

8See Walter Rudin, Principles of Mathematical Analysis, 3rd ed. (New York: McGraw-Hill, 1976), pp. 76–77.
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• Limit comparison test: Suppose an > 0 and bn > 0 for all n. If

lim
n→∞

an

bn
= c where c > 0,

then the two series
∑

an and
∑

bn either both converge or both diverge.

• Absolute convergence test: If
∑

|an| converges, then so does
∑

an.

• Ratio test: For a series
∑

an, suppose the sequence of ratios |an+1|∕|an| has a limit:

lim
n→∞

|an+1|

|an|
= L.

◦ If L < 1, then
∑

an converges.

◦ If L > 1, or if L is infinite, then
∑

an diverges.

◦ If L = 1, the test does not tell us anything about the convergence of
∑

an.

• Alternating series test: An alternating series of the form

∞
∑

n=1

(−1)n−1an = a1 − a2 + a3 − a4 +⋯ + (−1)n−1an +⋯

converges if

0 < an+1 < an for all n and lim
n→∞

an = 0.

• Error bounds for alternating series: Let Sn =

n
∑

i=1

(−1)i−1ai be the nth partial sum of an alter-

nating series and let S = lim
n→∞

Sn. Suppose that 0 < an+1 < an for all n and limn→∞ an = 0.

Then
|

|

S − Sn
|

|

< an+1.

• We say that the series
∑

an is

◦ Absolutely convergent if
∑

an and
∑

|an| both converge.

◦ Conditionally convergent if
∑

an converges but
∑

|an| diverges.

Exercises and Problems for Section 9.4 Online Resource: Additional Problems for Section 9.4
EXERCISES

In Exercises 1–4, use the comparison test to confirm the

statement.

1.

∞
∑

n=4

1

n
diverges, so

∞
∑

n=4

1

n − 3
diverges.

2.

∞
∑

n=1

1

n2
converges, so

∞
∑

n=1

1

n2 + 2
converges.

3.

∞
∑

n=1

1

n2
converges, so

∞
∑

n=1

e−n

n2
converges.

4.

∞
∑

n=1

(

3

7

)n

converges, so

∞
∑

n=1

(

3n

7n + 1

)n

converges.

In Exercises 5–8, use end behavior to compare the series to a

p-series and predict whether the series converges or diverges.

5.

∞
∑

n=1

n3 + 1

n4 + 2n3 + 2n
6.

∞
∑

n=1

n + 4

n3 + 5n − 3

7.

∞
∑

n=1

1

n4 + 3n3 + 7
8.

∞
∑

n=1

n − 4
√

n3 + n2 + 8

In Exercises 9–14, use the comparison test to determine

whether the series converges.

9.

∞
∑

n=1

n2

n4 + 1
10.

∞
∑

n=1

1

3n + 1

11.

∞
∑

n=1

1

n4 + en
12.

∞
∑

n=2

1

ln n

13.

∞
∑

n=1

n sin2 n

n3 + 1
14.

∞
∑

n=1

2n + 1

n2n − 1

In Exercises 15–18, the limit of a sequence of ratios from the

infinite series a1 + a2 + a3 +⋯ is given. Use the ratio test to

decide if the series converges or diverges.

15. lim
n→∞

|

|

an+1
|

|

|

|

an
|

|

=
2

3
.

16. lim
n→∞

an+1

an
= −2.

17. lim
n→∞

|

|

an+1
|

|

|

|

an
|

|

= lim
n→∞

7n2 + 1

3n3 + 1

18. lim
n→∞

|

|

an+1
|

|

|

|

an
|

|

= lim
n→∞

3n2 + 7

3n2 + 8



9.4 TESTS FOR CONVERGENCE 537

In Exercises 19–25, use the ratio test to decide whether the

series converges or diverges.

19.

∞
∑

n=1

n

2n
20.

∞
∑

n=1

1

(2n)!

21.

∞
∑

n=1

1

nen
22.

∞
∑

n=1

(n!)2

(2n)!

23.

∞
∑

n=1

n!(n + 1)!

(2n)!
24.

∞
∑

n=1

1

rnn!
, r > 0

25.

∞
∑

n=0

2n

n3 + 1

In Exercises 26–36, use the limit comparison test to deter-

mine whether the series converges or diverges.

26.

∞
∑

n=1

5n + 1

3n2
, by comparing to

∞
∑

n=1

1

n

27.

∞
∑

n=1

(

1 + n

3n

)n

, by comparing to

∞
∑

n=1

(

1

3

)n

[Hint: limn→∞(1 + 1∕n)n = e.]

28.

∞
∑

n=1

(

1 − cos
1

n

)

, by comparing to

∞
∑

n=1

1

n2

29.

∞
∑

n=1

1

n4 − 7
30.

∞
∑

n=1

n + 1

n2 + 2

31.

∞
∑

n=1

n3 − 2n2 + n + 1

n4 − 2
32.

∞
∑

n=1

2n

3n − 1

33.

∞
∑

n=1

1

2
√

n +
√

n + 2
34.

∞
∑

n=1

(

1

2n − 1
−

1

2n

)

35.

∞
∑

n=1

4 sin n + n

n2
36.

∞
∑

n=1

n

cos n + en

In Exercises 37–40, is the series alternating?

37.

∞
∑

n=1

(−1)n

(

2 −
1

n

)

38.

∞
∑

n=1

cos(n�)

39.

∞
∑

n=1

(−1)n cos(n�) 40.

∞
∑

n=1

(−1)n cos n

In Exercises 41–46, use the alternating series test to decide

whether the series converges.

41.

∞
∑

n=1

(−1)n−1
√

n
42.

∞
∑

n=1

(−1)n−1

2n + 1

43.

∞
∑

n=1

(−1)n

n2 + 1
44.

∞
∑

n=1

(−1)n

n!

45.

∞
∑

n=1

(−1)n−1

n2 + 2n + 1
46.

∞
∑

n=1

(−1)n−1

en

47. (a) Decide whether the following series is alternating:

∞
∑

n=1

sin n

n3
.

(b) Use the comparison test to determine whether the

following series converges or diverges:

∞
∑

n=1

|

|

|

|

sin n

n3

|

|

|

|

.

(c) Determine whether the following series converges

or diverges:
∞
∑

n=1

sin n

n3
.

In Exercises 48–56, determine whether the series is abso-

lutely convergent, conditionally convergent, or divergent.

48.

∞
∑

n=1

(−1)n

2n
49.

∞
∑

n=1

(−1)n

2n

50.

∞
∑

n=1

(−1)n−1
√

n
51.

∞
∑

n=1

(−1)n
n

n + 1

52.

∞
∑

n=1

(−1)n

n4 + 7
53.

∞
∑

n=2

(−1)n−1

n ln n

54.

∞
∑

n=1

cos n

n2

55.

∞
∑

n=1

(−1)n−1 arcsin
(

1

n

)

56.

∞
∑

n=1

(−1)n−1 arctan(1∕n)

n2

PROBLEMS

In Problems 57–58, explain why the comparison test cannot

be used to decide if the series converges or diverges.

57.

∞
∑

n=1

(−1)n

n2
58.

∞
∑

n=1

sin n

In Problems 59–60, explain why the ratio test cannot be used

to decide if the series converges or diverges.

59.

∞
∑

n=1

(−1)n 60.

∞
∑

n=1

sin n
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In Problems 61–64, explain why the alternating series test

cannot be used to decide if the series converges or diverges.

61.

∞
∑

n=1

(−1)n−1n 62.

∞
∑

n=1

(−1)n−1 sin n

63.

∞
∑

n=1

(−1)n−1
(

2 −
1

n

)

64.
2

1
−

1

1
+

2

2
−

1

2
+

2

3
−

1

3
+⋯

In Problems 65–67, use a computer or calculator to inves-

tigate the behavior of the partial sums. Do the partial sums

appear to converge? Confirm convergence using the alternat-

ing series test. If a series converges, estimate its sum.

65. 1 − 2 + 3 − 4 + 5 +⋯ + (−1)n(n + 1) +⋯

66. 1 − 0.1 + 0.01 − 0.001 +⋯ + (−1)n10−n +⋯

67. 1 −
1

1!
+

1

2!
−

1

3!
+⋯ + (−1)n

1

n!
+⋯

In Problems 68–96, determine whether the series converges.

68.

∞
∑

n=1

8n

n!
69.

∞
∑

n=1

1

4n + 3

70.

∞
∑

n=1

(−2)n−1

n2
71.

∞
∑

n=1

(−1)n−1

2n + 1

72.

∞
∑

n=1

5 + en

3n
73.

∞
∑

n=2

n + 2

n2 − 1

74.

∞
∑

n=1

n2n

3n
75.

∞
∑

n=0

(0.1)n

n!

76.

∞
∑

n=1

n2

n2 + 1
77.

∞
∑

n=1

1 + 3n

4n

78.

∞
∑

n=1

(n − 1)!

n2
79.

∞
∑

n=1

(2n)!

(n!)2

80.

∞
∑

n=1

en 81.

∞
∑

n=0

e−n

82.

∞
∑

n=1

n + 1

n3 + 6
83.

∞
∑

n=1

5n + 2

2n2 + 3n + 7

84.

∞
∑

n=1

(−1)n−1
√

3n − 1
85.

∞
∑

n=1

(−1)n−12n

n2

86.

∞
∑

n=1

1
√

n2(n + 2)
87.

∞
∑

n=1

n(n + 1)
√

n3 + 2n2

88.

∞
∑

n=1

2n3 − 1

n3 + 1
89.

∞
∑

n=1

n + 1

3n2 − 2

90.

∞
∑

n=1

6

n + 2n
91.

∞
∑

n=1

2n + 1
√

3n3 − 2

92.

∞
∑

n=2

3

ln n2
93.

∞
∑

n=1

sin n

n2

94.

∞
∑

n=1

sin n2

n2
95.

∞
∑

n=1

cos(n�)

n

96.

∞
∑

n=1

1

n2
tan

(

1

n

)

In Problems 97–101, use the expression for an to decide:

(a) If the sequence {an}
∞
n=1

converges or diverges.

(b) If the series
∑∞

n=1
an converges or diverges.

97. an =
en

1 + e2n
98. an =

√

n

1 +
√

n

99. an =
n

1 + n2
100. an =

4 + 2n

3n

101. an = 2 + (−1)n

In Problems 102–105, the series converges. Is the sum af-

fected by rearranging the terms of the series?

102.

∞
∑

n=1

(−1)n

n
103.

∞
∑

n=1

(−1)n

n2

104.

∞
∑

n=1

1

2n
105.

∞
∑

n=2

(−1)n+1

ln n

In Problems 106–110, for what values of a does the series

converge?

106.

∞
∑

n=1

(

2

n

)a

107.

∞
∑

n=1

(

2

a

)n

, a > 0

108.

∞
∑

n=1

(ln a)n , a > 0 109.

∞
∑

n=1

ln n

na

110.

∞
∑

n=1

(−1)n arctan
(

a

n

)

, a > 0

In Problems 111–113, the series converges by the alternating

series test. Use Theorem 9.9 to find how many terms give a

partial sum, Sn, within 0.01 of the sum, S, of the series.

111.

∞
∑

n=1

(−1)n−1

n
112.

∞
∑

n=1

(

−
2

3

)n−1

113.

∞
∑

n=1

(−1)n−1

(2n)!

114. Suppose 0 ≤ bn ≤ 2n ≤ an and 0 ≤ cn ≤ 2−n ≤ dn for

all n. Which of the series
∑

an,
∑

bn,
∑

cn, and
∑

dn
definitely converge and which definitely diverge?
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Strengthen Your Understanding

In Problems 115–117, explain what is wrong with the state-

ment.

115. The series
∑∞

n=1
(−1)2n∕n2 converges by the alternating

series test.

116. The series
∑∞

n=1
1∕(n2 + 1) converges by the ratio test.

117. The series
∑∞

n=1
1∕n3∕2 converges by comparison with

∑∞

n=1
1∕n2.

In Problems 118–120, give an example of:

118. A series
∑∞

n=1
an that converges but

∑∞

n=1
|an| diverges.

119. An alternating series that does not converge.

120. A series
∑

an such that

lim
n→∞

|an+1|

|an|
= 3.

Decide if the statements in Problems 121–136 are true or

false. Give an explanation for your answer.

121. If the terms sn of a sequence alternate in sign, then the

sequence converges.

122. If 0 ≤ an ≤ bn for all n and
∑

an converges, then
∑

bn
converges.

123. If 0 ≤ an ≤ bn for all n and
∑

an diverges, then
∑

bn
diverges.

124. If bn ≤ an ≤ 0 for all n and
∑

bn converges, then
∑

an
converges.

125. If
∑

an converges, then
∑

|an| converges.

126. If
∑

an converges, then lim
n→∞

|an+1|∕|an| ≠ 1.

127.

∞
∑

n=0

(−1)n cos(2�n) is an alternating series.

128. The series

∞
∑

n=0

(−1)n2n converges.

129. If
∑

an converges, then
∑

(−1)nan converges.

130. If an alternating series converges by the alternating se-

ries test, then the error in using the first n terms of the

series to approximate the entire series is less in magni-

tude than the first term omitted.

131. If an alternating series converges, then the error in using

the first n terms of the series to approximate the entire

series is less in magnitude than the first term omitted.

132. If
∑

|an| converges, then
∑

(−1)n|an| converges.

133. To find the sum of the alternating harmonic series
∑

(−1)n−1∕n to within 0.01 of the true value, we can

sum the first 100 terms.

134. If
∑

an is absolutely convergent, then it is convergent.

135. If
∑

an is conditionally convergent, then it is absolutely

convergent.

136. If an > 0.5bn > 0 for all n and
∑

bn diverges, then
∑

an
diverges.

137. Which test will help you determine if the series con-

verges or diverges?

∞
∑

k=1

1

k3 + 1

(a) Integral test

(b) Comparison test

(c) Ratio test

9.5 POWER SERIES AND INTERVAL OF CONVERGENCE

In Section 9.2 we saw that the geometric series
∑

axn converges for −1 < x < 1 and diverges

otherwise. This section studies the convergence of more general series constructed from powers.

Chapter 10 shows how such power series are used to approximate functions such as ex, sin x, cos x,

and lnx.

A power series about x = a is a sum of constants times powers9 of (x − a):

C0 + C1(x − a) + C2(x − a)2 +⋯ + Cn(x − a)n +⋯ =

∞
∑

n=0

Cn(x − a)n.

We think of a as a constant. For any fixed x, the power series
∑

Cn(x−a)n is a series of numbers

like those considered in Section 9.3. To investigate the convergence of a power series, we consider

9For n = 0, when x = a we define (x − a)0 to be 1.
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the partial sums, which in this case are the polynomials Sn(x) = C0+C1(x− a) +C2(x− a)2+⋯+

Cn(x − a)n. As before, we consider the sequence10

S0(x), S1(x), S2(x), … , Sn(x),… .

For a fixed value of x, if this sequence of partial sums converges to a limit S, that is, if

lim
n→∞

Sn(x) = S, then we say that the power series converges to S for this value of x.

A power series may converge for some values of x and not for others.

Example 1 Find an expression for the general term of the series and use it to write the series using
∑

notation:

(x − 2)4

4
−

(x − 2)6

9
+

(x − 2)8

16
−

(x − 2)10

25
+⋯ .

Solution The series is about x = 2 and the odd terms are zero. We use (x − 2)2n and begin with n = 2. Since

the series alternates and is positive for n = 2, we multiply by (−1)n. For n = 2, we divide by 4, for

n = 3 we divide by 9, and in general, we divide by n2. One way to write this series is

∞
∑

n=2

(−1)n(x − 2)2n

n2
.

Example 2 Determine whether the power series

∞
∑

n=0

xn

2n
converges or diverges for

(a) x = −1 (b) x = 3

Solution (a) Substituting x = −1, we have

∞
∑

n=0

xn

2n
=

∞
∑

n=0

(−1)n

2n
=

∞
∑

n=0

(

−
1

2

)n

.

This is a geometric series with ratio −1∕2, so the series converges to 1∕(1 − (−
1

2
)) = 2∕3.

(b) Substituting x = 3, we have

∞
∑

n=0

xn

2n
=

∞
∑

n=0

3n

2n
=

∞
∑

n=0

(

3

2

)n

.

This is a geometric series with ratio greater than 1, so it diverges.

Numerical and Graphical View of Convergence

Consider the series

(x − 1) −
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+⋯ + (−1)n−1

(x − 1)n

n
+⋯ .

To investigate the convergence of this series, we look at the sequence of partial sums graphed in Fig-

ure 9.11. The graph suggests that the partial sums converge for x in the interval (0, 2). In Examples 4

and 5, we show that the series converges for 0 < x ≤ 2. This is called the interval of convergence

of this series.
10Here we call the first term in the sequence S0(x) rather than S1(x) so that the last term of Sn(x) is Cn(x − a)n.
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At x = 1.4, which is inside the interval, the series appears to converge quite rapidly:

S5(1.4) = 0.33698… S7(1.4) = 0.33653…

S6(1.4) = 0.33630… S8(1.4) = 0.33645…

Table 9.1 shows the results of using x = 1.9 and x = 2.3 in the power series. For x = 1.9, which

is inside the interval of convergence but close to an endpoint, the series converges, though rather

slowly. For x = 2.3, which is outside the interval of convergence, the series diverges: the larger the

value of n, the more wildly the series oscillates. In fact, the contribution of the twenty-fifth term is

about 28; the contribution of the hundredth term is about −2,500,000,000. Figure 9.11 shows the

interval of convergence and the partial sums.

1.9

2.3

3

S11(x)

S8(x)

S5(x)
S14(x)

x = 2

x

✲✛ Interval
of

convergence

1

Figure 9.11: Partial sums for series in

Example 4 converge for 0 < x ≤ 2

Table 9.1 Partial sums for series in

Example 4 with x = 1.9 inside interval

of convergence and x = 2.3 outside

n Sn(1.9) n Sn(2.3)

2 0.495 2 0.455

5 0.69207 5 1.21589

8 0.61802 8 0.28817

11 0.65473 11 1.71710

14 0.63440 14 −0.70701

Notice that the interval of convergence, 0 < x ≤ 2, is centered on x = 1. Since the interval

extends one unit on either side, we say the radius of convergence of this series is 1.

Intervals of Convergence

Each power series falls into one of three cases, characterized by its radius of convergence, R. This

radius gives an interval of convergence.

• The series converges only for x = a; the radius of convergence is defined to be R = 0.

• The series converges for all values of x; the radius of convergence is defined to be R =

∞.

• There is a positive number R, called the radius of convergence, such that the series

converges for |x − a| < R and diverges for |x − a| > R. See Figure 9.12.

Using the radius of convergence, we make the following definition:

• The interval of convergence is the interval between a − R and a + R, including any

endpoint where the series converges.

a −R a a +R

Series
diverges ✲✛ Interval of convergence

Series
diverges

x

✲✛ R

Figure 9.12: Radius of convergence, R, determines an interval, centered at x = a, in which the series converges
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There are some series whose radius of convergence we already know. For example, the geometric

series

1 + x + x2 +⋯ + xn +⋯

converges for |x| < 1 and diverges for |x| ≥ 1, so its radius of convergence is 1. Similarly, the series

1 +
x

3
+
(

x

3

)2

+⋯ +
(

x

3

)n

+⋯

converges for |x∕3| < 1 and diverges for |x∕3| ≥ 1, so its radius of convergence is 3.

The next theorem gives a method of computing the radius of convergence for many series. To

find the values of x for which the power series

∞
∑

n=0

Cn(x−a)n converges, we use the ratio test. Writing

an = Cn(x − a)n and assuming Cn ≠ 0 and x ≠ a, we have

lim
n→∞

|an+1|

|an|
= lim

n→∞

|Cn+1(x − a)n+1|

|Cn(x − a)n|
= lim

n→∞

|Cn+1||x − a|

|Cn|
= |x − a| lim

n→∞

|Cn+1|

|Cn|
.

Case 1. Suppose lim
n→∞

|an+1|∕|an| is infinite. Then the ratio test shows that the power series converges

only for x = a. The radius of convergence is R = 0.

Case 2. Suppose lim
n→∞

|an+1|∕|an| = 0. Then the ratio test shows that the power series converges for

all x. The radius of convergence is R = ∞.

Case 3. Suppose lim
n→∞

|an+1|∕|an| = K|x − a|, where lim
n→∞

|Cn+1|∕|Cn| = K . In Case 1, K does not

exist; in Case 2, K = 0. Thus, we can assume K exists and K ≠ 0, and we can define R = 1∕K .

Then we have

lim
n→∞

|an+1|

|an|
= K|x − a| =

|x − a|

R
,

so the ratio test tells us that the power series:

• Converges for
|x − a|

R
< 1; that is, for |x − a| < R.

• Diverges for
|x − a|

R
> 1; that is, for |x − a| > R.

The results are summarized in the following theorem.

Theorem 9.10: Method for Computing Radius of Convergence

To calculate the radius of convergence, R, for the power series

∞
∑

n=0

Cn(x − a)n, use the ratio

test with an = Cn(x − a)n.

• If lim
n→∞

|an+1|∕|an| is infinite, then R = 0.

• If lim
n→∞

|an+1|∕|an| = 0, then R = ∞.

• If lim
n→∞

|an+1|∕|an| = K|x − a|, where K is finite and nonzero, then R = 1∕K .

Note that the ratio test does not tell us anything if limn→∞ |an+1|∕|an| fails to exist, which can

occur, for example, if some of the Cns are zero.

A proof that a power series has a radius of convergence and of Theorem 9.10 is given in the

online theory supplement. To understand these facts informally, we can think of a power series as

being like a geometric series whose coefficients vary from term to term. The radius of convergence

depends on the behavior of the coefficients: if there are constants C and K such that for larger and

larger n,

|Cn| ≈ CKn,
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then it is plausible that
∑

Cnx
n and

∑

CKnxn =
∑

C(Kx)n converge or diverge together. The

geometric series
∑

C(Kx)n converges for |Kx| < 1, that is, for |x| < 1∕K . We can find K using

the ratio test, because

|an+1|

|an|
=

|Cn+1||(x − a)n+1|

|Cn||(x − a)n|
≈

CKn+1
|(x − a)n+1|

CKn
|(x − a)n|

= K|x − a|.

Example 3 Show that the following power series converges for all x:

1 + x +
x2

2!
+

x3

3!
+⋯ +

xn

n!
+⋯ .

Solution Because Cn = 1∕n!, none of the Cns are zero and we can use the ratio test:

lim
n→∞

|an+1|

|an|
= |x| lim

n→∞

|Cn+1|

|Cn|
= |x| lim

n→∞

1∕(n + 1)!

1∕n!
= |x| lim

n→∞

n!

(n + 1)!
= |x| lim

n→∞

1

n + 1
= 0.

This gives R = ∞, so the series converges for all x. We see in Chapter 10 that it converges to ex.

Example 4 Determine the radius of convergence of the series

(x − 1)

3
−

(x − 1)2

2 ⋅ 32
+

(x − 1)3

3 ⋅ 33
−

(x − 1)4

4 ⋅ 34
+⋯ + (−1)n−1

(x − 1)n

n ⋅ 3n
+⋯ .

What does this tell us about the interval of convergence of this series?

Solution Because Cn = (−1)n−1∕(n ⋅ 3n) is never zero we can use the ratio test. We have

lim
n→∞

|an+1|

|an|
= |x − 1| lim

n→∞

|Cn+1|

|Cn|
= |x − 1| lim

n→∞

|

(−1)n

(n+1)⋅3n+1
|

|

(−1)n−1

n⋅3n
|

= |x − 1| lim
n→∞

n

3(n + 1)
=

|x − 1|

3
.

Thus, K = 1∕3 in Theorem 9.10, so the radius of convergence is R = 1∕K = 3. The power series

converges for |x − 1| < 3 and diverges for |x − 1| > 3, so the series converges for −2 < x < 4.

Notice that the radius of convergence does not tell us what happens at the endpoints, x = −2 and

x = 4. The endpoints are investigated in Example 5.

What Happens at the Endpoints of the Interval of Convergence?

The ratio test does not tell us whether a power series converges at the endpoints of its interval of

convergence, x = a ± R. There is no simple theorem that answers this question. Since substituting

x = a±R converts the power series to a series of numbers, the tests in Sections 9.3 and 9.4 are often

useful.

Example 5 Determine the interval of convergence of the series

(x − 1)

3
−

(x − 1)2

2 ⋅ 32
+

(x − 1)3

3 ⋅ 33
−

(x − 1)4

4 ⋅ 34
+⋯ + (−1)n−1

(x − 1)n

n ⋅ 3n
+⋯ .
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Solution In Example 4 we showed that this series has R = 3; it converges for −2 < x < 4 and diverges for

x < −2 or x > 4. We need to determine whether it converges at the endpoints of the interval of

convergence, x = −2 and x = 4. At x = 4, we have the series

1 −
1

2
+

1

3
−

1

4
+⋯ +

(−1)n−1

n
+⋯ .

This is an alternating series with an = 1∕n, so by the alternating series test (Theorem 9.8), it con-

verges. At x = −2, we have the series

−1 −
1

2
−

1

3
−

1

4
−⋯ −

1

n
−⋯ .

This is the negative of the harmonic series, so it diverges. Therefore, the interval of convergence is

−2 < x ≤ 4. The right endpoint is included and the left endpoint is not.

Series with All Odd, or All Even, Terms

The ratio test requires lim
n→∞

|an+1|∕|an| to exist for an = Cn(x−a)n. What happens if the power series

has only even or odd powers, so some of the coefficients Cn are zero? Then we use the fact that an

infinite series can be written in several ways and pick one in which the terms are nonzero.

Example 6 Find the radius and interval of convergence of the series

1 + 22x2 + 24x4 + 26x6 +⋯ .

Solution If we take an = 2nxn for n even and an = 0 for n odd, lim
n→∞

|an+1|∕|an| does not exist. Therefore, for

this series we take

an = 22nx2n,

so that, replacing n by n + 1, we have

an+1 = 22(n+1)x2(n+1) = 22n+2x2n+2.

Thus,

|

|

an+1
|

|

|

|

an
|

|

=

|

|

|

22n+2x2n+2
|

|

|

|

|

22nx2n|
|

=
|

|

|

22x2
|

|

|

= 4x2.

We have

lim
n→∞

|

|

an+1
|

|

|

|

an
|

|

= 4x2.

The ratio test guarantees that the power series converges if 4x2 < 1, that is, if |x| <
1

2
. The radius

of convergence is
1

2
. The series converges for −

1

2
< x <

1

2
and diverges for x >

1

2
or x < −

1

2
. At

x = ±
1

2
, all the terms in the series are 1, so the series diverges (by Theorem 9.2, Property 3). Thus,

the interval of convergence is −
1

2
< x <

1

2
.
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Example 7 Write the general term an of the following series so that none of the terms are zero:

x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
−⋯ .

Solution This series has only odd powers. We can get odd integers using 2n − 1 for n ≥ 1, since

2 ⋅ 1 − 1 = 1, 2 ⋅ 2 − 1 = 3, 2 ⋅ 3 − 1 = 5, etc.

Also, the signs of the terms alternate, with the first (that is, n = 1) term positive, so we include a

factor of (−1)n−1. Thus we get

an = (−1)n−1
x2n−1

(2n − 1)!
.

We see in Chapter 10 that the series converges to sin x. Exercise 24 shows that the radius of conver-

gence of this series is infinite, so that it converges for all values of x.

Summary for Section 9.5

• A power series about x = a is a sum of constants times powers of (x − a):

C0 + C1(x − a) + C2(x − a)2 +⋯ + Cn(x − a)n +⋯ =

∞
∑

n=0

Cn(x − a)n.

• Radius of convergence, R, of a power series. There are three cases.

◦ The series converges only for x = a. Then R = 0.

◦ The series converges for all values of x. Then R = ∞.

◦ R is a positive number. The series converges for |x − a| < R and diverges for |x − a| > R.

• The interval of convergence of a power series is the interval between a−R and a+R, including

any endpoint where the series converges.

• To calculate the radius of convergence, R, for the power series

∞
∑

n=0

Cn(x− a)n, use the ratio test

with an = Cn(x − a)n.

◦ If lim
n→∞

|an+1|∕|an| is infinite, then R = 0.

◦ If lim
n→∞

|an+1|∕|an| = 0, then R = ∞.

◦ If lim
n→∞

|an+1|∕|an| = K|x − a|, where K is finite and nonzero, then R = 1∕K .

• Convergence or divergence at the endpoints of the interval of convergence must be checked

separately.
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Exercises and Problems for Section 9.5 Online Resource: Additional Problems for Section 9.5
EXERCISES

Which of the series in Exercises 1–4 are power series?

1. x − x3 + x6 − x10 + x15 −⋯

2.
1

x
+

1

x2
+

1

x3
+

1

x4
+⋯

3. 1 + x + (x − 1)2 + (x − 2)3 + (x − 3)4 +⋯

4. x7 + x + 2

In Exercises 5–10, find an expression for the general term of

the series. Give the starting value of the index (n or k, for

example).

5.
1

2
x +

1 ⋅ 3

22 ⋅ 2!
x2 +

1 ⋅ 3 ⋅ 5

23 ⋅ 3!
x3 +⋯

6. px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)

3!
x3 +⋯

7. 1 −
(x − 1)2

2!
+

(x − 1)4

4!
−

(x − 1)6

6!
+⋯

8. (x − 1)3 −
(x − 1)5

2!
+

(x − 1)7

4!
−

(x − 1)9

6!
+⋯

9.
x − a

1
+

(x − a)2

2 ⋅ 2!
+

(x − a)3

4 ⋅ 3!
+

(x − a)4

8 ⋅ 4!
+⋯

10. 2(x+5)3 +3(x+5)5 +
4(x + 5)7

2!
+
5(x + 5)9

3!
+⋯

In Exercises 11–23, find the radius of convergence.

11.

∞
∑

n=0

nxn 12.

∞
∑

n=0

(5x)n

13.

∞
∑

n=0

n3xn 14.

∞
∑

n=0

(2n + n2)xn

15.

∞
∑

n=0

(n + 1)xn

2n + n
16.

∞
∑

n=1

2n(x − 1)n

n

17.

∞
∑

n=1

(x − 3)n

n2n
18.

∞
∑

n=0

(−1)n
x2n

(2n)!

19. x −
x2

4
+

x3

9
−

x4

16
+

x5

25
−⋯

20. 1 + 2x +
4x2

2!
+

8x3

3!
+

16x4

4!
+

32x5

5!
+⋯

21. 1 + 2x +
4!x2

(2!)2
+

6!x3

(3!)2
+

8!x4

(4!)2
+

10!x5

(5!)2
+⋯

22. 3x +
5

2
x2 +

7

3
x3 +

9

4
x4 +

11

5
x5 +⋯

23. x −
x3

3
+

x5

5
−

x7

7
+⋯

24. Show that the radius of convergence of the power series

x −
x3

3!
+

x5

5!
−

x7

7!
+⋯ in Example 7 is infinite.

25. The following power series has interval of convergence

a < x < b:

1 +
x − 3

8
+
(

x − 3

8

)2

+
(

x − 3

8

)3

+⋯

What are the values of a and b?

PROBLEMS

26. (a) Determine the radius of convergence of the series

x −
x2

2
+

x3

3
−

x4

4
+⋯ + (−1)n−1

xn

n
+⋯ .

What does this tell us about the interval of conver-

gence of this series?

(b) Investigate convergence at the end points of the in-

terval of convergence of this series.

27. Show that the series

∞
∑

n=1

(2x)n

n
converges for |x| < 1∕2.

Investigate whether the series converges for x = 1∕2

and x = −1∕2.

In Problems 28–35, find the interval of convergence.

28.

∞
∑

n=0

xn

3n
29.

∞
∑

n=2

(x − 3)n

n

30.

∞
∑

n=1

n2x2n

22n
31.

∞
∑

n=1

(−1)n(x − 5)n

2nn2

32.

∞
∑

n=1

x2n+1

n!
33.

∞
∑

n=0

n!xn

34.

∞
∑

n=1

(5x)n
√

n
35.

∞
∑

n=1

(5x)2n
√

n

In Problems 36–39, use the formula for the sum of a geo-

metric series to find a power series centered at the origin

that converges to the expression. For what values does the

series converge?

36.
1

1 + 2z
37.

2

1 + y2

38.
3

1 − z∕2
39.

8

4 + y
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40. For the following values of x, to what value does the

power series converge?

1 +
x − 3

8
+
(

x − 3

8

)2

+
(

x − 3

8

)3

+⋯

(a) x = 5 (b) x = 3

41. For all z-values for which it converges, the function f

is defined by the series

f (z) = 5+5
(

z − 3

7

)

+5⋅
(

z − 3

7

)2

+5⋅
(

z − 3

7

)3

+⋯ .

(a) Find f (4).

(b) Find the interval of convergence of f (z).

42. For the x-values for which it converges, f is defined by

f (x) = 1 +
1

7
(x − 5) +

1

72
(x − 5)2 +

1

73
(x − 5)3 +⋯ .

(a) Evaluate f (3).

(b) The interval of convergence of f (x) is a < x < b.

What is the value of b?

43. For all t-values for which it converges, the function f

is defined by the series

f (t) =

∞
∑

n=0

(t − 7)n

5n
.

(a) Find f (4).

(b) Find the interval of convergence of f (t).

44. The series
∑

Cnx
n converges when x = −4 and di-

verges when x = 7. Decide whether each of the follow-

ing statements is true or false, or whether this cannot be

determined.

(a) The power series converges when x = 10.

(b) The power series converges when x = 3.

(c) The power series diverges when x = 1.

(d) The power series diverges when x = 6.

45. If
∑

Cn(x − 3)n converges at x = 7 and diverges at

x = 10, what can you say about the convergence at

x = 11? At x = 5? At x = 0?

46. The series
∑

Cnx
n converges at x = −5 and diverges

at x = 7. What can you say about its radius of conver-

gence?

47. The series
∑

Cn(x + 7)n converges at x = 0 and di-

verges at x = −17. What can you say about its radius

of convergence?

48. The power series C0 + C1x + C2x
2 + C3x

3 + ⋯ con-

verges to � for x = k. Find possible values for k,

C0, C1, C2, C3, where Ci is an integer. [Hint: � =

3 + 0.1 + 0.04 + 0.001 +⋯ .]

49. For constant p, find the radius of convergence of the bi-

nomial power series:11

1 + px +
p(p − 1)x2

2!
+

p(p − 1)(p − 2)x3

3!
+⋯ .

50. Show that if C0 + C1x + C2x
2 + C3x

3 + ⋯ converges

for |x| < R with R given by the ratio test, then so does

C1 + 2C2x + 3C3x
2 +⋯. Assume Ci ≠ 0 for all i.

51. For all x-values for which it converges, the function f

is defined by the series

f (x) =

∞
∑

n=0

xn

n!
.

(a) What is f (0)?

(b) What is the domain of f?

(c) Assuming that f ′ can be calculated by differenti-

ating the series term by term, find the series for

f ′(x). What do you notice?

(d) Guess what well-known function f is.

52. From Exercise 24 we know the following series con-

verges for all x. We define g(x) to be its sum:

g(x) =

∞
∑

n=1

(−1)n−1
x2n−1

(2n − 1)!
.

(a) Is g(x) odd, even, or neither? What is g(0)?

(b) Assuming that derivatives can be computed term

by term, show that g′′(x) = −g(x).

(c) Guess what well-known function g might be.

Check your guess using g(0) and g′(0).

11For an explanation of the name, see Section 10.2.
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Strengthen Your Understanding

In Problems 53–55, explain what is wrong with the state-

ment.

53. If limn→∞ |Cn+1∕Cn| = 0, then the radius of conver-

gence for
∑

Cnx
n is 0.

54. If
∑

Cn(x − 1)n converges at x = 3, then

lim
n→∞

|

|

|

|

|

Cn

Cn+1

|

|

|

|

|

= 2.

55. The series
∑

Cnx
n diverges at x = 2 and converges at

x = 3.

In Problems 56–59, give an example of:

56. A power series that is divergent at x = 0.

57. A power series that converges at x = 5 but nowhere

else.

58. A power series that converges at x = 10 and diverges

at x = 6.

59. A series
∑

Cnx
n with radius of convergence 1 and that

converges at x = 1 and x = −1.

Decide if the statements in Problems 60–72 are true or false.

Give an explanation for your answer.

60.

∞
∑

n=1

(x − n)n is a power series.

61. If the power series
∑

Cnx
n converges for x = 2, then

the power series converges for x = 1.

62. If the power series
∑

Cnx
n converges for x = 1, then

the power series converges for x = 2.

63. If the power series
∑

Cnx
n does not converge for x =

1, then the power series does not converge for x = 2.

64.
∑

Cn(x− 1)n and
∑

Cnx
n have the same radius of con-

vergence.

65. If
∑

Cnx
n and

∑

Bnx
n have the same radius of conver-

gence, then the coefficients, Cn and Bn, must be equal.

66. If a power series converges at one endpoint of its inter-

val of convergence, then it converges at the other.

67. A power series always converges at at least one point.

68. If the power series
∑

Cnx
n converges at x = 10, then it

converges at x = −9.

69. If the power series
∑

Cnx
n converges at x = 10, then it

converges at x = −10.

70. −5 < x ≤ 7 is a possible interval of convergence of a

power series.

71. −3 < x < 2 could be the interval of convergence of
∑

Cnx
n.

72. If −11 < x < 1 is the interval of convergence of
∑

Cn(x − a)n, then a = −5.

73. The power series
∑

Cnx
n diverges at x = 7 and con-

verges at x = −3. At x = −9, the series is

(a) Conditionally convergent

(b) Absolutely convergent

(c) Alternating

(d) Divergent

(e) Cannot be determined.

Online Resource: Review Problems and Projects
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10.1 TAYLOR POLYNOMIALS

In this section, we see how to approximate a function by polynomials.

Linear Approximations

We already know how to approximate a function using a degree-1 polynomial, namely the tangent

line approximation given in Section 3.9:

f (x) ≈ f (a) + f ′(a)(x − a).

The tangent line and the curve have the same slope at x = a. As Figure 10.1 suggests, the tangent

line approximation to the function is generally more accurate for values of x close to a.

a x
x

Tangent line

✻
❄

f (a) ✻
❄
f (a)

✲✛ x − a
✻
❄
f ′(a)(x − a)

True value f (x)

☛

Approximate value of f (x)

Figure 10.1: Tangent line approximation of f (x) for x near a

We first focus on a = 0. The tangent line approximation at x = 0 is referred to as the first Taylor

approximation at x = 0, or first Maclaurin polynomial, and written as follows:

Taylor Polynomial of Degree 1 Approximating f (x) for x Near 0

f (x) ≈ P1(x) = f (0) + f ′(0)x

Example 1 Find the Taylor polynomial of degree 1 for g(x) = cos x, with x in radians, for x near 0.

Solution The tangent line at x = 0 is just the horizontal line y = 1, as shown in Figure 10.2, so P1(x) = 1.

We have

g(x) = cos x ≈ 1, for x near 0.

If we take x = 0.05, then

g(0.05) = cos(0.05) = 0.998… ,

which is quite close to the approximation cosx ≈ 1. Similarly, if x = −0.1, then

g(−0.1) = cos(−0.1) = 0.995…

is close to the approximation cosx ≈ 1. However, if x = 0.4, then

g(0.4) = cos(0.4) = 0.921… ,
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so the approximation cosx ≈ 1 is less accurate. For x near 0, the graph suggests that the farther x is

from 0, the worse the approximation, cos x ≈ 1, is likely to be.

�−�

−1

x

y
y = 1

✛ cos x

Figure 10.2: Graph of cos x and its tangent line at x = 0

The previous example shows that the Taylor polynomial of degree 1 might actually have degree

less than 1.

Quadratic Approximations

To get a more accurate approximation, we use a quadratic function instead of a linear function.

Example 2 Find the quadratic approximation to g(x) = cos x for x near 0.

Solution To ensure that the quadratic, P2(x), is a good approximation to g(x) = cosx at x = 0, we require

that cosx and the quadratic have the same value, the same slope, and the same second derivative at

x = 0. That is, we require P2(0) = g(0), P ′
2
(0) = g′(0), and P ′′

2
(0) = g′′(0). We take the quadratic

polynomial

P2(x) = C0 + C1x + C2x
2

and determine C0, C1, and C2. Since

P2(x) = C0 + C1x + C2x
2 and g(x) = cos x

P ′
2
(x) = C1 + 2C2x g′(x) = − sin x

P ′′
2
(x) = 2C2 g′′(x) = − cos x,

we have

C0 = P2(0) = g(0) = cos 0 = 1 so C0 = 1

C1 = P ′
2
(0) = g′(0) = − sin 0 = 0 C1 = 0

2C2 = P ′′
2
(0) = g′′(0) = − cos 0 = −1, C2 = −

1

2
.

Consequently, the quadratic approximation is

cosx ≈ P2(x) = 1 + 0 ⋅ x −
1

2
x2 = 1 −

x2

2
, for x near 0.

Figure 10.3 suggests that the quadratic approximation cosx ≈ P2(x) is better than the linear

approximation cos x ≈ P1(x) for x near 0. Let’s compare the accuracy of the two approximations.

Recall that P1(x) = 1 for all x. At x = 0.4, we have cos(0.4) = 0.921… and P2(0.4) = 0.920, so the

quadratic approximation is a significant improvement over the linear approximation. The magnitude

of the error is about 0.001 instead of 0.08.
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−�

−
�

2

−
√

2
√

2

�

2

�

−1

1

x

✛ P2(x) = 1 −
x2

2

✲cos x

P1(x) = 1

Figure 10.3: Graph of cos x and its linear, P1(x), and quadratic, P2(x), approximations for x near 0

Generalizing the computations in Example 2, we define the second Taylor approximation at

x = 0, or second Maclaurin polynomial, as follows:

Taylor Polynomial of Degree 2 Approximating f (x) for x Near 0

f (x) ≈ P2(x) = f (0) + f ′(0)x +
f ′′(0)

2
x2

Higher-Degree Polynomials

Figure 10.3 shows that the quadratic approximation can still bend away from the original function

for large x. We attempt to fix this by approximatingf (x) near 0 using a polynomial of higher degree:

f (x) ≈ Pn(x) = C0 + C1x + C2x
2 +⋯ + Cn−1x

n−1 + Cnx
n.

To find the values of the constants: C0, C1, C2,… , Cn, we require that the function f (x) and each

of its first n derivatives agree with those of the polynomial Pn(x) at the point x = 0. In general,

the higher the degree of a Taylor polynomial, the larger the interval on which the function and the

polynomial remain close to each other.

To see how to find the constants, let’s take n = 3 as an example:

f (x) ≈ P3(x) = C0 + C1x + C2x
2 + C3x

3.

Substituting x = 0 gives

f (0) = P3(0) = C0.

Differentiating P3(x) yields

P ′
3
(x) = C1 + 2C2x + 3C3x

2,

so substituting x = 0 shows that

f ′(0) = P ′
3
(0) = C1.

Differentiating and substituting again, we get

P ′′
3
(x) = 2 ⋅ 1C2 + 3 ⋅ 2 ⋅ 1C3x,

which gives

f ′′(0) = P ′′
3
(0) = 2 ⋅ 1C2,

so that

C2 =
f ′′(0)

2 ⋅ 1
.

The third derivative, denoted by P ′′′
3

, is

P ′′′
3
(x) = 3 ⋅ 2 ⋅ 1C3,

so

f ′′′(0) = P ′′′
3
(0) = 3 ⋅ 2 ⋅ 1C3,
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and then

C3 =
f ′′′(0)

3 ⋅ 2 ⋅ 1
.

You can imagine a similar calculation starting with P4(x) and using the fourth derivative f (4),

which would give

C4 =
f (4)(0)

4 ⋅ 3 ⋅ 2 ⋅ 1
,

and so on. Using factorial notation,1 we write these expressions as

C3 =
f ′′′(0)

3!
, C4 =

f (4)(0)

4!
.

Writing f (n) for the nth derivative of f , we have, for any positive integer n,

Cn =
f (n)(0)

n!
.

So we define the nth Taylor approximation at x = 0, or nth Maclaurin polynomial, as follows:

Taylor Polynomial of Degree n Approximating f (x) for x Near 0

f (x) ≈ Pn(x)

= f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f (4)(0)

4!
x4 +⋯ +

f (n)(0)

n!
xn

We call Pn(x) the Taylor polynomial of degree n centered at x = 0 or the Taylor polynomial

about (or around) x = 0.

Example 3 Construct the Taylor polynomial of degree 7 approximating the function f (x) = sin x for x near 0.

Compare the value of the Taylor approximation with the true value of f at x = �∕3.

Solution We have

f (x) = sin x giving f (0) = 0

f ′(x) = cos x f ′(0) = 1

f ′′(x) = − sin x f ′′(0) = 0

f ′′′(x) = − cos x f ′′′(0) = −1

f (4)(x) = sin x f (4)(0) = 0

f (5)(x) = cos x f (5)(0) = 1

f (6)(x) = − sin x f (6)(0) = 0

f (7)(x) = − cos x f (7)(0) = −1.

Using these values, we see that the Taylor polynomial approximation of degree 7 is

sin x ≈ P7(x) = 0 + 1 ⋅ x +
0

2!
⋅ x2 −

1

3!
⋅ x3 +

0

4!
⋅ x4 +

1

5!
⋅ x5 +

0

6!
⋅ x6 −

1

7!
⋅ x7

= x −
x3

3!
+

x5

5!
−

x7

7!
, for x near 0.

1Recall that k! = k(k − 1)⋯ 2 ⋅ 1. In addition, 1! = 1, and 0! = 1.
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Notice that since f (8)(0) = 0, the seventh and eighth Taylor approximations to sin x are the same.

In Figure 10.4 we show the graphs of the sine function and the approximating polynomial of

degree 7 for x near 0. They are indistinguishable where x is close to 0. However, as we look at values

of x farther away from 0 in either direction, the two graphs move apart. To check the accuracy of this

approximation numerically, we see how well it approximates sin(�∕3) =
√

3∕2 = 0.8660254… .

−� �

3

�

−1

1

x

P7(x) sin x

P7(x)sinx

Figure 10.4: Graph of sin x and its seventh-degree Taylor polynomial, P7(x), for x near 0

When we substitute �∕3 = 1.0471976… into the polynomial approximation, we obtain P7(�∕3) =

0.8660213… , which is extremely accurate—to about four parts in a million.

Example 4 Graph the Taylor polynomial of degree 8 approximating g(x) = cos x for x near 0.

Solution We find the coefficients of the Taylor polynomial by the method of the preceding example, giving

cosx ≈ P8(x) = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
.

Figure 10.5 shows that P8(x) is close to the cosine function for a larger interval of x-values than the

quadratic approximation P2(x) = 1 − x2∕2 in Example 2 on page 551.

−� �
−1

1

x

cos xcos x

P8(x) P8(x)

P2(x) P2(x)

Figure 10.5: P8(x) approximates cos x better than P2(x) for x near 0

Example 5 Construct the Taylor polynomial of degree 10 about x = 0 for the function f (x) = ex. Check the

accuracy of this approximation at x = 1.

Solution We have f (0) = 1. Since the derivative of ex is equal to ex, all the higher-order derivatives are equal

to ex. Consequently, for any k = 1, 2,… , 10, f (k)(x) = ex and f (k)(0) = e0 = 1. Therefore, the

Taylor polynomial approximation of degree 10 is given by

ex ≈ P10(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+⋯ +

x10

10!
, for x near 0.

To check the accuracy of the approximation, we substitute x = 1 to get P10(1) = 2.718281801 and

compare with e = e1 = 2.718281828…. We see P10 yields the first seven decimal places for e.
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Figure 10.6 shows graphs of f (x) = ex and the Taylor polynomials of degree n = 0, 1, 2, 3, 4.

Notice that each successive approximation remains close to the exponential curve for a larger interval

of x-values. For any n, the accuracy decreases for largex because ex grows faster than any polynomial

as x → ∞.

−4 −2 2 4

−10

10

20

x

P4

P2

P0

P1

P3

ex P4 P3 P2

P1

P0

ex

Figure 10.6: For x near 0, the value of ex is more closely approximated by higher-degree Taylor polynomials

Example 6 Construct the Taylor polynomial of degree n approximating f (x) =
1

1 − x
for x near 0.

Solution Differentiating gives f (0) = 1, f ′(0) = 1, f ′′(0) = 2, f ′′′(0) = 3!, f (4)(0) = 4!, and so on. This

means
1

1 − x
≈ Pn(x) = 1 + x + x2 + x3 + x4 +⋯ + xn, for x near 0.

Let us compare the Taylor polynomial with the formula obtained from the sum of a finite geometric

series on page 516:

1 − xn+1

1 − x
= 1 + x + x2 + x3 + x4 +⋯ + xn.

If x is close to 0 and xn+1 is small enough to neglect, the formula for the sum of a finite geometric

series gives us the Taylor approximation of degree n:

1

1 − x
≈ 1 + x + x2 + x3 + x4 +⋯ + xn.

Taylor Polynomials Around x = a

Suppose we want to approximate f (x) = ln x by a Taylor polynomial. This function has no Taylor

polynomial about x = 0 because the function is not defined for x ≤ 0. However, it turns out that we

can construct a polynomial centered about some other point, x = a.

First, let’s look at the equation of the tangent line at x = a:

y = f (a) + f ′(a)(x − a).

This gives the first Taylor approximation

f (x) ≈ f (a) + f ′(a)(x − a) for x near a.

The f ′(a)(x− a) term is a correction that approximates the change in f as x moves away from a.
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Similarly, the Taylor polynomial Pn(x) centered at x = a is set up as f (a) plus correction terms

that are zero for x = a. This is achieved by writing the polynomial in powers of (x − a) instead of

powers of x:

f (x) ≈ Pn(x) = C0 + C1(x − a) + C2(x − a)2 +⋯ + Cn(x − a)n.

If we require n derivatives of the approximating polynomial Pn(x) and the original function f (x) to

agree at x = a, we get the following result for the nth Taylor approximation at x = a:

Taylor Polynomial of Degree n Approximating f (x) for x Near a

f (x) ≈ Pn(x)

= f (a) + f ′(a)(x− a) +
f ′′(a)

2!
(x − a)2 +⋯ +

f (n)(a)

n!
(x − a)n

We call Pn(x) the Taylor polynomial of degreen centered at x = a or the Taylor polynomial

about x = a.

The formulas for these coefficients are derived in the same way as we did for a = 0. (See

Problem 46, page 558.)2

Example 7 Construct the Taylor polynomial of degree 4 approximating the function f (x) = ln x for x near 1.

Solution We have

f (x) = ln x so f (1) = ln(1) = 0

f ′(x) = 1∕x f ′(1) = 1

f ′′(x) = −1∕x2 f ′′(1) = −1

f ′′′(x) = 2∕x3 f ′′′(1) = 2

f (4)(x) = −6∕x4, f (4)(1) = −6.

The Taylor polynomial is therefore

ln x ≈ P4(x) = 0 + (x − 1) −
(x − 1)2

2!
+ 2

(x − 1)3

3!
− 6

(x − 1)4

4!

= (x − 1) −
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
, for x near 1.

Graphs of lnx and several of its Taylor polynomials are shown in Figure 10.7. Notice that P4(x)

stays reasonably close to lnx for x near 1, but bends away as x gets farther from 1. Also, note that

the Taylor polynomials are defined for x ≤ 0, but lnx is not.

1 2 3

1

x

P1(x)P3(x)

ln x

P2(x)

P4(x)
P1(x)

P2(x)

ln x

✛ P4(x)

P3(x)

Figure 10.7: Taylor polynomials approximate lnx closely for x near 1, but not necessarily farther away

2A Taylor polynomial is also called a Maclaurin polynomial if a = 0.
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The examples in this section suggest that the following results are true for common functions:

• Taylor polynomials centered at x = a give good approximations to f (x) for x near a. Farther

away, they may or may not be good.

• Typically, a Taylor polynomial of higher degree fits the function closely over a larger interval.

Summary for Section 10.1

• Taylor polynomials generalize the tangent line approximation.

• The Taylor polynomial Pn(x) of degree n approximating f (x) near x = a is determined by the

values for f (x) and its first n derivatives at x = a.

◦ f (x) ≈ Pn(x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +⋯ +

f (n)(a)

n!
(x − a)n.

◦ Pn(a) = f (a) and P
(i)
n (a) = f (i)(a) for 1 ≤ i ≤ n.

• Pn(x) may not be a good approximation of f (x) for x far from a.

• Taylor polynomials for approximating near x = 0 are sometimes called Maclaurin polynomi-

als.

Exercises and Problems for Section 10.1

EXERCISES

For Exercises 1–10, find the Taylor polynomials of degree

n approximating the functions for x near 0. (Assume p is a

constant.)

1.
1

1 − x
, n = 3, 5, 7 2.

1

1 + x
, n = 4, 6, 8

3.
√

1 + x, n = 2, 3, 4 4.
3
√

1 − x, n = 2, 3, 4

5. cos x, n = 2, 4, 6 6. ln(1 + x), n = 5, 7, 9

7. arctan x, n = 3, 4 8. tan x, n = 3, 4

9.
1

√

1 + x
, n = 2, 3, 4 10. (1 + x)p, n = 2, 3, 4

For Exercises 11–16, find the Taylor polynomial of degree n

for x near the given point a.

11.
√

1 − x, a = 0, n = 3

12. ex, a = 1, n = 4

13.
1

1 + x
, a = 2, n = 4

14. cos x, a = �∕2, n = 4

15. sinx, a = −�∕4, n = 3

16. ln(x2), a = 1, n = 4

PROBLEMS

17. The function f (x) is approximated near x = 0 by the

third-degree Taylor polynomial

P3(x) = 2 − x − x2∕3 + 2x3.

Give the value of

(a) f (0) (b) f ′(0)

(c) f ′′(0) (d) f ′′′(0)

In Problems 18–19, use Table 10.1.

Table 10.1

x 1 2 3 4 5

f ′′(x) −3 12 59 156 321

f ′′′(x) 5 30 69 128 205

18. Let P4(x) be the fourth-degree Taylor polynomial of

f (x) about x = 2. Find C3 where

P4(x) = C0+C1(x−2)+C2(x − 2)2+C3(x − 2)3+C4(x − 2)4.

19. LetP3(x) be the third-degree Taylor polynomial of f (x)

about x = 5. Find C2 where

P3(x) = C0 + C1(x − 5) + C2(x − 5)2 + C3(x − 5)3

.

20. Find the second-degree Taylor polynomial for f (x) =

4x2 − 7x + 2 about x = 0. What do you notice?

21. Find the third-degree Taylor polynomial for f (x) =

x3 + 7x2 − 5x + 1 about x = 0. What do you notice?

22. (a) Based on your observations in Problems 20–21,

make a conjecture about Taylor approximations in

the case when f is itself a polynomial.

(b) Show that your conjecture is true.

23. The Taylor polynomial of degree 7 of f (x) is given by

P7(x) = 1 −
x

3
+

5x2

7
+ 8x3 −

x5

11
+ 8x7.

Find the Taylor polynomial of degree 3 of f (x).
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24. Find the value of f (5)(1) if f (x) is approximated near

x = 1 by the Taylor polynomial

p(x) =

10
∑

n=0

(x − 1)n

n!
.

In Problems 25–26, find a simplified formula for P5(x), the

fifth-degree Taylor polynomial approximating f near x = 0.

25. Use the values in the table.

f (0) f ′(0) f ′′(0) f ′′′(0) f (4)(0) f (5)(0)

−3 5 −2 0 −1 4

26. Let f (0) = −1 and, for n > 0, f (n)(0) = −(−2)n.

27. (a) From a graph of f (x) = ln(2x + 4), decide if the

tangent line approximation to f at x = 0 has a pos-

itive or negative slope.

(b) Find the tangent line approximation.

(c) Find the second and third Taylor approximations to

f about x = 0.

For Problems 28–31, suppose P2(x) = a + bx + cx2 is the

second-degree Taylor polynomial for the function f about

x = 0. What can you say about the signs of a, b, and c if f

has the graph given below?

28.

x

f (x)
29.

x

f (x)

30.

x

f (x) 31.

x

f (x)

In Problems 32–35, use the third-degree Taylor polynomial

P3(x) = 4+ 2(x− 1) − 2(x− 1)2 + (x−1)3∕2 of f (x) about

x = 1 to find the given value, or explain why you can’t.

32. f (1) 33. f ′′′(1) 34. f ′′(0) 35. f (4)(1)

In Problems 36–38, use a Taylor polynomial with the deriva-

tives given to make the best possible estimate of the value.

36. f (1.1), given that f (1) = 3, f ′(1) = 2, f ′′(1) = −4.

37. g(1.8), given that g(2) = −3, g′(2) = −2, g′′(2) = 0,

g′′′(2) = 12.

38. ℎ′(0.1), given that ℎ(0) = 6, ℎ′(0) = 2, ℎ′′(0) = −4.

For Problems 39–40, use Table 10.2 and a fourth-degree

Taylor polynomial for g near x = 0 to estimate the value.

Table 10.2

g(0) g′(0) g′′(0) g′′′(0) g(4)(0)

6 0 −4 0 6

39. g(2)

40. w(−0.5) where w(x) = x ⋅ g
(

x2
)

41. Use the Taylor approximation for x near 0,

sin x ≈ x −
x3

3!
,

to explain why lim
x→0

sin x

x
= 1.

42. Use the Taylor approximation for x near 0,

cos x ≈ 1 −
x2

2!
+

x4

4!
,

to explain why lim
x→0

1 − cos x

x2
=

1

2
.

43. Use a fourth-degree Taylor approximation for eℎ, for ℎ

near 0, to evaluate the following limits. Would your an-

swer be different if you used a Taylor polynomial of

higher degree?

(a) lim
ℎ→0

eℎ − 1 − ℎ

ℎ2

(b) lim
ℎ→0

eℎ − 1 − ℎ −
ℎ2

2

ℎ3

44. If f (2) = g(2) = ℎ(2) = 0, and f ′(2) = ℎ′(2) = 0,

g′(2) = 22, and f ′′(2) = 3, g′′(2) = 5, ℎ′′(2) = 7, cal-

culate the following limits. Explain your reasoning.

(a) lim
x→2

f (x)

ℎ(x)
(b) lim

x→2

f (x)

g(x)

45. One of the two sets of functions, f1, f2, f3, or g1, g2,

g3, is graphed in Figure 10.8; the other set is graphed

in Figure 10.9. Points A and B each have x = 0. Taylor

polynomials of degree 2 approximating these functions

near x = 0 are as follows:

f1(x) ≈ 2 + x + 2x2 g1(x) ≈ 1 + x + 2x2

f2(x) ≈ 2 + x − x2 g2(x) ≈ 1 + x + x2

f3(x) ≈ 2 + x + x2 g3(x) ≈ 1 − x + x2.

(a) Which group of functions, the fs or the gs, is rep-

resented by each figure?

(b) What are the coordinates of the points A and B?

(c) Match each function with the graphs (I)–(III) in the

appropriate figure.

A
I

IIIII

Figure 10.8

B

II

I

III

Figure 10.9

46. Derive the formulas given in the box on page 556 for

the coefficients of the Taylor polynomial approximat-

ing a function f for x near a.
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47. (a) Find and multiply the Taylor polynomials of de-

gree 1 near x = 0 for the two functions f (x) =

1∕(1 − x) and g(x) = 1∕(1 − 2x).

(b) Find the Taylor polynomial of degree 2 near x = 0

for the function ℎ(x) = f (x)g(x).

(c) Is the product of the Taylor polynomials for f (x)

and g(x) equal to the Taylor polynomial for the

function ℎ(x)?

48. (a) Find and multiply the Taylor polynomials of de-

gree 1 near x = 0 for the two functions f (x) and

g(x).

(b) Find the Taylor polynomial of degree 2 near x = 0

for the function ℎ(x) = f (x)g(x).

(c) Show that the product of the Taylor polynomi-

als for f (x) and g(x) and the Taylor polynomial

for the function ℎ(x) are the same if f ′′(0)g(0) +

f (0)g′′(0) = 0.

49. (a) Find the Taylor polynomial approximation of de-

gree 4 about x = 0 for the function f (x) = ex
2
.

(b) Compare this result to the Taylor polynomial ap-

proximation of degree 2 for the function f (x) = ex

about x = 0. What do you notice?

(c) Use your observation in part (b) to write out the

Taylor polynomial approximation of degree 20 for

the function in part (a).

(d) What is the Taylor polynomial approximation of

degree 5 for the function f (x) = e−2x?

50. The integral ∫
1

0
(sin t∕t) dt is difficult to approximate

using, for example, left Riemann sums or the trape-

zoid rule because the integrand (sin t)∕t is not defined

at t = 0. However, this integral converges; its value is

0.94608… . Estimate the integral using Taylor polyno-

mials for sin t about t = 0 of

(a) Degree 3 (b) Degree 5

51. Consider the equations sin x = 0.2 and x −
x3

3!
= 0.2.

(a) How many solutions does each equation have?

(b) Which of the solutions of the two equations are ap-

proximately equal? Explain.

52. When we model the motion of a pendulum, we some-

times replace the differential equation

d2�

dt2
= −

g

l
sin � by

d2�

dt2
= −

g

l
�,

where � is the angle between the pendulum and the ver-

tical. Explain why, and under what circumstances, it is

reasonable to make this replacement.

53. (a) Using a graph, explain why the following equation

has a solution at x = 0 and another just to the right

of x = 0:

cos x = 1 − 0.1x.

(b) Replace cos x by its second-degree Taylor polyno-

mial near 0 and solve the equation. Your answers

are approximations to the solutions to the original

equation at or near 0.

54. Let Pn(x) be the Taylor polynomial of degree n approx-

imating f (x) near x = 0 and Qn(x) the Taylor polyno-

mial of degree n approximating f ′(x) near x = 0. Show

that Qn−1(x) = P ′
n
(x).

55. Let Pn(x) be the Taylor polynomial of degree n approx-

imating f (x) near x = 0 and Qn(x) the Taylor polyno-

mial of degree n approximating its antiderivative F (x)

with F (0) = 1. Show that Qn+1(x) = 1 + ∫
x

0
Pn(t) dt.

Strengthen Your Understanding

In Problems 56–58, explain what is wrong with the state-

ment.

56. If f (x) = ln(2+x), then the second-degree Taylor poly-

nomial approximating f (x) near x = 0 has a negative

constant term.

57. Let f (x) =
1

1 − x
. The coefficient of the x term of the

Taylor polynomial of degree 3 approximating f (x) near

x = 0 is −1.

58. If the Taylor polynomial of degree 3 approximating f

about x = 0 is

P3(x) =
x

2
+

x2

3
+

x3

4
,

then the Taylor polynomial of degree 3 approximating

f about x = 1 is

P3(x) =
(x − 1)

2
+

(x − 1)2

3
+

(x − 1)3

4
.

In Problems 59–62, give an example of:

59. A function f (x) for which every Taylor polynomial ap-

proximation near x = 0 involves only odd powers of

x.

60. A third-degree Taylor polynomial near x = 1 approxi-

mating a function f (x) with f ′(1) = 3.

61. Two different functions having the same Taylor polyno-

mial of degree 1 about x = 0.

62. A function whose Taylor polynomial of degree 1 about

x = 0 is closer to the values of the function for some

values of x than its Taylor polynomial of degree 2 about

that point.

Decide if the statements in Problems 63–70 are true or false.

Give an explanation for your answer.

63. If f (x) and g(x) have the same Taylor polynomial of

degree 2 near x = 0, then f (x) = g(x).

64. Using sin � ≈ �−�3∕3! with � = 1◦, we have sin(1◦) ≈

1 − 13∕6 = 5∕6.
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65. The Taylor polynomial of degree 2 for ex near x = 5 is

1 + (x − 5) + (x − 5)2∕2.

66. If the Taylor polynomial of degree 2 for f (x) near x = 0

isP2(x) = 1+x−x2, then f (x) is concave up near x = 0.

67. The quadratic approximation to f (x) for x near 0 is bet-

ter than the linear approximation for all values of x.

68. A Taylor polynomial for f near x = a touches the graph

of f only at x = a.

69. The linear approximation to f (x) near x = −1 shows

that if f (−1) = g(−1) and f ′(−1) < g′(−1), then

f (x) < g(x) for all x sufficiently close to −1 (but not

equal to −1).

70. The quadratic approximation to f (x) near x = −1

shows that if f (−1) = g(−1), f ′(−1) = g′(−1), and

f ′′(−1) < g′′(−1), then f (x) < g(x) for all x suffi-

ciently close to −1 (but not equal to −1).

10.2 TAYLOR SERIES

In the previous section we saw how to approximate a function near a point by Taylor polynomials.

Now we define a Taylor series, which is a power series that can be thought of as a Taylor polynomial

that goes on forever.

Taylor Series for cosx, sinx, ex

We have the following Taylor polynomials centered at x = 0 for cos x:

cosx ≈ P0(x) = 1

cosx ≈ P2(x) = 1 −
x2

2!

cosx ≈ P4(x) = 1 −
x2

2!
+

x4

4!

cosx ≈ P6(x) = 1 −
x2

2!
+

x4

4!
−

x6

6!

cosx ≈ P8(x) = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
.

Here we have a sequence of polynomials, P0(x), P2(x), P4(x), P6(x), P8(x), ..., each of which is a

better approximation to cosx than the last, for x near 0. When we go to a higher-degree polynomial

(say from P6 to P8), we add more terms (x8∕8!, for example), but the terms of lower degree don’t

change. Thus, each polynomial includes the information from all the previous ones. We represent

the whole sequence of Taylor polynomials by writing the Taylor series for cosx:

1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
−⋯ .

Notice that the partial sums of this series are the Taylor polynomials, Pn(x).

We define the Taylor series for sin x and ex similarly. It turns out that, for these functions, the

Taylor series converges to the function for all x, so we can write the following:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+⋯

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
−⋯

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
−⋯

These series are also called Maclaurin series or Taylor expansions of the functions sin x, cos x, and

ex about x = 0. Notice that the series for ex contains both odd and even powers, while sin x has only

odd powers and cos x has only even powers.3

3A constant term is an even power.
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The general term of a Taylor series is a formula that gives any term in the series. For example,

xn∕n! is the general term in the Taylor expansion for ex, since substituting n = 0, 1, 2,… gives each

of the terms in the series for ex. Similarly, (−1)kx2k∕(2k)! is the general term in the expansion for

cos x because substituting k = 0, 1, 2,… gives each of its terms. We call n or k the index.

Taylor Series in General

Any function f , all of whose derivatives exist at 0, has a Taylor series. However, the Taylor series

for f does not necessarily converge to f (x) for all values of x. For the values of x for which the

series does converge to f (x), we have the following formula:

Taylor Series for f (x) About x = 0

f (x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +⋯ +

f (n)(0)

n!
xn +⋯

In addition, just as we have Taylor polynomials centered at points other than 0, we can also have

a Taylor series centered at x = a (provided all the derivatives of f exist at x = a). For the values of

x for which the series converges to f (x), we have the following formula:

Taylor Series for f (x) About x = a

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3 +⋯ +

f (n)(a)

n!
(x − a)n +⋯

The Taylor series is a power series whose partial sums are the Taylor polynomials. As we saw in

Section 9.5, power series converge on an interval centered at x = a.

For a given function f and a given x, even if the Taylor series converges, it might not converge

to f (x). However, the Taylor series for most common functions, including ex, cosx, and sin x, do

converge to the original function for all x. See Section 10.4.

The Binomial Series Expansion

We now find the Taylor series about x = 0 for the function f (x) = (1 + x)p, with p a constant, but

not necessarily a positive integer. Taking derivatives:

f (x) = (1 + x)p so f (0) = 1

f ′(x) = p(1 + x)p−1 f ′(0) = p

f ′′(x) = p(p − 1)(1 + x)p−2 f ′′(0) = p(p − 1)

f ′′′(x) = p(p − 1)(p − 2)(1 + x)p−3, f ′′′(0) = p(p − 1)(p− 2).

Thus, the third-degree Taylor polynomial for x near 0 is

(1 + x)p ≈ P3(x) = 1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)

3!
x3.

Graphing P3(x), P4(x),… for various specific values of p suggests that the Taylor polynomials con-

verge to f (x) for −1 < x < 1 for all p, and in fact this is correct. (See Problems 40–41, page 565.)

The Taylor series for f (x) = (1 + x)p about x = 0 is as follows:

The Binomial Series

(1 + x)p = 1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)

3!
x3 +⋯ for −1 < x < 1.
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In fact, when p is a positive integer, the binomial series gives the same result as multiplying

(1 + x)p out. (Newton discovered that the binomial series can be used for non-integer exponents.)

Example 1 Find the Taylor series about x = 0 for
1

1 + x
. Explain why the result is a geometric series.

Solution Since
1

1 + x
= (1 + x)−1, use the binomial series with p = −1. Then we have

1

1 + x
= (1 + x)−1 = 1 + (−1)x +

(−1)(−2)

2!
x2 +

(−1)(−2)(−3)

3!
x3 +⋯

= 1 − x + x2 − x3 +⋯ for − 1 < x < 1.

This binomial series is also geometric since each term is −x times the previous term. The common

ratio is −x.

Example 2 Find the Taylor series about x = 0 for
√

1 + x.

Solution Since
√

1 + x = (1 + x)1∕2, we use the binomial series with p = 1∕2. Then

f (x) =
√

1 + x = 1 +
1

2
x +

(
1

2
)(−

1

2
)x2

2!
+

(
1

2
)(−

1

2
)(−

3

2
)x3

3!
+⋯

= 1 +
1

2
x +

(−
1

4
)x2

2!
+

(
3

8
)x3

3!
+⋯

= 1 +
x

2
−

x2

8
+

x3

16
+⋯ for − 1 < x < 1.

Convergence of Taylor Series

Let us look again at the Taylor polynomial for lnx about x = 1 that we derived in Example 7 on

page 556. A similar calculation gives the Taylor series

lnx = (x − 1) −
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+⋯ + (−1)n−1

(x − 1)n

n
+⋯ .

Using the ratio test, we get convergence on 0 < x < 2. Substituting x = 0 gives a divergent series

(the negative harmonic series); substituting x = 2 gives a convergent series by the alternating series

test. Thus, this power series has interval of convergence 0 < x ≤ 2.

However, although we know that the series converges in this interval, we do not yet know that

its sum is lnx. Figure 10.10 shows the polynomials fit the curve well for 0 < x < 2, suggesting that

the Taylor series does converge to lnx for 0 < x ≤ 2, as turns out to be the case.

However, when x > 2, the polynomials move away from the curve and the approximations get

worse as the degree of the polynomial increases. For x ≤ 0, the function lnx is not defined. Thus,

the Taylor polynomials are effective only as approximations to lnx for values of x between 0 and

2; outside that interval, they should not be used. Inside the interval, but near the ends, 0 or 2, the

polynomials converge very slowly. This means we might have to take a polynomial of very high

degree to get an accurate value for ln x.
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1 2

✲✛ Convergence to ln x

3 4
x

✲P5(x)

ln x P8(x) P6(x)

✲P6(x)
✲P7(x)
✲P8(x)

P7(x)
P5(x)

lnx

Figure 10.10: Taylor polynomials P5(x), P6(x), P7(x), P8(x),… converge to lnx for 0 < x ≤ 2 and

diverge outside that interval

Proving that the Taylor series converges to lnx between 0 and 2, as Figure 10.10 suggests,

requires the error term introduced in Section 10.4.

Example 3 Find the Taylor series for ln(1 + x) about x = 0, and investigate its convergence to ln(1 + x).

Solution Taking derivatives of ln(1 + x) and substituting x = 0 leads, assuming convergence, to the Taylor

series

ln(1 + x) = x −
x2

2
+

x3

3
−

x4

4
+⋯ .

Notice that this is the same series that we get by substituting (1 + x) for x in the series for lnx:

ln x = (x − 1) −
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+⋯ for 0 < x ≤ 2.

Since the series for lnx about x = 1 converges to lnx for x between 0 and 2, the Taylor series for

ln(1 + x) about x = 0 converges to ln(1 + x) for x between −1 and 1. See Figure 10.11. Notice that

the series could not possibly converge to ln(1 + x) for x ≤ −1 since ln(1 + x) is not defined there.

−1 1

✲✛ Convergence to
ln(1 + x)

x

ln(1 + x)

P5(x)P7(x)P9(x)

P8(x) P6(x)

✲P5(x)

✛ ln(1 + x)

✛ P9(x)
✲P8(x)

✲P7(x)

✲P6(x)

Figure 10.11: Convergence of the Taylor series for ln(1 + x)

The following theorem tells us about the relationship between power series and Taylor series;

the justification involves calculations similar to those in Problem 62.
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Theorem 10.1: A Power Series Is its Own Taylor Series

If a power series about x = a converges to f (x) for |x − a| < R, then the power series is the

Taylor series for f (x) about x = a.

Summary for Section 10.2

• A Taylor series is a power series that can be thought of as a Taylor polynomial that goes on

forever.

• Taylor series for f (x) about x = a:

f (x) = f (a) + f ′(a)(x− a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3 +⋯ +

f (n)(a)

n!
(x − a)n +⋯

• Three very important convergent Taylor series to memorize:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+⋯

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
−⋯

cosx = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
−⋯

• A Taylor series for f (x) may or may not converge for all values of x, and when it does converge,

it may not converge to f (x). However, the series for ex, cos x, and sinx do converge to the

original function for all x.

• The binomial series:

(1 + x)p = 1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)

3!
x3 +⋯ for −1 < x < 1.

Exercises and Problems for Section 10.2

EXERCISES

For Exercises 1–9, find the first four nonzero terms of the

Taylor series for the function about 0.

1. (1 + x)3∕2 2.
4
√

x + 1

3. sin(−x) 4. ln(1 − x)

5.
1

1 − x
6.

1
√

1 + x

7. 3
√

1 − y 8. tan(t + �∕4)

9. ln(5 + 2x)

For Exercises 10–17, find the first four terms of the Taylor

series for the function about the point a.

10. sin x, a = �∕4 11. cos �, a = �∕4

12. cos t, a = �∕6 13. sin �, a = −�∕4

14. tan x, a = �∕4 15. 1∕x, a = 1

16. 1∕x, a = 2 17. 1∕x, a = −1

In Exercises 18–25, find an expression for the general term

of the series and give the range of values for the index (n or

k, for example).

18.
1

1 − x
= 1 + x + x2 + x3 + x4 +⋯

19.
1

1 + x
= 1 − x + x2 − x3 + x4 −⋯

20. ln(1 − x) = −x −
x2

2
−

x3

3
−

x4

4
−⋯

21. ln(1 + x) = x −
x2

2
+

x3

3
−

x4

4
+

x5

5
−⋯

22. sinx = x −
x3

3!
+

x5

5!
−

x7

7!
+⋯

23. arctan x = x −
x3

3
+

x5

5
−

x7

7
+⋯

24. ex
2
= 1 + x2 +

x4

2!
+

x6

3!
+

x8

4!
+⋯

25. x2 cos x2 = x2 −
x6

2!
+

x10

4!
−

x14

6!
+⋯
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PROBLEMS

26. Compute the binomial series expansion for (1 + x)3.

What do you notice?

27. The function f is given by its Taylor series

f (x) =

∞
∑

n=1

(−1)n−1
2nxn

n!
.

(a) Find f (0).

(b) At x = 0, is f increasing or decreasing?

(c) At x = 0, is the graph of f concave up or concave

down?

28. (a) Find the tangent line approximation at x = 0 to the

function g whose Taylor series is

g(x) = ln 5 −

100
∑

n=1

2n ⋅ (n − 1)!

5n
xn.

(b) What are the slope and y-intercept of this line?

(c) Is the tangent line above or below the graph of g

near x = 0?

29. Using the Taylor series for f (x) = ex around 0, com-

pute the following limit:

lim
x→0

ex − 1

x
.

30. Use the fact that the Taylor series of g(x) = sin(x2) is

x2 −
x6

3!
+

x10

5!
−

x14

7!
+⋯

to find g′′(0), g′′′(0), and g(10)(0). (There is an easy way

and a hard way to do this!)

31. The Taylor series of f (x) = x2ex
2

about x = 0 is

x2 + x4 +
x6

2!
+

x8

3!
+

x10

4!
+⋯ .

Find
d

dx

(

x2ex
2
) |

|

|

|

|x=0

and
d6

dx6

(

x2ex
2
) |

|

|

|

|x=0

.

32. Find p(0), p′(0), p′′(0), and p′′′(0) where p(x) is given

by its Taylor series

p(x) =

∞
∑

n=0

(−1)n

2n + 1
x2n+1.

33. Find p(0), p′(0), p′′(0), and p′′′(0) where, for |x| < 1,

p(x) is given by its Taylor series

p(x) =

∞
∑

n=0

(−1)n+12n

1 + 2n+1
xn+1.

34. One of the two sets of functions, f1, f2, f3, or g1, g2,

g3 is graphed in Figure 10.12; the other set is graphed

in Figure 10.13. Taylor series for the functions about a

point corresponding to either A or B are as follows:

f1(x) = 3 + (x − 1) − (x − 1)2 +⋯

f2(x) = 3 − (x − 1) + (x − 1)2 +⋯

f3(x) = 3 − 2(x − 1) + (x − 1)2 +⋯

g1(x) = 5 − (x − 4) − (x − 4)2 +⋯

g2(x) = 5 − (x − 4) + (x − 4)2 +⋯

g3(x) = 5 + (x − 4) + (x − 4)2 +⋯ .

(a) Which group of functions is represented in each

figure?

(b) What are the coordinates of the points A and B?

(c) Match each function with the graphs (I)–(III) in the

appropriate figure.

A

I

II

III

Figure 10.12

B

III

II

I

Figure 10.13

For Problems 35–38, what must be true of of f (n)(0) to en-

sure that the Taylor series of f (x) about x = 0 has the given

property?

35. All coefficients are positive.

36. Only has terms with even exponents.

37. Only has terms with odd exponents.

38. Coefficients for even exponent terms are negative, and

coefficients for odd exponent terms are positive.

39. By graphing the function f (x) =
1

√

1 + x
and several

of its Taylor polynomials, estimate the interval of con-

vergence of the series you found in Exercise 6.

40. By graphing the function f (x) =
√

1 + x and several

of its Taylor polynomials, estimate where the series we

found in Example 2 converges to
√

1 + x.

41. (a) By graphing the function f (x) =
1

1 − x
and sev-

eral of its Taylor polynomials, estimate where the

series you found in Exercise 5 converges to 1∕(1−

x) .

(b) Compute the radius of convergence analytically.

42. Find the radius of convergence of the Taylor series

around x = 0 for ex.
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43. Find the radius of convergence of the Taylor series

around x = 0 for ln(1 − x).

44. (a) Write the general term of the binomial series for

(1 + x)p about x = 0.

(b) Find the radius of convergence of this series.

In Problems 45–53, identify the series as a Taylor series eval-

uated at a particular value of x and find its sum.

45. 1 +
2

1!
+

4

2!
+

8

3!
+⋯ +

2n

n!
+⋯

46. 1 −
1

3!
+

1

5!
−

1

7!
+⋯ +

(−1)n

(2n + 1)!
+⋯

47. 1 +
1

4
+
(

1

4

)2

+
(

1

4

)3

+⋯ +
(

1

4

)n

+⋯

48. 1 −
100

2!
+

10000

4!
+⋯ +

(−1)n ⋅ 102n

(2n)!
+⋯

49.
1

2
−

(
1

2
)2

2
+

(
1

2
)3

3
−

(
1

2
)4

4
+⋯ +

(−1)n ⋅ (
1

2
)n+1

(n + 1)
+⋯

50. 1 − 0.1 + 0.12 − 0.13 +⋯

51. 1 + 3 +
9

2!
+

27

3!
+

81

4!
+⋯

52. 1 −
1

2!
+

1

4!
−

1

6!
+⋯

53. 1 − 0.1 +
0.01

2!
−

0.001

3!
+⋯

54. Let

f (x) = 1−2 cos x+
(−2)(−3)

2!
(cos x)2+

(−2)(−3)(−4)

3!
(cos x)3+⋯ .

(a) By letting z = cos x, rewrite f (x) as a rational

function in z by recognizing it as a binomial series

in z.

(b) Use part (a) to find the exact value of f (�∕3).

In Problems 55–56 solve exactly for the variable.

55. 1 + x + x2 + x3 +⋯ = 5

56. x −
1

2
x2 +

1

3
x3 +⋯ = 0.2

In Problems 57–59, find the described value from the series

C(x) =

∞
∑

n=0

(−1)nx4n+1

(2n)!(4n + 1)
.

57. The integer a where xk∕a is the term of the series cor-

responding to n = 2.

58. The integer k where xk∕a is the term of the series cor-

responding to n = 2.

59. C ′(0)

60. By recognizing the limit as a Taylor series, find the

exact value of lim
n→∞

sn, given that s0 = 1 and sn =

sn−1 +
1

n!
⋅ 2n for n ≥ 0.

61. Let i =
√

−1. We define ei� by substituting i� in the

Taylor series for ex. Use this definition4 to explain Eu-

ler’s formula

ei� = cos � + i sin �.

62. The power series
∑

Cnx
n converges to the function

f (x) for |x| < R. Assuming that you can differenti-

ate term by term, show that f (n)(0) = n!Cn for all n.

Thus the coefficients Cn of the power series are the co-

efficients f (n)(0)∕n! of the Taylor series for f (x).

Strengthen Your Understanding

In Problems 63–64, explain what is wrong with the state-

ment.

63. Since
1

1 − x
= 1 + x + x2 + x3 +⋯ ,

we conclude that

1

1 − 2
= 1 + 2 + 22 + 23 +⋯ .

64. The radius of convergence is 2 for the following Taylor

series: 1 + (x − 3) + (x − 3)2 + (x − 3)3 +⋯.

In Problems 65–66, give an example of:

65. A function with a Taylor series whose third-degree term

is zero.

66. A Taylor series that is convergent at x = −1.

Decide if the statements in Problems 67–73 are true or false.

Assume that the Taylor series for a function converges to that

function. Give an explanation for your answer.

67. The Taylor series for sin x about x = � is

(x − �) −
(x − �)3

3!
+

(x − �)5

5!
−⋯ .

68. If f is an even function, then the Taylor series for f

near x = 0 has only terms with even exponents.

69. If f has the following Taylor series about x = 0, then

f (7)(0) = −8:

f (x) = 1 − 2x +
3

2!
x2 −

4

3!
x3 +⋯ .

(Assume the pattern of the coefficients continues.)

4Complex numbers are discussed in Appendix B.
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70. The Taylor series for f converges everywhere f is de-

fined.

71. The graphs of ex and its Taylor polynomial P10(x) get

further and further apart as x → ∞.

72. If the Taylor series for f (x) around x = 0 has a finite

number of terms and an infinite radius of convergence,

then f (x) is a polynomial.

73. If f (x) is a polynomial, then its Taylor series has an

infinite radius of convergence.

10.3 FINDING AND USING TAYLOR SERIES

Finding a Taylor series for a function means finding the coefficients. Assuming the function has all its

derivatives defined, finding the coefficients can always be done, in theory at least, by differentiation.

That is how we derived the four most important Taylor series, those for the functions ex, sin x, cos x,

and (1 + x)p.

For many functions, however, computing Taylor series coefficients by differentiation can be a

very laborious business. We now introduce easier ways of finding Taylor series, if the series we want

is closely related to a series that we already know.

New Series by Substitution

Suppose we want to find the Taylor series for e−x
2

about x = 0. We could find the coefficients by

differentiation. Differentiating e−x
2

by the chain rule gives −2xe−x
2
, and differentiating again gives

−2e−x
2
+ 4x2e−x

2
. Each time we differentiate we use the product rule, and the number of terms

grows. Finding the tenth or twentieth derivative of e−x
2
, and thus the series for e−x

2
up to the x10 or

x20 terms, by this method is tiresome (at least without a computer or calculator that can differentiate).

Fortunately, there’s a quicker way. Recall that

ey = 1 + y +
y2

2!
+

y3

3!
+

y4

4!
+⋯ for all y.

Substituting y = −x2 tells us that

e−x
2
= 1 + (−x2) +

(−x2)2

2!
+

(−x2)3

3!
+

(−x2)4

4!
+⋯

= 1 − x2 +
x4

2!
−

x6

3!
+

x8

4!
−⋯ for all x.

Using this method, it is easy to find the series up to the x10 or x20 terms. It can be shown that this is

the Taylor series for e−x
2
.

Example 1 Find the Taylor series about x = 0 for f (x) =
1

1 + x2
.

Solution The binomial series, or geometric series, tells us that

1

1 + y
= (1 + y)−1 = 1 − y + y2 − y3 + y4 −⋯ for −1 < y < 1.

Substituting y = x2 gives

1

1 + x2
= 1 − x2 + x4 − x6 + x8 −⋯ for −1 < x < 1,

which is the Taylor series for
1

1 + x2
.

Notice that substitution can affect the radius of convergence. For example, in Example 1 if we

find the Taylor series for g(x) = 1∕(1 + 4x2) by substituting y = 4x2, the interval of convergence

changes from −1 < y < 1 to −1∕2 < x < 1∕2.



568 Chapter 10 APPROXIMATING FUNCTIONS USING SERIES

New Series by Differentiation and Integration

Just as we can get new series by substitution, we can also get new series by differentiation and

integration. Term-by-term differentiation of a Taylor series for f (x) gives a Taylor series for f ′(x);

antidifferentiation works similarly.

Example 2 Find the Taylor series about x = 0 for
1

(1 − x)2
from the series for

1

1 − x
.

Solution We know that
d

dx

(

1

1 − x

)

=
1

(1 − x)2
, so we start with the geometric series

1

1 − x
= 1 + x + x2 + x3 + x4 +⋯ for − 1 < x < 1.

Differentiation term by term gives the binomial series

1

(1 − x)2
=

d

dx

(

1

1 − x

)

= 1 + 2x + 3x2 + 4x3 +⋯ for − 1 < x < 1.

Example 3 Find the Taylor series5 about x = 0 for arctanx from the series for
1

1 + x2
.

Solution We know that
d

dx
(arctanx) =

1

1 + x2
, so we use the series from Example 1:

d

dx
(arctanx) =

1

1 + x2
= 1 − x2 + x4 − x6 + x8 −⋯ for −1 < x < 1.

Antidifferentiating term by term and assuming convergence gives

arctanx =
∫

1

1 + x2
dx = C + x −

x3

3
+

x5

5
−

x7

7
+

x9

9
−⋯ for − 1 < x < 1,

where C is the constant of integration. Since arctan 0 = 0, we have C = 0, so

arctanx = x −
x3

3
+

x5

5
−

x7

7
+

x9

9
−⋯ for − 1 < x < 1.

Convergence of a Series and Differentiation

Example 2 assumed that the series created by term-by-term differentiation converged, and to the

function we wanted. The following theorem, which is proved in more advanced courses, justifies the

assumption. Problem 66 confirms that the radius of convergence remains the same under term-by-

term differentiation.

Theorem 10.2: Convergence of the Term-by-Term Derivative

If a Taylor series for f (x) at x = a converges to f (x) for |x−a| < R, then the series found by

term-by-term differentiation is the Taylor series for f ′(x) and converges to f ′(x) on the same

interval |x − a| < R.

5The series for arctan x was discovered by James Gregory (1638–1675).
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Multiplying and Substituting Taylor Series
We can also form a Taylor series for a product of two functions. In some cases, this is easy; for

example, if we want to find the Taylor series about x = 0 for the function f (x) = x2 sin x, we can

start with the Taylor series for sin x,

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+⋯ ,

and multiply the series by x2:

x2 sin x = x2
(

x −
x3

3!
+

x5

5!
−

x7

7!
+⋯

)

= x3 −
x5

3!
+

x7

5!
−

x9

7!
+⋯ .

However, in some cases, finding a Taylor series for a product of two functions requires more work.

Example 4 Find the Taylor series about x = 0 for g(x) = sinx cosx.

Solution The Taylor series about x = 0 for sin x and cosx are

sin x = x −
x3

3!
+

x5

5!
−⋯

cos x = 1 −
x2

2!
+

x4

4!
−⋯ .

So we have

g(x) = sin x cosx =

(

x −
x3

3!
+

x5

5!
−⋯

)(

1 −
x2

2!
+

x4

4!
−⋯

)

.

To multiply these two series, we must multiply each term of the series for sin x by each term of

the series for cosx. Because each series has infinitely many terms, we organize the process by first

determining the constant term of the product, then the linear term, and so on.

The constant term of this product is zero because there is no combination of a term from the first

series and a term from the second that yields a constant. The linear term of the product is x; we obtain

this term by multiplying the x from the first series by the 1 from the second. The degree-2 term of

the product is also zero; more generally, we notice that every even-degree term of the product is zero

because every combination of a term from the first series and a term from the second yields an odd-

degree term. To find the degree-3 term, observe that the combinations of terms that yield degree-3

terms are x ⋅−
x2

2!
= −

1

2
x3 and −

x3

3!
⋅ 1 = −

1

6
x3, and thus the degree-3 term is −

1

2
x3 −

1

6
x3 = −

2

3
x3.

Continuing in this manner, we find that

g(x) = x −
2

3
x3 +

2

15
x5 −⋯ .

There is another way to find this series. Notice that sin x cosx =
1

2
sin(2x). Substituting 2x into the

Taylor series about x = 0 for the sine function, we get

sin(2x) = 2x −
(2x)3

3!
+

(2x)5

5!
−⋯

= 2x −
4

3
x3 +

4

15
x5 −⋯ .

Therefore, we have

g(x) =
1

2
sin(2x) = x −

2

3
x3 +

2

15
x5 −⋯ .

We can also obtain a Taylor series for a composite function by substituting a Taylor series into

another one, as in the next example.
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Example 5 Find the Taylor series about � = 0 for g(�) = esin � .

Solution For all y and �, we know that

ey = 1 + y +
y2

2!
+

y3

3!
+

y4

4!
+⋯

and

sin � = � −
�3

3!
+

�5

5!
−⋯ .

Let’s substitute the series for sin � for y:

esin � = 1 +

(

� −
�3

3!
+

�5

5!
−⋯

)

+
1

2!

(

� −
�3

3!
+

�5

5!
−⋯

)2

+
1

3!

(

� −
�3

3!
+

�5

5!
−⋯

)3

+⋯ .

To simplify, we multiply out and collect terms. The only constant term is the 1, and there’s only one

� term. The only �2 term is the first term we get by multiplying out the square, namely �2∕2!. There

are two contributors to the �3 term: the −�3∕3! from within the first parentheses and the first term

we get from multiplying out the cube, which is �3∕3!. Thus the series starts

esin � = 1 + � +
�2

2!
+

(

−
�3

3!
+

�3

3!

)

+⋯

= 1 + � +
�2

2!
+ 0 ⋅ �3 +⋯ for all �.

Applications of Taylor Series

Example 6 Use the series for arctanx to estimate the numerical value of �.

Solution Since arctan 1 = �∕4, we use the series for arctanx from Example 3. We assume—as is the case—

that the series does converge to �∕4 at x = 1. Substituting x = 1 into the series for arctanx gives

� = 4 arctan 1 = 4
(

1 −
1

3
+

1

5
−

1

7
+

1

9
−⋯

)

.

Table 10.3 Approximating � using the series for arctanx

n 4 5 25 100 500 1000 10,000

Sn 2.895 3.340 3.182 3.132 3.140 3.141 3.141

Table 10.3 shows the value of the nth partial sum, Sn, obtained by summing the first n nonzero terms.

The values of Sn do seem to converge to � = 3.141… . However, this series converges very slowly,

meaning that we have to take a large number of terms to get an accurate estimate for �. So this way

of calculating � is not particularly practical. (A better one is given in Project 2 (available online).)

However, the expression for � given by this series is surprising and elegant.

A basic question we can ask about two functions is which one gives larger values. Taylor series

can often be used to answer this question over a small interval. If the constant terms of the series for

two functions are the same, compare the linear terms; if the linear terms are the same, compare the

quadratic terms, and so on.
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Example 7 By looking at their Taylor series, decide which of the following functions is largest for t near 0.

(a) et (b)
1

1 − t

Solution The Taylor expansion about t = 0 for et is

et = 1 + t +
t2

2!
+

t3

3!
+⋯ .

Viewing 1∕(1 − t) as the sum of a geometric series with initial term 1 and common ratio t, we have

1

1 − t
= 1 + t + t2 + t3 +⋯ for − 1 < t < 1.

Notice that these two series have the same constant term and the same linear term. However, their

remaining terms are different. For values of t near zero, the quadratic terms dominate all of the

subsequent terms,6 so we can use the approximations

et ≈ 1 + t +
t2

2
1

1 − t
≈ 1 + t + t2.

Since

1 + t +
1

2
t2 < 1 + t + t2,

and since the approximations are valid for t near 0, we conclude that, for t near 0,

et <
1

1 − t
.

See Figure 10.14.

−1 1

3

1

1−t

et

t

y

Figure 10.14: Comparing two functions near t = 0

Example 8 Two electrical charges of equal magnitude and opposite signs located near one another are called an

electrical dipole. The chargesQ and −Q are a distance r apart. (See Figure 10.15.) The electric field,

E, at the point P , at a distance R from the dipole is given by

E =
Q

R2
−

Q

(R + r)2
.

6To make this argument rigorous, we need the Lagrange error bound given in the next section.
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Use series to investigate the behavior of the electric field far to the left along the line through the

dipole. Show that when R is large in comparison to r, the electric field is approximately proportional

to 1∕R3.

✲✛
R

✲✛
r

P Q −Q

Figure 10.15: Approximating the electric field at P due to a dipole

consisting of charges Q and −Q a distance r apart

Solution In order to use a series approximation, we need a variable whose value is small. Although we know

that r is much smaller than R, we do not know that r itself is small. The quantity r∕R is, however,

very small. Hence we expand 1∕(R + r)2 in powers of r∕R so that we can safely use only the first

few terms of the Taylor series. First we rewrite using algebra:

1

(R + r)2
=

1

R2(1 + r∕R)2
=

1

R2

(

1 +
r

R

)−2

.

Now we use the binomial expansion for (1 + x)p with x = r∕R and p = −2:

1

R2

(

1 +
r

R

)−2

=
1

R2

(

1 + (−2)
(

r

R

)

+
(−2)(−3)

2!

(

r

R

)2

+
(−2)(−3)(−4)

3!

(

r

R

)3

+⋯

)

=
1

R2

(

1 − 2
r

R
+ 3

r2

R2
− 4

r3

R3
+⋯

)

.

So, substituting the series into the expression for E, we have

E =
Q

R2
−

Q

(R + r)2
= Q

(

1

R2
−

1

R2

(

1 − 2
r

R
+ 3

r2

R2
− 4

r3

R3
+⋯

))

=
Q

R2

(

2
r

R
− 3

r2

R2
+ 4

r3

R3
−⋯

)

.

Since r∕R is smaller than 1, the binomial expansion for (1+ r∕R)−2 converges. We are interested in

the electric field far away from the dipole. The quantity r∕R is small there, and (r∕R)2 and higher

powers are smaller still. Thus, we approximate by disregarding all terms except the first, giving

E ≈
Q

R2

(

2r

R

)

, so E ≈
2Qr

R3
.

Since Q and r are constants, this means that E is approximately proportional to 1∕R3.

In the previous example, we say that E is expanded in terms of r∕R, meaning that the variable

in the expansion is r∕R.

Summary for Section 10.3

• You can sometimes find a Taylor series for a function by manipulating known Taylor series of

related functions such as ex, cos x, sin x, or (1 + x)p.

• The Taylor series for f (g(x)) can be obtained by substituting the Taylor series for g(x) into the

Taylor series for f (x). This is especially easy to do if g(x) is a monomial.

• The Taylor series for f ′(x) is the term-by-term derivative of the Taylor series for f (x). If the

Taylor series for f (x) at x = a converges to f (x) for |x − a| < R, then the Taylor series for

f ′(x) at x = a converges to f ′(x) for |x − a| < R.

• The Taylor series for f (x)g(x) can be obtained by multiplying the Taylor series for f (x) and

g(x).
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Exercises and Problems for Section 10.3

EXERCISES

1. Match each function to its Taylor series.

(i) sin(x) (ii) ex

(iii) sin(−x) (iv) cos(−x)

(v) cos(
√

x) (vi)
1

ex

(vii) e−x
2

(a) 1 + x +
1

2
x2 +

1

3!
x3 +

1

4!
x4 +⋯

(b) 1 − x +
1

2
x2 −

1

3!
x3 +

1

4!
x4 −⋯

(c) −x +
1

3!
x3 −

1

5!
x5 +

1

7!
x7 −⋯

(d) x −
1

3!
x3 +

1

5!
x5 −

1

7!
x7 +⋯

(e) 1 −
1

2!
x2 +

1

4!
x4 −

1

6!
x6 +⋯

(f) 1 − x2 +
1

2
x4 −

1

3!
x6 +

1

4!
x8 −⋯

(g) 1 −
1

2!
x +

1

4!
x2 −

1

6!
x3 +⋯

In Exercises 2–13, using known Taylor series, find the first

four nonzero terms of the Taylor series about 0 for the func-

tion.

2. e−x 3.
√

1 − 2x 4. cos(�2)

5. ln(1 − 2y) 6. arcsin x 7. t sin(3t)

8.
1

√

1 − z2
9.

z

ez
2

10. �3 cos(�2)

11. arctan(r2) 12. cosh t 13. sinh t

In Exercises 14–16, find the Taylor series about 0 for the

function. Include the general term.

14. (1 + x)3 15. t sin(t2) − t3 16.
1

√

1 − y2

In Exercises 17–18, find the exact value of the expression by

identifying it as a known series.

17. 1 + 0.2 +
0.22

2!
+

0.23

3!
+

0.24

4!
+⋯

18. 0.5 −
0.52

2
+

0.53

3
−

0.54

4
+⋯

For Exercises 19–24, expand the quantity about 0 in terms

of the variable given. Give four nonzero terms.

19.
1

2 + x
in terms of

x

2
20.

√

T + ℎ in terms of
ℎ

T

21.
1

a − r
in terms of

r

a
22.

1

(a + r)2
in terms of

r

a

23.
3
√

P + t in terms of
t

P

24.
a

√

a2 + x2

in terms of
x

a
, where a > 0

PROBLEMS

In Problems 25–28, using known Taylor series, find the first

four nonzero terms of the Taylor series about 0 for the func-

tion.

25.
√

(1 + t) sin t 26. et cos t

27.
√

1 + sin � 28.
1

1 − ln(1 + t)

29. Let g(z) be the function obtained by substituting z =

x − 1 into f (x) = 1∕x. Use a series for g(z) to get a

Taylor series for f (x) around x = 1.

30. (a) Let g(z) be the function obtained by substituting

z = (x − 1)∕2 into f (x) = 1∕(x + 1). Use a se-

ries for ℎ(z) to find a Taylor series for f (x) around

x = 1.

(b) Find the Taylor series of g(x) = (x − 1)2∕(x + 1)

around x = 1.

31. The Taylor series for ln(1 − x) about x = 0 converges

for −1 < x < 1. For each of the following functions,

use this interval to find the largest interval on which the

function’s Taylor series about x = 0 converges.

(a) ln(4 − x) (b) ln(4 + x) (c) ln(1 + 4x2)

32. Use the series for ex to find the Taylor series for sinh 2x

and cosh 2x.

33. (a) Find the first three nonzero terms of the Taylor se-

ries for ex + e−x.

(b) Explain why the graph of ex + e−x looks like a

parabola near x = 0. What is the equation of this

parabola?

34. (a) Find the first three nonzero terms of the Taylor se-

ries for ex − e−x.

(b) Explain why the graph of ex − e−x near x = 0

looks like the graph of a cubic polynomial sym-

metric about the origin. What is the equation for

this cubic?
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35. Find the first three terms of the Taylor series for f (x) =

ex
2

around 0. Use this information to approximate the

integral

∫

1

0

ex
2
dx.

36. Find the sum of

∞
∑

p=1

pxp−1 for |x| < 1.

37. For values of y near 0, put the following functions in

increasing order, using their Taylor expansions.

(a) ln(1 + y2) (b) sin(y2) (c) 1 − cos y

38. For values of � near 0, put the following functions in

increasing order, using their Taylor expansions.

(a) 1 + sin � (b) e� (c)
1

√

1 − 2�

39. A function has the following Taylor series about x = 0:

f (x) =

∞
∑

n=0

x2n+1

2n + 1
.

Find the ninth-degree Taylor polynomial for f (2x).

40. The function f is given by its Taylor series

f (x) = 1 −
1

3!
x2 +

1

5!
x4 −

1

7!
x6 +⋯ .

For g(x) = 12xf (
√

x), what is the value of C3 in the

Taylor series g(x) = C0 + C1x + C2x
2 + C3x

3 +⋯?

41. Figure 10.16 shows the graphs of the four functions be-

low for values of x near 0. Use Taylor series to match

graphs and formulas.

(a)
1

1 − x2
(b) (1 + x)1∕4

(c)

√

1 +
x

2
(d)

1
√

1 − x

(I) (III)

(IV)

(II)

Figure 10.16

42. The function f is given by its Taylor series

f (x) = 1 −
1

3!
x2 +

1

5!
x4 −

1

7!
x6 +⋯ .

(a) Find f ′(0).

(b) Find f ′′(0).

(c) Estimate f (2) using the fourth-degree Taylor poly-

nomial about x = 0.

43. The sine integral function is defined by the improper

integral

Si(x) =
∫

x

0

sin t

t
dt.

Use the Taylor polynomial, P7(x), of degree 7 about

x = 0 for the sine function to estimate Si(2).

44. Write out the first four nonzero terms of the Taylor se-

ries about x = 0 for f (x) =
∫

x

0

sin
(

t2
)

dt.

45. (a) Find the Taylor series for f (t) = tet about t = 0.

(b) Using your answer to part (a), find a Taylor series

expansion about x = 0 for

∫

x

0

tet dt.

(c) Using your answer to part (b), show that

1

2
+

1

3
+

1

4(2!)
+

1

5(3!)
+

1

6(4!)
+⋯ = 1.

46. Find the sum of

∞
∑

n=1

kn−1

(n − 1)!
e−k.

47. Use Taylor series to explain the patterns in the digits in

the following expansions:

(a)
1

0.98
= 1.02040816…

(b)
(

1

0.99

)2

= 1.020304050607…

48. Padé approximants are rational functions used to ap-

proximate more complicated functions. In this problem,

you will derive the Padé approximant to the exponential

function.

(a) Let f (x) = (1 + ax)∕(1 + bx), where a and b are

constants. Write down the first three terms of the

Taylor series for f (x) about x = 0.

(b) By equating the first three terms of the Taylor se-

ries about x = 0 for f (x) and for ex, find a and b

so that f (x) approximates ex as closely as possible

near x = 0.

49. One of Einstein’s most amazing predictions was that

light traveling from distant stars would bend around the

sun on the way to earth. His calculations involved solv-

ing for � in the equation

sin� + b(1 + cos2 � + cos�) = 0,

where b is a very small positive constant.

(a) Explain why the equation could have a solution for

� which is near 0.

(b) Expand the left-hand side of the equation in Taylor

series about � = 0, disregarding terms of order �2

and higher. Solve for �. (Your answer will involve

b.)
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50. A hydrogen atom consists of an electron, of mass m, or-

biting a proton, of mass M , where m is much smaller

than M . The reduced mass, �, of the hydrogen atom is

defined by

� =
mM

m +M
.

(a) Show that � ≈ m.

(b) To get a more accurate approximation for �, ex-

press � as m times a series in m∕M .

(c) The approximation � ≈ m is obtained by disre-

garding all but the constant term in the series. The

first-order correction is obtained by including the

linear term but no higher terms. If m ≈ M∕1836,

by what percentage does including the linear term

change the estimate � ≈ m?

51. The frequency, f0, of a sound is heard by your ear as

the pitch of the sound. Higher frequencies correspond

to higher pitched sounds. A plane is moving toward you

at speed vp. If v is the speed of sound in still air in the

same units, the Doppler effect tells us that the frequency

that you hear is

f =
f0v

v − vp
.

(a) If 0 < vp < v, is the sound you hear higher or lower

pitched than the original sound?

(b) If the plane is moving away from you, how does the

pitch compare to the pitch of the original sound?

(c) Expand f as a series in vp∕v. Give three nonzero

terms.

(d) Use the first two nonzero terms in the series to es-

timate the percent change in frequency if the plane

moves towards you at 2% of the speed of sound.

52. Resonance in electric circuits leads to the expression

(

!L −
1

!C

)2

,

where ! is the variable and L and C are constants.

(a) Find!0, the value of!making the expression zero.

(b) In practice, ! fluctuates about !0, so we are inter-

ested in the behavior of this expression for values

of ! near !0. Let ! = !0 + Δ! and expand the

expression in terms of Δ! up to the first nonzero

term. Give your answer in terms of Δ! and L but

not C .

53. A pendulum consists of a mass, m, swinging on the end

of a string of length l. With the angle between the string

and the vertical represented by �, the motion satisfies

the differential equation

�′′ +
g

l
sin � = 0.

(a) For small swings, we can replace sin � by its low-

est nonzero Taylor approximation. What does the

differential equation become?

(b) If the amplitude of the oscillation is �0, the solu-

tions to the original differential equation are oscil-

lations with7

Period = 2�

√

l

g

(

1 +
1

16
�2
0
+⋯

)

.

The solutions to the approximate differential equa-

tion are oscillations with

Period = 2�

√

l

g
.

If �0 = 20◦, by what percentage is the more accu-

rate estimate of the period obtained using the so-

lution to the original equation up to the �2
0
-term

different from the approximate estimate using the

solution of the approximate equation?

54. Stefan’s Law says the rate at which a body’s tempera-

ture, H , changes with time is proportional to A4 −H4,

where A is the surrounding temperature.8 Use a Taylor

series to expand A4 −H4 up to the linear term.

55. When an object of length L0 is moving at a speed v, the

theory of relativity predicts that the object appears to

have length L. If c is the speed of light, then

L = L0

√

1 −
(

v

c

)2

for 0 ≤ v < c.

(a) Does the moving object appear longer or shorter

than the rest length L0?

(b) Expand L as a series in v∕c. Give three nonzero

terms.

(c) If the object is moving very slowly, approximate L

using one term in the series. Interpret the result in

terms of moving objects.

56. The Michelson-Morley experiment, which contributed

to the formulation of the theory of relativity, involved

the difference between the two times t1 and t2 that light

took to travel between two points. If v is velocity; l1, l2,

and c are constants; and v < c, then t1 and t2 are given

by

t1 =
2l2

c(1 − v2∕c2)
−

2l1

c
√

1 − v2∕c2

t2 =
2l2

c
√

1 − v2∕c2
−

2l1

c(1 − v2∕c2)
.

(a) Find an expression for Δt = t1 − t2, and give its

Taylor expansion in terms of v2∕c2 up to the sec-

ond nonzero term.

(b) For small v, to what power of v is Δt proportional?

What is the constant of proportionality?

7http://en.wikipedia.org/wiki/Pendulum, accessed October 7, 2019.
8http://en.wikipedia.org/wiki/StefanBoltzmann_law, accessed October 7, 2019.
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57. The theory of relativity predicts that when an object

moves at speeds close to the speed of light, the object

appears heavier. The apparent, or relativistic, mass, m,

of the object when it is moving at speed v is given by

the formula

m =
m0

√

1 − v2∕c2
,

where c is the speed of light and m0 is the mass of the

object when it is at rest.

(a) Use the formula for m to decide what values of v

are possible.

(b) Sketch a rough graph of m against v, labeling in-

tercepts and asymptotes.

(c) Write the first three nonzero terms of the Taylor

series for m in terms of v.

(d) For what values of v do you expect the series to

converge?

58. The potential energy, V , of two gas molecules separated

by a distance r is given by

V = −V0

(

2
( r0

r

)6

−
( r0

r

)12
)

,

where V0 and r0 are positive constants.

(a) Show that if r = r0, then V takes on its minimum

value, −V0.

(b) Write V as a series in (r − r0) up through the

quadratic term.

(c) For r near r0, show that the difference between

V and its minimum value is approximately pro-

portional to (r − r0)
2. In other words, show that

V −(−V0) = V +V0 is approximately proportional

to (r − r0)
2.

(d) The force, F , between the molecules is given by

F = −dV ∕dr. What is F when r = r0? For r near

r0, show that F is approximately proportional to

(r − r0).

59. Van der Waal’s equation relates the pressure, P , and the

volume, V , of a fixed quantity of a gas at constant tem-

perature T :

(

P +
n2a

V 2

)

(V − nb) = nRT ,

where a, b, n, R are constants. Find the first two nonzero

terms of the Taylor series of P in terms for 1∕V .

60. In Figure 10.17 a charge Q is spread evenly around a

circular ring of radius R. The electric field at P is given

by9

E =
Qz

(z2 + R2)3∕2
.

(a) Expand E as a series in R∕z. Give three nonzero

terms.

(b) As z gets large, E is approximately proportional to

a power of z. Use your answer in part (a) to identify

the power.

P

z

R

Figure 10.17

61. In Figure 10.18 a charge Q is spread evenly across a cir-

cular disk of radius R. The electric field at P is given

by10

E =
2Q

R2

(

1 −
z

√

z2 +R2

)

.

(a) Expand E as a series in R∕z. Give three nonzero

terms.

(b) As z gets large, E is approximately proportional to

a power of z. Use your answer in part (a) to identify

the power.

P

z

R

Figure 10.18

62. The hyperbolic sine and cosine are differentiable and

satisfy the conditions cosh 0 = 1 and sinh 0 = 0, and

d

dx
(cosh x) = sinh x

d

dx
(sinh x) = cosh x.

(a) Using only this information, find the Taylor ap-

proximation of degree n = 8 about x = 0 for

f (x) = cosh x.

(b) Estimate the value of cosh 1.

(c) Use the result from part (a) to find a Taylor poly-

nomial approximation of degree n = 7 about x = 0

for g(x) = sinh x.

In Problems 63–64, find the value of the integer ai given that

the Taylor series of f (x) = cos
√

x is:

a0 +
1

a1
x +

1

a2
x2 +

1

a3
x3 +⋯ .

63. a2 64. a3

9Based on Fundamentals of Physics, Halliday, Resnick, 7th ed, Wiley NY, 2005.
10Based on Fundamentals of Physics, Halliday, Resnick, 7th ed, Wiley NY, 2005.
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65. Find f (42) for f (x) =
∫

g(x)

1

(1∕t) dt where

g(x) = lim
b→−∞ ∫

x

b

ℎ(t) dt, and ℎ(x) =

∞
∑

k=0

xk

k!
.

66. The ratio test applied to the power series
∑

Cnx
n gives

R as the radius of convergence. Show that the term-by-

term derivative of the power series has the same radius

of convergence.

Strengthen Your Understanding

In Problems 67–68, explain what is wrong with the state-

ment.

67. Within its radius of convergence,

1

2 + x
= 1 −

x

2
+
(

x

2

)2

−
(

x

2

)3

+⋯ .

68. Using the Taylor series for ex = 1+ x+
x2

2!
+
x3

3!
+⋯ ,

we find that e−x = 1 − x −
x2

2!
−

x3

3!
−⋯ .

In Problems 69–70, give an example of:

69. A function with no Taylor series around 0.

70. A function f (x) that does not have a Taylor series

around 0 even though f (0) is defined.

Decide if the statements in Problems 71–75 are true or false.

Assume that the Taylor series for a function converges to that

function. Give an explanation for your answer.

71. To find the Taylor series for sin x + cos x about any

point, add the Taylor series for sinx and cos x about

that point.

72. The Taylor series for x3 cos x about x = 0 has only odd

powers.

73. The Taylor series for f (x)g(x) about x = 0 is

f (0)g(0) + f ′(0)g′(0)x +
f ′′(0)g′′(0)

2!
x2 +⋯ .

74. If L1(x) is the linear approximation to f1(x) near x = 0

and L2(x) is the linear approximation to f2(x) near

x = 0, then L1(x) + L2(x) is the linear approximation

to f1(x) + f2(x) near x = 0.

75. If L1(x) is the linear approximation to f1(x) near x = 0

and L2(x) is the linear approximation to f2(x) near

x = 0, then L1(x)L2(x) is the quadratic approximation

to f1(x)f2(x) near x = 0.

76. Given that the Taylor series for tan x = x + x3∕3 +

21x5∕120 +⋯, then that of 3 tan(x∕3) is

(a) 3x + x3 + 21x5∕120 +⋯

(b) 3x + x3 + 21x5∕40 +⋯

(c) x + x3∕27 + 7x5∕3240 +⋯

(d) x + x3∕3 + 21x5∕120 +⋯

10.4 THE ERROR IN TAYLOR POLYNOMIAL APPROXIMATIONS

In order to use an approximation with confidence, we need to know how big the error could be. The

error is the difference between the exact answer and the approximate value. If Pn(x) is the nth-degree

Taylor polynomial, the error in approximating f (x) is

En(x) = f (x) − Pn(x).

We have seen that the higher the degree of the Taylor polynomial, in general the larger the

interval on which the function and the polynomial are close to each other. For example, Figure 10.19

shows the first three Taylor polynomial approximations about 0 for the function f (x) = ex. If we

pick a particular Taylor polynomial, say P2, the closer x is to 0, the better P2(x) approximates ex.

−2 2

2

4

f (x) = ex

P0

P1

P2

x

Figure 10.19: Graph of f (x) = ex and first

three Taylor polynomials around x = 0
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Example 1 Compare the errors in the approximations

e0.1 ≈ 1 + 0.1 +
1

2!
(0.1)2 and e0.05 ≈ 1 + (0.05) +

1

2!
(0.05)2.

Solution We are approximating ex by its second-degree Taylor polynomial about 0. At x = 0.1 and x = 0.05

the errors are:

E2(0.1) = e0.1 −
(

1 + 0.1 +
1

2!
(0.1)2

)

= 1.105171…− 1.105000 = 0.000171

E2(0.05) = e0.05 −
(

1 + 0.05 +
1

2!
(0.05)2

)

= 1.051271…− 1.051250 = 0.000021.

As expected, the error in the approximation is smaller for x = 0.05 than for x = 0.1.

In Example 1 we obtained a better approximation by taking x closer to 0. Example 2 shows if

we are interested in a particular value of x, we can often improve the approximation by choosing a

higher-degree polynomial.

Example 2 Compare the errors in the approximations for e0.1 using P2 and P3.

Solution In the previous example we saw E2(0.1) = 0.000171. We now compute

E3(0.1) = e0.1 − P3(0.1) = e0.1 −
(

1 + 0.1 +
1

2!
(0.1)2 +

1

3!
(0.1)3

)

= 1.105171…− 1.1051666…

= 0.0000043…

Bounds on the Error

In practice, we usually want to find a bound on the magnitude of the error—we want to figure out

how big it could be—without calculating the error exactly. Lagrange found an expression for an error

bound En based on the degree-(n+ 1) term in the Taylor series that is used to make such estimates:

Theorem 10.3: The Lagrange Error Bound for P
n
(x)

Suppose f and all its derivatives are continuous. If Pn(x) is the degree-n Taylor polynomial

for f (x) about a, and En(x) = f (x) − Pn(x) is the error function, then

|En(x)| ≤
M

(n + 1)!
|x − a|n+1,

where M is an upper bound on
|

|

|

f (n+1)|
|

|

on the interval between a and x.

To find M in practice, we often find the maximum of |f (n+1)
| on the interval and pick any larger

value for M . See page 581 for a justification of Theorem 10.3.

Using the Lagrange Error Bound for Taylor Polynomials

Example 3 Give a bound on the error,E4, when ex is approximated by its fourth-degree Taylor polynomial about

0 for −0.5 ≤ x ≤ 0.5.
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Solution Let f (x) = ex. We need to find a bound for the fifth derivative, f (5)(x) = ex. Since ex is positive

and increasing, its largest value is at the right endpoint of the interval and:

|f (5)(x)| ≤ e0.5 =
√

e for −0.5 ≤ x ≤ 0.5.

Since
√

e < 2, we can take M = 2 (or any larger value). Then

|E4| = |f (x) − P4(x)| ≤
2

5!
|x|5.

This means, for example, that on −0.5 ≤ x ≤ 0.5, the approximation

ex ≈ 1 + x +
x2

2!
+

x3

3!
+

x4

4!

has an error of at most
2

120
(0.5)5 < 0.0006.

The Lagrange error bound for Taylor polynomials can be used to see how the accuracy of the

approximation depends on the value of x and the value of n. Observe that the error bound for a

Taylor polynomial of degree n is proportional to |x− a|n+1. That means, for example, with a Taylor

polynomial of degree n centered at 0, if we decrease x by a factor of 2, the error bound decreases by

a factor of 2n+1.

We saw this happen in Example 1 where E2(0.1) = 0.000171 and E2(0.05) = 0.000021. Since

E2(0.1)

E2(0.05)
=

0.000171

0.000021
= 8.1,

we see that as the value of x decreases by a factor of 2, the error decreases by a factor of about 8 = 23.

Convergence of the Taylor Series for cosx

We have already seen that the Taylor polynomials centered at x = 0 for cos x are good approxima-

tions for x near 0. (See Figure 10.20.) In fact, for any value of x, if we take a Taylor polynomial

centered at x = 0 of high enough degree, its graph is nearly indistinguishable from the graph of the

cosine function near that point.

−� �
−1

1

x

cos xcos x

P8(x) P8(x)

P2(x) P2(x)

Figure 10.20: Graph of cos x and two Taylor polynomials for x near 0

Let’s see what happens numerically. Let x = �∕2. The successive Taylor polynomial approxi-

mations to cos(�∕2) = 0 about x = 0 are

P2(�∕2) = 1 − (�∕2)2∕2! = −0.23370…

P4(�∕2) = 1 − (�∕2)2∕2! + (�∕2)4∕4! = 0.01997…

P6(�∕2) = ⋯ = −0.00089…

P8(�∕2) = ⋯ = 0.00002… .
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It appears that the approximations converge to the true value, cos(�∕2) = 0, very rapidly. Now take

a value of x somewhat farther away from 0, say x = �; then cos� = −1 and

P2(�) = 1 − (�)2∕2! = −3.93480…

P4(�) = ⋯ = 0.12391…

P6(�) = ⋯ = −1.21135…

P8(�) = ⋯ = −0.97602…

P10(�) = ⋯ = −1.00183…

P12(�) = ⋯ = −0.99990…

P14(�) = ⋯ = −1.000004… .

We see that the rate of convergence is somewhat slower; it takes a 14th-degree polynomial to approx-

imate cos� as accurately as an 8th-degree polynomial approximates cos(�∕2). If x were taken still

farther away from 0, then we would need still more terms to obtain as accurate an approximation of

cos x.

Exercise 18 on page 546 uses the ratio test to show that the Taylor series for cosx converges for

all values of x. To show that its sum is indeed cosx, we use Theorem 10.3. This justifies our writing

the equality:

cosx = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
−⋯ for all x.

Showing That the Taylor Series for cosx Converges to cosx

The Lagrange error bound in Theorem 10.3 allows us to see if the Taylor series for a function con-

verges to that function. In the series for cosx, the odd powers are missing, so we assume n is even

and write

En(x) = cosx − Pn(x) = cos x −

(

1 −
x2

2!
+⋯ + (−1)n∕2

xn

n!

)

,

giving

cosx = 1 −
x2

2!
+⋯ + (−1)n∕2

xn

n!
+ En(x).

Thus, for the Taylor series to converge to cos x, we must have En(x) → 0 as n → ∞.

Showing En(x) → 0 as n → ∞

Proof Since f (x) = cosx, the (n + 1)st derivative, f (n+1)(x), is ± cosx or ± sinx, no matter what n is. So

for all n, we have |f (n+1)(x)| ≤ 1 on the interval between 0 and x.

By the Lagrange error bound with M = 1, we have

|En(x)| = | cosx − Pn(x)| ≤
|x|n+1

(n + 1)!
for every n.

To show that the errors go to zero, we must show that for a fixed x,

|x|n+1

(n + 1)!
→ 0 as n → ∞.

To see why this is true, consider the ratio of successive terms of this sequence. We have

|x|n+2∕(n + 2)!

|x|n+1∕(n + 1)!
=

|x|

n + 2
.

Therefore, we obtain the (n+1)st term of this sequence, |x|n+2∕(n+2)!, by multiplying the previous

term, |x|n+1∕(n+1)!, by |x|∕(n+2). Since |x| is fixed and n+2 is increasing, for sufficiently large n,

this ratio is less than 1∕2 (or any other constant between 0 and 1). Thus eventually each term in the

sequence is less than 1∕2 the previous term, so the sequence of errors approaches zero. Therefore,

the Taylor series 1 − x2∕2! + x4∕4! −⋯ does converge to cos x.
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Problems 28 and 29 ask you to show that the Taylor series for sinx and ex converge to the

original function for all x. In each case, you again need the following limit:

lim
n→∞

xn

n!
= 0.

Error Bounds Using the Alternating Series Estimate

We saw a method of bounding the error in an alternating series in Theorem 9.9 on page 535. This

method can be used for a Taylor series if we know the series converges to the function f (x) and that

the series is alternating and has terms whose magnitudes decrease monotonically to zero.

Example 4 As we have shown, the Taylor series for cos x converges to the function for all x. Use an alternating

series to bound the errors in approximating cos 1 by P6(1) and P9(1).

Solution The Taylor series is

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
−

x10

10!
+⋯ ,

so, substituting x = 1, we have

cos 1 =

P6(1)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1 −
1

2!
+

1

4!
−

1

6!
+
1

8!
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

P9(1)

−
1

10!
+⋯ .

This series is alternating and the magnitude of the terms is monotonically decreasing to zero. Thus

we can use the alternating series error bound, which tells us that the error between cos 1 and Pn(1)

is bounded by the magnitude of the next term in the series. So we have

|

|

cos 1 − P6(1)
|

|

≤
1

8!
= 0.0000248,

|

|

cos 1 − P9(1)
|

|

≤
1

10!
= 0.0000003.

Deriving the Lagrange Error Bound

Recall that we constructed Pn(x), the Taylor polynomial of f about 0, so that its first n derivatives

equal the corresponding derivatives of f (x). Therefore, En(0) = 0, E′
n
(0) = 0, E′′

n
(0) = 0, ⋯,

E
(n)
n (0) = 0. Since Pn(x) is an nth-degree polynomial, its (n + 1)st derivative is 0, so E

(n+1)
n (x) =

f (n+1)(x). In addition, suppose that
|

|

|

f (n+1)(x)
|

|

|

is bounded by a positive constant M , for all positive

values of x near 0, say for 0 ≤ x ≤ d, so that

−M ≤ f (n+1)(x) ≤ M for 0 ≤ x ≤ d.

This means that

−M ≤ E(n+1)
n

(x) ≤ M for 0 ≤ x ≤ d.

Writing t for the variable, we integrate this inequality from 0 to x, giving

−
∫

x

0

M dt ≤
∫

x

0

E(n+1)
n

(t) dt ≤
∫

x

0

M dt for 0 ≤ x ≤ d,

so

−Mx ≤ E(n)
n
(x) ≤ Mx for 0 ≤ x ≤ d.
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We integrate this inequality again from 0 to x, giving

−
∫

x

0

Mtdt ≤
∫

x

0

E(n)
n
(t) dt ≤

∫

x

0

Mtdt for 0 ≤ x ≤ d,

so

−
1

2
Mx2 ≤ E(n−1)

n
(x) ≤

1

2
Mx2 for 0 ≤ x ≤ d.

By repeated integration, we obtain the following bound:

−
1

(n + 1)!
Mxn+1 ≤ En(x) ≤

1

(n + 1)!
Mxn+1 for 0 ≤ x ≤ d,

which means that

|

|

En(x)
|

|

= |

|

f (x) − Pn(x)
|

|

≤
1

(n + 1)!
Mxn+1 for 0 ≤ x ≤ d.

When x is to the left of 0, so −d ≤ x ≤ 0, and when the Taylor series is centered at a ≠ 0,

similar calculations lead to Theorem 10.3.

Summary for Section 10.4

• The errorEn(x) in approximatingf (x) by its degree n Taylor polynomialPn(x) is the difference

En(x) = f (x) − Pn(x).

• The exact error is often not knowable, but the Lagrange error bound gives an upper bound for

the magnitude of the error. If Pn(x) is the degree n Taylor polynomial of f (x) about x = a, then

|En(x)| ≤
M

(n + 1)!
|x − a|n+1

where M is an upper bound on |f (n+1)
| on the interval between a and x.

• The Lagrange error bound can be used to prove that the Taylor series for cos x converges to cosx

for all x, and similarly for ex and sin x.

Exercises and Problems for Section 10.4

EXERCISES

In Exercises 1–8, use Theorem 10.3 to find a bound for the er-

ror in approximating the quantity with a third-degree Taylor

polynomial for the given function f (x) about x = 0. Com-

pare the bound with the actual error.

1. e0.1, f (x) = ex

2. sin(0.2), f (x) = sinx

3. cos(−0.3), f (x) = cos x

4.
√

0.9, f (x) =
√

1 + x

5. ln(1.5), f (x) = ln(1 + x)

6. 1∕
√

3, f (x) = (1 + x)−1∕2

7. tan 1, f (x) = tan x

8. 0.51∕3, f (x) = (1 − x)1∕3

In Exercises 9–11, the Taylor polynomial Pn(x) about 0 ap-

proximates f (x) with error En(x) and the Taylor series con-

verges to f (x). Find the smallest constant K given by the

alternating series error bound such that |E4(1)| ≤ K .

9. f (x) = e−x 10. f (x) = cos x 11. f (x) = sinx

In Exercises 12–14, the Taylor polynomial Pn(x) about 0 ap-

proximates f (x) with error En(x) and the Taylor series con-

verges to f (x) on |x| ≤ 1. Find the smallest constant K given

by the alternating series error bound such that |E6(1)| ≤ K .

12.

∞
∑

n=0

(−1)n
xn

2n
13.

∞
∑

n=0

(−x)n

n2 + 1
14.

∞
∑

n=0

(−1)n+1xn

(n + 1)n
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PROBLEMS

15. Figure 10.21 shows y = sin x and its Taylor polynomi-

als P5(x) and P7(x).

(a) Find both polynomials and identify the curves I, II,

III.

(b) At x = 4, which is the better approximation, P5(x)

or P7(x), to sin 4?

(c) What is the sign of the error E5(4)? Of E7(4)?

−8

4

8

−3

3
III

II
III

III

x

y

Figure 10.21

16. (a) Using a calculator, make a table of values to four

decimal places of sin x for

x = −0.5, −0.4, … , −0.1, 0, 0.1, … , 0.4, 0.5.

(b) Add to your table the values of the error E1 =

sin x − x for these x-values.

(c) Using a calculator or computer, draw a graph of the

quantity E1 = sinx − x showing that

|E1| < 0.03 for − 0.5 ≤ x ≤ 0.5.

17. Find a bound on the magnitude of the error if we ap-

proximate
√

2 using the Taylor approximation of de-

gree three for
√

1 + x about x = 0.

18. (a) Let f (x) = ex. Find a bound on the magnitude of

the error when f (x) is approximated using P3(x),

its Taylor approximation of degree 3 around 0 over

the interval [−2, 2].

(b) What is the actual maximum error in approximat-

ing f (x) by P3(x) over the interval [−2, 2]?

19. Let f (x) = cos x and let Pn(x) be the Taylor approxi-

mation of degree n for f (x) around 0. Explain why, for

any x, we can choose an n such that

|f (x) − Pn(x)| < 10−9.

20. Consider the error in using the approximation sin � ≈ �

on the interval [−1, 1].

(a) Reasoning informally, say where the approxima-

tion is an overestimate and where it is an under-

estimate.

(b) Use Theorem 10.3 to bound the error. Check your

answer graphically on a computer or calculator.

21. Repeat Problem 20 for the approximation sin � ≈ � −

�3∕3!.

22. We approximate f (t) = et by a Taylor polynomial of

degree 0 about t = 0 on the interval [0, 0.5].

(a) Reasoning informally, say whether the approxima-

tion is an overestimate or an underestimate.

(b) Use Theorem 10.3 to bound the error. Check your

answer graphically on a computer or calculator.

23. Repeat Problem 22 using the second-degree Taylor ap-

proximation to et.

24. (a) Use the graphs of y = cos x and its Taylor polyno-

mials, P10(x) and P20(x), in Figure 10.22 to bound:

(i) The error in approximating cos 6 by P10(6)

and by P20(6).

(ii) The error in approximating cos x by P20(x)

for |x| ≤ 9.

(b) If we want to approximate cos x by P10(x) to an ac-

curacy of within 0.1, what is the largest interval of

x-values on which we can work? Give your answer

to the nearest integer.

−12 −6 −3 3 6 12

−3

3

P10(x) P10(x)

P20(x) P20(x)

cos xcos x
x

Figure 10.22

25. Give a bound for the error for the nth-degree Taylor

polynomial about x = 0 approximating cos x on the

interval [0, 1]. What is the bound for sin x?

26. What degree Taylor polynomial about x = 0 do you

need to calculate cos 1 to four decimal places? To six

decimal places? Justify your answer using the results

of Problem 25.

27. For |x| ≤ 0.1, graph the error

E0 = cos x − P0(x) = cos x − 1.

Explain the shape of the graph, using the Taylor expan-

sion of cos x. Find a bound for |E0| for |x| ≤ 0.1.

28. Show that the Taylor series about 0 for ex converges

to ex for every x. Do this by showing that the error

En(x) → 0 as n → ∞.

29. Show that the Taylor series about 0 for sinx converges

to sin x for every x.
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30. To approximate � using a Taylor polynomial, we could

use the series for the arctangent or the series for the arc-

sine. In this problem, we compare the two methods.

(a) Using the fact that d(arctan x)∕dx = 1∕(1 +

x2) and arctan 1 = �∕4, approximate the value

of � using the third-degree Taylor polynomial of

4 arctan x about x = 0.

(b) Using the fact that d(arcsin x)∕dx = 1∕
√

1 − x2

and arcsin 1 = �∕2, approximate the value of

� using the third-degree Taylor polynomial of

2 arcsin x about x = 0.

(c) Estimate the maximum error of the approximation

you found in part (a).

(d) Explain the problem in estimating the error in the

arcsine approximation.

In Problems 31–32, we compare the Lagrange and alternat-

ing series error bounds at x = 1∕2 in approximating the

function f (x) by Pn(x), its Taylor polynomial about x = 0.

The Taylor series converges to f (x) at x = 1∕2.

(a) Find the smallest bound for the error using Lagrange’s

method.

(b) Find a bound for the same error using the alternating

series bound.

(c) Compare your answers to parts (a) and (b). What do you

notice?

31. f (x) = 1∕(1 + x) 32. f (x) = e−x,

33. To use the alternating series error bound, the magnitude

of the terms must decrease monotonically to 0. Here we

use the alternating series error bound on the Taylor se-

ries for cos x, whose convergence to cos x is known.

(a) Find the ratio of the magnitudes of successive

terms in the Taylor series for cos x.

(b) Using your answer to part (a), if x = 1.1, show

that the magnitudes of the terms decrease mono-

tonically to zero.

(c) Bound the error in approximating cos x by its

degree-4 Taylor polynomial when x = 1.1.

(d) If x = 10, after which term in the Taylor series do

the terms of the series decrease monotonically to

zero?

(e) Assuming the alternating series error bound ap-

plies, bound the error E12(10) using an alternating

series.

Strengthen Your Understanding

In Problems 34–35, explain what is wrong with the state-

ment.

34. Let Pn(x) be a Taylor approximation of degree n for

a function f (x) about a, where a is a constant. Then

|f (a) − Pn(a)| > 0 for any n.

35. Let f (x) be a function whose Taylor series about x = 0

converges to f (x) for all x. Then there exists a posi-

tive integer n such that the nth-degree Taylor polyno-

mial Pn(x) for f (x) about x = 0 satisfies the inequality

|f (x) − Pn(x)| < 1 for all values of x.

In Problems 36–38, give an example of:

36. A function f (x) whose Taylor series converges to f (x)

for all values of x.

37. A polynomial P (x) such that |1∕x−P (x)| < 0.1 for all

x in the interval [1, 1.5].

38. A function f (x) and an interval [−c, c] such that the

value of M in the error of the second-degree Taylor

polynomial of f (x) centered at 0 on the interval could

be 4.

Decide if the statements in Problems 39–43 are true or false.

Assume that the Taylor series for a function converges to that

function. Give an explanation for your answer.

39. Let Pn(x) be the nth Taylor polynomial for a function f

near x = a. Although Pn(x) is a good approximation to

f near x = a, it is not possible to have Pn(x) = f (x)

for all x.

40. If |f (n)(x)| < 10 for all n > 0 and all x, then the Taylor

series for f about x = 0 converges to f (x) for all x.

41. If f (n)(0) ≥ n! for all n, then the Taylor series for f near

x = 0 diverges at x = 0.

42. If f (n)(0) ≥ n! for all n, then the Taylor series for f near

x = 0 diverges at x = 1.

43. If f (n)(0) ≥ n! for all n, then the Taylor series for f near

x = 0 diverges at x = 1∕2.

10.5 FOURIER SERIES

We have seen how to approximate a function by a Taylor polynomial of fixed degree. Such a poly-

nomial is usually very close to the true value of the function near one point (the point at which the

Taylor polynomial is centered), but not necessarily at all close anywhere else. In other words, Tay-

lor polynomials are good approximations of a function locally, but not necessarily globally. In this

section, we take another approach: we approximate the function by trigonometric functions, called

Fourier approximations. The resulting approximation may not be as close to the original function at
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some points as the Taylor polynomial. However, the Fourier approximation is, in general, close over

a larger interval. In other words, a Fourier approximation can be a better approximation globally. In

addition, Fourier approximations are useful even for functions that are not continuous. Unlike Taylor

approximations, Fourier approximations are periodic, so they are particularly useful for approximat-

ing periodic functions.

Many processes in nature are periodic or repeating, so it makes sense to approximate them by

periodic functions. For example, sound waves are made up of periodic oscillations of air molecules.

Heartbeats, the movement of the lungs, and the electrical current that powers our homes are all

periodic phenomena. Two of the simplest periodic functions are the square wave in Figure 10.23 and

the triangular wave in Figure 10.24. Electrical engineers use the square wave as the model for the

flow of electricity when a switch is repeatedly flicked on and off.

−1 0 1 2 3 4

1

x

y

f (x)

Figure 10.23: Square wave

−1 0 1 2 3 4

1

x

y

g(x)

Figure 10.24: Triangular wave

Fourier Polynomials

We can express the square wave and the triangular wave by the formulas

f (x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⋮ ⋮

0 −1 ≤ x < 0

1 0 ≤ x < 1

0 1 ≤ x < 2

1 2 ≤ x < 3

0 3 ≤ x < 4

⋮ ⋮

g(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⋮ ⋮

−x −1 ≤ x < 0

x 0 ≤ x < 1

2 − x 1 ≤ x < 2

x − 2 2 ≤ x < 3

4 − x 3 ≤ x < 4

⋮ ⋮

However, these formulas are not particularly easy to work with. Worse, the functions are not dif-

ferentiable at various points. Here we show how to approximate such functions by differentiable,

periodic functions.

Since sine and cosine are the simplest periodic functions, they are the building blocks we use.

Because they repeat every 2�, we assume that the function f we want to approximate repeats every

2�. (Later, we deal with the case where f has some other period.) We start by considering the

square wave in Figure 10.25. Because of the periodicity of all the functions concerned, we only have

to consider what happens in the course of a single period; the same behavior repeats in any other

period.

−� 0 �

1

x

y

f (x)

f (x) =
{

0 −� ≤ x < 0
1 0 ≤ x < �

Figure 10.25: Square wave on [−�, �]

We will attempt to approximate f with a sum of trigonometric functions of the form

f (x) ≈ Fn(x)

= a0 + a1 cos x + a2 cos(2x) + a3 cos(3x) +⋯ + an cos(nx)

+ b1 sinx + b2 sin(2x) + b3 sin(3x) +⋯ + bn sin(nx)

= a0 +

n
∑

k=1

ak cos(kx) +

n
∑

k=1

bk sin(kx).
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Fn(x) is known as a Fourier polynomial of degree n, named after the French mathematician Joseph

Fourier (1768–1830),who was one of the first to investigate it.11 The coefficients ak and bk are called

Fourier coefficients. Since each of the component functions cos(kx) and sin(kx), k = 1, 2, …, n,

repeats every 2�, Fn(x) must repeat every 2� and so is a potentially good match for f (x), which also

repeats every 2�. The problem is to determine values for the Fourier coefficients that achieve a close

match between f (x) and Fn(x). We choose the following values:

The Fourier Coefficients for a Periodic Function f of Period 2�

a0 =
1

2� ∫

�

−�

f (x) dx,

ak =
1

� ∫

�

−�

f (x) cos(kx) dx for k > 0,

bk =
1

� ∫

�

−�

f (x) sin(kx) dx for k > 0.

Notice that a0 is just the average value of f over the interval [−�, �].

For an informal justification for the use of these values, see page 593. In addition, the integrals over

[−�, �] for ak and bk can be replaced by integrals over any interval of length 2�.

Example 1 Construct successive Fourier polynomials for the square wave function f , with period 2�, given by

f (x) =
{

0 −� ≤ x < 0

1 0 ≤ x < �.

Solution Since a0 is the average value of f on [−�, �], we suspect from the graph of f that a0 =
1

2
. We can

verify this analytically:

a0 =
1

2� ∫

�

−�

f (x) dx =
1

2� ∫

0

−�

0 dx +
1

2� ∫

�

0

1 dx = 0 +
1

2�
(�) =

1

2
.

Furthermore,

a1 =
1

� ∫

�

−�

f (x) cosxdx =
1

� ∫

�

0

1 cosx dx = 0

and

b1 =
1

� ∫

�

−�

f (x) sinxdx =
1

� ∫

�

0

1 sinx dx =
2

�
.

Therefore, the Fourier polynomial of degree 1 is given by

f (x) ≈ F1(x) =
1

2
+

2

�
sinx,

and the graphs of the function and the first Fourier approximation are shown in Figure 10.26.

We next construct the Fourier polynomial of degree 2. The coefficients a0, a1, b1 are the same

as before. In addition,

a2 =
1

� ∫

�

−�

f (x) cos(2x)dx =
1

� ∫

�

0

1 cos(2x) dx = 0

11The Fourier polynomials are not polynomials in the usual sense of the word.
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−� �

1

2

1

x

f

F1

Figure 10.26: First Fourier approximation to

the square wave

�−�

1

1

2

x

F3

f

Figure 10.27: Third Fourier approximation to

the square wave
and

b2 =
1

� ∫

�

−�

f (x) sin(2x) dx =
1

� ∫

�

0

1 sin(2x) dx = 0.

Since a2 = b2 = 0, the Fourier polynomial of degree 2 is identical to the Fourier polynomial of

degree 1. Let’s look at the Fourier polynomial of degree 3:

a3 =
1

� ∫

�

−�

f (x) cos(3x)dx =
1

� ∫

�

0

1 cos(3x) dx = 0

and

b3 =
1

� ∫

�

−�

f (x) sin(3x)dx =
1

� ∫

�

0

1 sin(3x) dx =
2

3�
.

So the approximation is given by

f (x) ≈ F3(x) =
1

2
+

2

�
sin x +

2

3�
sin(3x).

The graph of F3 is shown in Figure 10.27. This approximation is better than F1(x) =
1

2
+

2

�
sin x, as

comparing Figure 10.27 to Figure 10.26 shows.

Without going through the details, we calculate the coefficients for higher-degree Fourier ap-

proximations:

F5(x) =
1

2
+

2

�
sin x +

2

3�
sin(3x) +

2

5�
sin(5x)

F7(x) =
1

2
+

2

�
sin x +

2

3�
sin(3x) +

2

5�
sin(5x) +

2

7�
sin(7x).

Figure 10.28 shows that higher-degree approximations match the step-like nature of the square wave

function more and more closely.

�−�

1

2

1

x

F5

f

�−�

1

2

1

x

f

F7

Figure 10.28: Fifth and seventh Fourier approximations to the square wave

We could have used a Taylor series to approximate the square wave, provided we did not center

the series at a point of discontinuity. Since the square wave is a constant function on each interval,

all its derivatives are zero, and so its Taylor series approximations are the constant functions 0 or

1, depending on where the Taylor series is centered. They approximate the square wave perfectly
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on each piece, but they do not do a good job over the whole interval of length 2�. That is what

Fourier polynomials succeed in doing: they approximate a curve fairly well everywhere, rather than

just near a particular point. The Fourier approximations above look a lot like square waves, so they

approximate well globally. However, they may not give good values near points of discontinuity. (For

example, near x = 0, they all give values near 1∕2, which are incorrect.) Thus Fourier polynomials

may not be good local approximations.

Taylor polynomials give good local approximations to a function;

Fourier polynomials give good global approximations to a function.

Fourier Series

As with Taylor polynomials, the higher the degree of the Fourier approximation, generally the more

accurate it is. Therefore, we carry this procedure on indefinitely by letting n → ∞, and we call the

resulting infinite series a Fourier series.

The Fourier Series for f on [–�, �]

f (x) = a0 + a1 cosx + a2 cos 2x + a3 cos 3x +⋯

+ b1 sin x + b2 sin 2x + b3 sin 3x +⋯

where ak and bk are the Fourier coefficients.

Thus, the Fourier series for the square wave is

f (x) =
1

2
+

2

�
sin x +

2

3�
sin 3x +

2

5�
sin 5x +

2

7�
sin 7x +⋯ .

Harmonics

Let us start with a function f (x) that is periodic with period 2�, expanded in a Fourier series:

f (x) = a0 + a1 cosx + a2 cos 2x + a3 cos 3x +⋯

+ b1 sin x + b2 sin 2x + b3 sin 3x +⋯

The function

ak cos kx + bk sin kx

is referred to as the kth harmonic of f , and it is customary to say that the Fourier series expresses f in

terms of its harmonics. The first harmonic, a1 cosx+ b1 sinx, is sometimes called the fundamental

harmonic of f .

Example 2 Find a0 and the first four harmonics of a pulse train function f of period 2� shown in Figure 10.29.

−3� −2� − � 0 �∕2 � 2� 3�

1

x

y

f (x) =
{

1 0 ≤ x < �∕2
0 �∕2 ≤ x < 2�

Figure 10.29: A train of pulses with period 2�
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Solution First, a0 is the average value of the function, so

a0 =
1

2� ∫

�

−�

f (x) dx =
1

2� ∫

�∕2

0

1 dx =
1

4
.

Next, we compute ak and bk, k = 1, 2, 3, and 4. The formulas

ak =
1

� ∫

�

−�

f (x) cos(kx) dx =
1

� ∫

�∕2

0

cos (kx) dx

bk =
1

� ∫

�

−�

f (x) sin(kx)dx =
1

� ∫

�∕2

0

sin (kx) dx

lead to the harmonics

a1 cos x + b1 sin x =
1

�
cos x +

1

�
sinx

a2 cos(2x) + b2 sin(2x) =
1

�
sin(2x)

a3 cos(3x) + b3 sin(3x) = −
1

3�
cos(3x) +

1

3�
sin(3x)

a4 cos(4x) + b4 sin(4x) = 0.

Figure 10.30 shows the graph of the sum of a0 and these harmonics, which is the fourth Fourier

approximation of f .

−3� −2� − � �∕2 � 2� 3�

1

x

✛ f (x)

✛ F4

Figure 10.30: Fourth Fourier approximation to pulse train f equals the sum of a0 and the first four harmonics

Energy and the Energy Theorem

The quantity Ak =

√

a2
k
+ b2

k
is called the amplitude of the kth harmonic. The square of the ampli-

tude has a useful interpretation. Adopting terminology from the study of periodic waves, we define

the energy E of a periodic function f of period 2� to be the number

E =
1

� ∫

�

−�

(f (x))2 dx.

Problem 19 on page 597 asks you to check that for all positive integers k,

1

� ∫

�

−�

(ak cos(kx) + bk sin(kx))
2 dx = a2

k
+ b2

k
= A2

k
.

This shows that the kth harmonic of f has energy A2
k
. The energy of the constant term a0 of the

Fourier series is
1

�
∫
�

−�
a2
0
dx = 2a2

0
, so we make the definition

A0 =
√

2a0.

It turns out that for all reasonable periodic functionsf , the energy of f equals the sum of the energies

of its harmonics:
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The Energy Theorem for a Periodic Function f of Period 2�

E =
1

� ∫

�

−�

(f (x))2 dx = A2
0
+ A2

1
+ A2

2
+⋯

where A0 =
√

2a0 and Ak =

√

a2
k
+ b2

k
(for all integers k ≥ 1).

The graph of A2
k

against k is called the energy spectrum of f . It shows how the energy of f is

distributed among its harmonics.

Example 3 (a) Graph the energy spectrum of the square wave of Example 1.

(b) What fraction of the energy of the square wave is contained in the constant term and first three

harmonics of its Fourier series?

Solution (a) We know from Example 1 that a0 = 1∕2, ak = 0 for k ≥ 1, bk = 0 for k even, and bk = 2∕(k�)

for k odd. Thus

A2
0
= 2a2

0
=

1

2

A2
k
= 0 if k is even, k ≥ 1,

A2
k
=
(

2

k�

)2

=
4

k2�2
if k is odd, k ≥ 1.

The energy spectrum is graphed in Figure 10.31. Notice that it is customary to represent the

energy A2
k

of the kth harmonic by a vertical line of length A2
k
. The graph shows that the constant

term and first harmonic carry most of the energy of f .

0 1 2 3 4 5 6

1∕2

k

A2
k

✠

Height = 4∕(�2)

❄

4∕(9�2)

❄

4∕(25�2)

Figure 10.31: The energy spectrum of a square

wave

(b) The energy of the square wave f (x) is

E =
1

� ∫

�

−�

(f (x))2 dx =
1

� ∫

�

0

1 dx = 1.

The energy in the constant term and the first three harmonics of the Fourier series is

A2
0
+ A2

1
+ A2

2
+ A2

3
=

1

2
+

4

�2
+ 0 +

4

9�2
= 0.950.

The fraction of energy carried by the constant term and the first three harmonics is

0.95∕1 = 0.95, or 95%.



10.5 FOURIER SERIES 591

Waveform of clarinet Waveform of trumpet

time

deviations in
air pressure

from average
time

deviations in
air pressure

from average

Figure 10.32: Sound waves of a clarinet and trumpet

Musical Instruments

You may have wondered why different musical instruments sound different, even when playing the

same note. A first step might be to graph the periodic deviations from the average air pressure that

form the sound waves they produce. This has been done for clarinet and trumpet in Figure 10.32.12

However, it is more revealing to graph the energy spectra of these functions, as in Figure 10.33. The

most striking difference is the relative weakness of the second and fourth harmonics for the clarinet,

with the second harmonic completely absent. The trumpet sounds the second harmonic with as much

energy as it does the fundamental.

1 2 3 4 5 6 7 8 9 10
k

0

A2
k

Spectrum of clarinet

0 1 2 3 4 5 6 7 8 9 10
k

Spectrum of trumpet

A2
k

Figure 10.33: Energy spectra of a clarinet and trumpet

What Do We Do If Our Function Does Not Have Period 2�?

We can adapt our previous work to find the Fourier series for a function of period b. Suppose f (x)

is given on the interval [−b∕2, b∕2]. In Problem 31, we see how to use a change of variable to get

the following result:

12Adapted from C.A. Culver, Musical Acoustics (New York: McGraw-Hill, 1956), pp. 204, 220.
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The Fourier Series for f on [−b∕2, b∕2]

f (x) = a0 +

∞
∑

k=1

(

ak cos
(

2�kx

b

)

+ bk sin
(

2�kx

b

))

where a0 =
1

b ∫

b∕2

−b∕2

f (x) dx and, for k ≥ 1,

ak =
2

b ∫

b∕2

−b∕2

f (x) cos
(

2�kx

b

)

dx and bk =
2

b ∫

b∕2

−b∕2

f (x) sin
(

2�kx

b

)

dx.

The constant 2�k∕b is called the angular frequency of the kth harmonic; b is the period of f .

Note that the integrals over [−b∕2, b∕2] can be replaced by integrals over any interval of length b.

Example 4 Find the fifth-degree Fourier polynomial of the square wave f (x) graphed in Figure 10.34.

−3 −2 −1 1 2 3 4

1

x

F5

✛ f

Figure 10.34: Square wave f and its fifth Fourier approximation F5

Solution Since f (x) repeats outside the interval [−1, 1], we have b = 2. As an example of how the coefficients

are computed, we find b1. Since f (x) = 0 for −1 < x < 0,

b1 =
2

2 ∫

1

−1

f (x) sin
(

2�x

2

)

dx =
∫

1

0

sin(�x)dx = −
1

�
cos(�x)

|

|

|

|

1

0

=
2

�
.

Finding the other coefficients by a similar method, we have

f (x) ≈
1

2
+

2

�
sin(�x) +

2

3�
sin(3�x) +

2

5�
sin(5�x).

Notice that the coefficients in this series are the same as those in Example 1. This is because the

graphs in Figures 10.28 and 10.34 are the same except with different scales on the x-axes.

Seasonal Variation in the Incidence of Measles

Example 5 Fourier approximations have been used to analyze the seasonal variation in the incidence of diseases.

One study13 done in Baltimore, Maryland, for the years 1901–1931, studied I(t), the average num-

ber of cases of measles per 10,000 susceptible children in the tth month of the year. The data points

in Figure 10.35 show f (t) = log I(t). The curve in Figure 10.35 shows the second Fourier approx-

imation of f (t). Figure 10.36 contains the graphs of the first and second harmonics of f (t), plotted

separately as deviations about a0, the average logarithmic incidence rate. Describe what these two

harmonics tell you about incidence of measles.

13From C. I. Bliss and D. L. Blevins, “The Analysis of Seasonal Variation in Measles” (Am. J. Hyg. 70, 1959), reported by

Edward Batschelet, Introduction to Mathematics for the Life Sciences (Springer-Verlag, Berlin, 1979).
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J F M A M J J A S O N D J F M A M

0.5

1.0

1.5

2.0

2.5

t

f (t)

Figure 10.35: Logarithm of incidence of measles per

month (dots) and second Fourier approximation (curve)

J F M A M J J A S O N D J F M A M

a0 − 1.0

a0 − 0.5

a0

a0 + 0.5

a0 + 1.0

t

First harmonic Second harmonic

❄ ❄

Figure 10.36: First and second harmonics of f (t) plotted

as deviations from average log incidence rate, a0

Solution Taking the log of I(t) has the effect of reducing the amplitude of the oscillations. However, since the

log of a function increases when the function increases and decreases when it decreases, oscillations

in f (t) correspond to oscillations in I(t).

Figure 10.36 shows that the first harmonic in the Fourier series has a period of one year (the

same period as the original function); the second harmonic has a period of six months. The graph

in Figure 10.36 shows that the first harmonic is approximately a sine function with amplitude about

0.7; the second harmonic is approximately the negative of a sine function with amplitude about 0.2.

Thus, for t in months (t = 0 in January),

log I(t) = f (t) ≈ a0 + 0.7 sin
(

�

6
t

)

− 0.2 sin
(

�

3
t

)

,

where �∕6 and �∕3 are introduced to make the periods 12 and 6 months, respectively. We can esti-

mate a0 from the original graph of f : it is the average value of f , approximately 1.5. Thus

f (t) ≈ 1.5 + 0.7 sin
(

�

6
t

)

− 0.2 sin
(

�

3
t

)

.

Figure 10.35 shows that the second Fourier approximation of f (t) is quite good. The harmonics of

f (t) beyond the second must be rather insignificant. This suggests that the variation in incidence in

measles comes from two sources, one with a yearly cycle that is reflected in the first harmonic and

one with a half-yearly cycle reflected in the second harmonic. At this point the mathematics can tell

us no more; we must turn to the epidemiologists for further explanation.

Informal Justification of the Formulas for the Fourier Coefficients
Recall that the coefficients in a Taylor series (which is a good approximation locally) are found

by differentiation. In contrast, the coefficients in a Fourier series (which is a good approximation

globally) are found by integration.

We want to find the constants a0, a1, a2, . . . and b1, b2, . . . in the expression

f (x) = a0 +

∞
∑

k=1

ak cos(kx) +

∞
∑

k=1

bk sin(kx).

Consider the integral

∫

�

−�

f (x)dx =
∫

�

−�

(

a0 +

∞
∑

k=1

ak cos(kx) +

∞
∑

k=1

bk sin(kx)

)

dx.

Splitting the integral into separate terms, and assuming we can interchange integration and summa-

tion, we get

∫

�

−�

f (x) dx =
∫

�

−�

a0 dx +
∫

�

−�

∞
∑

k=1

ak cos(kx) dx +
∫

�

−�

∞
∑

k=1

bk sin(kx) dx

=
∫

�

−�

a0 dx +

∞
∑

k=1
∫

�

−�

ak cos(kx) dx +

∞
∑

k=1
∫

�

−�

bk sin(kx) dx.
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But for k ≥ 1, thinking of the integral as an area shows that

∫

�

−�

sin(kx) dx = 0 and
∫

�

−�

cos(kx) dx = 0,

so all terms drop out except the first, giving

∫

�

−�

f (x) dx =
∫

�

−�

a0 dx = a0x
|

|

|

|

�

−�

= 2�a0.

Thus, we get the following result:

a0 =
1

2� ∫

�

−�

f (x) dx.

Thus a0 is the average value of f on the interval [−�, �].

To determine the values of any of the other ak or bk (for positive k), we use a rather clever

method that depends on the following facts. For all integers k and m,

∫

�

−�

sin(kx) cos(mx) dx = 0,

and, provided k ≠ m,

∫

�

−�

cos(kx) cos(mx) dx = 0 and
∫

�

−�

sin(kx) sin(mx) dx = 0.

(See Problems 26–30 on page 598.) In addition, provided m ≠ 0, we have

∫

�

−�

cos2(mx) dx = � and
∫

�

−�

sin2(mx) dx = �.

To determine ak, we multiply the Fourier series by cos(mx), where m is any positive integer:

f (x) cos(mx) = a0 cos(mx) +

∞
∑

k=1

ak cos(kx) cos(mx) +

∞
∑

k=1

bk sin(kx) cos(mx).

We integrate this between −� and �, term by term:

∫

�

−�

f (x) cos(mx)dx =
∫

�

−�

(

a0 cos(mx) +

∞
∑

k=1

ak cos(kx) cos(mx) +

∞
∑

k=1

bk sin(kx) cos(mx)

)

dx

= a0 ∫

�

−�

cos(mx) dx +

∞
∑

k=1

(

ak ∫

�

−�

cos(kx) cos(mx)dx

)

+

∞
∑

k=1

(

bk ∫

�

−�

sin(kx) cos(mx) dx

)

.

Providedm ≠ 0, we have ∫
�

−� cos(mx) dx = 0. Since the integral ∫
�

−� sin(kx) cos(mx) dx = 0, all the

terms in the second sum are zero. Since ∫
�

−�
cos(kx) cos(mx)dx = 0 provided k ≠ m, all the terms

in the first sum are zero except where k = m. Thus the right-hand side reduces to one term:

∫

�

−�

f (x) cos(mx) dx = am ∫

�

−�

cos(mx) cos(mx) dx = �am.
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This leads, for each value of m = 1, 2, 3… , to the following formula:

am =
1

� ∫

�

−�

f (x) cos(mx)dx.

To determine bk, we multiply through by sin(mx) instead of cos(mx) and eventually obtain, for

each value of m = 1, 2, 3… , the following result:

bm =
1

� ∫

�

−�

f (x) sin(mx) dx.

Summary for Section 10.5

• A periodic function of period 2� can be written as a Fourier series, which is a sum of trigono-

metric functions.

• The Fourier series for a periodic function f of period 2�:

f (x) = a0 + a1 cos x + a2 cos 2x + a3 cos 3x +⋯

+ b1 sinx + b2 sin 2x + b3 sin 3x +⋯

where ak and bk are the Fourier coefficients given by

a0 =
1

2� ∫

�

−�

f (x) dx

ak =
1

� ∫

�

−�

f (x) cos(kx) dx for k > 0,

bk =
1

� ∫

�

−�

f (x) sin(kx) dx for k > 0.

• The Fourier polynomial of degree n (which is not a polynomial but a trigonometric function) is

the function

Fn(x) = a0 +

n
∑

k=1

ak cos kx +

n
∑

k=1

bk sin kx.

• Fourier polynomials give good global approximationsof a function, whereas Taylor polynomials

give good local approximations.

• The function ak cos kx + bk sin kx is the kth harmonic of f .

• The energy E of a periodic function f of period 2� is given by

E =
1

� ∫

�

−�

f (x)2 dx.

The energy theorem states that

E = Sum of the energies of the harmonics of f

= A2
0
+ A2

1
+ A2

2
+⋯

where A0 =
√

2a0 and Ak =

√

a2
k
+ b2

k
(for all integers k ≥ 1).

• There is a form of Fourier series and Fourier coefficients suitable for periodic functions whose

period is not 2�.
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Exercises and Problems for Section 10.5

EXERCISES

Which of the series in Exercises 1–4 are Fourier series?

1. 1 + cos x + cos2 x + cos3 x + cos4 x +⋯

2. sin x + sin(x + 1) + sin(x + 2) +⋯

3.
cos x

2
+sin x−

cos(2x)

4
−
sin(2x)

2
+
cos(3x)

8
+
sin(3x)

3
−

⋯

4.
1

2
−

1

3
sin x +

1

4
sin(2x) −

1

5
sin(3x) +⋯

5. Construct the first three Fourier approximations to the

square wave function

f (x) =
{

−1 −� ≤ x < 0

1 0 ≤ x < �.

Use a calculator or computer to draw the graph of each

approximation.

6. Repeat Exercise 5 with the function

f (x) =
{

−x −� ≤ x < 0

x 0 ≤ x < �.

7. What fraction of the energy of the function in Problem 6

is contained in the constant term and first three harmon-

ics of its Fourier series?

For Exercises 8–10, find the nth Fourier polynomial for the

given functions, assuming them to be periodic with period

2�. Graph the first three approximations with the original

function.

8. f (x) = x2, −� < x ≤ �.

9. ℎ(x) =
{

0 −� < x ≤ 0

x 0 < x ≤ �.

10. g(x) = x, −� < x ≤ �.

PROBLEMS

11. Find the constant term of the Fourier series of the tri-

angular wave function defined by f (x) = |x| for −1 ≤

x ≤ 1 and f (x + 2) = f (x) for all x.

12. Using your result from Exercise 10, write the Fourier

series of g(x) = x. Assume that your series converges

to g(x) for −� < x < �. Substituting an appropriate

value of x into the series, show that

∞
∑

k=1

(−1)k+1
1

2k − 1
=

�

4
.

13. (a) For −2� ≤ x ≤ 2�, use a calculator to sketch:

i) y = sin x +
1

3
sin 3x

ii) y = sin x +
1

3
sin 3x +

1

5
sin 5x

(b) Each of the functions in part (a) is a Fourier ap-

proximation to a function whose graph is a square

wave. What term would you add to the right-hand

side of the second function in part (a) to get a better

approximation to the square wave?

(c) What is the equation of the square wave function?

Is this function continuous?

14. (a) Find and graph the third Fourier approximation of

the square wave g(x) of period 2�:

g(x) =

{

0 −� ≤ x < −�∕2

1 −�∕2 ≤ x < �∕2

0 �∕2 ≤ x < �.

(b) How does the result of part (a) differ from that of

the square wave in Example 1?

15. Suppose we have a periodic function f with period 1

defined by f (x) = x for 0 ≤ x < 1. Find the fourth-

degree Fourier polynomial for f and graph it on the in-

terval 0 ≤ x < 1. [Hint: Remember that since the pe-

riod is not 2�, you will have to start by doing a substi-

tution. Notice that the terms in the sum are not sin(nx)

and cos(nx), but instead turn out to be sin(2�nx) and

cos(2�nx).]

16. Suppose f has period 2 and f (x) = x for 0 ≤ x < 2.

Find the fourth-degree Fourier polynomial and graph it

on 0 ≤ x < 2. [Hint: See Problem 15.]

17. Suppose that a spacecraft near Neptune has measured

a quantity A and sent it to earth in the form of a peri-

odic signal A cos t of amplitude A. On its way to earth,

the signal picks up periodic noise, containing only sec-

ond and higher harmonics. Suppose that the signal ℎ(t)

actually received on earth is graphed in Figure 10.37.

Determine the signal that the spacecraft originally sent

and hence the value A of the measurement.

−�
−

3�

4
−

�

2
−

�

4 �
3�

4

�

2

�

4

−50

−30

80

t

ℎ(t)

Figure 10.37
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18. Figures 10.38 and 10.39 show the waveforms and en-

ergy spectra for notes produced by flute and bassoon.14

Describe the principal differences between the two

spectra.

time

deviations in air pressure
from average

Waveform of flute

time

deviations in air pressure
from average

Waveform of bassoon

Figure 10.38

1 2 3 4 5 6 7 8
k

A2
k

Spectrum of flute

0

1 2 3 4 5 6 7 8 9
k

A2
k

Spectrum of bassoon

0

Figure 10.39

19. Show that for positive integers k, the periodic function

f (x) = ak cos kx + bk sinkx of period 2� has energy

a2
k
+ b2

k
.

20. Given the graph of f in Figure 10.40, find the first two

Fourier approximations numerically.

−2� −� � 2�

−2

1

2

x

y

y = f (x)

Figure 10.40

21. Justify the formula bk =
1

�
∫

�

−�
f (x) sin(kx) dx for the

Fourier coefficients, bk, of a periodic function of period

2�. The argument is similar to that in the text for ak.

In Problems 22–25, the pulse train of width c is the periodic

function f of period 2� given by

f (x) =

{

0 −� ≤ x < −c∕2

1 −c∕2 ≤ x < c∕2

0 c∕2 ≤ x < �.

22. Suppose that f is the pulse train of width 1.

(a) What fraction of the energy of f is contained in the

constant term of its Fourier series? In the constant

term and the first harmonic together?

(b) Find a formula for the energy of the kth harmonic

of f . Use it to sketch the energy spectrum of f .

(c) How many terms of the Fourier series of f are

needed to capture 90% of the energy of f?

(d) Graph f and its fifth Fourier approximation on the

interval [−3�, 3�].

23. Suppose that f is the pulse train of width 0.4.

(a) What fraction of the energy of f is contained in the

constant term of its Fourier series? In the constant

term and the first harmonic together?

(b) Find a formula for the energy of the kth harmonic

of f . Use it to sketch the energy spectrum of f .

(c) What fraction of the energy of f is contained in

the constant term and the first five harmonics of f?

(The constant term and the first thirteen harmonics

are needed to capture 90% of the energy of f .)

(d) Graph f and its fifth Fourier approximation on the

interval [−3�, 3�].

24. Suppose that f is the pulse train of width 2.

(a) What fraction of the energy of f is contained in the

constant term of its Fourier series? In the constant

term and the first harmonic together?

(b) How many terms of the Fourier series of f are

needed to capture 90% of the energy of f?

(c) Graph f and its third Fourier approximation on the

interval [−3�, 3�].

25. After working Problems 22–24, write a paragraph about

the approximation of pulse trains by Fourier polynomi-

als. Explain how the energy spectrum of a pulse train of

width c changes as c gets closer and closer to 0 and how

this affects the number of terms required for an accurate

approximation.

14Adapted from C.A. Culver, Musical Acoustics (New York: McGraw-Hill, 1956), pp. 200, 213.
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For Problems 26–30, use the table of integrals inside the

back cover to show that the following statements are true

for positive integers k and m.

26.
∫

�

−�

cos(kx) cos(mx) dx = 0, if k ≠ m.

27.
∫

�

−�

cos2(mx) dx = �.

28.
∫

�

−�

sin2(mx) dx = �.

29.
∫

�

−�

sin(kx) cos(mx) dx = 0.

30.
∫

�

−�

sin(kx) sin(mx) dx = 0, if k ≠ m.

31. Suppose that f (x) is a periodic function with period b.

Show that

(a) g(t) = f (bt∕2�) is periodic with period 2� and

f (x) = g(2�x∕b).

(b) The Fourier series for g is given by

g(t) = a0 +

∞
∑

k=1

(

ak cos(kt) + bk sin(kt)
)

where the coefficients a0, ak, bk are given in the

box on page 592.

(c) The Fourier series for f is given by

f (x) = a0 +

∞
∑

k=1

(

ak cos
(

2�kx

b

)

+ bk sin
(

2�kx

b

))

where the coefficients are the same as in part (b).

Strengthen Your Understanding

In Problems 32–33, explain what is wrong with the state-

ment.

32. ∫
�

−�
sin(kx) cos(mx) dx = �, where k, m are both posi-

tive integers.

33. In the Fourier series for f (x) given by

a0 +

∞
∑

k=1

ak cos(kx) +

∞
∑

k=1

bk sin(kx), we have a0 =

f (0).

In Problems 34–35, give an example of:

34. A function, f (x), with period 2� whose Fourier series

has no sine terms.

35. A function, f (x), with period 2� whose Fourier series

has no cosine terms.

36. True or false? If f is an even function, then the Fourier

series for f on [−�, �] has only cosines. Explain your

answer.

37. The graph in Figure 10.41 is the graph of the first three

terms of the Fourier series of which of the following

functions?

(a) f (x) = 3(x∕�)3 on −� < x < � and

f (x + 2�) = f (x)

(b) f (t) = |x| on −� < x < � and f (x + 2�) = f (x)

(c) f (x) =

{

−3 , −� < x < 0

3 , 0 < x < �
} and

f (x + 2�) = f (x)

(d) f (x) =

{

� + x , −� < x < 0

� − x , 0 < x < �
} and

f (x + 2�) = f (x)

−6 −4 −2 2 4 6

−4

−3

−2

−1

1

2

3

4

x

Figure 10.41
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11.1 WHAT IS A DIFFERENTIAL EQUATION?

How Fast Does a Person Learn?

Suppose we are interested in how fast an employee learns a new task. One theory claims that the

more the employee already knows of the task, the slower he or she learns. In other words, if y% is

the percentage of the task that has already been mastered and dy∕dt the rate at which the employee

learns, then dy∕dt decreases as y increases.

What can we say about y as a function of time, t? Figure 11.1 shows three graphs whose slope,

dy∕dt, decreases as y increases. Figure 11.1(a) represents an employee who starts learning at t = 0

and who eventually masters 100% of the task. Figure 11.1(b) represents an employee who starts later

but eventually masters 100% of the task. Figure 11.1(c) represents an employee who starts learning

at t = 0 but who does not master the whole task (since y levels off below 100%).

100

t

y (as a percent)(a)

100

t

y (as a percent)(b)

100

y (as a percent)

t

(c)

Figure 11.1: Possible graphs showing percentage of task learned, y, as a function of time, t

Setting up a Differential Equation to Model How a Person Learns

To describe more precisely how a person learns, we need more exact information about how dy∕dt

depends on y. Suppose, if time is measured in weeks, that

Rate a person learns = Percentage of task not yet learned.

Since y is the percentage learned by time t (in weeks), the percentage not yet learned by that time is

100 − y. So we have
dy

dt
= 100 − y.

Such an equation, which gives information about the rate of change of an unknown function, is called

a differential equation.

Solving the Differential Equation Numerically

Suppose that the person starts learning at time zero, so y = 0 when t = 0. Then initially the person

is learning at a rate
dy

dt
= 100 − 0 = 100%per week.

In other words, if the person were to continue learning at this rate, the task would be mastered in a

week. In fact, however, the rate at which the person learns decreases, so it takes more than a week

to get close to mastering the task. Let’s assume a five-day work week and that the 100% per week

learning rate holds for the whole first day. (It does not, but we assume this for now.) One day is 1/5

of a week, so during the first day the person learns 100(1∕5) = 20% of the task. By the end of the

first day, the rate at which the person learns has therefore been reduced to

dy

dt
= 100 − 20 = 80%per week.

Thus, during the second day the person learns 80(1∕5) = 16%, so by the end of the second day, the

person knows 20 + 16 = 36% of the task. Continuing in this fashion, we compute the approximate

y-values1 in Table 11.1.

Table 11.1 Approximate percentage of task learned as a function of time

Time (working days) 0 1 2 3 4 5 10 20

Percentage learned 0 20 36 48.8 59.0 67.2 89.3 98.8

1The values of y after 6, 7, 8, 9, … , 19 days were computed by the same method, but omitted from the table.
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A Formula for the Solution to the Differential Equation

A function y = f (t) that satisfies the differential equation is called a solution. Figure 11.1(a) shows a

possible solution, and Table 11.1 shows approximate numerical values of a solution to the equation

dy

dt
= 100 − y.

Later in this chapter, we see how to obtain a formula for the solution:

y = 100 + Ce−t,

where C is a constant. To check that this formula is correct, we substitute into the differential equa-

tion, giving:

Left side =
dy

dt
=
d

dt
(100 + Ce−t) = −Ce−t

Right side = 100 − y = 100 − (100 + Ce−t) = −Ce−t.

Since we get the same result on both sides, y = 100+Ce−t is a solution of this differential equation.

Finding the Arbitrary Constant: Initial Conditions

To find a value for the arbitrary constant C , we need an additional piece of information—usually the

initial value of y. If, for example, we are told that y = 0 when t = 0, then substituting into

y = 100 + Ce−t

shows us that

0 = 100 + Ce0, so C = −100.

So the function y = 100 − 100e−t satisfies the differential equation and the condition that y = 0

when t = 0.

The Family of Solutions
Any solution to this differential equation is of the form y = 100 + Ce−t for some constant C . Like

a family of antiderivatives, this family contains an arbitrary constant, C . We say that the general

solution to the differential equation dy∕dt = 100− y is the family of functions y = 100+Ce−t. The

solution y = 100−100e−t that satisfies the differential equation together with the initial condition that

y = 0 when t = 0 is called a particular solution. The differential equation and the initial condition

together are called an initial value problem. Several members of the family of solutions are graphed

in Figure 11.2. The horizontal solution curve when C = 0 is called an equilibrium solution.

100

y

t

✠

C = 100

■
C = −200

■
C = −100

✠

C = 0

■

C = −50

Figure 11.2: Solution curves for dy∕dt = 100 − y:

Members of the family y = 100 + Ce−t

First- and Second-Order Differential Equations
First, some more definitions. We often write y′ to represent the derivative of y. The differential

equation

y′ = 100 − y

is called first-order because it involves the first derivative, but no higher derivatives. By contrast, if s

is the height (in meters) of a body moving under the force of gravity and t is time (in seconds), then

d2s

dt2
= −9.8.
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This is a second-order differential equation because it involves the second derivative of the unknown

function, s = f (t), but no higher derivatives.

Example 1 Show that y = e2t is not a solution to the second-order differential equation

d2y

dt2
+ 4y = 0.

Solution To decide whether the function y = e2t is a solution, substitute it into the differential equation:

d2y

dt2
+ 4y = 2(2e2t) + 4e2t = 8e2t.

Since 8e2t is not identically zero, y = e2t is not a solution.

How Many Arbitrary Constants Should We Expect in the Family of Solutions?

Since a differential equation involves the derivative of an unknown function, solving it usually in-

volves antidifferentiation, which introduces arbitrary constants. The solution to a first-order differ-

ential equation usually involves one antidifferentiation and one arbitrary constant (for example, the

C in y = 100 + Ce−t). Picking out one particular solution involves knowing one additional piece

of information, such as an initial condition. Solving a second-order differential equation generally

involves two antidifferentiations and so two arbitrary constants. Consequently, finding a particular

solution usually involves two initial conditions.

For example, if s is the height (in meters) of a body above the surface of the earth at time t (in

seconds), then

d2s

dt2
= −9.8.

Integrating gives
ds

dt
= −9.8t+ C1,

and integrating again gives

s = −4.9t2 + C1t + C2.

Thus the general solution for s involves the two arbitrary constants C1 and C2. We can find C1 and

C2 if we are told, for example, that the initial velocity at t = 0 is 30 meters per second upward and

that the initial position is 5 meters above the ground. In this case, C1 = 30 and C2 = 5.

Summary for Section 11.1
• A differential equation is an equation involving a derivative of an unknown function. For ex-

ample, dy∕dt = 3y is a differential equation for the unknown function y(t).

• A solution of a differential equation is a function that gives equality when substituted into the

differential equation. For example, since y(t) = e3t satisfies the differential equationdy∕dt = 3y,

it is a solution.

• A solution of a differential equation that is a constant function is called an equilibrium solution.

For example, y(t) = 0 is an equilibrium solution of dy∕dt = 3y.

• Differential equations usually have an infinite family of solutions, involving one or more arbi-

trary constants. A formula for the family of solutions is known as the general solution of the

differential equation. For example, y(t) = Ce3t is the general solution of dy∕dt = 3y.

• When a solution y(t) also satisfies an initial condition such as y(0) = constant, then we get a

particular solution. For example, the function y(t) = 5e3t is a particular solution of dy∕dt = 3y

with initial condition y(0) = 5.

• The order of a differential equation is the highest derivative of the unknown function that ap-

pears in the differential equation. For example, dy∕dt = 3y is a first-order differential equation,

and d2y∕dt2 = 3y is a second-order differential equation.
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• General solutions of first-order differential equations have one arbitrary constant, while those

of second-order have two arbitrary constants.

Exercises and Problems for Section 11.1

EXERCISES

1. Is y = x3 a solution to the differential equation

xy′ − 3y = 0?

In Exercises 2–7, which differential equation, (I)–(VI), has

the function as a solution?

I. y′ = −2xy II. y′ = −xy III. y′ = xy

IV. y′ = −x2y V. y′ = x−3y VI. y′ = 2xy

2. y = e−x
2

3. y = e−0.5x
2

4. y = 0.5e−x
2

5. y = 0.5ex
2

6. y = −e−x
3∕3 7. y = e−0.5x

−2

8. Determine whether each function is a solution to the

differential equation and justify your answer:

x
dy

dx
= 4y.

(a) y = x4 (b) y = x4 + 3

(c) y = x3 (d) y = 7x4

9. Determine whether each function is a solution to the

differential equation and justify your answer:

y
dy

dx
= 6x2.

(a) y = 4x3 (b) y = 2x3∕2 (c) y = 6x3∕2

10. Pick out which functions are solutions to which differ-

ential equations. (Note: Functions may be solutions to

more than one equation or to none; an equation may

have more than one solution.)

(a)
dy

dx
= −2y (I) y = 2 sinx

(b)
dy

dx
= 2y (II) y = sin 2x

(c)
d2y

dx2
= 4y (III) y = e2x

(d)
d2y

dx2
= −4y (IV) y = e−2x

11. Match solutions and differential equations. (Note: Each

equation may have more than one solution.)

(a) y′′ − y = 0 (I) y = ex

(b) x2y′′ + 2xy′ − 2y = 0 (II) y = x3

(c) x2y′′ − 6y = 0 (III) y = e−x

(IV) y = x−2

12. Show that, for any constant P0, the function P = P0e
t

satisfies the equation

dP

dt
= P .

13. Show that y(x) = Ae�x is a solution to the equation

y′ = �y for any value of A and constant �.

14. Show that y = sin 2t satisfies

d2y

dt2
+ 4y = 0.

15. Is y(x) = e3x the general solution of y′ = 3y?

16. Use implicit differentiation to show that x2 + y2 = r2 is

a solution to the differential equation dy∕dx = −x∕y,

for any constant r.

17. A quantity Q satisfies the differential equation

dQ

dt
=

t

Q
− 0.5.

(a) If Q = 8 when t = 2, use dQ∕dt to determine

whether Q is increasing or decreasing at t = 2.

(b) Use your work in part (a) to estimate the value of

Qwhen t = 3. Assume the rate of change stays ap-

proximately constant over the interval from t = 2

to t = 3.

18. Fill in the missing values in the table given that dy∕dt =

0.5y. Assume the rate of growth given by dy∕dt is ap-

proximately constant over each unit time interval and

that the initial value of y is 8.

t 0 1 2 3 4

y 8

19. Use the method that generated the data in Table 11.1

on page 600 to fill in the missing y-values for t =

6, 7, … , 19 days.

In Exercises 20–23, find the particular solution to a differ-

ential equation whose general solution and initial condition

are given. (C is the constant of integration.)

20. x(t) = Ce3t; x(0) = 5

21. P = C∕t; P = 5 when t = 3

22. y =
√

2t + C; the solution curve passes through (1, 3)

23. Q = 1∕(Ct + C); Q = 4 when t = 2



604 Chapter 11 DIFFERENTIAL EQUATIONS

PROBLEMS

24. Show that y = A + Cekt is a solution to the equation

dy

dt
= k(y − A).

25. Find the value(s) of ! for which y = cos!t satisfies

d2y

dt2
+ 9y = 0.

26. Show that any function of the form

x = C1 cosh!t + C2 sinh!t

satisfies the differential equation

x′′ − !2x = 0.

27. Suppose Q = Cekt satisfies the differential equation

dQ

dt
= −0.03Q.

What (if anything) does this tell you about the values of

C and k?

28. Find the values of k for which y = x2 + k is a solution

to the differential equation

2y − xy′ = 10.

29. For what value of k is y = ekx a solution to

7y − 3
dy

dx
= 0?

30. For what values of k (if any) does y = 5 + 3ekx satisfy

the differential equation

dy

dx
= 10 − 2y?

31. Find k if y = 6e−3x
2

is a solution to y′ = kxy.

32. Find k if y = ke2x + 5ex + 6 is a solution to

y′ = 6e2x + 5ex.

33. For what value of n is y = xn a solution for x > 0 to

2x
dy

dx
− 7y = 0?

34. (a) For what values of C and n (if any) is y = Cxn a

solution to the differential equation

x
dy

dx
− 3y = 0?

(b) If the solution satisfies y = 40 when x = 2, what

more (if anything) can you say about C and n?

35. (a) Find the value ofA so that the equation y′−xy−x =

0 has a solution of the form y(x) = A + Bex
2∕2 for

any constant B.

(b) If y(0) = 1, find B.

36. In Figure 11.3, the height, y, of the hanging cable above

the horizontal line satisfies

d2y

dx2
= k

√

1 +

(

dy

dx

)2

.

(a) Show that y =
ex + e−x

2
satisfies this differential

equation if k = 1.

(b) For general k, one solution to this differential equa-

tion is of the form

y =
eAx + e−Ax

2A
.

Substitute this expression for y into the differential

equation to find A in terms of k.

x

y Cable

Figure 11.3

37. Families of curves often arise as solutions of differential

equations. Match the families of curves with the differ-

ential equations of which they are solutions.

(a)
dy

dx
=
y

x
(I) y = xekx

(b)
dy

dx
= ky (II) y = xk

(c)
dy

dx
= ky +

y

x
(III) y = ekx

(d)
dy

dx
=
ky

x
(IV) y = kx

38. (a) Let y = A + Be−2t. For what values of A and B, if

any, is y a solution to the differential equation

dy

dt
= 100 − 2y?

Give the general solution to the differential equa-

tion.

(b) If the solution satisfies y = 85 when t = 0, what

more (if anything) can you say about A and B?

Give the particular solution to the differential equa-

tion with this initial condition.

For Problems 39–40, let y = f (x) be a solution to the differ-

ential equation. Determine whether y = 2f (x) is a solution.

39. dy∕dx = y 40. dy∕dx = x

For Problems 41–42, let y = f (x) and y = g(x) be differ-

ent solutions to the differential equation. Determine whether

y = f (x) − g(x) is a solution to dy∕dx = 0.

41. dy∕dx = x 42. dy∕dx = y
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Strengthen Your Understanding

In Problems 43–44, explain what is wrong with the state-

ment.

43. Q = 6e4t is the general solution to the differential equa-

tion dQ∕dt = 4Q.

44. If dx∕dt = 1∕x and x = 3 when t = 0, then x is a

decreasing function of t.

In Problems 45–51, give an example of:

45. A differential equation with an initial condition.

46. A second-order differential equation.

47. A differential equation and two different solutions to the

differential equation.

48. A differential equation that has a trigonometric function

as a solution.

49. A differential equation that has a logarithmic function

as a solution.

50. A differential equation all of whose solutions are in-

creasing and concave up.

51. A differential equation all of whose solutions have their

critical points on the parabola y = x2.

Are the statements in Problems 52–53 true or false? Give an

explanation for your answer.

52. If y = f (t) is a particular solution to a first-order

differential equation, then the general solution is y =

f (t) + C , where C is an arbitrary constant.

53. Polynomials are never solutions to differential equa-

tions.

In Problems 54–61, is the statement true or false? Assume

that y = f (x) is a solution to the equation dy∕dx = g(x). If

the statement is true, explain how you know. If the statement

is false, give a counterexample.

54. If g(x) is increasing for all x, then the graph of f is

concave up for all x .

55. If g(x) is increasing for x > 0, then so is f (x).

56. If g(0) = 1 and g(x) is increasing for x ≥ 0, then f (x)

is also increasing for x ≥ 0.

57. If g(x) is periodic, then f (x) is also periodic.

58. If limx→∞ g(x) = 0, then limx→∞ f (x) = 0.

59. If limx→∞ g(x) = ∞, then limx→∞ f (x) = ∞.

60. If g(x) is even, then so is f (x).

61. If g(x) is even, then f (x) is odd.

11.2 SLOPE FIELDS

In this section, we see how to visualize a first-order differential equation. We start with the equation

dy

dx
= y.

Any solution to this differential equation has the property that the slope at any point is equal to the

y-coordinate at that point. (That’s what the equation dy∕dx = y is telling us!) If the solution goes

through the point (0, 0.5), its slope there is 0.5; if it goes through a point with y = 1.5, its slope there

is 1.5. See Figure 11.4.

In Figure 11.4 a small line segment is drawn at each of the marked points showing the slope of

the curve there. Imagine drawing many of these line segments, but leaving out the curves; this gives

the slope field for the equation dy∕dx = y in Figure 11.5. From this picture, we can see that above

the x-axis, the slopes are all positive (because y is positive there), and they increase as we move

upward (as y increases). Below the x-axis, the slopes are all negative and get more so as we move

downward. On any horizontal line (where y is constant) the slopes are the same.

−2 −1 1 2

−2

−1

1

2

x

y

✛
✛

✛

Slope = 0.5

Slope = 1

Slope = 1.5

Figure 11.4: Solutions to dy∕dx = y

−2 2

−2

2

x

y

Figure 11.5: Slope field for dy∕dx = y



606 Chapter 11 DIFFERENTIAL EQUATIONS

In the slope field we can see the ghost of the solution curve lurking. Start anywhere on the plane

and move so that the slope lines are tangent to our path; we trace out one of the solution curves. We

think of the slope field as a set of signposts pointing in the direction we should go at each point. In

this case, the slope field should trace out exponential curves of the form y = Cex, the solutions to

the differential equation dy∕dx = y.

Example 1 Figure 11.6 shows the slope field of the differential equation dy∕dx = 2x.

(a) How does the slope field vary as we move around the xy-plane?

(b) Compare the solution curves sketched on the slope field with the formula for the solutions.

Solution (a) In Figure 11.6 we notice that on a vertical line (where x is constant) the slopes are the same.

This is because in this differential equation dy∕dx depends on x only. (In the previous example,

dy∕dx = y, the slopes depended on y only.)

(b) The solution curves in Figure 11.7 look like parabolas. By antidifferentiation, we see that the

solution to the differential equation dy∕dx = 2x is

y =
∫

2x dx = x2 + C,

so the solution curves really are parabolas.

−3 3

−3

3

x

y

Figure 11.6: Slope field for dy∕dx = 2x

−3 3

−3

3

x

y

Figure 11.7: Some solutions to dy∕dx = 2x

Example 2 Using the slope field, guess the form of the solution curves of the differential equation

dy

dx
= −

x

y
.

Solution The slope field is shown in Figure 11.8. On the y-axis, where x is 0, the slope is 0. On the x-

axis, where y is 0, the line segments are vertical and the slope is infinite. At the origin the slope is

undefined, and there is no line segment.

The slope field suggests that the solution curves are circles centered at the origin. Later we

see how to obtain the solution analytically, but even without this, we can check that the circle is a

solution. We take the circle of radius r,

x2 + y2 = r2,

and differentiate implicitly, thinking of y as a function of x. Using the chain rule, we get

2x + 2y ⋅
dy

dx
= 0.

Solving for dy∕dx gives our differential equation,

dy

dx
= −

x

y
.

This tells us that x2 + y2 = r2 is a solution to the differential equation.
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−2 2

−2

2

x

y

Figure 11.8: Slope field for dy∕dx = −x∕y

The previous example shows that the solution to a differential equation may be an implicit func-

tion.

Example 3 The slope fields of dy∕dt = 2 − y and dy∕dt = t∕y are in Figures 11.9 and 11.10.

(a) On each slope field, sketch solution curves with initial conditions

(i) y = 1 when t = 0 (ii) y = 0 when t = 1 (iii) y = 3 when t = 0

(b) For each solution curve, what can you say about the long-run behavior of y? For example, does

lim
t→∞

y exist? If so, what is its value?

−4 4

2

4

6

t

y

Figure 11.9: Slope field for dy∕dt = 2 − y

−5 5

−5

5

t

y

Figure 11.10: Slope field for dy∕dt = t∕y

Solution (a) See Figures 11.11 and 11.12.

(b) For dy∕dt = 2 − y, all solution curves have y = 2 as a horizontal asymptote, so lim
t→∞

y = 2. For

dy∕dt = t∕y, as t→ ∞, it appears that either y→ t or y→ −t.

−4 4

2

4

6

t

y

(i) (ii)

(iii)

Figure 11.11: Solution curves for dy∕dt = 2 − y

−5 5

−5

5

t

y
(i) (iii)

(ii)

Figure 11.12: Solution curves for dy∕dt = t∕y
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Existence and Uniqueness of Solutions

Since differential equations are used to model many real situations, the question of whether a solution

is unique can have great practical importance. If we know how the velocity of a satellite is changing,

can we know its velocity at any future time? If we know the initial population of a city and we know

how the population is changing, can we predict the population in the future? Common sense says

yes: if we know the initial value of some quantity and we know exactly how it is changing, we should

be able to figure out its future value.

In the language of differential equations, an initial value problem (that is, a differential equation

and an initial condition) almost always has a unique solution. One way to see this is by looking at

the slope field. Imagine starting at the point representing the initial condition. Through that point

there is usually a line segment pointing in the direction of the solution curve. By following these

line segments, we trace out the solution curve. See Figure 11.13. In general, at each point there is

one line segment and therefore only one direction for the solution curve to go. The solution curve

exists and is unique provided we are given an initial point. Notice that even though we can draw the

solution curves, we may have no simple formula for them.

It can be shown that if the slope field is continuous as we move from point to point in the plane,

we can be sure that a solution curve exists everywhere. Ensuring that each point has only one solution

curve through it requires a slightly stronger condition.

x

y

Figure 11.13: There’s one and only one solution curve through each

point in the plane for this slope field (dots represent initial conditions).

Summary for Section 11.2

• A slope field for a first-order differential equation is a plot of a selection of slopes of tangent

lines to the unknown solution, where the slopes are given by the differential equation.

• Slope fields can be used to give qualitative information about solutions, since we can start

anywhere and follow the slopes to see if solutions increase, decrease, are concave up or down,

etc.

• We can use slope fields to help understand why solutions to a first-order differential exist and

are unique once a starting point ( i.e. initial condition) is chosen.
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Exercises and Problems for Section 11.2 Online Resource: Additional Problems for Section 11.2
EXERCISES

1. (a) For dy∕dx = x2 − y2, find the slope at the follow-

ing points:

(1, 0), (0, 1), (1, 1), (2, 1), (1, 2), (2, 2)

(b) Sketch the slope field at these points.

2. Sketch the slope field for dy∕dx = x∕y at the points

marked in Figure 11.14.

−1 1

−1

1

x

y

Figure 11.14

−1 1

1

2

x

y

Figure 11.15

3. Sketch the slope field for dy∕dx = y2 at the points

marked in Figure 11.15.

4. Match each of the slope field segments in (I)–(VI) with

one or more of the differential equations in (a)–(f).

(a) y′ = e−x
2

(b) y′ = cos y

(c) y′ = cos(4 − y) (d) y′ = y(4 − y)

(e) y′ = y(3 − y) (f) y′ = x(3 − x)

4

4

x

y(I)

4

4

x

y(II)

4

4

x

y(III)

4

4

x

y(IV)

4

4

x

y(V)

4

4

x

y(VI)

5. Sketch three solution curves for each of the slope fields

in Figures 11.16 and 11.17.

x

y

Figure 11.16

x

y

Figure 11.17

6. Sketch three solution curves for each of the slope fields

in Figure 11.18.

x

y

x

y

Figure 11.18

For Exercises 7–9, at the given point, is the solution curve

to y′ = 2y − 3x − 4 increasing or decreasing?

7. (1, 4) 8. (2, 4) 9. (0, 3)

10. One of the slope fields in Figure 11.18 is the slope field

for y′ = x2 − y2. Which one? On this field, where is

the point (0, 1)? The point (1, 0)? (Assume that the x

and y scales are the same.) Sketch the line x = 1 and

the solution curve passing through (0, 1) until it crosses

x = 1.

11. The slope field for the equation y′ = x(y − 1) is shown

in Figure 11.19.

(a) Sketch the solutions that pass through the points

(i) (0, 1) (ii) (0,−1) (iii) (0, 0)

(b) From your sketch, write the equation of the solu-

tion with y(0) = 1.

(c) Check your solution to part (b) by substituting it

into the differential equation.
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−2 2

−2

2

x

y

Figure 11.19

12. The slope field for the equation y′ = x + y is shown in

Figure 11.20.

(a) Sketch the solutions that pass through the points

(i) (0, 0) (ii) (−3, 1) (iii) (−1, 0)

(b) From your sketch, write the equation of the solu-

tion passing through (−1, 0).

(c) Check your solution to part (b) by substituting it

into the differential equation.

−4 4

−4

4

x

y

Figure 11.20: Slope field for

y′ = x + y

PROBLEMS

13. (a) Match the slope fields (A) and (B) with the follow-

ing differential equations:

(i) y′ = 0.3y (ii) y′ = 0.3t

(b) For the solutions to each differential equation in

part (a), what is lim
t→∞

y(t) if

(i) y(0) = 1 (ii) y(0) = 0

5

5

t

y(A)

5

5

t

y(B)

14. The slope field of y′ = 1∕t is in Figure 11.21.

(a) On each vertical line, why are the line segments

parallel?

(b) For t > 0, let

f (t) =
∫

t

1

1

x
dx.

What is the value of f (1)?

(c) For what values of t is f (t) positive? Negative?

(d) Sketch f (t) on the slope field.

1 2 3 4 5

−1

1

2

t

y

Figure 11.21: Slope field showing f (t)

15. Figure 11.22 shows the slope field for y′ = x − y. For

each labeled point, A–D, does the solution curve pass-

ing through that point have a critical point?

A

B

C

D

x

y

Figure 11.22

16. A slope field for a differential equation has slopes

greater than 0 at every point of the xy-plane.

(a) Explain why any solution curve to this differential

equation is increasing everywhere.

(b) Can you conclude that a solution curve to this dif-

ferential equation is concave up everywhere?

17. Sketch a slope field with the following properties.

(Draw at least ten line segments, including some with

x < 0, with x > 0, and with x = 0.)

dy

dx
> 0 for x < 0,

dy

dx
< 0 for x > 0,

dy

dx
= 0 for x = 0.
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18. Sketch a slope field with the following properties.

(Draw at least ten line segments, including some with

P < 2, with 2 < P < 5, and with P > 5.)

dP

dt
> 0 for 2 < P < 5,

dP

dt
< 0 for P < 2 or P > 5,

dP

dt
= 0 for P = 2 and P = 5.

19. Let y′ = 2xy + x − 4y − 1.

(a) Is the solution curve at (3,−2) increasing, decreas-

ing, or neither?

(b) Find y if (7, y) is a critical point on a solution curve.

20. Let y′ = 2x − 3y − 1.

(a) Is the solution curve at (3, 2) increasing, decreas-

ing or neither?

(b) Is the solution curve at (3, 2) concave up or concave

down?

21. Let y′ = x2 − y2,

(a) Is the solution curve at (2, 3) increasing, decreas-

ing or neither?

(b) Is the solution curve at (2, 3) concave up or concave

down?

22. Let y′ = sin x + cos y

(a) Is the solution curve at (0, �∕2) increasing, de-

creasing or neither?

(b) Is the solution curve at (0, �∕2) concave up or con-

cave down?

23. (a) Sketch the slope field for the equation y′ = x − y

in Figure 11.23 at the points indicated.

(b) Find the equation for the solution that passes

through the point (1, 0) .

1

1

x

y

Figure 11.23

24. The slope field for the equation dP∕dt = 0.1P (10−P ),

for P ≥ 0, is in Figure 11.24.

(a) Sketch the solutions that pass through the points

(i) (0, 0) (ii) (1, 4) (iii) (4, 1)

(iv) (−5, 1) (v) (−2, 12) (vi) (−2, 10)

(b) For which positive values of P are the solutions

increasing? Decreasing? If P (0) = 5, what is the

limiting value of P as t gets large?

−10 10

10

t

P

Figure 11.24

25. The slope field for y′ = 0.5(1 + y)(2 − y) is shown in

Figure 11.25.

(a) Plot the following points on the slope field:

(i) the origin (ii) (0, 1) (iii) (1, 0)

(iv) (0,−1) (v) (0,−5∕2) (vi) (0, 5∕2)

(b) Plot solution curves through the points in part (a).

(c) For which regions are all solution curves increas-

ing? For which regions are all solution curves de-

creasing? When can the solution curves have hori-

zontal tangents? Explain why, using both the slope

field and the differential equation.

x

y

Figure 11.25: Note: x and y scales are equal

26. One of the slope fields in Figure 11.26 is the slope field

for y′ = (x + y)∕(x − y). Which one?

y

x

(a) y

x

(b)

y

x

(c)

Figure 11.26
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27. The slope field for y′ = (sin x)(sin y) is in Figure 11.27.

(a) Sketch the solutions that pass through the points

(i) (0,−2) (ii) (0, �)

(b) What is the equation of the solution that passes

through (0, n�), where n is any integer?

−6 6

−6

6

x

y

Figure 11.27

28. Match the slope fields in Figure 11.28 with their differ-

ential equations. Explain your reasoning.

(a) y′ = −y (b) y′ = y (c) y′ = x

(d) y′ = 1∕y (e) y′ = y2

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

Figure 11.28: Each slope field is graphed for

−5 ≤ x ≤ 5, −5 ≤ y ≤ 5

29. Match the slope fields in Figure 11.29 to the corre-

sponding differential equations:

(a) y′ = xe−x (b) y′ = sinx (c) y′ = cos x

(d) y′ = x2e−x (e) y′ = e−x
2

(f) y′ = e−x

y

x

(I) y

x

(II)

y

x

(III) y

x

(IV)

y

x

(V) y

x

(VI)

Figure 11.29

30. Match the following differential equations with the

slope fields shown in Figure 11.30.

(a)
dy

dx
= ex

2
(b)

dy

dx
= e−2x

2

(c)
dy

dx
= e−x

2∕2 (d)
dy

dx
= e−0.5x cos x

(e)
dy

dx
=

1

(1 + 0.5 cos x)2

(f)
dy

dx
= −e−x

2

x

y(I)

x

y(II)

x

y(III)

x

y(IV)

x

y(V)

x

y(VI)

Figure 11.30: Each slope field is graphed for −3 ≤ x ≤ 3,

−3 ≤ y ≤ 3
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In Problems 31–34, match an equation with the slope field.

(a) y′ = 0.05y(10 − y) (b) y′ = 0.05x(10 − x)

(c) y′ = 0.05y(5 − y) (d) y′ = 0.05x(5 − x)

(e) y′ = 0.05y(y − 10) (f) y′ = 0.05x(x − 10)

(g) y′ = 0.05y(y − 5) (h) y′ = 0.05x(x − 5)

(i) y′ = 0.05x(y − 5)

31.

5 10 15 20
−5

5

10

15

x

y 32.

5 10 15 20
−5

5

10

15

x

y

33.

5 10 15 20
−5

5

10

15

x

y 34.

5 10 15 20
−5

5

10

15

x

y

35. Match the slope fields in Figure 11.31 to the differential

equations; find a and b assuming a ≠ b.

(a)
dy

dx
= (x − a)(y − b) (b)

dy

dx
=

1

(x − a)(y − b)

(c)
dy

dx
=
x − a

y − b
(d)

dy

dx
=
y − b

x − a
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x

y(I)

−4 4
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x

y(II)
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x

y(III)
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3

x

y(IV)

Figure 11.31

Strengthen Your Understanding

In Problems 36–38, explain what is wrong with the state-

ment.

36. There is a differential equation that has y = x as one

of its solutions and a slope field with a slope of 0 at the

point (1, 1).

37. The differential equation dy∕dx = 0 has only the solu-

tion y = 0.

38. Figure 11.32 shows the slope field of y′ = y.

x

y

Figure 11.32

In Problems 39–42, give an example of:

39. A differential equation whose slope field has all the

slopes positive.

40. A differential equation that has a slope field with all the

slopes above the x-axis positive and all the slopes below

the x-axis negative.

41. A slope field for a differential equation where the for-

mula for dy∕dx depends on x but not y.

42. A slope field for a differential equation where the for-

mula for dy∕dx depends on y but not x.

Are the statements in Problems 43–50 true or false? Give an

explanation for your answer.

43. If the slope at the point (0, 0) in a slope field for a dif-

ferential equation is 0, then the solution of the differen-

tial equation passing through that point is the constant

y = 0.

44. The differential equation dy∕dx = 2 has straight line

solutions with slope 2.

45. The differential equation dy∕dx = 2x has only the so-

lution y = x2.

46. All solutions to the differential equation whose slope

field is in Figure 11.33 have limx→∞ y = ∞.

x

y

Figure 11.33
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47. All solutions to the differential equation whose slope

field is in Figure 11.34 have limx→∞ y = 0.

x

y

Figure 11.34

48. All solutions to the differential equation whose slope

field is in Figure 11.35 have the same limiting value as

x → ∞.

x

y

Figure 11.35

49. The solutions of the differential equation dy∕dx =

x2 + y2 + 1 are increasing at every point.

50. The solutions of the differential equation dy∕dx =

x2 + y2 + 1 are concave up at every point.

In Problems 51–59, decide whether the statement is true or

false. Assume that y = f (x) is a solution to the equation

dy∕dx = 2x − y. Justify your answer.

51. If f (a) = b, the slope of the graph of f at (a, b) is 2a−b.

52. f ′(x) = 2x − f (x).

53. There could be more than one value of x such that

f ′(x) = 1 and f (x) = 5.

54. If y = f (x), then d2y∕dx2 = 2 − (2x − y).

55. If f (1) = 5, then (1, 5) could be a critical point of f .

56. The graph of f is decreasing whenever it lies above the

line y = 2x and is increasing whenever it lies below the

line y = 2x.

57. All the inflection points of f lie on the line y = 2x−2.

58. If g(x) is another solution to the differential equation

dy∕dx = 2x − y, then g(x) = f (x) + C .

59. If g(x) is a different solution to the differential equation

dy∕dx = 2x− y, then limx→∞(g(x) −f (x)) = 0. [Hint:

Show that w = g(x) − f (x) satisfies the differential

equation dw∕dx = −w.]

11.3 EULER’S METHOD

In the preceding section we saw how to sketch a solution curve to a differential equation using its

slope field. In this section we compute points on a solution curve numerically using Euler’s method.

(Leonhard Euler was an eighteenth-century Swiss mathematician.) In Section 11.4 we find formulas

for some solution curves.

Here’s the concept behind Euler’s method. Think of the slope field as a set of signposts directing

you across the plane. Pick a starting point (corresponding to the initial value), and calculate the slope

at that point using the differential equation. This slope is a signpost telling you the direction to take.

Go a small distance in that direction. Stop and look at the new signpost. Recalculate the slope from

the differential equation, using the coordinates of the new point. Change direction to correspond to

the new slope, and move another small distance, and so on.

Example 1 Use Euler’s method for dy∕dx = y. Start at the point P0 = (0, 1) and take Δx = 0.1.

Solution The slope at the point P0 = (0, 1) is dy∕dx = 1. (See Figure 11.36.) As we move from P0 to P1, y

increases by Δy, where

Δy = (slope at P0)Δx = 1(0.1) = 0.1.

So we have

y-value at P1 = (y value at P0) + Δy = 1 + 0.1 = 1.1.

Thus the point P1 is (0.1, 1.1). Now, using the differential equation again, we see that

slope at P1 = 1.1,
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Table 11.2 Euler’s method for dy∕dx = y, starting at (0, 1)

x y Δy = (Slope)Δx

P0 0 1 0.1 = (1)(0.1)

P1 0.1 1.1 0.11 = (1.1)(0.1)

P2 0.2 1.21 0.121 = (1.21)(0.1)

P3 0.3 1.331 0.1331 = (1.331)(0.1)

P4 0.4 1.4641 0.14641 = (1.4641)(0.1)

P5 0.5 1.61051 0.161051 = (1.61051)(0.1)
x

y

P0 = (0, 1)

P1

P2

P3

Slope = 1 ✲

Slope = 1.1 ✲

Slope = 1.21 ✲

✲✛0.1

✻

❄
0.1

✲✛0.1

✻

❄
0.11

✲✛0.1

✻

❄

0.121

Figure 11.36: Euler’s approximate solution to

dy∕dx = y
so if we move to P2, then y changes by

Δy = (slope at P1)Δx = (1.1)(0.1) = 0.11.

This means

y-value at P2 = (y value at P1) + Δy = 1.1 + 0.11 = 1.21.

Thus P2 is (0.2, 1.21). Continuing gives the results in Table 11.2.

Since the solution curves of dy∕dx = y are exponentials, they are concave up and bend upward

away from the line segments of the slope field. Therefore, in this case, Euler’s method produces

y-values which are too small.

Notice that Euler’s method calculates approximate y-values for points on a solution curve; it

does not give a formula for y in terms of x.

Example 2 Show that Euler’s method for dy∕dx = y starting at (0, 1) and using two steps with Δx = 0.05 gives

y ≈ 1.1025 when x = 0.1.

Solution At (0, 1), the slope is 1 and Δy = (1)(0.05) = 0.05, so new y = 1 + 0.05 = 1.05. At (0.05, 1.05), the

slope is 1.05 and Δy = (1.05)(0.05) = 0.0525, so new y = 1.05 + 0.0525 = 1.1025 at x = 0.1.

In general, dy∕dx may be a function of both x and y. Euler’s method still works, as the next

example shows.

Example 3 Approximate four points on the solution curve to dy∕dx = −x∕y starting at (0, 1); use Δx = 0.1.

Are the approximate values overestimates or underestimates?

Solution The results from Euler’s method are in Table 11.3, along with the y-values (to two decimals) calcu-

lated from the equation of the circle x2 + y2 = 1, which is the solution curve through (0, 1). Since

the curve is concave down, the approximate y-values are above the exact ones. (See Figure 11.37.)

Table 11.3 Euler’s method for dy∕dx = −x∕y, starting at (0, 1)

x Approx. y-value Δy = (Slope)Δx True y-value

0 1 0 = (0)(0.1) 1

0.1 1 −0.01 = (−0.1∕1)(0.1) 0.99

0.2 0.99 −0.02 = (−0.2∕0.99)(0.1) 0.98

0.3 0.97 0.95

(0, 1)
(0.1, 1) (0.2, 0.99)

(0.3, 0.97)

✲Solution
curve

■

Euler
approximation

x

y

Figure 11.37: Euler’s approximate solution to

dy∕dx = −x∕y
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The Accuracy of Euler’s Method

To improve the accuracy of Euler’s method, we choose a smaller step size, Δx. Let’s go back to the

differential equation dy∕dx = y and compare the exact and approximate values for different Δx’s.

The exact solution going through the point (0, 1) is y = ex, so the exact values are calculated using

this function. (See Figure 11.38.) Where x = 0.1,

Exact y-value = e0.1 ≈ 1.1051709.

In Example 1 we had Δx = 0.1, and where x = 0.1,

Approximate y-value = 1.1, so the error ≈ 0.005.

In Example 2 we decreased Δx to 0.05. After two steps, x = 0.1, and we had

Approximate y-value = 1.1025, so error ≈ 0.00267.

Thus, it appears that halving the step size has approximately halved the error.

(0, 1)

Solution
curve

✲

Euler
approximation

✻

y

x

✲✛Δx

Figure 11.38: Euler’s approximate solution to dy∕dx = y

The error in using Euler’s method over a fixed interval is Exact value − Approximate value.

If the number of steps used is n, the error is approximately proportional to 1∕n.

Just as there are more accurate numerical integration methods than left-hand and right-hand

Riemann sums, there are more accurate methods than Euler’s for approximating solution curves.

However, Euler’s method is all we need in this text.

Summary for Section 11.3

• Euler’s method is a recipe for numerical approximation of a solution of a differential equation

over an interval, with a given initial condition.

◦ Given an interval a ≤ x ≤ b and an initial value y(a), divide the interval into n equal pieces,

each of size Δx.

◦ Starting at x = a, use the differential equation to find dy∕dx and then use this slope to

estimate the change in y when x changes by Δx.

◦ Repeat in this manner until x reaches x = b. The resulting value of y is an approximation

for y(b) where y(x) is a solution of the differential equation.

• The error in Euler’s method is roughly proportional to 1∕n, where n is the number of steps used.

This means that increasing the number of steps by a factor of 10 yields about one more decimal

place of accuracy when using Euler’s method.
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Exercises and Problems for Section 11.3

EXERCISES

1. Using Euler’s method, complete the following table for

y′ = (x − 2)(y − 3).

x y y′

0.0 4.0

0.1

0.2

2. Using Euler’s method, complete the following table for

y′ = 4xy.

x y y′

1.00 −3.0

1.01

1.02

3. A population, P , in millions, is 1500 at time t = 0 and

its growth is governed by

dP

dt
= 0.00008P (1900 − P ).

Use Euler’s method with Δt = 1 to estimate P at time

t = 1, 2, 3.

4. (a) Use Euler’s method to approximate the value of y

at x = 1 on the solution curve to the differential

equation dy∕dx = 3 that passes through (0, 2). Use

Δx = 0.2.

(b) What is the solution to the differential equation

dy∕dx = 3 with initial condition y = 2 when

x = 0?

(c) What is the error for the Euler’s method approxi-

mation at x = 1?

(d) Explain why Euler’s method is exact in this case.

5. For y′ = 2y−3x−4, use Euler’s method with Δx = 0.1

to estimate y when x = 0.2 for the solution curve pass-

ing through (0, 2).

6. For y′ = 4−2x+3y, use Euler’s method withΔx = 0.25

to estimate the value of y at x = 6.5 on the solution

curve containing the point (6, 7).

7. (a) Use five steps in Euler’s method to determine an

approximate solution for the differential equation

dy∕dx = y − x with initial condition y(0) = 10,

using step size Δx = 0.2. What is the estimated

value of y at x = 1?

(b) Does the solution to the differential equation ap-

pear to be concave up or concave down?

(c) Are the approximate values overestimates or un-

derestimates?

8. (a) Use ten steps in Euler’s method to determine an

approximate solution for the differential equation

y′ = x3, y(0) = 0, using a step size Δx = 0.1.

(b) What is the exact solution? Compare it to the com-

puted approximation.

(c) Use a sketch of the slope field for this equation to

explain the results of part (b).

9. Consider the differential equation y′ = x + y whose

slope field is in Figure 11.20 on page 610. Use Euler’s

method with Δx = 0.1 to estimate y when x = 0.4 for

the solution curves satisfying

(a) y(0) = 1 (b) y(−1) = 0.

10. (a) Using Figure 11.39, sketch the solution curve that

passes through (0, 0) for the differential equation

dy

dx
= x3 − y3.

(b) Compute the points on the solution curve gener-

ated by Euler’s method with 5 steps of Δx = 0.2.

(c) Is your answer to part (b) an overestimate or an un-

derestimate?

0.2 0.4 0.6 0.8 1

0.25

x

y

Figure 11.39: Slope field for dy∕dx = x3 − y3

PROBLEMS

11. Consider the differential equation y′ = (sinx)(sin y).

(a) Calculate approximate y-values using Euler’s

method with three steps and Δx = 0.1, starting at

each of the following points:

(i) (0, 2) (ii) (0, �)

(b) Use the slope field in Figure 11.27 on page 612 to

explain your solution to part (a)(ii).
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12. (a) Use Euler’s method with five subintervals to ap-

proximate the solution curve to the differential

equation dy∕dx = x2 − y2 passing through the

point (0, 1) and ending at x = 1. (Keep the approx-

imate function values to three decimal places.)

(b) Repeat this computation using ten subintervals,

again ending at x = 1.

13. Why are the approximate results you obtained in Prob-

lem 12 smaller than the true values? (Note: The slope

field for this differential equation is one of those in Fig-

ure 11.18 on page 609.)

14. How do the errors of the five-step calculation and the

ten-step calculation in Problem 12 compare? Estimate

the true value of y on the solution through the point

(0, 1) when x = 1.

15. (a) Use ten steps of Euler’s method to approximate y-

values for dy∕dt = 1∕t, starting at (1, 0) and using

Δt = 0.1.

(b) Using integration, solve the differential equation to

find the exact value of y at the end of these ten

steps.

(c) Is your approximate value of y at the end of ten

steps bigger or smaller than the exact value? Use a

slope field to explain your answer.

16. (a) For y′ = 2x − 5y − 1, use Euler’s method with

Δx = 0.1 to estimate the value of y at x = 2.2 on

the solution curve containing the point (2, 3).

(b) Based on your work in (a), do you expect your es-

timate to be an under- or overestimate?

17. Consider the differential equation

dy

dx
= 2x, with initial condition y(0) = 1.

(a) Use Euler’s method with two steps to estimate y

when x = 1. Now use four steps.

(b) What is the formula for the exact value of y?

(c) Does the error in Euler’s approximation behave as

predicted in the box on page 616?

18. Consider the differential equation

dy

dx
= sin(xy), with initial condition y(1) = 1.

Estimate y(2), using Euler’s method with step sizes

Δx = 0.2, 0.1, 0.05. Plot the computed approximations

for y(2) against Δx. What do you conclude? Use your

observations to estimate the exact value of y(2).

19. (a) Use Euler’s method to estimate B(1), given that

dB

dt
= 0.05B

and B = 1000 when t = 0. Take:

(i) Δt = 1 and 1 step (ii) Δt = 0.5 and 2 steps

(iii) Δt = 0.25 and 4 steps

(b) SupposeB is the balance in a bank account earning

interest. Explain why the result of your calculation

in part (i) is equivalent to compounding the interest

once a year instead of continuously.

(c) Interpret the result of your calculations in parts (ii)

and (iii) in terms of compound interest.

20. The worldwide rate of copper mining in the t years since

the start of 2018 is 21e0.05t million tons per year.2

(a) Use Euler’s method with Δt = 1 to estimate val-

ues of C(t), the total quantity of copper extracted

worldwide since the start of 2018, where t is in

years after 2018, until the start of 2022.

(b) What is the relationship between the value of C(4)

from part (a) and ∫
4

0
21e0.05tdt?

21. Consider the differential equation dy∕dx = f (x) with

initial value y(0) = 0. Explain why using Euler’s

method to approximate the solution curve gives the

same results as using left-hand Riemann sums to ap-

proximate ∫
x

0
f (t) dt.

Strengthen Your Understanding

In Problems 22–23, explain what is wrong with the state-

ment.

22. Euler’s method never produces an exact solution to a

differential equation at a point. There is always some

error.

23. If we use Euler’s method on the interval [0, 1] to esti-

mate the value of x(1) where dx∕dt = x, then we get

an underestimate.

In Problems 24–25, give an example of:

24. A differential equation for which the approximate val-

ues found using Euler’s method lie on a straight line.

25. A differential equation and initial condition such that

for any step size, the approximate y-value found after

one step of Euler’s method is an underestimate of the

solution value.

Are the statements in Problems 26–31 true or false? Give an

explanation for your answer.

26. Euler’s method gives the arc length of a solution curve.

27. Using Euler’s method with five steps and Δx = 0.2 to

approximate y(1) when dy∕dx = f (x) and y(0) = 0

gives the same answer as the left Riemann sum approx-

imation to ∫
1

0
f (x) dx.

2Data from https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/mcs2019_all.pdf, ac-

cessed September 26, 2019.



11.4 SEPARATION OF VARIABLES 619

28. If n = 1000 steps are used in Euler’s method, then the

error is approximately 0.001.

29. If we increase the steps in Euler’s method for a given

differential equation from n = 1000 to n = 2000, then

the error decreases by a factor of approximately 0.001.

30. If we use Euler’s method to approximate the solution to

the differential equation dy∕dx = f (x)where f (x) > 0

and is increasing, then Euler’s method gives an overes-

timate of the exact solution.

31. If we use Euler’s method to approximate the solution to

the differential equation dy∕dx = f (x) on the interval

[−10, 20] with Δx = 0.1, then we use n = 30 steps.

11.4 SEPARATION OF VARIABLES

We have seen how to sketch solution curves of a differential equation using a slope field and how to

calculate approximate numerical solutions. Now we see how to solve certain differential equations

analytically, finding an equation for the solution curve.

First, we look at a familiar example, the differential equation

dy

dx
= −

x

y
,

whose solution curves are the circles

x2 + y2 = C.

We can check that these circles are solutions by differentiation; the question now is how they were

obtained. The method of separation of variables works by putting all the x-values on one side of the

equation and all the y-values on the other, giving

y dy = −x dx.

We then integrate each side separately:

∫
y dy = −

∫
x dx,

y2

2
= −

x2

2
+ k.

This gives the circles we were expecting:

x2 + y2 = C where C = 2k.

You might worry about whether it is legitimate to separate the dx and the dy. The reason it can

be done is explained at the end of this section.

Example 1 Using separation of variables, solve the differential equation:

dy

dx
= ky.

Solution Separating variables,

1

y
dy = k dx,

and integrating,

∫

1

y
dy =

∫
k dx,

gives

ln |y| = kx + C for some constant C.
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Solving for |y| leads to

|y| = ekx+C = ekxeC = Aekx

where A = eC , so A is positive. Thus

y = (±A)ekx = Bekx

where B = ±A, so B is any nonzero constant. Even though there’s no C leading to B = 0, we can

have B = 0 because y = 0 is a solution to the differential equation. We lost this solution when we

divided through by y at the first step. Thus, the general solution is y = Bekx for any B.

The differential equation dy∕dx = ky always leads to exponential growth (if k > 0) or expo-

nential decay (if k < 0). Graphs of solution curves for some fixed k > 0 are in Figure 11.40. For

k < 0, the graphs are reflected across the y-axis.

B = −3 B = −2

B = −1

B = 1

B = 2B = 3

x

y

Figure 11.40: Graphs of y = Bekx, which are solutions to dy∕dx = ky, for some fixed k > 0

Example 2 For k > 0, find and graph solutions of

dH

dt
= −k(H − 20).

Solution The slope field in Figure 11.41 shows the qualitative behavior of the solutions. To find the equation

of the solution curves, we separate variables and integrate:

∫

1

H − 20
dH = −

∫
k dt.

This gives

ln |H − 20| = −kt + C.

Solving for H leads to:

|H − 20| = e−kt+C = e−kteC = Ae−kt

or

H − 20 = (±A)e−kt = Be−kt

H = 20 + Be−kt.

Again, B = 0 also gives a solution. Graphs for k = 1 and B = −10, 0, 10, with t ≥ 0, are in

Figure 11.41.
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10

20

30

H

t

H = 20 + 10e−t

✠
H = 20✛

H = 20 − 10e−t
■

Figure 11.41: Slope field and some solution curves for dH∕dt = −k(H − 20), with k = 1

This differential equation can be used to represent the temperature,H(t), in ◦C at time t of a cup

of water standing in a room at 20◦C. As Figure 11.41 shows, if the initial temperature is 10◦C, the

water warms up; if the initial temperature is 30◦C, the water cools down. If the initial temperature is

20◦C, the water remains at 20◦C.

Example 3 Find and sketch the solution to

dP

dt
= 2P − 2P t satisfying P = 5 when t = 0.

Solution Factoring the right-hand side gives
dP

dt
= P (2 − 2t).

Separating variables, we get

∫

dP

P
=
∫

(2 − 2t) dt,

so

ln |P | = 2t − t2 + C.

Solving for P leads to

|P | = e2t−t
2+C = eCe2t−t

2
= Ae2t−t

2

with A = eC , so A > 0. In addition, A = 0 gives a solution. Thus the general solution to the

differential equation is

P = Be2t−t
2

for any B.

To find the value of B, substitute P = 5 and t = 0 into the general solution, giving

5 = Be2⋅0−0
2
= B,

so

P = 5e2t−t
2
.

0.5 1 1.5 2

5

t

P

P = 5e2t−t
2

Figure 11.42: Bell-shaped solution curve
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The graph of this function is in Figure 11.42. Since the solution can be rewritten as

P = 5e1−1+2t−t
2
= 5e1e−1+2t−t

2
= (5e)e−(t−1)

2
,

the graph has the same shape as the graph of y = e−t
2
, the bell-shaped curve of statistics. Here the

maximum, normally at t = 0, is shifted one unit to the right to t = 1.

Justification for Separation of Variables

A differential equation is called separable if it can be written in the form

dy

dx
= g(x)f (y).

Provided f (y) ≠ 0, we write f (y) = 1∕ℎ(y), so the right-hand side can be thought of as a fraction,

dy

dx
=
g(x)

ℎ(y)
.

If we multiply through by ℎ(y), we get

ℎ(y)
dy

dx
= g(x).

Thinking of y as a function of x, so y = y(x), and dy∕dx = y′(x), we can rewrite the equation as

ℎ(y(x)) ⋅ y′(x) = g(x).

Now integrate both sides with respect to x:

∫
ℎ(y(x)) ⋅ y′(x) dx =

∫
g(x) dx.

The form of the integral on the left suggests that we use the substitution y = y(x). Sincedy = y′(x) dx,

we get

∫
ℎ(y) dy =

∫
g(x) dx.

If we can find antiderivatives of ℎ and g, then this gives the equation of the solution curve.

Note that transforming the original differential equation,

dy

dx
=
g(x)

ℎ(y)
,

into

∫
ℎ(y) dy =

∫
g(x) dx

looks as though we have treated dy∕dx as a fraction, cross-multiplied, and then integrated. Although

that’s not exactly what we have done, you may find this a helpful way of remembering the method.

In fact, the dy∕dx notation was introduced by Leibniz to allow shortcuts like this (more specifically,

to make the chain rule look like cancellation).

Summary for Section 11.4

• A differential equation is separable if it is possible to algebraically separate the variables on

either side of the equals sign.

• For a separable differential equation, the separation of variables method works by separately

integrating both sides, once the variables have been separated, then solving for the independent

variable.



11.4 SEPARATION OF VARIABLES 623

Exercises and Problems for Section 11.4

EXERCISES

1. Determine which of the following differential equations

are separable. Do not solve the equations.

(a) y′ = y (b) y′ = x + y

(c) y′ = xy (d) y′ = sin(x + y)

(e) y′ − xy = 0 (f) y′ = y∕x

(g) y′ = ln (xy) (h) y′ = (sinx)(cos y)

(i) y′ = (sin x)(cosxy) (j) y′ = x∕y

(k) y′ = 2x (l) y′ = (x + y)∕(x + 2y)

For Exercises 2–5, determine if the differential equation is

separable, and if so, write it in the form ℎ(y) dy = g(x) dx.

2. y′ = xey 3. y′ = xey − x

4. y′ = xey − 1 5. y′ − xy′ = y

In Exercises 6–9, can separation of variables be used to solve

the differential equation? If so, write the integrals in the form

∫
g(y)dy =

∫
f (x)dx.

6.
dy

dx
= (sinx)(cos y) 7.

dy

dx
=

sin x

cos y

8.
dy

dx
= sinx + cos y

9.
dy

dx
= sinx + (sinx)(cos y)

10. Match each differential equation (I)–(IV) to the equa-

tion (a)–(d) where the variables have been separated.

I.
dy

dx
=
x

y
II.

dy

dx
=
y

x

III.
dy

dx
= ex+y IV.

dy

dx
= ex−y

(a)
∫
e−y dy =

∫
ex dx

(b)
∫
ey dy =

∫
ex dx

(c)
∫
y−1 dy =

∫
x−1 dx

(d)
∫
y dy =

∫
xdx

In Exercises 11–37, use separation of variables to find the

solution to the differential equation subject to the initial con-

dition.

11.
dP

dt
= −2P , P (0) = 1

12.
dP

dt
= 0.02P , P (0) = 20

13.
dL

dp
=
L

2
, L(0) = 100

14.
dQ

dt
=
Q

5
, Q = 50 when t = 0

15. P
dP

dt
= 1, P (0) = 1

16.
dm

dt
= 3m, m = 5 when t = 1

17.
dI

dx
= 0.2I , I = 6 where x = −1

18.
1

z

dz

dt
= 5, z(1) = 5

19.
dm

ds
= m, m(1) = 2

20. 2
du

dt
= u2, u(0) = 1

21.
dz

dy
= zy, z = 1 when y = 0

22.
dy

dx
+
y

3
= 0, y(0) = 10

23.
dy

dt
= 0.5(y − 200), y = 50 when t = 0

24.
dP

dt
= P + 4, P = 100 when t = 0

25.
dy

dx
= 2y − 4, through (2, 5)

26.
dQ

dt
= 0.3Q − 120, Q = 50 when t = 0

27.
dm

dt
= 0.1m + 200, m(0) = 1000

28.
dR

dy
+ R = 1, R(1) = 0.1

29.
dB

dt
+ 2B = 50, B(1) = 100

30.
dy

dt
=

y

3 + t
, y(0) = 1

31.
dz

dt
= tez, through the origin

32.
dy

dx
=

5y

x
, y = 3 where x = 1

33.
dy

dt
= y2(1 + t), y = 2 when t = 1

34.
dz

dt
= z + zt2, z = 5 when t = 0

35.
dw

d�
= �w2 sin �2, w(0) = 1

36.
dw

d 
= −w2 tan , w(0) = 2

37. x(x + 1)
du

dx
= u2, u(1) = 1
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PROBLEMS

38. (a) Solve the differential equation

dy

dx
=

4x

y2
.

Write the solution y as an explicit function of x.

(b) Find the particular solution for each initial con-

dition below and graph the three solutions on the

same coordinate plane.

y(0) = 1, y(0) = 2, y(0) = 3.

39. (a) Solve the differential equation

dP

dt
= 0.2P − 10.

Write the solution P as an explicit function of t.

(b) Find the particular solution for each initial con-

dition below and graph the three solutions on the

same coordinate plane.

P (0) = 40, P (0) = 50, P (0) = 60.

40. (a) Find the general solution to the differential equa-

tion modeling how a person learns:

dy

dt
= 100 − y.

(b) Plot the slope field of this differential equation and

sketch solutions with y(0) = 25 and y(0) = 110.

(c) For each of the initial conditions in part (b), find

the particular solution and add it to your sketch.

(d) Which of these two particular solutions could rep-

resent how a person learns?

41. A circular oil spill grows at a rate given by the differ-

ential equation dr∕dt = k∕r, where r represents the ra-

dius of the spill in feet, and time is measured in hours. If

the radius of the spill is 400 feet 16 hours after the spill

begins, what is the value of k? Include units in your an-

swer.

42. Figure 11.43 shows the slope field for dy∕dx = y2.

(a) Sketch the solutions that pass through the points

(i) (0, 1) (ii) (0,−1) (iii) (0, 0)

(b) In words, describe the end behavior of the solution

curves in part (a).

(c) Find a formula for the general solution.

(d) Show that all solution curves except for y = 0 have

both a horizontal and a vertical asymptote.

−1

1

x

y

Figure 11.43

In Problems 43–52, solve the differential equation. Assume

a, b, and k are nonzero constants.

43.
dR

dt
= kR 44.

dQ

dt
−
Q

k
= 0

45.
dP

dt
= P − a 46.

dQ

dt
= b −Q

47.
dP

dt
= k(P − a) 48.

dR

dt
= aR + b

49.
dP

dt
− aP = b 50.

dy

dt
= ky2(1 + t2)

51.
dR

dx
= a(R2 + 1) 52.

dL

dx
= k(x + a)(L− b)

53. For y′ = y2f ′(x), separate variables to find y at x = 3

given that f (0) = 5, f (3) = 2, and y = 1 at x = 0.

In Problems 54–57, solve the differential equation. Assume

x, y, t > 0.

54.
dy

dt
= y(2 − y), y(0) = 1

55.
dx

dt
=
x ln x

t

56. t
dx

dt
= (1 + 2 ln t) tan x

57.
dy

dt
= −y ln

(

y

2

)

, y(0) = 1

58. Figure 11.44 shows the slope field for the equation

dy

dx
=

{

y2 if |y| ≥ 1

1 if −1 ≤ y ≤ 1.

(a) Sketch the solutions that pass through (0, 0).

(b) What can you say about the end behavior of the

solution curve in part (a)?

(c) For each of the following regions, find a formula

for the general solution

(i) −1 ≤ y ≤ 1 (ii) y ≤ −1

(iii) y ≥ 1

(d) Show that each solution curve has two vertical

asymptotes.
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(e) How far apart are the two asymptotes of a solution

curve?

−1

1

x

y

Figure 11.44

59. (a) Sketch the slope field for y′ = x∕y.

(b) Sketch several solution curves.

(c) Solve the differential equation analytically.

60. (a) Sketch the slope field for y′ = −y∕x.

(b) Sketch several solution curves.

(c) Solve the differential equation analytically.

61. Compare the slope field for y′ = x∕y, Problem 59, with

that for y′ = −y∕x, Problem 60. Show that the solution

curves of Problem 59 intersect the solution curves of

Problem 60 at right angles.

62. Consider the family of differential equations given by

y′ = ky2 where k > 0.

(a) Explain why the constant function y = 0 is a solu-

tion.

(b) Explain why all solutions except y = 0 are increas-

ing.

(c) Use separation of variables to find the general so-

lution of this family, assuming y ≠ 0. Your an-

swer will have both the parameter k and an arbi-

trary constant C.

(d) Does the method of separation of variables give

all possible solutions of the family of differential

equations? Explain.

Strengthen Your Understanding

In Problems 63–65, explain what is wrong with the state-

ment.

63. Separating variables in dy∕dx = x + y gives −y dy =

xdx.

64. The solution to dP∕dt = 0.2t is P = Be0.2t.

65. Separating variables in dy∕dx = ex+y gives −ey dy =

ex dx.

In Problems 66–69, give an example of:

66. A differential equation that is not separable.

67. An expression for f (x) such that the differential equa-

tion dy∕dx = f (x) + xy − cos x is separable.

68. A differential equation all of whose solutions form the

family of functions f (x) = x2 + C .

69. A differential equation all of whose solutions form the

family of hyperbolas x2 − y2 = C .

Are the statements in Problems 70–75 true or false? Give an

explanation for your answer.

70. A differential equation of the form dy∕dx = f (x) is

separable.

71. A differential equation of the form dy∕dx = 1∕g(y) is

separable.

72. For all constants k, the equation y′ + ky = 0 has expo-

nential functions as solutions.

73. The differential equation dy∕dx = x+ y can be solved

by separation of variables.

74. The differential equation dy∕dx−xy = x can be solved

by separation of variables.

75. The only solution to the differential equation dy∕dx =

3y2∕3 passing through the point (0, 0) is y = x3.

11.5 GROWTH AND DECAY

In this section we look at exponential growth and decay equations. Consider the population of a

region. If there is no immigration or emigration, the rate at which the population is changing is often

proportional to the population. In other words, the larger the population, the faster it is growing

because there are more people to have babies. If the population at time t is P and its continuous

growth rate is 2% per unit time, then we know

Rate of growth of population = 2%(Current population),

and we can write this as
dP

dt
= 0.02P .
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The 2% growth rate is called the relative growth rate to distinguish it from the absolute growth

rate, dP∕dt. Notice that they measure different quantities. Since

Relative growth rate = 2% =
1

P

dP

dt
,

the relative growth rate is a percent change per unit time, while

Absolute growth rate = Rate of change of population =
dP

dt

is a change in population per unit time.

We showed in Section 11.4 that since the equation dP∕dt = 0.02P is of the form dP∕dt = kP

for k = 0.02, it has solution

P = P0e
0.02t.

Other processes are described by differential equations similar to that for population growth, but

with negative values for k. In summary, we have the following result from the preceding section:

Every solution to the equation

dP

dt
= kP

can be written in the form

P = P0e
kt,

where P0 is the value of P at t = 0, and k > 0 represents growth,

whereas k < 0 represents decay.

Recall that the doubling time of an exponentially growing quantity is the time required for it to

double. The half-life of an exponentially decaying quantity is the time required for half of it to decay.

Continuously Compounded Interest

At a bank, continuous compounding means that interest is accrued at a rate that is a fixed percentage

of the balance at that moment. Thus, the larger the balance, the faster interest is earned and the faster

the balance grows.

Example 1 A bank account earns interest continuously at a rate of 5% of the current balance per year. Assume

that the initial deposit is $1000 and that no other deposits or withdrawals are made.

(a) Write the differential equation satisfied by the balance in the account.

(b) Solve the differential equation and graph the solution.

Solution (a) We are looking for B, the balance in the account in dollars, as a function of t, time in years.

Interest is being added to the account continuously at a rate of 5% of the balance at that moment.

Since no deposits or withdrawals are made, at any instant,

Rate balance increasing = Rate interest earned = 5%(Current balance),

which we write as
dB

dt
= 0.05B.

This is the differential equation that describes the process. It does not involve the initial condition

$1000 because the initial deposit does not affect the process by which interest is earned.
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(b) Solving the differential equation by separation of variables gives

B = B0e
0.05t,

where B0 is the value of B at t = 0, so B0 = 1000. Thus

B = 1000e0.05t

and this function is graphed in Figure 11.45.

1000

t (years)

B (dollars)

B = 1000e0.05t

Figure 11.45: Bank balance against time

The Difference Between Continuous and Annual Percentage Growth Rates

If P = P0(1 + r)
t with t in years, we say that r is the annual growth rate, while if P = P0e

kt, we say

that k is the continuous growth rate.

The constant k in the differential equation dP∕dt = kP is not the annual growth rate, but the

continuous growth rate. In Example 1, with a continuous interest rate of 5%, we obtain a balance of

B = B0e
0.05t, where time, t, is in years. At the end of one year the balance isB0e

0.05. In that one year,

our balance has changed from B0 to B0e
0.05, that is, by a factor of e0.05 = 1.0513. Thus the annual

growth rate is 5.13%. This is what the bank means when it says “5% compounded continuously for

an effective annual yield of 5.13%.” Since P0e
0.05t = P0(1.0513)

t, we have two different ways to

represent the same function.

Since most growth is measured over discrete time intervals, a continuous growth rate is an

idealized concept. A demographer who says a population is growing at the rate of 2% per year usually

means that after t years the population is P = P0(1.02)
t. To find the continuous growth rate, k,

we express the population as P = P0e
kt. At the end of one year P = P0e

k, so ek = 1.02. Thus

k = ln 1.02 ≈ 0.0198. The continuous growth rate, k = 1.98%, is close to the annual growth rate of

2%, but it is not the same. Again, we have two different representations of the same function since

P0(1.02)
t = P0e

0.0198t.

Pollution in the Great Lakes

In the 1960s pollution in the Great Lakes became an issue of public concern. We set up a model for

how long it would take for the lakes to flush themselves clean, assuming no further pollutants are

being dumped in the lakes.

Suppose Q is the total quantity of pollutant in a lake of volume V at time t. Suppose that clean

water is flowing into the lake at a constant rate r and that water flows out at the same rate. Assume

that the pollutant is evenly spread throughout the lake and that the clean water coming into the lake

immediately mixes with the rest of the water.

We investigate how Q varies with time. Since pollutants are being taken out of the lake but not

added, Q decreases, and the water leaving the lake becomes less polluted, so the rate at which the

pollutants leave decreases. This tells us that Q is decreasing and concave up. In addition, the pollu-

tants are never completely removed from the lake though the quantity remaining becomes arbitrarily

small: in other words, Q is asymptotic to the t-axis. (See Figure 11.46.)
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t (time)

Q (quantity of pollutant)

Figure 11.46: Pollutant in lake versus time

Setting Up a Differential Equation for the Pollution

To model exactly how Q changes with time, we write an equation for the rate at which Q changes.

We know that

Rate Q

changes
= −

(

Rate pollutants

leave in outflow

)

where the negative sign represents the fact that Q is decreasing. At time t, the concentration of

pollutants is Q∕V , and water containing this concentration is leaving at rate r. Thus

Rate pollutants

leave in outflow
=

Rate of

outflow
× Concentration = r ⋅

Q

V
.

So the differential equation is
dQ

dt
= −

r

V
Q,

and its solution is

Q = Q0e
−rt∕V .

Table 11.4 contains values of r and V for four of the Great Lakes.3 We use this data to calculate

how long it would take for certain fractions of the pollution to be removed.

Table 11.4 Volume and outflow in Great Lakes4

V (thousands of km3) r (km3/year)

Superior 12.2 65.2

Michigan 4.9 158

Erie 0.46 175

Ontario 1.6 209

Example 2 According to this model, how long will it take for 90% of the pollution to be removed from Lake

Erie? For 99% to be removed?

Solution Substituting r and V for Lake Erie into the differential equation for Q gives

dQ

dt
= −

r

V
Q =

−175

0.46 × 103
Q = −0.38Q

where t is measured in years. Thus Q is given by

Q = Q0e
−0.38t.

3Data from William E. Boyce and Richard C. DiPrima, Elementary Differential Equations, 9th edition (New York: Wiley,

2009), pp. 63–64.
4www.epa.gov/greatlakes/
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When 90% of the pollution has been removed, 10% remains, so Q = 0.1Q0. Substituting gives

0.1Q0 = Q0e
−0.38t.

Canceling Q0 and solving for t, we get

t =
− ln(0.1)

0.38
≈ 6 years.

When 99% of the pollution has been removed,Q = 0.01Q0, so t satisfies

0.01Q0 = Q0e
−0.38t.

Solving for t gives

t =
− ln(0.01)

0.38
≈ 12 years.

Newton’s Law of Heating and Cooling

Newton proposed that the temperature of a hot object decreases at a rate proportional to the differ-

ence between its temperature and that of its surroundings. Similarly, a cold object heats up at a rate

proportional to the temperature difference between the object and its surroundings.

For example, a hot cup of coffee standing on the kitchen table cools at a rate proportional to the

temperature difference between the coffee and the surrounding air. As the coffee cools, the rate at

which it cools decreases because the temperature difference between the coffee and the air decreases.

In the long run, the rate of cooling tends to zero, and the temperature of the coffee approaches room

temperature. See Figure 11.47.

time

temperature

✛ Room temperature

✶

q
Initial

temperature

Figure 11.47: Temperature of two cups of coffee with different initial temperatures

Example 3 When a murder is committed, the body, originally at 37◦C, cools according to Newton’s Law of

Cooling. Suppose that after two hours the temperature is 35◦C and that the temperature of the sur-

rounding air is a constant 20◦C.

(a) Find the temperature,H , of the body as a function of t, the time in hours since the murder was

committed.

(b) Sketch a graph of temperature against time.

(c) What happens to the temperature in the long run? Show this on the graph and algebraically.

(d) If the body is found at 4 pm at a temperature of 30◦C, when was the murder committed?

Solution (a) We first find a differential equation for the temperature of the body as a function of time. New-

ton’s Law of Cooling says that for some constant �,

Rate of change of temperature = �(Temperature difference).

If H is the temperature of the body, then

Temperature difference = H − 20,
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so
dH

dt
= �(H − 20).

What about the sign of �? If the temperature difference is positive (that is, H > 20), then H is

falling, so the rate of change must be negative. Thus � should be negative, so we write:

dH

dt
= −k(H − 20), for some k > 0.

Separating variables and solving, as in Example 2 on page 620, gives:

H − 20 = Be−kt.

To find B, substitute the initial condition that H = 37 when t = 0:

37 − 20 = Be−k(0) = B,

so B = 17. Thus,

H − 20 = 17e−kt.

To find k, we use the fact that after 2 hours, the temperature is 35◦C, so

35 − 20 = 17e−k(2).

Dividing by 17 and taking natural logs, we get:

ln
(

15

17

)

= ln(e−2k)

−0.125 = −2k

k ≈ 0.063.

Therefore, the temperature is given by

H − 20 = 17e−0.063t

or

H = 20 + 17e−0.063t.

(b) The graph of H = 20 + 17e−0.063t has a vertical intercept of H = 37 because the temperature

of the body starts at 37◦C. The temperature decays exponentially withH = 20 as the horizontal

asymptote. (See Figure 11.48.)

10 20 30

20

37

t (hours)

H(◦C)

H = 20 + 17e−0.063t

Figure 11.48: Temperature of dead body

(c) “In the long run” means as t → ∞. The graph shows that as t → ∞, H → 20. Algebraically,

since e−0.063t → 0 as t→ ∞, we have

H = 20 + 17e−0.063t
⏟⏞⏞⏟⏞⏞⏟

goes to 0 as t→ ∞

⟶ 20 as t→ ∞.



11.5 GROWTH AND DECAY 631

(d) We want to know when the temperature reaches 30◦C. Substitute H = 30 and solve for t:

30 = 20 + 17e−0.063t

10

17
= e−0.063t.

Taking natural logs:

−0.531 = −0.063t,

which gives

t ≈ 8.4 hours.

Thus the murder must have been committed about 8.4 hours before 4 pm. Since 8.4 hours =

8 hours 24 minutes, the murder was committed at about 7:30 am.

Equilibrium Solutions

Figure 11.49 shows the temperature of several objects in a 20◦C room. One is initially hotter than

20◦C and cools down toward 20◦C; another is initially cooler and warms up toward 20◦C. All these

curves are solutions to the differential equation

dH

dt
= −k(H − 20)

for some fixed k > 0, and all the solutions have the form

H = 20 + Ae−kt

for some A. Notice that H → 20 as t → ∞ because e−kt → 0 as t → ∞. In other words, in the

long run, the temperature of the object always tends toward 20◦C, the temperature of the room. This

means that what happens in the long run is independent of the initial condition.

In the special case when A = 0, we have the equilibrium solution

H = 20

for all t. This means that if the object starts at 20◦C, it remains at 20◦C for all time. Notice that such

a solution can be found directly from the differential equation by solving dH∕dt = 0:

dH

dt
= −k(H − 20) = 0

giving

H = 20.

Regardless of the initial temperature, H always gets closer and closer to 20 as t → ∞. As a

result, H = 20 is called a stable equilibrium5 for H .

10

20

30

H

t

✠

H = 20 + 10e−kt

■
H = 20 − 10e−kt

✛ H = 20

Figure 11.49: H = 20 is stable equilibrium (k > 0)

10

B

t

✛ B = 10 + ekt

✛ B = 10 − ekt

B = 10

Figure 11.50: B = 10 is unstable equilibrium (k > 0)

5In more advanced work, this behavior is described as asymptotic stability.
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A different situation is displayed in Figure 11.50, which shows solutions to the differential equa-

tion
dB

dt
= k(B − 10)

for some fixed k > 0. Solving dB∕dt = 0 gives the equilibrium B = 10, which is unstable because

if B starts near 10, it moves away as t→ ∞.

In general, we have the following definitions.

• An equilibrium solution is constant for all values of the independent variable. The graph

is a horizontal line.

• An equilibrium is stable if a small change in the initial conditions gives a solution that

tends toward the equilibrium as the independent variable tends to positive infinity.

• An equilibrium is unstable if a small change in the initial conditions gives a solution

curve that veers away from the equilibrium as the independent variable tends to positive

infinity.

Solutions that do not veer away from an equilibrium solution are also called stable. If the differ-

ential equation is of the form y′ = f (y), equilibrium solutions can be found by setting y′ to zero.

Example 4 Find the equilibrium solution to the differential equation dP∕dt = −50+4P and determine whether

the equilibrium is stable or unstable.

Solution In order to find the equilibrium solution, we solve dP∕dt = −50 + 4P = 0. Thus, we have one

equilibrium solution at P = 50∕4 = 12.5. We can determine whether the equilibrium is stable or

unstable by analyzing the behavior of solutions with initial conditions near P = 12.5. For example,

when P > 12.5, the derivative dP∕dt = −50 + 4P > −50 + 4 ⋅ 12.5 = 0, so P is increasing. Thus,

solutions above the equilibrium P = 12.5 will increase and move away from the equilibrium.

For a solution with initial value P < 12.5 we have dP∕dt = −50 + 4P < −50 + 4 ⋅ 12.5 = 0.

Thus, solutions that have an initial value less than P = 12.5 will decrease and veer away from the

equilibrium. Since a small change in the initial condition gives solutions that move away from the

equilibrium, P = 12.5 is an unstable equilibrium. Notice it is possible to find equilibrium solutions

and study their stability without finding a formula for the general solution to the differential equation.

Summary for Section 11.5

• A differential equation of the form dP∕dt = kP is called a growth equation if k > 0 and a

decay equation if k < 0.

• Every solution to the equation
dP

dt
= kP

can be written in the form

P = P0e
kt,

where P0 is the value of P at t = 0.

• The doubling time of an exponentially growing quantity is the time required for it to double.

The half-life of an exponentially decaying quantity is the time required for half of it to decay.

• Newton’s law of heating/cooling says that the temperature,H , of a hot object decreases at a rate

proportional to the difference between its temperature and that of its surroundings. Similarly, a

cold object heats up at a rate proportional to the temperature difference between the object and

its surroundings. If the constant surrounding temperature is A then a differential equation for

Newton’s law is
dH

dt
= k(H − A).
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• An equilibrium solution is constant for all values of the independent variable. The graph is a

horizontal line.

◦ An equilibrium is stable if a small change in the initial conditions gives a solution that tends

toward the equilibrium as the independent variable tends to positive infinity.

◦ An equilibrium is unstable if a small change in the initial conditions gives a solution curve

that veers away from the equilibrium as the independent variable tends to positive infinity.

Exercises and Problems for Section 11.5
EXERCISES

1. Match the graphs in Figure 11.51 with the following

descriptions.

(a) The temperature of a glass of ice water left on the

kitchen table.

(b) The amount of money in an interest-bearing bank

account into which $50 is deposited.

(c) The speed of a constantly decelerating car.

(d) The temperature of a piece of steel heated in a fur-

nace and left outside to cool.

time

(I)

time

(II)

time

(III)

time

(IV)

Figure 11.51

2. Each curve in Figure 11.52 represents the balance in a

bank account into which a single deposit was made at

time zero. Assuming continuously compounded inter-

est, find:

(a) The curve representing the largest initial deposit.

(b) The curve representing the largest interest rate.

(c) Two curves representing the same initial deposit.

(d) Two curves representing the same interest rate.

time

bank
balance (IV) (III)

(II)

(I)

Figure 11.52

3. The slope field for y′ = 0.5(1 + y)(2 − y) is given in

Figure 11.53.

(a) List equilibrium solutions and state whether each

is stable or unstable.

(b) Draw solution curves on the slope field through

each of the three marked points.

x

y

Figure 11.53

4. The slope field for a differential equation is given in

Figure 11.54. Estimate all equilibrium solutions for this

differential equation, and indicate whether each is sta-

ble or unstable.

−5 5

−5

5

t

y

Figure 11.54

For Exercises 5–6, sketch solution curves with a variety of

initial values for the differential equations. You do not need

to find an equation for the solution.

5.
dy

dt
= � − y,

where � is a positive constant.

6.
dw

dt
= (w − 3)(w − 7)
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7. A yam is put in a 200◦C oven and heats up according to

the differential equation

dH

dt
= −k(H − 200), for k a positive constant.

(a) If the yam is at 20◦C when it is put in the oven,

solve the differential equation.

(b) Find k using the fact that after 30 minutes the tem-

perature of the yam is 120◦C.

8. (a) Find the equilibrium solution to the differential

equation
dy

dt
= 0.5y − 250.

(b) Find the general solution to this differential equa-

tion.

(c) Sketch the graphs of several solutions to this differ-

ential equation, using different initial values for y.

(d) Is the equilibrium solution stable or unstable?

9. (a) A cup of coffee is made with boiling water and

stands in a room where the temperature is 20◦ C.

IfH(t) is the temperature of the coffee at time t, in

minutes, explain what the differential equation

dH

dt
= −k(H − 20)

says in everyday terms. What is the sign of k?

(b) Solve this differential equation. If the coffee cools

to 90◦C in 2 minutes, how long will it take to cool

to 60◦C degrees?

10. An object has a temperature of H = 400◦C. At time

t = 0, it is placed in a 20◦C room. After 2 hours, the

object is 50◦C. We model this object’s temperature us-

ing Newton’s Law of Cooling, obtaining the solution

H = L + Aekt. Give the values of L, k, and A.

In Exercises 11–14, the number of fish, P , in a lake with an

initial population of 10,000 satisfies, for constant k and r,

dP

dt
= kP − r.

11. If k = 0.15 and r = 1000, is the fish population increas-

ing or decreasing at time t = 0?

12. If k = 0.2 and r = 3000, is the fish population increas-

ing or decreasing at time t = 0?

13. If k = 0.05, what must r be in order for the fish popu-

lation to remain at a constant level?

14. If k = 0.10 and r = 500, use a tangent line approxima-

tion to estimate P at t = 0.5.

For Exercises 15–17, the growth of a tumor with size q is

given by

q′ = kq ln

(

L

q

)

, k, L > 0.

15. Will the tumor’s size increase or decrease if q = 30 and

L = 50?

16. Will the tumor’s size increase or decrease if q = 25 and

L = 20?

17. Let L = 100 and k = 0.1. If q = 20 at time t = 2, use

the tangent-line approximation to estimate q at t = 2.1.

18. In Example 2 on page 628, we saw that it would take

about 6 years for 90% of the pollution in Lake Erie to

be removed and about 12 years for 99% to be removed.

Explain why one time is double the other.

19. Using the model in the text and the data in Table 11.4

on page 628, find how long it would take for 90% of the

pollution to be removed from Lake Michigan and from

Lake Ontario, assuming no new pollutants are added.

Explain how you can tell which lake will take longer to

be purified just by looking at the data in the table.

20. Use the model in the text and the data in Table 11.4 on

page 628 to determine which of the Great Lakes would

require the longest time and which would require the

shortest time for 80% of the pollution to be removed,

assuming no new pollutants are being added. Find the

ratio of these two times.

For Exercises 21–23, is the function a solution to the differ-

ential equation dy∕dx = g(y) for g(y) in Figure 11.55?

−2 −1 1 2

−3

3

g(y)

y

Figure 11.55

21. The constant function y = 0.

22. The constant function y = 1.

23. The constant function y = 1∕2.

24. (a) Find all equilibrium solutions for the differential

equation

dy

dx
= 0.5y(y − 4)(2 + y).

(b) Draw a slope field and use it to determine whether

each equilibrium solution is stable or unstable.

In Exercises 25–28, is the given equilibrium solution to the

differential equation stable or unstable?

25. Solution y = 20 for equation
dy

dx
= y − 20

26. Solution y = 20 for equation
dy

dx
= 20 − y

27. Solution y = 20 for equation
dy

dx
= (y − 20)(y − 30)

28. Solution y = 30 for equation
dy

dx
= (y − 20)(y − 30)
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PROBLEMS

29. Let Q = f (t), where t is time in years and N is a pos-

itive constant. Match each statement (a)–(d) to the dif-

ferential equation (I)–(IV) that best describes it.

I.
dQ

dt
= 0.05Q II.

dQ

dt
= −0.05Q

III.
dQ

dt
= 0.05(N −Q) IV.

dQ

dt
= −0.05(Q−N)

(a) The amount of a radioactive substance decreases

at an annual rate (in grams/year) that is 5% of the

current amount present.

(b) The annual rate at which people sign up for a new

internet service (in people/year) is 5% of the num-

ber of people who have yet to sign up.

(c) The annual growth rate (in members/year) of a

population is 5% of the population’s current size.

(d) The annual rate at which the amount of salt in a

pond goes down (in grams/liter per year) is 5% of

the amount that the pond’s salt level, in grams/liter,

falls above the natural salt level of the groundwa-

ter, also measured in grams/liter.

In Problems 30–33,

(a) Define the variables.

(b) Write a differential equation to describe the relation-

ship.

(c) Solve the differential equation.

30. In 2018, the population of India6 was 1.282 billion peo-

ple and increasing at a rate proportional to its popula-

tion. If the population is measured in billions of people

and time is measured in years, the constant of propor-

tionality is 0.0117.

31. Nicotine leaves the body at a rate proportional to the

amount present, with constant of proportionality 0.347

if the amount of nicotine is in mg and time is in hours.

The amount of nicotine in the body immediately after

smoking a cigarette is 0.4 mg.

32. By 2017, the cumulative world capacity of solar photo-

voltaic (PV) installations reached 403.3 gigawatts and

was growing exponentially at a continuous rate of 32%

per year.7

33. In 2007, Grinnell Glacier in Glacier National Park cov-

ered 142 acres and was estimated to be shrinking expo-

nentially at a continuous rate of 4.3% per year.8

34. Between 2002 and 2013, textbook prices9 increased at

5.6% per year while inflation was 2.3% per year. As-

sume both rates are continuous growth rates and let

time, t, be in years since the start of 2002.

(a) Write a differential equation satisfied by B(t), the

price of a textbook at time t.

(b) Write a differential equation satisfied by P (t), the

price at time t of an item growing at the inflation

rate.

(c) Solve both differential equations.

(d) What is the doubling time of the price of a text-

book?

(e) What is the doubling time of the price of an item

growing according to the inflation rate?

(f) How is the ratio of the doubling times related to the

ratio of the growth rates? Justify your answer.

35. A bottle of milk is taken out of a 3◦C refrigerator and

left in a 22◦C room.

(a) Write a differential equation whose solution is the

temperature of milk as a function of time. (The

equation will include a positive constant k.)

(b) Solve this equation.

36. A raw chicken is taken from a 3◦C refrigerator and

put in a preheated 190◦C oven. One hour later, a meat

thermometer shows that the internal temperature of the

chicken has risen to 40◦C. If the safe internal tempera-

ture for chicken is 74◦C, what is the total cooking time?

37. The charge, q, on a capacitor discharged through an

electrical circuit dissipates at a rate proportional to the

charge remaining in the capacitor at any time.

(a) Write a differential equation modeling the remain-

ing charge on the capacitor as a function of time.

(b) A capacitor has an initial charge of 50 micro-

coulombs (�C) and an initial dissipation rate of

10 �C per second. How long does it take until the

charge remaining is 5 �C?

38. With time t in years, the population P of fish in a lake

(in millions) grows at a continuous rate of r% per year

and is subject to continuous harvesting at a constant rate

of H million fish per year.

(a) Write a differential equation satisfied by P .

(b) What is the equilibrium level of P if r = 5 and

H = 15?

(c) Without solving the differential equation, explain

why the equilibrium you found in part (b) is unsta-

ble.

(d) Find a formula for the equilibrium for general pos-

itive r and H.

(e) Are there any positive values of r andH that make

the equilibrium stable?

6www.indexmundi.com, accessed October 16, 2019.
7en.wikipedia.org, accessed October 16, 2019.
8M. Jamison, “Warming Climate Shrinking Glacier Park’s Glaciers”, October 15, 2007, www.usatoday.com, accessed

October 16, 2019.
9www.cnbc.com, accessed April 27, 2015.
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39. The population of fish in a lake declines at a continuous

rate of 10% per year. To curb this decline, wildlife man-

agement services continuously restock the lake at a rate

of 5 thousand fish per year. Let P be the fish population

(in thousands) as a function of time t in years.

(a) Write a differential equation satisfied by P .

(b) Without solving the differential equation, find the

equilibrium fish population.

(c) Is the equilibrium stable or unstable?

40. A radioactive substance decays at a rate proportional to

the quantity, Q, present at the time, t. The constant of

proportionality is k.

(a) Write a differential equation satisfied by Q.

(b) Find the half-life as a function of k.

(c) Is the half-life an increasing or decreasing function

of k?

41. Warfarin is a drug used as an anticoagulant. After ad-

ministration of the drug is stopped, the quantity remain-

ing in a patient’s body decreases at a rate proportional

to the quantity remaining. The half-life of warfarin in

the body is 37 hours.

(a) Sketch the quantity, Q, of warfarin in a patient’s

body as a function of the time, t, since stopping

administration of the drug. Mark the 37 hours on

your graph.

(b) Write a differential equation satisfied by Q.

(c) How many days does it take for the drug level in the

body to be reduced to 25% of the original level?

42. The rate at which a drug leaves the bloodstream and

passes into the urine is proportional to the quantity of

the drug in the blood at that time. If an initial dose of

Q0 is injected directly into the blood, 20% is left in the

blood after 3 hours.

(a) Write and solve a differential equation for the quan-

tity, Q, of the drug in the blood after t hours.

(b) How much of this drug is in a patient’s body after

6 hours if the patient is given 100 mg initially?

43. Oil is pumped continuously from a well at a rate pro-

portional to the amount of oil left in the well. Initially

there were 1 million barrels of oil in the well; six years

later 500,000 barrels remain.

(a) At what rate was the amount of oil in the well de-

creasing when there were 600,000 barrels remain-

ing?

(b) When will there be 50,000 barrels remaining?

44. The radioactive isotope carbon-14 is present in small

quantities in all life forms, and it is constantly replen-

ished until the organism dies, after which it decays to

stable carbon-12 at a rate proportional to the amount of

carbon-14 present, with a half-life of 5730 years. Let

C(t) be the amount of carbon-14 present at time t.

(a) Find the value of the constant k in the differential

equation C ′ = −kC .

(b) In 1988 three teams of scientists found that the

Shroud of Turin, which was reputed to be the burial

cloth of Jesus, contained 91% of the amount of

carbon-14 contained in freshly made cloth of the

same material.10 How old was the Shroud of Turin

at the time of this data?

45. The amount of radioactive carbon-14 in a sample is

measured using a Geiger counter, which records each

disintegration of an atom. Living tissue disintegrates at

a rate of about 13.5 atoms per minute per gram of car-

bon. In 1977 a charcoal fragment found at Stonehenge,

England, recorded 8.2 disintegrations per minute per

gram of carbon. Assuming that the half-life of carbon-

14 is 5730 years and that the charcoal was formed dur-

ing the building of the site, estimate the date when

Stonehenge was built.

46. A detective finds a murder victim at 9 am. The temper-

ature of the body is measured at 90.3◦F. One hour later,

the temperature of the body is 89.0◦F. The temperature

of the room has been maintained at a constant 68◦F.

(a) Assuming the temperature, T , of the body obeys

Newton’s Law of Cooling, write a differential

equation for T .

(b) Solve the differential equation to estimate the time

the murder occurred.

47. At 1:00 pm one winter afternoon, there is a power fail-

ure at your house in Wisconsin, and your heat does not

work without electricity. When the power goes out, it

is 68◦F in your house. At 10:00 pm, it is 57◦F in the

house, and you notice that it is 10◦F outside.

(a) Assuming that the temperature, T , in your home

obeys Newton’s Law of Cooling, write the differ-

ential equation satisfied by T .

(b) Solve the differential equation to estimate the tem-

perature in the house when you get up at 7:00 am

the next morning. Should you worry about your

water pipes freezing?

(c) What assumption did you make in part (a) about

the temperature outside? Given this (probably in-

correct) assumption, would you revise your esti-

mate up or down? Why?

48. Before Galileo discovered that the speed of a falling

body with no air resistance is proportional to the time

since it was dropped, he mistakenly conjectured that the

speed was proportional to the distance it had fallen.

(a) Assume the mistaken conjecture to be true and

write an equation relating the distance fallen,D(t),

at time t, and its derivative.

(b) Using your answer to part (a) and the correct ini-

tial conditions, show thatDwould have to be equal

to 0 for all t, and therefore the conjecture must be

wrong.

10The New York Times, October 18, 1988.
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49. (a) An object is placed in a 68◦F room. Write a differ-

ential equation forH , the temperature of the object

at time t.

(b) Find the equilibrium solution to the differential

equation. Determine from the differential equation

whether the equilibrium is stable or unstable.

(c) Give the general solution for the differential equa-

tion.

(d) The temperature of the object is 40◦F initially and

48◦F one hour later. Find the temperature of the

object after 3 hours.

50. Hydrocodone bitartrate is used as a cough suppressant.

After the drug is fully absorbed, the quantity of drug in

the body decreases at a rate proportional to the amount

left in the body. The half-life of hydrocodone bitartrate

in the body is 3.8 hours, and the usual oral dose is

10 mg.

(a) Write a differential equation for the quantity, Q,

of hydrocodone bitartrate in the body at time t, in

hours since the drug was fully absorbed.

(b) Find the equilibrium solution of the differential

equation. Based on the context, do you expect the

equilibrium to be stable or unstable?

(c) Solve the differential equation given in part (a).

(d) Use the half-life to find the constant of proportion-

ality, k.

(e) How much of the 10 mg dose is still in the body

after 12 hours?

51. (a) LetB be the balance at time t of a bank account that

earns interest at a rate of r%, compounded continu-

ously. What is the differential equation describing

the rate at which the balance changes? What is the

constant of proportionality, in terms of r?

(b) Find the equilibrium solution to the differential

equation. Determine whether the equilibrium is

stable or unstable and explain what this means

about the bank account.

(c) What is the solution to this differential equation?

(d) Sketch the graph of B as function of t for an ac-

count that starts with $1000 and earns interest at

the following rates:

(i) 4% (ii) 10% (iii) 15%

Strengthen Your Understanding

In Problems 52–54, explain what is wrong with the state-

ment.

52. The line y = 2 is an equilibrium solution to the differ-

ential equation dy∕dx = y3 − 4xy.

53. The function y = x2 is an equilibrium solution to the

differential equation dy∕dx = y − x2.

54. At time t = 0, a roast is taken out of a 40◦F refrigerator

and put in a 350◦F oven. If H represents the tempera-

ture of the roast at time t minutes after it is put in the

oven, we have dH∕dt = k(H − 40).

In Problems 55–57, give an example of:

55. A differential equation for a quantity that is decaying

exponentially at a continuous rate per unit time.

56. A differential equation with an equilibrium solution of

Q = 500.

57. A graph of three possible solutions, with initial P -

values of 20, 25, and 30, respectively, to a differential

equation that has an unstable equilibrium solution at

P = 25.

11.6 APPLICATIONS AND MODELING

Much of this book involves functions that represent real processes, such as how the temperature of a

yam or the population of the US is changing with time. You may wonder where such functions come

from. In some cases, we fit functions to experimental data by trial and error. In other cases, we take a

more theoretical approach, leading to a differential equation whose solution is the function we want.

In this section we give examples of the more theoretical approach.

How a Layer of Ice Forms

When ice forms on a lake, the water on the surface freezes first. As heat from the water travels up

through the ice and is lost to the air, more ice is formed. The question we will consider is: How

thick is the layer of ice as a function of time? Since the thickness of the ice increases with time,

the thickness function is increasing. In addition, as the ice gets thicker, it insulates better. Therefore,

we expect the layer of ice to form more slowly as time goes on. Hence, the thickness function is

increasing at a decreasing rate, so its graph is concave down.
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A Differential Equation for the Thickness of the Ice

To get more detailed information about the thickness function, we have to make some assumptions.

Suppose y represents the thickness of the ice as a function of time, t. Since the thicker the ice, the

longer it takes the heat to get through it, we assume that the rate at which ice is formed is inversely

proportional to the thickness. In other words, we assume that for some constant k,

Rate thickness

is increasing
=

k

Thickness
,

so
dy

dt
=
k

y
where k > 0 and y > 0.

This differential equation enables us to find a formula for y. Using separation of variables:

∫
y dy =

∫
k dt

y2

2
= kt + C.

Extending the solution to y = 0 and measuring time from then gives C = 0. Since y must be non-

negative, we have

y =
√

2kt .

Graphs of y against t are in Figure 11.56. Notice that the larger y is, the more slowly y increases. In

addition, this model suggests that y increases indefinitely as time passes. (Of course, the value of y

cannot increase beyond the depth of the lake.)

t (time)

y (thickness)

Large k

y =
√

2kt

Small k

Figure 11.56: Thickness of ice as a function of time

The Net Worth of a Company

In the preceding section, we saw an example in which money in a bank account was earning interest

(Example 1, page 626). Consider a company whose revenues are proportional to its net worth (like

interest on a bank account) but that must also make payroll payments. The question is: under what

circumstances does the company make money, and under what circumstances does it go bankrupt?

Common sense says that if the payroll exceeds the rate at which revenue is earned, the company

will eventually be in trouble, whereas if revenue exceeds payroll, the company should do well. We

assume that revenue is earned continuously and that payments are made continuously. (For a large

company, this is a good approximation.) We also assume that the only factors affecting net worth are

revenue and payroll.

Example 1 A company’s revenue is earned at a continuous annual rate of 5% of its net worth. At the same time,

the company’s payroll obligations amount to $200 million a year, paid out continuously.

(a) Write a differential equation that governs the net worth of the company,W million dollars.

(b) Solve the differential equation, assuming an initial net worth of W0 million dollars.

(c) Sketch the solution for W0 = 3000, 4000, and 5000.
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Solution First, let’s see what we can learn without writing a differential equation. For example, we can ask

if there is any initial net worth W0 that will exactly keep the net worth constant. If there’s such an

equilibrium, the rate at which revenue is earned must exactly balance the payments made, so

Rate revenue is earned = Rate payments are made.

If net worth is a constant W0, revenue is earned at a constant rate of 0.05W0 per year, so we have

0.05W0 = 200 giving W0 = 4000.

Therefore, if the net worth starts at $4000 million, the revenue and payments are equal, and the net

worth remains constant. Therefore, $4000 million is an equilibrium solution.

Suppose, however, the initial net worth is above $4000 million. Then, the revenue earned is

more than the payroll expenses, and the net worth of the company increases, thereby increasing the

revenue still further. Thus the net worth increases more and more quickly. On the other hand, if the

initial net worth is below $4000 million, the revenue is not enough to meet the payments, and the net

worth of the company declines. This decreases the revenue, making the net worth decrease still more

quickly. The net worth will eventually go to zero, and the company goes bankrupt. See Figure 11.57.

27.7

3000

4000

5000

t

W

Figure 11.57: Net worth as a function of time: Solutions to dW ∕dt = 0.05W − 200

(a) Now we set up a differential equation for the net worth, using the fact that

Rate net worth

is increasing
=

Rate revenue

is earned
−

Rate payroll payments

are made
.

In millions of dollars per year, revenue is earned at a rate of 0.05W, and payments are made at a

rate of 200 per year, so for t in years,

dW

dt
= 0.05W − 200.

The equilibrium solution, W = 4000, is obtained by setting dW ∕dt = 0.

(b) We solve this equation by separation of variables. It is helpful to factor out 0.05 before separating,

so that the W moves over to the left-hand side without a coefficient:

dW

dt
= 0.05(W − 4000).

Separating and integrating gives

∫

dW

W − 4000
=
∫

0.05 dt,

so

ln |W − 4000| = 0.05t+ C,
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or

|W − 4000| = e0.05t+C = eCe0.05t.

This means

W − 4000 = Ae0.05t where A = ±eC .

To find A, we use the initial condition that W = W0 when t = 0:

W0 − 4000 = Ae0 = A.

Substituting this value for A into W = 4000 + Ae0.05t gives

W = 4000 + (W0 − 4000)e0.05t.

(c) If W0 = 4000, then W = 4000, the equilibrium solution.

If W0 = 5000, then W = 4000 + 1000e0.05t.

If W0 = 3000, then W = 4000 − 1000e0.05t. If W = 0, then t ≈ 27.7, so the company goes

bankrupt in its twenty-eighth year. These solutions are shown in Figure 11.57. Notice that if the

net worth starts withW0 near, but not equal to, $4000 million, thenW moves farther away. Thus,

W = 4000 is an unstable equilibrium.

The Velocity of a Falling Body: Terminal Velocity

Think about the downward velocity of a sky-diver jumping out of a plane. When the sky-diver first

jumps, his velocity is zero. The pull of gravity then makes his velocity increase. As the sky-diver

speeds up, the air resistance also increases. Since the air resistance partly balances the pull of gravity,

the force causing him to accelerate decreases. Thus, the velocity is an increasing function of time,

but it is increasing at a decreasing rate. The air resistance increases until it balances gravity, when the

sky-diver’s velocity levels off. Thus, we expect the the graph of velocity against time to be increasing

and concave down with a horizontal asymptote.

A Differential Equation: Air Resistance Proportional to Velocity

In order to compute the velocity function, we need to know exactly how air resistance depends

on velocity. To decide whether air resistance is, say, proportional to the velocity, or is some other

function of velocity, requires either lab experiments or a theoretical idea of how the air resistance is

created. We consider a very small object, such as a dust particle settling on a computer component

during manufacturing,11 and assume that air resistance is proportional to velocity. Thus, the net force

on the object is F = mg − kv, where mg is the gravitational force, which acts downward, and kv is

the air resistance, which acts upward, so k > 0. (See Figure 11.58.) Then, by Newton’s Second Law

of Motion,

Force = Mass ⋅ Acceleration,

we have

mg − kv = m
dv

dt
.

This differential equation can be solved by separation of variables. It is easier if we factor out −k∕m

before separating, giving
dv

dt
= −

k

m

(

v −
mg

k

)

.

Separating and integrating gives

∫

dv

v − mg∕k
= −

k

m ∫
dt

ln
|

|

|

|

v −
mg

k

|

|

|

|

= −
k

m
t + C.

11Example suggested by Howard Stone.
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Solving for v, we have
|

|

|

|

v −
mg

k

|

|

|

|

= e−kt∕m+C = eCe−kt∕m

v −
mg

k
= Ae−kt∕m,

where A is an arbitrary nonzero constant. We find A from the initial condition that the object starts

from rest, so v = 0 when t = 0. Substituting

0 −
mg

k
= Ae0

gives

A = −
mg

k
.

✻

❄

Force due to
gravity,mg

Air resistance, kv

Figure 11.58: Forces acting on a falling object

mg

k

v (velocity)

t (time)

v =
mg

k
(1 − e−kt∕m)

Terminal velocity

Figure 11.59: Velocity of falling dust particle assuming

that air resistance is kv

Thus

v =
mg

k
−
mg

k
e−kt∕m =

mg

k
(1 − e−kt∕m).

The graph of this function is in Figure 11.59. The horizontal asymptote represents the terminal

velocity, mg∕k.

Notice that the terminal velocity can also be obtained from the differential equation by setting

dv∕dt = 0 and solving for v:

m
dv

dt
= mg − kv = 0, so v =

mg

k
.

Compartmental Analysis: A Reservoir

Many processes can be modeled as a container with various solutions flowing in and out—for exam-

ple, drugs given intravenously or the discharge of pollutants into a lake. We consider a city’s water

reservoir, fed partly by clean water from a spring and partly by run-off from the surrounding land.

In New England and many other areas with much snow in the winter, the run-off contains salt that

has been put on the roads to make them safe for driving. We consider the concentration of salt in the

reservoir. If there is no salt in the reservoir initially, the concentration builds up until the rate at which

the salt is entering into the reservoir balances the rate at which salt flows out. If, on the other hand,

the reservoir starts with a great deal of salt in it, then initially, the rate at which the salt is entering

is less than the rate at which it is flowing out, and the quantity of salt in the reservoir decreases. In

either case, the salt concentration levels off at an equilibrium value.

A Differential Equation for Salt Concentration

A water reservoir holds 100 million gallons of water and supplies a city with 1 million gallons a day.

The reservoir is partly refilled by a spring that provides 0.9 million gallons a day, and the rest of the

water, 0.1 million gallons a day, comes from run-off from the surrounding land. The spring is clean,
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but the run-off contains salt with a concentration of 0.0001 pound per gallon. There was no salt in

the reservoir initially, and the water is well mixed (that is, the outflow contains the concentration of

salt in the tank at that instant). We find the concentration of salt in the reservoir as a function of time.

It is important to distinguish between the total quantity,Q, of salt in pounds and the concentra-

tion, C , of salt in pounds/gallon where

Concentration = C =
Quantity of salt

Volume of water
=

Q

100million

(

lb

gal

)

.

(The volume of the reservoir is 100 million gallons.) We will findQ first, and then C . We know that

Rate of change of

quantity of salt
= Rate salt entering − Rate salt leaving.

Salt is entering through the run-off of 0.1 million gallons per day, with each gallon containing 0.0001

pound of salt. Therefore,

Rate salt entering = Concentration ⋅ Volume per day

= 0.0001

(

lb

gal

)

⋅ 0.1

(

million gal

day

)

= 0.00001

(

million lb

day

)

= 10 lb∕day.

Salt is leaving in the million gallons of water used by the city each day. Thus

Rate salt leaving = Concentration ⋅ Volume per day

=
Q

100 million

(

lb

gal

)

⋅ 1

(

million gal

day

)

=
Q

100
lb∕day.

Therefore,Q satisfies the differential equation

dQ

dt
= 10 −

Q

100
.

We factor out −1∕100 = −0.01 and separate variables, giving

dQ

dt
= −0.01(Q− 1000)

∫

dQ

Q − 1000
= −

∫
0.01 dt

ln |Q − 1000| = −0.01t+ k

Q − 1000 = Ae−0.01t.

There is no salt initially, so we substitute Q = 0 when t = 0:

0 − 1000 = Ae0 giving A = −1000.

Thus

Q − 1000 = −1000e−0.01t,

so

Q = 1000(1 − e−0.01t) pounds.

Therefore

Concentration = C =
Q

100 million
=

1000

108
(1 − e−0.01t) = 10−5(1 − e−0.01t) lb/gal.

A sketch of concentration against time is in Figure 11.60.
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10−5

C (lb/gal)

t (days)

C = 10−5
(

1 − e−0.01t
)

Figure 11.60: Concentration of salt in reservoir

Summary for Section 11.6

• The basic ideas already developed can be used to formulate differential equations for a wide

variety of models.

• A quantity growing at a rate proportional to its size combined with removal at a constant rate A

can be modeled by the differential equation

dQ

dt
= kQ − A.

Exercises and Problems for Section 11.6 Online Resource: Additional Problems for Section 11.6
EXERCISES

1. Match the graphs in Figure 11.61 with the following

descriptions.

(a) The population of a new species introduced onto a

tropical island.

(b) The temperature of a metal ingot placed in a fur-

nace and then removed.

(c) The speed of a car traveling at uniform speed and

then braking uniformly.

(d) The mass of carbon-14 in a historical specimen.

(e) The concentration of tree pollen in the air over the

course of a year.

t

(I)

t

(II)

t

(III)

t

(IV)

t

(V)

Figure 11.61

In Exercises 2–5, write a differential equation for the balance

B in an investment fund with time, t, measured in years.

2. The balance is earning interest at a continuous rate of

5% per year, and payments are being made out of the

fund at a continuous rate of $12,000 per year.

3. The balance is earning interest at a continuous rate of

3.7% per year, and money is being added to the fund at

a continuous rate of $5000 per year.

4. The balance is losing value at a continuous rate of 8%

per year, and money is being added to the fund at a con-

tinuous rate of $2000 per year.

5. The balance is losing value at a continuous rate of 6.5%

per year, and payments are being made out of the fund

at a continuous rate of $50,000 per year.

6. A bank account that earns 10% interest compounded

continuously has an initial balance of zero. Money is

deposited into the account at a constant rate of $1000

per year.

(a) Write a differential equation that describes the rate

of change of the balance B = f (t).

(b) Solve the differential equation to find the balance

as a function of time.

7. At time t = 0, a bottle of juice at 90◦F is stood in a

mountain stream whose temperature is 50◦F. After 5

minutes, its temperature is 80◦F. Let H(t) denote the

temperature of the juice at time t, in minutes.

(a) Write a differential equation for H(t) using New-

ton’s Law of Cooling.

(b) Solve the differential equation.

(c) When will the temperature of the juice have

dropped to 60◦F?

8. The column of water in a cylindrical tank has height ℎ.

Let t be time in seconds and k be a positive constant.

Water leaks out through a spout at the bottom of the

tank at a rate given by Torricelli’s law,

dℎ

dt
= −k

√

ℎ.

(a) According to Torricelli’s law, which quantities are

proportional?

(b) At time t = 0, the water has a height of 80 cm,

and the height is decreasing by 2.5 cm/sec. Find a

formula for the height of the water in the tank as a

function of time.
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(c) How long does it take for the tank in part (b) to

empty?

9. A cube of ice, 10 cm per side, sitting on the floor, melts.

The rate, dV ∕dt, at which it melts (in cm3 per minute)

is proportional to the total area, S, of the five exposed

faces, so dV ∕dt = kS. Find k if at time t = 0 we have

dV ∕dt = 13 cm3/min.

10. The velocity, v, of a dust particle of mass m and accel-

eration a satisfies the equation

ma = m
dv

dt
= mg − kv, where g, k are constant.

By differentiating this equation, find a differential equa-

tion satisfied by a. (Your answer may contain m, g, k,

but not v.) Solve for a, given that a(0) = g.

PROBLEMS

11. With t in years since the start of 2018, copper has been

mined worldwide at a rate of 21e0.05t million tons per

year. At the start of 2018, the world’s known copper re-

serves were 830 million tons.12

(a) Write a differential equation for C , the total quan-

tity of copper mined in t years since the start of

2018.

(b) Solve the differential equation.

(c) According to this model, when will the known cop-

per reserves be exhausted?

12. A deposit is made to a bank account paying 2% inter-

est per year compounded continuously. Payments total-

ing $2000 per year are made continuously from this ac-

count.

(a) Write a differential equation for the balance, B, in

the account after t years.

(b) Find the equilibrium solution of the differential

equation. Is the equilibrium stable or unstable? Ex-

plain what happens to an account that begins with

slightly more money or slightly less money than

the equilibrium value.

(c) Write the solution to the differential equation.

(d) How much is in the account after 5 years

if the initial deposit is (i) $80,000?

(ii) $120,000?

13. Dead leaves accumulate on the ground in a forest at a

rate of 3 grams per square centimeter per year. At the

same time, these leaves decompose at a continuous rate

of 75% per year. Write a differential equation for the

total quantity of dead leaves (per square centimeter) at

time t. Sketch a solution showing that the quantity of

dead leaves tends toward an equilibrium level. What is

that equilibrium level?

14. A stream flowing into a lake brings with it a pollutant

at a rate of 8 metric tons per year. The river leaving

the lake removes the pollutant at a rate proportional to

the quantity in the lake, with constant of proportionality

−0.16 if time is measured in years.

(a) Is the quantity of pollutant in the lake increasing

or decreasing at a moment at which the quantity is

45 metric tons? At which the quantity is 55 metric

tons?

(b) What is the quantity of pollutant in the lake after a

long time?

15. Caffeine is metabolized and excreted at a continuous

rate of about 17% per hour. A person with no caffeine

in the body starts drinking coffee, containing 130 mg of

caffeine per cup, at 7 am. The person drinks coffee con-

tinuously all day at the rate of one cup an hour. Write

a differential equation for A, the amount of caffeine in

the body t hours after 7 am and give the particular so-

lution to this differential equation. How much caffeine

is in the person’s body at 5 pm?

16. The rate (per foot) at which light is absorbed as it passes

through water is proportional to the intensity, or bright-

ness, at that point.

(a) Find the intensity as a function of the distance the

light has traveled through the water.

(b) If 50% of the light is absorbed in 10 feet, how much

is absorbed in 20 feet? 25 feet?

17. In 2012, the world population was 7.052 billion. The

birth rate had stabilized to 135 million per year and is

projected to remain constant. The death rate is projected

to increase from 56 million per year in 2012 to 80 mil-

lion per year in 2040 and to continue increasing at the

same rate.13

(a) Assuming the death rate increases linearly, write a

differential equation for P (t), the world population

in billions t years from 2012.

(b) Solve the differential equation.

(c) Find the population predicted for 2050.

18. A bank account earns 2% annual interest, compounded

continuously. Money is deposited in a continuous cash

flow at a rate of $1200 per year into the account.

(a) Write a differential equation that describes the rate

at which the balance B = f (t) is changing.

(b) Solve the differential equation given an initial bal-

ance B0 = 0.

(c) Find the balance after 5 years.

12Data from https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/mcs2019_all.pdf, ac-

cessed September 26, 2019.
13en.wikipedia.org, accessed October 16, 2019.
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19. The rate at which barometric pressure decreases with

altitude is proportional to the barometric pressure at

that altitude. If the barometric pressure is measured in

inches of mercury, and the altitude in feet, then the con-

stant of proportionality is 3.7 ⋅ 10−5. The barometric

pressure at sea level is 29.92 inches of mercury.

(a) Calculate the barometric pressure at the top of

Mount Whitney, 14,500 feet (the highest mountain

in the US outside Alaska), and at the top of Mount

Everest, 29,000 feet (the highest mountain in the

world).

(b) People cannot easily survive at a pressure below 15

inches of mercury. What is the highest altitude to

which people can safely go?

20. According to a simple physiological model, an athletic

adult male needs 20 Calories per day per pound of body

weight to maintain his weight. If he consumes more

or fewer Calories than those required to maintain his

weight, his weight changes at a rate proportional to the

difference between the number of Calories consumed

and the number needed to maintain his current weight;

the constant of proportionality is 1∕3500 pounds per

Calorie. Suppose that a particular person has a constant

caloric intake of I Calories per day. Let W (t) be the

person’s weight in pounds at time t (measured in days).

(a) What differential equation has solution W (t)?

(b) Find the equilibrium solution of the differential

equation. Based on the context, do you expect the

equilibrium to be stable or unstable?

(c) Solve this differential equation.

(d) Graph W (t) if the person starts out weighing 160

pounds and consumes 3000 Calories a day.

21. Morphine is often used as a pain-relieving drug. The

half-life of morphine in the body is 2 hours. Suppose

morphine is administered to a patient intravenously at

a rate of 2.5 mg per hour, and the rate at which the

morphine is eliminated is proportional to the amount

present.

(a) Use the half-life to show that, to three decimal

places, the constant of proportionality for the rate

at which morphine leaves the body (in mg/hour) is

k = −0.347.

(b) Write a differential equation for the quantity, Q, of

morphine in the blood after t hours.

(c) Use the differential equation to find the equilibrium

solution. (This is the long-term amount of mor-

phine in the body, once the system has stabilized.)

22. Water leaks out of the bottom of a barrel at a rate pro-

portional to the square root of the depth of the water at

that time. If the water level starts at 36 inches and drops

to 35 inches in 1 hour, how long will it take for all of

the water to leak out of the barrel?

23. When a gas expands without gain or loss of heat, the

rate of change of pressure with respect to volume is

proportional to pressure divided by volume. Find a law

connecting pressure and volume in this case.

24. A spherical snowball melts at a rate proportional to its

surface area.

(a) Write a differential equation for its volume, V .

(b) If the initial volume is V0, solve the differential

equation and graph the solution.

(c) When does the snowball disappear?

25. Water leaks from a vertical cylindrical tank through a

small hole in its base at a rate proportional to the square

root of the volume of water remaining. If the tank ini-

tially contains 200 liters and 20 liters leak out during

the first day, when will the tank be half empty? How

much water will there be after 4 days?

26. As you know, when a course ends, students start to for-

get the material they have learned. One model (called

the Ebbinghaus model) assumes that the rate at which

a student forgets material is proportional to the differ-

ence between the material currently remembered and

some positive constant, a.

(a) Let y = f (t) be the fraction of the original material

remembered t weeks after the course has ended.

Set up a differential equation for y. Your equation

will contain two constants; the constant a is less

than y for all t.

(b) Solve the differential equation.

(c) Describe the practical meaning (in terms of the

amount remembered) of the constants in the solu-

tion y = f (t).

27. An item is initially sold at a price of $p per unit. Over

time, market forces push the price toward the equilib-

rium price, $p∗, at which supply balances demand. The

Evans Price Adjustment model says that the rate of

change in the market price, $p, is proportional to the

difference between the market price and the equilibrium

price.

(a) Write a differential equation for p as a function of t.

(b) Solve for p.

(c) Sketch solutions for various different initial prices,

both above and below the equilibrium price.

(d) What happens to p as t→ ∞?

28. Let L, a constant, be the number of people who would

like to see a newly released movie, and let N(t) be the

number of people who have seen it during the first t days

since its release. The rate that people first go see the

movie, dN∕dt (in people/day), is proportional to the

number of people who would like to see it but haven’t

yet. Write and solve a differential equation describing

dN∕dtwhere t is the number of days since the movie’s

release. Your solution will involve L and a constant of

proportionality, k.

29. A drug is administered intravenously at a constant rate

of r mg/hour and is excreted at a rate proportional to
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the quantity present, with constant of proportionality

� > 0.

(a) Solve a differential equation for the quantity, Q, in

milligrams, of the drug in the body at time t hours.

Assume there is no drug in the body initially. Your

answer will contain r and �. Graph Q against t.

What is Q∞, the limiting long-run value of Q?

(b) What effect does doubling r have onQ∞? What ef-

fect does doubling r have on the time to reach half

the limiting value,
1

2
Q∞?

(c) What effect does doubling � have on Q∞? On the

time to reach
1

2
Q∞?

30. When people smoke, carbon monoxide is released into

the air. In a room of volume 60 m3, air containing

5% carbon monoxide is introduced at a rate of 0.002

m3/min. (This means that 5% of the volume of the in-

coming air is carbon monoxide.) The carbon monoxide

mixes immediately with the rest of the air, and the mix-

ture leaves the room at the same rate as it enters.

(a) Write a differential equation for c(t), the concen-

tration of carbon monoxide at time t, in minutes.

(b) Solve the differential equation, assuming there is

no carbon monoxide in the room initially.

(c) What happens to the value of c(t) in the long run?

31. (Continuation of Problem 30.)

Government agencies warn that exposure to

air containing 0.02% carbon monoxide can lead to

headaches and dizziness.14 How long does it take for

the concentration of carbon monoxide in the room in

Problem 30 to reach this level?

32. An aquarium pool has volume 2 ⋅ 106 liters. The pool

initially contains pure fresh water. At t = 0 minutes,

water containing 10 grams/liter of salt is poured into

the pool at a rate of 60 liters∕minute. The salt water

instantly mixes with the fresh water, and the excess

mixture is drained out of the pool at the same rate (60

liters/minute).

(a) Write a differential equation for S(t), the mass of

salt in the pool at time t.

(b) Solve the differential equation to find S(t).

(c) What happens to S(t) as t→ ∞?

33. In 1692, Johann Bernoulli was teaching the Marquis de

l’Hopital calculus in Paris. Solve the following prob-

lem, which is similar to the one that they did. What is

the equation of the curve which has subtangent (dis-

tance BC in Figure 11.62) equal to twice its abscissa

(distance OC)?

B O C

A

❘

Tangent

Curve

■

x

y

Figure 11.62

34. An object of mass m is fired vertically upward from the

surface of the earth with initial velocity v0. We will cal-

culate the value of v0, called the escape velocity, with

which the object just escapes the pull of gravity and

never returns to earth. Since the object is moving far

from the surface of the earth, we must take into account

the variation of gravity with altitude. If the acceleration

due to gravity at sea level is g, and R is the radius of the

earth, the gravitational force, F , on the object of mass

m at an altitude ℎ above the surface of the earth is

F =
mgR2

(R + ℎ)2
.

(a) The velocity of the object (measured upward) is v

at time t. Use Newton’s Second Law of Motion to

show that

dv

dt
= −

gR2

(R + ℎ)2
.

(b) Rewrite this equation with ℎ instead of t as the

independent variable using the chain rule
dv

dt
=

dv

dℎ
⋅
dℎ

dt
. Hence, show that

v
dv

dℎ
= −

gR2

(R + ℎ)2
.

(c) Solve the differential equation in part (b).

(d) Find the escape velocity, the smallest value of v0
such that v is never zero.

35. A ball is attached to one end of a rod of length a. A per-

son at the origin holds the other end and moves along

the positive x-axis, dragging the ball along a curve,

called a tractrix, in the plane. See Figure 11.63.

(a) What is the initial position of the ball?

(b) Use the fact that the rod is tangent to the tractrix at

every point to find the differential equation that the

tractrix satisfies.

(c) Show that the parametric equations x = a(t −

tanh t), y = a∕ cosh t satisfy the differential equa-

tion and the initial condition.

a

a

(x, y)

x

y

Figure 11.63

14www.lni.wa.gov/Safety/Topics/AtoZ/CarbonMonoxide/, accessed October 16, 2019.
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Strengthen Your Understanding

In Problems 36–37, explain what is wrong with the state-

ment.

36. At a time when a bank balance $B, which satisfies

dB∕dt = 0.08B − 250, is $5000, the balance is going

down.

37. The differential equation dQ∕dt = −0.15Q + 25 rep-

resents the quantity of a drug in the body if the drug is

metabolized at a continuous rate of 15% per day and an

IV line is delivering the drug at a constant rate of 25 mg

per hour.

In Problems 38–40, give an example of:

38. A differential equation for the quantity of a drug in a

patient’s body if the patient is receiving the drug at a

constant rate through an IV line and is metabolizing the

drug at a rate proportional to the quantity present.

39. A differential equation for any quantity which grows in

two ways simultaneously: on its own at a rate propor-

tional to the cube root of the amount present and from

an external contribution at a constant rate.

40. A differential equation for a quantity that is increasing

and grows fastest when the quantity is small and grows

more slowly as the quantity gets larger.

11.7 THE LOGISTIC MODEL

Oil prices have a significant impact on the world’s economies. In the eighteen months preceding

March 2011, the price of oil more than doubled from about $60 a barrel to about $140 a barrel.15

The impact of the increase was significant, from the auto industry, to family budgets, to how people

commute. Even the threat of a price hike can send stock markets tumbling.

Many reasons are suggested for the increase, but one fact is inescapable: there is a finite supply

of oil in the world. To fuel its expanding economy, the world consumes more oil each succeeding

year. This cannot go on indefinitely. Economists and geologists are interested in estimating the re-

maining oil reserves and the date at which annual oil production is expected to peak (that is, reach a

maximum).

US oil production has already peaked—and the date was predicted in advance. In 1956, geologist

M. King Hubbert predicted that annual US oil production would peak some time in the period 1965–

1970. Although many did not take his prediction seriously, US oil production did in fact peak in 1970.

The economic impact was blunted by the US’s increasing reliance on foreign oil.

In this section we introduce the logistic differential equation and use it, as Hubbert did, to predict

the peak of US oil production.16 Problems 39–42 investigate the peak of world oil production.

The Logistic Model

The logistic differential equation describes growth subject to a limit. For oil, the limit is the total oil

reserves; for a population, the limit is the largest population that the environment can support; for

the spread of information or a disease, the limit is the number of people that could be affected. The

solution to this differential equation is the family of logistic functions introduced in Section 4.4.

Suppose P is growing logistically toward a limiting value of L, and the relative growth rate,

(1∕P )dP∕dt, is k when P = 0. In the exponential model, the relative growth rate remains constant

at k. But in the logistic model, the relative growth rate decreases linearly to 0 as P approaches L;

see Figure 11.64.

So we have

1

P

dP

dt
= k −

k

L
P = k

(

1 −
P

L

)

.

15www.eia.gov, accessed October 16, 2019.
16Based on an undergraduate project by Brad Ernst, Colgate University. US oil production has changed dramatically since

2011 with the introduction of new technology: the number of barrels produced in 2018 was twice the number produced in

2010 and more than the previous peak in 1983. Just as with US population, long-range predictions with a logistic model may

be unreliable.
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L

k

P

1

P

dP

dt

Figure 11.64: Logistic model: Relative

growth rate is a linear function of P

The logistic differential equation can also be written

dP

dt
= kP

(

1 −
P

L

)

.

This equation was first proposed as a model for population growth by the Belgian mathematician P.

F. Verhulst in the 1830s. In Verhulst’s model,L represents the carrying capacity of the environment,

which is determined by the supply of food and arable land along with the available technology.

Qualitative Solution to the Logistic Equation

Figure 11.65 shows the slope field and characteristic sigmoid, or S-shaped, solution curve for the

logistic model. Notice that for each fixed value of P , that is, along each horizontal line, the slopes are

the same because dP∕dt depends only on P and not on t. The slopes are small near P = 0 and near

P = L; they are steepest around P = L∕2. For P > L, the slopes are negative, so if the population

is above the carrying capacity, the population decreases.

L

P

t

Figure 11.65: Slope field for

dP∕dt = kP (1 − P∕L)

L

2

L
P

dP

dt

Figure 11.66: dP∕dt = kP (1 − P∕L)

We can locate the inflection point where the slope is greatest using Figure 11.66. This graph is

a parabola because dP∕dt is a quadratic function of P . The horizontal intercepts are at P = 0 and

P = L, so the maximum, where the slope is greatest, is at P = L∕2. Figure 11.66 also tells us that

for 0 < P < L∕2, the slope dP∕dt is positive and increasing, so the graph of P against t is concave

up. (See Figure 11.67.) For L∕2 < P < L, the slope dP∕dt is positive and decreasing, so the graph

of P is concave down. For P > L, the slope dP∕dt is negative, so P is decreasing.

P0

L

2

L

t

P

Inflection point: Maximum slope✛

Approximately exponential✛
Concave up✛

Concave down✛

Carrying capacity

✠

Figure 11.67: Logistic growth with inflection point

P0

L

2

L

P

t

Figure 11.68: Solutions to the logistic equation
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If P = 0 or P = L, there is an equilibrium solution. Figure 11.68 shows that P = 0 is an

unstable equilibrium because solutions which start near 0 move away from 0. However, P = L is a

stable equilibrium.

The Analytic Solution to the Logistic Equation

We have already obtained a lot of information about logistic growth without finding a formula for

the solution. However, the equation can be solved analytically by separating variables:

dP

dt
= kP

(

1 −
P

L

)

= kP

(

L − P

L

)

giving

∫

dP

P (L − P )
=
∫

k

L
dt.

We can integrate the left side using the integral tables (Formula V 26) or by partial fractions:

∫

1

L

(

1

P
+

1

L − P

)

dP =
∫

k

L
dt.

Canceling the constant L, we integrate to get

ln |P | − ln |L − P | = kt + C.

Multiplying through by (−1) and using properties of logarithms, we have

ln
|

|

|

|

L − P

P

|

|

|

|

= −kt − C.

Exponentiating both sides gives

|

|

|

|

L − P

P

|

|

|

|

= e−kt−C = e−Ce−kt, so
L − P

P
= ±e−Ce−kt.

Then, writing A = ±e−C , we have
L − P

P
= Ae−kt.

We find A by substituting P = P0 when t = 0, which, when P0 ≠ 0, gives

L − P0

P0
= Ae0 = A.

Since (L − P )∕P = (L∕P ) − 1, we have

L

P
= 1 + Ae−kt,

which gives the following result:

The solution to the logistic differential equation:

dP

dt
= kP

(

1 −
P

L

)

with initial condition P0 when t = 0

is, for P0 ≠ 0, the logistic function

P =
L

1 + Ae−kt
with A =

L − P0

P0
.

The parameterL represents the limiting value. The parameter k represents the relative growth

rate when P is small relative to L. The parameter A depends on the initial condition P0.
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Peak Oil: US Production

We apply the logistic model to US oil production as Hubbert did in 1956. To make predictions, we

need the values of k and L. We calculate these values from the oil production data Hubbert had

available to him in the 1950s; see Table 11.5.

We define P to be the total amount of oil, in billions of barrels, produced in the US since 1859,

the year the first oil well was built. See Table 11.5. With time, t, in years, dP∕dt approximates the

annual oil production in billions of barrels per year. Peak oil production occurs when dP∕dt is a

maximum.

Table 11.5 US oil production17 for 1931–1950 (billions of barrels)

Year dP∕dt P Year dP∕dt P Year dP∕dt P

1931 0.851 13.8 1938 1.21 21.0 1945 1.71 31.5

1932 0.785 14.6 1939 1.26 22.3 1946 1.73 33.2

1933 0.906 15.5 1940 1.50 23.8 1947 1.86 35.1

1934 0.908 16.4 1941 1.40 25.2 1948 2.02 37.1

1935 0.994 17.4 1942 1.39 26.6 1949 1.84 38.9

1936 1.10 18.5 1943 1.51 28.1 1950 1.97 40.9

1937 1.28 19.8 1944 1.68 29.8

Figure 11.69 shows a scatterplot of the relative growth rate (dP∕dt)∕P versus P . If the data

follow a logistic differential equation, we see a linear relationship with intercept k and slope −k∕L:

1

P

dP

dt
= k

(

1 −
P

L

)

= k −
k

L
P .

Figure 11.69 shows a line fitted to the data.18 The vertical intercept gives the value k = 0.0649.

The slope of the line is −k∕L = −0.00036, so we have L = 0.0649∕0.00036 = 180 billion

barrels of oil. Thus, the model predicts that the total oil reserves in the US (the total amount in the

ground before drilling started in 1859) were 180 billion barrels of oil.19

10 20 30 40
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0.07

1

P

dP

dt
= 0.0649 − 0.00036P

P (bn barrels)

1

P

dP

dt
(fraction/yr)

Figure 11.69: US oil production 1931–1950: Scatterplot and line for 1∕P (dP∕dt) versus P

If we let t = 0 be 1950, then P0 = 40.9 billion barrels and A = (180− 40.9)∕40.9 = 3.401. The

logistic function representing US oil production is

P =
180

1 + 3.401e−0.0649t
.

17Data from http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MCRFPUS1&f=A, accessed October 16,

2019.
18The line is a least-squares regression line.
19If the same analysis is repeated for other time periods, for example 1900–1950 or 1900–2000, the value for L varies

between 120 and 220 billion barrels, while the value of k varies between 0.060 and 0.075.
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Predicting Peak Oil Production

To predict, as Hubbert did, the year when annual US oil production would peak, we use the fact that

the maximum value for dP∕dt occurs when P = L∕2. We derive a formula for the peak year (used

again in Problems 39–42 to find peak production in world oil). The crucial observation is that, at the

peak, the denominator of the expression for P must equal 2. Since

P =
L

2
=

L

1 + Ae−kt
, we have Ae−kt = 1.

Using logarithms to solve the equation Ae−kt = 1, we get t = (1∕k) lnA. Since A = (L − P0)∕P0,

we see that the time to peak oil production is an example of the following result:

For a logistic function, the maximum value of dP∕dt occurs when P = L∕2, and

Time to the maximum rate of change =
1

k
lnA =

1

k
ln
L − P0

P0
.

Thus, for the US,

Time to peak oil production =
1

0.0649
ln

180 − 40.9

40.9
≈ 19 years;

that is, oil production was predicted to peak in the year 1950 + 19 = 1969. That year, P = L∕2 and

annual production was expected to be

dP

dt
= kP

(

1 −
P

L

)

= 0.0649 ⋅
180

2

(

1 −
1

2

)

≈ 3 billion barrels.

The actual peak in US oil production was 3.5 billion barrels in 1970. Repeating the analysis using

other time periods gives peak oil years in the range 1965-1970, as Hubbert predicted.

Figure 11.70 shows actual annual US production data and the parabola predicting its peak around

1970. Figure 11.71 shows P as a logistic function of t, with the limiting value of P = 180 and

maximum production at P = 90. In fact, the first major oil crisis hit the US in the 1970s, with

spiraling gas prices and long lines at service stations. The decline in US oil production since 1970

was partly mitigated by the opening of the Alaskan oil fields, which led to a second but lower peak

in 1985. However, the US has increasingly depended on foreign oil.

Although Hubbert’s predictions of the peak year proved to be accurate, extrapolation into the

future is risky. Figure 11.70 and Figure 11.71 show that since 1970, oil production has slowed, though

not as much as predicted.
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dP∕dt = 0.0649P (1 − P∕180)
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Figure 11.70: US oil production: dP∕dt

versus P , predicted (parabola) and actual
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Figure 11.71: US oil production: P versus t, predicted (logistic)

and actual

Interestingly, Hubbert used the logistic model only to estimate k; for L, he relied on geological

studies. It is remarkable that using only annual oil production for 1930-1950, we get an estimate for

L that is in such close agreement with the geological estimates.
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US Population Growth

The logistic equation is often used to model population growth. Table 11.6 gives the annual census

figures in millions for the US population from 1790 to 2010.20 Since we have the population, P (t),

of the US at ten-year intervals, we compute the relative growth rate using averages of estimates of

the form:
1

P

dP

dt
in 1860 =

1

P (1860)
⋅

P (1870) − P (1860)

10
.

(See Problem 19 for details.) If we focus on the period 1790–1940, a line fitted to the scatterplot of

(1∕P )dP∕dt versus P has intercept k = 0.0317 and slope −k∕L = −0.000165, so L ≈ 192. Thus

the differential equation modeling the US population during this period is

dP

dt
= 0.0317P

(

1 −
P

192

)

.

Using 1790 as t = 0, we get

A =
L − P0

P0
=

192 − 3.9

3.9
≈ 48.

Thus the solution to the logistic differential equation is

P =
192

1 + 48e−0.0317t
.

Table 11.6 shows the actual census data for 1790–1940 with projected values from a logistic model;

the largest deviations are 4% in 1840 and 1870 (the Civil War accounts for the second one).21

Table 11.6 US population, in millions, for 1790–2010, actual data and logistic predictions

Year Actual Logistic Year Actual Logistic Year Actual Logistic Year Actual Logistic

1790 3.9 3.9 1850 23.2 23.6 1910 92.2 92.9 1970 203.2 165.7

1800 5.3 5.4 1860 31.4 30.9 1920 106.0 108.0 1980 226.5 172.2

1810 7.2 7.3 1870 38.6 40.1 1930 123.2 122.6 1990 248.7 177.2

1820 9.6 9.8 1880 50.2 51.0 1940 132.2 136.0 2000 281.4 181.0

1830 12.9 13.3 1890 63.0 63.7 1950 151.3 147.7 2010 308.7 183.9

1840 17.1 17.8 1900 76.2 77.9 1960 179.3 157.6

After 1940, the actual figures leave the logistic model in the dust. The model predicts an in-

crease of 9.9 million from 1950 to 1960 versus the actual change of 28 million. By 1970 the actual

population of 203.2 million exceeded the predicted limiting population of L = 192 million. The

unprecedented surge in US population between 1945 and 1965 is referred to as the baby boom.

Summary for Section 11.7

• The logistic differential equation models growth subject to a limit L:

dP

dt
= kP

(

1 −
P

L

)

.

• Qualitatively, solutions to the logistic differential equation

◦ have equilibria at P = 0 and P = L,

◦ increase when 0 < P < L, with fastest increase at P = L∕2,

◦ decrease when P > L.

20www.census.gov, accessed October 19, 2019.
21Calculations were done with more precise values of the population data and the constants k, L, and A than those shown.
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• The solution to the logistic differential equation:

dP

dt
= kP

(

1 −
P

L

)

with initial condition P0 when t = 0

is, for P0 ≠ 0, the logistic function

P =
L

1 + Ae−kt
with A =

L − P0

P0
.

The parameter L represents the limiting value. The parameter k represents the relative growth

rate when P is small relative to L. The parameter A depends on the initial condition P0.

• For a logistic function P , the maximum value of dP∕dt occurs when P = L∕2, and

Time to the maximum rate of change =
1

k
lnA =

1

k
ln
L − P0

P0
.

Exercises and Problems for Section 11.7 Online Resource: Additional Problems for Section 11.7
EXERCISES

1. (a) Show that P = 1∕(1 + e−t) satisfies the logistic

equation

dP

dt
= P (1 − P ).

(b) What is the limiting value of P as t→ ∞?

2. A quantity P satisfies the differential equation

dP

dt
= kP

(

1 −
P

100

)

.

Sketch approximate solutions satisfying each of the fol-

lowing initial conditions:

(a) P0 = 8 (b) P0 = 70 (c) P0 = 125

3. A quantity Q satisfies the differential equation

dQ

dt
= kQ(1 − 0.0004Q).

Sketch approximate solutions satisfying each of the fol-

lowing initial conditions:

(a) Q0 = 300 (b) Q0 = 1500 (c) Q0 = 3500

4. A quantity P satisfies the differential equation

dP

dt
= kP

(

1 −
P

250

)

, with k > 0.

Sketch a graph of dP∕dt as a function of P .

5. A quantity A satisfies the differential equation

dA

dt
= kA(1 − 0.0002A), with k > 0.

Sketch a graph of dA∕dt as a function of A.

6. Figure 11.72 shows a graph of dP∕dt against P for a lo-

gistic differential equation. Sketch several solutions of

P against t, using different initial conditions. Include a

scale on your vertical axis.

45
P

dP∕dt

Figure 11.72

7. Figure 11.73 shows a slope field of a differential equa-

tion for a quantity Q growing logistically. Sketch a

graph of dQ∕dt against Q. Include a scale on the hori-

zontal axis.

800

t

Q

Figure 11.73
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8. (a) On the slope field for dP∕dt = 3P − 3P 2 in Fig-

ure 11.74, sketch three solution curves showing

different types of behavior for the population, P .

(b) Is there a stable value of the population? If so, what

is it?

(c) Describe the meaning of the shape of the solution

curves for the population: Where is P increasing?

Decreasing? What happens in the long run? Are

there any inflection points? Where? What do they

mean for the population?

(d) Sketch a graph of dP∕dt against P . Where

is dP∕dt positive? Negative? Zero? Maximum?

How do your observations about dP∕dt explain

the shapes of your solution curves?

1 2

1

t

P

Figure 11.74

Exercises 9–10 give a graph of dP∕dt against P .

(a) What are the equilibrium values of P ?

(b) If P = 500, is dP∕dt positive or negative? Is P increas-

ing or decreasing?

9.

2000
P

dP∕dt 10.

400
P

dP∕dt

In Exercises 11–12, for the logistic differential equation,

(a) Give values for k and for L and interpret the meaning

of each in terms of the growth of the quantity P .

(b) Give the value of P when the rate of change is at its

peak.

11.
dP

dt
= 0.035P

(

1 −
P

6000

)

12.
dP

dt
= 0.1P − 0.00008P 2

In Exercises 13–16, give the general solution to the logistic

differential equation.

13.
dP

dt
= 0.05P

(

1 −
P

2800

)

14.
dP

dt
= 0.012P

(

1 −
P

5700

)

15.
dP

dt
= 0.68P (1 − 0.00025P )

16.
dP

dt
= 0.2P − 0.0008P 2

In Exercises 17–20, give k, L,A, a formula for P as a func-

tion of time t, and the time to the peak value of dP∕dt.

17.
dP

dt
= 10P − 5P 2, P0 = L∕4

18.
dP

dt
= 0.02P − 0.0025P 2 , P0 = 1

19.
1

P

dP

dt
= 0.3

(

1 −
P

100

)

, P0 = 75

20.
1

10P

dP

dt
= 0.012 − 0.002P , P0 = 2

In Exercises 21–22, give the solution to the logistic differen-

tial equation with initial condition.

21.
dP

dt
= 0.8P

(

1 −
P

8500

)

with P0 = 500

22.
dP

dt
= 0.04P (1 − 0.0001P ) with P0 = 200

PROBLEMS

Problems 23–27 are about chikungunya, a disease that ar-

rived in the Americas in 2013 and spread rapidly in 2014.

While seldom fatal, the disease causes debilitating joint pain

and a high fever. In August 2014, a public challenge was is-

sued to predict the number of cases in each of the affected

countries. The winners, Joceline Lega and Heidi Brown,

used a logistic model to make their predictions.22 Let N be

the total number of cases of chikungunya in a country by

week t. From the data given, find approximate values for the

country for

(a) The number of cases expected in the long run.

(b) The maximum number of new cases in a week.

23. In Guadeloupe: use the fitted curve in Figure 11.75.

20000 40000 60000 80000
0

2000

4000

6000

8000

N , total cases

dN∕dt, cases per week

Figure 11.75

24. In Dominica:
dN

dt
= 0.31N

(

1 −
N

3771

)

.

25. In the Dominican Republic: N =
539,226

1 + 177e−0.35t
.

22J. Lega and H. E. Brown, “Data-driven Outbreak Forecasting with a Simple Nonlinear Growth Model”, Epidemics 17,

December 2016, pp. 19–26. Some data was drawn from a preprint of the article.
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26. In Haiti:
1

N

dN

dt
= 0.7 − 0.00001N.

27. In Ecuador: use the fitted line in Figure 11.76.

10000 20000 30000
0

0.4

0.8

1.2

1.6

N , total cases

(1∕N)dN∕dt, per week

Figure 11.76

28. A population is described by the logistic equation

1

P
⋅

dP

dt
= 8000 − 0.2P .

What is the carrying capacity of this population?

In Problems 29–30, a population P (t) = L∕(1+10e−kt) grows

logistically, with t in days. How long does it take the popu-

lation to grow from 10% to 90% of its carrying capacity?

29. k = 0.1 30. k = 0.2

31. A rumor spreads among a group of 400 people. The

number of people, N(t), who have heard the rumor by

time t in hours since the rumor started is approximated

by

N(t) =
400

1 + 399e−0.4t
.

(a) Find N(0) and interpret it.

(b) How many people will have heard the rumor after

2 hours? After 10 hours?

(c) Graph N(t).

(d) Approximately how long will it take until half the

people have heard the rumor? 399 people?

(e) When is the rumor spreading fastest?

32. The total number of people infected with a virus often

grows like a logistic curve. Suppose that time, t, is in

weeks and that 10 people originally have the virus. In

the early stages, the number of people infected is in-

creasing exponentially with k = 1.78. In the long run,

5000 people are infected.

(a) Find a logistic function to model the number of

people infected.

(b) Sketch a graph of your answer to part (a).

(c) Use your graph to estimate the length of time un-

til the rate at which people are becoming infected

starts to decrease. What is the vertical coordinate

at this point?

33. The Tojolobal Mayan Indian community in southern

Mexico has available a fixed amount of land. The pro-

portion, P , of land in use for farming t years after 1935

is modeled with the logistic function in Figure 11.77:23

P =
1

1 + 2.968e−0.0275t
.

(a) What proportion of the land was in use for farming

in 1935?

(b) What is the long-run prediction of this model?

(c) When was half the land in use for farming?

(d) When is the proportion of land used for farming

increasing most rapidly?

40 80 120 160 200

0.5

1

t (years
since 1935)

P
(proportion of land in use)

Figure 11.77

34. A model for the population, P , of carp in a landlocked

lake at time t is given by the differential equation

dP

dt
= 0.25P (1 − 0.0004P ).

(a) What is the long-term equilibrium population of

carp in the lake?

(b) A census taken ten years ago found there were 1000

carp in the lake. Estimate the current population.

(c) Under a plan to join the lake to a nearby river, the

fish will be able to leave the lake. A net loss of 10%

of the carp each year is predicted, but the patterns

of birth and death are not expected to change. Re-

vise the differential equation to take this into ac-

count. Use the revised differential equation to pre-

dict the future development of the carp population.

35. Table 11.7 gives values for a logistic function P = f (t).

(a) Estimate the maximum rate of change of P and es-

timate the value of t when it occurs.

(b) IfP represents the growth of a population, estimate

the carrying capacity of the population.

Table 11.7

t 0 10 20 30 40 50 60 70

P 120 125 135 155 195 270 345 385

36. For a population P growing logistically, Table 11.8

gives values of the relative growth rate

r =
1

P

dP

dt
.

(a) What is the carrying capacity of this population?

(b) What is the maximum value of dP∕dt?

Table 11.8

P 1000 2000 3000 4000 5000 6000

r 0.11 0.10 0.09 0.08 0.07 0.06

23Adapted from J. S. Thomas and M. C. Robbins, “The Limits to Growth in a Tojolobal Maya Ejido,” Geoscience and Man

26 (Baton Rouge: Geoscience Publications, 1988), pp. 9–16.
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37. Figure 11.78 shows the spread of the Code-red com-

puter virus during July 2001. Most of the growth took

place starting at midnight on July 19; on July 20, the

virus attacked the White House, trying (unsuccessfully)

to knock its site off-line. The number of computers in-

fected by the virus was a logistic function of time.

(a) Estimate the limiting value of f (t) as t increased.

What does this limiting value represent in terms of

Code-red?

(b) Estimate the value of t at which f ′′(t) = 0. Esti-

mate the value of n at this time.

(c) What does the answer to part (b) tell us about

Code-red?

(d) How are the answers to parts (a) and (b) related?

8 16 24 32

10

20

30

40

n = f (t)

t (hours
since midnight)

n (thousands of
infected computers)

Figure 11.78

38. According to an article in The New York Times,24

pigweed has acquired resistance to the weedkiller

Roundup. Let N be the number of acres, in millions,

where Roundup-resistant pigweed is found. Suppose

the relative growth rate, (1∕N)dN∕dt, was 15% when

N = 5 and 14.5% whenN = 10. Assuming the relative

growth rate is a linear function ofN , write a differential

equation to model N as a function of time, and predict

how many acres will eventually be afflicted before the

spread of Roundup-resistant pigweed halts.

In Problems 39–43, we analyze world oil production.25

When annual world oil production peaks and starts to de-

cline, major economic restructuring will be needed. We in-

vestigate when this slowdown is projected to occur.

39. We define P to be the total oil production worldwide

since 1859 in billions of barrels. In 1998, annual world

oil production was 24.5 billion barrels and the total pro-

duction was P = 841 billion barrels. In 2018, annual

production was 30.3 billion barrels and the total pro-

duction was P = 1384 billion barrels. Let t be time in

years since 1998.

(a) Estimate the rate of production, dP∕dt, for 1998

and 2018.

(b) Estimate the relative growth rate, (1∕P )(dP∕dt),

for 1998 and 2018.

(c) Find an equation for the relative growth rate,

(1∕P )(dP∕dt), as a function of P , assuming that

the function is linear.

(d) Assuming that P increases logistically and that all

oil in the ground will ultimately be extracted, esti-

mate the world oil reserves in 1859 to the nearest

billion barrels.

(e) Write and solve the logistic differential equation

modeling P .

40. In Problem 39 we used a logistic function to model P ,

total world oil production since 1859, as a function of

time, t, in years since 1998. Use this function to answer

the following questions:

(a) When does peak annual world oil production oc-

cur?

(b) Geologists have estimated world oil reserves to be

as high as 4000 billion barrels.26 When does peak

world oil production occur with this assumption?

(Assume k and P0 are unchanged.)

41. As in Problem 39, let P be total world oil production

since 1859. In 2003, annual world production was 25.4

billion barrels and total production was P = 965 bil-

lion barrels. In 2008, annual production was 27.1 billion

barrels and total production was P = 1099 billion bar-

rels. In 2013, annual production was 27.9 billion barrels

and the total production was 1236 billion barrels.

(a) Graph dP∕dt versus P from Problem 39 and show

the data for 2003, 2008 and 2013. How well does

the model fit the data?

(b) Graph the logistic function modeling worldwide

oil production (P versus t) from Problem 39 and

show the data for 2003, 2008 and 2013. How well

does the model fit the data?

42. Use the logistic function obtained in Problem 39 to

model the growth of P , the total oil produced world-

wide in billions of barrels since 1859:

(a) Find the projected value of P for 2019 to the near-

est billion barrels.

(b) Use the derivative to estimate the annual world oil

production during 2019.

(c) How much oil is projected to remain in the ground

in 2019?

(d) Compare the projected production in part (b) with

the actual figure of 30 billion barrels.

43. With P , the total oil produced worldwide since 1859,

in billions of barrels, modeled as a function of time t in

years since 1998 as in Problem 39:

(a) Predict the total quantity of oil produced by 2022.

(b) In what year does the model predict that only 300

billion barrels remain?

24http://www.nytimes.com/2010/05/04/business/energy-environment/04weed.html, accessed May 3, 2010.
25cta.ornl.gov, accessed October 19, 2019.
26www.gulfenergyinfo.com, accessed October 20, 2019.
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Strengthen Your Understanding

In Problems 44–46, explain what is wrong with the state-

ment.

44. The differential equation dP∕dt = 0.08P − 0.0032P 2

has one equilibrium solution, at P = 25.

45. The maximum rate of change occurs at t = 25 for a

quantity Q growing according to the logistic equation

dQ

dt
= 0.13Q(1 − 0.02Q).

46. Figure 11.79 shows a quantity growing logistically.

60

100

t

P

Figure 11.79

In Problems 47–50, give an example of:

47. A quantity that increases logistically.

48. A logistic differential equation for a quantity P such

that the maximum rate of change of P occurs when

P = 75.

49. A graph of dQ∕dt againstQ ifQ is growing logistically

and has an equilibrium value at Q = 500.

50. A graph of dP∕dt against P if P is a logistic function

which increases when 0 < P < 20 and which decreases

when P < 0 or P > 20.

Are the statements in Problems 51–52 true or false? Give an

explanation for your answer.

51. There is a solution curve for the logistic differential

equation dP∕dt = P (2 − P ) that goes through the

points (0, 1) and (1, 3).

52. For any positive values of the constant k and any posi-

tive values of the initial value P (0), the solution to the

differential equation dP∕dt = kP (L − P ) has limiting

value L as t→ ∞.

11.8 SYSTEMS OF DIFFERENTIAL EQUATIONS

In Section 11.7 we modeled the growth of a single population over time. We now consider the growth

of two populations that interact, such as a population of sick people infecting the healthy people

around them. This involves not just one differential equation, but a system of two.

Diseases and Epidemics

Differential equations can be used to predict when an outbreak of a disease will become so severe

that it is called an epidemic27 and to decide what level of vaccination is necessary to prevent an

epidemic. Let’s consider a specific example.

Flu in a British Boarding School

In January 1978, 763 students returned to a boys’ boarding school after their winter vacation. A week

later, one boy developed the flu, followed by two others the next day. By the end of the month, nearly

half the boys were sick. Most of the school had been affected by the time the epidemic was over in

mid-February.28

Being able to predict how many people will get sick, and when, is an important step toward con-

trolling an epidemic. This is one of the responsibilities of Britain’s Communicable Disease Surveil-

lance Centre and the US’s Center for Disease Control and Prevention.

27Exactly when a disease should be called an epidemic is not always clear. The medical profession generally classifies

a disease an epidemic when the frequency is higher than usually expected—leaving open the question of what is usually

expected. See, for example, Epidemiology in Medicine by C. H. Hennekens and J. Buring (Boston: Little, Brown, 1987).
28Data from the Communicable Disease Surveillance Centre (UK); reported in “Influenza in a Boarding School,” British

Medical Journal, March 4, 1978, and by J. D. Murray in Mathematical Biology (New York: Springer Verlag, 1990).
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The S-I-R Model

We apply one of the most commonly used models for an epidemic, called the S-I-R model, to the

boarding school flu example. The population of the school is divided into three groups:

S = the number of susceptibles, the people who are not yet sick

but who could become sick

I = the number of infecteds, the people who are currently sick

R = the number of recovered, or removed, the people who have

been sick and can no longer infect others or be reinfected.

The number of susceptibles decreases with time as people become infected. We assume that the

rate at which people become infected is proportional to the number of contacts between susceptible

and infected people. We expect the number of contacts between the two groups to be proportional to

both S and I . (If S doubles, we expect the number of contacts to double; similarly, if I doubles, we

expect the number of contacts to double.) Thus we assume that the number of contacts is proportional

to the product, SI . In other words, we assume that for some constant a > 0,

dS

dt
= −

(

Rate susceptibles

get sick

)

= −aSI.

(The negative sign is used because S is decreasing.)

The number of infecteds is changing in two ways: newly sick people are added to the infected

group, and others are removed. The newly sick people are exactly those people leaving the susceptible

group and so accrue at a rate of aSI (with a positive sign this time). People leave the infected group

either because they recover (or die), or because they are physically removed from the rest of the

group and can no longer infect others. We assume that people are removed at a rate proportional to

the number of sick, or bI , where b is a positive constant. Thus,

dI

dt
=

Rate susceptibles

get sick
−

Rate infecteds

get removed
= aSI − bI.

Assuming that those who have recovered from the disease are no longer susceptible, the recov-

ered group increases at the rate of bI , so

dR

dt
= bI.

We are assuming that having the flu confers immunity on a person, that is, that the person cannot

get the flu again. (This is true for a given strain of flu, at least in the short run.)

In analyzing the flu, we can use the fact that the total population S + I + R is not changing.

(The total population, the total number of boys in the school, did not change during the epidemic.)

Thus, once we know S and I , we can calculate R. So we restrict our attention to the two equations

dS

dt
= −aSI

dI

dt
= aSI − bI.

The Constants a and b

The constant ameasures how infectious the disease is—that is, how quickly it is transmitted from the

infecteds to the susceptibles. In the case of the flu, we know from medical accounts that the epidemic

started with one sick boy, with two more becoming sick a day later. Thus, when I = 1 and S = 762,

we have dS∕dt ≈ −2, enabling us to roughly29 approximate a:

a = −
dS∕dt

SI
=

2

(762)(1)
= 0.0026.

The constant b represents the rate at which infected people are removed from the infected pop-

ulation. In this case of the flu, boys were generally taken to the infirmary within one or two days of

29The values of a and b are close to those obtained by J. D. Murray in Mathematical Biology (New York: Springer Verlag,

1990).
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becoming sick. About half the infected population was removed each day, so we take b ≈ 0.5. Thus,

our equations are:

dS

dt
= −0.0026SI

dI

dt
= 0.0026SI − 0.5I.

The Phase Plane

We can get a good idea of the progress of the disease from graphs. You might expect that we would

look for graphs of S and I against t, and eventually we will. However, we first look at a graph

of I against S. If we plot a point (S, I) representing the number of susceptibles and the number of

infecteds at any moment in time, then, as the numbers of susceptibles and infecteds change, the point

moves. The SI-plane on which the point moves is called the phase plane. The path along which the

point moves is called the phase trajectory, or orbit, of the point.

To find the phase trajectory, we need a differential equation relating S and I directly. Thinking

of I as a function of S, and S as a function of t, we use the chain rule to get

dI

dt
=
dI

dS
⋅

dS

dt
,

giving
dI

dS
=
dI∕dt

dS∕dt
.

Substituting for dI∕dt and dS∕dt, we get

dI

dS
=

0.0026SI − 0.5I

−0.0026SI
.

Assuming I is not zero, this equation simplifies to approximately

dI

dS
= −1 +

192

S
.

The slope field of this differential equation is shown in Figure 11.80. The trajectory with initial

condition S0 = 762, I0 = 1 is shown in Figure 11.81. Time is represented by the arrow showing

the direction that a point moves on the trajectory. The disease starts at the point S0 = 762, I0 = 1.

At first, more people become infected and fewer are susceptible. In other words, S decreases and I

increases. Later, I decreases as S continues to decrease.

400 800

200

400

S
(susceptibles)

I (infecteds)

Figure 11.80: Slope field for dI∕dS = −1 + 192∕S

192 400

200
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S
(susceptibles)

I (infecteds)

⑥
(762, 1)

Figure 11.81: Trajectory for S0 = 762, I0 = 1

What Does the SI-Phase Plane Tell Us?

To learn how the disease progresses, look at the shape of the curve in Figure 11.81. The value of

I increases to about 300 (the maximum number infected and infectious at any one time); then I

decreases to zero. This peak value of I occurs when S ≈ 200. We can determine exactly when the

peak value occurs by solving
dI

dS
= −1 +

192

S
= 0,

which gives

S = 192.
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Notice that the peak value for I always occurs at the same value of S, namely S = 192. The

graph shows that if a trajectory starts with S0 > 192, then I first increases and then decreases to

zero. On the other hand, if S0 < 192, there is no peak as I decreases right away.

For this example, the value S0 = 192 is called a threshold value. If S0 is around or below 192,

there is no epidemic. If S0 is significantly greater than 192, an epidemic occurs.30

The phase diagram makes clear that the maximum value of I is about 300. Another question

answered by the phase plane diagram is the total number of students who are expected to get sick

during the epidemic. (This is not the maximum value reached by I , which gives the maximum num-

ber infected at any one time.) The point at which the trajectory crosses theS-axis represents the time

when the epidemic has passed (since I = 0). The S-intercept shows how many boys never get the

flu and thus, how many do get it.

How Many People Should Be Vaccinated?

An epidemic can sometimes be avoided by vaccination. How many boys would have had to be vac-

cinated to prevent the flu epidemic? To answer this, think of vaccination as removing people from

the S category (without increasing I), which amounts to moving the initial point on the trajectory

to the left, parallel to the S-axis. To avoid an epidemic, the initial value of S0 should be at or below

the threshold value. Therefore, all but 192 boys would need to be vaccinated.

Graphs of S and I Against t

To find out exactly when I reaches its maximum, we need numerical methods. A modification of

Euler’s method was used to generate the solution curves of S and I against t in Figure 11.82. Notice

that the number of susceptibles drops throughout the disease as healthy people get sick. The number

of infecteds peaks after about 6 days and then drops. The epidemic has run its course in 20 days.

Analytical Solution for the SI-Phase Trajectory

The differential equation
dI

dS
= −1 +

192

S

5 10 15 20
1

762

t (days)

number of people

Susceptibles

Infecteds

Figure 11.82: Progress of the flu over time

30Here we are using J. D. Murray’s definition of an epidemic as an outbreak in which the number of infecteds increases

from the initial value, I0. See Mathematical Biology (New York: Springer Verlag, 1990).
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can be integrated, giving

I = −S + 192 lnS + C.

Using S0 = 762 and I0 = 1 gives 1 = −762 + 192 ln 762 + C , so we get C = 763 − 192 ln 762.

Substituting this value for C , we get:

I = −S + 192 lnS − 192 ln 762 + 763

I = −S + 192 ln
(

S

762

)

+ 763.

This is the equation of the solution curve in Figure 11.81.

Two Interacting Populations: Predator-Prey

We now consider two populations which interact. They may compete for food, one may prey on

the other, or they may enjoy a symbiotic relationship in which each helps the other. We model a

predator-prey system using the Lotka-Volterra equations.

Robins and Worms

Let’s look at an idealized case31 in which robins are the predators and worms are the prey. There

are r thousand robins and w million worms. If there were no robins, the worms would increase

exponentially according to the equation

dw

dt
= aw where a is a constant and a > 0.

If there were no worms, the robins would have no food and their population would decrease according

to the equation32

dr

dt
= −br where b is a constant and b > 0.

Now we account for the effect of the two populations on one another. Clearly, the presence of

the robins is bad for the worms, so

dw

dt
= aw − Effect of robins on worms.

On the other hand, the robins do better with the worms around, so

dr

dt
= −br + Effect of worms on robins.

How exactly do the two populations interact? Let’s assume the effect of one population on the other

is proportional to the number of “encounters.” (An encounter is when a robin eats a worm.) The

number of encounters is likely to be proportional to the product of the populations because the more

there are of either population, the more encounters there will be. So we assume

dw

dt
= aw − cwr and

dr

dt
= −br + kwr,

where c and k are positive constants.

To analyze this system of equations, let’s look at the specific example with a = b = c = k = 1:

dw

dt
= w −wr and

dr

dt
= −r +wr.

To visualize the solutions to these equations, we look for trajectories in the phase plane. First we use

the chain rule,
dr

dw
=
dr∕dt

dw∕dt
,

to obtain
dr

dw
=

−r +wr

w −wr
.

31Based on ideas from Thomas A. McMahon.
32You might criticize this assumption because it predicts that the number of robins will decay exponentially, rather than

die out in finite time.
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1 2 3

1

2

3

w (prey)

r (predator)

Figure 11.83: Slope field for
dr

dw
=

−r +wr

w −wr

The Slope Field and Equilibrium Points

We can get an idea of what solutions of this equation look like from the slope field in Figure 11.83. At

the point (1, 1) there is no slope drawn because at this point the rate of change of the worm population

with respect to time is zero:
dw

dt
= 1 − (1)(1) = 0.

The rate of change of the robin population with respect to time is also zero:

dr

dt
= −1 + (1)(1) = 0.

Thus dr∕dw is undefined. In terms of worms and robins, this means that if at some moment

w = 1 and r = 1 (that is, there are 1 million worms and 1 thousand robins), then w and r remain

constant forever. The pointw = 1, r = 1 is therefore an equilibrium solution. The slope field suggests

that there are no other equilibrium points except the origin.

At an equilibrium point, both w and r are constant, so

dw

dt
= 0 and

dr

dt
= 0.

Therefore, we look for equilibrium points by solving

dw

dt
= w −wr = 0 and

dr

dt
= −r + rw = 0,

which has w = 0, r = 0 and w = 1, r = 1 as the only solutions.

Trajectories in the wr-Phase Plane

Let’s look at the trajectories in the phase plane. Remember that a point on a curve represents a pair

of populations (w, r) existing at the same time t (though t is not shown on the graph). A short time

later, the pair of populations is represented by a nearby point. As time passes, the point traces out a

trajectory. The direction is marked on the curve by an arrow. (See Figure 11.84.)

How do we figure out which way to move on the trajectory? Approximating the solution numer-

ically shows that the trajectory is traversed counterclockwise. Alternatively, look at the original pair

of differential equations. At the point P0 in Figure 11.85, where w > 1 and r = 1,

dr

dt
= −r +wr = −1 +w > 0.

Therefore, r is increasing, so the point is moving counterclockwise around the closed curve.

Now let’s think about why the solution curves are closed curves (that is, why they come back

and meet themselves). Notice that the slope field is symmetric about the linew = r. We can confirm

this by observing that interchangingw and r does not alter the differential equation for dr∕dw. This
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1 2 3

1

2

3

w

r

Q

P

Figure 11.84: Solution curve is closed

1 2 3

1

2

3

w

r

P2 P0

P3

P1

Figure 11.85: Trajectory in the phase plane

means that if we start at point P on the line w = r and travel once around the point (1, 1), we arrive

back at the same point P . The reason is that the second half of the path, fromQ to P , is the reflection

of the first half, from P to Q, about the line w = r. (See Figure 11.84.) If we did not end up at P

again, the second half of our path would have a different shape from the first half.

The Populations as Functions of Time

The shape of the trajectories tells us how the populations vary with time. We start at t = 0 at the

point P0 in Figure 11.85. Then we move to P1 at time t1, to P2 at time t2, to P3 at time t3, and so on.

At time t4 we are back at P0, and the whole cycle repeats. Since the trajectory is a closed curve, both

populations oscillate periodically with the same period. The worms (the prey) are at their maximum

a quarter of a cycle before the robins. (See Figure 11.86.)

P0 P2 P0 P2 P0 P2 P0P1 P3 P1 P3 P1 P3

t

population

✠

Robins

❄

Worms

Figure 11.86: Populations of robins (in thousands) and

worms (in millions) over time

Summary for Section 11.8

• Systems of two differential equations can be studied qualitatively using a slope field in the phase

plane.

• For the S-I-R model of flu transmission, the phase plane shows the slopes dI∕DS. By fol-

lowing trajectories in this phase plane, we can see which initial conditions lead to an epidemic

(I increasing) or to the infection dying out (I decreasing).

• For the predator-prey model of two interacting populations, trajectories in the phase plane

show the two populations oscillating periodically over time.

Exercises and Problems for Section 11.8 Online Resource: Additional Problems for Section 11.8
EXERCISES

For Exercises 1–4, suppose x and y are the populations of

two different species. Describe in words how each popula-

tion changes with time.

1.

x

y 2.

x

y

3.

x

y 4.

x

y
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In Exercises 5–8, find all equilibrium points. Give answers

as ordered pairs (x, y).

5.
dx

dt
= −3x + xy

dy

dt
= 5y − xy

6.
dx

dt
= −2x + 4xy

dy

dt
= −8y + 2xy

7.
dx

dt
= 15x − 5xy

dy

dt
= 10y + 2xy

8.
dx

dt
= x2 − xy

dy

dt
= 15y − 3y2

9. Given the system of differential equations

dx

dt
= 5x − 3xy

dy

dt
= −8y + xy,

determine whether x and y are increasing or decreasing

at the point

(a) x = 3, y = 2 (b) x = 5, y = 1

10. Given the system of differential equations

dP

dt
= 2P − 10

dQ

dt
= Q − 0.2PQ,

determine whether P and Q are increasing or decreas-

ing at the point

(a) P = 2, Q = 3 (b) P = 6, Q = 5

For Exercises 11–13, x and y satisfy the system of differen-

tial equations

dx

dt
= x(3 − x + y),

dy

dt
= y(6 − x − y).

11. Starting at P1 = (3, 2), is (x, y) moving toward P2 =

(2.90, 1.96) or P3 = (3.10, 2.03) as t increases?

12. Starting at Q1 = (6, 2), is (x, y) moving toward Q2 =

(5.90, 1.94) or Q3 = (6.10, 2.07) as t increases?

13. Find all equilibrium points of the system.

For Exercises 14–18, v and w are the number of individuals

after t years in two interacting populations with v,w > 0

satisfying the system of equations

1

v

dv

dt
= −0.1 + 0.003w

1

w

dw

dt
= 0.06 − 0.001v.

14. If v = 20 and w = 50, what is the relative growth rate

of v?

15. If v = 20 and w = 50 what is dv∕dt?

16. What must v be in order for w to remain constant?

17. Is the presence of the population withwmembers help-

ful or harmful to the growth of the population with v

members?

18. Is the presence of the population with v members help-

ful or harmful to the growth of the population with w

members?

PROBLEMS

19. After t years, two interacting populations p and q are

described by the system

1

p

dp

dt
= 0.03 − 0.0001q

1

q

dq

dt
= −0.01 + 0.0004p.

(a) If p = 500 and q = 400, what is the growth rate of

population p?

(b) Is the presence of population p beneficial or harm-

ful to population q, or neither, or is there not

enough information to decide?

20. Two interacting populations P andQ are described over

time t in years by the system of equations

dP

dt
= 0.18P − 0.0003PQ

dQ

dt
= −0.12Q + 0.0004PQ.

(a) Does population P benefit from the presence of

population Q?

(b) In the absence of population P , population Q dies

off exponentially at what percent rate?

(c) For what value ofQ does population P reach a crit-

ical point?

21. Figure 11.87 shows the trajectory through the SI phase

plane of a 50-day epidemic.

(a) Make an approximate table of values for the num-

ber of susceptibles and infecteds on the days

marked on the trajectory.

(b) When is the epidemic at its peak? How many peo-

ple are infected then?

(c) During the course of the epidemic, how many catch

the disease and how many are spared?
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Figure 11.87: Days 8 through 44 of an epidemic

22. Figure 11.88 shows the number of susceptibles and in-

fecteds in a population of 4000 through the course of a

60-day epidemic.

(a) How many are infected on day 20?

(b) How many have had the disease by day 20?

(c) How many have had the disease by the time the

epidemic is over?

10 20 30 40 50 60
0

1000

2000

3000

4000

time (days)

susceptibles

10 20 30 40 50 60
0

200

400

600

800

1000

time (days)

infecteds

Figure 11.88

23. Humans vs Zombies33 is a game in which one player

starts as a zombie and turns human players into zombies

by tagging them. Zombies have to "eat" on a regular ba-

sis by tagging human players, or they die of starvation

and are out of the game. The game is usually played over

a period of about five days. If we let H represent the

size of the human population and Z represent the size

of the zombie population in the game, then, for constant

parameters a, b, and c, we have:

dH

dt
= aHZ

dZ

dt
= bZ + cHZ

(a) Decide whether each of the parameters a, b, c is

positive or negative.

(b) What is the relationship, if any, between a and c?

24. Four pairs of species are given, with descriptions of

how they interact.

I. Bees/flowers: each needs the other to survive

II. Owls/trees: owls need trees but trees are indifferent

III. Elk/buffalo: in competition and would do fine

alone

IV. Fox/hare: fox eats the hare and needs it to survive

Match each system of differential equations with a

species pair, and indicate which species is x and which

is y.

(a)
dx

dt
= −0.2x + 0.03xy

dy

dt
= 0.4y − 0.08xy

(b)
dx

dt
= 0.18x

dy

dt
= −0.4y + 0.3xy

(c)
dx

dt
= −0.6x + 0.18xy

dy

dt
= −0.1y + 0.09xy

(d) Write a possible system of differential equations

for the species pair that does not have a match.

25. Show that if S, I , and R satisfy the differential equa-

tions on page 658, the total population, S + I + R, is

constant.

26. If S is the number of people susceptible to a disease,

I is the number of infecteds, and a is a constant, the

S-I-R model is

dS

dt
= −aSI.

Given that dS∕dt = −40 if S = 1000 and I = 200,

find dS∕dt if S = 900 and I = 250.

For Problems 27–35, let w be the number of worms (in mil-

lions) and r the number of robins (in thousands) living on

an island. Suppose w and r satisfy the following differen-

tial equations, which correspond to the slope field in Fig-

ure 11.89.

dw

dt
= w −wr,

dr

dt
= −r +wr.

33http://humansvszombies.org, accessed October 18, 2019.
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1 2 3 4

1
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3

4

w (prey)

r (predator)

Figure 11.89:
dr

dw
=

r(w−1)

w(1−r)

27. Explain why these differential equations are a reason-

able model for interaction between the two populations.

Why have the signs been chosen this way?

28. Solve these differential equations in the two special

cases when there are no robins and when there are no

worms living on the island.

29. Describe and explain the symmetry you observe in the

slope field. What consequences does this symmetry

have for the solution curves?

30. Assume w = 2 and r = 2 when t = 0. Do the numbers

of robins and worms increase or decrease at first? What

happens in the long run?

31. For the case discussed in Problem 30, estimate the max-

imum and the minimum values of the robin population.

How many worms are there at the time when the robin

population reaches its maximum?

32. On the same axes, graph w and r (the worm and the

robin populations) against time. Use initial values of 1.5

for w and 1 for r. You may do this without units for t.

33. People on the island like robins so much that they de-

cide to import 200 robins all the way from England, to

increase the initial population from r = 2 to r = 2.2

when t = 0. Does this make sense? Why or why not?

34. Assume that w = 3 and r = 1 when t = 0. Do the num-

bers of robins and worms increase or decrease initially?

What happens in the long run?

35. For the case discussed in Problem 34, estimate the max-

imum and minimum values of the robin population. Es-

timate the number of worms when the robin population

reaches its minimum.

In Problems 36–38, the system of differential equations

models the interaction of two populations x and y.

(a) What kinds of interaction (symbiosis,34 competition,

predator-prey) do the equations describe?

(b) What happens in the long run? Your answer may de-

pend on the initial population. Draw a slope field.

36.
1

x

dx

dt
= y − 1

1

y

dy

dt
= x − 1

37.
1

x

dx

dt
= 1 −

x

2
−
y

2

1

y

dy

dt
= 1 − x − y

38.
1

x

dx

dt
= y − 1 − 0.05x

1

y

dy

dt
= 1−x−0.05y

For Problems 39–41, p and q are the number of individuals

in two interacting populations, with t in years and p, q > 0

satisfying the system of equations

1

p

dp

dt
= 0.01q − 0.3

1

q

dq

dt
= 0.02p − 0.2.

39. What is the relative rate of change of p if q = 10?

40. What populations result in an equilibrium?

41. Give a description of how these populations interact.

For Problems 42–45, consider a conflict between two armies

of x and y soldiers, respectively. During World War I, F. W.

Lanchester assumed that if both armies are fighting a con-

ventional battle within sight of one another, the rate at which

soldiers in one army are put out of action (killed or wounded)

is proportional to the amount of fire the other army can con-

centrate on them, which is in turn proportional to the number

of soldiers in the opposing army. Thus Lanchester assumed

that if there are no reinforcements and t represents time since

the start of the battle, then x and y obey the differential equa-

tions

dx

dt
= −ay

dy

dt
= −bx a, b > 0.

42. Near the end of World War II a fierce battle took place

between US and Japanese troops over the island of

Iwo Jima, off the coast of Japan. Applying Lanchester’s

analysis to this battle, with x representing the number

of US troops and y the number of Japanese troops, it

has been estimated35 that a = 0.05 and b = 0.01.

(a) Using these values for a and b and ignoring rein-

forcements, write a differential equation involving

dy∕dx and sketch its slope field.

34Symbiosis takes place when the interaction of two species benefits both. An example is the pollination of plants by

insects.
35See Martin Braun, Differential Equations and Their Applications, 2nded. (New York: Springer Verlag, 1975).
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(b) Assuming that the initial strength of the US forces

was 54,000 and that of the Japanese was 21,500,

draw the trajectory which describes the battle.

What outcome is predicted? (That is, which side

do the differential equations predict will win?)

(c) Would knowing that the US in fact had 19,000 rein-

forcements, while the Japanese had none, alter the

outcome predicted?

43. (a) For two armies of strengths x and y fighting a con-

ventional battle governed by Lanchester’s differen-

tial equations, write a differential equation involv-

ing dy∕dx and the constants of attrition a and b.

(b) Solve the differential equation and hence show that

the equation of the phase trajectory is

ay2 − bx2 = C

for some constantC . This equation is called Lanch-

ester’s square law. The value of C depends on the

initial sizes of the two armies.

44. Consider the battle of Iwo Jima, described in Prob-

lem 42. Take a = 0.05, b = 0.01 and assume the initial

strength of the US troops to be 54,000 and that of the

Japanese troops to be 21,500. (Again, ignore reinforce-

ments.)

(a) Using Lanchester’s square law derived in Prob-

lem 43, find the equation of the trajectory describ-

ing the battle.

(b) Assuming that the Japanese fought without surren-

dering until they had all been killed, as was the

case, how many US troops does this model predict

would be left when the battle ended?

45. In this problem we adapt Lanchester’s model for a con-

ventional battle to the case in which one or both of the

armies is a guerrilla force. We assume that the rate at

which a guerrilla force is put out of action is propor-

tional to the product of the strengths of the two armies.

(a) Give a justification for the assumption that the rate

at which a guerrilla force is put out of action is pro-

portional to the product of the strengths of the two

armies.

(b) Write the differential equations which describe a

conflict between a guerrilla army of strength x and

a conventional army of strength y, assuming all the

constants of proportionality are 1.

(c) Find a differential equation involving dy∕dx and

solve it to find equations of phase trajectories.

(d) Describe which side wins in terms of the con-

stant of integration. What happens if the constant

is zero?

(e) Use your solution to part (d) to divide the phase

plane into regions according to which side wins.

Strengthen Your Understanding

In Problems 46–47, explain what is wrong with the state-

ment.

46. If dx∕dt = 3x − 0.4xy and dy∕dt = 4y − 0.5xy, then

an increase in x corresponds to a decrease in y.

47. For a system of differential equations for x and y, at the

point (2, 3), we have dx∕dt < 0 and dy∕dt > 0 and

dy∕dx > 0.

In Problems 48–50, give an example of:

48. A system of differential equations for two populations

X and Y such that Y needsX to survive andX is indif-

ferent to Y and thrives on its own. Let x represent the

size of the X population and y represent the size of the

Y population.

49. A system of differential equations for the profits of two

companies if each would thrive on its own but the two

companies compete for business. Let x and y represent

the profits of the two companies.

50. Two diseases D1 and D2 such that the parameter a in

the S-I-R model on page 658 is larger for disease D1

than it is for disease D2. Explain your reasoning.

Are the statements in Problems 51–52 true or false? Give an

explanation for your answer.

51. The system of differential equations dx∕dt = −x+xy2

and dy∕dt = y−x2y requires initial conditions for both

x(0) and y(0) to determine a unique solution.

52. Populations modeled by a system of differential equa-

tions never die out.

11.9 ANALYZING THE PHASE PLANE

In the previous section we analyzed a system of differential equations using a slope field. In this sec-

tion we analyze a system of differential equations using nullclines. We consider two species having

similar niches, or ways of living, and that are in competition for food and space. In such cases, one

species often becomes extinct. This phenomenon is called the Principle of Competitive Exclusion.

We see how differential equations predict this in a particular case.

Competitive Exclusion: Citrus Tree Parasites

The citrus farmers of Southern California are interested in controlling the insects that live on their

trees. Some of these insects can be controlled by parasites that live on the trees too. Scientists are,
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therefore, interested in understanding under what circumstances these parasites flourish or die out.

One such parasite was introduced accidentally from the Mediterranean; later, other parasites were

introduced from China and India; in each case the previous parasite became extinct over part of

its habitat. In 1963 a lab experiment was carried out to determine which one of a pair of species

became extinct when they were in competition with each other. The data on one pair of species,

called A. fisheri and A. melinus, with populations P1 and P2 respectively, is given in Table 11.9 and

shows that A. melinus (P2) became extinct after 8 generations.36

Table 11.9 Population (in thousands) of two species of parasite as a function of time

Generation number 1 2 3 4 5 6 7 8

Population P1 (thousands) 0.193 1.093 1.834 5.819 13.705 16.965 18.381 16.234

Population P2 (thousands) 0.083 0.229 0.282 0.378 0.737 0.507 0.13 0

Data from the same experimenters indicates that, when alone, each population grows logisti-

cally. In fact, their data suggests that, when alone, the population of P1 might grow according to the

equation

dP1

dt
= 0.05P1

(

1 −
P1

20

)

,

and when alone, the population of P2 might grow according to the equation

dP2

dt
= 0.09P2

(

1 −
P2

15

)

.

Now suppose both parasites are present. Each tends to reduce the growth rate of the other, so each

differential equation is modified by subtracting a term on the right. The experimental data shows that

together P1 and P2 can be well described by the equations

dP1

dt
= 0.05P1

(

1 −
P1

20

)

− 0.002P1P2

dP2

dt
= 0.09P2

(

1 −
P2

15

)

− 0.15P1P2.

The fact that P2 dies out with time is reflected in these equations: the coefficient of P1P2 is much

larger in the equation for P2 than in the equation for P1. This indicates that the interaction has a much

more devastating effect upon the growth of P2 than on the growth of P1.

The Phase Plane and Nullclines

We consider the phase plane with the P1 axis horizontal and the P2 axis vertical. To find the trajec-

tories in the P1P2 phase plane, we could draw a slope field as in the previous section. Instead, we

use a method that gives a good qualitative picture of the behavior of the trajectories even without a

calculator or computer. We find the nullclines or curves along which dP1∕dt = 0 or dP2∕dt = 0.

At points where dP2∕dt = 0, the population P2 is momentarily constant, so only population P1 is

changing with time. Therefore, at this point the trajectory is horizontal. (See Figure 11.90.) Sim-

ilarly, at points where dP1∕dt = 0, the population P1 is momentarily constant and population P2
is the only one changing, so the trajectory is vertical there. A point where both dP1∕dt = 0 and

dP2∕dt = 0 is called an equilibrium point because P1 and P2 both remain constant if they reach

these values.

36Data adapted from Paul DeBach and Ragnhild Sundby, “Competitive Displacement Between Ecological Homologues,”

Hilgardia 34:17 (1963).
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P1

P2

dP1

dt
= 0

dP2

dt
= 0

Figure 11.90: Points on a trajectory where

dP1∕dt = 0 or dP2∕dt = 0

On the P1P2 phase plane:

• If
dP1

dt
= 0, the trajectory is vertical.

• If
dP2

dt
= 0, the trajectory is horizontal.

• If
dP1

dt
=
dP2

dt
= 0, there is an equilibrium point.

Using Nullclines to Analyze the Parasite Populations

In order to see wheredP1∕dt = 0 or dP2∕dt = 0, we factor the right side of our differential equations:

dP1

dt
= 0.05P1

(

1 −
P1

20

)

− 0.002P1P2 = 0.001P1(50 − 2.5P1 − 2P2)

dP2

dt
= 0.09P2

(

1 −
P2

15

)

− 0.15P1P2 = 0.001P2(90 − 150P1 − 6P2).

Thus dP1∕dt = 0 where P1 = 0 or where 50 − 2.5P1 − 2P2 = 0. Graphing these equations in the

phase plane gives two lines, which are nullclines. Since the trajectory is vertical where dP1∕dt = 0,

in Figure 11.91 we draw small vertical line segments on these nullclines to represent the direction

of the trajectories as they cross the nullcline. Similarly dP2∕dt = 0 where P2 = 0 or where 90 −

150P1 − 6P2 = 0. These equations are graphed in Figure 11.91 with small horizontal line segments

on them.

The equilibrium points are where both dP1∕dt = 0 and dP2∕dt = 0, namely the points P1 =

0, P2 = 0 (meaning that both species die out); P1 = 0, P2 = 15 (where P1 is extinct); and P1 =

20, P2 = 0 (where P2 is extinct). Notice that the equilibrium points are located at the intersection of

a nullcline with vertical line segments and a nullcline with horizontal line segments.

What Happens in the Regions Between the Nullclines?

Nullclines are useful because they divide the plane into regions in which the signs of dP1∕dt and

dP2∕dt are constant. In each region, the direction of every trajectory remains roughly the same.

In Region I, for example, we might try the point P1 = 20, P2 = 25. Then

dP1

dt
= 0.001(20)(50− 2.5(20) − 2(25)) < 0

dP2

dt
= 0.001(25)(90− 150(20) − 6(25)) < 0.
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0.6 20

15

25

P1

P2

Region I

❄✠

✛

Region II

❄❘
✲

Region III

✻✒✲
✲

✛
{

50 − 2.5P1 − 2P2 = 0
dP1∕dt = 0

✛
{

90 − 150P1 − 6P2 = 0
dP2∕dt = 0

P1 = 0, dP1∕dt = 0 ✲

P2 = 0, dP2∕dt = 0
✻

Figure 11.91: Analyzing three regions in the phase plane using nullclines (axes distorted)

with equilibrium points represented by dots

Now dP1∕dt < 0, so P1 is decreasing, which can be represented by an arrow in the direction ←.

Also, dP2∕dt < 0, so P2 is decreasing, as represented by the arrow ↓. Combining these directions,

we know that the trajectories in this region go approximately in the diagonal direction
✛

❄✠ (See

Region I in Figure 11.91.)

In Region II, try, for example, P1 = 1, P2 = 1. Then we have

dP1

dt
= 0.001(1)(50 − 2.5 − 2) > 0

dP2

dt
= 0.001(1)(90 − 150 − 6) < 0.

So here, P1 is increasing while P2 is decreasing. (See Region II in Figure 11.91.)

In Region III, try P1 = 0.1, P2 = 0.1:

dP1

dt
= 0.001(0.1)(50− 2.5(0.1) − 2(0.1)) > 0

dP2

dt
= 0.001(0.1)(90− 150(0.1) − 6(0.1)) > 0.

So here, both P1 and P2 are increasing. (See Region III in Figure 11.91.)

Notice that the behavior of the populations in each region makes biological sense. In region

I both populations are so large that overpopulation is a problem, so both populations decrease. In

Region III both populations are so small that they are effectively not in competition, so both grow.

In Region II competition between the species comes into play. The fact that P1 increases while P2
decreases in Region II means that P1 wins.

Solution Trajectories

Suppose the system starts with some of each population. This means that the initial point of the

trajectory is not on one of the axes, and so it is in Region I, II, or III. Then the point moves on a

trajectory like one of those computed numerically and shown in Figure 11.92. Notice that all these

trajectories tend toward the point P1 = 20, P2 = 0, corresponding to a population of 20,000 for P1
and extinction for P2. Consequently, this model predicts that no matter what the initial populations

are, provided P1 ≠ 0, the population of P2 is excluded by P1, and P1 tends to a constant value. This

makes biological sense: in the absence of P2, we would expect P1 to settle down to the carrying

capacity of the niche, which is 20,000.
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Figure 11.92: Trajectories showing exclusion of population P2 (not to scale)

Summary for Section 11.9

• For a system of differential equations for dP1∕dt and dP2∕dt, the nullclines are curves in the

phase plane where dP1∕dt = 0 or dP2∕dt = 0.

• Along the nullclines, the phase plane slopes are either all horizontal or all vertical, unless both

dP1∕dt = 0 and dP2∕dt = 0, in which case there is an equilibrium.

• Regions in the phase plane that are surrounded by nullclines have solutions that always behave

in the same way: for example, if P1 increases at one point in the region, it increases at all points

in the region.

• An analysis using nullclines can give information about the global behavior of solutions in

different regions of the phase plane.

Exercises and Problems for Section 11.9
EXERCISES

In Exercises 1–5, use Figure 11.93.

2 4 6

5

10

15

x

y

Region III

❘
✲
❄

Region IV

✒✲✻

Region II

✠
✛
❄

Region I

■✛✻

Figure 11.93: Nullclines in the phase plane of a

system of differential equations

1. Give the coordinates for each equilibrium point.

2. At each point, give the signs of dx∕dt and dy∕dt.

(a) (4, 7) (b) (4, 10) (c) (6, 15)

3. Draw a possible trajectory that starts at the point (2, 5).

4. Draw a possible trajectory that starts at the point

(2, 10).

5. What is the long-run behavior of a trajectory that starts

at any point in the first quadrant?

In Exercises 6–10, use Figure 11.94, which shows four null-

clines, two of which are on the axes.

5 10 15

2

4

6

x

y

✒✲✻
✠

✛

❄■✛✻

Figure 11.94: Nullclines in the phase plane of a

system of differential equations

6. Give the approximate coordinates for each equilibrium

point.

7. At each point, give the signs of dx∕dt and dy∕dt.

(a) (5, 2) (b) (10, 2) (c) (10, 1)

8. Draw a possible trajectory that starts at the point (2, 5).

9. Draw a possible trajectory that starts at the point

(10, 4).

10. What is the long-run behavior of a trajectory that starts

at any point in the first quadrant?
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11. Figure 11.95 shows a phase plane for a system of dif-

ferential equations. Draw the nullclines.

1 2 3 4 5 6

1

2

3

4

5

x

y

Figure 11.95

12. (a) Find the equilibrium points for the following sys-

tem of equations:

dx

dt
= 20x − 10xy

dy

dt
= 25y − 5xy.

(b) Explain why x = 2, y = 4 is not an equilibrium

point for this system.

PROBLEMS

For Problems 13–18, analyze the phase plane of the differ-

ential equations for x, y ≥ 0. Show the nullclines and equi-

librium points, and sketch the direction of the trajectories in

each region.

13.
dx

dt
= x(2 − x − y)

dy

dt
= y(1 − x − y)

14.
dx

dt
= x(2 − x − 3y)

dy

dt
= y(1 − 2x)

15.
dx

dt
= x(2 − x − 2y)

dy

dt
= y(1 − 2x − y)

16.
dx

dt
= x(1 − y −

x

3
)

dy

dt
= y(1 −

y

2
− x)

17.
dx

dt
= x

(

1 − x −
y

3

)

dy

dt
= y

(

1 − y −
x

2

)

18.
dx

dt
= x

(

1 −
x

2
− y

)

dy

dt
= y

(

1 −
y

3
− x

)

19. The equations describing the flu epidemic in a boarding

school are

dS

dt
= −0.0026SI

dI

dt
= 0.0026SI − 0.5I.

(a) Find the nullclines and equilibrium points in the

SI phase plane.

(b) Find the direction of the trajectories in each region.

(c) Sketch some typical trajectories and describe their

behavior in words.

20. Use the idea of nullclines dividing the plane into sec-

tors to analyze the equations describing the interactions

of robins and worms:

dw

dt
= w −wr

dr

dt
= −r + rw.

21. Two companies share the market for a new technology.

They have no competition except each other. LetA(t) be

the net worth of one company and B(t) the net worth

of the other at time t. Suppose that net worth cannot be

negative and that A and B satisfy the differential equa-

tions

A′ = 2A − AB

B′ = B − AB.

(a) What do these equations predict about the net

worth of each company if the other were not

present? What effect do the companies have on

each other?

(b) Are there any equilibrium points? If so, what are

they?

(c) Sketch a slope field for these equations (using a

computer or calculator), and hence describe the

different possible long-run behaviors.

22. In the 1930s L. F. Richardson proposed that an arms

race between two countries could be modeled by a sys-

tem of differential equations. One arms race that can

be reasonably well described by differential equations

is the US-Soviet Union arms race between 1945 and

1960. If $x represents the annual Soviet expenditures on

armaments (in billions of dollars) and $y represents the

corresponding US expenditures, it has been suggested37

that x and y obey the following differential equations:

dx

dt
= −0.45x + 10.5

dy

dt
= 8.2x − 0.8y − 142.

(a) Find the nullclines and equilibrium points for these

differential equations. Which direction do the tra-

jectories go in each region?

(b) Sketch some typical trajectories in the phase plane.

(c) What do these differential equations predict will

be the long-term outcome of the US-Soviet arms

race?

(d) Discuss these predictions in the light of the actual

expenditures in Table 11.10.

37R. Taagepera, G. M. Schiffler, R. T. Perkins and D. L. Wagner, “Soviet-American and Israeli-Arab Arms Races and the

Richardson Model,” General Systems, XX (1975).
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Table 11.10 Arms budgets of the United States

and the Soviet Union for the years 1945–1960

(billions of dollars)

USSR USA USSR USA

1945 14 97 1953 25.7 71.4

1946 14 80 1954 23.9 61.6

1947 15 29 1955 25.5 58.3

1948 20 20 1956 23.2 59.4

1949 20 22 1957 23.0 61.4

1950 21 23 1958 22.3 61.4

1951 22.7 49.6 1959 22.3 61.7

1952 26.0 69.6 1960 22.1 59.6

23. In the 1930s, the Soviet ecologist G. F. Gause per-

formed a series of experiments on competition among

two yeasts with populations P1 and P2, respectively. By

performing population studies at low density in large

volumes, he determined what he called the coefficients

of geometric increase (and we would call continuous

exponential growth rates). These coefficients described

the growth of each yeast alone:

1

P1

dP1

dt
= 0.2

1

P2

dP2

dt
= 0.06

where P1 and P2 are measured in units that Gause es-

tablished.

He also determined that, in his units, the carry-

ing capacity of P1 was 13 and the carrying capacity of

P2 was 6. He then observed that one P2 occupies the

niche space of 3 P1 and that one P1 occupied the niche

space of 0.4 P2. This led him to the following differen-

tial equations to describe the interaction of P1 and P2:

dP1

dt
= 0.2P1

(

13 − (P1 + 3P2)

13

)

dP2

dt
= 0.06P2

(

6 − (P2 + 0.4P1)

6

)

.

When both yeasts were growing together, Gause

recorded the data in Table 11.11.

Table 11.11 Gause’s yeast populations

Time (hours) 6 16 24 29 48 53

P1 0.375 3.99 4.69 6.15 7.27 8.30

P2 0.29 0.98 1.47 1.46 1.71 1.84

(a) Carry out a phase plane analysis of Gause’s equa-

tions.

(b) Mark the data points on the phase plane and de-

scribe what would have happened had Gause con-

tinued the experiment.

Strengthen Your Understanding

In Problems 24–25, explain what is wrong with the state-

ment.

24. A solution trajectory and nullclines for a system of dif-

ferential equations are shown in Figure 11.96.

192
x

y

Figure 11.96

25. The nullclines for a system of differential equations are

shown in Figure 11.97. The system has an equilibrium

at the point (6, 6).

6

6

x

y

Figure 11.97

In Problems 26–28, give an example of:

26. A graph of the nullclines of a system of differential

equations with exactly two equilibrium points in the

first quadrant. Label the nullclines to show whether tra-

jectories pass through the nullcline vertically or hori-

zontally.

27. The nullclines of a system of differential equations with

the trajectory shown in Figure 11.98.

1 2 3

1

2

3

x

y

Figure 11.98

28. A trajectory for a system of differential equations with

nullcline in Figure 11.99 and initial conditions x = 1

and y = 2.
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Figure 11.99

Are the statements in Problems 29–32 true or false? Give an

explanation for your answer.

29. Nullclines are always straight lines.

30. If two nullclines cross, their intersection point is an

equilibrium.

31. A system of two differential equations has at most two

nullclines.

32. A system of two differential equations must have at least

two nullclines.

11.10 SECOND-ORDER DIFFERENTIAL EQUATIONS: OSCILLATIONS

A Second-Order Differential Equation

When a body moves freely under gravity, we know that

d2s

dt2
= −g,

where s is the height of the body above ground at time t and g is the acceleration due to gravity. To

solve this equation, we first integrate to get the velocity, v = ds∕dt:

ds

dt
= −gt + v0,

where v0 is the initial velocity. Then we integrate again, giving

s = −
1

2
gt2 + v0t + s0,

where s0 is the initial height.

The differential equation d2s∕dt2 = −g is called second order because the equation contains

a second derivative but no higher derivatives. The general solution to a second-order differential

equation is a family of functions with two parameters, here v0 and s0. Finding values for the two

constants corresponds to picking a particular function out of this family.

A Mass on a Spring

Not every second-order differential equation can be solved simply by integrating twice. Consider a

mass m attached to the end of a spring hanging from the ceiling. We assume that the mass of the

spring itself is negligible in comparison with the mass m. (See Figure 11.100.)

When the system is left undisturbed, no net force acts on the mass. The force of gravity is

balanced by the force the spring exerts on the mass, and the spring is in the equilibrium position. If

we pull down on the mass, we feel a force pulling upward. If instead, we push upward on the mass,

the opposite happens: a force pushes the mass down.38

✻❄
s = 0
(Equilibrium)

s = s0 (Initial position)

s = 0
(Equilibrium)

F

✻

Direction
of positive s

Figure 11.100: Spring and mass in equilibrium position and after upward displacement

38Pulling down on the mass stretches the spring, increasing the tension, so the combination of gravity and spring force is

upward. Pushing up the spring decreases tension in the spring, so the combination of gravity and spring force is downward.
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What happens if we push the mass upward and then release it? We expect the mass to oscillate

up and down around the equilibrium position.

Springs and Hooke’s Law

In order to figure out how the mass moves, we need to know the exact relationship between its

displacement, s, from the equilibrium position and the net force, F , exerted on the mass. (See Fig-

ure 11.100.) We would expect that the further the mass is from the equilibrium position, and the

more the spring is stretched or compressed, the larger the force. In fact, provided that the displace-

ment is not large enough to deform the spring permanently, experiments show that the net force, F ,

is approximately proportional to the displacement, s:

F = −ks,

where k is the spring constant (k > 0) and the negative sign means that the net force is in the

opposite direction to the displacement. The value of k depends on the physical properties of the

particular spring. This relationship is known as Hooke’s Law. Suppose we push the mass upward

some distance and then release it. After we let go the net force causes the mass to accelerate toward

the equilibrium position. By Newton’s Second Law of Motion we have

Force = Mass × Acceleration.

Since acceleration is d2s∕dt2 and force is F = −ks by Hooke’s law, we have

−ks = m
d2s

dt2
,

which is equivalent to the following differential equation:

Equation for Oscillations of a Mass on a Spring

d2s

dt2
= −

k

m
s

Thus, the motion of the mass is described by a second-order differential equation. Since we expect

the mass to oscillate, we guess that the solution to this equation involves trigonometric functions.

Solving the Differential Equation by Guess-and-Check

Guessing is the tried-and-true method for solving differential equations. It may surprise you to learn

that there is no systematic method for solving most differential equations analytically, so guesswork

is often extremely important.

Example 1 By guessing, find the general solution to the equation

d2s

dt2
= −s.

Solution We want to find functions whose second derivative is the negative of the original function. We are

already familiar with two functions that have this property: s(t) = cos t and s(t) = sin t. We check

that they are solutions by substituting:

d2

dt2
(cos t) =

d

dt
(− sin t) = − cos t,
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and
d2

dt2
(sin t) =

d

dt
(cos t) = − sin t.

The remarkable thing is that starting from these two particular solutions, we can build up all the

solutions to our equation. Given two constants C1 and C2, the function

s(t) = C1 cos t + C2 sin t

satisfies the differential equation, since

d2

dt2
(C1 cos t + C2 sin t) =

d

dt
(−C1 sin t + C2 cos t)

= −C1 cos t − C2 sin t

= −(C1 cos t + C2 sin t).

It can be shown (though we will not do so) that s(t) = C1 cos t+C2 sin t is the most general form of

the solution. As expected, it contains two constants, C1 and C2.

If the differential equation represents a physical problem, thenC1 andC2 can often be computed,

as shown in the next example.

Example 2 If a mass on a spring is displaced by a distance of s0 and then released at t = 0, find the solution to

d2s

dt2
= −s

Solution The position of the mass is given by the equation

s(t) = C1 cos t + C2 sin t.

We also know that the initial position is s0; thus,

s(0) = C1 cos 0 + C2 sin 0 = C1 ⋅ 1 + C2 ⋅ 0 = s0,

so C1 = s0, the initial displacement. What is C2? To find it, we use the fact that at t = 0, when the

mass has just been released, its velocity is 0. Velocity is the derivative of the displacement, so

ds

dt

|

|

|

|t=0

= (−C1 sin t + C2 cos t)
|

|

|

|t=0

= −C1 ⋅ 0 + C2 ⋅ 1 = 0,

so C2 = 0. Therefore the solution is s = s0 cos t.

Solution to the General Spring Equation

Having found the general solution to the equation d2s∕dt2 = −s, let us return to the equation

d2s

dt2
= −

k

m
s.

We write ! =
√

k∕m (why will be clear in a moment), so the differential equation becomes

d2s

dt2
= −!2s.

This equation no longer has sin t and cos t as solutions, since

d2

dt2
(sin t) = − sin t ≠ −!2 sin t.

However, since we want a factor of !2 after differentiating twice, the chain rule leads us to guess

that sin!t may be a solution. Checking this:
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d2

dt2
(sin!t) =

d

dt
(! cos!t) = −!2 sin!t,

we see that sin!t is a solution, and you can check that cos!t is a solution, too.

The general solution to the equation

d2s

dt2
+ !2s = 0

is of the form

s(t) = C1 cos!t + C2 sin!t,

where C1 and C2 are arbitrary constants. (We assume ! > 0.) The period of this oscillation is

T =
2�

!
.

Such oscillations are called simple harmonic motion.

Thus the solution to our original equation,
d2s

dt2
+
k

m
s = 0, is s = C1 cos

√

k

m
t + C2 sin

√

k

m
t.

Initial Value and Boundary-Value Problems

A problem in which the initial position and the initial velocity are used to determine the particular

solution is called an initial value problem. (See Example 2.) Alternatively, we may be given the

position at two known times. Such a problem is known as a boundary-value problem.

Example 3 Find a solution to the differential equation satisfying each set of conditions below

d2s

dt2
+ 4s = 0.

(a) The boundary conditions s(0) = 0, s(�∕4) = 20.

(b) The initial conditions s(0) = 1, s′(0) = −6.

Solution Since !2 = 4, ! = 2, the general solution to the differential equation is

s(t) = C1 cos 2t + C2 sin 2t.

(a) Substituting the boundary condition s(0) = 0 into the general solution gives

s(0) = C1 cos(2 ⋅ 0) + C2 sin(2 ⋅ 0) = C1 ⋅ 1 + C2 ⋅ 0 = C1 = 0.

Thus s(t) must have the form s(t) = C2 sin 2t. The second condition yields the value of C2:

s

(

�

4

)

= C2 sin
(

2 ⋅
�

4

)

= C2 = 20.

Therefore, the solution satisfying the boundary conditions is

s(t) = 20 sin 2t.

(b) For the initial value problem, we start from the same general solution: s(t) = C1 cos 2t+C2 sin 2t.

Substituting 0 for t once again, we find

s(0) = C1 cos(2 ⋅ 0) + C2 sin(2 ⋅ 0) = C1 = 1.
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Differentiating s(t) = cos 2t+ C2 sin 2t gives

s′(t) = −2 sin 2t + 2C2 cos 2t,

and applying the second initial condition gives us C2:

s′(0) = −2 sin(2 ⋅ 0) + 2C2 cos(2 ⋅ 0) = 2C2 = −6,

so C2 = −3 and our solution is

s(t) = cos 2t − 3 sin 2t.

What Do the Graphs of Our Solutions Look Like?

Since the general solution of the equation d2s∕dt2 + !2s = 0 is of the form

s(t) = C1 cos!t + C2 sin!t

it would be useful to know what the graph of such a sum of sines and cosines looks like. We start

with the example s(t) = cos t + sin t, which is graphed in Figure 11.101.

Interestingly, the graph in Figure 11.101 looks like another sine function, and in fact it is one.

If we measure the graph carefully, we find that its period is 2�, the same as sin t and cos t, but the

amplitude is approximately 1.414 (in fact, it’s
√

2), and the graph is shifted along the t-axis (in fact

by �∕4). If we plot C1 cos t+C2 sin t for any C1 and C2, the resulting graph is always a sine function

with period 2�, though the amplitude and shift can vary. For example, the graph of s = 6 cos t−8 sin t

is in Figure 11.102; as expected, it has period 2�.

−2�

s(t) = cos t + sin t

=
√

2 sin(t + �∕4)

2�

−1.5

1.5

t

Figure 11.101: Graph of the sum:

s(t) = cos t + sin t =
√

2 sin(t + �∕4)

−2� 2�

−10

10

t

s
s = 6 cos t − 8 sin t
= 10 sin(t + �)

Figure 11.102: Graph of a sum of sine and

cosine. Amplitude A = 10 =
√

62 + 82

These graphs suggest that we can write the sum of a sine and a cosine of the same argument

as one single sine function.39 Problem 34 shows that this can always be done using the following

relations.

If C1 cos!t + C2 sin!t = A sin(!t + �), the amplitude, A, is given by

A =

√

C2
1
+ C2

2
.

The angle � is called the phase shift and satisfies

tan� =
C1

C2

.

We choose � in (−�, �] such that if C1 > 0, � is positive, and if C1 < 0, � is negative.

39The sum of a sine and a cosine can also be written as a single cosine function.
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The reason that it is often useful to write the solution to the differential equation as a single sine

functionA sin(!t+�), as opposed to the sum of a sine and a cosine, is that the amplitudeA and the

phase shift � are easier to recognize in this form.

Warning: Phase Shift Is Not the Same as Horizontal Translation

Let’s look at s = sin(3t + �∕2). If we rewrite this as s = sin(3(t + �∕6)), we can see from Fig-

ure 11.103 that the graph of this function is the graph of s = sin 3t shifted to the left a distance of

�∕6. (Remember that replacing x by x− 2 shifts a graph by 2 to the right.) But �∕6 is not the phase

shift; the phase shift40 is �∕2. From the point of view of a scientist, the important question is often

not the distance the curve has shifted, but the relation between the distance shifted and the period.

1

�

2

�

6

2�

3

�
t

sin 3t sin(3t +
�

2
)

✛
Shift to the left by

�

6

Figure 11.103: Phase shift is
�

2
; horizontal translation is

�

6

Summary for Section 11.10

• A second-order differential equation is a differential equation that contains a second deriva-

tive.

• The differential equation that models the displacement s of a massm suspended by a spring with

spring constant k is

d2s

dt2
= −

k

m
s.

• The general solution to the equation

d2s

dt2
+ !2s = 0

is of the form

s(t) = C1 cos!t + C2 sin!t,

where C1 and C2 are arbitrary constants. (We assume ! > 0.) The period of this oscillation is

T =
2�

!
.

• We can write the general solution above as a single sine function using

C1 cos!t + C2 sin!t = A sin(!t+ �)

where the amplitude, A, is given by

A =

√

C2
1
+ C2

2
.

The angle � is called the phase shift and satisfies

tan� =
C1

C2

.

Exercises and Problems for Section 11.10

EXERCISES

1. Find the amplitude of y = 3 sin 2t + 4 cos 2t.

2. Find the amplitude of 3 sin 2t + 7 cos 2t.

3. Write 5 sin(2t) + 12 cos(2t) in the form A sin(!t +  ).

4. Write 7 sin!t + 24 cos!t in the form A sin(!t+ �).

40This definition of phase shift is the one usually used in the sciences.
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5. (a) Using a calculator or computer, graph s = 4 cos t+

3 sin t for −2� ≤ t ≤ 2�.

(b) If 4 cos t+3 sin t = A sin(t+�), use your graph to

estimate the values of A and �.

(c) Calculate A and � analytically.

6. Check by differentiation that y = 2 cos t + 3 sin t is a

solution to y′′ + y = 0.

7. Check by differentiation that y(t) = 3 sin 2t+2 cos 2t is

a solution of y′′ + 4y = 0.

8. Check by differentiation that y = A cos t + B sin t is a

solution to y′′ + y = 0 for any constants A and B.

9. Check by differentiation that y(t) = A sin 2t + B cos 2t

is a solution of y′′ + 4y = 0 for all values of A and B.

10. Check by differentiation that y(t) = A sin!t+B cos!t

is a solution of y′′ +!2y = 0 for all values of A and B.

11. What values of � and A make y = A cos �t a solution

to y′′ + 5y = 0 such that y′(1) = 3?

In Exercises 12–13, find a value of kmaking the given func-

tion a solution to the differential equation y′′ = ky.

12. y = 2 sin(3x) 13. y = 2e4x + 5e−4x

In Exercises 14–18, is the function a solution to

y′′ + 5y′ + 6y = 0?

14. y = e2x 15. y = ex

16. y = e−x 17. y = e−2x

18. y = e−3x

In Exercises 19–20, find a general solution to the differential

equation.

19.
d2z

dt2
+ �2z = 0 20. 9z′′ + z = 0

PROBLEMS

21. A spring has spring constant k = 0.8 and mass m = 10

grams.

(a) Write the second-order differential equation for os-

cillations of the mass on the spring.

(b) Write the general solution to the differential equa-

tion.

22. A spring has spring constant k = 250 and mass m =

100 grams.

(a) Write the second-order differential equation for os-

cillations of the mass on the spring.

(b) Write the solution to the differential equation if the

initial position is s(0) = 5 and the initial velocity

is s′(0) = −10.

(c) How far down does the mass go?

In Problems 23–25, the function describes the motion of a

mass on a spring satisfying the equation y′′ = −9y, where

y is the displacement of the mass from the equilibrium po-

sition at time t, with upward as positive. Describe in words

how the motion starts when t = 0. For example, is the mass

at the highest point, the lowest point, or in the middle? Is it

moving up or down or is it at rest?

23. y = 2 cos 3t 24. y = −0.5 sin 3t

25. y = −cos 3t

26. (a) Show that y = c1 sinhwt+ c2 coshwt is a solution

to y′′ −w2y = 0.

(b) Find a solution of this differential equation such

that

(i) y(0) = 0, y(1) = 6.

(ii) y′(0) = 0, y(1) = 6.

27. (a) Find the general solution of the differential equa-

tion

y′′ + 9y = 0.

(b) For each of the following initial conditions, find a

particular solution.

(i) y(0) = 0, y′(0) = 1

(ii) y(0) = 1, y′(0) = 0

(iii) y(0) = 1, y(1) = 0

(iv) y(0) = 0, y(1) = 1

(c) Sketch a graph of the solutions found in part (b).

28. Consider the motion described by the differential equa-

tions:

(a) x′′ + 16x = 0, x(0) = 5, x′(0) = 0,

(b) 25x′′ + x = 0, x(0) = −1, x′(0) = 2.

In each case, find a formula for x(t) and calculate the

amplitude and period of the motion.

29. Each graph in Figure 11.104 represents a solution to one

of the differential equations:

(a) x′′ + x = 0, (b) x′′ + 4x = 0,

(c) x′′ + 16x = 0.

Assuming the t-scales on the four graphs are the same,

which graph represents a solution to which equation?

Find an equation for each graph.
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x

t

(I)

−1

1

x

t

(II)

1

−1

x

t

(III)

3

−3

x

t

(IV)

Figure 11.104

30. The following differential equations represent oscillat-

ing springs.

(i) s′′ + 4s = 0 s(0) = 5, s′(0) = 0

(ii) 4s′′ + s = 0 s(0) = 10, s′(0) = 0

(iii) s′′ + 6s = 0 s(0) = 4, s′(0) = 0

(iv) 6s′′ + s = 0 s(0) = 20, s′(0) = 0

Which differential equation represents:

(a) The spring oscillating most quickly (with the short-

est period)?

(b) The spring oscillating with the largest amplitude?

(c) The spring oscillating most slowly (with the

longest period)?

(d) The spring with largest maximum velocity?

31. A pendulum of length l makes an angle of x (radi-

ans) with the vertical (see Figure 11.105). When x

is small, it can be shown that, approximately:

d2x

dt2
= −

g

l
x,

where g is the acceleration due to gravity.

✻

❄

l
x

Figure 11.105

(a) Solve this equation assuming that x(0) = 0 and

x′(0) = v0.

(b) Solve this equation assuming that the pendulum is

let go from the position where x = x0. (“Let go”

means that the velocity of the pendulum is zero

when x = x0. Measure t from the moment when

the pendulum is let go.)

32. Look at the pendulum motion in Problem 31. What ef-

fect does it have on x as a function of time if:

(a) x0 is increased? (b) l is increased?

33. A brick of mass 3 kg hangs from the end of a spring.

When the brick is at rest, the spring is stretched by 2

cm. The spring is then stretched an additional 5 cm and

released. Assume there is no air resistance.

(a) Set up a differential equation with initial conditions

describing the motion.

(b) Solve the differential equation.

34. (a) ExpandA sin(!t+�) using the trigonometric iden-

tity sin(x + y) = sin x cos y + cos x sin y.

(b) Assume A > 0. If A sin(!t + �) = C1 cos!t +

C2 sin!t, show that we must have

A =

√

C2
1
+ C2

2
and tan� = C1∕C2.

Problems 35–37 concern the electric circuit in Fig-

ure 11.106. A charged capacitor connected to an inductor

causes a current to flow through the inductor until the capac-

itor is fully discharged. The current in the inductor, in turn,

charges up the capacitor until the capacitor is fully charged

again. If Q(t) is the charge on the capacitor at time t, and I

is the current, then

I =
dQ

dt
.

If the circuit resistance is zero, then the charge Q and

the current I in the circuit satisfy the differential equation

L
dI

dt
+
Q

C
= 0,

where C is the capacitance, and L is the inductance, so

L
d2Q

dt2
+
Q

C
= 0.

The unit of charge is the coulomb, the unit of capacitance the

farad, the unit of inductance the henry, the unit of current is

the ampere, and time is measured in seconds.

C

Inductor

L

Capacitor

Figure 11.106

35. If L = 36 henry and C = 9 farad, find a formula for

Q(t) if

(a) Q(0) = 0 I(0) = 2

(b) Q(0) = 6 I(0) = 0

36. Suppose Q(0) = 0, Q′(0) = I(0) = 4, and the max-

imum possible charge is 2
√

2 coulombs. What is the

capacitance if the inductance is 10 henry?

37. What happens to the charge and current as t goes to in-

finity? What does it mean that the charge and current

are sometimes positive and sometimes negative?
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Strengthen Your Understanding

In Problems 38–39, explain what is wrong with the state-

ment.

38. A solution to the spring equation d2s∕dt2 = −s with

initial displacement 5 is given in Figure 11.107.

−5

3
5

t

s

Figure 11.107

39. The general solution to the second-order differential

equation d2y∕dt2 = k with constant k is y = (k∕2)t2 +

t + C .

In Problems 40–41, give an example of:

40. A second-order differential equation which has y = e2x

as a solution.

41. Any second-order boundary value problem.

11.11 LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

A Spring with Friction: Damped Oscillations

The differential equation d2s∕dt2 = −(k∕m)s, which we used to describe the motion of a spring,

disregards friction. But there is friction in every real system. For a mass on a spring, the frictional

force from air resistance increases with the velocity of the mass. The frictional force is often approx-

imately proportional to velocity, and so we introduce a damping term of the form a(ds∕dt), where

a is a constant called the damping coefficient and ds∕dt is the velocity of the mass.

Remember that without damping, the differential equation was obtained from

Force = Mass ⋅ Acceleration.

With damping, the spring force −ks is replaced by −ks − a(ds∕dt), where a is positive and the

a(ds∕dt) term is subtracted because the frictional force is in the direction opposite to the motion.

The new differential equation is therefore

− ks
⏟⏟⏟

Spring force

− a
ds

dt
⏟⏟⏟

Frictional force

= m
d2s

dt2
⏟⏟⏟

Mass⋅Acceleration

which is equivalent to the following differential equation:

Equation for Damped Oscillations of a Spring

d2s

dt2
+
a

m

ds

dt
+
k

m
s = 0

We expect the solution to this equation to die away with time, as friction brings the motion to a stop.

The General Solution to a Linear Differential Equation

The equation for damped oscillations is an example of a linear second-order differential equation

with constant coefficients. This section gives an analytic method of solving the equation,

d2y

dt2
+ b

dy

dt
+ cy = 0,

for constant b and c. As we saw for the spring equation, if f1(t) and f2(t) satisfy the differential

equation, then, for any constants C1 and C2, another solution is given by

y(t) = C1f1(t) + C2f2(t)

This is called the principle of superposition. It can be shown that the general solution is of this form,

provided f1(t) is not a multiple of f2(t).
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Finding Solutions: The Characteristic Equation

We now use complex numbers to solve the differential equation

d2y

dt2
+ b

dy

dt
+ cy = 0.

The method is a form of guess-and-check. We ask what kind of function might satisfy a differential

equation in which the second derivatived2y∕dt2 is a sum of multiples of dy∕dt and y. One possibility

is an exponential function, so we try to find a solution of the form:

y = Cert,

where r may be a complex number.41 To find r, we substitute into the differential equation:

d2y

dt2
+ b

dy

dt
+ cy = r2Cert + b ⋅ rCert + c ⋅ Cert = Cert(r2 + br + c) = 0.

We can divide by y = Cert providedC ≠ 0, because the exponential function is never zero. IfC = 0,

then y = 0, which is not a very interesting solution (though it is a solution). So we assume C ≠ 0.

Then y = Cert is a solution to the differential equation if

r2 + br + c = 0.

This quadratic is called the characteristic equation of the differential equation. Its solutions are

r = −
1

2
b ±

1

2

√

b2 − 4c.

There are three different types of solutions to the differential equation, depending on whether the

solutions to the characteristic equation are real and distinct, complex, or repeated. The sign of b2−4c

determines the type of solutions.

The Case with b
2 − 4c > 0

There are two real solutions r1 and r2 to the characteristic equation, and the following two functions

satisfy the differential equation:

C1e
r1t and C2e

r2t.

The sum of these two solutions is the general solution to the differential equation:

If b2 − 4c > 0, the general solution to

d2y

dt2
+ b

dy

dt
+ cy = 0

is

y(t) = C1e
r1t + C2e

r2t

where r1 and r2 are the solutions to the characteristic equation.

If r1 < 0 and r2 < 0, the motion is called overdamped.

A physical system satisfying a differential equation of this type is said to be overdamped because

it occurs when there is a lot of friction in the system. For example, a spring moving in a thick fluid

such as oil or molasses is overdamped: it will not oscillate.

Example 1 A spring is placed in oil, where it satisfies the differential equation

d2s

dt2
+ 3

ds

dt
+ 2s = 0.

Solve this equation with the initial conditions s = −0.5 and ds∕dt = 3 when t = 0.

41See Appendix B on complex numbers.



684 Chapter 11 DIFFERENTIAL EQUATIONS

Solution The characteristic equation is

r2 + 3r + 2 = 0,

with solutions r = −1 and r = −2, so the general solution to the differential equation is

s(t) = C1e
−t + C2e

−2t.

We use the initial conditions to find C1 and C2. At t = 0, we have

s = C1e
−0 + C2e

−2(0) = C1 + C2 = −0.5.

Furthermore, since ds∕dt = −C1e
−t − 2C2e

−2t, we have

ds

dt

|

|

|

|t=0

= −C1e
−0 − 2C2e

−2(0) = −C1 − 2C2 = 3.

Solving these equations simultaneously, we find C1 = 2 and C2 = −2.5, so that the solution is

s(t) = 2e−t − 2.5e−2t.

The graph of this function is in Figure 11.108. The mass is so slowed by the oil that it passes

through the equilibrium point only once (when t ≈ 1∕4) and for all practical purposes, it comes to

rest after a short time. The motion has been “damped out” by the oil.

s

1 2 3 4 5

−0.4

−0.2

0.2

0.4

t

s(t) = 2e−t − 2.5e−2t

Figure 11.108: Solution to overdamped equation
d2s

dt2
+ 3

ds

dt
+ 2s = 0

The Case with b
2 − 4c = 0

In this case, the characteristic equation has only one solution, r = −b∕2. By substitution, we can

check that both y = e−bt∕2 and y = te−bt∕2 are solutions.

If b2 − 4c = 0,
d2y

dt2
+ b

dy

dt
+ cy = 0

has general solution

y(t) = (C1t + C2)e
−bt∕2.

If b > 0, the system is said to be critically damped.

The Case with b
2 − 4c < 0

In this case, the characteristic equation has complex roots. Using Euler’s formula,42 these complex

roots lead to trigonometric functions which represent oscillations.

42See Appendix B on complex numbers.
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Example 2 An object of mass m = 10 kg is attached to a spring with spring constant k = 20 kg/sec2, and

the object experiences a frictional force proportional to the velocity, with constant of proportionality

a = 20 kg/sec. At time t = 0, the object is released from rest 2 meters above the equilibrium position.

Write the differential equation that describes the motion.

Solution As we saw on page 682, the differential equation for damped oscillations of a spring is

d2s

dt2
+
a

m

ds

dt
+
k

m
s = 0.

Substituting m = 10 kg, k = 20 kg/sec2, and a = 20 kg/sec, we obtain the differential equation

d2s

dt2
+ 2

ds

dt
+ 2s = 0.

At t = 0, the object is at rest 2 meters above equilibrium, so the initial conditions are s(0) = 2 and

s′(0) = 0, where s is in meters and t in seconds.

Notice that this is the same differential equation as in Example 1 except that the coefficient of

ds∕dt has decreased from 3 to 2, which means that the frictional force has been reduced. This time,

the roots of the characteristic equation have imaginary parts which lead to oscillations.

Example 3 Solve the differential equation

d2s

dt2
+ 2

ds

dt
+ 2s = 0,

subject to s(0) = 2, s′(0) = 0.

Solution The characteristic equation is

r2 + 2r + 2 = 0 giving r = −1 ± i.

The solution to the differential equation is

s(t) = A1e
(−1+i)t + A2e

(−1−i)t,

where A1 and A2 are arbitrary complex numbers. The initial condition s(0) = 2 gives

2 = A1e
(−1+i)⋅0 + A2e

(−1−i)⋅0 = A1 + A2.

Also,

s′(t) = A1(−1 + i)e
(−1+i)t + A2(−1 − i)e

(−1−i)t,

so s′(0) = 0 gives

0 = A1(−1 + i) + A2(−1 − i).

Solving the simultaneous equations for A1 and A2 gives (after some algebra)

A1 = 1 − i and A2 = 1 + i.

The solution is therefore

s(t) = (1 − i)e(−1+i)t + (1 + i)e(−1−i)t = (1 − i)e−teit + (1 + i)e−te−it.

Using Euler’s formula, eit = cos t + i sin t and e−it = cos t − i sin t, we get

s(t) = (1 − i)e−t(cos t + i sin t) + (1 + i)e−t(cos t − i sin t).
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Multiplying out and simplifying, we see that all the complex terms drop out, giving

s(t) = e−t cos t + ie−t sin t − ie−t cos t + e−t sin t

+e−t cos t − ie−t sin t + ie−t cos t + e−t sin t

= 2e−t cos t + 2e−t sin t.

The cos t and sin t terms tell us that the solution oscillates; the factor of e−t tells us that the

oscillations are damped. See Figure 11.109. However, the period of the oscillations does not change

as the amplitude decreases. This is why a spring-driven clock can keep accurate time even as it is

running down.

s

� 2�

1

2

t

s(t) = 2e−t cos t + 2e−t sin t

Figure 11.109: Solution to underdamped equation
d2s

dt2
+ 2

ds

dt
+ 2s = 0

In Example 3, the coefficients A1 and A2 are complex, but the solution, s(t), is real. (We ex-

pect this, since s(t) represents a real displacement.) In general, provided the coefficients b and c

in the original differential equation and the initial values are real, the solution is always real. The

coefficients A1 and A2 are always complex conjugates (that is, of the form � ± i�).

If b2 − 4c < 0, to solve
d2y

dt2
+ b

dy

dt
+ cy = 0,

• Find the solutions r = � ± i� to the characteristic equation r2 + br + c = 0.

• The general solution to the differential equation is, for some real C1 and C2,

y = C1e
�t cos �t + C2e

�t sin �t.

If � < 0, such oscillations are called underdamped. If � = 0, the oscillations are undamped.

Example 4 Find the general solution of the equations (a) y′′ = 9y (b) y′′ = −9y.

Solution (a) The characteristic equation is r2 − 9 = 0, so r = ±3. Thus the general solution is

y = C1e
3t + C2e

−3t.

(b) The characteristic equation is r2 + 9 = 0, so r = 0 ± 3i. The general solution is

y = C1e
0t cos 3t+ C2e

0t sin 3t = C1 cos 3t + C2 sin 3t.

Notice that we have seen the solution to this equation in Section 11.10; it’s the equation of

undamped simple harmonic motion with ! = 3.
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Example 5 Solve the initial value problem

y′′ + 4y′ + 13y = 0, y(0) = 0, y′(0) = 30.

Solution We solve the characteristic equation

r2 + 4r + 13 = 0, getting r = −2 ± 3i.

The general solution to the differential equation is

y = C1e
−2t cos 3t + C2e

−2t sin 3t.

Substituting t = 0 gives

y(0) = C1 ⋅ 1 ⋅ 1 + C2 ⋅ 1 ⋅ 0 = 0, so C1 = 0.

Differentiating y(t) = C2e
−2t sin 3t gives

y′(t) = C2(−2e
−2t sin 3t + 3e−2t cos 3t).

Substituting t = 0 gives

y′(0) = C2(−2 ⋅ 1 ⋅ 0 + 3 ⋅ 1 ⋅ 1) = 3C2 = 30 so C2 = 10.

The solution is therefore

y(t) = 10e−2t sin 3t.

Summary of Solutions to y
′′ + by

′ + cy = 0

If b2 − 4c > 0, then y = C1e
r1t + C2e

r2t

If b2 − 4c = 0, then y = (C1t + C2)e
−bt∕2

If b2 − 4c < 0, then y = C1e
�t cos �t + C2e

�t sin �t

Summary for Section 11.11

• When we add friction to a mass-spring system, we say the combined system has damping. The

nature of the solutions depends on the strength of the friction a, the mass m, and the spring

constant k.

• The differential equation for damped oscillations of a spring is

d2s

dt2
+
a

m

ds

dt
+
k

m
s = 0.

• For the general second-order linear differential equation

d2y

dt2
+ b

dy

dt
+ cy = 0,

we can find solutions by substituting y = Cert where r is a (possibly complex) constant.

• The function y = Cert is a solution to the differential equation if

r2 + br + c = 0.

This quadratic is called the characteristic equation of the differential equation. Its solutions

are

r = −
1

2
b ±

1

2

√

b2 − 4c.
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• For the general second-order linear differential equation

d2y

dt2
+ b

dy

dt
+ cy = 0

there are three different cases:

◦ If b2 − 4c > 0, the general solution is

y(t) = C1e
r1t + C2e

r2t

where r1 and r2 are the solutions to the characteristic equation.

◦ If b2 − 4c = 0, the general solution is

y(t) = (C1t + C2)e
−bt∕2.

◦ If b2 − 4c < 0, the general solution is

y = C1e
�t cos �t + C2e

�t sin �t.

where the complex numbers r = � ± i� are solutions to the characteristic equation.

Exercises and Problems for Section 11.11

EXERCISES

For Exercises 1–16, find the general solution to the given

differential equation.

1. y′′ + 4y′ + 3y = 0 2. y′′ + 4y′ + 4y = 0

3. y′′ + 4y′ + 5y = 0 4. s′′ − 7s = 0

5. s′′ + 7s = 0 6. y′′ − 3y′ + 2y = 0

7. 4z′′ + 8z′ + 3z = 0 8.
d2x

dt2
+ 4

dx

dt
+ 8x = 0

9.
d2p

dt2
+
dp

dt
+ p = 0 10. z′′ + 2z = 0

11. z′′ + 2z′ = 0 12. P ′′ + 2P ′ + P = 0

13. 9z′′ − z = 0 14. y′′ + 6y′ + 8y = 0

15. y′′ + 2y′ + 3y = 0 16. x′′ + 2x′ + 10x = 0

For Exercises 17–24, solve the initial value problem.

17. y′′ + 5y′ + 6y = 0, y(0) = 1, y′(0) = 0.

18. y′′ + 5y′ + 6y = 0, y(0) = 5, y′(0) = 1.

19. y′′ − 3y′ − 4y = 0, y(0) = 1, y′(0) = 0.

20. y′′ − 3y′ − 4y = 0, y(0) = 0, y′(0) = 0.5.

21. y′′ + 6y′ + 5y = 0, y(0) = 1, y′(0) = 0

22. y′′ + 6y′ + 5y = 0, y(0) = 5, y′(0) = 5

23. y′′ + 6y′ + 10y = 0, y(0) = 0, y′(0) = 2

24. y′′ + 6y′ + 10y = 0, y(0) = 0, y′(0) = 0

For Exercises 25–28, solve the boundary-value problem.

25. y′′ + 5y′ + 6y = 0, y(0) = 1, y(1) = 0.

26. y′′ + 5y′ + 6y = 0, y(−2) = 0, y(2) = 3.

27. p′′ + 2p′ + 2p = 0, p(0) = 0, p(�∕2) = 20

28. p′′ + 4p′ + 5p = 0, p(0) = 1, p(�∕2) = 5

In Exercises 29–30, is the differential equation overdamped,

underdamped, or critically damped?

29. y′′ + 6y′ + 9y = 0 30. y′′ + 6y′ + 10y = 0

In Exercises 31–34, is the function a solution to y′′ + by′ +

cy = 0 whose characteristic equation is (r − 2)(r + 3) = 0?

31. y = −3e2x 32. y = 3e−2x

33. y = 2e3x 34. y = 2e−3x + 3e2x
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PROBLEMS

35. Match the graphs of solutions in Figure 11.110 with the

differential equations below.

(a) x′′ + 4x = 0

(b) x′′ − 4x = 0

(c) x′′ − 0.2x′ + 1.01x = 0

(d) x′′ + 0.2x′ + 1.01x = 0

(I) (II)

(III) (IV)

Figure 11.110

36. Match the differential equations to the solution graphs

(I)–(IV). Use each graph only once.

(a) y′′ + 5y′ + 6y = 0 (b) y′′ + y′ − 6y = 0

(c) y′′ + 4y′ + 9y = 0 (d) y′′ = −9y

4

−1

1

x

y(I)

4

1

x

y(II)

4

400

x

y(III)

4

1

x

y(IV)

Each of the differential equations (i)–(iv) represents the po-

sition of a 1 gram mass oscillating on the end of a damped

spring. For Problems 37–41, pick the differential equation

representing the system which answers the question.

(i) s′′ + s′ + 4s = 0 (ii) s′′ + 2s′ + 5s = 0

(iii) s′′ + 3s′ + 3s = 0 (iv) s′′ + 0.5s′ + 2s = 0

37. Which spring has the largest coefficient of damping?

38. Which spring exerts the smallest restoring force for a

given displacement?

39. In which system does the mass experience the frictional

force of smallest magnitude for a given velocity?

40. Which oscillation has the longest period?

41. Which spring is the stiffest? [Hint: You need to deter-

mine what it means for a spring to be stiff. Think of an

industrial strength spring and a slinky.]

For each of the differential equations in Problems 42–44,

find the values of c that make the general solution:

(a) overdamped, (b) underdamped,(c) critically damped.

42. s′′ + 4s′ + cs = 0 43. s′′ + 2
√

2s′ + cs = 0

44. s′′ + 6s′ + cs = 0

For each of the differential equations in Problems 45–46,

find the values of b that make the general solution:

(a) overdamped, (b) underdamped,

(c) critically damped.

45. s′′ + bs′ + 5s = 0 46. s′′ + bs′ − 16s = 0

47. The motion of a mass on the end of a spring satisfies

the differential equation

d2s

dt2
+ 7

ds

dt
+ 10s = 0.

(a) If the mass m = 10, what is the spring coefficient

k? What is the damping coefficient a?

(b) Solve the differential equation if the initial condi-

tions are s(0) = −1 and s′(0) = −7.

(c) How low does the mass at the end of the spring go?

How high does it go?

(d) How long does it take until the spring stays within

0.1 unit of equilibrium?

48. The motion of a mass on the end of a spring satisfies

the differential equation

d2s

dt2
+ 2

ds

dt
+ 3s = 0.

(a) Give the general solution to the differential equa-

tion.

(b) Solve the differential equation if the initial height

is +2 and the initial velocity is +5.

(c) How low does the mass at the end of the spring go?

How high does it go?

(d) How long does it take until the spring stays within

0.1 unit of equilibrium?

49. If the spring constant k = 500 and the mass m = 100,

what values of the damping coefficient a make the mo-

tion

(a) Overdamped?

(b) Critically damped?

(c) Underdamped?
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50. If y = e2t is a solution to the differential equation

d2y

dt2
− 5

dy

dt
+ ky = 0,

find the value of the constant k and the general solution

to this equation.

51. Assuming b, c > 0, explain how you know that the so-

lutions of an underdamped differential equation must

go to 0 as t→ ∞.

52. Could the graph in Figure 11.111 show the position of

a mass oscillating at the end of an overdamped spring?

Why or why not?

t (time)

s (position)

Figure 11.111

53. Find a solution to the following equation which satisfies

z(0) = 3 and does not tend to infinity as t→ ∞:

d2z

dt2
+
dz

dt
− 2z = 0.

54. Consider an overdamped differential equation with

b, c > 0.

(a) Show that both roots of the characteristic equation

are negative.

(b) Show that any solution to the differential equation

goes to 0 as t→ ∞.

55. Consider the system of differential equations

dx

dt
= −y

dy

dt
= −x.

(a) Convert this system to a second-order differential

equation in y by differentiating the second equation

with respect to t and substituting for x from the first

equation.

(b) Solve the equation you obtained for y as a function

of t; hence find x as a function of t.

56. Juliet is in love with Romeo, who happens (in our ver-

sion of this story) to be a fickle lover. The more Juliet

loves him, the more he begins to dislike her. When she

hates him, his feelings for her warm up. On the other

hand, her love for him grows when he loves her and

withers when he hates her. A model for their ill-fated

romance is

dj

dt
= Ar,

dr

dt
= −Bj,

where A and B are positive constants, r(t) represents

Romeo’s love for Juliet at time t, and j(t) represents

Juliet’s love for Romeo at time t. (Negative love is hate.)

(a) The constant on the right-hand side of Juliet’s

equation (the one including dj∕dt) has a positive

sign, whereas the constant in Romeo’s equation is

negative. Explain why these signs follow from the

story.

(b) Derive a second-order differential equation for r(t)

and solve it. (Your equation should involve r and

its derivatives, but not j and its derivatives.)

(c) Express r(t) and j(t) as functions of t, given r(0) =

1 and j(0) = 0. Your answer will contain A and B.

(d) As you may have discovered, the outcome of the re-

lationship is a never-ending cycle of love and hate.

Find what fraction of the time they both love one

another.

57. (a) If r1 ≠ r2 and r1 and r2 satisfy r2 + br + c = 0,

show that

y =
er1t − er2 t

r1 − r2

is a solution to y′′ + by′ + cy = 0.

(b) If r1 = r2+ℎ, show that the solution in part (a) can

be written

y = er2 t
(eℎt − 1)

ℎ
.

(c) Using the Taylor series, show that

(eℎt − 1)

ℎ
= t +

ℎt2

2!
+
ℎ2t3

3!
+⋯ .

(d) Use the result of part (c) in the solution from part

(b) to show that lim
ℎ→0

er2t
(eℎt − 1)

ℎ
= ter2t.

(e) If there is a double root r2 = r1 = −b∕2. By di-

rect substitution, show that y = te−bt∕2 satisfies

y′′ + by′ + cy = 0.

Recall the discussion of electric circuits on page 681. Just as

a spring can have a damping force which affects its motion,

so can a circuit. Problems 58–61 involve a damping force

caused by the resistor in Figure 11.112. The charge Q on a

capacitor in a circuit with inductance L, capacitance C , and

resistance R, in ohms, satisfies the differential equation

L
d2Q

dt2
+ R

dQ

dt
+

1

C
Q = 0.

Capacitor

Resistor

Inductor

C

L

R

Figure 11.112
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58. If L = 1 henry, R = 2 ohms, and C = 4 farads, find a

formula for the charge when

(a) Q(0) = 0, Q′(0) = 2.

(b) Q(0) = 2, Q′(0) = 0.

59. If L = 1 henry, R = 1 ohm, and C = 4 farads, find a

formula for the charge when

(a) Q(0) = 0, Q′(0) = 2.

(b) Q(0) = 2, Q′(0) = 0.

(c) How did reducing the resistance affect the charge?

Compare with your solution to Problem 58.

60. If L = 8 henry, R = 2 ohm, and C = 4 farads, find a

formula for the charge when

(a) Q(0) = 0, Q′(0) = 2.

(b) Q(0) = 2, Q′(0) = 0.

(c) How did increasing the inductance affect the

charge? Compare with your solution to Prob-

lem 58.

61. Given any positive values forR,L andC , what happens

to the charge as t goes to infinity?

Strengthen Your Understanding

In Problems 62–63, explain what is wrong with the state-

ment.

62. Figure 11.113 represents motion for which the damping

coefficient is zero.

s

t

Figure 11.113

63. Figure 11.114 represents motion of a mass on a spring

with initial conditions s(0) = 5 and s′(0) = 2.

−5

5

t

s

Figure 11.114

In Problems 64–66, give an example of:

64. A linear second-order differential equation representing

spring motion that is overdamped.

65. A linear second-order differential equation representing

spring motion that is critically damped.

66. Values of the spring constant k, the mass m, and the

damping coefficient a so that the motion is under-

damped and shows damped oscillations.

Online Resource: Review Problems and Projects
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12.1 FUNCTIONS OF TWO VARIABLES

Function Notation
Suppose you want to calculate your monthly payment on a five-year car loan; this depends on both

the amount of money you borrow and the interest rate. These quantities can vary separately: the loan

amount can change while the interest rate remains the same, or the interest rate can change while the

loan amount remains the same. To calculate your monthly payment you need to know both. If the

monthly payment is $m, the loan amount is $L, and the interest rate is r%, then we express the fact

that m is a function of L and r by writing:

m = f (L, r).

This is just like the function notation of one-variable calculus. The variablem is called the dependent

variable, and the variables L and r are called the independent variables. The letter f stands for the

function or rule that gives the value of m corresponding to given values of L and r.

A function of two variables can be represented graphically, numerically by a table of values, or

algebraically by a formula. In this section, we give examples of each.

Graphical Example: A Weather Map
Figure 12.1 shows a weather map from a newspaper. What information does it convey? It displays

the predicted high temperature, T , in degrees Fahrenheit (◦F), throughout the US on that day. The

curves on the map, called isotherms, separate the country into zones, according to whether T is in

the 60s, 70s, 80s, 90s, or 100s. (Iso means same and therm means heat.) Notice that the isotherm

separating the 80s and 90s zones connects all the points where the temperature is exactly 90◦F.

Example 1 Estimate the predicted value of T in Boise, Idaho; Topeka, Kansas; and Buffalo, New York.

Solution Boise and Buffalo are in the 70s region, and Topeka is in the 80s region. Thus, the predicted tem-

perature in Boise and Buffalo is between 70 and 80 while the predicted temperature in Topeka is

between 80 and 90. In fact, we can say more. Although both Boise and Buffalo are in the 70s, Boise

is quite close to the T = 70 isotherm, whereas Buffalo is quite close to the T = 80 isotherm. So we

estimate the temperature to be in the low 70s in Boise and in the high 70s in Buffalo. Topeka is about

halfway between the T = 80 isotherm and the T = 90 isotherm. Thus, we guess the temperature in

Topeka to be in the mid-80s. In fact, the actual high temperatures for that day were 71◦F for Boise,

79◦F for Buffalo, and 86◦F for Topeka.

60s

70s

70s
Boise

80s

90s
90s

60s

90s

100s

Topeka

90s

70s

80s

Buffalo60s

70s

70s
Boise

80s

90s
90s

60s

90s

100s

Topeka

90s

70s

80s

Buffalo

Figure 12.1: Weather map showing predicted high temperatures, T , on a summer day
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The predicted high temperature, T , illustrated by the weather map is a function of (that is, de-

pends on) two variables, often longitude and latitude, or miles east-west and miles north-south of

a fixed point, say, Topeka. The weather map in Figure 12.1 is called a contour map or contour di-

agram of that function. Section 12.2 shows another way of visualizing functions of two variables

using surfaces; Section 12.3 looks at contour maps in detail.

Numerical Example: Body Mass Index (BMI)
The body mass index (BMI) is a value that attempts to quantify a person’s body fat based on their

height ℎ and weight w. In function notation, we write:

BMI = f (ℎ,w).

Table 12.1 contains values of this function for ℎ in inches and w in pounds. Values of w are across

the top, values of ℎ are down the left side, and corresponding values of f (ℎ,w) are in the table.1

For example, to find the value of f (66, 140), we look in the row corresponding to ℎ = 66 under

w = 140, where we find the number 22.6. Thus,

f (66, 140) = 22.6.

This means that if an individual is 66 inches tall and weighs 140 lbs, their body mass index is 22.6.

Table 12.1 Body mass index (BMI)

Height ℎ

(inches)

Weight w (lbs)

120 140 160 180 200

60 23.4 27.3 31.2 35.2 39.1

63 21.3 24.8 28.3 31.9 35.4

66 19.4 22.6 25.8 29.0 32.3

69 17.7 20.7 23.6 26.6 29.5

72 16.3 19.0 21.7 24.4 27.1

75 15.0 17.5 20.0 22.5 25.0

Notice how this table differs from the table of values of a one-variable function, where one row

or one column is enough to list the values of the function. Here many rows and columns are needed

because the function has a value for every pair of values of the independent variables.

Algebraic Examples: Formulas
In the weather map example there is no formula for the underlying function. That is usually the case

for functions representing real-life data. On the other hand, for many models in physics, engineering,

and economics, there are exact formulas.

Example 2 Give a formula for the function M = f (B, t) where M is the amount of money in a bank account

t years after an initial investment of B dollars, if interest is accrued at a rate of 1.2% per year com-

pounded annually.

Solution Annual compounding means that M increases by a factor of 1.012 every year, so

M = f (B, t) = B(1.012)t.

Example 3 A cylinder with closed ends has radius r and height ℎ. If its volume is V and its surface area is A,

find formulas for the functions V = f (r, ℎ) and A = g(r, ℎ).

Solution Since the area of the circular base is �r2, we have

V = f (r, ℎ) = Area of base ⋅ Height = �r2ℎ.

1http://www.cdc.gov, accessed December 30, 2019.
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The surface area of the side is the circumference of the bottom, 2�r, times the height ℎ, giving 2�rℎ.

Thus,

A = g(r, ℎ) = 2 ⋅ Area of base + Area of side = 2�r2 + 2�rℎ.

A Tour of 3-Space
In Section 12.2 we see how to visualize a function of two variables as a surface in space. Now we

see how to locate points in three-dimensional space (3-space).

Imagine three coordinate axes meeting at the origin: a vertical axis, and two horizontal axes at

right angles to each other. (See Figure 12.2.) Think of the xy-plane as being horizontal, while the

z-axis extends vertically above and below the plane. The labels x, y, and z show which part of each

axis is positive; the other side is negative. We generally use right-handed axes in which looking down

the positive z-axis gives the usual view of the xy-plane. We specify a point in 3-space by giving its

coordinates (x, y, z) with respect to these axes. Think of the coordinates as instructions telling you

how to get to the point: start at the origin, go x units along the x-axis, then y units in the direction

parallel to the y-axis, and finally z units in the direction parallel to the z-axis. The coordinates can

be positive, zero or negative; a zero coordinate means “don’t move in this direction,” and a negative

coordinate means “go in the negative direction parallel to this axis.” For example, the origin has

coordinates (0, 0, 0), since we get there from the origin by doing nothing at all.

Example 4 Describe the position of the points with coordinates (1, 2, 3) and (0, 0,−1).

Solution We get to the point (1, 2, 3) by starting at the origin, going 1 unit along the x-axis, 2 units in the

direction parallel to the y-axis, and 3 units up in the direction parallel to the z-axis. (See Figure 12.3.)

To get to (0, 0,−1), we don’t move at all in the x- and the y-directions, but move 1 unit in the

negative z-direction. So the point is on the negative z-axis. (See Figure 12.4.) You can check that

the position of the point is independent of the order of the x, y, and z displacements.

z

y

x

O

Figure 12.2: Coordinate axes in

three-dimensional space

x

y

z

(1, 2, 3)

Figure 12.3: The point

(1, 2, 3) in 3-space

x

y

z

(0, 0,−1)

Figure 12.4: The point

(0, 0,−1) in 3-space

Example 5 You start at the origin, go along the y-axis a distance of 2 units in the positive direction, and then

move vertically upward a distance of 1 unit. What are the coordinates of your final position?

Solution You started at the point (0, 0, 0). When you went along the y-axis, your y-coordinate increased to 2.

Moving vertically increased your z-coordinate to 1; your x-coordinate did not change because you

did not move in the x-direction. So your final coordinates are (0, 2, 1). (See Figure 12.5.)

x

y

z

(0, 2, 1)

Figure 12.5: The point (0, 2, 1) is reached by moving 2 along the y-axis and 1 upward
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It is often helpful to picture a three-dimensional coordinate system in terms of a room. The

origin is a corner at floor level where two walls meet the floor. The z-axis is the vertical intersection

of the two walls; the x- and the y-axis are the intersections of each wall with the floor. Points with

negative coordinates lie behind a wall in the next room or below the floor.

Graphing Equations in 3-Space

We can graph an equation involving the variables x, y, and z in 3-space; such a graph is a picture of

all points (x, y, z) that satisfy the equation.

Example 6 What do the graphs of the equations z = 0, z = 3, and z = −1 look like?

Solution To graph z = 0, we visualize the set of points whose z-coordinate is zero. If the z-coordinate is

0, then we must be at the same vertical level as the origin; that is, we are in the horizontal plane

containing the origin. So the graph of z = 0 is the middle plane in Figure 12.6. The graph of z = 3

is a plane parallel to the graph of z = 0, but three units above it. The graph of z = −1 is a plane

parallel to the graph of z = 0, but one unit below it.

Figure 12.6: The planes z = −1, z = 0, and z = 3

The plane z = 0 contains the x- and the y-coordinate axes, and is called the xy-plane. There

are two other coordinate planes. The yz-plane contains both the y- and the z-axis, and the xz-plane

contains the x- and the z-axis. (See Figure 12.7.)

Figure 12.7: The three coordinate planes

Example 7 Which of the points A = (1,−1, 0), B = (0, 3, 4), C = (2, 2, 1), and D = (0,−4, 0) lies closest to the

xz-plane? Which point lies on the y-axis?

Solution The magnitude of the y-coordinate gives the distance to the xz-plane. The point A lies closest to

that plane, because it has the smallest y-coordinate in magnitude. To get to a point on the y-axis,

we move along the y-axis, but we don’t move at all in the x- or the z-direction. Thus, a point on the

y-axis has both its x- and z-coordinates equal to zero. The only point of the four that satisfies this is

D. (See Figure 12.8.)
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In general, if a point has one of its coordinates equal to zero, it lies in one of the coordinate

planes. If a point has two of its coordinates equal to zero, it lies on one of the coordinate axes.

x

y

z

D

A

C

B

Figure 12.8: Which point lies closest to the xz-plane? Which

point lies on the y-axis?
Figure 12.9: The line x = 0, z = −2

Example 8 You are 2 units below the xy-plane and in the yz-plane. What are your coordinates?

Solution Since you are 2 units below the xy-plane, your z-coordinate is−2. Since you are in the yz-plane, your

x-coordinate is 0; your y-coordinate can be anything. Thus, you are at the point (0, y,−2). The set

of all such points forms a line parallel to the y-axis, 2 units below the xy-plane, and in the yz-plane.

(See Figure 12.9.)

Example 9 You are standing at the point (4, 5, 2), looking at the point (0.5, 0, 3). Are you looking up or down?

Solution The point you are standing at has z-coordinate 2, whereas the point you are looking at has z-

coordinate 3; hence you are looking up.

Example 10 Imagine that the yz-plane in Figure 12.7 is a page of this book. Describe the region behind the page

algebraically.

Solution The positive part of the x-axis pokes out of the page; moving in the positive x-direction brings you

out in front of the page. The region behind the page corresponds to negative values of x, so it is the

set of all points in 3-space satisfying the inequality x < 0.

Distance Between Two Points

In 2-space, the formula for the distance between two points (x, y) and (a, b) is given by

Distance =
√

(x − a)2 + (y − b)2.

The distance between two points (x, y, z) and (a, b, c) in 3-space is represented by PG in Fig-

ure 12.10. The side PE is parallel to the x-axis, EF is parallel to the y-axis, and FG is parallel to

the z-axis.

Using Pythagoras’ theorem twice gives

(PG)2 = (PF )2 + (FG)2 = (PE)2 + (EF )2 + (FG)2 = (x − a)2 + (y − b)2 + (z − c)2.

Thus, a formula for the distance between the points (x, y, z) and (a, b, c) in 3-space is

Distance =
√

(x − a)2 + (y − b)2 + (z − c)2.
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Figure 12.10: The diagonal PG gives the distance between the points (x, y, z) and (a, b, c)

Example 11 Find the distance between (1, 2, 1) and (−3, 1, 2).

Solution Distance =
√

(−3 − 1)2 + (1 − 2)2 + (2 − 1)2 =
√

18 = 4.243.

Example 12 Find an expression for the distance from the origin to the point (x, y, z).

Solution The origin has coordinates (0, 0, 0), so the distance from the origin to (x, y, z) is given by

Distance =
√

(x − 0)2 + (y − 0)2 + (z − 0)2 =
√

x2 + y2 + z2.

Example 13 Find an equation for a sphere of radius 1 with center at the origin.

Solution The sphere consists of all points (x, y, z) whose distance from the origin is 1, that is, which satisfy

the equation
√

x2 + y2 + z2 = 1.

This is an equation for the sphere. If we square both sides we get the equation in the form

x2 + y2 + z2 = 1.

Note that this equation represents the surface of the sphere. The solid ball enclosed by the sphere is

represented by the inequality x2 + y2 + z2 ≤ 1.

Summary for Section 12.1

• Function notation: f (x, y) is the value of the function f with inputs x and y.

• Points in 3-space are specified by their coordinates relative to the x, y, z-axes.

• Some planes in 3-space can be specified by simple equations given by one variable equal to a

constant. For example, the xy-plane (where z = 0), the xz-plane (where y = 0), and the yz-plane

(where x = 0).

• The distance between the points (x, y, z) and (a, b, c) in 3-space is

Distance =
√

(x − a)2 + (y − b)2 + (z − c)2.

Exercises and Problems for Section 12.1 Online Resource: Additional Problems for Section 12.1
EXERCISES

1. Which of the points P = (1, 2, 1) and Q = (2, 0, 0) is

closest to the origin?

2. Which two of the three points P1 = (1, 2, 3), P2 =

(3, 2, 1) and P3 = (1, 1, 0) are closest to each other?
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3. Which of the points P1 = (−3, 2, 15), P2 = (0,−10, 0),

P3 = (−6, 5, 3) and P4 = (−4, 2, 7) is closest to P =

(6, 0, 4)?

4. Which of the points A=(1.3,−2.7, 0), B=(0.9, 0, 3.2),

C = (2.5, 0.1,−0.3) is closest to the yz-plane? Which

one lies on the xz-plane? Which one is farthest from the

xy-plane?

5. You are at the point (3, 1, 1), standing upright and fac-

ing the yz-plane. You walk 2 units forward, turn left,

and walk another 2 units. What is your final position?

From the point of view of an observer looking at the

coordinate system in Figure 12.2 on page 696, are you

in front of or behind the yz-plane? To the left or to the

right of the xz-plane? Above or below the xy-plane?

6. On a set of x, y and z axes oriented as in Figure 12.5 on

page 696, draw a straight line through the origin, lying

in the yz-plane and such that if you move along the line

with your y-coordinate increasing, your z-coordinate is

increasing.

7. What is the midpoint of the line segment joining the

points (−1, 3, 9) and (5, 6,−3)?

In Exercises 8–11, which of (I)–(IV) lie on the graph of the

equation?

I. (2, 2, 4) II. (−1, 1, 0)

III. (−3,−2,−1) IV. (−2,−2, 4)

8. z = 4 9. x + y + z = 0

10. x2 + y2 + z2 = 14 11. x − y = 0

In Exercises 12–15 sketch graphs of the equations in 3-space.

12. z = 4 13. x = −3

14. y = 1 15. z = 2 and y = 4

16. With the z-axis vertical, a sphere has center (2, 3, 7) and

lowest point (2, 3,−1). What is the highest point on the

sphere?

17. Find an equation of the sphere with radius 5 centered at

the origin.

18. Find the equation of the sphere with radius 2 and cen-

tered at (1, 0, 0).

19. Find the equation of the vertical plane perpendicular to

the y-axis and through the point (2, 3, 4).

Exercises 20–22 refer to the map in Figure 12.1 on page 694.

20. Give the range of daily high temperatures for:

(a) Pennsylvania (b) North Dakota

(c) California

21. Sketch a possible graph of the predicted high tempera-

ture T on a line north-south through Topeka.

22. Sketch possible graphs of the predicted high tempera-

ture on a north-south line and an east-west line through

Boise.

For Exercises 23–25, refer to Table 12.1 on page 695 where

w is a person’s weight (in lbs) and ℎ their height (in inches).

23. Compute a table of values of BMI, with ℎ fixed at

60 inches and w between 120 and 200 lbs at intervals

of 20.

24. Medical evidence suggests that BMI values between

18.5 and 24.9 are healthy values.2 Estimate the range of

weights that are considered healthy for a woman who is

6 feet tall.

25. Estimate the BMI of a man who weighs 90 kilograms

and is 1.9 meters tall.

PROBLEMS

26. The temperature adjusted for wind chill is a tempera-

ture which tells you how cold it feels, as a result of the

combination of wind and temperature.3 See Table 12.2.

Table 12.2 Temperature adjusted for wind chill (◦F) as a

function of wind speed and temperature

Wind

Speed

(mph)

Temperature (◦F)

35 30 25 20 15 10 5 0

5 31 25 19 13 7 1 −5 −11

10 27 21 15 9 3 −4 −10 −16

15 25 19 13 6 0 −7 −13 −19

20 24 17 11 4 −2 −9 −15 −22

25 23 16 9 3 −4 −11 −17 −24

(a) If the temperature is 0◦F and the wind speed is 15

mph, how cold does it feel?

(b) If the temperature is 35◦F, what wind speed makes

it feel like 24◦F?

(c) If the temperature is 25◦F, what wind speed makes

it feel like 12◦F?

(d) If the wind is blowing at 20 mph, what temperature

feels like 0◦F?

In Problems 27–28, use Table 12.2 to make tables with the

given properties.

27. The temperature adjusted for wind chill as a function of

wind speed for temperatures of 20◦F and 0◦F.

28. The temperature adjusted for wind chill as a function of

temperature for wind speeds of 5 mph and 20 mph.

2http://www.cdc.gov. Accessed January 10, 2016.
3www.nws.noaa.gov. Accessed January 10, 2016.
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For Problems 29–31, refer to Table 12.3, which contains val-

ues of beef consumption C (in pounds per week per house-

hold) as a function of household income, I (in thousands

of dollars per year), and the price of beef, p (in dollars per

pound). Values of p are shown across the top, values of I are

down the left side, and corresponding values of beef con-

sumption C = f (I, p) are given in the table.4

Table 12.3 Quantity of beef bought

(pounds/household/week)

Household

income

per year,

I

($1000)

Price of beef ($/lb)

3.00 3.50 4.00 4.50

20 2.65 2.59 2.51 2.43

40 4.14 4.05 3.94 3.88

60 5.11 5.00 4.97 4.84

80 5.35 5.29 5.19 5.07

100 5.79 5.77 5.60 5.53

29. Give tables for beef consumption as a function of p,

with I fixed at I = 20 and I = 100. Give tables for beef

consumption as a function of I , with p fixed at p = 3.00

and p = 4.00. Comment on what you see in the tables.

30. Make a table of the proportion, P , of household income

spent on beef per week as a function of price and in-

come. (Note that P is the fraction of income spent on

beef.)

31. How does beef consumption vary as a function of

household income if the price of beef is held constant?

For Problems 32–35, a person’s body mass index (BMI) is

a function of their weight W (in kg) and height H (in m)

given by B(W ,H) = W ∕H2.

32. What is the BMI of a 1.72 m tall man weighing 72 kg?

33. A 1.58 m tall woman has a BMI of 23.2. What is her

weight?

34. With a BMI less than 18.5, a person is considered un-

derweight. What is the possible range of weights for an

underweight person 1.58 m tall?

35. For weight w in lbs and height ℎ in inches, a per-

sons BMI is approximated using the formula f (w, ℎ) =

703w∕ℎ2. Check this approximation by converting the

formula B(W ,H).

36. A car rental company charges $40 a day and 15 cents a

mile for its cars.

(a) Write a formula for the cost, C , of renting a car as

a function, f , of the number of days, d, and the

number of miles driven, m.

(b) If C = f (d, m), find f (5, 300) and interpret it.

37. A cable company charges $100 for a monthly subscrip-

tion to its services and $5 for each special feature movie

that a subscriber chooses to watch.

(a) Write a formula for the monthly revenue, R in dol-

lars, earned by the cable company as a function of

s, the number of monthly subscribers it serves, and

m, the total number of special feature movies that

its subscribers view.

(b) If R = f (s, m), find f (1000, 5000) and interpret it

in terms of revenue.

38. The gravitational force, F newtons, exerted on an ob-

ject by the earth depends on the object’s mass, m kilo-

grams, and its distance, r meters, from the center of the

earth, so F = f (m, r). Interpret the following statement

in terms of gravitation: f (100, 7000000) ≈ 820.

39. A heating element is attached to the center point of a

metal rod at time t = 0. Let H = f (d, t) represent the

temperature in ◦C of a point d cm from the center after

t minutes.

(a) Interpret the statement f (2, 5) = 24 in terms of

temperature.

(b) If d is held constant, is H an increasing or a de-

creasing function of t? Why?

(c) If t is held constant, is H an increasing or a de-

creasing function of d? Why?

40. The pressure, P atmospheres, of 10 moles of nitrogen

gas in a steel cylinder depends on the temperature of the

gas, T Kelvin, and the volume of the cylinder, V liters,

so P = f (T , V ). Interpret the following statement in

terms of pressure: f (300, 5) = 49.2.

41. The monthly payment, m dollars, for a 30-year fixed rate

mortgage is a function of the total amount borrowed, P

dollars, and the annual interest rate, r%. In other words,

m = f (P , r).

(a) Interpret the following statement in the context of

monthly payment: f (300,000, 5) = 1610.46.

(b) If P is held constant, is m an increasing or a de-

creasing function of r? Why?

(c) If r is held constant, ism an increasing or a decreas-

ing function of P ? Why?

42. Consider the acceleration due to gravity, g, at a distance

ℎ from the center of a planet of mass m.

(a) If m is held constant, is g an increasing or decreas-

ing function of ℎ? Why?

(b) If ℎ is held constant, is g an increasing or decreas-

ing function of m? Why?

43. A cube is located such that its top four corners have

the coordinates (−1, −2, 2), (−1, 3, 2), (4, −2, 2) and

(4, 3, 2). Give the coordinates of the center of the cube.

4Adapted from Richard G. Lipsey, An Introduction to Positive Economics, 3rd ed. (London: Weidenfeld and Nicolson,

1971).
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44. Describe the set of points whose distance from the x-

axis is 2.

45. Describe the set of points whose distance from the x-

axis equals the distance from the yz-plane.

46. Find the point on the x-axis closest to the point (3, 2, 1).

47. Does the line parallel to the y-axis through the point

(2, 1, 4) intersect the plane y = 5? If so, where?

48. Find a formula for the shortest distance between a point

(a, b, c) and the y-axis.

49. Find the equations of planes that just touch the sphere

(x − 2)2 + (y − 3)2 + (z − 3)2 = 16 and are parallel to

(a) The xy-plane (b) The yz-plane

(c) The xz-plane

50. Find an equation of the largest sphere contained in the

cube determined by the planes x = 2, x = 6; y = 5, y =

9; and z = −1, z = 3.

51. A cube has edges parallel to the axes. One corner is

at A = (5, 1, 2) and the corner at the other end of the

longest diagonal through A is B = (12, 7, 4).

(a) What are the coordinates of the other three vertices

on the bottom face?

(b) What are the coordinates of the other three vertices

on the top face?

52. An equilateral triangle is standing vertically with a ver-

tex above the xy-plane and its two other vertices at

(7, 0, 0) and (9, 0, 0). What is its highest point?

53. (a) Find the midpoint of the line segment joining A =

(1, 5, 7) to B = (5, 13, 19).

(b) Find the point one quarter of the way along the line

segment from A to B.

(c) Find the point one quarter of the way along the line

segment from B to A.

Strengthen Your Understanding

In Problems 54–56, explain what is wrong with the state-

ment.

54. In 3-space, y = 1 is a line parallel to the x-axis.

55. The xy-plane has equation xy = 0.

56. The distance from (2, 3, 4) to the x-axis is 2.

In Problems 57–58, give an example of:

57. A formula for a function f (x, y) that is increasing in x

and decreasing in y.

58. A point in 3-space with all its coordinates negative and

farther from the xz-plane than from the plane z = −5.

Are the statements in Problems 59–72 true or false? Give

reasons for your answer.

59. If f (x, y) is a function of two variables defined for all x

and y, then f (10, y) is a function of one variable.

60. The volume V of a box of height ℎ and square base of

side length s is a function of ℎ and s.

61. If H = f (t, d) is the function giving the water temper-

ature H◦C of a lake at time t hours after midnight and

depth d meters, then t is a function of d and H .

62. A table for a function f (x, y) cannot have any values of

f appearing twice.

63. If f (x) and g(y) are both functions of a single variable,

then the product f (x) ⋅ g(y) is a function of two vari-

ables.

64. The point (1, 2, 3) lies above the plane z = 2.

65. The graph of the equation z = 2 is a plane parallel to

the xz-plane.

66. The points (1, 0, 1) and (0,−1, 1) are the same distance

from the origin.

67. The point (2,−1, 3) lies on the graph of the sphere

(x − 2)2 + (y + 1)2 + (z − 3)2 = 25.

68. There is only one point in the yz-plane that is a distance

3 from the point (3, 0, 0).

69. There is only one point in the yz-plane that is a distance

5 from the point (3, 0, 0).

70. If the point (0, b, 0) has distance 4 from the plane y = 0,

then b must be 4.

71. A line parallel to the z-axis can intersect the graph of

f (x, y) at most once.

72. A line parallel to the y-axis can intersect the graph of

f (x, y) at most once.

12.2 GRAPHS AND SURFACES

The weather map on page 694 is one way of visualizing a function of two variables. In this section

we see how to visualize a function of two variables in another way, using a surface in 3-space.

Visualizing a Function of Two Variables Using a Graph

For a function of one variable, y = f (x), the graph of f is the set of all points (x, y) in 2-space such

that y = f (x). In general, these points lie on a curve in the plane. When a computer or calculator

graphs f , it approximates by plotting points in the xy-plane and joining consecutive points by line

segments. The more points, the better the approximation.
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Now consider a function of two variables.

The graph of a function of two variables, f , is the set of all points (x, y, z) such that

z = f (x, y). In general, the graph of a function of two variables is a surface in 3-space.

Plotting the Graph of the Function f (x, y) = x
2 + y

2

To sketch the graph of f we connect points as for a function of one variable. We first make a table

of values of f , such as in Table 12.4.

Table 12.4 Table of values of f (x, y) = x2 + y2

x

y

−3 −2 −1 0 1 2 3

−3 18 13 10 9 10 13 18

−2 13 8 5 4 5 8 13

−1 10 5 2 1 2 5 10

0 9 4 1 0 1 4 9

1 10 5 2 1 2 5 10

2 13 8 5 4 5 8 13

3 18 13 10 9 10 13 18

Now we plot points. For example, we plot (1, 2, 5) because f (1, 2) = 5 and we plot (0, 2, 4)

because f (0, 2) = 4. Then, we connect the points corresponding to the rows and columns in the

table. The result is called a wire-frame picture of the graph. Filling in between the wires gives a

surface. That is the way a computer drew the graphs in Figures 12.11 and 12.12. As more points are

plotted, we get the surface in Figure 12.13, called a paraboloid.

You should check to see if the sketches make sense. Notice that the graph goes through the

origin since (x, y, z) = (0, 0, 0) satisfies z = x2 + y2. Observe that if x is held fixed and y is allowed

to vary, the graph dips down and then goes back up, just like the entries in the rows of Table 12.4.

Similarly, if y is held fixed and x is allowed to vary, the graph dips down and then goes back up, just

like the columns of Table 12.4.

x y

z

Figure 12.11: Wire frame picture

of f (x, y) = x2 + y2 for

−3 ≤ x ≤ 3, −3 ≤ y ≤ 3

x y

z

Figure 12.12: Wire frame picture

of f (x, y) = x2 + y2 with more

points plotted

x y

z

Figure 12.13: Graph of

f (x, y) = x2 + y2 for

−3 ≤ x ≤ 3,−3 ≤ y ≤ 3

New Graphs from Old

We can use the graph of a function to visualize the graphs of related functions.

Example 1 Let f (x, y) = x2 + y2. Describe in words the graphs of the following functions:

(a) g(x, y) = x2 + y2 + 3, (b) ℎ(x, y) = 5 − x2 − y2, (c) k(x, y) = x2 + (y − 1)2.
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Solution We know from Figure 12.13 that the graph of f is a paraboloid, or a bowl, with its vertex at the

origin. From this we can work out what the graphs of g, ℎ, and k will look like.

(a) The function g(x, y) = x2 + y2 + 3 = f (x, y) + 3, so the graph of g is the graph of f , but raised

by 3 units. See Figure 12.14.

(b) Since−x2−y2 is the negative of x2+y2, the graph of−x2−y2 is a paraboloid opening downward.

Thus, the graph of ℎ(x, y) = 5−x2−y2 = 5−f (x, y) looks like a downward-opening paraboloid

with vertex at (0, 0, 5), as in Figure 12.15.

(c) The graph of k(x, y) = x2 + (y − 1)2 = f (x, y − 1) is a paraboloid with vertex at x = 0, y = 1,

since that is where k(x, y) = 0, as in Figure 12.16.

x
y

z

q
(0, 0, 3)

Figure 12.14: Graph of

g(x, y) = x2 + y2 + 3

x
y

z

✛ (0, 0, 5)

Figure 12.15: Graph of

ℎ(x, y) = 5 − x2 − y2

x y

z

(0, 1, 0)

Figure 12.16: Graph of

k(x, y) = x2 + (y − 1)2

Example 2 Describe the graph of G(x, y) = e−(x
2+y2). What symmetry does it have?

Solution Since the exponential function is always positive, the graph lies entirely above the xy-plane. From

the graph of x2 + y2 we see that x2 + y2 is zero at the origin and gets larger as we move farther

from the origin in any direction. Thus, e−(x
2+y2) is 1 at the origin, and gets smaller as we move away

from the origin in any direction. It can’t go below the xy-plane; instead it flattens out, getting closer

and closer to the plane. We say the surface is asymptotic to the xy-plane. (See Figure 12.17.) Now

consider a point (x, y) on the circle x2 + y2 = r2. Since

G(x, y) = e−(x
2+y2) = e−r

2
,

the value of the function G is the same at all points on this circle. Thus, we say the graph of G has

circular symmetry.

x
y

z

✛ (0, 0, 1)

Figure 12.17: Graph of G(x, y) = e−(x
2+y2)

Cross-Sections and the Graph of a Function

We have seen that a good way to analyze a function of two variables is to let one variable vary while

the other is kept fixed.
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For a function f (x, y), the function we get by holding x fixed and letting y vary is called a

cross-section of f with x fixed. The graph of the cross-section of f (x, y) with x = c is the

curve, or cross-section, we get by intersecting the graph of f with the plane x = c. We define

a cross-section of f with y fixed similarly.

For example, the cross-section of f (x, y) = x2 + y2 with x = 2 is f (2, y) = 4 + y2. The graph

of this cross-section is the curve we get by intersecting the graph of f with the plane perpendicular

to the x-axis at x = 2. (See Figure 12.18.)

Figure 12.18: Cross-section of

the surface z = f (x, y) by the

plane x = 2

x

y

z

✙
Curve

f (a, y)

Surface

f (x, y)

Figure 12.19: The curves

z = f (a, y) with a constant:

cross-sections with x fixed

x

y

z

✙
Curve

f (x, b)

Surface

f (x, y)

Figure 12.20: The curves

z = f (x, b) with b constant:

cross-sections with y fixed

Figure 12.19 shows graphs of other cross-sections of f with x fixed; Figure 12.20 shows graphs

of cross-sections with y fixed.

Example 3 Describe the cross-sections of the function g(x, y) = x2 − y2 with y fixed and then with x fixed. Use

these cross-sections to describe the shape of the graph of g.

Solution The cross-sections with y fixed at y = b are given by

z = g(x, b) = x2 − b2.

Thus, each cross-section with y fixed gives a parabola opening upward, with minimum z = −b2.

The cross-sections with x fixed are of the form

z = g(a, y) = a2 − y2,

which are parabolas opening downward with a maximum of z = a2. (See Figures 12.21 and 12.22.)

The graph of g is shown in Figure 12.23. Notice the upward-opening parabolas in the x-direction

and the downward-opening parabolas in the y-direction. We say that the surface is saddle-shaped.

−4

−1

z

x

✛
{

y = ±2

z = x2 − 4

✛
{

y = ±1

z = x2 − 1

✛
{

y = 0

z = x2

Figure 12.21: Cross-sections of

g(x, y) = x2 − y2 with y fixed

✛
{

x = ±2

z = 4 − y2

✛
{

x = ±1

z = 1 − y2

✛
{

x = 0

z = −y2

y

z

1

4

Figure 12.22: Cross-sections of

g(x, y) = x2 − y2 with x fixed

x

y

z

Figure 12.23: Graph of

g(x, y) = x2 − y2 showing

cross-sections
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Linear Functions

Linear functions are central to single-variable calculus; they are equally important in multivariable

calculus. You may be able to guess the shape of the graph of a linear function of two variables. (It’s

a plane.) Let’s look at an example.

Example 4 Describe the graph of f (x, y) = 1 + x − y.

Solution The plane x = a is vertical and parallel to the yz-plane. Thus, the cross-section with x = a is the

line z = 1 + a − y which slopes downward in the y-direction. Similarly, the plane y = b is parallel

to the xz-plane. Thus, the cross-section with y = b is the line z = 1 + x− b which slopes upward in

the x-direction. Since all the cross-sections are lines, you might expect the graph to be a flat plane,

sloping down in the y-direction and up in the x-direction. This is indeed the case. (See Figure 12.24.)

Figure 12.24: Graph of the plane z = 1 + x − y showing cross-section with x = a

When One Variable Is Missing: Cylinders

Suppose we graph an equation like z = x2 which has one variable missing. What does the surface

look like? Since y is missing from the equation, the cross-sections with y fixed are all the same

parabola, z = x2. Letting y vary up and down the y-axis, this parabola sweeps out the trough-

shaped surface shown in Figure 12.25. The cross-sections with x fixed are horizontal lines obtained

by cutting the surface by a plane perpendicular to the x-axis. This surface is called a parabolic

cylinder, because it is formed from a parabola in the same way that an ordinary cylinder is formed

from a circle; it has a parabolic cross-section instead of a circular one.

x

y

z

Figure 12.25: A parabolic

cylinder z = x2

x y

z

Figure 12.26: Circular cylinder

x2 + y2 = 1

Example 5 Graph the equation x2 + y2 = 1 in 3-space.
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Solution Although the equation x2 + y2 = 1 does not represent a function, the surface representing it can be

graphed by the method used for z = x2. The graph of x2+ y2 = 1 in the xy-plane is a circle. Since z

does not appear in the equation, the intersection of the surface with any horizontal plane will be the

same circle x2 + y2 = 1. Thus, the surface is the cylinder shown in Figure 12.26.

Summary for Section 12.2

• The graph of the function f (x, y) is the set of points (x, y, f (x, y)) in 3-space.

• Simple changes to a function, such as adding or multiplying by a constant, affect the graph by

shifting, stretching or flipping, just as for functions of one variable.

• A cross-section of a function f (x, y) is the one-variable function obtained by setting x or y

equal to a constant.

• A cylinder is the result of having one of the variables unspecified, such as f (x, y) = x2.

Exercises and Problems for Section 12.2 Online Resource: Additional Problems for Section 12.2
EXERCISES

In Exercises 1–4, which of (I)–(IV) lie on the graph of the

function z = f (x, y)?

I. (1, 0, 1) II. (
√

8, 1, 3)

III. (−3, 7,−3) IV. (1, 1, 1∕2)

1. f (x, y) = −3 2. f (x, y) =
√

x2 + y2

3. f (x, y) = 1∕(x2 + y2) 4. f (x, y) = 4 − y

5. Without a calculator or computer, match the functions

with their graphs in Figure 12.27.

(a) z = 2 + x2 + y2 (b) z = 2 − x2 − y2

(c) z = 2(x2 + y2) (d) z = 2 + 2x − y

(e) z = 2

(I) (II)

(III) (IV)

(V)

Figure 12.27

6. Without a calculator or computer, match the functions

with their graphs in Figure 12.28.

(a) z =
1

x2 + y2
(b) z = −e−x

2−y2

(c) z = x + 2y + 3 (d) z = −y2

(e) z = x3 − sin y.

x

y

z(I)

x
y

z(II)

xy

z(III)

x

y

z(IV)

x

y

z(V)

Figure 12.28
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7. Figure 12.29 shows the graph of z = f (x, y).

(a) Suppose y is fixed and positive. Does z increase or

decrease as x increases? Graph z against x.

(b) Suppose x is fixed and positive. Does z increase or

decrease as y increases? Graph z against y.

Figure 12.29

In Exercises 8–15, sketch a graph of the surface and briefly

describe it in words.

8. z = 3 9. x2 + y2 + z2 = 9

10. z = x2 + y2 + 4 11. z = 5 − x2 − y2

12. z = y2 13. 2x + 4y + 3z = 12

14. x2 + y2 = 4 15. x2 + z2 = 4

In Exercises 16–18, find the equation of the surface.

16. A cylinder of radius
√

7 with its axis along the y-axis.

17. A sphere of radius 3 centered at
(

0,
√

7, 0
)

.

18. The paraboloid obtained by moving the surface z =

x2+y2 so that its vertex is at (1, 3, 5), its axis is parallel

to the x-axis, and the surface opens towards negative x

values.

PROBLEMS

19. Consider the function f given by f (x, y) = y3 + xy.

Draw graphs of cross-sections with:

(a) x fixed at x = −1, x = 0, and x = 1.

(b) y fixed at y = −1, y = 0, and y = 1.

Problems 20–22 concern the concentration, C , in mg/liter,

of a drug in the blood as a function of x, the amount, in mg,

of the drug given and t, the time in hours since the injection.

For 0 ≤ x ≤ 4 and t ≥ 0, we have C = f (x, t) = te−t(5−x).

20. Find f (3, 2). Give units and interpret in terms of drug

concentration.

21. Graph the following single-variable functions and ex-

plain their significance in terms of drug concentration.

(a) f (4, t) (b) f (x, 1)

22. Graph f (a, t) for a = 1, 2, 3, 4 on the same axes. De-

scribe how the graph changes as a increases and explain

what this means in terms of drug concentration.

Problems 23–24 concern the kinetic energy, E = f (m, v) =
1

2
mv2, in joules, of a moving object as a function of its mass

m ≥ 0, in kg, and its speed v ≥ 0, in m/sec.

23. Find f (2, 10). Give units and interpret this quantity in

the context of kinetic energy.

24. Graph the following single-variable functions and ex-

plain their significance in terms of kinetic energy.

(a) f (6, v) (b) f (m, 20)

In Problems 25–26, the atmospheric pressure, P = f (y, t) =

(950+2t)e−y∕7 , in millibars, on a weather balloon, is a func-

tion of its height y ≥ 0, in km above sea level after t hours

with 0 ≤ t ≤ 48.

25. Find f (2, 12). Give units and interpret this quantity in

the context of atmospheric pressure.

26. Graph the following single-variable functions and ex-

plain the significance of the shape of the graph in terms

of atmospheric pressure.

(a) f (3, t) (b) f (y, 24)

27. Without a calculator or computer, for z = x2 + 2xy2,

determine which of (I)–(II) in Figure 12.30 are cross-

sections with x fixed and which are cross-sections with

y fixed.

−2 2

−4

4

z(I)

−2 2

−2

4

z(II)

Figure 12.30

28. Without a computer or calculator, match the equations

(a)–(i) with the graphs (I)–(IX).

(a) z = xye−(x
2+y2) (b) z = cos

(

√

x2 + y2
)

(c) z = sin y (d) z = −
1

x2 + y2

(e) z = cos2 x cos2 y (f) z =
sin(x2 + y2)

x2 + y2

(g) z = cos(xy) (h) z = |x||y|

(i) z = (2x2+y2)e1−x
2−y2
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x y

z(I)

x
y

z(II)

x y

z(III)

x
y

z(IV)

x

y

z(V)

x y

z(VI)

x

y

z(VII)

x
y

z(VIII)

x
y

z(IX)

29. Decide whether the graph of each of the following equa-

tions is the shape of a bowl, a plate, or neither. Consider

a plate to be any flat surface and a bowl to be anything

that could hold water. Assume the positive z-axis is up.

(a) z = x2 + y2 (b) z = 1 − x2 − y2

(c) x + y + z = 1 (d) z = −
√

5 − x2 − y2

(e) z = 3

30. Sketch cross-sections for each function in Problem 29.

31. Without a calculator or computer, match the functions

with their cross-sections with x fixed in Figure 12.31.

(a) z = 1∕(1 + x2 + y2) (b) z = 1 + x + y

(c) z = e−x+y (d) z = ex−y

(e) z = sin(xy) (f) z = x2.

−2 2

−2

2

y

z(I)

−2 2

1

y

z(II)

−2 2

2

4

6

y

z(III)

−2 2

1

4

9

y

z(IV)

−2 2

−1

1

y

z(V)

−2 2

2

4

6

y

z(VI)

Figure 12.31

32. You like pizza and you like cola. Which of the graphs

in Figure 12.32 represents your happiness as a function

of how many pizzas and how much cola you have if

(a) There is no such thing as too many pizzas and too

much cola?

(b) There is such a thing as too many pizzas or too

much cola?

(c) There is such a thing as too much cola but no such

thing as too many pizzas?

(I) (II)

(III) (IV)

Figure 12.32
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33. For each of the graphs I–IV in Problem 32, draw:

(a) Two cross-sections with pizza fixed

(b) Two cross-sections with cola fixed.

For Problems 34–37, give a formula for a function whose

graph is described. Sketch it using a computer or calculator.

34. A bowl which opens upward and has its vertex at 5 on

the z-axis.

35. A plane which has its x-, y-, and z-intercepts all posi-

tive.

36. A parabolic cylinder opening upward from along the

line y = x in the xy-plane.

37. A cone of circular cross-section opening downward and

with its vertex at the origin.

38. Sketch cross-sections of f (r, ℎ) = �r2ℎ, first keeping ℎ

fixed, then keeping r fixed.

39. By setting one variable constant, find a plane that inter-

sects the graph of z = 4x2 − y2 + 1 in a:

(a) Parabola opening upward

(b) Parabola opening downward

(c) Pair of intersecting straight lines.

40. Sketch cross-sections of z = y − x2 with x fixed and

with y fixed. Use them to sketch a graph of z = y− x2.

41. A wave travels along a canal. Let x be the distance along

the canal, t be the time, and z be the height of the water

above the equilibrium level. The graph of z as a func-

tion of x and t is in Figure 12.33.

(a) Draw the profile of the wave for t = −1, 0, 1, 2.

(Put the x-axis to the right and the z-axis vertical.)

(b) Is the wave traveling in the direction of increasing

or decreasing x?

(c) Sketch a surface representing a wave traveling in

the opposite direction.

t

x

z

Figure 12.33

42. The pressure of a fixed amount of compressed nitrogen

gas in a cylinder is given, in atmospheres, by

P = f (T , V ) =
10T

V
,

where T is the temperature of the gas, in Kelvin, and

V is the volume of the cylinder, in liters. Figures 12.34

and 12.35 give cross-sections of the function f.

(a) Which figure shows cross-sections of f with T

fixed? What does the shape of the cross-sections

tell you about the pressure?

(b) Which figure shows cross-sections of f with V

fixed? What does the shape of the cross-sections

tell you about the pressure?

P

Figure 12.34

P

Figure 12.35

Strengthen Your Understanding

In Problems 43–44, explain what is wrong with the state-

ment.

43. The graph of the function f (x, y) = x2 + y2 is a circle.

44. Cross-sections of the function f (x, y) = x2 with x fixed

are parabolas.

In Problems 45–47, give an example of:

45. A function whose graph lies above the xy-plane and in-

tersects the plane z = 2 in a single point.

46. A function which intersects the xz-plane in a parabola

and the yz-plane in a line.

47. A function which intersects the xy-plane in a circle.

Are the statements in Problems 48–61 true or false? Give

reasons for your answer.

48. The function given by the formula f (v,w) = ev∕w is an

increasing function of v when w is a nonzero constant.

49. A function f (x, y) can be an increasing function of x

with y held fixed, and be a decreasing function of ywith

x held fixed.

50. A function f (x, y) can have the property that g(x) =

f (x, 5) is increasing, whereas ℎ(x) = f (x, 10) is de-

creasing.

51. The plane x + 2y − 3z = 1 passes through the origin.
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52. The plane x + y + z = 3 intersects the x-axis when

x = 3.

53. The sphere x2+y2+z2 = 10 intersects the plane x = 10.

54. The cross-section of the function f (x, y) = x+ y2 with

y = 1 is a line.

55. The function g(x, y) = 1 − y2 has identical parabolas

for all cross-sections with x constant.

56. The function g(x, y) = 1 − y2 has lines for all cross-

sections with y constant.

57. The graphs of f (x, y) = sin(xy) and g(x, y) = sin(xy)+

2 never intersect.

58. The graphs of f (x, y) = x2+y2 and g(x, y) = 1−x2−y2

intersect in a circle.

59. If all the cross-sections of the graph of f (x, y) with x

constant are lines, then the graph of f is a plane.

60. The only point of intersection of the graphs of f (x, y)

and −f (x, y) is the origin.

61. The point (0, 0, 10) is the highest point on the graph of

the function f (x, y) = 10 − x2 − y2.

62. The object in 3-space described by x = 2 is

(a) A point (b) A line

(c) A plane (d) Undefined.

12.3 CONTOUR DIAGRAMS

The surface which represents a function of two variables often gives a good idea of the function’s

general behavior—for example, whether it is increasing or decreasing as one of the variables in-

creases. However, it is difficult to read numerical values off a surface and it can be hard to see all

of the function’s behavior from a surface. Thus, functions of two variables are often represented by

contour diagrams like the weather map on page 694. Contour diagrams have the additional advantage

that they can be extended to functions of three variables.

Topographical Maps

One of the most common examples of a contour diagram is a topographical map like that shown in

Figure 12.36. It gives the elevation in the region and is a good way of getting an overall picture of the

terrain: where the mountains are, where the flat areas are. Such topographical maps are frequently

colored green at the lower elevations and brown, red, or white at the higher elevations.

Figure 12.36: A topographical map showing the region around South Hamilton, NY

The curves on a topographical map that separate lower elevations from higher elevations are

called contour lines because they outline the contour or shape of the land.5 Because every point

5In fact they are usually not straight lines, but curves. They may also be in disconnected pieces.
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along the same contour has the same elevation, contour lines are also called level curves or level

sets. The more closely spaced the contours, the steeper the terrain; the more widely spaced the

contours, the flatter the terrain (provided, of course, that the elevation between contours varies by

a constant amount). Certain features have distinctive characteristics. A mountain peak is typically

surrounded by contour lines like those in Figure 12.37. A pass in a range of mountains may have

contours that look like Figure 12.38. A long valley has parallel contour lines indicating the rising

elevations on both sides of the valley (see Figure 12.39); a long ridge of mountains has the same type

of contour lines, only the elevations decrease on both sides of the ridge. Notice that the elevation

numbers on the contour lines are as important as the curves themselves. We usually draw contours

for equally spaced values of z.

500
400
300

Figure 12.37: Mountain peak

500

300

500

300

80
0

600 7
0
0800

Figure 12.38: Pass between two

mountains

200

100

100

200

Figure 12.39: Long valley

20
0

100

Figure 12.40: Impossible

contour lines

Notice that two contours corresponding to different elevations cannot cross each other as shown

in Figure 12.40. If they did, the point of intersection of the two curves would have two different

elevations, which is impossible (assuming the terrain has no overhangs).

Corn Production

Contour maps can display information about a function of two variables without reference to a sur-

face. Consider the effect of weather conditions on US corn production. Figure 12.41 gives corn

production C = f (R, T ) as a function of the total rainfall, R, in inches, and average temperature,

T , in degrees Fahrenheit, during the growing season.6 At the present time, R = 15 inches and

T = 76◦F. Production is measured as a percentage of the present production; thus, the contour

through R = 15, T = 76, has value 100, that is, C = f (15, 76) = 100.

Example 1 Use Figure 12.41 to estimate f (18, 78) and f (12, 76) and interpret in terms of corn production.

110

100
908070

60

50

4
0 113

Present

80

78

76

74

72

6 9 12 15 18 21 24

T (temperature in ◦F)

R (rainfall in inches)

Figure 12.41: Corn production, C, as a function of rainfall and temperature

6Adapted from S. Beaty and R. Healy, “The Future of American Agriculture,” Scientific American 248, No. 2, February

1983.
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Solution The point with R-coordinate 18 and T -coordinate 78 is on the contourC = 100, so f (18, 78) = 100.

This means that if the annual rainfall were 18 inches and the temperature were 78◦F, the country

would produce about the same amount of corn as at present, although it would be wetter and warmer

than it is now.

The point with R-coordinate 12 and T -coordinate 76 is about halfway between the C = 80 and

the C = 90 contours, so f (12, 76) ≈ 85. This means that if the rainfall fell to 12 inches and the

temperature stayed at 76◦, then corn production would drop to about 85% of what it is now.

Example 2 Use Figure 12.41 to describe in words the cross-sections with T and R constant through the point

representing present conditions. Give a common-sense explanation of your answer.

Solution To see what happens to corn production if the temperature stays fixed at 76◦F but the rainfall changes,

look along the horizontal line T = 76. Starting from the present and moving left along the line

T = 76, the values on the contours decrease. In other words, if there is a drought, corn production

decreases. Conversely, as rainfall increases, that is, as we move from the present to the right along

the line T = 76, corn production increases, reaching a maximum of more than 110% when R = 21,

and then decreases (too much rainfall floods the fields).

If, instead, rainfall remains at the present value and temperature increases, we move up the

vertical line R = 15. Under these circumstances corn production decreases; a 2◦F increase causes a

10% drop in production. This makes sense since hotter temperatures lead to greater evaporation and

hence drier conditions, even with rainfall constant at 15 inches. Similarly, a decrease in temperature

leads to a very slight increase in production, reaching a maximum of around 102% when T = 74,

followed by a decrease (the corn won’t grow if it is too cold).

Contour Diagrams and Graphs

Contour diagrams and graphs are two different ways of representing a function of two variables.

How do we go from one to the other? In the case of the topographical map, the contour diagram was

created by joining all the points at the same height on the surface and dropping the curve into the

xy-plane.

How do we go the other way? Suppose we wanted to plot the surface representing the corn

production functionC = f (R, T ) given by the contour diagram in Figure 12.41. Along each contour

the function has a constant value; if we take each contour and lift it above the plane to a height equal

to this value, we get the surface in Figure 12.42.

110
10
0

110

10090
80

70605040

✛ 110 contour raised 110 units❘
100 contour raised 100 units

Figure 12.42: Getting the graph of the corn yield function from the contour diagram
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Notice that the raised contours are the curves we get by slicing the surface horizontally. In

general, we have the following result:

Contour lines, or level curves, are obtained from a surface by slicing it with horizontal planes.

A contour diagram is a collection of level curves labeled with function values.

Finding Contours Algebraically

Algebraic equations for the contours of a function f are easy to find if we have a formula for f (x, y).

Suppose the surface has equation

z = f (x, y).

A contour is obtained by slicing the surface with a horizontal plane with equation z = c. Thus, the

equation for the contour at height c is given by:

f (x, y) = c.

Example 3 Find equations for the contours of f (x, y) = x2 + y2 and draw a contour diagram for f . Relate the

contour diagram to the graph of f .

Solution The contour at height c is given by

f (x, y) = x2 + y2 = c.

This is a contour only for c ≥ 0, For c > 0 it is a circle of radius
√

c. For c = 0, it is a single point (the

origin). Thus, the contours at an elevation of c = 1, 2, 3, 4,… are all circles centered at the origin of

radius 1,
√

2,
√

3, 2, …. The contour diagram is shown in Figure 12.43. The bowl–shaped graph of

f is shown in Figure 12.44. Notice that the graph of f gets steeper as we move further away from

the origin. This is reflected in the fact that the contours become more closely packed as we move

further from the origin; for example, the contours for c = 6 and c = 8 are closer together than the

contours for c = 2 and c = 4.

321−1−2−3

3

2

1

−1

−2

−3

x

y

4

4

2

2

6

6

8

8

Figure 12.43: Contour diagram for

f (x, y) = x2 + y2 (even values of c only)
Figure 12.44: The graph of f (x, y) = x2 + y2

Example 4 Draw a contour diagram for f (x, y) =
√

x2 + y2 and relate it to the graph of f .

Solution The contour at level c is given by

f (x, y) =
√

x2 + y2 = c.
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For c > 0 this is a circle, just as in the previous example, but here the radius is c instead of
√

c. For

c = 0, it is the origin. Thus, if the level c increases by 1, the radius of the contour increases by 1. This

means the contours are equally spaced concentric circles (see Figure 12.45) which do not become

more closely packed further from the origin. Thus, the graph of f has the same constant slope as we

move away from the origin (see Figure 12.46), making it a cone rather than a bowl.

1

2

3

x

y

Figure 12.45: A contour diagram for

f (x, y) =
√

x2 + y2

x y

z

Figure 12.46: The graph of

f (x, y) =
√

x2 + y2

In both of the previous examples the level curves are concentric circles because the surfaces

have circular symmetry. Any function of two variables which depends only on the quantity (x2+y2)

has such symmetry: for example, G(x, y) = e−(x
2+y2) or H(x, y) = sin

(

√

x2 + y2
)

.

Example 5 Draw a contour diagram for f (x, y) = 2x + 3y + 1.

Solution The contour at level c has equation 2x+ 3y+ 1 = c. Rewriting this as y = −(2∕3)x+ (c − 1)∕3, we

see that the contours are parallel lines with slope −2∕3. The y-intercept for the contour at level c is

(c − 1)∕3; each time c increases by 3, the y-intercept moves up by 1. The contour diagram is shown

in Figure 12.47.

x

y

1 2 3 4 5 6
−3

−2

−1

0

1

2

3

−5

−2

1

4

7

10

13

16

19

Figure 12.47: A contour diagram for f (x, y) = 2x + 3y + 1

Contour Diagrams and Tables

Sometimes we can get an idea of what the contour diagram of a function looks like from its table.
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Example 6 Relate the values of f (x, y) = x2 − y2 in Table 12.5 to its contour diagram in Figure 12.48.

Table 12.5 Table of values of f (x, y) = x2 − y2

y

3 0 −5 −8 −9 −8 −5 0

2 5 0 −3 −4 −3 0 5

1 8 3 0 −1 0 3 8

0 9 4 1 0 1 4 9

−1 8 3 0 −1 0 3 8

−2 5 0 −3 −4 −3 0 5

−3 0 −5 −8 −9 −8 −5 0

−3 −2 −1 0 1 2 3

x 321−1−2−3

3

2

1

−1

−2

−3

x

y

0

00

0

2

4

2

4

−2

−4

−2

−4

Figure 12.48: Contour map of f (x, y) = x2 − y2

Solution One striking feature of the values in Table 12.5 is the zeros along the diagonals. This occurs because

x2 − y2 = 0 along the lines y = x and y = −x. So the z = 0 contour consists of these two lines.

In the triangular region of the table that lies to the right of both diagonals, the entries are positive.

To the left of both diagonals, the entries are also positive. Thus, in the contour diagram, the positive

contours lie in the triangular regions to the right and left of the lines y = x and y = −x. Further,

the table shows that the numbers on the left are the same as the numbers on the right; thus, each

contour has two pieces, one on the left and one on the right. See Figure 12.48. As we move away

from the origin along the x-axis, we cross contours corresponding to successively larger values. On

the saddle-shaped graph of f (x, y) = x2 − y2 shown in Figure 12.49, this corresponds to climbing

out of the saddle along one of the ridges. Similarly, the negative contours occur in pairs in the top

and bottom triangular regions; the values get more and more negative as we go out along the y-axis.

This corresponds to descending from the saddle along the valleys that are submerged below the xy-

plane in Figure 12.49. Notice that we could also get the contour diagram by graphing the family of

hyperbolas x2 − y2 = 0, ±2, ±4, ….

Figure 12.49: Graph of f (x, y) = x2 − y2 showing plane z = 0

Using Contour Diagrams: The Cobb-Douglas Production Function
Suppose you decide to expand your small printing business. Should you start a night shift and hire

more workers? Should you buy more expensive but faster computers which will enable the current

staff to keep up with the work? Or should you do some combination of the two?

Obviously, the way such a decision is made in practice involves many other considerations—

such as whether you could get a suitably trained night shift, or whether there are any faster computers

available. Nevertheless, you might model the quantity, P , of work produced by your business as a

function of two variables: your total number, N , of workers, and the total value, V , of your equip-

ment. What might the contour diagram of the production function look like?
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Example 7 Explain why the contour diagram in Figure 12.50 does not model the behavior expected of the pro-

duction function, whereas the contour diagram in Figure 12.51 does.

N

V

P = 1

P = 2

P = 3

Figure 12.50: Incorrect contours

for printing production

V

N

✠
P = 3

✠
P = 2

✠
P = 1

Figure 12.51: Correct contours for

printing production

Solution Look at Figure 12.50. Notice that the contourP = 1 intersects theN- and the V-axes, suggesting that

it is possible to produce work with no workers or with no equipment; this is unreasonable. However,

no contours in Figure 12.51 intersect either the N- or the V-axis.

In Figure 12.51, fixing V and letting N increase corresponds to moving to the right, crossing

contours less and less frequently. Production increases more and more slowly because hiring addi-

tional workers does little to boost production if the machines are already used to capacity.

Similarly, if we fix N and let V increase, Figure 12.51 shows production increasing, but at a

decreasing rate. Buying machines without enough people to use them does not increase production

much. Thus Figure 12.51 fits the expected behavior of the production function best.

Formula for a Production Function

Production functions are often approximated by formulas of the form

P = f (N, V ) = cN�V �

where P is the quantity produced and c, �, and � are positive constants, 0 < � < 1 and 0 < � < 1.

Example 8 Show that the contours of the function P = cN�V � have approximately the shape of the contours

in Figure 12.51.

Solution The contours are the curves where P is equal to a constant value, say P0, that is, where

cN�V � = P0.

Solving for V, we get

V =

(

P0

c

)1∕�

N−�∕� .

Thus, V is a power function of N with a negative exponent, so its graph has the general shape shown

in Figure 12.51.

The Cobb-Douglas Production Model

In 1928, Cobb and Douglas used a similar function to model the production of the entire US economy

in the first quarter of this century. Using government estimates of P , the total yearly production
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between 1899 and 1922, of K , the total capital investment over the same period, and of L, the total

labor force, they found that P was well approximated by the Cobb-Douglas production function

P = 1.01L0.75K0.25.

This function turned out to model the US economy surprisingly well, both for the period on which

it was based and for some time afterward.7

Summary for Section 12.3

• A contour of the function f (x, y) is the set of points in the xy-plane satisfying f (x, y) =

constant. Contours can be thought of as horizontal slices of the graph of a function at a par-

ticular height.

• A contour diagram for a function f (x, y) is a graph of several contours for a selection of con-

stants.

• In a contour diagram with equally-spaced constant function values, contours that are closer

together represent more rapid change of the function.

• To find a contour algebraically, set the formula for f (x, y) equal to a constant.

• Sometimes contours can be seen numerically in a table of values by seeing where the same

values occur in the table.

• A Cobb-Douglas production function has the form

f (N, V ) = cN�V � .

Exercises and Problems for Section 12.3

EXERCISES

In Exercises 1–4, sketch a possible contour diagram for each

surface, marked with reasonable z-values. (Note: There are

many possible answers.)

1.

x y

z 2.

x

y

z

3. 4.

x
y

z

In Exercises 5–8, use the contour diagram of f (x, y) given

in Figure 12.52.

−3 3

−3

3

0

1
2
3
4
5

−1
−2
−3
−4
−5

−1
−2
−3
−4
−5

1
2

3
4

5

x

y

Figure 12.52

5. Find f (1, 3). 6. Find f (−2, 2).

7. Find a point where f (x, y) = 0.

8. Find a point where f (x, y) = 2.

9. Let f (x, y) = 3x2y+ 7x + 20. Find an equation for the

contour that goes through the point (5, 10).

10. (a) For z = f (x, y) = xy, sketch and label the level

curves z = ±1, z = ±2.

(b) Sketch and label cross-sections of f with x = ±1,

x = ±2.

(c) The surface z = xy is cut by a vertical plane con-

taining the line y = x. Sketch the cross-section.

7C. Cobb and P. Douglas, "A Theory of Production", American Economic Review 18 (1928: Supplement), pp. 139–165.
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11. Match the surfaces (a)–(e) in Figure 12.53 with the con-

tour diagrams (I)–(V) in Figure 12.54.

x y

z(a)

x y

z(b)

x

y

z(c)

x

y

z(d)

x

y

z

(e)

Figure 12.53

y

x

−3

−1

0

1

3

(I) y

x
1

3

(II)

x

y

✠

✠ 0

−4(III) y

x

✠

✾

1

6

(IV)

y

x
1 6 1

(V)

Figure 12.54

12. Figure 12.55 shows the contour diagram of z = f (x, y).

Which of the points (I)–(VI) lie on the graph of z =

f (x, y)?

I. (1, 0, 2) II. (1, 1, 1)

III. (0,−1,−2) IV. (−1, 0,−2)

V. (0, 1, 1) VI. (−1,−1, 0)

−2 −1 1 2

−2

−1

1

2

−2

−1

0
1

1
2

2

x

y

Figure 12.55

13. Match Tables 12.6–12.9 with contour diagrams (I)–

(IV) in Figure 12.56.

Table 12.6

y∖x −1 0 1

−1 2 1 2

0 1 0 1

1 2 1 2

Table 12.7

y∖x −1 0 1

−1 0 1 0

0 1 2 1

1 0 1 0

Table 12.8

y∖x −1 0 1

−1 2 0 2

0 2 0 2

1 2 0 2

Table 12.9

y∖x −1 0 1

−1 2 2 2

0 0 0 0

1 2 2 2

(I)

x

y

3
2

1

0

1
2
3

(II)

x

y

0

1
2
3
4

(III)

x

y

2

1
0
−
1
−
2

(IV)

x

y

3 2 1 0 1 2 3

Figure 12.56
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In Exercises 14–22, sketch a contour diagram for the func-

tion with at least four labeled contours. Describe in words

the contours and how they are spaced.

14. f (x, y) = x + y 15. f (x, y) = 3x + 3y

16. f (x, y) = x2 + y2 17. f (x, y) = −x2 − y2 +1

18. f (x, y) = xy 19. f (x, y) = y − x2

20. f (x, y) = x2 + 2y2 21. f (x, y) =
√

x2 + 2y2

22. f (x, y) = cos
√

x2 + y2

PROBLEMS

23. Figure 12.57 shows a graph of f (x, y) = (sinx)(cos y)

for −2� ≤ x ≤ 2�, −2� ≤ y ≤ 2�. Use the surface

z = 1∕2 to sketch the contour f (x, y) = 1∕2.

Figure 12.57

24. Total sales,Q, of a product are a function of its price and

the amount spent on advertising. Figure 12.58 shows a

contour diagram for total sales. Which axis corresponds

to the price of the product and which to the amount

spent on advertising? Explain.

1 2 3 4 5 6

1

2

3

4

5

6

✛ Q = 5000

✛ Q = 4000

✛ Q = 3000

Q = 2000

x

y

Figure 12.58

25. Each contour diagram (a)–(c) in Figure 12.59 shows

satisfaction with quantities of two items X and Y com-

bined. Match (a)–(c) with the items in (I)–(III).

10

20

30

40

50

X

Y(a)

10

20

30

40

50

X

Y(b)

50

40

30

20

10

X

Y(c)

Figure 12.59

(I) X: Income; Y : Leisure time

(II) X: Income; Y : Hours worked

(III) X: Hours worked; Y : Time spent commuting

26. Figure 12.60 shows a contour plot of job satisfaction

as a function of the hourly wage and the safety of the

workplace (higher values mean safer). Match the jobs

at points P , Q, and R with the three descriptions.

(a) The job is so unsafe that higher pay alone would

not increase my satisfaction very much.

(b) I could trade a little less safety for a little more pay.

It would not matter to me.

(c) The job pays so little that improving safety would

not make me happier.

5 10 15 20

5

10

15

20
P

Q

R

hourly wage

safety level

Figure 12.60

27. Figure 12.61 shows a contour diagram of Dan’s happi-

ness with snacks of different numbers of cherries and

grapes.

(a) What is the slope of the contours?

(b) What does the slope tell you?

1 2 3 4 5

2

4

6

8

10

2

4

6

8

10

12

14

16

18

cherries

grapes

Figure 12.61

28. Figure 12.62 shows contours of f (x, y) = 100ex−50y2.

Find the values of f on the contours. They are equally

spaced multiples of 10.
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Figure 12.62

29. Figure 12.63 shows contours for a person’s body mass

index, BMI = f (w, ℎ) = 703w∕ℎ2, where w is weight

in pounds and ℎ is height in inches. Find the BMI con-

tour values bounding the underweight and normal re-

gions.

120 140 160 180 200 220

63

66

69

72

75

78
Underweight

Normal

Overweight

Obese

w (lbs)

ℎ (in)

Figure 12.63

30. The wind chill tells you how cold it feels as a function

of the air temperature and wind speed. Figure 12.64 is

a contour diagram of wind chill (◦F).

(a) If the wind speed is 15 mph, what temperature feels

like −20◦F?

(b) Estimate the wind chill if the temperature is 0◦F

and the wind speed is 10 mph.

(c) Humans are at extreme risk when the wind chill is

below −50◦F. If the temperature is−20◦F, estimate

the wind speed at which extreme risk begins.

(d) If the wind speed is 15 mph and the temperature

drops by 20◦F, approximately how much colder do

you feel?

−60 −40 −20 0 20 40

10

20

30

−80

−60
−40

−20 0 20

air temp, ◦F

wind speed, mph

Figure 12.64

31. Match the functions (a)–(f) with the level curves (I)–

(VI):

(a) f (x, y) = x2 − y2 − 2x + 4y − 3

(b) g(x, y) = x2 + y2 − 2x − 4y + 15

(c) ℎ(x, y) = −x2 − y2 + 2x + 4y − 8

(d) j(x, y) = −x2 + y2 + 2x − 4y + 3

(e) k(x, y) =
√

(x − 1)2 + (y − 2)2

(f) l(x, y) = −
√

(x − 1)2 + (y − 2)2

−7
−6

−5

−4

x

y(I)

2

1.5

1

0.5

x

y(II)

−2

−1

0

−1

−2

x

y(III)

2

1

0

1

2

x

y(IV)

−2

−1.5

−1

−0.5

x

y(V)

14
13
12

11

x

y(VI)

32. Figure 12.65 shows contour diagrams of f (x, y)

and g(x, y). Sketch the smooth curve with equation

f (x, y) = g(x, y).

10

10

2

4

6

8

10 12 14 16 18

0

2

4

6

8

10

12

14

16

x

y

Figure 12.65: Black: f (x, y). Blue: g(x, y)
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33. Figure 12.66 shows the level curves of the temperature

H in a room near a recently opened window. Label the

three level curves with reasonable values of H if the

house is in the following locations.

(a) Minnesota in winter (where winters are harsh).

(b) San Francisco in winter (where winters are mild).

(c) Houston in summer (where summers are hot).

(d) Oregon in summer (where summers are mild).

Window

Room

Figure 12.66

34. You are in a room 30 feet long with a heater at one

end. In the morning the room is 65◦F. You turn on the

heater, which quickly warms up to 85◦F. Let H(x, t) be

the temperature x feet from the heater, t minutes after

the heater is turned on. Figure 12.67 shows the contour

diagram for H . How warm is it 10 feet from the heater

5 minutes after it was turned on? 10 minutes after it was

turned on?

5 10 15 20 25 30

10

20

30

40

50

60

x (feet)

85

80

75

70

65

t (minutes)

Figure 12.67

35. Using the contour diagram in Figure 12.67, sketch

the graphs of the one-variable functions H(x, 5) and

H(x, 20). Interpret the two graphs in practical terms,

and explain the difference between them.

36. Figure 12.68 shows a contour map of a hill with two

paths, A and B.

(a) On which path,A or B, will you have to climb more

steeply?

(b) On which path, A or B, will you probably have a

wider view of the horizon? (Assume trees do not

block your view.)

(c) Alongside which path is there more likely to be a

stream?

A

❃

B

✻

z = 100

z = 200

z = 300
Goal

Figure 12.68

In Problems 37–40, for the two given points:

(a) Find the distance ℎ from the first to the second point.

(b) Use Figure 12.69, the contour diagram of f (x, y), to

find Δf , the difference between the values of f from

the first to the second point.

(c) Find Δf∕ℎ, the average rate of change of f (x, y) from

the first to the second point.

−2 −1 0 1 2

−2

−1

0

1

2

x

y

0

0

−
2

−
1

2
1

−1
−2

12

−1

−2

1
2

Figure 12.69

37. (0, 0) and (2, 0) 38. (0,−1) and (1, 0)

39. (−1, 1) and (1, 2) 40. (0,−2) and (0, 2)

41. Figure 12.70 is a contour diagram of the monthly pay-

ment on a 5-year car loan as a function of the interest

rate and the amount you borrow. The interest rate is 13%

and you borrow $6000 for a used car.

(a) What is your monthly payment?

(b) If interest rates drop to 11%, how much more can

you borrow without increasing your monthly pay-

ment?

(c) Make a table of how much you can borrow without

increasing your monthly payment, as a function of

the interest rate.

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1 3 5 7 9 11 13 15

60

80

100

120

140

loan amount ($)

interest
rate (%)

Figure 12.70
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42. Hiking on a level trail going due east, you decide to

leave the trail and climb toward the mountain on your

left. The farther you go along the trail before turning

off, the gentler the climb. Sketch a possible topograph-

ical map showing the elevation contours.

43. The total productivity f (n, T ) of an advertising agency

(in ads per day) depends on the number n of workers

and the temperature T of the office in degrees Fahren-

heit. More workers create more ads, but the farther the

temperature from 75◦F, the slower they work. Draw a

possible contour diagram for the function f (n, T ).

44. Match the functions (a)–(d) with the shapes of their

level curves (I)–(IV). Sketch each contour diagram.

(a) f (x, y) = x2 (b) f (x, y) = x2 + 2y2

(c) f (x, y) = y − x2 (d) f (x, y) = x2 − y2

I. Lines II. Parabolas

III. Hyperbolas IV. Ellipses

45. Match the functions (a)–(d) with the shapes of their typ-

ical level curves (I)–(IV).

(a) f (x, y) =
y

x2 + 1
(b) f (x, y) =

1

x2 + 2y2

(c) f (x, y) =
x2 + 1

y2 + 1
(d) f (x, y) =

x

x2 + y2 + 1

I. Circles II. Parabolas

III. Hyperbolas IV. Ellipses

46. Figure 12.71 shows the density of the fox population P

(in foxes per square kilometer) for southern England.8

Draw two different cross-sections along a north-south

line and two different cross-sections along an east-west

line of the population density P .

150

100

50

60 120 180
kilometers east

kilometers north

N
o
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h

1
.5

0.5

2

1.5

2

1
0
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0.5

1

1.5

1.5 2

1

Figure 12.71

47. A manufacturer sells two goods, one at a price of $3000

a unit and the other at a price of $12,000 a unit. A quan-

tity q1 of the first good and q2 of the second good are

sold at a total cost of $4000 to the manufacturer.

(a) Express the manufacturer’s profit, �, as a function

of q1 and q2.

(b) Sketch curves of constant profit in the q1q2-plane

for � = 10,000, � = 20,000, and � = 30,000 and

the break-even curve � = 0.

48. A shopper buys x units of item A and y units of item B,

obtaining satisfaction s(x, y) from the purchase. (Sat-

isfaction is called utility by economists.) The contours

s(x, y) = xy = c are called indifference curves because

they show pairs of purchases that give the shopper the

same satisfaction.

(a) A shopper buys 8 units of A and 2 units of B. What

is the equation of the indifference curve showing

the other purchases that give the shopper the same

satisfaction? Sketch this curve.

(b) After buying 4 units of item A, how many units of

B must the shopper buy to obtain the same satis-

faction as obtained from buying 8 units of A and 2

units of B?

(c) The shopper reduces the purchase of item A by k,

a fixed number of units, while increasing the pur-

chase of B to maintain satisfaction. In which of the

following cases is the increase in B largest?

• Initial purchase of A is 6 units

• Initial purchase of A is 8 units

49. Match each Cobb-Douglas production function (a)–(c)

with a graph in Figure 12.72 and a statement (D)–(G).

(a) F (L,K) = L 0.25K 0.25

(b) F (L,K) = L 0.5K 0.5

(c) F (L,K) = L 0.75K 0.75

(D) Tripling each input triples output.

(E) Quadrupling each input doubles output.

(G) Doubling each input almost triples output.

1 2 3

1

2

3

F = 1

F = 2

F = 3

L

K(I)

1 2 3

1

2

3

F = 1

F = 1.5

L

K(II)

1 2 3

1

2

3

F = 4

F = 3

F = 2
F = 1
L

K(III)

Figure 12.72

8From J. D. Murray et al, “On the Spatial Spread of Rabies Among Foxes”, Proc. R. Soc. Lond. B, 229: 111–150, 1986.
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50. A Cobb-Douglas production function has the form

P = cL�K� with �, � > 0.

What happens to production if labor and capital are both

scaled up? For example, does production double if both

labor and capital are doubled? Economists talk about

• increasing returns to scale if doubling L and K

more than doubles P ,

• constant returns to scale if doubling L and K ex-

actly doubles P ,

• decreasing returns to scale if doubling L and K

less than doubles P .

What conditions on � and � lead to increasing, constant,

or decreasing returns to scale?

51. (a) Match f (x, y) = x0.2y0.8 and g(x, y) = x0.8y0.2 with

the level curves in Figures (I) and (II). All scales on

the axes are the same.

(b) Figure (III) shows the level curves of ℎ(x, y) =

x�y1−� for 0 < � < 1. Find the range of possi-

ble values for �. Again, the scales are the same on

both axes.

x

y(I)

x

y(II)

x

y(III)

52. Match the functions (a)–(d) with the contour diagrams

in Figures I–IV.

(a) f (x, y) = 0.7 lnx + 0.3 ln y

(b) g(x, y) = 0.3 ln x + 0.7 ln y

(c) ℎ(x, y) = 0.3x2 + 0.7y2

(d) j(x, y) = 0.7x2 + 0.3y2

4

4

x

y(I)

4

4

x

y(II)

4

4

x

y(III)

4

4

x

y(IV)

53. Figure 12.73 is the contour diagram of f (x, y). Sketch

the contour diagram of each of the following functions.

(a) 3f (x, y) (b) f (x, y) − 10

(c) f (x − 2, y − 2) (d) f (−x, y)

−2

−1

0

1

2

x

y

Figure 12.73

54. Figure 12.74 shows part of the contour diagram of

f (x, y). Complete the diagram for x < 0 if

(a) f (−x, y) = f (x, y) (b) f (−x, y) = −f (x, y)

0
1

2
3
4
5 x

y

Figure 12.74

55. The contour at level 0 of f (x, y) = (x+2y)2−(3x−4y)2

consists of two intersecting lines in the xy-plane. Find

equations for the lines.

56. Let z = f (x, y) = x2∕(x2 + y2).

(a) Why are there no contours for z < 0?

(b) Why are there no contours for z > 1?

(c) Sketch a contour diagram for f (x, y) with at least

four labeled contours.

57. Let f (x, y) = x2−y2 = (x−y)(x+y). Use the factored

form to sketch the contour f (x, y) = 0 and to find the

regions in the xy-plane where f (x, y) > 0 and the re-

gions where f (x, y) < 0. Explain how this sketch shows

that the graph of f (x, y) is saddle-shaped at the origin.

58. Use Problem 57 to find a formula for a “monkey sad-

dle” surface z = g(x, y) which has three regions with

g(x, y) > 0 and three with g(x, y) < 0.
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59. The power P produced by a windmill is proportional to

the square of the diameter d of the windmill and to the

cube of the speed v of the wind.9

(a) Write a formula for P as a function of d and v.

(b) A windmill generates 100 kW of power at a certain

wind speed. If a second windmill is built having

twice the diameter of the original, what fraction of

the original wind speed is needed by the second

windmill to produce 100 kW?

(c) Sketch a contour diagram for P .

Strengthen Your Understanding

In Problems 60–61, explain what is wrong with the state-

ment.

60. A contour diagram for z = f (x, y) is a surface in xyz-

space.

61. The functions f (x, y) =
√

x2 + y2 and g(x, y) = x2+y2

have the same contour diagram.

In Problems 62–63, give an example of:

62. A function f (x, y) whose z = 10 contour consists of

two or more parallel lines.

63. A function whose contours are all parabolas.

Decide if the statements in Problems 64–68 must be true,

might be true, or could not be true. The function z = f (x, y)

is defined everywhere.

64. The level curves corresponding to z = 1 and z = −1

cross at the origin.

65. The level curve z = 1 consists of the circle x2 + y2 = 2

and the circle x2 + y2 = 3, but no other points.

66. The level curve z = 1 consists of two lines which inter-

sect at the origin.

67. If z = e−(x
2+y2), there is a level curve for every value of

z.

68. If z = e−(x
2+y2), there is a level curve through every

point (x, y).

Are the statements in Problems 69–76 true or false? Give

reasons for your answer.

69. Two isotherms representing distinct temperatures on a

weather map cannot intersect.

70. A weather map can have two isotherms representing the

same temperature that do not intersect.

71. The contours of the function f (x, y) = y2+(x−2)2 are

either circles or a single point.

72. If the contours of g(x, y) are concentric circles, then the

graph of g is a cone.

73. If the contours for f (x, y) get closer together in a certain

direction, then f is increasing in that direction.

74. If all of the contours of f (x, y) are parallel lines, then

the graph of f is a plane.

75. If the f = 10 contour of the function f (x, y) is identi-

cal to the g = 10 contour of the function g(x, y), then

f (x, y) = g(x, y) for all (x, y).

76. The f = 5 contour of the function f (x, y) is identical to

the g = 0 contour of the function g(x, y) = f (x, y)−5.

12.4 LINEAR FUNCTIONS

What Is a Linear Function of Two Variables?

Linear functions played a central role in one-variable calculus because many one-variable functions

have graphs that look like a line when we zoom in. In two-variable calculus, a linear function is one

whose graph is a plane. In Chapter 14, we see that many two-variable functions have graphs which

look like planes when we zoom in.

What Makes a Plane Flat?

What makes the graph of the function z = f (x, y) a plane? Linear functions of one variable have

straight line graphs because they have constant slope. On a plane, the situation is a bit more com-

plicated. If we walk around on a tilted plane, the slope is not always the same: it depends on the

direction in which we walk. However, at every point on the plane, the slope is the same as long as

we choose the same direction. If we walk parallel to the x-axis, we always find ourselves walking up

or down with the same slope;10 the same is true if we walk parallel to the y-axis. In other words, the

slope ratios Δz∕Δx (with y fixed) and Δz∕Δy (with x fixed) are each constant.

9From www.ecolo.org/documents/documents_in_english/WindmillFormula.htm, accessed January 1, 2020.
10To be precise, walking in a vertical plane parallel to the x-axis while rising or falling with the plane you are on.
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Example 1 A plane cuts the z-axis at z = 5 and has slope 2 in the x-direction and slope −1 in the y-direction.

What is the equation of the plane?

Solution Finding the equation of the plane means constructing a formula for the z-coordinate of the point on

the plane directly above the point (x, y) in the xy-plane. To get to that point, start from the point above

the origin, where z = 5. Then walk x units in the x-direction. Since the slope in the x-direction is 2,

the height increases by 2x. Then walk y units in the y-direction; since the slope in the y-direction is

−1, the height decreases by y units. Since the height has changed by 2x − y units, the z-coordinate

is 5 + 2x − y. Thus, the equation for the plane is

z = 5 + 2x − y.

For any linear function, if we know its value at a point (x0, y0), its slope in the x-direction,

and its slope in the y-direction, then we can write the equation of the function. This is just like the

equation of a line in the one-variable case, except that there are two slopes instead of one.

If a plane has slope m in the x-direction, has slope n in the y-direction, and passes through

the point (x0, y0, z0), then its equation is

z = z0 + m(x − x0) + n(y − y0).

This plane is the graph of the linear function

f (x, y) = z0 + m(x − x0) + n(y − y0).

If we write c = z0 − mx0 − ny0, then we can write f (x, y) in the equivalent form

f (x, y) = c + mx + ny.

Just as in 2-space a line is determined by two points, so in 3-space a plane is determined by three

points, provided they do not lie on a line.

Example 2 Find the equation of the plane passing through the points (1, 0, 1), (1,−1, 3), and (3, 0,−1).

Solution The first two points have the same x-coordinate, so we use them to find the slope of the plane in

the y-direction. As the y-coordinate changes from 0 to −1, the z-coordinate changes from 1 to 3,

so the slope in the y-direction is n = Δz∕Δy = (3 − 1)∕(−1 − 0) = −2. The first and third points

have the same y-coordinate, so we use them to find the slope in the x-direction; it is m = Δz∕Δx =

(−1 − 1)∕(3 − 1) = −1. Because the plane passes through (1, 0, 1), its equation is

z = 1 − (x − 1) − 2(y − 0) or z = 2 − x − 2y.

You should check that this equation is also satisfied by the points (1,−1, 3) and (3, 0,−1).

Example 2 was made easier by the fact that two of the points had the same x-coordinate and two

had the same y-coordinate. An alternative method, which works for any three points, is to substitute

the x, y, and z-values of each of the three points into the equation z = c + mx + ny. The resulting

three equations in c, m, n are then solved simultaneously.
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Linear Functions from a Numerical Point of View

To avoid flying planes with empty seats, airlines sell some tickets at full price and some at a discount.

Table 12.10 shows an airline’s revenue in dollars from tickets sold on a particular route, as a function

of the number of full-price tickets sold, f , and the number of discount tickets sold, d.

In every column, the revenue jumps by $40,000 for each extra 200 discount tickets. Thus, each

column is a linear function of the number of discount tickets sold. In addition, every column has the

same slope, 40,000∕200 = 200 dollars/ticket. This is the price of a discount ticket. Similarly, each

row is a linear function and all the rows have the same slope, 450, which is the price in dollars of a

full-fare ticket. Thus, R is a linear function of f and d, given by:

R = 450f + 200d.

We have the following general result:

A linear function can be recognized from its table by the following features:

• Each row and each column is linear.

• All the rows have the same slope.

• All the columns have the same slope (although the slope of the rows and the slope of the

columns are generally different).

Example 3 The table contains values of a linear function. Fill in the blank and give a formula for the function.

x∖y 1.5 2.0

2 0.5 1.5

3 −0.5 ?

Solution In the first column the function decreases by 1 (from 0.5 to −0.5) as x goes from 2 to 3. Since the

function is linear, it must decrease by the same amount in the second column. So the missing entry

must be 1.5−1 = 0.5. The slope of the function in the x-direction is −1. The slope in the y-direction

is 2, since in each row the function increases by 1 when y increases by 0.5. From the table we get

f (2, 1.5) = 0.5. Therefore, the formula is

f (x, y) = 0.5 − (x − 2) + 2(y− 1.5) = −0.5 − x + 2y.

Table 12.10 Revenue from ticket sales (dollars)

Discount

tickets (d)

Full-price tickets (f )

100 200 300 400

200 85,000 130,000 175,000 220,000

400 125,000 170,000 215,000 260,000

600 165,000 210,000 255,000 300,000

800 205,000 250,000 295,000 340,000

1000 245,000 290,000 335,000 380,000

What Does the Contour Diagram of a Linear Function Look Like?

The formula for the airline revenue function in Table 12.10 is R = 450f + 200d, where f is the

number of full fares and d is the number of discount fares sold.

Notice that the contours of this function in Figure 12.75 are parallel straight lines. What is the

practical significance of the slope of these contour lines? Consider the contour R = 100,000; that

means we are looking at combinations of ticket sales that yield $100,000 in revenue. If we move
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down and to the right on the contour, the f -coordinate increases and the d-coordinate decreases,

so we sell more full fares and fewer discount fares. This is because to receive a fixed revenue of

$100,000, we must sell more full fares if we sell fewer discount fares. The exact trade-off depends

on the slope of the contour; the diagram shows that each contour has a slope of about −2. This means

that for a fixed revenue, we must sell two discount fares to replace one full fare. This can also be

seen by comparing prices. Each full fare brings in $450; to earn the same amount in discount fares

we need to sell 450∕200 = 2.25 ≈ 2 fares. Since the price ratio is independent of how many of each

type of fare we sell, this slope remains constant over the whole contour map; thus, the contours are

all parallel straight lines.

Notice also that the contours are evenly spaced. Thus, no matter which contour we are on, a

fixed increase in one of the variables causes the same increase in the value of the function. In terms

of revenue, no matter how many fares we have sold, an extra fare, whether full or discount, brings

the same revenue as before.

100 200 300 400 500
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200

300

400
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50
,000
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,000
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,000
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Figure 12.75: Revenue as a function of full and

discount fares, R = 450f + 200d
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Figure 12.76: Contour map of linear function

f (x, y)

Example 4 Find the equation of the linear function whose contour diagram is in Figure 12.76.

Solution Suppose we start at the origin on the z = 0 contour. Moving 2 units in the y-direction takes us to

the z = 6 contour, so the slope in the y-direction is Δz∕Δy = 6∕2 = 3. Similarly, a move of 2 units

in the x-direction from the origin takes us to the z = 2 contour, so the slope in the x-direction is

Δz∕Δx = 2∕2 = 1. Since f (0, 0) = 0, we have f (x, y) = x + 3y.

Summary for Section 12.4

• A linear function with slope m in the x-direction, slope y in the y-direction, and z-intercept c

has formula

f (x, y) = c + mx + ny.

• A linear function can be recognized from a table by having a constant x-slope with y held

constant, and a (possibly different) constant y-slope with x held constant.

• Contours of linear functions are parallel lines, evenly spaced.

Exercises and Problems for Section 12.4 Online Resource: Additional Problems for Section 12.4
EXERCISES

Exercises 1–2 each contain a partial table of values for a lin-

ear function. Fill in the blanks.

1.
x∖y 0.0 1.0

0.0 1.0

2.0 3.0 5.0

2.
x∖y −1.0 0.0 1.0

2.0 4.0

3.0 3.0 5.0

In Exercises 3–6, could the tables of values represent a linear

function?

3.

x

y

0 1 2

0 0 1 4

1 1 0 1

2 4 1 0

4.

x

y

0 1 2

0 10 13 16

1 6 9 12

2 2 5 8



12.4 LINEAR FUNCTIONS 729

5.

x

y

0 1 2

0 0 5 10

1 2 7 12

2 4 9 14

6.

x

y

0 1 2

0 5 7 9

1 6 9 12

2 7 11 15

7. Find the equation of the linear function z = c+mx+ny

whose graph contains the points (0, 0, 0), (0, 2,−1), and

(−3, 0,−4).

8. Find the linear function whose graph is the plane

through the points (4, 0, 0), (0, 3, 0) and (0, 0, 2).

9. Find an equation for the plane containing the line in

the xy-plane where y = 1, and the line in the xz-plane

where z = 2.

10. Find the equation of the linear function z = c+mx+ny

whose graph intersects the xz-plane in the line z =

3x+4 and intersects the yz-plane in the line z = y+4.

11. Suppose that z is a linear function of x and y with slope

2 in the x-direction and slope 3 in the y-direction.

(a) A change of 0.5 in x and −0.2 in y produces what

change in z?

(b) If z = 2 when x = 5 and y = 7, what is the value

of z when x = 4.9 and y = 7.2?

12. (a) Find a formula for the linear function whose graph

is a plane passing through point (4, 3,−2) with

slope 5 in the x-direction and slope −3 in the y-

direction.

(b) Sketch the contour diagram for this function.

In Exercises 13–14, could the contour diagram represent a

linear function?

13.

28

24

20

16

12

8

4

0

−4

−8

x

y

14.

16
14

12
10

8
6

4

2

0

2

x

y

PROBLEMS

15. An internet video streaming company offers a basic and

premium monthly streaming subscription package. Fig-

ure 12.77 shows the revenue (in dollars per month) of

the company as a function of the number, c, of basic

subscribers and the number, d, of premium subscribers

it has. What is the price of a basic subscription? What

is the price of a premium subscription?

50 100 150 200

100

200

300

400
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d

1000

2000

3000

4000

5000

Figure 12.77

16. The charge, C , in dollars, for access to a company’s 4G

LTE network is a function of m, the number of months

of use, and t, the total number of gigabytes used:

C = f (m, t) = 99 + 30m + 10t.

(a) Is f a linear function?

(b) Give units for the coefficients of m and t, and inter-

pret them as charges.

(c) Interpret the intercept 99 as a charge.

(d) Find f (3, 8) and interpret your answer.

17. A manufacturer makes two products out of two raw

materials. Let q1, q2 be the quantities sold of the two

products, p1, p2 their prices, and m1, m2 the quantities

purchased of the two raw materials. Which of the fol-

lowing functions do you expect to be linear, and why?

In each case, assume that all variables except the ones

mentioned are held fixed.

(a) Expenditure on raw materials as a function of m1

and m2.

(b) Revenue as a function of q1 and q2.

(c) Revenue as a function of p1 and q1.
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Problems 18–20 concern Table 12.11, which gives the

number of calories burned per minute for someone roller-

blading, as a function of the person’s weight and speed.11

Table 12.11

Calories burned per minute

Weight 8 mph 9 mph 10 mph 11 mph

120 lbs 4.2 5.8 7.4 8.9

140 lbs 5.1 6.7 8.3 9.9

160 lbs 6.1 7.7 9.2 10.8

180 lbs 7.0 8.6 10.2 11.7

200 lbs 7.9 9.5 11.1 12.6

18. Does the data in Table 12.11 look approximately linear?

Give a formula for B, the number of calories burned per

minute in terms of the weight, w, and the speed, s. Does

the formula make sense for all weights or speeds?

19. Who burns more total calories to go 10 miles: A 120-

lb person going 10 mph or a 180-lb person going 8

mph? Which of these two people burns more calories

per pound for the 10-mile trip?

20. Use Problem 18 to give a formula for P , the number

of calories burned per pound, in terms of w and s, for a

person weighing w lbs roller-blading 10 miles at s mph.

For Problems 21–22, find a possible equation for a linear

function with the given contour diagram.

21.

−3 −2 −1 1 2 3
−3

−2

−1

1

2

3

y

x

−
1
0

−
8

−
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−
4

−
2

0
2

4

6

8
10

22.

−3 −2 −1 1 2 3
−3

−2

−1

1

2

3

y

x

−
4

−
2

0

2

4

6
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In Problems 23–24, could the contour diagram represent a

linear function? If so, find an equation for that function.

23.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

−4 1 5

24.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

−
3

0 1

4

x

y

For Problems 25–26, find an equation for the linear function

with the given values.

25.
x∖y −1 0 1 2

0 1.5 1 0.5 0

1 3.5 3 2.5 2

2 5.5 5 4.5 4

3 7.5 7 6.5 6

26.
x∖y 10 20 30 40

100 3 6 9 12

200 2 5 8 11

300 1 4 7 10

400 0 3 6 9

In Problems 27–34, could the table of values represent a lin-

ear function? If so, find a possible formula for the function.

If not, give a reason why not.

27.

x

y

1 2 3

1 1 5 9

2 2 6 10

3 3 7 11

28.

x

y

0 1 2

0 1 2 1

1 2 3 2

2 3 4 3

29.

x

y

-2 0 2

-2 2 2 2

0 5 5 5

2 8 8 8

30.

x

y

2 4 6

1 0 3 6

3 1 4 7

5 4 7 10

31.

x

y

0 1 2

0 -5 -7 -9

2 -2 -4 -6

4 1 -1 -3

32.

x

y

1 2 3

1 1 2 3

2 4 5 6

4 7 8 9

11From the August 28, 1994, issue of Parade Magazine.
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33.

x

y

0 2 5

0 3 5 8

1 5 7 10

3 9 11 14

34.

x

y

0 2 5

0 0 4 10

1 1 5 11

2 4 6 14

In Problems 35–38, use the contours of the linear function

z = f (x, y) in Figure 12.78 to create possible contour la-

bels for the linear function z = g(x, y) satisfying the given

condition.

f (x, y)

x

y
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20
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40
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4
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y
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?

?

?

?

0.5 1 1.5 2

1

2

3

4

Figure 12.78

35. The graph of g is parallel but different from the graph

of f .

36. The graph of g is parallel to the graph of f and passes

through the point (2, 2, 0).

37. The graph of g has the same contour as f for the value

z = 30 but is different from the graph of f .

38. The graph of g has the same contour as f for the value

z = 40, and a negative slope in the x-direction.

In Problems 39–42, graph the linear function by plotting the

x, y, and z-intercepts and joining them by a triangle as in

Figure 12.79. This shows the part of the plane in the octant

where x ≥ 0, y ≥ 0, z ≥ 0. If the intercepts are not all posi-

tive, the same method works if the x, y, and z-axes are drawn

from a different perspective.

Figure 12.79

39. z = 2 − 2x + y 40. z = 2 − x − 2y

41. z = 4 + x − 2y 42. z = 6 − 2x − 3y

43. Figure 12.80 is the contour diagram of a linear function

f (x, y) = mx + 4y + c. What is the value of m?

−3 3

−3

3

x

y

Figure 12.80

44. For the contour diagrams (I)–(IV) on −2 ≤ x ≤ 2,

−2 ≤ y ≤ 2, pick the corresponding function.

f (x, y) = 2x + 3y + 10 k(x, y) = −2x + 3y + 12

g(x, y) = 2x + 3y + 60 m(x, y) = −2x + 3y + 60

ℎ(x, y) = 2x − 3y + 12 n(x, y) = −2x − 3y + 14

j(x, y) = 2x − 3y + 60 p(x, y) = −2x − 3y + 60

10
12

14
x

y(I)

12
10

8

x

y(II)

12
14

16

x

y(III)

64
62

60

x

y(IV)

45. A linear function has the formula f (x, y) = a+10x−5y,

but you don’t know the value of a. Give a numerical

value for the following, if possible.

(a) f (50, 62)

(b) f (51, 60)

(c) f (51, 60) − f (50, 62)
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Strengthen Your Understanding

In Problems 46–47, explain what is wrong with the state-

ment.

46. If the contours of f are all parallel lines, then f is lin-

ear.

47. A function f (x, y) with linear cross-sections for x fixed

and linear cross-sections for y fixed is a linear func-

tion.

In Problems 48–49, give an example of:

48. A table of values, with three rows and three columns,

for a nonlinear function that is linear in each row and in

each column.

49. A linear function whose contours are lines with slope 2.

Are the statements in Problems 50–62 true or false? Give

reasons for your answer.

50. The planes z = 3+2x+4y and z = 5+2x+4y intersect.

51. The function represented in Table 12.12 is linear.

Table 12.12

u∖v 1.1 1.2 1.3 1.4

3.2 11.06 12.06 13.06 14.06

3.4 11.75 12.82 13.89 14.96

3.6 12.44 13.58 14.72 15.86

3.8 13.13 14.34 15.55 16.76

4.0 13.82 15.10 16.38 17.66

52. Contours of f (x, y) = 3x + 2y are lines with slope 3.

53. If f is a non-constant linear function, then the contours

of f are parallel lines.

54. If f (0, 0) = 1, f (0, 1) = 4, f (0, 3) = 5, then f cannot

be linear.

55. The graph of a linear function is always a plane.

56. The cross-section x = c of a linear function f (x, y) is

always a line.

57. There is no linear function f (x, y) with a graph parallel

to the xy-plane.

58. There is no linear function f (x, y) with a graph parallel

to the xz-plane.

59. A linear function f (x, y) = 2x+3y−5, has exactly one

point (a, b) satisfying f (a, b) = 0.

60. In a table of values of a linear function, the columns

have the same slope as the rows.

61. There is exactly one linear function f (x, y) whose f =

0 contour is y = 2x + 1.

62. If the contours of f (x, y) = c + mx + ny are vertical

lines, then n = 0.

12.5 FUNCTIONS OF THREE VARIABLES

In applications of calculus, functions of any number of variables can arise. The density of matter in

the universe is a function of three variables, since it takes three numbers to specify a point in space.

Models of the US economy often use functions of ten or more variables. We need to be able to apply

calculus to functions of arbitrarily many variables.

One difficulty with functions of more than two variables is that it is hard to visualize them. The

graph of a function of one variable is a curve in 2-space, the graph of a function of two variables is a

surface in 3-space, so the graph of a function of three variables would be a solid in 4-space. Since we

can’t easily visualize 4-space, we won’t use the graphs of functions of three variables. On the other

hand, it is possible to draw contour diagrams for functions of three variables, only now the contours

are surfaces in 3-space.

Representing a Function of Three Variables Using a Family of Level Surfaces

A function of two variables, f (x, y), can be represented by a family of level curves of the form

f (x, y) = c for various values of the constant, c.

A level surface, or level set of a function of three variables, f (x, y, z), is a surface of the form

f (x, y, z) = c, where c is a constant. The function f can be represented by the family of level

surfaces obtained by allowing c to vary.

The value of the function, f , is constant on each level surface.
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Example 1 The temperature, in ◦C, at a point (x, y, z) is given by T = f (x, y, z) = x2 + y2 + z2. What do the

level surfaces of the function f look like and what do they mean in terms of temperature?

Solution The level surface corresponding to T = 100 is the set of all points where the temperature is 100◦C.

That is, where f (x, y, z) = 100, so

x2 + y2 + z2 = 100.

This is the equation of a sphere of radius 10, with center at the origin. Similarly, the level surface

corresponding to T = 200 is the sphere with radius
√

200. The other level surfaces are concentric

spheres. The temperature is constant on each sphere. We may view the temperature distribution as a

set of nested spheres, like concentric layers of an onion, each one labeled with a different temperature,

starting from low temperatures in the middle and getting hotter as we go out from the center. (See

Figure 12.81.) The level surfaces become more closely spaced as we move farther from the origin

because the temperature increases more rapidly the farther we get from the origin.

Figure 12.81: Level surfaces of T = f (x, y, z) = x2 + y2 + z2, each one having a constant temperature

Example 2 What do the level surfaces of f (x, y, z) = x2 + y2 and g(x, y, z) = z − y look like?

Solution The level surface of f corresponding to the constant c is the surface consisting of all points satisfying

the equation

x2 + y2 = c.

Since there is no z-coordinate in the equation, z can take any value. For c > 0, this is a circular

cylinder of radius
√

c around the z-axis. The level surfaces are concentric cylinders; on the narrow

ones near the z-axis, f has small values; on the wider ones, f has larger values. See Figure 12.82.

The level surface of g corresponding to the constant c is the plane

z − y = c.

Since there is no x variable in the equation, these planes are parallel to the x-axis and cut the yz-plane

in the line z − y = c. See Figure 12.83.
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Figure 12.82: Level surfaces of f (x, y, z) = x2 + y2
Figure 12.83: Level surfaces of

g(x, y, z) = z − y

We say g(x, y, z) = z−y in Example 2 is a linear function of the three variables x, y, z, whereas

f (x, y) = x2 + y2 and f (x, y, z) = x2 + y2 + z2 are quadratic functions of three variables.

Example 3 What do the level surfaces of f (x, y, z) = x2 + y2 − z2 look like?

Solution In Section 12.3, we saw that the two-variable quadratic function g(x, y) = x2 − y2 has a saddle-

shaped graph and three types of contours. The contour equation x2 − y2 = c gives a hyperbola

opening right-left when c > 0, a hyperbola opening up-down when c < 0, and a pair of intersecting

lines when c = 0. Similarly, the three-variable quadratic function f (x, y, z) = x2+ y2 − z2 has three

types of level surfaces depending on the value of c in the equation x2 + y2 − z2 = c.

Suppose that c > 0, say c = 1. Rewrite the equation as x2 + y2 = z2 + 1 and think of what

happens as we cut the surface perpendicular to the z-axis by holding z fixed. The result is a circle,

x2 + y2 = constant, of radius at least 1 (since the constant z2 + 1 ≥ 1). The circles get larger as z

gets larger. If we take the x = 0 cross-section instead, we get the hyperbola y2 − z2 = 1. The result

is shown in Figure 12.87, with a = b = c = 1.

Suppose instead that c < 0, say c = −1. Then the horizontal cross-sections of x2 + y2 = z2 − 1

are again circles except that the radii shrink to 0 at z = ±1 and between z = −1 and z = 1 there are

no cross-sections at all. The result is shown in Figure 12.88 with a = b = c = 1.

When c = 0, we get the equation x2 + y2 = z2. Again the horizontal cross-sections are circles,

this time with the radius shrinking down to exactly 0 when z = 0. The resulting surface, shown in

Figure 12.89 with a = b = c = 1, is the cone z =
√

x2 + y2 studied in Section 12.3, together with

the lower cone z = −
√

x2 + y2.
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A Catalog of Surfaces

For later reference, here is a small catalog of the surfaces we have encountered.

Figure 12.84: Elliptical

paraboloid z =
x2

a2
+

y2

b2

Figure 12.85: Hyperbolic

paraboloid z = −
x2

a2
+

y2

b2

Figure 12.86: Ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1

Figure 12.87: Hyperboloid of

one sheet
x2

a2
+

y2

b2
−

z2

c2
= 1

Figure 12.88: Hyperboloid of two

sheets
x2

a2
+

y2

b2
−

z2

c2
= −1

Figure 12.89: Cone
x2

a2
+

y2

b2
−

z2

c2
= 0

Figure 12.90: Plane

ax + by + cz = d

Figure 12.91: Cylindrical surface

x2 + y2 = a2
Figure 12.92: Parabolic

cylinder y = ax2

(These are viewed as equations in three variables x, y, and z.)

How Surfaces Can Represent Functions of Two Variables and Functions of Three Variables

You may have noticed that we have used surfaces to represent functions in two different ways. First,

we used a single surface to represent a two-variable function f (x, y). Second, we used a family of

level surfaces to represent a three-variable function g(x, y, z). These level surfaces have equation

g(x, y, z) = c.

What is the relation between these two uses of surfaces? For example, consider the function

f (x, y) = x2 + y2 + 3.

Define

g(x, y, z) = x2 + y2 + 3 − z
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The points on the graph of f satisfy z = x2 + y2 + 3, so they also satisfy x2 + y2 + 3 − z = 0. Thus

the graph of f is the same as the level surface

g(x, y, z) = x2 + y2 + 3 − z = 0.

In general, we have the following result:

A single surface that is the graph of a two-variable function f (x, y) can be thought of as one

member of the family of level surfaces representing the three-variable function

g(x, y, z) = f (x, y) − z.

The graph of f is the level surface g = 0.

Conversely, a single level surface g(x, y, z) = c can be regarded as the graph of a function

f (x, y) if it is possible to solve for z. Sometimes the level surface is pieced together from the graphs

of two or more two-variable functions. For example, if g(x, y, z) = x2 + y2 + z2, then one member

of the family of level surfaces is the sphere

x2 + y2 + z2 = 1.

This equation defines z implicitly as a function of x and y. Solving it gives two functions:

z =
√

1 − x2 − y2 and z = −
√

1 − x2 − y2.

The graph of the first function is the top half of the sphere and the graph of the second function is

the bottom half.

Summary for Section 12.5

• A level surface of a 3-variable function f (x, y, z) is the set of points in 3-space that satisfy

f (x, y, z) = constant.

• Every surface that is the graph of a function z = g(x, y) can be rewritten as a level surface

by writing f (x, y, z) = g(x, y) − z = 0.

• Not every level surface f (x, y, z) = c can be rewritten as the graph of a function z = g(x, y).

That is, level surfaces of 3-variable functions can describe more surfaces than can be described

as graphs of 2-variable functions z = g(x, y).

Exercises and Problems for Section 12.5

EXERCISES

1. Match the following functions with the level surfaces in

Figure 12.93.

(a) f (x, y, z) = y2 + z2 (b) ℎ(x, y, z) = x2 + z2.

x

y

z(I)

x

y

z(II)

Figure 12.93

2. Match the functions with the level surfaces in Fig-

ure 12.94.

(a) f (x, y, z) = x2 + y2 + z2

(b) g(x, y, z) = x2 + z2.

x

y

z(I)

y

z

x

(II)

Figure 12.94
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3. Write the level surface x+ 2y + 3z = 5 as the graph of

a function f (x, y).

4. Find a formula for a function f (x, y, z) whose level sur-

face f = 4 is a sphere of radius 2, centered at the origin.

5. Write the level surface x2 + y+
√

z = 1 as the graph of

a function f (x, y).

6. Find a formula for a function f (x, y, z) whose level sur-

faces are spheres centered at the point (a, b, c).

7. Which of the graphs in the catalog of surfaces on

page 735 is the graph of a function of x and y?

In Exercises 8–11, use the catalog on page 735 to identify

the surface.

8. x2 + y2 − z = 0 9. −x2 − y2 + z2 = 1

10. x + y = 1 11. x2 + y2∕4 + z2 = 1

In Exercises 12–15, decide if the given level surface can be

expressed as the graph of a function, f (x, y).

12. z − x2 − 3y2 = 0 13. 2x + 3y − 5z − 10 = 0

14. x2 + y2 + z2 − 1 = 0 15. z2 = x2 + 3y2

16. Match the functions (a)–(d) with the descriptions of

their level surfaces in I–IV.

(a) f (x, y, z) =
√

9 − x2 − y2

(b) f (x, y, z) =
√

x2 + y2 + z2

(c) f (x, y, z) =
1

x2 + y2 + z2

(d) f (x, y, z) = 5 + y2 + z2

I. Cylinders that get larger as the function value increases

II. Cylinders that get smaller as the function value increases

III. Spheres that get larger as the function value increases

IV. Spheres that get smaller as the function value increases

PROBLEMS

In Problems 17–19, represent the surface whose equation is

given as the graph of a two-variable function, f (x, y), and as

the level surface of a three-variable function, g(x, y, z) = c.

There are many possible answers.

17. The plane 4x − y − 2z = 6

18. The top half of the sphere x2 + y2 + z2 − 10 = 0

19. The bottom half of the ellipsoid x2 + y2 + z2∕2 = 1

20. The balance, B, in dollars, in a bank account depends

on the amount deposited, A dollars, the annual interest

rate, r%, and the time, t, in months since the deposit, so

B = f (A, r, t).

(a) Is f an increasing or decreasing function of A? Of

r? Of t?

(b) Interpret the statement f (1250, 1, 25) ≈ 1276.

Give units.

21. A person’s basal metabolic rate (BMR) is the mini-

mal number of daily calories needed to keep their body

functioning at rest. The BMR (in kcal/day) of a man of

mass m (in kg), height ℎ (in cm) and age a (in years)

can be approximated by12

P = f (m, ℎ, a) = 14m + 5ℎ − 7a + 66

and for women by

P = g(m, ℎ, a) = 10m + 2ℎ − 5a + 655.

(a) What is the BMR of a 28-year-old man 180 cm tall

weighing 59 kg?

(b) What is the BMR of a 43-year-old woman 162 cm

tall weighing 52 kg?

(c) Describe the level surface P = 2000 for a woman

and explain what the points on this level surface

represent.

(d) If a 40-year-old man 175 cm tall weighing 77 kg re-

stricts himself to a diet with a daily caloric intake

of 1600 kcal, should he expect to lose weight?

22. The monthly payments, P dollars, on a mortgage in

which A dollars were borrowed at an annual interest

rate of r% for t years is given by P = f (A, r, t). Is f

an increasing or decreasing function of A? Of r? Of t?

23. The balance in a bank account, B dollars, is given by

B = f (P , r, t) = P (1 + 0.01r)t, where P dollars is the

principal amount invested, r% is the annual interest rate,

and t years is the time since the investment was made.

(a) Find a formula for the level surface of f containing

the point (P , r, t) = (1000, 5, 20), and explain the

significance of this surface in terms of balance.

(b) Find another point on the level surface in part (a),

and explain the significance of this point in terms

of balance.

24. The pressure of gas in a storage container, in atmo-

spheres, is given by

P = f (n, T , V ) =
82nT

V
,

where n is the amount of gas, in kilomoles, T is the tem-

perature of the gas, in Kelvin, and V is the volume of

the storage container, in liters.

(a) Find a formula for the level surface of f containing

the point (n, T , V ) = (1, 270, 20), and explain the

significance of this surface in terms of pressure.

12www.wikipedia.org, accessed December 30, 2019.
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(b) Find another point on the level surface in part (a),

and explain the significance of this point in terms

of pressure.

25. The mass, in grams, of a rod in the shape of a right cir-

cular cylinder, is given by m = f (r, ℎ, �) = �r2ℎ�,

where the rod has a radius of r cm, a height of ℎ cm,

and a uniform density of � gm/cm3.

(a) Find a formula for the level surface of f contain-

ing the point (r, ℎ, �) = (2, 10, 3), and explain the

significance of this surface in terms of mass.

(b) Find another point on the level surface in part (a),

and explain the significance of this point in terms

of mass.

26. Find a function f (x, y, z) whose level surface f = 1 is

the graph of the function g(x, y) = x + 2y.

27. Find two functions f (x, y) and g(x, y) so that the graphs

of both together form the ellipsoid x2+y2∕4+z2∕9 = 1.

28. Find a formula for a function g(x, y, z) whose level sur-

faces are planes parallel to the plane z = 2x + 3y − 5.

29. Which of the following functions have planes as level

surfaces?

f (x, y, z) = ex+z r(x, y, z) = x3

g(x, y, z) = ex + z m(x, y, z) = ln (x + z)

30. The surface S is the graph of f (x, y) =
√

1 − x2 − y2.

(a) Explain whyS is the upper hemisphere of radius 1,

with equator in the xy-plane, centered at the origin.

(b) Find a level surface g(x, y, z) = c representing S.

31. The surface S is the graph of f (x, y) =
√

1 − y2.

(a) Explain why S is the upper half of a circular cylin-

der of radius 1, centered along the x-axis.

(b) Find a level surface g(x, y, z) = c representing S.

32. A cone C , with height 1 and radius 1, has its base in the

xz-plane and its vertex on the positive y-axis. Find a

function g(x, y, z) such thatC is part of the level surface

g(x, y, z) = 0. [Hint: The graph of f (x, y) =
√

x2 + y2

is a cone which opens up and has vertex at the origin.]

33. Describe the level surface f (x, y, z) = x2∕4 + z2 = 1

in words.

34. Describe the level surface g(x, y, z) = x2+y2∕4+z2 =

1 in words. [Hint: Look at cross-sections with constant

x, y, and z values.]

35. Describe in words the level surfaces of the function

g(x, y, z) = x + y + z.

36. Describe in words the level surfaces of f (x, y, z) =

sin(x + y + z).

37. Describe the surface x2 + y2 = (2 + sin z)2. In general,

if f (z) ≥ 0 for all z, describe the surface x2 + y2 =

(f (z))2.

38. What do the level surfaces of f (x, y, z) = x2 − y2 + z2

look like? [Hint: Use cross-sections with y constant in-

stead of cross-sections with z constant.]

39. Describe in words the level surfaces of g(x, y, z) =

e−(x
2+y2+z2).

40. Describe in words the level surfaces of f (x, y, z) =

z∕x.

41. Show that the level surfaces of g(x, y, z) = ax+by+cz

where c ≠ 0 are parallel planes.

42. Sketch and label level surfaces of ℎ(x, y, z) = ez−y for

ℎ = 1, e, e2.

43. Sketch and label level surfaces of f (x, y, z) = 4 − x2 −

y2 − z2 for f = 0, 1, 2.

44. Sketch and label level surfaces of g(x, y, z) = 1−x2−y2

for g = 0,−1,−2.

45. What is the relationship between the level surfaces of

g(x, y, z) = f (x, y) − z and the graph of z = f (x, y)?

46. Describe the level surfaces of g(x, y, z) = y − f (x).

Strengthen Your Understanding

In Problems 47–49, explain what is wrong with the state-

ment.

47. The graph of a function f (x, y, z) is a surface in 3-

space.

48. The level surfaces of f (x, y, z) = x2−y2 are all saddle-

shaped.

49. The level surfaces of f (x, y, z) = x2 + y2 are

paraboloids.

In Problems 50–53, give an example of:

50. A function f (x, y, z) whose level surfaces are equally

spaced planes perpendicular to the yz-plane.

51. A function f (x, y, z) whose level sets are concentric

cylinders centered on the y-axis.

52. A nonlinear function f (x, y, z) whose level sets are par-

allel planes.

53. A function f (x, y, z) whose level sets are paraboloids.

Are the statements in Problems 54–64 true or false? Give

reasons for your answer.

54. The graph of the function f (x, y) = x2 + y2 is the same

as the level surface g(x, y, z) = x2 + y2 − z = 0.

55. The graph of f (x, y) =
√

1 − x2 − y2 is the same as the

level surface g(x, y, z) = x2 + y2 + z2 = 1.
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56. Any surface which is the graph of a two-variable func-

tion f (x, y) can also be represented as the level surface

of a three-variable function g(x, y, z).

57. Any surface which is the level surface of a three-

variable function g(x, y, z) can also be represented as

the graph of a two-variable function f (x, y).

58. The level surfaces of the function g(x, y, z) = x+2y+z

are parallel planes.

59. The level surfaces of g(x, y, z) = x2 + y+ z2 are cylin-

ders with axis along the y-axis.

60. A level surface of a function g(x, y, z) cannot be a single

point.

61. If g(x, y, z) = ax + by + cz + d, where a, b, c, d

are nonzero constants, then the level surfaces of g are

planes.

62. If the level surfaces of g are planes, then g(x, y, z) =

ax + by + cz + d, where a, b, c, d are constants.

63. If the level surfaces g(x, y, z) = k1 and g(x, y, z) = k2
are the same surface, then k1 = k2.

64. If x2 + y2 + z2 = 1 is the level surface g(x, y, z) = 1,

then x2+y2+z2 = 4 is the level surface g(x, y, z) = 4.

12.6 LIMITS AND CONTINUITY

The sheer face of Half Dome, in Yosemite National Park in California, was caused by glacial activity

during the Ice Age. (See Figure 12.95.) As we scale the rock from the west, the height of the terrain

rises abruptly by nearly 5000 feet from the valley floor, 2000 feet of it vertical.

If we consider the functionℎ giving the height of the terrain above sea level in terms of longitude

and latitude, then ℎ has a discontinuity along the path at the base of the cliff of Half Dome. Looking

at the contour map of the region in Figure 12.96, we see that in most places a small change in position

results in a small change in height, except near the cliff. There, no matter how small a step we take,

we get a large change in height. (You can see how crowded the contours get near the cliff; some end

abruptly along the discontinuity.)

This geological feature illustrates the ideas of continuity and discontinuity. Roughly speaking, a

function is said to be continuous at a point if its values at places near the point are close to the value

at the point. If this is not the case, the function is said to be discontinuous.

The property of continuity is one that, practically speaking, we usually assume of the functions

we are studying. Informally, we expect (except under special circumstances) that values of a function

do not change drastically when making small changes to the input variables. Whenever we model a

one-variable function by an unbroken curve, we are making this assumption. Even when functions

come to us as tables of data, we usually make the assumption that the missing function values between

data points are close to the measured ones.

In this section we study limits and continuity a bit more formally in the context of functions

of several variables. For simplicity we study these concepts for functions of two variables, but our

discussion can be adapted to functions of three or more variables.

One can show that sums, products, and compositions of continuous functions are continuous,

Clint Spencer/iStockphoto

Figure 12.95: Half Dome in Yosemite National Park
Figure 12.96: A contour map of Half Dome



740 Chapter 12 FUNCTIONS OF SEVERAL VARIABLES

while the quotient of two continuous functions is continuous everywhere the denominator function

is nonzero. Thus, each of the functions

cos(x2y), ln(x2 + y2),
ex+y

x + y
, ln(sin(x2 + y2))

is continuous at all points (x, y) where it is defined. As for functions of one variable, the graph of a

continuous function over an unbroken domain is unbroken—that is, the surface has no holes or rips

in it.

Example 1 From Figures 12.97–12.100, which of the following functions appear to be continuous at (0, 0)?

(a) f (x, y) =

⎧

⎪

⎨

⎪

⎩

x2y

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

(b) g(x, y) =

{

x2

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

Figure 12.97: Graph of z = x2y∕(x2 + y2)
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Figure 12.98: Contour diagram of z = x2y∕(x2 + y2)

Figure 12.99: Graph of z = x2∕(x2 + y2)
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Figure 12.100: Contour diagram of z = x2∕(x2 + y2)

Solution (a) The graph and contour diagram of f in Figures 12.97 and 12.98 suggest that f is close to 0 when

(x, y) is close to (0, 0). That is, the figures suggest that f is continuous at the point (0, 0); the

graph appears to have no rips or holes there.

However, the figures cannot tell us for sure whether f is continuous. To be certain we must

investigate the limit analytically, as is done in Example 2(a) on page 741.
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(b) The graph of g and its contours near (0, 0) in Figure 12.99 and 12.100 suggest that g behaves

differently from f : The contours of g seem to “crash” at the origin and the graph rises rapidly

from 0 to 1 near (0, 0). Small changes in (x, y) near (0, 0) can yield large changes in g, so we

expect that g is not continuous at the point (0, 0). Again, a more precise analysis is given in

Example 2(b).

The previous example suggests that continuity at a point depends on a function’s behavior near

the point. To study behavior near a point more carefully we need the idea of a limit of a function of two

variables. Suppose that f (x, y) is a function defined on a set in 2-space, not necessarily containing

the point (a, b), but containing points (x, y) arbitrarily close to (a, b); suppose that L is a number.

The function f has a limit L at the point (a, b), written

lim
(x,y)→(a,b)

f (x, y) = L,

if f (x, y) is as close to L as we please whenever the distance from the point (x, y) to the point

(a, b) is sufficiently small, but not zero.

We define continuity for functions of two variables in the same way as for functions of one

variable:

A function f is continuous at the point (a, b) if

lim
(x,y)→(a,b)

f (x, y) = f (a, b).

A function is continuous on a region R in the xy-plane if it is continuous at each point in R.

Thus, if f is continuous at the point (a, b), then f must be defined at (a, b) and the limit,

lim(x,y)→(a,b) f (x, y), must exist and be equal to the value f (a, b). If a function is defined at a point

(a, b) but is not continuous there, then we say that f is discontinuous at (a, b).

We now apply the definition of continuity to the functions in Example 1, showing that f is

continuous at (0, 0) and that g is discontinuous at (0, 0).

Example 2 Let f and g be the functions in Example 1. Use the definition of the limit to show that:

(a) lim
(x,y)→(0,0)

f (x, y) = 0 (b) lim
(x,y)→(0,0)

g(x, y) does not exist.

Solution To investigate these limits of f and g, we consider values of these functions near, but not at, the

origin, where they are given by the formulas

f (x, y) =
x2y

x2 + y2
g(x, y) =

x2

x2 + y2
.

(a) The graph and contour diagram of f both suggest that lim(x,y)→(0,0) f (x, y) = 0. To use the

definition of the limit, we estimate |f (x, y) − L| with L = 0:

|f (x, y) − L| =
|

|

|

|

|

x2y

x2 + y2
− 0

|

|

|

|

|

=
|

|

|

|

x2

x2 + y2

|

|

|

|

|y| ≤ |y| ≤
√

x2 + y2.

Now
√

x2 + y2 is the distance from (x, y) to (0, 0). Thus, to make |f (x, y) − 0| < 0.001,

for example, we need only require that (x, y) be within 0.001 of (0, 0). More generally, for any
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positive number u, no matter how small, we are sure that |f (x, y) − 0| < u whenever (x, y) is no

farther than u from (0, 0). This is what we mean by saying that the difference |f (x, y)−0| can be

made as small as we wish by choosing the distance to be sufficiently small. Thus, we conclude

that

lim
(x,y)→(0,0)

f (x, y) = lim
(x,y)→(0,0)

x2y

x2 + y2
= 0.

Notice that since this limit equals f (0, 0), the function f is continuous at (0, 0).

(b) Although the formula defining the function g looks similar to that of f , we saw in Example 1 that

g’s behavior near the origin is quite different. If we consider points (x, 0) lying along the x-axis

near (0, 0), then the values g(x, 0) are equal to 1, while if we consider points (0, y) lying along

the y-axis near (0, 0), then the values g(0, y) are equal to 0. Thus, within any distance (no matter

how small) from the origin, there are points where g = 0 and points where g = 1. Therefore the

limit lim(x,y)→(0,0) g(x, y) does not exist, and thus g is not continuous at (0, 0).

While the notions of limit and continuity look formally the same for one- and two-variable

functions, they are somewhat more subtle in the multivariable case. The reason for this is that on the

line (1-space), we can approach a point from just two directions (left or right) but in 2-space there

are an infinite number of ways to approach a given point.

Summary for Section 12.6

• Informally, a function is continuous at a point if values of the function at nearby points in all

directions approach the value of the function at the point.

• The function f has a limit L at the point (a, b), written

lim
(x,y)→(a,b)

f (x, y) = L,

if f (x, y) is as close to L as we please whenever the distance from the point (x, y) to the point

(a, b) is sufficiently small, but not zero.

• A function f is continuous at the point (a, b) if

lim
(x,y)→(a,b)

f (x, y) = f (a, b).

• A function is continuous on a region R in the xy-plane if it is continuous at each point in R.

Exercises and Problems for Section 12.6

EXERCISES

In Exercises 1–6, is the function continuous at all points in

the given region?

1.
1

x2 + y2
on the square −1 ≤ x ≤ 1,−1 ≤ y ≤ 1

2.
1

x2 + y2
on the square 1 ≤ x ≤ 2, 1 ≤ y ≤ 2

3.
y

x2 + 2
on the disk x2 + y2 ≤ 1

4.
esinx

cos y
on the rectangle −

�

2
≤ x ≤

�

2
, 0 ≤ y ≤

�

4

5. tan(xy) on the square −2 ≤ x ≤ 2,−2 ≤ y ≤ 2

6.
√

2x − y on the disk x2 + y2 ≤ 4

In Exercises 7–11, find the limit as (x, y) → (0, 0) of f (x, y).

Assume that polynomials, exponentials, logarithmic, and

trigonometric functions are continuous.

7. f (x, y) = e−x−y

8. f (x, y) = x2 + y2

9. f (x, y) =
x

x2 + 1

10. f (x, y) =
x + y

(sin y) + 2

11. f (x, y) =
sin(x2 + y2)

x2 + y2
[Hint: lim

t→0

sin t

t
= 1.]
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In Exercises 12–15, use the contour diagram for f (x, y)

in Figure 12.101 to suggest an estimate for the limit, or ex-

plain why it may not exist.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

0

10

0

10

2 4
6

8

24
6

8

24
6

8

2 4
6

8

Figure 12.101

12. lim
(x,y)→(2,1)

f (x, y) 13. lim
(x,y)→(−1,2)

f (x, y)

14. lim
(x,y)→(−2,0)

f (x, y) 15. lim
(x,y)→(0,0)

f (x, y)

PROBLEMS

In Problems 16–17, show that the function f (x, y) does not

have a limit as (x, y) → (0, 0). [Hint: Use the line y = mx.]

16. f (x, y) =
x + y

x − y
, x ≠ y

17. f (x, y) =
x2 − y2

x2 + y2

18. By approaching the origin along the positive x-axis and

the positive y-axis, show that the following limit does

not exist:

lim
(x,y)→(0,0)

2x − y2

2x + y2
.

19. Show that f (x, y) has no limit as (x, y) → (0, 0) if

f (x, y) =
xy

|xy|
, x ≠ 0 and y ≠ 0.

20. Show that the function f does not have a limit at (0, 0)

by examining the limits of f as (x, y) → (0, 0) along

the curve y = kx2 for different values of k:

f (x, y) =
x2

x2 + y
, x2 + y ≠ 0.

21. Let f (x, y) =

⎧

⎪

⎨

⎪

⎩

|x|

x
y for x ≠ 0

0 for x = 0.

Is f (x, y) continuous

(a) On the x-axis? (b) On the y-axis?

(c) At (0, 0)?

In Problems 22–23, determine whether there is a value for

the constant c making the function continuous everywhere.

If so, find it. If not, explain why not.

22. f (x, y) =

{

c + y, x ≤ 3,

5 − x, x > 3.

23. f (x, y) =

{

c + y, x ≤ 3,

5 − y, x > 3.

24. Is the following function continuous at (0, 0)?

f (x, y) =

{

x2 + y2 if (x, y) ≠ (0, 0)

2 if (x, y) = (0, 0)

25. What value of c makes the following function continu-

ous at (0, 0)?

f (x, y) =

{

x2 + y2 + 1 if (x, y) ≠ (0, 0)

c if (x, y) = (0, 0)

26. (a) Use a computer to draw the graph and the contour

diagram of the following function:

f (x, y) =

{

xy(x2 − y2)

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

(b) Do your answers to part (a) suggest that f is con-

tinuous at (0, 0)? Explain your answer.
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27. The function f , whose graph and contour diagram are

in Figures 12.102 and 12.103, is given by

f (x, y) =

{ xy

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

(a) Show that f (0, y) and f (x, 0) are each continuous

functions of one variable.

(b) Show that rays emanating from the origin are con-

tained in contours of f .

(c) Is f continuous at (0, 0)?

Figure 12.102: Graph of z = xy∕(x2 + y2)

−1 1

−1

1

x

y
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5

.1
5

.35
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−
.35
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.1
5

−.15

−.35.15
.35

.3
5

.1
5

−.15

−.35

−
.35

−
.1
5

Figure 12.103: Contour diagram of

z = xy∕(x2 + y2)

Strengthen Your Understanding

In Problems 28–29, explain what is wrong with the state-

ment.

28. If a function f (x, y) has a limit as (x, y) approaches

(a, b), then it is continuous at (a, b).

29. If both f and g are continuous at (a, b), then so are

f + g, fg and f∕g.

In Problems 30–31, give an example of:

30. A function f (x, y) which is continuous everywhere ex-

cept at (0, 0) and (1, 2).

31. A function f (x, y) that approaches 1 as (x, y) ap-

proaches (0, 0) along the x-axis and approaches 2 as

(x, y) approaches (0, 0) along the y-axis.

In Problems 32–34, construct a function f (x, y) with the

given property.

32. Not continuous along the line x = 2; continuous every-

where else.

33. Not continuous at the point (2, 0); continuous every-

where else.

34. Not continuous along the curve x2+y2 = 1; continuous

everywhere else.

Are the statements in Problems 35–40 true or false? Give

reasons for your answer.

35. If the limit of f (x, y) is 1 as (x, y) approaches (0, 0)

along the x-axis, and the limit of f (x, y) is 1 as (x, y)

approaches (0, 0) along the y-axis, then

lim
(x,y)→(0,0)

f (x, y) exists.

36. If f (1, 0) = 2, then lim
(x,y)→(1,0)

f (x, y) = 2.

37. If f (x, y) is continuous and f (1, 0) = 2, then

lim
(x,y)→(1,0)

f (x, y) = 2.

38. If lim
(x,y)→(0,0)

f (x, y) = 3, then the limit of f (x, y) is 3 as

(x, y) approaches (0, 0) along the x-axis.

39. If f (x, y) is continuous at (a, b), then its limit exists at

(a, b).

40. If lim
(x,y)→(a,b)

f (x, y) exists then f (x, y) is continuous at

(a, b).
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13.1 DISPLACEMENT VECTORS

Suppose you are a pilot planning a flight from Dallas to Pittsburgh. There are two things you must

know: the distance to be traveled (so you have enough fuel to make it) and in what direction to go (so

you don’t miss Pittsburgh). Both these quantities together specify the displacement or displacement

vector between the two cities.

The displacement vector from one point to another is an arrow with its tail at the first point

and its tip at the second. The magnitude (or length) of the displacement vector is the dis-

tance between the points and is represented by the length of the arrow. The direction of the

displacement vector is the direction of the arrow.

Figure 13.1 shows a map with the displacement vectors from Dallas to Pittsburgh, from Al-

buquerque to Oshkosh, and from Los Angeles to Buffalo, SD. These displacement vectors have the

same length and the same direction. We say that the displacement vectors between the corresponding

cities are the same, even though they do not coincide. In other words,

Displacement vectors which point in the same direction and have the same magnitude are

considered to be the same, even if they do not coincide.

Dallas

Pittsburgh

OshkoshBuffalo, SD

Los Angeles

Albuquerque

Figure 13.1: Displacement vectors between cities

Notation and Terminology

The displacement vector is our first example of a vector. Vectors have both magnitude and direction;

in comparison, a quantity specified only by a number, but no direction, is called a scalar.1 For in-

stance, the time taken by the flight from Dallas to Pittsburgh is a scalar quantity. Displacement is a

vector since it requires both distance and direction to specify it.

In this book, vectors are written with an arrow over them, v⃗ , to distinguish them from scalars.

Other books use a bold v to denote a vector. We use the notation ⃖⃖⃖⃖⃖⃗PQ to denote the displacement

vector from a point P to a point Q. The magnitude, or length, of a vector v⃗ is written ‖v⃗ ‖.

Addition and Subtraction of Displacement Vectors

Suppose NASA commands a robot on Mars to move 75 meters in one direction and then 50 meters

in another direction. (See Figure 13.2.) Where does the robot end up? Suppose the displacements

are represented by the vectors v⃗ and w⃗ , respectively. Then the sum v⃗ + w⃗ gives the final position.

1So named by W. R. Hamilton because they are merely numbers on the scale from −∞ to ∞.
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The sum, v⃗ + w⃗ , of two vectors v⃗ and w⃗ is the combined displacement resulting from first

applying v⃗ and then w⃗ . (See Figure 13.3.) The sum w⃗ + v⃗ gives the same displacement.

Combined
displacement

75 m

50 m

Start

Finish

Figure 13.2: Sum of displacements of robots on Mars

v⃗

w⃗

v⃗ + w⃗

v⃗

w⃗

Start

Finish

Figure 13.3: The sum v⃗ + w⃗ = w⃗ + v⃗

Suppose two different robots start from the same location. One moves along a displacement

vector v⃗ and the second along a displacement vector w⃗ . What is the displacement vector, x⃗ , from

the first robot to the second? (See Figure 13.4.) Since v⃗ + x⃗ = w⃗ , we define x⃗ to be the difference

x⃗ = w⃗ − v⃗ . In other words, w⃗ − v⃗ gets you from the first robot to the second.

The difference, w⃗ − v⃗ , is the displacement vector that, when added to v⃗ , gives w⃗ . That is,

w⃗ = v⃗ + (w⃗ − v⃗ ). (See Figure 13.4.)

w⃗

v⃗

x⃗ = w⃗ − v⃗

First robot

Second robot

Start

Figure 13.4: The difference w⃗ − v⃗

If the robot ends up where it started, then its total displacement vector is the zero vector, 0⃗ . The

zero vector has no direction.

The zero vector, 0⃗ , is a displacement vector with zero length.

Scalar Multiplication of Displacement Vectors

If v⃗ represents a displacement vector, the vector 2v⃗ represents a displacement of twice the magnitude

in the same direction as v⃗ . Similarly, −2v⃗ represents a displacement of twice the magnitude in the

opposite direction. (See Figure 13.5.)

v⃗

0.5v⃗

2v⃗

−2v⃗

Figure 13.5: Scalar multiples of the vector v⃗
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If � is a scalar and v⃗ is a displacement vector, the scalar multiple of v⃗ by �, written �v⃗ , is

the displacement vector with the following properties:

• The displacement vector �v⃗ is parallel to v⃗ , pointing in the same direction if � > 0 and

in the opposite direction if � < 0.

• The magnitude of �v⃗ is |�| times the magnitude of v⃗ , that is, ‖�v⃗ ‖ = |�| ‖v⃗ ‖ .

Note that |�| represents the absolute value of the scalar � while ‖�v⃗ ‖ represents the magnitude

of the vector �v⃗ .

Example 1 Explain why w⃗ − v⃗ = w⃗ + (−1)v⃗ .

Solution The vector (−1)v⃗ has the same magnitude as v⃗ , but points in the opposite direction. Figure 13.6

shows that the combined displacement w⃗ + (−1)v⃗ is the same as the displacement w⃗ − v⃗ .

v⃗

w⃗

w⃗

(−1)v⃗

w⃗ − v⃗
Finish

Start

Figure 13.6: Explanation for

why w⃗ − v⃗ = w⃗ + (−1)v⃗

Parallel Vectors

Two vectors v⃗ and w⃗ are parallel if one is a scalar multiple of the other, that is, if w⃗ = �v⃗ , for

some scalar �.

Components of Displacement Vectors: The Vectors i⃗, j⃗, and ⃖⃗k

Suppose that you live in a city with equally spaced streets running east-west and north-south and

that you want to tell someone how to get from one place to another. You’d be likely to tell them how

many blocks east-west and how many blocks north-south to go. For example, to get from P to Q in

Figure 13.7, we go 4 blocks east and 1 block south. If i⃗ and j⃗ are as shown in Figure 13.7, then the

displacement vector from P to Q is 4i⃗ − j⃗ .

4i⃗

−j⃗

j⃗

i⃗

P

Q

Figure 13.7: The displacement vector

from P to Q is 4i⃗ − j⃗

We extend the same idea to 3 dimensions. First we choose a Cartesian system of coordinate

axes. The three vectors of length 1 shown in Figure 13.8 are the vector i⃗ , which points along the

positive x-axis, the vector j⃗ , along the positive y-axis, and the vector k⃗ , along the positive z-axis.
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x y

z

i⃗ j⃗

k⃗

1

1 1

Figure 13.8: The vectors i⃗ , j⃗ and k⃗ in

3-space

1 2 3

1

2

x

y

2j⃗

3i⃗

v⃗

(3, 2)

Figure 13.9: We resolve v⃗ into

components by writing v⃗ = 3i⃗ + 2j⃗

Writing Displacement Vectors Using i⃗, j⃗, ⃖⃗k

Any displacement in 3-space or the plane can be expressed as a combination of displacements in

the coordinate directions. For example, Figure 13.9 shows that the displacement vector v⃗ from the

origin to the point (3, 2) can be written as a sum of displacement vectors along the x- and y-axes:

v⃗ = 3i⃗ + 2j⃗ .

This is called resolving v⃗ into components. In general:

We resolve v⃗ into components by writing v⃗ in the form

v⃗ = v1i⃗ + v2j⃗ + v3k⃗ ,

where v1, v2, v3 are scalars. We call v1 i⃗ , v2j⃗ , and v3k⃗ the components of v⃗ .

An Alternative Notation for Vectors

Many people write a vector in three dimensions as a string of three numbers, that is, as

v⃗ = (v1, v2, v3) instead of v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ .

Since the first notation can be confused with a point and the second cannot, we usually use the second

form.

Example 2 Resolve the displacement vector, v⃗ , from the point P1 = (2, 4, 10) to the point P2 = (3, 7, 6) into

components.

Solution To get from P1 to P2, we move 1 unit in the positive x-direction, 3 units in the positive y-direction,

and 4 units in the negative z-direction. Hence v⃗ = i⃗ + 3j⃗ − 4k⃗ .

Example 3 Decide whether the vector v⃗ = 2i⃗ + 3j⃗ + 5k⃗ is parallel to each of the following vectors:

w⃗ = 4i⃗ + 6j⃗ + 10k⃗ , a⃗ = −i⃗ − 1.5j⃗ − 2.5k⃗ , b⃗ = 4i⃗ + 6j⃗ + 9k⃗ .

Solution Since w⃗ = 2v⃗ and a⃗ = −0.5v⃗ , the vectors v⃗ , w⃗ , and a⃗ are parallel. However, b⃗ is not a multiple

of v⃗ (since, for example, 4∕2 ≠ 9∕5), so v⃗ and b⃗ are not parallel.
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In general, Figure 13.10 shows us how to express the displacement vector between two points

in components:

Components of Displacement Vectors

The displacement vector from the point P1 = (x1, y1, z1) to the point P2 = (x2, y2, z2) is given

in components by

⃖⃖⃖⃖⃖⃖⃖⃖⃗P1P2 = (x2 − x1)i⃗ + (y2 − y1)j⃗ + (z2 − z1)k⃗ .

Position Vectors: Displacement of a Point from the Origin

A displacement vector whose tail is at the origin is called a position vector. Thus, any point (x0, y0, z0)

in space has associated with it the position vector r⃗ 0 = x0i⃗ + y0j⃗ + z0k⃗ . (See Figure 13.11.) In

general, a position vector gives the displacement of a point from the origin.

x

y

z

P1 = (x1, y1, z1)

P2 = (x2, y2, z2)
⃖⃖⃖⃖⃖⃖⃖⃗P1P2

Figure 13.10: The displacement vector

⃖⃖⃖⃖⃖⃖⃖⃗P1P2 = (x2 − x1)i⃗ + (y2 − y1)j⃗ + (z2 − z1)k⃗

z

x

y
y0

x0

(x0, y0, z0)

✛

✛

z0r⃗ 0

Figure 13.11: The position vector

r⃗ 0 = x0 i⃗ + y0j⃗ + z0k⃗

The Components of the Zero Vector

The zero displacement vector has magnitude equal to zero and is written 0⃗ . So 0⃗ = 0i⃗ + 0j⃗ + 0k⃗ .

The Magnitude of a Vector in Components

For a vector, v⃗ = v1i⃗ + v2j⃗ , the Pythagorean theorem is used to find its magnitude, ‖v⃗ ‖. (See

Figure 13.12.) The angle � gives the direction of v⃗ .

v1

v2

‖v⃗ ‖ = Length =
√

v2
1
+ v2

2

y

x
�

v⃗

Figure 13.12: Magnitude, ‖v⃗ ‖, of a 2-dimensional vector, v⃗

In three dimensions, for a vector v⃗ = v1i⃗ + v2j⃗ + v3k⃗ , we have

Magnitude of v⃗ = ‖v⃗ ‖ = Length of the arrow =

√

v2
1
+ v2

2
+ v2

3
.

For instance, if v⃗ = 3i⃗ − 4j⃗ + 5k⃗ , then ‖v⃗ ‖ =
√

32 + (−4)2 + 52 =
√

50.
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Addition and Scalar Multiplication of Vectors in Components

Suppose the vectors v⃗ and w⃗ are given in components:

v⃗ = v1i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1i⃗ +w2j⃗ +w3k⃗ .

Then

v⃗ + w⃗ = (v1 +w1)i⃗ + (v2 +w2)j⃗ + (v3 +w3)k⃗ ,

and

�v⃗ = �v1i⃗ + �v2j⃗ + �v3k⃗ .

Figures 13.13 and 13.14 illustrate these properties in two dimensions. Finally, v⃗ − w⃗ = v⃗ +

(−1)w⃗ , so we can write v⃗ − w⃗ = (v1 −w1)i⃗ + (v2 −w2)j⃗ + (v3 −w3)k⃗ .

w⃗

v⃗ + w⃗

v⃗

w⃗

v1

v2

w1

w2

Figure 13.13: Sum v⃗ + w⃗ in

components

v2
v⃗

v1

2v1

2v⃗

2v2

v1

v2

−3v2
−3v⃗

−3v1

v⃗

Figure 13.14: Scalar multiples of vectors showing v⃗ , 2v⃗ , and −3v⃗

How to Resolve a Vector into Components

You may wonder how we find the components of a 2-dimensional vector, given its length and direc-

tion. Suppose the vector v⃗ has length v and makes an angle of � with the x-axis, measured counter-

clockwise, as in Figure 13.15. If v⃗ = v1i⃗ + v2 j⃗ , Figure 13.15 shows that

v1 = v cos � and v2 = v sin �.

Thus, we resolve v⃗ into components by writing

v⃗ = (v cos �)i⃗ + (v sin �)j⃗ .

Vectors in 3-space are resolved using direction cosines; see Problem 66 (available online).

v cos �

v sin �

✛

✛

v

�

y

x

Figure 13.15: Resolving a vector: v⃗ = (v cos �)i⃗ + (v sin �)j⃗

Example 4 Resolve v⃗ into components if ‖v⃗ ‖ = 2 and � = �∕6.

Solution We have v⃗ = 2 cos(�∕6)i⃗ + 2 sin(�∕6)j⃗ = 2
(
√

3∕2
)

i⃗ + 2(1∕2)j⃗ =
√

3i⃗ + j⃗ .
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Unit Vectors

A unit vector is a vector whose magnitude is 1. The vectors i⃗ , j⃗ , and k⃗ are unit vectors in the

directions of the coordinate axes. It is often helpful to find a unit vector in the same direction as a

given vector v⃗ . Suppose that ‖v⃗ ‖ = 10; a unit vector in the same direction as v⃗ is v⃗ ∕10. In general,

a unit vector in the direction of any nonzero vector v⃗ is

u⃗ =
v⃗

‖v⃗ ‖
.

Example 5 Find a unit vector, u⃗ , in the direction of the vector v⃗ = i⃗ + 3j⃗ .

Solution If v⃗ = i⃗ + 3j⃗ , then ‖v⃗ ‖ =
√

12 + 32 =
√

10. Thus, a unit vector in the same direction is given by

u⃗ =
v⃗

√

10
=

1
√

10
(i⃗ + 3j⃗ ) =

1
√

10
i⃗ +

3
√

10
j⃗ ≈ 0.32i⃗ + 0.95j⃗ .

Example 6 Find a unit vector at the point (x, y, z) that points directly outward away from the origin.

Solution The vector from the origin to (x, y, z) is the position vector

r⃗ = xi⃗ + yj⃗ + zk⃗ .

Thus, if we put its tail at (x, y, z) it will point away from the origin. Its magnitude is

‖r⃗ ‖ =
√

x2 + y2 + z2,

so a unit vector pointing in the same direction is

r⃗

‖r⃗ ‖
=

xi⃗ + yj⃗ + zk⃗
√

x2 + y2 + z2
=

x
√

x2 + y2 + z2
i⃗ +

y
√

x2 + y2 + z2
j⃗ +

z
√

x2 + y2 + z2
k⃗ .

Summary for Section 13.1

• A vector is a quantity that has both magnitude (or length) and direction.

• A unit vector is any vector with length 1. If v⃗ is nonzero, then
1

‖v⃗ ‖

v⃗ is a unit vector in the same

direction as v⃗ .

• The component vectors i⃗ , j⃗ , k⃗ are unit vectors and point in the direction of the positive x-, y-,

and z-axes, respectively.

• The vector sum v⃗ + w⃗ is the displacement vector given by following a displacement of v⃗ with

a displacement of w⃗ .

• The scalar multiple �v⃗ is the vector with the same direction as v⃗ (if � > 0) or the opposite

direction (if � < 0) and length scaled by a factor of |�|.

• Two vectors are parallel if one is a scalar multiple of the other.

• Vectors in 3-space can be represented in components as v⃗ = ai⃗ + bj⃗ + ck⃗ .



13.1 DISPLACEMENT VECTORS 753

• Vector addition and scalar multiplication can be computed componentwise: If

v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1 i⃗ +w2 j⃗ +w3k⃗ ,

then

v⃗ + w⃗ = (v1 +w1)i⃗ + (v2 +w2)j⃗ + (v3 +w3)k⃗

and

�v⃗ = �v1 i⃗ + �v2j⃗ + �v3k⃗ .

• The zero vector has magnitude equal to zero and is written 0⃗ . In components, 0⃗ = 0i⃗ +0j⃗ +0k⃗ .

• The length of v⃗ = v1i⃗ + v2 j⃗ + v3k⃗ is given by

‖v⃗ ‖ =

√

v2
1
+ v2

2
+ v2

3
.

• The displacement vector from the point P1 = (x1, y1, z1) to the point P2 = (x2, y2, z2) is given

in components by
⃖⃖⃖⃖⃖⃖⃖⃖⃗P1P2 = (x2 − x1)i⃗ + (y2 − y1)j⃗ + (z2 − z1)k⃗ .

• A displacement vector whose tail is at the origin is called a position vector. A point (x0, y0, z0)

in 3-space has position vector r⃗ 0 = x0i⃗ + y0j⃗ + z0k⃗ .

Exercises and Problems for Section 13.1 Online Resource: Additional Problems for Section 13.1
EXERCISES

In Exercises 1–6, resolve the vectors into components.

1.

−2 −1 1 2 3

−2

−1

1

2

3

x

y

b⃗

a⃗

w⃗

v⃗

2.

1 2 3 4

−1

1

2

3

x

y

a⃗

b⃗

c⃗

d⃗

e⃗

3. A vector starting at the point Q = (4, 6) and ending at

the point P = (1, 2).

4. A vector starting at the point P = (1, 2) and ending at

the point Q = (4, 6).

5.

x

y

z

b⃗

c⃗

d⃗

a⃗

e⃗

f⃗

✛

✛

3

✛

✛
2

✛

✛

1

6.

x

y

z

✛

✛

2

✛ ✛1

✛

✛

1

u⃗v⃗

For Exercises 7–14, perform the indicated computation.

7. (4i⃗ + 2j⃗ ) − (3i⃗ − j⃗ )

8. (i⃗ + 2j⃗ ) + (−3)(2i⃗ + j⃗ )

9. −4(i⃗ − 2j⃗ ) − 0.5(i⃗ − k⃗ )

10. 2(0.45i⃗ − 0.9j⃗ − 0.01k⃗ ) − 0.5(1.2i⃗ − 0.1k⃗ )

11. (3i⃗ − 4j⃗ + 2k⃗ ) − (6i⃗ + 8j⃗ − k⃗ )

12. (4i⃗ − 3j⃗ + 7k⃗ ) − 2(5i⃗ + j⃗ − 2k⃗ )

13. (0.6i⃗ + 0.2j⃗ − k⃗ ) + (0.3i⃗ + 0.3k⃗ )

14.
1

2
(2i⃗ − j⃗ + 3k⃗ ) + 3(i⃗ −

1

6
j⃗ +

1

2
k⃗ )

In Exercises 15–19, find the length of the vectors.

15. v⃗ = i⃗ − j⃗ + 2k⃗ 16. z⃗ = i⃗ − 3j⃗ − k⃗

17. v⃗ = i⃗ − j⃗ + 3k⃗

18. v⃗ = 7.2i⃗ − 1.5j⃗ + 2.1k⃗

19. v⃗ = 1.2i⃗ − 3.6j⃗ + 4.1k⃗
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For Exercises 20–25, perform the indicated operations on

the following vectors:

a⃗ = 2j⃗ + k⃗ , b⃗ = −3i⃗ + 5j⃗ + 4k⃗ , c⃗ = i⃗ + 6j⃗ ,

x⃗ = −2i⃗ + 9j⃗ , y⃗ = 4i⃗ − 7j⃗ , z⃗ = i⃗ − 3j⃗ − k⃗ .

20. 4z⃗ 21. 5a⃗ + 2b⃗ 22. a⃗ + z⃗

23. 2c⃗ + x⃗ 24. 2a⃗ +7b⃗ −5z⃗ 25. ‖y⃗ − x⃗ ‖

26. (a) Draw the position vector for v⃗ = 5i⃗ − 7j⃗ .

(b) What is ‖v⃗ ‖?

(c) Find the angle between v⃗ and the positive x-axis.

27. Find the unit vector in the direction of 0.06i⃗ − 0.08k⃗ .

28. Find the unit vector in the opposite direction to i⃗ − j⃗ +

k⃗ .

29. Find a unit vector in the opposite direction to 2i⃗ − j⃗ −
√

11k⃗ .

30. Find a vector with length 2 that points in the same di-

rection as i⃗ − j⃗ + 2k⃗ .

PROBLEMS

31. Find the value(s) of a making v⃗ = 5ai⃗ −3j⃗ parallel to

w⃗ = a2i⃗ + 6j⃗ .

32. (a) For a = 1, 2, and 3, draw position vectors for

(i) v⃗ = a2 i⃗ + 6j⃗ (ii) w⃗ = 5i⃗ − a2j⃗

(b) Explain why there is no value of a that makes v⃗

and w⃗ parallel.

33. (a) Find a unit vector from the point P = (1, 2) and

toward the point Q = (4, 6).

(b) Find a vector of length 10 pointing in the same di-

rection.

34. If north is the direction of the positive y-axis and east is

the direction of the positive x-axis, give the unit vector

pointing northwest.

35. Resolve the following vectors into components:

(a) The vector in 2-space of length 2 pointing up and

to the right at an angle of �∕4 with the x-axis.

(b) The vector in 3-space of length 1 lying in the xz-

plane pointing upward at an angle of �∕6 with the

positive x-axis.

36. (a) From Figure 13.16, read off the coordinates of

the five points, A, B, C , D, E, and thus resolve

into components the following two vectors: u⃗ =

(2.5) ⃖⃖⃖⃖⃖⃗AB+(−0.8)⃖⃖⃖⃖⃖⃖⃗CD, v⃗ = (2.5) ⃖⃖⃖⃖⃖⃗BA−(−0.8)⃖⃖⃖⃖⃖⃖⃗CD.

(b) What is the relation between u⃗ and v⃗ ? Why was

this to be expected?

A

B

D

E

C

1 2 3 4 5 6 7

1

2

3

4

x

y

Figure 13.16

37. Find the components of a vector p⃗ that has the same di-

rection as ⃖⃖⃖⃖⃖⃗EA in Figure 13.16 and whose length equals

two units.

38. For each of the four statements below, answer the fol-

lowing questions: Does the statement make sense? If

yes, is it true for all possible choices of a⃗ and b⃗ ? If no,

why not?

(a) a⃗ + b⃗ = b⃗ + a⃗

(b) a⃗ + ‖b⃗ ‖ = ‖a⃗ + b⃗ ‖

(c) ‖b⃗ + a⃗ ‖ = ‖a⃗ + b⃗ ‖

(d) ‖a⃗ + b⃗ ‖ = ‖a⃗ ‖ + ‖b⃗ ‖.

39. For each condition, find unit vectors a⃗ and b⃗ or explain

why no such vectors exist.

(a) ‖a⃗ + b⃗ ‖ = 0 (b) ‖a⃗ + b⃗ ‖ = 1

(c) ‖a⃗ + b⃗ ‖ = 2 (d) ‖a⃗ + b⃗ ‖ = 3

40. Two adjacent sides of a regular hexagon are given as the

vectors u⃗ and v⃗ in Figure 13.17. Label the remaining

sides in terms of u⃗ and v⃗ .

u⃗

v⃗

Figure 13.17

41. For what values of t are the following pairs of vectors

parallel?

(a) 2i⃗ + (t2 +
2

3
t + 1)j⃗ + tk⃗ , 6i⃗ + 8j⃗ + 3k⃗

(b) ti⃗ + j⃗ + (t − 1)k⃗ , 2i⃗ − 4j⃗ + k⃗

(c) 2ti⃗ + tj⃗ + tk⃗ , 6i⃗ + 3j⃗ + 3k⃗ .

42. Show that the unit vector v⃗ = xi⃗ + yj⃗ is not parallel

to w⃗ = yi⃗ − xj⃗ for any choice of x and y.

43. Find all unit vectors v⃗ = xi⃗ + yj⃗ parallel to w⃗ =

yi⃗ + xj⃗ .
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44. Find all vectors v⃗ in 2 dimensions having ‖v⃗ ‖ = 5 such

that the i⃗ -component of v⃗ is 3i⃗ .

45. (a) Find the point on the x-axis closest to the point

(a, b, c).

(b) Find a unit vector that points from the point you

found in part (a) toward (a, b, c).

46. Figure 13.18 shows a molecule with four atoms at

O,A,B and C . Check that every atom in the molecule

is 2 units away from every other atom.

x
y

z

A(2, 0, 0)

B(1,
√

3, 0)

C(1, 1∕
√

3, 2
√

2∕3)

0

Figure 13.18

Strengthen Your Understanding

In Problems 47–50, explain what is wrong with the state-

ment.

47. If ‖u⃗ ‖ = 1 and ‖v⃗ ‖ > 0, then ‖u⃗ + v⃗ ‖ ≥ 1.

48. The vector cu⃗ has the same direction as u⃗ .

49. ‖v⃗ −u⃗ ‖ is the length of the shorter of the two diagonals

of the parallelogram determined by u⃗ and v⃗ .

50. Given three vectors u⃗ , v⃗ , and w⃗ , if u⃗ + w⃗ = u⃗ then it

is possible for v⃗ + w⃗ ≠ v⃗ .

In Problems 51–53, give an example of:

51. A vector v⃗ of length 2 with a positive k⃗-component and

lying on a plane parallel to the yz-plane.

52. Two unit vectors u⃗ and v⃗ for which v⃗ − u⃗ is also a unit

vector.

53. Two vectors u⃗ and v⃗ that have difference vector w⃗ =

2i⃗ + 3j⃗ .

Are the statements in Problems 54–63 true or false? Give

reasons for your answer.

54. There is exactly one unit vector parallel to a given

nonzero vector v⃗ .

55. The vector
1
√

3
i⃗ +

−1
√

3
j⃗ +

2
√

3
k⃗ is a unit vector.

56. The length of the vector 2v⃗ is twice the length of the

vector v⃗ .

57. If v⃗ and w⃗ are any two vectors, then ‖v⃗ + w⃗ ‖ =

‖v⃗ ‖ + ‖w⃗ ‖.

58. If v⃗ and w⃗ are any two vectors, then ‖v⃗ − w⃗ ‖ =

‖v⃗ ‖ − ‖w⃗ ‖.

59. The vectors 2i⃗ − j⃗ + k⃗ and i⃗ − 2j⃗ + k⃗ are parallel.

60. The vector u⃗ + v⃗ is always larger in magnitude than

both u⃗ and v⃗ .

61. For any scalar c and vector v⃗ we have ‖cv⃗ ‖ = c‖v⃗ ‖.

62. The displacement vector from (1, 1, 1) to (1, 2, 3) is

−j⃗ − 2k⃗ .

63. The displacement vector from (a, b) to (c, d) is the same

as the displacement vector from (c, d) to (a, b).

13.2 VECTORS IN GENERAL

Besides displacement, there are many quantities that have both magnitude and direction and are

added and multiplied by scalars in the same way as displacements. Any such quantity is called a

vector and is represented by an arrow in the same manner we represent displacements. The length of

the arrow is the magnitude of the vector, and the direction of the arrow is the direction of the vector.

Velocity Versus Speed

The speed of a moving body tells us how fast it is moving, say 80 km/hr. The speed is just a number;

it is therefore a scalar. The velocity, on the other hand, tells us both how fast the body is moving and

the direction of motion; it is a vector. For instance, if a car is heading northeast at 80 km/hr, then its

velocity is a vector of length 80 pointing northeast.

The velocity vector of a moving object is a vector whose magnitude is the speed of the object

and whose direction is the direction of its motion.

The velocity vector is the displacement vector if the object moves at constant velocity for one

unit of time.
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Example 1 A car is traveling north at a speed of 100 km/hr, while a plane above is flying horizontally southwest

at a speed of 500 km/hr. Draw the velocity vectors of the car and the plane.

Solution Figure 13.19 shows the velocity vectors. The plane’s velocity vector is five times as long as the car’s,

because its speed is five times as great.

✲Velocity vector
of car

✲Velocity vector
of plane

N
or

th

✻

Figure 13.19: Velocity vector of the car is 100 km/hr north and of the plane is 500 km/hr southwest

The next example illustrates that the velocity vectors for two motions add to give the velocity

vector for the combined motion, just as displacements do.

Example 2 A riverboat is moving with velocity v⃗ and a speed of 8 km/hr relative to the water. In addition, the

river has a current c⃗ and a speed of 1 km/hr. (See Figure 13.20.) What is the physical significance

of the vector v⃗ + c⃗ ?

v⃗ + c⃗

v⃗ = Velocity relative to water
‖v⃗ ‖ = 8 km/hr

c⃗ = Velocity of current
‖c⃗ ‖ = 1 km/hr

Figure 13.20: Boat’s velocity relative to the river bed is the sum v⃗ + c⃗

Solution The vector v⃗ shows how the boat is moving relative to the water, while c⃗ shows how the water is

moving relative to the riverbed. During an hour, imagine that the boat first moves 8 km relative to the

water, which remains still; this displacement is represented by v⃗ . Then imagine the water moving

1 km while the boat remains stationary relative to the water; this displacement is represented by c⃗ .

The combined displacement is represented by v⃗ + c⃗ . Thus, the vector v⃗ + c⃗ is the velocity of the

boat relative to the riverbed.

Note that the effective speed of the boat is not necessarily 9 km/hr unless the boat is moving in

the direction of the current. Although we add the velocity vectors, we do not necessarily add their

lengths.

Scalar multiplication also makes sense for velocity vectors. For example, if v⃗ is a velocity vector,

then −2v⃗ represents a velocity of twice the magnitude in the opposite direction.

Example 3 A ball is moving with velocity v⃗ when it hits a wall at a right angle and bounces straight back, with

its speed reduced by 20%. Express its new velocity in terms of the old one.

Solution The new velocity is −0.8v⃗ , where the negative sign expresses the fact that the new velocity is in the

direction opposite to the old.

We can represent velocity vectors in components in the same way we did on page 751.
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Example 4 Represent the velocity vectors of the car and the plane in Example 1 using components. Take north

to be the positive y-axis, east to be the positive x-axis, and upward to be the positive z-axis.

Solution The car is traveling north at 100 km/hr, so the y-component of its velocity is 100j⃗ and the x-

component is 0i⃗ . Since it is traveling horizontally, the z-component is 0k⃗ . So we have

Velocity of car = 0i⃗ + 100j⃗ + 0k⃗ = 100j⃗ .

The plane’s velocity vector also has k⃗ component equal to zero. Since it is traveling southwest, its i⃗

and j⃗ components have negative coefficients (north and east are positive). Since the plane is traveling

at 500 km/hr, in one hour it is displaced 500∕
√

2 ≈ 354 km to the west and 354 km to the south.

(See Figure 13.21.) Thus,

✻

❄

500∕
√

2 ≈ 354

✲✛ 500∕
√

2

✻
❄
100✲Distance traveled by

the car in one hour

✲Distance traveled by
the plane in one hour

✛

✛

50
0

✻

N
or

th

45◦

Figure 13.21: Distance traveled by the plane and car in one hour

Velocity of plane = −(500 cos 45◦)i⃗ − (500 sin 45◦)j⃗ ≈ −354i⃗ − 354j⃗ .

Of course, if the car were climbing a hill or if the plane were descending for a landing, then the k⃗

component would not be zero.

Acceleration

Another example of a vector quantity is acceleration. Acceleration, like velocity, is specified by both

a magnitude and a direction — for example, the acceleration due to gravity is 9.81 m/sec2 vertically

downward.

Force

Force is another example of a vector quantity. Suppose you push on an open door. The result depends

both on how hard you push and in what direction. Thus, to specify a force we must give its magnitude

(or strength) and the direction in which it is acting. For example, the gravitational force exerted on an

object by the earth is a vector pointing from the object toward the center of the earth; its magnitude

is the strength of the gravitational force.

Example 5 The earth travels around the sun in an ellipse. The gravitational force on the earth and the velocity

of the earth are governed by the following laws:

Newton’s Law of Gravitation: The gravitational attraction, F⃗ , of a massm1 on a massm2 at a distance

r has magnitude ||F⃗ || = Gm1m2∕r
2, where G is a constant, and is directed from m2 toward m1.

Kepler’s Second Law: The line joining a planet to the sun sweeps out equal areas in equal times.

(a) Sketch vectors representing the gravitational force of the sun on the earth at two different posi-

tions in the earth’s orbit.

(b) Sketch the velocity vector of the earth at two points in its orbit.



758 Chapter 13 A FUNDAMENTAL TOOL: VECTORS

Solution (a) Figure 13.22 shows the earth orbiting the sun. Note that the gravitational force vector always

points toward the sun and is larger when the earth is closer to the sun because of the r2 term in

the denominator. (In fact, the real orbit looks much more like a circle than we have shown here.)

(b) The velocity vector points in the direction of motion of the earth. Thus, the velocity vector is

tangent to the ellipse. See Figure 13.23. Furthermore, the velocity vector is longer at points of

the orbit where the planet is moving quickly, because the magnitude of the velocity vector is

the speed. Kepler’s Second Law enables us to determine when the earth is moving quickly and

when it is moving slowly. Over a fixed period of time, say one month, the line joining the earth

to the sun sweeps out a sector having a certain area. Figure 13.23 shows two sectors swept out

in two different one-month time-intervals. Kepler’s law says that the areas of the two sectors are

the same. Thus, the earth must move farther in a month when it is close to the sun than when

it is far from the sun. Therefore, the earth moves faster when it is closer to the sun and slower

when it is farther away.

Earth

Sun

Force, F⃗

Force, F⃗

Earth

Earth’s orbit

Figure 13.22: Gravitational force, F⃗ , exerted by the sun on

the earth: Greater magnitude closer to sun

Earth

SunVelocity, v⃗

Velocity, v⃗

Earth

Earth’s orbit

Figure 13.23: The velocity vector, v⃗ , of the earth:

Greater magnitude closer to the sun

Properties of Addition and Scalar Multiplication
In general, vectors add, subtract, and are multiplied by scalars in the same way as displacement

vectors. Thus, for any vectors u⃗ , v⃗ , and w⃗ and any scalars � and �, we have the following properties:

Commutativity

1. v⃗ + w⃗ = w⃗ + v⃗

Distributivity

4. (� + �)v⃗ = �v⃗ + �v⃗

5. �(v⃗ + w⃗ ) = �v⃗ + �w⃗

Associativity

2. (u⃗ + v⃗ ) + w⃗ = u⃗ + (v⃗ + w⃗ )

3. �(�v⃗ ) = (��)v⃗

Identity

6. 1v⃗ = v⃗

7. 0v⃗ = 0⃗

8. v⃗ + 0⃗ = v⃗

9. w⃗ + (−1)v⃗ = w⃗ − v⃗

Problems 28–35 at the end of this section ask for a justification of these results in terms of

displacement vectors.

Using Components

Example 6 A plane, heading due east at an airspeed of 600 km/hr, experiences a wind of 50 km/hr blowing

toward the northeast. Find the plane’s direction and ground speed.

Solution We choose a coordinate system with the x-axis pointing east and the y-axis pointing north. See

Figure 13.24.

The airspeed tells us the speed of the plane relative to still air. Thus, the plane is moving due

east with velocity v⃗ = 600i⃗ relative to still air. In addition, the air is moving with a velocity w⃗ .

Writing w⃗ in components, we have

w⃗ = (50 cos 45◦)i⃗ + (50 sin 45◦)j⃗ = 35.4i⃗ + 35.4j⃗ .
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y

x

v⃗ = Velocity
relative to air

v⃗ + w⃗ w⃗ = Wind velocity

45◦❄

�

Figure 13.24: Plane’s velocity relative to the ground is the sum v⃗ + w⃗

The vector v⃗ + w⃗ represents the displacement of the plane in one hour relative to the ground.

Therefore, v⃗ + w⃗ is the velocity of the plane relative to the ground. In components, we have

v⃗ + w⃗ = 600i⃗ +
(

35.4i⃗ + 35.4j⃗
)

= 635.4i⃗ + 35.4j⃗ .

The direction of the plane’s motion relative to the ground is given by the angle � in Figure 13.24,

where

tan � =
35.4

635.4
,

so

� = arctan
(

35.4

635.4

)

= 3.2◦.

The ground speed is the speed of the plane relative to the ground, so

Ground speed = ||v⃗ + w⃗ || =
√

635.42 + 35.42 = 636.4 km/hr.

Thus, the speed of the plane relative to the ground has been increased slightly by the wind. (This

is as we would expect, as the wind has a positive component in the direction in which the plane is

traveling.) The angle � shows how far the plane is blown off course by the wind.

Vectors in n Dimensions

Using the alternative notation v⃗ = (v1, v2, v3) for a vector in 3-space, we can define a vector in n

dimensions as a string of n numbers. Thus, a vector in n dimensions can be written as

c⃗ = (c1, c2,… , cn).

Addition and scalar multiplication are defined by the formulas

v⃗ + w⃗ = (v1, v2,… , vn) + (w1, w2,… , wn) = (v1 +w1, v2 +w2,… , vn +wn)

and

�v⃗ = �(v1, v2,… , vn) = (�v1, �v2,… , �vn).

Why Do We Want Vectors in n Dimensions?

Vectors in two and three dimensions can be used to model displacement, velocities, or forces. But

what about vectors in n dimensions? There is another interpretation of 3-dimensional vectors (or

3-vectors) that is useful: they can be thought of as listing three different quantities—for example, the

displacements parallel to the x-, y-, and z-axes. Similarly, the n-vector

c⃗ = (c1, c2,… , cn)
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can be thought of as a way of keeping n different quantities organized. For example, a population

vector N⃗ shows the number of children and adults in a population:

N⃗ = (Number of children, Number of adults),

or, if we are interested in a more detailed breakdown of ages, we might give the number in each

ten-year age bracket in the population (up to age 110) in the form

N⃗ = (N1, N2, N3, N4,… , N10, N11),

where N1 is the population aged 0–9, and N2 is the population aged 10–19, and so on.

A consumption vector

q⃗ = (q1, q2,… , qn)

shows the quantities q1, q2, …, qn consumed of each of n different goods. A price vector

p⃗ = (p1, p2,… , pn)

contains the prices of n different items.

In 1907, Hermann Minkowski used vectors with four components when he introduced space-

time coordinates, whereby each event is assigned a vector position v⃗ with four coordinates, three

for its position in space and one for time:

v⃗ = (x, y, z, t).

Example 7 Suppose the vector I⃗ represents the number of copies, in thousands, made by each of four copy

centers in the month of December and J⃗ represents the number of copies made at the same four

copy centers during the previous eleven months (the “year-to-date”). If I⃗ = (25, 211, 818, 642), and

J⃗ = (331, 3227, 1377, 2570), compute I⃗ + J⃗ . What does this sum represent?

Solution The sum is

I⃗ + J⃗ = (25 + 331, 211 + 3227, 818 + 1377, 642 + 2570) = (356, 3438, 2195, 3212).

Each term in I⃗ + J⃗ represents the sum of the number of copies made in December plus those in

the previous eleven months, that is, the total number of copies made during the entire year at that

particular copy center.

Example 8 The price vector p⃗ = (p1, p2, p3) represents the prices in dollars of three goods. Write a vector that

gives the prices of the same goods in cents.

Solution The prices in cents are 100p1, 100p2, and 100p3 respectively, so the new price vector is

(100p1, 100p2, 100p3) = 100p⃗ .

Summary for Section 13.2

• Velocity, acceleration and force are all examples of vector quantities.

• Vector addition and scalar multiplication satisfy many algebraic properties, such as commuta-

tivity and associativity.

• Vectors in higher dimensions can be used to represent collections of related quantities. For

example, a price vector p⃗ = (p1, p2,… , pn) can represent the prices of n different commodities.
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Exercises and Problems for Section 13.2 Online Resource: Additional Problems for Section 13.2
EXERCISES

In Exercises 1–5, say whether the given quantity is a vector

or a scalar.

1. The population of the US.

2. The distance from Seattle to St. Louis.

3. The temperature at a point on the earth’s surface.

4. The magnetic field at a point on the earth’s surface.

5. The populations of each of the 50 states.

6. Give the components of the velocity vector for wind

blowing at 10 km/hr toward the southeast. (Assume

north is in the positive y-direction.)

7. Give the components of the velocity vector of a boat

that is moving at 40 km/hr in a direction 20◦ south of

west. (Assume north is in the positive y-direction.)

8. A car is traveling at a speed of 50 km/hr. The positive

y-axis is north and the positive x-axis is east. Resolve

the car’s velocity vector (in 2-space) into components if

the car is traveling in each of the following directions:

(a) East (b) South

(c) Southeast (d) Northwest.

9. Which is traveling faster, a car whose velocity vector is

21i⃗ +35j⃗ or a car whose velocity vector is 40i⃗ , assum-

ing that the units are the same for both directions?

10. What angle does a force of F⃗ = 15i⃗ + 18j⃗ make with

the x-axis?

PROBLEMS

11. The velocity of the current in a river is c⃗ = 0.6i⃗ +0.8j⃗

km/hr. A boat moves relative to the water with velocity

v⃗ = 8i⃗ km/hr.

(a) What is the speed of the boat relative to the

riverbed?

(b) What angle does the velocity of the boat relative to

the riverbed make with the vector v⃗ ? What does

this angle tell us in practical terms?

12. The current in Problem 11 is twice as fast and in the

opposite direction. What is the speed of the boat with

respect to the riverbed?

13. A boat is heading due east at 25 km/hr (relative to the

water). The current is moving toward the southwest at

10 km/hr.

(a) Give the vector representing the actual movement

of the boat.

(b) How fast is the boat going, relative to the ground?

(c) By what angle does the current push the boat off of

its due east course?

14. A truck is traveling due north at 30 km/hr approach-

ing a crossroad. On a perpendicular road a police car is

traveling west toward the intersection at 40 km/hr. Both

vehicles will reach the crossroad in exactly one hour.

Find the vector currently representing the displacement

from the police car to the truck.

15. An airplane heads northeast at an airspeed of 700

km/hr, but there is a wind blowing from the west at 60

km/hr. In what direction does the plane end up flying?

What is its speed relative to the ground?

16. Two forces, represented by the vectors F⃗ 1 = 8i⃗ − 6j⃗

and F⃗ 2 = 3i⃗ +2j⃗ , are acting on an object. Give a vec-

tor representing the force that must be applied to the

object if it is to remain stationary.

17. An airplane is flying at an airspeed of 500 km/hr in

a wind blowing at 60 km/hr toward the southeast. In

what direction should the plane head to end up going

due east? What is the airplane’s speed relative to the

ground?

18. The current in a river is pushing a boat in direction 25◦

north of east with a speed of 12 km∕hr. The wind is

pushing the same boat in a direction 80◦ south of east

with a speed of 7 km∕hr. Find the velocity vector of the

boat’s engine (relative to the water) if the boat actually

moves due east at a speed of 40 km∕hr relative to the

ground.

19. A large ship is being towed by two tugs. The larger tug

exerts a force which is 25% greater than the smaller tug

and at an angle of 30 degrees north of east. Which di-

rection must the smaller tug pull to ensure that the ship

travels due east?

20. An object P is pulled by a force F⃗1 of magnitude 15 lb

at an angle of 20 degrees north of east. Give the com-

ponents of a force F⃗2 of magnitude 20 lb to ensure that

P moves due east.

21. An object is to be moved vertically upward by a crane.

As the crane cannot get directly above the object, three

ropes are attached to guide the object. One rope is

pulled parallel to the ground with a force of 100 new-

tons in a direction 30◦ north of east. The second rope is

pulled parallel to the ground with a force of 70 newtons

in a direction 80◦ south of east. If the crane is attached

to the third rope and can pull with a total force of 3000

newtons, find the force vector for the crane. What is the

resulting (total) force on the object? (Assume vector i⃗

points east, vector j⃗ points north, and vector k⃗ points

vertically up.)
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22. The earth is at the origin, the moon is at the point

(384, 0), and a spaceship is at (280, 90), where distance

is in thousands of kilometers.

(a) What is the displacement vector of the moon rel-

ative to the earth? Of the spaceship relative to the

earth? Of the spaceship relative to the moon?

(b) How far is the spaceship from the earth? From the

moon?

(c) The gravitational force on the spaceship from the

earth is 461 newtons and from the moon is 26 new-

tons. What is the resulting force?

23. A particle moving with speed v hits a barrier at an an-

gle of 60◦ and bounces off at an angle of 60◦ in the op-

posite direction with speed reduced by 20 percent. See

Figure 13.25. Find the velocity vector of the object after

impact.

60◦ 60◦

x

y

Before
impact

After
impact

Figure 13.25
24. There are five students in a class. Their scores on the

midterm (out of 100) are given by the vector v⃗ =

(73, 80, 91, 65, 84). Their scores on the final (out of 100)

are given by w⃗ = (82, 79, 88, 70, 92). If the final counts

twice as much as the midterm, find a vector giving the

total scores (as a percentage) of the students.

25. The price vector of beans, rice, and tofu is

(1.6, 1.28, 2.60) in dollars per pound. Express it in dol-

lars per ounce.

26. An object is moving counterclockwise at a constant

speed around the circle x2 + y2 = 1, where x and y are

measured in meters. It completes one revolution every

minute.

(a) What is its speed?

(b) What is its velocity vector 30 seconds after it

passes the point (1, 0)? Does your answer change

if the object is moving clockwise? Explain.

27. An object is attached by a string to a fixed point and

rotates 30 times per minute in a horizontal plane. Show

that the speed of the object is constant but the velocity

is not. What does this imply about the acceleration?

In Problems 28–35, use the geometric definition of addition

and scalar multiplication to explain each of the properties.

28. w⃗ + v⃗ = v⃗ + w⃗ 29. (� + �)v⃗ = �v⃗ + �v⃗

30. �(v⃗ + w⃗ ) = �v⃗ + �w⃗ 31. �(�v⃗ ) = (��)v⃗

32. v⃗ + 0⃗ = v⃗ 33. 1v⃗ = v⃗

34. v⃗ + (−1)w⃗ = v⃗ − w⃗

35. (u⃗ + v⃗ ) + w⃗ = u⃗ + (v⃗ + w⃗ )

36. In the game of laser tag, you shoot a harmless laser gun

and try to hit a target worn at the waist by other play-

ers. Suppose you are standing at the origin of a three-

dimensional coordinate system and that the xy-plane is

the floor. Suppose that waist-high is 3 feet above floor

level and that eye level is 5 feet above the floor. Three

of your friends are your opponents. One is standing so

that his target is 30 feet along the x-axis, another lying

down so that his target is at the point x = 20, y = 15,

and the third lying in ambush so that his target is at a

point 8 feet above the point x = 12, y = 30.

(a) If you aim with your gun at eye level, find the vec-

tor from your gun to each of the three targets.

(b) If you shoot from waist height, with your gun one

foot to the right of the center of your body as you

face along the x-axis, find the vector from your gun

to each of the three targets.

37. A car drives northeast downhill on a 5◦ incline at a con-

stant speed of 60 miles per hour. The positive x-axis

points east, the y-axis north, and the z-axis up. Resolve

the car’s velocity into components.

Strengthen Your Understanding

In Problems 38–39, explain what is wrong with the state-

ment.

38. Two vectors in 3-space that have equal k⃗-components

and the same magnitude must be the same vector.

39. A vector v⃗ in the plane whose i⃗-component is 0.5 has

smaller magnitude than the vector w⃗ = 2i⃗ .

In Problems 40–41, give an example of:

40. A nonzero vector F⃗ on the plane that when combined

with the force vector G⃗ = i⃗ + j⃗ results in a combined

force vector R⃗ with a positive i⃗-component and a neg-

ative j⃗ -component.

41. Nonzero vectors u⃗ and v⃗ such that ‖u⃗ + v⃗ ‖ = ‖u⃗ ‖ +

‖v⃗ ‖.

In Problems 42–47, is the quantity a vector? Give a reason

for your answer.

42. Velocity 43. Speed 44. Force

45. Area 46. Acceleration 47. Volume
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13.3 THE DOT PRODUCT

We have seen how to add vectors; can we multiply two vectors together? In the next two sections we

will see two different ways of doing so: the scalar product (or dot product), which produces a scalar,

and the vector product (or cross product), which produces a vector.

Definition of the Dot Product

The dot product links geometry and algebra. We already know how to calculate the length of a vector

from its components; the dot product gives us a way of computing the angle between two vectors.

For any two vectors v⃗ = v1i⃗ + v2 j⃗ + v3k⃗ and w⃗ = w1i⃗ +w2j⃗ +w3k⃗ , shown in Figure 13.26, we

define a scalar as follows:

The following two definitions of the dot product, or scalar product, v⃗ ⋅ w⃗ , are equivalent:

• Geometric definition

v⃗ ⋅ w⃗ = ‖v⃗ ‖‖w⃗ ‖ cos � where � is the angle between v⃗ and w⃗ and 0 ≤ � ≤ �.

• Algebraic definition

v⃗ ⋅ w⃗ = v1w1 + v2w2 + v3w3.

Notice that the dot product of two vectors is a number, not a vector.

Why don’t we give just one definition of v⃗ ⋅ w⃗ ? The reason is that both definitions are equally

important; the geometric definition gives us a picture of what the dot product means and the algebraic

definition gives us a way of calculating it.

How do we know the two definitions are equivalent—that is, they really do define the same

thing? First, we observe that the two definitions give the same result in a particular example. Then

we show why they are equivalent in general.

�

w⃗

v⃗

Figure 13.26: The vectors v⃗ and

w⃗

1 2

2

x

y

�

w⃗

v⃗

Figure 13.27: Calculating the dot product of the vectors v = i⃗

and w⃗ = 2i⃗ + 2j⃗ geometrically and algebraically gives the

same result

Example 1 Suppose v⃗ = i⃗ and w⃗ = 2i⃗ + 2j⃗ . Compute v⃗ ⋅ w⃗ both geometrically and algebraically.

Solution To use the geometric definition, see Figure 13.27. The angle between the vectors is �∕4, or 45◦, and

the lengths of the vectors are given by

‖v⃗ ‖ = 1 and ‖w⃗ ‖ = 2
√

2.

Thus,

v⃗ ⋅ w⃗ = ‖v⃗ ‖‖w⃗ ‖ cos � = 1 ⋅ 2
√

2 cos
(

�

4

)

= 2.

Using the algebraic definition, we get the same result:

v⃗ ⋅ w⃗ = 1 ⋅ 2 + 0 ⋅ 2 = 2.
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Why the Two Definitions of the Dot Product Give the Same Result

In the previous example, the two definitions give the same value for the dot product. To show that

the geometric and algebraic definitions of the dot product always give the same result, we must show

that, for any vectors v⃗ = v1i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1i⃗ + w2 j⃗ + w3k⃗ with an angle � between

them:

‖v⃗ ‖‖w⃗ ‖ cos � = v1w1 + v2w2 + v3w3.

One method follows; a method that does not use trigonometry is given in Problem 109 (available

online).

Using the Law of Cosines. Suppose that 0 < � < �, so that the vectors v⃗ and w⃗ form a

triangle. (See Figure 13.28.) By the Law of Cosines, we have

‖v⃗ − w⃗ ‖

2 = ‖v⃗ ‖2 + ‖w⃗ ‖

2 − 2‖v⃗ ‖‖w⃗ ‖ cos �.

This result is also true for � = 0 and � = �. We calculate the lengths using components:

‖v⃗ ‖2 = v2
1
+ v2

2
+ v2

3

‖w⃗ ‖

2 = w2
1
+w2

2
+w2

3

‖v⃗ − w⃗ ‖

2 = (v1 −w1)
2 + (v2 −w2)

2 + (v3 −w3)
2

= v2
1
− 2v1w1 +w2

1
+ v2

2
− 2v2w2 +w2

2
+ v2

3
− 2v3w3 +w2

3
.

Substituting into the Law of Cosines and canceling, we see that

−2v1w1 − 2v2w2 − 2v3w3 = −2‖v⃗ ‖‖w⃗ ‖ cos �.

Therefore we have the result we wanted, namely that:

v1w1 + v2w2 + v3w3 = ‖v⃗ ‖‖w⃗ ‖ cos �.

�

w⃗

v⃗

v⃗ − w⃗

Figure 13.28: Triangle used in the justification of ‖v⃗ ‖‖w⃗ ‖ cos � = v1w1 + v2w2 + v3w3

Properties of the Dot Product

The following properties of the dot product can be justified using the algebraic definition; see Prob-

lem 105. For a geometric interpretation of Property 3, see Problem 107 (both available online).

Properties of the Dot Product. For any vectors u⃗ , v⃗ , and w⃗ and any scalar �,

1. v⃗ ⋅ w⃗ = w⃗ ⋅ v⃗

2. v⃗ ⋅ (�w⃗ ) = �(v⃗ ⋅ w⃗ ) = (�v⃗ ) ⋅ w⃗

3. (v⃗ + w⃗ ) ⋅ u⃗ = v⃗ ⋅ u⃗ + w⃗ ⋅ u⃗

Perpendicularity, Magnitude, and Dot Products

Two vectors are perpendicular if the angle between them is �∕2 or 90◦. Since cos(�∕2) = 0, if v⃗

and w⃗ are perpendicular, then v⃗ ⋅ w⃗ = 0. Conversely, provided that v⃗ ⋅ w⃗ = 0, then cos � = 0, so

� = �∕2 and the vectors are perpendicular. Thus, we have the following result:
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Two nonzero vectors v⃗ and w⃗ are perpendicular, or orthogonal, if and only if

v⃗ ⋅ w⃗ = 0.

For example: i⃗ ⋅ j⃗ = 0, j⃗ ⋅ k⃗ = 0, i⃗ ⋅ k⃗ = 0.

If we take the dot product of a vector with itself, then � = 0 and cos � = 1. For any vector v⃗ :

Magnitude and dot product are related as follows:

v⃗ ⋅ v⃗ = ‖v⃗ ‖2.

For example: i⃗ ⋅ i⃗ = 1, j⃗ ⋅ j⃗ = 1, k⃗ ⋅ k⃗ = 1.

Using the Dot Product

Depending on the situation, one definition of the dot product may be more convenient to use than

the other. In Example 2, the geometric definition is the only one that can be used because we are not

given components. In Example 3, the algebraic definition is used.

Example 2 Suppose the vector b⃗ is fixed and has length 2; the vector a⃗ is free to rotate and has length 3. What

are the maximum and minimum values of the dot product a⃗ ⋅ b⃗ as the vector a⃗ rotates through all

possible positions in the plane? What positions of a⃗ and b⃗ lead to these values?

Solution The geometric definition gives a⃗ ⋅ b⃗ = ‖a⃗ ‖‖b⃗ ‖ cos � = 3 ⋅ 2 cos � = 6 cos �. Thus, the maximum

value of a⃗ ⋅ b⃗ is 6, and it occurs when cos � = 1 so � = 0, that is, when a⃗ and b⃗ point in the same

direction. The minimum value of a⃗ ⋅ b⃗ is −6, and it occurs when cos � = −1 so � = �, that is, when

a⃗ and b⃗ point in opposite directions. (See Figure 13.29.)

b⃗

a⃗
a⃗

a⃗

When a⃗ is in this
position, a⃗ ⋅ b⃗ = 0

When a⃗ is in this
position, a⃗ ⋅ b⃗ = −6

When a⃗ is in this
position, a⃗ ⋅ b⃗ = 6

Figure 13.29: Maximum and minimum values of a⃗ ⋅ b⃗ obtained

from a fixed vector b⃗ of length 2 and rotating vector a⃗ of length 3

Example 3 Which pairs from the following list of 3-dimensional vectors are perpendicular to one another?

u⃗ = i⃗ +
√

3 k⃗ , v⃗ = i⃗ +
√

3 j⃗ , w⃗ =
√

3 i⃗ + j⃗ − k⃗ .

Solution The geometric definition tells us that two vectors are perpendicular if and only if their dot product

is zero. Since the vectors are given in components, we calculate dot products using the algebraic

definition:
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v⃗ ⋅ u⃗ = (i⃗ +
√

3 j⃗ + 0k⃗ ) ⋅ (i⃗ + 0j⃗ +
√

3 k⃗ ) = 1 ⋅ 1 +
√

3 ⋅ 0 + 0 ⋅
√

3 = 1,

v⃗ ⋅ w⃗ = (i⃗ +
√

3 j⃗ + 0k⃗ ) ⋅ (
√

3 i⃗ + j⃗ − k⃗ ) = 1 ⋅
√

3 +
√

3 ⋅ 1 + 0(−1) = 2
√

3,

w⃗ ⋅ u⃗ = (
√

3 i⃗ + j⃗ − k⃗ ) ⋅ (i⃗ + 0j⃗ +
√

3 k⃗ ) =
√

3 ⋅ 1 + 1 ⋅ 0 + (−1) ⋅
√

3 = 0.

So the only two vectors that are perpendicular are w⃗ and u⃗ .

Example 4 Compute the angle between the vectors v⃗ and w⃗ from Example 3.

Solution We know that v⃗ ⋅ w⃗ = ‖v⃗ ‖‖w⃗ ‖ cos �, so cos � =
v⃗ ⋅ w⃗

‖v⃗ ‖‖w⃗ ‖

. From Example 3, we know that

v⃗ ⋅ w⃗ = 2
√

3. This gives:

cos � =
2
√

3

‖v⃗ ‖‖w⃗ ‖

=
2
√

3
√

12 +
(
√

3
)2

+ 02

√

(
√

3
)2

+ 12 + (−1)2

=

√

3
√

5

so � = arccos

(
√

3
√

5

)

= 39.2315◦.

Normal Vectors and the Equation of a Plane

In Section 12.4 we wrote the equation of a plane given its x-slope, y-slope and z-intercept. Now we

write the equation of a plane using a vector n⃗ and a point P0. The key idea is that all the displacement

vectors from P0 that are perpendicular to n⃗ form a plane. To picture this, imagine a pencil balanced

on a table, with other pencils fanned out on the table in different directions. The upright pencil is n⃗ ,

its base is P0, the other pencils are perpendicular displacement vectors, and the table is the plane.

More formally, a normal vector to a plane is a vector that is perpendicular to the plane, that is, it is

perpendicular to every displacement vector between any two points in the plane. Let n⃗ = ai⃗ +bj⃗ +ck⃗

be a normal vector to the plane, let P0 = (x0, y0, z0) be a fixed point in the plane, and let P = (x, y, z)

be any other point in the plane. Then ⃖⃖⃖⃖⃖⃖⃗P0P = (x−x0)i⃗ +(y−y0)j⃗ +(z−z0)k⃗ is a vector whose head

and tail both lie in the plane. (See Figure 13.30.) Thus, the vectors n⃗ and ⃖⃖⃖⃖⃖⃖⃗P0P are perpendicular, so

n⃗ ⋅ ⃖⃖⃖⃖⃖⃖⃗P0P = 0. The algebraic definition of the dot product gives n⃗ ⋅ ⃖⃖⃖⃖⃖⃖⃗P0P = a(x−x0)+b(y−y0)+c(z−z0),

so we obtain the following result:

Figure 13.30: Plane with normal n⃗ and containing a fixed point (x0, y0, z0)



13.3 THE DOT PRODUCT 767

The equation of the plane with normal vector n⃗ = ai⃗ + bj⃗ + ck⃗ and containing the point

P0 = (x0, y0, z0) is

a(x − x0) + b(y − y0) + c(z − z0) = 0.

Letting d = ax0 + by0 + cz0 (a constant), we can write the equation of the plane in the form

ax + by + cz = d.

Example 5 (a) Find the equation of the plane perpendicular to n⃗ = −i⃗ +3j⃗ +2k⃗ and passing through the point

(1, 0, 4).

(b) Find a vector parallel to the plane.

Solution (a) The equation of the plane is

−(x − 1) + 3(y − 0) + 2(z − 4) = 0,

which can be written as

−x + 3y + 2z = 7.

(b) Any vector v⃗ that is perpendicular to n is also parallel to the plane, so we look for any vector

satisfying v⃗ ⋅ n⃗ = 0; for example, v⃗ = 3i⃗ + j⃗ . There are many other possible vectors.

Example 6 Find a normal vector to the plane with equation (a) x − y + 2z = 5 (b) z = 0.5x + 1.2y.

Solution (a) Since the coefficients of i⃗ , j⃗ , and k⃗ in a normal vector are the coefficients of x, y, and z in the

equation of the plane, a normal vector is n⃗ = i⃗ − j⃗ + 2k⃗ .

(b) Before we can find a normal vector, we rewrite the equation of the plane in the form

0.5x + 1.2y − z = 0.

Thus, a normal vector is n⃗ = 0.5i⃗ + 1.2j⃗ − k⃗ .

The Dot Product in n Dimensions

The algebraic definition of the dot product can be extended to vectors in higher dimensions.

If u⃗ = (u1,… , un) and v⃗ = (v1,… , vn) then the dot product of u⃗ and v⃗ is the scalar

u⃗ ⋅ v⃗ = u1v1 +⋯ + unvn.

Example 7 A video store sells videos, tapes, CDs, and computer games. We define the quantity vector q⃗ =

(q1, q2, q3, q4), where q1, q2, q3, q4 denote the quantities sold of each of the items, and the price

vector p⃗ = (p1, p2, p3, p4), where p1, p2, p3, p4 denote the price per unit of each item. What does the

dot product p⃗ ⋅ q⃗ represent?

Solution The dot product is p⃗ ⋅ q⃗ = p1q1 + p2q2 + p3q3 + p4q4. The quantity p1q1 represents the revenue

received by the store for the videos, p2q2 represents the revenue for the tapes, and so on. The dot

product represents the total revenue received by the store for the sale of these four items.
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Resolving a Vector into Components: Projections

In Section 13.1, we resolved a vector into components parallel to the axes. Now we see how to

resolve a vector, v⃗ , into components, called v⃗ parallel and v⃗ perp, which are parallel and perpendicular,

respectively, to a given nonzero vector, u⃗ . (See Figure 13.31.)

�

u⃗v⃗

v⃗ perp v⃗ parallel

(a)

�

v⃗ parallel

v⃗

u⃗v⃗ perp
(b)

Figure 13.31: Resolving v⃗ into components parallel and perpendicular to u⃗

(a) 0 < � < �∕2 (b) �∕2 < � < �

The projection of v⃗ on u⃗ , written v⃗ parallel, measures (in some sense) how much the vector v⃗ is

aligned with the vector u⃗ . The length of v⃗ parallel is the length of the shadow cast by v⃗ on a line in

the direction of u⃗ .

To compute v⃗ parallel, we assume u⃗ is a unit vector. (If not, create one by dividing by its length.)

Then Figure 13.31(a) shows that, if 0 ≤ � ≤ �∕2:

‖v⃗ parallel‖ = ‖v⃗ ‖ cos � = v⃗ ⋅ u⃗ (since ‖u⃗ ‖ = 1).

Now v⃗ parallel is a scalar multiple of u⃗ , and since u⃗ is a unit vector,

v⃗ parallel = (‖v⃗ ‖ cos �)u⃗ = (v⃗ ⋅ u⃗ )u⃗ .

A similar argument shows that if �∕2 < � ≤ �, as in Figure 13.31(b), this formula for v⃗ parallel still

holds. The vector v⃗ perp is specified by

v⃗ perp = v⃗ − v⃗ parallel.

Thus, we have the following results:

Projection of v⃗ on the Line in the Direction of the Unit Vector u⃗

If v⃗ parallel and v⃗ perp are components of v⃗ that are parallel and perpendicular, respectively, to

u⃗ , then

Projection of v⃗ onto u⃗ = v⃗ parallel = (v⃗ ⋅ u⃗ )u⃗ provided ‖u⃗ ‖ = 1

and v⃗ = v⃗ parallel + v⃗ perp so v⃗ perp = v⃗ − v⃗ parallel.

Example 8 Figure 13.32 shows the force the wind exerts on the sail of a sailboat. Find the component of the

force in the direction in which the sailboat is traveling.

Sail

✲

❥❄

❥

✲
✲u⃗

30◦

Wind direction

Boat’s direction of travel

F⃗ wind

Component of F⃗ wind
in boat’s direction of travel

Figure 13.32: Wind moving a sailboat
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Solution Let u⃗ be a unit vector in the direction of travel. The force of the wind on the sail makes an angle of

30◦ with u⃗ . Thus, the component of this force in the direction of u⃗ is

F⃗ parallel = (F⃗ ⋅ u⃗ )u⃗ = ‖F⃗ ‖(cos 30◦)u⃗ = 0.87‖F⃗ ‖u⃗ .

Thus, the boat is being pushed forward with about 87% of the total force due to the wind. (In fact,

the interaction of wind and sail is much more complex than this model suggests.)

A Physical Interpretation of the Dot Product: Work

In physics, the word “work” has a different meaning from its everyday meaning. In physics, when a

force of magnitude F acts on an object through a distance d, we say the work, W , done by the force

is

W = Fd,

provided the force and the displacement are in the same direction. For example, if a 1 kg body falls

10 meters under the force of gravity, which is 9.8 newtons, then the work done by gravity is

W = (9.8 newtons) ⋅ (10 meters) = 98 joules.

What if the force and the displacement are not in the same direction? Suppose a force F⃗ acts on

an object as it moves along a displacement vector d⃗ . Let � be the angle between F⃗ and d⃗ . First, we

assume 0 ≤ � ≤ �∕2. Figure 13.33 shows how we can resolve F⃗ into components that are parallel

and perpendicular to d⃗ :

F⃗ = F⃗ parallel + F⃗ perp.

Then the work done by F⃗ is defined to be

W = ‖F⃗ parallel‖ ‖d⃗ ‖.

We see from Figure 13.33 that F⃗ parallel has magnitude ‖F⃗ ‖ cos �. So the work is given by the dot

product:

W = (‖F⃗ ‖ cos �)‖d⃗ ‖ = ‖F⃗ ‖‖d⃗ ‖ cos � = F⃗ ⋅ d⃗ .

�

d⃗

F⃗

F⃗ perp

F⃗ parallel

Figure 13.33: Resolving the force F⃗ into two forces, one parallel to d⃗ , one perpendicular to d⃗

The formulaW = F⃗ ⋅ d⃗ holds when �∕2 < � ≤ � also. In that case, the work done by the force

is negative and the object is moving against the force. Thus, we have the following definition:

The work, W , done by a force F⃗ acting on an object through a displacement d⃗ is given by

W = F⃗ ⋅ d⃗ .

Example 9 How much work does the wind do on the sailboat from Example 8 if the boat moves 20 m and the

wind’s force is 120 newtons?
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Solution From Example 8, we know that the force of the wind F⃗ makes a 30◦ angle with the boat’s displace-

ment d⃗ . Since ‖F⃗ ‖ = 120 and ‖d⃗ ‖ = 20, the work done by the wind on the boat is

W = F⃗ ⋅ d⃗ = ‖F⃗ ‖‖d⃗ ‖ cos 30◦ = 2078.461 joules.

Notice that if the vectors F⃗ and d⃗ are parallel and in the same direction, with magnitudes F

and d, then cos � = cos 0 = 1, so W = ‖F⃗ ‖‖d⃗ ‖ = Fd, which is the original definition. When the

vectors are perpendicular, cos � = cos(�∕2) = 0, so W = 0 and no work is done in the technical

definition of the word. For example, if you carry a heavy box across the room at the same horizontal

height, no work is done by gravity because the force of gravity is vertical but the motion is horizontal.

Summary for Section 13.3

• For any two vectors v⃗ = v1i⃗ +v2j⃗ +v3k⃗ and w⃗ = w1i⃗ +w2 j⃗ +w3k⃗ , we have two equivalent

definitions of the dot product, v⃗ ⋅ w⃗ :

◦ Geometric definition:

v⃗ ⋅ w⃗ = ‖v⃗ ‖‖w⃗ ‖ cos � where � is the angle between v⃗ and w⃗ and 0 ≤ � ≤ �.

◦ Algebraic definition:

v⃗ ⋅ w⃗ = v1w1 + v2w2 + v3w3.

• For any vectors u⃗ , v⃗ , and w⃗ and any scalar �, the dot product has properties:

1. v⃗ ⋅ w⃗ = w⃗ ⋅ v⃗

2. v⃗ ⋅ (�w⃗ ) = �(v⃗ ⋅ w⃗ ) = (�v⃗ ) ⋅ w⃗

3. (v⃗ + w⃗ ) ⋅ u⃗ = v⃗ ⋅ u⃗ + w⃗ ⋅ u⃗

• Two nonzero vectors v⃗ and w⃗ are perpendicular, or orthogonal, if and only if

v⃗ ⋅ w⃗ = 0.

• The length of a vector can be computed using the dot product:

v⃗ ⋅ v⃗ = ‖v⃗ ‖2.

• The equation of the plane with normal vector n⃗ = ai⃗ + bj⃗ + ck⃗ and containing the point

P0 = (x0, y0, z0) is

a(x − x0) + b(y − y0) + c(z − z0) = 0.

or we can combine constants and write

ax + by + cz = d.

• Given vectors u⃗ and v⃗ , the vectors v⃗ parallel and v⃗ perp are the components of v⃗ that are parallel

and perpendicular, respectively, to u⃗ . We have v⃗ = v⃗ parallel + v⃗ perp.

• The vector v⃗ parallel is also called the projection of v⃗ onto the vector u⃗ .

• The projection of v⃗ onto a unit vector u⃗ can be calculated using

Projection of v⃗ onto u⃗ = v⃗ parallel = (v⃗ ⋅ u⃗ )u⃗ .

• We can find the component of v⃗ perpendicular to u⃗ by

v⃗ perp = v⃗ − v⃗ parallel.
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Exercises and Problems for Section 13.3 Online Resource: Additional Problems for Section 13.3
EXERCISES

In Exercises 1–4, evaluate the dot product.

1. (3i⃗ + 2j⃗ − 5k⃗ ) ⋅ (i⃗ − 2j⃗ − 3k⃗ )

2. (i⃗ + j⃗ + k⃗ ) ⋅ (4i⃗ + 5j⃗ + 6k⃗ )

3. (3i⃗ − 2j⃗ − 4k⃗ ) ⋅ (3i⃗ − 2j⃗ − 4k⃗ )

4. (2i + 5k⃗ ) ⋅ 10j⃗

In Exercises 5–6, evaluate u⃗ ⋅ w⃗ .

5. ‖u⃗ ‖ = 3, ‖w⃗ ‖ = 5; the angle between u⃗ and w⃗ is 45◦.

6. ‖u⃗ ‖ = 10, ‖w⃗ ‖ = 20; the angle between u⃗ and w⃗

is 120◦.

For Exercises 7–15, perform the following operations on the

given 3-dimensional vectors.

a⃗ = 2j⃗ + k⃗ b⃗ = −3i⃗ + 5j⃗ + 4k⃗ c⃗ = i⃗ + 6j⃗

y⃗ = 4i⃗ − 7j⃗ z⃗ = i⃗ − 3j⃗ − k⃗

7. a⃗ ⋅ y⃗ 8. c⃗ ⋅ y⃗

9. a⃗ ⋅ b⃗ 10. a⃗ ⋅ z⃗

11. c⃗ ⋅ a⃗ + a⃗ ⋅ y⃗ 12. a⃗ ⋅ (c⃗ + y⃗ )

13. (a⃗ ⋅ b⃗ )a⃗ 14. (a⃗ ⋅ y⃗ )(c⃗ ⋅ z⃗ )

15. ((c⃗ ⋅ c⃗ )a⃗ ) ⋅ a⃗

In Exercises 16–20, find a normal vector to the plane.

16. 2x + y − z = 5

17. 2(x − z) = 3(x + y)

18. 1.5x + 3.2y + z = 0

19. z = 3x + 4y − 7

20. �(x − 1) = (1 − �)(y − z) + �

In Exercises 21–27, find an equation of a plane that satisfies

the given conditions.

21. Through (1, 5, 2) perpendicular to 3i⃗ − j⃗ + 4k⃗ .

22. Through (2,−1, 3) perpendicular to 5i⃗ + 4j⃗ − k⃗ .

23. Through (1, 3, 5) and normal to i⃗ − j⃗ + k⃗ .

24. Perpendicular to 5i⃗ + j⃗ − 2k⃗ and passing through

(0, 1,−1).

25. Parallel to 2x + 4y − 3z = 1 and through (1, 0,−1).

26. Through (−2, 3, 2) and parallel to 3x + y + z = 4.

27. Perpendicular to v⃗ = 2i⃗ − 3j⃗ + 5k⃗ and through

(4, 5,−2).

In Exercises 28–32, compute the angle between the vectors.

28. i⃗ + j⃗ + k⃗ and i⃗ − j⃗ − k⃗ .

29. i⃗ + k⃗ and j⃗ − k⃗ .

30. i⃗ + j⃗ − k⃗ and 2 i⃗ + 3 j⃗ + k⃗ .

31. i⃗ + j⃗ and i⃗ + 2 j⃗ − k⃗ .

32. i⃗ and 2 i⃗ + 3 j⃗ − k⃗ .

33. Match statements (a)-(c) with diagrams (I)-(III) of vec-

tors u⃗ and w⃗ in Figure 13.34.

(a) u⃗ ⋅ w⃗ = 0 (b) u⃗ ⋅ w⃗ > 0 (c) u⃗ ⋅ w⃗ < 0

(I) (II) (III)

Figure 13.34

PROBLEMS

34. Are the dot products of the two-dimensional vectors in

Figure 13.34 positive, negative, or zero?

(a) a⃗ ⋅ b⃗ (b) a⃗ ⋅ c⃗ (c) b⃗ ⋅ c⃗

c⃗

b⃗

a⃗

Figure 13.35

35. Give a unit vector

(a) In the same direction as v⃗ = 2i⃗ + 3j⃗ .

(b) Perpendicular to v⃗ .

36. For what value of c is the vector 3i⃗ + 2j⃗ + ck⃗ parallel

to the plane x + 3y − z = 5?

37. For what value of c is the vector ci⃗ + cj⃗ + k⃗ parallel

to the plane 10 + 2x + 3y + z = 0?

38. For what value(s) of a is the vector ai⃗ −aj⃗ + k⃗ parallel

to the plane ax + 2y − 15z = 0?

39. A plane has equation z = 5x − 2y + 7.

(a) Find a value of � making the vector �i⃗ + j⃗ +0.5k⃗

normal to the plane.

(b) Find a value of a so that the point (a + 1, a, a − 1)

lies on the plane.
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40. A plane has equation 3x − ay + 5z = 1.

(a) What value of amakes the vector v⃗ = 9i⃗ −4j⃗ +7k⃗

parallel to the plane?

(b) If possible, find a value of a making the vector

v⃗ = 9i⃗ − 4j⃗ + 7k⃗ normal to the plane.

41. Consider the plane 5x − y + 7z = 21.

(a) Find a point on the x-axis on this plane.

(b) Find two other points on the plane.

(c) Find a vector perpendicular to the plane.

(d) Find a vector parallel to the plane.

42. (a) Find a vector perpendicular to the plane

z = 2 + 3x − y.

(b) Find a vector parallel to the plane.

43. (a) Find a vector perpendicular to the plane

z = 2x + 3y.

(b) Find a vector parallel to the plane.

44. Consider the plane x + 2y − z = 5 and the vector

v⃗ = 2i⃗ − 5j⃗ + 3k⃗ .

(a) Find a normal vector to the plane.

(b) What is the angle between v⃗ and the vector you

found in part (a)?

(c) What is the angle between v⃗ and the plane?

45. Match the planes in (a)–(d) with one or more of the de-

scriptions in (I)–(IV). No reasons are needed.

(a) 3x − y + z = 0 (b) 4x + y + 2z − 5 = 0

(c) x + y = 5 (d) x = 5

I Goes through the origin.

II Has a normal vector parallel to the xy-plane.

III Goes through the point (0, 5, 0).

IV Has a normal vector whose dot products with i⃗ , j⃗ ,

k⃗ are all positive.

46. Which pairs (if any) of vectors from the following list

(a) Are perpendicular?

(b) Are parallel?

(c) Have an angle less than �∕2 between them?

(d) Have an angle of more than �∕2 between them?

a⃗ = i⃗ − 3j⃗ − k⃗ , b⃗ = i⃗ + j⃗ + 2k⃗ ,

c⃗ = −2i⃗ − j⃗ + k⃗ , d⃗ = −i⃗ − j⃗ + k⃗ .

47. List any vectors that are parallel to each other and any

vectors that are perpendicular to each other:

v⃗ 1 = i⃗ − 2j⃗ v⃗ 2 = 2i⃗ + 4j⃗

v⃗ 3 = 3i⃗ + 1.5j⃗ v⃗ 4 = −1.2i⃗ + 2.4j⃗

v⃗ 5 = −5i⃗ − 2.5j⃗ v⃗ 6 = 12i⃗ − 12j⃗

v⃗ 7 = 4i⃗ + 2j⃗ v⃗ 8 = 3i⃗ − 6j⃗

v⃗ 9 = 0.70i⃗ − 0.35j⃗

48. (a) Give a vector that is parallel to, but not equal to,

v⃗ = 4i⃗ + 3j⃗ .

(b) Give a vector that is perpendicular to v⃗ .

49. For what values of t are u⃗ = ti⃗ − j⃗ + k⃗ and v⃗ =

ti⃗ + tj⃗ − 2k⃗ perpendicular? Are there values of t for

which u⃗ and v⃗ are parallel?

50. Let � be the angle between v⃗ and w⃗ , with 0 < � < �∕2.

What is the effect on v⃗ ⋅w⃗ of increasing each of the fol-

lowing quantities? Does v⃗ ⋅ w⃗ increase or decrease?

(a) ||v⃗ || (b) �

In Problems 51–53, for two-dimensional vectors a⃗ and b⃗ , if

‖a⃗ ‖ = 2 and ‖b⃗ ‖ = 4, find ‖a⃗ + b⃗ ‖ for the given a⃗ ⋅ b⃗ .

51. a⃗ ⋅ b⃗ = −8 52. a⃗ ⋅ b⃗ = 8 53. a⃗ ⋅ b⃗ = 0

54. For a fixed two-dimensional vector a⃗ with ‖a⃗ ‖ = 2,

determine how many vectors there are with ‖b⃗ ‖ = 4

and a⃗ ⋅ b⃗ = 4.

55. Write a⃗ = 3i⃗ +2j⃗ −6k⃗ as the sum of two vectors, one

parallel and one perpendicular to d⃗ = 2i⃗ − 4j⃗ + k⃗ .

56. Find angle BAC if A = (2, 2, 2), B = (4, 2, 1), and

C = (2, 3, 1).

57. The points (5, 0, 0), (0,−3, 0), and (0, 0, 2) form a tri-

angle. Find the lengths of the sides of the triangle and

each of its angles.

58. Let S be the triangle with vertices A = (2, 2, 2), B =

(4, 2, 1), and C = (2, 3, 1).

(a) Find the length of the shortest side of S.

(b) Find the cosine of the angle BAC at vertex A.

In Problems 59–61, find the work done by a force F⃗ moving

an object on the line from point P to point Q. Give answers

in joules and foot-pounds, using 1 joule ≈ 0.73756 ft-lb.

59. F⃗ = 3i⃗ + 4j⃗ newtons, P = (3, 4) meters, Q =

(8, 10) meters

60. F⃗ = 4i⃗ + 2j⃗ newtons, P = (10, 9) meters, Q =

(12, 2) meters

61. F⃗ = 20i⃗ + 30j⃗ pounds, P = (9, 3) feet, Q =

(12, 5) feet

In Problems 62–67, given v⃗ = 3i⃗ +4j⃗ and force vector F⃗ ,

find:

(a) The component of F⃗ parallel to v⃗ .

(b) The component of F⃗ perpendicular to v⃗ .

(c) The work, W, done by force F⃗ through displacement v⃗ .

62. F⃗ = 4i⃗ + j⃗ 63. F⃗ = 0.2i⃗ − 0.5j⃗

64. F⃗ = 9i⃗ + 12j⃗ 65. F⃗ = −0.4i⃗ + 0.3j⃗

66. F⃗ = −3i⃗ − 5j⃗ 67. F⃗ = −6i⃗ − 8j⃗
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In Problems 68–71, the force on an object is F⃗ = −20j⃗ .

For vector v⃗ , find:

(a) The component of F⃗ parallel to v⃗ .

(b) The component of F⃗ perpendicular to v⃗ .

(c) The work W done by force F⃗ through displacement v⃗ .

68. v⃗ = 2i⃗ + 3j⃗ 69. v⃗ = 5i⃗ − j⃗

70. v⃗ = 3j⃗ 71. v⃗ = 5i⃗

72. A basketball gymnasium is 25 meters high, 80 meters

wide and 200 meters long. For a half-time stunt, the

cheerleaders want to run two strings, one from each of

the two corners above one basket to the diagonally op-

posite corners of the gym floor. What is the cosine of

the angle made by the strings as they cross?

73. An inner diagonal of a cube runs from one vertex

through the center to the opposite vertex. For the cube

with vertices (±1,±1,±1), at what acute angle do two

distinct inner diagonals intersect?

74. A 100-meter dash is run on a track in the direction of

the vector v⃗ = 2i⃗ +6j⃗ . The wind velocity w⃗ is 5i⃗ + j⃗

km/hr. The rules say that a legal wind speed measured in

the direction of the dash must not exceed 5 km/hr. Will

the race results be disqualified due to an illegal wind?

Justify your answer.

75. An airplane is flying toward the southeast. Which of the

following wind velocity vectors increases the plane’s

speed the most? Which slows down the plane the most?

w⃗ 1 = −4i⃗ − j⃗ w⃗ 2 = i⃗ − 2j⃗ w⃗ 3 = −i⃗ + 8j⃗

w⃗ 4 = 10i⃗ + 2j⃗ w⃗ 5 = 5i⃗ − 2j⃗

76. A canoe is moving with velocity v⃗ = 5i⃗ + 3j⃗ m/sec

relative to the water. The velocity of the current in the

water is c⃗ = i⃗ + 2j⃗ m/sec.

(a) What is the speed of the current?

(b) What is the speed of the current in the direction of

the canoe’s motion?

77. A planet at the point (30, 60, 90) is in a circular orbit

about the line through the origin in the direction of the

unit vector u⃗ = 2∕3i⃗ + 2∕3j⃗ − 1∕3k⃗ . For the orbit,

find the

(a) Center (b) Radius

78. Find the shortest distance between the planes 2x−5y+

z = 10 and z = 5y − 2x.

79. A street vendor sells six items, with prices p1 dol-

lars per unit, p2 dollars per unit, and so on. The ven-

dor’s price vector is p⃗ = (p1, p2, p3, p4, p5, p6) =

(1.00, 3.50, 4.00, 2.75, 5.00, 3.00). The vendor sells q1
units of the first item, q2 units of the second item,

and so on. The vendor’s quantity vector is q⃗ =

(q1, q2, q3, q4, q5, q6) = (43, 57, 12, 78, 20, 35). Find p⃗ ⋅

q⃗ , give its units, and explain its significance to the ven-

dor.

80. A course has four exams, weighted 10%, 15%, 25%,

50%, respectively. The class average on each of these

exams is 75%, 91%, 84%, 87%, respectively. What do

the vectors a⃗ = (0.75, 0.91, 0.84, 0.87) and w⃗ =

(0.1, 0.15, 0.25, 0.5) represent, in terms of the course?

Calculate the dot product w⃗ ⋅ a⃗ . What does it repre-

sent, in terms of the course?

81. A consumption vector of three goods is defined by

x⃗ = (x1, x2, x3), where x1, x2 and x3 are the quanti-

ties consumed of the three goods. A budget constraint

is represented by the equation p⃗ ⋅ x⃗ = k, where p⃗ is

the price vector of the three goods and k is a constant.

Show that the difference between two consumption vec-

tors corresponding to points satisfying the same budget

constraint is perpendicular to the price vector p⃗ .

82. What does Property 2 of the dot product in the box on

page 764 say geometrically?

83. Show that the vectors (b⃗ ⋅ c⃗ )a⃗ − (a⃗ ⋅ c⃗ )b⃗ and c⃗ are

perpendicular.

84. Show that if u⃗ and v⃗ are two vectors such that

u⃗ ⋅ w⃗ = v⃗ ⋅ w⃗

for every vector w⃗ , then

u⃗ = v⃗ .

85. The Law of Cosines for a triangle with side lengths a,

b, and c, and with angle C opposite side c, says

c2 = a2 + b2 − 2ab cosC.

On page 764, we used the Law of Cosines to show that

the two definitions of the dot product are equivalent.

In this problem, use the geometric definition of the dot

product and its properties in the box on page 764 to

prove the Law of Cosines. [Hint: Let u⃗ and v⃗ be the

displacement vectors from C to the other two vertices,

and express c2 in terms of u⃗ and v⃗ .]

86. For any vectors v⃗ and w⃗ , consider the following func-

tion of t:

q(t) = (v⃗ + tw⃗ ) ⋅ (v⃗ + tw⃗ ).

(a) Explain why q(t) ≥ 0 for all real t.

(b) Expand q(t) as a quadratic polynomial in t using

the properties on page 764.

(c) Using the discriminant of the quadratic, show that

|

|

v⃗ ⋅ w⃗ |

|

≤ ‖v⃗ ‖‖w⃗ ‖.
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Strengthen Your Understanding

In Problems 87–89, explain what is wrong with the state-

ment.

87. For any 3-dimensional vectors u⃗ , v⃗ , w⃗ , we have (u⃗ ⋅

v⃗ ) ⋅ w⃗ = u⃗ ⋅ (v⃗ ⋅ w⃗ ).

88. If u⃗ = i⃗ + j⃗ and v⃗ = 2i⃗ + j⃗ , then the component of

v⃗ parallel to u⃗ is v⃗ parallel = (v⃗ ⋅ u⃗ )u⃗ = 3i⃗ + 3j⃗ .

89. A normal vector for the plane z = 2x + 3y is 2i⃗ + 3j⃗ .

In Problems 90–91, give an example of:

90. A point (a, b) such that the displacement vector from

(1, 1) to (a, b) is perpendicular to i⃗ + 2j⃗ .

91. A linear function f (x, y) = mx + ny + c whose graph

is perpendicular to i⃗ + 2j⃗ + 3k⃗ .

Are the statements in Problems 92–103 true or false? Give

reasons for your answer.

92. The quantity u⃗ ⋅ v⃗ is a vector.

93. The plane x+2y−3z = 5 has normal vector i⃗ +2j⃗ −3k⃗ .

94. If u⃗ ⋅ v⃗ < 0 then the angle between u⃗ and v⃗ is greater

than �∕2.

95. An equation of the plane with normal vector i⃗ + j⃗ + k⃗

containing the point (1, 2, 3) is z = x + y.

96. The triangle in 3-space with vertices (1, 1, 0), (0, 1, 0)

and (0, 1, 1) has a right angle.

97. The dot product v⃗ ⋅ v⃗ is never negative.

98. If u⃗ ⋅ v⃗ = 0 then either u⃗ = 0 or v⃗ = 0.

99. If u⃗ , v⃗ and w⃗ are all nonzero, and u⃗ ⋅ v⃗ = u⃗ ⋅ w⃗ , then

v⃗ = w⃗ .

100. For any vectors u⃗ and v⃗ : (u⃗ + v⃗ ) ⋅ (u⃗ − v⃗ ) = ‖u⃗ ‖2 −

‖v⃗ ‖2.

101. If ‖u⃗ ‖ = 1, then the vector v⃗ −(v⃗ ⋅u⃗ )u⃗ is perpendicular

to u⃗ .

102. If u⃗ ⋅ v⃗ = ‖u⃗ ‖‖v⃗ ‖ then ‖u⃗ + v⃗ ‖ = ‖u⃗ ‖ + ‖v⃗ ‖.

103. The two nonzero vectors v⃗ = xi⃗ +yj⃗ and w⃗ = yi⃗ −xj⃗

are orthogonal for any choice of x and y.

13.4 THE CROSS PRODUCT

In the previous section we combined two vectors to get a number, the dot product. In this section

we see another way of combining two vectors, this time to get a vector, the cross product. Any two

vectors in 3-space form a parallelogram. We define the cross product using this parallelogram.

The Area of a Parallelogram

Consider the parallelogram formed by the vectors v⃗ and w⃗ with an angle of � between them. Then

Figure 13.36 shows

Area of parallelogram = Base ⋅ Height = ‖v⃗ ‖‖w⃗ ‖ sin �.

How would we compute the area of the parallelogram if we were given v⃗ and w⃗ in components,

v⃗ = v1i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1i⃗ +w2j⃗ +w3k⃗ ? Project 1 (available online) shows that if v⃗ and

w⃗ are in the xy-plane so that v3 = w3 = 0, then

Area of parallelogram = |

|

v1w2 − v2w1
|

|

.

✻

❄

‖w⃗ ‖ sin �

v⃗

w⃗

�

✲✛
‖v⃗ ‖

Figure 13.36: Parallelogram formed by v⃗ and w⃗ has

Area = ‖v⃗ ‖‖w⃗ ‖ sin �

What if v⃗ and w⃗ do not lie in the xy-plane? The cross product will enable us to compute the area

of the parallelogram formed by any two vectors.
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Definition of the Cross Product

We define the cross product of the vectors v⃗ and w⃗ , written v⃗ × w⃗ , to be a vector perpendicular

to both v⃗ and w⃗ . The magnitude of this vector is the area of the parallelogram formed by the two

vectors. The direction of v⃗ × w⃗ is given by the normal vector, n⃗ , to the plane defined by v⃗ and w⃗ . If

we require that n⃗ be a unit vector, there are two choices for n⃗ , pointing out of the plane in opposite

directions. We pick one by the following rule (see Figure 13.37):

The right-hand rule: Place v⃗ and w⃗ so that their tails coincide and curl the fingers of your

right hand through the smaller of the two angles from v⃗ to w⃗ ; your thumb points in the

direction of the normal vector, n⃗ .

Like the dot product, there are two equivalent definitions of the cross product:

The following two definitions of the cross product or vector product v⃗ × w⃗ are equivalent:

• Geometric definition:

If v⃗ and w⃗ are not parallel, then

v⃗ × w⃗ =

(

Area of parallelogram

with edges v⃗ and w⃗

)

n⃗ = (‖v⃗ ‖‖w⃗ ‖ sin �)n⃗ ,

where 0 ≤ � ≤ � is the angle between v⃗ and w⃗ and n⃗ is the unit vector perpendicular to

v⃗ and w⃗ pointing in the direction given by the right-hand rule. If v⃗ and w⃗ are parallel,

then v⃗ × w⃗ = 0⃗ .

• Algebraic definition:

v⃗ × w⃗ = (v2w3 − v3w2)i⃗ + (v3w1 − v1w3)j⃗ + (v1w2 − v2w1)k⃗

where v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1 i⃗ +w2j⃗ +w3k⃗ .

Problems 78 and 81 (available online) show that the geometric and algebraic definitions of the

cross product give the same result.

Figure 13.37: Area of parallelogram = ‖v⃗ × w⃗ ‖

�

v⃗

w⃗

v⃗ × w⃗

Figure 13.38: The cross product v⃗ × w⃗

The geometric definition shows us that the cross product is rotation invariant. Imagine the two

vectors v⃗ and w⃗ as two metal rods welded together. Attach a third rod whose direction and length

correspond to v⃗ × w⃗ . (See Figure 13.38.) Then, no matter how we turn this set of rods, the third will

still be the cross product of the first two.

The algebraic definition is more easily remembered by writing it as a 3 × 3 determinant. (See

Appendix E.)
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v⃗ × w⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

v1 v2 v3

w1 w2 w3

|

|

|

|

|

|

|

|

= (v2w3 − v3w2)i⃗ + (v3w1 − v1w3)j⃗ + (v1w2 − v2w1)k⃗ .

Example 1 Find i⃗ × j⃗ and j⃗ × i⃗ .

Solution The vectors i⃗ and j⃗ both have magnitude 1 and the angle between them is �∕2. By the right-hand

rule, the vector i⃗ × j⃗ is in the direction of k⃗ , so n⃗ = k⃗ and we have

i⃗ × j⃗ =
(

‖i⃗ ‖‖j⃗ ‖ sin
�

2

)

k⃗ = k⃗ .

Similarly, the right-hand rule says that the direction of j⃗ × i⃗ is −k⃗ , so

j⃗ × i⃗ =
(

‖j⃗ ‖‖i⃗ ‖ sin
�

2

)(

−k⃗
)

= −k⃗ .

Similar calculations show that j⃗ × k⃗ = i⃗ and k⃗ × i⃗ = j⃗ .

Example 2 For any vector v⃗ , find v⃗ × v⃗ .

Solution Since v⃗ is parallel to itself, v⃗ × v⃗ = 0⃗ .

Example 3 Find the cross product of v⃗ = 2i⃗ + j⃗ − 2k⃗ and w⃗ = 3i⃗ + k⃗ and check that the cross product is

perpendicular to both v⃗ and w⃗ .

Solution Writing v⃗ × w⃗ as a determinant and expanding it into three two-by-two determinants, we have

v⃗ × w⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

2 1 −2

3 0 1

|

|

|

|

|

|

|

|

= i⃗
|

|

|

|

|

1 −2

0 1

|

|

|

|

|

− j⃗
|

|

|

|

|

2 −2

3 1

|

|

|

|

|

+ k⃗
|

|

|

|

|

2 1

3 0

|

|

|

|

|

= i⃗ (1(1) − 0(−2)) − j⃗ (2(1) − 3(−2)) + k⃗ (2(0) − 3(1))

= i⃗ − 8j⃗ − 3k⃗ .

To check that v⃗ × w⃗ is perpendicular to v⃗ , we compute the dot product:

v⃗ ⋅ (v⃗ × w⃗ ) = (2i⃗ + j⃗ − 2k⃗ ) ⋅ (i⃗ − 8j⃗ − 3k⃗ ) = 2 − 8 + 6 = 0.

Similarly,

w⃗ ⋅ (v⃗ × w⃗ ) = (3i⃗ + 0j⃗ + k⃗ ) ⋅ (i⃗ − 8j⃗ − 3k⃗ ) = 3 + 0 − 3 = 0.

Thus, v⃗ × w⃗ is perpendicular to both v⃗ and w⃗ .
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Properties of the Cross Product

The right-hand rule tells us that v⃗ × w⃗ and w⃗ × v⃗ point in opposite directions. The magnitudes of

v⃗ × w⃗ and w⃗ × v⃗ are the same, so w⃗ × v⃗ = −(v⃗ × w⃗ ). (See Figure 13.39.)

v⃗

w⃗

v⃗ × w⃗

w⃗ × v⃗

v⃗

w⃗

Figure 13.39: Diagram showing v⃗ × w⃗ = −(w⃗ × v⃗ )

This explains the first of the following properties. The other two are derived in Problems 73, 74,

and 81 (available online).

Properties of the Cross Product

For vectors u⃗ , v⃗ , w⃗ and scalar �,

1. w⃗ × v⃗ = −(v⃗ × w⃗ )

2. (�v⃗ ) × w⃗ = �(v⃗ × w⃗ ) = v⃗ × (�w⃗ )

3. u⃗ × (v⃗ + w⃗ ) = u⃗ × v⃗ + u⃗ × w⃗ .

The Equation of a Plane Through Three Points

As we saw on page 766, the equation of a plane is determined by a point P0 = (x0, y0, z0) on the

plane, and a normal vector, n⃗ = ai⃗ + bj⃗ + ck⃗:

a(x − x0) + b(y − y0) + c(z − z0) = 0.

However, a plane can also be determined by three points on it (provided they do not lie on the same

line). In that case we can find an equation of the plane by first determining two vectors in the plane

and then finding a normal vector using the cross product, as in the following example.

Example 4 Find an equation of the plane containing the points P = (1, 3, 0), Q = (3, 4,−3), and R = (3, 6, 2).

Solution Since the pointsP andQ are in the plane, the displacement vector between them, ⃖⃖⃖⃖⃖⃗PQ, is in the plane,

where
⃖⃖⃖⃖⃖⃗PQ = (3 − 1)i⃗ + (4 − 3)j⃗ + (−3 − 0)k⃗ = 2i⃗ + j⃗ − 3k⃗ .

The displacement vector ⃖⃖⃖⃖⃖⃗PR is also in the plane, where

⃖⃖⃖⃖⃖⃗PR = (3 − 1)i⃗ + (6 − 3)j⃗ + (2 − 0)k⃗ = 2i⃗ + 3j⃗ + 2k⃗ .

Thus, a normal vector, n⃗ , to the plane is given by

n⃗ = ⃖⃖⃖⃖⃖⃗PQ × ⃖⃖⃖⃖⃖⃗PR =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

2 1 −3

2 3 2

|

|

|

|

|

|

|

|

= 11i⃗ − 10j⃗ + 4k⃗ .
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Since the point (1, 3, 0) is on the plane, the equation of the plane is

11(x − 1) − 10(y− 3) + 4(z − 0) = 0,

which simplifies to

11x − 10y + 4z = −19.

You should check that P , Q, and R satisfy this equation, since they lie on the plane.

Areas and Volumes Using the Cross Product and Determinants

We can use the cross product to calculate the area of the parallelogram with sides v⃗ and w⃗ . We say

that v⃗ × w⃗ is the area vector of the parallelogram. The geometric definition of the cross product

tells us that v⃗ × w⃗ is normal to the parallelogram and gives us the following result:

Area of a parallelogram with edges v⃗ = v1 i⃗ + v2 j⃗ + v3k⃗ and w⃗ = w1i⃗ +w2 j⃗ +w3k⃗ is

given by

Area = ‖v⃗ × w⃗ ‖, where v⃗ × w⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

v1 v2 v3

w1 w2 w3

|

|

|

|

|

|

|

|

.

Example 5 Find the area of the parallelogram with edges v⃗ = 2i⃗ + j⃗ − 3k⃗ and w⃗ = i⃗ + 3j⃗ + 2k⃗ .

Solution We calculate the cross product:

v⃗ × w⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

2 1 −3

1 3 2

|

|

|

|

|

|

|

|

= (2 + 9)i⃗ − (4 + 3)j⃗ + (6 − 1)k⃗ = 11i⃗ − 7j⃗ + 5k⃗ .

The area of the parallelogram with edges v⃗ and w⃗ is the magnitude of the vector v⃗ × w⃗ :

Area = ‖v⃗ × w⃗ ‖ =
√

112 + (−7)2 + 52 =
√

195.

Volume of a Parallelepiped

Consider the parallelepiped with sides formed by a⃗ , b⃗ , and c⃗ . (See Figure 13.40.) Since the base is

formed by the vectors b⃗ and c⃗ , we have

Area of base of parallelepiped = ‖b⃗ × c⃗ ‖.

a⃗

b⃗

c⃗

Figure 13.40: Volume of a

parallelepiped

a⃗

b⃗

c⃗

�
b⃗ × c⃗

Figure 13.41: The vectors a⃗ , b⃗ , c⃗ are

called a right-handed set

c⃗

b⃗

a⃗
�

b⃗ × c⃗

Figure 13.42: The vectors a⃗ , b⃗ , c⃗ are

called a left-handed set
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The vectors a⃗ , b⃗ , and c⃗ can be arranged either as in Figure 13.41 or as in Figure 13.42. In either

case,

Height of parallelepiped = ‖a⃗ ‖ cos �,

where � is the angle shown in the figures. In Figure 13.41 the angle � is less than �∕2, so the product,

(b⃗ × c⃗ ) ⋅ a⃗ , called the triple product, is positive. Thus, in this case

Volume of parallelepiped = Base ⋅ Height = ‖b⃗ × c⃗ ‖ ⋅ ‖a⃗ ‖ cos � = (b⃗ × c⃗ ) ⋅ a⃗ .

In Figure 13.42, the angle, � − �, between a⃗ and b⃗ × c⃗ is more than �∕2, so the product (b⃗ × c⃗ ) ⋅ a⃗

is negative. Thus, in this case we have

Volume = Base ⋅ Height = ‖b⃗ × c⃗ ‖ ⋅ ‖a⃗ ‖ cos � = −‖b⃗ × c⃗ ‖ ⋅ ‖a⃗ ‖ cos(� − �)

= −(b⃗ × c⃗ ) ⋅ a⃗ =
|

|

|

(b⃗ × c⃗ ) ⋅ a⃗
|

|

|

.

Therefore, in both cases the volume is given by
|

|

|

(b⃗ × c⃗ ) ⋅ a⃗
|

|

|

. Using determinants, we can write

Volume of a parallelepiped with edges a⃗ , b⃗ , c⃗ is given by

Volume =
|

|

|

(b⃗ × c⃗ ) ⋅ a⃗
|

|

|

= Absolute value of the determinant

|

|

|

|

|

|

|

|

a1 a2 a3

b1 b2 b3

c1 c2 c3

|

|

|

|

|

|

|

|

.

Angular Velocity

Angular velocity, which describes rotation about an axis, can be represented by a vector. For example,

the angular velocity of the rotating flywheel in Figure 13.43 is represented by the vector !⃗ , whose

direction is parallel to the axis of rotation in the direction given by the right-hand rule. If the fingers

of the right-hand curl around the axis in the direction of the rotation, then the thumb points along

the axis in the direction of !⃗ . The magnitude ‖!⃗ ‖ is the angular speed of rotation, for example in

radians per unit time or revolutions per unit time.

Every point on the flywheel travels a circular orbit around the axis. Since one orbit is 2� radians,

Time to complete one orbit =
Angle traveled

Angular speed
=

2�

‖!⃗ ‖

.

In Figure 13.43, let r⃗ be the vector from the center of the orbit to the point P . In one orbit, the point

P travels a distance of 2�‖r⃗ ‖ around the circumference of a circle, so

Speed =
Distance

Time
=

2�‖r⃗ ‖

2�∕‖!⃗ ‖

= ‖!⃗ ‖ ⋅ ‖r⃗ ‖.

The velocity vector v⃗ is tangent to the orbit, so v⃗ is perpendicular to both the axis and the radius

of the orbit. The magnitude of v⃗ is the speed of P , so ‖v⃗ ‖ = ‖!⃗ ‖ ⋅ ‖r⃗ ‖. Since the cross product

!⃗ × r⃗ has the same direction as the velocity (both !⃗ × r⃗ and v⃗ are perpendicular to !⃗ and to r⃗ ),

and the same magnitude as the velocity (both magnitudes are ‖!⃗ ‖ ⋅ ‖r⃗ ‖), we have

v⃗ = !⃗ × r⃗ .
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The formula v⃗ = !⃗ × r⃗ holds for r⃗ a vector from any point on the axis of rotation to the point

P . This is because r⃗ can be expressed as the sum of two component vectors, one parallel to the axis

and the other a radius vector of the orbit. Only the radial component contributes to the cross product.

See Figure 13.44.

!⃗

r⃗

v⃗
P

Figure 13.43: Rotating flywheel

!⃗

r⃗

v⃗

P

Figure 13.44: Rotating flywheel

Example 6 The world record for the fastest spin by a figure skater, 342 revolutions per minute, is held by Olivia

Oliver.2

(a) Find Olivia’s angular velocity vector, assuming she is vertical and spinning her fastest to her left.

(b) Let her skates touch the ice at the point (0, 0, 0) and her left elbow be at P = (10, 15, 110), where

distances are in centimeters. Find the velocity of her elbow.

(c) Find the speed of her elbow in centimeters per minute.

Solution (a) Since she is spinning around a vertical axis, we have !⃗ = ck⃗ where c, the rate of rotation, is

positive because she is spinning to her left. Since 1 revolution corresponds to 2� radians, we

have c = 2� ⋅ 342 = 2149. Hence !⃗ = 2149k⃗ radians per minute.

(b) Her elbow has position vector r⃗ = 10i⃗ + 15j⃗ + 110k⃗ cm. Her elbow velocity is the vector

v⃗ = !⃗ × r⃗ = −32,235i⃗ + 21,490j⃗ cm∕min.

(c) Her elbow is moving with speed

‖v⃗ ‖ =
√

(−32,235)2 + (21,490)2 = 38,742 cm∕min.

This is a speed of about 6.5 meters per second.

Summary for Section 13.4

• The direction of v⃗ × w⃗ the vector orthogonal to both of them given by the right-hand rule:

Place v⃗ and w⃗ so that their tails coincide and curl the fingers of your right hand through the

smaller of the two angles from v⃗ to w⃗ ; your thumb points in the direction of the cross product

v⃗ × w⃗ .

• There are two equivalent definitions of the cross product v⃗ × w⃗ :

◦ Geometric definition:

If v⃗ and w⃗ are not parallel, then

v⃗ × w⃗ =

(

Area of parallelogram

with edges v⃗ and w⃗

)

n⃗ = (‖v⃗ ‖‖w⃗ ‖ sin �)n⃗ ,

where 0 ≤ � ≤ � is the angle between v⃗ and w⃗ and n⃗ is the unit vector perpendicular to v⃗

and w⃗ pointing in the direction given by the right-hand rule. If v⃗ and w⃗ are parallel, then

v⃗ × w⃗ = 0⃗ .

2From www.guinnessworldrecords.com, accessed May 12, 2016.
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◦ Algebraic definition:

v⃗ × w⃗ = (v2w3 − v3w2)i⃗ + (v3w1 − v1w3)j⃗ + (v1w2 − v2w1)k⃗

where v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1 i⃗ +w2j⃗ +w3k⃗ .

• Properties of the cross product: For vectors u⃗ , v⃗ , w⃗ and scalar �

1. w⃗ × v⃗ = −(v⃗ × w⃗ )

2. (�v⃗ ) × w⃗ = �(v⃗ × w⃗ ) = v⃗ × (�w⃗ )

3. u⃗ × (v⃗ + w⃗ ) = u⃗ × v⃗ + u⃗ × w⃗ .

• Area of a parallelogram with edges v⃗ and w⃗ is given by ‖v⃗ × w⃗ ‖.

• Volume of a parallelepiped with edges a⃗ , b⃗ , c⃗ is given by
|

|

|

(b⃗ × c⃗ ) ⋅ a⃗
|

|

|

.

Exercises and Problems for Section 13.4 Online Resource: Additional Problems for Section 13.4
EXERCISES

In Exercises 1–7, use the algebraic definition to find v⃗ × w⃗ .

1. v⃗ = k⃗ , w⃗ = j⃗

2. v⃗ = −i⃗ , w⃗ = j⃗ + k⃗

3. v⃗ = i⃗ + k⃗ , w⃗ = i⃗ + j⃗

4. v⃗ = i⃗ + j⃗ + k⃗ , w⃗ = i⃗ + j⃗ − k⃗

5. v⃗ = 2i⃗ − 3j⃗ + k⃗ , w⃗ = i⃗ + 2j⃗ − k⃗

6. v⃗ = 2i⃗ − j⃗ − k⃗ , w⃗ = −6i⃗ + 3j⃗ + 3k⃗

7. v⃗ = −3i⃗ + 5j⃗ + 4k⃗ , w⃗ = i⃗ − 3j⃗ − k⃗

In Exercises 8–9, use the geometric definition to find:

8. 2i⃗ × (i⃗ + j⃗ ) 9. (i⃗ + j⃗ ) × (i⃗ − j⃗ )

In Exercises 10–11, use the properties on page 777 to find:

10.
(

(i⃗ + j⃗ ) × i⃗

)

× j⃗ 11. (i⃗ + j⃗ ) × (i⃗ × j⃗ )

12. For a⃗ = 3i⃗ + j⃗ − k⃗ and b⃗ = i⃗ − 4j⃗ + 2k⃗ , find a⃗ × b⃗

and check that it is perpendicular to both a⃗ and b⃗ .

13. If v⃗ = 3i⃗ −2j⃗ +4k⃗ and w⃗ = i⃗ +2j⃗ −k⃗ , find v⃗ ×w⃗ and

w⃗ × v⃗ . What is the relation between the two answers?

In Exercises 14–15, find an equation for the plane through

the points.

14. (1, 0, 0), (0, 1, 0), (0, 0, 1).

15. (3, 4, 2), (−2, 1, 0), (0, 2, 1).

In Exercises 16–19, find the volume of the parallelepiped

with edges a⃗ , b⃗ , c⃗ .

16. a⃗ = 3i⃗ +4j⃗ +5k⃗ , b⃗ = 5i⃗ +4j⃗ +3k⃗ , c⃗ = i⃗ + j⃗ + k⃗ .

17. a⃗ = −i⃗ + j⃗ + k⃗ , b⃗ = i⃗ − j⃗ + k⃗ , c⃗ = i⃗ + j⃗ − k⃗ .

18. a⃗ = −i⃗ + 8j⃗ + 7k⃗ , b⃗ = 2j⃗ + 9k⃗ , c⃗ = 3k⃗ .

19. a⃗ = i⃗ + j⃗ + 2k⃗ , b⃗ = i⃗ + k⃗ , c⃗ = j⃗ + k⃗ .

In Exercises 20–23, the point is rotating around an axis

through the origin with angular velocity !⃗ = 2i⃗ + j⃗ − 3k⃗ .

Find its velocity vector.

20. (1, 2, 1) 21. (1, 0,−1)

22. (2,−2, 0) 23. (4, 2,−6)

PROBLEMS

24. Find a vector parallel to the line of intersection of the

planes given by 2y − z = 2 and −2x + y = 4.

25. Find an equation of the plane through the origin that is

perpendicular to the line of intersection of the planes in

Problem 24.

26. Find an equation of the plane through the point (4, 5, 6)

and perpendicular to the line of intersection of the

planes in Problem 24.

27. Find an equation for the plane through the origin con-

taining the points (1, 3, 0) and (2, 4, 1).

28. Find a vector parallel to the line of intersection of the

two planes 4x − 3y + 2z = 12 and x + 5y − z = 25.

29. Find a vector parallel to the intersection of the planes

2x − 3y + 5z = 2 and 4x + y − 3z = 7.

30. Find an equation of the plane through the origin that is

perpendicular to the line of intersection of the planes in

Problem 29.
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31. Find an equation of the plane through the point (4, 5, 6)

that is perpendicular to the line of intersection of the

planes in Problem 29.

32. Find the equation of a plane through the origin and per-

pendicular to x − y + z = 5 and 2x + y − 2z = 7.

33. Given the points P = (1, 2, 3), Q = (3, 5, 7), and

R = (2, 5, 3), find:

(a) A unit vector perpendicular to a plane containing

P , Q, R.

(b) The angle between PQ and PR.

(c) The area of the triangle PQR.

(d) The distance from R to the line through P and Q.

34. Let A = (−1, 3, 0), B = (3, 2, 4), and C = (1,−1, 5).

(a) Find an equation for the plane that passes through

these three points.

(b) Find the area of the triangle determined by these

three points.

35. Consider the plane z + 2y + x = 4.

(a) Find a point on the x-axis on this plane.

(b) Find a point on the y-axis on this plane.

(c) Find a point on the z-axis on this plane.

(d) Find the area of the region of this plane with x ≥ 0,

y ≥ 0 and z ≥ 0.

36. If v⃗ and w⃗ are both parallel to the xy-plane, what can

you conclude about v⃗ × w⃗ ? Explain.

37. Suppose v⃗ ⋅ w⃗ = 5 and ||v⃗ × w⃗ || = 3, and the angle

between v⃗ and w⃗ is �. Find

(a) tan � (b) �

38. If v⃗ × w⃗ = 2i⃗ − 3j⃗ + 5k⃗ , and v⃗ ⋅ w⃗ = 3, find tan �

where � is the angle between v⃗ and w⃗ .

39. Suppose v⃗ ⋅ w⃗ = 8 and v⃗ × w⃗ = 12i⃗ − 3j⃗ + 4k⃗ and

that the angle between v⃗ and w⃗ is �. Find

(a) tan � (b) �

40. If v⃗ ⋅ (i⃗ + j⃗ + k⃗ ) = 6 and v⃗ ×(i⃗ + j⃗ + k⃗ ) = 0⃗ , find v⃗ .

41. Why does a baseball curve? The baseball in Fig-

ure 13.45 has velocity v⃗ meters/sec and is spinning at

! radians per second about an axis in the direction of

the unit vector n⃗ . The ball experiences a force, called

the Magnus force,3 F⃗M , that is proportional to !n⃗ × v⃗ .

(a) What is the effect on F⃗M of increasing !?

(b) The ball in Figure 13.45 is moving away from you.

What is the direction of the Magnus force?

ω

~n

Figure 13.45: Spinning baseball

42. The London Eye Ferris wheel rotates in a counterclock-

wise direction when viewed from the east and com-

pletes one full rotation in 30 minutes.4

(a) Let the x-axis point east, the y-axis north, and the

z-axis up. Find the angular velocity, !⃗ , of the Lon-

don Eye.

(b) The passenger capsules of the London Eye are a

distance of approximately 200 feet from the cen-

ter. If the center of the London Eye is at (0, 0, 0),

find the velocity vector of a passenger capsule at

its highest point.

(c) Find the speed of the capsule.

43. The point P in Figure 13.46 has position vector v⃗ ob-

tained by rotating the position vector r⃗ of the point

(x, y) by 90◦ counterclockwise about the origin.

(a) Use the geometric definition of the cross product

to explain why v⃗ = k⃗ × r⃗ .

(b) Find the coordinates of P .

(x, y)

P

r⃗

v⃗

x

y

Figure 13.46

44. The points P1 = (0, 0, 0), P2 = (2, 4, 2), P3 = (3, 0, 0),

and P4 = (5, 4, 2) are vertices of a parallelogram.

(a) Find the displacement vectors along each of the

four sides. Check that these are equal in pairs.

(b) Find the area of the parallelogram.

In Problems 45–46, find an area vector for the parallelogram

with given vertices.

45. P = (2, 1, 1), Q = (3, 3, 0), R = (4, 0, 2), S = (5, 2, 1)

46. P = (−1,−2, 0), Q = (0,−1, 0), R = (−2,−4, 1),

S = (−1,−3, 1)

3Named after German physicist Heinrich Magnus, who first described it in 1853.
4http://en.wikipedia.org, accessed May 12, 2016.
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47. A parallelogram P formed by the vectors v⃗ = i⃗ −2j⃗ +

k⃗ and w⃗ = i⃗ +2j⃗ −2k⃗ has area vector A⃗ = v⃗ × w⃗ =

2i⃗ +3j⃗ +4k⃗ . Find area vectors of each of the following

parallelograms and explain how they are related to A⃗ .

(a) The parallelogram obtained by projecting P onto

the xy-plane.

(b) The parallelogram obtained by projecting P onto

the xz-plane.

(c) The parallelogram obtained by projecting P onto

the yz-plane.

48. Using the parallelogram in Problem 44 as a base, cre-

ate a parallelopiped with side ⃖⃖⃖⃖⃖⃖⃖⃗P1P5 where P5 = (1, 0, 4).

Find the volume of this parallelepiped.

In Problems 49–51, if 0 ≤ � ≤ �, what are the possible val-

ues for the angle, �, between two nonzero vectors v⃗ and w⃗

satisfying the inequality?

49. |

|

v⃗ ⋅ w⃗ |

|

= ‖v⃗ × w⃗ ‖ 50. |

|

v⃗ ⋅ w⃗ |

|

< ‖v⃗ × w⃗ ‖

51. |

|

v⃗ ⋅ w⃗ |

|

> ‖v⃗ × w⃗ ‖

52. Use a parallelepiped to show that a⃗ ⋅(b⃗ ×c⃗ ) = (a⃗ ×b⃗ )⋅c⃗

for any vectors a⃗ , b⃗ , and c⃗ .

53. Figure 13.47 shows the tetrahedron determined by three

vectors a⃗ , b⃗ , c⃗ . The area vector of a face is a vector per-

pendicular to the face, pointing outward, whose magni-

tude is the area of the face. Show that the sum of the

four outward-pointing area vectors of the faces equals

the zero vector.

b⃗

b⃗ − c⃗

a⃗

c⃗

b⃗ − a⃗

c⃗ − a⃗

Figure 13.47

In Problems 54–56, find the vector representing the area of a

surface. The magnitude of the vector equals the magnitude of

the area; the direction is perpendicular to the surface. Since

there are two perpendicular directions, we pick one by giving

an orientation for the surface.

54. The rectangle with vertices (0, 0, 0), (0, 1, 0), (2, 1, 0),

and (2, 0, 0), oriented so that it faces downward.

55. The circle of radius 2 in the yz-plane, facing in the di-

rection of the positive x-axis.

56. The triangle ABC , oriented upward, where A =

(1, 2, 3), B = (3, 1, 2), and C = (2, 1, 3).

57. This problem relates the area of a parallelogramS lying

in the plane z = mx+ny+c to the area of its projection

R in the xy-plane. Let S be determined by the vectors

u⃗ = u1 i⃗ + u2 j⃗ + u3k⃗ and v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ . See

Figure 13.48.

(a) Find the area of S.

(b) Find the area of R.

(c) Find m and n in terms of the components of u⃗

and v⃗ .

(d) Show that

Area of S =
√

1 + m2 + n2 ⋅ Area of R.

Figure 13.48

Strengthen Your Understanding

In Problems 58–59, explain what is wrong with the state-

ment.

58. There is only one unit vector perpendicular to two non-

parallel vectors in 3-space.

59. u⃗ × v⃗ = 0⃗ when u⃗ and v⃗ are perpendicular.

In Problems 60–61, give an example of:

60. A vector u⃗ whose cross product with v⃗ = i⃗ + j⃗ is

parallel to k⃗ .

61. A vector v⃗ such that ‖u⃗ ×v⃗ ‖ = 10, where u⃗ = 3i⃗ +4j⃗ .
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Are the statements in Problems 62–72 true or false? Give

reasons for your answer.

62. u⃗ × v⃗ is a vector.

63. u⃗ × v⃗ has direction parallel to both u⃗ and v⃗ .

64. ‖u⃗ × v⃗ ‖ = ‖u⃗ ‖‖v⃗ ‖.

65. (i⃗ × j⃗ ) ⋅ k⃗ = i⃗ ⋅ (j⃗ × k⃗ ).

66. If v⃗ is a nonzero vector and v⃗ × u⃗ = v⃗ × w⃗ , then

u⃗ = w⃗ .

67. The value of v⃗ ⋅ (v⃗ × w⃗ ) is always 0.

68. The value of v⃗ × w⃗ is never the same as v⃗ ⋅ w⃗ .

69. The area of the triangle with two sides given by i⃗ + j⃗

and j⃗ + 2k⃗ is 3∕2.

70. Given a nonzero vector v⃗ in 3-space, there is a nonzero

vector w⃗ such that v⃗ × w⃗ = 0⃗ .

71. It is never true that v⃗ × w⃗ = w⃗ × v⃗ .

72. Two points are circling an axis at a rate of 5 rad/sec.

The point closer to the axis has the greater speed.

Online Resource: Review Problems and Projects
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14.1 THE PARTIAL DERIVATIVE

The derivative of a one-variable function measures its rate of change. In this section we see how a

two-variable function has two rates of change: one as x changes (with y held constant) and one as y

changes (with x held constant).

Rate of Change of Temperature in a Metal Rod: a One-Variable Problem

Imagine an unevenly heated metal rod lying along the x-axis, with its left end at the origin and x

measured in meters. (See Figure 14.1.) Let u(x) be the temperature (in ◦C) of the rod at the point x.

Table 14.1 gives values of u(x). We see that the temperature increases as we move along the rod,

reaching its maximum at x = 4, after which it starts to decrease.

x (m)
0 1 2 3 4 5

Figure 14.1: Unevenly heated metal rod

Table 14.1 Temperature u(x) of the rod

x (m) 0 1 2 3 4 5

u(x) (◦C) 125 128 135 160 175 160

Example 1 Estimate the derivative u′(2) using Table 14.1 and explain what the answer means in terms of tem-

perature.

Solution The derivative u′(2) is defined as a limit of difference quotients:

u′(2) = lim
ℎ→0

u(2 + ℎ) − u(2)

ℎ
.

Choosing ℎ = 1 so that we can use the data in Table 14.1, we get

u′(2) ≈
u(2 + 1) − u(2)

1
=

160 − 135

1
= 25.

This means that the temperature increases at a rate of approximately 25◦C per meter as we go from

left to right, past x = 2.

Rate of Change of Temperature in a Metal Plate

Imagine an unevenly heated thin rectangular metal plate lying in the xy-plane with its lower left

corner at the origin and x and y measured in meters. The temperature (in ◦C) at the point (x, y) is

T (x, y). See Figure 14.2 and Table 14.2. How does T vary near the point (2, 1)? We consider the

horizontal line y = 1 containing the point (2, 1). The temperature along this line is the cross section,

T (x, 1), of the function T (x, y) with y = 1. Suppose we write u(x) = T (x, 1).

1 2 3 4 5
0

1

2

3

x = 2

y = 1

x (m)

y (m)

(2, 1)

Figure 14.2: Unevenly heated metal plate

Table 14.2 Temperature (◦C) of a metal plate

y (m)

3 85 90 110 135 155 180

2 100 110 120 145 190 170

1 125 128 135 160 175 160

0 120 135 155 160 160 150

0 1 2 3 4 5

x (m)

What is the meaning of the derivative u′(2)? It is the rate of change of temperature T in the

x-direction at the point (2, 1), keeping y fixed. Denote this rate of change by Tx(2, 1), so that

Tx(2, 1) = u′(2) = lim
ℎ→0

u(2 + ℎ) − u(2)

ℎ
= lim

ℎ→0

T (2 + ℎ, 1) − T (2, 1)

ℎ
.
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We call Tx(2, 1) the partial derivative of T with respect to x at the point (2, 1). Taking ℎ = 1, we

can read values of T from the row with y = 1 in Table 14.2, giving

Tx(2, 1) ≈
T (3, 1) − T (2, 1)

1
=

160 − 135

1
= 25◦C/m.

The fact that Tx(2, 1) is positive means that the temperature of the plate is increasing as we move past

the point (2, 1) in the direction of increasing x (that is, horizontally from left to right in Figure 14.2).

Example 2 Estimate the rate of change of T in the y-direction at the point (2, 1).

Solution The temperature along the line x = 2 is the cross-section of T with x = 2, that is, the function

v(y) = T (2, y). If we denote the rate of change of T in the y-direction at (2, 1) by Ty(2, 1), then

Ty(2, 1) = v′(1) = lim
ℎ→0

v(1 + ℎ) − v(1)

ℎ
= lim

ℎ→0

T (2, 1 + ℎ) − T (2, 1)

ℎ
.

We call Ty(2, 1) the partial derivative of T with respect to y at the point (2, 1). Taking ℎ = 1 so that

we can use the column with x = 2 in Table 14.2, we get

Ty(2, 1) ≈
T (2, 1 + 1) − T (2, 1)

1
=

120 − 135

1
= −15◦C/m.

The fact that Ty(2, 1) is negative means that at (2, 1), the temperature decreases as y increases..

Definition of the Partial Derivative

We study the influence of x and y separately on the value of the function f (x, y) by holding one

fixed and letting the other vary. This leads to the following definitions.

Partial Derivatives of f with Respect to x and y

For all points at which the limits exist, we define the partial derivatives at the point (a, b)

by

fx(a, b) =
Rate of change of f with respect to x

at the point (a, b)
= lim

ℎ→0

f (a + ℎ, b) − f (a, b)

ℎ
,

fy(a, b) = Rate of change of f with respect to y

at the point (a, b)

= lim
ℎ→0

f (a, b + ℎ) − f (a, b)

ℎ
.

If we let a and b vary, we have the partial derivative functions fx(x, y) and fy(x, y).

Just as with ordinary derivatives, there is an alternative notation:

Alternative Notation for Partial Derivatives

If z = f (x, y), we can write

fx(x, y) =
)z

)x
and fy(x, y) =

)z

)y
,

fx(a, b) =
)z

)x

|

|

|

|(a,b)

and fy(a, b) =
)z

)y

|

|

|

|(a,b)

.
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We use the symbol ) to distinguish partial derivatives from ordinary derivatives. In cases where

the independent variables have names different from x and y, we adjust the notation accordingly. For

example, the partial derivatives of f (u, v) are denoted by fu and fv.

Visualizing Partial Derivatives on a Graph

The ordinary derivative of a one-variable function is the slope of its graph. How do we visualize

the partial derivative fx(a, b)? The graph of the one-variable function f (x, b) is the curve where the

vertical plane y = b cuts the graph of f (x, y). (See Figure 14.3.) Thus, fx(a, b) is the slope of the

tangent line to this curve at x = a.

y

x

z

✲Point
(a, b, f (a, b))

Line has slope
fx(a, b)

✛ Graph of
f (x, b)

Figure 14.3: The curve z = f (x, b) on the

graph of f has slope fx(a, b) at x = a

x
y

z

✛ Point
(a, b, f (a, b))✲Graph of

f (a, y)

Line has slope
fy(a, b)

Figure 14.4: The curve z = f (a, y) on the

graph of f has slope fy(a, b) at y = b

Similarly, the graph of the function f (a, y) is the curve where the vertical plane x = a cuts the

graph of f , and the partial derivative fy(a, b) is the slope of this curve at y = b. (See Figure 14.4.)

Example 3 At each point labeled on the graph of the surface z = f (x, y) in Figure 14.5, say whether each partial

derivative is positive or negative.

x

y

z

❘

Q

✛ P

Figure 14.5: Decide the signs of fx and fy at P and Q

Solution The positivex-axis points out of the page. Imagine heading off in this direction from the point marked

P ; we descend steeply. So the partial derivative with respect to x is negative at P , with quite a large

absolute value. The same is true for the partial derivative with respect to y at P , since there is also

a steep descent in the positive y-direction.

At the point marked Q, heading in the positive x-direction results in a gentle descent, whereas

heading in the positive y-direction results in a gentle ascent. Thus, the partial derivative fx at Q is

negative but small (that is, near zero), and the partial derivative fy is positive but small.

Estimating Partial Derivatives from a Contour Diagram

The graph of a function f (x, y) often makes clear the sign of the partial derivatives. However, nu-

merical estimates of these derivatives are more easily made from a contour diagram than a surface

graph. If we move parallel to one of the axes on a contour diagram, the partial derivative is the rate

of change of the value of the function on the contours. For example, if the values on the contours are

increasing as we move in the positive direction, then the partial derivative must be positive.
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Example 4 Figure 14.6 shows the contour diagram for the temperature H(x, t) (in ◦C) in a room as a function

of distance x (in meters) from a heater and time t (in minutes) after the heater has been turned on.

What are the signs of Hx(10, 20) and Ht(10, 20)? Estimate these partial derivatives and explain the

answers in practical terms.

5 10 15 20 25 30

10

20

30

40

50

60

x (meters)

30

25

20

15

10

t (minutes)

✲✛ 14

✻

❄

32

Figure 14.6: Temperature in a heated room: Heater at x = 0 is turned on at t = 0

Solution The point (10, 20) is nearly on the H = 25 contour. As x increases, we move toward the H = 20

contour, so H is decreasing and Hx(10, 20) is negative. This makes sense because the H = 30

contour is to the left: As we move further from the heater, the temperature drops. On the other hand,

as t increases, we move toward the H = 30 contour, so H is increasing; as t decreases H decreases.

Thus, Ht(10, 20) is positive. This says that as time passes, the room warms up.

To estimate the partial derivatives, use a difference quotient. Looking at the contour diagram,

we see there is a point on the H = 20 contour about 14 units to the right of the point (10, 20). Hence,

H decreases by 5 when x increases by 14, so we find

Rate of change of H with respect to x = Hx(10, 20) ≈
−5

14
≈ −0.36◦C/meter.

This means that near the point 10 m from the heater, after 20 minutes the temperature drops

about 0.36, or one third, of a degree, for each meter we move away from the heater.

To estimate Ht(10, 20), we notice that the H = 30 contour is about 32 units directly above the

point (10, 20). So H increases by 5 when t increases by 32. Hence,

Rate of change of H with respect to t = Ht(10, 20) ≈
5

32
= 0.16◦C/minute.

This means that after 20 minutes the temperature is going up about 0.16, or 1/6, of a degree each

minute at the point 10 m from the heater.

Using Units to Interpret Partial Derivatives

The meaning of a partial derivative can often be explained using units.

Example 5 Suppose that your weight w in pounds is a function f (c, n) of the number c of calories you consume

daily and the number n of minutes you exercise daily. Using the units for w, c and n, interpret in

everyday terms the statements

)w

)c
(2000, 15) = 0.02 and

)w

)n
(2000, 15) = −0.025.
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Solution The units of )w∕)c are pounds per calorie. The statement

)w

)c
(2000, 15) = 0.02

means that if you are presently consuming 2000 calories daily and exercising 15 minutes daily, you

will weigh 0.02 pounds more for each extra calorie you consume daily, or about 2 pounds for each

extra 100 calories per day. The units of )w∕)n are pounds per minute. The statement

)w

)n
(2000, 15) = −0.025

means that for the same calorie consumption and number of minutes of exercise, you will weigh

0.025 pounds less for each extra minute you exercise daily, or about 1 pound less for each extra

40 minutes per day. So if you eat an extra 100 calories each day and exercise about 80 minutes more

each day, your weight should remain roughly steady.

Summary for Section 14.1

• The partial derivatives at the point (a, b) are:

◦ fx(a, b) =Rate of change of f with respect to x at the point (a, b) = lim
ℎ→0

f (a + ℎ, b) − f (a, b)

ℎ

◦ fy(a, b) =Rate of change of f with respect to y at the point (a, b) = lim
ℎ→0

f (a, b+ ℎ) − f (a, b)

ℎ

• If z = f (x, y), we can also write partial derivatives using the notation:

fx(x, y) =
)z

)x
and fy(x, y) =

)z

)y
,

fx(a, b) =
)z

)x

|

|

|

|(a,b)

and fy(a, b) =
)z

)y

|

|

|

|(a,b)

.

• The signs of the partial derivatives indicate increase or decrease of the function in the x or y

direction.

• The units of a partial derivative are the units of the output divided by the units of the direction

variable. For example, if z = f (x, y), the units of fx =
)z

)x
are the units of z over the units of x.

Exercises and Problems for Section 14.1

EXERCISES

1. Given the following table of values for z = f (x, y), es-

timate fx(3, 2) and fy(3, 2), assuming they exist.

x ∖ y 0 2 5

1 1 2 4

3 −1 1 2

6 −3 0 0

2. Using difference quotients, estimate fx(3, 2) and

fy(3, 2) for the function given by

f (x, y) =
x2

y + 1
.

[Recall: A difference quotient is an expression of the

form (f (a + ℎ, b) − f (a, b))∕ℎ.]

3. Use difference quotients with Δx = 0.1 and Δy = 0.1

to estimate fx(1, 3) and fy(1, 3), where

f (x, y) = e−x sin y.

Then give better estimates by using Δx = 0.01 and

Δy = 0.01.

4. The price P in dollars to purchase a used car is a func-

tion of its original cost, C , in dollars, and its age, A, in

years.

(a) What are the units of )P∕)A?

(b) What is the sign of )P∕)A and why?

(c) What are the units of )P∕)C?

(d) What is the sign of )P∕)C and why?
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5. Your monthly car payment in dollars is P = f (P0, t, r),

where $P0 is the amount you borrowed, t is the num-

ber of months it takes to pay off the loan, and r% is the

interest rate. What are the units, the financial meaning,

and the signs of )P∕)t and )P∕)r?

6. A drug is injected into a patient’s blood vessel. The

function c = f (x, t) represents the concentration of the

drug at a distance x mm in the direction of the blood

flow measured from the point of injection and at time

t seconds since the injection. What are the units of the

following partial derivatives? What are their practical

interpretations? What do you expect their signs to be?

(a) )c∕)x (b) )c∕)t

7. You borrow $A at an interest rate of r% (per month) and

pay it off over t months by making monthly payments

of P = g(A, r, t) dollars. In financial terms, what do the

following statements tell you?

(a) g(8000, 1, 24) = 376.59

(b)
)g

)A

|

|

|

|

|(8000,1,24)

= 0.047

(c)
)g

)r

|

|

|

|

|(8000,1,24)

= 44.83

8. The sales of a product, S = f (p, a), are a function of

the price, p, of the product (in dollars per unit) and the

amount, a, spent on advertising (in thousands of dol-

lars).

(a) Do you expect fp to be positive or negative? Why?

(b) Explain the meaning of the statement fa(8, 12) =

150 in terms of sales.

9. The quantity, Q, of beef purchased at a store, in kilo-

grams per week, is a function of the price of beef, b, and

the price of chicken, c, both in dollars per kilogram.

(a) Do you expect )Q∕)b to be positive or negative?

Explain.

(b) Do you expect )Q∕)c to be positive or negative?

Explain.

(c) Interpret the statement )Q∕)b = −213 in terms of

quantity of beef purchased.

In Exercises 10–15, a point A is shown on a contour diagram

of a function f (x, y).

(a) Evaluate f (A).

(b) Is fx(A) positive, negative, or zero?

(c) Is fy(A) positive, negative, or zero?

10.

A

7 1
0

1
3

1
6

x

y 11.

A

5

10

15

20

x

y

12.

A

54

58

62

66

x

y 13.

A
94

88

82

76

x

y

14.

A

23

24

25

26

27

x

y 15.

A
36

38

40
42

44

x

y

In Exercises 16–19, determine the sign of fx and fy at the

point using the contour diagram of f in Figure 14.7.

P

QR

S

11

13

15
17

19

x

y

Figure 14.7

16. P 17. Q 18. R 19. S

20. Values of f (x, y) are in Table 14.3. Assuming they

exist, decide whether you expect the following partial

derivatives to be positive or negative.

(a) fx(−2,−1) (b) fy(2, 1)

(c) fx(2, 1) (d) fy(0, 3)

Table 14.3

x ∖ y −1 1 3 5

−2 7 3 2 1

0 8 5 3 2

2 10 7 5 4

4 13 10 8 7
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PROBLEMS

21. Figure 14.8 is a contour diagram for z = f (x, y). Is fx

positive or negative? Is fy positive or negative? Esti-

mate f (2, 1), fx(2, 1), and fy(2, 1).

1 2 3 4 5

1

2

3

4

5

−6

−2

2

6

10

14

18 x

y

Figure 14.8

22. Approximate fx(3, 5) using the contour diagram of

f (x, y) in Figure 14.9.

2 4 6 8 10

2

4

6

8

10

2

4

6
8

10

12

14

16

x

y

Figure 14.9

23. When riding your bike in winter, the windchill temper-

ature is a measure of how cold you feel as a result of the

induced breeze caused by your travel. If W represents

windchill temperature (in ◦F) that you experience, then

W = f (T , v), where T is the actual air temperature (in
◦F) and v is your speed, in meters per second. Match

each of the practical interpretations below with a math-

ematical statement that most accurately describes it be-

low. For the remaining mathematical statement, give a

practical interpretation.

(i) “The faster you ride, the colder you’ll feel.”

(ii) “The warmer the day, the warmer you’ll feel.”

(a) fT (T , v) > 0 (b) f (0, v) ≤ 0 (c) fv(T , v) < 0

24. People commuting to a city can choose to go either by

bus or by train. The number of people who choose ei-

ther method depends in part upon the price of each. Let

f (P1, P2) be the number of people who take the bus

when P1 is the price of a bus ride and P2 is the price of a

train ride. What can you say about the signs of )f∕)P1

and )f∕)P2? Explain your answers.

25. The average price of large cars getting low gas mileage

(“gas guzzlers”) is x and the average price of a gallon

of gasoline is y. The number, q1, of gas guzzlers bought

in a year, depends on both x and y, so q1 = f (x, y).

Similarly, if q2 is the number of gallons of gas bought

to fill gas guzzlers in a year, then q2 = g(x, y).

(a) What do you expect the signs of )q1∕)x and

)q2∕)y to be? Explain.

(b) What do you expect the signs of )q1∕)y and

)q2∕)x to be? Explain.

For Problems 26–28, refer to Table 12.2 on page 700 giv-

ing the temperature adjusted for wind chill, C , in ◦F, as a

function f (w, T ) of the wind speed, w, in mph, and the tem-

perature, T , in ◦F. The temperature adjusted for wind chill

tells you how cold it feels, as a result of the combination of

wind and temperature.

26. Estimate fw(10, 25). What does your answer mean in

practical terms?

27. Estimate fT (5, 20). What does your answer mean in

practical terms?

28. From Table 12.2 you can see that when the temperature

is 20◦F, the temperature adjusted for wind-chill drops

by an average of about 0.8◦F with every 1 mph increase

in wind speed from 5 mph to 10 mph. Which partial

derivative is this telling you about?

29. An experiment to measure the toxicity of formalde-

hyde yielded the data in Table 14.4. The values show

the percent, P = f (t, c), of rats surviving an expo-

sure to formaldehyde at a concentration of c (in parts

per million, ppm) after t months. Estimate ft(18, 6) and

fc(18, 6). Interpret your answers in terms of formalde-

hyde toxicity.

Table 14.4

Conc. c
(ppm)

Time t (months)

14 16 18 20 22 24

0 100 100 100 99 97 95

2 100 99 98 97 95 92

6 96 95 93 90 86 80

15 96 93 82 70 58 36
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30. Figure 14.10 shows contours of f (x, y) with values of

f on the contours omitted. If fx(P ) > 0, find the sign:

(a) fy(P ) (b) fy(Q) (c) fx(Q)

−5 5

−5

5

Q

P

f (x, y)

x

y

Figure 14.10

31. Figure 14.11 shows the contour diagram of g(x, y).

Mark the points on the contours where

(a) gx = 0 (b) gy = 0

10

10

10

20

30

40

50

60

5060

x

y

Figure 14.11

32. The surface z = f (x, y) is shown in Figure 14.12. The

points A and B are in the xy-plane.

(a) What is the sign of

(i) fx(A)? (ii) fy(A)?

(b) The point P in the xy-plane moves along a straight

line from A to B. How does the sign of fx(P )

change? How does the sign of fy(P ) change?

x

y

z

✲B ✠

A

Figure 14.12

33. Figure 14.13 shows the saddle-shaped surface z =

f (x, y).

(a) What is the sign of fx(0, 5)?

(b) What is the sign of fy(0, 5)?

x

y

z

❄

(0, 5, 3)

Figure 14.13

34. Figure 14.14 shows the graph of the function f (x, y) on

the domain 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4. Use the graph to

rank the following quantities in order from smallest to

largest: fx(3, 2), fx(1, 2), fy(3, 2), fy(1, 2), 0.

x y

z

Figure 14.14

35. Figure 14.15 shows a contour diagram for the monthly

payment P as a function of the interest rate, r%, and

the amount, L, of a 5-year loan. Estimate )P∕)r and

)P∕)L at the following points. In each case, give the

units and the everyday meaning of your answer.

(a) r = 8, L = 4000 (b) r = 8, L = 6000

(c) r = 13, L = 7000

1 3 5 7 9 11 13 15
2000

3000

4000

5000

6000

7000

8000

r(%)

L($)

60

80

100

120

140

160

Figure 14.15
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36. Figure 14.16 shows a contour diagram for the tempera-

tureT (in ◦C) along a wall in a heated room as a function

of distance x along the wall and time t in minutes. Esti-

mate )T ∕)x and )T ∕)t at the given points. Give units

and interpret your answers.

(a) x = 15, t = 20 (b) x = 5, t = 12

5 10 15 20 25 30

10

20

30

40

50

60

x (meters)

30

25

20

15

10

t (minutes)

Figure 14.16

In Problems 37–39, we use Figure 14.17 to model the heat

required to clear an airport of fog by heating the air. The

amount of heat, H(T ,w), required (in calories per cubic me-

ter of fog) is a function of the temperature T (in degrees Cel-

sius) and the water content w (in grams per cubic meter of

fog). Note that Figure 14.17 is not a contour diagram, but

shows cross-sections of H with w fixed at 0.1, 0.2, 0.3, 0.4.

10 20 30 40
0

100

200

300

400

500

600

T (◦C)

H (calories∕m3)

H(T , 0.4)

H(T , 0.3)

H(T , 0.2)

H(T , 0.1)

Figure 14.17

37. Use Figure 14.17 to estimate HT (10, 0.1). Interpret the

partial derivative in practical terms.

38. Make a table of values for H(T ,w) from Figure 14.17,

and use it to estimate HT (T ,w) for T = 10, 20, and 30

and w = 0.1, 0.2, and 0.3.

39. Repeat Problem 38 for Hw(T ,w) at T = 10, 20, and 30

and w = 0.1, 0.2, and 0.3. What is the practical mean-

ing of these partial derivatives?

40. The cardiac output, represented by c, is the volume of

blood flowing through a person’s heart per unit time.

The systemic vascular resistance (SVR), represented by

s, is the resistance to blood flowing through veins and

arteries. Let p be a person’s blood pressure. Then p is a

function of c and s, so p = f (c, s).

(a) What does )p∕)c represent?

Suppose now that p = kcs, where k is a constant.

(b) Sketch the level curves of p. What do they repre-

sent? Label your axes.

(c) For a person with a weak heart, it is desirable

to have the heart pumping against less resistance,

while maintaining the same blood pressure. Such a

person may be given the drug nitroglycerine to de-

crease the SVR and the drug dopamine to increase

the cardiac output. Represent this on a graph show-

ing level curves. Put a point A on the graph repre-

senting the person’s state before drugs are given

and a point B for after.

(d) Right after a heart attack, a patient’s cardiac output

drops, thereby causing the blood pressure to drop.

A common mistake made by medical residents is

to get the patient’s blood pressure back to normal

by using drugs to increase the SVR, rather than by

increasing the cardiac output. On a graph of the

level curves of p, put a point D representing the pa-

tient before the heart attack, a point E representing

the patient right after the heart attack, and a third

point F representing the patient after the resident

has given the drugs to increase the SVR.

41. In each case, give a possible contour diagram for the

function f (x, y) if

(a) fx > 0 and fy > 0 (b) fx > 0 and fy < 0

(c) fx < 0 and fy > 0 (d) fx < 0 and fy < 0

In Problems 42–45, give a possible contour diagram for the

function f (x, y) if

42. fx = 0, fy ≠ 0 43. fy = 0, fx ≠ 0

44. fx = 1 45. fy = −2

Strengthen Your Understanding

In Problems 46–47, explain what is wrong with the state-

ment.

46. For f (x, y), )f∕)x has the same units as )f∕)y.

47. The partial derivative with respect to y is not defined for

functions such as f (x, y) = x2 + 5 that have a formula

that does not contain y explicitly.

In Problems 48–49, give an example of:

48. A table of values with three rows and three columns of

a linear function f (x, y) with fx < 0 and fy > 0.

49. A function f (x, y) with fx > 0 and fy < 0 everywhere.
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Are the statements in Problems 50–60 true or false? Give

reasons for your answer.

50. If f (x, y) is a function of two variables and fx(10, 20)

is defined, then fx(10, 20) is a scalar.

51. If f (x, y) = x2 + y2, then fy(1, 1) < 0.

52. If the graph of f (x, y) is a hemisphere centered at the

origin, then fx(0, 0) = fy(0, 0) = 0.

53. If P = f (T , V ) is a function expressing the pressure P

(in grams∕cm3) of gas in a piston in terms of the tem-

perature T (in degrees ◦C) and volume V (in cm3), then

)P∕)V has units of grams.

54. If fx(a, b) > 0, then the values of f decrease as we

move in the negative x-direction near (a, b).

55. If g(r, s) = r2+s, then for fixed s, the partial derivative

gr increases as r increases.

56. Let P = f (m, d) be the purchase price (in dollars) of

a used car that has m miles on its engine and originally

cost d dollars when new. Then )P∕)m and )P∕)d have

the same sign.

57. If f (x, y) is a function with the property that fx(x, y)

and fy(x, y) are both constant, then f is linear.

58. If f (x, y) has fx(a, b) = fy(a, b) = 0 at the point (a, b),

then f is constant everywhere.

59. If fx = 0 and fy ≠ 0, then the contours of f (x, y) are

horizontal lines.

60. If the contours of f (x, y) are vertical lines, then fy = 0.

14.2 COMPUTING PARTIAL DERIVATIVES ALGEBRAICALLY

Since the partial derivative fx(x, y) is the ordinary derivative of the function f (x, y) with y held

constant and fy(x, y) is the ordinary derivative of f (x, y) with x held constant, we can use all the

differentiation formulas from one-variable calculus to find partial derivatives.

Example 1 Let f (x, y) =
x2

y + 1
. Find fx(3, 2) algebraically.

Solution We use the fact that fx(3, 2) equals the derivative of f (x, 2) at x = 3. Since

f (x, 2) =
x2

2 + 1
=

x2

3
,

differentiating with respect to x, we have

fx(x, 2) =
)

)x

(

x2

3

)

=
2x

3
, and so fx(3, 2) = 2.

Example 2 Compute the partial derivatives with respect to x and with respect to y for the following functions.

(a) f (x, y) = y2e3x (b) z = (3xy + 2x)5 (c) g(x, y) = ex+3y sin(xy)

Solution (a) This is the product of a function of x (namely e3x) and a function of y (namely y2). When we

differentiate with respect to x, we think of the function of y as a constant, and vice versa. Thus,

fx(x, y) = y2
)

)x

(

e3x
)

= 3y2e3x,

fy(x, y) = e3x
)

)y
(y2) = 2ye3x.

(b) Here we use the chain rule:

)z

)x
= 5(3xy+ 2x)4

)

)x
(3xy+ 2x) = 5(3xy+ 2x)4(3y + 2),

)z

)y
= 5(3xy+ 2x)4

)

)y
(3xy + 2x) = 5(3xy+ 2x)43x = 15x(3xy+ 2x)4.
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(c) Since each function in the product is a function of both x and y, we need to use the product rule

for each partial derivative:

gx(x, y) =
(

)

)x
(ex+3y)

)

sin(xy) + ex+3y
)

)x
(sin(xy)) = ex+3y sin(xy) + ex+3yy cos(xy),

gy(x, y) =

(

)

)y
(ex+3y)

)

sin(xy) + ex+3y
)

)y
(sin(xy)) = 3ex+3y sin(xy) + ex+3yx cos(xy).

For functions of three or more variables, we find partial derivatives by the same method: Dif-

ferentiate with respect to one variable, regarding the other variables as constants. For a function

f (x, y, z), the partial derivative fx(a, b, c) gives the rate of change of f with respect to x along the

line y = b, z = c.

Example 3 Find all the partial derivatives of f (x, y, z) =
x2y3

z
.

Solution To find fx(x, y, z), for example, we consider y and z as fixed, giving

fx(x, y, z) =
2xy3

z
, and fy(x, y, z) =

3x2y2

z
, and fz(x, y, z) = −

x2y3

z2
.

Interpretation of Partial Derivatives

Example 4 A vibrating guitar string, originally at rest along the x-axis, is shown in Figure 14.18. Let x be the

distance in meters from the left end of the string. At time t seconds the point x has been displaced

y = f (x, t) meters vertically from its rest position, where

y = f (x, t) = 0.003 sin(�x) sin(2765t).

Evaluate fx(0.3, 1) and ft(0.3, 1) and explain what each means in practical terms.

0.5

−0.003

0.003

0
1

x (meters)

y (meters)

✠

f (x, 2)

✠

f (x, 1)

■

f (x, 10)

Figure 14.18: The position of a vibrating guitar string at several

different times: Graph of f (x, t) for t = 1, 2, 10.

Solution Differentiating f (x, t) = 0.003 sin(�x) sin(2765t) with respect to x, we have

fx(x, t) = 0.003� cos(�x) sin(2765t).

In particular, substituting x = 0.3 and t = 1 gives

fx(0.3, 1) = 0.003� cos(�(0.3)) sin(2765) ≈ 0.002.

To see what fx(0.3, 1) means, think about the function f (x, 1). The graph of f (x, 1) in Figure 14.19

is a snapshot of the string at the time t = 1. Thus, the derivative fx(0.3, 1) is the slope of the string

at the point x = 0.3 at the instant when t = 1.
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Similarly, taking the derivative of f (x, t) = 0.003 sin(�x) sin(2765t) with respect to t, we get

ft(x, t) = (0.003)(2765) sin(�x) cos(2765t) = 8.3 sin(�x) cos(2765t).

Since f (x, t) is in meters and t is in seconds, the derivative ft(0.3, 1) is in m/sec. Thus, substituting

x = 0.3 and t = 1,

ft(0.3, 1) = 8.3 sin(�(0.3)) cos(2765(1)) ≈ 6 m/sec.

0.5 1

f (x, 1)

0

0.001

0.002

Slope = fx(0.3, 1) = 0.002

x (meters)

y (meters)

Figure 14.19: Graph of f (x, 1): Snapshot of the shape of the string at t = 1 sec

To see what ft(0.3, 1)means, think about the function f (0.3, t). The graph of f (0.3, t) is a posi-

tion versus time graph that tracks the up-and-downmovement of the point on the string where x = 0.3.

(See Figure 14.20.) The derivative ft(0.3, 1) = 6 m/sec is the velocity of that point on the string at

time t = 1. The fact that ft(0.3, 1) is positive indicates that the point is moving upward when t = 1.

0.996 1 1.004

−0.002

−0.001

0.001

0.002

0.003

Slope = ft(0.3, 1) = 6 m/sec

t (seconds)

y (meters)

Figure 14.20: Graph of f (0.3, t): Position versus time graph of the point x = 0.3 m

from the left end of the guitar string

Summary for Section 14.2

• To calculate fx(x, y), the partial derivative with respect to x, algebraically, think of y as a

constant, and differentiate with respect to x using the usual one-variable derivative rules.

• To calculate fy(x, y), the partial derivative with respect to y, algebraically, think of x as a

constant, and differentiate with respect to y using the usual one-variable derivative rules.

Exercises and Problems for Section 14.2

EXERCISES

1. (a) If f (x, y) = 2x2 + xy + y2, approximate fy(3, 2)

using Δy = 0.01.

(b) Find the exact value of fy(3, 2).

In Exercises 2–40, find the partial derivatives. The variables

are restricted to a domain on which the function is defined.

2. fx and fy if f (x, y) = 5x2y3 + 8xy2 − 3x2

3. fx(1, 2) and fy(1, 2) if f (x, y) = x3 + 3x2y − 2y2

4.
)

)y
(3x5y7 − 32x4y3 + 5xy)

5.
)z

)x
and

)z

)y
if z = (x2 + x − y)7

6. fx and fy if f (x, y) = A�x�+�y1−�−�

7. fx and fy if f (x, y) = ln(x0.6y0.4)

8. zx if z =
1

2x2ay
+

3x5abc

y
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9. zx if z = x2y + 2x5y 10.
)

)x
(a
√

x)

11. Vr if V =
1

3
�r2ℎ 12.

)

)T

(

2�r

T

)

13.
)

)x
(xe

√

xy) 14.
)

)t
esin(x+ct)

15. Fm if F = mg 16. av if a =
v2

r

17.
)A

)ℎ
if A =

1

2
(a + b)ℎ 18.

)

)m

(

1

2
mv2

)

19.
)

)B

(

1

u0
B2

)

20.
)

)r

(

2�r

v

)

21. Fv if F =
mv2

r
22.

)

)v0
(v0 + at)

23. zx if z = sin(5x3y − 3xy2)

24.
)z

)y

|

|

|

|

|(1,0.5)

if z = ex+2y sin y

25. gx if g(x, y) = ln(yexy)

26.
)f

)x

|

|

|

|(�∕3,1)

if f (x, y) = x ln(y cos x)

27. zx and zy for z = x7 + 2y + xy

28. fx if f (x, y) = exy(ln y)

29.
)F

)m2

if F =
Gm1m2

r2

30.
)

)x

(

1

a
e−x

2∕a2
)

31.
)

)a

(

1

a
e−x

2∕a2
)

32.
)

)t
(v0t +

1

2
at2)

33.
)

)�
(sin (���) + ln(�2 + �))

34.
)

)M

(

2�r3∕2
√

GM

)

35. fa if f (a, b) = ea sin(a + b)

36. FL if F (L,K) = 3
√

LK

37.
)V

)r
and

)V

)ℎ
if V =

4

3
�r2ℎ

38. uE if u =
1

2
�0E

2 +
1

2�0

B2

39.
)

)x

(

1
√

2��
e−(x−�)

2∕(2�2)

)

40.
)Q

)K
if Q = c(a1K

b1 + a2L
b2 )


PROBLEMS

In Problems 41–43:

(a) Find fx(1, 1) and fy(1, 1).

(b) Use part (a) to match f (x, y) with one of the contour di-

agrams (I)–(III), each shown centered at (1, 1) with the

same scale in the x and y directions.

(I) (II)

(III)

41. f (x, y) = x2 + y2 42. f (x, y) = ex
2
+ y2

43. f (x, y) = x2 + ey
2

44. (a) Letf (x, y) = x2+y2. Estimate fx(2, 1) and fy(2, 1)

using the contour diagram for f in Figure 14.21.

(b) Estimate fx(2, 1) and fy(2, 1) from a table of val-

ues for f with x = 1.9, 2, 2.1 and y = 0.9, 1, 1.1.

(c) Compare your estimates in parts (a) and (b) with

the exact values of fx(2, 1) and fy(2, 1) found al-

gebraically.

321−1−2−3

3

2

1

−1

−2

−3

x

y

4

4

2

2

6

6

8

8

Figure 14.21

45. (a) Let f (w, z) = ew ln z. Use difference quotients with

ℎ = 0.01 to approximate fw(2, 2) and fz(2, 2).

(b) Now evaluate fw(2, 2) and fz(2, 2) exactly.

46. (a) The surface S is given, for some constant a, by

z = 3x2 + 4y2 − axy

Find the values of a which ensure that S is sloping

upward when we move in the positive x-direction

from the point (1, 2).

(b) With the values of a from part (a), if you move in

the positive y-direction from the point (1, 2), does

the surface slope up or down? Explain.
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47. Money in a bank account earns interest at a continuous

rate, r. The amount of money, $B, in the account de-

pends on the amount deposited, $P , and the time, t, it

has been in the bank according to the formula

B = Pert.

Find )B∕)t and )B∕)P and interpret each in financial

terms.

48. The acceleration g due to gravity, at a distance r from

the center of a planet of mass m, is given by

g =
Gm

r2
,

where G is the universal gravitational constant.

(a) Find )g∕)m and )g∕)r.

(b) Interpret each of the partial derivatives you found

in part (a) as the slope of a graph in the plane and

sketch the graph.

49. The Dubois formula relates a person’s surface area, s,

in m2, to weight, w, in kg, and height, ℎ, in cm, by

s = f (w, ℎ) = 0.01w0.25ℎ0.75.

Find f (65, 160), fw(65, 160), and fℎ(65, 160). Inter-

pret your answers in terms of surface area, height, and

weight.

50. The energy, E, of a body of mass m moving with speed

v is given by the formula

E = mc2

(

1
√

1 − v2∕c2
− 1

)

.

The speed, v, is nonnegative and less than the speed of

light, c, which is a constant.

(a) Find )E∕)m. What would you expect the sign of

)E∕)m to be? Explain.

(b) Find )E∕)v. Explain what you would expect the

sign of )E∕)v to be and why.

51. Let ℎ(x, t) = 5 + cos(0.5x − t) describe a wave. The

value of ℎ(x, t) gives the depth of the water in cm at a

distance x meters from a fixed point and at time t sec-

onds. Evaluate ℎx(2, 5) and ℎt(2, 5) and interpret each

in terms of the wave.

52. A one-meter-long bar is heated unevenly, with temper-

ature in ◦C at a distance x meters from one end at time

t given by

H(x, t) = 100e−0.1t sin(�x) 0 ≤ x ≤ 1.

(a) Sketch a graph of H against x for t = 0 and t = 1.

(b) Calculate Hx(0.2, t) and Hx(0.8, t). What is the

practical interpretation (in terms of temperature)

of these two partial derivatives? Explain why each

one has the sign it does.

(c) Calculate Ht(x, t). What is its sign? What is its in-

terpretation in terms of temperature?

53. Show that the Cobb-Douglas function

Q = bK�L1−� where 0 < � < 1

satisfies the equation

K
)Q

)K
+ L

)Q

)L
= Q.

In Problems 54–57, find all points where the partial deriva-

tives of f (x, y) are both 0.

54. f (x, y) = x2 + y2

55. f (x, y) = xey

56. f (x, y) = ex
2+2x+y2

57. f (x, y) = x3 + 3x2 + y3 − 3y

58. Is there a function f which has the following partial

derivatives? If so, what is it? Are there any others?

fx(x, y) = 4x3y2 − 3y4,

fy(x, y) = 2x4y − 12xy3.

Strengthen Your Understanding

In Problems 59–60, explain what is wrong with the state-

ment.

59. The partial derivative of f (x, y) = x2y3 is 2xy3+3y2x2.

60. For f (x, y), if
f (0.01, 0)−f (0, 0)

0.01
>0, then fx(0, 0)>0.

In Problems 61–63, give an example of:

61. A nonlinear function f (x, y) such that fx(0, 0) = 2 and

fy(0, 0) = 3.

62. Functions f (x, y) and g(x, y) such that fx = gx but

fy ≠ gy.

63. A non-constant function f (x, y) such that fx = 0 ev-

erywhere.

Are the statements in Problems 64–71 true or false? Give

reasons for your answer.

64. There is a function f (x, y) with fx(x, y) = y and

fy(x, y) = x.

65. The function z(u, v) = u cos v satisfies the equation

cos v
)z

)u
−

sin v

u

)z

)v
= 1.

66. If f (x, y) is a function of two variables and g(x) is a

function of a single variable, then

)

)y
(g(x)f (x, y)) = g(x)fy(x, y).
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67. The function k(r, s) = rses is increasing in the s-

direction at the point (r, s) = (−1, 2).

68. There is a function f (x, y) with fx(x, y) = y2 and

fy(x, y) = x2.

69. If f (x, y) has fy(x, y) = 0 then f must be a constant.

70. If f (x, y) = yeg(x) then fx = f .

71. If f is a symmetric two-variable function, that is

f (x, y) = f (y, x), then fx(x, y) = fy(x, y).

72. Which of the following functions satisfy the following

equation (called Euler’s Equation):

xfx + yfy = f?

(a) x2y3 (b) x+y+1 (c) x2 + y2 (d) x0.4y0.6

14.3 LOCAL LINEARITY AND THE DIFFERENTIAL

In Sections 14.1 and 14.2 we studied a function of two variables by allowing one variable at a time

to change. We now let both variables change at once to develop a linear approximation for functions

of two variables.

Zooming In to See Local Linearity

For a function of one variable, local linearity means that as we zoom in on the graph, it looks like a

straight line. As we zoom in on the graph of a two-variable function, the graph usually looks like a

plane, which is the graph of a linear function of two variables. (See Figure 14.22.)

✲ ✲

Figure 14.22: Zooming in on the graph of a function of two variables until the graph looks like a plane

Similarly, Figure 14.23 shows three successive views of the contours near a point. As we zoom

in, the contours look more like equally spaced parallel lines, which are the contours of a linear

function. (As we zoom in, we have to add more contours.)

Figure 14.23: Zooming in on a contour diagram until the lines look parallel and equally spaced

This effect can also be seen numerically by zooming in with tables of values. Table 14.5 shows

three tables of values for f (x, y) = x2 + y3 near x = 2, y = 1, each one a closer view than the

previous one. Notice how each table looks more like the table of a linear function.
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Table 14.5 Zooming in on values of f (x, y) = x2 + y3 near (2, 1) until the table looks linear

x

y

0 1 2

1 1 2 9

2 4 5 12

3 9 10 17

x

y

0.9 1.0 1.1

1.9 4.34 4.61 4.94

2.0 4.73 5.00 5.33

2.1 5.14 5.41 5.74

x

y

0.99 1.00 1.01

1.99 4.93 4.96 4.99

2.00 4.97 5.00 5.03

2.01 5.01 5.04 5.07

Zooming in Algebraically: Differentiability

Seeing a plane when we zoom in at a point tells us (provided the plane is not vertical) that f (x, y) is

closely approximated near that point by a linear function, L(x, y):

f (x, y) ≈ L(x, y).

The Tangent Plane

The graph of the functionz = L(x, y) is the tangent plane at that point. See Figure 14.24. Provided the

approximation is sufficiently good, we say that f (x, y) is differentiable at the point. Section 14.8 on

page 847 defines precisely what is meant by the approximation being sufficiently good. The functions

we encounter are differentiable at most points in their domain.

What is the equation of the tangent plane? At the point (a, b), the x-slope of the graph of f

is the partial derivative fx(a, b) and the y-slope is fy(a, b). Thus, using the equation for a plane on

page 726 of Chapter 12, we have the following result:

Tangent Plane to the Surface z = f (x, y) at the Point (a, b)

Assuming f is differentiable at (a, b), the equation of the tangent plane is

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y− b).

Here we are thinking of a and b as fixed, so f (a, b), and fx(a, b), and fy(a, b) are constants.

Thus, the right side of the equation is a linear function of x and y.

Example 1 Find the equation for the tangent plane to the surface z = x2 + y2 at the point (3, 4).

Solution We have fx(x, y) = 2x, so fx(3, 4) = 6, and fy(x, y) = 2y, so fy(3, 4) = 8. Also, f (3, 4) = 32+42 =

25. Thus, the equation for the tangent plane at (3, 4) is

z = 25 + 6(x − 3) + 8(y − 4).

Figure 14.24: The tangent plane to the surface z = f (x, y) at the point (a, b)
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Local Linearization

Since the tangent plane lies close to the surface near the point at which they meet, z-values on the

tangent plane are close to values of f (x, y) for points near (a, b). Thus, replacing z by f (x, y) in the

equation of the tangent plane, we get the following approximation:

Tangent Plane Approximation to f (x, y) for (x, y) Near the Point (a, b)

Provided f is differentiable at (a, b), we can approximate f (x, y):

f (x, y) ≈ f (a, b) + fx(a, b)(x− a) + fy(a, b)(y− b).

We are thinking of a and b as fixed, so the expression on the right side is linear in x and y.

The right side of this approximation gives the local linearization of f near x = a, y = b.

Figure 14.25 shows the tangent plane approximation graphically.

Figure 14.25: Local linearization: Approximating f (x, y) by the z-value from the tangent plane

Example 2 Find the local linearization of f (x, y) = x2 + y2 at the point (3, 4). Estimate f (2.9, 4.2) and f (2, 2)

using the linearization and compare your answers to the true values.

Solution Let z = f (x, y) = x2 + y2. In Example 1, we found the equation of the tangent plane at (3, 4) to be

z = 25 + 6(x − 3) + 8(y − 4).

Therefore, for (x, y) near (3, 4), we have the local linearization

f (x, y) ≈ 25 + 6(x − 3) + 8(y − 4).

Substituting x = 2.9, y = 4.2 gives

f (2.9, 4.2) ≈ 25 + 6(−0.1) + 8(0.2) = 26.

This compares favorably with the true value f (2.9, 4.2) = (2.9)2 + (4.2)2 = 26.05.

However, the local linearization does not give a good approximation at points far away from

(3, 4). For example, if x = 2, y = 2, the local linearization gives

f (2, 2) ≈ 25 + 6(−1) + 8(−2) = 3,

whereas the true value of the function is f (2, 2) = 22 + 22 = 8.
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Example 3 Designing safe boilers depends on knowing how steam behaves under changes in temperature and

pressure. Steam tables, such as Table 14.6, are published giving values of the function V = f (T , P )

where V is the volume (in ft3) of one pound of steam at a temperature T (in ◦F) and pressure P (in

lb/in2).

(a) Give a linear function approximating V = f (T , P ) for T near 500◦F and P near 24 lb/in2.

(b) Estimate the volume of a pound of steam at a temperature of 505◦F and a pressure of 24.3 lb/in2.

Table 14.6 Volume (in cubic feet) of one pound of steam at various

temperatures and pressures

Temperature

T

(◦F)

Pressure P (lb/in2)

20 22 24 26

480 27.85 25.31 23.19 21.39

500 28.46 25.86 23.69 21.86

520 29.06 26.41 24.20 22.33

540 29.66 26.95 24.70 22.79

Solution (a) We want the local linearization around the point T = 500, P = 24, which is

f (T , P ) ≈ f (500, 24) + fT (500, 24)(T − 500) + fP (500, 24)(P − 24).

We read the value f (500, 24) = 23.69 from the table.

Next we approximate fT (500, 24) by a difference quotient. From the P = 24 column, we

compute the average rate of change between T = 500 and T = 520:

fT (500, 24) ≈
f (520, 24) − f (500, 24)

520 − 500
=

24.20 − 23.69

20
= 0.0255.

Note that fT (500, 24) is positive, because steam expands when heated.

Next we approximatefP (500, 24)by looking at the T = 500 row and computing the average

rate of change between P = 24 and P = 26:

fP (500, 24) ≈
f (500, 26) − f (500, 24)

26 − 24
=

21.86 − 23.69

2
= −0.915.

Note thatfP (500, 24) is negative, because increasing the pressure on steam decreases its volume.

Using these approximations for the partial derivatives, we obtain the local linearization:

V = f (T , P ) ≈ 23.69 + 0.0255(T − 500) − 0.915(P − 24) ft3
for T near 500 ◦F

and P near 24 lb∕in2.

(b) We are interested in the volume at T = 505◦F and P = 24.3 lb/in2. Since these values are close

to T = 500◦F and P = 24 lb/in2, we use the linear relation obtained in part (a):

V ≈ 23.69 + 0.0255(505− 500) − 0.915(24.3 − 24) = 23.54 ft3.

Local Linearity with Three or More Variables

Local linear approximations for functions of three or more variables follow the same pattern as for

functions of two variables. The local linearization of f (x, y, z) at (a, b, c) is given by

f (x, y, z) ≈ f (a, b, c) + fx(a, b, c)(x − a) + fy(a, b, c)(y− b) + fz(a, b, c)(z− c).
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The Differential

We are often interested in the change in the value of the function as we move from the point (a, b)

to a nearby point (x, y). We rewrite the tangent plane approximation as

f (x, y) − f (a, b)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Δf

≈ fx(a, b) (x − a)
⏟⏟⏟

Δx

+fy(a, b) (y − b)
⏟⏟⏟

Δy

,

giving us a relationship between Δf , Δx, and Δy:

Δf ≈ fx(a, b)Δx + fy(a, b)Δy.

If a and b are fixed, fx(a, b)Δx + fy(a, b)Δy is a linear function of Δx and Δy that can be used to

estimate Δf for small Δx and Δy. We introduce new variables dx and dy to represent changes in x

and y.

The Differential of a Function z = f (x, y)

The differential, df (or dz), at a point (a, b) is the linear function of dx and dy given by the

formula

df = fx(a, b) dx + fy(a, b) dy.

The differential at a general point is often written df = fx dx + fy dy.

Example 4 Compute the differentials of the following functions.

(a) f (x, y) = x2e5y (b) z = x sin(xy) (c) f (x, y) = x cos(2x)

Solution (a) Since fx(x, y) = 2xe5y and fy(x, y) = 5x2e5y, we have

df = 2xe5y dx + 5x2e5y dy.

(b) Since )z∕)x = sin(xy) + xy cos(xy) and )z∕)y = x2 cos(xy), we have

dz = (sin(xy) + xy cos(xy)) dx + x2 cos(xy) dy.

(c) Since fx(x, y) = cos(2x) − 2x sin(2x) and fy(x, y) = 0, we have

df = (cos(2x) − 2x sin(2x)) dx+ 0 dy = (cos(2x) − 2x sin(2x)) dx.

Example 5 The density � (in g/cm3) of carbon dioxide gas CO2 depends upon its temperature T (in ◦C) and

pressure P (in atmospheres). The ideal gas model for CO2 gives what is called the state equation:

� =
0.5363P

T + 273.15
.

Compute the differential d�. Explain the signs of the coefficients of dT and dP .

Solution The differential for � = f (T , P ) is

d� = fT (T , P ) dT + fP (T , P )dP =
−0.5363P

(T + 273.15)2
dT +

0.5363

T + 273.15
dP .
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The coefficient of dT is negative because increasing the temperature expands the gas (if the pressure

is kept constant) and therefore decreases its density. The coefficient of dP is positive because increas-

ing the pressure compresses the gas (if the temperature is kept constant) and therefore increases its

density.

Where Does the Notation for the Differential Come From?

We write the differential as a linear function of the new variables dx and dy. You may wonder why

we chose these names for our variables. The reason is historical: The people who invented calculus

thought of dx and dy as “infinitesimal” changes in x and y. The equation

df = fxdx + fydy

was regarded as an infinitesimal version of the local linear approximation

Δf ≈ fxΔx + fyΔy.

In spite of the problems with defining exactly what “infinitesimal” means, some mathematicians,

scientists, and engineers think of the differential in terms of infinitesimals.

Figure 14.26 illustrates a way of thinking about differentials that combines the definition with

this informal point of view. It shows the graph of f along with a view of the graph around the point

(a, b, f (a, b)) under a microscope. Since f is locally linear at the point, the magnified view looks

like the tangent plane. Under the microscope, we use a magnified coordinate system with its origin

at the point (a, b, f (a, b)) and with coordinates dx, dy, and dz along the three axes. The graph of

the differential df is the tangent plane, which has equation dz = fx(a, b) dx + fy(a, b) dy in the

magnified coordinates.

x
y

z

✠

Surface is
graph off

✲

dx dy

dz

✠

Plane is
graph of df

Figure 14.26: The graph of f , with a view through a microscope showing the tangent plane in the

magnified coordinate system

Summary for Section 14.3

• Local linearity means that when zooming in near a point, a function behaves more and more

like a linear function.

• A function is differentiable at a point if it is locally linear near the point.

• The tangent plane to the surface z = f (x, y) at the point (a, b) is

z = f (a, b) + fx(a, b)(x− a) + fy(a, b)(y− b).

• The tangent plane approximation to f (x, y) for (x, y) near the point (a, b) is

f (x, y) ≈ f (a, b) + fx(a, b)(x− a) + fy(a, b)(y− b).

• The differential, df , at a point (a, b) is the linear function of dx and dy given by the formula

df = fx(a, b) dx + fy(a, b) dy.

The differential df computes the approximate change in f given small changes dx in x and dy

in y near the point (a, b).
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Exercises and Problems for Section 14.3

EXERCISES

In Exercises 1–8, find the equation of the tangent plane at

the given point.

1. z = yex∕y at the point (1, 1, e)

2. z = sin(xy) at x = 2, y = 3�∕4

3. z = ln(x2 + 1) + y2 at the point (0, 3, 9)

4. z = ey + x + x2 + 6 at the point (1, 0, 9)

5. z =
1

2
(x2 + 4y2) at the point (2, 1, 4)

6. x2 + y2 − z = 1 at the point (1, 3, 9)

7. x2y2 + z − 40 = 0 at x = 2, y = 3

8. x2y + ln(xy) + z = 6 at the point (4, 0.25, 2)

In Exercises 9–12, find the differential of the function.

9. f (x, y) = sin(xy)

10. g(u, v) = u2 + uv

11. z = e−x cos y

12. ℎ(x, t) = e−3t sin(x + 5t)

In Exercises 13–16, find the differential of the function at the

point.

13. g(x, t) = x2 sin(2t) at (2, �∕4)

14. f (x, y) = xe−y at (1, 0)

15. P (L,K) = 1.01L0.25K0.75 at (100, 1)

16. F (m, r) = Gm∕r2 at (100, 10)

In Exercises 17–20, assume points P and Q are close. Esti-

mate Δf = f (Q) − f (P ) using the differential df .

17. df = 10 dx − 5 dy, P = (200, 400), Q = (202, 405)

18. df = y dx + x dy, P = (10, 5), Q = (9.8, 5.3)

19. df = 6
√

1 + 4x + 2y dx + 3
√

1 + 4x + 2y dy, P =

(1, 2), Q = (1.03, 2.05)

20. df = (2x + 2y + 5) dx + (2x + 3) dy, P = (0, 0),

Q = (0.1,−0.2)

In Exercises 21–24, assume points P and Q are close. Esti-

mate g(Q).

21. P = (60, 80), Q = (60.5, 82), g(P ) = 100, gx(P ) = 2,

gy(P ) = −3.

22. P = (−150, 200), Q = (−152, 203), g(P ) = 2500,

gx(P ) = 10, gy(P ) = 20.

23. P = (5, 8),Q = (4.97, 7.99), g(P ) = 12, gx(P ) = −0.1,

gy(P ) = −0.2.

24. P = (30, 125), Q = (25, 135), g(P ) = 840, gx(P ) = 4,

gy(P ) = 1.5.

PROBLEMS

25. At a distance of x feet from the beach, the price in dol-

lars of a plot of land of area a square feet is f (a, x).

(a) What are the units of fa(a, x)?

(b) What does fa(1000, 300) = 3 mean in practical

terms?

(c) What are the units of fx(a, x)?

(d) What does fx(1000, 300) = −2 mean in practical

terms?

(e) Which is cheaper: 1005 square feet that are 305 feet

from the beach or 998 square feet that are 295 feet

from the beach? Justify your answer.

26. A student was asked to find the equation of the tan-

gent plane to the surface z = x3 − y2 at the point

(x, y) = (2, 3). The student’s answer was

z = 3x2(x − 2) − 2y(y − 3) − 1.

(a) At a glance, how do you know this is wrong?

(b) What mistake did the student make?

(c) Answer the question correctly.

27. (a) Check the local linearity of f (x, y) = e−x sin y near

x = 1, y = 2 by making a table of values of

f for x = 0.9, 1.0, 1.1 and y = 1.9, 2.0, 2.1.

Express values of f with 4 digits after the deci-

mal point. Then make a table of values for x =

0.99, 1.00, 1.01 and y = 1.99, 2.00. 2.01, again

showing 4 digits after the decimal point. Do both

tables look nearly linear? Does the second table

look more linear than the first?

(b) Give the local linearization of f (x, y) = e−x sin y

at (1, 2), first using your tables and second using

the fact that fx(x, y) = −e−x sin y and fy(x, y) =

e−x cos y.

28. Find the local linearization of the function f (x, y) =

x2y at the point (3, 1).

29. The tangent plane to z = f (x, y) at the point (1, 2) is

z = 3x + 2y − 5.

(a) Find fx(1, 2) and fy(1, 2).

(b) What is f (1, 2)?

(c) Approximate f (1.1, 1.9).

30. Find an equation for the tangent plane to z = f (x, y) at

(3,−2) if the differential at (3,−2) is df = 5dx + dy

and f (3,−2) = 8.

31. Find df at (2,−4) if the tangent plane to z = f (x, y) at

(2,−4) is z = −3(x − 2) + 2(y + 4) + 3.
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32. Give a linear function approximating z = f (x, y) near

(1,−1) using its contour diagram in Figure 14.27.

−2 2

−2

2

1 2 3 4

1234

0

−1

−2
−3

−1

−2

−3

x

y

Figure 14.27

33. For the differentiable function ℎ(x, y), we are told

that ℎ(600, 100) = 300 and ℎx(600, 100) = 12 and

ℎy(600, 100) = −8. Estimate ℎ(605, 98).

34. (a) Find the equation of the plane tangent to the graph

of f (x, y) = x2exy at (1, 0).

(b) Find the linear approximation of f (x, y) for (x, y)

near (1, 0).

(c) Find the differential of f at the point (1, 0).

35. Find the differential of f (x, y) =
√

x2 + y3 at the point

(1, 2). Use it to estimate f (1.04, 1.98).

36. (a) Find the differential of g(u, v) = u2 + uv.

(b) Use your answer to part (a) to estimate the change

in g as you move from (1, 2) to (1.2, 2.1).

37. An unevenly heated plate has temperature T (x, y) in ◦C

at the point (x, y). If T (2, 1) = 135, and Tx(2, 1) = 16,

and Ty(2, 1) = −15, estimate the temperature at the

point (2.04, 0.97).

38. A right circular cylinder has a radius of 50 cm and

a height of 100 cm. Use differentials to estimate the

change in volume of the cylinder if its height and ra-

dius are both increased by 1 cm.

39. Give the local linearization for the monthly car-loan

payment function at each of the points investigated in

Problem 35 on page 793.

40. In Example 3 on page 803 we found a linear approxima-

tion for V = f (T , P ) near (500, 24). Now find a linear

approximation near (480, 20).

41. In Example 3 on page 803 we found a linear approxi-

mation for V = f (T , p) near (500, 24).

(a) Test the accuracy of this approximation by com-

paring its predicted value with the four neighbor-

ing values in the table. What do you notice? Which

predicted values are accurate? Which are not? Ex-

plain your answer.

(b) Suggest a linear approximation for f (T , p) near

(500, 24) that does not have the property you no-

ticed in part (a). [Hint: Estimate the partial deriva-

tives in a different way.]

42. In a room, the temperature is given by T = f (x, t) de-

grees Celsius, where x is the distance from a heater (in

meters) and t is the elapsed time (in minutes) since the

heat has been turned on. A person standing 3 meters

from the heater 5 minutes after it has been turned on

observes the following: (1) The temperature is increas-

ing by 1.2◦C per minute, and (2) As the person walks

away from the heater, the temperature decreases by 2◦C

per meter as time is held constant. Estimate how much

cooler or warmer it would be 2.5 meters from the heater

after 6 minutes.

43. Van der Waal’s equation relates the pressure, P , and the

volume, V , of a fixed quantity of a gas at constant tem-

perature T . For a, b, n, R constants, the equation is

(

P +
n2a

V 2

)

(V − nb) = nRT .

(a) Express P as a function of T and V .

(b) Write a linear approximation for the change in

pressure, ΔP = P − P0, resulting from a change

in temperature ΔT = T − T0 and a change in pres-

sure, ΔV = V − V0.

44. The gas equation for one mole of oxygen relates its pres-

sure, P (in atmospheres), its temperature, T (in K), and

its volume, V (in cubic decimeters, dm3):

T = 16.574
1

V
− 0.52754

1

V 2
− 0.3879P + 12.187V P .

(a) Find the temperature T and differential dT if the

volume is 25 dm3 and the pressure is 1 atmosphere.

(b) Use your answer to part (a) to estimate how much

the volume would have to change if the pressure

increased by 0.1 atmosphere and the temperature

remained constant.

45. The coefficient, �, of thermal expansion of a liquid re-

lates the change in the volume V (in m3) of a fixed

quantity of a liquid to an increase in its temperature T

(in ◦C):

dV = �V dT .

(a) Let � be the density (in kg/m3) of water as a func-

tion of temperature. (For a mass m of liquid, we

have � = m∕V .) Write an expression for d� in

terms of � and dT .

(b) The graph in Figure 14.28 shows density of water

as a function of temperature. Use it to estimate �

when T = 20◦C and when T = 80◦C.
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Figure 14.28

46. A fluid moves through a tube of length 1 meter and

radius r = 0.005 ± 0.00025 meters under a pressure

p = 105±1000 pascals, at a rate v = 0.625⋅10−9 m3 per

unit time. Use differentials to estimate the maximum er-

ror in the viscosity � given by

� =
�

8

pr4

v
.

47. The period, T , of oscillation in seconds of a pendulum

clock is given by T = 2�
√

l∕g, where g is the accel-

eration due to gravity. The length of the pendulum, l,

depends on the temperature, t, according to the formula

l = l0(1+ �(t− t0)) where l0 is the length of the pendu-

lum at temperature t0 and � is a constant which charac-

terizes the clock. The clock is set to the correct period

at the temperature t0. How many seconds a day does

the clock gain or lose when the temperature is t0 + Δt?

Show that this gain or loss is independent of l0.

48. Two functions that have the same local linearization at

a point have contours that are tangent at this point.

(a) If fx(a, b) or fy(a, b) is nonzero, use the local lin-

earization to show that an equation of the line tan-

gent at (a, b) to the contour of f through (a, b) is

fx(a, b)(x − a) + fy(a, b)(y − b) = 0.

(b) Find the slope of the tangent line if fy(a, b) ≠ 0.

(c) Find an equation for the line tangent to the contour

of f (x, y) = x2 + xy at (3, 4).

In Problems 49–52, the point is on the surface in 3-space.

(a) Find the differential of the equation (that is, of each

side).

(b) Find dz at the point.

(c) Find an equation of the tangent plane to the surface at

the point.

49. 2x2 + 13 = y2 + 3z2, (2, 3, 2)

50. x2 + y2 + z2 + 1 = xyz + 2x2 + 3y2 − 2z2, (1, 1, 1)

51. xey + z2 + 1 = cos(x − 1) +
√

z2 + 3, (1, 0, 1)

52. xz2 + xy + 5 = x2 + z2, (2,−1, 1)

Strengthen Your Understanding

In Problems 53–55, explain what is wrong with the state-

ment.

53. An equation for the tangent plane to the surface z =

f (x, y) at the point (3, 4) is

z = f (3, 4) + fx(3, 4)x + fy(3, 4)y.

54. If fx(0, 0) = gx(0, 0) and fy(0, 0) = gy(0, 0), then the

surfaces z = f (x, y) and z = g(x, y) have the same

tangent planes at the point (0, 0).

55. The tangent plane to the surface z = x2y at the point

(1, 2) has equation

z = 2 + 2xy(x − 1) + x2(y − 2).

In Problems 56–57, give an example of:

56. Two different functions with the same differential.

57. A surface in three space whose tangent plane at (0, 0, 3)

is the plane z = 3.

Are the statements in Problems 58–65 true or false? Give

reasons for your answer.

58. The tangent plane approximation of f (x, y) = yex
2

at

the point (0, 1) is f (x, y) ≈ y.

59. If f is a function with df = 2y dx + sin(xy) dy, then

f changes by about −0.4 between the points (1, 2) and

(0.9, 2.0002).

60. The local linearization of f (x, y) = x2 + y2 at (1,1)

gives an overestimate of the value of f (x, y) at the point

(1.04, 0.95).

61. If two functions f and g have the same differential at

the point (1, 1), then f = g.

62. If two functions f and g have the same tangent plane at

a point (1, 1), then f = g.

63. If f (x, y) is a constant function, then df = 0.

64. If f (x, y) is a linear function, then df is a linear func-

tion of dx and dy.

65. If you zoom close enough near a point (a, b) on the con-

tour diagram of a differentiable function, the contours

are precisely parallel and exactly equally spaced.
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14.4 GRADIENTS AND DIRECTIONAL DERIVATIVES IN THE PLANE

The Rate of Change in an Arbitrary Direction: The Directional Derivative

The partial derivatives of a function f tell us the rate of change of f in the directions parallel to

the coordinate axes. In this section we see how to compute the rate of change of f in an arbitrary

direction.

Example 1 Figure 14.29 shows the temperature, in ◦C, at the point (x, y). Estimate the average rate of change of

temperature as we walk from point A to point B.

100 200 300

100

200

300

x (m)

y (m)

50

45

35

B

A

②

40

Figure 14.29: Estimating rate of change on a temperature map

Solution At the pointAwe are on theH = 45◦C contour. AtB we are on theH = 50◦C contour. The displace-

ment vector from A to B has x component approximately −100i⃗ and y component approximately

25j⃗ , so its length is
√

(−100)2 + 252 ≈ 103. Thus, the temperature rises by 5◦C as we move 103

meters, so the average rate of change of the temperature in that direction is about 5∕103 ≈ 0.05◦C/m.

Suppose we want to compute the rate of change of a function f (x, y) at the point P = (a, b) in

the direction of the unit vector u⃗ = u1i⃗ + u2 j⃗ . For ℎ > 0, consider the point Q = (a+ ℎu1, b+ ℎu2)

whose displacement from P is ℎu⃗ . (See Figure 14.30.) Since ‖u⃗ ‖ = 1, the distance from P to Q

is ℎ. Thus,

Average rate of change

in f from P to Q
=

Change in f

Distance from P to Q
=

f (a + ℎu1, b + ℎu2) − f (a, b)

ℎ
.

Taking the limit as ℎ → 0 gives the instantaneous rate of change and the following definition:

Directional Derivative of f at (a, b) in the Direction of a Unit Vector u⃗

If u⃗ = u1 i⃗ + u2j⃗ is a unit vector, we define the directional derivative, fu⃗ , by

fu⃗ (a, b) =

Rate of change

of f in direction

of u⃗ at (a, b)

= lim
ℎ→0

f (a + ℎu1, b + ℎu2) − f (a, b)

ℎ
,

provided the limit exists. Note that the directional derivative is a scalar.

(a, b)

P

Q

(a + ℎu1, b + ℎu2)

ℎu⃗

Figure 14.30: Displacement of ℎu⃗ from the point (a, b)
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Notice that if u⃗ = i⃗ , so u1 = 1, u2 = 0, then the directional derivative is fx, since

f
i⃗
(a, b) = lim

ℎ→0

f (a + ℎ, b) − f (a, b)

ℎ
= fx(a, b).

Similarly, if u⃗ = j⃗ then the directional derivative f
j⃗
= fy.

What If We Do Not Have a Unit Vector?

We defined fu⃗ for u⃗ a unit vector. If v⃗ is not a unit vector, v⃗ ≠ 0⃗ , we construct a unit vector

u⃗ = v⃗ ∕‖v⃗ ‖ in the same direction as v⃗ and define the rate of change of f in the direction of v⃗ as fu⃗ .

Example 2 For each of the functions f , g, and ℎ in Figure 14.31, decide whether the directional derivative at

the indicated point is positive, negative, or zero, in the direction of the vector v⃗ = i⃗ +2j⃗ , and in the

direction of the vector w⃗ = 2i⃗ + j⃗ .

3 4 5 6 7 8 9 10

✕✯v⃗

w⃗

f (x, y)

x

y

✕✯
v⃗

w⃗

7
8

9

7
8

9

6 6

6 6

3 4 5 5 4 3

x

y g(x, y)

5
6

7
8

9

10

9

8
7

6

y

x

ℎ(x, y)

v⃗

w⃗
✯✕

Figure 14.31: Contour diagrams of three functions with direction vectors v⃗ = i⃗ + 2j⃗ and w⃗ = 2i⃗ + j⃗ marked on each

Solution On the contour diagram for f , the vector v⃗ = i⃗ + 2j⃗ appears to be tangent to the contour. Thus, in

this direction, the value of the function is not changing, so the directional derivative in the direction

of v⃗ is zero. The vector w⃗ = 2i⃗ + j⃗ points from the contour marked 4 toward the contour marked

5. Thus, the values of the function are increasing and the directional derivative in the direction of w⃗

is positive.

On the contour diagram for g, the vector v⃗ = i⃗ + 2j⃗ points from the contour marked 6 toward

the contour marked 5, so the function is decreasing in that direction. Thus, the rate of change is

negative. On the other hand, the vector w⃗ = 2i⃗ + j⃗ points from the contour marked 6 toward the

contour marked 7, and hence the directional derivative in the direction of w⃗ is positive.

Finally, on the contour diagram for ℎ, both vectors point from the ℎ = 10 contour to the ℎ = 9

contour, so both directional derivatives are negative.

Example 3 Calculate the directional derivative of f (x, y) = x2 + y2 at (1, 0) in the direction of the vector i⃗ + j⃗ .

Solution First we have to find the unit vector in the same direction as the vector i⃗ + j⃗ . Since this vector has

magnitude
√

2, the unit vector is

u⃗ =
1
√

2
(i⃗ + j⃗ ) =

1
√

2
i⃗ +

1
√

2
j⃗ .

Thus,

fu⃗ (1, 0) = lim
ℎ→0

f (1 + ℎ∕
√

2, ℎ∕
√

2) − f (1, 0)

ℎ
= lim

ℎ→0

(1 + ℎ∕
√

2)2 + (ℎ∕
√

2)2 − 1

ℎ

= lim
ℎ→0

√

2ℎ + ℎ2

ℎ
= lim

ℎ→0
(
√

2 + ℎ) =
√

2.
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Computing Directional Derivatives from Partial Derivatives

If f is differentiable, we will now see how to use local linearity to find a formula for the directional

derivative which does not involve a limit. If u⃗ is a unit vector, the definition of fu⃗ says

fu⃗ (a, b) = lim
ℎ→0

f (a + ℎu1, b + ℎu2) − f (a, b)

ℎ
= lim

ℎ→0

Δf

ℎ
,

where Δf = f (a + ℎu1, b + ℎu2) − f (a, b) is the change in f . We write Δx for the change in x, so

Δx = (a + ℎu1) − a = ℎu1; similarly, Δy = ℎu2. Using local linearity, we have

Δf ≈ fx(a, b)Δx+ fy(a, b)Δy = fx(a, b)ℎu1 + fy(a, b)ℎu2.

Thus, dividing by ℎ gives

Δf

ℎ
≈

fx(a, b)ℎu1 + fy(a, b)ℎu2

ℎ
= fx(a, b)u1 + fy(a, b)u2.

This approximation becomes exact as ℎ → 0, so we have the following formula:

fu⃗ (a, b) = fx(a, b)u1 + fy(a, b)u2.

Example 4 Use the preceding formula to compute the directional derivative in Example 3. Check that we get

the same answer as before.

Solution We calculate fu⃗ (1, 0), where f (x, y) = x2 + y2 and u⃗ =
1
√

2
i⃗ +

1
√

2
j⃗ .

The partial derivatives are fx(x, y) = 2x and fy(x, y) = 2y. So, as before,

fu⃗ (1, 0) = fx(1, 0)u1 + fy(1, 0)u2 = (2)

(

1
√

2

)

+ (0)

(

1
√

2

)

=
√

2.

The Gradient Vector

Notice that the expression for fu⃗ (a, b) can be written as a dot product of u⃗ and a new vector:

fu⃗ (a, b) = fx(a, b)u1 + fy(a, b)u2 = (fx(a, b)i⃗ + fy(a, b)j⃗ ) ⋅ (u1i⃗ + u2 j⃗ ).

The new vector, fx(a, b)i⃗ + fy(a, b)j⃗ , turns out to be important. Thus, we make the following defi-

nition:

The Gradient Vector of a differentiable function f at the point (a, b) is

gradf (a, b) = fx(a, b)i⃗ + fy(a, b)j⃗

The formula for the directional derivative can be written in terms of the gradient as follows:

The Directional Derivative and the Gradient

If f is differentiable at (a, b) and u⃗ = u1 i⃗ + u2 j⃗ is a unit vector, then

fu⃗ (a, b) = fx(a, b)u1 + fy(a, b)u2 = gradf (a, b) ⋅ u⃗ .

The change in f corresponding to a small change Δr⃗ = Δxi⃗ + Δyj⃗ can be estimated using the

gradient:

Δf ≈ gradf ⋅ Δr⃗ .
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Example 5 Find the gradient vector of f (x, y) = x + ey at the point (1, 1).

Solution Using the definition, we have

grad f = fx i⃗ + fyj⃗ = i⃗ + eyj⃗ ,

so at the point (1, 1)

grad f (1, 1) = i⃗ + ej⃗ .

Alternative Notation for the Gradient

You can think of
)f

)x
i⃗ +

)f

)y
j⃗ as the result of applying the vector operator (pronounced “del”)

∇=
)

)x
i⃗ +

)

)y
j⃗

to the function f . Thus, we get the alternative notation

gradf = ∇f.

If z = f (x, y), we can write grad z or ∇z for gradf or for ∇f .

What Does the Gradient Tell Us?

The fact that fu⃗ = gradf ⋅ u⃗ enables us to see what the gradient vector represents. Suppose � is the

angle between the vectors gradf and u⃗ . At the point (a, b), we have

fu⃗ = gradf ⋅ u⃗ = ‖ gradf‖ ‖u⃗ ‖
⏟⏟⏟

1

cos � = ‖ gradf‖ cos �.

Imagine that gradf is fixed and that u⃗ can rotate. (See Figure 14.32.) The maximum value of

fu⃗ occurs when cos � = 1, so � = 0 and u⃗ is pointing in the direction of gradf . Then

Maximum fu⃗ = ‖ gradf‖ cos 0 = ‖ gradf‖.

The minimum value of fu⃗ occurs when cos � = −1, so � = � and u⃗ is pointing in the direction

opposite to gradf . Then

Minimum fu⃗ = ‖ gradf‖ cos� = −‖ gradf‖.

When � = �∕2 or 3�∕2, so cos � = 0, the directional derivative is zero.

Zero fu⃗
at � = −�∕2

Max fu⃗
at � = 0

Zero fu⃗
at � = �∕2

Min fu⃗
at � = �

grad f
u⃗ �

Figure 14.32: Values of the directional derivative at different angles to the gradient
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Properties of the Gradient Vector

We have seen that the gradient vector points in the direction of the greatest rate of change at a point

and the magnitude of the gradient vector is that rate of change.

Figure 14.33 shows that the gradient vector at a point is perpendicular to the contour through that

point. If the contours represent equally spaced f -values and f is differentiable, local linearity tells

us that the contours of f around a point appear straight, parallel, and equally spaced. The greatest

rate of change is obtained by moving in the direction that takes us to the next contour in the shortest

possible distance; that is, perpendicular to the contour. Thus, we have the following:

Geometric Properties of the Gradient Vector in the Plane

If f is a differentiable function at the point (a, b) and gradf (a, b) ≠ 0⃗ , then:

• The direction of gradf (a, b) is

· Perpendicular1 to the contour of f through (a, b);

· In the direction of the maximum rate of increase of f .

• The magnitude of the gradient vector, ‖ gradf‖, is

· The maximum rate of change of f at that point;

· Large when the contours are close together and small when they are far apart.

(a, b)

✛ Contour where
f (x, y) = c

✛ Contour where
f (x, y) = c + Δc

✮

Shortest path to next
contour gives greatest
rate of change

❲

Change in f is Δc

for both paths

❲

Figure 14.33: Close-up view of the contours around (a, b),

showing that the gradient is perpendicular to the contours

100 200 300

100

200

300

x (m)

y (m)

A
C

■
❨

50

45

40

35

Figure 14.34: A temperature map showing

directions and relative magnitudes of two

gradient vectors

Examples of Directional Derivatives and Gradient Vectors

Example 6 Explain why the gradient vectors at pointsA andC in Figure 14.34 have the direction and the relative

magnitudes they do.

Solution The gradient vector points in the direction of greatest increase of the function. This means that in

Figure 14.34, the gradient points directly toward warmer temperatures. The magnitude of the gradient

vector measures the rate of change. The gradient vector at A is longer than the gradient vector at C

because the contours are closer together at A, so the rate of change is larger.

Example 2 on page 810 shows how the contour diagram can tell us the sign of the directional

derivative. In the next example we compute the directional derivative in three directions, two that

are close to that of the gradient vector and one that is not.

1This assumes that the same scale is used on both axes.
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Example 7 Use the gradient to find the directional derivative of f (x, y) = x+ey at the point (1, 1) in the direction

of the vectors i⃗ − j⃗ , i⃗ + 2j⃗ , i⃗ + 3j⃗ .

Solution In Example 5 we found

gradf (1, 1) = i⃗ + ej⃗ .

A unit vector in the direction of i⃗ − j⃗ is s⃗ = (i⃗ − j⃗ )∕
√

2, so

fs⃗ (1, 1) = gradf (1, 1) ⋅ s⃗ = (i⃗ + ej⃗ ) ⋅

(

i⃗ − j⃗
√

2

)

=
1 − e
√

2
≈ −1.215.

A unit vector in the direction of i⃗ + 2j⃗ is v⃗ = (i⃗ + 2j⃗ )∕
√

5, so

fv⃗ (1, 1) = gradf (1, 1) ⋅ v⃗ = (i⃗ + ej⃗ ) ⋅

(

i⃗ + 2j⃗
√

5

)

=
1 + 2e
√

5
≈ 2.879.

A unit vector in the direction of i⃗ + 3j⃗ is w⃗ = (i⃗ + 3j⃗ )∕
√

10, so

fw⃗ (1, 1) = gradf (1, 1) ⋅ w⃗ = (i⃗ + ej⃗ ) ⋅

(

i⃗ + 3j⃗
√

10

)

=
1 + 3e
√

10
≈ 2.895.

Now look back at the answers and compare with the value of ‖ gradf‖ =
√

1 + e2 ≈ 2.896.

One answer is not close to this value; the other two, fv⃗ = 2.879 and fw⃗ = 2.895, are close but

slightly smaller than ‖ gradf‖. Since ‖ gradf‖ is the maximum rate of change of f at the point, we

have for any unit vector u⃗ :

fu⃗ (1, 1) ≤ ‖ gradf‖.

with equality when u⃗ is in the direction of gradf . Since e ≈ 2.718, the vectors i⃗ + 2j⃗ and i⃗ + 3j⃗

both point roughly, but not exactly, in the direction of the gradient vector gradf (1, 1) = i⃗ + ej⃗ .

Thus, the values of fv⃗ and fw⃗ are both close to the value of ‖ gradf‖. The direction of the vector

i⃗ − j⃗ is not close to the direction of grad f and the value of fs⃗ is not close to the value of ‖ gradf‖.

Summary for Section 14.4

• The directional derivative of a function f in the direction of a unit vector u⃗ at the point (a, b)

is denoted fu⃗ (a, b):

◦ fu⃗ (a, b) measures the rate of change of the function f (x, y) in the u⃗ -direction at (a, b).

◦ If u⃗ = u1 i⃗ + u2 j⃗ then

fu⃗ (a, b) = lim
ℎ→0

f (a + ℎu1, b + ℎu2) − f (a, b)

ℎ
.

• The gradient vector of a differentiable function f at the point (a, b) is

gradf (a, b) = fx(a, b)i⃗ + fy(a, b)j⃗ .

The gradient vector is also denoted as ∇f.

• If f is differentiable at (a, b) and u⃗ = u1 i⃗ + u2j⃗ is a unit vector, then the directional derivative

can be computed using

fu⃗ (a, b) = fx(a, b)u1 + fy(a, b)u2 = gradf (a, b) ⋅ u⃗ .
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• If f is a differentiable function at the point (a, b) and gradf (a, b) ≠ 0⃗ , then the gradient has

the following properties:

◦ The direction of gradf (a, b) is

∙ Perpendicular to the contour of f through (a, b);

∙ In the direction of the maximum rate of increase of f .

◦ The magnitude of the gradient vector, ‖ gradf‖, is

∙ The maximum rate of change of f at that point;

∙ Large when the contours are close together and small when they are far apart.

Exercises and Problems for Section 14.4 Online Resource: Additional Problems for Section 14.4
EXERCISES

In Exercises 1–14, find the gradient of the function. Assume

the variables are restricted to a domain on which the function

is defined.

1. f (x, y) =
3

2
x5 −

4

7
y6 2. Q = 50K + 100L

3. f (m, n) = m2 + n2 4. z = xey

5. f (�, �) =
√

5�2 + � 6. f (r, ℎ) = �r2ℎ

7. z = (x + y)ey 8. f (K,L) = K0.3L0.7

9. f (r, �) = r sin � 10. f (x, y) = ln(x2 + y2)

11. z = sin(x∕y) 12. z = tan−1(x∕y)

13. f (�, �) =
2� + 3�
2� − 3�

14. z = x
ey

x + y

In Exercises 15–22, find the gradient at the point.

15. f (x, y) = x2y + 7xy3, at (1, 2)

16. f (m, n) = 5m2 + 3n4, at (5, 2)

17. f (r, ℎ) = 2�rℎ + �r2, at (2, 3)

18. f (x, y) = esin y, at (0, �)

19. f (x, y) = sin (x2) + cos y, at (
√

�

2
, 0)

20. f (x, y) = ln(x2 + xy), at (4, 1)

21. f (x, y) = 1∕(x2 + y2), at (−1, 3)

22. f (x, y) =
√

tan x + y, at (0, 1)

In Exercises 23–28, which of the following vectors gives the

direction of the gradient vector at point A on the contour di-

agram? The scales on the x- and y-axes are the same.

i⃗ −i⃗ j⃗ −j⃗

i⃗ + j⃗ i⃗ − j⃗ −i⃗ + 2j⃗ −2i⃗ − j⃗
23.

A

7 1
0

1
3

1
6

x

y 24.

A

5

10

15

20

x

y

25.

A

54

58

62

66

x

y 26.

A

94

88

82

76

x

y

27.

A

23

24

25

26

27

x

y 28.

A

36

38

40

42

44

x

y

In Exercises 29–34, use the contour diagram of f in Fig-

ure 14.35 to decide if the specified directional derivative is

positive, negative, or approximately zero.

321−1−2−3

3

2

1

−1

−2

−3

x

y

4

4

2

2

6

6

8

8

Figure 14.35

29. At point (−2, 2), in direction i⃗ .

30. At point (0,−2), in direction j⃗ .

31. At point (0,−2), in direction i⃗ + 2j⃗ .

32. At point (0,−2), in direction i⃗ − 2j⃗ .

33. At point (−1, 1), in direction i⃗ + j⃗ .

34. At point (−1, 1), in direction −i⃗ + j⃗ .
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In Exercises 35–42, use the contour diagram of f in Fig-

ure 14.35 to find the approximate direction of the gradient

vector at the given point.

35. (−2, 0) 36. (0,−2) 37. (2, 0) 38. (0, 2)

39. (−2, 2) 40. (−2,−2) 41. (2, 2) 42. (2,−2)

In Exercises 43–44, approximate the directional derivative

of f in the direction from P to Q.

43. P = (10, 12), Q = (10.3, 12.1), f (P ) = 50, f (Q) =

52.

44. P = (−120, 45), Q = (−122, 47), f (P ) =200, f (Q) =

205.

In Exercises 45–48, find the directional derivative fu⃗ (1, 2)

for the function f with u⃗ = (3i⃗ − 4j⃗ )∕5.

45. f (x, y) = xy + y3 46. f (x, y) = 3x − 4y

47. f (x, y) = x2 − y2 48. f (x, y) = sin(2x − y)

49. If f (x, y) = x2y and v⃗ = 4i⃗ − 3j⃗ , find the directional

derivative at the point (2, 6) in the direction of v⃗ .

In Exercises 50–51, find the differential df from the gradi-

ent.

50. grad f = yi⃗ + xj⃗

51. grad f = (2x + 3ey)i⃗ + 3xey j⃗

In Exercises 52–53, find grad f from the differential.

52. df = 2xdx + 10ydy

53. df = (x + 1)yexdx + xexdy

In Exercises 54–55, assuming P and Q are close, approxi-

mate f (Q).

54. P = (100, 150), Q = (101, 153), f (P ) = 2000,

gradf (P ) = 2i⃗ − 2j⃗ .

55. P = (10, 10), Q = (10.2, 10.1), f (P ) = 50,

gradf (P ) = 0.5i⃗ + j⃗ .

56. Where is gradf longer: at a point where contour lines

of f are far apart or at a point where contour lines of f

are close together?

PROBLEMS

57. A student was asked to find the directional derivative

of f (x, y) = x2ey at the point (1, 0) in the direction of

v⃗ = 4i⃗ + 3j⃗ . The student’s answer was

fu⃗ (1, 0) = grad f (1, 0) ⋅ u⃗ =
8

5
i⃗ +

3

5
j⃗ .

(a) At a glance, how do you know this is wrong?

(b) What is the correct answer?

In Problems 58–64, find the quantity. Assume that g is a

smooth function and that

∇g(2, 3) = −2i⃗ + j⃗ and ∇g(2.4, 3) = 4i⃗

58. gy(2.4, 3) 59. gx(2, 3)

60. A vector perpendicular to the level curve of g that

passes through the point (2.4, 3)

61. A vector parallel to the level curve of g that passes

through the point (2, 3)

62. The slope of the graph of g at the point (2.4, 3) in the

direction of the vector i⃗ + 3j⃗ .

63. The slope of the graph of g at the point (2, 3) in the di-

rection of the vector i⃗ + 3j⃗ .

64. The greatest slope of the graph of g at the point (2, 3).

65. For f (x, y) = (x + y)∕(1 + x2), find the directional

derivative at (1,−2) in the direction of v⃗ = 3i⃗ +4j⃗ .

66. For g(x, y) with g(5, 10) = 100 and gu⃗ (5, 10) = 0.5,

where u⃗ is the unit vector in the direction of the vector

i⃗ + j⃗ , estimate g(5.1, 10.1).

67. Let f (P ) = 15 and f (Q) = 20 where P = (3, 4) and

Q = (3.03, 3.96). Approximate the directional deriva-

tive of f at P in the direction of Q.

68. (a) Give Q, the point at a distance of 0.1 from P =

(4, 5) in the direction of v⃗ = −i⃗ + 3j⃗ . Give five

decimal places in your answer.

(b) Use P andQ to approximate the directional deriva-

tive of f (x, y) =
√

x + y in the direction of v⃗ .

(c) Give the exact value for the directional derivative

you estimated in part (b).

69. For f (x, y) = ex tan(y) + 2x2y, find the directional

derivative at the point (0, �∕4) in the direction

(a) i⃗ − j⃗ (b) i⃗ +
√

3j⃗

70. Find the rate of change of f (x, y) = x2+y2 at the point

(1, 2) in the direction of the vector u⃗ = 0.6i⃗ + 0.8j⃗ .

71. (a) Let f (x, y) = (x+y)∕(1+x2). Find the directional

derivative of f at P = (1,−2) in the direction of:

(i) v⃗ = 3i⃗ − 2j⃗ (ii) v⃗ = −i⃗ + 4j⃗

(b) What is the direction of greatest increase of f atP ?

72. Let f (5, 10) = 200 and f (5.2, 9.9) = 197.

(a) Approximate the directional derivative at (5, 10) in

the direction from (5, 10) toward (5.2, 9.9).

(b) Approximate f (Q) at the point Q that is distance

0.1 from (5, 10) in the direction of (5.2, 9.9).

(c) Give coordinates for the point Q.
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73. Let f (100, 100) = 500 and gradf (100, 100) = 2i⃗ +3j⃗ .

(a) Find the directional derivative of f at the point

(100, 100) in the direction i⃗ + j⃗ .

(b) Use the directional derivative to approximate

f (102, 102).

74. Let gradf (50, 60) = 0.3i⃗ + 0.5j⃗ . Approximate the di-

rectional derivative of f at the point (50, 60) in the di-

rection of the point (49.5, 62).

75. Let f (x, y) = x2y3. At the point (−1, 2), find a vector

(a) In the direction of maximum rate of change.

(b) In the direction of minimum rate of change.

(c) In a direction in which the rate of change is zero.

76. Let f (x, y) = exy. At the point (1, 1), find a unit vector

(a) In the direction of the steepest ascent.

(b) In the direction of the steepest descent.

(c) In a direction in which the rate of change is zero.

For Problems 77–81 use Figure 14.36, showing level curves

of f (x, y), to estimate the directional derivatives.

1 2 3 4 5 6

1

2

3

4

0
1 2 3 4 5

y

x

Figure 14.36

77. fi⃗ (4, 1) 78. fj⃗ (4, 1)

79. fu⃗ (4, 1) where u⃗ = (i⃗ − j⃗ )∕
√

2

80. fu⃗ (4, 1) where u⃗ = (−i⃗ + j⃗ )∕
√

2

81. fu⃗ (4, 1) with u⃗ = (−2i⃗ + j⃗ )∕
√

5

82. The surface z = g(x, y) is in Figure 14.37. What is the

sign of each of the following directional derivatives?

(a) gu⃗ (2, 5) where u⃗ = (i⃗ − j⃗ )∕
√

2.

(b) gu⃗ (2, 5) where u⃗ = (i⃗ + j⃗ )∕
√

2.

x

y

z

❘

(2, 5, 2)
(0, 5, 4)

(0, 12, 4)

Figure 14.37

83. The table gives values of a differentiable function

f (x, y). At the point (1.2, 0), into which quadrant does

the gradient vector of f point? Justify your answer.

x

y

−1 0 1

1.0 0.7 0.1 −0.5

1.2 4.8 4.2 3.6

1.4 8.9 8.3 7.7

84. The gradient of f at a point P has magnitude 10 and

is in the direction of A in Figure 14.38. Find the direc-

tional derivatives of f at P in the six directions shown.

P

A

B

C

D

E

F
90◦

20◦

70◦
60◦

Figure 14.38

85. Figure 14.39 represents the level curves f (x, y) = c ;

the values of f on each curve are marked. In each of

the following parts, decide whether the given quantity

is positive, negative or zero. Explain your answer.

(a) The value of ∇f ⋅ i⃗ at P .

(b) The value of ∇f ⋅ j⃗ at P .

(c) )f∕)x at Q.

(d) )f∕)y at Q.

4

3

2

1

x

y

❘

P

✛ Q

Figure 14.39

86. In Figure 14.39, which is larger: ‖∇f‖ at P or ‖∇f‖ at

Q? Explain how you know.

87. Let P , Q, R and S be four distinct points in the plane.

Let u⃗ be the unit vector in the direction from P to Q,

v⃗ the unit vector in the direction from P to R, and

w⃗ the unit vector in the direction from P to S. Let

f (x, y) be a linear function with f (P ) = 10, f (Q) = 7,

f (R) = 15, and f (S) = 10. List the directional deriva-

tives fu⃗ (P ), fv⃗ (P ), and fw⃗ (P ) in increasing order.
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88. Let fx(3, 1) = −5 and fy(3, 1) = 2. Find a unit vector

u⃗ such that:

(a) fu⃗ (3, 1) > 0 (b) fu⃗ (3, 1) < 0

(c) fu⃗ (3, 1) = 0

89. Let f (0, 0) = −4 and fu⃗ (0, 0) = 20 for a unit vector u⃗ .

Suppose that points P and Q in Figure 14.40 are close.

Find approximate values of f (P ) and f (Q).

P
0.5u⃗

u⃗

Q −u⃗

(0,0)

Figure 14.40

In Problems 90–93, check that the point (2, 3) lies on the

curve. Then, viewing the curve as a contour of f (x, y), use

grad f (2, 3) to find a vector normal to the curve at (2, 3) and

an equation for the tangent line to the curve at (2, 3).

90. x2 + y2 = 13 91. xy = 6

92. y = x2 − 1 93. (y − x)2 + 2 = xy − 3

94. The temperature H in ◦Fahrenheit y miles north of

the Canadian border t hours after midnight is given by

H = 30 − 0.05y − 5t. A moose runs north at a speed

of 20 mph. At what rate does the moose perceive the

temperature to be changing?

95. At a certain point on a heated plate, the greatest rate

of temperature increase, 5◦ C per meter, is toward the

northeast. If an object at this point moves directly north,

at what rate is the temperature increasing?

96. An ant is at the point (1, 1, 3) on the surface of a bowl

with equation z = x2+2y2, where x and y are in cm. In

what two horizontal directions can the ant move away

from the point (1, 1, 3) so that its initial rate of ascent is

2 vertical cm for each horizontal cm moved? Give your

answers as vectors in the plane.

97. Let T = f (x, y) = 100e−(x
2∕2)−y2 represent the temper-

ature, in ◦C, at the point (x, y) with x and y in meters.

(a) Describe the contours of f, and explain their

meaning in the context of this problem.

(b) Find the rate at which the temperature changes as

you move away from the point (1, 1) toward the

point (2, 3). Give units in your answer.

(c) In what direction would you move away from (1, 1)

for the temperature to increase as fast as possible?

98. You are climbing a mountain by the steepest route at a

slope of 20◦ when you come upon a trail branching off

at a 30◦ angle from yours. What is the angle of ascent

of the branch trail?

99. You are standing at the point (1, 1, 3) on the hill whose

equation is given by z = 5y − x2 − y2.

(a) If you choose to climb in the direction of steepest

ascent, what is your initial rate of ascent relative to

the horizontal distance?

(b) If you decide to go straight northwest, will you be

ascending or descending? At what rate?

(c) If you decide to maintain your altitude, in what di-

rections can you go?

Strengthen Your Understanding

In Problems 100–102, explain what is wrong with the state-

ment.

100. A function f has a directional derivative given by

fu⃗ (0, 0) = 3i⃗ + 4j⃗ .

101. A function f has gradient grad f (0, 0) = 7.

102. The gradient vector grad f (x, y) is perpendicular to the

contours of f , and the closer together the contours for

equally spaced values of f , the shorter the gradient vec-

tor.

In Problems 103–104, give an example of:

103. A unit vector u⃗ such that fu⃗ (0, 0) < 0, given that

fx(0, 0) = 2 and fy(0, 0) = 3.

104. A contour diagram of a function with two points in the

domain where the gradients are parallel but different

lengths.

Are the statements in Problems 105–116 true or false? Give

reasons for your answer.

105. If the point (a, b) is on the contour f (x, y) = k, then

the slope of the line tangent to this contour at (a, b) is

fy(a, b)∕fx(a, b).

106. The gradient vector grad f (a, b) is a vector in 3-space.

107. grad(fg) = (grad f ) ⋅ (grad g)

108. The gradient vector grad f (a, b) is tangent to the con-

tour of f at (a, b).

109. If you know the gradient vector of f at (a, b) then you

can find the directional derivative fu⃗ (a, b) for any unit

vector u⃗ .

110. If you know the directional derivative fu⃗ (a, b) for all

unit vectors u⃗ then you can find the gradient vector of

f at (a, b).

111. The directional derivative fu⃗ (a, b) is parallel to u⃗ .



14.5 GRADIENTS AND DIRECTIONAL DERIVATIVES IN SPACE 819

112. The gradient grad f (3, 4) is perpendicular to the vector

3i⃗ + 4j⃗ .

113. If grad f (1, 2) = i⃗ , then f decreases in the−i⃗ direction

at (1, 2).

114. If grad f (1, 2) = i⃗ , then f (10, 2) > f (1, 2).

115. At the point (3, 0), the function g(x, y) = x2 + y2 has

the same maximal rate of increase as that of the function

ℎ(x, y) = 2xy.

116. If f (x, y) = ex+y, then the directional derivative in any

direction u⃗ (with ‖u⃗ ‖ = 1) at the point (0, 0) is always

less than or equal to
√

2.

14.5 GRADIENTS AND DIRECTIONAL DERIVATIVES IN SPACE

The Gradient Vector and Directional Derivative of a Function of Three Variables

The gradient of a function of three variables is defined in the same way as for two variables:

The gradient vector of a differentiable function f (x, y, z) is

gradf = fx i⃗ + fyj⃗ + fzk⃗ .

As in two dimensions, directional derivatives in space give the rate of change of a function in

the direction of a unit vector u⃗ . If a function f of three variables is differentiable at the point (a, b, c)

and u⃗ = u1i⃗ + u2j⃗ + u3k⃗ , then the directional derivative fu⃗ is related to the gradient by

fu⃗ (a, b, c) = fx(a, b, c)u1 + fy(a, b, c)u2 + fz(a, b, c)u3 = gradf (a, b, c) ⋅ u⃗ .

Since gradf (a, b, c)⋅u⃗ = ‖ gradf (a, b, c)‖ cos �, where � is the angle between gradf (a, b, c) and u⃗ ,

the value offu⃗ (a, b, c) is largest when � = 0, that is, when u⃗ is in the same direction as gradf (a, b, c).

In addition, fu⃗ (a, b, c) = 0 when � = �∕2, so gradf (a, b, c) is perpendicular to the level surface of

f . The properties of gradients in space are similar to those in the plane:

Properties of the Gradient Vector in Space

If f is differentiable at (a, b, c) and u⃗ is a unit vector, then

fu⃗ (a, b, c) = gradf (a, b, c) ⋅ u⃗ .

If, in addition, gradf (a, b, c) ≠ 0⃗ , then

• gradf (a, b, c) is perpendicular to the level surface of f at (a, b, c)

• gradf (a, b, c) is in the direction of the greatest rate of increase of f

• ‖ gradf (a, b, c)‖ is the maximum rate of change of f at (a, b, c).

Example 1 Find the directional derivative of f (x, y, z) = xy + z at the point (−1, 0, 1) in the direction of the

vector v⃗ = 2i⃗ + k⃗ .

Solution The magnitude of v⃗ is ‖v⃗ ‖ =
√

22 + 1 =
√

5, so a unit vector in the same direction as v⃗ is

u⃗ =
v⃗

‖v⃗ ‖
=

2
√

5
i⃗ + 0j⃗ +

1
√

5
k⃗ .
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The partial derivatives of f are fx(x, y, z) = y and fy(x, y, z) = x and fz(x, y, z) = 1. Thus,

fu⃗ (−1, 0, 1) = fx(−1, 0, 1)u1 + fy(−1, 0, 1)u2 + fz(−1, 0, 1)u3

= (0)

(

2
√

5

)

+ (−1)(0) + (1)

(

1
√

5

)

=
1
√

5
.

Example 2 Let f (x, y, z) = x2 + y2 and g(x, y, z) = −x2 − y2 − z2. What can we say about the direction of the

following vectors?

(a) gradf (0, 1, 1) (b) gradf (1, 0, 1) (c) grad g(0, 1, 1) (d) grad g(1, 0, 1).

Solution The cylinder x2+ y2 = 1 in Figure 14.41 is a level surface of f and contains both the points (0, 1, 1)

and (1, 0, 1). Since the value of f does not change at all in the z-direction, all the gradient vectors

are horizontal. They are perpendicular to the cylinder and point outward because the value of f

increases as we move out.

Similarly, the points (0, 1, 1) and (1, 0, 1) also lie on the same level surface of g, namely g(x, y, z) =

−x2 − y2 − z2 = −2, which is the sphere x2 + y2 + z2 = 2. Part of this level surface is shown in

Figure 14.42. This time the gradient vectors point inward, since the negative signs mean that the

function increases (from large negative values to small negative values) as we move inward.

x y

z

Figure 14.41: The level surface

f (x, y, z) = x2 + y2 = 1 with two gradient vectors

x y

z

Figure 14.42: The level surface

g(x, y, z) = −x2 − y2 − z2 = −2 with two gradient

vectors

Example 3 Consider the functions f (x, y) = 4−x2−2y2 and g(x, y) = 4−x2. Calculate a vector perpendicular

to each of the following:

(a) The level curve of f at the point (1, 1) (b) The surface z = f (x, y) at the point (1, 1, 1)

(c) The level curve of g at the point (1, 1) (d) The surface z = g(x, y) at the point (1, 1, 3)

Solution (a) The vector we want is a 2-vector in the plane. Since gradf = −2xi⃗ − 4yj⃗ , we have

gradf (1, 1) = −2i⃗ − 4j⃗ .

Any nonzero multiple of this vector is perpendicular to the level curve at the point (1, 1).

(b) In this case we want a 3-vector in space. To find it we rewrite z = 4 − x2 − 2y2 as the level

surface of the function F , where

F (x, y, z) = 4 − x2 − 2y2 − z = 0.

Then

gradF = −2xi⃗ − 4yj⃗ − k⃗ ,
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so

gradF (1, 1, 1) = −2i⃗ − 4j⃗ − k⃗ ,

and gradF (1, 1, 1) is perpendicular to the surface z = 4 − x2 − 2y2 at the point (1, 1, 1). Notice

that −2i⃗ − 4j⃗ − k⃗ is not the only possible answer: any multiple of this vector will do.

(c) We are looking for a 2-vector. Since grad g = −2xi⃗ + 0j⃗ , we have

grad g(1, 1) = −2i⃗ .

Any multiple of this vector is perpendicular to the level curve also.

(d) We are looking for a 3-vector. We rewrite z = 4 − x2 as the level surface of the function G,

where

G(x, y, z) = 4 − x2 − z = 0.

Then

gradG = −2xi⃗ − k⃗

So

gradG(1, 1, 3) = −2i⃗ − k⃗ ,

and any multiple of gradG(1, 1, 3) is perpendicular to the surface z = 4 − x2 at this point.

Example 4 (a) A hiker on the surface f (x, y) = 4−x2−2y2 at the point (1,−1, 1) starts to climb along the path

of steepest ascent. What is the relation between the vector gradf (1,−1) and a vector tangent to

the path at the point (1,−1, 1) and pointing uphill?

(b) At the point (1,−1, 1) on the surface f (x, y) = 4−x2−2y2, calculate a vector, n⃗ , perpendicular

to the surface and a vector, T⃗ , tangent to the curve of steepest ascent.

1
2

0

3

−1
−3
−5

x

y

❑

Figure 14.43: Contour diagram for

z = f (x, y) = 4 − x2 − 2y2 showing

direction of grad f (1,−1)

Figure 14.44: Graph of

f (x, y) = 4 − x2 − 2y2 showing

path of steepest ascent from the

point (1,−1, 1)

Solution (a) The hiker at the point (1,−1, 1) lies directly above the point (1,−1) in the xy-plane. The vector

gradf (1,−1) lies in 2-space, pointing like a compass in the direction in which f increases

most rapidly. Therefore, gradf (1,−1) lies directly under a vector tangent to the hiker’s path at

(1,−1, 1) and pointing uphill. (See Figures 14.43 and 14.44.)
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(b) The surface is represented by F (x, y, z) = 4−x2−2y2−z = 0. Since gradF = −2xi⃗ −4yj⃗ − k⃗ ,

a normal, n⃗ , to the surface is given by

n⃗ = gradF (1,−1, 1) = −2(1)i⃗ − 4(−1)j⃗ − k⃗ = −2i⃗ + 4j⃗ − k⃗ .

We take the i⃗ and j⃗ components of T⃗ to be the vector gradf (1,−1) = −2i⃗ + 4j⃗ . Thus, we

have that, for some a > 0,

T⃗ = −2i⃗ + 4j⃗ + ak⃗ .

We want n⃗ ⋅ T⃗ = 0, so

n⃗ ⋅ T⃗ = (−2i⃗ + 4j⃗ − k⃗ ) ⋅ (−2i⃗ + 4j⃗ + ak⃗ ) = 4 + 16 − a = 0.

Thus, a = 20 and hence

T⃗ = −2i⃗ + 4j⃗ + 20k⃗ .

Example 5 Find the equation of the tangent plane to the sphere x2 + y2 + z2 = 14 at the point (1, 2, 3).

Solution We write the sphere as a level surface as follows:

f (x, y, z) = x2 + y2 + z2 = 14.

We have

gradf = 2xi⃗ + 2yj⃗ + 2zk⃗ ,

so the vector

gradf (1, 2, 3) = 2i⃗ + 4j⃗ + 6k⃗

is perpendicular to the sphere at the point (1, 2, 3). Since the vector gradf (1, 2, 3) is normal to the

tangent plane, the equation of the plane is

2x + 4y + 6z = 2 ⋅ 1 + 4 ⋅ 2 + 6 ⋅ 3 = 28 or x + 2y + 3z = 14.

We could also try to find the tangent plane to the level surface f (x, y, z) = k by solving alge-

braically for z and using the method of Section 14.3, page 802. (See Problem 47.) Solving for z can

be difficult or impossible, however, so the method of Example 5 is preferable.

Tangent Plane to a Level Surface

If f (x, y, z) is differentiable at (a, b, c), then an equation for the tangent plane to the level

surface of f at the point (a, b, c) is

fx(a, b, c)(x− a) + fy(a, b, c)(y− b) + fz(a, b, c)(z− c) = 0.

Caution: Scale on the Axis and the Geometric Interpretation of the Gradient
When we interpreted the gradient of a function geometrically (page 813), we tacitly assumed that

the units and scales along the x and y axes were the same. If the scales are not the same, the gradient

vector may not look perpendicular to the contours. Consider the function f (x, y) = x2 + y with

gradient vector gradf = 2xi⃗ + j⃗ . Figure 14.45 shows the gradient vector at (1, 1) using the same

scales in the x and y directions. As expected, the gradient vector is perpendicular to the contour

line. Figure 14.46 shows contours of the same function with unequal scales on the two axes. Notice
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that the gradient vector no longer appears perpendicular to the contour lines. Thus, we see that the

geometric interpretation of the gradient vector requires that the same scale be used on both axes.

1 2 3

1

2

1 2 3 4

x

y

Figure 14.45: The gradient vector with x and y

scales equal

1 2 3

1

2

3

4

1

2

3

4 5 6

x

y

Figure 14.46: The gradient vector with x and y

scales unequal

Summary for Section 14.5

If f (x, y, z) is differentiable:

• The gradient vector is

gradf = fx i⃗ + fyj⃗ + fzk⃗ .

• If u⃗ is a unit vector, then the directional derivative of f can be computed using

fu⃗ (a, b, c) = gradf (a, b, c) ⋅ u⃗ .

If, in addition, gradf (a, b, c) ≠ 0⃗ , then

◦ gradf (a, b, c) is perpendicular to the level surface of f at (a, b, c)

◦ gradf (a, b, c) is in the direction of the greatest rate of increase of f

◦ ‖ gradf (a, b, c)‖ is the maximum rate of change of f at (a, b, c).

• An equation for the tangent plane to the level surface of f at the point (a, b, c) is

fx(a, b, c)(x − a) + fy(a, b, c)(y− b) + fz(a, b, c)(z − c) = 0.

Exercises and Problems for Section 14.5 Online Resource: Additional Problems for Section 14.5
EXERCISES

In Exercises 1–12, find the gradient of the function.

1. f (x, y, z) = x2

2. f (x, y, z) = x2 + y3 − z4

3. f (x, y, z) = ex+y+z

4. f (x, y, z) = cos(x + y) + sin(y + z)

5. f (x, y, z) = yz2∕(1 + x2)

6. f (x, y, z) = 1∕(x2 + y2 + z2)

7. f (x, y, z) =
√

x2 + y2 + z2

8. f (x, y, z) = xey sin z

9. f (x, y, z) = xy + sin (ez)

10. f (x1, x2, x3) = x2
1
x3
2
x4
3

11. f (p, q, r) = ep + ln q + er
2

12. f (x, y, z) = ez
2
+ y ln(x2 + 5)

In Exercises 13–18, find the gradient at the point.

13. f (x, y, z) = zy2, at (1, 0, 1)

14. f (x, y, z) = 2x + 3y + 4z, at (1, 1, 1)

15. f (x, y, z) = x2 + y2 − z4, at (3, 2, 1)

16. f (x, y, z) = xyz, at (1, 2, 3)

17. f (x, y, z) = sin(xy) + sin(yz), at (1, �,−1)

18. f (x, y, z) = x ln(yz), at (2, 1, e)

In Exercises 19–24, find the directional derivative using

f (x, y, z) = xy + z2.

19. At (1, 2, 3) in the direction of i⃗ + j⃗ + k⃗ .

20. At (1, 1, 1) in the direction of i⃗ + 2j⃗ + 3k⃗ .

21. As you leave the point (1, 1, 0) heading in the direction

of the point (0, 1, 1).

22. As you arrive at (0, 1, 1) from the direction of (1, 1, 0).

23. At the point (2, 3, 4) in the direction of a vector making

an angle of 3�∕4 with grad f (2, 3, 4).

24. At the point (2, 3, 4) in the direction of the maximum

rate of change of f .
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In Exercises 25–30, check that the point (−1, 1, 2) lies on the

given surface. Then, viewing the surface as a level surface for

a function f (x, y, z), find a vector normal to the surface and

an equation for the tangent plane to the surface at (−1, 1, 2).

25. x2 − y2 + z2 = 4 26. z = x2 + y2

27. y2 = z2 − 3 28. x2 − xyz = 3

29. cos(x + y) = exz+2 30. y = 4∕(2x + 3z)

In Exercises 31–32, the gradient of f and a point P on the

level surface f (x, y, z) = 0 are given. Find an equation for

the tangent plane to the surface at the point P .

31. grad f = yzi⃗ + xzj⃗ + xyk⃗ , P = (1, 2, 3)

32. grad f = 2xi⃗ + z2j⃗ + 2yzk⃗ , P = (10,−10, 30)

In Exercises 33–37, find an equation of the tangent plane to

the surface at the given point.

33. x2 + y2 + z2 = 17 at the point (2, 3, 2)

34. x2 + y2 = 1 at the point (1, 0, 0)

35. z = 2x + y + 3 at the point (0, 0, 3)

36. 3x2 − 4xy + z2 = 0 at the point (a, a, a), where a ≠ 0

37. z = 9∕(x + 4y) at the point where x = 1 and y = 2

38. For f (x, y, z) = 3x2y2+2yz, find the directional deriva-

tive at the point (−1, 0, 4) in the direction of

(a) i⃗ − k⃗ (b) −i⃗ + 3j⃗ + 3k⃗

39. If f (x, y, z) = x2+3xy+2z, find the directional deriva-

tive at the point (2, 0,−1) in the direction of 2i⃗ +j⃗ −2k⃗ .

40. (a) Let f (x, y, z) = x2 + y2 − xyz. Find grad f .

(b) Find the equation for the tangent plane to the sur-

face f (x, y, z) = 7 at the point (2, 3, 1).

41. Find the equation of the tangent plane at the point

(3, 2, 2) to z =
√

17 − x2 − y2.

42. Find the equation of the tangent plane to z = 8∕(xy) at

the point (1, 2, 4).

43. Find an equation of the tangent plane and of a normal

vector to the surface x = y3z7 at the point (1,−1,−1).

PROBLEMS

44. Let f (x, y, z) represent the temperature in ◦C at the

point (x, y, z) with x, y, z in meters. Let v⃗ be your ve-

locity in meters per second. Give units and an interpre-

tation of each of the following quantities.

(a) || grad f || (b) grad f ⋅ v⃗ (c) || grad f ||⋅||v⃗ ||

45. Consider the surface g(x, y) = 4 − x2. What is the rela-

tion between grad g(−1,−1) and a vector tangent to the

path of steepest ascent at (−1,−1, 3)? Illustrate your an-

swer with a sketch.

46. Match the functions f (x, y, z) in (a)–(d) with the de-

scriptions of their gradients in (I)–(IV).

(a) x2 + y2 + z2 (b) x2 + y2

(c)
1

x2 + y2 + z2
(d)

1

x2 + y2

I Points radially outward from the z-axis.

II Points radially inward toward the z-axis.

III Points radially outward from the origin.

IV Points radially inward toward the origin.

47. Find the equation of the tangent plane at (2, 3, 1) to the

surface x2 + y2 − xyz = 7. Do this in two ways:

(a) Viewing the surface as the level set of a function

of three variables, F (x, y, z).

(b) Viewing the surface as the graph of a function of

two variables z = f (x, y).

48. At what point on the surface z = 1+x2+y2 is its tangent

plane parallel to the following planes?

(a) z = 5 (b) z = 5 + 6x − 10y

49. Let gx(2, 1, 7) = 3, gy(2, 1, 7) = 10, gz(2, 1, 7) = −5.

Find the equation of the tangent plane to g(x, y, z) = 0

at the point (2, 1, 7).

50. The vector ∇f at point P and four unit vectors

u⃗ 1, u⃗ 2, u⃗ 3, u⃗ 4 are shown in Figure 14.47. Arrange the

following quantities in ascending order

fu⃗ 1
, fu⃗ 2

, fu⃗ 3
, fu⃗ 4

, the number 0.

The directional derivatives are all evaluated at the point

P and the function f (x, y) is differentiable at P .

u⃗ 1

u⃗ 4

u⃗ 3

u⃗ 2

∇f

P

Figure 14.47

51. Let f (x, y, z) = x2 + y2 + z2. At the point (1, 2, 1), find

the rate of change of f in the direction perpendicular to

the plane x + 2y + 3z = 8 and moving away from the

origin.
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52. Let f (x, y) = cos x sin y and let S be the surface z =

f (x, y).

(a) Find a normal vector to the surface S at the point

(0, �∕2, 1).

(b) What is the equation of the tangent plane to the sur-

face S at the point (0, �∕2, 1)?

53. Let f (x, y, z) = sin(x2 + y2 + z2).

(a) Describe in words the shape of the level surfaces

of f .

(b) Find grad f .

(c) Consider the two vectors r⃗ = xi⃗ + yj⃗ + zk⃗ and

grad f at a point (x, y, z) where sin(x2+y2+z2) ≠

0. What is (are) the possible value(s) of the angle

between these vectors?

54. Each diagram (I) – (IV) in Figure 14.48 represents the

level curves of a function f (x, y). For each function f ,

consider the point above P on the surface z = f (x, y)

and choose from the lists of vectors and equations that

follow:

(a) A vector which could be the normal to the surface

at that point;

(b) An equation which could be the equation of the

tangent plane to the surface at that point.

y

x

P

4

3

2

1

(I) y

x

P

1

2

3

4

(II)

y

x

P

4

3

2

1

(III) y

x

P

1

2

3

4

(IV)

Figure 14.48

Vectors

(E) 2i⃗ + 2j⃗ − 2k⃗

(F) 2i⃗ + 2j⃗ + 2k⃗

(G) 2i⃗ − 2j⃗ + 2k⃗

(H) −2i⃗ + 2j⃗ + 2k⃗

Equations
(J) x + y + z = 4

(K) 2x − 2y − 2z = 2

(L) −3x − 3y + 3z = 6

(M) −
x

2
+

y

2
−

z

2
= −7

55. (a) What is the shape of the curve in which the follow-

ing surface cuts the yz-plane:

5(x − 1)2 + 2(y + 1)2 + 2(z − 3)2 = 25?

(b) Does the curve in part (a) go through the origin?

(c) Find an expression for a vector perpendicular to the

surface at the origin.

56. Find the points on the surface y = 4 + x2 + z2 where

the gradient is parallel to i⃗ + j⃗ + k⃗ .

57. A particle moves at a speed of 3 units per second per-

pendicular to the surface x = 4+y2+z2 from the point

(9, 1, 2) toward the yz-plane.

(a) What is the particle’s velocity vector?

(b) Where is the particle after one second?

58. For the surface z + 7 = 2x2 + 3y2, where does the tan-

gent plane at the point (−1, 1,−2) meet the three axes?

59. Find a vector perpendicular to the surface z = 4−x2−y2

at the point above the point (1, 1, 0). (The z-axis is ver-

tical.)

60. (a) Where does the surface x2 + y2 − (z − 1)2 = 0 cut

the xy-plane? What is the shape of the curve?

(b) At the points where the surface cuts the xy-plane,

do vectors perpendicular to the surface lie in the

xy-plane?

61. A unit vector is perpendicular to the surface z = x2−y2.

At which point on the surface does this unit vector have

the largest dot product with the vector i⃗ + 2j⃗ + 3k⃗?

62. The surface S is represented by the equation F = 0

where F (x, y, z) = x2 − (y∕z2).

(a) Find the unit vectors u⃗ 1 and u⃗ 2 pointing in the di-

rection of maximum increase of F at the points

(0, 0, 1) and (1, 1, 1) respectively.

(b) Find the tangent plane to S at the points (0, 0, 1)

and (1, 1, 1).

(c) Find all points on S where a normal vector is par-

allel to the xy-plane.

63. Consider the function f (x, y) = (ex−x) cos y. Suppose

S is the surface z = f (x, y).

(a) Find a vector which is perpendicular to the level

curve of f through the point (2, 3) in the direction

in which f decreases most rapidly.

(b) Suppose v⃗ = 5i⃗ + 4j⃗ + ak⃗ is a vector in 3-space

which is tangent to the surface S at the point P

lying on the surface above (2, 3). What is a?

64. (a) Find the tangent plane to the surface x2+y2+3z2 =

4 at the point (0.6, 0.8, 1).

(b) Is there a point on the surface x2 + y2 + 3z2 = 4

at which the tangent plane is parallel to the plane

8x + 6y + 30z = 1? If so, find it. If not, explain

why not.

65. Your house lies on the surface z = f (x, y) = 2x2 − y2

directly above the point (4, 3) in the xy-plane.

(a) How high above the xy-plane do you live?

(b) What is the slope of your lawn as you look from

your house directly toward the z-axis (that is, along

the vector −4i⃗ − 3j⃗ )?

(c) When you wash your car in the driveway, on this

surface above the point (4, 3), which way does

the water run off? (Give your answer as a two-

dimensional vector.)

(d) What is the equation of the tangent plane to this

surface at your house?
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66. (a) Sketch the contours of z = y − sin x for z =

−1, 0, 1, 2.

(b) A bug starts on the surface at the point (�∕2, 1, 0)

and walks on the surface z = y − sin x in the di-

rection parallel to the y-axis, in the direction of in-

creasing y. Is the bug walking in a valley or on top

of a ridge? Explain.

(c) On the contour z = 0 in your sketch for part (a),

draw the gradients of z at x = 0, x = �∕2, and

x = �.

67. The function f (x, y, z) = 2x − 3y + z + 10 gives the

temperature, T , in degrees Celsius, at the point (x, y, z).

(a) In words, describe the isothermal surfaces.

(b) Calculate fz(0, 0, 0) and interpret in terms of tem-

perature.

(c) If you are standing at the point (0, 0, 0), in what

direction should you move to increase your tem-

perature the fastest?

(d) Is z = −2x+ 3y+ 17 an isothermal surface? If so,

what is the temperature on this isotherm?

68. The concentration of salt in a fluid at (x, y, z) is given

by F (x, y, z) = x2 + y4 + x2z2 mg/cm3. You are at the

point (−1, 1, 1).

(a) In which direction should you move if you want the

concentration to increase the fastest?

(b) You start to move in the direction you found in part

(a) at a speed of 4 cm/sec. How fast is the concen-

tration changing?

69. The temperature of a gas at the point (x, y, z) is given

by G(x, y, z) = x2 − 5xy + y2z.

(a) What is the rate of change in the temperature at the

point (1, 2, 3) in the direction v⃗ = 2i⃗ + j⃗ − 4k⃗ ?

(b) What is the direction of maximum rate of change

of temperature at the point (1, 2, 3)?

(c) What is the maximum rate of change at the point

(1, 2, 3)?

70. The temperature at the point (x, y, z) in 3-space is given,

in degrees Celsius, by T (x, y, z) = e−(x
2+y2+z2).

(a) Describe in words the shape of surfaces on which

the temperature is constant.

(b) Find grad T .

(c) You travel from the point (1, 0, 0) to the point

(2, 1, 0) at a speed of 3 units per second. Find the

instantaneous rate of change of the temperature as

you leave the point (1, 0, 0). Give units.

71. A spaceship is plunging into the atmosphere of a planet.

With coordinates in miles and the origin at the center of

the planet, the pressure of the atmosphere at (x, y, z) is

P = 5e−0.1
√

x2+y2+z2 atmospheres.

The velocity, in miles/sec, of the spaceship at (0, 0, 1)

is v⃗ = i⃗ − 2.5k⃗ . At (0, 0, 1), what is the rate of change

with respect to time of the pressure on the spaceship?

72. The earth has mass M and is located at the origin in

3-space, while the moon has mass m. Newton’s Law of

Gravitation states that if the moon is located at the point

(x, y, z) then the attractive force exerted by the earth on

the moon is given by the vector

F⃗ = −GMm
r⃗

‖r⃗ ‖3
,

where r⃗ = xi⃗ + yj⃗ + zk⃗ . Show that F⃗ = grad',

where ' is the function given by

'(x, y, z) =
GMm

‖r⃗ ‖
.

73. Let r⃗ = xi⃗ + yj⃗ + zk⃗ and a⃗ be a constant vector. For

each of the quantities in (a)–(c), choose the statement

in (I)–(V) that describes it. No reasons are needed.

(a) grad(r⃗ + a⃗ ) (b) grad(r⃗ ⋅ a⃗ ) (c) grad(r⃗ × a⃗ )

I Scalar, independent of a⃗ .

II Scalar, depends on a⃗ .

III Vector, independent of a⃗ .

IV Vector, depends on a⃗ .

V Not defined.

Strengthen Your Understanding

In Problems 74–75, explain what is wrong with the state-

ment.

74. The gradient vector grad f (x, y) points in the direction

perpendicular to the surface z = f (x, y).

75. The tangent plane at the origin to a surface f (x, y, z) =

1 that contains the point (0, 0, 0) has equation

fx(0, 0, 0)x + fy(0, 0, 0)y + fz(0, 0, 0)z + 1 = 0.

In Problems 76–78, give an example of:

76. A surface z = f (x, y) such that the vector i⃗ −2j⃗ − k⃗ is

normal to the tangent plane at the point where (x, y) =

(0, 0).

77. A function f (x, y, z) such that grad f = 2i⃗ +3j⃗ +4k⃗ .

78. Two nonparallel unit vectors u⃗ and v⃗ such that

fu⃗ (0, 0, 0) = fv⃗ (0, 0, 0) = 0, where f (x, y, z) =

2x − 3y.

Are the statements in Problems 79–82 true or false? Give

reasons for your answer.

79. An equation for the tangent plane to the surface z =

x2 + y3 at (1, 1) is z = 2 + 2x(x − 1) + 3y2(y − 1).

80. There is a function f (x, y) which has a tangent plane

with equation z = 0 at a point (a, b).

81. There is a function with ‖ grad f‖ = 4 and f
k⃗

= 5 at

some point.

82. There is a function with ‖ grad f‖ = 5 and f
k⃗
= −3 at

some point.
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14.6 THE CHAIN RULE

Composition of Functions of Many Variables and Rates of Change

The chain rule enables us to differentiate composite functions. If we have a function of two variables

z = f (x, y) and we substitute x = g(t), y = ℎ(t) into z = f (x, y), then we have a composite function

in which z is a function of t:

z = f (g(t), ℎ(t)).

If, on the other hand, we substitute x = g(u, v), y = ℎ(u, v), then we have a different composite

function in which z is a function of u and v:

z = f (g(u, v), ℎ(u, v)).

The next example shows how to calculate the rate of change of a composite function.

Example 1 Corn production, C , depends on annual rainfall, R, and average temperature, T , so C = f (R, T ).

Global warming predicts that both rainfall and temperature depend on time. Suppose that according

to a particular model of global warming, rainfall is decreasing at 0.2 cm per year and temperature is

increasing at 0.1◦C per year. Use the fact that at current levels of production, fR = 3.3 and fT = −5

to estimate the current rate of change, dC∕dt.

Solution By local linearity, we know that changes ΔR and ΔT generate a change, ΔC , in C given approxi-

mately by

ΔC ≈ fRΔR + fTΔT = 3.3ΔR − 5ΔT .

We want to know how ΔC depends on the time increment, Δt. A change Δt causes changesΔR and

ΔT , which in turn cause a change ΔC . The model of global warming tells us that

dR

dt
= −0.2 and

dT

dt
= 0.1.

Thus, a time increment, Δt, generates changes of ΔR and ΔT given by

ΔR ≈ −0.2Δt and ΔT ≈ 0.1Δt.

Substituting for ΔR and ΔT in the expression for ΔC gives us

ΔC ≈ 3.3(−0.2Δt) − 5(0.1Δt) = −1.16Δt.

Thus,
ΔC

Δt
≈ −1.16 and, therefore,

dC

dt
≈ −1.16.

The relationship between ΔC and Δt, which gives the value of dC∕dt, is an example of the

chain rule. The argument in Example 1 leads to more general versions of the chain rule.

The Chain Rule for z = f (x, y), x = g(t), y = h(t)

Since z = f (g(t), ℎ(t)) is a function of t, we can consider the derivative dz∕dt. The chain rule gives

dz∕dt in terms of the derivatives of f, g, and ℎ. Since dz∕dt represents the rate of change of z with

t, we look at the change Δz generated by a small change, Δt.

We substitute the local linearizations

Δx ≈
dx

dt
Δt and Δy ≈

dy

dt
Δt
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into the local linearization

Δz ≈
)z

)x
Δx +

)z

)y
Δy,

yielding

Δz ≈
)z

)x

dx

dt
Δt +

)z

)y

dy

dt
Δt

=

(

)z

)x

dx

dt
+

)z

)y

dy

dt

)

Δt.

Thus,

Δz

Δt
≈

)z

)x

dx

dt
+

)z

)y

dy

dt
.

Taking the limit as Δt → 0, we get the following result.

If f , g, and ℎ are differentiable and if z = f (x, y), and x = g(t), and y = ℎ(t), then

dz

dt
=

)z

)x

dx

dt
+

)z

)y

dy

dt
.

Visualizing the Chain Rule with a Diagram

The diagram in Figure 14.49 provides a way of remembering the chain rule. It shows the chain of

dependence: z depends on x and y, which in turn depend on t. Each line in the diagram is labeled

with a derivative relating the variables at its ends.

z

x y

t

)z

)x

)z

)y

dx

dt

dy

dt

Figure 14.49: Diagram for z = f (x, y), x = g(t), y = ℎ(t). Lines represent dependence of z on x and y, and of x

and y on t

The diagram keeps track of how a change in t propagates through the chain of composed func-

tions. There are two paths from t to z, one through x and one through y. For each path, we multiply

together the derivatives along the path. Then, to calculate dz∕dt, we add the contributions from the

two paths.

Example 2 Suppose that z = f (x, y) = x sin y, where x = t2 and y = 2t + 1. Let z = g(t). Compute g′(t)

directly and using the chain rule.
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Solution Since z = g(t) = f (t2, 2t+1) = t2 sin(2t+1), it is possible to compute g′(t) directly by one-variable

methods:

g′(t) = t2
d

dt
(sin(2t + 1)) +

(

d

dt
(t2)

)

sin(2t + 1) = 2t2 cos(2t+ 1) + 2t sin(2t+ 1).

The chain rule provides an alternative route to the same answer. We have

dz

dt
=

)z

)x

dx

dt
+

)z

)y

dy

dt
= (sin y)(2t) + (x cos y)(2) = 2t sin(2t+ 1) + 2t2 cos(2t+ 1).

Example 3 The capacity,C , of a communication channel, such as a telephone line, to carry information depends

on the ratio of the signal strength, S, to the noise, N . For some positive constant k,

C = k ln
(

1 +
S

N

)

.

Suppose that the signal and noise are given as a function of time, t in seconds, by

S(t) = 4 + cos(4�t) N(t) = 2 + sin(2�t).

What is dC∕dt one second after transmission started? Is the capacity increasing or decreasing at that

instant?

Solution By the chain rule,

dC

dt
=

)C

)S

dS

dt
+

)C

)N

dN

dt

=
k

1 + S∕N
⋅

1

N
(−4� sin 4�t) +

k

1 + S∕N

(

−
S

N2

)

(2� cos 2�t).

When t = 1, the first term is zero, S(1) = 5, and N(1) = 2, so

dC

dt
=

k

1 + S(1)∕N(1)

(

−
S(1)

(N(1))2

)

⋅ 2� =
k

1 + 5∕2

(

−
5

4

)

⋅ 2�.

Since dC∕dt is negative, the capacity is decreasing at time t = 1 second.

How to Formulate a General Chain Rule

A diagram can be used to write the chain rule for general compositions.

To find the rate of change of one variable with respect to another in a chain of composed

differentiable functions:

• Draw a diagram expressing the relationship between the variables, and label each link in

the diagram with the derivative relating the variables at its ends.

• For each path between the two variables, multiply together the derivatives from each step

along the path.

• Add the contributions from each path.

The diagram keeps track of all the ways in which a change in one variable can cause a change

in another; the diagram generates all the terms we would get from the appropriate substitutions into

the local linearizations.
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z

x y

u v

)z

)x

)z

)y

)x

)v

)x

)u

)y

)u

)y

)v

Figure 14.50: Diagram for z = f (x, y), x = g(u, v), y = ℎ(u, v). Lines represent

dependence of z on x and y, and of x and y on u and v

For example, we can use Figure 14.50 to find formulas for )z∕)u and )z∕)v. Adding the con-

tributions for the two paths from z to u, we get the following results:

If f , g, ℎ are differentiable and if z = f (x, y), with x = g(u, v) and y = ℎ(u, v), then

)z

)u
=

)z

)x

)x

)u
+

)z

)y

)y

)u
,

)z

)v
=

)z

)x

)x

)v
+

)z

)y

)y

)v
.

Example 4 Let w = x2ey, x = 4u, and y = 3u2 − 2v. Compute )w∕)u and )w∕)v using the chain rule.

Solution Using the previous result, we have

)w

)u
=

)w

)x

)x

)u
+

)w

)y

)y

)u
= 2xey(4) + x2ey(6u) = (8x + 6x2u)ey

= (32u+ 96u3)e3u
2−2v.

Similarly,

)w

)v
=

)w

)x

)x

)v
+

)w

)y

)y

)v
= 2xey(0) + x2ey(−2) = −2x2ey

= −32u2e3u
2−2v.

Example 5 A quantity z can be expressed either as a function of x and y, so that z = f (x, y), or as a function of

u and v, so that z = g(u, v). The two coordinate systems are related by

x = u + v, y = u − v.

(a) Use the chain rule to express )z∕)u and )z∕)v in terms of )z∕)x and )z∕)y.

(b) Solve the equations in part (a) for )z∕)x and )z∕)y.

(c) Show that the expressions we get in part (b) are the same as we get by expressing u and v in

terms of x and y and using the chain rule.
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Solution (a) We have )x∕)u = 1 and )x∕)v = 1, and also )y∕)u = 1 and )y∕)v = −1. Thus,

)z

)u
=

)z

)x
(1) +

)z

)y
(1) =

)z

)x
+

)z

)y

and
)z

)v
=

)z

)x
(1) +

)z

)y
(−1) =

)z

)x
−

)z

)y
.

(b) Adding together the equations for )z∕)u and )z∕)v, we get

)z

)u
+

)z

)v
= 2

)z

)x
, so

)z

)x
=

1

2

)z

)u
+

1

2

)z

)v
.

Similarly, subtracting the equations for )z∕)u and )z∕)v yields

)z

)y
=

1

2

)z

)u
−

1

2

)z

)v
.

(c) Alternatively, we can solve the equations

x = u + v, y = u − v

for u and v, which yields

u =
1

2
x +

1

2
y, v =

1

2
x −

1

2
y.

Now we can think of z as a function of u and v, and u and v as functions of x and y, and apply

the chain rule again. This gives us

)z

)x
=

)z

)u

)u

)x
+

)z

)v

)v

)x
=

1

2

)z

)u
+

1

2

)z

)v

and
)z

)y
=

)z

)u

)u

)y
+

)z

)v

)v

)y
=

1

2

)z

)u
−

1

2

)z

)v
.

These are the same expressions we got in part (b).

An Application to Physical Chemistry

A chemist investigating the properties of a gas such as carbon dioxide may want to know how the

internal energy U of a given quantity of the gas depends on its temperature, T , pressure, P , and

volume, V . The three quantities T , P , and V are not independent, however. For instance, according

to the ideal gas law, they satisfy the equation

PV = kT

where k is a constant which depends only upon the quantity of the gas. The internal energy can then

be thought of as a function of any two of the three quantities T , P , and V :

U = U1(T , P ) = U2(T , V ) = U3(P , V ).

The chemist writes, for example,
(

)U

)T

)

P
to indicate the partial derivative of U with respect to

T holding P constant, signifying that for this computation U is viewed as a function of T and P .

Thus, we interpret
(

)U

)T

)

P
as

(

)U

)T

)

P
=

)U1(T , P )

)T
.

If U is to be viewed as a function of T and V , the chemist writes
(

)U

)T

)

V
for the partial derivative

of U with respect to T holding V constant: thus,
(

)U

)T

)

V
=

)U2(T ,V )

)T
.
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Each of the functions U1, U2, U3 gives rise to one of the following formulas for the differential

dU :

dU =
(

)U

)T

)

P
dT +

(

)U

)P

)

T
dP corresponds to U1,

dU =
(

)U

)T

)

V
dT +

(

)U

)V

)

T
dV corresponds to U2,

dU =
(

)U

)P

)

V
dP +

(

)U

)V

)

P
dV corresponds to U3.

All the six partial derivatives appearing in formulas for dU have physical meaning, but they are

not all equally easy to measure experimentally. A relationship among the partial derivatives, usually

derived from the chain rule, may make it possible to evaluate one of the partials in terms of others

that are more easily measured.

Example 6 Suppose a gas satisfies the equation PV = 2T and P = 3 when V = 4. If
(

)U

)P

)

V
= 7 and

(

)U

)V

)

P
= 8, find the values of

(

)U

)P

)

T
and

(

)U

)T

)

P
.

Solution Since we know the values of
(

)U

)P

)

V
and

(

)U

)V

)

P
, we think of U as a function of P and V and use

the function U3 to write

dU =
(

)U

)P

)

V
dP +

(

)U

)V

)

P
dV

dU = 7dP + 8dV .

To calculate
(

)U

)P

)

T
and

(

)U

)T

)

P
, we think ofU as a function of T and P . Thus, we want to substitute

for dV in terms of dT and dP . Since PV = 2T , we have

PdV + V dP = 2dT ,

3dV + 4dP = 2dT .

Solving gives dV = (2dT − 4dP )∕3, so

dU = 7dP + 8
(

2dT − 4dP

3

)

dU = −
11

3
dP +

16

3
dT .

Comparing with the formula for dU obtained from U1,

dU =
(

)U

)T

)

P
dT +

(

)U

)P

)

T
dP ,

we have
(

)U

)T

)

P
=

16

3
and

(

)U

)P

)

T
= −

11

3
.

In Example 6, we could have substituted for dP instead of dV , leading to values of
(

)U

)T

)

V

and
(

)U

)V

)

T
. See Problem 41.

In general, if for some particular P , V , and T , we can measure two of the six quantities
(

)U

)P

)

V
,

(

)U

)V

)

P
,
(

)U

)P

)

T
,
(

)U

)T

)

P
,
(

)U

)V

)

T
,
(

)U

)T

)

V
, then we can compute the other four using the relationship

between dP , dV , and dT given by the gas law. General formulas for each partial derivative in terms

of others can be obtained in the same way. See the following example and Problem 41.
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Example 7 Express
(

)U

)T

)

P
in terms of

(

)U

)T

)

V
and

(

)U

)V

)

T
and

(

)V

)T

)

P
.

Solution Since we are interested in the derivatives
(

)U

)T

)

V
and

(

)U

)V

)

T
, we think of U as a function of T and

V and use the formula

dU =
(

)U

)T

)

V
dT +

(

)U

)V

)

T
dV corresponding to U2.

We want to find a formula for
(

)U

)T

)

P
, which means thinking of U as a function of T and P .

Thus, we want to substitute for dV . Since V is a function of T and P , we have

dV =
(

)V

)T

)

P
dT +

(

)V

)P

)

T
dP .

Substituting for dV into the formula for dU corresponding to U2 gives

dU =
(

)U

)T

)

V
dT +

(

)U

)V

)

T

((

)V

)T

)

P
dT +

(

)V

)P

)

T
dP

)

.

Collecting the terms containing dT and the terms containing dP gives

dU =
((

)U

)T

)

V
+
(

)U

)V

)

T

(

)V

)T

)

P

)

dT +
(

)U

)V

)

T

(

)V

)P

)

T
dP .

But we also have the formula

dU =
(

)U

)T

)

P
dT +

(

)U

)P

)

T
dP corresponding to U1.

We now have two formulas for dU in terms of dT and dP . The coefficients of dT must be identical,

so we conclude
(

)U

)T

)

P
=
(

)U

)T

)

V
+
(

)U

)V

)

T

(

)V

)T

)

P
.

Example 7 expresses
(

)U

)T

)

P
in terms of three other partial derivatives. Two of them, namely

(

)U

)T

)

V
, the constant-volume heat capacity, and

1

V

(

)V

)T

)

P
, the expansion coefficient, can be easily

measured experimentally. The third, the internal pressure,
(

)U

)V

)

T
, cannot be measured directly but

can be related to
(

)P

)T

)

V
, which is measurable. Thus,

(

)U

)T

)

P
can be determined indirectly using

this identity.

Summary for Section 14.6

• The chain rule is a method for writing the partial derivatives of composite functions in terms

of the individual functions’ partials.

• If f , g, and ℎ are differentiable and if z = f (x, y), and x = g(t), and y = ℎ(t), then

dz

dt
=

)z

)x

dx

dt
+

)z

)y

dy

dt
.
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• The chain rule can be visualized using a diagram:

z

x y

t

)z

)x

)z

)y

dx

dt

dy

dt

• If f , g, ℎ are differentiable and if z = f (x, y), with x = g(u, v) and y = ℎ(u, v), then we get the

diagram

z

x y

u v

)z

)x

)z

)y

)x

)v

)x

)u

)y

)u

)y

)v

and from this we can read off the chain rule for the various partials:

)z

)u
=

)z

)x

)x

)u
+

)z

)y

)y

)u
,

)z

)v
=

)z

)x

)x

)v
+

)z

)y

)y

)v
.

Exercises and Problems for Section 14.6 Online Resource: Additional Problems for Section 14.6
EXERCISES

For Exercises 1–6, find dz∕dt using the chain rule. Assume

the variables are restricted to domains on which the func-

tions are defined.

1. z = xy2, x = e−t, y = sin t

2. z = x sin y + y sinx, x = t2, y = ln t

3. z = sin(x∕y), x = 2t, y = 1 − t2

4. z = ln(x2 + y2), x = 1∕t, y =
√

t

5. z = xey, x = 2t, y = 1 − t2

6. z = (x + y)ey, x = 2t, y = 1 − t2

For Exercises 7–15, find )z∕)u and )z∕)v. The variables are

restricted to domains on which the functions are defined.

7. z = sin(x∕y), x = ln u, y = v

8. z = ln(xy), x = (u2 + v2)2, y = (u3 + v3)2

9. z = xey, x = ln u, y = v

10. z = (x + y)ey, x = ln u, y = v

11. z = xey, x = u2 + v2, y = u2 − v2

12. z = (x + y)ey, x = u2 + v2, y = u2 − v2

13. z = xe−y + ye−x, x = u sin v, y = v cos u

14. z = cos (x2 + y2), x = u cos v, y = u sin v

15. z = tan−1(x∕y), x = u2 + v2, y = u2 − v2
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PROBLEMS

16. Use the chain rule to find dz∕dt, and check the result

by expressing z as a function of t and differentiating

directly.

z = x3y2, x = t3, y = t2

17. Use the chain rule to find )w∕)� and )w∕)�, given that

w = x2 + y2 − z2,

and

x = � sin� cos �, y = � sin� sin �, z = � cos�.

18. Let z = f (x, y) where x = g(t), y = ℎ(t) and f, g, ℎ

are all differentiable functions. Given the information

in the table, find
)z

)t

|

|

|

|t=1

.

f (3, 10) = 7 f (4, 11) = −20

fx(3, 10) = 100 fy(3, 10) = 0.1

fx(4, 11) = 200 fy(4, 11) = 0.2

f (3, 4) = −10 f (10, 11) = −1

g(1) = 3 ℎ(1) = 10

g′(1) = 4 ℎ′(1) = 11

19. A bison is charging across the plain one morning. His

path takes him to location (x, y) at time t where x and y

are functions of t and north is in the direction of increas-

ing y. The temperature is always colder farther north.

As time passes, the sun rises in the sky, sending out

more heat, and a cold front blows in from the east. At

time t the air temperature H near the bison is given by

H = f (x, y, t). The chain rule expresses the derivative

dH∕dt as a sum of three terms:

dH

dt
=

)f

)x

dx

dt
+

)f

)y

dy

dt
+

)f

)t
.

Identify the term that gives the contribution to the

change in temperature experienced by the bison that is

due to

(a) The rising sun.

(b) The coming cold front.

(c) The bison’s change in latitude.

20. The voltage, V (in volts), across a circuit is given by

Ohm’s law: V = IR, where I is the current (in amps)

flowing through the circuit and R is the resistance (in

ohms). If we place two circuits, with resistance R1 and

R2, in parallel, then their combined resistance, R, is

given by
1

R
=

1

R1

+
1

R2

.

Suppose the current is 2 amps and increasing at 10−2

amp/sec and R1 is 3 ohms and increasing at 0.5

ohm/sec, while R2 is 5 ohms and decreasing at 0.1

ohm/sec. Calculate the rate at which the voltage is

changing.

21. The air pressure is decreasing at a rate of 2 pascals per

kilometer in the eastward direction. In addition, the air

pressure is dropping at a constant rate with respect to

time everywhere. A ship sailing eastward at 10 km/hour

past an island takes barometer readings and records a

pressure drop of 50 pascals in 2 hours. Estimate the time

rate of change of air pressure on the island. (A pascal is

a unit of air pressure.)

22. A steel bar with square cross sections 5 cm by 5 cm and

length 3meters is being heated. For each dimension, the

bar expands 13 ⋅ 10−6meters for each 1◦C rise in tem-

perature.2 What is the rate of change in the volume of

the steel bar?

23. Corn production, C , is a function of rainfall, R, and

temperature, T . (See Example 1 on page 827.) Fig-

ures 14.51 and 14.52 show how rainfall and tempera-

ture are predicted to vary with time because of global

warming. Suppose we know that ΔC ≈ 3.3ΔR− 5ΔT .

Use this to estimate the change in corn production be-

tween the year 2020 and the year 2021. Hence, estimate

dC∕dt when t = 2020.

2020 2040

13

14

15

t (years)

R (in)

Figure 14.51: Rainfall as a function of time

2020 2040

23

25

27

t (years)

T (◦C)

Figure 14.52: Temperature as a function of time

24. At a point x miles east and y miles north of a camp-

ground, the height above sea level is f (x, y) feet. Let

∇f (10, 2) = −2i⃗ + j⃗ and v⃗ = i⃗ + 3j⃗ .

Find the following quantities, including units, as you

leave a point 10 miles east and 2 miles north of the

campground.

(a) The slope of the land in the direction of v⃗ .

2www.engineeringtoolbox.com, accessed January 2, 2020.
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(b) Your vertical speed if you move in the direction of

v⃗ at a speed of 2 miles per hour.

(c) Your vertical speed if you move east at a speed of

2 miles per hour.

25. The function g(x, y) gives the temperature, in degrees

Fahrenheit, x miles east and y miles north of a camp-

ground. Let u⃗ be the unit vector in the direction of

v⃗ = i⃗ + 3j⃗ and

∇g(−1,−3) = i⃗ .

A camper located one mile to the west and three miles

to the south of the camp starts walking back to camp

in the direction u⃗ at a speed of 2.5 miles∕hr. Find the

value of the following expressions, and interpret each

in everyday terms for the camper.

(a) gu⃗ (−1,−3) (b) 2.5gu⃗ (−1,−3)

(c) 2.5gi⃗ (−1,−3)

26. Mina’s score on her weekly multivariable calculus quiz,

S, in points, is a function of the number of hours, H ,

she spends studying the course materials and the num-

ber of problems, P , she solves per week.

• Her score S goes up 2 points for each additional

hour spent per week studying the course materials.

• Her score S goes up by 3 points for each additional

5 problems solved during the week.

• The number of weekly hours, H , she spends study-

ing the course materials has been decreasing at a

rate of 1.5 hours per week.

Mina’s weekly quiz score does not change from week

to week.

(a) Find the value of dP∕dt, where t is time in weeks,

include units.

(b) What can Mina learn from the value of the deriva-

tive in part (a)?

27. Let z = g(u, v,w) and u = u(s, t), v = v(s, t), w =

w(s, t). How many terms are there in the expression for

)z∕)t?

28. Suppose w = f (x, y, z) and that x, y, z are functions of

u and v. Use a tree diagram to write down the chain rule

formula for )w∕)u and )w∕)v.

29. Suppose w = f (x, y, z) and that x, y, z are all functions

of t. Use a tree diagram to write down the chain rule for

dw∕dt.

30. Let z = f (t)g(t). Use the chain rule applied to ℎ(x, y) =

f (x)g(y) to show that dz∕dt = f ′(t)g(t) + f (t)g′(t).

The one-variable product rule for differentiation is a

special case of the two-variable chain rule.

31. Let F (u, v) be a function of two variables. Find f ′(x) if

(a) f (x) = F (x, 3) (b) f (x) = F (3, x)

(c) f (x) = F (x, x) (d) f (x) = F (5x, x2)

32. The function g(�) is graphed in Figure 14.53. Let

� =
√

x2 + y2 + z2. Define f , a function of x, y, z by

f (x, y, z) = g

(

√

x2 + y2 + z2
)

. Let F⃗ = grad f .

(a) Describe precisely in words the level surfaces of f .

(b) Give a unit vector in the direction of F⃗ at the point

(1, 2, 2).

(c) Estimate ||F⃗ || at the point (1, 2, 2).

(d) Estimate F⃗ at the point (1, 2, 2).

(e) The points (1, 2, 2) and (3, 0, 0) are both on the

sphere x2 + y2 + z2 = 9. Estimate F⃗ at (3, 0, 0).

(f) If P and Q are any two points on the sphere x2 +

y2 + z2 = k2:

(i) Compare the magnitudes of F⃗ at P and at Q.

(ii) Describe the directions of F⃗ at P and at Q.

1 2 3 4 5

1

2

3 g(�)

�

Figure 14.53

In Problems 33–34, let z = f (x, y), x = x(u, v), y = y(u, v)

and x(1, 2) = 5, y(1, 2) = 3, calculate the partial derivative

in terms of some of the numbers a, b, c, d, e, k, p, q:

fx(1, 2) = a fy(1, 2) = c xu(1, 2) = e yu(1, 2) = p

fx(5, 3) = b fy(5, 3) = d xv(1, 2) = k yv(1, 2) = q

33. zu(1, 2) 34. zv(1, 2)

In Problems 35–36, let z = f (x, y), x = x(u, v), y = y(u, v)

and x(4, 5) = 2, y(4, 5) = 3. Calculate the partial derivative

in terms of a, b, c, d, e, k, p, q, r, s, t, w:

fx(4, 5) = a fy(4, 5) = c xu(4, 5) = e yu(4, 5) = p

fx(2, 3) = b fy(2, 3) = d xv(4, 5) = k yv(4, 5) = q

xu(2, 3) = r yu(2, 3) = s xv(2, 3) = t yv(2, 3) = w

35. zu(4, 5) 36. zv(4, 5)

For Problems 37–38, suppose that x > 0, y > 0 and that

z can be expressed either as a function of Cartesian coor-

dinates (x, y) or as a function of polar coordinates (r, �), so

that z = f (x, y) = g(r, �). [Recall that x = r cos �, y =

r sin �, r =
√

x2 + y2, and, for x > 0, y > 0, � =

arctan(y∕x).]

37. (a) Use the chain rule to find )z∕)r and )z∕)� in terms

of )z∕)x and )z∕)y.

(b) Solve the equations you have just written down for

)z∕)x and )z∕)y in terms of )z∕)r and )z∕)�.

(c) Show that the expressions you get in part (b) are

the same as you would get by using the chain rule

to find )z∕)x and )z∕)y in terms of )z∕)r and

)z∕)�.
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38. Show that

(

)z

)x

)2

+

(

)z

)y

)2

=
(

)z

)r

)2

+
1

r2

(

)z

)�

)2

.

Problems 39–44 are continuations of the physical chemistry

example on page 833.

39. Write
(

)U

)P

)

V
as a partial derivative of one of the func-

tions U1, U2, or U3.

40. Write
(

)U

)P

)

T
as a partial derivative of one of the func-

tions U1, U2, U3.

41. For the gas in Example 6, find
(

)U

)T

)

V
and

(

)U

)V

)

T
.

[Hint: Use the same method as the example, but sub-

stitute for dP instead of dV .]

42. Show that
(

)T

)V

)

P
= 1

/

(

)V

)T

)

P
.

43. Use Example 7 and Problem 42 to show that

(

)U

)V

)

P

=
(

)U

)V

)

T

+

(

)U

)T

)

V
(

)V

)T

)

P

.

44. In Example 6, we calculated values of ()U∕)T )P and

()U∕)P )T using the relationship PV = 2T for a spe-

cific gas. In this problem, you will derive general rela-

tionships for these two partial derivatives.

(a) Think of V as a function of P and T and write an

expression for dV .

(b) Substitute for dV into the following formula for

dU (thinking of U as a function of P and V ):

dU =
(

)U

)P

)

V

dP +
(

)U

)V

)

P

dV .

(c) Thinking of U as a function of P and T , write an

expression for dU .

(d) By comparing coefficients of dP and dT in your

answers to parts (b) and (c), show that

(

)U

)T

)

P

=
(

)U

)V

)

P

⋅

(

)V

)T

)

P
(

)U

)P

)

T

=
(

)U

)P

)

V

+
(

)U

)V

)

P

⋅

(

)V

)P

)

T

.

Strengthen Your Understanding

In Problems 45–47, explain what is wrong with the state-

ment.

45. If z = f (g(t), ℎ(t)), then dz∕dt = f (g′(t), ℎ(t)) +

f (g(t), ℎ′(t)).

46. If C = C(R, T ), R = R(x, y), T = T (x, y)

and R(0, 2) = 5, T (0, 2) = 1, then Cx(0, 2) =

CR(0, 2)Rx(0, 2) + CT (0, 2)Tx(0, 2).

47. If z = f (x, y) and x = g(t), y = ℎ(t) with g(0) = 2 and

ℎ(0) = 3, then

dz

dt

|

|

|

|t=0

= fx(0, 0)g
′(0) + fy(0, 0)ℎ

′(0).

In Problems 48–52, give an example of:

48. Functions x = g(t) and y = ℎ(t) such that (dz∕dt)|t=0 =

9, given that z = x2y.

49. A function z = f (x, y) such that dz∕dt|t=0 = 10, given

that x = e2t and y = sin t.

50. Functions z, x and y where you need to follow the dia-

gram in order to answer questions about the derivative

of z with respect to the other variables.

z

x y

t

)z

)x

)z

)y

dx

dt

dy

dt

51. Functions w, u and v where you need to follow the dia-

gram in order to answer questions about the derivative

of w with respect to the other variables.

w

u v

s t s t

)w

)u

)w

)v

)u

)s

)u

)t

)v

)s

)v

)t

52. Function z = f (x, y) where x and y are functions of

one variable, t, for which
)z

)t
= 2.

53. Let z = g(u, v) and u = u(x, y, t), v = v(x, y, t) and

x = x(t), y = y(t). Then the expression for dz∕dt has

(a) Three terms (b) Four terms

(c) Six terms (d) Seven terms

(e) Nine terms (f) None of the above
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14.7 SECOND-ORDER PARTIAL DERIVATIVES

Since the partial derivatives of a function are themselves functions, we can differentiate them, giving

second-order partial derivatives. A function z = f (x, y) has two first-order partial derivatives, fx
and fy, and four second-order partial derivatives.

The Second-Order Partial Derivatives of z = f (x, y)

)2z

)x2
= fxx = (fx)x,

)2z

)x)y
= fyx = (fy)x,

)2z

)y)x
= fxy = (fx)y,

)2z

)y2
= fyy = (fy)y.

It is usual to omit the parentheses, writing fxy instead of (fx)y and
)2z

)y )x
instead of

)

)y

(

)z

)x

)

.

Example 1 Compute the four second-order partial derivatives of f (x, y) = xy2 + 3x2ey.

Solution From fx(x, y) = y2 + 6xey we get

fxx(x, y) =
)

)x
(y2 + 6xey) = 6ey and fxy(x, y) =

)

)y
(y2 + 6xey) = 2y + 6xey.

From fy(x, y) = 2xy + 3x2ey we get

fyx(x, y) =
)

)x
(2xy + 3x2ey) = 2y + 6xey and fyy(x, y) =

)

)y
(2xy+ 3x2ey) = 2x + 3x2ey.

Observe that fxy = fyx in this example.

Example 2 Use the values of the function f (x, y) in Table 14.7 to estimate fxy(1, 2) and fyx(1, 2).

Table 14.7 Values of f (x, y)

y∖x 0.9 1.0 1.1

1.8 4.72 5.83 7.06

2.0 6.48 8.00 9.60

2.2 8.62 10.65 12.88

Solution Since fxy = (fx)y, we first estimate fx

fx(1, 2) ≈
f (1.1, 2) − f (1, 2)

0.1
=

9.60 − 8.00

0.1
= 16.0,

fx(1, 2.2) ≈
f (1.1, 2.2) − f (1, 2.2)

0.1
=

12.88 − 10.65

0.1
= 22.3.
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Thus,

fxy(1, 2) ≈
fx(1, 2.2) − fx(1, 2)

0.2
=

22.3 − 16.0

0.2
= 31.5.

Similarly,

fyx(1, 2) ≈
fy(1.1, 2) − fy(1, 2)

0.1
≈

1

0.1

(

f (1.1, 2.2) − f (1.1, 2)

0.2
−

f (1, 2.2) − f (1, 2)

0.2

)

=
1

0.1

(

12.88 − 9.60

0.2
−

10.65 − 8.00

0.2

)

= 31.5.

Observe that in this example also, fxy = fyx.

The Mixed Partial Derivatives Are Equal

It is not an accident that the estimates for fxy(1, 2) and fyx(1, 2) are equal in Example 2, because the

same values of the function are used to calculate each one. The fact that fxy = fyx in Examples 1 and

2 corroborates the following general result; Problem 73 (available online) suggests why you might

expect it to be true.3

Theorem 14.1: Equality of Mixed Partial Derivatives

If fxy and fyx are continuous at (a, b), an interior point of their domain, then

fxy(a, b) = fyx(a, b).

For most functions f we encounter and most points (a, b) in their domains, not only are fxy and

fyx continuous at (a, b), but all their higher-order partial derivatives (such as fxxy or fxyyy) exist and

are continuous at (a, b). In that case we say f is smooth at (a, b). We say f is smooth on a region R

if it is smooth at every point of R.

What Do the Second-Order Partial Derivatives Tell Us?

Example 3 Let us return to the guitar string of Example 4, page 796. The string is 1 meter long and at time t

seconds, the point x meters from one end is displaced f (x, t) meters from its rest position, where

f (x, t) = 0.003 sin(�x) sin(2765t).

Compute the four second-order partial derivatives of f at the point (x, t) = (0.3, 1) and describe the

meaning of their signs in practical terms.

Solution First we compute fx(x, t) = 0.003� cos(�x) sin(2765t), from which we get

fxx(x, t) =
)

)x
(fx(x, t)) = −0.003�2 sin(�x) sin(2765t), so fxx(0.3, 1) ≈ −0.01;

and

fxt(x, t) =
)

)t
(fx(x, t)) = (0.003)(2765)� cos(�x) cos(2765t), so fxt(0.3, 1) ≈ 14.

On page 796 we saw thatfx(x, t) gives the slope of the string at any point and time. Therefore,

3For a proof, see M. Spivak, Calculus on Manifolds, p. 26 (New York: Benjamin, 1965).
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fxx(x, t) measures the concavity of the string. The fact that fxx(0.3, 1) < 0 means the string is

concave down at the point x = 0.3 when t = 1. (See Figure 14.54.)

On the other hand, fxt(x, t) is the rate of change of the slope of the string with respect to time.

Thus, fxt(0.3, 1) > 0 means that at time t = 1 the slope at the point x = 0.3 is increasing. (See

Figure 14.55.)

0

A
B

0.3 1
x

The slope at B is less
than the slope atA

Figure 14.54: Interpretation of fxx(0.3, 1) < 0:

The concavity of the string at t = 1

x
A

B

0 0.3 1

t = 1 + ℎ

t = 1

The slope at B is greater
than the slope atA

Figure 14.55: Interpretation of

fxt(0.3, 1) > 0: The slope of one point on

the string at two different times

Now we compute ft(x, t) = (0.003)(2765) sin(�x) cos(2765t), from which we get

ftx(x, t) =
)

)x
(ft(x, t)) = (0.003)(2765)� cos(�x) cos(2765t), so ftx(0.3, 1) ≈ 14

and

ftt(x, t) =
)

)t
(ft(x, t)) = −(0.003)(2765)2 sin(�x) sin(2765t), so ftt(0.3, 1) ≈ −7200.

On page 796 we saw that ft(x, t) gives the velocity of the string at any point and time. Therefore,

ftx(x, t) and ftt(x, t) will both be rates of change of velocity. That ftx(0.3, 1) > 0 means that at time

t = 1 the velocities of points just to the right of x = 0.3 are greater than the velocity at x = 0.3. (See

Figure 14.56.) That ftt(0.3, 1) < 0 means that the velocity of the point x = 0.3 is decreasing at time

t = 1. Thus, ftt(0.3, 1) = −7200 m/sec2 is the acceleration of this point. (See Figure 14.57.)

x
0

A B

0.3 1
x

✻
✻

The velocity atB is greater
than the velocity at A

Figure 14.56: Interpretation of ftx(0.3, 1) > 0:

The velocity of different points on the string

at t = 1

x
A

❘
B

0 0.3 1

✻
✻ ✠

t = 1
✠

t = 1 + ℎ
The velocity atB is less
than the velocity atA

Figure 14.57: Interpretation of

ftt(0.3, 1) < 0: Negative acceleration. The

velocity of one point on the string at two

different times

Taylor Approximations

We use second derivatives to construct quadratic Taylor approximations. In Section 14.3, we saw

how to approximate f (x, y) by a linear function (its local linearization). We now see how to improve

this approximation of f (x, y) using a quadratic function.

Linear and Quadratic Approximations Near (0,0)

For a function of one variable, local linearity tells us that the best linear approximation is the degree-1

Taylor polynomial

f (x) ≈ f (a) + f ′(a)(x − a) for x near a.



14.7 SECOND-ORDER PARTIAL DERIVATIVES 841

A better approximation to f (x) is given by the degree-2 Taylor polynomial:

f (x) ≈ f (a) + f ′(a)(x− a) +
f ′′(a)

2
(x − a)2 for x near a.

For a function of two variables the local linearization for (x, y) near (a, b) is

f (x, y) ≈ L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y− b).

In the case (a, b) = (0, 0), we have:

Taylor Polynomial of Degree 1 Approximating f (x, y) for (x, y) Near (0,0)

If f has continuous first-order partial derivatives, then

f (x, y) ≈ L(x, y) = f (0, 0) + fx(0, 0)x+ fy(0, 0)y.

We get a better approximation to f by using a quadratic polynomial. We choose a quadratic

polynomial Q(x, y), with the same partial derivatives as the original function f . You can check that

the following Taylor polynomial of degree 2 has this property.

Taylor Polynomial of Degree 2 Approximating f (x, y) for (x, y) Near (0,0)

If f has continuous second-order partial derivatives, then

f (x, y) ≈ Q(x, y)

= f (0, 0) + fx(0, 0)x+ fy(0, 0)y+
fxx(0, 0)

2
x2 + fxy(0, 0)xy+

fyy(0, 0)

2
y2.

Example 4 Let f (x, y) = cos(2x + y) + 3 sin(x + y)

(a) Compute the linear and quadratic Taylor polynomials, L and Q, approximating f near (0, 0).

(b) Explain why the contour plots of L and Q for −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 look the way they do.

Solution (a) We have f (0, 0) = 1. The derivatives we need are as follows:

fx(x, y) = −2 sin(2x + y) + 3 cos(x + y) so fx(0, 0) = 3,

fy(x, y) = − sin(2x + y) + 3 cos(x + y) so fy(0, 0) = 3,

fxx(x, y) = −4 cos(2x + y) − 3 sin(x + y) so fxx(0, 0) = −4,

fxy(x, y) = −2 cos(2x + y) − 3 sin(x + y) so fxy(0, 0) = −2,

fyy(x, y) = − cos(2x + y) − 3 sin(x + y) so fyy(0, 0) = −1.

Thus, the linear approximation, L(x, y), to f (x, y) at (0, 0) is given by

f (x, y) ≈ L(x, y) = f (0, 0) + fx(0, 0)x+ fy(0, 0)y = 1 + 3x + 3y.

The quadratic approximation, Q(x, y), to f (x, y) near (0, 0) is given by

f (x, y) ≈ Q(x, y)

= f (0, 0) + fx(0, 0)x+ fy(0, 0)y+
fxx(0, 0)

2
x2 + fxy(0, 0)xy+

fyy(0, 0)

2
y2

= 1 + 3x + 3y − 2x2 − 2xy −
1

2
y2.
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Notice that the linear terms in Q(x, y) are the same as the linear terms in L(x, y). The quadratic

terms in Q(x, y) can be thought of as “correction terms” to the linear approximation.

(b) The contour plots of f (x, y), L(x, y), and Q(x, y) are in Figures 14.58–14.60.

1−1

1

−1

2

1
0

−
1

−
2

x

y

Figure 14.58: Original function, f (x, y)

1−1

1

−1

2

1

0
−
1

−
2

x

y

Figure 14.59: Linear approximation,

L(x, y)

1−1

1

−1

2

1

0
−
1

−
2

x

y

Figure 14.60: Quadratic approximation,

Q(x, y)

Notice that the contour plot of Q is more similar to the contour plot of f than is the contour

plot of L. Since L is linear, the contour plot of L consists of parallel, equally spaced lines.

An alternative, and much quicker, way to find the Taylor polynomial in the previous example is

to use the single-variable approximations. For example, since

cos u = 1 −
u2

2!
+

u4

4!
+⋯ and sin v = v −

v3

3!
+⋯ ,

we can substitute u = 2x+ y and v = x+ y and expand. We discard terms beyond the second (since

we want the quadratic polynomial), getting

cos(2x + y) = 1 −
(2x + y)2

2!
+

(2x + y)4

4!
+⋯ ≈ 1 −

1

2
(4x2 + 4xy + y2) = 1 − 2x2 − 2xy −

1

2
y2

and

sin(x + y) = (x + y) −
(x + y)3

3!
+⋯ ≈ x + y.

Combining these results, we get

cos(2x + y) + 3 sin(x + y) ≈ 1 − 2x2 − 2xy −
1

2
y2 + 3(x + y) = 1 + 3x + 3y − 2x2 − 2xy −

1

2
y2.

Linear and Quadratic Approximations Near (a, b)

The local linearization for a function f (x, y) at a point (a, b) is

Taylor Polynomial of Degree 1 Approximating f (x, y) for (x, y) Near (a, b)

If f has continuous first-order partial derivatives, then

f (x, y) ≈ L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y− b).



14.7 SECOND-ORDER PARTIAL DERIVATIVES 843

This suggests that a quadratic polynomial approximation Q(x, y) for f (x, y) near a point (a, b)

should be written in terms of (x−a) and (y−b) instead of x and y. If we require that Q(a, b) = f (a, b)

and that the first- and second-order partial derivatives of Q and f at (a, b) be equal, then we get the

following polynomial:

Taylor Polynomial of Degree 2 Approximating f (x, y) for (x, y) Near (a, b)

If f has continuous second-order partial derivatives, then

f (x, y) ≈ Q(x, y)

= f (a, b) + fx(a, b)(x − a) + fy(a, b)(y− b)

+
fxx(a, b)

2
(x − a)2 + fxy(a, b)(x− a)(y − b) +

fyy(a, b)

2
(y − b)2.

These coefficients are derived in exactly the same way as for (a, b) = (0, 0).

Example 5 Find the Taylor polynomial of degree 2 at the point (1, 2) for the function f (x, y) =
1

xy
.

Solution Table 14.8 contains the partial derivatives and their values at the point (1, 2).

Table 14.8 Partial derivatives of f (x, y) = 1∕(xy)

Derivative Formula Value at (1, 2) Derivative Formula Value at (1, 2)

f (x, y) 1∕(xy) 1∕2 fxx(x, y) 2∕(x3y) 1

fx(x, y) −1∕(x2y) −1∕2 fxy(x, y) 1∕(x2y2) 1∕4

fy(x, y) −1∕(xy2) −1∕4 fyy(x, y) 2∕(xy3) 1∕4

So, the quadratic Taylor polynomial for f near (1, 2) is

1

xy
≈ Q(x, y)

=
1

2
−

1

2
(x − 1) −

1

4
(y − 2) +

1

2
(1)(x− 1)2 +

1

4
(x − 1)(y − 2) +

(

1

2

)(

1

4

)

(y − 2)2

=
1

2
−

x − 1

2
−

y − 2

4
+

(x − 1)2

2
+

(x − 1)(y− 2)

4
+

(y − 2)2

8
.

Summary for Section 14.7

• Second-order partial derivatives are partial derivatives of partial derivatives.

• A function z = f (x, y) has four second-order partial derivatives:

)2z

)x2
= fxx = (fx)x,

)2z

)x)y
= fyx = (fy)x,

)2z

)y)x
= fxy = (fx)y,

)2z

)y2
= fyy = (fy)y.

• The mixed partials are equal:

If fxy and fyx are continuous at (a, b), an interior point of their domain, then

fxy(a, b) = fyx(a, b).

• If f has continuous first-order partial derivatives, then the Taylor polynomial of degree 1 ap-

proximating f (x, y) for (x, y) near (a, b) is:

f (x, y) ≈ L(x, y) = f (a, b) + fx(a, b)(x− a) + fy(a, b)(y− b).
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• If f has continuous second-order partial derivatives, then the Taylor polynomial of degree 2

approximating f (x, y) for (x, y) near (a, b) is:

f (x, y) ≈ Q(x, y)

= f (a, b) + fx(a, b)(x− a) + fy(a, b)(y− b)

+
fxx(a, b)

2
(x − a)2 + fxy(a, b)(x − a)(y− b) +

fyy(a, b)

2
(y − b)2.

Exercises and Problems for Section 14.7 Online Resource: Additional Problems for Section 14.7
EXERCISES

In Exercises 1–11, calculate all four second-order partial

derivatives and check that fxy = fyx. Assume the variables

are restricted to a domain on which the function is defined.

1. f (x, y) = (x + y)2 2. f (x, y) = (x + y)3

3. f (x, y) = 3x2y + 5xy3 4. f (x, y) = e2xy

5. f (x, y) = (x + y)ey 6. f (x, y) = xey

7. f (x, y) = sin(x∕y) 8. f (x, y) =
√

x2 + y2

9. f (x, y) = 5x3y2 − 7xy3 + 9x2 + 11

10. f (x, y) = sin(x2 + y2)

11. f (x, y) = 3 sin 2x cos 5y

In Exercises 12–19, find the quadratic Taylor polynomials

about (0, 0) for the function.

12. (y − 1)(x + 1)2 13. (x − y + 1)2

14. e−2x
2−y2 15. ex cos y

16. 1∕(1 + 2x − y) 17. cos(x + 3y)

18. sin 2x + cos y 19. ln(1 + x2 − y)

In Exercises 20–21, find the best quadratic approximation

for f (x, y) for (x, y) near (0, 0).

20. f (x, y) = ln(1 + x − 2y)

21. f (x, y) =
√

1 + 2x − y

In Exercises 22–33, use the level curves of the function

z = f (x, y) to decide the sign (positive, negative, or zero)

of each of the following partial derivatives at the point P .

Assume the x- and y-axes are in the usual positions.

(a) fx(P ) (b) fy(P ) (c) fxx(P )

(d) fyy(P ) (e) fxy(P )

22.

P

5 4 3 2 1

23.

5 4 3 2 1

P

24.

P

1 2 3 4 5

25.

P

1 2 3 4 5

26.

P

5

4

3

2

1

27.

P

5

4

3

2

1

28.

P

5
4
3
2
1

29.

P

1
2
3
4
5

30.

✛ 5

✛ 3

✛ 1
P

31.

✛ 1

✛ 3

✛ 5
P
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32.

P
−
1

−
3

1

3

33.

P

1

3

−1

−3

PROBLEMS

In Problems 34–37 estimate the quantity, if possible. If it is

not possible, explain why. Assume that g is smooth and

∇g(2, 3) = −7i⃗ + 3j⃗

∇g(2.4, 3) = −10.2i⃗ + 4.2j⃗

34. gyx(2, 3) 35. gxx(2, 3) 36. gyy(2, 3) 37. gxy(2, 3)

In Problems 38–41 estimate the quantity, if possible. If it is

not possible, explain why. Assume that ℎ is smooth and

∇ℎ(2.4, 3) = −20.4i⃗ + 8.4j⃗

∇ℎ(2.4, 2.7) = −22.2i⃗ + 9j⃗

38. ℎyy(2.4, 2.7) 39. ℎxx(2.4, 3)

40. ℎxy(2.4, 2.7) 41. ℎyx(2.4, 2.7)

In Problems 42–46, find the linear, L(x, y), and quadratic,

Q(x, y), Taylor polynomials valid near (1, 0). Compare the

values of the approximations L(0.9, 0.2) and Q(0.9, 0.2)

with the exact value of the function f (0.9, 0.2).

42. f (x, y) =
√

x + 2y 43. f (x, y) = x2y

44. f (x, y) = xe−y

45. F (x, y)= ex sin y + ey sinx

46. f (x, y) = sin(x − 1) cos y

In Problems 47–48, show that the function satisfies

Laplace’s equation, Fxx + Fyy = 0.

47. F (x, y) = e−x sin y

48. F (x, y) = arctan(y∕x)

49. If u(x, t) = eat sin (bx) satisfies the heat equation ut =

uxx, find the relationship between a and b.

50. (a) Check that u(x, t) satisfies the heat equation ut =

uxx for t > 0 and all x, where

u(x, t) =
1

2
√

�t
e−x

2∕(4t)

(b) Graph u(x, t) against x for t = 0.01, 0.1, 1, 10.

These graphs represent the temperature in an in-

finitely long insulated rod that at t = 0 is 0◦C ev-

erywhere except at the origin x = 0, and that is

infinitely hot at t = 0 at the origin.

51. Figure 14.61 shows a graph of z = f (x, y). Is fxx(0, 0)

positive, zero, or negative? What about fyy(0, 0)? Give

reasons for your answers.

x

y

z

Figure 14.61

52. If z = f (x) + yg(x), what can you say about zyy? Ex-

plain your answer.

53. If zxy = 4y, what can you say about the value of

(a) zyx? (b) zxyx? (c) zxyy?

54. A contour diagram for the smooth function z = f (x, y)

is in Figure 14.62.

(a) Is z an increasing or decreasing function of x? Of

y?

(b) Is fx positive or negative? How about fy?

(c) Is fxx positive or negative? How about fyy?

(d) Sketch the direction of grad f at points P and Q.

(e) Is grad f longer at P or at Q? How do you know?

1 2 3 4 5 6

1

2

3

4

5

6

1
2
3
4

5

6 7 8 9 10

P

Q

x

y

Figure 14.62
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Problems 55–58 give tables of values of quadratic polyno-

mials P (x, y) = a + bx+ cy+ dx2 + exy + fy2. Determine

whether each of the coefficients d, e and f of the quadratic

terms is positive, negative, or zero.

55.

y

x

10 12 14

10 35 37 39

15 45 47 49

20 55 57 59

56.

y

x

10 12 14

10 26 36 54

15 31 41 59

20 36 46 64

57.

y

x

10 12 14

10 90 82 74

15 75 87 99

20 10 42 74

58.

y

x

10 12 14

10 13 33 61

15 28 28 36

20 93 73 61

59. You are hiking on a level trail going due east and plan-

ning to strike off cross country up the mountain to your

left. The slope up to the left is too steep now and seems

to be gentler the further you go along the trail, so you

decide to wait before turning off.

(a) Sketch a topographical contour map that illustrates

this story.

(b) What information does the story give about partial

derivatives? Define all variables and functions that

you use.

(c) What partial derivative influenced your decision to

wait before turning?

60. The weekly production, Y , in factories that manufacture

a certain item is modeled as a function of the quantity of

capital, K , and quantity of labor, L, at the factory. Data

shows that hiring a few extra workers increases produc-

tion. Moreover, for two factories with the same number

of workers, hiring a few extra workers increases pro-

duction more for the factory with more capital. (With

more equipment, additional labor can be used more ef-

fectively.) What does this tell you about the sign of

(a) )Y ∕)L?

(b) )2Y ∕()K)L)?

61. Data suggests that human surface area, S, can reason-

ably be modeled as a function of height, ℎ, and weight,

w. In the Dubois model, we have )2S∕)w2 < 0 and

)2S∕()ℎ)w) > 0. Two people A and B each gain 1

pound. Which experiences the greater increase in sur-

face area if

(a) They have the same weight but A is taller?

(b) They have the same height, but A is heavier?

62. You plan to buy a used car. You are debating between a

5-year old car and a 10-year old car and thinking about

the price. Experts report that the original price matters

more when buying a 5-year old car than a 10-year old

car. This suggests that we model the average market

price, P , in dollars as a function of two variables: the

original price, C , in dollars, and the age of the car, A,

in years.

(a) Give units for the following partial derivatives and

say whether you think they are positive or negative.

Explain your reasoning.

(i) )P∕)A (ii) )P∕)C

(b) Express the experts’ report in terms of partial

derivatives.

(c) Using a quadratic polynomial to model P , we have

P = a + bC + cA + dC2 + eCA + fA2.

Which term in this polynomial is most relevant to

the experts’ report?

63. The tastiness, T , of a soup depends on the volume, V ,

of the soup in the pot and the quantity, S, of salt in

the soup. If you have more soup, you need more salt

to make it taste good. Match the three stories (a)–(c) to

the three statements (I)–(III) about partial derivatives.

(a) I started adding salt to the soup in the pot. At first

the taste improved, but eventually the soup became

too salty and continuing to add more salt made it

worse.

(b) The soup was too salty, so I started adding unsalted

soup. This improved the taste at first, but eventually

there was too much soup for the salt, and continu-

ing to add unsalted soup just made it worse.

(c) The soup was too salty, so adding more salt would

have made it taste worse. I added a quart of un-

salted soup instead. Now it is not salty enough, but

I can improve the taste by adding salt.

(I) )2T ∕)V 2 < 0

(II) )2T ∕)S2 < 0

(III) )2T ∕)V )S > 0

64. Figure 14.63 shows the level curves of a function

f (x, y) around a maximum or minimum, M . One of the

points P and Q has coordinates (x1, y1) and the other

has coordinates (x2, y2). Suppose b > 0 and c > 0.

Consider the two linear approximations to f given by

f (x, y) ≈ a + b(x − x1) + c(y − y1)

f (x, y) ≈ k + m(x − x2) + n(y − y2).

(a) What is the relationship between the values of a

and k?

(b) What are the coordinates of P ?

(c) Is M a maximum or a minimum?

(d) What can you say about the sign of the constants

m and n?



14.8 DIFFERENTIABILITY 847

x

y

M

❘

P

✠

Q

Figure 14.63

65. Consider the function f (x, y) = (sinx)(sin y).

(a) Find the Taylor polynomials of degree 2 for f

about the points (0, 0) and (�∕2, �∕2).

(b) Use the Taylor polynomials to sketch the con-

tours of f close to each of the points (0, 0) and

(�∕2, �∕2).

66. Let f (x, y) =
√

x + 2y + 1.

(a) Compute the local linearization of f at (0, 0).

(b) Compute the quadratic Taylor polynomial for f at

(0, 0).

(c) Compare the values of the linear and quadratic

approximations in part (a) and part (b) with the

true values for f (x, y) at the points (0.1, 0.1),

(−0.1, 0.1), (0.1,−0.1), (−0.1,−0.1). Which ap-

proximation gives the closest values?

67. Using a computer and your answer to Problem 66, draw

the six contour diagrams of f (x, y) =
√

x + 2y + 1

and its linear and quadratic approximations, L(x, y) and

Q(x, y), in the two windows [−0.6, 0.6]×[−0.6, 0.6] and

[−2, 2]×[−2, 2]. Explain the shape of the contours, their

spacing, and the relationship between the contours of f ,

L, and Q.

Strengthen Your Understanding

In Problems 68–69, explain what is wrong with the state-

ment.

68. If f (x, y) ≠ 0, then the Taylor polynomial of degree 2

approximating f (x, y) near (0, 0) is also nonzero.

69. There is a function f (x, y) with partial derivatives fx =

xy and fy = y2.

In Problems 70–72, give an example of:

70. A function f (x, y) such that fxx ≠ 0, fyy ≠ 0, and

fxy = 0.

71. Formulas for two different functions f (x, y) and g(x, y)

with the same quadratic approximation near (0, 0).

72. Contour diagrams for two different functions f (x, y)

and g(x, y) that have the same quadratic approximations

near (0, 0).

14.8 DIFFERENTIABILITY

In Section 14.3 we gave an informal introduction to the concept of differentiability. We called a

function f (x, y) differentiable at a point (a, b) if it is well approximated by a linear function near

(a, b). This section focuses on the precise meaning of the phrase “well approximated.” By looking

at examples, we shall see that local linearity requires the existence of partial derivatives, but they do

not tell the whole story. In particular, existence of partial derivatives at a point is not sufficient to

guarantee local linearity at that point.

We begin by discussing the relation between continuity and differentiability. As an illustration,

take a sheet of paper, crumple it into a ball and smooth it out again. Wherever there is a crease it would

be difficult to approximate the surface by a plane—these are points of nondifferentiability of the

function giving the height of the paper above the floor. Yet the sheet of paper models a graph which

is continuous—there are no breaks. As in the case of one-variable calculus, continuity does not imply

differentiability. But differentiability does require continuity: there cannot be linear approximations

to a surface at points where there are abrupt changes in height.

Differentiability for Functions of Two Variables

For a function of two variables, as for a function of one variable, we define differentiability at a

point in terms of the error and the distance from the point. If the point is (a, b) and a nearby point is

(a + ℎ, b + k), the distance between them is
√

ℎ2 + k2. (See Figure 14.64.)
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A function f (x, y) is differentiable at the point (a, b) if there is a linear function L(x, y) =

f (a, b) + m(x − a) + n(y − b) such that if the error E(x, y) is defined by

f (x, y) = L(x, y) + E(x, y),

and if ℎ = x − a, k = y − b, then the relative error E(a + ℎ, b + k)∕
√

ℎ2 + k2 satisfies

lim
ℎ→0

k→0

E(a + ℎ, b + k)
√

ℎ2 + k2
= 0.

The function f is differentiable on a region R if it is differentiable at each point of R. The

function L(x, y) is called the local linearization of f (x, y) near (a, b).

Figure 14.64: Graph of function z = f (x, y) and its local linearization z = L(x, y) near the point (a, b)

Partial Derivatives and Differentiability

In the next example, we show that this definition of differentiability is consistent with our previous

notion — that is, that m = fx and n = fy and that the graph of L(x, y) is the tangent plane.

Example 1 Show that if f is a differentiable function with local linearization L(x, y) = f (a, b) + m(x − a) +

n(y − b), then m = fx(a, b) and n = fy(a, b).

Solution Since f is differentiable, we know that the relative error in L(x, y) tends to 0 as we get close to (a, b).

Suppose ℎ > 0 and k = 0. Then we know that

0 = lim
ℎ→0

E(a + ℎ, b+ k)
√

ℎ2 + k2
= lim

ℎ→0

E(a + ℎ, b)

ℎ
= lim

ℎ→0

f (a + ℎ, b) − L(a + ℎ, b)

ℎ

= lim
ℎ→0

f (a + ℎ, b) − f (a, b) − mℎ

ℎ

= lim
ℎ→0

(

f (a + ℎ, b) − f (a, b)

ℎ

)

− m = fx(a, b) − m.

A similar result holds if ℎ < 0, so we have m = fx(a, b). The result n = fy(a, b) is found in a similar

manner.

The previous example shows that if a function is differentiable at a point, it has partial derivatives

there. Therefore, if any of the partial derivatives fail to exist, then the function cannot be differen-

tiable. This is what happens in the following example of a cone.
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Example 2 Consider the function f (x, y) =
√

x2 + y2. Is f differentiable at the origin?

Solution If we zoom in on the graph of the function f (x, y) =
√

x2 + y2 at the origin, as shown in Fig-

ure 14.65, the sharp point remains; the graph never flattens out to look like a plane. Near its vertex,

the graph does not look as if is well approximated (in any reasonable sense) by any plane.

x y

z

✿

Figure 14.65: The function f (x, y) =
√

x2 + y2 is not locally linear at (0, 0): Zooming in around (0, 0)

does not make the graph look like a plane

Judging from the graph of f , we would not expect f to be differentiable at (0, 0). Let us check

this by trying to compute the partial derivatives of f at (0, 0):

fx(0, 0) = lim
ℎ→0

f (ℎ, 0) − f (0, 0)

ℎ
= lim

ℎ→0

√

ℎ2 + 0 − 0

ℎ
= lim

ℎ→0

|ℎ|

ℎ
.

Since |ℎ|∕ℎ = ±1, depending on whether ℎ approaches 0 from the left or right, this limit does not

exist and so neither does the partial derivative fx(0, 0). Thus, f cannot be differentiable at the origin.

If it were, both of the partial derivatives, fx(0, 0) and fy(0, 0), would exist.

Alternatively, we could show directly that there is no linear approximation near (0, 0) that satis-

fies the small relative error criterion for differentiability. Any plane passing through the point (0, 0, 0)

has the form L(x, y) = mx + ny for some constants m and n. If E(x, y) = f (x, y) − L(x, y), then

E(x, y) =
√

x2 + y2 − mx − ny.

Then for f to be differentiable at the origin, we would need to show that

lim
ℎ→0

k→0

√

ℎ2 + k2 − mℎ − nk
√

ℎ2 + k2
= 0.

Taking k = 0 gives

lim
ℎ→0

|ℎ| − mℎ

|ℎ|
= 1 − m lim

ℎ→0

ℎ

|ℎ|
.

This limit exists only if m = 0 for the same reason as before. But then the value of the limit is 1 and

not 0 as required. Thus, we again conclude f is not differentiable.

In Example 2 the partial derivatives fx and fy did not exist at the origin and this was sufficient

to establish nondifferentiability there. We might expect that if both partial derivatives do exist, then

f is differentiable. But the next example shows that this not necessarily true: the existence of both

partial derivatives at a point is not sufficient to guarantee differentiability.
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Example 3 Consider the function f (x, y) = x1∕3y1∕3. Show that the partial derivatives fx(0, 0) and fy(0, 0)

exist, but that f is not differentiable at (0, 0).

Solution See Figure 14.66 for the part of the graph of z = x1∕3y1∕3 when z ≥ 0. We have f (0, 0) = 0 and we

compute the partial derivatives using the definition:

fx(0, 0) = lim
ℎ→0

f (ℎ, 0) − f (0, 0)

ℎ
= lim

ℎ→0

0 − 0

ℎ
= 0,

and similarly

fy(0, 0) = 0.

Figure 14.66: Graph of z = x1∕3y1∕3 for z ≥ 0

So, if there did exist a linear approximation near the origin, it would have to be L(x, y) = 0. But

we can show that this choice of L(x, y) does not result in the small relative error that is required for

differentiability. In fact, since E(x, y) = f (x, y) − L(x, y) = f (x, y), we need to look at the limit

lim
ℎ→0

k→0

ℎ1∕3k1∕3
√

ℎ2 + k2
.

If this limit exists, we get the same value no matter how ℎ and k approach 0. Suppose we take

k = ℎ > 0. Then the limit becomes

lim
ℎ→0

ℎ1∕3ℎ1∕3
√

ℎ2 + ℎ2
= lim

ℎ→0

ℎ2∕3

ℎ
√

2
= lim

ℎ→0

1

ℎ1∕3
√

2
.

But this limit does not exist, since small values for ℎ will make the fraction arbitrarily large. So

the only possible candidate for a linear approximation at the origin does not have a sufficiently small

relative error. Thus, this function is not differentiable at the origin, even though the partial derivatives

fx(0, 0) and fy(0, 0) exist. Figure 14.66 confirms that near the origin the graph of z = f (x, y) is not

well approximated by any plane.

In summary,

• If a function is differentiable at a point, then both partial derivatives exist there.

• Having both partial derivatives at a point does not guarantee that a function is differen-

tiable there.

Continuity and Differentiability

We know that differentiable functions of one variable are continuous. Similarly, it can be shown that

if a function of two variables is differentiable at a point, then the function is continuous there.

In Example 3 the function f was continuous at the point where it was not differentiable. Ex-

ample 4 shows that even if the partial derivatives of a function exist at a point, the function is not

necessarily continuous at that point if it is not differentiable there.
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Example 4 Suppose that f is the function of two variables defined by

f (x, y) =

{ xy

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

Problem 27 on page 744 showed that f (x, y) is not continuous at the origin. Show that the partial

derivatives fx(0, 0) and fy(0, 0) exist. Could f be differentiable at (0, 0)?

Solution From the definition of the partial derivative we see that

fx(0, 0) = lim
ℎ→0

f (ℎ, 0) − f (0, 0)

ℎ
= lim

ℎ→0

(

1

ℎ
⋅

0

ℎ2 + 02

)

= lim
ℎ→0

0

ℎ
= 0,

and similarly

fy(0, 0) = 0.

So, the partial derivatives fx(0, 0) and fy(0, 0) exist. However, f cannot be differentiable at the

origin since it is not continuous there.

In summary,

• If a function is differentiable at a point, then it is continuous there.

• Having both partial derivatives at a point does not guarantee that a function is continuous

there.

How Do We Know If a Function Is Differentiable?
Can we use partial derivatives to tell us if a function is differentiable? As we see from Examples 3 and

4, it is not enough that the partial derivatives exist. However, the following theorem gives conditions

that do guarantee differentiability4:

Theorem 14.2: Continuity of Partial Derivatives Implies Differentiability

If the partial derivatives, fx and fy, of a function f exist and are continuous on a small disk

centered at the point (a, b), then f is differentiable at (a, b).

We will not prove this theorem, although it provides a criterion for differentiability which is often

simpler to use than the definition. It turns out that the requirement of continuous partial derivatives is

more stringent than that of differentiability, so there exist differentiable functions which do not have

continuous partial derivatives. However, most functions we encounter will have continuous partial

derivatives. The class of functions with continuous partial derivatives is given the name C1.

Example 5 Show that the function f (x, y) = ln(x2 + y2) is differentiable everywhere in its domain.

Solution The domain of f is all of 2-space except for the origin. We shall show that f has continuous partial

derivatives everywhere in its domain (that is, the function f is in C1). The partial derivatives are

fx =
2x

x2 + y2
and fy =

2y

x2 + y2
.

Since each of fx and fy is the quotient of continuous functions, the partial derivatives are continuous

everywhere except the origin (where the denominators are zero). Thus,f is differentiable everywhere

in its domain.

4For a proof, see M. Spivak, Calculus on Manifolds, p. 31 (New York: Benjamin, 1965).
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Most functions built up from elementary functions have continuous partial derivatives, except

perhaps at a few obvious points. Thus, in practice, we can often identify functions as being C1

without explicitly computing the partial derivatives.

Summary for Section 14.8

• A function f (x, y) is differentiable at the point (a, b) if there is a linear function L(x, y) =

f (a, b) + m(x − a) + n(y − b) such that if the error E(x, y) is defined by

f (x, y) = L(x, y) + E(x, y),

and if ℎ = x − a, k = y − b, then the relative error E(a + ℎ, b + k)∕
√

ℎ2 + k2 satisfies

lim
ℎ→0

k→0

E(a + ℎ, b + k)
√

ℎ2 + k2
= 0.

The function f is differentiable on a region R if it is differentiable at each point of R. The

function L(x, y) is called the local linearization of f (x, y) near (a, b).

• Differentiability is not the same as having partial derivatives:

◦ If a function is differentiable at a point, then both partial derivatives exist there.

◦ Having both partial derivatives at a point does not guarantee that a function is differentiable

there.

• If a function is differentiable at a point it is also continuous at that point.

• A function f (x, y) with both partial derivatives at a point can fail to be continuous at that point.

• If both the partial derivatives of a function f (x, y) exist and are continuous on a small disk

centered at the point (a, b), then f is differentiable at (a, b).

Exercises and Problems for Section 14.8

EXERCISES

In Exercises 1–10, list the points in the xy-plane, if any, at

which the function z = f (x, y) is not differentiable.

1. z = −
√

x2 + y2 2. z =
√

(x + 1)2 + y2

3. z = |x| + |y| 4. z = |x + 2| − |y − 3|

5. z = e−(x
2+y2) 6. z = x1∕3 + y2

7. z = |x − 3|2 + y3 8. z = (sin x)(cos |y|)

9. z = 4 +
√

(x − 1)2 + (y − 2)2

10. z = 1 +
(

(x − 1)2 + (y − 2)2
)2

PROBLEMS

In Problems 11–14, a function f is given.

(a) Use a computer to draw a contour diagram for f .

(b) Is f differentiable at all points (x, y) ≠ (0, 0)?

(c) Do the partial derivatives fx and fy exist and are they

continuous at all points (x, y) ≠ (0, 0)?

(d) Is f differentiable at (0, 0)?

(e) Do the partial derivatives fx and fy exist and are they

continuous at (0, 0)?

11. f (x, y) =

⎧

⎪

⎨

⎪

⎩

x

y
+

y

x
, x ≠ 0 and y ≠ 0,

0, x = 0 or y = 0.

12. f (x, y) =

{

2xy

(x2 + y2)2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

13. f (x, y) =

{

x2y

x4 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

14. f (x, y) =

{ xy
√

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).
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15. Consider the function

f (x, y) =

{

xy2

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the contour diagram for f .

(b) Is f differentiable for (x, y) ≠ (0, 0)?

(c) Show that fx(0, 0) and fy(0, 0) exist.

(d) Is f differentiable at (0, 0)?

(e) Suppose x(t) = at and y(t) = bt, where a and b

are constants, not both zero. If g(t) = f (x(t), y(t)),

show that

g′(0) =
ab2

a2 + b2
.

(f) Show that

fx(0, 0)x
′(0) + fy(0, 0)y

′(0) = 0.

Does the chain rule hold for the composite function

g(t) at t = 0? Explain.

(g) Show that the directional derivative fu⃗ (0, 0) exists

for each unit vector u⃗ . Does this imply that f is

differentiable at (0, 0)?

16. Consider the function f (x, y) =
√

|xy|.

(a) Use a computer to draw the contour diagram for f .

Does the contour diagram look like that of a plane

when we zoom in on the origin?

(b) Use a computer to draw the graph of f . Does the

graph look like a plane when we zoom in on the

origin?

(c) Is f differentiable for (x, y) ≠ (0, 0)?

(d) Show that fx(0, 0) and fy(0, 0) exist.

(e) Is f differentiable at (0, 0)? [Hint: Consider the di-

rectional derivative fu⃗ (0, 0) for u⃗ = (i⃗ + j⃗ )∕
√

2.]

17. Consider the function

f (x, y) =

{

xy2

x2 + y4
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

(a) Use a computer to draw the contour diagram for f .

(b) Show that the directional derivative fu⃗ (0, 0) exists

for each unit vector u⃗ .

(c) Is f continuous at (0, 0)? Is f differentiable at

(0, 0)? Explain.

18. Suppose f (x, y) is a function such that fx(0, 0) = 0 and

fy(0, 0) = 0, and fu⃗ (0, 0) = 3 for u⃗ = (i⃗ + j⃗ )∕
√

2.

(a) Is f differentiable at (0, 0)? Explain.

(b) Give an example of a function f defined on 2-space

which satisfies these conditions. [Hint: The func-

tion f does not have to be defined by a single for-

mula valid over all of 2-space.]

19. Consider the following function:

f (x, y) =

{

xy(x2 − y2)

x2 + y2
, (x, y) ≠ (0, 0),

0, (x, y) = (0, 0).

The graph of f is shown in Figure 14.67, and the con-

tour diagram of f is shown in Figure 14.68.

(a) Find fx(x, y) and fy(x, y) for (x, y) ≠ (0, 0).

(b) Show that fx(0, 0) = 0 and fy(0, 0) = 0.

(c) Are the functions fx and fy continuous at (0, 0)?

(d) Is f differentiable at (0, 0)?

x y

z

Figure 14.67: Graph of
xy(x2 − y2)

x2 + y2
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Figure 14.68: Contour diagram of

xy(x2 − y2)

x2 + y2

20. Suppose a function f is differentiable at the point (a, b).

Show that f is continuous at (a, b).
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Strengthen Your Understanding

In Problems 21–22, explain what is wrong with the state-

ment.

21. If f (x, y) is continuous at the origin, then it is differen-

tiable at the origin.

22. If the partial derivatives fx(0, 0) and fy(0, 0) both exist,

then f (x, y) is differentiable at the origin.

In Problems 23–24, give an example of:

23. A continuous function f (x, y) that is not differentiable

at the origin.

24. A continuous function f (x, y) that is not differentiable

on the line x = 1.

25. Which of the following functions f (x, y) is differen-

tiable at the given point?

(a)
√

1 − x2 − y2 at (0, 0) (b)
√

4 − x2 − y2 at (2, 0)

(c) −
√

x2 + 2y2 at (0, 0) (d) −
√

x2 + 2y2 at (2, 0)

Online Resource: Review Problems and Projects
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15.1 CRITICAL POINTS: LOCAL EXTREMA AND SADDLE POINTS

Functions of several variables, like functions of one variable, can have local and global extrema.

(That is, local and global maxima and minima.) A function has a local extremum at a point where

it takes on the largest or smallest value in a small region around the point. Global extrema are the

largest or smallest values anywhere on the domain under consideration. (See Figures 15.1 and 15.2.)

x

y

z

Figure 15.1: Local and global extrema for a

function of two variables on 0 ≤ x ≤ a,

0 ≤ y ≤ b

a

b

x

y

−1

−3

0

1

3
1

6
11

Figure 15.2: Contour map of the function

in Figure 15.1

More precisely, considering only points at which f is defined, we say:

• f has a local maximum at the point P0 if f (P0) ≥ f (P ) for all points P near P0.

• f has a local minimum at the point P0 if f (P0) ≤ f (P ) for all points P near P0.

For example, the function whose contour map is shown in Figure 15.2 has a local minimum

value of −3 and local maximum values of 3 and 11 in the rectangle shown.

How Do We Detect a Local Maximum or Minimum?

Recall that if the gradient vector of a function is defined and nonzero, then it points in a direction in

which the function increases. Suppose that a function f has a local maximum at a point P0 which

is not on the boundary of the domain. If the vector gradf (P0) were defined and nonzero, then we

could increase f by moving in the direction of gradf (P0). Since f has a local maximum at P0, there

is no direction in which f is increasing. Thus, if gradf (P0) is defined, we must have

gradf (P0) = 0⃗ .

Similarly, suppose f has a local minimum at the point P0. If gradf (P0) were defined and nonzero,

then we could decrease f by moving in the direction opposite to gradf (P0), and so we must again

have gradf (P0) = 0⃗ . Therefore, we make the following definition:

Points where the gradient is either 0⃗ or undefined are called critical points of the function.

If a function has a local maximum or minimum at a point P0, not on the boundary of its domain,

thenP0 is a critical point. For a function of two variables, we can also see that the gradient vector must

be zero or undefined at a local maximum by looking at its contour diagram and a plot of its gradient

vectors. (See Figures 15.3 and 15.4.) Around the maximum the vectors are all pointing inward,

perpendicularly to the contours. At the maximum the gradient vector must be zero or undefined. A

similar argument shows that the gradient must be zero or undefined at a local minimum.
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1

2

3

4

5

y

x

Figure 15.3: Contour diagram around a

local maximum of a function

x

y

Figure 15.4: Gradients pointing toward the local maximum of

the function in Figure 15.3

Finding and Analyzing Critical Points

To find critical points of f we set gradf = fxi⃗ + fyj⃗ + fzk⃗ = 0⃗ , which means setting all the

partial derivatives of f equal to zero. We must also look for the points where one or more of the

partial derivatives is undefined.

Example 1 Find and analyze the critical points of f (x, y) = x2 − 2x + y2 − 4y + 5.

Solution To find the critical points, we set both partial derivatives equal to zero:

fx(x, y) = 2x − 2 = 0

fy(x, y) = 2y − 4 = 0.

Solving these equations gives x = 1, y = 2. Hence, f has only one critical point, namely (1, 2). To

see the behavior of f near (1, 2), look at the values of the function in Table 15.1.

Table 15.1 Values of f (x, y) near the point (1, 2)

y

x

0.8 0.9 1.0 1.1 1.2

1.8 0.08 0.05 0.04 0.05 0.08

1.9 0.05 0.02 0.01 0.02 0.05

2.0 0.04 0.01 0.00 0.01 0.04

2.1 0.05 0.02 0.01 0.02 0.05

2.2 0.08 0.05 0.04 0.05 0.08

The table suggests that the function has a local minimum value of 0 at (1, 2). We can confirm

this by completing the square:

f (x, y) = x2 − 2x + y2 − 4y + 5 = (x − 1)2 + (y − 2)2.

Figure 15.5 shows that the graph of f is a paraboloid with vertex at the point (1, 2, 0). It is the

same shape as the graph of z = x2 + y2 (see Figure 12.12 on page 703), except that the vertex has

been shifted to (1, 2). So the point (1, 2) is a local minimum of f (as well as a global minimum).

x

y

z

(1, 2, 0)

Figure 15.5: The graph of f (x, y) = x2 − 2x + y2 − 4y + 5 with a local minimum at the point (1, 2)
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Example 2 Find and analyze any critical points of f (x, y) = −
√

x2 + y2.

Solution We look for points where gradf = 0⃗ or is undefined. The partial derivatives are given by

fx(x, y) = −
x

√

x2 + y2
,

fy(x, y) = −
y

√

x2 + y2
.

These partial derivatives are never simultaneously zero, but they are undefined at x = 0, y = 0.

Thus, (0, 0) is a critical point and a possible extreme point. The graph of f (see Figure 15.6) is a

cone, with vertex at (0, 0). So f has a local and global maximum at (0, 0).

x y

z

✯
Local maximum
Global maximum

Figure 15.6: Graph of f (x, y) = −
√

x2 + y2

Example 3 Find and analyze any critical points of g(x, y) = x2 − y2.

Solution To find the critical points, we look for points where both partial derivatives are zero:

gx(x, y) = 2x = 0

gy(x, y) = −2y = 0.

Solving gives x = 0, y = 0, so the origin is the only critical point.

Figure 15.7 shows that near the origin g takes on both positive and negative values. Since

g(0, 0) = 0, the origin is a critical point which is neither a local maximum nor a local minimum. The

graph of g looks like a saddle.

x

y

z

Figure 15.7: Graph of

g(x, y) = x2 − y2, showing saddle

shape at the origin

x y

z

Figure 15.8: Graph of ℎ(x, y) = x2 + y2, showing minimum

at the origin

The previous examples show that critical points can occur at local maxima or minima, or at

points which are neither: The functions g and ℎ in Figures 15.7 and 15.8 both have critical points

at the origin. Figure 15.9 shows level curves of g. They are hyperbolas showing both positive and

negative values of g near (0, 0). Contrast this with the level curves of ℎ near the local minimum in

Figure 15.10.
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Figure 15.9: Contours of g(x, y) = x2 − y2,

showing a saddle shape at the origin

−3 −2 −1 1 2 3
−3

−2

−1

1

2

3

x

y

2

4

6

8

10

12

Figure 15.10: Contours of ℎ(x, y) = x2 + y2,

showing a local minimum at the origin

Example 4 Find the local extrema of the function f (x, y) = 8y3 + 12x2 − 24xy.

Solution We begin by looking for critical points:

fx(x, y) = 24x − 24y,

fy(x, y) = 24y2 − 24x.

Setting these expressions equal to zero gives the system of equations

x = y, x = y2,

which has two solutions, (0, 0) and (1, 1). Are these local maxima, local minima or neither? Fig-

ure 15.11 shows contours of f near the points. Notice that f (1, 1) = −4 and the contours at nearby

points have larger function values. This suggests f has a local minimum at (1, 1).

We have f (0, 0) = 0 and the contours near (0, 0) show that f takes both positive and negative

values nearby. This suggests that (0, 0) is a critical point which is neither a local maximum nor a

local minimum.

−0.5 0.5 1 1.5 2
−0.5

0.5

1

1.5

2

x

y

−4

−1

−2

−3

0

0

1

2

3

Figure 15.11: Contour diagram of f (x, y) = 8y3 + 12x2 − 24xy showing critical points at (0, 0) and (1, 1)

Classifying Critical Points
We can see whether a critical point of a function, f , is a local maximum, local minimum, or neither

by looking at the contour diagram. There is also an analytic method for making this distinction.

Quadratic Functions of the Form f (x, y) = ax
2 + bxy + cy

2

Near most critical points, a function has the same behavior as its quadratic Taylor approximation
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about that point. Thus, we start by investigating critical points of quadratic functions of the form

f (x, y) = ax2 + bxy + cy2, where a, b and c are constants.

Example 5 Find and analyze the local extrema of the function f (x, y) = x2 + xy + y2.

Solution To find critical points, we set

fx(x, y) = 2x + y = 0,

fy(x, y) = x + 2y = 0.

The only critical point is (0, 0), and the value of the function there is f (0, 0) = 0. If f is always

positive or zero near (0, 0), then (0, 0) is a local minimum; if f is always negative or zero near

(0, 0), it is a local maximum; if f takes both positive and negative values, it is neither. The graph in

Figure 15.12 suggests that (0, 0) is a local minimum.

How can we be sure that (0, 0) is a local minimum? We complete the square. Writing

f (x, y) = x2 + xy + y2 =
(

x +
1

2
y

)2

+
3

4
y2,

shows that f (x, y) is a sum of two nonnegative terms, so it is always greater than or equal to zero.

Thus, the critical point is both a local and a global minimum.

x

y

z

✒
Local minimum

Figure 15.12: Graph of f (x, y) = x2 + xy+ y2 = (x+
1

2
y)2 +

3

4
y2 showing local minimum at the origin

The Shape of the Graph of f (x, y) = ax
2 + bxy + cy

2

In general, a function of the form f (x, y) = ax2+bxy+cy2 has one critical point at (0, 0). Assuming

a ≠ 0, we complete the square and write

ax2 + bxy + cy2 = a

[

x2 +
b

a
xy +

c

a
y2
]

= a

[

(

x +
b

2a
y

)2

+

(

c

a
−

b2

4a2

)

y2
]

= a

[

(

x +
b

2a
y

)2

+

(

4ac − b2

4a2

)

y2
]

.

The shape of the graph of f depends on whether the coefficient of y2 is positive, negative, or zero.

The sign of the discriminant, D = 4ac − b2, determines the sign of the coefficient of y2.

• If D > 0, then the expression inside the square brackets is positive or zero, so the function has

a local maximum or a local minimum.

∙ If a > 0, the function has a local minimum, since the graph is a paraboloid opening upward,

like z = x2 + y2. (See Figure 15.13.)

∙ If a < 0, the function has a local maximum, since the graph is a paraboloid opening down-

ward, like z = −x2 − y2. (See Figure 15.14.)

• If D < 0, then the function goes up in some directions and goes down in others, like z = x2−y2.

We say the function has a saddle point, that is, a critical point at which the function value

increases in some directions but decreases in others. (See Figure 15.15.)

• If D = 0, then the quadratic function is a(x+by∕2a)2, whose graph is a parabolic cylinder. (See

Figure 15.16.)
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Figure 15.13: Local minimum:

D > 0 and a > 0

Figure 15.14: Local maximum:

D > 0 and a < 0

Figure 15.15: Saddle point:

D < 0

Figure 15.16: Parabolic

cylinder: D = 0

More generally, the graph of g(x, y) = a(x− x0)
2 + b(x− x0)(y− y0) + c(y− y0)

2 has the same

shape as the graph of f (x, y) = ax2 + bxy + cy2, except that the critical point is at (x0, y0) rather

than (0, 0).1

Classifying the Critical Points of a Function

Suppose that f is any function with gradf (0, 0) = 0⃗ . Its quadratic Taylor polynomial near (0, 0),

f (x, y) ≈ f (0, 0) + fx(0, 0)x+ fy(0, 0)y

+
1

2
fxx(0, 0)x

2 + fxy(0, 0)xy+
1

2
fyy(0, 0)y

2,

can be simplified using fx(0, 0) = fy(0, 0) = 0, which gives

f (x, y) − f (0, 0) ≈
1

2
fxx(0, 0)x

2 + fxy(0, 0)xy+
1

2
fyy(0, 0)y

2.

The discriminant of this quadratic polynomial is

D = 4ac − b2 = 4
(

1

2
fxx(0, 0)

)(

1

2
fyy(0, 0)

)

−
(

fxy(0, 0)
)2
,

which simplifies to

D = fxx(0, 0)fyy(0, 0) − (fxy(0, 0))
2.

There is a similar formula forD if the critical point is at (x0, y0). An analogy with quadratic functions

suggests the following test for classifying a critical point of a function of two variables:

Second-Derivative Test for Functions of Two Variables

Suppose (x0, y0) is a point where gradf (x0, y0) = 0⃗ . Let

D = fxx(x0, y0)fyy(x0, y0) − (fxy(x0, y0))
2.

• If D > 0 and fxx(x0, y0) > 0, then f has a local minimum at (x0, y0).

• If D > 0 and fxx(x0, y0) < 0, then f has a local maximum at (x0, y0).

• If D < 0, then f has a saddle point at (x0, y0).

• If D = 0, anything can happen: f can have a local maximum, or a local minimum, or a

saddle point, or none of these, at (x0, y0).

Example 6 Find the local maxima, minima, and saddle points of f (x, y) =
1

2
x2 + 3y3 + 9y2 − 3xy + 9y − 9x.

Solution Setting the partial derivatives of f to zero gives

fx(x, y) = x − 3y − 9 = 0,

fy(x, y) = 9y2 + 18y − 3x + 9 = 0.

Eliminating x gives 9y2 + 9y− 18 = 0, with solutions y = −2 and y = 1. The corresponding values

1We assumed that a ≠ 0. If a = 0 and c ≠ 0, the same argument works. If both a = 0 and c = 0, then f (x, y) = bxy,

which has a saddle point.
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of x are x = 3 and x = 12, so the critical points of f are (3,−2) and (12, 1). The discriminant is

D(x, y) = fxxfyy − f 2
xy

= (1)(18y+ 18) − (−3)2 = 18y + 9.

Since D(3,−2) = −36 + 9 < 0, we know that (3,−2) is a saddle point of f . Since D(12, 1) =

18 + 9 > 0 and fxx(12, 1) = 1 > 0, we know that (12, 1) is a local minimum of f .

The second-derivative test does not give any information if D = 0. However, as the following

example illustrates, we may still be able to classify the critical points.

Example 7 Classify the critical points of f (x, y) = x4 + y4, and g(x, y) = −x4 − y4, and ℎ(x, y) = x4 − y4.

Solution Each of these functions has a critical point at (0, 0). Since all the second partial derivatives are 0

there, each function has D = 0. Near the origin, the graphs of f , g and ℎ look like the surfaces in

Figures 15.13–15.15, respectively, so f has a local minimum at (0, 0), and g has a local maximum

at (0, 0), and ℎ is saddle-shaped at (0, 0).

We can get the same results algebraically. Since f (0, 0) = 0 and f (x, y) > 0 elsewhere, f has

a local minimum at the origin. Since g(0, 0) = 0 and g(x, y) < 0 elsewhere, g has a local maximum

at the origin. Lastly, ℎ is saddle-shaped at the origin since ℎ(0, 0) = 0 and, away from the origin,

ℎ(x, y) > 0 on the x-axis and ℎ(x, y) < 0 on the y-axis.

Summary for Section 15.1

• A function has a local maximum or minimum at a point where it takes on the largest or smallest

value in a small region around the point:

◦ f has a local maximum at the point P0 if f (P0) ≥ f (P ) for all points P near P0.

◦ f has a local minimum at the point P0 if f (P0) ≤ f (P ) for all points P near P0.

• Points where the gradient is either 0⃗ or undefined are called critical points of the function.

• If a (non-boundary) point is a local maximum or local minimum it must be a critical point.

• If a point is a critical point, it need not be a local maximum or minimum.

• The second-derivative test for local extrema: Suppose (x0, y0) is a point where gradf (x0, y0) =

0⃗ . Let

D = fxx(x0, y0)fyy(x0, y0) − (fxy(x0, y0))
2.

◦ If D > 0 and fxx(x0, y0) > 0, then f has a local minimum at (x0, y0).

◦ If D > 0 and fxx(x0, y0) < 0, then f has a local maximum at (x0, y0).

◦ If D < 0, then f has a saddle point at (x0, y0).

◦ If D = 0, anything can happen: f can have a local maximum, or a local minimum, or a

saddle point, or none of these, at (x0, y0).

Exercises and Problems for Section 15.1

EXERCISES

1. Figures (I)–(VI) show level curves of six functions around a critical point P . Does each function have a local maximum,

a local minimum, or a saddle point at P ?

−7

−5

P

(I)

2

1

P

(II)

−2

−1

0

−1
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1 1P
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1

2

−1 −1P
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14

12

P

(VI)



15.1 CRITICAL POINTS: LOCAL EXTREMA AND SADDLE POINTS 863

2. Which of the points A,B, C in Figure 15.17 appear to

be critical points? Classify those that are critical points.

0

−1−2 −1 −2

1

2
1

2

1

2

0

1
2

0−1−2 −2

A
B

C

D

E
F

G

x

y

Figure 15.17

3. Which of the points D–G in Figure 15.17 appear to be

(a) Local maxima?

(b) Local minima?

(c) Saddle points?

4. A function f (x, y) has partial derivatives fx(1, 2) = 3,

fy(1, 2) = 5. Explain how you know that f does not

have a minimum at (1, 2).

5. Assume f (x, y) has a critical point at (2, 3) with

f (2, 3) = 5. Draw possible cross-sections for x = 2

and y = 3, and label one value on each axis, if f (2, 3)

is:

(a) A local minimum

(b) A local maximum

(c) A saddle point

In Problems 6–13, the function has a critical point at (0, 0).

What sort of critical point is it?

6. f (x, y) = x2 − cos y 7. f (x, y) = x sin y

8. g(x, y) = x4 + y3 9. f (x, y) = x6 + y6

10. k(x, y) = sinx sin y 11. ℎ(x, y) = cos x cos y

12. g(x, y) = (x − ex)(1 − y2)

13. ℎ(x, y) = x2 − xy + sin2 y

In Problems 14–27, find the critical points and classify them

as local maxima, local minima, saddle points, or none of

these.

14. f (x, y) = x2 − 2xy + 3y2 − 8y

15. f (x, y) = 5 + 6x − x2 + xy − y2

16. f (x, y) = x2 − y2 + 4x + 2y

17. f (x, y) = 400 − 3x2 − 4x + 2xy − 5y2 + 48y

18. f (x, y) = 15 − x2 + 2y2 + 6x − 8y

19. f (x, y) = x2y + 2y2 − 2xy + 6

20. f (x, y) = 2x3 − 3x2y + 6x2 − 6y2

21. f (x, y) = x3 − 3x + y3 − 3y

22. f (x, y) = x3 + y3 − 3x2 − 3y + 10

23. f (x, y) = x3 + y3 − 6y2 − 3x + 9

24. f (x, y) = (x + y)(xy + 1)

25. f (x, y) = 8xy −
1

4
(x + y)4

26. f (x, y) = 3
√

x2 + y2

27. f (x, y) = e2x
2+y2

PROBLEMS

28. Let f (x, y) = 3x2+ky2+9xy. Determine the values of

k (if any) for which the critical point at (0, 0) is:

(a) A saddle point

(b) A local maximum

(c) A local minimum

29. Let f (x, y) = x3 + ky2 − 5xy. Determine the values of

k (if any) for which the critical point at (0, 0) is:

(a) A saddle point

(b) A local maximum

(c) A local minimum

30. Find A and B so that f (x, y) = x2 +Ax+ y2 +B has a

local minimum value of 20 at (1, 0).

31. For f (x, y) = x2 +xy+ y2 + ax+ by+ c, find values of

a, b, and c giving a local minimum at (2, 5) and so that

f (2, 5) = 11.

32. (a) Find critical points for f (x, y) = e−(x−a)
2−(y−b)2 .

(b) Find a and b such that the critical point is at (−1, 5).

(c) For the values of a and b in part (b), is (−1, 5) a lo-

cal maximum, local minimum, or a saddle point?

33. Let f (x, y) = kx2 + y2 − 4xy. Determine the values of

k (if any) for which the critical point at (0, 0) is:

(a) A saddle point

(b) A local maximum

(c) A local minimum
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For Problems 34–36, use the contours of f in Figure 15.18.
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Figure 15.18

34. Decide whether you think each point is a local maxi-

mum, local minimum, saddle point, or none of these.

(a) P (b) Q (c) R (d) S

35. Sketch the direction of ∇f at points surrounding each

of P , R, S, and T .

36. At which ofP , Q,R, S, or T does ‖∇f‖ seem largest?

For Problems 37–40, find critical points and classify them as

local maxima, local minima, saddle points, or none of these.

37. f (x, y) = x3 + e−y
2

38. f (x, y) = sinx sin y

39. f (x, y) = 1 − cos x + y2∕2

40. f (x, y) = ex(1 − cos y)

41. At the point (1, 3), suppose that fx = fy = 0 and

fxx > 0, fyy > 0, fxy = 0.

(a) What can you conclude about the behavior of the

function near the point (1, 3)?

(b) Sketch a possible contour diagram.

42. At the point (a, b), suppose that fx = fy = 0, fxx > 0,

fyy = 0, fxy > 0.

(a) What can you conclude about the shape of the

graph of f near the point (a, b)?

(b) Sketch a possible contour diagram.

43. Let ℎ(x, y) = f (x)g(y) where f (0) = g(0) = 0 and

f ′(0) ≠ 0, g′(0) ≠ 0. Show that (0, 0) is a saddle point

of ℎ.

44. Let ℎ(x, y) = f (x) + g(y). Show that ℎ has a critical

point at (a, b) if f ′(a) = g′(b) = 0, and, assuming

f ′′(a) ≠ 0 and g′′(b) ≠ 0, it is a local maximum or min-

imum when f ′′(a) and g′′(b) have the same sign and a

saddle point when they have opposite signs.

45. Let ℎ(x, y) = (f (x))2 + (g(y))2. Show that if f (a) =

g(b) = 0, then (a, b) is a local minimum.

46. Draw a possible contour diagram of f such that

fx(−1, 0) = 0, fy(−1, 0) < 0, fx(3, 3) > 0, fy(3, 3) >

0, and f has a local maximum at (3,−3).

47. Draw a possible contour diagram of a function with a

saddle point at (2, 1), a local minimum at (2, 4), and no

other critical points. Label the contours.

48. For constants a and b with ab ≠ 0 and ab ≠ 1, let

f (x, y) = ax2 + by2 − 2xy − 4x − 6y.

(a) Find the x- and y-coordinates of the critical point.

Your answer will be in terms of a and b.

(b) If a = b = 2, is the critical point a local maxi-

mum, a local minimum, or neither? Give a reason

for your answer.

(c) Classify the critical point for all values of a and b

with ab ≠ 0 and ab ≠ 1.

49. (a) Find the critical point of f (x, y) = (x2−y)(x2+y).

(b) Show that at the critical point, the discriminant

D = 0, so the second-derivative test gives no in-

formation about the nature of the critical point.

(c) Sketch contours near the critical point to determine

whether it is a local maximum, a local minimum,

a saddle point, or none of these.

50. On a computer, draw contour diagrams for functions

f (x, y) = k(x2 + y2) − 2xy

for k = −2, −1, 0, 1, 2. Use these figures to classify the

critical point at (0, 0) for each value of k. Explain your

observations using the discriminant, D.

51. The behavior of a function can be complicated near a

critical point where D = 0. Suppose that

f (x, y) = x3 − 3xy2.

Show that there is one critical point at (0, 0) and that

D = 0 there. Show that the contour for f (x, y) = 0

consists of three lines intersecting at the origin and that

these lines divide the plane into six regions around the

origin where f alternates from positive to negative.

Sketch a contour diagram for f near (0, 0). The graph

of this function is called a monkey saddle.
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52. The contour diagrams for four functions z = f (x, y)

are in (a)–(d). Each function has a critical point with

z = 0 at the origin. Graphs (I)–(IV) show the value of

z for these four functions on a small circle around the

origin, expressed as function of �, the angle between

the positive x-axis and a line through the origin. Match

the contour diagrams (a)–(d) with the graphs (I)–(IV).

Classify the critical points as local maxima, local min-

ima or saddle points.

x

y(a)

x

y(b)

x

y(c)

x

y(d)

� 2�
�

z(I)

� 2�
�

z(II)

� 2�
�

z(III)

� 2�
�

z(IV)

Strengthen Your Understanding

In Problems 53–55, explain what is wrong with the state-

ment.

53. If fx = fy = 0 at (1, 3), then f has a local maximum or

local minimum at (1, 3).

54. For f (x, y), if D = fxxfyy − (fxy)
2 = 0 at (a, b), then

(a, b) is a saddle point.

55. A critical point (a, b) for the function f must be a local

minimum if both cross-sections for x = a and y = b are

concave up.

In Problems 56–57, give an example of:

56. A nonlinear function having no critical points

57. A function f (x, y) with a local maximum at (2,−3, 4).

Are the statements in Problems 58–69 true or false? Give

reasons for your answer.

58. If fx(P0) = fy(P0) = 0, then P0 is a critical point of f .

59. If fx(P0) = fy(P0) = 0, then P0 is a local maximum or

local minimum of f .

60. If P0 is a critical point of f , then P0 is either a local

maximum or local minimum of f .

61. If P0 is a local maximum or local minimum of f , and

not on the boundary of the domain of f , then P0 is a

critical point of f .

62. The function whose contour diagram is shown in Fig-

ure 15.19 has a saddle point at P .
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Figure 15.19

63. The function f (x, y) =
√

x2 + y2 has a local minimum

at the origin.

64. The function f (x, y) = x2 − y2 has a local minimum at

the origin.

65. If f has a local minimum atP0 then so does the function

g(x, y) = f (x, y) + 5.

66. If f has a local minimum at P0 then the function

g(x, y) = −f (x, y) has a local maximum at P0.

67. Every function has at least one local maximum.

68. If P0 is a local maximum of f , then f (a, b) ≤ f (P0) for

all points (a, b) in 2-space.

69. If P0 is a local maximum of f , then P0 is also a global

maximum of f .
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15.2 OPTIMIZATION

Suppose we want to find the highest and the lowest points in Colorado. A contour map is shown

in Figure 15.20. The highest point is the top of a mountain peak (point A on the map, Mt. Elbert,

14,440 feet high). What about the lowest point? Colorado does not have large pits without drainage,

like Death Valley in California. A drop of rain falling at any point in Colorado will eventually flow

out of the state. If there is no local minimum inside the state, where is the lowest point? It must be

on the state boundary at a point where a river is flowing out of the state (point B where the Arikaree

River leaves the state, 3,315 feet high). The highest point in Colorado is a global maximum for the

elevation function in Colorado and the lowest point is the global minimum.

Figure 15.20: The highest and lowest points in the state of Colorado

In general, if we are given a function f defined on a region R, we say:

• f has a global maximum on R at the point P0 if f (P0) ≥ f (P ) for all points P in R.

• f has a global minimum on R at the point P0 if f (P0) ≤ f (P ) for all points P in R.

The process of finding a global maximum or minimum for a function f on a region R is called

optimization. If the region R is not stated explicitly, we take it to be the whole xy-plane unless the

context of the problem suggests otherwise.

How Do We Find Global Maxima and Minima?

As the Colorado example illustrates, a global extremum can occur either at a critical point inside

the region or at a point on the boundary of the region. This is analogous to single-variable calculus,

where a function achieves its global extrema on an interval either at a critical point inside the interval

or at an endpoint of the interval.

To locate global maxima and minima for a function f on a region R:

• Find the critical points of f in the region R.

• Investigate whether the critical points give global maxima or minima.

• If the region R has a boundary, investigate whether f attains a global maximum or min-

imum on the boundary of R.

Investigating the boundary of a region for possible maxima and minima is the topic of Sec-

tion 15.1. In this section, we focus on finding global maxima and minima of functions on regions

that do not include boundaries.



15.2 OPTIMIZATION 867

Not all functions have a global maximum or minimum: it depends on the function and the region.

First, we consider applications in which global extrema are expected from practical considerations.

At the end of this section, we examine the conditions that lead to global extrema. In general, the

fact that a function has a single local maximum or minimum does not guarantee that the point is

the global maximum or minimum. (See Problem 38.) An exception is if the function is quadratic, in

which case the local maximum or minimum is the global maximum or minimum. (See Example 1

on page 857 and Example 5 on page 860.)

Maximizing Profit and Minimizing Cost

In planning production of an item, a company often chooses the combination of price and quantity

that maximizes its profit. We use

Profit = Revenue − Cost,

and, provided the price is constant,

Revenue = Price ⋅ Quantity = pq.

In addition, we need to know how the cost and price depend on quantity.

Example 1 A company manufactures two items which are sold in two separate markets where it has a monopoly.

The quantities, q1 and q2, demanded by consumers, and the prices, p1 and p2 (in dollars), of each

item are related by

p1 = 600 − 0.3q1 and p2 = 500 − 0.2q2.

Thus, if the price for either item increases, the demand for it decreases. The company’s total produc-

tion cost is given by

C = 16 + 1.2q1 + 1.5q2 + 0.2q1q2.

To maximize its total profit, how much of each product should be produced? What is the maximum

profit? 2

Solution The total revenue, R, is the sum of the revenues, p1q1 and p2q2, from each market. Substituting for

p1 and p2, we get

R = p1q1 + p2q2 = (600 − 0.3q1)q1 + (500 − 0.2q2)q2

= 600q1 − 0.3q2
1
+ 500q2 − 0.2q2

2
.

Thus, the total profit P is given by

P = R − C = 600q1 − 0.3q2
1
+ 500q2 − 0.2q2

2
− (16 + 1.2q1 + 1.5q2 + 0.2q1q2)

= −16 + 598.8q1 − 0.3q2
1
+ 498.5q2 − 0.2q2

2
− 0.2q1q2.

Since q1 and q2 cannot be negative,3 the region we consider is the first quadrant with boundary q1 = 0

and q2 = 0.

To maximize P , we look for critical points by setting the partial derivatives equal to 0:

)P

)q1
= 598.8 − 0.6q1 − 0.2q2 = 0,

)P

)q2
= 498.5 − 0.4q2 − 0.2q1 = 0.

Since gradP is defined everywhere, the only critical points of P are those where gradP = 0⃗ . Thus,

solving for q1, and q2, we find that

q1 = 699.1 and q2 = 896.7.

2Adapted from M. Rosser and P. Lis, Basic Mathematics for Economists, 3rd ed. (New York: Routledge, 2016), p. 351.
3Restricting prices to be nonnegative further restricts the region but does not alter the solution.
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The corresponding prices are

p1 = 390.27 and p2 = 320.66.

To see whether or not we have found a local maximum, we compute second partial derivatives:

)2P

)q2
1

= −0.6,
)2P

)q2
2

= −0.4,
)2P

)q1)q2
= −0.2,

so,

D =
)2P

)q2
1

)2P

)q2
2

−

(

)2P

)q1)q2

)2

= (−0.6)(−0.4) − (−0.2)2 = 0.2.

Therefore we have found a local maximum. The graph of P is a paraboloid opening downward, so

(699.1, 896.7) is a global maximum. This point is within the region, so points on the boundary give

smaller values of P .

The company should produce 699.1 units of the first item priced at $390.27 per unit, and 896.7

units of the second item priced at $320.66per unit. The maximum profitP (699.1, 896.7) ≈ $433,000.

Example 2 A delivery of 480 cubic meters of gravel is to be made to a landfill. The trucker plans to purchase an

open-top box in which to transport the gravel in numerous trips. The total cost to the trucker is the

cost of the box plus $80 per trip. The box must have height 2 meters, but the trucker can choose the

length and width. The cost of the box is $100/m2 for the ends, $50/m2 for the sides and $200/m2 for

the bottom. Notice the tradeoff: A smaller box is cheaper to buy but requires more trips. What size

box should the trucker buy to minimize the total cost?4

Solution We first get an algebraic expression for the trucker’s cost. Let the length of the box be x meters and

the width be y meters; the height is 2 meters. (See Figure 15.21.)

xy

✛

✛

2m

Figure 15.21: The box for transporting gravel

Table 15.2 Trucker’s itemized cost

Expense Cost in dollars

Travel: 480∕(2xy) at $80/trip 80 ⋅ 480∕(2xy)

Ends: 2 at $100/m2
⋅ 2y m2 400y

Sides: 2 at $50/m2
⋅ 2x m2 200x

Bottom: l at $200/m2
⋅ xy m2 200xy

The volume of the box is 2xy m3, so delivery of 480 m3 of gravel requires 480∕(2xy) trips. The

number of trips is a whole number; however, we treat it as continuous so that we can optimize using

derivatives. The trucker’s cost is itemized in Table 15.2. The problem is to minimize

Total cost = 80 ⋅
480

2xy
+ 400y+ 200x+ 200xy = 200

(

96

xy
+ 2y + x + xy

)

.

The length and width of the box must be positive. Thus, the region is the first quadrant but it does

not contain the boundary, x = 0 and y = 0.

4Adapted from Claude McMillan, Jr., Mathematical Programming, 2nd ed. (New York: Wiley, 1978), pp. 156–157.
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Our problem is to minimize

f (x, y) =
96

xy
+ 2y + x + xy.

The critical points of this function occur where

fx(x, y) = −
96

x2y
+ 1 + y = 0

fy(x, y) = −
96

xy2
+ 2 + x = 0.

We put the 96∕(x2y) and 96∕(xy2) terms on the other side of the the equation, divide, and simplify:

96∕(x2y)

96∕(xy2)
=

1 + y

2 + x
so

y

x
=

1 + y

2 + x
giving 2y = x.

Substituting x = 2y in the equation fy(x, y) = 0 gives

−
96

2y ⋅ y2
+ 2 + 2y = 0

y4 + y3 − 24 = 0.

The only positive solution to this equation is y = 2, so the only critical point in the region is (4, 2).

To check that the critical point is a local minimum, we use the second-derivative test. Since

D(4, 2) = fxxfyy − (fxy)
2 =

192

43 ⋅ 2
⋅

192

4 ⋅ 23
−
(

96

42 ⋅ 22
+ 1

)2

= 9 −
25

4
> 0

and fxx(4, 2) > 0, the point (4, 2) is a local minimum. Since the value of f increases without bound

as x or y increases without bound and as x → 0+ and y → 0+, it can be shown that (4, 2) is a global

minimum. (See Problem 42.) Thus, the optimal box is 4 meters long and 2 meters wide. With a box

of this size, the trucker would need to make 30 trips to haul all of the gravel. This large number lends

some credibility to our decision to treat the number of trips as a continuous variable.

Fitting a Line to Data: Least Squares

Suppose we want to fit the “best” line to some data in the plane. We measure the distance from a

line to the data points by adding the squares of the vertical distances from each point to the line. The

smaller this sum of squares is, the better the line fits the data. The line with the minimum sum of

square distances is called the least squares line, or the regression line. If the data is nearly linear,

the least squares line is a good fit; otherwise it may not be. (See Figure 15.22.)

Data almost linear: line fits well Data not very linear: line does not fit well

Figure 15.22: Fitting lines to data points



870 Chapter 15 OPTIMIZATION: LOCAL AND GLOBAL EXTREMA

Example 3 Find a least squares line for the following data points: (1, 1), (2, 1), and (3, 3).

Solution Suppose the line has equation y = b + mx. If we find b and m then we have found the line. So,

for this problem, b and m are the two variables. Any values of m and b are possible, so this is an

unconstrained problem. We want to minimize the function f (b, m) that gives the sum of the three

squared vertical distances from the points to the line in Figure 15.23.

1 2 3
0

1

2

3

x

y

(1, 1) (2, 1)

(3, 3)

(1, b + m)

(2, b + 2m)

(3, b + 3m)

y = b + mx

✻❄

✻
❄

✻❄

Figure 15.23: The least squares line minimizes the sum of the squares of these vertical distances

The vertical distance from the point (1, 1) to the line is the difference in the y-coordinates 1 −

(b + m); similarly for the other points. Thus, the sum of squares is

f (b, m) = (1 − (b + m))2 + (1 − (b + 2m))2 + (3 − (b + 3m))2.

To minimize f we look for critical points. First we differentiate f with respect to b:

)f

)b
= −2(1 − (b + m)) − 2(1 − (b + 2m)) − 2(3 − (b + 3m))

= −2 + 2b + 2m − 2 + 2b + 4m − 6 + 2b + 6m

= −10 + 6b + 12m.

Now we differentiate with respect to m:

)f

)m
= 2(1 − (b + m))(−1) + 2(1 − (b + 2m))(−2) + 2(3 − (b + 3m))(−3)

= −2 + 2b + 2m − 4 + 4b + 8m − 18 + 6b + 18m

= −24 + 12b + 28m.

The equations
)f

)b
= 0 and

)f

)m
= 0 give a system of two linear equations in two unknowns:

−10 + 6b + 12m = 0,

−24 + 12b + 28m = 0.

The solution to this pair of equations is the critical point b = −1∕3 and m = 1. Since

D = fbbfmm − (fmb)
2 = (6)(28) − 122 = 24 and fbb = 6 > 0,

we have found a local minimum. The graph of f (b, m) is a parabola opening upward, so the local

minimum is the global minimum of f . Thus, the least squares line is

y = x −
1

3
.

As a check, notice that the line y = x passes through the points (1, 1) and (3, 3). It is reasonable that

introducing the point (2, 1) moves the y-intercept down from 0 to −1∕3.
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The general formulas for the slope and y-intercept of a least squares line are in Project 2 (avail-

able online). Many calculators have built-in formulas for b and m, as well as for the correlation

coefficient, which measures how well the data points fit the least squares line.

How Do We Know Whether a Function Has a Global Maximum or Minimum?

Under what circumstances does a function of two variables have a global maximum or minimum?

The next example shows that a function may have both a global maximum and a global minimum

on a region, or just one, or neither.

Example 4 Investigate the global maxima and minima of the following functions:

(a) ℎ(x, y) = 1 + x2 + y2 on the disk x2 + y2 ≤ 1.

(b) f (x, y) = x2 − 2x + y2 − 4y + 5 on the xy-plane.

(c) g(x, y) = x2 − y2 on the xy-plane.

Solution (a) The graph of ℎ(x, y) = 1 + x2 + y2 is a bowl-shaped paraboloid with a global minimum of 1 at

(0, 0), and a global maximum of 2 on the edge of the region, x2 + y2 = 1.

(b) The graph of f in Figure 15.5 on page 857 shows that f has a global minimum at the point (1, 2)

and no global maximum (because the value of f increases without bound as x → ∞, y → ∞).

(c) The graph of g in Figure 15.7 on page 858 shows that g has no global maximum because

g(x, y) → ∞ as x → ∞ if y is constant. Similarly, g has no global minimum because g(x, y) →

−∞ as y → ∞ if x is constant.

Sometimes a function is guaranteed to have a global maximum and minimum. For example, a

continuous function, ℎ(x), of one variable has a global maximum and minimum on every closed

interval a ≤ x ≤ b. On a non-closed interval, such as a ≤ x < b or a < x < b, or on an unbounded

interval, such as a < x < ∞, ℎ may not have a maximum or minimum value.

What is the situation for functions of two variables? As it turns out, a similar result is true for

continuous functions defined on regions which are closed and bounded, analogous to the closed and

bounded interval a ≤ x ≤ b. In everyday language we say

• A closed region is one which contains its boundary;

• A bounded region is one which does not stretch to infinity in any direction.

More precise definitions follow. Suppose R is a region in 2-space. A point (x0, y0) is a boundary

point of R if, for every r > 0, the circular disk with center (x0, y0) and radius r contains both

points which are in R and points which are not in R. See Figure 15.24. A point (x0, y0) can be a

boundary point of the region R without belonging to R. The collection of all the boundary points is

the boundary of R. The region R is closed if it contains its boundary.

A region R in 2-space is bounded if the distance between every point (x, y) in R and the origin

is less than some constant K . Closed and bounded regions in 3-space are defined in the same way.

R

(x0, y0)

Figure 15.24: Boundary point (x0, y0) of R
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Example 5 (a) Consider the square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1. Every point in this region is within distance
√

2

of the origin, so the region is bounded. The region’s boundary consists of four line segments, all

of which belong to the region, so the region is closed.

(b) Consider the first quadrant x ≥ 0, y ≥ 0. The boundary of this region consists of the origin, the

positive x-axis, and the positive y-axis. All of these belong to the region, so the region is closed.

However, the region is not bounded, since there is no upper bound on distances between points

in the region and the origin.

(c) The disk x2 + y2 < 1 is bounded, because each point in the region is within distance 1 of the

origin. However, the disk is not closed, because (1, 0) is a boundary point of the region but not

included in the region.

(d) The half-plane y > 0 is neither closed nor bounded. The origin is a boundary point of this region

but is not included in the region.

The reason that closed and bounded regions are useful is the following theorem, which is also

true for functions of three or more variables:5

Theorem 15.1: Extreme Value Theorem for Multivariable Functions

If f is a continuous function on a closed and bounded regionR, then f has a global maximum

at some point (x0, y0) in R and a global minimum at some point (x1, y1) in R.

If f is not continuous or the region R is not closed and bounded, there is no guarantee that f

achieves a global maximum or global minimum on R. In Example 4, the function g is continuous

but does not achieve a global maximum or minimum in 2-space, a region which is closed but not

bounded. Example 6 illustrates what can go wrong when the region is bounded but not closed.

Example 6 Does the function f have a global maximum or minimum on the regionR given by 0 < x2 + y2 ≤ 1?

f (x, y) =
1

x2 + y2

Solution The region R is bounded, but it is not closed since it does not contain the boundary point (0, 0).

We see from the graph of z = f (x, y) in Figure 15.25 that f has a global minimum on the circle

x2 + y2 = 1. However, f (x, y) → ∞ as (x, y) → (0, 0), so f has no global maximum.

x y

z

Figure 15.25: Graph showing f (x, y) =
1

x2+y2
has no global maximum on 0 < x2 + y2 ≤ 1

Summary for Section 15.2

• A global maximum/minimum is the greatest/least value taken on by a function f anywhere in

its domain R:

◦ f has a global maximum on R at the point P0 if f (P0) ≥ f (P ) for all points P in R.

◦ f has a global minimum on R at the point P0 if f (P0) ≤ f (P ) for all points P in R.

5For a proof, see Walter Rudin, Principles of Mathematical Analysis, 3rd ed. (New York: McGraw-Hill, 1976), p. 89.
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• To locate global maxima and minima for a function f on a region R:

◦ Find the critical points of f in the region R.

◦ Investigate whether the critical points give global maxima or minima.

◦ If the regionR has a boundary, investigate whether f attains a global maximum or minimum

on the boundary of R.

• A function is guaranteed (by the Extreme Value Theorem) to have both a global maximum and

global minimum over a closed and bounded domain:

◦ A closed region is one which contains its boundary.

◦ A bounded region is one which does not stretch to infinity in any direction.

Exercises and Problems for Section 15.2
EXERCISES

1. By looking at the weather map in Figure 12.1 on

page 694, find the maximum and minimum daily

high temperatures in the states of Mississippi, Al-

abama, Pennsylvania, New York, California, Arizona,

and Massachusetts.

In Exercises 2–4, estimate the position and approximate

value of the global maxima and minima on the closed region

shown.

2.

7654321
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4

3

2

1

x

y
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6

3

2

0
4

7
9

3.

1 2 3 4 5
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y

4.
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y

0

0
.2
5

0
.5
0

0
.7
5

0
0.250.50 0.75

−
0
.2
5

−
0
.5
0

−
0
.7
5

In Exercises 5–9, without calculus, find the highest and low-

est points (if they exist) on the surface. The z-axis is upward.

5. x2 + y2 + (z − 1)2 = 49

6. (x + 1)2 + (y − 3)2 + 2z2 = 162

7. z = (x − 5)2 + (y − �)2 + 2�

8. z = 44 − 2x2 − 2y2

9. x = 4 + y2 + 2z2

10. The surface z = 27 − x2 − y2 cuts the plane z = 2 in

a curve. Without calculus, find the point on this curve

with the greatest y-coordinate.

In Exercises 11–13, find the global maximum and minimum

of the function on −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, and say whether

it occurs on the boundary of the square. [Hint: Use graphs.]

11. z = x2 + y2 12. z = −x2−y2 13. z = x2 − y2

In Exercises 14–21, does the function have a global maxi-

mum? A global minimum?

14. f (x, y) = x2 − 2y2 15. g(x, y) = x2y2

16. ℎ(x, y) = x3 + y3 17. f (x, y) = −2x2−7y2

18. f (x, y) = ex
2+y2 19. ℎ(x, y) = 1 − y2exy

20. f (x, y) = x2∕2 + 3y3 + 9y2 − 3x

21. g(x, y) = x2 − cos(x + y)
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PROBLEMS

22. (a) Compute and classify the critical points of

f (x, y) = 2x2 − 3xy + 8y2 + x − y.

(b) By completing the square, plot the contour diagram

of f and show that the local extremum found in

part (a) is a global one.

In Problems 23–26, find and classify the critical points of

the function. Then decide whether the function has global

extrema on the xy-plane, and find them if they exist.

23. f (x, y) = y2 + 2xy − y − x3 − x + 2

24. f (x, y) = 2x2 − 4xy + 5y2 + 9y + 2

25. f (x, y) = −x4 + 2xy2 − 2y3

26. f (x, y) = xe−x
2−y2

27. A closed rectangular box has volume 32 cm3. What are

the lengths of the edges giving the minimum surface

area?

28. A closed rectangular box with faces parallel to the co-

ordinate planes has one bottom corner at the origin and

the opposite top corner in the first octant on the plane

3x+2y+ z = 1. What is the maximum volume of such

a box?

29. An international airline has a regulation that each pas-

senger can carry a suitcase having the sum of its width,

length and height less than or equal to 135 cm. Find the

dimensions of the suitcase of maximum volume that a

passenger may carry under this regulation.

30. Design a rectangular milk carton box of widthw, length

l, and height ℎ which holds 512 cm3 of milk. The sides

of the box cost 1 cent∕cm2 and the top and bottom cost

2 cent∕cm2. Find the dimensions of the box that mini-

mize the total cost of materials used.

31. Find the point on the plane 3x+2y+z = 1 that is closest

to the origin by minimizing the square of the distance.

32. What is the shortest distance from the surface xy+3x+

z2 = 9 to the origin?

33. For constants a, b, and c, let f (x, y) = ax+ by+ c be a

linear function, and let R be a region in the xy-plane.

(a) If R is any disk, show that the maximum and min-

imum values of f on R occur on the boundary of

the disk.

(b) If R is any rectangle, show that the maximum and

minimum values of f on R occur at the corners of

the rectangle. They may occur at other points of the

rectangle as well.

(c) Use a graph of the plane z = f (x, y) to explain

your answers in parts (a) and (b).

34. Two products are manufactured in quantities q1 and q2
and sold at prices of p1 and p2, respectively. The cost of

producing them is given by

C = 2q2
1
+ 2q2

2
+ 10.

(a) Find the maximum profit that can be made, assum-

ing the prices are fixed.

(b) Find the rate of change of that maximum profit as

p1 increases.

35. A company operates two plants which manufacture the

same item and whose total cost functions are

C1 = 8.5 + 0.03q2
1

and C2 = 5.2 + 0.04q2
2
,

where q1 and q2 are the quantities produced by each

plant. The company is a monopoly. The total quantity

demanded, q = q1 + q2, is related to the price, p, by

p = 60 − 0.04q.

How much should each plant produce in order to max-

imize the company’s profit?6

36. The quantity of a product demanded by consumers is

a function of its price. The quantity of one product de-

manded may also depend on the price of other prod-

ucts. For example, if the only chocolate shop in town (a

monopoly) sells milk and dark chocolates, the price it

sets for each affects the demand of the other. The quan-

tities demanded, q1 and q2, of two products depend on

their prices, p1 and p2, as follows:

q1 = 150 − 2p1 − p2

q2 = 200 − p1 − 3p2.

(a) What does the fact that the coefficients of p1 and

p2 are negative tell you? Give an example of two

products that might be related this way.

(b) If one manufacturer sells both products, how

should the prices be set to generate the maximum

possible revenue? What is that maximum possible

revenue?

37. A company manufactures a product which requires cap-

ital and labor to produce. The quantity,Q, of the product

manufactured is given by the Cobb-Douglas function

Q = AKaLb,

where K is the quantity of capital; L is the quantity of

labor used; and A, a, and b are positive constants with

0 < a < 1 and 0 < b < 1. One unit of capital costs $k

and one unit of labor costs $l. The price of the product

is fixed at $p per unit.

(a) If a + b < 1, how much capital and labor should

the company use to maximize its profit?

(b) Is there a maximum profit in the case a + b = 1?

What about a + b ≥ 1? Explain.

6Adapted from M. Rosser and P. Lis, Basic Mathematics for Economists, 3rd ed. (New York: Routledge, 2016), p. 354.
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38. Let f (x, y) = x2(y + 1)3 + y2. Show that f has only

one critical point, namely (0, 0), and that point is a lo-

cal minimum but not a global minimum. Contrast this

with the case of a function with a single local minimum

in one-variable calculus.

39. Find the parabola of the form y = ax2 + b which best

fits the points (1, 0), (2, 2), (3, 4) by minimizing the sum

of squares, S, given by

S = (a + b)2 + (4a + b − 2)2 + (9a + b − 4)2.

40. For the data points (11, 16), (12, 17), (13, 17), and

(16, 20), find an expression for f (b, m), the sum of

squared errors that are minimized on the least squares

line y = b +mx. (You need not do the minimization.)

41. Find the least squares line for the data points

(0, 4), (1, 3), (2, 1).

42. Let f (x, y) = 80∕(xy)+20y+10x+10xy in the region

R where x, y > 0.

(a) Explain why f (x, y) > f (2, 1) at every point in R

where

(i) x > 20 (ii) y > 20

(iii) x < 0.01 and y ≤ 20

(iv) y < 0.01 and x ≤ 20

(b) Explain why f must have a global minimum at a

critical point in R.

(c) Explain why f must have a global minimum in R

at the point (2, 1).

43. Let f (x, y) = 2∕x+3∕y+4x+5y in the region R where

x, y > 0.

(a) Explain why f must have a global minimum at

some point in R.

(b) Find the global minimum.

44. (a) The energy, E, required to compress a gas from a

fixed initial pressure P0 to a fixed final pressure PF

through an intermediate pressure p is7

E =

(

p

P0

)2

+

(

PF

p

)2

− 1.

How should p be chosen to minimize the energy?

(b) Now suppose the compression takes place in two

stages with two intermediate pressures, p1 and p2.

What choices of p1 and p2 minimize the energy if

E =

(

p1

P0

)2

+

(

p2

p1

)2

+

(

PF

p2

)2

− 2?

45. The Dorfman-Steiner rule shows how a company which

has a monopoly should set the price, p, of its product

and how much advertising, a, it should buy. The price

of advertising is pa per unit. The quantity, q, of the prod-

uct sold is given by q = Kp−Ea� , where K > 0, E > 1,

and 0 < � < 1 are constants. The cost to the company

to make each item is c.

(a) How does the quantity sold, q, change if the price,

p, increases? If the quantity of advertising, a, in-

creases?

(b) Show that the partial derivatives can be written in

the form )q∕)p = −Eq∕p and )q∕)a = �q∕a.

(c) Explain why profit, �, is given by � = pq−cq−paa.

(d) If the company wants to maximize profit, what

must be true of the partial derivatives, )�∕)p and

)�∕)a?

(e) Find )�∕)p and )�∕)a.

(f) Use your answers to parts (d) and (e) to show that

at maximum profit,

p − c

p
=

1

E
and

p − c

pa
=

a

�q
.

(g) By dividing your answers in part (f), show that at

maximum profit,

paa

pq
=

�

E
.

This is the Dorfman-Steiner rule, that the ratio of

the advertising budget to revenue does not depend

on the price of advertising.

Strengthen Your Understanding

In Problems 46–48, explain what is wrong with the state-

ment.

46. A function having no critical points in a region R can-

not have a global maximum in the region.

47. No continuous function has a global minimum on an

unbounded region R.

48. If f (x, y) has a local maximum value of 1 at the origin,

then the global maximum is 1.

In Problems 49–50, give an example of:

49. A continuous function f (x, y) that has no global maxi-

mum and no global minimum on the xy-plane.

50. A function f (x, y) and a region R such that the maxi-

mum value of f on R is on the boundary of R.

7Adapted from Aris Rutherford, Discrete Dynamic Programming, p. 35 (New York: Blaisdell, 1964).
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Are the statements in Problems 51–59 true or false? Give

reasons for your answer.

51. If P0 is a global maximum of f , where f is defined on

all of 2-space, then P0 is also a local maximum of f .

52. Every function has a global maximum.

53. The region consisting of all points (x, y) satisfying x2+

y2 < 1 is bounded.

54. The region consisting of all points (x, y) satisfying x2+

y2 < 1 is closed.

55. The function f (x, y) = x2 + y2 has a global minimum

on the region x2 + y2 < 1.

56. The function f (x, y) = x2 + y2 has a global maximum

on the region x2 + y2 < 1.

57. If P and Q are two distinct points in 2-space, and f has

a global maximum at P , then f cannot have a global

maximum at Q.

58. The function f (x, y) = sin(1 + exy) must have a global

minimum in the square region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

59. If P0 is a global minimum of f on a closed and bounded

region, then P0 need not be a critical point of f .

15.3 CONSTRAINED OPTIMIZATION: LAGRANGE MULTIPLIERS

Many, perhaps most, real optimization problems are constrained by external circumstances. For ex-

ample, a city wanting to build a public transportation system that will serve the greatest possible

number of people has only a limited number of tax dollars it can spend on the project. In this sec-

tion, we see how to find an optimum value under such constraints.

In Section 15.2, we saw how to optimize a function f (x, y) on a region R. If the region R is the

entire xy-plane, we have unconstrained optimization; if the region R is not the entire xy-plane, that

is, if x or y is restricted in some way, then we have constrained optimization.

Graphical Approach: Maximizing Production Subject to a Budget Constraint

Suppose we want to maximize production under a budget constraint. Suppose production, f , is a

function of two variables, x and y, which are quantities of two raw materials, and that

f (x, y) = x2∕3y1∕3.

If x and y are purchased at prices of p1 and p2 thousands of dollars per unit, what is the maximum

production f that can be obtained with a budget of c thousand dollars?

To maximize f without regard to the budget, we simply increase x and y. However, the budget

constraint prevents us from increasing x and y beyond a certain point. Exactly how does the budget

constrain us? With prices of p1 and p2, the amount spent on x is p1x and the amount spent on y is

p2y, so we must have

g(x, y) = p1x + p2y ≤ c,

where g(x, y) is the total cost of the raw materials and c is the budget in thousands of dollars.

Let’s look at the case when p1 = p2 = 1 and c = 3.78. Then

x + y ≤ 3.78.

Figure 15.26 shows some contours of f and the budget constraint represented by the line x + y =

3.78. Any point on or below the line represents a pair of values of x and y that we can afford. A point

on the line completely exhausts the budget, while a point below the line represents values of x and

y which can be bought without using up the budget. Any point above the line represents a pair of

values that we cannot afford.

To maximize f , we find the point which lies on the level curve with the largest possible value of

f and which lies within the budget. The point must lie on the budget constraint because production

is maximized when we spend all the available money. Unless we are at a point where the budget

constraint is tangent to a contour of f , we can increase f by moving in some direction along the line

representing the budget constraint in Figure 15.26. For example, if we are on the line to the left of

the point of tangency, moving right on the constraint will increase f ; if we are on the line to the right

of the point of tangency, moving left will increase f . Thus, the maximum value of f on the budget

constraint occurs at the point where the budget constraint is tangent to the contour f = 2.
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x

y
Level curves of production

✛ f = 1
✛ f = 2

✛ f = 3

Budget constraint
x + y = 3.78

✲
✠

Maximum production

P

Figure 15.26: Optimal point, P , where budget constraint

is tangent to a level of production function

grad f = � grad g

✒
✒

x

y
Level curves of production

✛ f = 1
✛ f = 2

✛ f = 3

Budget constraint
g(x, y) = 3.78

✲

P

Figure 15.27: At the point, P , of maximum production,

the vectors grad f and grad g are parallel

Analytical Solution: Lagrange Multipliers

Figure 15.26 suggests that maximum production is achieved at the point where the budget constraint

is tangent to a level curve of the production function. The method of Lagrange multipliers uses this

fact in algebraic form. Figure 15.27 shows that at the optimum point, P , the gradient of f and the

normal to the budget line g(x, y) = x + y = 3.78 are parallel. Thus, at P , gradf and grad g are

parallel, so for some scalar �, called the Lagrange multiplier,

gradf = � gradg.

Calculating the gradients, we find that
(

2

3
x−1∕3y1∕3

)

i⃗ +
(

1

3
x2∕3y−2∕3

)

j⃗ = �

(

i⃗ + j⃗

)

.

Equating components gives

2

3
x−1∕3y1∕3 = � and

1

3
x2∕3y−2∕3 = �.

Eliminating � gives

2

3
x−1∕3y1∕3 =

1

3
x2∕3y−2∕3, which leads to 2y = x.

Since the constraint x + y = 3.78 must be satisfied, we have x = 2.52 and y = 1.26. Then

f (2.52, 1.26) = (2.52)2∕3(1.26)1∕3 ≈ 2.

As before, we see that the maximum value of f is approximately 2. Thus, to maximize production

on a budget of $3780, we should use 2.52 units of one raw material and 1.26 units of the other.

Lagrange Multipliers in General

Suppose we want to optimize an objective function f (x, y) subject to a constraint g(x, y) = c. We

look for extrema among the points which satisfy the constraint. We make the following definition.

Suppose P0 is a point satisfying the constraint g(x, y) = c.

• f has a local maximum at P0 subject to the constraint if f (P0) ≥ f (P ) for all points

P near P0 satisfying the constraint.

• f has a global maximum at P0 subject to the constraint if f (P0) ≥ f (P ) for all points

P satisfying the constraint.

Local and global minima are defined similarly.
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✗

✎

P0

✗✗

grad f

grad g

grad f

grad g f = 1

f = 2

f = 3

f = 4

g = c

Figure 15.28: Maximum and minimum values

of f (x, y) on g(x, y) = c are at points where

grad f is parallel to grad g

As we saw in the production example, constrained extrema occur at points of tangency of con-

tours of f and g; they can also occur at endpoints of constraints. At a point of tangency, gradf is

perpendicular to the constraint and so parallel to grad g. At interior points on the constraint where

gradf is not perpendicular to the constraint, the value of f can be increased or decreased by moving

along the constraint. Therefore constrained extrema occur only at points where gradf and grad g

are parallel or at endpoints of the constraint. (See Figure 15.28.) At points where the gradients are

parallel, provided grad g ≠ 0⃗ , there is a constant � such that gradf = � gradg.

Optimizing f Subject to the Constraint g = c:

If a smooth function, f , has a maximum or minimum subject to a smooth constraint g = c at

a point P0, then either P0 satisfies the equations

gradf = � grad g and g = c,

or P0 is an endpoint of the constraint, or grad g(P0) = 0⃗ . To investigate whether P0 is a global

maximum or minimum, compare values of f at the points satisfying these three conditions.

The number � is called the Lagrange multiplier.

If the set of points satisfying the constraint is closed and bounded, such as a circle or line seg-

ment, then there must be a global maximum and minimum of f subject to the constraint. If the

constraint is not closed and bounded, such as a line or hyperbola, then there may or may not be a

global maximum and minimum.

Example 1 Find the maximum and minimum values of x + y on the circle x2 + y2 = 4.

Solution The objective function is

f (x, y) = x + y,

and the constraint is

g(x, y) = x2 + y2 = 4.

Since gradf = fxi⃗ + fyj⃗ = i⃗ + j⃗ and grad g = gxi⃗ + gyj⃗ = 2xi⃗ + 2yj⃗ , the condition gradf =

� grad g gives

1 = 2�x and 1 = 2�y,

so

x = y.
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We also know that

x2 + y2 = 4,

giving x = y =
√

2 or x = y = −
√

2. The constraint has no endpoints (it’s a circle) and grad g ≠ 0⃗

on the circle, so we compare values of f at (
√

2,
√

2) and (−
√

2,−
√

2). Since f (x, y) = x + y, the

maximum value of f is f (
√

2,
√

2) = 2
√

2; the minimum value is f (−
√

2,−
√

2) = −2
√

2. (See

Figure 15.29.)

f = 2
√

2
f = 2

f = 1

f = 0

f = −1

f = −2

f = −2
√

2

Maximum f

(
√

2,
√

2)

(−
√

2,−
√

2)
Minimum f

x

yx2 + y2 = 4

❘

Figure 15.29: Maximum and minimum values of f (x, y) = x + y on the circle

x2 + y2 = 4 are at points where contours of f are tangent to the circle

How to Distinguish Maxima from Minima

There is a second-derivative test8 for classifying the critical points of constrained optimization prob-

lems, but it is more complicated than the test in Section 15.1. However, a graph of the constraint and

some contours usually shows which points are maxima, which points are minima, and which are

neither.

Optimization with Inequality Constraints
The production problem that we looked at first was to maximize production f (x, y) subject to a

budget constraint

g(x, y) = p1x + p2y ≤ c.

Since the inputs are nonnegative, x ≥ 0 and y ≥ 0, we have three inequality constraints, which

restrict (x, y) to a region of the plane rather than to a curve in the plane. In principle, we should first

check to see whether or not f (x, y) has any critical points in the interior:

p1x + p2y < c, x > 0 y > 0.

However, in the case of a budget constraint, we can see that the maximum of f must occur when the

budget is exhausted, so we look for the maximum value of f on the boundary line:

p1x + p2y = c, x ≥ 0 y ≥ 0.

Strategy for Optimizing f (x, y) Subject to the Constraint g(x, y) ≤ c

• Find all points in the region g(x, y) < c where gradf is zero or undefined.

• Use Lagrange multipliers to find the local extrema of f on the boundary g(x, y) = c.

• Evaluate f at the points found in the previous two steps and compare the values.

From Section 15.2 we know that if f is continuous on a closed and bounded region, R, then f

is guaranteed to attain its global maximum and minimum values on R.

8See J. E. Marsden and A. J. Tromba, Vector Calculus, 6th ed. (New York: W.H. Freeman, 2011), p. 220..
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Example 2 Find the maximum and minimum values of f (x, y) = (x − 1)2 + (y − 2)2 subject to the constraint

x2 + y2 ≤ 45.

Solution First, we look for all critical points of f in the interior of the region. Setting

fx(x, y) = 2(x − 1) = 0

fy(x, y) = 2(y − 2) = 0,

we find f has exactly one critical point at x = 1, y = 2. Since 12 + 22 < 45, that critical point is in

the interior of the region.

Next, we find the local extrema of f on the boundary curve x2 + y2 = 45. To do this, we use

Lagrange multipliers with constraint g(x, y) = x2 + y2 = 45. Setting gradf = � gradg, we get

2(x − 1) = � ⋅ 2x,

2(y − 2) = � ⋅ 2y.

We can’t have x = 0 since the first equation would become −2 = 0. Similarly, y ≠ 0. So we can

solve each equation for � by dividing by x and y. Setting the expressions for � equal gives

x − 1

x
=

y − 2

y
,

so

y = 2x.

Combining this with the constraint x2 + y2 = 45, we get

5x2 = 45,

so

x = ±3.

Since y = 2x, we have possible local extrema at x = 3, y = 6 and x = −3, y = −6.

We conclude that the only candidates for the maximum and minimum values of f in the region

occur at (1, 2), (3, 6), and (−3,−6). Evaluating f at these three points, we find

f (1, 2) = 0, f (3, 6) = 20, f (−3,−6) = 80.

Therefore, the minimum value of f is 0 at (1, 2) and the maximum value is 80 at (−3,−6).

The Meaning of �
In the uses of Lagrange multipliers so far, we never found (or needed) the value of �. However, �

does have a practical interpretation. In the production example, we wanted to maximize

f (x, y) = x2∕3y1∕3

subject to the constraint

g(x, y) = x + y = 3.78.

We solved the equations

2

3
x−1∕3y1∕3 = �,

1

3
x2∕3y−2∕3 = �,

x + y = 3.78,

to get x = 2.52, y = 1.26 and f (2.52, 1.26) ≈ 2. Continuing to find � gives us

� ≈ 0.53.
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Now we do another, apparently unrelated, calculation. Suppose our budget is increased by one, from

3.78 to 4.78, giving a new budget constraint of x + y = 4.78. Then the corresponding solution is at

x = 3.19 and y = 1.59 and the new maximum value (instead of f = 2) is

f = (3.19)2∕3(1.59)1∕3 ≈ 2.53.

Notice that the amount by which f has increased is 0.53, the value of �. Thus, in this example, the

value of � represents the extra production achieved by increasing the budget by one—in other words,

the extra “bang” you get for an extra “buck” of budget. In fact, this is true in general:

• The value of � is approximately the increase in the optimum value of f when the budget is

increased by 1 unit.

More precisely:

• The value of � represents the rate of change of the optimum value of f as the budget increases.

An Expression for �

To interpret �, we look at how the optimum value of the objective function f changes as the value

c of the constraint function g is varied. In general, the optimum point (x0, y0) depends on the con-

straint value c. So, provided x0 and y0 are differentiable functions of c, we can use the chain rule to

differentiate the optimum value f (x0(c), y0(c)) with respect to c:

df

dc
=

)f

)x

dx0

dc
+

)f

)y

dy0

dc
.

At the optimum point (x0, y0), we have fx = �gx and fy = �gy, and therefore

df

dc
= �

(

)g

)x

dx0

dc
+

)g

)y

dy0

dc

)

= �
dg

dc
.

But, as g(x0(c), y0(c)) = c, we see that dg∕dc = 1, so df∕dc = �. Thus, we have the following

interpretation of the Lagrange multiplier �:

The value of � is the rate of change of the optimum value of f as c increases (where g(x, y) =

c). If the optimum value of f is written as f (x0(c), y0(c)), then

d

dc
f (x0(c), y0(c)) = �.

Example 3 The quantity of goods produced according to the function f (x, y) = x2∕3y1∕3 is maximized subject

to the budget constraint x + y ≤ 3.78. The budget is increased to allow for a small increase in

production. What is the price of the product if the sale of the additional goods covers the budget

increase?

Solution We know that � = 0.53, which tells us that df∕dc = 0.53. The constraint corresponds to a budget of

$3.78 thousand. Therefore increasing the budget by $1000 increases production by about 0.53 units.

In order to make the increase in budget profitable, the extra goods produced must sell for more than

$1000. Thus, if p is the price of each unit of the good, then 0.53p is the revenue from the extra 0.53

units sold. Thus, we need 0.53p ≥ 1000, so p ≥ 1000∕0.53 = $1890.

The Lagrangian Function

Constrained optimization problems are frequently solved using a Lagrangian function, . For exam-

ple, to optimize f (x, y) subject to the constraint g(x, y) = c, we use the Lagrangian function

(x, y, �) = f (x, y) − �(g(x, y) − c).



882 Chapter 15 OPTIMIZATION: LOCAL AND GLOBAL EXTREMA

To see how the function  is used, compute the partial derivatives of :

)

)x
=

)f

)x
− �

)g

)x
,

)

)y
=

)f

)y
− �

)g

)y
,

)

)�
= −(g(x, y) − c).

Notice that if (x0, y0) is an extreme point of f (x, y) subject to the constraint g(x, y) = c and �0 is

the corresponding Lagrange multiplier, then at the point (x0, y0, �0) we have

)

)x
= 0 and

)

)y
= 0 and

)

)�
= 0.

In other words, (x0, y0, �0) is a critical point for the unconstrained Lagrangian function, (x, y, �).

Thus, the Lagrangian converts a constrained optimization problem to an unconstrained problem.

Example 4 A company has a production function with three inputs x, y, and z given by

f (x, y, z) = 50x2∕5y1∕5z1∕5.

The total budget is $24,000 and the company can buy x, y, and z at $80, $12, and $10 per unit,

respectively. What combination of inputs will maximize production?9

Solution We need to maximize the objective function

f (x, y, z) = 50x2∕5y1∕5z1∕5,

subject to the constraint

g(x, y, z) = 80x + 12y + 10z = 24,000.

The method for functions of two variables works for functions of three variables, so we construct

the Lagrangian function

(x, y, z, �) = 50x2∕5y1∕5z1∕5 − �(80x + 12y + 10z − 24,000),

and solve the system of equations we get from grad = 0⃗ :

)

)x
= 20x−3∕5y1∕5z1∕5 − 80� = 0,

)

)y
= 10x2∕5y−4∕5z1∕5 − 12� = 0,

)

)z
= 10x2∕5y1∕5z−4∕5 − 10� = 0,

)

)�
= −(80x + 12y + 10z − 24,000) = 0.

Simplifying this system gives

� =
1

4
x−3∕5y1∕5z1∕5,

� =
5

6
x2∕5y−4∕5z1∕5,

� = x2∕5y1∕5z−4∕5,

80x + 12y + 10z = 24,000.

Eliminating z from the first two equations gives x = 0.3y. Eliminating x from the second and third

equations gives z = 1.2y. Substituting for x and z into 80x + 12y+ 10z = 24,000 gives

80(0.3y) + 12y+ 10(1.2y) = 24,000,

9Adapted from M. Rosser and P. Lis, Basic Mathematics for Economists, 3rd ed. (New York: Routledge, 2016), p. 360.
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so y = 500. Then x = 150 and z = 600, and f (150, 500, 600) = 4,622 units.

The graph of the constraint, 80x+12y+10z = 24,000, is a plane. Since the inputs x, y, z must

be nonnegative, the graph is a triangle in the first octant, with edges on the coordinate planes. On

the boundary of the triangle, one (or more) of the variables x, y, z is zero, so the function f is zero.

Thus production is maximized within the budget using x = 150, y = 500, and z = 600.

Summary for Section 15.3

• Suppose P0 is a point satisfying the constraint g(x, y) = c. Then a constrained local/global

maxima is defined by:

◦ f has a local maximum at P0 subject to the constraint if f (P0) ≥ f (P ) for all points P

near P0 satisfying the constraint.

◦ f has a global maximum at P0 subject to the constraint if f (P0) ≥ f (P ) for all points P

satisfying the constraint.

Local and global minima are defined similarly.

• Constrained local extrema of a function f (x, y) can occur at points where the contours of f are

tangent to the constraint curve g(x, y) = c.

• Finding constrained extrema using the Lagrange multiplier �:

If a smooth function,f , has a maximum or minimum subject to a smooth constraint g(x, y) =

c at a point P0, then either P0 satisfies the equations

gradf = � grad g and g(x, y) = c,

or P0 is an endpoint of the constraint, or grad g(P0) = 0⃗ . To investigate whether P0 is a global

maximum or minimum, compare values of f at the points satisfying these three conditions.

• A strategy for optimizing f (x, y) subject to the constraint g(x, y) ≤ c is:

◦ Find all points in the region g(x, y) < c where gradf is zero or undefined.

◦ Use Lagrange multipliers to find the local extrema of f on the boundary g(x, y) = c.

◦ Evaluate f at the points found in the previous two steps and compare the values.

• An economic interpretation of the value of � in the Lagrange multiplier method: � represents

the rate of change of the optimum value of f as the budget constraint c in g(x, y) = c increases.

Exercises and Problems for Section 15.3 Online Resource: Additional Problems for Section 15.3
EXERCISES

In Exercises 1–18, use Lagrange multipliers to find the max-

imum and minimum values of f subject to the given con-

straint, if such values exist.

1. f (x, y) = x + y, x2 + y2 = 1

2. f (x, y) = x + 3y + 2, x2 + y2 = 10

3. f (x, y) = (x − 1)2 + (y + 2)2, x2 + y2 = 5

4. f (x, y) = x3 + y, 3x2 + y2 = 4

5. f (x, y) = 3x − 2y, x2 + 2y2 = 44

6. f (x, y) = xy, 4x2 + y2 = 8

7. f (x, y) = 2xy, 5x + 4y = 100

8. f (x1, x2) = x1
2 + x2

2, x1 + x2 = 1

9. f (x, y) = x2 + y, x2 − y2 = 1

10. f (x, y, z) = x + 3y + 5z, x2 + y2 + z2 = 1

11. f (x, y, z) = x2 − y2 − 2z, x2 + y2 = z

12. f (x, y, z) = xyz, x2 + y2 + 4z2 = 12

13. f (x, y) = x2 + 2y2, x2 + y2 ≤ 4

14. f (x, y) = x + 3y, x2 + y2 ≤ 2

15. f (x, y) = xy, x2 + 2y2 ≤ 1

16. f (x, y) = x3 + y, x + y ≥ 1

17. f (x, y) = (x + 3)2 + (y − 3)2, x2 + y2 ≤ 2

18. f (x, y) = x2y + 3y2 − y, x2 + y2 ≤ 10
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19. For each point marked in Figure 15.30, decide whether:

(a) The point is a local minimum, maximum, or nei-

ther for the function f constrained by the loop.

(b) The point is a global minimum, maximum, or nei-

ther subject to the constraint.

Q

P

S

R
❘

Constraint

f = 10

f = 20

f = 30 f = 40
f = 50

f = 60

Figure 15.30

In Exercises 20–23, a Cobb-Douglas production function

P (K,L) and budget B(K,L) are given, where K represents

capital and L represents labor. Use Lagrange multipliers to

find the values of K and L that maximize production given

a budget constraint or minimize budget given a production

constraint. Then give the value for � and its meaning.

20. Maximize production: P = K1∕4L3∕4

Budget constraint: B = 2K + L = 40

21. Maximize production: P = K2∕3L1∕3

Budget constraint: B = 10K + 4L = 60

22. Maximize production: P = K2∕5L3∕5

Budget constraint: B = 4K + 5L = 100

23. Minimize budget: B = 4K + L

Production constraint: P = K1∕2L1∕2 = 200

PROBLEMS

24. Find the maximum value of f (x, y) = x + y − (x − y)2

on the triangular region x ≥ 0, y ≥ 0, x + y ≤ 1.

25. For f (x, y) = x2 + 6xy, find the global maximum

and minimum on the closed region in the first quadrant

bounded by the line x + y = 4 and the curve xy = 3.

26. (a) Draw contours of f (x, y) = 2x + y for

z = −7,−5,−3,−1, 1, 3, 5, 7.

(b) On the same axes, graph the constraint x2+y2 = 5.

(c) Use the graph to approximate the points at which

f has a maximum or a minimum value subject to

the constraint x2 + y2 = 5.

(d) Use Lagrange multipliers to find the maximum and

minimum values of f (x, y) = 2x + y subject to

x2 + y2 = 5.

27. Let f (x, y) = x�y1−� for 0 < � < 1. Find the value

of � such that the maximum value of f on the line

2x + 3y = 6 occurs at (1.5, 1).

28. Figure 15.31 shows contours of f . Does f have a max-

imum value subject to the constraint g(x, y) = c for

x ≥ 0, y ≥ 0? If so, approximately where is it and what

is its value? Does f have a minimum value subject to

the constraint? If so, approximately where and what?

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

x

y

✠

g(x, y) = c

☛

f = 700

✢

f = 600

✠

f = 500

❂

f = 400

✙
f = 300

✾ f = 200

✠

f = 100

Figure 15.31

29. Each person tries to balance his or her time between

leisure and work. The tradeoff is that as you work less

your income falls. Therefore each person has indiffer-

ence curves which connect the number of hours of

leisure, l, and income, s. If, for example, you are in-

different between 0 hours of leisure and an income of

$1125 a week on the one hand, and 10 hours of leisure

and an income of $750 a week on the other hand, then

the points l = 0, s = 1125, and l = 10, s = 750 both

lie on the same indifference curve. Table 15.3 gives in-

formation on three indifference curves, I, II, and III.

Table 15.3

Weekly income Weekly leisure hours

I II III I II III

1125 1250 1375 0 20 40

750 875 1000 10 30 50

500 625 750 20 40 60

375 500 625 30 50 70

250 375 500 50 70 90

(a) Graph the three indifference curves.

(b) You have 100 hours a week available for work and

leisure combined, and you earn $10/hour. Write an

equation in terms of l and s which represents this

constraint.

(c) On the same axes, graph this constraint.

(d) Estimate from the graph what combination of

leisure hours and income you would choose under

these circumstances. Give the corresponding num-

ber of hours per week you would work.
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30. Figure 15.32 shows ∇f for a function f (x, y) and two

curves g(x, y) = 1 and g(x, y) = 2. Mark the following:

(a) The point(s) A where f has a local maximum.

(b) The point(s) B where f has a saddle point.

(c) The point C where f has a maximum on g = 1.

(d) The point D where f has a minimum on g = 1.

(e) If you used Lagrange multipliers to find C , what

would the sign of � be? Why?

✲g = 2

✲g = 1

Figure 15.32

31. The point P is a maximum or minimum of the function

f subject to the constraint g(x, y) = x + y = c, with

x, y ≥ 0. For the graphs (a) and (b), does P give a max-

imum or a minimum of f? What is the sign of �? If P

gives a maximum, where does the minimum of f oc-

cur? If P gives a minimum, where does the maximum

of f occur?

x

y

✛ f = 3
✛ f = 2
✛ f = 1

g(x, y) = c✛

P

(a)

x

y

✛ f = 1
✛ f = 2
✛ f = 3

g(x, y) = c✛

P

(b)

32. Figure 15.33 shows the optimal point (marked with a

dot) in three optimization problems with the same con-

straint. Arrange the corresponding values of � in in-

creasing order. (Assume � is positive.)

f = 3

f = 2

f = 1
x

y(I)

❄

f = 3

✠

f = 2

✛ f = 1
x

y(II)

❄

f = 3

✠

f = 2

✛ f = 1
x

y(III)

Figure 15.33

33. If the right side of the constraint in Exercise 5 is

changed by the small amountΔc, by approximately how

much do the maximum and minimum values change?

34. If the right side of the constraint in Exercise 6 is

changed by the small amountΔc, by approximately how

much do the maximum and minimum values change?

35. The function P (x, y) gives the number of units pro-

duced and C(x, y) gives the cost of production.

(a) A company wishes to maximize production at a

fixed cost of $50,000. What is the objective func-

tion f? What is the constraint equation? What is

the meaning of � in this situation?

(b) A company wishes to minimize costs at a fixed pro-

duction level of 2000 units. What is the objective

function f? What is the constraint equation? What

is the meaning of � in this situation?

36. Design a closed cylindrical container which holds

100 cm3 and has the minimal possible surface area.

What should its dimensions be?

37. A company manufactures x units of one item and y units

of another. The total cost in dollars, C , of producing

these two items is approximated by the function

C = 5x2 + 2xy + 3y2 + 800.

(a) If the production quota for the total number of

items (both types combined) is 39, find the min-

imum production cost.

(b) Estimate the additional production cost or savings

if the production quota is raised to 40 or lowered

to 38.

38. An international organization must decide how to spend

the $2,000,000 they have been allotted for famine relief

in a remote area. They expect to divide the money be-

tween buying rice at $38.5/sack and beans at $35/sack.

The number, P , of people who would be fed if they buy

x sacks of rice and y sacks of beans is given by

P = 1.1x + y −
xy

108
.

What is the maximum number of people that can be fed,

and how should the organization allocate its money?

39. The quantity, q, of a product manufactured depends on

the number of workers, W , and the amount of capital

invested, K , and is given by

q = 6W 3∕4K1∕4.

Labor costs are $10 per worker and capital costs are $20

per unit, and the budget is $3000.

(a) What are the optimum number of workers and the

optimum number of units of capital?
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(b) Show that at the optimum values of W and K ,

the ratio of the marginal productivity of labor

()q∕)W ) to the marginal productivity of capital

()q∕)K) is the same as the ratio of the cost of a

unit of labor to the cost of a unit of capital.

(c) Recompute the optimum values of W and K when

the budget is increased by one dollar. Check that in-

creasing the budget by $1 allows the production of

� extra units of the good, where � is the Lagrange

multiplier.

40. A neighborhood health clinic has a budget of $600,000

per quarter. The director of the clinic wants to allocate

the budget to maximize the number of patient visits, V ,

which is given as a function of the number of doctors,

D, and the number of nurses, N , by

V = 1000D0.6N0.3.

A doctor gets $40,000 per quarter; nurses get $10,000

per quarter.

(a) Set up the director’s constrained optimization

problem.

(b) Describe, in words, the conditions which must be

satisfied by )V ∕)D and )V ∕)N for V to have an

optimum value.

(c) Solve the problem formulated in part (a).

(d) Find the value of the Lagrange multiplier and in-

terpret its meaning in this problem.

(e) At the optimum point, what is the marginal cost

of a patient visit (that is, the cost of an additional

visit)? Will that marginal cost rise or fall with the

number of visits? Why?

41. (a) In Problem 39, does the value of � change if the

budget changes from $3000 to $4000?

(b) In Problem 40, does the value of � change if the

budget changes from $600,000 to $700,000?

(c) What condition must a Cobb-Douglas production

function, Q = cKaLb, satisfy to ensure that the

marginal increase of production (that is, the rate of

increase of production with budget) is not affected

by the size of the budget?

42. The production function P (K,L) gives the number of

pairs of skis produced per week at a factory operating

with K units of capital and L units of labor. The con-

tour diagram for P is in Figure 15.34; the parallel lines

are budget constraints for budgets, B, in dollars.

(a) On each budget constraint, mark the point that

gives the maximum production.

(b) Complete the table, where the budget, B, is in dol-

lars and the maximum production is the number of

pairs of skis to be produced each week.

B 2000 4000 6000 8000 10000

M

(c) Estimate the Lagrange multiplier � = dM∕dB at

a budget of $6000. Give units for the multiplier.

5 10 15 20

5

10

15

20

20
30
40

50

60

70

80

P = 90

2000

4000

6000

B = 8000

10,000

K , capital

L, labor

Figure 15.34

43. A doctor wants to schedule visits for two patients who

have been operated on for tumors so as to minimize the

expected delay in detecting a new tumor. Visits for pa-

tients 1 and 2 are scheduled at intervals of x1 and x2

weeks, respectively. A total ofm visits per week is avail-

able for both patients combined.

The recurrence rates for tumors for patients 1 and

2 are judged to be v1 and v2 tumors per week, respec-

tively. Thus, v1∕(v1+v2) and v2∕(v1+v2) are the prob-

abilities that patient 1 and patient 2, respectively, will

have the next tumor. It is known that the expected de-

lay in detecting a tumor for a patient checked every x

weeks is x∕2. Hence, the expected detection delay for

both patients combined is given by10

f (x1, x2) =
v1

v1 + v2
⋅

x1

2
+

v2

v1 + v2
⋅

x2

2
.

Find the values of x1 and x2 in terms of v1 and v2 that

minimize f (x1, x2) subject to the fact that m, the num-

ber of visits per week, is fixed.

44. What is the value of the Lagrange multiplier in Prob-

lem 43? What are the units of �? What is its practical

significance to the doctor?

45. Figure 15.35 shows two weightless springs with spring

constants k1 and k2 attached between a ceiling and floor

without tension or compression. A mass m is placed be-

tween the springs which settle into equilibrium as in

Figure 15.36. The magnitudes f1 and f2 of the forces

of the springs on the mass minimize the complementary

energy

f 2
1

2k1
+

f 2
2

2k2
subject to the force balance constraint f1 + f2 = mg.

(a) Determine f1 and f2 by the method of Lagrange

multipliers.

10Adapted from Daniel Kent, Ross Shachter, et al., “Efficient Scheduling of Cystoscopies in Monitoring for Recurrent

Bladder Cancer,” Medical Decision Making (Philadelphia: Hanley and Belfus, 1989).
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(b) If you are familiar with Hooke’s law, find the mean-

ing of �.

k2

k1

Figure 15.35

m

Figure 15.36

46. (a) If
∑3

i=1
xi = 1, find the values of x1, x2, x3 making

∑3

i=1
xi

2 minimum.

(b) Generalize the result of part (a) to find the mini-

mum value of
∑n

i=1
xi

2 subject to
∑n

i=1
xi = 1.

47. Let f (x, y) = ax2+bxy+cy2. Show that the maximum

value of f (x, y) subject to the constraint x2 + y2 = 1 is

equal to �, the Lagrange multiplier.

48. Find the minimum distance from the point (1, 2, 10) to

the paraboloid given by the equation z = x2 + y2. Give

a geometric justification for your answer.

49. A company produces one product from two inputs (for

example, capital and labor). Its production function

g(x, y) gives the quantity of the product that can be pro-

duced with x units of the first input and y units of the

second. The cost function (or expenditure function) is

the three-variable function C(p, q, u) where p and q are

the unit prices of the two inputs. For fixed p, q, and u,

the value C(p, q, u) is the minimum of f (x, y) = px+qy

subject to the constraint g(x, y) = u.

(a) What is the practical meaning of C(p, q, u)?

(b) Find a formula for C(p, q, u) if g(x, y) = xy.

50. A utility function U (x, y) for two items gives the util-

ity (benefit) to a consumer of x units of item 1 and y

units of item 2. The indirect utility function is the three-

variable function V (p, q, I) where p and q are the unit

prices of the two items. For fixed p, q, and I , the value

V (p, q, I) is the maximum of U (x, y) subject to the con-

straint px + qy = I .

(a) What is the practical meaning of V (p, q, I)?

(b) The Lagrange multiplier � that arises in the max-

imization defining V is called the marginal utility

of money. What is its practical meaning?

(c) Find formulas for V (p, q, I) and � if U (x, y) = xy.

51. The function ℎ(x, y) = x2 + y2 − �(2x+ 4y− 15) has a

minimum value m(�) for each value of �.

(a) Find m(�).

(b) For which value of � is m(�) the largest and what

is that maximum value?

(c) Find the minimum value of f (x, y) = x2 + y2 sub-

ject to the constraint 2x+4y = 15 using the method

of Lagrange multipliers and evaluate �.

(d) Compare your answers to parts (b) and (c).

52. Let f be differentiable and grad f (2, 1) = −3i⃗ + 4j⃗ .

You want to see if (2, 1) is a candidate for the maxi-

mum and minimum values of f subject to a constraint

satisfied by the point (2, 1).

(a) Show (2, 1) is not a candidate if the constraint is

x2 + y2 = 5.

(b) Show (2, 1) is a candidate if the constraint is (x −

5)2 + (y+ 3)2 = 25. From a sketch of the contours

for f near (2, 1) and the constraint, decide whether

(2, 1) is a candidate for a maximum or minimum.

(c) Do the same as part (b), but using the constraint

(x + 1)2 + (y − 5)2 = 25.

53. A person’s satisfaction from consuming a quantity x1

of one item and a quantity x2 of another item is given

by

S = u(x1, x2) = a ln x1 + (1 − a) ln x2,

where a is a constant, 0 < a < 1. The prices of the two

items are p1 and p2 respectively, and the budget is b.

(a) Express the maximum satisfaction that can be

achieved as a function of p1, p2, and b.

(b) Find the amount of money that must be spent to

achieve a particular level of satisfaction, c, as a

function of p1, p2, and c.

Strengthen Your Understanding

In Problems 54–55, explain what is wrong with the state-

ment.

54. The function f (x, y) = xy has a maximum of 2 on the

constraint x + y = 2.

55. If the level curves of f (x, y) and the level curves of

g(x, y) are not tangent at any point on the constraint

g(x, y) = c, x ≥ 0, y ≥ 0, then f has no maximum

on the constraint.

In Problems 56–60, give an example of:

56. A function f (x, y) whose maximum subject to the con-

straint x2 + y2 = 5 is at (3, 4).

57. A function f (x, y) to be optimized with constraint x2 +

2y2 ≤ 1 such that the minimum value does not change

when the constraint is changed to x2 + y2 ≤ 1 + c for

c > 0.

58. A function f (x, y) with a minimum at (1, 1) on the con-

straint x + y = 2.
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59. A function f (x, y) that has a maximum but no minimum

on the constraint x + y = 4.

60. A contour diagram of a function f whose maximum

value on the constraint x+2y = 6, x ≥ 0, y ≥ 0 occurs

at one of the endpoints.

For Problems 61–62, use Figure 15.37. The grid lines are

one unit apart.

f = 1

f = 2

f = 3

f = 4

f = 5
g = c

f = 0
x

y

Figure 15.37

61. Find the maximum and minimum values of f on g = c.

At which points do they occur?

62. Find the maximum and minimum values of f on the

triangular region below g = c in the first quadrant.

Are the statements in Problems 63–67 true or false? Give

reasons for your answer.

63. If f (x, y) has a local maximum at (a, b) subject to the

constraint g(x, y) = c, then g(a, b) = c.

64. If f (x, y) has a local maximum at (a, b) subject to the

constraint g(x, y) = c, then gradf (a, b) = 0⃗ .

65. The function f (x, y) = x + y has no global maximum

subject to the constraint x − y = 0.

66. The point (2,−1) is a local minimum of f (x, y) =

x2 + y2 subject to the constraint x + 2y = 0.

67. If grad f (a, b) and grad g(a, b) point in opposite direc-

tions, then (a, b) is a local minimum of f (x, y) con-

strained by g(x, y) = c.

In Problems 68–75, suppose that M and m are the maxi-

mum and minimum values of f (x, y) subject to the con-

straint g(x, y) = c and that (a, b) satisfies g(a, b) = c. Decide

whether the statements are true or false. Give an explanation

for your answer.

68. If f (a, b) = M , then fx(a, b) = fy(a, b) = 0.

69. If f (a, b) = M , then f (a, b) = �g(a, b) for some value

of �.

70. If grad f (a, b) = � grad g(a, b), then f (a, b) = M or

f (a, b) = m.

71. If f (a, b) = M and fx(a, b)∕fy(a, b) = 5, then

gx(a, b)∕gy(a, b) = 5.

72. If f (a, b) = m and gx(a, b) = 0, then fx(a, b) = 0.

73. Increasing the value of c increases the value of M .

74. Suppose that f (a, b) = M and that grad f (a, b) =

3 grad g(a, b). Then increasing the value of c by 0.02

increases the value of M by about 0.06.

75. Suppose that f (a, b) = m and that grad f (a, b) =

3 grad g(a, b). Then increasing the value of c by 0.02

decreases the value of m by about 0.06.

Online Resource: Review Problems and Projects
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16.1 THE DEFINITE INTEGRAL OF A FUNCTION OF TWO VARIABLES

The definite integral of a continuous one-variable function, f , is a limit of Riemann sums:

∫

b

a

f (x) dx = lim
Δx→0

∑

i

f (xi) Δx,

where xi is a point in the ith subdivision of the interval [a, b]. In this section we extend this definition

to functions of two variables. We start by considering how to estimate total population from a two-

variable population density.

Population Density of Foxes in England
The fox population in parts of England can be important to public health officials because animals

can spread diseases, such as rabies. Biologists use a contour diagram to display the fox population

density, D; see Figure 16.1, where D is in foxes per square kilometer.1 The bold contour is the

coastline, which may be thought of as the D = 0 contour; clearly the density is zero outside it. We

can think of D as a function of position, D = f (x, y) where x and y are in kilometers from the

southwest corner of the map.

kilometers east

kilometers north

N
o
rt

h

Figure 16.1: Population density of foxes in southwestern England

Example 1 Estimate the total fox population in the region represented by the map in Figure 16.1.

Solution We subdivide the map into the rectangles shown in Figure 16.1 and estimate the population in each

rectangle. For simplicity, we use the population density at the northeast corner of each rectangle. For

example, in the bottom left rectangle, the density is 0 at the northeast corner; in the next rectangle to

the east (right), the density in the northeast corner is 1. Continuing in this way, we get the estimates

in Table 16.1. To estimate the population in a rectangle, we multiply the density by the area of the

rectangle, 30 ⋅ 25 = 750 km2. Adding the results, we obtain

Estimate of population = (0.2 + 0.7 + 1.2 + 1.2 + 0.1 + 1.6 + 0.5 + 1.4

+ 1.1 + 1.6 + 1.5 + 1.8 + 1.5 + 1.3 + 1.1 + 2.0

+ 1.4 + 1.0 + 1.0 + 0.6 + 1.2)750 = 18,000 foxes.

1J. D. Murray et al., “On the Spatial Spread of Rabies Among Foxes”, Proc. R. Soc. Lond. B 229, pp. 111–150 (1986).
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Taking the upper and lower bounds for the population density on each rectangle enables us to find

upper and lower estimates for the population. Using the same rectangles, the upper estimate is ap-

proximately 35,000 and the lower estimate is 4,000. There is a wide discrepancy between the upper

and lower estimates; we could make them closer by taking finer subdivisions.

Table 16.1 Estimates of population density (northeast corner)

0.0 0.0 0.2 0.7 1.2 1.2

0.0 0.0 0.0 0.0 0.1 1.6

0.0 0.0 0.5 1.4 1.1 1.6

0.0 0.0 1.5 1.8 1.5 1.3

0.0 1.1 2.0 1.4 1.0 0.0

0.0 1.0 0.6 1.2 0.0 0.0

Definition of the Definite Integral

The sums used to approximate the fox population are Riemann sums. We now define the definite

integral for a functionf of two variables on a rectangular region. Given a continuous functionf (x, y)

defined on a region a ≤ x ≤ b and c ≤ y ≤ d, we subdivide each of the intervals a ≤ x ≤ b and

c ≤ y ≤ d into n and m equal subintervals respectively, giving nm subrectangles. (See Figure 16.2.)

x1 x2 x3

y1

y2

y3

x

y

a = x0 b = xn

c = y0

d = ym

Figure 16.2: Subdivision of a rectangle into nm subrectangles

The area of each subrectangle is ΔA = Δx Δy, where Δx = (b − a)∕n is the width of each

subdivision on the x-axis, and Δy = (d − c)∕m is the width of each subdivision on the y-axis. To

compute the Riemann sum, we multiply the area of each subrectangle by the value of the function

at a point in the rectangle and add the resulting numbers. Choosing the maximum value, Mij , of the

function on each rectangle and adding for all i, j gives the upper sum,
∑

i,j MijΔxΔy.

The lower sum,
∑

i,j LijΔxΔy, is obtained by taking the minimum value on each rectangle. If

(uij , vij) is any point in the ijth subrectangle, any other Riemann sum satisfies

∑

i,j

LijΔxΔy ≤
∑

i,j

f (uij , vij) ΔxΔy ≤
∑

i,j

MijΔxΔy.

We define the definite integral by taking the limit as the numbers of subdivisions, n and m, tend to

infinity. By comparing upper and lower sums, as we did for the fox population, it can be shown that

the limit exists when the function, f , is continuous. We get the same limit by letting Δx and Δy tend

to 0. Thus, we have the following definition:
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Suppose the function f is continuous on R, the rectangle a ≤ x ≤ b, c ≤ y ≤ d. If (uij , vij)

is any point in the ijth subrectangle, we define the definite integral of f over R:

∫R
f dA = lim

Δx,Δy→0

∑

i,j

f (uij , vij)ΔxΔy.

Such an integral is called a double integral.

The case when R is not rectangular is considered on page 894. Sometimes we think of dA as

being the area of an infinitesimal rectangle of length dx and height dy, so that dA = dx dy. Then

we use the notation2

∫R
f dA =

∫R
f (x, y) dx dy.

For this definition, we used a particular type of Riemann sum with equal-sized rectangular sub-

divisions. In a general Riemann sum, the subdivisions do not all have to be the same size.

Interpretation of the Double Integral as Volume

Just as the definite integral of a positive one-variable function can be interpreted as an area, so the

double integral of a positive two-variable function can be interpreted as a volume. In the one-variable

case we visualize the Riemann sums as the total area of rectangles above the subdivisions. In the

two-variable case we get solid bars instead of rectangles. As the number of subdivisions grows, the

tops of the bars approximate the surface better, and the volume of the bars gets closer to the volume

under the graph of the function. (See Figure 16.3.)

y

x

z

y

x

z

Figure 16.3: Approximating volume under a graph with finer and finer Riemann sums

Thus, we have the following result:

If x, y, z represent length and f is positive, then

Volume under graph

of f above region R
=
∫R

f dA.

Example 2 Let R be the rectangle 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Use Riemann sums to make upper and lower

estimates of the volume of the region above R and under the graph of z = e−(x
2+y2).

2Another common notation for the double integral is ∫ ∫
R
fdA.
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Solution If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, the volume we want is given by

Volume =
∫R

e−(x
2+y2) dA.

We divide R into 16 subrectangles by dividing each edge into four parts. Figure 16.4 shows that

f (x, y) = e−(x
2+y2) decreases as we move away from the origin. Thus, to get an upper sum we

evaluate f on each subrectangle at the corner nearest the origin. For example, in the rectangle 0 ≤

x ≤ 0.25, 0 ≤ y ≤ 0.25, we evaluate f at (0, 0). Using Table 16.2, we find that

x

y

z

Figure 16.4: Graph of e−(x
2+y2) above the rectangle R

Upper sum = (1 + 0.9394 + 0.7788 + 0.5698

+ 0.9394 + 0.8825 + 0.7316 + 0.5353

+ 0.7788 + 0.7316 + 0.6065 + 0.4437

+ 0.5698 + 0.5353 + 0.4437 + 0.3247)(0.0625) = 0.68.

To get a lower sum, we evaluate f at the opposite corner of each rectangle because the surface

slopes down in both the x and y directions. This yields a lower sum of 0.44. Thus,

0.44 ≤
∫R

e−(x
2+y2) dA ≤ 0.68.

To get a better approximation of the volume under the graph, we use more subdivisions. See

Table 16.3.

Table 16.2 Values of f (x, y) = e−(x
2+y2) on the rectangle R

x

y

0.0 0.25 0.50 0.75 1.00

0.0 1 0.9394 0.7788 0.5698 0.3679

0.25 0.9394 0.8825 0.7316 0.5353 0.3456

0.50 0.7788 0.7316 0.6065 0.4437 0.2865

0.75 0.5698 0.5353 0.4437 0.3247 0.2096

1.00 0.3679 0.3456 0.2865 0.2096 0.1353

Table 16.3 Riemann sum approximations to ∫
R
e−(x

2+y2) dA

Number of subdivisions in x and y directions

8 16 32 64

Upper 0.6168 0.5873 0.5725 0.5651

Lower 0.4989 0.5283 0.5430 0.5504
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The exact value of the double integral, 0.5577…, is trapped between the lower and upper sums.

Notice that the lower sum increases and the upper sum decreases as the number of subdivisions

increases. However, even with 64 subdivisions, the lower and upper sums agree with the exact value

of the integral only in the first decimal place.

Interpretation of the Double Integral as Area

In the special case that f (x, y) = 1 for all points (x, y) in the region R, each term in the Riemann

sum is of the form 1 ⋅ ΔA = ΔA and the double integral gives the area of the region R:

Area(R) =
∫R

1 dA =
∫R

dA

Interpretation of the Double Integral as Average Value
As in the one-variable case, the definite integral can be used to define the average value of a function:

Average value of f

on the region R
=

1

Area of R ∫R
f dA

We can rewrite this as

Average value × Area of R =
∫R

f dA.

If we interpret the integral as the volume under the graph of f , then we can think of the average

value of f as the height of the box with the same volume that is on the same base. (See Figure 16.5.)

Imagine that the volume under the graph is made out of wax. If the wax melted within the perimeter

of R, then it would end up box-shaped with height equal to the average value of f .

x

y

z

✛

✛

Average value off✲Base of the box

is the rectangle R

Figure 16.5: Volume and average value

Integral over Regions that Are Not Rectangles
We defined the definite integral ∫

R
f (x, y) dA, for a rectangular region R. Now we extend the defi-

nition to regions of other shapes, including triangles, circles, and regions bounded by the graphs of

piecewise continuous functions.

To approximate the definite integral over a region, R, which is not rectangular, we use a grid

of rectangles approximating the region. We obtain this grid by enclosing R in a large rectangle and

subdividing that rectangle; we consider just the subrectangles which are inside R.

As before, we pick a point (uij , vij) in each subrectangle and form a Riemann sum
∑

i,j

f (uij , vij)ΔxΔy.

This time, however, the sum is over only those subrectangles within R. For example, in the case of

the fox population we can use the rectangles which are entirely on land. As the subdivisions become
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finer, the grid approximates the region R more closely. For a function, f , which is continuous on R,

we define the definite integral as follows:

∫R
f dA = lim

Δx,Δy→0

∑

i,j

f (uij , vij)ΔxΔy

where the Riemann sum is taken over the subrectangles inside R.

You may wonder why we can leave out the rectangles which cover the edge ofR—if we included

them, might we get a different value for the integral? The answer is that for any region that we are

likely to meet, the area of the subrectangles covering the edge tends to 0 as the grid becomes finer.

Therefore, omitting these rectangles does not affect the limit.

Convergence of Upper and Lower Sums to Same Limit

We have said that if f is continuous on the rectangleR, then the difference between upper and lower

sums for f converges to 0 as Δx and Δy approach 0. In the following example, we show this in a

particular case. The ideas in this example can be used in a general proof.

Example 3 Let f (x, y) = x2y and let R be the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Show that the difference between

upper and lower Riemann sums for f on R converges to 0, as Δx and Δy approach 0.

Solution The difference between the sums is

∑

MijΔxΔy −
∑

Lij ΔxΔy =
∑

(Mij − Lij) ΔxΔy,

where Mij and Lij are the maximum and minimum of f on the ijth subrectangle. Since f increases

in both the x and y directions, Mij occurs at the corner of the subrectangle farthest from the origin

and Lij at the closest. Moreover, since the slopes in the x and y directions don’t decrease as x and y

increase, the differenceMij−Lij is largest in the subrectangleRnm which is farthest from the origin.

Thus,
∑

(Mij − Lij ) ΔxΔy ≤ (Mnm − Lnm)
∑

ΔxΔy = (Mnm − Lnm)Area(R).

Thus, the difference converges to 0 as long as (Mnm − Lnm) does. The maximum Mnm of f on the

nmth subrectangle occurs at (1, 1), the subrectangle’s top right corner, and the minimum Lnm occurs

at the opposite corner, (1 − 1∕n, 1 − 1∕m). Substituting into f (x, y) = x2y gives

Mnm − Lnm = (1)2(1) −
(

1 −
1

n

)2 (

1 −
1

m

)

=
2

n
−

1

n2
+

1

m
−

2

nm
+

1

n2m
.

The right-hand side converges to 0 as n, m → ∞, that is, as Δx,Δy → 0.

Summary for Section 16.1

• The double integral of a continuous function over the rectangle R (a ≤ x ≤ b, c ≤ y ≤ d)

is defined by the limit of a double Riemann sum. First, we divide R into n ⋅ m subrectangles

of dimensions Δx = (b − a)∕n,Δy = (d − c)∕m. Then, if (uij , vij) is any point in the ijth

subrectangle, we define

∫R
f dA = lim

Δx,Δy→0

∑

i,j

f (uij , vij )ΔxΔy.

• If f (x, y) = 1 for all points (x, y) in the region R, then ∫
R
1 dA gives the area of the region R.
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• If f (x, y) is positive for all points (x, y) in the region R, then ∫
R
f dA gives the volume under

the graph of f above the region R.

• The average value of f on the region R is given by
1

Area of R ∫R
f dA.

Exercises and Problems for Section 16.1 Online Resource: Additional Problems for Section 16.1
EXERCISES

1. Table 16.4 gives values of the function f (x, y), which

is increasing in x and decreasing in y on the region

R ∶ 0 ≤ x ≤ 6, 0 ≤ y ≤ 1. Make the best possible

upper and lower estimates of ∫
R
f (x, y) dA.

Table 16.4

y

x

0 3 6

0 5 7 10

0.5 4 5 7

1 3 4 6

2. Values of f (x, y) are in Table 16.5. Let R be the rect-

angle 1 ≤ x ≤ 1.2, 2 ≤ y ≤ 2.4. Find Riemann

sums which are reasonable over- and underestimates for

∫
R
f (x, y) dA with Δx = 0.1 and Δy = 0.2.

Table 16.5

y

x

1.0 1.1 1.2

2.0 5 7 10

2.2 4 6 8

2.4 3 5 4

3. Figure 16.6 shows contours of g(x, y) on the region R,

with 5 ≤ x ≤ 11 and 4 ≤ y ≤ 10. Using Δx =

Δy = 2, find an overestimate and an underestimate for

∫
R
g(x, y) dA.

5 7 9 11
4

6

8

10

1
2

3

4

5

x

y

Figure 16.6

4. Figure 16.7 shows contours of f (x, y) on the rectangle

R with 0 ≤ x ≤ 30 and 0 ≤ y ≤ 15. Using Δx = 10

and Δy = 5, find an overestimate and an underestimate

for ∫
R
f (x, y) dA.

10 20 30

5

10

15

2
4

6

8

10

x

y

Figure 16.7

5. Figure 16.8 shows a contour plot of population density,

people per square kilometer, in a rectangle of land 3 km

by 2 km. Estimate the population in the region repre-

sented by Figure 16.8.

1 2 3

1

2

1000
800

40
0

600

400 20
0

20
0

400

600
600

x

y

Figure 16.8

In Exercises 6–7, for x and y in meters and R a region on the

xy-plane, what does the integral represent? Give units.

6.
∫
R

�(x, y) dA, where �(x, y) is bacteria population, in

thousands per m2.

7.
1

Area of R ∫
R

ℎ(x, y) dA, where ℎ(x, y) is the height of

a tent, in meters.
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PROBLEMS

In Problems 8–14, decide (without calculation) whether the

integrals are positive, negative, or zero. Let D be the region

inside the unit circle centered at the origin, let R be the right

half of D, and let B be the bottom half of D.

8. ∫
D
1dA 9. ∫

R
5x dA

10. ∫
B
5x dA 11. ∫

D
(y3 + y5) dA

12. ∫
B
(y3 + y5) dA 13. ∫

D
(y − y3) dA

14. ∫
B
(y − y3) dA

15. Figure 16.9 shows contours of f (x, y). Let R be the

square −0.5 ≤ x ≤ 1, −0.5 ≤ y ≤ 1. Is the integral

∫
R
f dA positive or negative? Explain your reasoning.

−1.0 −0.5 0 0.5 1.0 1.5 2.0
−1.0

−0.5

0

0.5

1.0

1.5

2.0

x

y

−1

0

1

2

2

3

4

Figure 16.9

16. Table 16.6 gives values of f (x, y), the number of

milligrams of mosquito larvae per square meter in a

swamp. If x and y are in meters and R is the rectan-

gle 0 ≤ x ≤ 8, 0 ≤ y ≤ 6, estimate ∫
R
f (x, y) dA. Give

units and interpret your answer.

Table 16.6

y

x

0 4 8

0 1 3 6

3 2 5 9

6 4 9 15

17. Table 16.7 gives values of f (x, y), the depth of volcanic

ash, in meters, after an eruption. If x and y are in kilo-

meters and R is the rectangle 0 ≤ x ≤ 100, 0 ≤ y ≤

100, estimate the volume of volcanic ash in R in km3.

Table 16.7

y

x

0 50 100

0 0.82 0.56 0.43

50 0.63 0.45 0.3

100 0.55 0.44 0.26

18. Table 16.8 gives the density of cacti, f (x, y), in a desert

region, in thousands of cacti per km2. If x and y are in

kilometers and R is the square 0 ≤ x ≤ 30, 0 ≤ y ≤ 30,

estimate the number of cacti in the region R.

Table 16.8

y

x

0 10 20 30

0 8.5 8.2 7.9 8.1

10 9.5 10.6 10.5 10.1

20 9.3 10.5 10.4 9.5

30 8.3 8.6 9.3 9.1

19. Use four subrectangles to approximate the volume of

the object whose base is the region 0 ≤ x ≤ 4 and

0 ≤ y ≤ 6, and whose height is given by f (x, y) = x+y.

Find an overestimate and an underestimate and average

the two.

20. Figure 16.10 shows the rainfall, in inches, in Tennessee

on May 1–2, 2010.3 Using three contours (red, yellow,

and green), make a rough estimate of how many cubic

miles of rain fell on the state during this time.

Figure 16.10

3www.srh.noaa.gov/images/ohx/rainfall/TN_May2010_rainfall_map.png, accessed June 13, 2016.
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Strengthen Your Understanding

In Problems 21–22, explain what is wrong with the state-

ment.

21. For all f , the integral ∫
R
f (x, y) dA gives the volume

of the solid under the graph of f over the region R.

22. IfR is a region in the third quadrant where x < 0, y < 0,

then ∫
R
f (x, y) dA is negative.

In Problems 23–24, give an example of:

23. A function f (x, y) and rectangle R such that the Rie-

mann sums obtained using the lower left-hand corner

of each subrectangle are an overestimate.

24. A function f (x, y) whose average value over the square

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is negative.

Are the statements in Problems 25–34 true or false? Give

reasons for your answer.

25. The double integral ∫
R
f dA is always positive.

26. If f (x, y) = k for all points (x, y) in a region R then

∫
R
f dA = k ⋅ Area(R).

27. If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 then

∫
R
exy dA > 3.

28. If R is the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3 and

S is the rectangle −2 ≤ x ≤ 0,−3 ≤ y ≤ 0, then

∫
R
f dA = − ∫

S
f dA.

29. Let �(x, y) be the population density of a city, in people

per km2. If R is a region in the city, then ∫
R
� dA gives

the total number of people in the region R.

30. If ∫
R
f dA = 0, then f (x, y) = 0 at all points of R.

31. If g(x, y) = kf (x, y), where k is constant, then

∫
R
g dA = k ∫

R
f dA.

32. If f and g are two functions continuous on a region R,

then ∫
R
f ⋅ g dA = ∫

R
f dA ⋅ ∫

R
g dA.

33. If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 2 and S is

the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, then ∫
R
f dA =

2 ∫
S
f dA.

34. If R is the rectangle 2 ≤ x ≤ 4, 5 ≤ y ≤ 9, f (x, y) = 2x

and g(x, y) = x + y, then the average value of f on R

is less than the average value of g on R.

16.2 ITERATED INTEGRALS

In Section 16.1 we approximated double integrals using Riemann sums. In this section we see how

to compute double integrals exactly using one-variable integrals.

The Fox Population Again: Expressing a Double Integral as an Iterated Integral

To estimate the fox population, we computed a sum of the form

Total population ≈
∑

i,j

f (uij , vij)ΔxΔy,

where 1 ≤ i ≤ n and 1 ≤ j ≤ m and the values f (uij , vij) can be arranged as in Table 16.9.

Table 16.9 Estimates for fox population densities for n = m = 6

0.0 0.0 0.2 0.7 1.2 1.2

0.0 0.0 0.0 0.0 0.1 1.6

0.0 0.0 0.5 1.4 1.1 1.6

0.0 0.0 1.5 1.8 1.5 1.3

0.0 1.1 2.0 1.4 1.0 0.0

0.0 1.0 0.6 1.2 0.0 0.0

For any values of n and m, we can either add across the rows first or add down the columns first.

If we add rows first, we can write the sum in the form

Total population ≈

m
∑

j=1

(

n
∑

i=1

f (uij , vij)Δx

)

Δy.

The inner sum,

n
∑

i=1

f (uij , vij) Δx, approximates the integral ∫
180

0
f (x, vij) dx. Thus, we have

Total population ≈

m
∑

j=1

(

∫

180

0

f (x, vij) dx

)

Δy.
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The outer Riemann sum approximates another integral, this time with integrand ∫
180

0
f (x, y) dx,

which is a function of y. Thus, we can write the total population in terms of nested, or iterated, one-

variable integrals:

Total population =
∫

150

0

(

∫

180

0

f (x, y) dx

)

dy.

Since the total population is represented by ∫
R
f dA, this suggests the method of computing

double integrals in the following theorem:4

Theorem 16.1: Writing a Double Integral as an Iterated Integral

If R is the rectangle a ≤ x ≤ b, c ≤ y ≤ d and f is a continuous function on R, then the

integral of f over R exists and is equal to the iterated integral

∫R
f dA =

∫

y=d

y=c

(

∫

x=b

x=a

f (x, y) dx

)

dy.

The expression ∫
y=d

y=c

(

∫
x=b

x=a
f (x, y) dx

)

dy can be written ∫
d

c
∫
b

a
f (x, y) dx dy.

To evaluate the iterated integral, first perform the inside integral with respect to x, holding y

constant; then integrate the result with respect to y.

Example 1 A building is 8 meters wide and 16 meters long. It has a flat roof that is 12 meters high at one corner

and 10 meters high at each of the adjacent corners. What is the volume of the building?

Solution If we put the high corner on the z-axis, the long side along the y-axis, and the short side along the

x-axis, as in Figure 16.11, then the roof is a plane with z-intercept 12, and x slope (−2)∕8 = −1∕4,

and y slope (−2)∕16 = −1∕8. Hence, the equation of the roof is

z = 12 −
1

4
x −

1

8
y.

The volume is given by the double integral

Volume =
∫R

(12 −
1

4
x −

1

8
y) dA,

where R is the rectangle 0 ≤ x ≤ 8, 0 ≤ y ≤ 16. Setting up an iterated integral, we get

Volume =
∫

16

0 ∫

8

0

(12 −
1

4
x −

1

8
y) dx dy.

The inside integral is

∫

8

0

(12 −
1

4
x −

1

8
y) dx =

(

12x −
1

8
x2 −

1

8
xy

)

|

|

|

|

x=8

x=0

= 88 − y.

Then the outside integral gives

Volume =
∫

16

0

(88 − y) dy = (88y−
1

2
y2)

|

|

|

|

16

0

= 1280.

The volume of the building is 1280 cubic meters.

4For a proof, see M. Spivak, Calculus on Manifolds, pp. 53 and 58 (New York: Benjamin, 1965).



900 Chapter 16 INTEGRATING FUNCTIONS OF SEVERAL VARIABLES

x (m)
y (m)

z (m)

✻

❄

10

✻

❄
12

✻

❄

10

✛

✛

16 ✛

✛

8

Figure 16.11: A slant-roofed building Figure 16.12: Cross-section of a building

Notice that the inner integral ∫
8

0
(12 −

1

4
x −

1

8
y) dx in Example 1 gives the area of the cross

section of the building perpendicular to the y-axis in Figure 16.12.

The iterated integral ∫
16

0
∫
8

0
(12 −

1

4
x −

1

8
y) dxdy thus calculates the volume by adding the

volumes of thin cross-sectional slabs.

The Order of Integration

In computing the fox population, we could have chosen to add columns (fixed x) first, instead of the

rows. This leads to an iterated integral where x is constant in the inner integral instead of y. Thus,

∫R
f (x, y) dA =

∫

b

a

(

∫

d

c

f (x, y) dy

)

dx

where R is the rectangle a ≤ x ≤ b and c ≤ y ≤ d.

For any function we are likely to meet, it does not matter in which order we integrate over a

rectangular region R; we get the same value for the double integral either way.

∫R
f dA =

∫

d

c

(

∫

b

a

f (x, y) dx

)

dy =
∫

b

a

(

∫

d

c

f (x, y) dy

)

dx

Example 2 Compute the volume of Example 1 as an iterated integral by integrating with respect to y first.

Solution Rewriting the integral, we have

Volume =
∫

8

0

(

∫

16

0

(12 −
1

4
x −

1

8
y) dy

)

dx =
∫

8

0

(

(12y−
1

4
xy −

1

16
y2)

|

|

|

|

y=16

y=0

)

dx

=
∫

8

0

(176 − 4x) dx = (176x− 2x2)
|

|

|

|

8

0

= 1280 meter3.

Iterated Integrals Over Non-Rectangular Regions

Example 3 The density at the point (x, y) of a triangular metal plate, as shown in Figure 16.13, is �(x, y). Express

its mass as an iterated integral.
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y = 2 − 2x

2

1

y

x

Figure 16.13: A triangular metal plate with density �(x, y) at the point (x, y)

Solution Approximate the triangular region using a grid of small rectangles of sides Δx and Δy. The mass of

one rectangle is given by

Mass of rectangle ≈ Density ⋅ Area ≈ �(x, y)ΔxΔy.

Summing over all rectangles gives a Riemann sum which approximates the double integral:

Mass =
∫R

�(x, y) dA,

where R is the triangle. We want to compute this integral using an iterated integral.

Think about how the iterated integral over the rectangle a ≤ x ≤ b, c ≤ y ≤ d works:

∫

b

a ∫

d

c

f (x, y) dy dx.

The inside integral with respect to y is along vertical strips which begin at the horizontal line y = c

and end at the line y = d. There is one such strip for each x between x = a and x = b. (See

Figure 16.14.)

For the triangular region in Figure 16.13, the idea is the same. The only difference is that the

individual vertical strips no longer all go from y = c to y = d. The vertical strip that starts at the

point (x, 0) ends at the point (x, 2 − 2x), because the top edge of the triangle is the line y = 2 − 2x.

See Figure 16.15. On this vertical strip, y goes from 0 to 2 − 2x. Hence, the inside integral is

∫

2−2x

0

�(x, y) dy.

a b

c

d

x

y

x

Figure 16.14: Integrating over a

rectangle using vertical strips

(x, 0)

(x, 2 − 2x)

y

x
1

2

Figure 16.15: Integrating over a

triangle using vertical strips

1

2

(0, y)
(1 −

1

2
y, y)

x

y

Figure 16.16: Integrating over a

triangle using horizontal strips

Finally, since there is a vertical strip for each x between 0 and 1, the outside integral goes from

x = 0 to x = 1. Thus, the iterated integral we want is

Mass =
∫

1

0 ∫

2−2x

0

�(x, y) dy dx.
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We could have chosen to integrate in the opposite order, keeping y fixed in the inner integral

instead of x. The limits are formed by looking at horizontal strips instead of vertical ones, and ex-

pressing the x-values at the end points in terms of y. See Figure 16.16. To find the right endpoint

of the strip, we use the equation of the top edge of the triangle in the form x = 1 −
1

2
y. Thus, a

horizontal strip goes from x = 0 to x = 1 −
1

2
y. Since there is a strip for every y from 0 to 2, the

iterated integral is

Mass =
∫

2

0 ∫

1−
1

2
y

0

�(x, y) dx dy.

Limits on Iterated Integrals

• The limits on the outer integral must be constants.

• The limits on the inner integral can involve only the variable in the outer integral. For

example, if the inner integral is with respect to x, its limits can be functions of y.

Example 4 Find the mass M of a metal plate R bounded by y = x and y = x2, with density given by �(x, y) =

1 + xy kg∕meter2. (See Figure 16.17.)

y = x2

y = x

(1, 1)
y (meters)

x (meters)

Figure 16.17: A metal plate with density �(x, y)

Solution The mass is given by

M =
∫R

�(x, y) dA.

We integrate along vertical strips first; this means we do the y integral first, which goes from the

bottom boundary y = x2 to the top boundary y = x. The left edge of the region is at x = 0 and the

right edge is at the intersection point of y = x and y = x2, which is (1, 1). Thus, the x-coordinate of

the vertical strips can vary from x = 0 to x = 1, and so the mass is given by

M =
∫

1

0 ∫

x

x2
�(x, y) dy dx =

∫

1

0 ∫

x

x2
(1 + xy) dy dx.

Calculating the inner integral first gives

M =
∫

1

0 ∫

x

x2
(1 + xy) dy dx =

∫

1

0

(

y + x
y2

2

)

|

|

|

|

y=x

y=x2
dx

=
∫

1

0

(

x − x2 +
x3

2
−

x5

2

)

dx =

(

x2

2
−

x3

3
+

x4

8
−

x6

12

)

|

|

|

|

1

0

=
5

24
= 0.208 kg.
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Example 5 A semicircular city of radius 3 km borders the ocean on the straight side. Find the average distance

from points in the city to the ocean.

Solution Think of the ocean as everything below the x-axis in the xy-plane and think of the city as the upper

half of the circular disk of radius 3 bounded by x2 + y2 = 9. (See Figure 16.18.)

(
√

9 − y2, y)(−
√

9 − y2, y)

(x, 0)

(x,
√

9 − x2)
x2 + y2 = 9

x

y

−3 3

3

Figure 16.18: The city by the ocean showing a typical vertical strip and a typical horizontal strip

The distance from any point (x, y) in the city to the ocean is the vertical distance to the x-axis,

namely y. Thus, we want to compute

Average distance =
1

Area(R) ∫R
y dA,

where R is the region between the upper half of the circle x2 + y2 = 9 and the x-axis. The area of R

is �32∕2 = 9�∕2.

To compute the integral, let’s take the inner integral with respect to y. A vertical strip goes from

the x-axis, namely y = 0, to the semicircle. The upper limit must be expressed in terms of x, so we

solve x2 + y2 = 9 to get y =
√

9 − x2. Since there is a strip for every x from −3 to 3, the integral is:

∫R
y dA =

∫

3

−3

⎛

⎜

⎜

⎝

∫

√

9−x2

0

y dy

⎞

⎟

⎟

⎠

dx =
∫

3

−3

⎛

⎜

⎜

⎝

y2

2

|

|

|

|

y=
√

9−x2

y=0

⎞

⎟

⎟

⎠

dx

=
∫

3

−3

1

2
(9 − x2) dx =

1

2

(

9x −
x3

3

)

|

|

|

|

3

−3

=
1

2
(18 − (−18)) = 18.

Therefore, the average distance is 18∕(9�∕2) = 4∕� = 1.273 km.

What if we choose the inner integral with respect to x? Then we get the limits by looking at

horizontal strips, not vertical, and we solve x2 + y2 = 9 for x in terms of y. We get x = −
√

9 − y2

at the left end of the strip and x =
√

9 − y2 at the right. There is a strip for every y from 0 to 3, so

∫R
y dA =

∫

3

0

(

∫

√

9−y2

−
√

9−y2
y dx

)

dy =
∫

3

0

⎛

⎜

⎜

⎝

yx
|

|

|

|

x=
√

9−y2

x=−
√

9−y2

⎞

⎟

⎟

⎠

dy =
∫

3

0

2y
√

9 − y2 dy

= −
2

3
(9 − y2)3∕2

|

|

|

|

3

0

= −
2

3
(0 − 27) = 18.

We get the same result as before. The average distance to the ocean is (2∕(9�))18 = 4∕� = 1.273 km.

In the examples so far, a region was given and the problem was to determine the limits for an

iterated integral. Sometimes the limits are known and we want to determine the region.
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Example 6 Sketch the region of integration for the iterated integral
∫

6

0 ∫

2

x∕3

x
√

y3 + 1 dy dx.

Solution The inner integral is with respect to y, so we imagine the region built of vertical strips. The bottom

of each strip is on the line y = x∕3, and the top is on the horizontal line y = 2. Since the limits of the

outer integral are 0 and 6, the whole region is contained between the vertical lines x = 0 and x = 6.

Notice that the lines y = 2 and y = x∕3 meet where x = 6. See Figure 16.19.

6
x

y

(6, 2)

y = x∕3

y = 2
2

Figure 16.19: The region of integration for Example 6, showing the vertical strip

Reversing the Order of Integration

It is sometimes helpful to reverse the order of integration in an iterated integral. An integral which

is difficult or impossible with the integration in one order can be quite straightforward in the other.

The next example is such a case.

Example 7 Evaluate
∫

6

0 ∫

2

x∕3

x
√

y3 + 1 dy dx using the region sketched in Figure 16.19.

Solution Since
√

y3 + 1 has no elementary antiderivative, we cannot calculate the inner integral symbolically.

We try reversing the order of integration. From Figure 16.19, we see that horizontal strips go from

x = 0 to x = 3y and that there is a strip for every y from 0 to 2. Thus, when we change the order of

integration we get

∫

6

0 ∫

2

x∕3

x
√

y3 + 1 dy dx =
∫

2

0 ∫

3y

0

x
√

y3 + 1 dx dy.

Now we can at least do the inner integral because we know the antiderivative of x. What about the

outer integral?

∫

2

0 ∫

3y

0

x
√

y3 + 1 dx dy =
∫

2

0

(

x2

2

√

y3 + 1

)

|

|

|

|

x=3y

x=0

dy =
∫

2

0

9y2

2
(y3 + 1)1∕2 dy

= (y3 + 1)3∕2
|

|

|

|

2

0

= 27 − 1 = 26.

Thus, reversing the order of integration made the integral in the previous problem much easier.

Notice that to reverse the order it is essential first to sketch the region over which the integration is

being performed.

Summary for Section 16.2

• If R is the rectangle a ≤ x ≤ b, c ≤ y ≤ d and f is a continuous function on R, then the integral

of f over R exists and is equal to the iterated integral

∫R
f dA =

∫

d

c

(

∫

b

a

f (x, y) dx

)

dy.

To evaluate the iterated integral, first perform the inside integral with respect to x, holding y

constant; then integrate the result with respect to y.
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• For most functions f the order of integration can be switched giving the same result:

∫R
f dA =

∫

d

c

(

∫

b

a

f (x, y) dx

)

dy =
∫

b

a

(

∫

d

c

f (x, y) dy

)

dx.

• When writing double integrals over non-rectangular regions as iterated integrals, the inner

integral can only have limits which are functions of the variable of the outer integral; the outer

integral’s limits must be constants.

• When reversing the order of integration in an iterated integral over a non-rectangular region, it

is useful to sketch the region of integration first.

Exercises and Problems for Section 16.2 Online Resource: Additional Problems for Section 16.2
EXERCISES

In Exercises 1–4, sketch the region of integration.

1.
∫

�

0 ∫

x

0

y sinx dy dx 2.
∫

1

0 ∫

y

y2

xy dx dy

3.
∫

2

0 ∫

y2

0

y2x dxdy 4.
∫

1

0 ∫

cos �x

x−2

y dy dx

For Exercises 5–12, evaluate the integral.

5.

∫

3

0 ∫

4

0

(4x + 3y) dx dy

6.

∫

2

0 ∫

3

0

(x2 + y2) dy dx

7.
∫

3

0 ∫

2

0

6xy dy dx 8.
∫

1

0 ∫

2

0

x2y dy dx

9.
∫

1

0 ∫

1

0

yexy dx dy 10.
∫

2

0 ∫

y

0

y dx dy

11.
∫

3

0 ∫

y

0

sin xdx dy 12.
∫

�∕2

0 ∫

sinx

0

x dy dx

For Exercises 13–20, sketch the region of integration and

evaluate the integral.

13.
∫

3

1 ∫

4

0

ex+y dy dx 14.
∫

2

0 ∫

x

0

ex
2
dy dx

15.
∫

5

1 ∫

2x

x

sinx dy dx 16.
∫

4

1 ∫

y

√

y

x2y3 dxdy

17.
∫

2

1 ∫

3y

y

xy dxdy 18.
∫

1

0 ∫

√

x

x

30x dy dx

19.
∫

2

0 ∫

2x

0

xex
3
dy dx 20.

∫

1

0 ∫

1+x2

1

x
√

y
dy dx

In Exercises 21–26, write ∫
R
fdA as an iterated integral for

the shaded region R.

21.

1 2 3 4
0

1

2

x

y 22.

4

12

x

y

23.

−1 1 2 3

−2

1

x

y 24.

3 5

6

x

y

25.

1 2 3
0

1

2

3

x

y 26.

1 2 3 4
0

1

2

x

y

For Exercises 27–28, write ∫
R
fdA as an iterated integral in

two different ways for the shaded region R.

27.

1 2
0

1

2

x

y 28.

1 2
0

1

2

x

y
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For Exercises 29–33, evaluate the integral.

29. ∫
R

√

x + y dA, where R is the rectangle 0 ≤ x ≤ 1,

0 ≤ y ≤ 2.

30. The integral in Exercise 29 using the other order of in-

tegration.

31. ∫
R
(5x2 + 1) sin 3y dA, where R is the rectangle −1 ≤

x ≤ 1, 0 ≤ y ≤ �∕3.

32. ∫
R
xy dA, where R is the triangle x+y ≤ 1, x ≥ 0, y ≥

0.

33. ∫
R
(2x + 3y)2 dA, where R is the triangle with vertices

at (−1, 0), (0, 1), and (1, 0).

PROBLEMS

In Problems 34–37, integrate f (x, y) = xy over the regionR.

34.

1

2

R
x

y 35.

−1

1

R

x

y

36.

2

R

(1, 1)

x

y 37.

2

1

R

x

y

38. (a) Use four subrectangles to approximate the volume

of the object whose base is the region 0 ≤ x ≤ 4

and 0 ≤ y ≤ 6, and whose height is given by

f (x, y) = xy. Find an overestimate and an under-

estimate and average the two.

(b) Integrate to find the exact volume of the three-

dimensional object described in part (a).

For Problems 39–42, sketch the region of integration, then

rewrite the integral with the order of integration reversed.

39.
∫

3

0 ∫

6

2y

f (x, y) dx dy

40.
∫

2

0 ∫

√

4−x2

0

f (x, y) dy dx

41.
∫

3

−3 ∫

9−x2

0

f (x, y) dy dx

42.
∫

2

0 ∫

2−y

y−2

f (x, y) dx dy

In Problems 43–50, evaluate the integral by reversing the or-

der of integration.

43.
∫

1

0 ∫

1

y

ex
2
dx dy 44.

∫

1

0 ∫

1

y

sin (x2) dx dy

45.
∫

1

0 ∫

1

√

y

√

2 + x3 dxdy 46.
∫

3

0 ∫

9

y2

y sin(x2) dxdy

47.
∫

1

0 ∫

e

ey

x

ln x
dxdy 48.

∫

1

0 ∫

1

x

cos(y2) dy dx

49.
∫

8

0 ∫

2

3
√

y

1

1 + x4
dx dy 50.

∫

1

0 ∫

x

0

e2y−y
2
dy dx

51. Each of the integrals (I)–(VI) takes one of two distinct

values. Without evaluating, group them by value.

I.
∫

5

0 ∫

10

0

xy2 dx dy II.
∫

5

0 ∫

10

0

xy2 dy dx

III.
∫

10

0 ∫

5

0

xy2 dx dy IV.
∫

10

0 ∫

5

0

xy2 dy dx

V.
∫

5

0 ∫

10

0

uv2 du dv VI.
∫

5

0 ∫

10

0

uv2 dv du

52. Find the volume under the graph of the function

f (x, y) = 6x2y over the region shown in Figure 16.20.

1 2 3 4
0

2

4

6

8

x

y

Figure 16.20

53. (a) Find the volume below the surface z = x2+y2 and

above the xy-plane for −1 ≤ x ≤ 1,−1 ≤ y ≤ 1.

(b) Find the volume above the surface z = x2 + y2

and below the plane z = 2 for −1 ≤ x ≤ 1,

−1 ≤ y ≤ 1.

54. Compute the integral

∫ ∫
R

(2x2 + y) dA,

where R is the triangular region with vertices at (0, 1),

(−2, 3) and (2, 3).

55. (a) Sketch the region in the xy-plane bounded by the

x-axis, y = x, and x + y = 1.

(b) Express the integral of f (x, y) over this region in

terms of iterated integrals in two ways. (In one, use

dx dy; in the other, use dy dx.)

(c) Using one of your answers to part (b), evaluate the

integral exactly with f (x, y) = x.
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56. Let f (x, y) = x2ex
2

and let R be the triangle bounded

by the lines x = 3, x = y∕2, and y = x in the xy-plane.

(a) Express ∫
R
f dA as a double integral in two differ-

ent ways.

(b) Evaluate one of them.

57. Find the average value of f (x, y) = x2+4y on the rect-

angle 0 ≤ x ≤ 3 and 0 ≤ y ≤ 6.

58. Find the average value of f (x, y) = xy2 on the rectangle

0 ≤ x ≤ 4, 0 ≤ y ≤ 3.

59. Figure 16.21 shows two metal plates carrying electri-

cal charges. The charge density (in coulombs per square

meter) of each at the point (x, y) is �(x, y) = 6x+ 6 for

x, y in meters.

(a) Without calculation, decide which plate carries a

greater total charge, and explain your reasoning.

(b) Find the total charge on both plates, and compare

to your answer from part (a).

1

1

x

y

Plate 1

1

1

x

y

Plate 2

Figure 16.21

60. The population density in people per km2 for the

trapezoid-shaped town in Figure 16.22 for x, y in kilo-

meters is �(x, y) = 100x + 200y. Find the town’s pop-

ulation.

0 6

3

6

x

y

Figure 16.22

61. The quarter-disk-shaped metal plate in Figure 16.23 has

radius 3 and density �(x, y) = 2y gm/cm2, with x, y in

cm. Find the mass of the plate.

3

3

x

y

Figure 16.23

In Problems 62–63 set up, but do not evaluate, an iterated

integral for the volume of the solid.

62. Under the graph of f (x, y) = 25 − x2 − y2 and above

the xy-plane.

63. Below the graph of f (x, y) = 25 − x2 − y2 and above

the plane z = 16.

64. A solid with flat base in the xy-plane is bounded by the

vertical planes y = 0 and y − x = 4, and the slanted

plane 2x + y + z = 4.

(a) Draw the base of the solid.

(b) Set up, but do not evaluate, an iterated integral for

the volume of the solid.

In Problems 65–69, find the volume of the solid region.

65. Under the graph of f (x, y) = xy and above the square

0 ≤ x ≤ 2, 0 ≤ y ≤ 2 in the xy-plane.

66. Under the graph of f (x, y) = x2 + y2 and above the

triangle 0 ≤ y ≤ x, 0 ≤ x ≤ 1.

67. Under the graph of f (x, y) = x+y and above the region

y2 ≤ x, 0 ≤ x ≤ 9, y ≥ 0.

68. Under the graph of 2x + y + z = 4 in the first octant.

69. The solid region R bounded by the coordinate planes

and the graph of ax + by + cz = 1. Assume a, b, and

c > 0.

70. If R is the region x + y ≥ a, x2 + y2 ≤ a2, with a > 0,

evaluate the integral

∫
R

xy dA.

71. The region W lies below the surface f (x, y) =

2e−(x−1)
2−y2 and above the disk x2 + y2 ≤ 4 in the xy-

plane.

(a) Describe in words the contours of f , using

f (x, y) = 1 as an example.

(b) Write an integral giving the area of the cross-

section of W in the plane x = 1.

(c) Write an iterated double integral giving the volume

of W .

72. Find the average distance to the x-axis for points in the

region in the first quadrant bounded by the x-axis and

the graph of y = x − x2.

73. Give the contour diagram of a function f whose aver-

age value on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is

(a) Greater than the average of the values of f at the

four corners of the square.

(b) Less than the average of the values of f at the four

corners of the square.
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74. The function f (x, y) = ax+ by has an average value of

20 on the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

(a) What can you say about the constants a and b?

(b) Find two different choices for f that have average

value 20 on the rectangle, and give their contour

diagrams on the rectangle.

75. The function f (x, y) = ax2 + bxy+ cy2 has an average

value of 20 on the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

(a) What can you say about the constants a, b, and c?

(b) Find two different choices for f that have average

value 20 on the square, and give their contour dia-

grams on the square.

Strengthen Your Understanding

In Problems 76–77, explain what is wrong with the state-

ment.

76. ∫
1

0
∫

x

0
f (x, y) dy dx = ∫

1

0
∫

y

0
f (x, y) dxdy

77. ∫
1

0
∫

y

0
xy dxdy = ∫

y

0
∫

1

0
xy dy dx

In Problems 78–80, give an example of:

78. An iterated double integral, with limits of integration,

giving the volume of a cylinder standing vertically with

a circular base in the xy-plane.

79. A nonconstant function, f , whose integral is 4 over the

triangular region with vertices (0, 0), (1, 0), (1, 1).

80. A double integral representing the volume of a triangu-

lar prism of base area 6.

Are the statements in Problems 81–88 true or false? Give

reasons for your answer.

81. The iterated integral ∫
1

0
∫

12

5
f dxdy is computed over

the rectangle 0 ≤ x ≤ 1, 5 ≤ y ≤ 12.

82. If R is the region inside the triangle with vertices

(0, 0), (1, 1) and (0, 2), then the double integral ∫
R
f dA

can be evaluated by an iterated integral of the form

∫
2

0
∫

1

0
f dx dy.

83. The region of integration of the iterated integral

∫
2

1
∫

x3

x2
f dy dx lies completely in the first quadrant

(that is, x ≥ 0, y ≥ 0).

84. If the limits a, b, c and d in the iterated integral

∫
b

a
∫

d

c
f dy dx are all positive, then the value of

∫
b

a
∫

d

c
f dy dx is also positive.

85. If f (x, y) is a function of y only, then ∫
b

a
∫

1

0
f dx dy =

∫
b

a
fdy.

86. If R is the region inside a circle of radius a, centered at

the origin, then ∫
R
f dA = ∫

a

−a
∫

√

a2−x2

0
f dy dx.

87. If f (x, y) = g(x) ⋅ ℎ(y), where g and ℎ are single-

variable functions, then

∫

b

a
∫

d

c

f dy dx =

(

∫

b

a

g(x) dx

)

⋅

(

∫

d

c

ℎ(y) dy

)

.

88. If f (x, y) = g(x) + ℎ(y), where g and ℎ are single-

variable functions, then

∫

b

a
∫

d

c

f dx dy =

(

∫

b

a

g(x) dx

)

+

(

∫

d

c

ℎ(y) dy

)

.

16.3 TRIPLE INTEGRALS

A continuous function of three variables can be integrated over a solid region W in 3-space in the

same way as a function of two variables is integrated over a flat region in 2-space. Again, we start

with a Riemann sum. First we subdivide W into smaller regions, then we multiply the volume of

each region by a value of the function in that region, and then we add the results. For example, if W

is the box a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q, then we subdivide each side into n, m, and l pieces,

thereby chopping W into nml smaller boxes, as shown in Figure 16.24.

Figure 16.24: Subdividing a three-dimensional box
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The volume of each smaller box is

ΔV = ΔxΔyΔz,

where Δx = (b − a)∕n, and Δy = (d − c)∕m, and Δz = (q − p)∕l. Using this subdivision, we pick

a point (uijk, vijk, wijk) in the ijkth small box and construct a Riemann sum

∑

i,j,k

f (uijk, vijk, wijk) ΔV .

If f is continuous, as Δx, Δy, andΔz approach 0, this Riemann sum approaches the definite integral,

∫W
f dV , called a triple integral, which is defined as

∫W
f dV = lim

Δx,Δy,Δz→0

∑

i,j,k

f (uijk, vijk, wijk) ΔxΔyΔz.

As in the case of a double integral, we can evaluate this integral as an iterated integral:

Triple integral as an iterated integral:

∫W
f dV =

∫

q

p

(

∫

d

c

(

∫

b

a

f (x, y, z) dx

)

dy

)

dz,

where y and z are treated as constants in the innermost (dx) integral, and z is treated as a

constant in the middle (dy) integral. Other orders of integration are possible.

Example 1 A cube C has sides of length 4 cm and is made of a material of variable density. If one corner is at

the origin and the adjacent corners are on the positive x, y, and z axes, then the density at the point

(x, y, z) is �(x, y, z) = 1 + xyz gm/cm3. Find the mass of the cube.

Solution Consider a small piece ΔV of the cube, small enough so that the density remains close to constant

over the piece. Then

Mass of small piece = Density ⋅ Volume ≈ �(x, y, z) ΔV .

To get the total mass, we add the masses of the small pieces and take the limit as ΔV → 0. Thus,

the mass is the triple integral

M =
∫C

� dV =
∫

4

0 ∫

4

0 ∫

4

0

(1 + xyz) dx dy dz =
∫

4

0 ∫

4

0

(

x +
1

2
x2yz

)

|

|

|

|

x=4

x=0

dy dz

=
∫

4

0 ∫

4

0

(4 + 8yz) dy dz =
∫

4

0

(

4y + 4y2z
) |

|

|

|

y=4

y=0

dz =
∫

4

0

(16 + 64z) dz = 576 gm.
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Example 2 Express the volume of the building described in Example 1 on page 899 as a triple integral.

Solution The building is given by 0 ≤ x ≤ 8, 0 ≤ y ≤ 16, and 0 ≤ z ≤ 12 − x∕4 − y∕8. (See Figure 16.25.)

To find its volume, divide it into small cubes of volume ΔV = ΔxΔyΔz and add. First, make a

vertical stack of cubes above the point (x, y, 0). This stack goes from z = 0 to z = 12 − x∕4 − y∕8,

so

Volume of vertical stack ≈
∑

z

ΔV =
∑

z

ΔxΔyΔz =

(

∑

z

Δz

)

ΔxΔy.

Next, line up these stacks parallel to the y-axis to form a slice from y = 0 to y = 16. So

Volume of slice ≈

(

∑

y

∑

z

ΔzΔy

)

Δx.

Finally, line up the slices along the x-axis from x = 0 to x = 8 and add up their volumes, to get

Volume of building ≈
∑

x

∑

y

∑

z

ΔzΔyΔx.

Thus, in the limit,

Volume of building =
∫

8

0 ∫

16

0 ∫

12−x∕4−y∕8

0

1 dz dy dx.

x

y

z

(0, 16, 10)

(0, 16, 0)

(8, 16, 0)

✠

(8, 16, 8)

✠

(x, y, 12 −
1

4
x −

1

8
y)

(x, y, 0)
✛

✛

✛

✛

8

16

(0, 0, 12)

(8, 0, 10)

(8, 0, 8)

(8, 0, 0)

x

y

z

Δx

Δy

✻

❄
Δz

(8, 0, 10)

(0, 0, 12)

8

16

Figure 16.25: Volume of building (shown to left) divided into blocks and slabs for a triple integral

The preceding examples show that the triple integral has interpretations similar to the double

integral:

• If �(x, y, z) is density, then
∫W

� dV is the total quantity in the solid region W .

•
∫W

1 dV is the volume of the solid region W .
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Example 3 Set up an iterated integral to compute the mass of the solid cone bounded by z =
√

x2 + y2 and

z = 3, if the density is given by �(x, y, z) = z.

Solution We break the cone in Figure 16.26 into small cubes of volumeΔV = ΔxΔyΔz, on which the density

is approximately constant, and approximate the mass of each cube by �(x, y, z) ΔxΔyΔz. Stacking

the cubes vertically above the point (x, y, 0), starting on the cone at height z =
√

x2 + y2 and going

up to z = 3, tells us that the inner integral is

∫

3

√

x2+y2
�(x, y, z) dz =

∫

3

√

x2+y2
z dz.

There is a stack for every point in the xy-plane in the shadow of the cone. The cone z =
√

x2 + y2

intersects the horizontal plane z = 3 in the circle x2 + y2 = 9, so there is a stack for all (x, y) in the

region x2 + y2 ≤ 9. Lining up the stacks parallel to the y-axis gives a slice from y = −
√

9 − x2 to

y =
√

9 − x2, for each fixed value of x. Thus, the limits on the middle integral are

∫

√

9−x2

−
√

9−x2 ∫

3

√

x2+y2
z dz dy.

Finally, there is a slice for each x between −3 and 3, so the integral we want is

Mass =
∫

3

−3 ∫

√

9−x2

−
√

9−x2 ∫

3

√

x2+y2
z dz dy dx.

Notice that setting up the limits on the two outer integrals was just like setting up the limits for

a double integral over the region x2 + y2 ≤ 9.

Figure 16.26: The cone z =
√

x2 + y2 with its

shadow on the xy-plane

As the previous example illustrates, for a region W contained between two surfaces, the inner-

most limits correspond to these surfaces. The middle and outer limits ensure that we integrate over

the “shadow” of W in the xy-plane.

Limits on Triple Integrals

∙ The limits for the outer integral are constants.

∙ The limits for the middle integral can involve only one variable (that in the outer integral).

∙ The limits for the inner integral can involve two variables (those on the two outer integrals).
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Summary for Section 16.3

• A triple integral of a continuous function f (x, y, z) over a solid rectangular box W with a ≤

x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q, can be evaluated using the iterated integral

∫W
f dV =

∫

q

p

(

∫

d

c

(

∫

b

a

f (x, y, z) dx

)

dy

)

dz,

where y and z are treated as constants in the innermost (dx) integral, and z is treated as a constant

in the middle (dy) integral. The five other orders of integration give the same result.

• The volume of the solid region W is given by the triple integral
∫W

1 dV .

• If �(x, y, z) is density, then
∫W

� dV is the total quantity in the solid region W .

• Limits on a triple integrated integral satisfy:

◦ The limits for the outer integral are constants.

◦ The limits for the middle integral can involve only one variable (that in the outer integral).

◦ The limits for the inner integral can involve two variables (those on the two outer integrals).

• If a solid region W is above the graph of z = g(x, y) and below z = ℎ(x, y) with (x, y) lying

inside the region R in the xy-plane, then

∫W
f dV =

∫

(

∫

(

∫

ℎ(x,y)

g(x,y)

f (x, y, z) dz

)

dy

)

dx,

where the limits on the outer two iterated integrals are the same as those for a double integral

over R.

Exercises and Problems for Section 16.3 Online Resource: Additional Problems for Section 16.3
EXERCISES

In Exercises 1–4, find the triple integrals of the function over

the region W .

1. f (x, y, z) = x2 + 5y2 − z, W is the rectangular box

0 ≤ x ≤ 2, −1 ≤ y ≤ 1, 2 ≤ z ≤ 3.

2. ℎ(x, y, z) = ax + by + cz, W is the rectangular box

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 2.

3. f (x, y, z) = sin x cos(y+ z), W is the cube 0 ≤ x ≤ �,

0 ≤ y ≤ �, 0 ≤ z ≤ �.

4. f (x, y, z) = e−x−y−z, W is the rectangular box with cor-

ners at (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c).

Sketch the region of integration in Exercises 5–13.

5.
∫

1

0 ∫

1

−1 ∫

√

1−x2

0

f (x, y, z) dz dxdy

6.
∫

1

0 ∫

1

−1 ∫

√

1−z2

0

f (x, y, z) dy dz dx

7.
∫

1

0 ∫

1

−1 ∫

√

1−x2

−
√

1−x2
f (x, y, z) dz dxdy

8.
∫

1

−1 ∫

1

0 ∫

√

1−z2

−
√

1−z2
f (x, y, z) dy dz dx

9.
∫

1

−1 ∫

√

1−x2

−
√

1−x2 ∫

√

1−x2−z2

0

f (x, y, z) dy dz dx

10.
∫

1

0 ∫

√

1−z2

−
√

1−z2 ∫

√

1−x2−z2

0

f (x, y, z) dy dx dz

11.
∫

1

0 ∫

√

1−y2

0 ∫

√

1−x2−y2

−
√

1−x2−y2
f (x, y, z) dz dx dy

12.
∫

1

0 ∫

√

1−z2

−
√

1−z2 ∫

√

1−y2−z2

−
√

1−y2−z2
f (x, y, z) dx dy dz

13.
∫

1

0 ∫

√

1−z2

0 ∫

√

1−x2−z2

−
√

1−x2−z2
f (x, y, z) dy dx dz

In Exercises 14–15, for x, y and z in meters, what does the

integral over the solid region E represent? Give units.

14.
∫
E

1 dV

15.
∫
E

�(x, y, z) dV , where �(x, y, z) is density, in kg/m3.
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PROBLEMS

In Problems 16–20, decide whether the integrals are positive,

negative, or zero. Let S be the solid sphere x2+y2+z2 ≤ 1,

and T be the top half of this sphere (with z ≥ 0), and B be

the bottom half (with z ≤ 0), and R be the right half of the

sphere (with x ≥ 0), and L be the left half (with x ≤ 0).

16.
∫
T

ez dV 17.
∫
B

ez dV

18.
∫
S

sin z dV 19.
∫
T

sin z dV

20.
∫
R

sin z dV

Let W be the solid cone bounded by z =
√

x2 + y2 and

z = 2. For Problems 21–29, decide (without calculating its

value) whether the integral is positive, negative, or zero.

21. ∫
W
y dV 22. ∫

W
x dV

23. ∫
W
z dV 24. ∫

W
xy dV

25. ∫
W
xyz dV 26. ∫

W
(z − 2) dV

27. ∫
W

√

x2 + y2 dV 28. ∫
W
e−xyz dV

29. ∫
W
(z −

√

x2 + y2) dV

In Problems 30–34, let W be the solid cylinder bounded by

x2 + y2 = 1, z = 0, and z = 2. Decide (without calculating

its value) whether the integral is positive, negative, or zero.

30. ∫
W
x dV 31. ∫

W
z dV

32. ∫
W
(x2 + y2 − 2) dV 33. ∫

W
(z − 1) dV

34. ∫
W
e−y dV

35. Find the volume of the region bounded by the planes

z = 3y, z = y, y = 1, x = 1, and x = 2.

36. Find the volume of the region bounded by z = x2,

0 ≤ x ≤ 5, and the planes y = 0, y = 3, and z = 0.

37. Find the volume of the region in the first octant bounded

by the coordinate planes and the surface x+ y+ z = 2.

38. A trough with triangular cross-section lies along the x-

axis for 0 ≤ x ≤ 10. The slanted sides are given by

z = y and z = −y for 0 ≤ z ≤ 1 and the ends by x = 0

and x = 10, where x, y, z are in meters. The trough

contains a sludge whose density at the point (x, y, z) is

� = e−3x kg per m3.

(a) Express the total mass of sludge in the trough in

terms of triple integrals.

(b) Find the mass.

39. Find the volume of the region bounded by z = x+y, z =

10, and the planes x = 0, y = 0.

In Problems 40–45, write a triple integral, including limits

of integration, that gives the specified volume.

40. Between z = x + y and z = 1 + 2x + 2y and above

0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

41. Between the paraboloid z = x2 + y2 and the sphere

x2 + y2 + z2 = 4 and above the disk x2 + y2 ≤ 1.

42. Between 2x+2y+z = 6 and 3x+4y+z = 6 and above

x + y ≤ 1, x ≥ 0, y ≥ 0.

43. Under the sphere x2+y2 +z2 = 9 and above the region

between y = x and y = 2x − 2 in the xy-plane in the

first quadrant.

44. Between the top portion of the sphere x2 + y2 + z2 = 9

and the plane z = 2.

45. Under the sphere x2+y2 +z2 = 4 and above the region

x2 + y2 ≤ 4, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2 in the xy-plane.

In Problems 46–49, write limits of integration for the inte-

gral ∫
W
f (x, y, z) dV where W is the quarter or half sphere

or cylinder shown.

46.

x y

z

r
1

r

47.

1
2

2

x

y

z

48.

r
r

r

x
y

z 49.

r
r

r

x

y

z

50. Find the volume of the region between the plane z = x

and the surface z = x2, and the planes y = 0, and y = 3.

51. Find the volume of the region bounded by z = x + y,

0 ≤ x ≤ 5, 0 ≤ y ≤ 5, and the planes x = 0, y = 0, and

z = 0.

52. Find the volume of the pyramid with base in the plane

z = −6 and sides formed by the three planes y = 0 and

y − x = 4 and 2x + y + z = 4.

53. Find the volume between the planes z = 1 + x + y and

x + y + z = 1 and above the triangle x + y ≤ 1, x ≥ 0,

y ≥ 0 in the xy-plane.

54. Find the mass of a triangular-shaped solid bounded by

the planes z = 1 + x, z = 1 − x, z = 0, and with

0 ≤ y ≤ 3. The density is � = 10 − z gm/cm3, and

x, y, z are in cm.

55. Find the mass of the solid bounded by the xy-plane, yz-

plane, xz-plane, and the plane (x∕3)+(y∕2)+(z∕6) = 1,

if the density of the solid is given by �(x, y, z) = x+ y.
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56. Find the mass of the pyramid with base in the plane

z = −6 and sides formed by the three planes y = 0 and

y−x = 4 and 2x+ y+ z = 4, if the density of the solid

is given by �(x, y, z) = y.

57. Let E be the solid pyramid bounded by the planes

x + z = 6, x − z = 0, y + z = 6, y − z = 0, and

above the plane z = 0 (see Figure 16.27). The density

at any point in the pyramid is given by �(x, y, z) = z

grams per cm3, where x, y, and z are measured in cm.

(a) Explain in practical terms what the triple integral

∫
E
z dV represents.

(b) In evaluating the integral from part (a), how many

separate triple integrals would be required if we

chose to integrate in the z-direction first?

(c) Evaluate the triple integral from part (a) by inte-

grating in a well-chosen order.

Figure 16.27

58. (a) What is the equation of the plane passing through

the points (1, 0, 0), (0, 1, 0), and (0, 0, 1)?

(b) Find the volume of the region bounded by this

plane and the planes x = 0, y = 0, and z = 0.

Problems 59–61 refer to Figure 16.28, which shows triangu-

lar portions of the planes 2x+4y+z = 4, 3x−2y = 0, z = 2,

and the three coordinate planes x = 0, y = 0, and z = 0. For

each solid region E, write down an iterated integral for the

triple integral ∫
E
f (x, y, z) dV .

Figure 16.28

59. E is the region bounded by y = 0, z = 0, 3x − 2y = 0,

and 2x + 4y + z = 4.

60. E is the region bounded by x = 0, y = 0, z = 0, z = 2,

and 2x + 4y + z = 4.

61. E is the region bounded by x = 0, z = 0, 3x − 2y = 0,

and 2x + 4y + z = 4.

62. Figure 16.29 shows part of a spherical ball of radius

5 cm. Write an iterated triple integral which represents

the volume of this region.

✻

❄

2 cm

Figure 16.29

63. A solid region D is a half cylinder of radius 1 lying hor-

izontally with its rectangular base in the xy-plane and

its axis along the y-axis from y = 0 to y = 10. (The

region is above the xy-plane.)

(a) What is the equation of the curved surface of this

half cylinder?

(b) Write the limits of integration of the integral

∫
D
f (x, y, z) dV in Cartesian coordinates.

64. Set up, but do not evaluate, an iterated integral for the

volume of the solid formed by the intersections of the

cylinders x2 + z2 = 1 and y2 + z2 = 1.

Problems 65–67 refer to Figure 16.30, which shows E, the

region in the first octant bounded by the parabolic cylinder

z = 6y2 and the elliptical cylinder x2 + 3y2 = 12. For the

given order of integration, write an iterated integral equiva-

lent to the triple integral ∫
E
f (x, y, z) dV .

Figure 16.30

65. dz dx dy 66. dx dz dy 67. dy dz dx

Problems 68–71 refer to Figure 16.31, which shows E, the

region in the first octant bounded by the planes z = 5 and

5x + 3z = 15 and the elliptical cylinder 4x2 + 9y2 = 36.

For the given order of integration, write an iterated integral

equivalent to the triple integral ∫
E
f (x, y, z) dV .



16.3 TRIPLE INTEGRALS 915

Figure 16.31

68. dz dy dx 69. dz dx dy

70. dy dz dx 71. dy dx dz

Problems 72–74 refer to Figure 16.32, which shows E, the

region in the first octant bounded by the plane x + y = 2

and the parabolic cylinder z = 4 − x2. For the given order

of integration, write an iterated integral, or sum of integrals,

equivalent to the triple integral ∫
E
f (x, y, z) dV .

Figure 16.32

72. dz dy dx 73. dy dz dx 74. dy dx dz

Problems 75–76 concern the center of mass, the point at

which the mass of a solid body in motion can be considered

to be concentrated. If the object has density �(x, y, z) at the

point (x, y, z) and occupies a region W , then the coordinates

(x̄, ȳ, z̄) of the center of mass are given by

x̄ =
1

m ∫
W

x� dV ȳ =
1

m ∫
W

y� dV z̄ =
1

m ∫
W

z� dV

where m = ∫
W
� dV is the total mass of the body.

75. A solid is bounded below by the square z = 0, 0 ≤ x ≤

1, 0 ≤ y ≤ 1 and above by the surface z = x + y + 1.

Find the total mass and the coordinates of the center of

mass if the density is 1 gm/cm3 and x, y, z are measured

in centimeters.

76. Find the center of mass of the tetrahedron that is

bounded by the xy, yz, xz planes and the plane x +

2y+ 3z = 1. Assume the density is 1 gm/cm3 and x, y,

z are in centimeters.

Strengthen Your Understanding

In Problems 77–78, explain what is wrong with the state-

ment.

77. Let S be the solid sphere x2 + y2 + z2 ≤ 1 and let U be

the upper half of S where z ≥ 0. Then

∫
S
f (x, y, z) dV = 2 ∫

U
f (x, y, z) dV .

78. ∫
1

0
∫

x

0
∫

y

0
f (x, y, z) dz dy dx = ∫

1

0
∫

1

y
∫

x

0
f (x, y, z) dz dx dy

In Problems 79–80, give an example of:

79. A function f such that ∫
R
fdV = 7, where R is the

cylinder x2 + y2 ≤ 4, 0 ≤ z ≤ 3.

80. A nonconstant function f (x, y, z) such that if B is the

region enclosed by the sphere of radius 1 centered at the

origin, the integral ∫
B
f (x, y, z) dx dy dz is zero.

Are the statements in Problems 81–90 true or false? Give

reasons for your answer.

81. If �(x, y, z) is mass density of a material in 3-space,

then ∫
W
�(x, y, z) dV gives the volume of the solid re-

gion W .

82. The region of integration of the triple iterated inte-

gral ∫
1

0
∫

1

0
∫

x

0
f dz dy dx lies above a square in the xy-

plane and below a plane.

83. If W is the unit ball x2 + y2 + z2 ≤ 1 then an iterated

integral over W is ∫
1

0
∫

√

1−x2

0
∫

√

1−x2−y2

0
f dz dy dx.

84. The iterated integrals ∫
1

0
∫

1−x

0
∫

1−x−y

0
f dz dy dx and

∫
1

0
∫

1−z

0
∫

1−y−z

0
f dx dy dz are equal.

85. The iterated integrals ∫
1

−1
∫

1

0
∫

1−x2

0
f dz dy dx and

∫
1

0
∫

1

0
∫

√

1−z

−
√

1−z
f dx dy dz are equal.

86. If W is a rectangular solid in 3-space, then ∫
W
f dV =

∫
b

a
∫

d

c
∫

k

e
fdz dy dx, where a, b, c, d, e, and k are con-

stants.

87. If W is the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

and ∫
W
f dV = 0, then f = 0 everywhere in the unit

cube.

88. If f > g at all points in the solid region W , then

∫
W
f dV > ∫

W
g dV .

89. If W1 and W2 are solid regions with volume(W1) >

volume(W2) then ∫
W1

f dV > ∫
W2

f dV .

90. Both double and triple integrals can be used to compute

volume.
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16.4 DOUBLE INTEGRALS IN POLAR COORDINATES

Integration in Polar Coordinates

We started this chapter by putting a rectangular grid on the fox population density map, to estimate

the total population using a Riemann sum. However, sometimes a polar grid is more appropriate.

Example 1 A biologist studying insect populations around a circular lake divides the area into the polar sectors

of radii 2, 3, and 4 km in Figure 16.33. The approximate population density in each sector is shown

in millions per square km. Estimate the total insect population around the lake.

Shore of the lake

Lake

13

20
17

10

14

8

17
10

2 3 4

Figure 16.33: An insect-infested lake showing the insect population density by sector

Solution To get the estimate, we multiply the population density in each sector by the area of that sector.

Unlike the rectangles in a rectangular grid, the sectors in this grid do not all have the same area. The

inner sectors have area
1

4
(�32 − �22) =

5�

4
≈ 3.93 km2,

and the outer sectors have area

1

4
(�42 − �32) =

7�

4
≈ 5.50 km2,

so we estimate

Population ≈ (20)(3.93) + (17)(3.93) + (14)(3.93) + (17)(3.93)

+(13)(5.50) + (10)(5.50) + (8)(5.50) + (10)(5.50)

= 492.74 million insects.

What Is dA in Polar Coordinates?

The previous example used a polar grid rather than a rectangular grid. A rectangular grid is con-

structed from vertical and horizontal lines of the form x = k (a constant) and y = l (another con-

stant). In polar coordinates, r = k gives a circle of radius k centered at the origin and � = l gives a

ray emanating from the origin (at angle l with the x-axis). A polar grid is built out of these circles

and rays. Suppose we want to integrate f (r, �) over the region R in Figure 16.34.

Choosing (rij , �ij) in the ijth bent rectangle in Figure 16.34 gives a Riemann sum:
∑

i,j

f (rij , �ij) ΔA.

To calculate the area ΔA, look at Figure 16.35. If Δr and Δ� are small, the shaded region is approx-

imately a rectangle with sides rΔ� and Δr, so

ΔA ≈ rΔ�Δr.
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�0 = �

�n = �

r0 = a

rm = b

x

y

✠

R

Figure 16.34: Dividing up a region using a polar grid

❯
■

✛

✛

Δr

Δ�

☛
�

r

❨
Arc of circle
of radius r

rΔ�

✙
ΔA

x

y

Figure 16.35: Calculating area ΔA in polar coordinates

Thus, the Riemann sum is approximately
∑

i,j

f (rij , �ij) rij Δ�Δr.

If we take the limit as Δr and Δ� approach 0, we obtain

∫R
f dA =

∫

�

� ∫

b

a

f (r, �) r dr d�.

When computing integrals in polar coordinates, use x = r cos �, y = r sin �, x2 + y2 = r2. Put

dA = r dr d� or dA = r d� dr.

Example 2 Compute the integral of f (x, y) = 1∕(x2 + y2)3∕2 over the region R shown in Figure 16.36.

�

4

x

y

1 2

R

Figure 16.36: Integrate f over the polar region

Solution The region R is described by the inequalities 1 ≤ r ≤ 2, 0 ≤ � ≤ �∕4. In polar coordinates,

r =
√

x2 + y2, so we can write f as

f (x, y) =
1

(x2 + y2)3∕2
=

1

(r2)3∕2
=

1

r3
.

Then

∫R
f dA =

∫

�∕4

0 ∫

2

1

1

r3
r dr d� =

∫

�∕4

0

(

∫

2

1

r−2 dr

)

d�

=
∫

�∕4

0

−
1

r

|

|

|

|

r=2

r=1

d� =
∫

�∕4

0

1

2
d� =

�

8
.
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Example 3 For each region in Figure 16.37, decide whether to integrate using polar or Cartesian coordinates.

On the basis of its shape, write an iterated integral of an arbitrary function f (x, y) over the region.

1 3

−1

1

2

x

y(a)

−3 3

−3

3

x

y(b)

2
−1

1

2

3

x

y(c)

1

2

−2 −1
x

y(d)

Figure 16.37

Solution (a) Since this is a rectangular region, Cartesian coordinates are likely to be a better choice. The

rectangle is described by the inequalities 1 ≤ x ≤ 3 and −1 ≤ y ≤ 2, so the integral is

∫

2

−1 ∫

3

1

f (x, y) dx dy.

(b) A circle is best described in polar coordinates. The radius is 3, so r goes from 0 to 3, and to

describe the whole circle, � goes from 0 to 2�. The integral is

∫

2�

0 ∫

3

0

f (r cos �, r sin �) r dr d�.

(c) The bottom boundary of this trapezoid is the line y = (x∕2) − 1 and the top is the line y = 3,

so we use Cartesian coordinates. If we integrate with respect to y first, the lower limit of the

integral is (x∕2) − 1 and the upper limit is 3. The x limits are x = 0 to x = 2. So the integral is

∫

2

0 ∫

3

(x∕2)−1

f (x, y) dy dx.

(d) This is another polar region: it is a piece of a ring in which r goes from 1 to 2. Since it is in the

second quadrant, � goes from �∕2 to �. The integral is

∫

�

�∕2 ∫

2

1

f (r cos �, r sin �) r dr d�.

Summary for Section 16.4

• When computing ∫
R
f (x, y) dA in polar coordinates:

◦ Convert the integrand to r, � by using x = r cos �, y = r sin �, x2 + y2 = r2.

◦ Put dA = r dr d� or dA = r d� dr.



16.4 DOUBLE INTEGRALS IN POLAR COORDINATES 919

Exercises and Problems for Section 16.4 Online Resource: Additional Problems for Section 16.4
EXERCISES

For the regions R in Exercises 1–4, write ∫
R
f dA as an it-

erated integral in polar coordinates.

1. y

x

0.5

0.5

2.
√

2

−
√

2

−
√

2
√

2

x

y

3.

−1 1

2

x

y 4.

1

2

−2 −1
x

y

In Exercises 5–8, choose rectangular or polar coordinates to

set up an iterated integral of an arbitrary function f (x, y)

over the region.

5.

1 5

2

4

x

y 6.

−5 5

−5

5

x

y

7. −4 −2 2 4

−4

−2

x
y 8.

2

1

3

5

x

y

Sketch the region of integration in Exercises 9–15.

9.
∫

4

0 ∫

�∕2

−�∕2

f (r, �) r d� dr

10.
∫

�

�∕2 ∫

1

0

f (r, �) r dr d�

11.
∫

2�

0 ∫

2

1

f (r, �) r dr d�

12.
∫

�∕3

�∕6 ∫

1

0

f (r, �) r dr d�

13.
∫

�∕4

0 ∫

1∕ cos �

0

f (r, �) r dr d�

14.
∫

4

3 ∫

3�∕2

3�∕4

f (r, �) r d� dr

15.
∫

�∕2

�∕4 ∫

2∕ sin �

0

f (r, �) r dr d�

PROBLEMS

In Problems 16–18, evaluate the integral.

16. ∫
R

√

x2 + y2 dxdy where R is 4 ≤ x2 + y2 ≤ 9.

17. ∫
R
sin(x2 + y2) dA, where R is the disk of radius 2 cen-

tered at the origin.

18. ∫
R
(x2−y2) dA, where R is the first quadrant region be-

tween the circles of radius 1 and radius 2.

Convert the integrals in Problems 19–21 to polar coordinates

and evaluate.

19.
∫

0

−1 ∫

√

1−x2

−
√

1−x2
xdy dx 20.

∫

√

6

0 ∫

x

−x

dy dx

21.
∫

√

2

0 ∫

√

4−y2

y

xy dx dy

Problems 22–26 concern Figure 16.38, which shows regions

R1, R2, and R3 contained in the semicircle x2 + y2 = 4 with

y ≥ 0.

−2 −1 2

2

R1 R2

R3

✛ √

3x + y = 0

✠
x2 + y2 = 4

x

y

Figure 16.38

22. In Cartesian coordinates, write ∫
R1

2y dA as an iterated

integral in two different ways and then evaluate it.

23. In Cartesian coordinates, write ∫
R2

2y dA as an iterated

integral in two different ways.

24. Evaluate ∫
R3
(x2 + y2) dA.

25. Evaluate ∫
R
12y dA, where R is the region formed by

combining the regions R1 and R2.

26. Evaluate ∫
S
xdA, where S is the region formed by

combining the regions R2 and R3.
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27. Consider the integral ∫
3

0
∫

1

x∕3
f (x, y) dy dx.

(a) Sketch the region R over which the integration is

being performed.

(b) Rewrite the integral with the order of integration

reversed.

(c) Rewrite the integral in polar coordinates.

28. Describe the region of integration for ∫
�∕2

�∕4
∫

4∕ sin �

1∕ sin �
f (r, �)r dr d�.

29. Evaluate the integral by converting it into Cartesian co-

ordinates:

∫

�∕6

0 ∫

2∕ cos �

0

r dr d�.

30. (a) Sketch the region of integration of

∫

1

0 ∫

√

4−x2

√

1−x2
x dy dx +

∫

2

1 ∫

√

4−x2

0

xdy dx

(b) Evaluate the quantity in part (a).

31. Find the volume of the region between the graph of

f (x, y) = 25 − x2 − y2 and the xy plane.

32. Find the volume of an ice cream cone bounded by

the hemisphere z =
√

8 − x2 − y2 and the cone z =
√

x2 + y2.

33. (a) For a > 0, find the volume under the graph of

z = e−(x
2+y2) above the disk x2 + y2 ≤ a2.

(b) What happens to the volume as a → ∞?

34. A circular metal disk of radius 3 lies in the xy-plane

with its center at the origin. At a distance r from the ori-

gin, the density of the metal per unit area is � =
1

r2 + 1
.

(a) Write a double integral giving the total mass of the

disk. Include limits of integration.

(b) Evaluate the integral.

35. A city surrounds a bay as shown in Figure 16.39. The

population density of the city (in thousands of people

per square km) is �(r, �), where r and � are polar coor-

dinates and distances are in km.

(a) Set up an iterated integral in polar coordinates giv-

ing the total population of the city.

(b) The population density decreases the farther you

live from the shoreline of the bay; it also decreases

the farther you live from the ocean. Which of the

following functions best describes this situation?

(i) �(r, �) = (4 − r)(2 + cos �)

(ii) �(r, �) = (4 − r)(2 + sin �)

(iii) �(r, �) = (r + 4)(2 + cos �)

(c) Estimate the population using your answers to

parts (a) and (b).

City

■
Bay

x (km)

y (km)

Ocean

1

4

Figure 16.39

36. A disk of radius 5 cm has density 10 gm/cm2 at its cen-

ter and density 0 at its edge, and its density is a linear

function of the distance from the center. Find the mass

of the disk.

37. Electric charge is distributed over the xy-plane, with

density inversely proportional to the distance from the

origin. Show that the total charge inside a circle of ra-

dius R centered at the origin is proportional to R. What

is the constant of proportionality?

38. (a) Graph r = 1∕(2 cos �) for −�∕2 ≤ � ≤ �∕2 and

r = 1.

(b) Write an iterated integral representing the area in-

side the curve r = 1 and to the right of r =

1∕(2 cos �). Evaluate the integral.

39. (a) Sketch the circles r = 2 cos � for −�∕2 ≤ � ≤ �∕2

and r = 1.

(b) Write an iterated integral representing the area in-

side the circle r = 2 cos � and outside the circle

r = 1. Evaluate the integral.

Strengthen Your Understanding

In Problems 40–44, explain what is wrong with the state-

ment.

40. If R is the region bounded by x = 1, y = 0, y = x, then

in polar coordinates ∫
R
x dA = ∫

�∕4

0
∫

1

0
r2 cos � dr d�.

41. If R is the region x2 + y2 ≤ 4, then ∫
R
(x2 + y2) dA =

∫
2�

0
∫

2

0
r2 dr d�.

42. ∫
1

0
∫

1

0

√

x2 + y2 dy dx = ∫
�∕2

0
∫

1

0
r2 dr d�

43. ∫
2

1
∫

√

4−x2

0
1dy dx = ∫

�∕2

0
∫

2

1
r dr d�

44. ∫
1

0
∫

�

0
r dr d� = ∫

�

0
∫

1

0
r dr d�

In Problems 45–48, give an example of:

45. A region R of integration in the first quadrant which

suggests the use of polar coordinates.

46. An integrand f (x, y) that suggests the use of polar co-

ordinates.
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47. A function f (x, y) such that ∫
R
f (x, y) dy dx in polar

coordinates has an integrand without a factor of r.

48. A region R such that ∫
R
f (x, y) dA must be broken into

two integrals in Cartesian coordinates, but only needs

one integral in polar coordinates.

49. Which of the following integrals give the area of the

unit circle?

(a)
∫

1

−1 ∫

√

1−x2

−
√

1−x2
dy dx (b)

∫

1

−1 ∫

√

1−x2

−
√

1−x2
x dy dx

(c)
∫

2�

0 ∫

1

0

r dr d� (d)
∫

2�

0 ∫

1

0

dr d�

(e)
∫

1

0 ∫

2�

0

r d� dr (f)
∫

1

0 ∫

2�

0

d� dr

Are the statements in Problems 50–55 true or false? Give

reasons for your answer.

50. The integral ∫
2�

0
∫

1

0
dr d� gives the area of the unit cir-

cle.

51. The quantity 8 ∫
7

5
∫

�∕4

0
r d� dr gives the area of a ring

with radius between 5 and 7.

52. Let R be the region inside the semicircle x2 + y2 = 9

with y ≥ 0. Then ∫
R
(x + y) dA = ∫

�

0
∫

3

0
r dr d�.

53. The integrals ∫
�

0
∫

1

0
r2 cos � dr d� and 2 ∫

�∕2

0
∫

1

0
r2 cos � dr d�

are equal.

54. The integral ∫
�∕4

0
∫

1∕ cos �

0
r dr d� gives the area of the

region 0 ≤ x ≤ 1, 0 ≤ y ≤ x.

55. The integral ∫
2�

0
∫

1

0
r3 dr d� gives the area of the unit

circle.

16.5 INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES

Some double integrals are easier to evaluate in polar, rather than Cartesian, coordinates. Similarly,

some triple integrals are easier in non-Cartesian coordinates.

Cylindrical Coordinates

The cylindrical coordinates of a point (x, y, z) in 3-space are obtained by representing the x and y

coordinates in polar coordinates and letting the z-coordinate be the z-coordinate of the Cartesian

coordinate system. (See Figure 16.40.)

Relation Between Cartesian and Cylindrical Coordinates

Each point in 3-space is represented using 0 ≤ r < ∞, 0 ≤ � ≤ 2�, −∞ < z < ∞.

x = r cos �,

y = r sin �,

z = z.

As with polar coordinates in the plane, note that x2 + y2 = r2.

x

y

z

� r

(r, �, 0)

P = (r, �, z)

z

Figure 16.40: Cylindrical

coordinates: (r, �, z)
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A useful way to visualize cylindrical coordinates is to sketch the surfaces obtained by setting

one of the coordinates equal to a constant. See Figures 16.41–16.43.

x y

z

✠

r = 1

✲r = 2

Figure 16.41: The surfaces r = 1 and

r = 2

Figure 16.42: The surfaces � = �∕4

and � = 3�∕4

Figure 16.43: The surfaces z = −1 and

z = 3

Setting r = c (where c is constant) gives a cylinder around the z-axis whose radius is c. Setting

� = c gives a half-plane perpendicular to the xy plane, with one edge along the z-axis, making an

angle c with the x-axis. Setting z = c gives a horizontal plane |c| units from the xy-plane. We call

these fundamental surfaces.

The regions that can most easily be described in cylindrical coordinates are those regions whose

boundaries are such fundamental surfaces (for example, vertical cylinders, or wedge-shaped parts of

vertical cylinders).

Example 1 Describe in cylindrical coordinates a wedge of cheese cut from a cylinder 4 cm high and 6 cm in

radius; this wedge subtends an angle of �∕6 at the center. (See Figure 16.44.)

Solution The wedge is described by the inequalities 0 ≤ r ≤ 6, and 0 ≤ z ≤ 4, and 0 ≤ � ≤ �∕6.

Integration in Cylindrical Coordinates

To integrate a double integral ∫
R
f dA in polar coordinates, we had to express the area element dA

in terms of polar coordinates: dA = r dr d�. To evaluate a triple integral ∫
W

f dV in cylindrical

coordinates, we need to express the volume element dV in cylindrical coordinates.

In Figure 16.45, consider the volume element ΔV bounded by fundamental surfaces. The area

of the base is ΔA ≈ rΔrΔ�. Since the height is Δz, the volume element is given approximately by

ΔV ≈ rΔrΔ�Δz.

x

y

z

4 cm

6 cm
✛ �

6

Figure 16.44: A wedge of cheese

✛ ΔV

Δ�

✛

✛

✻

❄
Δz

✻

❄

z

✛ ✛✛ ✛rΔ� Δr

r

z

x

y

Figure 16.45: Volume element in cylindrical coordinates
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When computing integrals in cylindrical coordinates, put dV = r dr d� dz. Other orders of

integration are also possible.

Example 2 Find the mass of the wedge of cheese in Example 1, if its density is 1.2 grams/cm3.

Solution If the wedge is W , its mass is

∫W
1.2 dV .

In cylindrical coordinates this integral is

∫

4

0 ∫

�∕6

0 ∫

6

0

1.2 r dr d� dz =
∫

4

0 ∫

�∕6

0

0.6r2
|

|

|

|

6

0

d� dz = 21.6
∫

4

0 ∫

�∕6

0

d� dz

= 21.6
(

�

6

)

4 = 45.239 grams.

Example 3 A water tank in the shape of a hemisphere has radius a; its base is its plane face. Find the volume,

V , of water in the tank as a function of ℎ, the depth of the water.

Solution In Cartesian coordinates, a sphere of radius a has the equation x2+y2+z2 = a2. (See Figure 16.46.)

In cylindrical coordinates, r2 = x2 + y2, so this becomes

r2 + z2 = a2.

Thus, if we want to describe the amount of water in the tank in cylindrical coordinates, we let r go

from 0 to
√

a2 − z2, we let � go from 0 to 2�, and we let z go from 0 to ℎ, giving

Volume

of water
=
∫W

1 dV =
∫

2�

0 ∫

ℎ

0 ∫

√

a2−z2

0

r dr dz d� =
∫

2�

0 ∫

ℎ

0

r2

2

|

|

|

|

r=
√

a2−z2

r=0

dz d�

=
∫

2�

0 ∫

ℎ

0

1

2
(a2 − z2) dz d� =

∫

2�

0

1

2

(

a2z −
z3

3

)

|

|

|

|

z=ℎ

z=0

d�

=
∫

2�

0

1

2

(

a2ℎ −
ℎ3

3

)

d� = �

(

a2ℎ −
ℎ3

3

)

.

x

z

✻

❄

ℎ

✛

✛

r

r2 + z2 = a2

Figure 16.46: Hemispherical water tank with radius a and water of depth ℎ
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Spherical Coordinates
In Figure 16.47, the point P has coordinates (x, y, z) in the Cartesian coordinate system. We define

spherical coordinates �, �, and � for P as follows: � =
√

x2 + y2 + z2 is the distance of P from the

origin; � is the angle between the positive z-axis and the line through the origin and the point P ;

and � is the same as in cylindrical coordinates.

Figure 16.47: Spherical coordinates: (�,�, �)

In cylindrical coordinates,

x = r cos �, and y = r sin �, and z = z.

From Figure 16.47 we have z = � cos� and r = � sin�, giving the following relationship:

Relation Between Cartesian and Spherical Coordinates

Each point in 3-space is represented using 0 ≤ � < ∞, 0 ≤ � ≤ �, and 0 ≤ � ≤ 2�.

x = � sin� cos �

y = � sin� sin �

z = � cos�.

Also, �2 = x2 + y2 + z2.

This system of coordinates is useful when there is spherical symmetry with respect to the ori-

gin, either in the region of integration or in the integrand. The fundamental surfaces in spherical

coordinates are � = k (a constant), which is a sphere of radius k centered at the origin, � = k (a

constant), which is the half-plane with its edge along the z-axis, and � = k (a constant), which is a

cone if k ≠ �∕2 and the xy-plane if k = �∕2. (See Figures 16.48–16.50.)

Figure 16.48: The surfaces

� = 1 and � = 2

Figure 16.49: The surfaces � = �∕4

and � = 3�∕4

Figure 16.50: The surfaces � = �∕6 and

� = 2�∕3
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Integration in Spherical Coordinates

To use spherical coordinates in triple integrals we need to express the volume element, dV , in spher-

ical coordinates. From Figure 16.51, we see that the volume element can be approximated by a box

with curved edges. One edge has length Δ�. The edge parallel to the xy-plane is an arc of a cir-

cle made from rotating the cylindrical radius r (= � sin�) through an angle Δ�, and so has length

� sin�Δ�. The remaining edge comes from rotating the radius � through an angle Δ�, and so has

length �Δ�. Therefore, ΔV ≈ Δ�(�Δ�)(� sin�Δ�) = �2 sin�Δ�Δ�Δ�.

x

y

z

❘
Δ�

Δ�

✠

�Δ�
� sin�Δ�

■
Δ�

�

�

❄

✛

✛

�

✛

✛� sin�

Figure 16.51: Volume element in spherical coordinates

Thus:

When computing integrals in spherical coordinates, put dV = �2 sin�d� d� d�. Other orders

of integration are also possible.

Example 4 Use spherical coordinates to derive the formula for the volume of a ball of radius a.

Solution In spherical coordinates, a ball of radius a is described by the inequalities 0 ≤ � ≤ a, 0 ≤ � ≤ 2�,

and 0 ≤ � ≤ �. Note that � goes from 0 to 2�, whereas � goes from 0 to �. We find the volume by

integrating the constant density function 1 over the ball:

Volume =
∫R

1 dV =
∫

2�

0 ∫

�

0 ∫

a

0

�2 sin�d� d� d� =
∫

2�

0 ∫

�

0

1

3
a3 sin�d� d�

=
1

3
a3

∫

2�

0

− cos�
|

|

|

|

�

0

d� =
2

3
a3

∫

2�

0

d� =
4�a3

3
.

Example 5 Find the magnitude of the gravitational force exerted by a solid hemisphere of radius a and constant

density � on a unit mass located at the center of the base of the hemisphere.

Solution Assume the base of the hemisphere rests on the xy-plane with center at the origin. (See Figure 16.52.)

Newton’s law of gravitation says that the force between two masses m1 and m2 at a distance r apart

is F = Gm1m2∕r
2, where G is the gravitational constant.

In this example, symmetry shows that the net component of the force on the particle at the origin

due to the hemisphere is in the z direction only. Any force in the x or y direction from some part of

the hemisphere is canceled by the force from another part of the hemisphere directly opposite the

first.

To compute the net z-component of the gravitational force, we imagine a small piece of the

hemisphere with volume ΔV , located at spherical coordinates (�, �, �). This piece has mass �ΔV
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and exerts a force of magnitude F on the unit mass at the origin. The z-component of this force

is given by its projection onto the z-axis, which can be seen from the figure to be F cos�. The

distance from the mass �ΔV to the unit mass at the origin is the spherical coordinate �. Therefore,

the z-component of the force due to the small piece ΔV is

z-component

of force
=

G(�ΔV )(1)

�2
cos�.

Adding the contributions of the small pieces, we get a vertical force with magnitude

F =
∫

2�

0 ∫

�∕2

0 ∫

a

0

(

G�

�2

)

(cos�)�2 sin�d� d� d� =
∫

2�

0 ∫

�∕2

0

G�(cos� sin�)�
|

|

|

|

�=a

�=0

d�d�

=
∫

2�

0 ∫

�∕2

0

G�a cos� sin�d� d� =
∫

2�

0

G�a

(

−
(cos�)2

2

)

|

|

|

|

�=�∕2

�=0

d�

=
∫

2�

0

G�a

(

1

2

)

d� = G�a�.

The integral in this example is improper because the region of integration contains the origin, where

the force is undefined. However, it can be shown that the result is nevertheless correct.

x

y

z

✠
ΔV

�

✛ ✛a✒

Unit mass

✲z-component
of force

✛ Force, F , due
to mass �dV

Figure 16.52: Gravitational force of hemisphere on mass at origin

Summary for Section 16.5

• In cylindrical coordinates, each point in 3-space is represented using 0 ≤ r < ∞, 0 ≤ � ≤ 2�,

−∞ < z < ∞:

x = r cos �,

y = r sin �,

z = z

with x2 + y2 = r2.

• When computing triple integrals in cylindrical coordinates, convert the integrand to be in

terms of r, �, z and put dV = r dr d� dz.

• In spherical coordinates, each point in 3-space is represented using 0 ≤ � < ∞, 0 ≤ � ≤ �,

and 0 ≤ � ≤ 2�:

x = � sin� cos�

y = � sin� sin �

z = � cos�

with �2 = x2 + y2 + z2.

• When computing triple integrals in spherical coordinates, convert the integrand to be in terms

of �, �, � and put dV = �2 sin�d� d� d�.
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Exercises and Problems for Section 16.5 Online Resource: Additional Problems for Section 16.5
EXERCISES

1. Match the equations in (a)–(f) with one of the surfaces

in (I)–(VII).

(a) x = 5 (b) x2 + z2 = 7 (c) � = 5

(d) z = 1 (e) r = 3 (f) � = 2�

(I) Cylinder, centered on x-axis.

(II) Cylinder, centered on y-axis.

(III) Cylinder, centered on z-axis.

(IV) Plane, perpendicular to the x-axis.

(V) Plane, perpendicular to the y-axis.

(VI) Plane, perpendicular to the z-axis.

(VII) Sphere.

In Exercises 2–7, find an equation for the surface.

2. The vertical plane y = x in cylindrical coordinates.

3. The top half of the sphere x2+y2+z2 = 1 in cylindrical

coordinates.

4. The cone z =
√

x2 + y2 in cylindrical coordinates.

5. The cone z =
√

x2 + y2 in spherical coordinates.

6. The plane z = 10 in spherical coordinates.

7. The plane z = 4 in spherical coordinates.

8. (a) In words, what are the shapes of the surfaces

z =
√

x2 + y2 and x2 + y2 + z2 = 1?

(b) Write the equations of these surfaces in cylindrical

coordinates.

(c) In words, describe the intersection of the surfaces.

(d) Write the equation of the intersection in cylindrical

coordinates.

(e) Write the equation of the intersection in Cartesian

coordinates.

9. (a) In words, what are the shapes of the surfaces

z =
√

x2 + y2 and z = 6 −
√

x2 + y2?

(b) Write the equations of these surfaces in cylindrical

coordinates.

(c) In words, describe the intersection of the surfaces.

(d) Write the equation of the intersection in cylindrical

coordinates.

(e) Write the equation of the intersection in Cartesian

coordinates.

In Exercises 10–11, evaluate the triple integrals in cylindri-

cal coordinates over the region W .

10. f (x, y, z) = sin(x2 + y2), W is the solid cylinder with

height 4 and with base of radius 1 centered on the z axis

at z = −1.

11. f (x, y, z) = x2 + y2 + z2, W is the region 0 ≤ r ≤ 4,

�∕4 ≤ � ≤ 3�∕4, −1 ≤ z ≤ 1.

In Exercises 12–13, evaluate the triple integrals in spherical

coordinates.

12. f (�, �, �) = sin�, over the region 0 ≤ � ≤ 2�,

0 ≤ � ≤ �∕4, 1 ≤ � ≤ 2.

13. f (x, y, z) = 1∕(x2 + y2 + z2)1∕2 over the bottom half of

the sphere of radius 5 centered at the origin.

For Exercises 14–20, choose coordinates and set up a triple

integral, including limits of integration, for a density func-

tion f over the region.

14. 15.

16. 17.

18. A piece of a sphere; angle at the center is �∕3.
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19. 20.

PROBLEMS

In Problems 21–23, if W is the region in Figure 16.53, what

are the limits of integration?

x

y

z

4

(2, 0, 4)

Figure 16.53: Cone with flat top,

symmetric about z-axis

21.
∫

?

? ∫

?

? ∫

?

?

f (r, �, z)r dz dr d�

22.
∫

?

? ∫

?

? ∫

?

?

g(�, �, �)�2 sin�d� d� d�

23.
∫

?

? ∫

?

? ∫

?

?

ℎ(x, y, z) dz dy dx

24. Write a triple integral in cylindrical coordinates giving

the volume of a sphere of radius K centered at the ori-

gin. Use the order dz dr d�.

25. Write a triple integral in spherical coordinates giving

the volume of a sphere of radius K centered at the ori-

gin. Use the order d� d� d�.

In Problems 26–28, for the regions W shown, write the lim-

its of integration for ∫
W

dV in the following coordinates:

(a) Cartesian (b) Cylindrical (c) Spherical

26.

x

One-eighth sphere

y

z

1

1

−1

27.

x

y

z

1

Cone, topped by sphere
of radius 1 centered at origin, 90◦ at vertex

28.

x
y

z

1∕
√

2

Cone, flat on top,
�∕2 at vertex

29. Write a triple integral representing the volume above

the cone z =
√

x2 + y2 and below the sphere of radius

2 centered at the origin. Include limits of integration but

do not evaluate. Use:

(a) Cylindrical coordinates

(b) Spherical coordinates

30. Write a triple integral representing the volume of the

region between spheres of radius 1 and 2, both centered

at the origin. Include limits of integration but do not

evaluate. Use:

(a) Spherical coordinates.

(b) Cylindrical coordinates. Write your answer as the

difference of two integrals.
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In Problems 31–36, write a triple integral including limits of

integration that gives the specified volume.

31. Under � = 3 and above � = �∕3.

32. Under � = 3 and above z = r.

33. The region between z = 5 and z = 10, with 2 ≤

x2 + y2 ≤ 3 and 0 ≤ � ≤ �.

34. Between the cone z =
√

x2 + y2 and the first quadrant

of the xy-plane, with x2 + y2 ≤ 7.

35. The cap of the solid sphere x2 + y2 + z2 ≤ 10 cut off by

the plane z = 1.

36. Below the cone z = r, above the xy-plane, and inside

the sphere x2 + y2 + z2 = 8.

37. (a) Write an integral (including limits of integration)

representing the volume of the region inside the

cone z =
√

3(x2 + y2) and below the plane z = 1.

(b) Evaluate the integral.

38. Find the volume between the cone z =
√

x2 + y2 and

the plane z = 10 + x above the disk x2 + y2 ≤ 1.

39. Find the volume between the cone x =
√

y2 + z2 and

the sphere x2 + y2 + z2 = 4.

40. The sphere of radius 2 centered at the origin is sliced

horizontally at z = 1. What is the volume of the cap

above the plane z = 1?

41. Suppose W is the region outside the cylinder x2+y2 =

1 and inside the sphere x2 + y2 + z2 = 2. Calculate

∫
W

(x2 + y2) dV .

42. Write and evaluate a triple integral representing the vol-

ume of a slice of the cylindrical cake of height 2 and

radius 5 between the planes � = �∕6 and � = �∕3.

43. Write a triple integral representing the volume of the

cone in Figure 16.54 and evaluate it.

✛

✛

5 cm

✲✛ 5∕
√

2 cm

Figure 16.54

44. Find the average distance from the origin of

(a) The points in the interval |x| ≤ 12.

(b) The points in the plane in the disc r ≤ 12.

(c) The points in space in the ball � ≤ 12.

In Problems 45–46, without performing the integration, de-

cide whether the integral is positive, negative, or zero.

45. W1 is the unit ball, x2 + y2 + z2 ≤ 1.

(a) ∫
W1

sin�dV (b) ∫
W1

cos�dV

46. W2 is 0 ≤ z ≤
√

1 − x2 − y2, the top half of the unit

ball.

(a) ∫
W2
(z2 − z) dV (b) ∫

W2
(−xz) dV

47. The insulation surrounding a pipe of length l is the re-

gion between two cylinders with the same axis. The in-

ner cylinder has radius a, the outer radius of the pipe,

and the insulation has thickness ℎ. Write a triple inte-

gral, including limits of integration, giving the volume

of the insulation. Evaluate the integral.

48. Assume p, q, r are positive constants. Find the volume

contained between the coordinate planes and the plane

x

p
+

y

q
+

z

r
= 1.

49. A cone stands with its flat base on a table. The cone’s

circular base has radius a; the vertex (tip) is at a height

of ℎ above the center of the base. Write a triple integral,

including limits of integration, representing the volume

of the cone. Evaluate the integral.

50. A half-melon is approximated by the region between

two concentric spheres, one of radius a and the other

of radius b, with 0 < a < b. Write a triple integral, in-

cluding limits of integration, giving the volume of the

half-melon. Evaluate the integral.

51. A bead is made by drilling a cylindrical hole of ra-

dius 1 mm through a sphere of radius 5 mm. See Fig-

ure 16.55.

(a) Set up a triple integral in cylindrical coordinates

representing the volume of the bead.

(b) Evaluate the integral.

✲✛
5 mm

✲✛❄

1 mm

Figure 16.55
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52. A pile of hay is in the region 0 ≤ z ≤ 2−x2−y2, where

x, y, z are in meters. At height z, the density of the hay

is � = (2 − z) kg/m3.

(a) Write an integral representing the mass of hay in

the pile.

(b) Evaluate the integral.

53. Find the mass M of the solid region W given in spher-

ical coordinates by 0 ≤ � ≤ 3, 0 ≤ � < 2�, 0 ≤ � ≤

�∕4. The density, �(P ), at any point P is given by the

distance of P from the origin.

54. Write an integral representing the mass of a sphere of

radius 3 if the density of the sphere at any point is twice

the distance of that point from the center of the sphere.

55. A sphere has density at each point proportional to the

square of the distance of the point from the z-axis. The

density is 2 gm∕cm3 at a distance of 2 cm from the axis.

What is the mass of the sphere if it is centered at the ori-

gin and has radius 3 cm?

56. The density of a solid sphere at any point is proportional

to the square of the distance of the point to the center

of the sphere. What is the ratio of the mass of a sphere

of radius 1 to a sphere of radius 2?

57. A spherical shell centered at the origin has an inner ra-

dius of 6 cm and an outer radius of 7 cm. The density, �,

of the material increases linearly with the distance from

the center. At the inner surface, � = 9 gm/cm3; at the

outer surface, � = 11 gm/cm3.

(a) Using spherical coordinates, write the density, �,

as a function of radius, �.

(b) Write an integral giving the mass of the shell.

(c) Find the mass of the shell.

58. (a) Write an iterated integral which represents the

mass of a solid ball of radius a. The density at each

point in the ball is k times the distance from that

point to a fixed plane passing through the center of

the ball.

(b) Evaluate the integral.

59. In the region under z = 4 − x2 − y2 and above the xy-

plane the density of a gas is � = e−x−ygm/cm3, where

x, y, z are in cm. Write an integral, with limits of inte-

gration, representing the mass of the gas.

60. The density, �, of the cylinder x2 + y2 ≤ 4, 0 ≤ z ≤ 3

varies with the distance, r, from the z-axis:

� = 1 + r gm∕cm3
.

Find the mass of the cylinder if x, y, z are in cm.

61. The density of material at a point in a solid cylinder is

proportional to the distance of the point from the z-axis.

What is the ratio of the mass of the cylinder x2+y2 ≤ 1,

0 ≤ z ≤ 2 to the mass of the cylinder x2 + y2 ≤ 9,

0 ≤ z ≤ 2?

62. Electric charge is distributed throughout 3-space, with

density proportional to the distance from the xy-plane.

Show that the total charge inside a cylinder of radius R

and height ℎ, sitting on the xy-plane and centered along

the z-axis, is proportional to R2ℎ2.

63. Electric charge is distributed throughout 3-space with

density inversely proportional to the distance from the

origin. Show that the total charge inside a sphere of ra-

dius R is proportional to R2.

For Problems 64–67, use the definition of center of mass

given on page 915. Assume x, y, z are in cm.

64. Let C be a solid cone with both height and radius 1

and contained between the surfaces z =
√

x2 + y2 and

z = 1. If C has constant mass density of 1 gm/cm3, find

the z-coordinate of C’s center of mass.

65. The density of the cone C in Problem 64 is given by

�(z) = z2 gm/cm3. Find

(a) The mass of C .

(b) The z-coordinate of C’s center of mass.

66. For a > 0, consider the family of solids bounded be-

low by the paraboloid z = a(x2 + y2) and above by the

plane z = 1. If the solids all have constant mass density

1 gm/cm3, show that the z-coordinate of the center of

mass is 2∕3 and so independent of the parameter a.

67. Find the location of the center of mass of a hemisphere

of radius a and density b gm/cm3.

Strengthen Your Understanding

In Problems 68–70, explain what is wrong with the state-

ment.

68. The integral
∫

2�

0 ∫

�

0 ∫

1

0

1 d� d� d� gives the volume

inside the sphere of radius 1.

69. Changing the order of integration gives

∫

2�

0 ∫

�∕4

0 ∫

2∕ cos�

0

�2 sin�d� d� d�

=
∫

2∕ cos�

0 ∫

�∕4

0 ∫

2�

0

�2 sin�d� d� d�.

70. The volume of a cylinder of height and radius 1 is

∫

2�

0 ∫

1

0 ∫

1

0

1 dzdr d�.
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In Problems 71–72, give an example of:

71. An integral in spherical coordinates that gives the vol-

ume of a hemisphere.

72. An integral for which it is more convenient to use spher-

ical coordinates than to use Cartesian coordinates.

73. Which of the following integrals give the volume of the

unit sphere?

(a)
∫

2�

0 ∫

2�

0 ∫

1

0

1 d� d� d�

(b)
∫

�

0 ∫

2�

0 ∫

1

0

1 d� d� d�

(c)
∫

�

0 ∫

2�

0 ∫

1

0

�2 sin� d� d� d�

(d)
∫

�

0 ∫

2�

0 ∫

1

0

�2 sin� d� d� d�

(e)
∫

�

0 ∫

2�

0 ∫

1

0

� d� d� d�

16.6 APPLICATIONS OF INTEGRATION TO PROBABILITY

To represent how a quantity such as height or weight is distributed throughout a population, we use

a density function. To study two or more quantities at the same time and see how they are related,

we use a multivariable density function.

Density Functions

Distribution of Weight and Height in Expectant Mothers

Table 16.10 shows the distribution of weight and height in a survey of expectant mothers. The his-

togram in Figure 16.56 is constructed so that the volume of each bar represents the percentage in the

corresponding weight and height range. For example, the bar representing the mothers who weighed

60–70 kg and were 160–165 cm tall has base of area 10 kg ⋅ 5 cm = 50 kg cm. The volume of this

bar is 12%, so its height is 12%∕50 kg cm = 0.24%∕ kg cm. Notice that the units on the vertical axis

are % per kg cm, so the volume of a bar is a %. The total volume is 100% = 1.

Table 16.10 Distribution of weight and height in a survey of expectant mothers, in %

45-50 kg 50-60 kg 60-70 kg 70-80 kg 80-105 kg Totals by height

150-155 cm 2 4 4 2 1 13

155-160 cm 0 12 8 2 1 23

160-165 cm 1 7 12 4 3 27

165-170 cm 0 8 12 6 2 28

170-180 cm 0 1 3 4 1 9

Totals by weight 3 32 39 18 8 100

0.05%

0.10%

0.15%

0.20%

0.25%

45

65

85

105
150

155
160

165
170

175
180kg

cm

percent

per kg cm

Figure 16.56: Histogram representing the data in Table 16.10
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Example 1 Find the percentage of mothers in the survey with height between 170 and 180 cm.

Solution We add the percentages across the row corresponding to the 170–180 cm height range; this is equiv-

alent to adding the volumes of the corresponding rectangular solids in the histogram.

Percentage of mothers = 0 + 1 + 3 + 4 + 1 = 9%.

Smoothing the Histogram

If we group the data using narrower weight and height groups (and a larger sample), we can draw

a smoother histogram and get finer estimates. In the limit, we replace the histogram with a smooth

surface, in such a way that the volume under the surface above a rectangle is the percentage of

mothers in that rectangle. We define a density function, p(w, ℎ), to be the function whose graph is

the smooth surface. It has the property that

Fraction of sample with

weight between a and b and

height between c and d

=

Volume under graph of p

over the rectangle

a ≤ w ≤ b, c ≤ ℎ ≤ d

=
∫

b

a ∫

d

c

p(w, ℎ) dℎ dw.

This density also gives the probability that a mother is in these height and weight groups.

Joint Probability Density Functions

We generalize this idea to represent any two characteristics, x and y, distributed throughout a popu-

lation.

A function p(x, y) is called a joint probability density function, or pdf, for x and y if

Probability that member of

population has x between a and b

and y between c and d

=

Volume under graph of p

above the rectangle

a ≤ x ≤ b, c ≤ y ≤ d

=
∫

b

a ∫

d

c

p(x, y) dy dx,

where

∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx = 1 and p(x, y) ≥ 0 for all x and y.

The probability that x falls in an interval of width Δx around x0 and y falls in an interval of

width Δy around y0 is approximately p(x0, y0)ΔxΔy.

A joint density function need not be continuous, as in Example 2. In addition, as in Example 4,

the integrals involved may be improper and must be computed by methods similar to those used for

improper one-variable integrals.

Example 2 Let p(x, y) be defined on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 by p(x, y) = x+ y; let p(x, y) = 0 if (x, y)

is outside this square. Check that p is a joint density function. In terms of the distribution of x and y

in the population, what does it mean that p(x, y) = 0 outside the square?

Solution First, we have p(x, y) ≥ 0 for all x and y. To check that p is a joint density function, we show that

the total volume under the graph is 1:

∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx =
∫

1

0 ∫

1

0

(x + y) dy dx

=
∫

1

0

(

xy +
y2

2

)

|

|

|

|

1

0

dx =
∫

1

0

(

x +
1

2

)

dx =

(

x2

2
+

x

2

)

|

|

|

|

1

0

= 1.
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The fact that p(x, y) = 0 outside the square means that the variables x and y never take values

outside the interval [0, 1]; that is, the value of x and y for any individual in the population is always

between 0 and 1.

Example 3 Two variables x and y are distributed in a population according to the density function of Example 2.

Find the fraction of the population with x ≤ 1∕2, the fraction with y ≤ 1∕2, and the fraction with

both x ≤ 1∕2 and y ≤ 1∕2.

Solution The fraction with x ≤ 1∕2 is the volume under the graph to the left of the line x = 1∕2:

∫

1∕2

0 ∫

1

0

(x + y) dy dx =
∫

1∕2

0

(

xy +
y2

2

)

|

|

|

|

1

0

dx =
∫

1∕2

0

(

x +
1

2

)

dx

=

(

x2

2
+

x

2

)

|

|

|

|

1∕2

0

=
1

8
+

1

4
=

3

8
.

Since the function and the regions of integration are symmetric in x and y, the fraction with y ≤ 1∕2

is also 3∕8. Finally, the fraction with both x ≤ 1∕2 and y ≤ 1∕2 is

∫

1∕2

0 ∫

1∕2

0

(x + y) dy dx =
∫

1∕2

0

(

xy +
y2

2

)

|

|

|

|

1∕2

0

dx =
∫

1∕2

0

(

1

2
x +

1

8

)

dx

=
(

1

4
x2 +

1

8
x

)

|

|

|

|

1∕2

0

=
1

16
+

1

16
=

1

8
.

Recall that a one-variable density function p(x) is a function such that p(x) ≥ 0 for all x, and

∫
∞

−∞
p(x) dx = 1.

Example 4 Let p1 and p2 be one-variable density functions for x and y, respectively. Check that p(x, y) =

p1(x)p2(y) is a joint density function.

Solution Since both p1 and p2 are density functions, they are nonnegative everywhere. Thus, their product

p1(x)p2(x) = p(x, y) is nonnegative everywhere. Now we must check that the volume under the

graph of p is 1. Since ∫
∞

−∞
p2(y) dy = 1 and ∫

∞

−∞
p1(x) dx = 1, we have

∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx =
∫

∞

−∞ ∫

∞

−∞

p1(x)p2(y) dy dx =
∫

∞

−∞

p1(x)

(

∫

∞

−∞

p2(y) dy

)

dx

=
∫

∞

−∞

p1(x)(1) dx =
∫

∞

−∞

p1(x) dx = 1.

Example 5 A machine in a factory is set to produce components 10 cm long and 5 cm in diameter. In fact, there

is a slight variation from one component to the next. A component is usable if its length and diameter

deviate from the correct values by less than 0.1 cm. With the length, x, in cm and the diameter, y, in

cm, the probability density function is

p(x, y) =
50

√

2

�
e−100(x−10)

2
e−50(y−5)

2
.
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What is the probability that a component is usable? (See Figure 16.57.)

Figure 16.57: The density function p(x, y) =
50

√

2

�
e−100(x−10)

2
e−50(y−5)

2

Solution We know that

Probability that x and y satisfy

x0 − Δx ≤ x ≤ x0 + Δx

y0 − Δy ≤ y ≤ y0 + Δy

=
50

√

2

� ∫

y0+Δy

y0−Δy
∫

x0+Δx

x0−Δx

e−100(x−10)
2
e−50(y−5)

2
dx dy.

Thus,

Probability that

component is usable
=

50
√

2

� ∫

5.1

4.9 ∫

10.1

9.9

e−100(x−10)
2
e−50(y−5)

2
dx dy.

The double integral must be evaluated numerically. This yields

Probability that

component is usable
=

50
√

2

�
(0.02556) = 0.57530.

Thus, there is a 57.530% chance that the component is usable.

Summary for Section 16.6

• A function p(x, y) is called a joint probability density function, or pdf, for x and y if

Probability that member of

population has x between a and b

and y between c and d

=

Volume under graph of p

above the rectangle

a ≤ x ≤ b, c ≤ y ≤ d

=
∫

b

a ∫

d

c

p(x, y) dy dx,

where

∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx = 1 and p(x, y) ≥ 0 for all x and y.

• If p(x, y) is a joint probability density function, then the probability that x falls in an inter-

val of width Δx around x0 and y falls in an interval of width Δy around y0 is approximately

p(x0, y0)ΔxΔy.

Exercises and Problems for Section 16.6

EXERCISES

In Exercises 1–6, check whether p is a joint density function.

Assume p(x, y) = 0 outside the region R.

1. p(x, y) = 1∕2, where R is 4 ≤ x ≤ 5,−2 ≤ y ≤ 0

2. p(x, y) = 1, where R is 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

3. p(x, y) = x + y, where R is −1 ≤ x ≤ 1, 0 ≤ y ≤ 1

4. p(x, y) = 6(y − x), where R is 0 ≤ x ≤ y ≤ 2

5. p(x, y) = (2∕�)(1 − x2 − y2), where R is x2 + y2 ≤ 1

6. p(x, y) = xye−x−y, where R is x ≥ 0, y ≥ 0



16.6 APPLICATIONS OF INTEGRATION TO PROBABILITY 935

In Exercises 7–10, a joint probability density function is

given by p(x, y) = xy∕4 in R, the rectangle 0 ≤ x ≤ 2,

0 ≤ y ≤ 2, and p(x, y) = 0 else. Find the probability that a

point (x, y) satisfies the given conditions.

7. x ≤ 1 and y ≤ 1 8. x ≥ 1 and y ≥ 1

9. x ≥ 1 and y ≤ 1 10. 1∕3 ≤ x ≤ 1

In Exercises 11–14, a joint probability density function is

given by p(x, y) = 0.005x + 0.025y in R, the rectangle

0 ≤ x ≤ 10, 0 ≤ y ≤ 2, and p(x, y) = 0 else. Find the

probability that a point (x, y) satisfies the given conditions.

11. x ≤ 4 12. y ≥ 1

13. x ≤ 4 and y ≥ 1 14. x ≥ 5 and y ≥ 1

In Exercises 15–22, let p be the joint density function such

that p(x, y) = xy in R, the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 1,

and p(x, y) = 0 outsideR. Find the fraction of the population

satisfying the given constraints.

15. x ≥ 3 16. x = 1

17. x + y ≤ 3 18. −1 ≤ x ≤ 1

19. x ≥ y 20. x + y ≤ 1

21. 0 ≤ x ≤ 1, 0 ≤ y ≤ 1∕2

22. Within a distance 1 from the origin

PROBLEMS

23. Let x and y have joint density function

p(x, y) =

{

2

3
(x + 2y) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

Find the probability that

(a) x > 1∕3. (b) x < (1∕3) + y.

24. The joint density function for x, y is given by

f (x, y) =

{

kxy for 0 ≤ x ≤ y ≤ 1,

0 otherwise.

(a) Determine the value of k.

(b) Find the probability that (x, y) lies in the shaded

region in Figure 16.58.

1
0

1

x

y
y = x

y =
√

x

Figure 16.58

25. A joint density function is given by

f (x, y) =

{

kx2 for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1,

0 otherwise.

(a) Find the value of the constant k.

(b) Find the probability that (x, y) satisfies x + y ≤ 2.

(c) Find the probability that (x, y) satisfies x ≤ 1 and

y ≤ 1∕2.

26. A point is chosen at random from the region S in the

xy-plane containing all points (x, y) such that−1 ≤ x ≤

1,−2 ≤ y ≤ 2 and x − y ≥ 0 (“at random” means that

the density function is constant on S).

(a) Determine the joint density function for x and y.

(b) If T is a subset of S with area �, then find the prob-

ability that a point (x, y) is in T .

27. A probability density function on a square has constant

values in different triangular regions as shown in Fig-

ure 16.59. Find the probability that

(a) x ≥ 2 (b) y ≥ x

(c) y ≥ x and x ≥ 2

1 2 3 4

1

2

3

4

0.01

0.06

0.01

0.12

0.02

0.16

0.04

0.08

x (m)

y (m)

Figure 16.59: Probability density on a

square (per m2)

28. A health insurance company wants to know what pro-

portion of its policies are going to cost the company a

lot of money because the insured people are over 65 and

sick. In order to compute this proportion, the company

defines a disability index, x, with 0 ≤ x ≤ 1, where

x = 0 represents perfect health and x = 1 represents

total disability. In addition, the company uses a density

function, f (x, y), defined in such a way that the quantity

f (x, y) ΔxΔy
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approximates the fraction of the population with dis-

ability index between x and x+Δx, and aged between y

and y+Δy. The company knows from experience that a

policy no longer covers its costs if the insured person is

over 65 and has a disability index exceeding 0.8. Write

an expression for the fraction of the company’s policies

held by people meeting these criteria.

29. The probability that a radioactive substance will decay

at time t is modeled by the density function

p(t) = �e−�t

for t ≥ 0, and p(t) = 0 for t < 0. The positive constant

� depends on the material, and is called the decay rate.

(a) Check that p is a density function.

(b) Two materials with decay rates � and � decay inde-

pendently of each other; their joint density function

is the product of the individual density functions.

Write the joint density function for the probabil-

ity that the first material decays at time t and the

second at time s.

(c) Find the probability that the first substance decays

before the second.

30. Figure 16.60 represents a baseball field, with the bases

at (1, 0), (1, 1), (0, 1), and home plate at (0, 0). The outer

bound of the outfield is a piece of a circle about the

origin with radius 4. When a ball is hit by a batter we

record the spot on the field where the ball is caught. Let

p(r, �) be a function in the plane that gives the density

of the distribution of such spots. Write an expression

that represents the probability that a hit is caught in

(a) The right field (region R).

(b) The center field (region C).

1 4

1

4

x

y

C

R

�

6

�

6

�

6

Figure 16.60

31. Two independent random numbers x and y between 0

and 1 have joint density function

p(x, y) =
{

1 if 0 ≤ x, y ≤ 1

0 otherwise.

This problem concerns the average z = (x+y)∕2, which

has a one-variable probability density function of its

own.

(a) Find F (t), the probability that z ≤ t. Treat sepa-

rately the cases t ≤ 0, 0 < t ≤ 1∕2, 1∕2 < t ≤ 1,

1 < t. Note that F (t) is the cumulative distribution

function of z.

(b) Find and graph the probability density function of

z.

(c) Are x and y more likely to be near 0, 1∕2, or 1?

What about z?

Strengthen Your Understanding

In Problems 32–33, explain what is wrong with the state-

ment.

32. If p1(x, y) and p2(x, y) are joint density functions, then

p1(x, y) + p2(x, y) is a joint density function.

33. If p(w, ℎ) is the probability density function of the

weight and height of mothers discussed in Section 16.6,

then the probability that a mother weighs 60 kg and has

a height of 170 cm is p(60, 170).

In Problems 34–35, give an example of:

34. Values for a, b, c and d such that f is a joint density

function:

f (x, y) =

{

1 for a ≤ x ≤ b and c ≤ y ≤ d,

0 otherwise

35. A one-variable function g(y) such that f is a joint den-

sity function:

f (x, y) =

{

g(y) for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1,

0 otherwise

For Problems 36–39, let p(x, y) be a joint density function

for x and y. Are the following statements true or false?

36.
∫

b

a
∫

∞

−∞

p(x, y) dy dx is the probability that a ≤ x ≤ b.

37. 0 ≤ p(x, y) ≤ 1 for all x.

38.
∫

b

a

p(x, y) dx is the probability that a ≤ x ≤ b.

39.
∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx = 1.

Online Resource: Review Problems and Projects
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17.1 PARAMETERIZED CURVES

A curve in the plane may be parameterized by a pair of equations of the form x = f (t), y = g(t).

As the parameter t changes, the point (x, y) traces out the curve. In this section we find parametric

equations for curves in three dimensions, and we see how to write parametric equations using position

vectors.

Parametric Equations in Three Dimensions

We describe motion in the plane by giving parametric equations for x and y in terms of t. To describe

a motion in 3-space parametrically, we need a third equation giving z in terms of t.

Example 1 Find parametric equations for the curve y = x2 in the xy-plane.

Solution A possible parameterization in two dimensions is x = t, y = t2. Since the curve is in the xy-plane,

the z-coordinate is zero, so a parameterization in three dimensions is

x = t, y = t2, z = 0.

Example 2 Find parametric equations for a particle that starts at (0, 3, 0) and moves around a circle as shown in

Figure 17.1.

x

y

z

■ Start

Figure 17.1: Circle of radius 3 in the yz-plane, centered at origin

Solution Since the motion is in the yz-plane, we have x = 0 at all times t. Looking at the yz-plane from the

positive x-direction, we see motion around a circle of radius 3 in the clockwise direction. Thus,

x = 0, y = 3 cos t, z = −3 sin t.

Example 3 Describe in words the motion given parametrically by

x = cos t, y = sin t, z = t.

Solution The particle’s x- and y-coordinates give circular motion in the xy-plane, while the z-coordinate

increases steadily. Thus, the particle traces out a rising spiral, like a coiled spring. (See Figure 17.2.)

This curve is called a helix.
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x

y

z

Figure 17.2: The helix x = cos t, y = sin t, z = t

Example 4 Find parametric equations for the line parallel to the vector 2i⃗ + 3j⃗ + 4k⃗ and through the point

(1, 5, 7).

Solution Let’s imagine a particle at the point (1, 5, 7) at time t = 0 and moving through a displacement of

2i⃗ + 3j⃗ + 4k⃗ for each unit of time, t. When t = 0, x = 1 and x increases by 2 units for every unit

of time. Thus, at time t, the x-coordinate of the particle is given by

x = 1 + 2t.

Similarly, the y-coordinate starts at y = 5 and increases at a rate of 3 units for every unit of time.

The z-coordinate starts at y = 7 and increases by 4 units for every unit of time. Thus, the parametric

equations of the line are

x = 1 + 2t, y = 5 + 3t, z = 7 + 4t.

We can generalize the previous example as follows:

Parametric Equations of a Line through the point (x0, y0, z0) and parallel to the vector ai⃗ +

bj⃗ + ck⃗ are

x = x0 + at, y = y0 + bt, z = z0 + ct.

Notice that the coordinates x, y, and z are linear functions of the parameter t.

Example 5 (a) Describe in words the curve given by the parametric equations x = 3 + t, y = 2t, z = 1 − t.

(b) Find parametric equations for the line through the points (1, 2,−1) and (3, 3, 4).

Solution (a) The curve is a line through the point (3, 0, 1) and parallel to the vector i⃗ + 2j⃗ − k⃗.

(b) The line is parallel to the vector between the points P = (1, 2,−1) and Q = (3, 3, 4).

⃖⃖⃖⃖⃖⃗PQ = (3 − 1)i⃗ + (3 − 2)j⃗ + (4 − (−1))k⃗ = 2i⃗ + j⃗ + 5k⃗ .

Thus, using the point P , the parametric equations are

x = 1 + 2t, y = 2 + t, z = −1 + 5t.

Using the point Q gives the equations x = 3 + 2t, y = 3 + t, z = 4 + 5t, which represent the

same line. The point where t = 0 in the second equations is given by t = 1 in the first equations.
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Using Position Vectors to Write Parameterized Curves as Vector-Valued Functions

A point in the plane with coordinates (x, y) can be represented by the position vector r⃗ = xi⃗ + yj⃗

in Figure 17.3. Similarly, in 3-space we write r⃗ = xi⃗ + yj⃗ + zk⃗ . (See Figure 17.4.)

x

y
(x, y)

r⃗

xi⃗

yj⃗

Figure 17.3: Position vector r⃗ for the point

(x, y)

x

y

z

xi⃗

yj⃗

zk⃗

(x, y, z)

r⃗

Figure 17.4: Position vector r⃗ for the

point (x, y, z)

We can write the parametric equations x = f (t), y = g(t), z = ℎ(t) as a single vector equation

r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗

called a parameterization. As the parameter t varies, the point with position vector r⃗ (t) traces out a

curve in 3-space. For example, the circular motion in the plane

x = cos t, y = sin t can be written as r⃗ = (cos t)i⃗ + (sin t)j⃗

and the helix in 3-space

x = cos t, y = sin t, z = t can be written as r⃗ = (cos t)i⃗ + (sin t)j⃗ + tk⃗ .

See Figure 17.5.

x

y

z

a b

r⃗ (b)

r⃗ (a)
r⃗ (t)

C

Figure 17.5: The parameterization sends the interval, a ≤ t ≤ b, to the curve, C , in 3-space

Example 6 Use vectors to give a parameterization for the circle of radius
1

2
centered at the point (−1, 2).

Solution The circle of radius 1 centered at the origin is parameterized by the vector-valued function

r⃗ 1(t) = cos ti⃗ + sin tj⃗ , 0 ≤ t ≤ 2�.

The point (−1, 2) has position vector r⃗ 0 = −i⃗ +2j⃗ . The position vector, r⃗ (t), of a point on the circle

of radius
1

2
centered at (−1, 2) is found by adding

1

2
r⃗ 1 to r⃗ 0. (See Figures 17.6 and 17.7.) Thus,

r⃗ (t) = r⃗ 0 +
1

2
r⃗ 1(t) = −i⃗ + 2j⃗ +

1

2
(cos ti⃗ + sin tj⃗ ) = (−1 +

1

2
cos t)i⃗ + (2 +

1

2
sin t)j⃗ ,

or, equivalently,

x = −1 +
1

2
cos t, y = 2 +

1

2
sin t, 0 ≤ t ≤ 2�.
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−1 1

1

−1

x

y

❄

r⃗1 (t) = cos ti⃗ + sin tj⃗

Figure 17.6: The circle x2 + y2 = 1 parameterized

by r⃗ 1(t) = cos ti⃗ + sin tj⃗

−1

1.5

2.5

1

0.5

2

r⃗ 0

1

2
r⃗ 1

r⃗

x

y

Figure 17.7: The circle of radius
1

2
and center

(−1, 2) parameterized by r⃗ (t) = r⃗ 0 +
1

2
r⃗ 1(t)

Parametric Equation of a Line

Consider a straight line in the direction of a vector v⃗ passing through the point (x0, y0, z0) with

position vector r⃗ 0. We start at r⃗ 0 and move up and down the line, adding different multiples of v⃗ to

r⃗ 0. (See Figure 17.8.)

v⃗

r⃗
r⃗ 0

t = −1
t = 0

t = 1
t = 2

t = 3

Figure 17.8: The line r⃗ (t) = r⃗ 0 + tv⃗

In this way, every point on the line can be written as r⃗ 0 + tv⃗ , which yields the following:

Parametric Equation of a Line in Vector Form

The line through the point with position vector r⃗0 = x0i⃗ + y0 j⃗ + z0k⃗ in the direction of the

vector v⃗ = ai⃗ + bj⃗ + ck⃗ has parametric equation

r⃗ (t) = r⃗ 0 + tv⃗ .

Example 7 (a) Find parametric equations for the line passing through the points (2,−1, 3) and (−1, 5, 4).

(b) Represent the line segment from (2,−1, 3) to (−1, 5, 4) parametrically.

Solution (a) The line passes through (2,−1, 3) and is parallel to the displacement vector v⃗ = −3i⃗ + 6j⃗ + k⃗

from (2,−1, 3) to (−1, 5, 4). Thus, the parametric equation is

r⃗ (t) = 2i⃗ − j⃗ + 3k⃗ + t(−3i⃗ + 6j⃗ + k⃗ ).

(b) In the parameterization in part (a), t = 0 corresponds to the point (2,−1, 3) and t = 1 corresponds

to the point (−1, 5, 4). So the parameterization of the segment is

r⃗ (t) = 2i⃗ − j⃗ + 3k⃗ + t(−3i⃗ + 6j⃗ + k⃗ ), 0 ≤ t ≤ 1.
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Intersection of Curves and Surfaces
Parametric equations for a curve enable us to find where a curve intersects a surface.

Example 8 Find the points at which the line x = t, y = 2t, z = 1 + t pierces the sphere of radius 10 centered at

the origin.

Solution The equation for the sphere of radius 10 and centered at the origin is

x2 + y2 + z2 = 100.

To find the intersection points of the line and the sphere, substitute the parametric equations of the

line into the equation of the sphere, giving

t2 + 4t2 + (1 + t)2 = 100,

so

6t2 + 2t − 99 = 0,

which has the two solutions at approximately t = −4.23 and t = 3.90. Using the parametric equation

for the line, (x, y, z) = (t, 2t, 1 + t), we see that the line cuts the sphere at the two points

(x, y, z) = (−4.23, 2(−4.23), 1+ (−4.23)) = (−4.23,−8.46,−3.23),

and

(x, y, z) = (3.90, 2(3.90), 1+ 3.90) = (3.90, 7.80, 4.90).

We can also use parametric equations to find the intersection of two curves.

Example 9 Two particles move through space, with equations r⃗ 1(t) = ti⃗ + (1 + 2t)j⃗ + (3 − 2t)k⃗ and r⃗ 2(t) =

(−2 − 2t)i⃗ + (1 − 2t)j⃗ + (1 + t)k⃗ . Do the particles ever collide? Do their paths cross?

Solution To see if the particles collide, we must find out if they pass through the same point at the same time

t. So we must find a solution to the vector equation r⃗ 1(t) = r⃗ 2(t), which is the same as finding a

common solution to the three scalar equations

t = −2 − 2t, 1 + 2t = 1 − 2t, 3 − 2t = 1 + t.

Separately, the solutions are t = −2∕3, t = 0, and t = 2∕3, so there is no common solution, and the

particles don’t collide. To see if their paths cross, we find out if they pass through the same point at

two possibly different times, t1 and t2. So we solve the equations

t1 = −2 − 2t2, 1 + 2t1 = 1 − 2t2, 3 − 2t1 = 1 + t2.

We solve the first two equations simultaneously and get t1 = 2, t2 = −2. Since these values also

satisfy the third equation, the paths cross. The position of the first particle at time t = 2 is the same

as the position of the second particle at time t = −2, namely the point (2, 5,−1).

Example 10 Are the lines x = −1+ t, y = 1+ 2t, z = 5− t and x = 2+ 2t, y = 4+ t, z = 3+ t parallel? Do they

intersect?

Solution In vector form the lines are parameterized by

r⃗ = −i⃗ + j⃗ + 5k⃗ + t(i⃗ + 2j⃗ − k⃗ )

r⃗ = 2i⃗ + 4j⃗ + 3k⃗ + t(2i⃗ + j⃗ + k⃗ )



17.1 PARAMETERIZED CURVES 943

Their direction vectors i⃗ + 2j⃗ − k⃗ and 2i⃗ + j⃗ + k⃗ are not multiples of each other, so the lines are

not parallel. To find out if they intersect, we see if they pass through the same point at two possibly

different times, t1 and t2:

−1 + t1 = 2 + 2t2, 1 + 2t1 = 4 + t2, 5 − t1 = 3 + t2.

The first two equations give t1 = 1, t2 = −1. Since these values do not satisfy the third equation, the

paths do not cross, and so the lines do not intersect.

The next example shows how to tell if two different parameterizations give the same line.

Example 11 Show that the following two lines are the same:

r⃗ = −i⃗ − j⃗ + k⃗ + t(3i⃗ + 6j⃗ − 3k⃗ )

r⃗ = i⃗ + 3j⃗ − k⃗ + t(−i⃗ − 2j⃗ + k⃗ )

Solution The direction vectors of the two lines, 3i⃗ + 6j⃗ − 3k⃗ and −i⃗ − 2j⃗ + k⃗ , are multiples of each other,

so the lines are parallel. To see if they are the same, we pick a point on the first line and see if it is on

the second line. For example, the point on the first line with t = 0 has position vector −i⃗ − j⃗ + k⃗ .

Solving

i⃗ + 3j⃗ − k⃗ + t(−i⃗ − 2j⃗ + k⃗ ) = −i⃗ − j⃗ + k⃗ ,

we get t = 2, so the two lines have a point in common. Thus, they are the same line, parameterized

in two different ways.

Summary for Section 17.1

• Parametric equations in three dimensions: To describe motion in 3-space parametrically, we

need three equations: x = f (t), y = g(t), and z = ℎ(t).

• Parametric equations of a line through the point (x0, y0, z0) and parallel to the vector

ai⃗ + bj⃗ + ck⃗ are

x = x0 + at, y = y0 + bt, z = z0 + ct.

• Vector form of parameterized curves: We can write the parametric equations x = f (t),

y = g(t), z = ℎ(t) as a single vector equation

r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ .

• Parametric equation of a line in vector form: The line through the point with position vector

r⃗0 = x0i⃗ + y0 j⃗ + z0k⃗ in the direction of the vector v⃗ = ai⃗ + bj⃗ + ck⃗ has parametric equation

r⃗ (t) = r⃗ 0 + tv⃗ .

Exercises and Problems for Section 17.1 Online Resource: Additional Problems for Section 17.1
EXERCISES

In Exercises 1–6, find a parameterization for the curve.

1.

−1 1

−2

−1

x

y

1

2.

2

2

x

y

3.

1 2 3

1

2

x

y 4.

−1 1
x

y

1
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5.

1 2

1

2

x

y

3

6.

1 2

1

x

y

2
Segment
of parabola

In Exercises 7–17, find parametric equations for the line.

7. The line in the direction of the vector i⃗ − k⃗ and through

the point (0, 1, 0).

8. The line in the direction of the vector i⃗ + 2j⃗ − k⃗ and

through the point (3, 0,−4).

9. The line parallel to the z-axis passing through the point

(1, 0, 0).

10. The line in the direction of the vector 5j⃗ + 2k⃗ and

through the point (5,−1, 1).

11. The line in the direction of the vector 3i⃗ − 3j⃗ + k⃗ and

through the point (1, 2, 3).

12. The line in the direction of the vector 2i⃗ +2j⃗ −3k⃗ and

through the point (−3, 4,−2).

13. The line through (−3,−2, 1) and (−1,−3,−1).

14. The line through the points (1, 5, 2) and (5, 0,−1).

15. The line through the points (2, 3,−1) and (5, 2, 0).

16. The line through (3,−2, 2) and intersecting the y-axis

at y = 2.

17. The line intersecting the x-axis at x = 3 and the z-axis

at z = −5.

In Exercises 18–34, find a parameterization for the curve.

18. A line segment between (2, 1, 3) and (4, 3, 2).

19. A circle of radius 3 centered on the z-axis and lying in

the plane z = 5.

20. A line perpendicular to the plane z = 2x − 3y + 7 and

through the point (1, 1, 6).

21. The circle of radius 2 in the xy-plane, centered at the

origin, clockwise.

22. The circle of radius 2 parallel to the xy-plane, cen-

tered at the point (0, 0, 1), and traversed counterclock-

wise when viewed from below.

23. The circle of radius 2 in the xz-plane, centered at the

origin.

24. The circle of radius 3 parallel to the xy-plane, centered

at the point (0, 0, 2).

25. The circle of radius 3 in the yz-plane, centered at the

point (0, 0, 2).

26. The circle of radius 5 parallel to the yz-plane, centered

at the point (−1, 0,−2).

27. The curve x = y2 in the xy-plane.

28. The curve y = x3 in the xy-plane.

29. The curve x = −3z2 in the xz-plane.

30. The curve in which the plane z = 2 cuts the surface

z =
√

x2 + y2.

31. The curve y = 4 − 5x4 through the point (0, 4, 4), par-

allel to the xy-plane.

32. The ellipse of major diameter 5 parallel to the y-axis

and minor diameter 2 parallel to the z-axis, centered at

(0, 1,−2).

33. The ellipse of major diameter 6 along the x-axis and

minor diameter 4 along the y-axis, centered at the ori-

gin.

34. The ellipse of major diameter 3 parallel to the x-axis

and minor diameter 2 parallel to the z-axis, centered at

(0, 1,−2).

In Exercises 35–42, find a parametric equation for the curve

segment.

35. Line from (−1, 2,−3) to (2, 2, 2).

36. Line from P0 = (−1,−3) to P1 = (5, 2).

37. Line from P0 = (1,−3, 2) to P1 = (4, 1,−3).

38. Semicircle from (0, 0, 5) to (0, 0,−5) in the yz-plane

with y ≥ 0.

39. Semicircle from (1, 0, 0) to (−1, 0, 0) in the xy-plane

with y ≥ 0.

40. Graph of y =
√

x from (1, 1) to (16, 4).

41. Arc of a circle of radius 5 from P = (0, 0) to Q =

(10, 0).

42. Quarter-ellipse from (4, 0, 3) to (0,−3, 3) in the plane

z = 3.

In Exercises 43–46, find parametric equations for a helix sat-

isfying the given conditions.

43. Centered on the z-axis, with radius 10.

44. Centered on the x-axis, with radius 5.

45. Centered on the y-axis, with radius 2.

46. Centered on the vertical line passing through (3, 5, 0),

with radius 1.
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PROBLEMS

In Problems 47–51, parameterize the line through P = (2, 5)

and Q = (12, 9) so that the points P and Q correspond to the

given parameter values.

47. t = 0 and 1 48. t = 0 and 5

49. t = 20 and 30 50. t = 10 and 11

51. t = 0 and −1

52. At the point where t = −1, find an equation for the plane

perpendicular to the line

x = 5 − 3t, y = 5t − 7,
z

t
= 6.

53. Determine whether the following line is parallel to the

plane 2x − 3y + 5z = 5:

x = 5 + 7t, y = 4 + 3t, z = −3 − 2t.

54. Show that the equations x = 3 + t, y = 2t, z = 1 − t

satisfy the equations x+ y+ 3z = 6 and x− y− z = 2.

What does this tell you about the curve parameterized

by these equations?

55. (a) Explain why the line of intersection of two planes

must be parallel to the cross product of a normal

vector to the first plane and a normal vector to the

second.

(b) Find a vector parallel to the line of intersection of

the two planes x+2y−3z = 7 and 3x−y+z = 0.

(c) Find parametric equations for the line in part (b).

56. Find an equation for the plane containing the point

(2, 3, 4) and the line x = 1 + 2t, y = 3 − t, z = 4 + t.

57. (a) Find an equation for the line perpendicular to the

plane 2x − 3y = z and through the point (1, 3, 7).

(b) Where does the line cut the plane?

(c) What is the distance between the point (1, 3, 7) and

the plane?

58. If possible, find a value of a making the given parame-

terized line perpendicular to the plane ax+8y = 4z−1.

(a) r⃗ 1(t) = (9 − t)i⃗ + 4tj⃗ + (7 − 2t)k⃗

(b) r⃗ 2(t) = (1 + 2t)i⃗ + (3t − 1)j⃗ + (−1 + t)k⃗

59. Consider two points P0 and P1 in 3-space.

(a) Show that the line segment from P0 to P1 can be

parameterized by

r⃗ (t) = (1 − t) ⃖⃖⃖⃖⃖⃖⃗OP0 + t ⃖⃖⃖⃖⃖⃖⃗OP1, 0 ≤ t ≤ 1.

(b) What is represented by the parametric equation

r⃗ (t) = t ⃖⃖⃖⃖⃖⃖⃗OP0 + (1 − t) ⃖⃖⃖⃖⃖⃖⃗OP1, 0 ≤ t ≤ 1?

60. (a) Find a vector parallel to the line of intersection of

the planes 2x − y − 3z = 0 and x + y + z = 1.

(b) Show that the point (1,−1, 1) lies on both planes.

(c) Find parametric equations for the line of intersec-

tion.

61. Find the intersection of the line x = 5 + 7t, y = 4 + 3t,

z = −3 − 2t and the plane 2x − 3y + 5z = −7.

In Problems 62–65, are the lines L1 and L2 the same line?

62. L1: x = 5 + t, y = 3 − 2t, z = 5t

L2: x = 5 + 2t, y = 3 − 4t, z = 10t

63. L1: x = 2 + 3t, y = 1 + 4t, z = 6 − t

L2: x = 2 + 6t, y = 4 + 3t, z = 3 − 2t

64. L1: x = 2 + 3t, y = 1 + 4t, z = 6 − t

L2: x = 5 + 6t, y = 5 + 8t, z = 5 − 2t

65. L1: x = 1 + 2t, y = 1 − 3t, z = 1 + t

L2: x = 1 − 4t, y = 6t, z = 4 − 2t

In Problems 66–68 two parameterized lines are given. Are

they the same line?

66. r⃗ 1(t) = (5 − 3t)i⃗ + 2tj⃗ + (7 + t)k⃗

r⃗ 2(t) = (5 − 6t)i⃗ + 4tj⃗ + (7 + 3t)k⃗

67. r⃗ 1(t) = (5 − 3t)i⃗ + (1 + t)j⃗ + 2tk⃗

r⃗ 2(t) = (2 + 6t)i⃗ + (2 − 2t)j⃗ + (2 − 4t)k⃗

68. r⃗ 1(t) = (5 − 3t)i⃗ + (1 + t)j⃗ + 2tk⃗

r⃗ 2(t) = (2 + 6t)i⃗ + (2 − 2t)j⃗ + (3 − 4t)k⃗

69. If it exists, find the value of c for which the lines l(t) =

(c + t, 1 + t, 5 + t) and m(s) = (s, 1 − s, 3 + s) intersect.

70. (a) Where does the line r⃗ = 2i⃗ +5j⃗ + t(3i⃗ + j⃗ +2k⃗)

cut the plane x + y + z = 1?

(b) Find a vector perpendicular to the line and lying in

the plane.

(c) Find an equation for the line that passes through

the point of intersection of the line and plane, is

perpendicular to the line, and lies in the plane.

In Problems 71–74, find parametric equations for the line.

71. The line of intersection of the planes x− y+ z = 3 and

2x + y − z = 5.

72. The line of intersection of the planes x+ y+ z = 3 and

x − y + 2z = 2.

73. The line perpendicular to the surface z = x2 + y2 at the

point (1, 2, 5).

74. The line through the point (−4, 2, 3) and parallel to a

line in the yz-plane which makes a 45◦ angle with the

positive y-axis and the positive z-axis.

75. Is the point (−3,−4, 2) visible from the point (4, 5, 0) if

there is an opaque ball of radius 1 centered at the origin?
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76. Two particles are traveling through space. At time t the

first particle is at the point (−1 + t, 4 − t,−1 + 2t) and

the second particle is at (−7 + 2t,−6 + 2t,−1 + t).

(a) Describe the two paths in words.

(b) Do the two particles collide? If so, when and

where?

(c) Do the paths of the two particles cross? If so,

where?

77. Match the parameterizations with their graphs in Fig-

ure 17.9.

(a) x = 2 cos 4�t, y = 2 sin 4�t, z = t

(b) x = 2 cos 4�t, y = sin 4�t, z = t

(c) x = 0.5t cos 4�t, y = 0.5t sin 4�t, z = t

(d) x = 2 cos 4�t, y = 2 sin 4�t, z = 0.5t3

x

y

z

(I)

x

y

z(II)

x

y

z(III)

x

y

z(IV)

Figure 17.9

In Problems 78–81, find c so that one revolution about the z-

axis of the helix gives an increase of Δz in the z-coordinate.

78. x = 2 cos t, y = 2 sin t, z = ct, Δz = 15

79. x = 2 cos t, y = 2 sin t, z = ct, Δz = 50

80. x = 2 cos 3t, y = 2 sin 3t, z = ct, Δz = 10

81. x = 2 cos �t, y = 2 sin �t, z = ct, Δz = 20

82. For t > 0, a particle moves along the curve x =

a + b sin kt, y = a + b cos kt, where a, b, k are positive

constants.

(a) Describe the motion in words.

(b) What is the effect on the curve of the following

changes?

(i) Increasing b

(ii) Increasing a

(iii) Increasing k

(iv) Setting a and b equal

83. In the Atlantic Ocean off the coast of Newfoundland,

Canada, the temperature and salinity (saltiness) vary

throughout the year. Figure 17.10 shows a parametric

curve giving the average temperature, T (in ◦C) and

salinity (in grams of salt per kg of water) for t in months,

with t = 1 corresponding to mid-January.1

(a) Why does the parameterized curve form a loop?

(b) When is the water temperature highest?

(c) When is the water saltiest?

(d) Estimate dT ∕dt at t = 6, and give the units. What

is the meaning of your answer for seawater?

✻
t = 1

✲t = 3

T (◦C)

salinity (gm/kg)

14 16 18 20 22
35.7

35.9

36.1

Figure 17.10

84. A light shines on the helix of Example 3 on page 938

from far down each axis. Sketch the shadow the helix

casts on each of the coordinate planes: xy, xz, and yz.

85. The paraboloid z = x2+y2 and the plane z = 2x+4y+4

intersect in a curve in 3-space.

(a) Show that the shadow of the intersection in the xy-

plane is a circle and find its center and radius.

(b) Parameterize the circle in the xy-plane.

(c) Parameterize the intersection of the paraboloid and

the plane in 3-space.

86. The cone z =
√

x2 + y2 and the paraboloid z = 6 −

x2 − y2 intersect in a curve in 3-space.

(a) Find an equation for the horizontal plane that con-

tains the intersection of the paraboloid and the

cone.

(b) Show that the shadow of the intersection in the xy-

plane is a circle and find its center and radius.

(c) Parameterize the intersection of the paraboloid and

the cone in 3-space.

1Based on http://www.vub.ac.be. Accessed November, 2011.
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87. For a positive constant a and t ≥ 0, the parametric

equations I-V represent the curves described in (a)-(e).

Match each description (a)-(e) with its parametric equa-

tions and write an equation involving only x and y for

the curve.

(a) Line through the origin.

(b) Line not through the origin.

(c) Hyperbola opening along x-axis.

(d) Circle traversed clockwise.

(e) Circle traversed counterclockwise.

I. x = a sin t, y = a cos t II. x = a sin t, y = a sin t

III. x = a cos t, y = a sin t IV. x = a cos2 t, y = a sin2 t

V. x = a∕ cos t, y = a tan t

88. (a) Find a parametric equation for the line through the

point (2, 1, 3) and in the direction of ai⃗ + bj⃗ + ck⃗ .

(b) Find conditions on a, b, c so that the line you found

in part (a) goes through the origin. Give a reason

for your answer.

89. Consider the line x = 5− 2t, y = 3 + 7t, z = 4t and the

plane ax + by + cz = d. All the following questions

have many possible answers. Find values of a, b, c, d

such that:

(a) The plane is perpendicular to the line.

(b) The plane is perpendicular to the line and through

the point (5, 3, 0).

(c) The line lies in the plane.

90. Explain the significance of the constants � > 0 and

� > 0 in the family of helices given by r⃗ = � cos ti⃗ +

� sin tj⃗ + �tk⃗ .

91. Find parametric equations of the line passing through

the points (1, 2, 3), (3, 5, 7) and calculate the shortest

distance from the line to the origin.

92. Show that for a fixed value of �, the line parameterized

by x = cos � + t sin �, y = sin � − t cos � and z = t lies

on the graph of the hyperboloid x2 + y2 = z2 + 1.

93. A line has equation r⃗ = a⃗ +tb⃗ where r⃗ = xi⃗ +yj⃗ +zk⃗

and a⃗ and b⃗ are constant vectors such that a⃗ ≠ 0⃗ , b⃗ ≠

0⃗ , b⃗ not parallel or perpendicular to a⃗ . For each of the

planes (a)–(c), pick the equation (i)–(ix) which repre-

sents it. Explain your choice.

(a) A plane perpendicular to the line and through the

origin.

(b) A plane perpendicular to the line and not through

the origin.

(c) A plane containing the line.

(i) a⃗ ⋅ r⃗ = ||b⃗ || (ii) b⃗ ⋅ r⃗ = ||a⃗ ||

(iii) a⃗ ⋅ r⃗ = b⃗ ⋅ r⃗ (iv) (a⃗ × b⃗ ) ⋅ (r⃗ − a⃗ ) = 0

(v) r⃗ − a⃗ = b⃗ (vi) a⃗ ⋅ r⃗ = 0

(vii) b⃗ ⋅ r⃗ = 0 (viii) a⃗ + r⃗ = b⃗

(ix) (a⃗ ×b⃗ )⋅(r⃗ −b⃗ ) = ||a⃗ ||

94. (a) Find a parametric equation for the line through the

point (1, 5, 2) and in the direction of the vector

2i⃗ + 3j⃗ − k⃗ .

(b) By minimizing the square of the distance from a

point on the line to the origin, find the exact point

on the line which is closest to the origin.

95. Figure 17.11 shows the parametric curve x = x(t), y =

y(t) for a ≤ t ≤ b.

x

y

Figure 17.11

(a) Match a graph to each of the parametric curves

given, for the same t values, by

(i) (−x(t),−y(t)) (ii) (−x(t), y(t))

(iii) (x(t) + 1, y(t)) (iv) (x(t) + 1, y(t) + 1)

x

y(A)

x

y(B)

x

y(C)

x

y(D)

x

y(E)

x

y(F)

x

y(G)

x

y(H)

(b) Which of the following could be the formulas for

the functions x(t), y(t)?

(i) x = 10 cos t y = 10 sin t

(ii) x = (10 + 8t) cos t y = (10 + 8t) sin t

(iii) x = et
2∕200 cos t y = et

2∕200 sin t

(iv) x = (10 − 8t) cos t y = (10 − 8t) sin t

(v) x = 10 cos(t2 + t) y = 10 sin(t2 + t)
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96. A plane from Denver, Colorado, (altitude 1650 meters)

flies to Bismark, North Dakota (altitude 550 meters).

It travels at 650 km/hour at a constant height of 8000

meters above the line joining Denver and Bismark. Bis-

mark is about 850 km in the direction 60◦ north of east

from Denver. Find parametric equations describing the

plane’s motion. Assume the origin is at sea level be-

neath Denver, that the x-axis points east and the y-axis

points north, and that the earth is flat. Measure distances

in kilometers and time in hours.

97. The vector n⃗ is perpendicular to the plane P1. The vec-

tor v⃗ is parallel to the line L.

(a) If n⃗ ⋅ v⃗ = 0, what does this tell you about the di-

rections of P1 and L? (Are they parallel? Perpen-

dicular? Or is it impossible to tell?)

(b) Suppose n⃗ × v⃗ ≠ 0⃗ . The plane P2 has normal

n⃗ × v⃗ . What can you say about the directions of

(i) P1 and P2? (ii) L and P2?

Strengthen Your Understanding

In Problems 98–99, explain what is wrong with the state-

ment.

98. The curve parameterized by r⃗ 1(t) = r⃗ (t − 2), defined

for all t, is a shift in the i⃗-direction of the curve param-

eterized by r⃗ (t).

99. All points of the curve r⃗ (t) = R cos ti⃗ +R sin tj⃗ + tk⃗

are the same distance, R, from the origin.

In Problems 100–102, give an example of:

100. Parameterizations of two different circles that have the

same center and equal radii.

101. Parameterizations of two different lines that intersect at

the point (1, 2, 3).

102. A parameterization of the line x = t, y = 2t, z = 3+ 4t

that is not given by linear functions.

Are the statements in Problems 103–114 true or false? Give

reasons for your answer.

103. The parametric curve x = 3t+2, y = −2t for 0 ≤ t ≤ 5

passes through the origin.

104. The parametric curve x = t2, y = t4 for 0 ≤ t ≤ 1 is a

parabola.

105. A parametric curve x = g(t), y = ℎ(t) for a ≤ t ≤ b is

always the graph of a function y = f (x).

106. The parametric curve x = (3t + 2)2, y = (3t + 2)2 − 1

for 0 ≤ t ≤ 3 is a line.

107. The parametric curve x = − sin t, y = − cos t for

0 ≤ t ≤ 2� traces out a unit circle counterclockwise

as t increases.

108. A parameterization of the graph of y = ln x for x > 0

is given by x = et, y = t for −∞ < t < ∞.

109. Both x = −t + 1, y = 2t and x = 2s, y = −4s + 2

describe the same line.

110. The line of intersection of the two planes z = x + y

and z = 1 − x − y can be parameterized by x = t, y =
1

2
− t, z =

1

2
.

111. The two lines given by x = t, y = 2 + t, z = 3 + t and

x = 2s, y = 1 − s, z = s do not intersect.

112. The line parameterized by x = 1, y = 2t, z = 3 + t is

parallel to the x-axis.

113. The equation r⃗ (t) = 3ti⃗ + (6t + 1)j⃗ parameterizes a

line.

114. The lines parameterized by r⃗ 1(t) = ti⃗ +(−2t+1)j⃗ and

r⃗ 2(t) = (2t + 5)i⃗ + (−t)j⃗ are parallel.

17.2 MOTION, VELOCITY, AND ACCELERATION

In this section we see how to find the vector quantities of velocity and acceleration from a parametric

equation for the motion of an object.

The Velocity Vector

The velocity of a moving particle can be represented by a vector with the following properties:

The velocity vector of a moving object is a vector v⃗ such that:

∙ The magnitude of v⃗ is the speed of the object.

∙ The direction of v⃗ is the direction of motion.

Thus, the speed of the object is ‖v⃗ ‖ and the velocity vector is tangent to the object’s path.
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Example 1 A child is sitting on a Ferris wheel of diameter 10 meters, making one revolution every 2 minutes.

Find the speed of the child and draw velocity vectors at two different times.

Solution The child moves at a constant speed around a circle of radius 5 meters, completing one revolution

every 2minutes. One revolution around a circle of radius 5 is a distance of 10�, so the child’s speed is

10�∕2 = 5� ≈ 15.7m/min. Hence, the magnitude of the velocity vector is 15.7m/min. The direction

of motion is tangent to the circle, and hence perpendicular to the radius at that point. Figure 17.12

shows the direction of the vector at two different times.

5m

5 m Velocity
15.7 m/min

Velocity
15.7 m/min

Figure 17.12: Velocity vectors of a child on a Ferris wheel (note that vectors

would be in opposite direction if viewed from the other side)

Computing the Velocity

We find the velocity, as in one-variable calculus, by taking a limit. If the position vector of the

particle is r⃗ (t) at time t, then the displacement vector between its positions at times t and t + Δt is

Δr⃗ = r⃗ (t + Δt) − r⃗ (t). (See Figure 17.13.) Over this interval,

Average velocity =
Δr⃗

Δt
.

In the limit as Δt goes to zero we have the instantaneous velocity at time t:

The velocity vector, v⃗ (t), of a moving object with position vector r⃗ (t) at time t is

v⃗ (t) = lim
Δt→0

Δr⃗

Δt
= lim

Δt→0

r⃗ (t + Δt) − r⃗ (t)

Δt
,

whenever the limit exists. We use the notation v⃗ =
dr⃗

dt
= r⃗ ′(t).

Notice that the direction of the velocity vector r⃗ ′(t) in Figure 17.13 is approximated by the

direction of the vector Δr⃗ and that the approximation gets better as Δt → 0.

r⃗ ′(t)

r⃗ (t)

r⃗ (t + Δt)

✠

Δr⃗ = r⃗ (t + Δt) − r⃗ (t)

Figure 17.13: The change, Δr⃗ , in the position vector for a particle moving on a

curve and the velocity vector v⃗ = r⃗ ′(t)
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The Components of the Velocity Vector

If we represent a curve parametrically by x = f (t), y = g(t), z = ℎ(t), then we can write its position

vector as: r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ . Now we can compute the velocity vector:

v⃗ (t) = lim
Δt→0

r⃗ (t + Δt) − r⃗ (t)

Δt

= lim
Δt→0

(f (t + Δt)i⃗ + g(t + Δt)j⃗ + ℎ(t + Δt)k⃗ ) − (f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ )

Δt

= lim
Δt→0

(

f (t + Δt) − f (t)

Δt
i⃗ +

g(t + Δt) − g(t)

Δt
j⃗ +

ℎ(t + Δt) − ℎ(t)

Δt
k⃗

)

= f ′(t)i⃗ + g′(t)j⃗ + ℎ′(t)k⃗

=
dx

dt
i⃗ +

dy

dt
j⃗ +

dz

dt
k⃗ .

Thus, we have the following result:

The components of the velocity vector of a particle moving in space with position vector

r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ at time t are given by

v⃗ (t) = f ′(t)i⃗ + g′(t)j⃗ + ℎ′(t)k⃗ =
dx

dt
i⃗ +

dy

dt
j⃗ +

dz

dt
k⃗ .

Example 2 Find the components of the velocity vector for the child on the Ferris wheel in Example 1 using a

coordinate system which has its origin at the center of the Ferris wheel and which makes the rotation

counterclockwise.

Solution The Ferris wheel has radius 5 meters and completes 1 revolution counterclockwise every 2 minutes.

The motion is parameterized by an equation of the form

r⃗ (t) = 5 cos(!t)i⃗ + 5 sin(!t)j⃗ ,

where ! is chosen to make the period 2 minutes. Since the period of cos(!t) and sin(!t) is 2�∕!,

we must have
2�

!
= 2, so ! = �.

Thus, the motion is described by the equation

r⃗ (t) = 5 cos(�t)i⃗ + 5 sin(�t)j⃗ ,

where t is in minutes. The velocity is given by

v⃗ =
dx

dt
i⃗ +

dy

dt
j⃗ = −5� sin(�t)i⃗ + 5� cos(�t)j⃗ .

To check, we calculate the magnitude of v⃗ ,

‖v⃗ ‖ =

√

(−5�)2 sin2(�t) + (5�)2 cos2(�t) = 5�

√

sin2(�t) + cos2(�t) = 5� ≈ 15.7,

which agrees with the speed we calculated in Example 1. To see that the direction is correct, we must

show that the vector v⃗ at any time t is perpendicular to the position vector of the child at time t. To

do this, we compute the dot product of v⃗ and r⃗ :

v⃗ ⋅ r⃗ = (−5� sin(�t)i⃗ + 5� cos(�t)j⃗ ) ⋅ (5 cos(�t)i⃗ + 5 sin(�t)j⃗ )

= −25� sin(�t) cos(�t) + 25� cos(�t) sin(�t) = 0.
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So the velocity vector, v⃗ , is perpendicular to r⃗ and hence tangent to the circle. The direction is coun-

terclockwise, since in the first quadrant, x is decreasing while y is increasing. (See Figure 17.14.)

x

y

v⃗ = −5� sin(�t)i⃗ + 5� cos(�t)j⃗

r⃗ = 5 cos(�t)i⃗ + 5 sin(�t)j⃗

Figure 17.14: Velocity and radius vector of motion around a circle

Velocity Vectors and Tangent Lines

Since the velocity vector is tangent to the path of motion, it can be used to find parametric equations

for the tangent line, if there is one.

Example 3 Find the tangent line at the point (1, 1, 2) to the curve defined by the parametric equation

r⃗ (t) = t2 i⃗ + t3j⃗ + 2tk⃗ .

Solution At time t = 1 the particle is at the point (1, 1, 2) with position vector r⃗ 0 = i⃗ + j⃗ + 2k⃗ . The velocity

vector at time t is r⃗ ′(t) = 2ti⃗ +3t2j⃗ +2k⃗ , so at time t = 1 the velocity is v⃗ = r⃗ ′(1) = 2i⃗ +3j⃗ +2k⃗ .

The tangent line passes through (1, 1, 2) in the direction of v⃗ , so it has the parametric equation

r⃗ (t) = r⃗ 0 + tv⃗ = (i⃗ + j⃗ + 2k⃗ ) + t(2i⃗ + 3j⃗ + 2k⃗ ).

The Acceleration Vector

Just as the velocity of a particle moving in 2-space or 3-space is a vector quantity, so is the rate of

change of the velocity of the particle, namely its acceleration. Figure 17.15 shows a particle at time

t with velocity vector v⃗ (t) and then a little later at time t+Δt. The vector Δv⃗ = v⃗ (t+Δt) − v⃗ (t) is

the change in velocity and points approximately in the direction of the acceleration. So,

Average acceleration =
Δv⃗

Δt
.

In the limit as Δt → 0, we have the instantaneous acceleration at time t:

v⃗ (t)

v⃗ (t + Δt)

v⃗ (t)

v⃗ (t + Δt)
Δv⃗ = v⃗ (t + Δt) − v⃗ (t)

Figure 17.15: Computing the difference between two velocity vectors
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The acceleration vector of an object moving with velocity v⃗ (t) at time t is

a⃗ (t) = lim
Δt→0

Δv⃗

Δt
= lim

Δt→0

v⃗ (t + Δt) − v⃗ (t)

Δt
,

if the limit exists. We use the notation a⃗ =
dv⃗

dt
=

d2r⃗

dt2
= r⃗ ′′(t).

Components of the Acceleration Vector

If we represent a curve in space parametrically by x = f (t), y = g(t), z = ℎ(t), we can express the

acceleration in components. The velocity vector v⃗ (t) is given by

v⃗ (t) = f ′(t)i⃗ + g′(t)j⃗ + ℎ′(t)k⃗ .

From the definition of the acceleration vector, we have

a⃗ (t) = lim
Δt→0

v⃗ (t + Δt) − v⃗ (t)

Δt
=

dv⃗

dt
.

Using the same method to compute dv⃗ ∕dt as we used to compute dr⃗ ∕dt on page 950, we obtain

The components of the acceleration vector, a⃗ (t), at time t of a particle moving in space with

position vector r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ at time t are given by

a⃗ (t) = f ′′(t)i⃗ + g′′(t)j⃗ + ℎ′′(t)k⃗ =
d2x

dt2
i⃗ +

d2y

dt2
j⃗ +

d2z

dt2
k⃗ .

Motion in a Circle and Along a Line

We now consider the velocity and acceleration vectors for two basic motions: uniform motion around

a circle, and motion along a straight line.

Example 4 Find the acceleration vector for the child on the Ferris wheel in Examples 1 and 2.

Solution The child’s position vector is given by r⃗ (t) = 5 cos(�t)i⃗ + 5 sin(�t)j⃗ . In Example 2 we saw that the

velocity vector is

v⃗ (t) =
dx

dt
i⃗ +

dy

dt
j⃗ = −5� sin(�t)i⃗ + 5� cos(�t)j⃗ .

Thus, the acceleration vector is

a⃗ (t) =
d2x

dt2
i⃗ +

d2y

dt2
j⃗ = −(5�) ⋅ � cos(�t)i⃗ − (5�) ⋅ � sin(�t)j⃗

= −5�2 cos(�t)i⃗ − 5�2 sin(�t)j⃗ .

Notice that a⃗ (t) = −�2r⃗ (t). Thus, the acceleration vector is a multiple of r⃗ (t) and points toward the

origin.

The motion of the child on the Ferris wheel is an example of uniform circular motion, whose

properties follow. (See Problem 45.)
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Uniform Circular Motion: For a particle whose motion is described by

r⃗ (t) = R cos(!t)i⃗ +R sin(!t)j⃗ ,

• Motion is in a circle of radius R with period 2�∕|!|.

• Velocity, v⃗ , is tangent to the circle and speed is constant ‖v⃗ ‖ = |!|R.

• Acceleration, a⃗ , points toward the center of the circle with ‖a⃗ ‖ = ‖v⃗ ‖2∕R.

In uniform circular motion, the acceleration vector is perpendicular to the velocity vector, v⃗ ,

because v⃗ does not change in magnitude, only in direction. There is no acceleration in the direction

of v⃗ .

We now look at straight-line motion in which the velocity vector always has the same direction

but its magnitude changes. In straight-line motion, the acceleration vector points in the same direction

as the velocity vector if the speed is increasing and in the opposite direction to the velocity vector if

the speed is decreasing.

Example 5 Consider the motion given by the vector equation

r⃗ (t) = 2i⃗ + 6j⃗ + (t3 + t)(4i⃗ + 3j⃗ + k⃗ ).

Show that this is straight-line motion in the direction of the vector 4i⃗ + 3j⃗ + k⃗ and relate the

acceleration vector to the velocity vector.

Solution The velocity vector is

v⃗ = (3t2 + 1)(4i⃗ + 3j⃗ + k⃗ ).

Since (3t2 + 1) is a positive scalar, the velocity vector v⃗ always points in the direction of the vector

4i⃗ + 3j⃗ + k⃗ . In addition,

Speed = ‖v⃗ ‖ = (3t2 + 1)
√

42 + 32 + 12 =
√

26(3t2 + 1).

Notice that the speed is decreasing until t = 0, then starts increasing. The acceleration vector is

a⃗ = 6t(4i⃗ + 3j⃗ + k⃗ ).

For t > 0, the acceleration vector points in the same direction as 4i⃗ + 3j⃗ + k⃗ , which is the same

direction as v⃗ . This makes sense because the object is speeding up. For t < 0, the acceleration vector

6t(4i⃗ + 3j⃗ + k⃗) points in the opposite direction to v⃗ because the object is slowing down.

Motion in a Straight Line: For a particle whose motion is described by

r⃗ (t) = r⃗ 0 + f (t)v⃗ ,

• Motion is along a straight line through the point with position vector r⃗ 0 parallel to v⃗ .

• Velocity, v⃗ , and acceleration, a⃗ , are parallel to the line.

If f (t) = t, then we have r⃗ (t) = r⃗ 0 + tv, the equation of a line obtained on page 941.

The Length of a Curve
The speed of a particle is the magnitude of its velocity vector:

Speed = ‖v⃗ ‖ =

√

(

dx

dt

)2

+

(

dy

dt

)2

+
(

dz

dt

)2

.
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As in one dimension, we can find the distance traveled by a particle along a curve by integrating its

speed. Thus,

Distance traveled =
∫

b

a

‖v⃗ (t)‖ dt.

If the particle never stops or reverses its direction as it moves along the curve, the distance it travels

will be the same as the length of the curve. This suggests the following formula, which is justified

in Problem 71 (available online):

If the curve C is given parametrically for a ≤ t ≤ b by smooth functions and if the velocity

vector v⃗ is not 0⃗ for a < t < b, then

Length of C =
∫

b

a

‖v⃗ ‖dt.

Example 6 Find the circumference of the ellipse given by the parametric equations

x = 2 cos t, y = sin t, 0 ≤ t ≤ 2�.

Solution The circumference of this curve is given by an integral which must be calculated numerically:

Circumference =
∫

2�

0

√

(

dx

dt

)2

+

(

dy

dt

)2

dt =
∫

2�

0

√

(−2 sin t)2 + (cos t)2 dt

=
∫

2�

0

√

4 sin2 t + cos2 t dt = 9.69.

Since the ellipse is inscribed in a circle of radius 2 and circumscribes a circle of radius 1, we

would expect the length of the ellipse to be between 2�(2) ≈ 12.57 and 2�(1) ≈ 6.28, so the value

of 9.69 is reasonable.

Summary for Section 17.2

• The velocity vector of a moving object is a vector v⃗ such that:

∙ The magnitude of v⃗ is the speed of the object.

∙ The direction of v⃗ is the direction of motion and is tangent to the object’s path.

• The components of the velocity vector, v⃗ (t), of a particle moving with position vector

r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ at time t are given by

v⃗ (t) = f ′(t)i⃗ + g′(t)j⃗ + ℎ′(t)k⃗ =
dx

dt
i⃗ +

dy

dt
j⃗ +

dz

dt
k⃗ .

• The components of the acceleration vector, a⃗ (t), at time t of a particle moving with position

vector r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ at time t are given by

a⃗ (t) = f ′′(t)i⃗ + g′′(t)j⃗ + ℎ′′(t)k⃗ =
d2x

dt2
i⃗ +

d2y

dt2
j⃗ +

d2z

dt2
k⃗ .

• Length of a curve: If the curve C is given parametrically for a ≤ t ≤ b by smooth functions

and if the velocity vector v⃗ is not 0⃗ for a < t < b, then

Length of C =
∫

b

a

‖v⃗ ‖dt.
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Exercises and Problems for Section 17.2 Online Resource: Additional Problems for Section 17.2
EXERCISES

In Exercises 1–6, find the velocity and acceleration vectors.

1. x = 2 + 3t, y = 4 + t, z = 1 − t

2. x = 2 + 3t2, y = 4 + t2, z = 1 − t2

3. x = t, y = t2, z = t3

4. x = t, y = t3 − t

5. x = 3 cos t, y = 4 sin t

6. x = 3 cos (t2), y = 3 sin (t2), z = t2

In Exercises 7–12, find the velocity v⃗ (t) and speed ‖v⃗ (t)‖.

Find any times at which the particle stops.

7. x = t, y = t2, z = t3

8. x = cos 3t, y = sin 5t

9. x = 3t2, y = t3 + 1

10. x = (t − 1)2, y = 2, z = 2t3 − 3t2

11. x = 3 sin(t2) − 1, y = 3 cos(t2)

12. x = 3 sin2 t, y = cos t − 1, z = t2

In Exercises 13–16, find the length of the curve.

13. x = 3 + 5t, y = 1 + 4t, z = 3 − t for 1 ≤ t ≤ 2. Check

by calculating the length by another method.

14. x = cos 3t, y = sin 5t for 0 ≤ t ≤ 2�.

15. x = cos(et), y = sin(et) for 0 ≤ t ≤ 1. Check by calcu-

lating the length by another method.

16. r⃗ (t) = 2ti⃗ + ln tj⃗ + t2k⃗ for 1 ≤ t ≤ 2.

In Exercises 17–18, find the velocity and acceleration vec-

tors of the uniform circular motion and check that they are

perpendicular. Check that the speed and magnitude of the

acceleration are constant.

17. x = 3 cos(2�t), y = 3 sin(2�t), z = 0

18. x = 2�, y = 2 sin(3t), z = 2 cos(3t)

In Exercises 19–20, find the velocity and acceleration vec-

tors of the straight-line motion. Check that the acceleration

vector points in the same direction as the velocity vector if

the speed is increasing and in the opposite direction if the

speed is decreasing.

19. x = 2 + t2, y = 3 − 2t2, z = 5 − t2

20. x = −2t3 − 3t + 1, y = 4t3 + 6t − 5, z = 6t3 + 9t − 2

21. Find parametric equations for the tangent line at t = 2

for Exercise 10.

PROBLEMS

22. A particle passes through the point P = (5, 4,−2)

at time t = 4, moving with constant velocity v⃗ =

2i⃗ − 3j⃗ + k⃗ . Find a parametric equation for its mo-

tion.

In Problems 23–24, find all values of t for which the particle

is moving parallel to the x-axis and to the y-axis. Determine

the end behavior and graph the particle’s path.

23. x = t2 − 6t, y = t3 − 3t

24. x = t3 − 12t, y = t2 + 10t

25. The table gives x and y coordinates of a particle in

the plane at time t. Assuming that the particle moves

smoothly and that the points given show all the major

features of the motion, estimate the following quanti-

ties:

(a) The velocity vector and speed at time t = 2.

(b) Any times when the particle is moving parallel to

the y-axis.

(c) Any times when the particle has come to a stop.

t 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

x 1 4 6 7 6 3 2 3 5

y 3 2 3 5 8 10 11 10 9

26. A particle starts at the point P = (3, 2,−5) and moves

along a straight line toward Q = (5, 7,−2) at a speed of

5 cm/sec. Let x, y, z be measured in centimeters.

(a) Find the particle’s velocity vector.

(b) Find parametric equations for the particle’s mo-

tion.

27. A particle moves at a constant speed along a line from

the point P = (2,−1, 5) at time t = 0 to the point

Q = (5, 3,−1). Find parametric equations for the parti-

cle’s motion if:

(a) The particle takes 5 seconds to move from P to Q.

(b) The speed of the particle is 5 units per second.

28. A particle travels along the line x = 1 + t, y =

5 + 2t, z = −7 + t, where t is in seconds and x, y, z

are in meters.

(a) When and where does the particle hit the plane

x + y + z = 1?

(b) How fast is the particle going when it hits the

plane? Give units.
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29. A stone is thrown from a rooftop at time t = 0 seconds.

Its position at time t is given by

r⃗ (t) = 10ti⃗ − 5tj⃗ + (6.4 − 4.9t2)k⃗ .

The origin is at the base of the building, which is stand-

ing on flat ground. Distance is measured in meters. The

vector i⃗ points east, j⃗ points north, and k⃗ points up.

(a) How high is the rooftop above the ground?

(b) At what time does the stone hit the ground?

(c) How fast is the stone moving when it hits the

ground?

(d) Where does the stone hit the ground?

(e) What is the stone’s acceleration when it hits the

ground?

30. A child wanders slowly down a circular staircase from

the top of a tower. With x, y, z in feet and the origin at

the base of the tower, her position t minutes from the

start is given by

x = 10 cos t, y = 10 sin t, z = 90 − 5t.

(a) How tall is the tower?

(b) When does the child reach the bottom?

(c) What is her speed at time t?

(d) What is her acceleration at time t?

31. The origin is on flat ground and the z-axis points up-

ward. For time 0 ≤ t ≤ 10 in seconds and distance in

centimeters, a particle moves along a path given by

r⃗ = 2ti⃗ + 3tj⃗ + (100 − (t − 5)2)k⃗ .

(a) When is the particle at the highest point? What is

that point?

(b) When in the interval 0 ≤ t ≤ 10 is the particle

moving fastest? What is its speed at that moment?

(c) When in the interval 0 ≤ t ≤ 10 is the particle

moving slowest? What is its speed at that moment?

32. The function w = f (x, y, z) has grad f (7, 2, 5) = 4i⃗ −

3j⃗ + k⃗ . A particle moves along the curve r⃗ (t), arriving

at the point (7, 2, 5) with velocity 2i⃗ + 3j⃗ + 6k⃗ when

t = 0. Find the rate of change of w with respect to time

at t = 0.

33. Suppose x measures horizontal distance in meters, and

ymeasures distance above the ground in meters. At time

t = 0 in seconds, a projectile starts from a point ℎ me-

ters above the origin with speed vmeters/sec at an angle

� to the horizontal. Its path is given by

x = (v cos �)t, y = ℎ + (v sin �)t −
1

2
gt2.

Using this information about a general projectile, ana-

lyze the motion of a ball which travels along the path

x = 20t, y = 2 + 25t − 4.9t2.

(a) When does the ball hit the ground?

(b) Where does the ball hit the ground?

(c) At what height above the ground does the ball

start?

(d) What is the value of g, the acceleration due to grav-

ity?

(e) What are the values of v and �?

34. A particle is moving on a path in the xz-plane given by

x = 20t, z = 5t − 0.5t2, where z is the height of the

particle above the ground in meters, x is the horizontal

distance in meters, and t is time in seconds.

(a) What is the equation of the path in terms of x and

z only?

(b) When is the particle at ground level?

(c) What is the velocity of the particle at time t?

(d) What is the speed of the particle at time t?

(e) Is the speed ever 0?

(f) When is the particle at the highest point?

35. The base of a 20-meter tower is at the origin; the base

of a 20-meter tree is at (0, 20, 0). The ground is flat

and the z-axis points upward. The following paramet-

ric equations describe the motion of six projectiles each

launched at time t = 0 in seconds.

(I) r⃗ (t) = (20 + t2)k⃗

(II) r⃗ (t) = 2t2j⃗ + 2t2k⃗

(III) r⃗ (t) = 20i⃗ + 20j⃗ + (20 − t2)k⃗

(IV) r⃗ (t) = 2tj⃗ + (20 − t2)k⃗

(V) r⃗ (t) = (20 − 2t)i⃗ + 2tj⃗ + (20 − t)k⃗

(VI) r⃗ (t) = ti⃗ + tj⃗ + tk⃗

(a) Which projectile is launched from the top of the

tower and goes downward? When and where does

it hit the ground?

(b) Which projectile hits the top of the tree? When?

From where is it launched?

(c) Which projectile is not launched from somewhere

on the tower and hits the tree? Where and when

does it hit the tree?

36. A particle moves on a circle of radius 5 cm, centered

at the origin, in the xy-plane (x and y measured in cen-

timeters). It starts at the point (0, 5) and moves counter-

clockwise, going once around the circle in 8 seconds.

(a) Write a parameterization for the particle’s motion.

(b) What is the particle’s speed? Give units.

37. A particle moves along a curve with velocity vector

v⃗ (t) = − sin ti⃗ + cos tj⃗ . At time t = 0 the particle

is at (2, 3).

(a) Find the displacement vector for the particle from

time t = 0 to t = �.

(b) Find the position of the particle at time t = �.

(c) Find the distance traveled by the particle from time

t = 0 to time t = �.
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38. Determine the position vector r⃗ (t) for a rocket which is

launched from the origin at time t = 0 seconds, reaches

its highest point of (x, y, z) = (1000, 3000, 10,000),

where x, y, z are in meters, and after the launch is sub-

ject only to the acceleration due to gravity, 9.8 m/sec2.

39. Emily is standing on the outer edge of a merry-go-

round, 10 meters from the center. The merry-go-round

completes one full revolution every 20 seconds. As

Emily passes over a point P on the ground, she drops a

ball from 3 meters above the ground.

(a) How fast is Emily going?

(b) How far from P does the ball hit the ground? (The

acceleration due to gravity is 9.8 m/sec2.)

(c) How far from Emily does the ball hit the ground?

40. A point P moves in a circle of radius a. Show that r⃗ (t),

the position vector of P , and its velocity vector r⃗ ′(t) are

perpendicular.

41. A wheel of radius 1 meter rests on the x-axis with its

center on the y-axis. There is a spot on the rim at the

point (1, 1). See Figure 17.16. At time t = 0 the wheel

starts rolling on the x-axis in the direction shown at a

rate of 1 radian per second.

(a) Find parametric equations describing the motion of

the center of the wheel.

(b) Find parametric equations describing the motion of

the spot on the rim. Plot its path.

−1 0 1

2

1

x

y

Spot

Figure 17.16

42. Suppose r⃗ (t) = cos t i⃗ + sin t j⃗ + 2t k⃗ represents the

position of a particle on a helix, where z is the height

of the particle above the ground.

(a) Is the particle ever moving downward? When?

(b) When does the particle reach a point 10 units above

the ground?

(c) What is the velocity of the particle when it is 10

units above the ground?

(d) When it is 10 units above the ground, the particle

leaves the helix and moves along the tangent. Find

parametric equations for this tangent line.

43. Show that the helix r⃗ = � cos ti⃗ + � sin tj⃗ + �tk⃗ is

parameterized with constant speed.

44. An ant crawls along the radius from the center to the

edge of a circular disk of radius 1 meter, moving at a

constant rate of 1 cm/sec. Meanwhile, the disk is turn-

ing counterclockwise about its center at 1 revolution per

second.

(a) Parameterize the motion of the ant.

(b) Find the velocity and speed of the ant.

(c) Determine the acceleration and magnitude of the

acceleration of the ant.

45. The motion of a particle is given by r⃗ (t) = R cos(!t)i⃗ +

R sin(!t)j⃗ , with R > 0, ! > 0.

(a) Show that the particle moves on a circle and find

the radius, direction, and period.

(b) Determine the velocity vector of the particle and

its direction and speed.

(c) What are the direction and magnitude of the accel-

eration vector of the particle?

46. You bicycle along a straight flat road with a safety light

attached to one foot. Your bike moves at a speed of 25

km/hr and your foot moves in a circle of radius 20 cm

centered 30 cm above the ground, making one revolu-

tion per second.

(a) Find parametric equations for x and y which de-

scribe the path traced out by the light, where y is

distance (in cm) above the ground.

(b) Sketch the light’s path.

(c) How fast (in revolutions/sec) would your foot have

to be rotating if an observer standing at the side of

the road sees the light moving backward?

47. How do the motions of objects A and B differ, if A

has position vector r⃗ A(t) and B has position vector

r⃗ B(t) = r⃗ A(2t) for t ≥ 0. Illustrate your answer with

r⃗ A(t) = ti⃗ + t2 j⃗ .

48. At time t = 0 an object is moving with velocity vector

v⃗ = 2i⃗ + j⃗ and acceleration vector a⃗ = i⃗ + j⃗ . Can it

be in uniform circular motion about some point in the

plane?

49. Figure 17.17 shows the velocity and acceleration vec-

tors of an object in uniform circular motion about a

point in the plane at a particular moment. Is it moving

round the circle in the clockwise or counterclockwise

direction?

a⃗

v⃗

Figure 17.17
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50. Let v⃗ (t) be the velocity of a particle moving in the

plane. Let s(t) be the magnitude of v⃗ and let �(t) be

the angle of v⃗ (t) with the positive x-axis at time t, so

that v⃗ = s cos � i⃗ + s sin � j⃗ .

Let T⃗ be the unit vector in the direction of v⃗ , and

let N⃗ be the unit vector in the direction of k⃗ × v⃗ , per-

pendicular to v⃗ . Show that the acceleration a⃗ (t) is given

by

a⃗ =
ds

dt
T⃗ + s

d�

dt
N⃗ .

This shows how to separate the acceleration into the

sum of one component,
ds

dt
T⃗ , due to changing speed

and a perpendicular component, s
d�

dt
N⃗ , due to chang-

ing direction of the motion.

Strengthen Your Understanding

In Problems 51–53, explain what is wrong with the state-

ment.

51. When a particle moves around a circle its velocity and

acceleration are always orthogonal.

52. A particle with position r⃗ (t) at time t has acceleration

equal to 3 m/sec2 at time t = 0.

53. A parameterized curve r⃗ (t), A ≤ t ≤ B, has length

B − A.

In Problems 54–55, give an example of:

54. A function r⃗ (t) such that the particle with position r⃗ (t)

at time t has velocity v⃗ = i⃗ + 2j⃗ and acceleration

a⃗ = 4i⃗ + 6k⃗ at t = 0.

55. An interval a ≤ t ≤ b corresponding to a piece of the

helix r⃗ (t) = cos ti⃗ + sin tj⃗ + tk⃗ of length 10.

Are the statements in Problems 56–63 true or false? Give

reasons for your answer.

56. A particle whose motion in the plane is given by r⃗ (t) =

t2 i⃗ +(1−t)j⃗ has the same velocity at t = 1 and t = −1.

57. A particle whose motion in the plane is given by r⃗ (t) =

t2 i⃗ + (1 − t)j⃗ has the same speed at t = 1 and t = −1.

58. If a particle is moving along a parameterized curve r⃗ (t)

then the acceleration vector at any point is always per-

pendicular to the velocity vector at that point.

59. If a particle is moving along a parameterized curve r⃗ (t)

then the acceleration vector at a point cannot be parallel

to the velocity vector at that point.

60. If r⃗ (t) for a ≤ t ≤ b is a parameterized curve, then

r⃗ (−t) for a ≤ t ≤ b is the same curve traced backward.

61. If r⃗ (t) for a ≤ t ≤ b is a parameterized curve C and the

speed ||v⃗ (t)|| = 1, then the length of C is b − a.

62. If a particle moves with motion r⃗ (t) = 3ti⃗ + 2tj⃗ + tk⃗ ,

then the particle stops at the origin.

63. If a particle moves with constant speed, the path of the

particle must be a line.

For Problems 64–67, decide if the statement is true or false

for all smooth parameterized curves r⃗ (t) and all values of t

for which r⃗ ′(t) ≠ 0⃗ .

64. The vector r⃗ ′(t) is tangent to the curve at the point with

position vector r⃗ (t).

65. r⃗ ′(t) × r⃗ (t) = 0⃗

66. r⃗ ′(t) ⋅ r⃗ (t) = 0

67. r⃗ ′′(t) = −!2r⃗ (t)

17.3 VECTOR FIELDS

Introduction to Vector Fields

A vector field is a function that assigns a vector to each point in the plane or in 3-space. One example

of a vector field is the gradient of a function f (x, y); at each point (x, y) the vector gradf (x, y)

points in the direction of maximum rate of increase of f . In this section we look at other vector

fields representing velocities and forces.

Velocity Vector Fields

Figure 17.18 shows the flow of a part of the Gulf Stream, a current in the Atlantic Ocean.2 It is an

example of a velocity vector field: each vector shows the velocity of the current at that point. The

current is fastest where the velocity vectors are longest in the middle of the stream. Beside the stream

are eddies where the water flows round and round in circles.

2Based on data supplied by Avijit Gangopadhyay of the Jet Propulsion Laboratory.
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Figure 17.18: The velocity vector field of the Gulf Stream

Force Fields

Another physical quantity represented by a vector is force. When we experience a force, sometimes it

results from direct contact with the object that supplies the force (for example, a push). Many forces,

however, can be felt at all points in space. For example, the earth exerts a gravitational pull on all

other masses. Such forces can be represented by vector fields.

Figure 17.19 shows the gravitational force exerted by the earth on a mass of one kilogram at

different points in space. This is a sketch of the vector field in 3-space. You can see that the vectors

all point toward the earth (which is not shown in the diagram) and that the vectors farther from the

earth are smaller in magnitude.

Figure 17.19: The gravitational field of the earth
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Definition of a Vector Field

Now that you have seen some examples of vector fields, we give a more formal definition.

A vector field in 2-space is a function F⃗ (x, y) whose value at a point (x, y) is a 2-dimensional

vector. Similarly, a vector field in 3-space is a function F⃗ (x, y, z) whose values are 3-

dimensional vectors.

Notice the arrow over the function, F⃗ , indicating that its value is a vector, not a scalar. We often

represent the point (x, y) or (x, y, z) by its position vector r⃗ and write the vector field as F⃗ (r⃗ ).

Visualizing a Vector Field Given by a Formula

Since a vector field is a function that assigns a vector to each point, a vector field can often be given

by a formula.

Example 1 Sketch the vector field in 2-space given by F⃗ (x, y) = −yi⃗ + xj⃗ .

Solution Table 17.1 shows the value of the vector field at a few points. Notice that each value is a vector. To

plot the vector field, we plot F⃗ (x, y) with its tail at (x, y). (See Figure 17.20.)

Table 17.1 Values of F⃗ (x, y) = −yi⃗ + xj⃗

x

y

−1 0 1

−1 i⃗ − j⃗ −j⃗ −i⃗ − j⃗

0 i⃗ 0⃗ −i⃗

1 i⃗ + j⃗ j⃗ −i⃗ + j⃗

Now we look at the formula. The magnitude of the vector at (x, y) is the distance from (x, y) to

the origin, since

‖F⃗ (x, y)‖ = ‖ − yi⃗ + xj⃗ ‖ =
√

x2 + y2.

Therefore, all the vectors at a fixed distance from the origin (that is, on a circle centered at the origin)

have the same magnitude. The magnitude gets larger as we move farther from the origin.

What about the direction? Figure 17.20 suggests that at each point (x, y) the vector F⃗ (x, y) is

perpendicular to the position vector r⃗ = xi⃗ + yj⃗ . We confirm this using the dot product:

r⃗ ⋅ F⃗ (x, y) = (xi⃗ + yj⃗ ) ⋅ (−yi⃗ + xj⃗ ) = 0.

Thus, the vectors are tangent to circles centered at the origin and get longer as we go out. In Fig-

ure 17.21, the vectors have been scaled so that they do not obscure each other.

x

y

−1

1

−1

1

Figure 17.20: The value F⃗ (x, y) is

placed at the point (x, y)

x

y

Figure 17.21: The vector field F⃗ (x, y) = −yi⃗ + xj⃗ , vectors

scaled smaller to fit in diagram
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Example 2 Sketch the vector fields in 2-space given by (a) F⃗ (x, y) = xj⃗ (b) G⃗ (x, y) = xi⃗ .

Solution (a) The vector xj⃗ is parallel to the y-direction, pointing up when x is positive and down when x is

negative. Also, the larger |x| is, the longer the vector. The vectors in the field are constant along

vertical lines since the vector field does not depend on y. (See Figure 17.22.)

x

y

Figure 17.22: The vector field F⃗ (x, y) = xj⃗

x

y

Figure 17.23: The vector field F⃗ (x, y) = xi⃗

(b) This is similar to the previous example, except that the vector xi⃗ is parallel to the x-direction,

pointing to the right when x is positive and to the left when x is negative. Again, the larger |x|

is the longer the vector, and the vectors are constant along vertical lines, since the vector field

does not depend on y. (See Figure 17.23.)

Example 3 Describe the vector field in 3-space given by F⃗ (r⃗ ) = r⃗ , where r⃗ = xi⃗ + yj⃗ + zk⃗ .

Solution The notation F⃗ (r⃗ ) = r⃗ means that the value of F⃗ at the point (x, y, z) with position vector r⃗ is the

vector r⃗ with its tail at (x, y, z). Thus, the vector field points outward. See Figure 17.24. Note that

the lengths of the vectors have been scaled down so as to fit into the diagram.

Figure 17.24: The vector field F⃗ (r⃗ ) = r⃗

M

m

F⃗

Figure 17.25: Force exerted

on mass m by mass M

Finding a Formula for a Vector Field

Example 4 Newton’s Law of Gravitation states that the magnitude of the gravitational force exerted by an object

of massM on an object of massm is proportional toM andm and inversely proportional to the square

of the distance between them. The direction of the force is from m to M along the line connecting

them. (See Figure 17.25.) Find a formula for the vector field F⃗ (r⃗ ) that represents the gravitational

force, assuming M is located at the origin and m is located at the point with position vector r⃗ .
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Solution Since the mass m is located at r⃗ , Newton’s law says that the magnitude of the force is given by

‖F⃗ (r⃗ )‖ =
GMm

‖r⃗ ‖2
,

where G is the universal gravitational constant. A unit vector in the direction of the force is −r⃗ ∕‖r⃗ ‖,

where the negative sign indicates that the direction of force is toward the origin (gravity is attractive).

By taking the product of the magnitude of the force and a unit vector in the direction of the force,

we obtain an expression for the force vector field:

F⃗ (r⃗ ) =
GMm

‖r⃗ ‖2

(

−
r⃗

‖r⃗ ‖

)

=
−GMmr⃗

‖r⃗ ‖
3

.

We have already seen a picture of this vector field in Figure 17.19.

Gradient Vector Fields
The gradient of a scalar function f is a function that assigns a vector to each point, and is therefore

a vector field. It is called the gradient field of f . Many vector fields in physics are gradient fields.

Example 5 Sketch the gradient field of the functions in Figures 17.26–17.28.

1

7

5

3

x

y

Figure 17.26: The contour map of

f (x, y) = x2 + 2y2

3

−3

−1

1

y

x

Figure 17.27: The contour map of

g(x, y) = 5 − x2 − 2y2

5

1

9

−3

y

x

Figure 17.28: The contour map of

ℎ(x, y) = x + 2y + 3

Solution See Figures 17.29–17.31.For a functionf (x, y), the gradient vector of f at a point is perpendicular to

the contours in the direction of increasing f and its magnitude is the rate of change in that direction.

The rate of change is large when the contours are close together and small when they are far apart.

Notice that in Figure 17.29 the vectors all point outward, away from the local minimum of f , and

in Figure 17.30 the vectors of grad g all point inward, toward the local maximum of g. Since ℎ is a

linear function, its gradient is constant, so gradℎ in Figure 17.31 is a constant vector field.

x

y

Figure 17.29: grad f

x

y

Figure 17.30: grad g

x

y

Figure 17.31: gradℎ

Summary for Section 17.3

• A vector field in 2-space is a function F⃗ (x, y) whose value at (x, y) is a 2-dimensional vector.

• A vector field in 3-space is a function F⃗ (x, y, z) whose value at (x, y, z) is a 3-dimensional

vector.

• The gradient of a scalar function f is called the gradient field of f .
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Exercises and Problems for Section 17.3

EXERCISES

For Exercises 1–6, find formulas for the vector fields. (There

are many possible answers.)

1.

x

y 2.

x

y

3.

x

y 4.

x

y

5.

x

y 6.

x

y

In Exercises 7–10, assume x, y > 0 and decide if

(a) The vector field is parallel to the x-axis, parallel to the

y-axis, or neither.

(b) As x increases, the length increases, decreases, or nei-

ther.

(c) As y increases, the length increases, decreases, or nei-

ther.

Assume x, y > 0.

7. F⃗ = xj⃗ 8. F⃗ = yi⃗ + j⃗

9. F⃗ = (x + e1−y)i⃗ 10. grad(x4 + e3y)

Sketch the vector fields in Exercises 11–19 in the xy-plane.

11. F⃗ (x, y) = 2i⃗ + 3j⃗ 12. F⃗ (x, y) = yi⃗

13. F⃗ (x, y) = −yj⃗ 14. F⃗ (r⃗ ) = 2r⃗

15. F⃗ (r⃗ ) = r⃗ ∕‖r⃗ ‖ 16. F⃗ (r⃗ ) = −r⃗ ∕‖r⃗ ‖3

17. F⃗ = yi⃗ − xj⃗ 18. F⃗ (x, y) = 2xi⃗ + xj⃗

19. F⃗ (x, y) = (x + y)i⃗ + (x − y)j⃗

20. Match vector fields A⃗ –D⃗ in the tables with vector

fields (I)–(IV) in Figure 17.32.

Vector field A⃗

y∖x −1 1

−1 i⃗ + j⃗ i⃗ + j⃗

1 i⃗ + j⃗ i⃗ + j⃗

Vector field B⃗

y∖x −1 1

−1 −i⃗ − j⃗ −i⃗ − j⃗

1 i⃗ + j⃗ i⃗ + j⃗

Vector field C⃗

y∖x −1 1

−1 −2i⃗ + j⃗ 2i⃗ + j⃗

1 −2i⃗ + j⃗ 2i⃗ + j⃗

Vector field D⃗

y∖x −1 1

−1 i⃗ + j⃗ −i⃗ − j⃗

1 −i⃗ + j⃗ i⃗ − j⃗

(I) (II)

(III) (IV)

Figure 17.32

21. For each description of a vector field in (a)-(d), choose

one or more of the vector fields I-IX.

(a) Pointing radially outward, increasing in length

away from the origin.

(b) Pointing in a circular direction around the origin,

remaining the same length.

(c) Pointing towards the origin, increasing in length

farther from the origin.

(d) Pointing clockwise around the origin.

I.
xi⃗ + yj⃗
√

x2 + y2
II.

−yi⃗ + xj⃗
√

x2 + y2
III. r⃗

IV. −r⃗ V. −yi⃗ + xj⃗ VI. yi⃗ − xj⃗

VII. yi⃗ + xj⃗ VIII.
r⃗

||r⃗ ||3
IX. −

r⃗

||r⃗ ||3
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22. Each vector field in Figures (I)–(IV) represents the force

on a particle at different points in space as a result of an-

other particle at the origin. Match up the vector fields

with the descriptions below.

(a) A repulsive force whose magnitude decreases

as distance increases, such as between electric

charges of the same sign.

(b) A repulsive force whose magnitude increases as

distance increases.

(c) An attractive force whose magnitude decreases as

distance increases, such as gravity.

(d) An attractive force whose magnitude increases as

distance increases.

(I) (II)

(III) (IV)

PROBLEMS

In Problems 23–27, give an example of a vector field F⃗ (x, y)

in 2-space with the stated properties.

23. F⃗ is constant

24. F⃗ has a constant direction but ‖F⃗ ‖ is not constant

25. ‖F⃗ ‖ is constant but F⃗ is not constant

26. Neither ‖F⃗ ‖ nor the direction of F⃗ is constant

27. F⃗ is perpendicular to G⃗ = (x+y)i⃗ +(1+y2)j⃗ at every

point

28. Match the level curves in (I)–(IV) with the gradient

fields in (A)–(D). All figures use the same square win-

dow.

−
3

−
2

−
1

0
1

2

3

(I)

3

2

1

0
−
1

−
2

−
3

(II)

−
0.5

0 0.5

1

0.5

0
−
0.5

(III)

0.5

0 −
0.5

−
1

−
0.5

0
0.5

(IV)

(A) (B)

(C) (D)

Problems 29–30 concern the vector fields F⃗ = xi⃗ + yj⃗ ,

G⃗ = −yi⃗ + xj⃗ , and H⃗ = xi⃗ − yj⃗ .

29. Match F⃗ , G⃗ , H⃗ with their sketches in (I)–(III).

x

y(I)

x

y(II)

x

y(III)

30. Match the vector fields with their sketches, (I)–(IV).

(a) F⃗ + G⃗ (b) F⃗ +H⃗ (c) G⃗ + H⃗ (d) −F⃗ +G⃗

x

y(I)

x

y(II)

x

y(III)

x

y(IV)
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31. Match vector fields (a)–(f) with their graphs (I)–(VI).

(a) −yi⃗ + xj⃗ (b) xi⃗

(c) yj⃗ (d) zk⃗

(e) 2k⃗ (f) r⃗

x y

z(I)

x y

z(II)

x y

z(III)

x y

z(IV)

x y

z(V)

x y

z(VI)

In Problems 32–34, write formulas for vector fields with the

given properties.

32. All vectors are parallel to the x-axis; all vectors on a

vertical line have the same magnitude.

33. All vectors point toward the origin and have constant

length.

34. All vectors are of unit length and perpendicular to the

position vector at that point.

35. (a) Let F⃗ = xi⃗ + (x + y)j⃗ + (x − y + z)k⃗ . Find a

point at which F⃗ is parallel to l, the line x = 5+ t,

y = 6 − 2t, z = 7 − 3t.

(b) Find a point at which F⃗ and l are perpendicular.

(c) Give an equation for and describe in words the set

of all points at which F⃗ and l are perpendicular.

In Problems 36–37, let F⃗ = xi⃗ + yj⃗ and G⃗ = −yi⃗ + xj⃗ .

36. Sketch the vector field L⃗ = aF⃗ + G⃗ if:

(a) a = 0 (b) a > 0 (c) a < 0

37. Sketch the vector field L⃗ = F⃗ + bG⃗ if:

(a) b = 0 (b) b > 0 (c) b < 0

38. In the middle of a wide, steadily flowing river there is a

fountain that spouts water horizontally in all directions.

The river flows in the i⃗ -direction in the xy-plane and

the fountain is at the origin.

(a) If A > 0, K > 0, explain why the following ex-

pression could represent the velocity field for the

combined flow of the river and the fountain:

v⃗ = Ai⃗ +K(x2 + y2)−1(xi⃗ + yj⃗ ).

(b) What is the significance of the constants A and K?

(c) Using a computer, sketch the vector field v⃗ forK =

1 and A = 1 and A = 2, and for A = 0.2, K = 2.

39. Figures 17.33 and 17.34 show the gradient of the func-

tions z = f (x, y) and z = g(x, y).

(a) For each function, draw a rough sketch of the level

curves, showing possible z-values.

(b) The xz-plane cuts each of the surfaces z = f (x, y)

and z = g(x, y) in a curve. Sketch each of these

curves, making clear how they are similar and how

they are different from one another.

x

y

Figure 17.33: Gradient of

z = f (x, y)

x

y

Figure 17.34: Gradient of

z = g(x, y)

40. Let F⃗ = ui⃗ +vj⃗ be a vector field in 2-space with mag-

nitude F = ‖F⃗ ‖.

(a) Let T⃗ = (1∕F )F⃗ . Show that T⃗ is the unit vector

in the direction of F⃗ . See Figure 17.35.

(b) Let N⃗ = (1∕F )(k⃗ × F⃗ ) = (1∕F )(−vi⃗ + uj⃗ ).

Show that N⃗ is the unit vector pointing to the left

of and at right angles to F⃗. See Figure 17.35.

F⃗

T⃗

N⃗

x

y

Figure 17.35
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Strengthen Your Understanding

In Problems 41–42, explain what is wrong with the state-

ment.

41. A plot of the vector field G⃗ (x, y, z) = F⃗ (2x, 2y, 2z)

can be obtained from a plot of the vector field F⃗ (x, y, z)

by doubling the lengths of all the arrows.

42. A vector field F⃗ is defined by the formula F⃗ (x, y, z) =

x2 − yz.

In Problems 43–44, give an example of:

43. A nonconstant vector field that is parallel to i⃗ + j⃗ + k⃗

at every point.

44. A nonconstant vector field with magnitude 1 at every

point.

17.4 THE FLOW OF A VECTOR FIELD

When an iceberg is spotted in the North Atlantic, it is important to be able to predict where the

iceberg is likely to be a day or a week later. To do this, one needs to know the velocity vector field

of the ocean currents, that is, how fast and in what direction the water is moving at each point.

In this section we use differential equations to find the path of an object in a fluid flow. This path

is called a flow line. Figure 17.36 shows several flow lines for the Gulf Stream velocity vector field

in Figure 17.18 on page 959. The arrows on each flow line indicate the direction of flow.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

km

km

Figure 17.36: Flow lines for objects in the Gulf Stream with different starting points

How Do We Find a Flow Line?

Suppose that F⃗ is the velocity vector field of water on the surface of a creek and imagine a seed

being carried along by the current. We want to know the position vector r⃗ (t) of the seed at time t.

We know

Velocity of seed

at time t
=

Velocity of current at seed’s position

at time t;

that is,

r⃗ ′(t) = F⃗ (r⃗ (t)).
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We make the following definition:

A flow line of a vector field v⃗ = F⃗ (r⃗ ) is a path r⃗ (t) whose velocity vector equals v⃗ . Thus,

r⃗ ′(t) = v⃗ = F⃗ (r⃗ (t)).

The flow of a vector field is the family of all of its flow lines.

A flow line is also called an integral curve or a streamline. We define flow lines for any vector

field, as it turns out to be useful to study the flow of fields (for example, electric and magnetic) that

are not velocity fields.

After resolving F⃗ and r⃗ into components, F⃗ = F1i⃗ + F2 j⃗ and r⃗ (t) = x(t)i⃗ + y(t)j⃗ , the

definition of a flow line tells us that x(t) and y(t) satisfy the system of differential equations

x′(t) = F1(x(t), y(t)) and y′(t) = F2(x(t), y(t)).

Solving these differential equations gives a parameterization of the flow line.

Example 1 Find the flow line of the constant velocity field v⃗ = 3i⃗ + 4j⃗ cm/sec that passes through the point

(1, 2) at time t = 0.

Solution Let r⃗ (t) = x(t)i⃗ + y(t)j⃗ be the position in cm of a particle at time t, where t is in seconds. We have

x′(t) = 3 and y′(t) = 4.

Thus,

x(t) = 3t + x0 and y(t) = 4t + y0.

Since the path passes the point (1, 2) at t = 0, we have x0 = 1 and y0 = 2 and so

x(t) = 3t + 1 and y(t) = 4t + 2.

Thus, the path is the line given parametrically by

r⃗ (t) = (3t + 1)i⃗ + (4t + 2)j⃗ .

(See Figure 17.37.) To find an explicit equation for the path, eliminate t between these expressions

to get
x − 1

3
=

y − 2

4
or y =

4

3
x +

2

3
.

(1, 2)

Flow line

x

y

Figure 17.37: Vector field F⃗ = 3i⃗ + 4j⃗ with the flow line through (1, 2)
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Example 2 The velocity of a flow at the point (x, y) is F⃗ (x, y) = i⃗ + xj⃗ . Find the path of motion of an object

in the flow that is at the point (−2, 2) at time t = 0.

Solution Figure 17.38 shows this field. Since r⃗ ′(t) = F⃗ (r⃗ (t)), we are looking for the flow line that satisfies

the system of differential equations

x′(t) = 1, y′(t) = x(t) satisfying x(0) = −2 and y(0) = 2.

x

y

Figure 17.38: The velocity field

v⃗ = i⃗ + xj⃗

(−2, 2)

Flow line

x

y

Figure 17.39: A flow line of the

velocity field v⃗ = i⃗ + xj⃗

Solving for x(t) first, we get x(t) = t+x0, where x0 is a constant of integration. Thus, y′(t) = t+x0,

so y(t) =
1

2
t2 + x0t + y0, where y0 is also a constant of integration. Since x(0) = x0 = −2 and

y(0) = y0 = 2, the path of motion is given by

x(t) = t − 2, y(t) =
1

2
t2 − 2t + 2,

or, equivalently,

r⃗ (t) = (t − 2)i⃗ + (
1

2
t2 − 2t + 2)j⃗ .

The graph of this flow line in Figure 17.39 looks like a parabola. We check this by seeing that an

explicit equation for the path is y =
1

2
x2.

Example 3 Determine the flow of the vector field v⃗ = −yi⃗ + xj⃗ .

Solution Figure 17.40 suggests that the flow consists of concentric counterclockwise circles, centered at the

origin. The system of differential equations for the flow is

x′(t) = −y(t) y′(t) = x(t).

The equations (x(t), y(t)) = (a cos t, a sin t) parameterize a family of counterclockwise circles of

radius a, centered at the origin. We check that this family satisfies the system of differential equations:

x′(t) = −a sin t = −y(t) and y′(t) = a cos t = x(t).
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x

y

Figure 17.40: The flow of the

vector field v⃗ = −yi⃗ + xj⃗

Approximating Flow Lines Numerically
Often it is not possible to find formulas for the flow lines of a vector field. However, we can approx-

imate them numerically by Euler’s method for solving differential equations. Since the flow lines

r⃗ (t) = x(t)i⃗ + y(t)j⃗ of a vector field v⃗ = F⃗ (x, y) satisfy the differential equation r⃗ ′(t) = F⃗ (r⃗ (t)),

we have

r⃗ (t + Δt) ≈ r⃗ (t) + (Δt)r⃗ ′(t)

= r⃗ (t) + (Δt)F⃗ (r⃗ (t)) for Δt near 0.

To approximate a flow line, we start at a point r⃗ 0 = r⃗ (0) and estimate the position r⃗ 1 of a particle

at time Δt later:

r⃗ 1 = r⃗ (Δt) ≈ r⃗ (0) + (Δt)F⃗ (r⃗ (0))

= r⃗ 0 + (Δt)F⃗ (r⃗ 0).

We then repeat the same procedure starting at r⃗ 1, and so on. The general formula for getting from

one point to the next is

r⃗ n+1 = r⃗ n + (Δt)F⃗ (r⃗ n).

The points with position vectors r⃗ 0, r⃗ 1, . . . trace out the path, as shown in the next example.

Example 4 Use Euler’s method to approximate the flow line through (1, 2) for the vector field v⃗ = y2i⃗ + 2x2j⃗ .

Solution The flow is determined by the differential equations r⃗ ′(t) = v⃗ , or equivalently

x′(t) = y2, y′(t) = 2x2.

We use Euler’s method with Δt = 0.02, giving

r⃗ n+1 = r⃗ n + 0.02 v⃗ (xn, yn)

= xn i⃗ + ynj⃗ + 0.02(y2
n
i⃗ + 2x2

n
j⃗ ),

or equivalently

xn+1 = xn + 0.02yn
2, yn+1 = yn + 0.02 ⋅ 2xn

2.

When t = 0, we have (x0, y0) = (1, 2). Then

x1 = x0 + 0.02 ⋅ y0
2 = 1 + 0.02 ⋅ 22 = 1.08,

y1 = y0 + 0.02 ⋅ 2x2
0
= 2 + 0.02 ⋅ 2 ⋅ 12 = 2.04.

So after one step x(0.02) ≈ 1.08 and y(0.02) ≈ 2.04. Similarly, x(0.04) = x(2Δt) ≈ 1.16, y(0.04) =

y(2Δt) ≈ 2.08 and so on. Farther values along the flow line are given in Table 17.2 and plotted in

Figure 17.41.
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Table 17.2 Approximated flow line starting at (1, 2) for the vector field v⃗ = y2i⃗ + 2x2j⃗

t 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

x 1 1.08 1.16 1.25 1.34 1.44 1.54 1.65 1.77 1.90

y 2 2.04 2.08 2.14 2.20 2.28 2.36 2.45 2.56 2.69

1 2
0

2

3

x

y

Figure 17.41: Euler’s method solution to x′ = y2, y′ = 2x2

Summary for Section 17.4

• A flow line of a vector field v⃗ = F⃗ (r⃗ ) is a path r⃗ (t) whose velocity vector equals v⃗ .

• The flow of a vector field is the family of all of its flow lines.

• Suppose F⃗ = F1 i⃗ + F2j⃗ has flow line given parametrically by r⃗ (t) = x(t)i⃗ + y(t)j⃗ . Then x(t)

and y(t) is a solution to the system of differential equations

x′(t) = F1(x(t), y(t)) and y′(t) = F2(x(t), y(t)).

• Approximating flow lines by Euler’s method: The general formula for getting from point r⃗ n

to the next point r⃗ n+1 on a flow line of a vector field F⃗ by Euler’s method is

r⃗ n+1 = r⃗ n + (Δt)F⃗ (r⃗ n).

Exercises and Problems for Section 17.4

EXERCISES

In Exercises 1–3, sketch the vector field and its flow.

1. v⃗ = 2j⃗ 2. v⃗ = 3i⃗ 3. v⃗ = 3i⃗ − 2j⃗

In Exercises 4–9, sketch the vector field and the flow. Then

find the system of differential equations associated with the

vector field and check that the flow satisfies the system.

4. v⃗ = xi⃗ ; x(t) = aet, y(t) = b

5. v⃗ = xj⃗ ; x(t) = a, y(t) = at + b

6. v⃗ = xi⃗ + yj⃗ ; x(t) = aet, y(t) = bet

7. v⃗ = xi⃗ − yj⃗ ; x(t) = aet, y(t) = be−t

8. v⃗ = yi⃗ − xj⃗ ; x(t) = a sin t, y(t) = a cos t

9. v⃗ = yi⃗ + xj⃗ ; x(t) = a(et + e−t), y(t) = a(et − e−t)

10. Use a computer or calculator with Euler’s method to

approximate the flow line through (1, 2) for the vector

field v⃗ = y2 i⃗ + 2x2j⃗ using 5 steps with Δt = 0.1.
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PROBLEMS

For Problems 11–14, find the region of the Gulf Stream ve-

locity field in Figure 17.18 on page 959 represented by the

given table of velocity vectors (in cm/sec).

11.
35i⃗ + 131j⃗ 48i⃗ + 92j⃗ 47i⃗ + j⃗

−32i⃗ + 132j⃗ −44i⃗ + 92j⃗ −42i⃗ + j⃗

−51i⃗ + 73j⃗ −119i⃗ + 84j⃗ −128i⃗ + 6j⃗

12.
10i⃗ − 3j⃗ 11i⃗ + 16j⃗ 20i⃗ + 75j⃗

53i⃗ − 7j⃗ 58i⃗ + 23j⃗ 64i⃗ + 80j⃗

119i⃗ − 8j⃗ 121i⃗ + 31j⃗ 114i⃗ + 66j⃗

13.
97i⃗ − 41j⃗ 72i⃗ − 24j⃗ 54i⃗ − 10j⃗

134i⃗ − 49j⃗ 131i⃗ − 44j⃗ 129i⃗ − 18j⃗

103i⃗ − 36j⃗ 122i⃗ − 30j⃗ 131i⃗ − 17j⃗

14.
−95i⃗ − 60j⃗ 18i⃗ − 48j⃗ 82i⃗ − 22j⃗

−29i⃗ + 48j⃗ 76i⃗ + 63j⃗ 128i⃗ − 16j⃗

26i⃗ + 105j⃗ 49i⃗ + 119j⃗ 88i⃗ + 13j⃗

15. F⃗ (x, y) and G⃗ (x, y) = 2F⃗ (x, y) are two vector fields.

Illustrating your answer with F⃗ (x, y) = −yi⃗ + xj⃗ , de-

scribe the graphical difference between:

(a) The vector fields (b) Their flows

16. Match the vector fields (a)–(f) with their flow lines (I)–

(VI). Put arrows on the flow lines indicating the direc-

tion of flow.

(a) yi⃗ + xj⃗ (b) −yi⃗ + xj⃗

(c) xi⃗ + yj⃗ (d) −yi⃗ + (x + y∕10)j⃗

(e) −yi⃗ + (x − y∕10)j⃗ (f) (x − y)i⃗ + (x − y)j⃗

−1 1

−1

1

x

y(I)

−1 1

−1

1

x

y(II)

−1 1

−1

1

x

y(III)

−2 −1 1 2

−1

1

x

y
(IV)

−5 5

−5

5

x

y(V)

−5 5

−5

5

x

y(VI)

17. Show that the acceleration a⃗ of an object flowing in a

velocity field F⃗ (x, y) = u(x, y)i⃗ + v(x, y)j⃗ is given by

a⃗ = (uxu + uyv)i⃗ + (vxu + vyv)j⃗ .

18. A velocity vector field v⃗ = −Hy i⃗ + Hx j⃗ is based on

the partial derivatives of a smooth functionH(x, y). Ex-

plain why

(a) v⃗ is perpendicular to gradH .

(b) the flow lines of v⃗ are along the level curves of H .

In Problems 19–21, show that every flow line of the vector

field v⃗ lies on a level curve for the function f (x, y).

19. v⃗ = xi⃗ − yj⃗ , f (x, y) = xy

20. v⃗ = yi⃗ + xj⃗ , f (x, y) = x2 − y2

21. v⃗ = ayi⃗ + bxj⃗ , f (x, y) = bx2 − ay2

22. A velocity vector field, F⃗ (x, y) = (x + 2y)i⃗ + xyj⃗ , in

meters per second, has x and y in meters. For an object

starting at (2, 1), use Euler’s method withΔt = 0.01 sec

to approximate its position 0.01 sec later.

23. A solid metal ball has its center at the origin of a fixed

set of axes. The ball rotates once every 24 hours around

the z-axis. The direction of rotation is counterclockwise

when viewed from above. Let v⃗ (x, y, z) be the velocity

vector of the particle of metal at the point (x, y, z) inside

the ball. Time is in hours and x, y, z are in meters.

(a) Find a formula for the vector field v⃗ . Give units for

your answer.

(b) Describe in words the flow lines of v⃗ .

24. (a) Show that ℎ(t) = e−2at(x2 + y2) is constant along

any flow line of v⃗ = (ax − y)i⃗ + (x + ay)j⃗ .

(b) Show that points moving with the flow that are on

the unit circle centered at the origin at time 0 are

on the circle of radius eat centered at the origin at

time t.
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Strengthen Your Understanding

In Problems 25–26, explain what is wrong with the state-

ment.

25. The flow lines of a vector field whose components are

linear functions are all straight lines.

26. If the flow lines of a vector field are all straight lines

with the same slope pointing in the same direction, then

the vector field is constant.

In Problems 27–28, give an example of:

27. A vector field F⃗ (x, y, z) such that the path r⃗ (t) =

ti⃗ + t2 j⃗ + t3k⃗ is a flow line.

28. A vector field whose flow lines are rays from the origin.

Are the statements in Problems 29–38 true or false? Give

reasons for your answer.

29. The flow lines for F⃗ (x, y) = xj⃗ are parallel to the y-

axis.

30. The flow lines of F⃗ (x, y) = yi⃗ − xj⃗ are hyperbolas.

31. The flow lines of F⃗ (x, y) = xi⃗ are parabolas.

32. The vector field in Figure 17.42 has a flow line which

lies in the first and third quadrants.

Figure 17.42

33. The vector field in Figure 17.42 has a flow line on which

both x and y tend to infinity.

34. If F⃗ is a gradient vector field, F⃗ (x, y) = ∇f (x, y), then

the flow lines for F⃗ are the contours for f .

35. If the flow lines for the vector field F⃗ (r⃗ ) are all con-

centric circles centered at the origin, then F⃗ (r⃗ ) ⋅ r⃗ = 0

for all r⃗ .

36. If the flow lines for the vector field F⃗ (x, y) are all

straight lines parallel to the constant vector v⃗ = 3i⃗ +

5j⃗ , then F⃗ (x, y) = v⃗ .

37. No flow line for the vector field F⃗ (x, y) = xi⃗ +2j⃗ has

a point where the y-coordinate reaches a relative maxi-

mum.

38. The vector field F⃗ (x, y) = ex i⃗ +yj⃗ has a flow line that

crosses the x-axis.

Online Resource: Review Problems and Projects
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18.1 THE IDEA OF A LINE INTEGRAL

Imagine that you are rowing on a river with a noticeable current. At times you may be working

against the current and at other times you may be moving with it. At the end you have a sense

of whether, overall, you were helped or hindered by the current. The line integral, defined in this

section, measures the extent to which a curve in a vector field is, overall, going with the vector field

or against it.

Orientation of a Curve
A curve can be traced out in two directions, as shown in Figure 18.1. We need to choose one direction

before we can define a line integral.

A curve is said to be oriented if we have chosen a direction of travel on it.

P

Q

P

Q

Figure 18.1: A curve with two different orientations represented by arrowheads

Definition of the Line Integral

Consider a vector field F⃗ and an oriented curve C . We begin by dividing C into n small, almost

straight pieces along which F⃗ is approximately constant. Each piece can be represented by a dis-

placement vector Δr⃗ i = r⃗ i+1 − r⃗ i and the value of F⃗ at each point of this small piece of C is

approximately F⃗ (r⃗ i). See Figures 18.2 and 18.3.

r⃗ 0
✗

P

C

r⃗ 1
✕
✒...

✸r⃗ i

r⃗ i+1 ✶
...
✿

r⃗ n−1✲ r⃗ n③
Q

■

Δr⃗ i = r⃗ i+1 − r⃗ i

Figure 18.2: The curve C , oriented from P to

Q, approximated by straight line segments

represented by displacement vectors

Δr⃗ i = r⃗ i+1 − r⃗ i

P

QC

F⃗ (r⃗ 0)

F⃗ (r⃗ 1)

F⃗ (r⃗ i)

F⃗ (r⃗ i+1) F⃗ (r⃗ n−1)

F⃗ (r⃗ n)

Figure 18.3: The vector field F⃗ evaluated at the points with

position vector r⃗ i on the curve C oriented from P to Q

Returning to our initial example, the vector field F⃗ represents the current and the oriented curve

C is the path of the person rowing the boat. We wish to determine to what extent the vector field F⃗

helps or hinders motion along C . Since the dot product can be used to measure to what extent two

vectors point in the same or opposing directions, we form the dot product F⃗ (r⃗ i) ⋅Δr⃗ i for each point

with position vector r⃗ i on C . Summing over all such pieces, we get a Riemann sum:

n−1
∑

i=0

F⃗ (r⃗ i) ⋅ Δr⃗ i.

We define the line integral, written ∫
C
F⃗ ⋅ dr⃗ , by taking the limit as ‖Δr⃗ i‖ → 0. Provided the

limit exists, we make the following definition:
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The line integral of a vector field F⃗ along an oriented curve C is

∫C
F⃗ ⋅ dr⃗ = lim

‖Δr⃗ i‖→0

n−1
∑

i=0

F⃗ (r⃗ i) ⋅ Δr⃗ i.

How Does the Limit Defining a Line Integral Work?

The limit in the definition of a line integral exists if F⃗ is continuous on the curve C and if C is made

by joining end to end a finite number of smooth curves. (A vector field F⃗ = F1i⃗ + F2 j⃗ + F3k⃗ is

continuous if F1, F2, and F3 are continuous, and a smooth curve is one that can be parameterized by

smooth functions.) We subdivide the curve using a parameterization that goes from one end of the

curve to the other, in the forward direction, without retracing any portion of the curve. A subdivision

of the parameter interval gives a subdivision of the curve. All the curves we consider in this book

are piecewise smooth in this sense. Section 18.2 shows how to use a parameterization to compute a

line integral.

Example 1 Find the line integral of the constant vector field F⃗ = i⃗ + 2j⃗ along the path from (1, 1) to (10, 10)

shown in Figure 18.4.

(1, 1)
(10, 1)

(10, 10)

C1C1

x

y

C2

Figure 18.4: The constant vector field F⃗ = i⃗ + 2j⃗ and the path from (1, 1) to (10, 10)

Solution Let C1 be the horizontal segment of the path going from (1, 1) to (10, 1). When we break this path

into pieces, each piece Δr⃗ is horizontal, so Δr⃗ = Δxi⃗ and F⃗ ⋅Δr⃗ = (i⃗ + 2j⃗ ) ⋅Δxi⃗ = Δx. Hence,

∫C1

F⃗ ⋅ dr⃗ =
∫

x=10

x=1

dx = 9.

Similarly, along the vertical segment C2, we have Δr⃗ = Δyj⃗ and F⃗ ⋅Δr⃗ = (i⃗ + 2j⃗ ) ⋅Δyj⃗ = 2Δy,

so

∫C2

F⃗ ⋅ dr⃗ =
∫

y=10

y=1

2 dy = 18.

Thus,

∫C
F⃗ ⋅ dr⃗ =

∫C1

F⃗ ⋅ dr⃗ +
∫C2

F⃗ ⋅ dr⃗ = 9 + 18 = 27.
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What Does the Line Integral Tell Us?

Remember that for any two vectors u⃗ and v⃗ , the dot product u⃗ ⋅ v⃗ is positive if u⃗ and v⃗ point roughly

in the same direction (that is, if the angle between them is less than �∕2). The dot product is zero

if u⃗ is perpendicular to v⃗ and is negative if they point roughly in opposite directions (that is, if the

angle between them is greater than �∕2).

The line integral of F⃗ adds the dot products of F⃗ and Δr⃗ along the path. If ||F⃗ || is constant,

the line integral gives a positive number if F⃗ is mostly pointing in the same direction as C , and a

negative number if F⃗ is mostly pointing in the opposite direction to C . The line integral is zero if

F⃗ is perpendicular to the path at all points or if the positive and negative contributions cancel out.

In general, the line integral of a vector field F⃗ along a curve C measures the extent to which C is

going with F⃗ or against it.

Example 2 The vector field F⃗ and the oriented curves C1, C2, C3, C4 are shown in Figure 18.5. The curves C1

and C3 are the same length. Which of the line integrals ∫
Ci
F⃗ ⋅ dr⃗ , for i = 1, 2, 3, 4, are positive?

Which are negative? Arrange these line integrals in ascending order.

C2

C3

C4

C1

Figure 18.5: Vector field and paths C1, C2, C3, C4

Solution The vector field F⃗ and the line segments Δr⃗ are approximately parallel and in the same direction

for the curves C1, C2, and C3. So the contributions of each term F⃗ ⋅Δr⃗ are positive for these curves.

Thus, ∫
C1

F⃗ ⋅ dr⃗ , ∫
C2

F⃗ ⋅ dr⃗ , and ∫
C3

F⃗ ⋅ dr⃗ are each positive. For the curve C4, the vector field

and the line segments are in opposite directions, so each term F⃗ ⋅ Δr⃗ is negative, and therefore the

integral ∫
C4

F⃗ ⋅ dr⃗ is negative.

Since the magnitude of the vector field is smaller along C1 than along C3, and these two curves

are the same length, we have

∫C1

F⃗ ⋅ dr⃗ <
∫C3

F⃗ ⋅ dr⃗ .

In addition, the magnitude of the vector field is the same along C2 and C3, but the curve C2 is longer

than the curve C3. Thus,

∫C3

F⃗ ⋅ dr⃗ <
∫C2

F⃗ ⋅ dr⃗ .

Putting these results together with the fact that ∫
C4

F⃗ ⋅ dr⃗ is negative, we have

∫C4

F⃗ ⋅ dr⃗ <
∫C1

F⃗ ⋅ dr⃗ <
∫C3

F⃗ ⋅ dr⃗ <
∫C2

F⃗ ⋅ dr⃗ .
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Interpretations of the Line Integral

Work

Recall from Section 13.3 that if a constant force F⃗ acts on an object while it moves along a straight

line through a displacement d⃗ , the work done by the force on the object is

Work done = F⃗ ⋅ d⃗ .

Now suppose we want to find the work done by gravity on an object moving far above the surface

of the earth. Since the force of gravity varies with distance from the earth and the path may not

be straight, we can’t use the formula F⃗ ⋅ d⃗ . We approximate the path by line segments which are

small enough that the force is approximately constant on each one. Suppose the force at a point with

position vector r⃗ is F⃗ (r⃗ ), as in Figures 18.2 and 18.3. Then

Work done by force F⃗ (r⃗ i)

over small displacement Δr⃗ i

≈ F⃗ (r⃗ i) ⋅ Δr⃗ i,

and so,

Total work done by force

along oriented curve C
≈

∑

i

F⃗ (r⃗ i) ⋅ Δr⃗ i.

Taking the limit as ‖Δr⃗ i‖ → 0, we get

Work done by force F⃗ (r⃗ )

along curve C
= lim

‖Δr⃗ i‖→0

∑

i

F⃗ (r⃗ i) ⋅ Δr⃗ i = ∫C
F⃗ ⋅ dr⃗ .

Example 3 A mass lying on a flat table is attached to a spring whose other end is fastened to the wall. (See

Figure 18.6.) The spring is extended 20 cm beyond its rest position and released. If the axes are as

shown in Figure 18.6, when the spring is extended by a distance of x, by Hooke’s Law, the force

exerted by the spring on the mass is given by

F⃗ (x) = −kxi⃗ ,

where k is a positive constant that depends on the properties of the particular spring.

Suppose the mass moves back to the rest position. How much work is done by the force exerted

by the spring?

F⃗

0 ✲✛x

❄

Rest position

Wall

Figure 18.6: Force on mass due to an extended

spring

0 Δr⃗

Δx✲✛ x

20

Figure 18.7: Dividing up the interval 0 ≤ x ≤ 20 in

order to calculate the work done

Solution The path fromx = 20 to x = 0 is divided as shown in Figure 18.7, with a typical segment represented

by

Δr⃗ = Δxi⃗ .

Since we are moving from x = 20 to x = 0, the quantity Δx will be negative. The work done by the
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force as the mass moves through this segment is approximated by

Work done ≈ F⃗ ⋅ Δr⃗ = (−kxi⃗ ) ⋅ (Δxi⃗ ) = −kxΔx.

Thus, we have

Total work done ≈
∑

−kxΔx.

In the limit, as ‖Δx‖ → 0, this sum becomes an ordinary definite integral. Since the path starts at

x = 20, this is the lower limit of integration; x = 0 is the upper limit. Thus, we get

Total work done =
∫

x=0

x=20

−kx dx = −
kx2

2

|

|

|

|

0

20

=
k(20)2

2
= 200k.

Note that the work done is positive, since the force acts in the direction of motion.

Example 3 shows how a line integral over a path parallel to the x-axis reduces to a one-variable

integral. Section 18.2 shows how to convert any line integral into a one-variable integral.

Example 4 A particle with position vector r⃗ is subject to a force, F⃗ , due to gravity. What is the sign of the work

done by F⃗ as the particle moves along the path C1, a radial line through the center of the earth,

starting 8000 km from the center and ending 10,000 km from the center? (See Figure 18.8.)

Solution We divide the path into small radial segments, Δr⃗ , pointing away from the center of the earth and

parallel to the gravitational force. The vectors F⃗ and Δr⃗ point in opposite directions, so each term

F⃗ ⋅ Δr⃗ is negative. Adding all these negative quantities and taking the limit results in a negative

value for the total work. Thus, the work done by gravity is negative. The negative sign indicates that

we would have to do work against gravity to move the particle along the path C1.

Earth

C2

C1

8000

10,000

Figure 18.8: The earth

Example 5 Find the sign of the work done by gravity along the curve C1 in Example 4, but with the opposite

orientation.

Solution Tracing a curve in the opposite direction changes the sign of the line integral because all the segments

Δr⃗ change direction, and so every term F⃗ ⋅ Δr⃗ changes sign. Thus, the result will be the negative

of the answer found in Example 4. Therefore, the work done by gravity as a particle moves along C1

toward the center of the earth is positive.

Example 6 Find the work done by gravity as a particle moves along C2, an arc of a circle 8000 km long at a

distance of 8000 km from the center of the earth. (See Figure 18.8.)
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Solution Since C2 is everywhere perpendicular to the gravitational force, F⃗ ⋅ Δr⃗ = 0 for all Δr⃗ along C2.

Thus,

Work done =
∫C2

F⃗ ⋅ dr⃗ = 0,

so the work done is zero. This is why satellites can remain in orbit without expending any fuel, once

they have attained the correct altitude and velocity.

Circulation

The velocity vector field for the Gulf Stream on page 959 shows distinct eddies or regions where the

water circulates. We can measure this circulation using a closed curve, that is, one that starts and

ends at the same point.

If C is an oriented closed curve, the line integral of a vector field F⃗ around C is called the

circulation of F⃗ around C .

Circulation is a measure of the net tendency of the vector field to point around the curve C . To

emphasize that C is closed, the circulation is sometimes denoted ∮
C
F⃗ ⋅ dr⃗ , with a small circle on

the integral sign.

Example 7 Describe the rotation of the vector fields in Figures 18.9 and 18.10. Find the sign of the circulation

of the vector fields around the indicated paths.

C1

Figure 18.9: A circulating flow

C2

Figure 18.10: A flow with zero

circulation

Solution Consider the vector field in Figure 18.9. If you think of this as representing the velocity of water

flowing in a pond, you see that the water is circulating. The line integral around C1, measuring the

circulation around C1, is positive, because the vectors of the field are all pointing in the direction of

the path. By way of contrast, look at the vector field in Figure 18.10. Here the line integral aroundC2

is zero because the vertical portions of the path are perpendicular to the field and the contributions

from the two horizontal portions cancel out. This means that there is no net tendency for the water

to circulate around C2.

It turns out that the vector field in Figure 18.10 has the property that its circulation around any

closed path is zero. Water moving according to this vector field has no tendency to circulate around

any point, and a leaf dropped into the water will not spin. We’ll look at such special fields again later

when we introduce the notion of the curl of a vector field.
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Properties of Line Integrals

Line integrals share some basic properties with ordinary one-variable integrals:

For a scalar constant �, vector fields F⃗ and G⃗ , and oriented curves C , C1, and C2,

1.
∫C

�F⃗ ⋅ dr⃗ = �
∫C

F⃗ ⋅ dr⃗ . 2.
∫C

(F⃗ + G⃗ ) ⋅ dr⃗ =
∫C

F⃗ ⋅ dr⃗ +
∫C

G⃗ ⋅ dr⃗ .

3.
∫−C

F⃗ ⋅ dr⃗ = −
∫C

F⃗ ⋅ dr⃗ . 4.
∫C1+C2

F⃗ ⋅ dr⃗ =
∫C1

F⃗ ⋅ dr⃗ +
∫C2

F⃗ ⋅ dr⃗ .

Properties 3 and 4 are concerned with the curve C over which the line integral is taken. If C

is an oriented curve, then −C is the same curve traversed in the opposite direction, that is, with the

opposite orientation. (See Figure 18.11.) Property 3 holds because if we integrate along −C , the

vectors Δr⃗ point in the opposite direction and the dot products F⃗ ⋅ Δr⃗ are the negatives of what

they were along C .

If C1 and C2 are oriented curves with C1 ending where C2 begins, we construct a new oriented

curve, called C1 + C2, by joining them together. (See Figure 18.12.) Property 4 is the analogue for

line integrals of the property for definite integrals which says that

∫

b

a

f (x) dx =
∫

c

a

f (x) dx +
∫

b

c

f (x) dx.

P

QC

P

Q−C

Figure 18.11: A curve, C , and its opposite, −C

P

Q

R

C1

C2

P

R
C1 + C2

Figure 18.12: Joining two curves, C1, and C2, to make a

new one, C1 + C2

Summary for Section 18.1

• The line integral of a vector field F⃗ along an oriented curve C is

∫C
F⃗ ⋅ dr⃗ = lim

‖Δr⃗ i‖→0

n−1
∑

i=0

F⃗ (r⃗ i) ⋅ Δr⃗ i,

where Δr⃗ denotes a small displacement vector along C .

• Interpreting line integrals: The line integral of F⃗ along an oriented curve C is:

∙ Positive if F⃗ is mostly pointing in the same direction as C .

∙ Negative if F⃗ is mostly pointing in the opposite direction to C .

∙ Zero if F⃗ is perpendicular to the C at all points or if the positive and negative contributions

cancel out.

• The work done by force F⃗ along curve C is ∫
C
F⃗ ⋅ dr⃗ .

• If C is an oriented closed curve, then ∫
C
F⃗ ⋅ dr⃗ is called the circulation of F⃗ around C .

• Properties of line integrals: For a scalar constant �, vector fields F⃗ and G⃗ , and oriented curves

C , C1, and C2,

1.
∫C

�F⃗ ⋅ dr⃗ = �
∫C

F⃗ ⋅ dr⃗ . 2.
∫C

(F⃗ + G⃗ ) ⋅ dr⃗ =
∫C

F⃗ ⋅ dr⃗ +
∫C

G⃗ ⋅ dr⃗ .

3.
∫−C

F⃗ ⋅ dr⃗ = −
∫C

F⃗ ⋅ dr⃗ . 4.
∫C1+C2

F⃗ ⋅ dr⃗ =
∫C1

F⃗ ⋅ dr⃗ +
∫C2

F⃗ ⋅ dr⃗ .



18.1 THE IDEA OF A LINE INTEGRAL 981

Exercises and Problems for Section 18.1 Online Resource: Additional Problems for Section 18.1
EXERCISES

In Exercises 1–6, say whether you expect the line integral of

the pictured vector field over the given curve to be positive,

negative, or zero.

1.

2.

3.

4.

5.

6.

In Exercises 7–15, calculate the line integral of the vector

field along the line between the given points.

7. F⃗ = xj⃗ , from (1, 0) to (3, 0)

8. F⃗ = xj⃗ , from (2, 0) to (2, 5)

9. F⃗ = 6i⃗ − 7j⃗ , from (0, 0) to (7, 6)

10. F⃗ = 6i⃗ + y2j⃗ , from (3, 0) to (7, 0)

11. F⃗ = 3i⃗ + 4j⃗ , from (0, 6) to (0, 13)

12. F⃗ = xi⃗ , from (2, 0) to (6, 0)

13. F⃗ = xi⃗ + yj⃗ , from (2, 0) to (6, 0)

14. F⃗ = r⃗ = xi⃗ + yj⃗ , from (2, 2) to (6, 6)

15. F⃗ = xi⃗ + 6j⃗ − k⃗ , from (0,−2, 0) to (0,−10, 0)

In Exercises 16–18, find ∫
C
F⃗ ⋅ dr⃗ for the given F⃗ and C .

16. F⃗ = 5i⃗ + 7j⃗ , and C is the x-axis from (−1, 0) to

(−9, 0).

17. F⃗ = x2 i⃗ +y2 j⃗ , and C is the x-axis from (2, 0) to (3, 0).

18. F⃗ = 6xi⃗ + (x + y2)j⃗ ; C is the y-axis from (0, 3) to

(0, 5).

In Exercises 19–23, calculate the line integral.

19.
∫
C

(2j⃗ +3k⃗ ) ⋅dr⃗ where C is the y-axis from the origin

to the point (0, 10, 0).

20. ∫
C
(2xi⃗ + 3yj⃗ ) ⋅ dr⃗ , where C is the line from (1, 0, 0)

to (1, 0, 5).

21.
∫
C

((2y + 7)i⃗ + 3xj⃗ ) ⋅ dr⃗ , where C is the line from

(1, 0, 0) to (5, 0, 0).

22.
∫
C

(xi⃗ + yj⃗ + zk⃗ ) ⋅dr⃗ where C is the unit circle in the

xy-plane, oriented counterclockwise.

23.
∫
C

(3zi⃗ + 4x2j⃗ − xyk⃗ ) ⋅ dr⃗ , where C is the line from

(2, 1, 3) to (2, 1, 8).

In Exercises 24–27, find the work done by the force F⃗ along

the curve C .

24. F⃗ = 3i⃗ − xj⃗ , C is the line from (2, 6) to (9, 6).

25. F⃗ = y3 i⃗ + 2xyj⃗ , C is the line from (−1, 0) to (−1, 3).

26. F⃗ = 7i⃗ − 5j⃗ , C is the line from (2,−2) to (1, 6).

27. F⃗ = −xi⃗ − yj⃗ , C is the upper half of the unit circle

from (1, 0) to (−1, 0).
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PROBLEMS

In Problems 28–31, let C1 be the line from (0, 0) to (0, 1); let

C2 be the line from (1, 0) to (0, 1); let C3 be the semicircle in

the upper half plane from (−1, 0) to (1, 0). Do the line inte-

grals of the vector field along each of the paths C1, C2, and

C3 appear to be positive, negative, or zero?

28.

x

y 29.

x

y

30.

x

y 31.

x

y

32. Consider the vector field F⃗ shown in Figure 18.13, to-

gether with the paths C1, C2, and C3. Arrange the line

integrals ∫
C1

F⃗ ⋅ dr⃗ , ∫
C2

F⃗ ⋅ dr⃗ and ∫
C3

F⃗ ⋅ dr⃗ in as-

cending order.

C2

C1

C3

Figure 18.13

33. Compute ∫
C
F⃗ ⋅ dr⃗ , where C is the oriented curve in

Figure 18.14 and F⃗ is a vector field constant on each

of the three straight segments of C:

F⃗ =

⎧

⎪

⎨

⎪

⎩

i⃗ on PQ

2i⃗ − j⃗ on QR

3i⃗ + j⃗ on RS.

1 2 3 4

1

2

3

4

P

Q

R

S

x

y

Figure 18.14

34. An object moves along the curve C in Figure 18.15

while being acted on by the force field F⃗ (x, y) = yi⃗ +

x2 j⃗ .

(a) Evaluate F⃗ at the points (0,−1), (1,−1), (2,−1),

(3,−1), (4,−1), (4, 0), (4, 1), (4, 2), (4, 3).

(b) Make a sketch showing the force field along C .

(c) Find the work done by F⃗ on the object.

x

y

(0,−1) (4,−1)

(4, 3)

Figure 18.15

35. Let F⃗ be the constant force field j⃗ in Figure 18.16. On

which of the paths C1, C2, C3 is zero work done by F⃗ ?

Explain.

C1

C2 C3

x

y

Figure 18.16

In Problems 36–40, give conditions on one or more of the

constants a, b, c to ensure that the line integral ∫
C
F⃗ ⋅ dr⃗

has the given sign.

36. Positive for F⃗ = ai⃗ + bj⃗ + ck⃗ and C is the line from

the origin to (10, 0, 0).

37. Positive for F⃗ = ayi⃗ + ck⃗ and C is the unit circle in

the xy-plane, centered at the origin and oriented coun-

terclockwise when viewed from above.

38. Negative for F⃗ = bj⃗ +ck⃗ and C is the parabola y = x2

in the xy-plane from the origin to (3, 9, 0).

39. Positive for F⃗ = ayi⃗ − axj⃗ + (c − 1)k⃗ and C is the

line segment from the origin to (1, 1, 1).

40. Negative for F⃗ = ai⃗ +bj⃗ −k⃗ and C is the line segment

from (1, 2, 3) to (1, 2, c).
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41. (a) For each of the vector fields, F⃗ , shown in Fig-

ure 18.17, sketch a curve for which the integral

∫
C
F⃗ ⋅ d r⃗ is positive.

(b) For which of the vector fields is it possible to make

your answer to part (a) a closed curve?

x

y(i)

x

y(ii)

x

y(iii)

x

y(iv)

Figure 18.17

For Problems 42–46, say whether you expect the given vec-

tor field to have positive, negative, or zero circulation around

the closed curve C = C1+C2+C3+C4 in Figure 18.18. The

segments C1 and C3 are circular arcs centered at the origin;

C2 and C4 are radial line segments. You may find it helpful

to sketch the vector field.

1 2

2

−2

−1

1

x

y

C4

C2

C3

C1

Figure 18.18

42. F⃗ (x, y) = xi⃗ + yj⃗ 43. F⃗ (x, y) = −yi⃗ + xj⃗

44. F⃗ (x, y) = yi⃗ − xj⃗ 45. F⃗ (x, y) = x2 i⃗

46. F⃗ (x, y) = −
y

x2 + y2
i⃗ +

x

x2 + y2
j⃗

In Problems 47–50, C1 and C2 are oriented curves, and C1

ends where C2 begins. Find the integral given that ∫
C1

F⃗ ⋅

dr⃗ = 8, ∫
C1

G⃗ ⋅dr⃗ = 3, ∫
C2

F⃗ ⋅dr⃗ = −5, and ∫
C2

G⃗ ⋅dr⃗ =

15.

47.
∫
C1

(

F⃗ + G⃗

)

⋅ dr⃗ 48.
∫
C2

3G⃗ ⋅ dr⃗

49.
∫
C1+C2

2F⃗ ⋅ dr⃗ 50.
∫
C1+C2

(

G⃗ − F⃗

)

⋅ dr⃗

51. A force F⃗ moves an object in a line from (1, 1) to (2, 4)

with force F⃗ = 2i⃗ + 3j⃗ , and then along a line from

(2, 4) to (3, 3) with force F⃗ = i⃗ − j⃗ . How much work

does the force do on the object in total?

52. Find the work done by a constant force F⃗ moving an

object through straight line displacement r⃗ if

(a) F⃗ is in the same direction as r⃗ , ‖F⃗ ‖ = 5 newtons

and ‖r⃗ ‖ = 3 meters.

(b) F⃗ and r⃗ are perpendicular.

(c) F⃗ = 4i⃗ + j⃗ +4k⃗ pounds and r⃗ = i⃗ + j⃗ + k⃗ foot.

53. A horizontal square has sides of 1000 km running

north-south and east-west. A wind blows from the east

and decreases in magnitude toward the north at a rate of

6 meter/sec for every 500 km. Compute the circulation

of the wind counterclockwise around the square.

54. Let F⃗ = xi⃗ + yj⃗ and let C1 be the line joining (1, 0)

to (0, 2) and let C2 be the line joining (0, 2) to (−1, 0).

Is ∫
C1

F⃗ ⋅ dr⃗ = − ∫
C2

F⃗ ⋅ dr⃗ ? Explain.

55. The vector field F⃗ has ||F⃗ || ≤ 7 everywhere and C

is the circle of radius 1 centered at the origin. What is

the largest possible value of ∫
C
F⃗ ⋅ dr⃗ ? The smallest

possible value? What conditions lead to these values?

56. Along a curve C , a vector field F⃗ is everywhere tan-

gent to C in the direction of orientation and has con-

stant magnitude ‖F⃗ ‖ = m. Use the definition of the

line integral to explain why

∫
C

F⃗ ⋅ dr⃗ = m ⋅ Length of C.

57. Explain why the following statement is true: Whenever

the line integral of a vector field around every closed

curve is zero, the line integral along a curve with fixed

endpoints has a constant value independent of the path

taken between the endpoints.

58. Explain why the converse to the statement in Prob-

lem 57 is also true: Whenever the line integral of a vec-

tor field depends only on endpoints and not on paths,

the circulation around every closed curve is zero.

In Problems 59–60, use the fact that the force of gravity on

a particle of mass m at the point with position vector r⃗ is

F⃗ = −
GMmr⃗

‖r⃗ ‖
3

,

where G is a constant and M is the mass of the earth.

59. Calculate the work done by the force of gravity on a

particle of mass m as it moves radially from 8000 km

to 10,000 km from the center of the earth.

60. Calculate the work done by the force of gravity on a

particle of mass m as it moves radially from 8000 km

from the center of the earth to infinitely far away.
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Strengthen Your Understanding

In Problems 61–62, explain what is wrong with the state-

ment.

61. If F⃗ is a vector field and C is an oriented curve, then

∫
−C

F⃗ ⋅ dr⃗ must be less than zero.

62. It is possible that for a certain vector field F⃗ and ori-

ented path C , we have ∫
C
F⃗ ⋅ dr⃗ = 2i⃗ − 3j⃗ .

In Problems 63–64, give an example of:

63. A nonzero vector field F⃗ such that ∫
C
F⃗ ⋅ dr⃗ = 0,

where C is the straight line curve from (0, 0) to (1, 1).

64. Two oriented curves C1 and C2 in the plane such that,

for F⃗ (x, y) = xj⃗ , we have ∫
C1

F⃗ ⋅ dr⃗ > 0 and

∫
C2

F⃗ ⋅ dr⃗ < 0.

Are the statements in Problems 65–67 true or false? Explain

why or give a counterexample.

65. ∫
C
F⃗ ⋅ dr⃗ is a vector.

66. Suppose C1 is the unit square joining the points (0, 0),

(1, 0), (1, 1), (0, 1) oriented clockwise and C2 is the

same square but traversed twice in the opposite direc-

tion. If ∫
C1

F⃗ ⋅ dr⃗ = 3, then ∫
C2

F⃗ ⋅ dr⃗ = −6.

67. The line integral of F⃗ = xi⃗ + yj⃗ = r⃗ along the semi-

circle x2 + y2 = 1, y ≥ 0, oriented counterclockwise, is

zero.

Are the statements in Problems 68–74 true or false? Give

reasons for your answer.

68. The line integral ∫
C
F⃗ ⋅ dr⃗ is a scalar.

69. If C1 and C2 are oriented curves and C1 is longer than

C2, then ∫
C1

F⃗ ⋅ dr⃗ > ∫
C2

F⃗ ⋅ dr⃗ .

70. If C is an oriented curve and ∫
C
F⃗ ⋅ dr⃗ = 0, then

F⃗ = 0⃗ .

71. If F⃗ = i⃗ is a vector field in 2-space, then ∫
C
F⃗ ⋅dr⃗ > 0,

where C is the oriented line from (0, 0) to (1, 0).

72. If F⃗ = i⃗ is a vector field in 2-space, then ∫
C
F⃗ ⋅dr⃗ > 0,

where C is the oriented line from (0, 0) to (0, 1).

73. If C1 is the upper semicircle x2 + y2 = 1, y ≥ 0 and C2

is the lower semicircle x2+y2 = 1, y ≤ 0, both oriented

counterclockwise, then for any vector field F⃗ , we have

∫
C1

F⃗ ⋅ dr⃗ = − ∫
C2

F⃗ ⋅ dr⃗ .

74. The work done by the force F⃗ = −yi⃗ +xj⃗ on a particle

moving clockwise around the boundary of the square

−1 ≤ x ≤ 1,−1 ≤ y ≤ 1 is positive.

18.2 COMPUTING LINE INTEGRALS OVER PARAMETERIZED CURVES

The goal of this section is to show how to use a parameterization of a curve to convert a line integral

into an ordinary one-variable integral.

Using a Parameterization to Evaluate a Line Integral

Recall the definition of the line integral,

∫C
F⃗ ⋅ dr⃗ = lim

‖Δr⃗ i‖→0

∑

F⃗ (r⃗ i) ⋅ Δr⃗ i,

where the r⃗ i are the position vectors of points subdividing the curve into short pieces. Now suppose

we have a smooth parameterization, r⃗ (t), of C for a ≤ t ≤ b, so that r⃗ (a) is the position vector of

the starting point of the curve and r⃗ (b) is the position vector of the end. Then we can divide C into n

pieces by dividing the interval a ≤ t ≤ b into n pieces, each of size Δt = (b−a)∕n. See Figures 18.19

and 18.20.

At each point r⃗ i = r⃗ (ti) we want to compute

F⃗ (r⃗ i) ⋅ Δr⃗ i.

t0 = a t1
… …

✲✛Δt

ti ti+1 tn−1 tn = b
t

Figure 18.19: Subdivision of the interval a ≤ t ≤ b

✸

r⃗ (t0) = r⃗ (a)

r⃗ (t1)

...
r⃗ (ti)

r⃗ (ti+1)
...

r⃗ (tn−1)

r⃗ (tn) = r⃗ (b)

.

■
Δr⃗ i = r⃗ (ti+1) − r⃗ (ti)

Figure 18.20: Corresponding subdivision of the

parameterized path C
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Since ti+1 = ti + Δt, the displacement vectors Δr⃗i are given by

Δr⃗i = r⃗ (ti+1) − r⃗ (ti)

= r⃗ (ti + Δt) − r⃗ (ti)

=
r⃗ (ti + Δt) − r⃗ (ti)

Δt
⋅ Δt

≈ r⃗ ′(ti)Δt,

where we use the facts that Δt is small and that r⃗ (t) is differentiable to obtain the last approximation.

Therefore,

∫C
F⃗ ⋅ dr⃗ ≈

∑

F⃗ (r⃗ i) ⋅ Δr⃗ i ≈
∑

F⃗ (r⃗ (ti)) ⋅ r⃗
′(ti) Δt.

Notice that F⃗ (r⃗ (ti)) ⋅ r⃗
′(ti) is the value at ti of a one-variable function of t, so this last sum is really

a one-variable Riemann sum. In the limit as Δt → 0, we get a definite integral:

lim
Δt→0

∑

F⃗ (r⃗ (ti)) ⋅ r⃗
′(ti) Δt = ∫

b

a

F⃗ (r⃗ (t)) ⋅ r⃗ ′(t) dt.

Thus, we have the following result:

If r⃗ (t), for a ≤ t ≤ b, is a smooth parameterization of an oriented curve C and F⃗ is a vector

field which is continuous on C , then

∫C
F⃗ ⋅ dr⃗ =

∫

b

a

F⃗ (r⃗ (t)) ⋅ r⃗ ′(t) dt.

In words: To compute the line integral of F⃗ over C , take the dot product of F⃗ evaluated on C

with the velocity vector, r⃗ ′(t), of the parameterization of C , then integrate along the curve.

Even though we assumed that C is smooth, we can use the same formula to compute line inte-

grals over curves which are piecewise smooth, such as the boundary of a rectangle. If C is piecewise

smooth, we apply the formula to each one of the smooth pieces and add the results by applying

property 4 on page 980.

Example 1 Compute ∫
C
F⃗ ⋅ dr⃗ where F⃗ = (x + y)i⃗ + yj⃗ and C is the quarter unit circle, oriented counter-

clockwise as shown in Figure 18.21.

C

x

y

Figure 18.21: The vector field F⃗ = (x + y)i⃗ + yj⃗ and the quarter circle C
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Solution Since most of the vectors in F⃗ along C point generally in a direction opposite to the orientation of

C , we expect our answer to be negative. The first step is to parameterize C by

r⃗ (t) = x(t)i⃗ + y(t)j⃗ = cos ti⃗ + sin tj⃗ , 0 ≤ t ≤
�

2
.

Substituting the parameterization into F⃗ , we get F⃗ (x(t), y(t)) = (cos t+ sin t)i⃗ + sin tj⃗ . The vector

r⃗ ′(t) = x′(t)i⃗ + y′(t)j⃗ = − sin ti⃗ + cos tj⃗ . Then

∫C
F⃗ ⋅ dr⃗ =

∫

�∕2

0

((cos t + sin t)i⃗ + sin tj⃗ ) ⋅ (− sin ti⃗ + cos tj⃗ )dt

=
∫

�∕2

0

(− cos t sin t − sin2 t + sin t cos t)dt

=
∫

�∕2

0

− sin2 t dt = −
�

4
≈ −0.7854.

So the answer is negative, as expected.

Example 2 Consider the vector field F⃗ = xi⃗ + yj⃗ .

(a) Suppose C1 is the line segment joining (1, 0) to (0, 2) and C2 is a part of a parabola with its

vertex at (0, 2), joining the same points in the same order. (See Figure 18.22.) Verify that

∫C1

F⃗ ⋅ dr⃗ =
∫C2

F⃗ ⋅ dr⃗ .

(b) If C is the triangle shown in Figure 18.23, show that ∫
C
F⃗ ⋅ dr⃗ = 0.

1

1

2

x

y

C1

C2

Figure 18.22

1

1

2

x

y

C

Figure 18.23

Solution (a) We parameterize C1 by r⃗ (t) = (1 − t)i⃗ + 2tj⃗ with 0 ≤ t ≤ 1. Then r⃗ ′(t) = −i⃗ + 2j⃗ , so

∫C1

F⃗ ⋅ dr⃗ =
∫

1

0

F⃗ (1 − t, 2t) ⋅ (−i⃗ + 2j⃗ ) dt =
∫

1

0

((1 − t)i⃗ + 2tj⃗ ) ⋅ (−i⃗ + 2j⃗ ) dt

=
∫

1

0

(5t − 1) dt =
3

2
.

To parameterizeC2, we use the fact that it is part of a parabola with vertex at (0, 2), so its equation

is of the form y = −kx2 + 2 for some k. Since the parabola crosses the x-axis at (1, 0), we find

that k = 2 and y = −2x2 + 2. Therefore, we use the parameterization r⃗ (t) = ti⃗ + (−2t2 + 2)j⃗

with 0 ≤ t ≤ 1, which has r⃗ ′ = i⃗ − 4tj⃗ . This traces out C2 in reverse, since t = 0 gives (0, 2),

and t = 1 gives (1, 0). Thus, we make t = 0 the upper limit of integration and t = 1 the lower
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limit:

∫C2

F⃗ ⋅ dr⃗ =
∫

0

1

F⃗ (t,−2t2 + 2) ⋅ (i⃗ − 4tj⃗ ) dt = −
∫

1

0

(ti⃗ + (−2t2 + 2)j⃗ ) ⋅ (i⃗ − 4tj⃗ ) dt

= −
∫

1

0

(8t3 − 7t) dt =
3

2
.

So the line integrals of F⃗ along C1 and C2 have the same value.

(b) We break ∫
C
F⃗ ⋅ dr⃗ into three pieces, one of which we have already computed (namely, the

piece connecting (1, 0) to (0, 2), where the line integral has value 3∕2). The piece running from

(0, 2) to (0, 0) can be parameterized by r⃗ (t) = (2 − t)j⃗ with 0 ≤ t ≤ 2. The piece running from

(0, 0) to (1, 0) can be parameterized by r⃗ (t) = ti⃗ with 0 ≤ t ≤ 1. Then

∫C
F⃗ ⋅ dr⃗ =

3

2
+
∫

2

0

F⃗ (0, 2 − t) ⋅ (−j⃗ ) dt +
∫

1

0

F⃗ (t, 0) ⋅ i⃗ dt

=
3

2
+
∫

2

0

(2 − t)j⃗ ⋅ (−j⃗ ) dt +
∫

1

0

ti⃗ ⋅ i⃗ dt

=
3

2
+
∫

2

0

(t − 2) dt+
∫

1

0

t dt =
3

2
+ (−2) +

1

2
= 0.

Example 3 Let C be the closed curve consisting of the upper half-circle of radius 1 and the line forming its

diameter along the x-axis, oriented counterclockwise. (See Figure 18.24.) Find ∫
C
F⃗ ⋅ dr⃗ where

F⃗ (x, y) = −yi⃗ + xj⃗ .

−1 1

1 C1

C2
x

y

Figure 18.24: The curve C = C1 + C2 for Example 3

Solution We write C = C1 + C2, where C1 is the half-circle and C2 is the line, and compute ∫
C1

F⃗ ⋅ dr⃗ and

∫
C2

F⃗ ⋅ dr⃗ separately. We parameterize C1 by r⃗ (t) = cos ti⃗ + sin tj⃗ , with 0 ≤ t ≤ �. Then

∫C1

F⃗ ⋅ dr⃗ =
∫

�

0

(− sin ti⃗ + cos tj⃗ ) ⋅ (− sin ti⃗ + cos tj⃗ ) dt

=
∫

�

0

(sin2 t + cos2 t) dt =
∫

�

0

1 dt = �.

For C2, we have ∫
C2

F⃗ ⋅ dr⃗ = 0, since the vector field F⃗ has no i⃗ component along the x-axis

(where y = 0) and is therefore perpendicular to C2 at all points.

Finally, we can write

∫C
F⃗ ⋅ dr⃗ =

∫C1

F⃗ ⋅ dr⃗ +
∫C2

F⃗ ⋅ dr⃗ = � + 0 = �.

It is no accident that the result for ∫
C1

F⃗ ⋅ dr⃗ is the same as the length of the curve C1. See

Problem 56 on page 983 and Problem 41 on page 991.



988 Chapter 18 LINE INTEGRALS

The next example illustrates the computation of a line integral over a path in 3-space.

Example 4 A particle travels along the helix C given by r⃗ (t) = cos ti⃗ + sin tj⃗ + 2tk⃗ and is subject to a force

F⃗ = xi⃗ + zj⃗ − xyk⃗ . Find the total work done on the particle by the force for 0 ≤ t ≤ 3�.

Solution The work done is given by a line integral, which we evaluate using the given parameterization:

Work done =
∫C

F⃗ ⋅ dr⃗ =
∫

3�

0

F⃗ (r⃗ (t)) ⋅ r⃗ ′(t) dt

=
∫

3�

0

(cos ti⃗ + 2tj⃗ − cos t sin tk⃗ ) ⋅ (− sin ti⃗ + cos tj⃗ + 2k⃗ ) dt

=
∫

3�

0

(− cos t sin t + 2t cos t − 2 cos t sin t) dt

=
∫

3�

0

(−3 cos t sin t + 2t cos t) dt = −4.

The Differential Notation ∫
C
P dx +Qdy +Rdz

There is an alternative notation for line integrals that is often useful. For the vector field F⃗ =

P (x, y, z)i⃗ +Q(x, y, z)j⃗ +R(x, y, z)k⃗ and an oriented curve C , if we write dr⃗ = dxi⃗ +dyj⃗ +dzk⃗

we have

∫C
F⃗ ⋅ dr⃗ =

∫C
P (x, y, z)dx +Q(x, y, z)dy+R(x, y, z)dz.

Example 5 Evaluate
∫C

xy dx − y2 dy where C is the line segment from (0, 0) to (2, 6).

Solution We parameterize C by x = t, y = 3t, 0 ≤ t ≤ 2. Thus, dx = dt, dy = 3dt, so

∫C
xy dx − y2 dy =

∫

2

0

t(3t)dt− (3t)2(3dt) =
∫

2

0

(−24t2) dt = −64.

Line integrals can be expressed either using vectors or using differentials. If the independent

variables are distances, then visualizing a line integral in terms of dot products can be useful. How-

ever, if the independent variables are, for example, temperature and volume, then the dot product

does not have physical meaning, so differentials are more natural.

Independence of Parameterization

Since there are many different ways of parameterizing a given oriented curve, you may be wondering

what happens to the value of a given line integral if you choose another parameterization. The answer

is that the choice of parameterization makes no difference. Since we initially defined the line integral

without reference to any particular parameterization, this is exactly as we would expect.

Example 6 Consider the oriented path which is a straight-line segment L running from (0, 0) to (1, 1). Calculate

the line integral of the vector field F⃗ = (3x− y)i⃗ + xj⃗ along L using each of the parameterizations

(a) A(t) = (t, t), 0 ≤ t ≤ 1, (b) D(t) = (et − 1, et − 1), 0 ≤ t ≤ ln 2.
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Solution The line L has equation y = x. Both A(t) and D(t) give a parameterization of L: each has both

coordinates equal and each begins at (0,0) and ends at (1,1). Now let’s calculate the line integral of

the vector field F⃗ = (3x − y)i⃗ + xj⃗ using each parameterization.

(a) Using A(t), we get

∫L
F⃗ ⋅ dr⃗ =

∫

1

0

((3t− t)i⃗ + tj⃗ ) ⋅ (i⃗ + j⃗ ) dt =
∫

1

0

3t dt =
3t2

2

|

|

|

|

1

0

=
3

2
.

(b) Using D(t), we get

∫L
F⃗ ⋅ dr⃗ =

∫

ln 2

0

(

(

3(et − 1) − (et − 1)
)

i⃗ + (et − 1)j⃗
)

⋅ (eti⃗ + etj⃗ ) dt

=
∫

ln 2

0

3(e2t − et) dt = 3

(

e2t

2
− et

)

|

|

|

|

ln 2

0

=
3

2
.

The fact that both answers are the same illustrates that the value of a line integral is independent

of the parameterization of the path. Problems 59–61 (available online) give another way of seeing

this.

Summary for Section 18.2

• Using a parameterization to evaluate a line integral: If r⃗ (t), for a ≤ t ≤ b, is a smooth

parameterization of an oriented curve C and F⃗ is a vector field which is continuous on C , then

∫C
F⃗ ⋅ dr⃗ =

∫

b

a

F⃗ (r⃗ (t)) ⋅ r⃗ ′(t) dt.

• Differential notation: For the vector field F⃗ = P (x, y, z)i⃗ +Q(x, y, z)j⃗ + R(x, y, z)k⃗ and an

oriented curve C , we have

∫C
F⃗ ⋅ dr⃗ =

∫C
P (x, y, z)dx +Q(x, y, z)dy +R(x, y, z)dz.

Exercises and Problems for Section 18.2 Online Resource: Additional Problems for Section 18.2
EXERCISES

In Exercises 1–3, write ∫
C
F⃗ ⋅ dr⃗ in the form ∫

b

a
g(t) dt.

(Give a formula for g and numbers for a and b. You do not

need to evaluate the integral.)

1. F⃗ = yi⃗ + xj⃗ and C is the semicircle from (0, 1) to

(0,−1) with x > 0.

2. F⃗ = xi⃗ +z2k⃗ andC is the line from (0, 1, 0) to (2, 3, 2).

3. F⃗ = (cos x)i⃗ + (cos y)j⃗ + (cos z)k⃗ and C is the unit

circle in the plane z = 10, centered on the z-axis and

oriented counterclockwise when viewed from above.

In Exercises 4–8, find the line integral.

4.
∫
C

(3i⃗ + (y + 5)j⃗ ) ⋅ dr⃗ where C is the line from (0, 0)

to (0, 3).

5.
∫
C

(2xi⃗ + 3yj⃗ ) ⋅ dr⃗ where C is the line from (1, 0, 0)

to (5, 0, 0).

6. ∫
C
(2y2 i⃗ + xj⃗ ) ⋅ dr⃗ where C is the line segment from

(3, 1) to (0, 0).

7. ∫
C
(xi⃗ + yj⃗ ) ⋅ dr⃗ where C is the semicircle with cen-

ter at (2, 0) and going from (3, 0) to (1, 0) in the region

y > 0.

8. Find ∫
C
((x2 + y)i⃗ + y3j⃗ ) ⋅ dr⃗ where C consists of the

three line segments from (4, 0, 0) to (4, 3, 0) to (0, 3, 0)

to (0, 3, 5).
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In Exercises 9–23, find ∫
C
F⃗ ⋅ dr⃗ for the given F⃗ and C .

9. F⃗ = 2i⃗ + j⃗ ; C is the x-axis from x = 10 to x = 7.

10. F⃗ = 3j⃗ − i⃗ ; C is the line y = x from (1, 1) to (5, 5).

11. F⃗ = xi⃗ + yj⃗ and C is the line from (0, 0) to (3, 3).

12. F⃗ = yi⃗ − xj⃗ and C is the right-hand side of the unit

circle, starting at (0, 1).

13. F⃗ = x2 i⃗ + y2j⃗ and C is the line from the point (1, 2)

to the point (3, 4).

14. F⃗ = −y sin xi⃗ + cos xj⃗ and C is the parabola y = x2

between (0, 0) and (2, 4).

15. F⃗ = y3 i⃗ + x2j⃗ and C is the line from (0, 0) to (3, 2).

16. F⃗ = 2yi⃗ − (sin y)j⃗ counterclockwise around the unit

circle C starting at the point (1, 0).

17. F⃗ = ln yi⃗ + ln xj⃗ and C is the curve given parametri-

cally by (2t, t3), for 2 ≤ t ≤ 4.

18. F⃗ = xi⃗ + 6j⃗ − k⃗ , and C is the line x = y = z from

(0, 0, 0) to (2, 2, 2).

19. F⃗ = (2x−y+4)i⃗ +(5y+3x−6)j⃗ and C is the triangle

with vertices (0, 0), (3, 0), (3, 2) traversed counterclock-

wise.

20. F⃗ = xi⃗ + 2zyj⃗ + xk⃗ and C is r⃗ = ti⃗ + t2 j⃗ + t3k⃗ for

1 ≤ t ≤ 2.

21. F⃗ = x3 i⃗ + y2j⃗ + zk⃗ and C is the line from the origin

to the point (2, 3, 4).

22. F⃗ = −yi⃗ + xj⃗ + 5k⃗ and C is the helix x = cos t, y =

sin t, z = t, for 0 ≤ t ≤ 4�.

23. F⃗ = ey i⃗ +ln(x2+1)j⃗ + k⃗ and C is the circle of radius

2 centered at the origin in the yz-plane in Figure 18.25.

x

y

z

■
Start

Figure 18.25

24. Every line integral can be written in both vector nota-

tion and differential notation. For example,

∫
C

(2xi⃗ + (x + y)j⃗ ) ⋅ dr⃗ =
∫
C

2x dx + (x + y) dy.

(a) Express ∫
C
3 dx + xy dy in vector notation.

(b) Express ∫
C
(100 cos xi⃗ + ey sinxj⃗ ) ⋅ dr⃗ in differ-

ential notation.

In Exercises 25–26, express the line integral ∫
C
F⃗ ⋅ dr⃗ in

differential notation.

25. F⃗ = 3xi⃗ − y sin xj⃗

26. F⃗ = y2 i⃗ + z2j⃗ + (x2 − 5)k⃗

In Exercises 27–28, find F⃗ so that the line integral equals

∫
C
F⃗ ⋅ dr⃗ .

27. ∫
C
(x + 2y)dx + x2y dy

28. ∫
C
e−3y dx − yz(sin x) dy + (y + z) dz

Evaluate the line integrals in Exercises 29–34.

29. ∫
C
y dx + x dy where C is the parameterized path x =

t2, y = t3, 1 ≤ t ≤ 5.

30. ∫
C
dx + y dy + z dz where C is one turn of the helix

x = cos t, y = sin t, z = 3t, 0 ≤ t ≤ 2�.

31. ∫
C
3y dx+4x dy where C is the straight-line path from

(1, 3) to (5, 9).

32. ∫
C
xdx + z dy − y dz where C is the circle of radius 3

in the yz-plane centered at the origin, oriented counter-

clockwise when viewed from the positive y-axis.

33. ∫
C
(x+ y) dx+ x2 dy where C is the path x = t2, y = t,

0 ≤ t ≤ 10.

34. ∫
C
xdy where C is the quarter circle centered at the ori-

gin going counterclockwise from (2, 0) to (0, 2).

PROBLEMS

35. Evaluate the line integral of F⃗ = (3x − y)i⃗ + xj⃗ over

two different paths from (0, 0) to (1, 1).

(a) The path (t, t2), with 0 ≤ t ≤ 1

(b) The path (t2, t), with 0 ≤ t ≤ 1

36. Curves C1 and C2 are parameterized as follows:

C1 is (x(t), y(t)) = (0, t) for − 1 ≤ t ≤ 1

C2 is (x(t), y(t)) = (cos t, sin t) for
�

2
≤ t ≤

3�

2
.

(a) Sketch C1 and C2 with arrows showing their orien-

tation.

(b) Suppose F⃗ = (x+3y)i⃗ +yj⃗ . Calculate ∫
C
F⃗ ⋅dr⃗ ,

where C is the curve given by C = C1 + C2.

37. Calculate the line integral of F⃗ = (3x−y)i⃗ +xj⃗ along

the line segment L from (0, 0) to (1, 1) using each of the

parameterizations

(a) B(t) = (2t, 2t), 0 ≤ t ≤ 1∕2

(b) C(t) =

(

t2 − 1

3
,
t2 − 1

3

)

, 1 ≤ t ≤ 2
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In Problems 38–39, evaluate the line integral using a short-

cut available in two special situations.

• If F⃗ is perpendicular to C at every point of C , then

∫
C

F⃗ ⋅ dr⃗ = 0.

• If F⃗ is tangent toC at every point of C and has constant

magnitude on C , then

∫
C

F⃗ ⋅ dr⃗ = ±‖F⃗ ‖ × Length of C.

Choose the + sign if F⃗ points in the direction of inte-

gration and choose the − sign if F⃗ points in the direc-

tion opposite to the direction of integration.

38. ∫
C
(xi⃗ + yj⃗ ) ⋅ dr⃗ , where C is the circle of radius 10

centered at the origin, oriented counterclockwise.

39. ∫
C
(−yi⃗ + xj⃗ ) ⋅ dr⃗ , where C is the circle of radius 10

centered at the origin, oriented counterclockwise.

40. Justify the following without parameterizing the paths.

(a) ∫
C
(x2 + cos y) dy = 0 where C is the straight line

path from (10, 5) to (20, 5).

(b) ∫
C
(x2 + cos y) dx = 0 where C is the straight line

path from (10, 5) to (10, 50).

41. Let F⃗ = −yi⃗ +xj⃗ and let C be the unit circle oriented

counterclockwise.

(a) Show that F⃗ has a constant magnitude of 1 on C .

(b) Show that F⃗ is always tangent to the circle C .

(c) Show that ∫
C
F⃗ ⋅ dr⃗ = Length of C .

42. A spiral staircase in a building is in the shape of a helix

of radius 5 meters. Between two floors of the building,

the stairs make one full revolution and climb by 4 me-

ters. A person carries a bag of groceries up two floors.

The combined mass of the person and the groceries is

m = 70 kg and the gravitational force is mg downward,

where g = 9.8 m∕sec2 is the acceleration due to gravity.

Calculate the work done by the person against gravity.

43. If C is r⃗ = (t+1)i⃗ +2tj⃗ +3tk⃗ for 0 ≤ t ≤ 1, we know

∫
C
F⃗ (r⃗ ) ⋅ dr⃗ = 5. Find the value of the integrals:

(a) ∫
0

1
F⃗ ((t + 1)i⃗ + 2tj⃗ + 3tk⃗ ) ⋅ (i⃗ + 2j⃗ + 3k⃗ ) dt

(b) ∫
1

0
F⃗ ((t2+1)i⃗ +2t2 j⃗ +3t2 k⃗ )⋅(2ti⃗ +4tj⃗ +6tk⃗ ) dt

(c) ∫
1

−1
F⃗ ((t2+1)i⃗ +2t2 j⃗ +3t2k⃗ )⋅(2ti⃗ +4tj⃗ +6tk⃗ ) dt

Strengthen Your Understanding

In Problems 44–45, explain what is wrong with the state-

ment.

44. For the vector field F⃗ = xi⃗ − yj⃗ and oriented path C

parameterized by x = cos t, y = sin t, 0 ≤ t ≤ �∕2, we

have

∫
C

F⃗ ⋅dr⃗ =
∫

�∕2

0

(cos ti⃗ −sin tj⃗ ) ⋅ (cos ti⃗ +sin tj⃗ ) dt.

45. If ∫
C
F⃗ ⋅dr⃗ = 0, then F⃗ is perpendicular to C at every

point on C .

In Problems 46–47, give an example of:

46. A vector field F⃗ such that, for the parameterized path

r⃗ (t) = 3 cos ti⃗ + 3 sin tj⃗ , −�∕2 ≤ t ≤ �∕2, the inte-

gral ∫
C
F⃗ ⋅dr⃗ can be computed geometrically, without

using the parameterization.

47. A parameterized path C such that, for the vector field

F⃗ (x, y) = sin yi⃗ , the integral ∫
C
F⃗ ⋅dr⃗ is nonzero and

can be computed geometrically, without using the pa-

rameterization.

Are the statements in Problems 48–56 true or false? Give

reasons for your answer.

48. If C1 and C2 are oriented curves with C2 beginning

where C1 ends, then ∫
C1+C2

F⃗ ⋅ dr⃗ > ∫
C1

F⃗ ⋅ dr⃗ .

49. The line integral ∫
C
4i⃗ ⋅ dr⃗ over the curve C parame-

terized by r⃗ (t) = ti⃗ + t2 j⃗ , for 0 ≤ t ≤ 2, is positive.

50. If C1 is the curve parameterized by r⃗ 1(t) = cos ti⃗ +

sin tj⃗ , with 0 ≤ t ≤ �, and C2 is the curve parameter-

ized by r⃗ 2(t) = cos ti⃗ − sin tj⃗ , 0 ≤ t ≤ �, then for any

vector field F⃗ we have ∫
C1

F⃗ ⋅ dr⃗ = ∫
C2

F⃗ ⋅ dr⃗ .

51. If C1 is the curve parameterized by r⃗ 1(t) = cos ti⃗ +

sin tj⃗ , with 0 ≤ t ≤ �, and C2 is the curve parameter-

ized by r⃗ 2(t) = cos(2t)i⃗ +sin(2t)j⃗ , 0 ≤ t ≤
�

2
, then for

any vector field F⃗ we have ∫
C1

F⃗ ⋅ dr⃗ = ∫
C2

F⃗ ⋅ dr⃗ .

52. If C is the curve parameterized by r⃗ (t), for a ≤ t ≤ b

with r⃗ (a) = r⃗ (b), then ∫
C
F⃗ ⋅ dr⃗ = 0 for any vector

field F⃗ . (Note that C starts and ends at the same place.)

53. If C1 is the line segment from (0, 0) to (1, 0) and C2 is

the line segment from (0, 0) to (2, 0), then for any vector

field F⃗ , we have ∫
C2

F⃗ ⋅ dr⃗ = 2 ∫
C1

F⃗ ⋅ dr⃗ .

54. If C is a circle of radius a, centered at the origin and ori-

ented counterclockwise, then ∫
C
(2xi⃗ + yj⃗ ) ⋅ dr⃗ = 0.

55. If C is a circle of radius a, centered at the origin and ori-

ented counterclockwise, then ∫
C
(2yi⃗ + xj⃗ ) ⋅ dr⃗ = 0.

56. If C1 is the curve parameterized by r⃗ 1(t) = ti⃗ + t2 j⃗ ,

with 0 ≤ t ≤ 2, and C2 is the curve parameterized by

r⃗ 2(t) = (2 − t)i⃗ + (2 − t)2j⃗ , 0 ≤ t ≤ 2, then for any

vector field F⃗ we have ∫
C1

F⃗ ⋅ dr⃗ = − ∫
C2

F⃗ ⋅ dr⃗ .
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57. If C1 is the path parameterized by r⃗ 1(t) = (t, t), 0 ≤

t ≤ 1, and if C2 is the path parameterized by r⃗ 2(t) =

(1 − t, 1 − t), 0 ≤ t ≤ 1, and if F⃗ = xi⃗ + yj⃗ , which of

the following is true?

(a) ∫
C1

F⃗ ⋅ dr⃗ > ∫
C2

F⃗ ⋅ dr⃗

(b) ∫
C1

F⃗ ⋅ dr⃗ < ∫
C2

F⃗ ⋅ dr⃗

(c) ∫
C1

F⃗ ⋅ dr⃗ = ∫
C2

F⃗ ⋅ dr⃗

58. If C1 is the path parameterized by r⃗ 1(t) = (t, t), for

0 ≤ t ≤ 1, and if C2 is the path parameterized by

r⃗ 2(t) = (sin t, sin t), for 0 ≤ t ≤ 1, and if F⃗ = xi⃗ +yj⃗ ,

which of the following is true?

(a) ∫
C1

F⃗ ⋅ dr⃗ > ∫
C2

F⃗ ⋅ dr⃗

(b) ∫
C1

F⃗ ⋅ dr⃗ < ∫
C2

F⃗ ⋅ dr⃗

(c) ∫
C1

F⃗ ⋅ dr⃗ = ∫
C2

F⃗ ⋅ dr⃗

18.3 GRADIENT FIELDS AND PATH-INDEPENDENT FIELDS

For a function, f , of one variable, the Fundamental Theorem of Calculus tells us that the definite

integral of a rate of change, f ′, gives the total change in f :

∫

b

a

f ′(t) dt = f (b) − f (a).

What about functions of two or more variables? The quantity that describes the rate of change

is the gradient vector field. If we know the gradient of a function f , can we compute the total change

in f between two points? The answer is yes, using a line integral.

Finding the Total Change in f from grad f : The Fundamental Theorem

To find the change in f between two points P and Q, we choose a smooth path C from P to Q, then

divide the path into many small pieces. See Figure 18.26.

First we estimate the change in f as we move through a displacement Δr⃗ i from r⃗ i to r⃗ i+1.

Suppose u⃗ is a unit vector in the direction of Δr⃗ i. Then the change in f is given by

f (r⃗ i+1) − f (r⃗ i) ≈ Rate of change of f × Distance moved in direction of u⃗

= fu⃗ (r⃗ i)‖Δr⃗ i‖

= gradf ⋅ u⃗ ‖Δr⃗ i‖

= gradf ⋅ Δr⃗ i. since Δr⃗ i = ‖Δr⃗ i‖u⃗

Therefore, summing over all pieces of the path, the total change in f is given by

Total change = f (Q) − f (P ) ≈

n−1
∑

i=0

gradf (r⃗ i) ⋅ Δr⃗ i.

In the limit as ‖Δr⃗i ‖ approaches zero, this suggests the following result:

Theorem 18.1: The Fundamental Theorem of Calculus for Line Integrals

Suppose C is a piecewise smooth oriented path with starting point P and ending point Q. If

f is a function whose gradient is continuous on the path C , then

∫C
gradf ⋅ dr⃗ = f (Q) − f (P ).

Notice that there are many different paths from P to Q. (See Figure 18.27.) However, the value

of the line integral ∫
C
gradf ⋅ dr⃗ depends only on the endpoints of C ; it does not depend on where
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C goes in between. Problem 88 (available online) shows how the Fundamental Theorem for Line

Integrals can be derived from the one-variable Fundamental Theorem of Calculus.

✸

r⃗ 0

P
r⃗ 1

...
r⃗ i

r⃗ i+1

... r⃗ n−1 r⃗ n

Q

❄

Δr⃗ i = r⃗ i+1 − r⃗ i

Figure 18.26: Subdivision of the path from

P to Q. We estimate the change in f along Δr⃗ i

P

Q

Figure 18.27: There are many different paths from P

to Q: all give the same value of ∫
C
grad f ⋅ dr⃗

Example 1 Suppose that gradf is everywhere perpendicular to the curve joiningP andQ shown in Figure 18.28.

(a) Explain why you expect the path joining P and Q to be a contour.

(b) Using a line integral, show that f (P ) = f (Q).

P

Q

Figure 18.28: The gradient vector field of the function f

Solution (a) The gradient of f is everywhere perpendicular to the path from P to Q, as you expect along a

contour.

(b) Consider the path from P to Q shown in Figure 18.28 and evaluate the line integral

∫C
gradf ⋅ dr⃗ = f (Q) − f (P ).

Since gradf is everywhere perpendicular to the path, the line integral is 0. Thus, f (Q) = f (P ).

Example 2 Consider the vector field F⃗ = xi⃗ + yj⃗ . In Example 2 on page 986 we calculated ∫
C1

F⃗ ⋅ dr⃗ and

∫
C2

F⃗ ⋅ dr⃗ over the oriented curves shown in Figure 18.29 and found they were the same. Find a

scalar function f with gradf = F⃗ . Hence, find an easy way to calculate the line integrals, and

explain why we could have expected them to be the same.

1

1

2

x

y

C1

C2

Figure 18.29: Find the line integral of F⃗ = xi⃗ + yj⃗ over the curves C1 and C2
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Solution We want to find a function f (x, y) for which fx = x and fy = y. One possibility for f is

f (x, y) =
x2

2
+

y2

2
.

You can check that gradf = xi⃗ + yj⃗ . Now we can use the Fundamental Theorem to compute the

line integral. Since F⃗ = gradf we have

∫C1

F⃗ ⋅ dr⃗ =
∫C1

gradf ⋅ dr⃗ = f (0, 2) − f (1, 0) =
3

2
.

Notice that the calculation looks exactly the same for C2. Since the value of the integral depends

only on the values of f at the endpoints, it is the same no matter what path we choose.

Path-Independent, or Conservative, Vector Fields

In the previous example, the line integral was independent of the path taken between the two (fixed)

endpoints. We give vector fields whose line integrals have this property a special name.

A vector field F⃗ is said to be path-independent, or conservative, if for any two points P and

Q, the line integral ∫
C
F⃗ ⋅ dr⃗ has the same value along any piecewise smooth path C from P

to Q lying in the domain of F⃗ .

If, on the other hand, the line integral ∫
C
F⃗ ⋅dr⃗ does depend on the path C joining P to Q, then

F⃗ is said to be a path-dependent vector field.

Now suppose that F⃗ is any continuous gradient field, so F⃗ = gradf . If C is a path from P to

Q, the Fundamental Theorem for Line Integrals tells us that

∫C
F⃗ ⋅ dr⃗ = f (Q) − f (P ).

Since the right-hand side of this equation does not depend on the path, but only on the endpoints of

the path, the vector field F⃗ is path-independent. Thus, we have the following important result:

If F⃗ is a continuous gradient vector field, then F⃗ is path-

independent.

Why Do We Care About Path-Independent, or Conservative, Vector Fields?

Many of the fundamental vector fields of nature are path-independent—forexample, the gravitational

field and the electric field of particles at rest. The fact that the gravitational field is path-independent

means that the work done by gravity when an object moves depends only on the starting and ending

points and not on the path taken. For example, the work done by gravity (computed by the line

integral) on a bicycle being carried to a sixth floor apartment is the same whether it is carried up the

stairs in a zig-zag path or taken straight up in an elevator.

When a vector field is path-independent, we can define the potential energy of a body. When the

body moves to another position, the potential energy changes by an amount equal to the work done

by the vector field, which depends only on the starting and ending positions. If the work done had

not been path-independent, the potential energy would depend both on the body’s current position

and on how it got there, making it impossible to define a useful potential energy.
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Project 1 (available online) explains why path-independent force vector fields are also called

conservative vector fields: When a particle moves under the influence of a conservative vector field,

the total energy of the particle is conserved. It turns out that the force field is obtained from the

gradient of the potential energy function.

Path-Independent Fields and Gradient Fields

We have seen that every gradient field is path-independent. What about the converse? That is, given

a path-independent vector field F⃗ , can we find a function f such that F⃗ = gradf? The answer is

yes, provided that F⃗ is continuous.

How to Construct f from ⃖⃖⃗F

First, notice that there are many different choices for f , since we can add a constant to f without

changing gradf . If we pick a fixed starting point P , then by adding or subtracting a constant to f ,

we can ensure that f (P ) = 0. For any other point Q, we define f (Q) by the formula

f (Q) =
∫C

F⃗ ⋅ dr⃗ , where C is any path from P to Q.

Since F⃗ is path-independent, it does not matter which path we choose from P to Q. On the other

hand, if F⃗ is not path-independent, then different choices might give different values for f (Q), so

f would not be a function (a function has to have a single value at each point).

We still have to show that the gradient of the function f really is F⃗ ; we do this on page 997.

However, by constructing a function f in this manner, we have the following result:

Theorem 18.2: Path-Independent Fields Are Gradient Fields

If F⃗ is a continuous path-independent vector field on an open region R, then F⃗ = gradf for

some f defined on R.

Combining Theorems 18.1 and 18.2, we have

A continuous vector field F⃗ defined on an open region is path-independent if

and only if F⃗ is a gradient vector field.

The function f is sufficiently important that it is given a special name:

If a vector field F⃗ is of the form F⃗ = gradf for some scalar function f , then f is called a

potential function for the vector field F⃗ .

Warning

Physicists use the convention that a function� is a potential function for a vector field F⃗ if F⃗ = −grad�.

See Problem 89 (available online).

Example 3 Show that the vector field F⃗ (x, y) = y cos xi⃗ + (sinx + y)j⃗ is path-independent.



996 Chapter 18 LINE INTEGRALS

Solution Let’s suppose F⃗ does have a potential function f , so that F⃗ = grad f . This means

)f

)x
= y cos x and

)f

)y
= sin x + y.

Integrating the expression for )f∕)x with respect to x shows that

f (x, y) = y sin x + C(y) where C(y) is a function of y only.

The constant of integration here is an arbitrary function C(y) of y, since )(C(y))∕)x = 0. Differen-

tiating this expression for f (x, y) with respect to y and using )f∕)y = sin x + y gives

)f

)y
= sin x + C ′(y) = sin x + y.

Thus, we must have C ′(y) = y, so g(y) = y2∕2 + A, where A is some constant. Thus,

f (x, y) = y sin x +
y2

2
+ A

is a potential function for F⃗ . Therefore, F⃗ is path-independent.

Example 4 The gravitational field, F⃗ , of an object of mass M is given by

F⃗ = −
GM

r3
r⃗ .

Show that F⃗ is a gradient field by finding f , a potential function for F⃗ .

Solution The vector F⃗ points directly in toward the origin. If F⃗ = gradf , then F⃗ must be perpendicular

to the level surfaces of f , so the level surfaces of f must be spheres. Also, if gradf = F⃗ , then

‖ gradf‖ = ‖F⃗ ‖ = GM∕r2 is the rate of change of f in the direction toward the origin. Now,

differentiating with respect to r gives the rate of change in a radially outward direction. Thus, if we

write w = f (x, y, z), we have

dw

dr
= −

GM

r2
= GM

(

−
1

r2

)

= GM
d

dr

(

1

r

)

.

So for the potential function, let’s try

w =
GM

r
or f (x, y, z) =

GM
√

x2 + y2 + z2
.

We check that f is the potential function by calculating

fx =
)

)x

GM
√

x2 + y2 + z2
=

−GMx

(x2 + y2 + z2)3∕2
,

fy =
)

)y

GM
√

x2 + y2 + z2
=

−GMy

(x2 + y2 + z2)3∕2
,

fz =
)

)z

GM
√

x2 + y2 + z2
=

−GMz

(x2 + y2 + z2)3∕2
.

So

gradf = fx i⃗ + fyj⃗ + fzk⃗ =
−GM

(x2 + y2 + z2)3∕2
(xi⃗ + yj⃗ + zk⃗ ) =

−GM

r3
r⃗ = F⃗ .

Our computations show that F⃗ is a gradient field and that f = GM∕r is a potential function for F⃗ .
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Path-independent vector fields are rare, but often important. Section 18.4 gives a method for

determining whether a vector field has the property.

Why Path-Independent Vector Fields Are Gradient Fields: Showing grad f = ⃖⃖⃗F

Suppose F⃗ is a path-independent vector field. On page 995 we defined the function f , which we

hope will satisfy gradf = F⃗ , as follows:

f (x0, y0) = ∫C
F⃗ ⋅ dr⃗ ,

where C is a path from a fixed starting point P to a point Q = (x0, y0). This integral has the same

value for any path from P to Q because F⃗ is path-independent. Now we show why gradf = F⃗ .

We consider vector fields in 2-space; the argument in 3-space is essentially the same.

First, we write the line integral in terms of the components F⃗ (x, y) = F1(x, y)i⃗ +F2(x, y)j⃗ and

the components dr⃗ = dxi⃗ + dyj⃗ :

f (x0, y0) = ∫C
F1(x, y) dx + F2(x, y) dy.

We want to compute the partial derivatives of f , that is, the rate of change of f at (x0, y0) parallel

to the axes. To do this easily, we choose a path which reaches the point (x0, y0) on a horizontal or

vertical line segment. Let C ′ be a path from P which stops short of Q at a fixed point (a, b) and let

Lx and Ly be the paths shown in Figure 18.30. Then we can split the line integral into three pieces.

Since dr⃗ = j⃗ dy on Ly and dr⃗ = i⃗ dx on Lx, we have:

f (x0, y0) = ∫C ′

F⃗ ⋅dr⃗ +
∫Ly

F⃗ ⋅dr⃗ +
∫Lx

F⃗ ⋅dr⃗ =
∫C ′

F⃗ ⋅dr⃗ +
∫

y0

b

F2(a, y) dy+∫

x0

a

F1(x, y0) dx.

The first two integrals do not involve x0. Thinking of x0 as a variable and differentiating with

respect to it gives

fx0
(x0, y0) =

)

)x0 ∫C ′

F⃗ ⋅ dr⃗ +
)

)x0 ∫

y0

b

F2(a, y)dy +
)

)x0 ∫

x0

a

F1(x, y0)dx

= 0 + 0 + F1(x0, y0) = F1(x0, y0),

and thus

fx(x, y) = F1(x, y).

A similar calculation for y using the path from P to Q shown in Figure 18.31 gives

fy0
(x0, y0) = F2(x0, y0).

Therefore, as we claimed,

gradf = fx i⃗ + fyj⃗ = F1i⃗ + F2j⃗ = F⃗ .

P

Q = (x0, y0)

C ′

Lx

Ly

(a, b)

(a, y0)

✕

✲

✻

Figure 18.30: The path C ′ +Ly +Lx is used

to show fx = F1

P

Q = (x0, y0)

C ′ Kx

Ky(a, b)

(x0, b)

✕

✲ ✻

Figure 18.31: The path C ′ +Kx +Ky is used

to show fy = F2



998 Chapter 18 LINE INTEGRALS

Summary for Section 18.3

• The Fundamental Theorem for Line Integrals: Suppose C is a piecewise smooth oriented

path with starting point P and ending point Q, and f is a function whose gradient is continuous

on C . Then

∫C
gradf ⋅ dr⃗ = f (Q) − f (P ).

• A vector field F⃗ is said to be path-independent, or conservative, if for any two points P and

Q, the line integral ∫
C
F⃗ ⋅ dr⃗ has the same value along any piecewise smooth path C from P

to Q lying in the domain of F⃗ .

• A continuous vector field F⃗ defined on an open region is path-independent if and only if F⃗ is

a gradient vector field.

• Suppose F⃗ is a gradient vector field. Then a scalar function f is called a potential function of

F⃗ if F⃗ = gradf .

Exercises and Problems for Section 18.3 Online Resource: Additional Problems for Section 18.3
EXERCISES

1. If F⃗ = grad(x2 + y4), find ∫
C
F⃗ ⋅ dr⃗ where C is the

quarter of the circle x2 + y2 = 4 in the first quadrant,

oriented counterclockwise.

2. If F⃗ = grad(sin(xy) + ez), find ∫
C
F⃗ ⋅ dr⃗ where C

consists of a line from (0, 0, 0) to (0, 0, 1), followed by

a line to (0,
√

2, 3), followed by a line to (
√

2,
√

5, 2).

In Exercises 3–6, let C be a square of side 2, centered at the

origin with sides on the lines x = ±1, y = ±1 and traversed

counterclockwise. What is the sign of the line integral of the

vector fields around the curve C? Does the vector field ap-

pear to be path-independent?

3.

x

y 4.

x

y

5.

x

y 6.

x

y

In Exercises 7–12, does the vector field appear to be path-

independent (conservative)?

7. 8.

9. 10.

11. 12.

13. Find f if grad f = 2xyi⃗ + x2 j⃗ .

14. Find f if grad f = 2xyi⃗ + (x2 + 8y3)j⃗ .

15. Find f if grad f = (yzexyz+z2 cos(xz2))i⃗ +xzexyz j⃗ +

(xyexyz + 2xz cos(xz2))k⃗ .

16. Let f (x, y, z) = x2 + 2y3 + 3z4 and F⃗ = grad f . Find

∫
C
F⃗ ⋅ dr⃗ where C consists of four line segments from

(4, 0, 0) to (4, 3, 0) to (0, 3, 0) to (0, 3, 5) to (0, 0, 5).
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In Exercises 17–25, use the Fundamental Theorem of Line

Integrals to calculate ∫
C
F⃗ ⋅ dr⃗ exactly.

17. F⃗ = 3x2 i⃗ +4y3 j⃗ around the top of the unit circle from

(1, 0) to (−1, 0).

18. F⃗ = (x+ 2)i⃗ + (2y + 3)j⃗ and C is the line from (1, 0)

to (3, 1).

19. F⃗ = 2 sin(2x+ y)i⃗ + sin(2x+ y)j⃗ along the path con-

sisting of a line from (�, 0) to (2, 5) followed by a line

to (5�, 0) followed by a quarter circle to (0, 5�).

20. F⃗ = 2xi⃗ − 4yj⃗ + (2z − 3)k⃗ and C is the line from

(1, 1, 1) to (2, 3,−1).

21. F⃗ = x2∕3 i⃗ + e7yj⃗ and C is the unit circle oriented

clockwise.

22. F⃗ = x2∕3 i⃗ + e7yj⃗ and C is the quarter of the unit cir-

cle in the first quadrant, traced counterclockwise from

(1, 0) to (0, 1).

23. F⃗ = yexy i⃗ + xexy j⃗ + (cos z)k⃗ along the curve con-

sisting of a line from (0, 0, �) to (1, 1, �) followed by

the parabola z = �x2 in the plane y = 1 to the point

(3, 1, 9�).

24. F⃗ = y sin(xy)i⃗ + x sin(xy)j⃗ and C is the parabola

y = 2x2 from (1, 2) to (3, 18).

25. F⃗ = 2xy2zex
2y2z i⃗ + 2x2yzex

2y2zj⃗ + x2y2ex
2y2zk⃗ and

C is the circle of radius 1 in the plane z = 1, centered

on the z-axis, starting at (1, 0, 1) and oriented counter-

clockwise viewed from above.

PROBLEMS

26. Let v⃗ = grad(x2 + y2). Consider the path C which is a

line between any two of the following points:

(0, 0); (5, 0); (−5, 0); (0, 6); (0,−6); (5, 4); (−3,−5).

Suppose you want to choose the path C in order to max-

imize ∫
C
v⃗ ⋅ dr⃗ . What point should be the start of C?

What point should be the end of C? Explain your an-

swer.

27. Let F⃗ = grad(2x2+3y2). Which one of the three paths

PQ, QR, and RS in Figure 18.32 should you choose as

C in order to maximize ∫
C
F⃗ ⋅ dr⃗ ?

1 2 3 4

1

2

3

4

P

Q

R

S

x

y

Figure 18.32

28. Compute
∫
C

(

cos(xy)esin(xy)(yi⃗ + xj⃗ ) + k⃗

)

⋅dr⃗ where

C is the line from (�, 2, 5) to (0.5, �, 7).

29. The vector field F⃗ (x, y) = xi⃗ +yj⃗ is path-independent.

Compute geometrically the line integrals over the three

paths A, B, and C shown in Figure 18.33 from (1, 0)

to (0, 1) and check that they are equal. Here A is a por-

tion of a circle, B is a line, and C consists of two line

segments meeting at a right angle.

y

x

B

A

C

✠

(1, 0)

(0, 1)

Figure 18.33

30. The vector field F⃗ (x, y) = xi⃗ +yj⃗ is path-independent.

Compute algebraically the line integrals over the three

paths A, B, and C shown in Figure 18.34 from (0, 0)

to (1, 1) and check that they are equal. Here A is a line

segment, B is part of the graph of f (x) = x2, and C

consists of two line segments meeting at a right angle.

(1, 1)

A
C

B

x

y

Figure 18.34

In Problems 31–34, decide whether the vector field could be

a gradient vector field. Justify your answer.

31. F⃗ (x, y) = xi⃗

32. G⃗ (x, y) = (x2 − y2)i⃗ − 2xyj⃗

33. F⃗ (r⃗ ) = r⃗ ∕||r⃗ ||3, where r⃗ = xi⃗ + yj⃗ + zk⃗

34. F⃗ (x, y, z) =
−z

√

x2 + z2
i⃗ +

y
√

x2 + z2
j⃗ +

x
√

x2 + z2
k⃗
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35. Find a potential function for F⃗ = 5yi⃗ +(5x+y)j⃗ . Use

it to evaluate the integral ∫
C
F⃗ ⋅ dr⃗ on the path C if

(a) C runs from (10, 0) to (0,−10) along the circle of

radius 10 centered at the origin.

(b) C runs from (10, 0) to (0,−10) along a straight line.

36. Suppose C is a path that begins and ends at the same

pointP = (15, 20). What, if anything, can you say about

∫
C
(p(x, y)i⃗ + q(x, y)j⃗ ) ⋅ dr⃗ ?

(a) With no assumptions about p and q.

(b) If p(x, y)i⃗ + q(x, y)j⃗ has a potential function.

37. Let F⃗ = −yi⃗ + xj⃗ and let C be the circle of radius 5

centered at the origin, oriented counterclockwise.

(a) Evaluate ∫
C
F⃗ ⋅ dr⃗ .

(b) Give a potential function for F⃗ or explain why

there are none.

38. Let F⃗ = yi⃗ .

(a) Evaluate ∫
C1

F⃗ ⋅ dr⃗ if C1 is the straight line path

from (0, 0) to (1, 0).

(b) Evaluate ∫
C2

F⃗ ⋅ dr⃗ if C2 is the path along three

edges of a square, from (0, 0) to (0, 1) to (1, 1) to

(1, 0).

(c) Does F⃗ have a potential function? Either give one

or explain why there are none.

39. If df = p dx + q dy for smooth f , explain why

)p

)y
=

)q

)x
.

40. If F⃗ (x, y, z) = 2xex
2+yz i⃗ + zex

2+yzj⃗ + yex
2+yzk⃗ , find

exactly the line integral of F⃗ along the curve consisting

of the two half circles in the plane z = 0 in Figure 18.35.

3
x

y

Figure 18.35

41. Let grad f = 2xex
2
sin yi⃗ +ex

2
cos yj⃗ . Find the change

in f between (0, 0) and (1, �∕2):

(a) By computing a line integral.

(b) By computing f .

42. Let C be the quarter of the unit circle centered at the

origin, traversed counterclockwise starting on the neg-

ative x-axis. Find the exact values of

(a)
∫
C

(2�xi⃗ + y2j⃗ ) ⋅ dr⃗ (b)
∫
C

(−2yi⃗ + xj⃗ ) ⋅ dr⃗

For the vector fields in Problems 43–46, find the line inte-

gral along the curve C from the origin along the x-axis to the

point (3, 0) and then counterclockwise around the circumfer-

ence of the circle x2 + y2 = 9 to the point (3∕
√

2, 3∕
√

2).

43. F⃗ = xi⃗ + yj⃗

44. H⃗ = −yi⃗ + xj⃗

45. F⃗ = y(x + 1)−1 i⃗ + ln(x + 1)j⃗

46. G⃗ = (yexy + cos(x + y))i⃗ + (xexy + cos(x + y))j⃗

47. Let C be the helix x = cos t, y = sin t, z = t for

0 ≤ t ≤ 1.25�. Find ∫
C
F⃗ ⋅ dr⃗ exactly for

F⃗ = yz2exyz
2
i⃗ + xz2exyz

2
j⃗ + 2xyzexyz

2
k⃗ .

48. Let F⃗ = 2xi⃗ + 2yj⃗ + 2zk⃗ and G⃗ = (2x + y)i⃗ +

2yj⃗ + 2zk⃗ . Let C be the line from the origin to the

point (1, 5, 9). Find ∫
C
F⃗ ⋅ dr⃗ and use the result to find

∫
C
G⃗ ⋅ dr⃗ .

49. (a) If F⃗ = yex i⃗ + ex j⃗ , explain how the Fundamen-

tal Theorem of Calculus for Line Integrals enables

you to calculate ∫
C
F⃗ ⋅ dr⃗ where C is any curve

going from the point (1, 2) to the point (3, 7). Ex-

plain why it does not matter how the curve goes.

(b) If C is the line from the point (1, 2) to the point

(3, 7), calculate the line integral in part (a) without

using the Fundamental Theorem.

50. Calculate the line integral ∫
C
F⃗ ⋅ dr⃗ exactly, where C

is the curve from P to Q in Figure 18.36 and

F⃗ = sin
(

x

2

)

sin
(

y

2

)

i⃗ − cos
(

x

2

)

cos
(

y

2

)

j⃗ .

The curves PR, RS and SQ are trigonometric func-

tions of period 2� and amplitude 1.

(−
3�

2
,
3�

2
)P

R(
3�

2
,
3�

2
)

S(
3�

2
,−

3�

2
)

(−
3�

2
,−

3�

2
)Q

x

y

Figure 18.36
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51. The domain of f (x, y) is the xy-plane; values of f are

in Table 18.1. Find ∫
C

grad f ⋅ dr⃗ , where C is

(a) A line from (0, 2) to (3, 4).

(b) A circle of radius 1 centered at (1, 2) traversed

counterclockwise.

Table 18.1

y ⧵
x 0 1 2 3 4

0 53 57 59 58 56

1 56 58 59 59 57

2 57 58 59 60 59

3 59 60 61 62 61

4 62 63 65 66 69

52. Figure 18.37 shows the vector field F⃗ (x, y) = xj⃗ .

(a) Find paths C1, C2, and C3 from P to Q such that

∫
C1

F⃗ ⋅dr⃗ = 0,
∫
C2

F⃗ ⋅dr⃗ > 0,
∫
C3

F⃗ ⋅dr⃗ < 0.

(b) Is F⃗ a gradient field? Explain.

x

y

Q P

Figure 18.37

53. (a) Figure 18.38 shows level curves of f (x, y). Sketch

a vector at P in the direction of grad f .

(b) Is the length of grad f at P longer, shorter, or the

same length as the length of grad f at Q?

(c) If C is a curve going from P to Q, find ∫
C
grad f ⋅

dr⃗ .

P

Q

1
3

5 7

9

x

y

Figure 18.38

54. Consider the line integrals, ∫
Ci
F⃗ ⋅dr⃗ , for i = 1, 2, 3, 4,

whereCi is the path fromPi toQi shown in Figure 18.39

and F⃗ = grad f . Level curves of f are also shown in

Figure 18.39.

(a) Which of the line integral(s) is (are) zero?

(b) Arrange the four line integrals in ascending order

(from least to greatest).

(c) Two of the nonzero line integrals have equal and

opposite values. Which are they? Which is nega-

tive and which is positive?

P1 P2

P3

P4

Q1

Q2

Q3

Q4 ✻

Increasing
values of f

Figure 18.39

55. Consider the vector field F⃗ shown in Figure 18.40.

C

x

y

Figure 18.40

(a) Is ∫
C
F⃗ ⋅ d⃗r positive, negative, or zero?

(b) From your answer to part (a), can you determine

whether or not F⃗ = grad f for some function f?

(c) Which of the following formulas best fits F⃗ ?

F⃗1 =
x

x2 + y2
i⃗ +

y

x2 + y2
j⃗ ,

F⃗2 = −yi⃗ + xj⃗ ,

F⃗3 =
−y

(x2 + y2)2
i⃗ +

x

(x2 + y2)2
j⃗ .
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56. If F⃗ is a path-independent vector field, with

∫
(1,0)

(0,0)
F⃗ ⋅ dr⃗ = 5.1 and ∫

(1,1)

(1,0)
F⃗ ⋅ dr⃗ = 3.2 and

∫
(1,1)

(0,1)
F⃗ ⋅ dr⃗ = 4.7, find

∫

(0,0)

(0,1)

F⃗ ⋅ dr⃗ .

57. The path C is a line segment of length 10 in the plane

starting at (2, 1). For f (x, y) = 3x + 4y, consider

∫
C

grad f ⋅ dr⃗ .

(a) Where should the other end of the line segment C

be placed to maximize the value of the integral?

(b) What is the maximum value of the integral?

58. Let r⃗ = xi⃗ + yj⃗ + zk⃗ and a⃗ = a1 i⃗ + a2j⃗ + a3k⃗ , a

constant vector.

(a) Find grad(r⃗ ⋅ a⃗ ).

(b) Let C be a path from the origin to the point with

position vector r⃗0 . Find ∫
C
grad(r⃗ ⋅ a⃗ ) ⋅ dr⃗ .

(c) If ||r⃗ 0|| = 10, what is the maximum possible value

of ∫
C
grad(r⃗ ⋅ a⃗ ) ⋅ dr⃗ ? Explain.

59. The force exerted by gravity on a refrigerator of mass

m is F⃗ = −mgk⃗ .

(a) Find the work done against this force in moving

from the point (1, 0, 0) to the point (1, 0, 2�) along

the curve x = cos t, y = sin t, z = t by calculating

a line integral.

(b) Is F⃗ conservative (that is, path-independent)?

Give a reason for your answer.

60. A particle subject to a force F⃗ (x, y) = yi⃗ − xj⃗ moves

clockwise along the arc of the unit circle, centered at

the origin, that begins at (−1, 0) and ends at (0, 1).

(a) Find the work done by F⃗ . Explain the sign of your

answer.

(b) Is F⃗ path-independent? Explain.

Strengthen Your Understanding

In Problems 61–63, explain what is wrong with the state-

ment.

61. If F⃗ is a gradient field and C is an oriented path from

point P to point Q, then ∫
C
F⃗ ⋅ dr⃗ = F⃗ (Q) − F⃗ (P ).

62. Given any vector field F⃗ and a point P , the function

f (Q) = ∫
C
F⃗ ⋅ dr⃗ , where C is a path from P to Q, is a

potential function for F⃗ .

63. If a vector field F⃗ is not a gradient vector field, then

∫
C
F⃗ ⋅ dr⃗ can’t be evaluated.

In Problems 64–65, give an example of:

64. A vector field F⃗ such that ∫
C
F⃗ ⋅ dr⃗ = 100, for every

oriented path C from (0, 0) to (1, 2).

65. A path-independent vector field.

In Problems 66–69, each of the statements is false. Explain

why or give a counterexample.

66. If ∫
C
F⃗ ⋅ dr⃗ = 0 for one particular closed path C , then

F⃗ is path-independent.

67. ∫
C
F⃗ ⋅ dr⃗ is the total change in F⃗ along C .

68. If the vector fields F⃗ and G⃗ have ∫
C
F⃗ ⋅dr⃗ = ∫

C
G⃗ ⋅dr⃗

for a particular path C , then F⃗ = G⃗ .

69. If the total change of a function f along a curve C is

zero, then C must be a contour of f .

Are the statements in Problems 70–80 true or false? Give

reasons for your answer.

70. The fact that the line integral of a vector field F⃗ is zero

around the unit circle x2 + y2 = 1 means that F⃗ must

be a gradient vector field.

71. If C is the line segment that starts at (0, 0) and ends at

(a, b) then ∫
C
(xi⃗ + yj⃗ ) ⋅ dr⃗ =

1

2
(a2 + b2).

72. The circulation of any vector field F⃗ around any closed

curve C is zero.

73. If F⃗ = grad f , then F⃗ is path-independent.

74. If F⃗ is path-independent, then ∫
C1

F⃗ ⋅dr⃗ = ∫
C2

F⃗ ⋅dr⃗ ,

where C1 and C2 are any paths.

75. The line integral ∫
C
F⃗ ⋅ dr⃗ is the total change of F⃗

along C .

76. If F⃗ is path-independent, then there is a potential func-

tion for F⃗ .

77. If f (x, y) = ecos(xy), and C1 is the upper semicircle

x2+y2 = 1 from (−1, 0) to (1, 0), and C2 is the line from

(−1, 0) to (1, 0), then ∫
C1

grad f ⋅dr⃗ = ∫
C2

grad f ⋅dr⃗ .

78. If F⃗ is path-independent and C is any closed curve,

then ∫
C
F⃗ ⋅ dr⃗ = 0.

79. The vector field F⃗ (x, y) = y2 i⃗ + kj⃗ , where k is con-

stant, is a gradient field.

80. If ∫
C
F⃗ ⋅ dr⃗ = 0, where C is any circle of the form

x2 + y2 = a2, then F⃗ is path-independent.
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18.4 PATH-DEPENDENT VECTOR FIELDS AND GREEN’S THEOREM

Suppose we are given a vector field but are not told whether it is path-independent. How can we tell

if it has a potential function, that is, if it is a gradient field?

How to Tell If a Vector Field Is Path-Dependent Using Line Integrals

One way to decide if a vector field is path-dependent is to find two paths with the same endpoints

such that the line integrals of the vector field along the two paths have different values.

Example 1 Is the vector field G⃗ shown in Figure 18.41 path-independent? At any point G⃗ has magnitude equal

to the distance from the origin and direction perpendicular to the line joining the point to the origin.

x

y

C1

C2

C2

Q

P

Figure 18.41: Is this vector field

path-independent?

Solution We choose P = (1, 0) and Q = (0, 1) and two paths between them: C1, a quarter circle of radius 1,

and C2, formed by parts of the x- and y-axes. (See Figure 18.41.)

Along C1, the line integral ∫
C1

G⃗ ⋅ dr⃗ > 0, since G⃗ points in the direction of the curve.

Along C2, however, we have ∫
C2

G⃗ ⋅ dr⃗ = 0, since G⃗ is perpendicular to C2 everywhere.

Thus, G⃗ is not path-independent.

Path-Dependent Fields and Circulation

Notice that the vector field in the previous example has nonzero circulation around the origin. What

can we say about the circulation of a general path-independent vector field F⃗ around a closed curve,

C? Suppose C is a simple closed curve, that is, a closed curve that does not cross itself. If P and Q

are any two points on the path, then we can think of C (oriented as shown in Figure 18.42) as made

up of the path C1 followed by −C2. Since F⃗ is path-independent, we know that

∫C1

F⃗ ⋅ dr⃗ =
∫C2

F⃗ ⋅ dr⃗ .

Thus, we see that the circulation around C is zero:

∫C
F⃗ ⋅ dr⃗ =

∫C1

F⃗ ⋅ dr⃗ +
∫−C2

F⃗ ⋅ dr⃗ =
∫C1

F⃗ ⋅ dr⃗ −
∫C2

F⃗ ⋅ dr⃗ = 0.

If the closed curveC does cross itself, we break it into simple closed curves as shown in Figure 18.43

and apply the same argument to each one.

Now suppose we know that the line integral around any closed curve is zero. For any two points,

P and Q, with two paths, C1 and C2, between them, create a closed curve, C , as in Figure 18.42.

Since the circulation around this closed curve, C , is zero, the line integrals along the two paths, C1

and C2, are equal.1 Thus, F⃗ is path-independent.

1A similar argument is used in Problems 57 and 58 on page 983.
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P

Q

C2

C1

C

Figure 18.42: A simple closed curve C

broken into two pieces, C1 and C2

C

Figure 18.43: A curve C which crosses

itself can be broken into simple closed

curves

Thus, we have the following result:

A vector field is path-independent if and only if
∫C

F⃗ ⋅ dr⃗ = 0 for every closed curve C .

Hence, to see if a field is path-dependent, we look for a closed path with nonzero circulation.

For instance, the vector field in Example 1 has nonzero circulation around a circle around the origin,

showing it is path-dependent.

How to Tell If a Vector Field Is Path-Dependent Algebraically: The Curl

Example 2 Does the vector field F⃗ = 2xyi⃗ + xyj⃗ have a potential function? If so, find it.

Solution Let’s suppose F⃗ does have a potential function, f , so F⃗ = gradf . This means that

)f

)x
= 2xy and

)f

)y
= xy.

Integrating the expression for )f∕)x shows that we must have

f (x, y) = x2y + C(y) where C(y) is a function of y.

Differentiating this expression for f (x, y) with respect to y and using the fact that )f∕)y = xy, we

get
)f

)y
= x2 + C ′(y) = xy.

Thus, we must have

C ′(y) = xy − x2.

But this expression for C ′(y) is impossible because C ′(y) is a function of y alone. This argument

shows that there is no potential function for the vector field F⃗ .

Is there an easier way to see that a vector field has no potential function, other than by trying

to find the potential function and failing? The answer is yes. First we look at a 2-dimensional vector

field F⃗ = F1i⃗ + F2 j⃗ . If F⃗ is a gradient field, then there is a potential function f such that

F⃗ = F1 i⃗ + F2 j⃗ =
)f

)x
i⃗ +

)f

)y
j⃗ .

Thus,

F1 =
)f

)x
and F2 =

)f

)y
.
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Let us assume that f has continuous second partial derivatives. Then, by the equality of mixed partial

derivatives,
)F1

)y
=

)2f

)y)x
=

)2f

)x)y
=

)F2

)x
.

Thus, we have the following result:

If F⃗ (x, y) = F1i⃗ + F2j⃗ is a gradient vector field with continuous partial derivatives, then

)F2

)x
−

)F1

)y
= 0.

If F⃗ (x, y) = F1i⃗ +F2j⃗ is an arbitrary vector field, then we define the 2-dimensional or scalar

curl of the vector field F⃗ to be

)F2

)x
−

)F1

)y
.

Notice that we now know that if F⃗ is a gradient field, then its curl is 0. We do not (yet) know

whether the converse is true. (That is: If the curl is 0, does F⃗ have to be a gradient field?) However,

the curl already enables us to show that a vector field is not a gradient field.

Example 3 Show that F⃗ = 2xyi⃗ + xyj⃗ cannot be a gradient vector field.

Solution We have F1 = 2xy and F2 = xy. Since )F1∕)y = 2x and )F2∕)x = y, in this case

)F2∕)x − )F1∕)y ≠ 0

so F⃗ cannot be a gradient field.

Green’s Theorem

We now have two ways of seeing that a vector field F⃗ in the plane is path-dependent. We can evaluate

∫
C
F⃗ ⋅ dr⃗ for some closed curve and find it is not zero, or we can show that )F2∕)x − )F1∕)y ≠ 0.

It’s natural to think that

∫C
F⃗ ⋅ dr⃗ and

)F2

)x
−

)F1

)y

might be related. The relation is called Green’s Theorem.

Theorem 18.3: Green’s Theorem

Suppose C is a piecewise smooth simple closed curve that is the boundary of a region R in

the plane and oriented so that the region is on the left as we move around the curve. See

Figure 18.44. Suppose F⃗ = F1i⃗ + F2 j⃗ is a smooth vector field on a region2 containing R

and C . Then

∫C
F⃗ ⋅ dr⃗ =

∫R

(

)F2

)x
−

)F1

)y

)

dx dy.

The online supplement at www.WileyPLUS.com contains a proof of Green’s Theorem with

different, but equivalent, conditions on the region R.

2The region is an open region containing R and C .
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R

C

x

y

Figure 18.44: Boundary C oriented

with R on the left

We first prove Green’s Theorem in the case where the region R is the rectangle a ≤ x ≤ b, c ≤

y ≤ d. Figure 18.45 shows the boundary of R divided into four curves.

On C1, where y = c and dy = 0, we have dr⃗ = dxi⃗ and thus

∫C1

F⃗ ⋅ dr⃗ =
∫

b

a

F1(x, c) dx.

Similarly, on C3 where y = d we have

∫C3

F⃗ ⋅ dr⃗ =
∫

a

b

F1(x, d) dx = −
∫

b

a

F1(x, d) dx.

Hence

∫C1+C3

F⃗ ⋅ dr⃗ =
∫

b

a

F1(x, c) dx −
∫

b

a

F1(x, d) dx = −
∫

b

a

(F1(x, d) − F1(x, c)) dx.

By the Fundamental Theorem of Calculus,

F1(x, d) − F1(x, c) = ∫

d

c

)F1

)y
dy

and therefore

∫C1+C3

F⃗ ⋅ dr⃗ = −
∫

b

a ∫

d

c

)F1

)y
dy dx = −

∫

d

c ∫

b

a

)F1

)y
dx dy.

Along the curve C2, where x = b, and the curve C4, where x = a, we get, by a similar argument,

∫C2+C4

F⃗ ⋅ dr⃗ =
∫

d

c

(F2(b, y) − F2(a, y)) dy = ∫

d

c ∫

b

a

)F2

)x
dx dy.

Adding the line integrals over C1 + C3 and C2 + C4, we get

∫C
F⃗ ⋅ dr⃗ =

∫R

(

)F2

)x
−

)F1

)y

)

dx dy.

If R is not a rectangle, we subdivide it into small rectangular pieces as shown in Figure 18.46.

The contribution to the integral of the non-rectangular pieces can be made as small as we like by

making the subdivision fine enough. The double integrals over each piece add up to the double

integral over the whole region R. Figure 18.47 shows how the circulations around adjacent pieces

cancel along the common edge, so the circulations around all the pieces add up to the circulation

around the boundary C . Since Green’s Theorem holds for the rectangular pieces, it holds for the

whole region R.
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a b

c

d

C1

C2

C3

C4

x

y

Figure 18.45: The

boundary of a rectangle

broken into C1, C2,

C3, C4

✣ ✕ R

C

Figure 18.46: Region R bounded

by a closed curve C and split

into many small regions, ΔR

Figure 18.47: Two adjacent small

closed curves

Example 4 Use Green’s Theorem to evaluate
∫C

(

y2 i⃗ + xj⃗

)

⋅dr⃗ where C is the counterclockwise path around

the perimeter of the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

Solution We have F1 = y2 and F2 = x. By Green’s Theorem,

∫C

(

y2 i⃗ + xj⃗

)

⋅ dr⃗ =
∫R

(

)F2

)x
−

)F1

)y

)

dx dy =
∫

3

0 ∫

2

0

(1 − 2y) dx dy = −12.

The Curl Test for Vector Fields in the Plane

We already know that if F⃗ = F1i⃗ +F2j⃗ is a gradient field with continuous partial derivatives, then

)F2

)x
−

)F1

)y
= 0.

Now we show that the converse is true if the domain of F⃗ has no holes in it. This means that we

assume that
)F2

)x
−

)F1

)y
= 0

and show that F⃗ is path-independent. If C is any oriented simple closed curve in the domain of F⃗

and R is the region inside C , then

∫R

(

)F2

)x
−

)F1

)y

)

dx dy = 0

since the integrand is identically 0. Therefore, by Green’s Theorem,

∫C
F⃗ ⋅ dr⃗ =

∫R

(

)F2

)x
−

)F1

)y

)

dxdy = 0.

Thus, F⃗ is path-independent and therefore a gradient field. This argument is valid for every closed

curve, C , provided the region R is entirely in the domain of F⃗ . Thus, we have the following result:

The Curl Test for Vector Fields in 2-Space

Suppose F⃗ = F1 i⃗ + F2j⃗ is a vector field with continuous partial derivatives such that

• The domain of F⃗ has the property that every closed curve in it encircles a region that lies

entirely within the domain. In particular, the domain of F⃗ has no holes.

•
)F2

)x
−

)F1

)y
= 0.

Then F⃗ is path-independent, so F⃗ is a gradient field and has a potential function.
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Why Are Holes in the Domain of the Vector Field Important?

The reason for assuming that the domain of the vector field F⃗ has no holes is to ensure that the

region R inside C is actually contained in the domain of F⃗ . Otherwise, we cannot apply Green’s

Theorem. The next two examples show that if )F2∕)x − )F1∕)y = 0 but the domain of F⃗ contains

a hole, then F⃗ can either be path-independent or be path-dependent.

Example 5 Let F⃗ be the vector field given by F⃗ (x, y) =
−yi⃗ + xj⃗

x2 + y2
.

(a) Calculate
)F2

)x
−

)F1

)y
. Does the curl test imply that F⃗ is path-independent?

(b) Calculate
∫C

F⃗ ⋅dr⃗ , where C is the unit circle centered at the origin and oriented counterclock-

wise. Is F⃗ a path-independent vector field?

(c) Explain why the answers to parts (a) and (b) do not contradict Green’s Theorem.

Solution (a) Taking partial derivatives, we have

)F2

)x
=

)

)x

(

x

x2 + y2

)

=
1

x2 + y2
−

x ⋅ 2x

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

Similarly,

)F1

)y
=

)

)y

(

−y

x2 + y2

)

=
−1

x2 + y2
+

y ⋅ 2y

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

Thus,

)F2

)x
−

)F1

)y
= 0.

Since F⃗ is undefined at the origin, the domain of F⃗ contains a hole. Therefore, the curl test

does not apply.

(b) See Figure 18.49. On the unit circle, F⃗ is tangent to the circle and ||F⃗ || = 1. Thus,3

∫C
F⃗ ⋅ dr⃗ = ||F⃗ || ⋅ Length of curve = 1 ⋅ 2� = 2�.

Since the line integral around the closed curve C is nonzero, F⃗ is not path-independent. We ob-

serve that F⃗ = grad(arctan(y∕x)) where x ≠ 0. However, arctan(y∕x) is not defined anywhere

on the y-axis. Thus Theorem 18.1 (Fundamental Theorem of Line Integrals) does not hold on

the unit circle, so we cannot use it to get path independence.4

(c) The domain of F⃗ is the “punctured plane,” as shown in Figure 18.48. Since F⃗ is not defined at

the origin, which is inside C , Green’s Theorem does not apply. In this case

2� =
∫C

F⃗ ⋅ dr⃗ ≠
∫R

(

)F2

)x
−

)F1

)y

)

dxdy = 0.

3See Problem 56 on page 983.
4It can be shown that arctan(y∕x) is � from polar coordinates. The fact that � increases by 2� each time we wind once

around the origin counterclockwise explains why F⃗ is not path-independent.
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x

y

Figure 18.48: The domain of F⃗ (x, y) =
−yi⃗ +xj⃗

x2+y2
is

the plane minus the origin

x

y

R

C

1

Figure 18.49: The region R is not contained in the

domain of F⃗ (x, y) =
−yi⃗ +xj⃗

x2+y2

Although the vector field F⃗ in the last example was not defined at the origin, this by itself does

not prevent the vector field from being path-independent, as we see in the following example.

Example 6 Consider the vector field F⃗ given by F⃗ (x, y) =
xi⃗ + yj⃗

x2 + y2
.

(a) Calculate
)F2

)x
−

)F1

)y
. Does the curl test imply that F⃗ is path-independent?

(b) Explain how we know that
∫C

F⃗ ⋅ dr⃗ = 0, where C is the unit circle centered at the origin and

oriented counterclockwise. Does this imply that F⃗ is path-independent?

(c) Check that f (x, y) =
1

2
ln(x2 + y2) is a potential function for F⃗ . Does this imply that F⃗ is

path-independent?

Solution (a) Taking partial derivatives, we have

)F2

)x
=

)

)x

(

y

x2 + y2

)

=
−2xy

(x2 + y2)2
, and

)F1

)y
=

)

)y

(

x

x2 + y2

)

=
−2xy

(x2 + y2)2
.

Therefore,
)F2

)x
−

)F1

)y
= 0.

This does not imply that F⃗ is path-independent: The domain of F⃗ contains a hole since F⃗ is

undefined at the origin. Thus, the curl test does not apply.

(b) Since F⃗ (x, y) = xi⃗ + yj⃗ = r⃗ on the unit circle C , the field F⃗ is everywhere perpendicular to

C . Thus

∫C
F⃗ ⋅ dr⃗ = 0.

The fact that ∫
C
F⃗ ⋅dr⃗ = 0 when C is the unit circle does not imply that F⃗ is path-independent.

To be sure that F⃗ is path-independent, we would have to show that ∫
C
F⃗ ⋅ dr⃗ = 0 for every

closed curve C in the domain of F⃗ , not just the unit circle.

(c) To check that gradf = F⃗ , we differentiate f :

fx =
1

2

)

)x
ln(x2 + y2) =

1

2

2x

x2 + y2
=

x

x2 + y2
,

and

fy =
1

2

)

)y
ln(x2 + y2) =

1

2

2y

x2 + y2
=

y

x2 + y2
,
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so that

gradf =
xi⃗ + yj⃗

x2 + y2
= F⃗ .

Thus, F⃗ is a gradient field and therefore is path-independent—even though F⃗ is undefined at

the origin.

The Curl Test for Vector Fields in 3-Space
The curl test is a convenient way of deciding whether a 2-dimensional vector field is path-independent.

Fortunately, there is an analogous test for 3-dimensional vector fields, although we cannot justify it

until Chapter 20.

If F⃗ (x, y, z) = F1i⃗ + F2j⃗ + F3k⃗ is a vector field on 3-space we define a new vector field,

curl F⃗ , on 3-space by

curl F⃗ =

(

)F3

)y
−

)F2

)z

)

i⃗ +

(

)F1

)z
−

)F3

)x

)

j⃗ +

(

)F2

)x
−

)F1

)y

)

k⃗ .

The vector field curl F⃗ can be used to determine whether the vector field F⃗ is path-independent.

The Curl Test for Vector Fields in 3-Space

Suppose F⃗ is a vector field on 3-space with continuous partial derivatives such that

• The domain of F⃗ has the property that every closed curve in it can be contracted to a

point in a smooth way, staying at all times within the domain.

• curl F⃗ = 0⃗ .

Then F⃗ is path-independent, so F⃗ is a gradient field and has a potential function.

For the 2-dimensional curl test, the domain of F⃗ must have no holes. This meant that if F⃗ was

defined on a simple closed curve C , then it was also defined at all points inside C . One way to test

for holes is to try to “lasso” them with a closed curve. If every closed curve in the domain can be

pulled to a point without hitting a hole, that is, without straying outside the domain, then the domain

has no holes. In 3-space, we need the same condition to be satisfied: we must be able to pull every

closed curve to a point, like a lasso, without straying outside the domain.

Example 7 Decide if the following vector fields are path-independent and whether or not the curl test applies.

(a) F⃗ =
xi⃗ + yj⃗ + zk⃗

(x2 + y2 + z2)3∕2
(b) G⃗ =

−yi⃗ + xj⃗

x2 + y2
+ z2k⃗

Solution (a) Suppose f = −(x2 + y2 + z2)−1∕2. Then fx = x(x2 + y2 + z2)−3∕2 and fy and fz are similar,

so gradf = F⃗ . Thus, F⃗ is a gradient field and therefore path-independent. Calculations show

curl F⃗ = 0⃗ . The domain of F⃗ is all of 3-space minus the origin, and any closed curve in the

domain can be pulled to a point without leaving the domain. Thus, the curl test applies.

(b) Let C be the circle x2+y2 = 1, z = 0 traversed counterclockwise when viewed from the positive

z-axis. Since z = 0 on the curve C , the vector field G⃗ reduces to the vector field in Example 5

and is everywhere tangent to C and of magnitude 1, so

∫C
G⃗ ⋅ dr⃗ = ‖G⃗ ‖ ⋅ Length of curve = 1 ⋅ 2� = 2�.

Since the line integral around this closed curve is nonzero, G⃗ is path-dependent. Computations

show curl G⃗ = 0⃗ . However, the domain of G⃗ is all of 3-space minus the z-axis, and it does not

satisfy the curl test domain criterion. For example, the circle, C , is lassoed around the z-axis,

and cannot be pulled to a point without hitting the z-axis. Thus, the curl test does not apply.
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Summary for Section 18.4

• The 2-dimensional curl: If F⃗ (x, y) = F1 i⃗ +F2 j⃗ is a 2-dimensional vector field, then we define

the 2-dimensional or scalar curl of F⃗ to be
)F2

)x
−

)F1

)y
.

• Green’s Theorem: Suppose C is a piecewise smooth simple closed curve that is the boundary

of a region R in the plane and oriented so that the region is on the left as we move around the

curve. Suppose F⃗ = F1 i⃗ + F2 j⃗ is a smooth vector field on a region containing R and C . Then

∫C
F⃗ ⋅ dr⃗ =

∫R

(

)F2

)x
−

)F1

)y

)

dx dy.

• The curl test for vector fields in 2-space: The vector field F⃗ = F1i⃗ +F2 j⃗ is a path-independent

vector field if both

∙ The domain of F⃗ has no holes, and

∙
)F2

)x
−

)F1

)y
= 0.

• The curl of a 3-dimensional vector field: If F⃗ (x, y, z) = F1 i⃗ +F2j⃗ +F3k⃗ , we define the curl

vector field by

curl F⃗ =

(

)F3

)y
−

)F2

)z

)

i⃗ +

(

)F1

)z
−

)F3

)x

)

j⃗ +

(

)F2

)x
−

)F1

)y

)

k⃗ .

• The curl test for vector fields in 3-space: The vector field F⃗ = F1 i⃗ + F2j⃗ + F3k⃗ is a path-

independent vector field if both

∙ The domain of F⃗ has the property that every closed curve in it can be contracted to a point,

and

∙ curl F⃗ = 0⃗ .

Exercises and Problems for Section 18.4

EXERCISES

In Exercises 1–10, decide if the given vector field is the gra-

dient of a function f . If so, find f . If not, explain why not.

1. yi⃗ − xj⃗

2. 2xyi⃗ + x2 j⃗

3. yi⃗ + yj⃗

4. 2xyi⃗ + 2xyj⃗

5. (x2 + y2)i⃗ + 2xyj⃗

6. (2xy3 + y)i⃗ + (3x2y2 + x)j⃗

7.
i⃗

x
+

j⃗

y
+

k⃗

z

8.
i⃗

x
+

j⃗

y
+

k⃗

xy

9. 2x cos(x2 + z2)i⃗ + sin(x2 + z2)j⃗ + 2z cos(x2 + z2)k⃗

10.
y

x2 + y2
i⃗ −

x

x2 + y2
j⃗

In Exercises 11–14, use Green’s Theorem to calculate the

circulation of F⃗ around the curve, oriented counterclock-

wise.

11. F⃗ = yi⃗ − xj⃗ around the unit circle.

12. F⃗ = xyj⃗ around the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

13. F⃗ = (2x2+3y)i⃗ +(2x+3y2)j⃗ around the triangle with

vertices (2, 0), (0, 3), (−2, 0).

14. F⃗ = 3yi⃗ + xyj⃗ around the unit circle.

15. Use Green’s Theorem to evaluate ∫
C

(

y2 i⃗ + xj⃗

)

⋅

dr⃗ where C is the counterclockwise path around the

perimeter of the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

16. If C goes counterclockwise around the perimeter of

the rectangleR with vertices (10, 10), (30, 10), (30, 20),

and (10, 20), use Green’s Theorem to evaluate

∫
C

−y dx + xdy.

17. Calculate ∫
C
((3x + 5y)i⃗ + (2x + 7y)j⃗ ) ⋅ dr⃗ where C

is the circular path with center (a, b) and radius m, ori-

ented counterclockwise. Use Green’s Theorem.
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PROBLEMS

18. Find the line integral of F⃗ = ex
2
i⃗ + (7x + 1)j⃗ around

the closed curve C consisting of the two line segments

and the circular arc in Figure 18.50.

5

5

x

y

C

Figure 18.50

19. (a) Sketch F⃗ = yi⃗ and determine the sign of the cir-

culation of F⃗ around the unit circle centered at the

origin and oriented counterclockwise.

(b) Use Green’s Theorem to compute the circulation in

part (a) exactly.

20. Let F⃗ = (sinx)i⃗ + (x + y)j⃗ . Find the line integral of

F⃗ around the perimeter of the rectangle with corners

(3, 0), (3, 5), (−1, 5), (−1, 0), traversed in that order.

21. Find
∫
C

((sin(x2) cos y)i⃗ + (sin(y2) + ex)j⃗ ) ⋅ dr⃗ where

C is the square of side 1 in the first quadrant of the xy-

plane, with one vertex at the origin and sides along the

axes, and oriented counterclockwise when viewed from

above.

In Problems 22–25, find the line integral of F⃗ around C , the

boundary of the region between y = x2 and y = x3 in the

first quadrant, oriented counterclockwise.

22. F⃗ = 4i⃗ + 5j⃗

23. F⃗ = (x2 − y)i⃗ + (2x − ey)j⃗

24. F⃗ = (y2 + ex)i⃗ + xyj⃗

25. F⃗ = xy2 i⃗ + (x − y)j⃗

In Problems 26–27 find the line integral of F⃗ around the

closed curve in Figure 18.51. The arc is part of a circle.

3

45◦
x

y

Figure 18.51

26. F⃗ = (x − y)i⃗ + xj⃗

27. F⃗ = (x + y)i⃗ + sin yj⃗

28. Let F⃗ = 2xey i⃗ + x2eyj⃗ and G⃗ = (x− y)i⃗ + (x+ y)j⃗ .

Let C be the line from (0, 0) to (2, 4). Find exactly:

(a) ∫
C
F⃗ ⋅ dr⃗ (b) ∫

C
G⃗ ⋅ dr⃗

29. Let F⃗ = yi⃗ +xj⃗ and G⃗ = 3yi⃗ −3xj⃗ . In Figure 18.52,

the curve C2 is the semicircle centered at the origin

from (−1, 1) to (1,−1) and C1 is the line segment from

(−1, 1) to (1,−1), and C = C2 −C1. Find the following

line integrals:

(a)
∫
C1

F⃗ ⋅ dr⃗ (b)
∫
C

F⃗ ⋅ dr⃗

(c)
∫
C2

F⃗ ⋅ dr⃗ (d)
∫
C2

G⃗ ⋅ dr⃗

(e)
∫
C

G⃗ ⋅ dr⃗ (f)
∫
C1

G⃗ ⋅ dr⃗

(g)
∫
C

(F⃗ + G⃗ ) ⋅ dr⃗

C1

C2

x

y

Figure 18.52

30. Calculate ∫
C

(

(x2 − y)i⃗ + (y2 + x)j⃗
)

⋅ dr⃗ if:

(a) C is the circle (x − 5)2 + (y − 4)2 = 9 oriented

counterclockwise.

(b) C is the circle (x − a)2 + (y − b)2 = R2 in the

xy-plane oriented counterclockwise.

31. Let C1 be the curve consisting of the circle of radius 2,

centered at the origin and oriented counterclockwise,

and C2 be the curve consisting of the line segment from

(0, 0) to (1, 1) followed by the line segment from (1, 1)

to (3, 1). Let F⃗ = 2xy2 i⃗ + (2yx2 + 2y)j⃗ and let

G⃗ = (y + x)i⃗ + (y − x)j⃗ . Compute the following line

integrals.

(a) ∫
C1

F⃗ ⋅ dr⃗ (b) ∫
C2

F⃗ ⋅ dr⃗

(c) ∫
C1

G⃗ ⋅ dr⃗ (d) ∫
C2

G⃗ ⋅ dr⃗

32. Prove that Green’s Theorem is true when the integrand

of the line integral has a potential function.
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33. Consider the following parametric equations:

C1 ∶ r⃗ (t) = t cos(2�t) i⃗ + t sin(2�t) k⃗ , 0 ≤ t ≤ 2

C2 ∶ r⃗ (t) = t cos(2�t) i⃗ + t j⃗ + t sin(2�t) k⃗ , 0 ≤ t ≤ 2

(a) Describe, in words, the motion of a particle mov-

ing along each of the paths.

(b) Evaluate ∫
C2

F⃗ ⋅ dr⃗ , for the vector field F⃗ =

yz i⃗ + z(x + 1) j⃗ + (xy + y + 1) k⃗ .

(c) Find a nonzero vector field G⃗ such that:

∫
C1

G⃗ ⋅ dr⃗ =
∫
C2

G⃗ ⋅ dr⃗ .

Explain how you reasoned to find G⃗ .

(d) Find two different, nonzero vector fields H⃗1 , H⃗2

such that:

∫
C1

H⃗1 ⋅ dr⃗ =
∫
C1

H⃗2 ⋅ dr⃗ .

Explain how you reasoned to find the two fields.

34. Show that the line integral of F⃗ = xj⃗ around a closed

curve in the xy-plane, oriented as in Green’s Theorem,

measures the area of the region enclosed by the curve.

In Problems 35–37, use the result of Problem 34 to calcu-

late the area of the region within the parameterized curves.

In each case, sketch the curve.

35. The ellipse x2∕a2 + y2∕b2 = 1 parameterized by x =

a cos t, y = b sin t, for 0 ≤ t ≤ 2�.

36. The hypocycloid x2∕3 + y2∕3 = a2∕3 parameterized by

x = a cos3 t, y = a sin3 t, 0 ≤ t ≤ 2 �.

37. The folium of Descartes, x3 + y3 = 3xy, parameterized

by x =
3t

1 + t3
, y =

3t2

1 + t3
, for 0 ≤ t < ∞.

38. The vector field F⃗ is defined on the disk D of radius 5

centered at the origin in the plane:

F⃗ = (−y3 + y sin (xy))i⃗ + (4x(1 − y2) + x sin (xy))j⃗ .

Consider the line integral ∫
C
F⃗ ⋅ dr⃗ , where C is some

closed curve contained in D. For which C is the value

of this integral the largest? [Hint: Assume C is a closed

curve, made up of smooth pieces and never crossing it-

self, and oriented counterclockwise.]

39. Example 1 on page 1003 showed that the vector field in

Figure 18.53 could not be a gradient field by showing

that it is not path-independent. Here is another way to

see the same thing. Suppose that the vector field were

the gradient of a function f . Draw and label a diagram

showing what the contours of f would have to look like,

and explain why it would not be possible for f to have

a single value at any given point.

x

y

Figure 18.53

40. Repeat Problem 39 for the vector field in Problem 52

on page 1001.

41. (a) By finding potential functions, show that each of

the vector fields F⃗ , G⃗ , H⃗ is a gradient field on

some domain (not necessarily the whole plane).

(b) Find the line integrals of F⃗ , G⃗ , H⃗ around the unit

circle in the xy-plane, centered at the origin, and

traversed counterclockwise.

(c) For which of the three vector fields can Green’s

Theorem be used to calculate the line integral in

part (b)? Why or why not?

F⃗ = yi⃗ + xj⃗ , G⃗ =
yi⃗ − xj⃗

x2 + y2
, H⃗ =

xi⃗ + yj⃗

(x2 + y2)1∕2

42. (a) For which of the following can you use Green’s

Theorem to evaluate the integral? Explain.

I
∫
C

(x2 + y2) dx+ (x2 + y2) dy where C is the

curve defined by y = x, y = x2, 0 ≤ x ≤ 1

with counterclockwise orientation.

II
∫
C

1
√

x2 + y2
dx −

1
√

x2 + y2
dy where C is

the unit circle centered at the origin, oriented

counterclockwise.

III
∫
C

F⃗ ⋅ dr⃗ where F⃗ = xi⃗ + yj⃗ where C is

the line segment from the origin to (1, 1).

(b) Use Green’s Theorem to evaluate the integrals in

part (a) that can be done that way.

43. Arrange the line integrals L1, L2, L3 in ascending or-

der, where

Li = ∫
Ci

(−x2yi⃗ + (xy2 − x)j⃗ ) ⋅ dr⃗ .

The points A, B, D lie on the unit circle and Ci is one

of the curves shown in Figure 18.54.

C1: Line segment A to B

C2: Line segment A to D followed by line segment

D to B

C3: Semicircle ADB
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−1 1

A

C1C1

C2 C2

C3 C3

D

B
x

y

Figure 18.54

44. For all x, y, let F⃗ = F1(x, y)i⃗ + F2(x, y)j⃗ satisfy

)F2

)x
−

)F1

)y
= 3.

(a) Calculate ∫
C1

F⃗ ⋅ dr⃗ where C1 is the unit circle in

the xy-plane centered at the origin, oriented coun-

terclockwise.

(b) Calculate ∫
C2
F⃗ ⋅ dr⃗ where C2 is the boundary of

the rectangle of 4 ≤ x ≤ 7, 5 ≤ y ≤ 7, oriented

counterclockwise.

(c) Let C3 be the circle of radius 7 centered at the point

(10, 2); let C4 be the circle of radius 8 centered at

the origin; let C5 be the square of side 14 centered

at (7, 7) with sides parallel to the axes; C3, C4, C5

are all oriented counterclockwise. Arrange the in-

tegrals ∫
C3

F⃗ ⋅ dr⃗ , ∫
C4

F⃗ ⋅ dr⃗ , ∫
C5

F⃗ ⋅ dr⃗ in in-

creasing order.

45. Let F⃗ = (3x2y+y3+ex)i⃗ +(ey
2
+12x)j⃗ . Consider the

line integral of F⃗ around the circle of radius a, centered

at the origin and traversed counterclockwise.

(a) Find the line integral for a = 1.

(b) For which value of a is the line integral a maxi-

mum? Explain.

46. Let

F⃗ (x, y) =
−yi⃗ + xj⃗

x2 + y2

and let oriented curves C1 and C2 be as in Figure 18.55.

The curve C2 is an arc of the unit circle centered at the

origin. Show that

(a) The curl of F⃗ is zero.

(b) ∫
C1

F⃗ ⋅ dr⃗ = ∫
C2

F⃗ ⋅ dr⃗ .

(c) ∫
C1

F⃗ ⋅ dr⃗ = �, the angle at the origin subtended

by the oriented curve C1.

A

B

C

D

�

C1

C2

x

y

Figure 18.55

47. The electric field E⃗ , at the point with position vector r⃗

in 3-space, due to a charge q at the origin is given by

E⃗ (r⃗ ) = q
r⃗

||r⃗ ||3
.

(a) Compute curl E⃗ . Is E⃗ a path-independent vector

field? Explain.

(b) Find a potential function ' for E⃗ , if possible.

Strengthen Your Understanding

In Problems 48–49, explain what is wrong with the state-

ment.

48. If ∫
C
F⃗ ⋅ dr⃗ = 0 for a specific closed path C , then F⃗

must be path-independent.

49. Let F⃗ = F1(x, y)i⃗ + F2(x, y)j⃗ with

)F2

)x
−

)F1

)y
= 3

and let C be the path consisting of line segments from

(0, 0) to (1, 1) to (2, 0). Then

∫
C

F⃗ ⋅ dr⃗ = 3.

In Problems 50–52, give an example of:

50. A function Q(x, y) such that F⃗ = xyi⃗ +Q(x, y)j⃗ is a

gradient field.

51. Two oriented curves, C1 and C2, from (1, 0) to (0, 1)

such that if

F⃗ (x, y) =
−yi⃗ + xj⃗

x2 + y2
,

then

∫
C1

F⃗ ⋅ dr⃗ ≠
∫
C2

F⃗ ⋅ dr⃗ .

[Note that the scalar curl of F⃗ is 0 where F⃗ is defined.]

52. A vector field that is not a gradient field.
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Are the statements in Problems 53–60 true or false? Give

reasons for your answer.

53. If f (x) and g(y) are continuous one-variable functions,

then the vector field F⃗ = f (x)i⃗ + g(y)j⃗ is path-

independent.

54. If F⃗ = grad f , and C is the perimeter of a square of

side length a oriented counterclockwise and surround-

ing the region R, then

∫
C

F⃗ ⋅ dr⃗ =
∫
R

f dA.

55. If F⃗ and G⃗ are both path-independent vector fields,

then F⃗ + G⃗ is path-independent.

56. If F⃗ and G⃗ are both path-dependent vector fields, then

F⃗ + G⃗ is path-dependent.

57. The vector field F⃗ (r⃗ ) = r⃗ in 3-space is path-

independent.

58. A constant vector field F⃗ = ai⃗ + bj⃗ is path-

independent.

59. If F⃗ is path-independent and k is a constant, then the

vector field kF⃗ is path-independent.

60. If F⃗ is path-independent and ℎ(x, y) is a scalar

function, then the vector field ℎ(x, y)F⃗ is path-

independent.
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19.1 THE IDEA OF A FLUX INTEGRAL

Flow Through a Surface

Imagine water flowing through a fishing net stretched across a stream. Suppose we want to measure

the flow rate of water through the net, that is, the volume of fluid that passes through the surface per

unit time.

Example 1 A flat square surface of area A, in m2, is immersed in a fluid. The fluid flows with constant velocity

v⃗ , in m/sec, perpendicular to the square. Write an expression for the rate of flow in m3/sec.

v⃗

✛ A

Figure 19.1: Fluid flowing perpendicular

to a surface

Solution In one second a given particle of water moves a distance of ‖v⃗ ‖ in the direction perpendicular to the

square. Thus, the entire body of water moving through the square in one second is a box of length

‖v⃗ ‖ and cross-sectional area A. So the box has volume ‖v⃗ ‖A m3, and

Flow rate = ‖v⃗ ‖A m3/sec.

This flow rate is called the flux of the fluid through the surface. We can also compute the flux

of vector fields, such as electric and magnetic fields, where no flow is actually taking place. If the

vector field is constant and perpendicular to the surface, and if the surface is flat, as in Example 1,

the flux is obtained by multiplying the speed by the area.

Next we find the flux of a constant vector field through a flat surface that is not perpendicular

to the vector field, using a dot product. In general, we break a surface into small pieces which are

approximately flat and where the vector field is approximately constant, leading to a flux integral.

Orientation of a Surface

Before computing the flux of a vector field through a surface, we need to decide which direction of

flow through the surface is the positive direction; this is described as choosing an orientation.1

At each point on a smooth surface there are two unit normals, one in each direction. Choosing

an orientation means picking one of these normals at every point of the surface in a contin-

uous way. The unit normal vector in the direction of the orientation is denoted by n⃗ . For a

closed surface (that is, the boundary of a solid region), we choose the outward orientation

unless otherwise specified.

We say the flux through a piece of surface is positive if the flow is in the direction of the orien-

tation and negative if it is in the opposite direction. (See Figure 19.2.)

1Although we will not study them, there are a few surfaces for which this cannot be done. See page 1024.
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Negative flow

Direction of orientation:
Positive flow

Figure 19.2: An oriented surface showing

directions of positive and negative flow

A⃗

n⃗

S

Figure 19.3: Area vector A⃗ = n⃗ A of flat surface

with area A and orientation n⃗

The Area Vector

The flux through a flat surface depends both on the area of the surface and its orientation. Thus, it is

useful to represent its area by a vector as shown in Figure 19.3.

The area vector of a flat, oriented surface is a vector A⃗ such that

• The magnitude of A⃗ is the area of the surface.

• The direction of A⃗ is the direction of the orientation vector n⃗ .

The Flux of a Constant Vector Field Through a Flat Surface

Suppose the velocity vector field, v⃗ , of a fluid is constant and A⃗ is the area vector of a flat surface.

The flux through this surface is the volume of fluid that flows through in one unit of time. The

skewed box in Figure 19.4 has cross-sectional area ‖A⃗ ‖ and height ‖v⃗ ‖ cos �, so its volume is
(

‖v⃗ ‖ cos �
)

‖A⃗ ‖ = v⃗ ⋅ A⃗ . Thus, we have the following result:

If v⃗ is constant and A⃗ is the area vector of a flat surface, then

Flux through surface = v⃗ ⋅ A⃗ .

✻

❄

‖v⃗ ‖ cos �

v⃗

A⃗

�

Figure 19.4: Flux of v⃗ through a surface with area vector A⃗ is the volume of this skewed box

Example 2 Water is flowing down a cylindrical pipe 2 cm in radius with a velocity of 3 cm/sec. Find the flux of

the velocity vector field through the ellipse-shaped region shown in Figure 19.5. The normal to the

ellipse makes an angle of � with the direction of flow and the area of the ellipse is 4�∕(cos �) cm2.
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�

✛ A⃗ (where ‖A⃗ ‖ = 4�∕ (cos �) cm2)

✛ v⃗ ( where ‖v⃗ ‖ = 3 cm/sec)

✻

❄
2 cm

Figure 19.5: Flux through ellipse-shaped region across a cylindrical pipe

Solution There are two ways to approach this problem. One is to use the formula we just derived, which gives

Flux through ellipse = v⃗ ⋅ A⃗ = ‖v⃗ ‖‖A⃗ ‖ cos � = 3(Area of ellipse) cos �

= 3
(

4�

cos �

)

cos � = 12� cm3∕sec.

The second way is to notice that the flux through the ellipse is equal to the flux through the circle

perpendicular to the pipe in Figure 19.5. Since the flux is the rate at which water is flowing down

the pipe, we have

Flux through circle =
Velocity

of water
×

Area of

circle
=
(

3
cm

sec

)

(�22 cm2) = 12� cm3∕sec.

The Flux Integral

If the vector field, F⃗ , is not constant or the surface, S, is not flat, we divide the surface into a

patchwork of small, almost flat pieces. (See Figure 19.6.) For a particular patch with area ΔA, we

pick a unit orientation vector n⃗ at a point on the patch and define the area vector of the patch, ΔA⃗ ,

as

ΔA⃗ = n⃗ΔA.

(See Figure 19.7.) If the patches are small enough, we can assume that F⃗ is approximately constant

on each piece. Then we know that

Flux through patch ≈ F⃗ ⋅ ΔA⃗ ,

so, adding the fluxes through all the small pieces, we have

Flux through whole surface ≈
∑

F⃗ ⋅ ΔA⃗ .

As each patch becomes smaller and ‖ΔA⃗ ‖ → 0, the approximation gets better and we get

Flux through S = lim
‖ΔA⃗ ‖→0

∑

F⃗ ⋅ ΔA⃗ .

Thus, provided the limit exists, we make the following definition:

The flux integral of the vector field F⃗ through the oriented surface S is

∫S
F⃗ ⋅ dA⃗ = lim

‖ΔA⃗ ‖→0

∑

F⃗ ⋅ ΔA⃗ .

If S is a closed surface oriented outward, we describe the flux through S as the flux out of S.
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n⃗ ΔA⃗

❄

AreaΔA

❘

P

Figure 19.6: Surface S divided into small, almost flat pieces,

showing a typical orientation vector n⃗ and area vector ΔA⃗

n⃗ ΔA⃗

Vector field
F⃗ (x, y, z)

S

Figure 19.7: Flux of a vector field

through a curved surface S

In computing a flux integral, we have to divide the surface up in a reasonable way, or the limit

might not exist. In practice this problem seldom arises; however, one way to avoid it is to define flux

integrals by the method used to compute them shown in Section 21.3.

Flux and Fluid Flow

If v⃗ is the velocity vector field of a fluid, we have

Rate fluid flows

through surface S
=

Flux of v⃗

through S
=

∫S
v⃗ ⋅ dA⃗

The rate of fluid flow is measured in units of volume per unit time.

Example 3 Find the flux of the vector field B⃗ (x, y, z) shown in Figure 19.8 through the squareS of side 2 shown

in Figure 19.9, oriented in the j⃗ direction, where

B⃗ (x, y, z) =
−yi⃗ + xj⃗

x2 + y2
.

Figure 19.8: The vector field B⃗ in

planes z = 0, z = 1, z = 2, where

B⃗ (x, y, z) =
−yi⃗ + xj⃗

x2 + y2

x
y

z

3

1

2S

B⃗

Figure 19.9: Flux of B⃗ through

the square S of side 2 in

xy-plane and oriented in j⃗

direction

x y

z

S 2

1
3

ΔA⃗

✛

✛✛

Δx

✛

✛

Δz

Figure 19.10: A small patch of surface

with area ‖ΔA⃗ ‖ = ΔxΔz

Solution Consider a small rectangular patch with area vectorΔA⃗ in S, with sides Δx and Δz so that ‖ΔA⃗ ‖ =

ΔxΔz. Since ΔA⃗ points in the j⃗ direction, we have ΔA⃗ = j⃗ ΔxΔz. (See Figure 19.10.)

At the point (x, 0, z) in S, substituting y = 0 into B⃗ gives B⃗ (x, 0, z) = (1∕x)j⃗ . Thus, we have

Flux through small patch ≈ B⃗ ⋅ ΔA⃗ =
(

1

x
j⃗

)

⋅ (j⃗ ΔxΔz) =
1

x
ΔxΔz.
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Therefore,

Flux through surface =
∫S

B⃗ ⋅ dA⃗ = lim
‖ΔA⃗ ‖→0

∑

B⃗ ⋅ ΔA⃗ = lim
Δx → 0

Δz → 0

∑ 1

x
ΔxΔz.

This last expression is a Riemann sum for the double integral ∫
R

1

x
dA, where R is the square 1 ≤

x ≤ 3, 0 ≤ z ≤ 2. Thus,

Flux through surface =
∫S

B⃗ ⋅ dA⃗ =
∫R

1

x
dA =

∫

2

0 ∫

3

1

1

x
dx dz = 2 ln 3.

The result is positive since the vector field is passing through the surface in the positive direction.

Example 4 Each of the vector fields in Figure 19.11 consists entirely of vectors parallel to the xy-plane, and is

constant in the z direction (that is, the vector field looks the same in any plane parallel to the xy-

plane). For each one, say whether you expect the flux through a closed surface surrounding the origin

to be positive, negative, or zero. In part (a) the surface is a closed cube with faces perpendicular to

the axes; in parts (b) and (c) the surface is a closed cylinder. In each case we choose the outward

orientation. (See Figure 19.12.)

y

x

(a) y

x

(b) y

x

(c)

Figure 19.11: Flux of a vector field through the closed surfaces whose cross-sections are shown in the xy-plane

x
y

z

n⃗

x
y

z

n⃗

Figure 19.12: The closed cube and closed cylinder, both oriented outward

Solution (a) Since the vector field appears to be parallel to the faces of the cube which are perpendicular to

the y- and z-axes, we expect the flux through these faces to be zero. The fluxes through the two

faces perpendicular to the x-axis appear to be equal in magnitude and opposite in sign, so we

expect the net flux to be zero.

(b) Since the top and bottom of the cylinder are parallel to the flow, the flux through them is zero.

On the curved surface of the cylinder, v⃗ and ΔA⃗ appear to be everywhere parallel and in the

same direction, so we expect each term v⃗ ⋅ ΔA⃗ to be positive, and therefore the flux integral

∫
S
v⃗ ⋅ dA⃗ to be positive.

(c) As in part (b), the flux through the top and bottom of the cylinder is zero. In this case v⃗ and ΔA⃗

are not parallel on the round surface of the cylinder, but since the fluid appears to be flowing

inward as well as swirling, we expect each term v⃗ ⋅ ΔA⃗ to be negative, and therefore the flux

integral to be negative.
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Calculating Flux Integrals Using d⃖ ⃖⃗A = ⃖⃗n dA

For a small patch of surface ΔS with unit normal n⃗ and area ΔA, the area vector is ΔA⃗ = n⃗ ΔA.

The next example shows how we can use this relationship to compute a flux integral.

Example 5 An electric charge q is placed at the origin in 3-space. The resulting electric field E⃗ (r⃗ ) at the point

with position vector r⃗ is given by

E⃗ (r⃗ ) = q
r⃗

‖r⃗ ‖3
, r⃗ ≠ 0⃗ .

Find the flux of E⃗ out of the sphere of radius R centered at the origin. (See Figure 19.13.)

ΔA⃗

✠

S

Figure 19.13: Flux of E⃗ = qr⃗ ∕‖r⃗ ‖3 through the surface of a sphere of radius R centered at the origin

Solution This vector field points radially outward from the origin in the same direction as n⃗ . Thus, since n⃗ is

a unit vector,

E⃗ ⋅ ΔA⃗ = E⃗ ⋅ n⃗ ΔA = ‖E⃗ ‖ΔA.

On the sphere, ‖E⃗ ‖ = q∕R2, so

∫S
E⃗ ⋅ dA⃗ = lim

‖ΔA⃗ ‖→0

∑

E⃗ ⋅ ΔA⃗ = lim
ΔA→0

∑ q

R2
ΔA =

q

R2
lim

ΔA→0

∑

ΔA.

The last sum approximates the surface area of the sphere. In the limit as the subdivisions get finer,

we have

lim
ΔA→0

∑

ΔA = Surface area of sphere.

Thus, the flux is given by

∫S
E⃗ ⋅ dA⃗ =

q

R2
lim

ΔA→0

∑

ΔA =
q

R2
⋅ (Surface area of sphere) =

q

R2
(4�R2) = 4�q.

This result is known as Gauss’s law.

To compute a flux with an integral instead of Riemann sums, we often write dA⃗ = n⃗ dA, as in

the next example.

Example 6 Let S be the surface of the cube bounded by the six planes x = ±1, y = ±1, and z = ±1. Compute

the flux of the electric field E⃗ of the previous example outward through S.

Solution It is enough to compute the flux of E⃗ through a single face, say the top face S1 defined by z = 1,

where −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. By symmetry, the flux of E⃗ through the other five faces of S

must be the same.

On the top face, S1, we have dA⃗ = n⃗ dA = k⃗ dx dy and

E⃗ (x, y, 1) = q
xi⃗ + yj⃗ + k⃗

(x2 + y2 + 1)3∕2
.
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The corresponding flux integral is given by

∫S1

E⃗ ⋅ dA⃗ = q
∫

1

−1∫

1

−1

xi⃗ + yj⃗ + k⃗

(x2 + y2 + 1)3∕2
⋅ k⃗ dx dy = q

∫

1

−1∫

1

−1

1

(x2 + y2 + 1)3∕2
dx dy.

Computing this integral numerically shows that

Flux through top face =
∫S1

E⃗ ⋅ dA⃗ ≈ 2.0944q.

Thus,

Total flux of E⃗ out of cube =
∫S

E⃗ ⋅ dA⃗ ≈ 6(2.0944q) = 12.5664q.

Example 5 on page 1023 showed that the flux of E⃗ through a sphere of radius R centered at the

origin is 4�q. Since 4� ≈ 12.5664, Example 6 suggests that

Total flux of E⃗ out of cube = 4�q.

By computing the flux integral in Example 6 exactly, it is possible to verify that the flux of E⃗ through

the cube and the sphere are exactly equal. When we encounter the Divergence Theorem in Chapter 20

we will see why this is so.

Notes on Orientation

Two difficulties can occur in choosing an orientation. The first is that if the surface is not smooth,

it may not have a normal vector at every point. For example, a cube does not have a normal vector

along its edges. When we have a surface, such as a cube, which is made of a finite number of smooth

pieces, we choose an orientation for each piece separately. The best way to do this is usually clear.

For example, on the cube we choose the outward orientation on each face. (See Figure 19.14.)

n⃗
✠

P

Figure 19.14: The orientation vector field n⃗ on the

cube surface determined by the choice of unit

normal vector at the point P

Figure 19.15: The Möbius strip is

an example of a non-orientable

surface

The second difficulty is that there are some surfaces which cannot be oriented at all, such as the

Möbius strip in Figure 19.15.

Summary for Section 19.1

• The area vector of a flat, oriented surface is a vector A⃗ such that

∙ The magnitude of A⃗ is the area of the surface.

∙ The direction of A⃗ is the direction of the orientation vector n⃗ .

• Special case: lf v⃗ is constant and A⃗ is the area vector of a flat surface, then

Flux through surface = v⃗ ⋅ A⃗ .
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• The flux integral of the vector field F⃗ through the oriented surface S is

∫S
F⃗ ⋅ dA⃗ = lim

‖ΔA⃗ ‖→0

∑

F⃗ ⋅ ΔA⃗ ,

where ΔA⃗ denotes an area vector of a small patch of S.

• Flux and fluid flow: If v⃗ is the velocity vector field of a fluid, we have

Rate fluid flows

through surface S
=

Flux of v⃗

through S
=

∫S
v⃗ ⋅ dA⃗ .

Exercises and Problems for Section 19.1 Online Resource: Additional Problems for Section 19.1
EXERCISES

In Exercises 1–4, find the area vector of the oriented flat sur-

face.

1. The triangle with vertices (0, 0, 0), (0, 2, 0), (0, 0, 3) ori-

ented in the negative x direction.

2. The circular disc of radius 5 in the xy-plane, oriented

upward.

3. y = 10, 0 ≤ x ≤ 5, 0 ≤ z ≤ 3, oriented away from the

xz-plane.

4. y = −10, 0 ≤ x ≤ 5, 0 ≤ z ≤ 3, oriented away from

the xz-plane.

5. Find an oriented flat surface with area vector 150j⃗ .

In Exercises 6–9, for each of the surfaces in (a)–(e), say

whether the flux of F⃗ through the surface is positive, nega-

tive, or zero. The normal vector shows the orientation.

x
y

z(a)

x
y

z(b)

x

y

z(c)

x

y

z(d)

x

y

z(e)

6. F⃗ (x, y, z) = i⃗ + 2j⃗ + k⃗ .

7. F⃗ (x, y, z) = zi⃗ .

8. F⃗ (x, y, z) = −zi⃗ + xk⃗ .

9. F⃗ (r⃗ ) = r⃗ .

10. Let S be the disk of radius 3 perpendicular the the y-

axis, centered at (0, 6, 0) and oriented away from the

origin. Is
∫
S

(xi⃗ + yj⃗ ) ⋅ dA⃗ a vector or a scalar?

11. Compute
∫
S

(4i⃗ + 5k⃗ ) ⋅ dA⃗ , where S is the square of

side length 3 perpendicular to the z-axis, centered at

(0, 0,−2) and oriented

(a) Toward the origin. (b) Away from the origin.

12. Compute
∫
S

(2i⃗ + 3k⃗ ) ⋅ dA⃗ , where S is the disk of ra-

dius 4 perpendicular to the x-axis, centered at (5, 0, 0)

and oriented

(a) Toward the origin. (b) Away from the origin.

In Exercises 13–16, compute the flux of v⃗ = i⃗ + 2j⃗ − 3k⃗

through the rectangular region with the orientation shown.

13.

x

y

z

(0, 0, 2)

(2, 0, 2)

(0, 2, 2)

(2, 2, 2)

14.

x

y

z

(3, 0, 0)

(3, 2, 0)

(3, 2, 4)

(3, 0, 4)

15.

x

y

z

(2, 2, 0)

(2, 0, 4)
(0, 0, 4)

(0, 2, 0)

16.

x

y

z

(2, 0, 0) (2, 2, 0)

(0, 2, 3)
(0, 0, 3)

For Exercises 17–20 find the flux of the constant vector field

v⃗ = i⃗ − j⃗ + 3k⃗ through the given surface.

17. A disk of radius 2 in the xy-plane oriented upward.

18. A triangular plate of area 4 in the yz-plane oriented in

the positive x-direction.

19. A square plate of area 4 in the yz-plane oriented in the

positive x-direction.

20. The triangular plate with vertices (1, 0, 0), (0, 1, 0),

(0, 0, 1), oriented away from the origin.
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In Exercises 21–23, find the flux of H⃗ = 2i⃗ + 3j⃗ + 5k⃗

through the surface S.

21. S is the cylinder x2 + y2 = 1, closed at the ends by the

planes z = 0 and z = 1 and oriented outward.

22. S is the disk of radius 1 in the plane x = 2 oriented in

the positive x-direction.

23. S is the disk of radius 1 in the plane x + y + z = 1

oriented in upward.

Find the flux of the vector fields in Exercises 24–26 out of

the closed box 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3.

24. F⃗ = 3i⃗ + 2j⃗ + k⃗ 25. G⃗ = xi⃗

26. H⃗ = zxk⃗

In Exercises 27–30, calculate the flux integral.

27.
∫
S

(xi⃗ +4j⃗ )⋅dA⃗ whereS is the disk of radius 5 perpen-

dicular to the x-axis, centered at (3, 0, 0) and oriented

toward the origin.

28. ∫
S
r⃗ ⋅ dA⃗ where S is the sphere of radius 3 centered at

the origin.

29. ∫
S
(sinx i⃗ +(y2+z2)j⃗ +y2k⃗ ) ⋅dA⃗ where S is a disk of

radius � in the plane x = 3�∕2, oriented in the positive

x-direction.

30. ∫
S
(5i⃗ +5j⃗ +5k⃗ ) ⋅dA⃗ where S is a disk of radius 3 in

the plane x + y + z = 1, oriented upward.

In Exercises 31–34, calculate the flux integral using a short-

cut arising from two special cases:

• If F⃗ is tangent at every point of S, then ∫
S
F⃗ ⋅ dA⃗ = 0.

• If F⃗ is perpendicular at every point of S and has con-

stant magnitude on S, then

∫
S

F⃗ ⋅ dA⃗ = ±‖F⃗ ‖ ⋅ Area of S.

Choose the positive sign if F⃗ points in the same direc-

tion as the orientation of S; choose the negative sign if

F⃗ points in the direction opposite the orientation of S.

31. ∫
S
(xi⃗ +yj⃗ ) ⋅dA⃗ , where S is the cylinder of radius 10,

centered on the z-axis between z = 0 and z = 10 and

oriented away from the z-axis.

32. ∫
S
(−yi⃗ + xj⃗ ) ⋅ dA⃗ , where S is the cylinder of radius

10, centered on the z-axis between z = 0 and z = 10

and oriented away from the z-axis.

33. ∫
S
(xi⃗ +yj⃗ +zk⃗ ) ⋅dA⃗ , where S is the sphere of radius

20, centered at the origin and oriented outward.

34. ∫
S
(−yi⃗ +xj⃗ ) ⋅dA⃗ , where S is the sphere of radius 20,

centered at the origin and oriented outward.

In Exercises 35–57, calculate the flux of the vector field

through the surface.

35. F⃗ = 2{⃗ + 3|⃗ through the square of side � in the xy-

plane, oriented upward.

36. F⃗ = 2{⃗ + 3|⃗ through the unit disk in the yz-plane,

centered at the origin and oriented in the positive x-

direction.

37. F⃗ = xi⃗ + yj⃗ + zk⃗ through the square of side 1.6 cen-

tered at (2, 5, 8), parallel to the xz-plane and oriented

away from the origin.

38. F⃗ = zk⃗ through a square of side
√

14 in a horizontal

plane 2 units below the xy-plane and oriented down-

ward.

39. F⃗ = −yi⃗ + xj⃗ and S is the square plate in the yz-

plane with corners at (0, 1, 1), (0,−1, 1), (0, 1,−1), and

(0,−1,−1), oriented in the positive x-direction.

40. F⃗ = 7i⃗ +6j⃗ +5k⃗ and S is a disk of radius 2 in the yz-

plane, centered at the origin and oriented in the positive

x-direction.

41. F⃗ = xi⃗ +2yj⃗ +3zk⃗ and S is a square of side 2 in the

plane y = 3, oriented in the positive y-direction.

42. F⃗ = 7i⃗ +6j⃗ +5k⃗ andS is a sphere of radius � centered

at the origin.

43. F⃗ = −5r⃗ through the sphere of radius 2 centered at

the origin.

44. F⃗ = xi⃗ + yj⃗ + (z2 +3)k⃗ and S is the rectangle z = 4,

0 ≤ x ≤ 2, 0 ≤ y ≤ 3, oriented in the positive z-

direction.

45. F⃗ = 6i⃗ + 7j⃗ through a triangle of area 10 in the plane

x + y = 5, oriented in the positive x-direction.

46. F⃗ = 6i⃗ + x2j⃗ − k⃗ , through the square of side 4 in

the plane y = 3, centered on the y-axis, with sides par-

allel to the x and z axes, and oriented in the positive

y-direction.

47. F⃗ = (x+3)i⃗ +(y+5)j⃗ +(z+7)k⃗ through the rectangle

x = 4, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3, oriented in the positive

x-direction.

48. F⃗ = 7r⃗ through the sphere of radius 3 centered at the

origin.

49. F⃗ = −3r⃗ through the sphere of radius 2 centered at

the origin.

50. F⃗ = 2zi⃗ + xj⃗ + xk⃗ through the rectangle x = 4,

0 ≤ y ≤ 2, 0 ≤ z ≤ 3, oriented in the positive x-

direction.

51. F⃗ = i⃗ + 2j⃗ through a square of side 2 lying in the

plane x + y + z = 1, oriented away from the origin.

52. F⃗ = (x2 + y2)k⃗ through the disk of radius 3 in the

xy-plane, centered at the origin and oriented upward.

53. F⃗ = cos(x2 + y2)k⃗ through the disk x2 + y2 ≤ 9 ori-

ented upward in the plane z = 1.
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54. F⃗ = ey
2+z2 i⃗ through the disk of radius 2 in the yz-

plane, centered at the origin and oriented in the positive

x-direction.

55. F⃗ = −yi⃗ + xj⃗ through the disk in the xy-plane with

radius 2, oriented upward and centered at the origin.

56. F⃗ = r⃗ through the disk of radius 2 parallel to the xy-

plane oriented upward and centered at (0, 0, 2).

57. F⃗ = (2 − x)i⃗ through the cube whose vertices include

the points (0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3), and ori-

ented outward.

PROBLEMS

58. LetB be the surface of a box centered at the origin, with

edges parallel to the axes and in the planes x = ±1,

y = ±1, z = ±1, and let S be the sphere of radius 1

centered at origin.

(a) Indicate whether the following flux integrals are

positive, negative, or zero. No reasons needed.

(a) ∫
B
xi⃗ ⋅ dA⃗ (b) ∫

B
yi⃗ ⋅ dA⃗

(c) ∫
S
|x|i⃗ ⋅ dA⃗ (d) ∫

S
(y − x)i⃗ ⋅ dA⃗

(b) Explain with reasons how you know which flux in-

tegral is greater:

∫
S

xi⃗ ⋅ dA⃗ or
∫
B

xi⃗ ⋅ dA⃗ ?

59. Suppose that E⃗ is a uniform electric field on 3-space,

so E⃗ (x, y, z) = a{⃗ + b|⃗ + ck⃗ , for all points (x, y, z),

where a, b, c are constants. Show, with the aid of sym-

metry, that the flux of E⃗ through each of the following

closed surfaces S is zero:

(a) S is the cube bounded by the planes x = ±1,

y = ±1, and z = ±1.

(b) S is the sphere x2 + y2 + z2 = 1.

(c) S is the cylinder bounded by x2 + y2 = 1, z = 0,

and z = 2.

60. Water is flowing down a cylindrical pipe of radius 2 cm;

its speed is (3−(3∕4)r2) cm/sec at a distance r cm from

the center of the pipe. Find the flux through the circu-

lar cross section of the pipe, oriented so that the flux is

positive.

61. (a) What do you think will be the electric flux through

the cylindrical surface that is placed as shown in

the constant electric field in Figure 19.16? Why?

(b) What if the cylinder is placed upright, as shown in

Figure 19.17? Explain.

Figure 19.16

Figure 19.17

62. Let S be part of a cylinder centered on the y-axis. Ex-

plain why the three vectors fields F⃗ , G⃗ , and H⃗ have

the same flux through S. Do not compute the flux.

F⃗ = xi⃗ + 2yzk⃗

G⃗ = xi⃗ + y sin xj⃗ + 2yzk⃗

H⃗ = xi⃗ + cos(x2 + z)j⃗ + 2yzk⃗

63. Find the flux of F⃗ = r⃗ ∕‖r⃗ ‖3 out of the sphere of radius

R centered at the origin.

64. Find the flux of F⃗ = r⃗ ∕||r||2 out of the sphere of radius

R centered at the origin.

65. Consider the flux of the vector field F⃗ = r⃗ ∕||r⃗ ||p for

p ≥ 0 out of the sphere of radius 2 centered at the origin.

(a) For what value of p is the flux a maximum?

(b) What is that maximum value?

66. Let S be the cube with side length 2, faces parallel to

the coordinate planes, and centered at the origin.

(a) Calculate the total flux of the constant vector field

v⃗ = −i⃗ + 2j⃗ + k⃗ out of S by computing the flux

through each face separately.

(b) Calculate the flux out of S for any constant vector

field v⃗ = ai⃗ + bj⃗ + ck⃗ .

(c) Explain why the answers to parts (a) and (b) make

sense.

67. Let S be the tetrahedron with vertices at the origin and

at (1, 0, 0), (0, 1, 0) and (0, 0, 1).

(a) Calculate the total flux of the constant vector field

v⃗ = −i⃗ + 2j⃗ + k⃗ out of S by computing the flux

through each face separately.

(b) Calculate the flux out of S in part (a) for any con-

stant vector field v⃗ .

(c) Explain why the answers to parts (a) and (b) make

sense.
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68. Let P (x, y, z) be the pressure at the point (x, y, z) in a

fluid. Let F⃗ (x, y, z) = P (x, y, z)k⃗ . Let S be the sur-

face of a body submerged in the fluid. If S is oriented

inward, show that ∫
S
F⃗ ⋅dA⃗ is the buoyant force on the

body, that is, the force upward on the body due to the

pressure of the fluid surrounding it. [Hint: F⃗ ⋅ dA⃗ =

P (x, y, z)k⃗ ⋅ dA⃗ = (P (x, y, z) dA⃗ ) ⋅ k⃗ .]

69. A region of 3-space has a temperature which varies

from point to point. Let T (x, y, z) be the temperature

at a point (x, y, z). Newton’s law of cooling says that

grad T is proportional to the heat flow vector field, F⃗ ,

where F⃗ points in the direction in which heat is flowing

and has magnitude equal to the rate of flow of heat.

(a) Suppose F⃗ = k grad T for some constant k. What

is the sign of k?

(b) Explain why this form of Newton’s law of cooling

makes sense.

(c) Let W be a region of space bounded by the surface

S. Explain why

Rate of heat

loss from W
= k

∫
S

(grad T ) ⋅ dA⃗ .

70. The z-axis carries a constant electric charge density of

� units of charge per unit length, with � > 0. The re-

sulting electric field is E⃗ .

(a) Sketch the electric field, E⃗ , in the xy-plane, given

E⃗ (x, y, z) = 2�
xi⃗ + yj⃗

x2 + y2
.

(b) Compute the flux of E⃗ outward through the cylin-

der x2 + y2 = R2, for 0 ≤ z ≤ ℎ.

71. An infinitely long straight wire lying along the z-axis

carries an electric current I flowing in the k⃗ direction.

Ampère’s Law in magnetostatics says that the current

gives rise to a magnetic field B⃗ given by

B⃗ (x, y, z) =
I

2�

−yi⃗ + xj⃗

x2 + y2
.

(a) Sketch the field B⃗ in the xy-plane.

(b) Let S1 be the disk with center at (0, 0, ℎ), radius a,

and parallel to the xy-plane, oriented in the k⃗ di-

rection. What is the flux of B⃗ through S1? Does

your answer seem reasonable?

(c) Let S2 be the rectangle given by x = 0, a ≤ y ≤ b,

0 ≤ z ≤ ℎ, and oriented in the −i⃗ direction. What

is the flux of B⃗ through S2? Does your answer

seem reasonable?

Strengthen Your Understanding

In Problems 72–73, explain what is wrong with the state-

ment.

72. For a certain vector field F⃗ and oriented surface S, we

have ∫
S
F⃗ ⋅ dA⃗ = 2i⃗ − 3j⃗ + k⃗ .

73. If S is a region in the xy-plane oriented upwards then

∫
S
F⃗ ⋅ dA⃗ > 0.

In Problems 74–75, give an example of:

74. A nonzero vector field F⃗ such that ∫
S
F⃗ ⋅ dA⃗ = 0,

where S is the triangular surface with corners (1, 0, 0),

(0, 1, 0), (0, 0, 1), oriented away from the origin.

75. A nonconstant vector field F⃗ (x, y, z) and an oriented

surface S such that ∫
S
F⃗ ⋅ dA⃗ = 1.

76. For each of the surfaces in (a)–(e), pick the vector field

F⃗ 1, F⃗ 2, F⃗ 3, F⃗ 4, F⃗ 5, with the largest flux through the

surface. The surfaces are all squares of the same size.

Note that the orientation is shown.

F⃗ 1 = 2i⃗ − 3j⃗ − 4k⃗

F⃗ 2 = i⃗ − 2j⃗ + 7k⃗

F⃗ 3 = −7i⃗ + 5j⃗ + 6k⃗

F⃗ 4 = −11i⃗ + 4j⃗ − 5k⃗

F⃗ 5 = −5i⃗ + 3j⃗ + 5k⃗

x
y

z(a)

x
y

z(b)

x

y

z(c)

x

y

z(d)

x

y

z(e)

Are the statements in Problems 77–86 true or false? Give

reasons for your answer.

77. The value of a flux integral is a scalar.

78. The area vector A⃗ of a flat, oriented surface is parallel

to the surface.
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79. If S is the unit sphere centered at the origin, oriented

outward and the flux integral ∫
S
F⃗ ⋅ dA⃗ is zero, then

F⃗ = 0⃗ .

80. The flux of the vector field F⃗ = i⃗ through the plane

x = 0, with 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, oriented in the i⃗

direction is positive.

81. If S is the unit sphere centered at the origin, oriented

outward and F⃗ = xi⃗ + yj⃗ + zk⃗ = r⃗ , then the flux

integral ∫
S
F⃗ ⋅ dA⃗ is positive.

82. If S is the cube bounded by the six planes x = ±1, y =

±1, z = ±1, oriented outward, and F⃗ = k⃗ , then

∫
S
F⃗ ⋅ dA⃗ = 0.

83. If S is an oriented surface in 3-space, and −S is the

same surface, but with the opposite orientation, then

∫
S
F⃗ ⋅ dA⃗ = − ∫

−S
F⃗ ⋅ dA⃗ .

84. If S1 is a rectangle with area 1 and S2 is a rectangle

with area 2, then 2∫
S1
F⃗ ⋅ dA⃗ = ∫

S2
F⃗ ⋅ dA⃗ .

85. If F⃗ = 2G⃗ , then ∫
S
F⃗ ⋅ dA⃗ = 2 ∫

S
G⃗ ⋅ dA⃗ .

86. If ∫
S
F⃗ ⋅ dA⃗ > ∫

S
G⃗ ⋅ dA⃗ then ||F⃗ || > ||G⃗ || at all

points on the surface S.

19.2 FLUX INTEGRALS FOR GRAPHS, CYLINDERS, AND SPHERES

In Section 19.1 we computed flux integrals in certain simple cases. In this section we see how to

compute flux through surfaces that are graphs of functions, through cylinders, and through spheres.

Flux of a Vector Field Through the Graph of z = f (x, y)

Suppose S is the graph of the differentiable function z = f (x, y), oriented upward, and that F⃗ is

a smooth vector field. In Section 19.1 we subdivided the surface into small pieces with area vector

ΔA⃗ and defined the flux of F⃗ through S as follows:

∫S
F⃗ ⋅ dA⃗ = lim

‖ΔA⃗ ‖→0

∑

F⃗ ⋅ ΔA⃗ .

How do we divide S into small pieces? One way is to use the cross sections of f with x or y

constant and take the patches in a wire frame representation of the surface. So we must calculate the

area vector of one of these patches, which is approximately a parallelogram.

The Area Vector of a Coordinate Patch

According to the geometric definition of the cross product on page 775, the vector v⃗ × w⃗ has mag-

nitude equal to the area of the parallelogram formed by v⃗ and w⃗ and direction perpendicular to this

parallelogram and determined by the right-hand rule. Thus, we have

Area vector of parallelogram = A⃗ = v⃗ × w⃗ .

x

z

r⃗ y

✠

r⃗ x

✠

Coordinate patch

Δx

❘
Δy

Figure 19.18: Surface showing coordinate patch and tangent

vectors r⃗ x and r⃗ y

Δx

Δy

v⃗ y

v⃗ x

Figure 19.19: Parallelogram-shaped patch in

the tangent plane to the surface
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Consider the patch of surface above the rectangular region with sides Δx and Δy in the xy-

plane shown in Figure 19.18. We approximate the area vector, ΔA⃗ , of this patch by the area vector

of the corresponding patch on the tangent plane to the surface. See Figure 19.19. This patch is the

parallelogram determined by the vectors v⃗ x and v⃗ y, so its area vector is given by

ΔA⃗ ≈ v⃗ x × v⃗ y.

To find v⃗ x and v⃗ y, notice that a point on the surface has position vector r⃗ = xi⃗ + yj⃗ + f (x, y)k⃗ .

Thus, a cross section of S with y constant has tangent vector

r⃗ x =
)r⃗

)x
= i⃗ + fxk⃗ ,

and a cross section with x constant has tangent vector

r⃗ y =
)r⃗

)y
= j⃗ + fyk⃗ .

The vectors r⃗ x and v⃗ x are parallel because they are both tangent to the surface and parallel to

the xz-plane. Since the x-component of r⃗ x is i⃗ and the x-component of v⃗ x is (Δx)i⃗ , we have v⃗ x =

(Δx)r⃗ x. Similarly, we have v⃗ y = (Δy)r⃗ y. So the upward-pointing area vector of the parallelogram

is

ΔA⃗ ≈ v⃗ x × v⃗ y =
(

r⃗ x × r⃗ y

)

ΔxΔy =
(

−fxi⃗ − fyj⃗ + k⃗

)

ΔxΔy.

This is our approximation for the area vector ΔA⃗ on the surface. Replacing ΔA⃗ , Δx, andΔy by dA⃗ ,

dx and dy, we write

dA⃗ =
(

−fxi⃗ − fyj⃗ + k⃗

)

dx dy.

The Flux of F⃗ Through a Surface Given by a Graph of z = f (x, y)

Suppose the surfaceS is the part of the graph of z = f (x, y) above2 a regionR in the xy-plane,

and suppose S is oriented upward. The flux of F⃗ through S is

∫S
F⃗ ⋅ dA⃗ =

∫R
F⃗ (x, y, f (x, y)) ⋅

(

−fx i⃗ − fyj⃗ + k⃗

)

dx dy.

Example 1 Compute ∫
S
F⃗ ⋅ dA⃗ where F⃗ (x, y, z) = zk⃗ and S is the rectangular plate with corners (0, 0, 0),

(1, 0, 0), (0, 1, 3), (1, 1, 3), oriented upward. See Figure 19.20.

x

y

z

(1, 0, 0)

(1, 1, 3)

(0, 1, 3)

Figure 19.20: The vector field F⃗ = zk⃗ on the rectangular surface S

2The formula is also correct when the graph is below the region R.
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Solution We find the equation for the plane S in the form z = f (x, y). Since f is linear, with x-slope equal

to 0 and y-slope equal to 3, and f (0, 0) = 0, we have

z = f (x, y) = 0 + 0x + 3y = 3y.

Thus, we have

dA⃗ = (−fxi⃗ − fyj⃗ + k⃗ ) dx dy = (0i⃗ − 3j⃗ + k⃗ ) dx dy = (−3j⃗ + k⃗ ) dx dy.

The flux integral is therefore

∫S
F⃗ ⋅ dA⃗ =

∫

1

0 ∫

1

0

3yk⃗ ⋅ (−3j⃗ + k⃗ ) dx dy =
∫

1

0 ∫

1

0

3y dx dy = 1.5.

Surface Area of a Graph

Since the magnitude of an area vector is area, we can find area of a surface by integrating the mag-

nitude ‖dA⃗ ‖. If a surface is the graph of a function z = f (x, y), we have

‖dA⃗ ‖ = ‖ − fx i⃗ − fyj⃗ + k⃗ ‖ dx dy =

√

(fx)
2 + (fy)

2 + 1 dx dy.

Thus we have the following result:

Suppose a surface S is the part of the graph z = f (x, y) where (x, y) is in a region R in the

xy-plane. Then

Area of S =
∫R

√

(fx)
2 + (fy)

2 + 1 dx dy.

Example 2 Find the area of the surface z = f (x, y) where 0 ≤ x ≤ 4, 0 ≤ y ≤ 5, when:

(a) f (x, y) = 2x + 3y + 4 (b) f (x, y) = x2 + y2

Solution (a) Since fx = 2 and fy = 3, we have

Area =
∫

5

0 ∫

4

0

√

22 + 32 + 1 dx dy = 20
√

14.

(b) Since fx = 2x and fy = 2y. we have

Area =
∫

5

0 ∫

4

0

√

4x2 + 4y2 + 1 dx dy = 140.089.

Surface area integrals can often only be evaluated numerically.
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Flux of a Vector Field Through a Cylindrical Surface

Consider the cylinder of radius R centered on the z-axis illustrated in Figure 19.21 and oriented

away from the z-axis. The coordinate patch in Figure 19.22 has surface area given by

ΔA ≈ RΔ�Δz.

x y

z

r⃗ z

n⃗

r⃗ �

S

✛ ✛R

Figure 19.21: Outward-oriented

cylinder

x

y

z

�

Δ�
✛

✛R
✻

❄
ΔzRΔ

�

n⃗

✠

Coordinate patch

Figure 19.22: Coordinate patch with area ΔA⃗ on surface

of a cylinder

The outward unit normal n⃗ points in the direction of xi⃗ + yj⃗ , so

n⃗ =
xi⃗ + yj⃗

‖xi⃗ + yj⃗ ‖
=

R cos �i⃗ + R sin �j⃗

R
= cos �i⃗ + sin �j⃗ .

Therefore, the area vector of the coordinate patch is approximated by

ΔA⃗ = n⃗ ΔA ≈
(

cos �i⃗ + sin �j⃗
)

RΔzΔ�.

Replacing ΔA⃗ , Δz, and Δ� by dA⃗ , dz, and d�, we write

dA⃗ =
(

cos �i⃗ + sin �j⃗
)

Rdzd�.

This gives the following result:

The Flux of a Vector Field Through a Cylinder

The flux of F⃗ through the cylindrical surface S, of radius R and oriented away from the

z-axis, is given by

∫S
F⃗ ⋅ dA⃗ =

∫T
F⃗ (R, �, z) ⋅

(

cos �i⃗ + sin �j⃗
)

Rdzd�,

where T is the �z-region corresponding to S.

Example 3 Compute ∫
S
F⃗ ⋅ dA⃗ where F⃗ (x, y, z) = yj⃗ and S is the part of the cylinder of radius 2 centered on

the z-axis with x ≥ 0, y ≥ 0, and 0 ≤ z ≤ 3. The surface is oriented toward the z-axis.
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x

y

z

Figure 19.23: The vector field F⃗ = yj⃗ on the surface S

Solution In cylindrical coordinates, we have R = 2 and F⃗ = yj⃗ = 2 sin �j⃗ . Since the orientation of S is

toward the z-axis, the flux through S is given by

∫S
F⃗ ⋅ dA⃗ = −

∫T
2 sin �j⃗ ⋅ (cos �i⃗ + sin �j⃗ )2 dz d� = −4

∫

�∕2

0 ∫

3

0

sin2 � dz d� = −3�.

Flux of a Vector Field Through a Spherical Surface
Consider the piece of the sphere of radius R centered at the origin, oriented outward, as illustrated

in Figure 19.24. The coordinate patch in Figure 19.24 has surface area given by

ΔA ≈ R2 sin�Δ�Δ�.

The outward unit normal n⃗ points in the direction of r⃗ = xi⃗ + yj⃗ + zk⃗ , so

n⃗ =
r⃗

‖r⃗ ‖
= sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗.

Therefore, the area vector of the coordinate patch is approximated by

ΔA⃗ ≈ n⃗ ΔA =
r⃗

‖r⃗ ‖
ΔA =

(

sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗
)

R2 sin�Δ�Δ�.

Replacing ΔA⃗ , Δ�, and Δ� by dA⃗ , d�, and d�, we write

dA⃗ =
r⃗

‖r⃗ ‖
dA =

(

sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗
)

R2 sin�d� d�.

�

�

x

y

z

Δ�

Δ�

n⃗

⑥
❘
❃✮

✛ R sin�Δ�

RΔ�
✠

(R, �, �)

✻

❄

R

✛ Coordinate patch

Figure 19.24: Coordinate patch with area ΔA⃗ on surface of a sphere
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Thus, we obtain the following result:

The Flux of a Vector Field Through a Sphere

The flux of F⃗ through the spherical surface S, with radius R and oriented away from the

origin, is given by

∫S
F⃗ ⋅ dA⃗ =

∫S
F⃗ ⋅

r⃗

‖r⃗ ‖
dA

=
∫T

F⃗ (R, �, �) ⋅
(

sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗
)

R2 sin�d� d�,

where T is the ��-region corresponding to S.

Example 4 Find the flux of F⃗ = zk⃗ throughS, the upper hemisphere of radius 2 centered at the origin, oriented

outward.

Solution The hemisphere S is parameterized by spherical coordinates � and �, with 0 ≤ � ≤ 2� and 0 ≤ � ≤

�∕2. Since R = 2 and F⃗ = zk⃗ = 2 cos�k⃗ , the flux is

∫S
F⃗ ⋅ dA⃗ =

∫S
2 cos�k⃗ ⋅ (sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗ )4 sin�d� d�

=
∫

2�

0 ∫

�∕2

0

8 sin� cos2 �d� d� = 2�

(

8

(

− cos3 �

3

)

|

|

|

|

�∕2

�=0

)

=
16�

3
.

Example 5 The magnetic field B⃗ due to an ideal magnetic dipole, �⃗ , located at the origin is a multiple of

B⃗ (r⃗ ) = −
�⃗

‖r⃗ ‖3
+

3(�⃗ ⋅ r⃗ )r⃗

‖r⃗ ‖5
.

Figure 19.25 shows a sketch of B⃗ in the plane z = 0 for the dipole �⃗ = i⃗ . Notice that B⃗ is similar

to the magnetic field of a bar magnet with its north pole at the tip of the vector i⃗ and its south pole

at the tail of the vector i⃗ .

Compute the flux of B⃗ outward through the sphere S with center at the origin and radius R.

y

x

Figure 19.25: The magnetic field of a dipole, i⃗ , at the origin: B⃗ = −
i⃗

‖r⃗ ‖3
+

3(i⃗ ⋅ r⃗ )r⃗

‖r⃗ ‖5
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Solution Since i⃗ ⋅ r⃗ = x and ‖r⃗ ‖ = R on the sphere of radius R, we have

∫S
B⃗ ⋅ dA⃗ =

∫S

(

−
i⃗

‖r⃗ ‖3
+

3(i⃗ ⋅ r⃗ )r⃗

‖r⃗ ‖5

)

⋅

r⃗

‖r⃗ ‖
dA =

∫S

(

−
i⃗ ⋅ r⃗

‖r⃗ ‖4
+

3(i⃗ ⋅ r⃗ )‖r⃗ ‖2

‖r⃗ ‖6

)

dA

=
∫S

2i⃗ ⋅ r⃗

‖r⃗ ‖4
dA =

∫S

2x

‖r⃗ ‖4
dA =

2

R4 ∫S
x dA.

But the sphere S is centered at the origin. Thus, the contribution to the integral from each positive

x-value is canceled by the contribution from the corresponding negative x-value; so ∫
S
x dA = 0.

Therefore,

∫S
B⃗ ⋅ dA⃗ =

2

R4 ∫S
x dA = 0.

Summary for Section 19.2

• The flux through a graph: Suppose the surface S is the part of the graph of z = f (x, y) above

a region R in the xy-plane that is oriented upward. Then

∫S
F⃗ ⋅ dA⃗ =

∫R
F⃗ (x, y, f (x, y)) ⋅

(

−fxi⃗ − fy j⃗ + k⃗

)

dx dy.

• Surface area of a graph: Suppose a surface S is the part of the graph z = f (x, y), where (x, y)

is in a region R in the xy-plane. Then

Area of S =
∫R

√

(fx)
2 + (fy)

2 + 1 dx dy.

• The flux through a cylinder: Suppose the cylindrical surface S has radius R, is oriented away

from the z-axis, and has corresponding �z-region T . Then

∫S
F⃗ ⋅ dA⃗ =

∫T
F⃗ (R, �, z) ⋅

(

cos �i⃗ + sin �j⃗
)

Rdzd�.

• The flux through a spherical surface: Suppose the spherical surfaceS has radiusR, is oriented

away from the origin, and has corresponding ��-region T . Then

∫S
F⃗ ⋅ dA⃗ =

∫T
F⃗ (R, �, �) ⋅

(

sin� cos�i⃗ + sin� sin �j⃗ + cos�k⃗
)

R2 sin�d� d�.

Exercises and Problems for Section 19.2

EXERCISES

In Exercises 1–4, find the area vector dA⃗ for the surface

z = f (x, y), oriented upward.

1. f (x, y) = 3x − 5y 2. f (x, y) = 8x + 7y

3. f (x, y) = 2x2 − 3y2 4. f (x, y) = xy + y2

In Exercises 5–8, write an iterated integral for the flux of

F⃗ through the surface S, which is the part of the graph of

z = f (x, y) corresponding to the region R, oriented upward.

Do not evaluate the integral.

5. F⃗ (x, y, z) = 10i⃗ + 20j⃗ + 30k⃗

f (x, y) = 2x − 3y

R: −2 ≤ x ≤ 3, 0 ≤ y ≤ 5

6. F⃗ (x, y, z) = zi⃗ + xj⃗ + yk⃗

f (x, y) = 50 − 4x + 10y

R: 0 ≤ x ≤ 4, 0 ≤ y ≤ 8

7. F⃗ (x, y, z) = yzi⃗ + xyj⃗ + xyk⃗

f (x, y) = cos x + sin 2y

R: Triangle with vertices (0, 0), (0, 5), (5, 0)

8. F⃗ (x, y, z) = cos(x + 2y)j⃗

f (x, y) = xe3y

R: Quarter disk of radius 5 centered at the origin,

in quadrant I
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In Exercises 9–12, compute the flux of F⃗ through the sur-

face S, which is the part of the graph of z = f (x, y) corre-

sponding to region R, oriented upward.

9. F⃗ (x, y, z) = 3i⃗ − 2j⃗ + 6k⃗

f (x, y) = 4x − 2y

R: 0 ≤ x ≤ 5, 0 ≤ y ≤ 10

10. F⃗ (x, y, z) = i⃗ − 2j⃗ + zk⃗

f (x, y) = xy

R: 0 ≤ x ≤ 10, 0 ≤ y ≤ 10

11. F⃗ (x, y, z) = cos yi⃗ + zj⃗ + k⃗

f (x, y) = x2 + 2y

R: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

12. F⃗ (x, y, z) = xi⃗ + zk⃗

f (x, y) = x + y + 2

R: Triangle with vertices (−1, 0), (1, 0), (0, 1)

In Exercises 13–16, write an iterated integral for the flux

of F⃗ through the cylindrical surface S centered on the z-

axis, oriented away from the z-axis. Do not evaluate the in-

tegral.

13. F⃗ (x, y, z) = i⃗ + 2j⃗ + 3k⃗

S: radius 10, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 5

14. F⃗ (x, y, z) = xi⃗ + 2yj⃗ + 3zk⃗

S: radius 10, 0 ≤ z ≤ 5

15. F⃗ (x, y, z) = z2 i⃗ + ex j⃗ + k⃗

S: radius 6, inside sphere of radius 10

16. F⃗ (x, y, z) = x2yzj⃗ + z3k⃗

S: radius 2, between the xy-plane and the

paraboloid z = x2 + y2

In Exercises 17–20, compute the flux of F⃗ through the cylin-

drical surface S centered on the z-axis, oriented away from

the z-axis.

17. F⃗ (x, y, z) = zj⃗ + 6xk⃗

S: radius 5, y ≥ 0, 0 ≤ z ≤ 20

18. F⃗ (x, y, z) = yi⃗ + xzk⃗

S: radius 10, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 3

19. F⃗ (x, y, z) = xyzj⃗ + xezk⃗

S: radius 2, 0 ≤ y ≤ x, 0 ≤ z ≤ 10

20. F⃗ (x, y, z) = xyi⃗ + 2zj⃗

S: radius 1, x ≥ 0, 0 ≤ y ≤ 1∕2, 0 ≤ z ≤ 2

In Exercises 21–24, write an iterated integral for the flux of

F⃗ through the spherical surface S centered at the origin,

oriented away from the origin. Do not evaluate the integral.

21. F⃗ (x, y, z) = i⃗ + 2j⃗ + 3k⃗

S: radius 10, z ≥ 0

22. F⃗ (x, y, z) = xi⃗ + 2yj⃗ + 3zk⃗

S: radius 5, entire sphere

23. F⃗ (x, y, z) = z2 i⃗

S: radius 2, x ≥ 0

24. F⃗ (x, y, z) = exk⃗

S: radius 3, y ≥ 0, z ≤ 0

In Exercises 25–27, compute the flux of F⃗ through the

spherical surface S centered at the origin, oriented away

from the origin.

25. F⃗ (x, y, z) = zi⃗

S: radius 20, x ≥ 0, y ≥ 0, z ≥ 0

26. F⃗ (x, y, z) = yi⃗ − xj⃗ + zk⃗

S: radius 4, entire sphere

27. F⃗ (x, y, z) = xi⃗ + yj⃗

S: radius 1, above the cone � = �∕4.

In Exercises 28–29, compute the flux of v⃗ = zk⃗ through the

rectangular region with the orientation shown.

28.

x

y

z

(2, 2, 0)

(2, 0, 4)
(0, 0, 4)

(0, 2, 0)

29.

x

y

z

(2, 0, 0) (2, 2, 0)

(0, 2, 3)
(0, 0, 3)

PROBLEMS

In Problems 30–46 compute the flux of the vector field F⃗

through the surface S.

30. F⃗ = zk⃗ and S is the portion of the plane x+y+z = 1

that lies in the first octant, oriented upward.

31. F⃗ = (x−y)i⃗ +zj⃗ +3xk⃗ and S is the part of the plane

z = x + y above the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3,

oriented upward.

32. F⃗ = 2xj⃗ + yk⃗ and S is the part of the surface

z = −y + 1 above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

oriented upward.

33. F⃗ = −yj⃗ + zk⃗ and S is the part of the surface

z = y2 + 5 over the rectangle −2 ≤ x ≤ 1, 0 ≤ y ≤ 1,

oriented upward.

34. F⃗ = ln(x2)i⃗ + ex j⃗ + cos(1 − z)k⃗ and S is the part of

the surface z = −y + 1 above the square 0 ≤ x ≤ 1,

0 ≤ y ≤ 1, oriented upward.

35. F⃗ = 5i⃗ +7j⃗ + zk⃗ and S is a closed cylinder of radius

3 centered on the z-axis, with −2 ≤ z ≤ 2, and oriented

outward.
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36. F⃗ = xi⃗ +yj⃗ +zk⃗ and S is a closed cylinder of radius

2 centered on the y-axis, with−3 ≤ y ≤ 3, and oriented

outward.

37. F⃗ = 3xi⃗ + yj⃗ + zk⃗ and S is the part of the surface

z = −2x − 4y + 1, oriented upward, with (x, y) in the

triangle R with vertices (0, 0), (0, 2), (1, 0).

38. F⃗ = xi⃗ + yj⃗ and S is the part of the surface

z = 25 − (x2 + y2) above the disk of radius 5 centered

at the origin, oriented upward.

39. F⃗ = cos(x2 + y2)k⃗ and S is as in Exercise 38.

40. F⃗ = r⃗ and S is the part of the plane x + y + z = 1

above the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3, oriented

downward.

41. F⃗ = r⃗ and S is the part of the surface z = x2 + y2

above the disk x2 + y2 ≤ 1, oriented downward.

42. F⃗ = xzi⃗ + yk⃗ and S is the hemisphere

x2 + y2 + z2 = 9, z ≥ 0, oriented upward.

43. F⃗ = −xzi⃗ −yzj⃗ +z2k⃗ andS is the cone z =
√

x2 + y2

for 0 ≤ z ≤ 6, oriented upward.

44. F⃗ = yz4 i⃗ − xz4j⃗ + ez
2
k⃗ and S is the cone z =

√

x2 + y2 for 1 ≤ z ≤ 2, oriented upward.

45. F⃗ = yi⃗ + j⃗ − xzk⃗ and S is the surface y = x2 + z2,

with x2 + z2 ≤ 1, oriented in the positive y-direction.

46. F⃗ = x2 i⃗ + y2j⃗ + z2k⃗ and S is the oriented triangular

surface shown in Figure 19.26.

x

y

z

S

1

1

1

Figure 19.26

In Problems 47–50 find the area of the surface z = f (x, y)

over the region R in the xy-plane.

47. f (x, y) = 50 + 5x − y, R: −5 ≤ x ≤ 5, 0 ≤ y ≤ 10

48. f (x, y) = 50 + 5x − y, R: circle of radius 3 centered at

the origin

49. f (x, y) = xey, R: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

50. f (x, y) = (sinx)(sin y), R: 0 ≤ x ≤ �∕2, 0 ≤ y ≤ �∕2

51. Let S be the hemisphere x2 + y2 + z2 = a2 of radius a,

where z ≥ 0.

(a) Express the surface area of S as an integral in

Cartesian coordinates.

(b) Change variables to express the area integral in po-

lar coordinates.

(c) Find the area of S.

In Problems 52–53, compute the flux of F⃗ through the cylin-

drical surface in Figure 19.27, oriented away from the z-axis.

x
y

z

11

6

S

Figure 19.27

52. F⃗ = xi⃗ + yj⃗

53. F⃗ = xzi⃗ + yzj⃗ + z3k⃗

In Problems 54–57, compute the flux of F⃗ through the

spherical surface, S.

54. F⃗ = zk⃗ and S is the upper hemisphere of radius 2

centered at the origin, oriented outward.

55. F⃗ = yi⃗ − xj⃗ + zk⃗ and S is the spherical cap given by

x2 + y2 + z2 = 1, z ≥ 0, oriented upward.

56. F⃗ = z2k⃗ and S is the upper hemisphere of the sphere

x2 + y2 + z2 = 25, oriented away from the origin.

57. F⃗ = xi⃗ + yj⃗ + zk⃗ and S is the surface of the sphere

x2 + y2 + z2 = a2, oriented outward.

58. Compute the flux of F⃗ = xi⃗ +yj⃗ +zk⃗ over the quarter

cylinder S given by x2 + y2 = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 ≤ z ≤ 1, oriented outward.

59. Compute the flux of F⃗ = xi⃗ + j⃗ + k⃗ through the sur-

face S given by x = sin y sin z, with 0 ≤ y ≤ �∕2,

0 ≤ z ≤ �∕2, oriented in the direction of increasing x.

60. Compute the flux of F⃗ = (x + z)i⃗ + j⃗ + zk⃗ through

the surface S given by y = x2 + z2, with 0 ≤ y ≤ 1,

x ≥ 0, z ≥ 0, oriented toward the xz-plane.

61. Let F⃗ = (xzeyz)i⃗ +xzj⃗ +(5+x2+y2)k⃗ . Calculate the

flux of F⃗ through the disk x2 + y2 ≤ 1 in the xy-plane,

oriented upward.
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62. Let H⃗ = (exy+3z+5)i⃗ +(exy+5z+3)j⃗ +(3z+exy)k⃗ .

Calculate the flux of H⃗ through the square of side 2

with one vertex at the origin, one edge along the posi-

tive y-axis, one edge in the xz-plane with x > 0, z > 0,

and the normal n⃗ = i⃗ − k⃗ .

63. The vector field, F⃗ , in Figure 19.28 depends only on z;

that is, it is of the form g(z)k⃗ , where g is an increasing

function. The integral ∫
S
F⃗ ⋅ dA⃗ represents the flux of

F⃗ through this rectangle, S, oriented upward. In each

of the following cases, how does the flux change?

(a) The rectangle is twice as wide in the x-direction,

with new corners at the origin, (2, 0, 0), (2, 1, 3),

(0, 1, 3).

(b) The rectangle is moved so that its corners are at

(1, 0, 0), (2, 0, 0), (2, 1, 3), (1, 1, 3).

(c) The orientation is changed to downward.

(d) The rectangle is tripled in size, so that its new cor-

ners are at the origin, (3, 0, 0), (3, 3, 9), (0, 3, 9).

x

y

z

(1, 0, 0)

(1, 1, 3)

(0, 1, 3)

Figure 19.28

64. Electric charge is distributed in space with density (in

coulomb/m3) given in spherical coordinates by

�(�, �, �) =

{

�0 (a constant) � ≤ a

0 � > a.

(a) Describe the charge distribution in words.

(b) Find the electric field E⃗ due to �. Assume that E⃗

can be written in spherical coordinates as E⃗ =

E(�)e⃗ �, where e⃗ � is the unit outward normal to the

sphere of radius �. In addition, E⃗ satisfies Gauss’s

Law for any simple closed surface S enclosing a

volume W :

∫
S

E⃗ ⋅ dA⃗ = k
∫
W

� dV , k a constant.

65. Electric charge is distributed in space with density (in

coulomb/m3) given in cylindrical coordinates by

�(r, �, z) =

{

�0 (a constant) if r ≤ a

0 if r > a

(a) Describe the charge distribution in words.

(b) Find the electric field E⃗ due to �. Assume that E⃗

can be written in cylindrical coordinates as E⃗ =

E(r)e⃗ r, where e⃗ r is the unit outward vector to the

cylinder of radius r, and that E⃗ satisfies Gauss’s

Law (see Problem 64).

Strengthen Your Understanding

In Problems 66–67, explain what is wrong with the state-

ment.

66. Flux outward through the cone, given in cylindrical co-

ordinates by z = r, can be computed using the formula

dA⃗ =
(

cos �i⃗ + sin �j⃗
)

Rdz d�.

67. For the surface z = f (x, y) oriented upward, the for-

mula

dA⃗ = n⃗ dA =
(

−fx i⃗ − fy j⃗ + k⃗

)

dxdy

gives n⃗ = −fx i⃗ − fyj⃗ + k⃗ and dA = dx dy.

In Problems 68–69, give an example of:

68. A function f (x, y) such that, for the surface z = f (x, y)

oriented upwards, we have dA⃗ = (i⃗ + j⃗ + k⃗ ) dx dy.

69. An oriented surface S on the cylinder of radius 10 cen-

tered on the z-axis such that ∫
S
F⃗ ⋅ dA⃗ = 600, where

F⃗ = xi⃗ + yj⃗ .

Are the statements in Problems 70–72 true or false? Give

reasons for your answer.

70. If S is the part of the graph of z = f (x, y) above

a ≤ x ≤ b, c ≤ y ≤ d, then S has surface area

∫
b

a
∫

d

c

√

(fx)
2 + (fy)

2 + 1 dxdy.

71. If A⃗ (x, y) is the area vector for z = f (x, y) oriented

upward and B⃗ (x, y) is the area vector for z = −f (x, y)

oriented upward, then A⃗ (x, y) = −B⃗ (x, y).

72. If S is the sphere x2 + y2 + z2 = 1 oriented outward

and ∫
S
F⃗ ⋅ dA⃗ = 0, then F⃗ (x, y, z) is perpendicular to

xi⃗ + yj⃗ + zk⃗ at every point of S.
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19.3 THE DIVERGENCE OF A VECTOR FIELD

Imagine that the vector fields in Figures 19.29 and 19.30 are velocity vector fields describing the

flow of a fluid.3 Figure 19.29 suggests outflow from the origin; for example, it could represent the

expanding cloud of matter in the big-bang theory of the origin of the universe. We say that the origin

is a source. Figure 19.30 suggests flow into the origin; in this case we say that the origin is a sink.

In this section we use the flux out of a closed surface surrounding a point to measure the outflow

per unit volume there, also called the divergence, or flux density.

x

y

Figure 19.29: Vector field

showing a source

x

y

Figure 19.30: Vector field

showing a sink

Definition of Divergence

To measure the outflow per unit volume of a vector field at a point, we calculate the flux out of a

small sphere centered at the point, divide by the volume enclosed by the sphere, then take the limit

of this flux-to-volume ratio as the sphere contracts around the point.

Geometric Definition of Divergence

The divergence, or flux density, of a smooth vector field F⃗ , written divF⃗ , is a scalar-valued

function defined by

div F⃗ (x, y, z) = lim
Volume→0

∫
S
F⃗ ⋅ dA⃗

Volume of S
.

Here S is a sphere centered at (x, y, z), oriented outward, that contracts down to (x, y, z) in the

limit. The limit can be computed using other shapes as well, such as the cubes in Example 2.

In Cartesian coordinates, the divergence can also be calculated using the following formula. We

show that these definitions are equivalent later in the section.

Cartesian Coordinate Definition of Divergence

If F⃗ = F1 i⃗ + F2j⃗ + F3k⃗ , then

div F⃗ =
)F1

)x
+

)F2

)y
+

)F3

)z
.

The dot product formula gives an easy way to remember the Cartesian coordinate definition and

suggests another common notation for div F⃗ , namely ∇ ⋅ F⃗ . Using ∇ =
)

)x
i⃗ +

)

)y
j⃗ +

)

)z
k⃗ , we can

write

div F⃗ = ∇⋅ F⃗ =

(

)

)x
i⃗ +

)

)y
j⃗ +

)

)z
k⃗

)

⋅ (F1i⃗ + F2j⃗ + F3k⃗ ) =
)F1

)x
+

)F2

)y
+

)F3

)z
.

3Although not all vector fields represent physically realistic fluid flows, it is useful to think of them in this way.
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Example 1 Calculate the divergence of F⃗ (r⃗ ) = r⃗ at the origin

(a) Using the geometric definition.

(b) Using the Cartesian coordinate definition.

Solution (a) Using the method of Example 5 on page 1023, we can calculate the flux of F⃗ out of the sphere

of radius a, centered at the origin; it is 4�a3. So we have

div F⃗ (0, 0, 0) = lim
a→0

Flux

Volume
= lim

a→0

4�a3

4

3
�a3

= lim
a→0

3 = 3.

(b) In Cartesian coordinates, F⃗ (x, y, z) = xi⃗ + yj⃗ + zk⃗ , so

div F⃗ =
)

)x
(x) +

)

)y
(y) +

)

)z
(z) = 1 + 1 + 1 = 3.

The next example shows that the divergence can be negative if there is net inflow to a point.

Example 2 (a) Using the geometric definition, find the divergence of v⃗ = −xi⃗ at: (i) (0, 0, 0) (ii) (2, 2, 0).

(b) Confirm that the coordinate definition gives the same results.

Solution (a) (i) The vector field v⃗ = −xi⃗ is parallel to the x-axis and is shown in the xy-plane in Fig-

ure 19.31. To compute the flux density at (0, 0, 0), we use a cube S1, centered at the origin

with edges parallel to the axes, of length 2c. Then the flux through the faces perpendicular

to the y- and z-axes is zero (because the vector field is parallel to these faces). On the faces

perpendicular to the x-axis, the vector field and the outward normal are parallel but point

in opposite directions. On the face at x = c, where v⃗ = −ci⃗ and ΔA⃗ = ‖A⃗ ‖i⃗ , we have

v⃗ ⋅ ΔA⃗ = −c ‖ΔA⃗ ‖.

On the face at x = −c, where v⃗ = ci⃗ and ΔA⃗ = −‖A⃗ ‖i⃗ , the dot product is still negative:

v⃗ ⋅ ΔA⃗ = −c ‖ΔA⃗ ‖.

Therefore, the flux through the cube is given by

∫S1

v⃗ ⋅ dA⃗ =
∫Face x=−c

v⃗ ⋅ dA⃗ +
∫Face x=c

v⃗ ⋅ dA⃗

= −c ⋅ Area of one face + (−c) ⋅ Area of other face = −2c(2c)2 = −8c3.

Thus,

div v⃗ (0, 0, 0) = lim
Volume→0

∫S
v⃗ ⋅ dA⃗

Volume of cube
= lim

c→0

(

−8c3

(2c)3

)

= −1.

Since the vector field points inward toward the yz-plane, it makes sense that the divergence

is negative at the origin.

(ii) Take S2 to be a cube as before, but centered this time at the point (2, 2, 0). See Figure 19.31.

As before, the flux through the faces perpendicular to the y- and z-axes is zero. On the face

at x = 2 + c,

v⃗ ⋅ ΔA⃗ = −(2 + c) ‖ΔA⃗ ‖.

On the face at x = 2 − c with outward normal, the dot product is positive, and

v⃗ ⋅ ΔA⃗ = (2 − c) ‖ΔA⃗ ‖.
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Therefore, the flux through the cube is given by

∫S2

v⃗ ⋅ dA⃗ =
∫Face x=2−c

v⃗ ⋅ dA⃗ +
∫Face x=2+c

v⃗ ⋅ dA⃗

= (2 − c) ⋅ Area of one face − (2 + c) ⋅ Area of other face = −2c(2c)2 = −8c3.

Then, as before,

div v⃗ (2, 2, 0) = lim
Volume→0

∫
S
v⃗ ⋅ dA⃗

Volume of cube
= lim

c→0

(

−8c3

(2c)3

)

= −1.

Although the vector field is flowing away from the point (2, 2, 0) on the left, this outflow is

smaller in magnitude than the inflow on the right, so the net outflow is negative.

(b) Since v⃗ = −xi⃗ + 0j⃗ + 0k⃗ , the formula gives

div v⃗ =
)

)x
(−x) +

)

)y
(0) +

)

)z
(0) = −1 + 0 + 0 = −1.

S2

S1
x

y

✠

(2, 2, 0)

✒

(0, 0, 0)

Figure 19.31: Vector field v⃗ = −xi⃗ in the xy-plane

Why Do the Two Definitions of Divergence Give the Same Result?

The geometric definition defines div F⃗ as the flux density of F⃗ . To see why the coordinate definition

is also the flux density, imagine computing the flux out of a small box-shaped surfaceS at (x0, y0, z0),

with sides of length Δx, Δy, and Δz parallel to the axes. On S1 (the back face of the box shown in

Figure 19.32, where x = x0), the outward normal is in the negative x-direction, so dA⃗ = −dy dz i⃗ .

Assuming F⃗ is approximately constant on S1, we have

∫S1

F⃗ ⋅ dA⃗ =
∫S1

F⃗ ⋅ (−i⃗ ) dy dz ≈ −F1(x0, y0, z0)∫S1

dy dz

= −F1(x0, y0, z0) ⋅ Area of S1 = −F1(x0, y0, z0) ΔyΔz.

On S2, the face where x = x0 + Δx, the outward normal points in the positive x-direction, so

dA⃗ = dy dz i⃗ . Therefore,

∫S2

F⃗ ⋅ dA⃗ =
∫S2

F⃗ ⋅ i⃗ dy dz ≈ F1(x0 + Δx, y0, z0)∫S2

dy dz

= F1(x0 + Δx, y0, z0) ⋅ Area of S2 = F1(x0 + Δx, y0, z0) ΔyΔz.
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(x0, y0, z0)

❘

S1 (Back)

ΔzS3

S6

S2

✻

S5 (Bottom)

✠

S4 (Back)

Δx

Δyz

x

y

Figure 19.32: Box used to find div F⃗ at (x0, y0, z0)

Thus,

∫S1

F⃗ ⋅ dA⃗ +
∫S2

F⃗ ⋅ dA⃗ ≈ F1(x0 + Δx, y0, z0)ΔyΔz − F1(x0, y0, z0)ΔyΔz

=
F1(x0 + Δx, y0, z0) − F1(x0, y0, z0)

Δx
ΔxΔyΔz

≈
)F1

)x
ΔxΔyΔz.

By an analogous argument, the contribution to the flux from S3 and S4 (the surfaces perpendicular

to the y-axis) is approximately
)F2

)y
ΔxΔyΔz,

and the contribution to the flux from S5 and S6 is approximately

)F3

)z
ΔxΔyΔz.

Thus, adding these contributions, we have

Total flux through S ≈
)F1

)x
ΔxΔyΔz +

)F2

)y
ΔxΔyΔz +

)F3

)z
ΔxΔyΔz.

Since the volume of the box is ΔxΔyΔz, the flux density is

Total flux through S

Volume of box
≈

)F1

)x
ΔxΔyΔz +

)F2

)y
ΔxΔyΔz +

)F3

)z
ΔxΔyΔz

ΔxΔyΔz

=
)F1

)x
+

)F2

)y
+

)F3

)z
.

Divergence-Free Vector Fields

A vector field F⃗ is said to be divergence free or solenoidal if divF⃗ = 0 everywhere that F⃗ is

defined.

Example 3 Figure 19.33 shows, for three values of the constant p, the vector field

E⃗ =
r⃗

‖r⃗ ‖p
r⃗ = xi⃗ + yj⃗ + zk⃗ , r⃗ ≠ 0⃗ .

(a) Find a formula for div E⃗ .

(b) Is there a value of p for which E⃗ is divergence-free? If so, find it.
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p = 0

x

y

p = 1

x

y

p = 3

x

y

Figure 19.33: The vector field E⃗ (r⃗ ) = r⃗ ∕‖r⃗ ‖p for p = 0, 1, and 3 in the xy-plane

Solution (a) The components of E⃗ are

E⃗ =
x

(x2 + y2 + z2)p∕2
i⃗ +

y

(x2 + y2 + z2)p∕2
j⃗ +

z

(x2 + y2 + z2)p∕2
k⃗ .

We compute the partial derivatives

)

)x

(

x

(x2 + y2 + z2)p∕2

)

=
1

(x2 + y2 + z2)p∕2
−

px2

(x2 + y2 + z2)(p∕2)+1

)

)y

(

y

(x2 + y2 + z2)p∕2

)

=
1

(x2 + y2 + z2)p∕2
−

py2

(x2 + y2 + z2)(p∕2)+1

)

)z

(

z

(x2 + y2 + z2)p∕2

)

=
1

(x2 + y2 + z2)p∕2
−

pz2

(x2 + y2 + z2)(p∕2)+1
.

So

div E⃗ =
3

(x2 + y2 + z2)p∕2
−

p(x2 + y2 + z2)

(x2 + y2 + z2)(p∕2)+1

=
3 − p

(x2 + y2 + z2)p∕2
=

3 − p

‖r⃗ ‖p
.

(b) The divergence is zero when p = 3, so F⃗ (r⃗ ) = r⃗ ∕‖r⃗ ‖3 is a divergence-free vector field. Notice

that the divergence is zero even though the vectors point outward from the origin.

Magnetic Fields

An important class of divergence-free vector fields is the magnetic fields. One of Maxwell’s Laws

of Electromagnetism is that the magnetic field B⃗ satisfies

div B⃗ = 0.

Example 4 An infinitesimal current loop, similar to that shown in Figure 19.34, is called a magnetic dipole. Its

magnitude is described by a constant vector �⃗ , called the dipole moment. The magnetic field due to

a magnetic dipole with moment �⃗ is a multiple of

B⃗ = −
�⃗

‖r⃗ ‖3
+

3(�⃗ ⋅ r⃗ )r⃗

‖r⃗ ‖5
, r⃗ ≠ 0⃗ .

Show that div B⃗ = 0.
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�⃗

❥
Area = a

Figure 19.34: A current loop

Solution To show that div B⃗ = 0 we can use the following version of the product rule for the divergence: if

g is a scalar function and F⃗ is a vector field, then

div(gF⃗ ) = (grad g) ⋅ F⃗ + g div F⃗ .

(See Problem 37 on page 1047.) Thus, since �⃗ is constant and div �⃗ = 0, we have

div

(

�⃗

‖r⃗ ‖3

)

= div

(

1

‖r⃗ ‖3
�⃗

)

= grad

(

1

‖r⃗ ‖3

)

⋅ �⃗ +

(

1

‖r⃗ ‖3

)

0

and

div

(

(�⃗ ⋅ r⃗ )r⃗

‖r⃗ ‖5

)

= div

(

�⃗ ⋅ r⃗
r⃗

||r⃗ ||5

)

= grad(�⃗ ⋅ r⃗ ) ⋅
r⃗

‖r⃗ ‖5
+ (�⃗ ⋅ r⃗ ) div

(

r⃗

‖r⃗ ‖5

)

.

From Problems 83 and 84 of Section 14.5 (available online) and Example 3 on page 1042, we have

grad

(

1

‖r⃗ ‖3

)

=
−3r⃗

‖r⃗ ‖5
, grad(�⃗ ⋅ r⃗ ) = �⃗ , div

(

r⃗

‖r⃗ ‖5

)

=
−2

‖r⃗ ‖5
.

Putting these results together gives

div B⃗ = −grad

(

1

‖r⃗ ‖3

)

⋅ �⃗ + 3 grad(�⃗ ⋅ r⃗ ) ⋅
r⃗

‖r⃗ ‖5
+ 3(�⃗ ⋅ r⃗ ) div

(

r⃗

‖r⃗ ‖5

)

=
3r⃗ ⋅ �⃗

‖r⃗ ‖5
+

3�⃗ ⋅ r⃗

‖r⃗ ‖5
−

6�⃗ ⋅ r⃗

‖r⃗ ‖5

= 0.

Summary for Section 19.3

• Geometric definition of divergence: The divergence of a smooth vector field F⃗ is a scalar-

valued function defined by

div F⃗ (x, y, z) = lim
Volume→0

∫
S
F⃗ ⋅ dA⃗

Volume of S
.

Here S is a sphere centered at (x, y, z), oriented outward, that contracts down to (x, y, z).

• Cartesian-coordinate definition of divergence: If F⃗ = F1 i⃗ + F2 j⃗ + F3k⃗ , then

div F⃗ =
)F1

)x
+

)F2

)y
+

)F3

)z
.

• A vector field F⃗ is said to be divergence-free if divF⃗ = 0 everywhere that F⃗ is defined.
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Exercises and Problems for Section 19.3 Online Resource: Additional Problems for Section 19.3
EXERCISES

In Exercises 1–2, is the quantity a vector or a scalar? Calcu-

late it.

1. div
(

(x2 + y)i⃗ + (xyez)j⃗ − ln(x2 + y2)k⃗
)

2. div
(

(2 sin(xy) + tan z)i⃗ + (tan y)j⃗ + (ex
2+y2 )k⃗

)

3. Which of the following two vector fields, sketched in

the xy-plane, appears to have the greater divergence at

the origin? The scales are the same on each.

x

y(I)

x

y(II)

In Exercises 4–12, find the divergence of the vector field.

(Note: r⃗ = xi⃗ + yj⃗ + zk⃗ .)

4. F⃗ (x, y) = −yi⃗ + xj⃗

5. F⃗ (x, y) = −xi⃗ + yj⃗

6. F⃗ (x, y, z) = (−x + y)i⃗ + (y + z)j⃗ + (−z + x)k⃗

7. F⃗ (x, y) = (x2 − y2)i⃗ + 2xyj⃗

8. F⃗ (x, y, z) = 3x2 i⃗ − sin(xz)(i⃗ + k⃗ )

9. F⃗ =
(

ln
(

x2 + 1
)

i⃗ + (cos y) j⃗ + (xyez) k⃗
)

10. F⃗ (r⃗ ) = a⃗ × r⃗

11. F⃗ (x, y) =
−yi⃗ + xj⃗

x2 + y2

12. F⃗ (r⃗ ) =
r⃗ − r⃗ 0

‖r⃗ − r⃗ 0‖
, r⃗ ≠ r⃗ 0

13. For each of the following vector fields, sketched in the

xy-plane, decide if the divergence is positive, zero, or

negative at the indicated point.

x

y(a)

x

y(b)

x

y(c)

PROBLEMS

14. Draw two vector fields that have positive divergence ev-

erywhere.

15. Draw two vector fields that have negative divergence

everywhere.

16. Draw two vector fields that have zero divergence every-

where.

17. A small sphere of radius 0.1 surrounds the point

(2, 3,−1). The flux of a vector field G⃗ into this sphere

is 0.00004�. Estimate div G⃗ at the point (2, 3,−1).

18. A smooth vector field F⃗ has div F⃗ (1, 2, 3) = 5. Esti-

mate the flux of F⃗ out of a small sphere of radius 0.01

centered at the point (1, 2, 3).

19. Let F⃗ be a vector field with div F⃗ = x2 + y2 − z.

(a) Estimate ∫
S
F⃗ ⋅ dA⃗ where S is

(i) A sphere of radius 0.1 centered at (2, 0, 0).

(ii) A box of side 0.2 with edges parallel to the

axes and centered at (0, 0, 10).

(b) The point (2, 0, 0) is called a source for the vector

field F⃗ ; the point (0, 0, 10) is called a sink. Explain

the reason for these names using your answer to

part (a).

20. The flux of F⃗ out of a small sphere of radius 0.1 cen-

tered at (4, 5, 2) is 0.0125. Estimate:

(a) div F⃗ at (4, 5, 2)

(b) The flux of F⃗ out of a sphere of radius 0.2 centered

at (4, 5, 2).

21. (a) Find the flux of F⃗ = 2xi⃗ − 3yj⃗ + 5zk⃗ through

a cube with four of its corners at the points

(a, b, c), (a+w, b, c), (a, b+w, c), (a, b, c +w) and

edge length w. See Figure 19.35.

(b) Use the geometric definition and part (a) to find

div F⃗ at the point (a, b, c).

(c) Find div F⃗ using partial derivatives.
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x

y

z

S3
S2

S6

(a +w, b, c)

✲(a, b, c)

✲(a, b, c +w)
❄

S1 (Back)

✠

S4 (Back)

■
S5 (Bottom)

Figure 19.35

22. Suppose F⃗ = (3x + 2)i⃗ + 4xj⃗ + (5x + 1)k⃗ . Use the

method of Exercise 21 to find div F⃗ at the point (a, b, c)

by two different methods.

23. Use the geometric definition of divergence to find div v⃗

at the origin, where v⃗ = −2r⃗ . Check that you get the

same result using the definition in Cartesian coordi-

nates.

24. (a) Let f (x, y) = axy + ax2y + y3. Find div grad f .

(b) Choose a so that div grad f = 0 for all x, y.

25. Let F⃗ = (9a2x + 10ay2)i⃗ + (10z3 − 6ay)j⃗ − (3z +

10x2 + 10y2)k⃗ . Find the value(s) of a making div F⃗

(a) 0 (b) A minimum

26. Let F⃗ (r⃗ ) = r⃗ ∕‖r⃗ ‖3 (in 3-space), r⃗ ≠ 0⃗ .

(a) Calculate div F⃗ .

(b) Sketch F⃗ . Does F⃗ appear to have nonzero di-

vergence? Does this agree with your answer to

part (a)?

27. The vector field F⃗ (r⃗ ) = r⃗ ∕||r⃗ ||3 is not defined at the

origin. Nevertheless, we can attempt to use the flux def-

inition to compute div F⃗ at the origin. What is the re-

sult?

28. Let F⃗ (x, y, z) = zk⃗ .

(a) Calculate div F⃗ .

(b) Sketch F⃗ . Does F⃗ appear to have nonzero di-

vergence? Does this agree with your answer to

part (a)?

29. The divergence of a magnetic vector field B⃗ must be

zero everywhere. Which of the following vector fields

cannot be a magnetic vector field?

(a) B⃗ (x, y, z) = −yi⃗ + xj⃗ + (x + y)k⃗

(b) B⃗ (x, y, z) = −zi⃗ + yj⃗ + xk⃗

(c) B⃗ (x, y, z) = (x2 − y2 − x)i⃗ + (y − 2xy)j⃗

Problems 30–31 involve electric fields. Electric charge pro-

duces a vector field E⃗ , called the electric field, which rep-

resents the force on a unit positive charge placed at the

point. Two positive or two negative charges repel one an-

other, whereas two charges of opposite sign attract one an-

other. The divergence of E⃗ is proportional to the density of

the electric charge (that is, the charge per unit volume), with

a positive constant of proportionality.

30. A certain distribution of electric charge produces the

electric field shown in Figure 19.36. Where are the

charges that produced this electric field concentrated?

Which concentrations are positive and which are nega-

tive?

−4 −3 −2 −1 1 2
x

y

Figure 19.36

31. The electric field at the point r⃗ as a result of a point

charge at the origin is E⃗ (r⃗ ) = kr⃗ ∕‖r⃗ ‖3.

(a) Calculate div E⃗ for r⃗ ≠ 0⃗ .

(b) Calculate the limit suggested by the geometric def-

inition of div E⃗ at the point (0, 0, 0).

(c) Explain what your answers mean in terms of

charge density.

32. Due to roadwork ahead, the traffic on a highway slows

linearly from 55 miles/hour to 15 miles/hour over a

2000-foot stretch of road, then crawls along at 15

miles/hour for 5000 feet, then speeds back up linearly

to 55 miles/hour in the next 1000 feet, after which it

moves steadily at 55 miles/hour.

(a) Sketch a velocity vector field for the traffic flow.

(b) Write a formula for the velocity vector field v⃗

(miles/hour) as a function of the distance x feet

from the initial point of slowdown. (Take the di-

rection of motion to be i⃗ and consider the various

sections of the road separately.)

(c) Compute div v⃗ at x = 1000, 5000, 7500, 10,000.

Be sure to include the proper units.

33. The velocity field v⃗ in Problem 32 does not give a com-

plete description of the traffic flow, for it takes no ac-

count of the spacing between vehicles. Let � be the den-

sity (cars/mile) of highway, where we assume that � de-

pends only on x.

(a) Using your highway experience, arrange in ascend-

ing order: �(0), �(1000), �(5000).

(b) What are the units and interpretation of the vector

field �v⃗ ?

(c) Would you expect �v⃗ to be constant? Why? What

does this mean for div(�v⃗ )?

(d) Determine �(x) if �(0) = 75 cars/mile and �v⃗ is

constant.

(e) If the highway has two lanes, find the approximate

number of feet between cars at x = 0, 1000, and

5000.
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34. For r⃗ = xi⃗ + yj⃗ + zk⃗ , an arbitrary function f (x, y, z),

and an arbitrary vector field F⃗ (x, y, z), which of the fol-

lowing is a vector field and which is a constant vector

field?

(a) grad f (b) (div F⃗ )i⃗ (c) (div r⃗ )i⃗

(d) (div i⃗ )F⃗ (e) grad(div F⃗ )

35. Let r⃗ = xi⃗ + yj⃗ + zk⃗ and c⃗ = c1 i⃗ + c2j⃗ + c3k⃗ , a

constant vector; let S be a sphere of radius R centered

at the origin. Find

(a) div(r⃗ × c⃗ ) (b) ∫
S
(r⃗ × c⃗ ) ⋅ dA⃗

36. Show that if a⃗ is a constant vector and f (x, y, z) is a

function, then div(fa⃗ ) = (grad f ) ⋅ a⃗ .

37. Show that if g(x, y, z) is a scalar-valued function and

F⃗ (x, y, z) is a vector field, then

div(gF⃗ ) = (grad g) ⋅ F⃗ + g div F⃗ .

38. If f (x, y, z) and g(x, y, z) are functions with continuous

second partial derivatives, show that

div(grad f × grad g) = 0.

In Problems 39–41, use Problems 37 and 38 to find the diver-

gence of the vector field. The vectors a⃗ and b⃗ are constant.

39. F⃗ =
1

‖r⃗ ‖p
a⃗ × r⃗ 40. B⃗ =

1

xa
r⃗

41. G⃗ = (b⃗ ⋅ r⃗ )a⃗ × r⃗

42. A vector field, v⃗ , in the plane is a point source at the

origin if its direction is away from the origin at every

point, its magnitude depends only on the distance from

the origin, and its divergence is zero away from the ori-

gin.

(a) Explain why a point source at the origin must be

of the form v⃗ =
(

f (x2 + y2)
)

(xi⃗ + yj⃗ ) for some

positive function f .

(b) Show that v⃗ = K(x2 + y2)−1(xi⃗ + yj⃗ ) is a point

source at the origin if K > 0.

(c) What is the magnitude ‖v⃗ ‖ of the source in part (b)

as a function of the distance from its center?

(d) Sketch the vector field v⃗ = (x2 + y2)−1(xi⃗ + yj⃗ ).

(e) Show that � =
K

2
log(x2 + y2) is a potential func-

tion for the source in part (b).

43. A vector field, v⃗ , in the plane is a point sink at the ori-

gin if its direction is toward the origin at every point, its

magnitude depends only on the distance from the ori-

gin, and its divergence is zero away from the origin.

(a) Explain why a point sink at the origin must be of

the form v⃗ =
(

f (x2 + y2)
)

(xi⃗ + yj⃗ ) for some

negative function f .

(b) Show that v⃗ = K(x2 + y2)−1(xi⃗ + yj⃗ ) is a point

sink at the origin if K < 0.

(c) Determine the magnitude ‖v⃗ ‖ of the sink in part

(b) as a function of the distance from its center.

(d) Sketch v⃗ = −(x2 + y2)−1(xi⃗ + yj⃗ ).

(e) Show that � =
K

2
log(x2 + y2) is a potential func-

tion for the sink in part (b).

Strengthen Your Understanding

In Problems 44–46, explain what is wrong with the state-

ment.

44. div(2xi⃗ ) = 2i⃗ .

45. For F⃗ (x, y, z) = (x2 + y)i⃗ + (2y + z)j⃗ − z2k⃗ we have

div F⃗ = 2xi⃗ + 2j⃗ − 2zk⃗ .

46. The divergence of f (x, y, z) = x2 + yz is given by

div f (x, y, z) = 2x + z + y.

In Problems 47–49, give an example of:

47. A vector field F⃗ (x, y, z) whose divergence is a nonzero

constant.

48. A nonzero vector field F⃗ (x, y, z) whose divergence is

zero.

49. A vector field that is not divergence free.

Are the statements in Problems 50–62 true or false? Give

reasons for your answer.

50. div(F⃗ + G⃗ ) = div F⃗ + div G⃗

51. grad(F⃗ ⋅ G⃗ ) = F⃗ (div G⃗ ) + (div F⃗ )G⃗

52. div F⃗ is a scalar whose value can vary from point to

point.

53. If F⃗ is a vector field in 3-space, then divF⃗ is also a

vector field.

54. A constant vector field F⃗ = ai⃗ + bj⃗ + ck⃗ has zero

divergence.

55. If a vector field F⃗ in 3-space has zero divergence then

F⃗ = ai⃗ + bj⃗ + ck⃗ where a, b and c are constants.

56. If F⃗ is a vector field in 3-space, and f is a scalar func-

tion, then div(fF⃗ ) = fdivF⃗ .

57. If F⃗ is a vector field in 3-space, and F⃗ = grad f, then

div F⃗ = 0.

58. If F⃗ is a vector field in 3-space, then grad(div F⃗ ) = 0⃗ .

59. The field F⃗ (r⃗ ) = r⃗ is divergence free.

60. If f (x, y, z) is any given continuous scalar function,

then there is at least one vector field F⃗ such that

divF⃗ = f.

61. If F⃗ and G⃗ are vector fields satisfying divF⃗ = divG⃗

then F⃗ = G⃗ .

62. There exist a scalar function f and a vector field F⃗ sat-

isfying div(grad f ) = grad(div F⃗ ).
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19.4 THE DIVERGENCE THEOREM

The Divergence Theorem is a multivariable analogue of the Fundamental Theorem of Calculus;

it says that the integral of the flux density over a solid region equals the flux integral through the

boundary of the region.

The Boundary of a Solid Region

The boundary, S, of a solid region, W , may be thought of as the skin between the interior of the

region and the space around it. For example, the boundary of a solid ball is a spherical surface, the

boundary of a solid cube is its six faces, and the boundary of a solid cylinder is a tube sealed at

both ends by disks. (See Figure 19.37). A surface which is the boundary of a solid region is called a

closed surface. We assume a closed surface is oriented outward unless otherwise specified.

W= Ball
S = Sphere

W= Solid cube
S = 6 square faces

W= Solid cylinder
S = Tube and two disks

Figure 19.37: Several solid regions and their boundaries

Calculating the Flux from the Flux Density

Consider a solid region W in 3-space whose boundary is the closed surface S. There are two ways

to find the total flux of a vector field F⃗ out of W . One is to calculate the flux of F⃗ through S:

Flux out of W =
∫S

F⃗ ⋅ dA⃗ .

Another way is to use div F⃗ , which gives the flux density at any point in W . We subdivide W

into small boxes, as shown in Figure 19.38. Then, for a small box of volume ΔV ,

Flux out of box ≈ Flux density ⋅ Volume = div F⃗ ΔV .

What happens when we add the fluxes out of all the boxes? Consider two adjacent boxes, as

shown in Figure 19.39. The flux through the shared wall is counted twice, once out of the box on

each side. When we add the fluxes, these two contributions cancel, so we get the flux out of the solid

region formed by joining the two boxes. Continuing in this way, we find that

Flux out of W =
∑

Flux out of small boxes ≈
∑

div F⃗ ΔV .

✛ ΔV

Figure 19.38: Subdivision of

region into small boxes

✠

Fluxes through
inner wall cancel

Figure 19.39: Adding the flux out

of adjacent boxes
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We have approximated the flux by a Riemann sum. As the subdivision gets finer, the sum approaches

an integral, so

Flux out of W =
∫W

div F⃗ dV .

We have calculated the flux in two ways, as a flux integral and as a volume integral. Therefore,

these two integrals must be equal. This result holds even if W is not a rectangular solid. Thus, we

have the following result.4

Theorem 19.1: The Divergence Theorem

If W is a solid region whose boundaryS is a piecewise smooth surface, and if F⃗ is a smooth

vector field on a solid region5 containing W and S, then

∫S
F⃗ ⋅ dA⃗ =

∫W
div F⃗ dV ,

where S is given the outward orientation.

Example 1 Use the Divergence Theorem to calculate the flux of the vector field F⃗ (r⃗ ) = r⃗ through the sphere

of radius a centered at the origin.

Solution In Example 5 on page 1023 we computed the flux using the definition of a flux integral, giving

∫S
r⃗ ⋅ dA⃗ = 4�a3.

Now we use div F⃗ = div(xi⃗ + yj⃗ + zk⃗ ) = 3 and the Divergence Theorem:

∫S
r⃗ ⋅ dA⃗ =

∫W
div F⃗ dV =

∫W
3 dV = 3 ⋅

4

3
�a3 = 4�a3.

Example 2 Use the Divergence Theorem to calculate the flux of the vector field

F⃗ (x, y, z) = (x2 + y2)i⃗ + (y2 + z2)j⃗ + (x2 + z2)k⃗

through the cube in Figure 19.40.

x y

z

1 1

1

Figure 19.40

4A proof of the Divergence Theorem using the coordinate definition of the divergence can be found in the online supple-

ment at www.WileyPLUS.com.
5The region containing W and S is open.
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Solution The divergence of F⃗ is div F⃗ = 2x + 2y + 2z. Since div F⃗ is positive everywhere in the first

quadrant, the flux through S is positive. By the Divergence Theorem,

∫S
F⃗ ⋅ dA⃗ =

∫

1

0 ∫

1

0 ∫

1

0

2(x + y + z) dx dy dz =
∫

1

0 ∫

1

0

(x2 + 2x(y+ z))
|

|

|

|

1

0

dy dz

=
∫

1

0 ∫

1

0

1 + 2(y+ z) dy dz =
∫

1

0

(y + y2 + 2yz)
|

|

|

|

1

0

dz

=
∫

1

0

(2 + 2z) dz = (2z + z2)
|

|

|

|

1

0

= 3.

The Divergence Theorem and Divergence-Free Vector Fields
An important application of the Divergence Theorem is the study of divergence-free vector fields.

Example 3 In Example 3 on page 1042 we saw that the following vector field is divergence free:

F⃗ (r⃗ ) =
r⃗

‖r⃗ ‖3
, r⃗ ≠ 0⃗ .

Calculate ∫
S
F⃗ ⋅ dA⃗ , using the Divergence Theorem if possible, for the following surfaces:

(a) S1 is the sphere of radius a centered at the origin.

(b) S2 is the sphere of radius a centered at the point (2a, 0, 0).

Solution (a) We cannot use the Divergence Theorem directly because F⃗ is not defined everywhere inside the

sphere (it is not defined at the origin). Since F⃗ points outward everywhere on S1, the flux out

of S1 is positive. On S1,

F⃗ ⋅ dA⃗ = ‖F⃗ ‖dA =
a

a3
dA,

so

∫S1

F⃗ ⋅ dA⃗ =
1

a2 ∫S1

dA =
1

a2
(Area of S1) =

1

a2
4�a2 = 4�.

Notice that the flux is not zero, although div F⃗ is zero everywhere it is defined.

(b) Let W be the solid region enclosed by S2. Since div F⃗ = 0 everywhere in W , we can use the

Divergence Theorem in this case, giving

∫S2

F⃗ ⋅ dA⃗ =
∫W

div F⃗ dV =
∫W

0 dV = 0.

The Divergence Theorem applies to any solid regionW and its boundaryS, even in cases where

the boundary consists of two or more surfaces. For example, if W is the solid region between the

sphereS1 of radius 1 and the sphereS2 of radius 2, both centered at the same point, then the boundary

of W consists of both S1 and S2. The Divergence Theorem requires the outward orientation, which

on S2 points away from the center and on S1 points toward the center. (See Figure 19.41.)

S2

✒

S1

✲W

Figure 19.41: Cutaway view of the region W between two spheres,

showing orientation vectors
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Example 4 Let S1 be the sphere of radius 1 centered at the origin and let S2 be the ellipsoid x2+y2+4z2 = 16,

both oriented outward. For

F⃗ (r⃗ ) =
r⃗

‖r⃗ ‖3
, r⃗ ≠ 0⃗ ,

show that

∫S1

F⃗ ⋅ dA⃗ =
∫S2

F⃗ ⋅ dA⃗ .

Solution The ellipsoid contains the sphere; let W be the solid region between them. Since W does not contain

the origin, div F⃗ is defined and equal to zero everywhere in W . Thus, if S is the boundary of W ,

then

∫S
F⃗ ⋅ dA⃗ =

∫W
div F⃗ dV = 0.

But S consists of S2 oriented outward and S1 oriented inward, so

0 =
∫S

F⃗ ⋅ dA⃗ =
∫S2

F⃗ ⋅ dA⃗ −
∫S1

F⃗ ⋅ dA⃗ ,

and thus

∫S2

F⃗ ⋅ dA⃗ =
∫S1

F⃗ ⋅ dA⃗ .

In Example 3 we showed that ∫
S1

F⃗ ⋅ dA⃗ = 4�, so ∫
S2

F⃗ ⋅ dA⃗ = 4� also. Note that it would have

been more difficult to compute the integral over the ellipsoid directly.

Electric Fields

The electric field produced by a positive point charge q placed at the origin is

E⃗ = q
r⃗

‖r⃗ ‖3
.

Using Example 3, we see that the flux of the electric field through any sphere centered at the origin

is 4�q. In fact, using the idea of Example 4, we can show that the flux of E⃗ through any closed

surface containing the origin is 4�q. See Problems 41 and 42 on page 1054. This is a special case of

Gauss’s Law, which states that the flux of an electric field through any closed surface is proportional

to the total charge enclosed by the surface. Carl Friedrich Gauss (1777–1855) also discovered the

Divergence Theorem, which is sometimes called Gauss’s Theorem.

Summary for Section 19.4

• The boundary of a solid region is the skin between the interior of the region and the space

around it.

• The Divergence Theorem IfW is a solid region with boundaryS given the outward orientation,

and if F⃗ is a smooth vector field on a solid region containing W and S, then

∫S
F⃗ ⋅ dA⃗ =

∫W
div F⃗ dV .

• If F⃗ is a divergence-free vector field, and if S is the boundary of solid region W , then by the

Divergence Theorem

∫S
F⃗ ⋅ dA⃗ =

∫W
div F⃗ dV = 0.
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Exercises and Problems for Section 19.4

EXERCISES

For Exercises 1–5, compute the flux integral ∫
S
F⃗ ⋅ dA⃗ in

two ways, if possible, directly and using the Divergence The-

orem. In each case, S is closed and oriented outward.

1. F⃗ (r⃗ ) = r⃗ and S is the cube enclosing the volume

0 ≤ x ≤ 2, 0 ≤ y ≤ 2, and 0 ≤ z ≤ 2.

2. F⃗ = yj⃗ and S is a closed vertical cylinder of height 2,

with its base a circle of radius 1 on the xy-plane, cen-

tered at the origin.

3. F⃗ = x2 i⃗ +2y2 j⃗ +3z2k⃗ and S is the surface of the box

with faces x = 1, x = 2, y = 0, y = 1, z = 0, z = 1.

4. F⃗ = (z2 + x)i⃗ + (x2 + y)j⃗ + (y2 + z)k⃗ and S is the

closed cylinder x2 + z2 = 1, with 0 ≤ y ≤ 1, oriented

outward.

5. F⃗ = −zi⃗ + xk⃗ and S is a square pyramid with height

3 and base on the xy-plane of side length 1.

In Exercises 6–12, find the flux of the vector field out of the

closed box 0 ≤ x ≤ 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 4.

6. F⃗ = 4i⃗ + 7j⃗ − k⃗

7. G⃗ = yi⃗ + zk⃗

8. H⃗ = xyi⃗ + zj⃗ + yk⃗

9. J⃗ = xy2j⃗ + xk⃗

10. N⃗ = ez i⃗ + sin(xy)k⃗

11. M⃗ = (3x + 4y)i⃗ + (4y + 5z)j⃗ + (5z + 3x)k⃗

12. M⃗ where div M⃗ = xy + 5

PROBLEMS

13. Find the flux of F⃗ = zi⃗ + yj⃗ + xk⃗ out of a sphere of

radius 3 centered at the origin.

14. Find the flux of F⃗ = xyi⃗ + yzj⃗ + zxk⃗ out of a sphere

of radius 1 centered at the origin.

15. Find the flux of F⃗ = x3 i⃗ + y3 j⃗ + z3k⃗ through the

closed surface bounding the solid region x2 + y2 ≤ 4,

0 ≤ z ≤ 5, oriented outward.

16. The region W lies between the spheres x2+y2+z2 = 4

and x2+y2+z2 = 9 and within the cone z =
√

x2 + y2

with z ≥ 0; its boundary is the closed surface, S, ori-

ented outward. Find the flux of F⃗ = x3 i⃗ + y3j⃗ + z3k⃗

out of S.

17. For F⃗ = (2x + sin z)i⃗ + (xz − y)j⃗ + (ex + 2z)k⃗ ,

find the flux of F⃗ out of the closed silo-shaped region

within the cylinder x2 + y2 = 1, below the hemisphere

z = 1 +
√

1 − x2 − y2, and above the xy-plane.

18. Find the flux of F⃗ through the closed cylinder of ra-

dius 2, centered on the z-axis, with 3 ≤ z ≤ 7, if

F⃗ = (x + 3eyz)i⃗ + (ln(x2z2 + 1) + y)j⃗ + zk⃗ .

19. Find the flux of F⃗ = ey
2z2 i⃗ +(tan(0.001x2z2)+y2)j⃗ +

(ln(1 + x2y2) + z2)k⃗ out of the closed box 0 ≤ x ≤ 5,

0 ≤ y ≤ 4, 0 ≤ z ≤ 3.

20. Find the flux of F⃗ = x2 i⃗ + zj⃗ + yk⃗ out of the closed

cone x =
√

y2 + z2, with 0 ≤ x ≤ 1.

21. Find the flux of F⃗ = (ey+xz)i⃗ +(ez+x)j⃗ +(ex+y)k⃗

out of the cube of side 2 bounded by the planes x = −1,

x = 1, y = −1, y = 1, z = 2, and the xy-plane.

22. Find the flux of F⃗ = y2 i⃗ + x3z3j⃗ + 3xzk⃗ out of the

closed region in the first quadrant bounded by the planes

x = y, x = 1, z = 4, and the coordinate planes.

23. For F⃗ = (yez)i⃗ + (xz2 + 2y)j⃗ + (3z− 5x3)k⃗ , find the

flux of F⃗ out of the closed tetrahedron bounded by the

plane x + y + z = 2 and the coordinate planes.

24. For F⃗ = 5xz2 i⃗ + (2xy − ez)j⃗ + (x2 − 2xz)k⃗ , find the

flux of F⃗ out of the closed surface bounded by the cone

z =
√

x2 + y2 and the sphere x2 + y2 + z2 = 1.

25. Suppose F⃗ is a vector field with div F⃗ = 10. Find the

flux of F⃗ out of a cylinder of height a and radius a,

centered on the z-axis and with base in the xy-plane.

26. Let F⃗ = (5x+7y)i⃗ +(7y+9z)j⃗ +(9z+11x)k⃗ , and let

Qi be the flux of F⃗ through the surfaces Si for i =1–4.

Arrange Qi in ascending order, where

(a) S1 is the sphere of radius 2 centered at the origin

(b) S2 is the cube of side 2 centered at the origin and

with sides parallel to the axes

(c) S3 is the sphere of radius 1 centered at the origin

(d) S4 is a pyramid with all four corners lying on S3

27. A cone has its tip at the point (0, 0, 5), and its base is

the disk D, x2 + y2 ≤ 1, in the xy-plane. The surface

of the cone is the curved and slanted face, S, oriented

upward, and the flat base, D, oriented downward. The

flux of the constant vector field F⃗ = ai⃗ + bj⃗ + ck⃗

through S is given by

∫
S

F⃗ ⋅ dA⃗ = 3.22.

Is it possible to calculate ∫
D
F⃗ ⋅ dA⃗ ? If so, give the

answer. If not, explain what additional information you

would need to be able to make this calculation.

28. If V is a volume surrounded by a closed surfaceS, show

that
1

3
∫
S
r⃗ ⋅ dA⃗ = V .

29. A vector field F⃗ satisfies divF⃗ = 0 everywhere. Show

that ∫
S
F⃗ ⋅ dA⃗ = 0 for every closed surface S.
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30. Let S be the cube in the first quadrant with side 2, one

corner at the origin and edges parallel to the axes. Let

F⃗ 1 = (xy2 + 3xz2)i⃗ + (3x2y + 2yz2)j⃗ + 3zy2k⃗

F⃗ 2 = (xy2 + 5eyz)i⃗ + (yz2 + 7 sin(xz))j⃗ + (x2z + cos(xy))k⃗

F⃗ 3 =

(

xz2 +
x3

3

)

i⃗ +

(

yz2 +
y3

3

)

j⃗ +

(

zy2 +
z3

3

)

k⃗ .

Arrange the flux integrals of F⃗ 1, F⃗ 2, F⃗ 3 out of S in

increasing order.

31. Let div F⃗ = 2(6 − x) and 0 ≤ a, b, c ≤ 10.

(a) Find the flux of F⃗ out of the rectangular box given

by 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c.

(b) For what values of a, b, c is the flux largest? What

is that largest flux?

32. (a) Find div(r⃗ ∕||r⃗ ||2) where r⃗ = xi⃗ + yj⃗ for r⃗ ≠ 0⃗ .

(b) Can you use the Divergence Theorem to compute

the flux of r⃗ ∕||r⃗ ||2 out of a closed cylinder of ra-

dius 1, length 2, centered at the origin, and with its

axis along the z-axis?

(c) Compute the flux of r⃗ ∕||r⃗ ||2 out of the cylinder in

part (b).

(d) Find the flux of r⃗ ∕||r⃗ ||2 out of a closed cylinder of

radius 2, length 2, centered at the origin, and with

its axis along the z-axis.

33. Let r⃗ = xi⃗ + yj⃗ + zk⃗ and let F⃗ be the vector field

given by

F⃗ =
r⃗

||r⃗ ||3
.

(a) Find the flux of F⃗ out of the sphere x2+y2+z2 = 1

oriented outward.

(b) Calculate div F⃗ . Show your work and simplify

your answer completely.

(c) Use your answers to parts (a) and (b) to calculate

the flux out of a box of side 10 centered at the ori-

gin and with sides parallel to the coordinate planes.

(The box is also oriented outward.)

In Problems 34–35, find the flux of F⃗ = r⃗ ∕||r⃗ ||3 through

the surface. [Hint: Use the method of Problem 33.]

34. S is the ellipsoid x2 + 2y2 + 3z2 = 6.

35. S is the closed cylinder y2 + z2 = 4, −2 ≤ x ≤ 2.

36. (a) Let div F⃗ = x2+y2+z2+3. Calculate ∫
S1
F⃗ ⋅dA⃗

where S1 is the sphere of radius 1 centered at the

origin.

(b) Let S2 be the sphere of radius 2 centered at the

origin; let S3 be the sphere of radius 3 centered at

the origin; let S4 be the box of side 6 centered at

the origin with edges parallel to the axes. Without

calculating them, arrange the following integrals in

increasing order:

∫
S2

F⃗ ⋅ dA⃗ ,
∫
S3

F⃗ ⋅ dA⃗ ,
∫
S4

F⃗ ⋅ dA⃗ .

37. Suppose div F⃗ = xyz2.

(a) Find div F⃗ at the point (1, 2, 1). [Note: You are

given div F⃗ , not F⃗ .]

(b) Using your answer to part (a), but no other infor-

mation about the vector field F⃗ , estimate the flux

out of a small box of side 0.2 centered at the point

(1, 2, 1) and with edges parallel to the axes.

(c) Without computing the vector field F⃗ , calculate

the exact flux out of the box.

38. Suppose div F⃗ = x2+y2+3. Find a surface S such that

∫
S
F⃗ ⋅ dA⃗ is negative, or explain why no such surface

exists.

39. As a result of radioactive decay, heat is generated uni-

formly throughout the interior of the earth at a rate of

30 watts per cubic kilometer. (A watt is a rate of heat

production.) The heat then flows to the earth’s surface

where it is lost to space. Let F⃗ (x, y, z) denote the rate

of flow of heat measured in watts per square kilome-

ter. By definition, the flux of F⃗ across a surface is the

quantity of heat flowing through the surface per unit of

time.

(a) What is the value of div F⃗ ? Include units.

(b) Assume the heat flows outward symmetrically.

Verify that F⃗ = �r⃗ , where r⃗ = xi⃗ +yj⃗ +zk⃗ and

� is a suitable constant, satisfies the given condi-

tions. Find �.

(c) Let T (x, y, z) denote the temperature inside the

earth. Heat flows according to the equation F⃗ =

−k grad T , where k is a constant. Explain why this

makes sense physically.

(d) If T is in ◦C, then k = 30,000 watts/km◦C. Assum-

ing the earth is a sphere with radius 6400 km and

surface temperature 20◦C, what is the temperature

at the center?

40. If a surface S is submerged in an incompressible fluid,

a force F⃗ is exerted on one side of the surface by the

pressure in the fluid. If the z-axis is vertical, with the

positive direction upward and the fluid level at z = 0,

then the component of force in the direction of a unit

vector u⃗ is given by the following:

F⃗ ⋅ u⃗ = −
∫
S

z�gu⃗ ⋅ dA⃗ ,

where � is the density of the fluid (mass/volume), g

is the acceleration due to gravity, and the surface is

oriented away from the side on which the force is ex-

erted. In this problem we consider a totally submerged

closed surface enclosing a volume V . We are interested

in the force of the liquid on the external surface, so S is

oriented inward. Use the Divergence Theorem to show

that:

(a) The force in the i⃗ and j⃗ directions is zero.

(b) The force in the k⃗ direction is �gV , the weight of

the volume of fluid with the same volume as V .

This is Archimedes’ Principle.
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41. According to Coulomb’s Law, the electrostatic field E⃗

at the point r⃗ due to a charge q at the origin is given by

E⃗ (r⃗ ) = q
r⃗

‖r⃗ ‖3
.

(a) Compute div E⃗ .

(b) Let Sa be the sphere of radius a centered at the ori-

gin and oriented outward. Show that the flux of E⃗

through Sa is 4�q.

(c) Could you have used the Divergence Theorem in

part (b)? Explain why or why not.

(d) LetS be an arbitrary, closed, outward-oriented sur-

face surrounding the origin. Show that the flux of

E⃗ through S is again 4�q. [Hint: Apply the Diver-

gence Theorem to the solid region lying between a

small sphere Sa and the surface S.]

42. According to Coulomb’s Law, the electric field E⃗ at the

point r⃗ due to a charge q at the point r⃗ 0 is given by

E⃗ (r⃗ ) = q
(r⃗ − r⃗ 0)

‖r⃗ − r⃗ 0‖
3
.

Suppose S is a closed, outward-oriented surface and

that r⃗ 0 does not lie on S. Use Problem 41 to show that

∫
S

E⃗ ⋅ dA⃗ =

{

4�q if q lies inside S,

0 if q lies outside S.

Strengthen Your Understanding

In Problems 43–44, explain what is wrong with the state-

ment.

43. The flux integral ∫
S
F⃗ ⋅ dA⃗ can be evaluated using the

Divergence Theorem, where F⃗ = 2xi⃗ − 3j⃗ and S

is the triangular surface with corners (1, 0, 0), (0, 1, 0),

(0, 0, 1) oriented away from the origin.

44. If S is the boundary of a solid region W , where S is

oriented outward, and F⃗ is a vector field, then

∫
S

div F⃗ dA⃗ =
∫
W

F⃗ dV .

In Problems 45–46, give an example of:

45. A surface S that is the boundary of a solid region such

that ∫
S
F⃗ ⋅ dA⃗ = 0 if F⃗ (x, y, z) = yi⃗ + xzj⃗ + y2k⃗ .

46. A vector field F⃗ such that the flux of F⃗ out of a sphere

of radius 1 centered at the origin is 3.

Are the statements in Problems 47–51 true or false? The

smooth vector field F⃗ is defined everywhere in 3-space and

has constant divergence equal to 4.

47. The field F⃗ has a net inflow per unit volume at the

point (−3, 4, 0).

48. The vector field F⃗ could be F⃗ = xi⃗ + (3y)j⃗ + (y −

5x)k⃗ .

49. The vector field F⃗ could be a constant field.

50. The flux of F⃗ through a circle of radius 5 lying any-

where on the xy-plane and oriented upward is 4(�52).

51. The flux of F⃗ through a closed cylinder of radius 1 cen-

tered along the y-axis, 0 ≤ y ≤ 3 and oriented outward

is 4(3�).

Are the statements in Problems 52–59 true or false? Give

reasons for your answer.

52. ∫
S
F⃗ ⋅ dA⃗ = div F⃗ .

53. If F⃗ is a divergence-free vector field in 3-space and S is

a closed surface oriented inward, then ∫
S
F⃗ ⋅ dA⃗ = 0.

54. If F⃗ is a vector field in 3-space satisfying div F⃗ =

1, and S is a closed surface oriented outward, then

∫
S
F⃗ ⋅ dA⃗ is equal to the volume enclosed by S.

55. Let W be the solid region between the sphere S1 of ra-

dius 1 and S2 of radius 2, both centered at the origin

and oriented outward. If F⃗ is a vector field in 3-space,

then ∫
W
div F⃗ dV = ∫

S2
F⃗ ⋅ dA⃗ − ∫

S1
F⃗ ⋅ dA⃗ .

56. Let S1 be the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0 ori-

ented downward and letS2 be the square 0 ≤ x ≤ 1, 0 ≤

y ≤ 1, z = 1 oriented upward. If F⃗ is a vector field,

then ∫
W
div F⃗ dV = ∫

S2
F⃗ ⋅ dA⃗ + ∫

S1
F⃗ ⋅ dA⃗ , where

W is the solid cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

57. Let S1 be the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0 ori-

ented downward and letS2 be the square 0 ≤ x ≤ 1, 0 ≤

y ≤ 1, z = 1 oriented upward. If F⃗ = cos(xyz)k⃗ , then

∫
W
div F⃗ dV = ∫

S2
F⃗ ⋅ dA⃗ + ∫

S1
F⃗ ⋅ dA⃗ , where W

is the solid cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

58. If S is a sphere of radius 1, centered at the origin,

oriented outward, and F⃗ is a vector field satisfying

∫
S
F⃗ ⋅ dA⃗ = 0, then div F⃗ = 0 at all points inside

S.

59. Let Sℎ be the surface consisting of a cylinder of height

ℎ, closed at the top. The curved sides are x2 + y2 = 1,

for 0 ≤ z ≤ ℎ, and the top x2 + y2 ≤ 1, for z = ℎ, ori-

ented outward. If F⃗ is divergence free, then ∫
Sℎ

F⃗ ⋅dA⃗

is independent of the height ℎ.
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20.1 THE CURL OF A VECTOR FIELD

The divergence is a scalar derivative which measures the outflow of a vector field per unit volume.

Now we introduce a vector derivative, the curl, which measures the circulation of a vector field.

Imagine holding the paddle-wheel in Figure 20.1 in the flow shown by Figure 20.2. The speed at

which the paddle-wheel spins measures the strength of circulation. Notice that the angular velocity

depends on the direction in which the stick is pointing. If the stick is pointing horizontally the paddle-

wheel does not spin; if the stick is vertical, the paddle-wheel spins.

Figure 20.1: A device for

measuring circulation

Figure 20.2: A vector field (in the planes z = 1,

z = 2, z = 3) with circulation about the z-axis

Circulation Density

We measure the strength of the circulation using a closed curve. Suppose C is a circle with center

P = (x, y, z) in the plane perpendicular to n⃗ , traversed in the direction determined from n⃗ by the

right-hand rule. (See Figures 20.3 and 20.4.)

P

C

n⃗

Figure 20.3: Direction of C relates to

direction of n⃗ by the right-hand rule

Figure 20.4: When the thumb points in the direction of n⃗ ,

the fingers curl in the forward direction around C

We make the following definition:

The circulation density of a smooth vector field F⃗ at (x, y, z) around the direction of the

unit vector n⃗ is defined, provided the limit exists, to be

circn⃗ F⃗ (x, y, z) = lim
Area→0

Circulation around C

Area inside C
= lim

Area→0

∫C
F⃗ ⋅ dr⃗

Area inside C
.

The circle C is in the plane perpendicular to n⃗ and oriented by the right-hand rule.

We can use other closed curves for C, such as rectangles, that lie in a plane perpendicular to n⃗

and include the point (x, y, z).

The circulation density determines the angular velocity of the paddle-wheel in Figure 20.1 pro-

vided you could make one sufficiently small and light and insert it without disturbing the flow.
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Example 1 Consider the vector field F⃗ in Figure 20.2. Suppose that F⃗ is parallel to the xy-plane and that at a

distance r from the z-axis it has magnitude 2r. Calculate circn⃗ F⃗ at the origin for

(a) n⃗ = k⃗ (b) n⃗ = −k⃗ (c) n⃗ = i⃗ .

Solution (a) Take a circle C of radius a in the xy-plane, centered at the origin, traversed in a direction deter-

mined from k⃗ by the right-hand rule. Then, since F⃗ is tangent to C everywhere and points in

the forward direction around C , we have

Circulation around C =
∫C

F⃗ ⋅ dr⃗ = ‖F⃗ ‖ ⋅ Circumference of C = 2a(2�a) = 4�a2.

Thus, the circulation density is

circ
k⃗
F⃗ = lim

a→0

Circulation around C

Area inside C
= lim
a→0

4�a2

�a2
= 4.

(b) If n⃗ = −k⃗ the circle is traversed in the opposite direction, so the line integral changes sign.

Thus,

circ
−k⃗

F⃗ = −4.

(c) The circulation around i⃗ is calculated using circles in the yz-plane. Since F⃗ is everywhere

perpendicular to such a circle C ,

∫C
F⃗ ⋅ dr⃗ = 0.

Thus, we have

circ
i⃗
F⃗ = lim

a→0

∫
C
F⃗ ⋅ dr⃗

�a2
= lim
a→0

0

�a2
= 0.

Definition of the Curl

Example 1 shows that the circulation density of a vector field can be positive, negative, or zero,

depending on the direction. We assume that there is one direction in which the circulation density is

greatest and define a single vector quantity that incorporates all these different circulation densities.

We give two definitions, one geometric and one algebraic, which turn out to lead to the same result.

Geometric Definition of Curl

The curl of a smooth vector field F⃗ , written curl F⃗ , is the vector field with the following

properties:

• The direction of curl F⃗ (x, y, z) is the direction n⃗ for which circn⃗ F⃗ (x, y, z) is the greatest.

• The magnitude of curl F⃗ (x, y, z) is the circulation density of F⃗ around that direction.

If the circulation density is zero around every direction, then we define the curl to be 0⃗ .

Cartesian Coordinate Definition of Curl

If F⃗ = F1 i⃗ + F2j⃗ + F3k⃗ , then

curl F⃗ =

(

)F3

)y
−
)F2

)z

)

i⃗ +

(

)F1

)z
−
)F3

)x

)

j⃗ +

(

)F2

)x
−
)F1

)y

)

k⃗ .
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The cross-product formula gives an easy way to remember the Cartesian coordinate definition

and suggests another common notation for curl F⃗ , namely ∇ × F⃗ . Using ∇ =
)

)x
i⃗ +

)

)y
j⃗ +

)

)z
k⃗ ,

we can write

curl F⃗ = ∇ × F⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗
)

)x

)

)y

)

)z

F1 F2 F3

|

|

|

|

|

|

|

|

.

Example 2 For each field in Figure 20.5, use the sketch and the geometric definition to decide whether the curl

at the origin appears to point up or down, or to be the zero vector. Then check your answer using

the coordinate definition of curl and the formulas in the caption of Figure 20.5. Note that the vector

fields have no k⃗ -components and are independent of z.

x

y(a) y

x

(b)

x

y(c)

Figure 20.5: Sketches in the xy-plane of (a) F⃗ = xi⃗ + yj⃗ (b) F⃗ = yi⃗ − xj⃗ (c) F⃗ = −(y + 1)i⃗

Solution (a) This vector field shows no rotation, and the circulation around any circle in the xy-plane centered

at the origin appears to be zero, so we suspect that the circulation density around k⃗ is zero. The

coordinate definition of curl gives

curl F⃗ =

(

)(0)

)y
−
)y

)z

)

i⃗ +

(

)x

)z
−
)(0)

)x

)

j⃗ +

(

)y

)x
−
)x

)y

)

k⃗ = 0⃗ .

(b) This vector field appears to be rotating around the z-axis. By the right-hand rule, the circulation

density around k⃗ is negative, so we expect the z-component of the curl to point down. The

coordinate definition gives

curl F⃗ =

(

)(0)

)y
−
)(−x)

)z

)

i⃗ +

(

)y

)z
−
)(0)

)x

)

j⃗ +

(

)(−x)

)x
−
)y

)y

)

k⃗ = −2k⃗ .

(c) At first glance, you might expect this vector field to have zero curl, as all the vectors are parallel

to the x-axis. However, if you find the circulation around the curve C in Figure 20.6, the sides

contribute nothing (they are perpendicular to the vector field), the bottom contributes a negative

quantity (the curve is in the opposite direction to the vector field), and the top contributes a larger

positive quantity (the curve is in the same direction as the vector field and the magnitude of the

vector field is larger at the top than at the bottom). Thus, the circulation aroundC is positive and

hence we expect the curl to be nonzero and point up. The coordinate definition gives

curl F⃗ =

(

)(0)

)y
−
)(0)

)z

)

i⃗ +

(

)(−(y + 1))

)z
−
)(0)

)x

)

j⃗ +

(

)(0)

)x
−
)(−(y + 1))

)y

)

k⃗ = k⃗ .

Another way to see that the curl is nonzero in this case is to imagine the vector field representing

the velocity of moving water. A boat sitting in the water tends to rotate, as the water moves faster

on one side than the other.
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C

x

y

Figure 20.6: Rectangular curve in xy-plane

!⃗

r⃗

v⃗
P

Figure 20.7: Rotating flywheel

Example 3 A flywheel is rotating with angular velocity !⃗ and the velocity of a point P with position vector r⃗

is given by v⃗ = !⃗ × r⃗ . (See Figure 20.7.) Calculate curl v⃗ .

Solution If !⃗ = !1i⃗ + !2j⃗ + !3k⃗ , using the determinant notation introduced in Section 13.4, we have

v⃗ = !⃗ × r⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

!1 !2 !3

x y z

|

|

|

|

|

|

|

|

= (!2z − !3y)i⃗ + (!3x − !1z)j⃗ + (!1y − !2x)k⃗ .

The curl formula can also be written using a determinant:

curl v⃗ =

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗
)

)x

)

)y

)

)z

!2z − !3y !3x − !1z !1y − !2x

|

|

|

|

|

|

|

|

=

(

)

)y
(!1y − !2x) −

)

)z
(!3x − !1z)

)

i⃗ +

(

)

)z
(!2z − !3y) −

)

)x
(!1y − !2x)

)

j⃗

+

(

)

)x
(!3x − !1z) −

)

)y
(!2z − !3y)

)

k⃗

= 2!1i⃗ + 2!2j⃗ + 2!3k⃗ = 2!⃗ .

Thus, as we would expect, curl v⃗ is parallel to the axis of rotation of the flywheel (namely, the

direction of !⃗ ) and the magnitude of curl v⃗ is larger the faster the flywheel is rotating (that is, the

larger the magnitude of !⃗ ).

Why Do the Two Definitions of Curl Give the Same Result?

Using Green’s Theorem in Cartesian coordinates, we can show that for curl F⃗ defined in Cartesian

coordinates,

curl F⃗ ⋅ n⃗ = circn⃗ F⃗ .

This shows that curl F⃗ defined in Cartesian coordinates satisfies the geometric definition, since the

left-hand side takes its maximum value when n⃗ points in the same direction as curl F⃗ , and in that

case its value is ‖ curl F⃗ ‖.

The following example justifies this formula in a specific case.

Example 4 Use the definition of curl in Cartesian coordinates and Green’s Theorem to show that

(

curl F⃗
)

⋅ k⃗ = circ
k⃗
F⃗ .
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Solution Using the definition of curl in Cartesian coordinates, the left-hand side of the formula is

(

curl F⃗
)

⋅ k⃗ =
)F2

)x
−
)F1

)y
.

Now let’s look at the right-hand side. The circulation density around k⃗ is calculated using circles

perpendicular to k⃗ ; hence, the k⃗ -component of F⃗ does not contribute to it; that is, the circulation

density of F⃗ around k⃗ is the same as the circulation density of F1 i⃗ + F2 j⃗ around k⃗ . But in any

plane perpendicular to k⃗ , z is constant, so in that plane F1 and F2 are functions of x and y alone.

Thus, F1 i⃗ +F2 j⃗ can be thought of as a two-dimensional vector field on the horizontal plane through

the point (x, y, z) where the circulation density is being calculated. Let C be a circle in this plane,

with radius a and centered at (x, y, z), and let R be the region enclosed by C . Green’s Theorem says

that

∫C
(F1i⃗ + F2 j⃗ ) ⋅ dr⃗ =

∫R

(

)F2

)x
−
)F1

)y

)

dA.

When the circle is small, )F2∕)x − )F1∕)y is approximately constant on R, so

∫R

(

)F2

)x
−
)F1

)y

)

dA ≈

(

)F2

)x
−
)F1

)y

)

⋅ Area of R =

(

)F2

)x
−
)F1

)y

)

�a2.

Thus, taking a limit as the radius of the circle goes to zero, we have

circ
k⃗
F⃗ (x, y, z) = lim

a→0

∫C
(F1i⃗ + F2j⃗ ) ⋅ dr⃗

�a2
= lim
a→0

∫R

(

)F2

)x
−
)F1

)y

)

dA

�a2
=
)F2

)x
−
)F1

)y
.

Curl-Free Vector Fields
A vector field is said to be curl free or irrotational if curl F⃗ = 0⃗ everywhere that F⃗ is defined.

Example 5 Figure 20.8 shows the vector field B⃗ for three values of the constant p, where B⃗ is defined on 3-space

by

B⃗ =
−yi⃗ + xj⃗

(x2 + y2)p∕2
.

(a) Find a formula for curl B⃗ .

(b) Is there a value of p for which B⃗ is curl free? If so, find it.

Figure 20.8: The vector field B⃗ (r⃗ ) = (−yi⃗ + xj⃗ )∕(x2 + y2)p∕2 for p = 0, 2, and 4
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Solution (a) We can use the following version of the product rule for curl. If � is a scalar function and F⃗ is

a vector field, then

curl(�F⃗ ) = � curl F⃗ + (grad�) × F⃗ .

(See Problem 32 on page 1063.) We write B⃗ = �F⃗ =
1

(x2 + y2)p∕2
(−yi⃗ + xj⃗ ). Then

curl F⃗ = curl(−yi⃗ + xj⃗ ) = 2k⃗

grad� = grad

(

1

(x2 + y2)p∕2

)

=
−p

(x2 + y2)(p∕2)+1
(xi⃗ + yj⃗ ).

Thus, we have

curl B⃗ =
1

(x2 + y2)p∕2
curl(−yi⃗ + xj⃗ ) + grad

(

1

(x2 + y2)p∕2

)

× (−yi⃗ + xj⃗ )

=
1

(x2 + y2)p∕2
2k⃗ +

−p

(x2 + y2)(p∕2)+1
(xi⃗ + yj⃗ ) × (−yi⃗ + xj⃗ )

=
1

(x2 + y2)p∕2
2k⃗ +

−p

(x2 + y2)(p∕2)+1
(x2 + y2)k⃗

=
2 − p

(x2 + y2)p∕2
k⃗ .

(b) The curl is zero when p = 2. Thus, when p = 2 the vector field is curl free:

B⃗ =
−yi⃗ + xj⃗

x2 + y2
.

Summary for Section 20.1

• The circulation density of F⃗ at (x, y, z) around the direction given by n⃗ is

circn⃗ F⃗ (x, y, z) = lim
Area→0

Circulation around C

Area inside C
= lim

Area→0

∫C
F⃗ ⋅ dr⃗

Area inside C
,

where the circle C is in the plane perpendicular to n⃗ and oriented by the right-hand rule.

• Geometric definition of the curl: The curl of a smooth vector field F⃗ is the vector field with

the properties:

∙ The direction of curl F⃗ (x, y, z) is the direction n⃗ for which circn⃗ F⃗ (x, y, z) is the greatest.

∙ The magnitude of curl F⃗ (x, y, z) is the circulation density of F⃗ around that direction.

• Cartesian-coordinate definition of the curl: If F⃗ = F1i⃗ + F2 j⃗ + F3k⃗ , then

curl F⃗ =

(

)F3

)y
−
)F2

)z

)

i⃗ +

(

)F1

)z
−
)F3

)x

)

j⃗ +

(

)F2

)x
−
)F1

)y

)

k⃗ .

• A vector field is curl free or irrotational if curl F⃗ = 0⃗ everywhere that F⃗ is defined.
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Exercises and Problems for Section 20.1 Online Resource: Additional Problems for Section 20.1
EXERCISES

In Exercises 1–5, is the quantity a vector or a scalar? Calcu-

late it.

1. curl(zi⃗ − xj⃗ + yk⃗ )

2. circi⃗ (zi⃗ − xj⃗ + yk⃗ )

3. curl(−2zi⃗ − zj⃗ + xyk⃗ )

4. circ
k⃗
(−2zi⃗ − zj⃗ + xyk⃗ )

5. curl(xi⃗ + yj⃗ + zk⃗ )

In Exercises 6–13, compute the curl of the vector field.

6. F⃗ = 3xi⃗ − 5zj⃗ + yk⃗

7. F⃗ = (x2 − y2)i⃗ + 2xyj⃗

8. F⃗ = (−x + y)i⃗ + (y + z)j⃗ + (−z + x)k⃗

9. F⃗ = 2yzi⃗ + 3xzj⃗ + 7xyk⃗

10. F⃗ = x2 i⃗ + y3j⃗ + z4k⃗

11. F⃗ = ex i⃗ + cos yj⃗ + ez
2
k⃗

12. F⃗ = (x + yz)i⃗ + (y2 + xzy)j⃗ + (zx3y2 + x7y6)k⃗

13. F⃗ (r⃗ ) = r⃗ ∕‖r⃗ ‖

In Exercises 14–17, does the vector field appear to have

nonzero curl at the origin? The vector field is shown in the

xy-plane; it has no z-component and is independent of z.

14.

x

y 15.

x

y

16.

x

y 17.

x

y

PROBLEMS

18. Let F⃗ be the vector field in Figure 20.2 on page 1056.

It is rotating counterclockwise around the z-axis when

viewed from above. At a distance r from the z-axis, F⃗

has magnitude 2r.

(a) Find a formula for F⃗ .

(b) Find curl F⃗ using the coordinate definition and re-

late your answer to circulation density.

19. Use the geometric definition to find the curl of the vec-

tor field F⃗ (r⃗ ) = r⃗ . Check your answer using the coor-

dinate definition.

20. A smooth vector field G⃗ has curl G⃗ (0, 0, 0) = 2i⃗ −

3j⃗ +5k⃗ . Estimate the circulation around a circle of ra-

dius 0.01 centered at the origin in each of the following

planes:

(a) xy-plane, oriented counterclockwise when viewed

from the positive z-axis.

(b) yz-plane, oriented counterclockwise when viewed

from the positive x-axis.

(c) xz-plane, oriented counterclockwise when viewed

from the positive y-axis.

21. Three small circles, C1, C2, and C3, each with radius

0.1 and centered at the origin, are in the xy-, yz-, and

xz-planes, respectively. The circles are oriented coun-

terclockwise when viewed from the positive z-, x-, and

y-axes, respectively. A vector field, F⃗ , has circulation

around C1 of 0.02�, around C2 of 0.5�, and around C3

of 3�. Estimate curl F⃗ at the origin.

22. Using your answers to Exercises 10–11, make a conjec-

ture about a particular form of the vector field F⃗ ≠ 0⃗

that has curl F⃗ = 0⃗ . What form? Show why your con-

jecture is true.

23. (a) Find curl G⃗ if G⃗ = (ay3 + bez)i⃗ + (cz+ dx2)j⃗ +

(e sin x + fy)k⃗ and a, b, c, d, e, f are constants.

(b) If curl G⃗ is everywhere parallel to the yz-plane,

what can you say about the constants a–f?

(c) If curl G⃗ is everywhere parallel to the z-axis, what

can you say about the constants a–f?

24. Figure 20.9 gives a sketch of the velocity vector field

F⃗ = yi⃗ + xj⃗ in the xy-plane.

(a) What is the direction of rotation of a thin twig

placed at the origin along the x-axis?

(b) What is the direction of rotation of a thin twig

placed at the origin along the y-axis?

(c) Compute curl F⃗ .

x

y

Figure 20.9
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25. A tornado is formed when a tube of air circling a hori-

zontal axis is tilted up vertically by the updraft from a

thunderstorm. If t is time, this process can be modeled

by the wind velocity field

F⃗ (t, x, y, z) = (cos tj⃗ +sin tk⃗ )× r⃗ and 0 ≤ t ≤
�

2
.

Determine the direction of curl F⃗ :

(a) At t = 0 (b) At t = �∕2

(c) For 0 < t < �∕2

26. A large fire becomes a firestorm when the nearby air

acquires a circulatory motion. The associated updraft

has the effect of bringing more air to the fire, causing it

to burn faster. Records show that a firestorm developed

during the Chicago Fire of 1871 and during the Second

World War bombing of Hamburg, Germany, but there

was no firestorm during the Great Fire of London in

1666. Explain how a firestorm could be identified us-

ing the curl of a vector field.

27. A vortex that rotates at constant angular velocity !

about the z-axis has velocity vector field v⃗ = !(−yi⃗ +

xj⃗ ).

(a) Sketch the vector field with ! = 1 and the vector

field with ! = −1.

(b) Determine the speed ‖v⃗ ‖ of the vortex as a func-

tion of the distance from its center.

(c) Compute div v⃗ and curl v⃗ .

(d) Compute the circulation of v⃗ counterclockwise

about the circle of radius R in the xy-plane, cen-

tered at the origin.

28. A central vector field is one of the form F⃗ = f (r)r⃗

where f is any function of r = ‖r⃗ ‖. Show that any

central vector field is irrotational.

29. Show that curl (F⃗ + C⃗ ) = curl F⃗ for a constant vector

field C⃗ .

30. If F⃗ is any vector field whose components have contin-

uous second partial derivatives, show div curl F⃗ = 0.

31. We have seen that the Fundamental Theorem of Calcu-

lus for Line Integrals implies ∫
C
grad f ⋅dr⃗ = 0 for any

smooth closed path C and any smooth function f .

(a) Use the geometric definition of curl to deduce that

curl grad f = 0⃗ .

(b) Show that curl grad f = 0⃗ using the coordinate

definition.

32. Show that curl (�F⃗ ) = � curl F⃗ + (grad�) × F⃗ for a

scalar function � and a vector field F⃗ .

33. Show that if F⃗ = f grad g for some scalar functions f

and g, then curl F⃗ is everywhere perpendicular to F⃗ .

Strengthen Your Understanding

In Problems 34–35, explain what is wrong with the state-

ment.

34. A vector field F⃗ has curl given by curl F⃗ = 2x − 3y.

35. If all the vectors of a vector field F⃗ are parallel, then

curl F⃗ = 0⃗ .

In Problems 36–37, give an example of:

36. A vector field F⃗ (x, y, z) such that curl F⃗ = 0⃗ .

37. A vector field F⃗ (x, y, z) such that curl F⃗ = j⃗ .

In Problems 38–46, is the statement true or false? Assume

F⃗ and G⃗ are smooth vector fields and f is a smooth function

on 3-space. Explain.

38. The circulation density, circn⃗ F⃗ (x, y, z), is a scalar.

39. curl grad f = 0.

40. If F⃗ is a vector field with divF⃗ = 0 and curlF⃗ = 0⃗ ,

then F⃗ = 0⃗ .

41. If F⃗ and G⃗ are vector fields, then curl(F⃗ + G⃗ ) =

curlF⃗ + curlG⃗ .

42. If F⃗ and G⃗ are vector fields, then curl(F⃗ ⋅ G⃗ ) =

curlF⃗ ⋅ curlG⃗ .

43. If F⃗ and G⃗ are vector fields, then curl(F⃗ × G⃗ ) =

(curlF⃗ ) × (curlG⃗ ).

44. curl(fG⃗ ) = (grad f ) × G⃗ + f (curl G⃗ ).

45. For any vector field F⃗ , the curl of F⃗ is perpendicular

at every point to F⃗ .

46. If F⃗ is as shown in Figure 20.10, then curl F⃗ ⋅ j⃗ > 0.

Figure 20.10

47. Of the following vector fields, which ones have a curl

which is parallel to one of the axes? Which axis?

(a) yi⃗ −xj⃗ +zk⃗ (b) yi⃗ +zj⃗ +xk⃗ (c) −zi⃗ +yj⃗ +xk⃗

(d) xi⃗ +zj⃗ −yk⃗ (e) zi⃗ +xj⃗ +yk⃗
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20.2 STOKES’ THEOREM

The Divergence Theorem says that the integral of the flux density over a solid region is equal to the

flux through the surface bounding the region. Similarly, Stokes’ Theorem says that the integral of

the circulation density over a surface is equal to the circulation around the boundary of the surface.

The Boundary of a Surface

The boundary of a surface S is the curve or curves running around the edge of S (like the hem

around the edge of a piece of cloth). An orientation of S determines an orientation for its boundary,

C , as follows. Pick a positive normal vector n⃗ on S, nearC , and use the right-hand rule to determine

a direction of travel around n⃗ . This in turn determines a direction of travel around the boundary C .

See Figure 20.11. Another way of describing the orientation on C is that someone walking along C

in the forward direction, body upright in the direction of the positive normal on S, would have the

surface on their left. Notice that the boundary can consist of two or more curves, as the surface on

the right in Figure 20.11 shows.

n⃗

S
C C

C

S

n⃗

n⃗

Figure 20.11: Two oriented surfaces and their boundaries

Calculating the Circulation from the Circulation Density

Consider a closed, oriented curveC in 3-space. We can find the circulation of a vector field F⃗ around

C by calculating the line integral:

Circulation

around C
=
∫C

F⃗ ⋅ dr⃗ .

If C is the boundary of an oriented surface S, there is another way to calculate the circulation using

curl F⃗ . We subdivide S into pieces as shown on the surface on the left in Figure 20.11. If n⃗ is

a positive unit normal vector to a piece of surface with area ΔA, then ΔA⃗ = n⃗ΔA. In addition,

circn⃗ F⃗ is the circulation density of F⃗ around n⃗ , so

Circulation of F⃗ around

boundary of the piece
≈
(

circn⃗ F⃗
)

ΔA = ((curl F⃗ ) ⋅ n⃗ )ΔA = (curlF⃗ ) ⋅ ΔA⃗ .

Next we add up the circulations around all the small pieces. The line integral along the common edge

of a pair of adjacent pieces appears with opposite sign in each piece, so it cancels out. (See Figure

20.12.) When we add up all the pieces the internal edges cancel and we are left with the circulation

around C , the boundary of the entire surface. Thus,

Circulation

around C
=
∑ Circulation around

boundary of pieces
≈
∑

curl F⃗ ⋅ ΔA⃗ .

Taking the limit as ΔA → 0, we get

Circulation

around C
=
∫S

curl F⃗ ⋅ dA⃗ .
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Figure 20.12: Two adjacent pieces of the surface

We have expressed the circulation as a line integral aroundC and as a flux integral over S; thus,

the two integrals must be equal. Hence we have1

Theorem 20.1: Stokes’ Theorem

If S is a smooth oriented surface with piecewise smooth, oriented boundary C , and if F⃗ is a

smooth vector field on a solid region2 containing S and C , then

∫C
F⃗ ⋅ dr⃗ =

∫S
curl F⃗ ⋅ dA⃗ .

The orientation of C is determined from the orientation of S according to the right-hand rule.

Example 1 Let F⃗ (x, y, z) = −2yi⃗ + 2xj⃗ . Use Stokes’ Theorem to find ∫
C
F⃗ ⋅ dr⃗ , where C is a circle.

(a) Parallel to the yz-plane, of radius a, centered at a point on the x-axis, with either orientation.

(b) Parallel to the xy-plane, of radius a, centered at a point on the z-axis, oriented counterclockwise

as viewed from a point on the z-axis above the circle.

Solution We have curl F⃗ = 4k⃗ . Figure 20.13 shows sketches of F⃗ and curl F⃗ .

(a) Let S be the disk enclosed by C . Since S lies in a vertical plane and curl F⃗ points vertically

everywhere, the flux of curl F⃗ through S is zero. Hence, by Stokes’ Theorem,

∫C
F⃗ ⋅ dr⃗ =

∫S
curl F⃗ ⋅ dA⃗ = 0.

It makes sense that the line integral is zero. If C is parallel to the yz-plane (even if it is not lying

in the plane), the symmetry of the vector field means that the line integral of F⃗ over the top half

of the circle cancels the line integral over the bottom half.

Figure 20.13: The vector fields F⃗ and curl F⃗ (in the planes z = −1, z = 0, z = 1)

1A proof of Stokes’ Theorem using the coordinate definition of curl can be found in the online supplement at

www.WileyPLUS.com.
2The region containing S and C is open.
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(b) Let S be the horizontal disk enclosed by C . Since curl F⃗ is a constant vector field pointing in

the direction of k⃗ , we have, by Stokes’ Theorem,

∫C
F⃗ ⋅ dr⃗ =

∫S
curl F⃗ ⋅ dA⃗ = ‖ curl F⃗ ‖ ⋅ Area of S = 4�a2.

Since F⃗ is circling around the z-axis in the same direction as C , we expect the line integral to

be positive. In fact, in Example 1 on page 1057, we computed this line integral directly.

Curl-Free Vector Fields

Stokes’ Theorem applies to any oriented surface S and its boundary C , even in cases where the

boundary consists of two or more curves. This is useful in studying curl-free vector fields.

Example 2 A current I flows along the z-axis in the k⃗ direction. The induced magnetic field B⃗ (x, y, z) is

B⃗ (x, y, z) =
2I

c

(

−yi⃗ + xj⃗

x2 + y2

)

,

where c is the speed of light. Example 5 on page 1060 shows that curl B⃗ = 0⃗ .

(a) Compute the circulation of B⃗ around the circle C1 in the xy-plane of radius a, centered at the

origin, and oriented counterclockwise when viewed from above.

(b) Use part (a) and Stokes’ Theorem to compute ∫
C2
B⃗ ⋅ dr⃗ , where C2 is the ellipse x2 + 9y2 = 9

in the plane z = 2, oriented counterclockwise when viewed from above.

Solution (a) On the circle C1, we have ‖B⃗ ‖ = 2I∕(ca). Since B⃗ is tangent to C1 everywhere and points in

the forward direction around C1,

∫C1

B⃗ ⋅ dr⃗ = ‖B⃗ ‖ ⋅ Length of C1 =
2I

ca
⋅ 2�a =

4�I

c
.

(b) We cannot use Stokes’ Theorem on the elliptical disk bounded by C2 in the plane z = 2 because

curl B⃗ is not defined at (0, 0, 2). Instead, we will use the theorem on a conical surface connecting

C1 and C2.

Let S be the conical surface extending fromC1 to C2 in Figure 20.14. The boundary of this

surface has two pieces, −C2 and C1. The orientation of C1 leads to the outward normal on S,

which forces us to choose the clockwise orientation on C2. By Stokes’ Theorem,

∫S
curl B⃗ ⋅ dA⃗ =

∫−C2

B⃗ ⋅ dr⃗ +
∫C1

B⃗ ⋅ dr⃗ = −
∫C2

B⃗ ⋅ dr⃗ +
∫C1

B⃗ ⋅ dr⃗ .

Since curl B⃗ = 0⃗ , we have
∫S

curl B⃗ ⋅ dA⃗ = 0, so the two line integrals must be equal:

∫C2

B⃗ ⋅ dr⃗ =
∫C1

B⃗ ⋅ dr⃗ =
4�I

c
.
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x

y

z

C1

−C2

n⃗

S

Figure 20.14: Surface joining C1 to C2,

oriented to satisfy the conditions of

Stokes’ Theorem

S1

n⃗1

C

S2

n⃗2

Figure 20.15: The flux of a curl is the same

through the two surfaces S1 and S2 if they

determine the same orientation on the

boundary, C

Curl Fields
A vector field F⃗ is called a curl field if F⃗ = curl G⃗ for some vector field G⃗ . Recall that if F⃗ =

gradf , then f is called a potential function. By analogy, if a vector field F⃗ = curl G⃗ , then G⃗ is

called a vector potential for F⃗ . The following example shows that the flux of a curl field through

a surface depends only on the boundary of the surface. This is analogous to the fact that the line

integral of a gradient field depends only on the endpoints of the path.

Example 3 Suppose F⃗ = curl G⃗ , and that S1 and S2 are two oriented surfaces with the same boundary C .

Show that, if S1 and S2 determine the same orientation on C (as in Figure 20.15), then

∫S1

F⃗ ⋅ dA⃗ =
∫S2

F⃗ ⋅ dA⃗ .

If S1 and S2 determine opposite orientations on C , then

∫S1

F⃗ ⋅ dA⃗ = −
∫S2

F⃗ ⋅ dA⃗ .

Solution If S1 and S2 determine the same orientation on C , then since F⃗ = curl G⃗ , by Stokes’ Theorem we

have

∫S1

F⃗ ⋅ dA⃗ =
∫S1

curl G⃗ ⋅ dA⃗ =
∫C

G⃗ ⋅ dr⃗

and

∫S2

F⃗ ⋅ dA⃗ =
∫S2

curl G⃗ ⋅ dA⃗ =
∫C

G⃗ ⋅ dr⃗ .

In each case the line integral on the right must be computed using the orientation determined by the

surface. Thus, the two flux integrals of F⃗ are the same if the orientations are the same and they are

opposite if the orientations are opposite.

Summary for Section 20.2

• Stokes’ Theorem: If S is a smooth oriented surface with boundary C , and if F⃗ is a smooth

vector field on a solid region containing S and C , then

∫C
F⃗ ⋅ dr⃗ =

∫S
curl F⃗ ⋅ dA⃗ .

The orientation of C is determined from the orientation of S according to the right-hand rule.

• A vector field F⃗ is a curl vector field if F⃗ = curl G⃗ for some vector field G⃗ .
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Exercises and Problems for Section 20.2

EXERCISES

1. If curl F⃗ = k⃗ , find the circulation of F⃗ around C , a

circle of radius 1, centered at the origin, with

(a) C in the xy-plane, oriented counterclockwise when

viewed from above.

(b) C in the yz-plane, oriented counterclockwise when

viewed from the positive x-axis.

In Exercises 2–3, for the circle C and curl F⃗ as described,

is the circulation of F⃗ around C positive, negative, or zero?

2. C is in the xy-plane oriented counterclockwise when

viewed from above, and curl F⃗ points parallel to j⃗ ev-

erywhere.

3. C is in the yz-plane oriented clockwise when viewed

from the positive x-axis, and curl F⃗ points parallel to

and in the direction of −i⃗ .

In Exercises 4–8, calculate the circulation, ∫
C
F⃗ ⋅dr⃗ , in two

ways, directly and using Stokes’ Theorem.

4. F⃗ = (x + z)i⃗ + xj⃗ + yk⃗ and C is the upper half of

the circle x2 + z2 = 9 in the plane y = 0, together with

the x-axis from (3, 0, 0) to (−3, 0, 0), traversed counter-

clockwise when viewed from the positive y-axis.

5. F⃗ = yi⃗ − xj⃗ and C is the boundary of S, the part of

the surface z = 4−x2−y2 above the xy-plane, oriented

upward.

6. F⃗ = (x−y+z)(i⃗ +j⃗ ) andC is the triangle with vertices

(0, 0, 0), (5, 0, 0), (5, 5, 0), traversed in that order.

7. F⃗ = xyi⃗ + yzj⃗ + xzk⃗ and C is the boundary of S,

the surface z = 1 − x2 for 0 ≤ x ≤ 1 and −2 ≤ y ≤ 2,

oriented upward. Sketch S and C .

8. F⃗ = yi⃗ + zj⃗ + xk⃗ and C is the boundary of S, the

paraboloid z = 1 − (x2 + y2), z ≥ 0 oriented upward.

[Hint: Use polar coordinates.]

In Exercises 9–12, use Stokes’ Theorem to calculate the in-

tegral.

9. ∫
C
F⃗ ⋅dr⃗ where F⃗ = x2 i⃗ +y2j⃗ +z2k⃗ and C is the unit

circle in the xz-plane, oriented counterclockwise when

viewed from the positive y-axis.

10. ∫
C
F⃗ ⋅ dr⃗ where F⃗ = (y − x)i⃗ + (z − y)j⃗ + (x− z)k⃗

and C is the circle x2+y2 = 5 in the xy-plane, oriented

counterclockwise when viewed from above.

11. ∫
S

curl F⃗ ⋅ dA⃗ where F⃗ = −yi⃗ + xj⃗ + (xy+ cos z)k⃗

and S is the disk x2 + y2 ≤ 9, oriented upward in the

xy-plane.

12. ∫
S

curl F⃗ ⋅ dA⃗ where F⃗ = (x + 7)j⃗ + ex+y+zk⃗ and S

is the rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 2 , z = 0, oriented

upward.

13. Let F⃗ = yi⃗ − xj⃗ and let C be the unit circle in the

xy-plane centered at the origin and oriented counter-

clockwise when viewed from above.

(a) Calculate ∫
C
F⃗ ⋅ dr⃗ by parameterizing the circle.

(b) Calculate curl F⃗ .

(c) Calculate ∫
C
F⃗ ⋅dr⃗ using your result from part (b).

(d) What theorem did you use in part (c)?

14. (a) If F⃗ = (cos x)i⃗ + eyj⃗ +(x−y−z)k⃗ , find curl F⃗ .

(b) Find ∫
C
F⃗ ⋅ dr⃗ where C is the circle of radius 3 in

the plane x+y+z = 1, centered at (1, 0, 0) oriented

counterclockwise when viewed from above.

15. Can you use Stokes’ Theorem to compute the line inte-

gral ∫
C
(2xi⃗ + 2yj⃗ + 2zk⃗ ) ⋅ dr⃗ where C is the straight

line from the point (1, 2, 3) to the point (4, 5, 6)? Why

or why not?

PROBLEMS

16. At all points in 3-space curl F⃗ points in the direction

of i⃗ − j⃗ − k⃗ . Let C be a circle in the yz-plane, oriented

clockwise when viewed from the positive x-axis. Is the

circulation of F⃗ around C positive, zero, or negative?

17. If curl F⃗ = (x2 + z2)j⃗ + 5k⃗ , find ∫
C
F⃗ ⋅ dr⃗ , where C

is a circle of radius 3, centered at the origin, with

(a) C in the xy-plane, oriented counterclockwise when

viewed from above.

(b) C in the xz-plane, oriented counterclockwise when

viewed from the positive y-axis.

18. (a) Find curl(yi⃗ + zj⃗ + xk⃗ ).

(b) Find ∫
C
(yi⃗ +zj⃗ +xk⃗ ) ⋅dr⃗ where C is the bound-

ary of the triangle with vertices (2, 0, 0), (0, 3, 0),

(−2, 0, 0), traversed in that order.

19. (a) Let F⃗ = yi⃗ + zj⃗ + xk⃗ . Find curl F⃗ .

(b) Calculate ∫
C
F⃗ ⋅ dr⃗ where C is

(i) A circle of radius 2 centered at (1, 1, 3) in the

plane z = 3, oriented counterclockwise when

viewed from above.

(ii) The triangle obtained by tracing out the path

(2, 0, 0) to (2, 0, 5) to (2, 3, 5) to (2, 0, 0).

20. (a) Find curl(zi⃗ + xj⃗ + yk⃗ ).

(b) Find ∫
C
(zi⃗ + xj⃗ + yk⃗ ) ⋅ dr⃗ where C is a square

of side 2 lying in the plane x+ y+ z = 5, oriented

counterclockwise when viewed from the origin.
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In Problems 21–26, find ∫
C
F⃗ ⋅ dr⃗ where C is a circle of

radius 2 in the plane x + y + z = 3, centered at (1, 1, 1) and

oriented clockwise when viewed from the origin.

21. F⃗ = i⃗ + j⃗ + 3k⃗

22. F⃗ = −yi⃗ + xj⃗ + zk⃗

23. F⃗ = yi⃗ − xj⃗ + (y − x)k⃗

24. F⃗ = (2y + ex)i⃗ + ((sin y) − x)j⃗ + (2y− x + cos z2)k⃗

25. F⃗ = −zj⃗ + yk⃗

26. F⃗ = (z − y)i⃗ + (x − z)j⃗ + (y − x)k⃗

27. For positive constants a, b, and c, let

f (x, y, z) = ln(1 + ax2 + by2 + cz2).

(a) What is the domain of f?

(b) Find gradf .

(c) Find curl(gradf ).

(d) Find ∫
C
F⃗ ⋅ dr⃗ where C is the helix x = cos t,

y = sin t, z = t for 0 ≤ t ≤ 13�∕2 and

F⃗ =
2xi⃗ + 4yj⃗ + 6zk⃗

1 + x2 + 2y2 + 3z2
.

28. Figure 20.16 shows an open cylindrical can, S, stand-

ing on the xy-plane. (S has a bottom and sides, but no

top.)

(a) Give equation(s) for the rim, C .

(b) If S is oriented outward and downward, find

∫
S
curl(−yi⃗ + xj⃗ + zk⃗ ) ⋅ dA⃗ .

x

y

z

2C

✲x2 + y2 = 9

Figure 20.16

29. Evaluate ∫
C
(−zi⃗ +yj⃗ +xk⃗ ) ⋅dr⃗ , where C is a circle of

radius 2, parallel to the xz-plane and around the y-axis

with the orientation shown in Figure 20.17.

x y

z

C

✛

✛

2

Figure 20.17

30. Evaluate the circulation of G⃗ = xyi⃗ +zj⃗ +3yk⃗ around

a square of side 6, centered at the origin, lying in the yz-

plane, and oriented counterclockwise viewed from the

positive x-axis.

31. Find the flux of F⃗ = curl((x3 + cos(z2))i⃗ + (x +

sin(y2))j⃗ +(y2 sin(x2))k⃗ ) through the upper half of the

sphere of radius 2, with center at the origin and oriented

upward.

32. Suppose that C is a closed curve in the xy-plane,

oriented counterclockwise when viewed from above.

Show that
1

2
∫
C
(−yi⃗ + xj⃗ ) ⋅ dr⃗ equals the area of the

region R in the xy-plane enclosed by C .

33. In the region between the circles C1 ∶ x
2 + y2 = 4 and

C2 ∶ x2 + y2 = 25 in the xy-plane, the vector field F⃗

has curl F⃗ = 3k⃗ . If C1 and C2 are both oriented coun-

terclockwise when viewed from above, find the value

of

∫
C2

F⃗ ⋅ dr⃗ −
∫
C1

F⃗ ⋅ dr⃗ .

34. Let curl F⃗ = 3xi⃗ + 3yj⃗ − 6zk⃗ and let C1 and C2 be

the closed curves in the planes z = 0 and z = 5 in

Figure 20.18. Find

∫
C1

F⃗ ⋅ dr⃗ +
∫
C2

F⃗ ⋅ dr⃗ .

x

y

z

✻

❄

5x2 + y2 = 4

C1

C2

Figure 20.18

35. (a) Find curl(x3 i⃗ + sin(y3)j⃗ + ez
3
k⃗ ).

(b) What does your answer to part (a) tell you about

∫
C
(x3 i⃗ +sin(y3)j⃗ +ez

3
k⃗ )⋅dr⃗ whereC is the circle

(x−10)2 + (y− 20)2 = 1 in the xy-plane, oriented

clockwise?

(c) If C is any closed curve, what can you say about

∫
C
(x3 i⃗ + sin(y3)j⃗ + ez

3
k⃗ ) ⋅ dr⃗ ?
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36. For C , the intersection of the cylinder x2 + y2 = 9 and

the plane z = −2 − x + 2y oriented counterclockwise

when viewed from above, use Stokes’ Theorem to find

∫
C

(

(x2 − 3y2)i⃗ + (
z2

2
+ y)j⃗ + (x + 2z2)k⃗

)

⋅ dr⃗ .

37. Let F⃗ (x, y, z) = F1(x, y)i⃗ + F2(x, y)j⃗ , where F1 and

F2 are continuously differentiable for all x, y.

(a) Describe in words how F⃗ varies through space.

(b) Find an expression for curl F⃗ in terms of F1

and F2.

(c) Let C be a closed curve in the xy-plane, oriented

counterclockwise when viewed from above, and let

S be the region enclosed by C . Use your answer to

part (b) to simplify the statement of Stokes’ Theo-

rem for this F⃗ and C .

(d) The result in part (c) is usually known by another

name. What is it?

38. Water in a bathtub has velocity vector field near the

drain given, for x, y, z in cm, by

F⃗ = −
y + xz

(z2 + 1)2
i⃗ −

yz − x

(z2 + 1)2
j⃗ −

1

z2 + 1
k⃗ cm/sec.

(a) Rewriting F⃗ as follows, describe in words how the

water is moving:

F⃗ =
−yi⃗ + xj⃗

(z2 + 1)2
+

−z(xi⃗ + yj⃗ )

(z2 + 1)2
−

k⃗

z2 + 1
.

(b) The drain in the bathtub is a disk in the xy-plane

with center at the origin and radius 1 cm. Find the

rate at which the water is leaving the bathtub. (That

is, find the rate at which water is flowing through

the disk.) Give units for your answer.

(c) Find the divergence of F⃗ .

(d) Find the flux of the water through the hemisphere

of radius 1, centered at the origin, lying below the

xy-plane and oriented downward.

(e) Find ∫
C
G⃗ ⋅ dr⃗ where C is the edge of the drain,

oriented clockwise when viewed from above, and

where

G⃗ =
1

2

(

y

z2 + 1
i⃗ −

x

z2 + 1
j⃗ −

x2 + y2

(z2 + 1)2
k⃗

)

.

(f) Calculate curl G⃗ .

(g) Explain why your answers to parts (d) and (e) are

equal.

Strengthen Your Understanding

In Problems 39–40, explain what is wrong with the state-

ment.

39. The line integral ∫
C
F⃗ ⋅ dr⃗ can be evaluated using

Stokes’ Theorem, where F⃗ = 2xi⃗ − 3j⃗ + k⃗ and C

is an oriented curve from (0, 0, 0) to (3, 4, 5).

40. If S is the unit circular disc x2 + y2 ≤ 1, z = 0, in the

xy-plane, oriented downward, C is the unit circle in the

xy-plane oriented counterclockwise, and F⃗ is a vector

field, then

∫
C

F⃗ ⋅ dr⃗ =
∫
S

curl F⃗ ⋅ dA⃗ .

In Problems 41–42, give an example of:

41. An oriented closed curve C such that ∫
C
F⃗ ⋅ dr⃗ = 0,

where F⃗ (x, y, z) = xi⃗ + y2j⃗ + z3k⃗ .

42. A surface S, oriented appropriately to use Stokes’ The-

orem, which has as its boundary the circle C of radius

1 centered at the origin, lying in the xy-plane, and ori-

ented counterclockwise when viewed from above.

In Problems 43–51, is the statement true or false? Give a

reason for your answer.

43. If curl F⃗ is everywhere perpendicular to the z-axis, and

C is a circle in the xy-plane, then the circulation of F⃗

around C is zero.

44. If S is the upper unit hemisphere x2 + y2 + z2 = 1, z ≥

0, oriented upward, then the boundary of S used in

Stokes’ Theorem is the circle x2 + y2 = 1, z = 0,

with orientation counterclockwise when viewed from

the positive z-axis.

45. Let S be the cylinder x2 + z2 = 1, 0 ≤ y ≤ 2, oriented

with inward-pointing normal. Then the boundary of S

consists of two circles C1 (x2 + z2 = 1, y = 0) and C2

(x2 + z2 = 1, y = 2), both oriented clockwise when

viewed from the positive y-axis.

46. If C is the boundary of an oriented surface S, oriented

by the right-hand rule, then ∫
C
curl F⃗ ⋅dr⃗ = ∫

S
F⃗ ⋅dA⃗ .

47. Let S1 be the disk x2 + y2 ≤ 1, z = 0 and let S2

be the upper unit hemisphere x2 + y2 + z2 = 1, z ≥

0, both oriented upward. If F⃗ is a vector field then

∫
S1

curlF⃗ ⋅ dA⃗ = ∫
S2

curlF⃗ ⋅ dA⃗ .

48. LetS be the closed unit sphere x2+y2+z2 = 1, oriented

outward. If F⃗ is a vector field, then ∫
S

curlF⃗ ⋅dA⃗ = 0.

49. If F⃗ and G⃗ are vector fields satisfying curlF⃗ = curlG⃗ ,

then ∫
C
F⃗ ⋅ dr⃗ = ∫

C
G⃗ ⋅ dr⃗ , where C is any oriented

circle in 3-space.

50. If F⃗ is a vector field satisfying curlF⃗ = 0⃗ , then

∫
C
F⃗ ⋅ dr⃗ = 0, where C is any oriented path around

a rectangle in 3-space.
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51. Let S be an oriented surface, with oriented bound-

ary C , and suppose that F⃗ is a vector field such that

∫
C
F⃗ ⋅ dr⃗ = 0. Then curl F⃗ = 0⃗ everywhere on S.

52. The circle C has radius 3 and lies in a plane through the

origin. Let F⃗ = (2z + 3y)i⃗ + (x − z)j⃗ + (6y − 7x)k⃗ .

What is the equation of the plane and what is the orien-

tation of the circle that make the circulation, ∫
C
F⃗ ⋅dr⃗ ,

a maximum? [Note: You should specify the orientation

of the circle by saying that it is clockwise or counter-

clockwise when viewed from the positive or negative

x- or y- or z-axis.]

20.3 THE THREE FUNDAMENTAL THEOREMS

We have now seen three multivariable versions of the Fundamental Theorem of Calculus. In this

section we will examine some consequences of these theorems.

Fundamental Theorem of Calculus for Line Integrals

∫C
gradf ⋅ dr⃗ = f (Q) − f (P ).

Stokes’ Theorem

∫S
curl F⃗ ⋅ dA⃗ =

∫C
F⃗ ⋅ dr⃗ .

Divergence Theorem

∫W
divF⃗ dV =

∫S
F⃗ ⋅ dA⃗ .

Notice that, in each case, the region of integration on the right is the boundary of the region on

the left (except that for the first theorem we simply evaluate f at the boundary points); the integrand

on the left is a sort of derivative of the integrand on the right; see Figure 20.19.

[ b ]

C

P

Q

The boundary of the curveC
consists of the pointsP andQ

S

C

Boundary of surface
S is curveC

Boundary of region
W is surfaceS

W

S

Figure 20.19: Regions and their boundaries for the three fundamental theorems

The Gradient and the Curl

Suppose that F⃗ is a smooth gradient field, so F⃗ = gradf for some function f . Using the Funda-

mental Theorem for Line Integrals, we saw in Chapter 18 that

∫C
F⃗ ⋅ dr⃗ = 0

for any closed curve C . Thus, for any unit vector n⃗

circn⃗ F⃗ = lim
Area→0

∫C
F⃗ ⋅ dr⃗

Area of C
= lim

Area→0

0

Area
= 0,
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where the limit is taken over circles C in a plane perpendicular to n⃗ , and oriented by the right-hand

rule. Thus, the circulation density of F⃗ is zero in every direction, so curl F⃗ = 0⃗ , that is,

curl gradf = 0⃗ .

(This formula can also be verified using the coordinate definition of curl. See Problem 31 on page 1063.)

Is the converse true? Is any vector field whose curl is zero a gradient field? Suppose that curl F⃗ =

0⃗ and let us consider the line integral ∫
C
F⃗ ⋅ dr⃗ for a closed curve C contained in the domain of F⃗ .

If C is the boundary curve of an oriented surface S that lies wholly in the domain of curl F⃗ , then

Stokes’ Theorem asserts that

∫C
F⃗ ⋅ dr⃗ =

∫S
curl F⃗ ⋅ dA⃗ =

∫S
0⃗ ⋅ dA⃗ = 0.

If we knew that ∫
C
F⃗ ⋅ dr⃗ = 0 for every closed curve C , then F⃗ would be path-independent, and

hence a gradient field. Thus, we need to know whether every closed curve in the domain of F⃗ is

the boundary of an oriented surface contained in the domain. It can be quite difficult to determine

if a given curve is the boundary of a surface (suppose, for example, that the curve is knotted in a

complicated way). However, if the curve can be contracted smoothly to a point, remaining all the

time in the domain of F⃗ , then it is the boundary of a surface, namely, the surface it sweeps through

as it contracts. Thus, we have proved the test for a gradient field that we stated in Chapter 18.

The Curl Test for Vector Fields in 3-Space

Suppose F⃗ is a smooth vector field on 3-space such that

• The domain of F⃗ has the property that every closed curve in it can be contracted to a

point in a smooth way, staying at all times within the domain.

• curl F⃗ = 0⃗ .

Then F⃗ is path-independent, and thus is a gradient field.

Example 7 on page 1010 shows how the curl test is applied.

The Curl and the Divergence

In this section we will use the second two fundamental theorems to get a test for a vector field to be

a curl field, that is, a field of the form F⃗ = curl G⃗ for some G⃗ .

Example 1 Suppose that F⃗ is a smooth curl field. Use Stokes’ Theorem to show that for any closed surface, S,

contained in the domain of F⃗ ,

∫S
F⃗ ⋅ dA⃗ = 0.
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Solution Suppose F⃗ = curl G⃗ . Draw a closed curveC on the surfaceS, thus dividing S into two surfaces S1

andS2 as shown in Figure 20.20. Pick the orientation forC corresponding to S1; then the orientation

of C corresponding to S2 is the opposite. Thus, using Stokes’ Theorem,

∫S1

F⃗ ⋅ dA⃗ =
∫S1

curl G⃗ ⋅ dA⃗ =
∫C

G⃗ ⋅ dr⃗ = −
∫S2

curl G⃗ ⋅ dA⃗ = −
∫S2

F⃗ ⋅ dA⃗ .

Thus, for any closed surface S, we have

∫S
F⃗ ⋅ dA⃗ =

∫S1

F⃗ ⋅ dA⃗ +
∫S2

F⃗ ⋅ dA⃗ = 0.

n⃗ 1

n⃗ 2

C

✠

Orientation ofC corresponding toS1

■

Orientation ofC corresponding toS2

S

S1 S2

Figure 20.20: The closed surface S divided into two surfaces S1 and S2

Thus, if F⃗ = curl G⃗ , we use the result of Example 1 to see that

div F⃗ = lim
Volume→0

∫S
F⃗ ⋅ dA⃗

Volume enclosed by S
= lim

Volume→0

0

Volume
= 0,

where the limit is taken over spheres S contracting down to a point. So we conclude that:

div curl G⃗ = 0.

(This formula can also be verified using coordinates. See Problem 30 on page 1063.)

Is every vector field whose divergence is zero a curl field? It turns out that we have the following

analogue of the curl test, though we will not prove it.

The Divergence Test for Vector Fields in 3-Space

Suppose F⃗ is a smooth vector field on 3-space such that

• The domain of F⃗ has the property that every closed surface in it is the boundary of a

solid region completely contained in the domain.

• div F⃗ = 0.

Then F⃗ is a curl field.



1074 Chapter 20 THE CURL AND STOKES’ THEOREM

Example 2 Consider the vector fields E⃗ = q
r⃗

‖r⃗ ‖3
and B⃗ =

2I

c

(

−yi⃗ + xj⃗

x2 + y2

)

.

(a) Calculate div E⃗ and div B⃗ .

(b) Do E⃗ and B⃗ satisfy the divergence test?

(c) Is either E⃗ or B⃗ a curl field?

Solution (a) Example 3 on page 1042 shows that div E⃗ = 0. The following calculation shows div B⃗ = 0

also:

div B⃗ =
2I

c

(

)

)x

(

−y

x2 + y2

)

+
)

)y

(

x

x2 + y2

)

+
)

)z
(0)

)

=
2I

c

(

2xy

(x2 + y2)2
+

−2yx

(x2 + y2)2

)

= 0.

(b) The domain of E⃗ is 3-space minus the origin, so a region is contained in the domain if it misses

the origin. Thus, the surface of a sphere centered at the origin is contained in the domain of E,

but the solid ball inside is not. Hence, E⃗ does not satisfy the divergence test.

The domain of B⃗ is 3-space minus the z-axis, so a region is contained in the domain if it

avoids the z-axis. If S is a surface bounding a solid region W , then the z-axis cannot pierce

W without piercing S as well. Hence, if S avoids the z-axis, so does W . Thus, B⃗ satisfies the

divergence test.

(c) In Example 3 on page 1050 we computed the flux of r⃗ ∕‖r⃗ ‖3 through a sphere centered at the

origin, and found it was 4�, so the flux of E⃗ through this sphere is 4�q. Thus, E⃗ cannot be a

curl field, because by Example 1, the flux of a curl field through a closed surface is zero.

On the other hand, B⃗ satisfies the divergence test, so it must be a curl field. In fact, Prob-

lem 26 shows that

B⃗ = curl
(

−I

c
ln(x2 + y2)k⃗

)

.

Summary for Section 20.3

• Multivariable versions of the Fundamental Theorem of Calculus:

∙ Fundamental Theorem of Calculus for Line Integrals: ∫
C
gradf ⋅ dr⃗ = f (Q) − f (P )

∙ Stokes’ Theorem: ∫
S
curl F⃗ ⋅ dA⃗ = ∫

C
F⃗ ⋅ dr⃗

∙ Divergence Theorem: ∫
W

divF⃗ dV = ∫
S
F⃗ ⋅ dA⃗

• The curl test in 3-space: Suppose F⃗ is a smooth vector field on 3-space such that

∙ The domain of F⃗ has the property that every closed curve in it can be contracted to a point

in a smooth way, staying at all times within the domain.

∙ curl F⃗ = 0⃗ .

Then F⃗ is path-independent, and thus is a gradient vector field.

• The divergence test in 3-space: Suppose F⃗ is a smooth vector field on 3-space such that

∙ The domain of F⃗ has the property that every closed surface in it is the boundary of a solid

region completely contained in the domain.

∙ div F⃗ = 0.

Then F⃗ is a curl vector field.
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Exercises and Problems for Section 20.3Online Resource: Additional Problems for Section 20.3
EXERCISES

In Exercises 1–6, is the vector field a gradient field?

1. F⃗ = 2xi⃗ + zj⃗ + yk⃗

2. F⃗ = yi⃗ + zj⃗ + xk⃗

3. F⃗ = (y + 2z)i⃗ + (x + z)j⃗ + (2x + y)k⃗

4. F⃗ = (y − 2z)i⃗ + (x − z)j⃗ + (2x − y)k⃗

5. G⃗ = −yi⃗ + xj⃗

6. F⃗ = yzi⃗ + (xz + z2)j⃗ + (xy + 2yz)k⃗

In Exercises 7–12, is the vector field a curl field?

7. F⃗ = zi⃗ + xj⃗ + yk⃗

8. F⃗ = zi⃗ + yj⃗ + xk⃗

9. F⃗ = 2xi⃗ − yj⃗ − zk⃗

10. F⃗ = (x + y)i⃗ + (y + z)j⃗ + (x + z)k⃗

11. F⃗ = (−xy)i⃗ + (2yz)j⃗ + (yz − z2))k⃗

12. F⃗ = (xy)i⃗ + (xy)j⃗ + (xy)k⃗

13. Let F⃗ be a vector field defined everywhere except the

z-axis and with curl F⃗ = 0 at all points of its do-

main. Determine whether Stokes’ Theorem implies that

∫
C
F⃗ ⋅ dr⃗ = 0 for a circle C of radius 1, where

(a) C is parallel to the xy-plane with center (0, 0, 1).

(b) C is parallel to the yz-plane with center (1, 0, 0).

14. Let F⃗ be a vector field defined everywhere except the

origin and with div F⃗ = 0 at all points of its domain.

Determine whether the Divergence Theorem implies

that ∫
S
F⃗ ⋅ dA⃗ = 0 for a sphere S of radius 1, where

(a) S is centered at (0, 1, 1).

(b) S is centered at (0.5, 0, 0).

In Exercises 15–18, can the curl test and the divergence test

be applied to a vector field whose domain is the given re-

gion?

15. All points (x, y, z) such that z > 0.

16. All points (x, y, z) not on the y-axis.

17. All points (x, y, z) not on the positive z-axis.

18. All points (x, y, z) except the x-axis with 0 ≤ x ≤ 1.

PROBLEMS

19. Let B⃗ = bk⃗ , for some constant b. Show that the fol-

lowing are all possible vector potentials for B⃗ :

(a) A⃗ = −byi⃗ (b) A⃗ = bxj⃗

(c) A⃗ =
1

2
B⃗ × r⃗ .

20. Find a vector field F⃗ such that curl F⃗ = 2i⃗ −3j⃗ +4k⃗ .

[Hint: Try F⃗ = v⃗ × r⃗ for some vector v⃗ .]

21. Find a vector potential for the constant vector field B⃗

whose value at every point is b⃗ .

22. Express (3x+2y)i⃗ +(4x+9y)j⃗ as the sum of a curl-free

vector field and a divergence-free vector field.

In Problems 23–24, does a vector potential exist for the vec-

tor field given? If so, find one.

23. G⃗ = x2 i⃗ + y2j⃗ + z2k⃗

24. F⃗ = 2xi⃗ + (3y − z2)j⃗ + (x − 5z)k⃗

25. An electric charge q at the origin produces an electric

field E⃗ = qr⃗ ∕‖r⃗ ‖3.

(a) Does curl E⃗ = 0⃗ ?

(b) Does E⃗ satisfy the curl test?

(c) Is E⃗ a gradient field?

26. Show that A⃗ =
−I

c
ln(x2 + y2)k⃗ is a vector potential

for

B⃗ =
2I

c

(

−yi⃗ + xj⃗

x2 + y2

)

.

27. Suppose c is the speed of light. A thin wire along the

z-axis carrying a current I produces a magnetic field

B⃗ =
2I

c

(

−yi⃗ + xj⃗

x2 + y2

)

.

(a) Does curl B⃗ = 0⃗ ?

(b) Does B⃗ satisfy the curl test?

(c) Is B⃗ a gradient field?

28. Use Stokes’ Theorem to show that if u(x, y) and v(x, y)

are two functions of x and y and C is a closed curve in

the xy-plane oriented counterclockwise, then

∫
C

(ui⃗ + vj⃗ ) ⋅ dr⃗ =
∫
R

(

)v

)x
−
)u

)y

)

dxdy

where R is the region in the xy-plane enclosed by C .

This is Green’s Theorem.
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29. Suppose that A⃗ is a vector potential for B⃗ .

(a) Show that A⃗ + grad is also a vector potential

for B⃗ , for any function  with continuous second-

order partial derivatives. (The vector potentials A⃗

and A⃗ +grad are called gauge equivalent and the

transformation, for any  , from A⃗ to A⃗ + grad 

is called a gauge transformation.)

(b) What is the divergence of A⃗ +grad ? How should

 be chosen such that A⃗ + grad has zero diver-

gence? (If div A⃗ = 0, the magnetic vector potential

A⃗ is said to be in Coulomb gauge.)

Strengthen Your Understanding

In Problems 30–31, explain what is wrong with the state-

ment.

30. The curl of a vector field F⃗ is given by curl F⃗ = xi⃗ .

31. For a certain vector field F⃗ , we have curl div F⃗ = yi⃗ .

In Problems 32–33, give an example of:

32. A vector field F⃗ that is not the curl of another vector

field.

33. A function f such that div grad f ≠ 0.

In Problems 34–37, is the statement true or false? Give a

reason for your answer.

34. There exists a vector field F⃗ with curlF⃗ = i⃗ .

35. There exists a vector field F⃗ (whose components

have continuous second partial derivatives) satisfying

curlF⃗ = xi⃗ .

36. Let S be an oriented surface, with oriented bound-

ary C , and suppose that F⃗ is a vector field such that

∫
S

curlF⃗ ⋅ dA⃗ = 0. Then F⃗ is a gradient field.

37. If F⃗ is a gradient field, then ∫
S
curl F⃗ ⋅ dA⃗ = 0, for

any smooth oriented surface, S, in 3-space.

38. Let f (x, y, z) be a scalar function with continuous sec-

ond partial derivatives. Let F⃗ (x, y, z) be a vector field

with continuous second partial derivatives. Which of

the following quantities are identically zero?

(a) curl grad f (b) F⃗ × curl F⃗

(c) grad div F⃗ (d) div curl F⃗

(e) div grad f

Online Resource: Review Problems and Projects
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21.1 COORDINATES AND PARAMETERIZED SURFACES

In Chapter 17 we parameterized curves in 2- and 3-space, and in Chapter 16 we used polar, cylin-

drical, and spherical coordinates to simplify iterated integrals. We now take a second look at pa-

rameterizations and coordinate systems, and see that they are the same thing in different disguises:

functions from one space to another.

We have already seen this with parameterized curves, which we view as a function from an

interval a ≤ t ≤ b to a curve in xyz-space. See Figure 21.1.

x

y

z

a b

r⃗ (b)

r⃗ (a)
r⃗ (t)

C

Figure 21.1: The parameterization is a function from the interval, a ≤ t ≤ b, to 3-space, whose image

is the curve, C

Polar, Cylindrical, and Spherical Coordinates Revisited

The equations for polar coordinates,

x = r cos �

y = r sin �,

can also be viewed as defining a function from the r�-plane into the xy-plane. This function trans-

forms the rectangle on the left of Figure 21.2 into the quarter disk on the right. We need two param-

eters to describe this disk because it is a two-dimensional object.

Polar Coordinates as Families of Parameterized Curves

Polar coordinates give two families of parameterized curves, which form the polar coordinate grid.

The lines r = Constant in the r�-plane correspond to circles in the xy-plane, each circle param-

eterized by �; the lines � = Constant correspond to rays in the xy-plane, each ray parameterized

by r.

Cylindrical and Spherical Coordinates

Similarly, cylindrical and spherical coordinates may be viewed as functions from 3-space to 3-space.

Cylindrical coordinates take rectangular boxes in r�z-space and map them to cylindrical regions in

xyz-space; spherical coordinates take rectangular boxes in ���-space and map them to spherical

regions in xyz-space.

1 2 3 4

�∕8

�∕4

3�∕8

�∕2

� = �∕8

� = �∕4

� = 3�∕8

r = 1 r = 2 r = 3

✲

r

�

1 2 3 4

1

2

3

x

y

� = 3�∕8

� = �∕4

� = �∕8

Figure 21.2: A grid in the r�-plane and the corresponding curved grid in the xy-plane
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General Parameterizations

In general, a parameterization or coordinate system provides a way of representing a curved object

by means of a simple region in the parameter space (an interval, rectangle, or rectangular box), along

with a function mapping that region into the curved object. In the next section, we use this idea to

parameterize curved surfaces in 3-space.

How Do We Parameterize a Surface?

In Section 17.1 we parameterized a circle in 2-space using the equations

x = cos t, y = sin t.

In 3-space, the same circle in the xy-plane has parametric equations

x = cos t, y = sin t, z = 0.

We add the equation z = 0 to specify that the circle is in the xy-plane. If we wanted a circle in the

plane z = 3, we would use the equations

x = cos t, y = sin t, z = 3.

Suppose now we let z vary freely, as well as t. We get circles in every horizontal plane, forming

a cylinder as in the left of Figure 21.3. Thus, we need two parameters, t and z, to parameterize the

cylinder.

x y

z

z = 0

z = 1

z = 2

z = 3

z = −3

❘

� = 0

❘

� = �∕6

❘

� = �∕3

❄

� = �∕2

✠

� = 2�∕3

x y

z

Figure 21.3: The cylinder x = cos t, y = sin t, z = z

We can contrast curves and surfaces. A curve, though it may live in two or three dimensions, is

itself one-dimensional; if we move along it we can only move backward and forward in one direction.

Thus, it only requires one parameter to trace out a curve.

A surface is 2-dimensional; at any given point there are two independent directions we can move.

For example, on the cylinder we can move vertically, or we can circle around the z-axis horizontally.

So we need two parameters to describe it. We can think of the parameters as map coordinates, like

longitude and latitude on the surface of the earth. Just as polar coordinates give a polar grid on a

circular region, so the parameters for a surface give a grid on the surface. See Figure 21.3 on the

right.

In the case of the cylinder our parameters are t and z, so

x = cos t, y = sin t, z = z, 0 ≤ t < 2�, −∞ < z < ∞.

The last equation, z = z, looks strange, but it reminds us that we are in three dimensions, not two,

and that the z-coordinate on our surface is allowed to vary freely.

In general, we express the coordinates, (x, y, z), of a point on a surface S in terms of two pa-

rameters, s and t:

x = f1(s, t), y = f2(s, t), z = f3(s, t).
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As the values of s and t vary, the corresponding point (x, y, z) sweeps out the surface, S. (See Fig-

ure 21.4.) The function which sends the point (s, t) to the point (x, y, z) is called the parameterization

of the surface.

R

✻
(s, t)

y
x

z

S

✻

(x, y, z) =
(

f1(s, t), f2(s, t), f3(s, t)
)

Figure 21.4: The parameterization sends each point (s, t) in the parameter region, R, to a point

(x, y, z) = (f1(s, t), f2(s, t), f3(s, t)) in the surface, S

Using Position Vectors

We can use the position vector r⃗ = xi⃗ + yj⃗ + zk⃗ to combine the three parametric equations for a

surface into a single vector equation. For example, the parameterization of the cylinderx = cos t, y =

sin t, z = z can be written as

r⃗ (t, z) = cos ti⃗ + sin tj⃗ + zk⃗ 0 ≤ t < 2�, −∞ < z < ∞.

For a general parameterized surface S, we write

r⃗ (s, t) = f1(s, t)i⃗ + f2(s, t)j⃗ + f3(s, t)k⃗ .

Parameterizing a Surface of the Form z = f (x, y)

The graph of a function z = f (x, y) can be given parametrically simply by letting the parameters s

and t be x and y:

x = s, y = t, z = f (s, t).

Example 1 Give a parametric description of the lower hemisphere of the sphere x2 + y2 + z2 = 1.

Solution The surface is the graph of the function z = −
√

1 − x2 − y2 over the region x2+y2 ≤ 1 in the plane.

Then parametric equations are x = s, y = t, z = −
√

1 − s2 − t2, where the parameters s and t vary

inside and on the unit circle.

In practice we often think of x and y as parameters rather than introduce new parameters s and

t. Thus, we may write x = x, y = y, z = f (x, y).

Parameterizing Planes

Consider a plane containing two nonparallel vectors v⃗ 1 and v⃗ 2 and a point P0 with position vector

r⃗ 0. We can get to any point on the plane by starting at P0 and moving parallel to v⃗ 1 or v⃗ 2, adding

multiples of them to r⃗ 0. (See Figure 21.5.)

v⃗1

v⃗2

P0

Figure 21.5: The plane r⃗ (s, t) = r⃗ 0 + sv⃗ 1 + tv⃗ 2 and some

points corresponding to various choices of s and t
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Since sv⃗ 1 is parallel to v⃗ 1 and tv⃗ 2 is parallel to v⃗ 2, we have the following result:

Parameterizing a Plane

The plane through the point with position vector r⃗ 0 and containing the two nonparallel vectors

v⃗ 1 and v⃗ 2 has parameterization

r⃗ (s, t) = r⃗ 0 + sv⃗ 1 + tv⃗ 2.

If r⃗ 0 = x0i⃗ + y0j⃗ + z0k⃗ , and v⃗ 1 = a1i⃗ + a2j⃗ + a3k⃗ , and v⃗ 2 = b1i⃗ + b2j⃗ + b3k⃗ , then the

parameterization of the plane can be expressed with the parametric equations

x = x0 + sa1 + tb1, y = y0 + sa2 + tb2, z = z0 + sa3 + tb3.

Notice that the parameterization of the plane expresses the coordinates x, y, and z as linear

functions of the parameters s and t.

Example 2 Write a parameterization for the plane through the point (2,−1, 3) and containing the vectors v⃗ 1 =

2i⃗ + 3j⃗ − k⃗ and v⃗ 2 = i⃗ − 4j⃗ + 5k⃗ .

Solution A possible parameterization is

r⃗ (s, t) = r⃗ 0 + sv⃗ 1 + tv⃗ 2 = 2i⃗ − j⃗ + 3k⃗ + s(2i⃗ + 3j⃗ − k⃗ ) + t(i⃗ − 4j⃗ + 5k⃗ )

= (2 + 2s + t)i⃗ + (−1 + 3s − 4t)j⃗ + (3 − s + 5t)k⃗ ,

or equivalently,

x = 2 + 2s + t, y = −1 + 3s − 4t, z = 3 − s + 5t.

Parameterizations Using Spherical Coordinates

Recall the spherical coordinates �, �, and � introduced on page 924 of Chapter 16. On a sphere of

radius � = a we can use � and � as coordinates, similar to latitude and longitude on the surface

of the earth. (See Figure 21.6.) The latitude, however, is measured from the equator, whereas � is

measured from the north pole. If the positive x-axis passes through the Greenwich meridian, the

longitude and � are equal for 0 ≤ � ≤ �.

x

y

z

�

�

Figure 21.6: Parameterizing the sphere by � and �
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Example 3 You are at a point on a sphere with � = 3�∕4. Are you in the northern or southern hemisphere? If

� decreases, do you move closer to or farther from the equator?

Solution The equator has � = �∕2. Since 3�∕4 > �∕2, you are in the southern hemisphere. If � decreases,

you move closer to the equator.

Example 4 On a sphere, you are standing at a point with coordinates �0 and�0. Your antipodal point is the point

on the other side of the sphere on a line through you and the center. What are the �, � coordinates of

your antipodal point?

Solution Figure 21.7 shows that the coordinates are � = �0 + � if �0 < � or � = �0 − � if � ≤ �0 ≤ 2�, and

� = � − �0. Notice that if you are on the equator, then so is your antipodal point.

View from above

y

x

Point
(above xy-plane)

Antipodal point
(below xy-plane)

�0
� + �0

z

xy-plane
seen edge-on

Side view

Point

Antipodal
point

�0

� − �0

Figure 21.7: Two views of the xyz-coordinate system showing coordinates of antipodal points

Parameterizing a Sphere Using Spherical Coordinates

The sphere with radius 1 centered at the origin is parameterized by

x = sin� cos �, y = sin� sin �, z = cos�,

where 0 ≤ � ≤ 2� and 0 ≤ � ≤ �. (See Figure 21.8.)

x

y

z

�

�

✻

❄

cos�

sin�

Rad
ius
=
1

sin� sin �

si
n
�
co
s �

✛

✛

✛

✛

Figure 21.8: The relationship between x, y, z and �, � on a sphere of radius 1
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We can also write these equations in vector form:

r⃗ (�, �) = sin� cos � i⃗ + sin� sin � j⃗ + cos� k⃗ .

Since x2 + y2 + z2 = sin2 �(cos2 � + sin2 �) + cos2 � = sin2 � + cos2 � = 1, this verifies that

the point with position vector r⃗ (�, �) does lie on the sphere of radius 1. Notice that the z-coordinate

depends only on the parameter �. Geometrically, this means that all points on the same latitude have

the same z-coordinate.

Example 5 Find parametric equations for the following spheres:

(a) Center at the origin and radius 2.

(b) Center at the point with Cartesian coordinates (2,−1, 3) and radius 2.

Solution (a) We must scale the distance from the origin by 2. Thus, we have

x = 2 sin� cos �, y = 2 sin� sin �, z = 2 cos�,

where 0 ≤ � ≤ 2� and 0 ≤ � ≤ �. In vector form, this is written

r⃗ (�, �) = 2 sin� cos �i⃗ + 2 sin� sin �j⃗ + 2 cos�k⃗ .

(b) To shift the center of the sphere from the origin to the point (2,−1, 3), we add the vector pa-

rameterization we found in part (a) to the position vector of (2,−1, 3). (See Figure 21.9.) This

gives

r⃗ (�, �) = 2i⃗ − j⃗ + 3k⃗ + (2 sin� cos �i⃗ + 2 sin� sin �j⃗ + 2 cos�k⃗ )

= (2 + 2 sin� cos �)i⃗ + (−1 + 2 sin� sin �)j⃗ + (3 + 2 cos�)k⃗ ,

where 0 ≤ � ≤ 2� and 0 ≤ � ≤ �. Alternatively,

x = 2 + 2 sin� cos �, y = −1 + 2 sin� sin �, z = 3 + 2 cos�.

x

y

z

✒

2 sin� cos �i⃗ +
2 sin� sin �j⃗ +

2 cos�k⃗

✛ 2i⃗ − j⃗ + 3k⃗

Figure 21.9: Sphere with center at the point (2,−1, 3) and radius 2

Note that the same point can have more than one value for � or �. For example, points with

� = 0 also have � = 2�, unless we restrict � to the range 0 ≤ � < 2�. Also, the north pole, at � = 0,

and the south pole, at � = �, can have any value of �.
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Parameterizing Surfaces of Revolution

Many surfaces have an axis of rotational symmetry and circular cross sections perpendicular to that

axis. These surfaces are referred to as surfaces of revolution.

Example 6 Find a parameterization of the cone whose base is the circle x2+ y2 = a2 in the xy-plane and whose

vertex is at height ℎ above the xy-plane. (See Figure 21.10.)

x y

z

�
r⃗0

a

✻

❄

ℎ

zk⃗

r⃗ 1

a

r✻

❄

z

✻

❄

ℎ

Figure 21.10: The cone whose base is the circle x2 + y2 = a2 in the xy-plane and whose vertex is at the point (0, 0, ℎ)

and the vertical cross section through the cone

Solution We use cylindrical coordinates, r, �, z. (See Figure 21.10.) In the xy-plane, the radius vector, r⃗ 0,

from the z-axis to a point on the cone in the xy-plane is

r⃗ 0 = a cos �i⃗ + a sin �j⃗ .

Above the xy-plane, the radius of the circular cross section, r, decreases linearly from r = a when

z = 0 to r = 0 when z = ℎ. From the similar triangles in Figure 21.10,

a

ℎ
=

r

ℎ − z
.

Solving for r, we have

r =
(

1 −
z

ℎ

)

a.

The horizontal radius vector, r⃗ 1, at height z has components similar to r⃗ 0, but with a replaced by r:

r⃗ 1 = r cos �i⃗ + r sin �j⃗ =
(

1 −
z

ℎ

)

a cos �i⃗ +
(

1 −
z

ℎ

)

a sin �j⃗ .

As � goes from 0 to 2�, the vector r⃗1 traces out the horizontal circle in Figure 21.10. We get the

position vector, r⃗ , of a point on the cone by adding the vector zk⃗ , so

r⃗ = r⃗ 1 + zk⃗ = a

(

1 −
z

ℎ

)

cos �i⃗ + a

(

1 −
z

ℎ

)

sin �j⃗ + zk⃗ , for 0 ≤ z ≤ ℎ and 0 ≤ � ≤ 2�.

These equations can be written as

x =
(

1 −
z

ℎ

)

a cos �, y =
(

1 −
z

ℎ

)

a sin �, z = z.

The parameters are � and z.
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Example 7 Consider the bell of a trumpet. A model for the radius z = f (x) of the horn (in cm) at a distance x

cm from the large open end is given by the function

f (x) =
6

(x + 1)0.7
.

The bell is obtained by rotating the graph of f about the x-axis. Find a parameterization for the first

24 cm of the bell. (See Figure 21.11.)

x y

z

Figure 21.11: The bell of a trumpet obtained by rotating the

graph of z = f (x) about the x-axis

Solution At distance x from the large open end of the horn, the cross section parallel to the yz-plane is a circle

of radius f (x), with center on the x-axis. Such a circle can be parameterized by y = f (x) cos �,

z = f (x) sin �. Thus, we have the parameterization

x = x, y =

(

6

(x + 1)0.7

)

cos �, z =

(

6

(x + 1)0.7

)

sin �, 0 ≤ x ≤ 24, 0 ≤ � ≤ 2�.

The parameters are x and �.

Parameter Curves
On a parameterized surface, the curve obtained by setting one of the parameters equal to a constant

and letting the other vary is called a parameter curve. If the surface is parameterized by

r⃗ (s, t) = f1(s, t)i⃗ + f2(s, t)j⃗ + f3(s, t)k⃗ ,

there are two families of parameter curves on the surface, one family with t constant and the other

with s constant.

Example 8 Consider the vertical cylinder

x = cos t, y = sin t, z = z.

(a) Describe the two parameter curves through the point (0, 1, 1).

(b) Describe the family of parameter curves with t constant and the family with z constant.

Solution (a) Since the point (0, 1, 1) corresponds to the parameter values t = �∕2 and z = 1, there are two

parameter curves, one with t = �∕2 and the other with z = 1. The parameter curve with t = �∕2

has the parametric equations

x = cos
(

�

2

)

= 0, y = sin
(

�

2

)

= 1, z = z,

with parameter z. This is a line through the point (0, 1, 1) parallel to the z-axis.

The parameter curve with z = 1 has the parametric equations

x = cos t, y = sin t, z = 1,

with parameter t. This is a unit circle parallel to and one unit above the xy-plane centered on the

z-axis.
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(b) First, fix t = t0 for t and let z vary. The curves parameterized by z have equations

x = cos t0, y = sin t0, z = z.

These are vertical lines on the cylinder parallel to the z-axis. (See Figure 21.12.)

The other family is obtained by fixing z = z0 and varying t. Curves in this family are

parameterized by t and have equations

x = cos t, y = sin t, z = z0.

They are circles of radius 1 parallel to the xy-plane centered on the z-axis. (See Figure 21.13.)

x
y

z

Figure 21.12: The family of parameter curves

with t = t0 for the cylinder

x = cos t, y = sin t, z = z

x

y

z

Figure 21.13: The family of parameter curves

with z = z0 for the cylinder

x = cos t, y = sin t, z = z

Example 9 Describe the families of parameter curves with � = �0 and � = �0 for the sphere

x = sin� cos �, y = sin� sin �, z = cos�,

where 0 ≤ � ≤ 2�, 0 ≤ � ≤ �.

Solution Since � measures latitude, the family with� constant consists of the circles of constant latitude. (See

Figure 21.14.) Similarly, the family with � constant consists of the meridians (semicircles) running

between the north and south poles. (See Figure 21.15.)

x

y

z

Figure 21.14: The family of parameter

curves with � = �0 for the sphere

parameterized by (�, �)

x

y

z

Figure 21.15: The family of

parameter curves with � = �0 for

the sphere parameterized by (�, �)

We have seen parameter curves before, on pages 703–705 of Section 12.2: The cross sections

with x = a or y = b on a surface z = f (x, y) are examples of parameter curves. So are the grid
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lines on a computer sketch of a surface. The small regions shaped like parallelograms surrounded

by nearby pairs of parameter curves are called parameter rectangles. See Figure 21.16.

✲Parameter curve:
with y = b

✛ Parameter curve:
with x = a

Figure 21.16: Parameter curves x = a or y = b on a surface z = f (x, y); the darker

region is a parameter rectangle

Summary for Section 21.1

• Parameterized surfaces: In general, we express the coordinates, (x, y, z), of a point on a surface

S in terms of two parameters, s and t:

x = f1(s, t), y = f2(s, t), z = f3(s, t).

• Using the position vector, we can express a parameterization for a general surface S as

r⃗ (s, t) = f1(s, t)i⃗ + f2(s, t)j⃗ + f3(s, t)k⃗ .

• Examples of parameterized surfaces:

∙ A surface of the form z = f (x, y) can be parameterized by x = s, y = t, z = f (s, t).

∙ A plane through the point with position vector r⃗ 0 and containing the two nonparallel vectors

v⃗ 1 and v⃗ 2 can be parameterized by r⃗ (s, t) = r⃗ 0 + sv⃗ 1 + tv⃗ 2.

∙ A cylinder with radius 1 centered around the z-axis can be parameterized by x = cos t, y =

sin t, z = z, where 0 ≤ t < 2� and −∞ < z < ∞.

∙ A sphere with radius 1 centered at the origin can be parameterized by x = sin� cos�, y =

sin� sin �, z = cos�, where 0 ≤ � ≤ 2� and 0 ≤ � ≤ �.

• Parameter curves: A curve obtained by setting one of the parameters equal to a constant and

letting the other vary is called a parameter curve.

Exercises and Problems for Section 21.1

EXERCISES

In Exercises 1–4 decide if the parameterization describes a

curve or a surface.

1. r⃗ (s) = si⃗ + (3 − s)j⃗ + s2k⃗

2. r⃗ (s, t) = (s + t)i⃗ + (3 − s)j⃗

3. r⃗ (s, t) = cos s i⃗ + sin s j⃗ + t2k⃗

4. r⃗ (s) = cos s i⃗ + sin s j⃗ + s2k⃗

Describe in words the objects parameterized by the equa-

tions in Exercises 5–8. (Note: r and � are cylindrical coordi-

nates.)

5. x = r cos � y = r sin � z = 7

0 ≤ r ≤ 5 0 ≤ � ≤ 2�

6. x = 5 cos � y = 5 sin � z = z

0 ≤ � ≤ 2� 0 ≤ z ≤ 7

7. x = 5 cos � y = 5 sin � z = 5�

0 ≤ � ≤ 2�

8. x = r cos � y = r sin � z = r

0 ≤ r ≤ 5 0 ≤ � ≤ 2�

In Exercises 9–12, for a sphere parameterized using the

spherical coordinates � and �, describe in words the part of

the sphere given by the restrictions.

9. 0 ≤ � < 2�, 0 ≤ � ≤ �∕2

10. � ≤ � < 2�, 0 ≤ � ≤ �

11. �∕4 ≤ � < �∕3, 0 ≤ � ≤ �

12. 0 ≤ � ≤ �, �∕4 ≤ � < �∕3
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PROBLEMS

In Problems 13–16, give parametric equations for the plane

through the point with position vector r⃗ 0 and containing the

vectors v⃗ 1 and v⃗ 2.

13. r⃗ 0 = i⃗ , v⃗ 1 = j⃗ , v⃗ 2 = k⃗

14. r⃗ 0 = j⃗ , v⃗ 1 = k⃗ , v⃗ 2 = i⃗

15. r⃗ 0 = i⃗ + j⃗ , v⃗ 1 = j⃗ + k⃗ , v⃗ 2 = i⃗ + k⃗

16. r⃗ 0 = i⃗ + j⃗ + k⃗ , v⃗ 1 = i⃗ − k⃗ , v⃗ 2 = −j⃗ + k⃗

In Problems 17–18, parameterize the plane that contains the

three points.

17. (0, 0, 0), (1, 2, 3), (2, 1, 0)

18. (1, 2, 3), (2, 5, 8), (5, 2, 0)

In Problems 19–20, give two nonparallel vectors and the co-

ordinates of a point in the plane with given parametric equa-

tions

19. x = 2s + 3t, y = s − 5t, z = −s + 2t

20. x = 2 + s + t, y = s − t, z = −1 + s + t

In Problems 21–22, parameterize the plane through the point

with the given normal vector.

21. (3, 5, 7), i⃗ + j⃗ + k⃗

22. (5, 1, 4), i⃗ + 2j⃗ + 3k⃗

23. Does the plane r⃗ (s, t) = (2 + s)i⃗ + (3 + s + t)j⃗ + 4tk⃗

contain the following points?

(a) (4, 8, 12) (b) (1, 2, 3)

24. Are the following two planes parallel?

x = 2 + s + t, y = 4 + s − t, z = 1 + 2s, and

x = 2 + s + 2t, y = t, z = s − t.

In Problems 25–28, describe the families of parameter

curves with s = s0 and t = t0 for the parameterized surface.

25. x = s, y = t, z = 1 for −∞ < s < ∞, −∞ < t <

∞

26. x = s, y = cos t, z = sin t for −∞ < s < ∞,

0 ≤ t ≤ 2�

27. x = s y = t, z = s2 + t2 for −∞ < s < ∞,

−∞ < t < ∞

28. x = cos s sin t, y = sin s sin t, z = cos t for 0 ≤

s ≤ 2�, 0 ≤ t ≤ �

29. A city is described parametrically by the equation

r⃗ = (x0 i⃗ + y0j⃗ + z0k⃗ ) + sv⃗1 + tv⃗2

where v⃗ 1 = 2i⃗ − 3j⃗ + 2k⃗ and v⃗ 2 = i⃗ + 4j⃗ + 5k⃗ . A

city block is a rectangle determined by v⃗ 1 and v⃗ 2. East

is in the direction of v⃗ 1 and north is in the direction of

v⃗ 2. Starting at the point (x0, y0, z0), you walk 5 blocks

east, 4 blocks north, 1 block west and 2 blocks south.

What are the parameters of the point where you end up?

What are your x, y and z coordinates at that point?

30. You are at a point on the earth with longitude 80◦ West

of Greenwich, England, and latitude 40◦ North of the

equator.

(a) If your latitude decreases, have you moved nearer

to or farther from the equator?

(b) If your latitude decreases, have you moved nearer

to or farther from the north pole?

(c) If your longitude increases (say, to 90◦ West), have

you moved nearer to or farther from Greenwich?

31. Describe in words the curve � = �∕4 on the surface of

the globe.

32. Describe in words the curve � = �∕4 on the surface of

the globe.

33. A decorative oak post is 48′′ long and is turned on a

lathe so that its profile is sinusoidal, as shown in Fig-

ure 21.17.

(a) Describe the surface of the post parametrically us-

ing cylindrical coordinates.

(b) Find the volume of the post.

✻

❄

6′′

✲✛4′′

✛✛2′′

Figure 21.17

34. Find parametric equations for the sphere

(x − a)2 + (y − b)2 + (z − c)2 = d 2.

35. You are standing at a point on the equator of a sphere pa-

rameterized by spherical coordinates �0 and �0. If you

go halfway around the equator and halfway up toward

the north pole along a longitude, what are your new �

and � coordinates?

36. Find parametric equations for the cone x2 + y2 = z2.

37. Parameterize the cone in Example 6 on page 1084 in

terms of r and �.
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38. Give a parameterization of the circle of radius a cen-

tered at the point (x0, y0, z0) and in the plane parallel to

two given unit vectors u⃗ and v⃗ such that u⃗ ⋅ v⃗ = 0.

For Problems 39–41,

(a) Write an equation in x, y, z and identify the parametric

surface.

(b) Draw a picture of the surface.

39. x = 2s y = s + t z = 1 + s − t

0 ≤ s ≤ 1 0 ≤ t ≤ 1

40. x = s y = t z =
√

1 − s2 − t2

s2 + t2 ≤ 1 s, t ≥ 0

41. x = s + t y = s − t z = s2 + t2

0 ≤ s ≤ 1 0 ≤ t ≤ 1

Strengthen Your Understanding

In Problems 42–43, explain what is wrong with the state-

ment.

42. The parameter curves of a parameterized surface inter-

sect at right angles.

43. The parameter curves for constant � on the sphere

r⃗ (�, �) = R sin� cos �i⃗ + R sin� sin �j⃗ + R cos�k⃗

are circles of radius R.

In Problems 44–46, give an example of:

44. A parameterization r⃗ (s, t) of the plane tangent to the

unit sphere at the point where � = �∕4 and � = �∕4.

45. An equation of the form f (x, y, z) = 0 for the plane

r⃗ (s, t) = (s + 1) i⃗ + (t + 2) j⃗ + (s + t) k⃗ .

46. A parameterized curve on the sphere r⃗ (�, �) =

sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗ that is not a pa-

rameter curve.

Are the statements in Problems 47–53 true or false? Give

reasons for your answer.

47. The equations x = s+ 1, y = t− 2, z = 3 parameterize

a plane.

48. The equations x = 2s − 1, y = −s + 3, z = 4 + s

parameterize a plane.

49. If r⃗ = r⃗ (s, t) parameterizes the upper hemisphere

x2 + y2 + z2 = 1, z ≥ 0, then r⃗ = −r⃗ (s, t) parame-

terizes the lower hemisphere x2 + y2 + z2 = 1, z ≤ 0.

50. If r⃗ = r⃗ (s, t) parameterizes the upper hemisphere

x2 + y2 + z2 = 1, z ≥ 0, then r⃗ = r⃗ (−s,−t) parameter-

izes the lower hemisphere x2 + y2 + z2 = 1, z ≤ 0.

51. If r⃗1 (s, t) parameterizes a plane then r⃗2 (s, t) =

r⃗ 1(s, t) + 2i⃗ − 3j⃗ + k⃗ parameterizes a parallel plane.

52. Every point on a parameterized surface has a parameter

curve passing through it.

53. If s0 ≠ s1, then the parameter curves r⃗ (s0, t) and r⃗ (s1, t)

do not intersect.

54. Match the parameterizations (I)–(IV) with the surfaces

(a)–(d). In all cases 0 ≤ s ≤ �∕2, 0 ≤ t ≤ �∕2. Note

that only part of the surface may be described by the

given parameterization.

(a) Cylinder

(b) Plane

(c) Sphere

(d) Cone

I. x = cos s, y = sin t, z = cos s + sin t

II. x = cos s, y = sin s, z = cos t

III. x = sin s cos t, y = sin s sin t, z = cos s

IV. x = cos s, y = sin t, z =
√

cos2 s + sin2 t

21.2 CHANGE OF COORDINATES IN A MULTIPLE INTEGRAL

In Chapter 16 we used polar, cylindrical, and spherical coordinates to simplify iterated integrals.

In this section, we discuss more general changes of coordinate. In the process, we see where the

factors r and �2 sin� come from when we convert to polar, cylindrical, or spherical coordinates (see

pages 917, 923, and 925).

Polar Change of Coordinates Revisited

Consider the integral ∫
R
(x+ y) dA where R is the region in the first quadrant bounded by the circle

x2 + y2 = 16 and the x and y-axes. Writing the integral in Cartesian and polar coordinates, we have

∫R
(x + y) dA =

∫

4

0 ∫

√

16−x2

0

(x + y) dy dx =
∫

�∕2

0 ∫

4

0

(r cos � + r sin �)r drd�.
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1 2 3 4

�∕8

�∕4

3�∕8

�∕2

� = �∕8

� = �∕4

r = 2 r = 3

r

�

1 2 3 4

1

2

3

x

y

� = �∕4

� = �∕8

Figure 21.18: A grid in the r�-plane and the corresponding curved grid in the xy-plane

The integral on the right is over the rectangle in the r�-plane given by 0 ≤ r ≤ 4, 0 ≤ � ≤

�∕2. The conversion from polar to Cartesian coordinates changes this rectangle into a quarter-disk.

Figure 21.18 shows how a typical rectangle (shaded) in the r�-plane with sides of length Δr and Δ�

corresponds to a curved rectangle in the xy-plane with sides of length Δr and rΔ�. The extra r is

needed because the correspondence between r, � and x, y not only curves the lines r = 1, 2, 3… into

circles, it also stretches those lines around larger and larger circles.

General Change of Coordinates

We now consider a general change of coordinates, where x, y coordinates are related to s, t coordi-

nates by the differentiable functions

x = x(s, t) y = y(s, t).

Just as a rectangular region in the r�-plane corresponds to a region in the xy-plane, a rectangular

region, T , in the st-plane corresponds to a region, R, in the xy-plane. We assume that the change of

coordinates is one-to-one, that is, that each point in R corresponds to only one point in T .

(s, t) (s + Δs, t)

s

t

Tij

(s, t + Δt)

(x(s, t), y(s, t))

(x(s, t + Δt), y(s, t + Δt))

x

y

b⃗

Rij

(x(s + Δs, t), y(s + Δs, t))

a⃗

Figure 21.19: A small rectangle Tij in the st-plane and the corresponding region Rij of the xy-plane

We divide T into small rectangles Tij with sides of length Δs and Δt. (See Figure 21.19.) The

corresponding piece Rij of the xy-plane is a quadrilateral with curved sides. If we choose Δs and

Δt small, then by local linearity of x(s, t) and y(s, t), we know Rij is approximately a parallelogram.

Recall from Chapter 13 that the area of the parallelogram with sides a⃗ and b⃗ is ‖a⃗ × b⃗ ‖. Thus,

we need to find the sides of Rij as vectors. The side of Rij corresponding to the bottom side of Tij
has endpoints (x(s, t), y(s, t)) and (x(s + Δs, t), y(s+ Δs, t)), so in vector form that side is

a⃗ = (x(s + Δs, t) − x(s, t))i⃗ + (y(s + Δs, t) − y(s, t))j⃗ ≈
(

)x

)s
Δs

)

i⃗ +

(

)y

)s
Δs

)

j⃗ .

Similarly, the side of Rij corresponding to the left edge of Tij is given by

b⃗ ≈
(

)x

)t
Δt

)

i⃗ +

(

)y

)t
Δt

)

j⃗ .
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Computing the cross product, we get

Area Rij ≈ ‖a⃗ × b⃗ ‖ ≈
|

|

|

|

|

(

)x

)s
Δs

)

(

)y

)t
Δt

)

−
(

)x

)t
Δt

)

(

)y

)s
Δs

)

|

|

|

|

|

=
|

|

|

|

)x

)s
⋅

)y

)t
−

)x

)t
⋅

)y

)s

|

|

|

|

ΔsΔt.

Using determinant notation,1 we define the Jacobian,
)(x, y)

)(s, t)
, as follows:

)(x, y)

)(s, t)
=

)x

)s
⋅

)y

)t
−

)x

)t
⋅

)y

)s
=

|

|

|

|

|

|

|

|

|

|

)x

)s

)x

)t

)y

)s

)y

)t

|

|

|

|

|

|

|

|

|

|

.

Thus, we can write

Area Rij ≈
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ΔsΔt.

To compute ∫
R
f (x, y) dA, where f is a continuous function, we look at the Riemann sum obtained

by dividing the region R into the small curved regions Rij , giving

∫R
f (x, y) dA ≈

∑

i,j

f (uij , vij) ⋅ Area of Rij ≈
∑

i,j

f (uij , vij)
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ΔsΔt.

Each point (uij , vij) in Rij corresponds to a point (sij , tij) in Tij , so the sum can be written in terms

of s and t:
∑

i,j

f (x(sij , tij), y(sij , tij))
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ΔsΔt.

This is a Riemann sum in terms of s and t, so as Δs and Δt approach 0, we get

∫R
f (x, y) dA =

∫T
f (x(s, t), y(s, t))

|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt.

To convert an integral from x, y to s, t coordinates we make three changes:

1. Substitute for x and y in the integrand in terms of s and t.

2. Change the xy region R into an st region T .

3. Use the absolute value of the Jacobian to change the area element by making the substi-

tution dx dy =
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt.

Example 1 Check that the Jacobian
)(x, y)

)(r, �)
= r for polar coordinates x = r cos �, y = r sin �.

Solution We have
)(x, y)

)(r, �)
=

|

|

|

|

|

|

|

|

|

|

)x

)r

)x

)�

)y

)r

)y

)�

|

|

|

|

|

|

|

|

|

|

=
|

|

|

|

|

cos � −r sin �

sin � r cos �

|

|

|

|

|

= r cos2 � + r sin2 � = r.

Example 2 Find the area of the ellipse
x2

a2
+

y2

b2
= 1.

1See Appendix E. Carl Gustav Jacob Jacobi (1804–1851) was a German mathematician.
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Solution Let x = as, y = bt. Then the ellipse x2∕a2 + y2∕b2 = 1 in the xy-plane corresponds to the circle

s2 + t2 = 1 in the st-plane. The Jacobian is
|

|

|

|

|

a 0

0 b

|

|

|

|

|

= ab. Thus, if R is the ellipse in the xy-plane and

T is the unit circle in the st-plane, we get

Area of xy-ellipse =
∫R

1 dA =
∫T

1 ab ds dt = ab
∫T

ds dt = ab ⋅ Area of st-circle = �ab.

Change of Coordinates in Triple Integrals

For triple integrals, there is a similar formula. Suppose the differentiable functions

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u)

define a one-to-one change of coordinates from a region S in stu-space to a region W in xyz-space.

Then, the Jacobian of this change of coordinates is given by the determinant2

)(x, y, z)

)(s, t, u)
=

|

|

|

|

|

|

|

|

)x

)s

)x

)t

)x

)u
)y

)s

)y

)t

)y

)u
)z

)s

)z

)t

)z

)u

|

|

|

|

|

|

|

|

.

Just as the Jacobian in two dimensions gives us the change in the area element, the Jacobian in three

dimensions represents the change in the volume element. Thus, we have

∫W
f (x, y, z) dx dy dz =

∫S
f (x(s, t, u), y(s, t, u), z(s, t, u))

|

|

|

|

)(x, y, z)

)(s, t, u)

|

|

|

|

ds dt du.

Problem 11 at the end of this section asks you to check that the Jacobian for the change of coor-

dinates to spherical coordinates is �2 sin�. The next example generalizes Example 2 to ellipsoids.

Example 3 Find the volume of the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1.

Solution Let x = as, y = bt, z = cu. The Jacobian is computed to be abc. The xyz-ellipsoid corresponds to

the stu-sphere s2 + t2 + u2 = 1. Thus, as in Example 2,

Volume of xyz-ellipsoid = abc ⋅ Volume of stu-sphere = abc
4

3
� =

4

3
�abc.

Summary for Section 21.2

• The Jacobian is defined using determinant notation as
)(x, y)

)(s, t)
=

|

|

|

|

|

|

|

|

|

|

)x

)s

)x

)t

)y

)s

)y

)t

|

|

|

|

|

|

|

|

|

|

.

• Change of coordinates: To convert an integral from x, y to s, t coordinates we make three

changes:

1. Substitute for x and y in the integrand in terms of s and t.

2. Change the xy region R into an st region T .

3. Change the area element by making the substitution dx dy =
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt.

2See Appendix E.
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Exercises and Problems for Section 21.2

EXERCISES

In Exercises 1–4, find the absolute value of the Jacobian,
|

|

|

)(x,y)

)(s,t)

|

|

|

, for the given change of coordinates.

1. x = 5s + 2t, y = 3s + t

2. x = s2 − t2, y = 2st

3. x = es cos t, y = es sin t

4. x = s3 − 3st2, y = 3s2t − t3

In Exercises 5–7, find positive numbers a and b so that the

change of coordinates s = ax, t = by transforms the integral

∫ ∫
R
dx dy into

∫ ∫
T

|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt

for the given regions R and T .

5. R is the rectangle 0 ≤ x ≤ 10, 0 ≤ y ≤ 1 and T is the

square 0 ≤ s, t ≤ 1.

6. R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1∕4 and T is the

square 0 ≤ s, t ≤ 1.

7. R is the rectangle 0 ≤ x ≤ 50, 0 ≤ y ≤ 10 and T is the

square 0 ≤ s, t ≤ 1.

In Exercises 8–9, find a number a so that the change of coor-

dinates s = x+ay, t = y transforms the integral ∫ ∫
R
dxdy

over the parallelogram R in the xy-plane into an integral

∫ ∫
T

|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt

over a rectangle T in the st-plane.

8. R has vertices (0, 0), (10, 0), (12, 3), (22, 3)

9. R has vertices (0, 0), (10, 0), (−15, 5), (−5, 5)

PROBLEMS

10. Find the region R in the xy-plane corresponding to the

region T consisting of points (s, t) with 0 ≤ s ≤ 3,

0 ≤ t ≤ 2 for the change of coordinates x = 2s−3t, y =

s − 2t. Check that

∫
R

dx dy =
∫
T

|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt.

11. Compute the Jacobian for the change of coordinates

into spherical coordinates:

x = � sin� cos �, y = � sin� sin �, z = � cos�.

12. For the change of coordinates x = 3s−4t, y = 5s+2t,

show that
)(x, y)

)(s, t)
⋅

)(s, t)

)(x, y)
= 1

13. Use the change of coordinates x = 2s + t, y = s − t to

compute the integral ∫
R
(x+y) dA, whereR is the paral-

lelogram formed by (0, 0), (3,−3), (5,−2), and (2, 1).

14. Use the change of coordinates s = x + y, t = y to find

the area of the ellipse x2 + 2xy + 2y2 = 1.

15. Use the change of coordinates s = y, t = y−x2 to eval-

uate ∫ ∫
R
xdx dy over the region R in the first quadrant

bounded by y = 0, y = 16, y = x2, and y = x2 − 9.

16. If R is the triangle bounded by x + y = 1, x = 0, and

y = 0, evaluate the integral ∫
R
cos

(

x−y

x+y

)

dx dy.

17. Two independent random numbers x and y from a

normal distribution with mean 0 and standard de-

viation � have joint density function p(x, y) =

(1∕(2��2))e−(x
2+y2)∕(2�2). The average z = (x+y)∕2 has

a one-variable probability density function of its own.

(a) Give a double integral expression for F (t), the

probability that z ≤ t.

(b) Give a single integral expression for F (t). To do

this, make the change of coordinates: u = (x+y)∕2,

v = (x − y)∕2 and then do the integral on dv. Use

the fact that ∫
∞

−∞
e−x

2∕a2dx = a
√

�.

(c) Find the probability density function F ′(t) of z.

(d) What is the name of the distribution of z?

18. A river follows the path y = f (x) where x, y are in

kilometers. Near the sea, it widens into a lagoon, then

narrows again at its mouth. See Figure 21.20. At the

point (x, y), the depth, d(x, y), of the lagoon is given by

d(x, y) = 40 − 160(y − f (x))2 − 40x2 meters.

The lagoon itself is described by d(x, y) ≥ 0. What is

the volume of the lagoon in cubic meters? [Hint: Use

new coordinates u = x∕2, v = y−f (x) and Jacobians.]

(1, f (1))

Sea

y

(−1, f (−1)) River, y = f (x)

■

Lagoon

Figure 21.20
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Strengthen Your Understanding

In Problems 19–20, explain what is wrong with the state-

ment.

19. If R is the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 4 and T is the re-

gion 0 ≤ s ≤ 1, −2 ≤ t ≤ 2, using the formulas x = s,

y = t2, we have

∫
R

f (x, y) dx dy =
∫
T

f (s, t2)
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

ds dt.

20. If R and T are corresponding regions of the xy- and st-

planes, the change of coordinates x = t3, y = s leads to

the formula

∫
R

(x + 2y) dx dy =
∫
T

(

t3 + 2s
) (

−3t2
)

ds dt.

In Problems 21–22, give an example of:

21. A change of coordinates x = x(s, t), y = y(s, t) where

the rectangle 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 in the st-plane

corresponds to a different rectangle in the xy-plane.

22. A change of coordinates x = x(s, t), y = y(s, t) where

every region in the st-plane corresponds to a region in

the xy-plane with twice the area.

In Problems 23–24, consider a change of variable in the in-

tegral ∫
R
f (x, y) dA from x, y to s, t. Are the following state-

ments true or false?

23. If the Jacobian
|

|

|

|

)(x, y)

)(s, t)

|

|

|

|

> 1, the value of the s, t-

integral is greater than the original x, y-integral.

24. The Jacobian cannot be negative.

21.3 FLUX INTEGRALS OVER PARAMETERIZED SURFACES

Most of the flux integrals we are likely to encounter can be computed using the methods of Sec-

tions 19.1 and 19.2. In this section, we briefly consider the general case: how to compute the flux of

a smooth vector field F⃗ through a smooth oriented surface, S, parameterized by

r⃗ = r⃗ (s, t),

for (s, t) in some region R of the parameter space. The method is similar to the one used for graphs

in Section 19.2. We consider a parameter rectangle on the surface S corresponding to a rectangular

region with sides Δs and Δt in the parameter space. (See Figure 21.21.)

✻
❄Δt

✲✛
Δs

t

s

✲R ✒

)r⃗

)t
Δt

■

)r⃗

)s
Δs

❘

Parameter
rectangle

S

Figure 21.21: Parameter rectangle on the surface S corresponding to a small rectangular region in the

parameter space, R

If Δs and Δt are small, the area vector, ΔA⃗ , of the patch is approximately the area vector of the

parallelogram defined by the vectors

r⃗ (s + Δs, t) − r⃗ (s, t) ≈
)r⃗

)s
Δs, and r⃗ (s, t+ Δt) − r⃗ (s, t) ≈

)r⃗

)t
Δt.

Thus,

ΔA⃗ ≈
)r⃗

)s
×
)r⃗

)t
ΔsΔt.
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We assume that the vector )r⃗ ∕)s×)r⃗ ∕)t is never zero and points in the direction of the unit normal

orientation vector n⃗ . If the vector )r⃗ ∕)s × )r⃗ ∕)t points in the opposite direction to n⃗ , we reverse

the order of the cross product. Replacing ΔA⃗ , Δs, and Δt by dA⃗ , ds, and dt, we write

dA⃗ =

(

)r⃗

)s
×
)r⃗

)t

)

ds dt.

The Flux of a Vector Field Through a Parameterized Surface

The flux of a smooth vector field F⃗ through a smooth oriented surface S parameterized by

r⃗ = r⃗ (s, t), where (s, t) varies in a parameter region R, is given by

∫S
F⃗ ⋅ dA⃗ =

∫R
F⃗ (r⃗ (s, t)) ⋅

(

)r⃗

)s
×
)r⃗

)t

)

ds dt.

We choose the parameterization so that )r⃗ ∕)s×)r⃗ ∕)t is never zero and points in the direction

of n⃗ everywhere.

Example 1 Find the flux of the vector field F⃗ = xi⃗ + yj⃗ through the surface S, oriented downward and given

by

x = 2s, y = s + t, z = 1 + s − t, where 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

Solution Since S is parameterized by

r⃗ (s, t) = 2si⃗ + (s + t)j⃗ + (1 + s − t)k⃗ ,

we have
)r⃗

)s
= 2i⃗ + j⃗ + k⃗ and

)r

)t
= j⃗ − k⃗ ,

so

)r⃗

)s
×
)r⃗

)t
=

|

|

|

|

|

|

|

|

i⃗ j⃗ k⃗

2 1 1

0 1 −1

|

|

|

|

|

|

|

|

= −2i⃗ + 2j⃗ + 2k⃗ .

Since the vector −2i⃗ + 2j⃗ + 2k⃗ points upward, we use 2i⃗ − 2j⃗ − 2k⃗ for downward orientation.

Thus, the flux integral is given by

∫S
F⃗ ⋅ dA⃗ =

∫

1

0 ∫

1

0

(2si⃗ + (s + t)j⃗ ) ⋅ (2i⃗ − 2j⃗ − 2k⃗ ) ds dt

=
∫

1

0 ∫

1

0

(4s − 2s − 2t) dsdt =
∫

1

0 ∫

1

0

(2s − 2t) ds dt

=
∫

1

0

(

s2 − 2st
|

|

|

|

s=1

s=0

)

dt =
∫

1

0

(1 − 2t) dt = t − t2
|

|

|

|

1

0

= 0.
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Area of a Parameterized Surface

The area ΔA of a small parameter rectangle is the magnitude of its area vector ΔA⃗ . Therefore,

Area of S =
∑

ΔA =
∑

‖ΔA⃗ ‖ ≈
∑

‖

‖

‖

‖

)r⃗

)s
×
)r⃗

)t

‖

‖

‖

‖

ΔsΔt.

Taking the limit as the area of the parameter rectangles tends to zero, we are led to the following

expression for the area of S.

The Area of a Parameterized Surface

The area of a surfaceS which is parameterized by r⃗ = r⃗ (s, t), where (s, t)varies in a parameter

region R, is given by

∫S
dA =

∫R

‖

‖

‖

‖

)r⃗

)s
×
)r⃗

)t

‖

‖

‖

‖

ds dt.

Example 2 Compute the surface area of a sphere of radius a.

Solution We take the sphere S of radius a centered at the origin and parameterize it with the spherical coor-

dinates � and �. The parameterization is

x = a sin� cos �, y = a sin� sin �, z = a cos�, for 0 ≤ � ≤ 2�, 0 ≤ � ≤ �.

We compute

)r⃗

)�
×
)r⃗

)�
= (a cos� cos �i⃗ + a cos� sin �j⃗ − a sin�k⃗ ) × (−a sin� sin �i⃗ + a sin� cos �j⃗ )

= a2(sin2 � cos �i⃗ + sin2 � sin �j⃗ + sin� cos�k⃗ )

and so
‖

‖

‖

‖

)r⃗

)�
×
)r⃗

)�

‖

‖

‖

‖

= a2 sin�.

Thus, we see that the surface area of the sphere S is given by

Surface area =
∫S

dA =
∫R

‖

‖

‖

‖

)r⃗

)�
×
)r⃗

)�

‖

‖

‖

‖

d�d� =
∫

�

�=0 ∫

2�

�=0

a2 sin�d� d� = 4�a2.

Summary for Section 21.3

• Flux integrals over parameterized surfaces:

∫S
F⃗ ⋅ dA⃗ =

∫R
F⃗ (r⃗ (s, t)) ⋅

(

)r⃗

)s
×
)r⃗

)t

)

ds dt,

where we choose the parameterization r⃗ = r⃗ (s, t) of the surface S so that )r⃗ ∕)s × )r⃗ ∕)t is

never zero and points in the direction of n⃗ everywhere.

• Area of a parameterized surface: The area of a surface S which is parameterized by r⃗ =

r⃗ (s, t), where (s, t) varies in a parameter region R, is given by

∫S
dA =

∫R

‖

‖

‖

‖

)r⃗

)s
×
)r⃗

)t

‖

‖

‖

‖

ds dt.
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Exercises and Problems for Section 21.3

EXERCISES

In Exercises 1–4 compute dA⃗ for the given parameterization

for one of the two orientations.

1. x = s + t, y = s − t, z = st

2. x = sin t, y = cos t, z = s + t

3. x = es, y = cos t, z = sin t

4. x = 0, y = u + v, z = u − v

In Exercises 5–9, compute the flux of the vector field F⃗

through the parameterized surface S.

5. F⃗ = zk⃗ and S is oriented upward and given, for

0 ≤ s ≤ 1, 0 ≤ t ≤ 1, by

x = s + t, y = s − t, z = s2 + t2.

6. F⃗ = xi⃗ + yj⃗ and S is oriented downward and given,

for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, by

x = 2s, y = s + t, z = 1 + s − t.

7. F⃗ = xi⃗ through the surface S oriented downward and

parameterized, for 0 ≤ s ≤ 4, 0 ≤ t ≤ �∕6, by

x = es, y = cos(3t), z = 6s.

8. F⃗ = yi⃗ + xj⃗ and S is oriented away from the z-axis

and given, for 0 ≤ s ≤ �, 0 ≤ t ≤ 1, by

x = 3 sin s, y = 3 cos s, z = t + 1.

9. F⃗ = x2y2zk⃗ and S is the cone
√

x2 + y2 = z, with

0 ≤ z ≤ R, oriented downward. Parameterize the cone

using cylindrical coordinates. (See Figure 21.22.)

x

y

z

n⃗

r⃗ �

r⃗ r

(0, 0, R)

Figure 21.22

In Exercises 10–11, find the surface area.

10. A cylinder of radius a and length L.

11. The region S in the plane z = 3x + 2y such that

0 ≤ x ≤ 10 and 0 ≤ y ≤ 20.

PROBLEMS

12. Compute the flux of the vector field F⃗ = (x + z)i⃗ +

j⃗ + zk⃗ through the surface S given by y = x2 + z2,

1∕4 ≤ x2 + z2 ≤ 1 oriented away from the y-axis.

13. Find the area of the ellipseS on the plane 2x+y+z = 2

cut out by the circular cylinder x2 + y2 = 2x. (See Fig-

ure 21.23.)

x

y

z

S

Figure 21.23

14. Consider the surface S formed by rotating the graph of

y = f (x) around the x-axis between x = a and x = b.

Assume that f (x) ≥ 0 for a ≤ x ≤ b. Show that the

surface area of S is 2� ∫
b

a
f (x)

√

1 + f ′(x)2 dx.

15. A rectangular channel of width w and depth ℎ me-

ters lies in the j⃗ direction. At a point d1 meters from

one side and d2 meters from the other side, the veloc-

ity vector of fluid in the channel is v⃗ = kd1d2j⃗ me-

ters/sec. Find the flux through a rectangle stretching the

full width and depth of the channel, and perpendicular

to the flow.

16. The base of a cone is the unit circle centered at the

origin in the xy-plane and vertex P = (a, b, c), where

c > 0.

(a) Parameterize the cone.

(b) Express the surface area of the cone as an integral.

(c) Use a numerical method to find the surface area of

the cone with vertex P = (2, 0, 1).
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In Problems 17–20, we see how the formula for a flux inte-

gral over a parameterized surface can be used to define flux.

In Section 19.1, we saw that the limit defining a flux integral

might not exist if the surface were subdivided in the wrong

way. Using a parameterization can avoid this issue.

17. Use a parameterization to verify the formula for a flux

integral over a surface graph on page 1030.

18. Use a parameterization to verify the formula for a flux

integral over a cylindrical surface on page 1032.

19. Use a parameterization to verify the formula for a flux

integral over a spherical surface on page 1034.

20. One problem with defining the flux integral using a pa-

rameterization is that the integral appears to depend

on the choice of parameterization. However, the flux

through a surface ought not to depend on how the sur-

face is parameterized. Suppose that the surface S has

two parameterizations, r⃗ = r⃗ (s, t) for (s, t) in the re-

gion R of st-space, and also r⃗ = r(u, v) for (u, v) in the

region T in uv-space, and suppose that the two param-

eterizations are related by the change of coordinates

u = u(s, t) v = v(s, t).

Suppose that the Jacobian determinant )(u, v)∕)(s, t) is

positive at every point (s, t) in R. Use the change of co-

ordinates formula for double integrals on page 1091 to

show that computing the flux integral using either pa-

rameterization gives the same result.

Strengthen Your Understanding

In Problems 21–22, explain what is wrong with the state-

ment.

21. The area of the surface parameterized by x = s, y =

t, z = f (s, t) above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is

given by the integral

Area =
∫

1

0 ∫

1

0

f (s, t) ds dt.

22. The surface S parameterized by x = f (s, t), y = g(s, t),

z = ℎ(s, t), where 0 ≤ s ≤ 2, 0 ≤ t ≤ 3, has area 6.

In Problems 23–24, give an example of:

23. A parameterization r⃗ = r⃗ (s, t) of the xy-plane such

that dA = 2ds dt.

24. A vector field F⃗ such that ∫
S
F⃗ ⋅ dA⃗ > 0, where S is

the surface r⃗ = (s − t)i⃗ + t2j⃗ + (s + t)k⃗ , 0 ≤ s ≤ 1,

0 ≤ t ≤ 1, oriented in the direction of
)r⃗

)s
×
)r⃗

)t
.

Are the statements in Problems 25–27 true or false? Give

reasons for your answer.

25. If r⃗ (s, t), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 is an oriented pa-

rameterized surface S, and F⃗ is a vector field that is

everywhere tangent to S, then the flux of F⃗ through S

is zero.

26. For any parameterization of the surface x2−y2+z2 = 6,

dA⃗ at (1, 2, 3) is a multiple of (2i⃗ − 4j⃗ + 6k⃗ )dx dy.

27. If you parameterize the plane 3x + 4y + 5z = 7, then

there is a constant c such that, at any point (x, y, z),

dA⃗ = c(3i⃗ + 4j⃗ + 5k⃗ )dx dy.

28. Let S be the hemisphere x2 + y2 + z2 = 1 with x ≤ 0,

oriented away from the origin. Which of the following

integrals represents the flux of F⃗ (x, y, z) through S?

(a)
∫
R

F⃗ (x, y, z(x, y)) ⋅
)r⃗

)x
×

)r⃗

)y
dx dy

(b)
∫
R

F⃗ (x, y, z(x, y)) ⋅
)r⃗

)y
×

)r⃗

)x
dy dx

(c)
∫
R

F⃗ (x, y(x, z), z) ⋅
)r⃗

)x
×

)r⃗

)z
dx dz

(d)
∫
R

F⃗ (x, y(x, z), z) ⋅
)r⃗

)z
×

)r⃗

)x
dz dx

(e)
∫
R

F⃗ (x(y, z), y, z) ⋅
)r⃗

)y
×

)r⃗

)z
dy dz

(f)
∫
R

F⃗ (x(y, z), y, z) ⋅
)r⃗

)z
×

)r⃗

)y
dz dy
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A ROOTS, ACCURACY, AND BOUNDS

It is often necessary to find the zeros of a polynomial or the points of intersection of two curves. So

far, you have probably used algebraic methods, such as the quadratic formula, to solve such problems.

Unfortunately, however, mathematicians’ search for similar solutions to more complicated equations

has not been all that successful. The formulas for the solutions to third- and fourth-degree equations

are so complicated that you’d never want to use them. Early in the nineteenth century, it was proved

that there is no algebraic formula for the solutions to equations of degree 5 and higher. Most non-

polynomial equations cannot be solved using a formula either.

However, we can still find roots of equations, provided we use approximation methods, not

formulas. In this section we will discuss three ways to find roots: algebraic, graphical, and numerical.

Of these, only the algebraic method gives exact solutions.

First, let’s get some terminology straight. Given the equation 𝑥2 = 4, we call 𝑥 = −2 and 𝑥 = 2
the roots, or solutions of the equation. If we are given the function 𝑓 (𝑥) = 𝑥2 − 4, then −2 and 2
are called the zeros of the function; that is, the zeros of the function 𝑓 are the roots of the equation

𝑓 (𝑥) = 0.

The Algebraic Viewpoint: Roots by Factoring
If the product of two numbers is zero, then one or the other or both must be zero, that is, if 𝐴𝐵 = 0,

then 𝐴 = 0 or 𝐵 = 0. This observation lies behind finding roots by factoring. You may have spent a

lot of time factoring polynomials. Here you will also factor expressions involving trigonometric and

exponential functions.

Example 1 Find the roots of 𝑥2 − 7𝑥 = 8.

Solution Rewrite the equation as 𝑥2 − 7𝑥 − 8 = 0. Then factor the left side: (𝑥 + 1)(𝑥 − 8) = 0. By our

observation about products, either 𝑥 + 1 = 0 or 𝑥 − 8 = 0, so the roots are 𝑥 = −1 and 𝑥 = 8.

Example 2 Find the roots of
1
𝑥
− 𝑥

(𝑥 + 2)
= 0.

Solution Rewrite the left side with a common denominator:

𝑥 + 2 − 𝑥2

𝑥(𝑥 + 2)
= 0.

Whenever a fraction is zero, the numerator must be zero. Therefore we must have

𝑥 + 2 − 𝑥2 = (−1)(𝑥2 − 𝑥 − 2) = (−1)(𝑥 − 2)(𝑥 + 1) = 0.

We conclude that 𝑥 − 2 = 0 or 𝑥 + 1 = 0, so 2 and −1 are the roots. They can be checked by

substitution.

Example 3 Find the roots of 𝑒−𝑥 sin 𝑥 − 𝑒−𝑥 cos 𝑥 = 0.

Solution Factor the left side: 𝑒−𝑥(sin 𝑥 − cos 𝑥) = 0. The factor 𝑒−𝑥 is never zero; it is impossible to raise 𝑒
to a power and get zero. Therefore, the only possibility is that sin 𝑥 − cos 𝑥 = 0. This equation is

equivalent to sin 𝑥 = cos 𝑥. If we divide both sides by cos 𝑥, we get

sin 𝑥
cos 𝑥

= cos 𝑥
cos 𝑥

so tan 𝑥 = 1.

The roots of this equation are

… ,
−7𝜋
4

,
−3𝜋
4

,
𝜋

4
,
5𝜋
4

,
9𝜋
4

,
13𝜋
4

,… .
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Warning: Using factoring to solve an equation only works when one side of the equation is 0.

It is not true that if, say, 𝐴𝐵 = 7 then 𝐴 = 7 or 𝐵 = 7. For example, you cannot solve 𝑥2 − 4𝑥 = 2
by factoring 𝑥(𝑥 − 4) = 2 and then assuming that either 𝑥 or 𝑥 − 4 equals 2.

The problem with factoring is that factors are not easy to find. For example, the left side of the

quadratic equation 𝑥2 − 4𝑥 − 2 = 0 does not factor, at least not into “nice” factors with integer

coefficients. For the general quadratic equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0,

there is the quadratic formula for the roots:

𝑥 = −𝑏 ±
√

𝑏2 − 4𝑎𝑐
2𝑎

.

Thus the roots of 𝑥2 − 4𝑥 − 2 = 0 are (4 ±
√

24)∕2, or 2 +
√

6 and 2 −
√

6.

Notice that in each of these examples, we have found the roots exactly.

The Graphical Viewpoint: Roots by Zooming
To find the roots of an equation 𝑓 (𝑥) = 0, it helps to draw the graph of 𝑓 . The roots of the equation,

that is the zeros of 𝑓 , are the values of 𝑥 where the graph of 𝑓 crosses the 𝑥-axis. Even a very rough

sketch of the graph can be useful in determining how many zeros there are and their approximate

values. If you have a computer or graphing calculator, then finding solutions by graphing is the

easiest method, especially if you use the zoom feature. However, a graph can never tell you the exact

value of a root, only an approximate one.

Example 4 Find the roots of 𝑥3 − 4𝑥 − 2 = 0.

Solution Attempting to factor the left side with integer coefficients will convince you it cannot be done, so

we cannot easily find the roots by algebra. We know the graph of 𝑓 (𝑥) = 𝑥3 − 4𝑥 − 2 will have the

usual cubic shape; see Figure A.1.

There are clearly three roots: one between 𝑥 = −2 and 𝑥 = −1, another between 𝑥 = −1 and

𝑥 = 0, and a third between 𝑥 = 2 and 𝑥 = 3. Zooming in on the largest root with a graphing

calculator or computer shows that it lies in the following interval:

2.213 < 𝑥 < 2.215.

Thus, the root is 𝑥 = 2.21, accurate to two decimal places. Zooming in on the other two roots shows

them to be 𝑥 = −1.68 and 𝑥 = −0.54, accurate to two decimal places.

Useful trick: Suppose you want to solve the equation sin 𝑥 − cos 𝑥 = 0 graphically. Instead of

graphing 𝑓 (𝑥) = sin 𝑥 − cos 𝑥 and looking for zeros, you may find it easier to rewrite the equation

−2 2

−6
−4
−2

2
4

𝑓 (𝑥)6

𝑥

Figure A.1: The cubic

𝑓 (𝑥) = 𝑥3 − 4𝑥 − 2

−3𝜋
4

𝜋

4

5𝜋
4

𝑥

sin 𝑥cos 𝑥

Figure A.2: Finding roots of sin 𝑥 − cos 𝑥 = 0
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as sin 𝑥 = cos 𝑥 and graph 𝑔(𝑥) = sin 𝑥 and ℎ(𝑥) = cos 𝑥. (After all, you already know what these

two graphs look like. See Figure A.2.) The roots of the original equation are then precisely the 𝑥
coordinates of the points of intersection of the graphs of 𝑔(𝑥) and ℎ(𝑥).

Example 5 Find the roots of 2 sin 𝑥 − 𝑥 = 0.

Solution Rewrite the equation as 2 sin 𝑥 = 𝑥, and graph both sides. Since 𝑔(𝑥) = 2 sin 𝑥 is always between

−2 and 2, there are no roots of 2 sin 𝑥 = 𝑥 for 𝑥 > 2 or for 𝑥 < −2. We need only consider the

graphs between −2 and 2 (or between −𝜋 and 𝜋, which makes graphing the sine function easier).

Figure A.3 shows the graphs. There are three points of intersection: one appears to be at 𝑥 = 0, one

between 𝑥 = 𝜋∕2 and 𝑥 = 𝜋, and one between 𝑥 = −𝜋∕2 and 𝑥 = −𝜋. You can tell that 𝑥 = 0 is

the exact value of one root because it satisfies the original equation exactly. Zooming in shows that

there is a second root 𝑥 ≈ 1.9, and the third root is 𝑥 ≈ −1.9 by symmetry.

−2

−𝜋

− 𝜋

2

𝜋

2
𝜋 3𝜋

2
2𝜋

2

𝑥

ℎ(𝑥) = 𝑥

𝑔(𝑥) = 2 sin 𝑥

Figure A.3: Finding roots of 2 sin 𝑥 − 𝑥 = 0

The Numerical Viewpoint: Roots by Bisection
We now look at a numerical method of approximating the solutions to an equation. This method

depends on the idea that if the value of a function 𝑓 (𝑥) changes sign in an interval, and if we believe

there is no break in the graph of the function there, then there is a root of the equation 𝑓 (𝑥) = 0 in

that interval.

Let’s go back to the problem of finding the root of 𝑓 (𝑥) = 𝑥3 − 4𝑥− 2 = 0 between 2 and 3. To

locate the root, we close in on it by evaluating the function at the midpoint of the interval, 𝑥 = 2.5.

Since 𝑓 (2) = −2, 𝑓 (2.5) = 3.625, and 𝑓 (3) = 13, the function changes sign between 𝑥 = 2 and

𝑥 = 2.5, so the root is between these points. Now we look at 𝑥 = 2.25.

Since 𝑓 (2.25) = 0.39, the function is negative at 𝑥 = 2 and positive at 𝑥 = 2.25, so there is a

root between 2 and 2.25. Now we look at 2.125. We find 𝑓 (2.125) = −0.90, so there is a root between

2.125 and 2.25, … and so on. (You may want to round the decimals as you work.) See Figure A.4.

The intervals containing the root are listed in Table A.1 and show that the root is 𝑥 = 2.21 to two

decimal places.

2

2.1875 2.21875

2.125

2.25

𝑓 (𝑥) = 𝑥3 − 4𝑥 − 2

2.5 3
��

𝑥

Figure A.4: Locating a root of 𝑥3 − 4𝑥 − 2 = 0

Table A.1 Intervals containing root of
𝑥3 − 4𝑥 − 2 = 0 (Note: [2, 3] means 2 ≤ 𝑥 ≤ 3)

[2, 3]
[2, 2.5]
[2, 2.25]
[2.125, 2.25]
[2.1875, 2.25] So 𝑥 = 2.2 rounded to

one decimal place

[2.1875, 2.21875]
[2.203125, 2.21875]
[2.2109375, 2.21875]
[2.2109375, 2.2148438] So 𝑥 = 2.21 rounded

to two decimal places
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This method of estimating roots is called the Bisection Method:

• To solve an equation 𝑓 (𝑥) = 0 using the bisection method, we need two starting values for

𝑥, say, 𝑥 = 𝑎 and 𝑥 = 𝑏, such that 𝑓 (𝑎) and 𝑓 (𝑏) have opposite signs and 𝑓 is continuous

on [𝑎, 𝑏].
• Evaluate 𝑓 at the midpoint of the interval [𝑎, 𝑏], and decide in which half-interval the root

lies.

• Repeat, using the new half-interval instead of [𝑎, 𝑏].

There are some problems with the bisection method:

• The function may not change signs near the root. For example, 𝑓 (𝑥) = 𝑥2 − 2𝑥 + 1 = 0 has

a root at 𝑥 = 1, but 𝑓 (𝑥) is never negative because 𝑓 (𝑥) = (𝑥 − 1)2, and a square cannot be

negative. (See Figure A.5.)

• The function 𝑓 must be continuous between the starting values 𝑥 = 𝑎 and 𝑥 = 𝑏.

• If there is more than one root between the starting values 𝑥 = 𝑎 and 𝑥 = 𝑏, the method will find

only one of the roots. For example, if we had tried to solve 𝑥3 − 4𝑥− 2 = 0 starting at 𝑥 = −12
and 𝑥 = 10, the bisection method would zero in on the root between 𝑥 = −2 and 𝑥 = −1, not

the root between 𝑥 = 2 and 𝑥 = 3 that we found earlier. (Try it! Then see what happens if you

use 𝑥 = −10 instead of 𝑥 = −12.)

• The bisection method is slow and not very efficient. Applying bisection three times in a row

only traps the root in an interval ( 12 )
3 = 1

8 as large as the starting interval. Thus, if we initially

know that a root is between, say, 2 and 3, then we would need to apply the bisection method at

least four times to know the first digit after the decimal point.

There are much more powerful methods available for finding roots, such as Newton’s method, which

are more complicated but which avoid some of these difficulties.

1
𝑥

𝑓 (𝑥) = (𝑥 − 1)2

Figure A.5: 𝑓 does not change sign at

the root

1 2 3 4 5

−4
−2

2
4
6
8

𝑥

𝑦

𝑦 = 𝑒𝑥

𝑦 = 5
𝑥

Figure A.6: Intersection of 𝑦 = 𝑒𝑥

and 𝑦 = 5∕𝑥

Table A.2 Bisection method for
𝑓 (𝑥) = 𝑥𝑒𝑥 − 5 = 0 (Note that
[1, 2] means the interval 1 ≤ 𝑥 ≤ 2)

Interval Containing Root

[1, 2]
[1, 1.5]

[1.25, 1.5]
[1.25, 1.375]

[1.3125, 1.375]
[1.3125, 1.34375]

Example 6 Find all the roots of 𝑥𝑒𝑥 = 5 to at least one decimal place.

Solution If we rewrite the equation as 𝑒𝑥 = 5∕𝑥 and graph both sides, as in Figure A.6, it is clear that there

is exactly one root, and it is somewhere between 1 and 2. Table A.2 shows the intervals obtained by

the bisection method. After five iterations, we have the root trapped between 1.3125 and 1.34375,

so we can say the root is 𝑥 = 1.3 to one decimal place.
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Iteration

Both zooming in and bisection as discussed here are examples of iterative methods, in which a

sequence of steps is repeated over and over again, using the results of one step as the input for the

next. We can use such methods to locate a root to any degree of accuracy. In bisection, each iteration

traps the root in an interval that is half the length of the previous one. Each time you zoom in on a

calculator, you trap the root in a smaller interval; how much smaller depends on the settings on the

calculator.

Accuracy and Error
In the previous discussion, we used the phrase “accurate to 2 decimal places.” For an iterative process

where we get closer and closer estimates of some quantity, we take a common-sense approach to

accuracy: we watch the numbers carefully, and when a digit stays the same for several iterations,

we assume it has stabilized and is correct, especially if the digits to the right of that digit also stay

the same. For example, suppose 2.21429 and 2.21431 are two successive estimates for a zero of

𝑓 (𝑥) = 𝑥3 − 4𝑥 − 2. Since these two estimates agree to the third digit after the decimal point, we

probably have at least 3 decimal places correct.

There is a problem with this, however. Suppose we are estimating a root whose true value is 1,

and the estimates are converging to the value from below—say, 0.985, 0.991, 0.997 and so on. In this

case, not even the first decimal place is “correct,” even though the difference between the estimates

and the actual answer is very small—much less than 0.1. To avoid this difficulty, we say that an

estimate 𝑎 for some quantity 𝑟 is accurate to 𝑝 decimal places if the error, which is the absolute

value of the difference between 𝑎 and 𝑟, or |𝑟 − 𝑎|, is as follows:

Accuracy to 𝑝 decimal places means Error less than

𝑝 = 1 0.05

2 0.005

3 0.0005

⋮ ⋮

𝑛 0. 000…0
⏟⏞⏟⏞⏟

𝑛

5

This is the same as saying that 𝑟 must lie in an interval of length twice the maximum error,

centered on 𝑎. For example, if 𝑎 is accurate to 1 decimal place, 𝑟 must lie in the following interval:

𝑎 − 0.05 𝑎 𝑎 + 0.05

Since both the graphing calculator and the bisection method give us an interval in which the

root is trapped, this definition of decimal accuracy is a natural one for these processes.

Example 7 Suppose the numbers
√

10, 22∕7, and 3.14 are given as approximations to 𝜋 = 3.1415… . To how

many decimal places is each approximation accurate?

Solution Using
√

10 = 3.1622… ,

|

√

10 − 𝜋| = |3.1622… − 3.1415… | = 0.0206… < 0.05,

so
√

10 is accurate to one decimal place. Similarly, using 22∕7 = 3.1428… ,

|

|

|

|

22
7

− 𝜋
|

|

|

|

= |3.1428… − 3.1415… | = 0.0013… < 0.005,
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so 22/7 is accurate to two decimal places. Finally,

|3.14 − 3.1415… | = 0.0015… < 0.005,

so 3.14 is accurate to two decimal places.

Warning:

• Saying that an approximation is accurate to, say, 2 decimal places does not guarantee that its first

two decimal places are “correct,” that is, that the two digits of the approximation are the same

as the corresponding two digits in the true value. For example, an approximate value of 5.997 is

accurate to 2 decimal places if the true value is 6.001, but neither of the 9s in the approximation

agrees with the 0s in the true value (nor does the digit 5 agree with the digit 6).

• When finding a root 𝑟 of an equation, the number of decimal places of accuracy refers to the

number of digits that have stabilized in the root. It does not refer to the number of digits of

𝑓 (𝑟) that are zero. For example, Table A.1 on page A-4 shows that 𝑥 = 2.2 is a root of 𝑓 (𝑥) =
𝑥3 − 4𝑥 − 2 = 0, accurate to one decimal place. Yet, 𝑓 (2.2) = −0.152, so 𝑓 (2.2) does not have

one zero after the decimal point. Similarly, 𝑥 = 2.21 is the root accurate to two decimal places,

but 𝑓 (2.21) = −0.046 does not have two zeros after the decimal point.

Example 8 Is 𝑥 = 2.2143 a zero of 𝑓 (𝑥) = 𝑥3 − 4𝑥 − 2 accurate to four decimal places?

Solution We want to know whether 𝑟, the exact value of the zero, lies in the interval

2.2143 − 0.00005 < 𝑟 < 2.2143 + 0.00005

which is the same as

2.21425 < 𝑟 < 2.21435.

Since 𝑓 (2.21425) < 0 and 𝑓 (2.21435) > 0, the zero does lie in this interval, and so 𝑟 = 2.2143 is

accurate to four decimal places.

How to Write a Decimal Answer

The graphing calculator and bisection method naturally give an interval for a root or a zero. However,

other numerical techniques do not give a pair of numbers bounding the true value, but rather a single

number near the true value. What should you do if you want a single number, rather than an interval,

for an answer? In general, averaging the endpoint of the interval is the best solution.

When giving a single number as an answer and interpreting it, be careful about giving rounded

answers. For example, suppose you know a root lies in the interval between 0.81 and 0.87. Averaging

gives 0.84 as a single number estimating the root. But it would be wrong to round 0.84 to 0.8 and say

that the answer is 0.8 accurate to one decimal place; the true value could be 0.86, which is not within

0.05 of 0.8. The right thing to say is that the answer is 0.84 accurate to one decimal place. Similarly,

to give an answer accurate to, say, 2 decimal places, you may have to show 3 decimal places in your

answer.

Bounds of a Function
Knowing how big or how small a function gets can sometimes be useful, especially when you can’t

easily find exact values of the function. You can say, for example, that sin 𝑥 always stays between −1
and 1 and that 2 sin 𝑥 + 10 always stays between 8 and 12. But 2𝑥 is not confined between any two

numbers, because 2𝑥 will exceed any number you can name if 𝑥 is large enough. We say that sin 𝑥
and 2 sin 𝑥 + 10 are bounded functions, and that 2𝑥 is an unbounded function.
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A function 𝑓 is bounded on an interval if there are numbers 𝐿 and 𝑈 such that

𝐿 ≤ 𝑓 (𝑥) ≤ 𝑈

for all 𝑥 in the interval. Otherwise, 𝑓 is unbounded on the interval.

We say that 𝐿 is a lower bound for 𝑓 on the interval, and that 𝑈 is an upper bound for 𝑓 on

the interval.

Example 9 Use Figures A.7 and A.8 to decide which of the following functions are bounded.

(a) 𝑥3 on −∞ < 𝑥 < ∞; on 0 ≤ 𝑥 ≤ 100.

(b) 2∕𝑥 on 0 < 𝑥 < ∞; on 1 ≤ 𝑥 < ∞.

Solution (a) The graph of 𝑥3 in Figure A.7 shows that 𝑥3 will exceed any number, no matter how large, if 𝑥 is

big enough, so 𝑥3 does not have an upper bound on −∞ < 𝑥 < ∞. Therefore, 𝑥3 is unbounded

on −∞ < 𝑥 < ∞. But on the interval 0 ≤ 𝑥 ≤ 100, 𝑥3 stays between 0 (a lower bound) and

1003 = 1,000,000 (an upper bound). Therefore, 𝑥3 is bounded on the interval 0 ≤ 𝑥 ≤ 100.

Notice that upper and lower bounds, when they exist, are not unique. For example, −100 is

another lower bound and 2,000,000 another upper bound for 𝑥3 on 0 ≤ 𝑥 ≤ 100.

(b) 2∕𝑥 is unbounded on 0 < 𝑥 < ∞, since it has no upper bound on that interval. But 0 ≤ 2∕𝑥 ≤ 2
for 1 ≤ 𝑥 < ∞, so 2∕𝑥 is bounded, with lower bound 0 and upper bound 2, on 1 ≤ 𝑥 < ∞. (See

Figure A.8.)

Best Possible Bounds

Consider a group of people whose height in feet, ℎ, ranges from 5 feet to 6 feet. Then 5 feet is a lower

bound for the people in the group and 6 feet is an upper bound:

5 ≤ ℎ ≤ 6.
But the people in this group are also all between 4 feet and 7 feet, so it is also true that

4 ≤ ℎ ≤ 7.
So, there are many lower bounds and many upper bounds. However, the 5 and the 6 are considered

the best bounds because they are the closest together of all the possible pairs of bounds.

The best possible bounds for a function, 𝑓 , over an interval are numbers 𝐴 and 𝐵 such that,

for all 𝑥 in the interval,

𝐴 ≤ 𝑓 (𝑥) ≤ 𝐵

and where 𝐴 and 𝐵 are as close together as possible. 𝐴 is called the greatest lower bound
and 𝐵 is the least upper bound.

100

106

𝑥3

𝑥

Figure A.7: Is 𝑥3 bounded?

1

2

2∕𝑥

𝑥

Figure A.8: Is 2∕𝑥 bounded?
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What Do Bounds Mean Graphically?

Upper and lower bounds can be represented on a graph by horizontal lines. See Figure A.9.

Lower bound

Greatest lower bound

Least upper bound

Upper bound

𝐿 = −2

𝐿 = −0.9

𝑈 = 0.92

𝑈 = 1.5

𝑥

𝑓 (𝑥)

Figure A.9: Upper and lower bounds for the function 𝑓

Exercises for Appendix A

1. Use a calculator or computer graph of 𝑓 (𝑥) = 13 −
20𝑥 − 𝑥2 − 3𝑥4 to determine:

(a) The range of this function;

(b) The number of zeros of this function.

For Problems 2–12, determine the roots or points of inter-

section to an accuracy of one decimal place.

2. (a) The root of 𝑥3 − 3𝑥 + 1 = 0 between 0 and 1

(b) The root of 𝑥3 − 3𝑥 + 1 = 0 between 1 and 2

(c) The smallest root of 𝑥3 − 3𝑥 + 1 = 0
3. The root of 𝑥4 − 5𝑥3 + 2𝑥 − 5 = 0 between −2 and −1

4. The root of 𝑥5 + 𝑥2 − 9𝑥 − 3 = 0 between −2 and −1

5. The largest real root of 2𝑥3 − 4𝑥2 − 3𝑥 + 1 = 0
6. All real roots of 𝑥4 − 𝑥 − 2 = 0
7. All real roots of 𝑥5 − 2𝑥2 + 4 = 0
8. The smallest positive root of 𝑥 sin 𝑥 − cos 𝑥 = 0
9. The left-most point of intersection between 𝑦 = 2𝑥 and

𝑦 = cos 𝑥
10. The left-most point of intersection between 𝑦 = 1∕2𝑥

and 𝑦 = sin 𝑥
11. The point of intersection between 𝑦 = 𝑒−𝑥 and 𝑦 = ln 𝑥

12. All roots of cos 𝑡 = 𝑡2

13. Estimate all real zeros of the following polynomials, ac-

curate to 2 decimal places:

(a) 𝑓 (𝑥) = 𝑥3 − 2𝑥2 − 𝑥 + 3
(b) 𝑓 (𝑥) = 𝑥3 − 𝑥2 − 2𝑥 + 2

14. Find the largest zero of

𝑓 (𝑥) = 10𝑥𝑒−𝑥 − 1

to two decimal places, using the bisection method.

Make sure to demonstrate that your approximation is

as good as you claim.

15. (a) Find the smallest positive value of 𝑥 where the

graphs of 𝑓 (𝑥) = sin 𝑥 and 𝑔(𝑥) = 2−𝑥 intersect.

(b) Repeat with 𝑓 (𝑥) = sin 2𝑥 and 𝑔(𝑥) = 2−𝑥.

16. Use a graphing calculator to sketch 𝑦 = 2 cos 𝑥 and

𝑦 = 𝑥3 + 𝑥2 + 1 on the same set of axes. Find the posi-

tive zero of 𝑓 (𝑥) = 2 cos 𝑥−𝑥3−𝑥2−1. A friend claims

there is one more real zero. Is your friend correct? Ex-

plain.

17. Use the table below to investigate the zeros of the func-

tion

𝑓 (𝜃) = (sin 3𝜃)(cos 4𝜃) + 0.8

in the interval 0 ≤ 𝜃 ≤ 1.8.

𝜃 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

𝑓 (𝜃) 0.80 1.19 0.77 0.08 0.13 0.71 0.76 0.12 −0.19 0.33

(a) Decide how many zeros the function has in the in-

terval 0 ≤ 𝜃 ≤ 1.8.

(b) Locate each zero, or a small interval containing

each zero.

(c) Are you sure you have found all the zeros in the

interval 0 ≤ 𝜃 ≤ 1.8? Graph the function on a cal-

culator or computer to decide.
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18. (a) Use Table A.3 to locate approximate solution(s) to

(sin 3𝑥)(cos 4𝑥) = 𝑥3

𝜋3

in the interval 1.07 ≤ 𝑥 ≤ 1.15. Give an interval

of length 0.01 in which each solution lies.

Table A.3

𝑥 𝑥3∕𝜋3 (sin 3𝑥)(cos 4𝑥)
1.07 0.0395 0.0286

1.08 0.0406 0.0376

1.09 0.0418 0.0442

1.10 0.0429 0.0485

1.11 0.0441 0.0504

1.12 0.0453 0.0499

1.13 0.0465 0.0470

1.14 0.0478 0.0417

1.15 0.0491 0.0340

(b) Make an estimate for each solution accurate to two

decimal places.

19. (a) With your calculator in radian mode, take the arc-

tangent of 1 and multiply that number by 4. Now,

take the arctangent of the result and multiply it by

4. Continue this process 10 times or so and record

each result as in the accompanying table. At each

step, you get 4 times the arctangent of the result of

the previous step.

1

3.14159. . .

5.05050…
5.50129…

⋮

(b) Your table allows you to find a solution of the equa-

tion

4 arctan 𝑥 = 𝑥.

Why? What is that solution?

(c) What does your table in part (a) have to do with

Figure A.10?

[Hint: The coordinates of 𝑃0 are (1, 1). Find the co-

ordinates of 𝑃1, 𝑃2, 𝑃3,. . . ]

𝑃0

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝑦 = 𝑥

𝑦 = 4 arctan 𝑥

𝑦

𝑥

Figure A.10

(d) In part (a), what happens if you start with an ini-

tial guess of 10? Of −10? What types of behavior

do you observe? (That is, for which initial guesses

is the sequence increasing, and for which is it de-

creasing; does the sequence approach a limit?) Ex-

plain your answers graphically, as in part (c).

20. Using radians, apply the iteration method of Problem 19

to the equation

cos 𝑥 = 𝑥.

Represent your results graphically, as in Figure A.10.

For Problems 21–23, draw a graph to decide if the function is

bounded on the interval given. Give the best possible upper

and lower bounds for any function which is bounded.

21. 𝑓 (𝑥) = 4𝑥 − 𝑥2 on [−1, 4]

22. ℎ(𝜃) = 5 + 3 sin 𝜃 on [−2𝜋, 2𝜋]

23. 𝑓 (𝑡) = sin 𝑡
𝑡2

on [−10, 10]

B COMPLEX NUMBERS

The quadratic equation

𝑥2 − 2𝑥 + 2 = 0
is not satisfied by any real number 𝑥. If you try applying the quadratic formula, you get

𝑥 = 2 ±
√

4 − 8
2

= 1 ±
√

−4
2

.

Apparently, you need to take a square root of −4. But −4 does not have a square root, at least, not

one which is a real number. Let’s give it a square root.

We define the imaginary number 𝑖 to be a number such that

𝑖2 = −1.
Using this 𝑖, we see that (2𝑖)2 = −4, so
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𝑥 = 1 ±
√

−4
2

= 1 ± 2𝑖
2

= 1 ± 𝑖.

This solves our quadratic equation. The numbers 1 + 𝑖 and 1 − 𝑖 are examples of complex numbers.

A complex number is defined as any number that can be written in the form

𝑧 = 𝑎 + 𝑏𝑖,

where 𝑎 and 𝑏 are real numbers and 𝑖2 = −1, so we say 𝑖 =
√

−1.

The real part of 𝑧 is the number 𝑎; the imaginary part is the number 𝑏.

Calling the number 𝑖 imaginary makes it sound as if 𝑖 does not exist in the same way that real

numbers exist. In some cases, it is useful to make such a distinction between real and imaginary

numbers. For example, if we measure mass or position, we want our answers to be real numbers. But

the imaginary numbers are just as legitimate mathematically as the real numbers are.

As an analogy, consider the distinction between positive and negative numbers. Originally, peo-

ple thought of numbers only as tools to count with; their concept of “five” or “ten” was not far

removed from “five arrows” or “ten stones.” They were unaware that negative numbers existed at all.

When negative numbers were introduced, they were viewed only as a device for solving equations

like 𝑥+ 2 = 1. They were considered “false numbers,” or, in Latin, “negative numbers.” Thus, even

though people started to use negative numbers, they did not view them as existing in the same way

that positive numbers did. An early mathematician might have reasoned: “The number 5 exists be-

cause I can have 5 dollars in my hand. But how can I have −5 dollars in my hand?” Today we have

an answer: “I have −5 dollars” means I owe somebody 5 dollars. We have realized that negative

numbers are just as useful as positive ones, and it turns out that complex numbers are useful too. For

example, they are used in studying wave motion in electric circuits.

Algebra of Complex Numbers

Numbers such as 0, 1,
1
2 , 𝜋, and

√

2 are called purely real because they contain no imaginary com-

ponents. Numbers such as 𝑖, 2𝑖, and
√

2𝑖 are called purely imaginary because they contain only the

number 𝑖 multiplied by a nonzero real coefficient.

Two complex numbers are called conjugates if their real parts are equal and if their imaginary

parts are opposites. The complex conjugate of the complex number 𝑧 = 𝑎 + 𝑏𝑖 is denoted 𝑧, so we

have

𝑧 = 𝑎 − 𝑏𝑖.

(Note that 𝑧 is real if and only if 𝑧 = 𝑧.) Complex conjugates have the following remarkable property:

if 𝑓 (𝑥) is any polynomial with real coefficients (𝑥3+1, say) and 𝑓 (𝑧) = 0, then 𝑓 (𝑧) = 0. This means

that if 𝑧 is the solution to a polynomial equation with real coefficients, then so is 𝑧.

• Two complex numbers are equal if and only if their real parts are equal and their imaginary parts

are equal. Consequently, if 𝑎 + 𝑏𝑖 = 𝑐 + 𝑑𝑖, then 𝑎 = 𝑐 and 𝑏 = 𝑑.

• Adding two complex numbers is done by adding real and imaginary parts separately:

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖.

• Subtracting is similar:

(𝑎 + 𝑏𝑖) − (𝑐 + 𝑑𝑖) = (𝑎 − 𝑐) + (𝑏 − 𝑑)𝑖.
• Multiplication works just as for polynomials, using 𝑖2 = −1:

(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = 𝑎(𝑐 + 𝑑𝑖) + 𝑏𝑖(𝑐 + 𝑑𝑖)
= 𝑎𝑐 + 𝑎𝑑𝑖 + 𝑏𝑐𝑖 + 𝑏𝑑𝑖2

= 𝑎𝑐 + 𝑎𝑑𝑖 + 𝑏𝑐𝑖 − 𝑏𝑑 = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖.
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• Powers of 𝑖: We know that 𝑖2 = −1; then 𝑖3 = 𝑖 ⋅ 𝑖2 = −𝑖, and 𝑖4 = (𝑖2)2 = (−1)2 = 1. Then

𝑖5 = 𝑖 ⋅ 𝑖4 = 𝑖, and so on. Thus we have

𝑖𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖 for 𝑛 = 1, 5, 9, 13,…
−1 for 𝑛 = 2, 6, 10, 14,…
−𝑖 for 𝑛 = 3, 7, 11, 15,…
1 for 𝑛 = 0, 4, 8, 12, 16,…

• The product of a number and its conjugate is always real and nonnegative:

𝑧 ⋅ 𝑧 = (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 − 𝑎𝑏𝑖 + 𝑎𝑏𝑖 − 𝑏2𝑖2 = 𝑎2 + 𝑏2.

• Dividing by a nonzero complex number is done by multiplying the denominator by its conjugate,

thereby making the denominator real:

𝑎 + 𝑏𝑖

𝑐 + 𝑑𝑖
= 𝑎 + 𝑏𝑖

𝑐 + 𝑑𝑖
⋅

𝑐 − 𝑑𝑖

𝑐 − 𝑑𝑖
= 𝑎𝑐 − 𝑎𝑑𝑖 + 𝑏𝑐𝑖 − 𝑏𝑑𝑖2

𝑐2 + 𝑑2 = 𝑎𝑐 + 𝑏𝑑

𝑐2 + 𝑑2 + 𝑏𝑐 − 𝑎𝑑

𝑐2 + 𝑑2 𝑖.

Example 1 Compute (2 + 7𝑖)(4 − 6𝑖) − 𝑖.

Solution (2 + 7𝑖)(4 − 6𝑖) − 𝑖 = 8 + 28𝑖 − 12𝑖 − 42𝑖2 − 𝑖 = 8 + 15𝑖 + 42 = 50 + 15𝑖.

Example 2 Compute
2 + 7𝑖
4 − 6𝑖

.

Solution
2 + 7𝑖
4 − 6𝑖

= 2 + 7𝑖
4 − 6𝑖

⋅

4 + 6𝑖
4 + 6𝑖

= 8 + 12𝑖 + 28𝑖 + 42𝑖2

42 + 62
= −34 + 40𝑖

52
= −17

26
+ 10

13
𝑖.

You can check by multiplying out that (−17∕26 + 10𝑖∕13)(4 − 6𝑖) = 2 + 7𝑖.

The Complex Plane and Polar Coordinates
It is often useful to picture a complex number 𝑧 = 𝑥 + 𝑖𝑦 in the plane, with 𝑥 along the horizontal

axis and 𝑦 along the vertical. The 𝑥𝑦-plane is then called the complex plane. Figure B.11 shows the

complex numbers −2𝑖, 1 + 𝑖, and −2 + 3𝑖.

−3 2

−2𝑖

3𝑖

𝑥

𝑦−2 + 3𝑖

1 + 𝑖

0

Figure B.11: Points in the complex

plane

𝑥

𝑦𝑟

𝑧 = 𝑥 + 𝑖𝑦

𝜃

Figure B.12: The point 𝑧 = 𝑥 + 𝑖𝑦 in the

complex plane, showing polar coordinates

The triangle in Figure B.12 shows that a complex number can be written using polar coordinates

as follows:

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃.
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Example 3 Express 𝑧 = −2𝑖 and 𝑧 = −2 + 3𝑖 using polar coordinates. (See Figure B.11.)

Solution For 𝑧 = −2𝑖, the distance of 𝑧 from the origin is 2, so 𝑟 = 2. Also, one value for 𝜃 is 𝜃 = 3𝜋∕2.

Using polar coordinates, −2𝑖 = 2 cos(3𝜋∕2) + 𝑖 2(sin 3𝜋∕2).
For 𝑧 = −2 + 3𝑖, we have 𝑥 = −2, 𝑦 = 3. So 𝑟 =

√

(−2)2 + 32 ≈ 3.61, and one solution of

tan 𝜃 = 3∕(−2) with 𝜃 in quadrant II is 𝜃 ≈ 2.16. So −2 + 3𝑖 ≈ 3.61 cos(2.16) + 𝑖 3.61 sin(2.16).

Example 4 Consider the point with polar coordinates 𝑟 = 5 and 𝜃 = 3𝜋∕4. What complex number does this

point represent?

Solution Since 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃 we see that 𝑥 = 5 cos 3𝜋∕4 = −5∕
√

2, and 𝑦 = 5 sin 3𝜋∕4 =
5∕

√

2, so 𝑧 = −5∕
√

2 + 𝑖 5∕
√

2.

Derivatives and Integrals of Complex-Valued Functions
Suppose 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡), where 𝑡 is real, then we define 𝑧′(𝑡) and ∫ 𝑧 (𝑡) 𝑑𝑡 by treating 𝑖 like any

other constant:

𝑧′(𝑡) = 𝑥′(𝑡) + 𝑖𝑦′(𝑡)

∫
𝑧 (𝑡) 𝑑𝑡 =

∫
𝑥 (𝑡) 𝑑𝑡 + 𝑖

∫
𝑦 (𝑡) 𝑑𝑡.

With these definitions, all the usual properties of differentiation and integration hold, such as

∫
𝑧′ (𝑡) 𝑑𝑡 = 𝑧 (𝑡) + 𝐶, for 𝐶 is a complex constant.

Euler’s Formula
Consider the complex number 𝑧 lying on the unit circle in Figure B.13. Writing 𝑧 in polar coordinates,

and using the fact that 𝑟 = 1, we have

𝑧 = 𝑓 (𝜃) = cos 𝜃 + 𝑖 sin 𝜃.
It turns out that there is a particularly beautiful and compact way of rewriting 𝑓 (𝜃) using complex

exponentials. We take the derivative of 𝑓 using the fact that 𝑖2 = −1:

𝑓 ′(𝜃) = − sin 𝜃 + 𝑖 cos 𝜃 = 𝑖 cos 𝜃 + 𝑖2 sin 𝜃.
Factoring out an 𝑖 gives

𝑓 ′(𝜃) = 𝑖(cos 𝜃 + 𝑖 sin 𝜃) = 𝑖 ⋅ 𝑓 (𝜃).
As you know from Chapter 11, page 626, the only real-valued function whose derivative is propor-

tional to the function itself is the exponential function. In other words, we know that if

𝑔′(𝑥) = 𝑘 ⋅ 𝑔(𝑥), then 𝑔(𝑥) = 𝐶𝑒𝑘𝑥

𝑧 = cos 𝜃 + 𝑖 sin 𝜃

𝑦

𝑥

1
𝜃

Figure B.13: Complex number represented by a point on the unit circle
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for some constant 𝐶 . If we assume that a similar result holds for complex-valued functions, then we

have

𝑓 ′(𝜃) = 𝑖 ⋅ 𝑓 (𝜃), so 𝑓 (𝜃) = 𝐶𝑒𝑖𝜃

for some constant 𝐶 . To find 𝐶 we substitute 𝜃 = 0. Now 𝑓 (0) = 𝐶𝑒𝑖⋅0 = 𝐶 , and since 𝑓 (0) =
cos 0 + 𝑖 sin 0 = 1, we must have 𝐶 = 1. Therefore 𝑓 (𝜃) = 𝑒𝑖𝜃 . Thus we have

Euler’s formula

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃.

This elegant and surprising relationship was discovered by the Swiss mathematician Leonhard

Euler in the eighteenth century, and it is particularly useful in solving second-order differential equa-

tions. Another way of obtaining Euler’s formula (using Taylor series) is given in Problem 61 on

page 566. It allows us to write the complex number represented by the point with polar coordinates

(𝑟, 𝜃) in the following form:

𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) = 𝑟𝑒𝑖𝜃.

Similarly, since cos(−𝜃) = cos 𝜃 and sin(−𝜃) = − sin 𝜃, we have

𝑟𝑒−𝑖𝜃 = 𝑟 (cos(−𝜃) + 𝑖 sin(−𝜃)) = 𝑟(cos 𝜃 − 𝑖 sin 𝜃).

Example 5 Evaluate 𝑒𝑖𝜋 .

Solution Using Euler’s formula, 𝑒𝑖𝜋 = cos𝜋 + 𝑖 sin𝜋 = −1.

Example 6 Express the complex number represented by the point 𝑟 = 8, 𝜃 = 3𝜋∕4 in Cartesian form and polar

form, 𝑧 = 𝑟𝑒𝑖𝜃.

Solution Using Cartesian coordinates, the complex number is

𝑧 = 8
(

cos
(3𝜋

4

)

+ 𝑖 sin
(3𝜋

4

))

= −8
√

2
+ 𝑖

8
√

2
.

Using polar coordinates, we have

𝑧 = 8𝑒𝑖 3𝜋∕4.

The polar form of complex numbers makes finding powers and roots of complex numbers much

easier. Writing 𝑧 = 𝑟𝑒𝑖𝜃 , we find any power of 𝑧 as follows:

𝑧𝑝 = (𝑟𝑒𝑖𝜃)𝑝 = 𝑟𝑝𝑒𝑖𝑝𝜃.

To find roots, we let 𝑝 be a fraction, as in the following example.

Example 7 Find a cube root of the complex number represented by the point with polar coordinates (8, 3𝜋∕4).

Solution In Example 6, we saw that this complex number could be written as 𝑧 = 8𝑒𝑖3𝜋∕4. So,

3
√

𝑧 =
(

8𝑒𝑖 3𝜋∕4
)1∕3 = 81∕3𝑒𝑖(3𝜋∕4)⋅(1∕3) = 2𝑒𝜋𝑖∕4 = 2 (cos(𝜋∕4) + 𝑖 sin(𝜋∕4))

= 2
(

1∕
√

2 + 𝑖∕
√

2
)

=
√

2(1 + 𝑖).

You can check by multiplying out that (
√

2(1 + 𝑖))3 = −(8∕
√

2) + 𝑖(8∕
√

2) = 𝑧.
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Using Complex Exponentials

Euler’s formula, together with the fact that exponential functions are simple to manipulate, allows

us to obtain many results about trigonometric functions easily.

The following example uses the fact that for complex 𝑧, the function 𝑒𝑧 has all the usual algebraic

properties of exponents.

Example 8 Use Euler’s formula to obtain the double-angle identities

cos 2𝜃 = cos2 𝜃 − sin2 𝜃 and sin 2𝜃 = 2 cos 𝜃 sin 𝜃.

Solution We use the fact that 𝑒2𝑖𝜃 = 𝑒𝑖𝜃 ⋅ 𝑒𝑖𝜃 . This can be rewritten as

cos 2𝜃 + 𝑖 sin 2𝜃 = (cos 𝜃 + 𝑖 sin 𝜃)2.

Multiplying out (cos 𝜃 + 𝑖 sin 𝜃)2, using the fact that 𝑖2 = −1 gives

cos 2𝜃 + 𝑖 sin 2𝜃 = cos2 𝜃 − sin2 𝜃 + 𝑖(2 cos 𝜃 sin 𝜃).

Since two complex numbers are equal only if the real and imaginary parts are equal, we must have

cos 2𝜃 = cos2 𝜃 − sin2 𝜃 and sin 2𝜃 = 2 cos 𝜃 sin 𝜃.

If we solve 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 and 𝑒−𝑖𝜃 = cos 𝜃 − 𝑖 sin 𝜃 for sin 𝜃 and cos 𝜃, we obtain

sin 𝜃 = 𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖
and cos 𝜃 = 𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
.

By differentiating the formula 𝑒𝑖𝑘𝜃 = cos(𝑘𝜃) + 𝑖 sin(𝑘𝜃), for 𝜃 real and 𝑘 a real constant, it can be

shown that

𝑑

𝑑𝜃

(

𝑒𝑖𝑘𝜃
)

= 𝑖𝑘𝑒𝑖𝑘𝜃 and
∫

𝑒𝑖𝑘𝜃 𝑑𝜃 = 1
𝑖𝑘

𝑒𝑖𝑘𝜃 + 𝐶.

Thus complex exponentials are differentiated and integrated just like real exponentials.

Example 9 Use cos 𝜃 =
(

𝑒𝑖𝜃 + 𝑒−𝑖𝜃
)

∕2 to obtain the derivative formula for cos 𝜃.

Solution Differentiating gives

𝑑

𝑑𝜃
(cos 𝜃) = 𝑑

𝑑𝜃

(

𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2

)

= 𝑖𝑒𝑖𝜃 − 𝑖𝑒−𝑖𝜃

2
= 𝑖(𝑒𝑖𝜃 − 𝑒−𝑖𝜃)

2

= −𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖
= − sin 𝜃.

The fact that 𝑒𝑧 has all the usual properties when 𝑧 is complex leads to

𝑑

𝑑𝜃
(𝑒(𝑎+𝑖𝑏)𝜃) = (𝑎 + 𝑖𝑏)𝑒(𝑎+𝑖𝑏)𝜃 and

∫
𝑒(𝑎+𝑖𝑏)𝜃 𝑑𝜃 = 1

𝑎 + 𝑖𝑏
𝑒(𝑎+𝑖𝑏)𝜃 + 𝐶.

Example 10 Use the formula for ∫ 𝑒(𝑎+𝑖𝑏)𝜃 𝑑𝜃 to obtain formulas for ∫ 𝑒𝑎𝑥 cos 𝑏𝑥 𝑑𝑥 and ∫ 𝑒𝑎𝑥 sin 𝑏𝑥 𝑑𝑥.
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Solution The formula for ∫ 𝑒(𝑎+𝑖𝑏)𝜃 𝑑𝜃 allows us to write

∫
𝑒𝑎𝑥𝑒𝑖𝑏𝑥 𝑑𝑥 =

∫
𝑒(𝑎+𝑖𝑏)𝑥 𝑑𝑥 = 1

𝑎 + 𝑖𝑏
𝑒(𝑎+𝑖𝑏)𝑥 + 𝐶 = 𝑎 − 𝑖𝑏

𝑎2 + 𝑏2
𝑒𝑎𝑥𝑒𝑖𝑏𝑥 + 𝐶.

The left-hand side of this equation can be rewritten as

∫
𝑒𝑎𝑥𝑒𝑖𝑏𝑥 𝑑𝑥 =

∫
𝑒𝑎𝑥 cos 𝑏𝑥 𝑑𝑥 + 𝑖

∫
𝑒𝑎𝑥 sin 𝑏𝑥 𝑑𝑥.

The right-hand side can be rewritten as

𝑎 − 𝑖𝑏

𝑎2 + 𝑏2
𝑒𝑎𝑥𝑒𝑖𝑏𝑥 = 𝑒𝑎𝑥

𝑎2 + 𝑏2
(𝑎 − 𝑖𝑏)(cos 𝑏𝑥 + 𝑖 sin 𝑏𝑥),

= 𝑒𝑎𝑥

𝑎2 + 𝑏2
(𝑎 cos 𝑏𝑥 + 𝑏 sin 𝑏𝑥 + 𝑖 (𝑎 sin 𝑏𝑥 − 𝑏 cos 𝑏𝑥)) .

Equating real parts gives

∫
𝑒𝑎𝑥 cos 𝑏𝑥 𝑑𝑥 = 𝑒𝑎𝑥

𝑎2 + 𝑏2
(𝑎 cos 𝑏𝑥 + 𝑏 sin 𝑏𝑥) + 𝐶,

and equating imaginary parts gives

∫
𝑒𝑎𝑥 sin 𝑏𝑥 𝑑𝑥 = 𝑒𝑎𝑥

𝑎2 + 𝑏2
(𝑎 sin 𝑏𝑥 − 𝑏 cos 𝑏𝑥) + 𝐶.

These two formulas are usually obtained by integrating by parts twice.

Example 11 Using complex exponentials, find a formula for ∫ sin 2𝑥 sin 3𝑥 𝑑𝑥.

Solution Replacing sin 2𝑥 and sin 3𝑥 by their exponential form, we have

∫
sin 2𝑥 sin 3𝑥 𝑑𝑥 =

∫

(

𝑒2𝑖𝑥 − 𝑒−2𝑖𝑥
)

2𝑖

(

𝑒3𝑖𝑥 − 𝑒−3𝑖𝑥
)

2𝑖
𝑑𝑥

= 1
(2𝑖)2 ∫

(

𝑒5𝑖𝑥 − 𝑒−𝑖𝑥 − 𝑒𝑖𝑥 + 𝑒−5𝑖𝑥
)

𝑑𝑥

= −1
4

( 1
5𝑖

𝑒5𝑖𝑥 + 1
𝑖
𝑒−𝑖𝑥 − 1

𝑖
𝑒𝑖𝑥 − 1

5𝑖
𝑒−5𝑖𝑥

)

+ 𝐶

= −1
4

(

𝑒5𝑖𝑥 − 𝑒−5𝑖𝑥

5𝑖
− 𝑒𝑖𝑥 − 𝑒−𝑖𝑥

𝑖

)

+ 𝐶

= −1
4

(2
5
sin 5𝑥 − 2 sin 𝑥

)

+ 𝐶

= − 1
10

sin 5𝑥 + 1
2
sin 𝑥 + 𝐶.

This result is usually obtained by using a trigonometric identity.

Exercises for Appendix B
For Problems 1–8, express the given complex number in po-

lar form, 𝑧 = 𝑟𝑒𝑖𝜃 .

1. 2𝑖 2. −5 3. 1 + 𝑖 4. −3 − 4𝑖

5. 0 6. −𝑖 7. −1 + 3𝑖 8. 5 − 12𝑖

For Problems 9–18, perform the indicated calculations. Give

your answer in Cartesian form, 𝑧 = 𝑥 + 𝑖𝑦.

9. (2 + 3𝑖) + (−5 − 7𝑖) 10. (2 + 3𝑖)(5 + 7𝑖)

11. (2 + 3𝑖)2 12. (1 + 𝑖)2 + (1 + 𝑖)
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13. (0.5 − 𝑖)(1 − 𝑖∕4) 14. (2𝑖)3 − (2𝑖)2 + 2𝑖 − 1

15. (𝑒𝑖𝜋∕3)2 16.
√

𝑒𝑖𝜋∕3

17. (5𝑒𝑖7𝜋∕6)3 18. 4
√

10𝑒𝑖𝜋∕2

By writing the complex numbers in polar form, 𝑧 = 𝑟𝑒𝑖𝜃 ,

find a value for the quantities in Problems 19–28. Give your

answer in Cartesian form, 𝑧 = 𝑥 + 𝑖𝑦.

19.
√

𝑖 20.
√

−𝑖 21. 3
√

𝑖

22.
√

7𝑖 23. (1 + 𝑖)100 24. (1 + 𝑖)2∕3

25. (−4 + 4𝑖)2∕3 26. (
√

3 + 𝑖)1∕2 27. (
√

3 + 𝑖)−1∕2

28. (
√

5 + 2𝑖)
√

2

29. Calculate 𝑖𝑛 for 𝑛 = −1, −2, −3, −4. What pattern do

you observe? What is the value of 𝑖−36? Of 𝑖−41?

Solve the simultaneous equations in Problems 30–31 for 𝐴1
and 𝐴2.

30. 𝐴1 + 𝐴2 = 2
(1 − 𝑖)𝐴1 + (1 + 𝑖)𝐴2 = 3

31. 𝐴1 + 𝐴2 = 2
(𝑖 − 1)𝐴1 + (1 + 𝑖)𝐴2 = 0

32. (a) Calculate 𝑎 and 𝑏 if
3 − 4𝑖
1 + 2𝑖

= 𝑎 + 𝑏𝑖.

(b) Check your answer by calculating (1 + 2𝑖)(𝑎+ 𝑏𝑖).

33. Check that 𝑧 = 𝑎𝑐 + 𝑏𝑑

𝑐2 + 𝑑2 + 𝑏𝑐 − 𝑎𝑑

𝑐2 + 𝑑2 𝑖 is the quotient

𝑎 + 𝑏𝑖

𝑐 + 𝑑𝑖
by showing that the product 𝑧 ⋅ (𝑐+𝑑𝑖) is 𝑎+𝑏𝑖.

34. Let 𝑧1 = −3 − 𝑖
√

3 and 𝑧2 = −1 + 𝑖
√

3.

(a) Find 𝑧1𝑧2 and 𝑧1∕𝑧2. Give your answer in Carte-

sian form, 𝑧 = 𝑥 + 𝑖𝑦.

(b) Put 𝑧1 and 𝑧2 into polar form, 𝑧 = 𝑟𝑒𝑖𝜃 . Find 𝑧1𝑧2
and 𝑧1∕𝑧2 using the polar form, and verify that you

get the same answer as in part (a).

35. Let 𝑧1 = 𝑎1 + 𝑏1𝑖 and 𝑧2 = 𝑎2 + 𝑏2𝑖. Show that

𝑧1𝑧2 = 𝑧̄1𝑧̄2.

36. If the roots of the equation 𝑥2 + 2𝑏𝑥 + 𝑐 = 0 are the

complex numbers 𝑝± 𝑖𝑞, find expressions for 𝑝 and 𝑞 in

terms of 𝑏 and 𝑐.

Are the statements in Problems 37–42 true or false? Explain

your answer.

37. Every nonnegative real number has a real square root.

38. For any complex number 𝑧, the product 𝑧 ⋅ 𝑧̄ is a real

number.

39. The square of any complex number is a real number.

40. If 𝑓 is a polynomial, and 𝑓 (𝑧) = 𝑖, then 𝑓 (𝑧̄) = 𝑖.

41. Every nonzero complex number 𝑧 can be written in the

form 𝑧 = 𝑒𝑤, where 𝑤 is another complex number.

42. If 𝑧 = 𝑥+𝑖𝑦, where 𝑥 and 𝑦 are positive, then 𝑧2 = 𝑎+𝑖𝑏
has 𝑎 and 𝑏 positive.

For Problems 43–47, use Euler’s formula to derive the fol-

lowing relationships. (Note that if 𝑎, 𝑏, 𝑐, 𝑑 are real numbers,

𝑎 + 𝑏𝑖 = 𝑐 + 𝑑𝑖 means that 𝑎 = 𝑐 and 𝑏 = 𝑑.)

43. sin2 𝜃 + cos2 𝜃 = 1 44. sin 2𝜃 = 2 sin 𝜃 cos 𝜃

45. cos 2𝜃 = cos2 𝜃−sin2 𝜃 46.
𝑑

𝑑𝜃
sin 𝜃 = cos 𝜃

47.
𝑑2

𝑑𝜃2
cos 𝜃 = −cos 𝜃

48. Use complex exponentials to show that

sin (−𝑥) = − sin 𝑥.

49. Use complex exponentials to show that

sin (𝑥 + 𝑦) = sin 𝑥 cos 𝑦 + cos 𝑥 sin 𝑦.

50. For real 𝑡, show that if 𝑧1(𝑡) = 𝑥1(𝑡) + 𝑖𝑦1(𝑡) and

𝑧2(𝑡) = 𝑥2(𝑡) + 𝑖𝑦2(𝑡) then

(

𝑧1 + 𝑧2
)′ = 𝑧′1 + 𝑧′2 and

(

𝑧1𝑧2
)′ = 𝑧′1𝑧2 + 𝑧1𝑧

′
2.

C NEWTON’S METHOD

Many problems in mathematics involve finding the root of an equation. For example, we might have

to locate the zeros of a polynomial, or determine the point of intersection of two curves. Here we

will see a numerical method for approximating solutions which cannot be calculated exactly.

One such method, bisection, is described in Appendix A. Although it is very simple, the bisec-

tion method has two major drawbacks. First, it cannot locate a root where the curve is tangent to,

but does not cross, the 𝑥-axis. Second, it is relatively slow in the sense that it requires a considerable

number of iterations to achieve a desired level of accuracy. Although speed may not be important

in solving a single equation, a practical problem may involve solving thousands of equations as a

parameter changes. In such a case, any reduction in the number of steps can be important.
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Using Newton’s Method
We now consider a powerful root-finding method developed by Newton. Suppose we have a function

𝑦 = 𝑓 (𝑥). The equation 𝑓 (𝑥) = 0 has a root at 𝑥 = 𝑟, as shown in Figure C.14. We begin with an

initial estimate, 𝑥0, for this root. (This can be a guess.) We will now obtain a better estimate 𝑥1. To

do this, construct the tangent line to the graph of 𝑓 at the point 𝑥 = 𝑥0, and extend it until it crosses

the 𝑥-axis, as shown in Figure C.14. The point where it crosses the axis is usually much closer to 𝑟,
and we use that point as the next estimate, 𝑥1. Having found 𝑥1, we now repeat the process starting

with 𝑥1 instead of 𝑥0. We construct a tangent line to the curve at 𝑥 = 𝑥1, extend it until it crosses

the 𝑥-axis, use that 𝑥-intercept as the next approximation, 𝑥2, and so on. The resulting sequence of

𝑥-intercepts usually converges rapidly to the root 𝑟.

𝑥1 𝑟

𝑥2 𝑥0
𝑥

𝑓

Figure C.14: Newton’s method: successive approximations 𝑥0, 𝑥1, 𝑥2, … to the root, 𝑟
Let’s see how this looks algebraically. We know that the slope of the tangent line at the initial

estimate 𝑥0 is 𝑓 ′(𝑥0), and so the equation of the tangent line is

𝑦 − 𝑓 (𝑥0) = 𝑓 ′(𝑥0)(𝑥 − 𝑥0).
At the point where this tangent line crosses the 𝑥-axis, we have 𝑦 = 0 and 𝑥 = 𝑥1, so that

0 − 𝑓 (𝑥0) = 𝑓 ′(𝑥0)(𝑥1 − 𝑥0).
Solving for 𝑥1, we obtain

𝑥1 = 𝑥0 −
𝑓 (𝑥0)
𝑓 ′(𝑥0)

provided that 𝑓 ′(𝑥0) is not zero. We now repeat this argument and find that the next approximation

is

𝑥2 = 𝑥1 −
𝑓 (𝑥1)
𝑓 ′(𝑥1)

.

Summarizing, for any 𝑛 = 0, 1, 2,… , we obtain the following result.

Newton’s Method to Solve the Equation 𝒇 (𝒙) = 0
Choose 𝑥0 near a solution and compute the sequence 𝑥1, 𝑥2, 𝑥3 … using the rule

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 (𝑥𝑛)
𝑓 ′(𝑥𝑛)

provided that 𝑓 ′(𝑥𝑛) is not zero. For large 𝑛, the solution is well approximated by 𝑥𝑛.

Example 1 Use Newton’s method to find the fifth root of 23. (By calculator, this is 1.872171231, correct to nine

decimal places.)

Solution To use Newton’s method, we need an equation of the form 𝑓 (𝑥) = 0 having 231∕5 as a root. Since

231∕5 is a root of 𝑥5 = 23 or 𝑥5 − 23 = 0, we take 𝑓 (𝑥) = 𝑥5 − 23. The root of this equation is

between 1 and 2 (since 15 = 1 and 25 = 32), so we will choose 𝑥0 = 2 as our initial estimate. Now
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𝑓 ′(𝑥) = 5𝑥4, so we can set up Newton’s method as

𝑥𝑛+1 = 𝑥𝑛 −
𝑥5𝑛 − 23
5𝑥4𝑛

.

In this case, we can simplify using a common denominator, to obtain

𝑥𝑛+1 =
4𝑥5𝑛 + 23

5𝑥4𝑛
.

Therefore, starting with 𝑥0 = 2, we find that 𝑥1 = 1.8875. This leads to 𝑥2 = 1.872418193
and 𝑥3 = 1.872171296. These values are in Table C.4. Since we have 𝑓 (1.872171231) > 0 and

𝑓 (1.872171230) < 0, the root lies between 1.872171230 and 1.872171231. Therefore, in just four

iterations of Newton’s method, we have achieved eight-decimal accuracy.

Table C.4 Newton’s method: 𝑥0 = 2

𝑛 𝑥𝑛 𝑓 (𝑥𝑛)
0 2 9

1 1.8875 0.957130661

2 1.872418193 0.015173919

3 1.872171296 0.000004020

4 1.872171231 0.000000027

Table C.5 Newton’s method: 𝑥0 = 10

𝑛 𝑥𝑛 𝑛 𝑥𝑛

0 10 6 2.679422313

1 8.000460000 7 2.232784753

2 6.401419079 8 1.971312452

3 5.123931891 9 1.881654220

4 4.105818871 10 1.872266333

5 3.300841811 11 1.872171240

As a general guideline for Newton’s method, once the first correct decimal place is found, each

successive iteration approximately doubles the number of correct digits.

What happens if we select a very poor initial estimate? In the preceding example, suppose 𝑥0
were 10 instead of 2. The results are in Table C.5. Notice that even with 𝑥0 = 10, the sequence of

values moves reasonably quickly toward the solution: We achieve six-decimal place accuracy by the

eleventh iteration.

Example 2 Find the first point of intersection of the curves given by 𝑓 (𝑥) = sin 𝑥 and 𝑔(𝑥) = 𝑒−𝑥.

Solution The graphs in Figure C.15 make it clear that there are an infinite number of points of intersection,

all with 𝑥 > 0. In order to find the first one numerically, we consider the function

𝐹 (𝑥) = 𝑓 (𝑥) − 𝑔(𝑥) = sin 𝑥 − 𝑒−𝑥

whose derivative is 𝐹 ′(𝑥) = cos 𝑥 + 𝑒−𝑥. From the graph, we see that the point we want is fairly

close to 𝑥 = 0, so we start with 𝑥0 = 0. The values in Table C.6 are approximations to the root.

Since 𝐹 (0.588532744) > 0 and 𝐹 (0.588532743) < 0, the root lies between 0.588532743 and

0.588532744. (Remember, your calculator must be set in radians.)

𝑥

𝑔(𝑥) = 𝑒−𝑥

𝑓 (𝑥) = sin 𝑥

Figure C.15: Root of sin 𝑥 = 𝑒−𝑥

Table C.6 Successive approximations to root
of sin 𝑥 = 𝑒−𝑥

𝑛 𝑥𝑛

0 0

1 0.5

2 0.585643817

3 0.588529413

4 0.588532744

5 0.588532744
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When Does Newton’s Method Fail?
In most practical situations, Newton’s method works well. Occasionally, however, the sequence 𝑥0,

𝑥1, 𝑥2, … fails to converge or fails to converge to the root you want. Sometimes, for example, the

sequence can jump from one root to another. This is particularly likely to happen if the magnitude

of the derivative 𝑓 ′(𝑥𝑛) is small for some 𝑥𝑛. In this case, the tangent line is nearly horizontal and

so 𝑥𝑛+1 will be far from 𝑥𝑛. (See Figure C.16.)

If the equation 𝑓 (𝑥) = 0 has no root, then the sequence will not converge. In fact, the sequence

obtained by applying Newton’s method to 𝑓 (𝑥) = 1 + 𝑥2 is one of the best known examples of

chaotic behavior and has attracted considerable research interest recently. (See Figure C.17.)

𝑥0

𝑟 𝑥1

𝑥2
𝑥

𝑓 (𝑥)

Figure C.16: Problems with Newton’s method:

Converges to wrong root

𝑥0𝑥1
𝑥2𝑥3

𝑥

𝑓 (𝑥) = 1 + 𝑥2

Figure C.17: Problems with Newton’s

method: Chaotic behavior

Exercises for Appendix C

1. Suppose you want to find a solution of the equation

𝑥3 + 3𝑥2 + 3𝑥 − 6 = 0.

Consider 𝑓 (𝑥) = 𝑥3 + 3𝑥2 + 3𝑥 − 6.

(a) Find 𝑓 ′(𝑥), and use it to show that 𝑓 (𝑥) increases

everywhere.

(b) How many roots does the original equation have?

(c) For each root, find an interval which contains it.

(d) Find each root to two decimal places, using New-

ton’s method.

For Problems 2–4, use Newton’s method to find the given

quantities to two decimal places:

2. 3
√

50 3. 4
√

100 4. 10−1∕3

For Problems 5–8, solve each equation and give each answer

to two decimal places:

5. sin 𝑥 = 1 − 𝑥 6. cos 𝑥 = 𝑥

7. 𝑒−𝑥 = ln 𝑥

8. 𝑒𝑥 cos 𝑥 = 1, for 0 < 𝑥 < 𝜋

9. Find, to two decimal places, all solutions of ln 𝑥 = 1∕𝑥.

10. How many zeros do the following functions have? For

each zero, find an upper and a lower bound which differ

by no more than 0.1.

(a) 𝑓 (𝑥) = 𝑥3 + 𝑥 − 1 (b) 𝑓 (𝑥) = sin 𝑥− 2
3
𝑥

(c) 𝑓 (𝑥) = 10𝑥𝑒−𝑥 − 1

11. Find the largest zero of

𝑓 (𝑥) = 𝑥3 + 𝑥 − 1

to six decimal places, using Newton’s method. How do

you know your approximation is as good as you claim?

12. For any positive number, 𝑎, the problem of calculating

the square root,
√

𝑎, is often done by applying New-

ton’s method to the function 𝑓 (𝑥) = 𝑥2 − 𝑎. Apply the

method to obtain an expression for 𝑥𝑛+1 in terms of 𝑥𝑛.

Use this to approximate
√

𝑎 for 𝑎 = 2, 10, 1000, and 𝜋,

correct to four decimal places, starting at 𝑥0 = 𝑎∕2 in

each case.

D VECTORS IN THE PLANE

Position Vectors
Consider a point (𝑎, 𝑏) lying on a curve 𝐶 in the plane (see Figure D.18). The arrow from the origin to

the point (𝑎, 𝑏) is called the position vector of the point, written 𝑟 .As the point moves along the curve,

the position vector sweeps across the plane, the arrowhead touching the curve (see Figure D.19).
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𝑟

(𝑎, 𝑏)

𝐶

𝑥

𝑦

Figure D.18: A position vector 𝑟

𝐶

𝑥

𝑦

Figure D.19: Position vectors of points on curve 𝐶

A position vector is defined by its magnitude (or length) and its direction. Figure D.20 shows two

position vectors with the same magnitude but different directions. Figure D.21 shows two position

vectors with the same direction but different magnitudes. An object that possesses both magnitude

and direction is called a vector, and a position vector is one example. Other physical quantities

(such as force, electric and magnetic fields, velocity and acceleration) that have both magnitude and

direction can be represented by vectors. To distinguish them from vectors, real numbers (which have

magnitude but no direction) are sometimes called scalars.

𝑖⃗

𝑗

(1, 0)

(0, 1)

𝑥

𝑦

Figure D.20: Position vectors with

same magnitude, different

direction

(1, 1)

(2, 2)

𝑥

𝑦

Figure D.21: Position vectors with

same direction, different

magnitude

Vectors can be written in several ways. One is to write ⟨𝑎, 𝑏⟩ for the position vector with tip at

(𝑎, 𝑏)— the use of the angle brackets signifies that we’re talking about a vector, not a point. Another

notation uses the special vectors 𝑖⃗ and 𝑗 along the axes. The position vector 𝑖⃗ points to (1, 0) and 𝑗
points to (0, 1); both have magnitude 1. The position vector 𝑟 pointing to (𝑎, 𝑏) can be written

𝑟 = 𝑎𝑖⃗ + 𝑏𝑗 .

The terms 𝑎𝑖⃗ and 𝑏𝑗 are called the components of the vector.

Other special vectors include the zero vector, 0⃗ = 0𝑖⃗ + 0𝑗 . Any vector with magnitude 1 is

called a unit vector.

Example 1 What are the components of the position vector in Figure D.22?

3

−
√

3 𝑟

𝑥

𝑦

Figure D.22: Find the components

of this position vector
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Solution Since the vector points to (3,−
√

3), we have

𝑟 = 3𝑖⃗ −
√

3 𝑗 .

Thus, the components of the vector are 3𝑖⃗ and −
√

3 𝑗 .

Magnitude and Direction

If 𝑟 is the position vector 𝑎𝑖⃗ + 𝑏𝑗 , then the Pythagorean Theorem gives the magnitude of 𝑟 , written

||𝑟 ||. From Figure D.23, we see

||𝑟 || = ||𝑎𝑖⃗ + 𝑏𝑗 || =
√

𝑎2 + 𝑏2.

The direction of a position vector 𝑟 = 𝑎𝑖⃗ + 𝑏𝑗 is given by the angle 𝜃 between the vector and the

positive 𝑥-axis, measured counterclockwise. This angle satisfies

tan 𝜃 =
(

𝑏

𝑎

)

.

Example 2 Find the magnitude and direction of the position vector 𝑟 = 3𝑖⃗ −
√

3𝑗 in Figure D.22.

Solution The magnitude is ||𝑟 || =
√

32 + (−
√

3)2 =
√

12 = 2
√

3.For the direction, we find arctan(−
√

3∕3) =
−𝜋∕6. Thus, the angle with the positive 𝑥-axis is 𝜃 = 2𝜋 − 𝜋∕6 = 11𝜋∕6. See Figure D.24.

𝑎

𝑏

‖𝑟 ‖ =
√

𝑎2 + 𝑏2

𝑦

𝑥𝜃

𝑟

Figure D.23: Magnitude ||𝑟 || and

direction of the position vector 𝑟

3

−
√

3

11𝜋∕6

−𝜋∕6
||𝑟 || = 2

√

3

𝑥

𝑦

Figure D.24: Magnitude and direction of

the vector 3𝑖⃗ −
√

3𝑗

Describing Motion with Position Vectors
The motion given by the parametric equations

𝑥 = 𝑓 (𝑡), 𝑦 = 𝑔(𝑡)

can be represented by a changing position vector

𝑟 (𝑡) = 𝑓 (𝑡)𝑖⃗ + 𝑔(𝑡)𝑗 .

For example, 𝑟 (𝑡) = cos 𝑡𝑖⃗ + sin 𝑡𝑗 represents the motion 𝑥 = cos 𝑡, 𝑦 = sin 𝑡 around the unit circle.
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Displacement Vectors
Position vectors are vectors that begin at the origin. More general vectors can start at any point in

the plane. We view such an arrow as an instruction to move from one point to another and call it

a displacement vector. Figure D.25 shows the same displacement vector starting at two different

points; we say they are the same vector since they have the same direction and magnitude. Thus, a

position vector 𝑟 is a displacement vector beginning at the origin. The zero vector 0⃗ = 0𝑖⃗ + 0𝑗
represents no displacement at all.

𝑢 = 3𝑖⃗ + 4𝑗 𝑢 = 3𝑖⃗ + 4𝑗

(−4, 2)

(−1, 6)
(5, 7)

(2, 3)

𝑥

𝑦

Figure D.25: Two equal displacement vectors:

Same magnitude and direction

Vector Operations
The sum 𝑢 1 + 𝑢 2 of two displacement vectors is the result of displacing an object first by 𝑢 1 and

then by 𝑢 2; see Figure D.26. In terms of components:

𝑢 1 + 𝑢 2

𝑢 1

𝑢 2

Figure D.26: Vector addition

If 𝑢 1 = 𝑎1 𝑖⃗ + 𝑏1𝑗 and 𝑢 2 = 𝑎2 𝑖⃗ + 𝑏2𝑗 , then the sum is

𝑢 1 + 𝑢 2 = (𝑎1 + 𝑎2)𝑖⃗ + (𝑏1 + 𝑏2)𝑗 .

In other words, to add vectors, add their components separately.

Example 3 Find the sum of the following pairs of vectors:

(a) 3𝑖⃗ + 2𝑗 and −𝑖⃗ + 𝑗 (b) 𝑖⃗ and 3𝑖⃗ + 𝑗 (c) 𝑖⃗ and 𝑗 .

Solution (a) (3𝑖⃗ + 2𝑗 ) + (−𝑖⃗ + 𝑗 ) = 2𝑖⃗ + 3𝑗
(b) (𝑖⃗ + 0𝑗 ) + (3𝑖⃗ + 𝑗 ) = 4𝑖⃗ + 𝑗
(c) (𝑖⃗ + 0𝑗 ) + (0𝑖⃗ + 𝑗 ) = 𝑖⃗ + 𝑗 .
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𝐹

0.5𝐹

2𝐹

−2𝐹

Figure D.27: Scalar

multiplication

Vectors can be multiplied by a number. This operation is called scalar multiplication because

it represents changing (“scaling”) the magnitude of a vector while keeping its direction the same or

reversing it. See Figure D.27.

If 𝑐 is a real number and 𝑢 = 𝑎𝑖⃗ + 𝑏𝑗 , then the scalar multiple of 𝑢 by 𝑐, 𝑐𝑢 , is

𝑐𝑢 = 𝑐𝑎𝑖⃗ + 𝑐𝑏𝑗 .

In other words, to multiply a vector by a scalar 𝑐, multiply each component by 𝑐.

Example 4 If 𝑢 1 = 2𝑖⃗ and 𝑢 2 = 𝑖⃗ + 3𝑗 , evaluate 6𝑢 2, (−2)𝑢 1, and 2𝑢 1 + 5𝑢 2.

Solution We have

6𝑢 2 = 6𝑖⃗ + 18𝑗 ,
(−2)𝑢 1 = −4𝑖⃗ ,

2𝑢 1 + 5𝑢 2 = (4𝑖⃗ ) + (5𝑖⃗ + 15𝑗 ) = 9𝑖⃗ + 15𝑗 .

Velocity Vectors
For a particle moving along a line with position 𝑠(𝑡), the instantaneous velocity is 𝑑𝑠∕𝑑𝑡. For a

particle moving in the plane, the velocity is a vector. If the position vector is 𝑟 (𝑡) = 𝑥(𝑡)𝑖⃗ + 𝑦(𝑡)𝑗 ,

the particle’s displacement during a time interval Δ𝑡 is

Δ𝑟 (𝑡) = Δ𝑥𝑖⃗ + Δ𝑦𝑗 .

Dividing by Δ𝑡 and letting Δ𝑡 → 0, we get the following result:

For motion in the plane with position vector 𝑟 (𝑡) = 𝑥(𝑡)𝑖⃗ + 𝑦(𝑡)𝑗 , the velocity vector is

𝑣 (𝑡) = 𝑑𝑥

𝑑𝑡
𝑖⃗ + 𝑑𝑦

𝑑𝑡
𝑗 .

The direction of 𝑣 (𝑡) is tangent to the curve. The magnitude ||𝑣 (𝑡)|| is the speed.
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Notice the vector viewpoint agrees with the formulas for speed, 𝑣𝑥 and 𝑣𝑦, given in Section 4.8, so

we write

𝑣 (𝑡) = 𝑣𝑥𝑖⃗ + 𝑣𝑦𝑗 .

Recall that for motion on a line, the acceleration is 𝑎 = 𝑑𝑣∕𝑑𝑡 = 𝑑2𝑠∕𝑑𝑡2. For motion in the plane,

we have the following:

If the position vector is 𝑟 (𝑡) = 𝑥(𝑡)𝑖⃗ + 𝑦(𝑡)𝑗 , the acceleration vector is

𝑎 (𝑡) = 𝑑2𝑥

𝑑𝑡2
𝑖⃗ + 𝑑2𝑦

𝑑𝑡2
𝑗 .

The acceleration measures both change in speed and change in direction of the velocity vector.

Example 5 Let 𝑟 (𝑡) = cos(2𝑡)𝑖⃗ + sin(2𝑡)𝑗 . Find the

(a) Velocity (b) Speed (c) Acceleration

Solution (a) Differentiating 𝑟 (𝑡) gives the velocity vector

Velocity = 𝑣 (𝑡) = −2 sin(2𝑡)𝑖⃗ + 2 cos(2𝑡)𝑗 .

(b) Finding the magnitude of 𝑣 (𝑡), we have

Speed = ||𝑣 (𝑡)|| =
√

(−2 sin(2𝑡))2 + (2 cos(2𝑡))2 = 2.

Notice that the speed is constant.

(c) Differentiating 𝑣 (𝑡) gives the acceleration vector

Acceleration = 𝑎 (𝑡) = −4 cos(2𝑡)𝑖⃗ − 4 sin(2𝑡)𝑗 .

Notice that even though the speed is constant, the acceleration vector is not 0⃗ , since the velocity

vector is changing direction.

Exercises for Appendix D
EXERCISES

In Exercises 1–3, find the magnitude of the vector and the

angle between the vector and the positive 𝑥-axis.

1. 3𝑖⃗ 2. 2𝑖⃗ + 𝑗

3. −
√

2 𝑖⃗ +
√

2 𝑗

In Exercises 4–6, perform the indicated operations on the

following vectors

𝑢 = 2𝑗 𝑣 = 𝑖⃗ + 2𝑗 𝑤⃗ = −2𝑖⃗ + 3𝑗 .

4. 𝑣 + 𝑤⃗ 5. 2𝑣 + 𝑤⃗ 6. 𝑤⃗ + (−2)𝑢

Exercises 7–9 concern the following vectors:

3𝑖⃗ +4𝑗 , 𝑖⃗ + 𝑗 , −5𝑖⃗ , 5𝑗 ,
√

2𝑗 , 2𝑖⃗ +2𝑗 , −6𝑗

.

7. Which vectors have the same magnitude?

8. Which vectors have the same direction?

9. Which vectors have opposite direction?

10. If 𝑘 is any real number and 𝑟 = 𝑎𝑖⃗ + 𝑏𝑗 is any vector,

show that ‖𝑘𝑟 ‖ = |𝑘|‖𝑟 ‖.
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11. Find a unit vector (that is, with magnitude 1) that is

(a) In the same direction as the vector −3𝑖⃗ + 4𝑗 .

(b) In the direction opposite to the vector −3𝑖⃗ + 4𝑗 .

In Exercises 12–15, express the vector in components.

12. The vector of magnitude 5 making an angle of 90◦ with

the positive 𝑥-axis.

13. The vector in the same direction as 4𝑖⃗ − 3𝑗 but with

twice the magnitude.

14. The vector with the same magnitude as 4𝑖⃗ − 3𝑗 and in

the opposite direction.

15. The vector from (3, 2) to (4, 4).

In Exercises 16–19, determine whether the vectors are equal.

16. 6𝑖⃗ − 6𝑗 and the vector from (6, 6) to (−6,−6).

17. The vector from (7, 9) to (9, 11) and the vector from

(8, 10) to (10, 12).

18. −𝑖⃗ + 𝑗 and the vector of length
√

2 making an angle of

𝜋∕4 with the positive 𝑥-axis.

19. 5𝑖⃗ − 2𝑗 and the vector from (1, 12) to (6, 10).

In Exercises 20–22, find the velocity vector and the speed,

and acceleration.

20. 𝑟 (𝑡) = 𝑡 𝑖⃗ + 𝑡2 𝑗 , 𝑡 = 1

21. 𝑟 (𝑡) = 𝑒𝑡 𝑖⃗ + ln(1 + 𝑡)𝑗 , 𝑡 = 0

22. 𝑟 (𝑡) = 5 cos 𝑡 𝑖⃗ + 5 sin 𝑡 𝑗 , 𝑡 = 𝜋∕2

23. A particle is moving along the curve 𝑟 (𝑡) = cos 𝑡 𝑖⃗ +
sin 𝑡 𝑗 . Find the particle’s position and velocity vectors

and its speed when 𝑡 = 𝜋∕4.

E DETERMINANTS

We introduce the determinant of an array of numbers. Each 2 by 2 array of numbers has another

number associated with it, called its determinant, which is given by

|

|

|

|

|

𝑎1 𝑎2
𝑏1 𝑏2

|

|

|

|

|

= 𝑎1𝑏2 − 𝑎2𝑏1.

For example

|

|

|

|

|

2 5
−4 −6

|

|

|

|

|

= 2(−6) − 5(−4) = 8.

Each 3 by 3 array of numbers also has a number associated with it, also called a determinant,

which is defined in terms of 2 by 2 determinants as follows:

|

|

|

|

|

|

|

|

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

|

|

|

|

|

|

|

|

= 𝑎1

|

|

|

|

|

𝑏2 𝑏3
𝑐2 𝑐3

|

|

|

|

|

− 𝑎2

|

|

|

|

|

𝑏1 𝑏3
𝑐1 𝑐3

|

|

|

|

|

+ 𝑎3

|

|

|

|

|

𝑏1 𝑏2
𝑐1 𝑐2

|

|

|

|

|

.

Notice that the determinant of the 2 by 2 array multiplied by 𝑎𝑖 is the determinant of the array found

by removing the row and column containing 𝑎𝑖. Also, note the minus sign in the second term. An

example is given by

|

|

|

|

|

|

|

|

2 1 −3
0 3 −1
4 0 5

|

|

|

|

|

|

|

|

= 2
|

|

|

|

|

3 −1
0 5

|

|

|

|

|

− 1
|

|

|

|

|

0 −1
4 5

|

|

|

|

|

+ (−3)
|

|

|

|

|

0 3
4 0

|

|

|

|

|

= 2(15 + 0) − 1(0 − (−4)) + (−3)(0 − 12) = 62.

Suppose the vectors 𝑎 and 𝑏⃗ have components 𝑎 = 𝑎1 𝑖⃗ +𝑎2𝑗 +𝑎3𝑘⃗ and 𝑏⃗ = 𝑏1 𝑖⃗ +𝑏2𝑗 +𝑏3𝑘⃗ .

Recall that the cross product 𝑎 × 𝑏⃗ is given by the expression

𝑎 × 𝑏⃗ = (𝑎2𝑏3 − 𝑎3𝑏2)𝑖⃗ + (𝑎3𝑏1 − 𝑎1𝑏3)𝑗 + (𝑎1𝑏2 − 𝑎2𝑏1)𝑘⃗ .
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Notice that if we expand the following determinant, we get the cross product:

|

|

|

|

|

|

|

|

𝑖⃗ 𝑗 𝑘⃗

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3

|

|

|

|

|

|

|

|

= 𝑖⃗ (𝑎2𝑏3 − 𝑎3𝑏2) − 𝑗 (𝑎1𝑏3 − 𝑎3𝑏1) + 𝑘⃗ (𝑎1𝑏2 − 𝑎2𝑏1) = 𝑎 × 𝑏⃗ .

Determinants give a useful way of computing cross products.



READY REFERENCE



1100 READY REFERENCE

READY REFERENCE

A Library of Functions

Linear functions (p. 4) have the form y = f (x) = b+mx,
where m is the slope, or rate of change of y with respect to
x (p. 5) and b is the vertical intercept, or value of y when x

is zero (p. 5). The slope is

m =
Rise

Run
=

Δy

Δx
=

f (x2) − f (x1)

x2 − x1

(p. 5).

y = x
y = 2x

y = 0.5x

x

y

y = −x
y = −2x

y = −0.5x

Figure R.1: The family y = mx

(with b = 0) (p. 6)

x

y = −1 + x

y = x

y = 1 + x

y = 2 + x

y

Figure R.2: The family y = b + x

(with m = 1) (p. 6)

Exponential functions have the form P = P0a
t (p. 16) or

P = P0e
kt (p. 18), where P0 is the initial quantity (p. 16), a

is the growth (decay) factor per unit time (p. 16), |k| is the

continuous growth (decay) rate (pp. 18, 626), and r = |a−1|

is the growth (decay) rate per unit time (p. 16).

Suppose P0 > 0. If a > 1 or k > 0, we have exponen-

tial growth; if 0 < a < 1 or k < 0, we have exponential

decay (p. 17). The doubling time (for growth) is the time

required for P to double (p. 17). The half-life (for decay) is

the time required for P to be reduced by a factor of one half

(p. 17). The continuous growth rate k = ln(1 + r) is slightly

less than, but very close to, r, provided r is small (p. 627).

1 2 3 4 5 6 7

10

20

30

40

t

P

10t 5t 3t 2t

(1.5)t

Figure R.3: Exponential growth:

P = at, for a > 1 (p. 18)

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

t

P

(0.1)t
(0.5)t (0.8)t

(0.9)t

(0.95)t

Figure R.4: Exponential decay:

P = at, for 0 < a < 1 (p. 18)

Common Logarithm and Natural Logarithm

log10 x = log x = power of 10 that gives x (p. 34)

log10 x = c means 10c = x (p. 34)

ln x = power of e that gives x (p. 35)

ln x = c means ec = x (p. 35)

log x and lnx are not defined if x is negative or 0 (p. 35).

Properties of Logarithms (p. 35)

1. log(AB) = logA + logB 4. log (10x) = x

2. log
(

A

B

)

= logA − logB 5. 10logx = x

3. log (Ap) = p logA 6. log 1 = 0
The natural logarithm satisfies properties 1, 2, and 3, and

ln ex = x, elnx = x, ln 1 = 0 (p. 35).

Trigonometric Functions The sine and cosine are defined

in Figure R.5 (see also p. 43). The tangent is tan t =
sin t
cos t

=

slope of the line through the origin (0, 0) and P if cos t ≠ 0

(p. 46). The period of sin and cos is 2� (p. 43), the period of

tan is � (p. 47).

✻

❄

y

✲✛x
(1, 0)

(0, 1)
P x = cos t

y = sin t

t

Figure R.5: The definitions of sin t

and cos t (p. 43)

A sinusoidal function (p. 44) has the form

y = C + A sin(B(t + ℎ)) or y = C + A cos(B(t + ℎ)).
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The amplitude is |A|, (p. 44), and the period is 2�∕|B|

(p. 44).

−3� −2� −� � 2� 3�

−1

1
sin t ✻

❄
Amplitude = 1

✲✛Period = 2�

cos t

t

Figure R.6: Graphs of cos t and sin t (p. 44)

Trigonometric Identities

sin2 x + cos2 x = 1

sin(2x) = 2 sin x cos x

cos(2x) = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x

cos(a + b) = cos a cos b − sin a sin b

sin(a + b) = sin a cos b + cos a sin b

Inverse Trigonometric Functions: arcsin y = x means

sinx = y with −(�∕2) ≤ x ≤ (�∕2) (p. 47), arccos y = x

means cos x = y with 0 ≤ x ≤ � (Problem 75, p. 52),

arctan y = x means tan x = y with −(�∕2) < x < (�∕2)

(p. 48). The domain of arcsin and arccos is [−1, 1] (p. 47),

the domain of arctan is all numbers (p. 48). Power Func-

tions have the form f (x) = kxp (p. 53). Graphs for positive

powers:

−2 −1

1 2

−10

−5

5

10

x

y
x5 x3

x

Figure R.7: Odd integer

powers of x: “Seat” shaped

for k > 1 (p. 54)

−3 −2 −1 1 2 3

−5

5

10

x

y
x4

x2

Figure R.8: Even integer

powers of x:
⋃

-shaped

(p. 54)

1 2
0

1

2

x

y

x1∕3

x1∕2

x3∕2 xx2x3

Figure R.9: Comparison of some

fractional powers of x

Graphs for zero and negative powers:

y =
1

x2
= x−2

y

x

y =
1

x
= x−1

y

x

y = x0

y

x

Figure R.10: Comparison of zero and negative powers of x

Polynomials have the form

f (x) = anx
n + an−1x

n−1 +⋯ + a1x + a0, an ≠ 0 (p. 54).

The degree is n (p. 54) and the leading coefficient is an
(p. 54).

Quadratic
(n = 2)

Cubic
(n = 3)

Quartic
(n = 4)

Quintic
(n = 5)

Figure R.11: Graphs of typical polynomials of degree n

(p. 55)

Rational Functions have the form f (x) =
p(x)

q(x)
, where

p and q are polynomials (p. 56). There is usually a vertical

asymptote at x = a if q(a) = 0 and a horizontal asymptote

at y = L if limx→∞ f (x) = L or limx→−∞ f (x) = L (p. 56).

Hyperbolic Functions:

cosh x =
ex + e−x

2
sinh x =

ex − e−x

2
(p. 181).
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Relative Growth Rates of Functions

Power Functions As x → ∞, higher powers of x dominate,

as x → 0, smaller powers dominate.

1 2 3 4

5

10

15

x

x

x1.5

x2
x3x4x5

Figure R.12: For large x:

Large powers of x dominate

1

1

x

x

x1.5

x2

x3

x4

x5

✛
✛
✛
✛
✛
✛

Figure R.13: For 0 ≤ x ≤ 1:

Small powers of x dominate

Power Functions Versus Exponential Functions Every ex-

ponential growth function eventually dominates every power

function (p. 54).

250 500 750

1029

x

x10

1.1x

Figure R.14: Exponential function eventually dominates

power function

Power Functions Versus Logarithm Functions The power

function xp dominates A log x for large x for all values of

p > 0 and A > 0.

100−1

1
x

x1∕3

log x

Figure R.15: Comparison of

x1∕3 and log x

109

1000

x

x1∕3

100 log x

Figure R.16: Comparison of x1∕3

and 100 log x

Numerical comparisons of growth rates:

Table R.1 Comparison of

x0.001 and 1000 log x

x x
0.001

1000 log x

10
5000

105 5 ⋅ 106

106000 106 6 ⋅ 106

107000 107 7 ⋅ 106

Table R.2 Comparison of

x100 and 1.01x

x x
100

1.01x

104 10
400

1.6 ⋅ 1043

105 10
500

1.4 ⋅ 10
432

106 10
600

2.4 ⋅ 10
4321

Operations on Functions

Shifts, Stretches, and Composition Multiplying by a con-

stant, c, stretches (if c > 1) or shrinks (if 0 < c < 1)

the graph vertically. A negative sign (if c < 0) reflects the

graph about the x-axis, in addition to shrinking or stretch-

ing (p. 26). Replacing y by (y − k) moves a graph up by k

(down if k is negative) (p. 26). Replacing x by (x−ℎ) moves

a graph to the right by ℎ (to the left if ℎ is negative) (p. 26).

The composite of f and g is the function f (g(x)); f is the

outside function, g the inside function (p. 26).

Symmetry We say f is an even function if f (−x) = f (x)

(p. 27) and f is an odd function if f (−x) = −f (x) (p. 27).

Inverse Functions A function f has an inverse if (and

only if) its graph intersects any horizontal line at most once

(p. 29). If f has an inverse, it is written f−1, and f−1(x) = y

means f (y) = x (p. 29). Provided the x and y scales are

equal, the graph of f−1 is the reflection of the graph of f

about the line y = x (p. 30).

Proportionality We say y is proportional to x if y = kx for

k a nonzero constant. We say y is inversely proportional to

x if y = k(1∕x) (p. 6).

Limits and Continuity

Idea of Limit (p. 64) If there is a number L such that f (x)

is as close to L as we please whenever x is sufficiently close

to c (but x ≠ c), then limx→c f (x) = L.

Definition of Limit()Section 1.10 online) If there is a

number L such that for any � > 0, there exists a � > 0 such

that if |x − c| < � and x ≠ c, then |f (x) − L| < �, then

limx→c f (x) = L.

One-sided Limits (p. 72) If f (x) approaches L

as x approaches c through values greater than c, then

limx→c+ f (x) = L. If f (x) approaches L as x approaches

c through values less than c, then limx→c− f (x) = L.

Limits at Infinity (p. 73) If f (x) gets as close to L as

we please when x gets sufficiently large, then limx→∞ f (x) =

L. Similarly, if f (x) approaches L as x gets more and more

negative, then limx→−∞ f (x) = L.

Limits of Continuous Functions (p. 66) If a function

f (x) is continuous at x = c, the limit is the value of f (x)

there: lim
x→c

f (x) = f (c). Thus, to find limits for a continuous

function: Substitute c.

Theorem: Properties of Limits (p. 75) Assuming all

the limits on the right-hand side exist:

1. If b is a constant, then lim
x→c

(bf (x)) = b

(

lim
x→c

f (x)
)

.

2. lim
x→c

(f (x) + g(x)) = lim
x→c

f (x) + lim
x→c

g(x).

3. lim
x→c

(f (x)g(x)) =
(

lim
x→c

f (x)
)(

lim
x→c

g(x)
)

.

4. lim
x→c

f (x)

g(x)
=

limx→c f (x)

limx→c g(x)
, provided limx→c g(x) ≠ 0.

5. For any constant k, lim
x→c

k = k.

6. lim
x→c

x = c.

Idea of Continuity (p. 62) A function is continuous

on an interval if its graph has no breaks, jumps, or holes in

that interval.
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Definition of Continuity (p. 65) The function f is con-

tinuous at x = c if f is defined at x = c and

lim
x→c

f (x) = f (c).

The function is continuous on an interval if it is continuous

at every point in the interval.

Theorem: Continuity of Sums, Products, Quotients

(p. 75) Suppose that f and g are continuous on an interval

and that b is a constant. Then, on that same interval, the fol-

lowing functions are also continuous: bf (x), f (x) + g(x),

f (x)g(x). Further, f (x)∕g(x) is continuous provided g(x) ≠

0 on the interval.

Theorem: Continuity of Composite Functions

(p. 76) Suppose f and g are continuous and f (g(x)) is

defined on an interval. Then on that interval f (g(x)) is con-

tinuous.

Intermediate Value Theorem (p. 65) Suppose f is

continuous on a closed interval [a, b]. If k is any number

between f (a) and f (b), then there is at least one number c

in [a, b] such that f (c) = k.

The Extreme Value Theorem (p. 211) If f is continu-

ous on the interval [a, b], then f has a global maximum and

a global minimum on that interval.

The Squeeze Theorem (p. 84) If b(x) ≤ f (x) ≤ a(x)

for all x close to x = c except possibly at x = c, and

lim
x→c

b(x) = L = lim
x→c

a(x), then lim
x→c

f (x) = L.

The Derivative

The slope of the secant line of f (x) over an interval [a, b]

gives:

Average rate of change

of f over [a, b]
=

f (b) − f (a)

b − a
(p. 96).

a a + ℎ

x

A

B

f (x)
Slope = Average rate

of change

=
f (a+ℎ)−f (a)

ℎ

❄ ✻
❄
f (a + ℎ) − f (a)

✲✛ ℎ

Figure R.17: Visualizing the average

rate of change of f (p. 98)

The derivative of f at a is the slope of the line tangent

to the graph of f at the point (a, f (a)):

f ′(a) = lim
ℎ→0

f (a + ℎ) − f (a)

ℎ
,

and gives the instantaneous rate of change of f at a

(p. 96). The function f is differentiable at a if this limit

exists (p. 96). The second derivative of f , denoted f ′′, is

the derivative of f ′ (p. 121).

a
x

A

f (x)

Slope = Derivative = f ′(a)
✻

Figure R.18: Visualizing the

instantaneous rate of change

of f (p. 98)

The units of f ′(x) are:
Units of f (x)

Units of x
(p. 114). If

f ′ > 0 on an interval, then f is increasing over that inter-

val (p. 106). If f ′ < 0 on an interval, then f is decreasing

over that interval (p. 106). If f ′′ > 0 on an interval, then f

is concave up over that interval (p. 121). If f ′′ < 0 on an

interval, then f is concave down over that interval (p. 121).

The tangent line at (a, f (a)) is the graph of y = f (a)+

f ′(a)(x−a) (p. 185). The tangent line approximation says

that for values of x near a, f (x) ≈ f (a) + f ′(a)(x− a). The

expression f (a) + f ′(a)(x− a) is called the local lineariza-

tion of f near x = a (p. 185).

Derivatives of elementary functions

d

dx
(xn) = nxn−1 (p. 138)

d

dx
(ex) = ex (p. 148)

d

dx
(ax) = (ln a)ax (p. 149)

d

dx
(lnx) =

1

x
(p. 172)

d

dx
(sinx) = cos x

d

dx
(cos x) = − sin x (p. 167)

d

dx
(arctan x) =

1

1 + x2
(p. 173)

d

dx
(arcsin x) =

1
√

1 − x2

(p. 173)

Derivatives of sums, differences, and constant mul-

tiples

d

dx
[f (x) ± g(x)] = f ′(x) ± g′(x) (p. 137)

d

dx
[cf (x)] = cf ′(x) (p. 136)

Product and quotient rules

(fg)′ = f ′g + fg′ (p. 152)

(

f

g

)′

=
f ′g − fg′

g2
(p. 153)

Chain rule

d

dx
f (g(x)) = f ′(g(x)) ⋅ g′(x) (p. 159)
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Derivative of an inverse function (p. 174). If f has a dif-

ferentiable inverse, f−1, then

d

dx
(f−1(x)) =

1

f ′(f−1(x))
.

Implicit differentiation (p. 178) If y is implicitly defined as

a function of x by an equation, then, to find dy∕dx, differ-

entiate the equation (remembering to apply the chain rule).

Applications of the Derivative

A function f has a local maximum at p if f (p) is greater

than or equal to the values of f at points near p, and a local

minimum at p if f (p) is less than or equal to the values of

f at points near p (p. 201). It has a global maximum at p if

f (p) is greater than or equal to the value of f at any point in

the interval, and a global minimum at p if f (p) is less than

or equal to the value of f at any point in the interval (p. 211).

A critical point of a function f (x) is a point p in the

domain of f where f ′(p) = 0 or f ′(p) is undefined (p. 201).

Theorem: Local maxima and minima which do not

occur at endpoints of the domain occur at critical points

(pp. 202, 206).

The First-Derivative Test for Local Maxima and

Minima (p. 202):

• If f ′ changes from negative to positive at p, then f has

a local minimum at p.

• If f ′ changes from positive to negative at p, then f has

a local maximum at p.

The Second-Derivative Test for Local Maxima and

Minima (p. 204):

• If f ′(p) = 0 and f ′′(p) > 0 then f has a local mini-

mum at p.

• If f ′(p) = 0 and f ′′(p) < 0 then f has a local maxi-

mum at p.

• If f ′(p) = 0 and f ′′(p) = 0 then the test tells us

nothing.

To find the global maximum and minimum of a func-

tion on an interval we compare values of f at all critical

points in the interval and at the endpoints of the interval (or

lim
x→±∞

f (x) if the interval is unbounded) (p. 212).

An inflection point of f is a point at which the graph

of f changes concavity (p. 204); f ′′ is zero or undefined at

an inflection point (p. 204).

L’Hopital’s rule (p. 264) If f and g are continuous,

f (a) = g(a) = 0, and g′(a) ≠ 0, then

lim
x→a

f (x)

g(x)
=

f ′(a)

g′(a)
.

Parametric equations (p. 271) If a curve is given by

the parametric equations x = f (t), y = g(t), the slope of the

curve as a function of t is dy∕dx = (dy∕dt)∕(dx∕dt).

Theorems About Derivatives

Theorem: Local Extrema and Critical Points (pp. 202,

206) Suppose f is defined on an interval and has a local

maximum or minimum at the point x = a, which is not an

endpoint of the interval. If f is differentiable at x = a, then

f ′(a) = 0.

The Mean Value Theorem (p. 193) If f is continu-

ous on [a, b] and differentiable on (a, b), then there exists a

number c, with a < c < b, such that

f ′(c) =
f (b) − f (a)

b − a
.

The Increasing Function Theorem (p. 194) Suppose

that f is continuous on [a, b] and differentiable on (a, b).

• If f ′(x) > 0 on (a, b), then f is increasing on [a, b].

• If f ′(x) ≥ 0 on (a, b), then f is nondecreasing on [a, b].

The Constant Function Theorem (p. 195) Suppose

that f is continuous on [a, b] and differentiable on (a, b). If

f ′(x) = 0 on (a, b), then f is constant on [a, b].

The Racetrack Principle (p. 195) Suppose that g and

ℎ are continuous on [a, b] and differentiable on (a, b), and

that g′(x) ≤ ℎ′(x) for a < x < b.

• If g(a) = ℎ(a), then g(x) ≤ ℎ(x) for a ≤ x ≤ b.

• If g(b) = ℎ(b), then g(x) ≥ ℎ(x) for a ≤ x ≤ b.

Theorem: Differentiability and Local Linearity

(p. 187) Suppose f is differentiable at x = a and E(x) is

the error in the tangent line approximation, that is: E(x) =

f (x) − f (a) − f ′(a)(x − a). Then lim
x→a

E(x)

x − a
= 0.

Theorem: A Differentiable Function Is Continuous

(p. 132) If f (x) is differentiable at a point x = a, then f (x)

is continuous at x = a.

The Definite Integral

The definite integral of f from a to b (p. 299), denoted

∫
b

a
f (x) dx, is the limit of the left and the right sums as the

width of the rectangles is shrunk to 0, where

Left-hand sum =

n−1
∑

i=0

f (xi)Δx (p. 298)

= f (x0)Δx + f (x1)Δx +⋯ + f (xn−1)Δx

Right-hand sum =

n
∑

i=1

f (xi)Δx (p. 298)

= f (x1)Δx + f (x2)Δx +⋯ + f (xn)Δx
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Area = f (x0)Δx

f (x)

x
a = x0 x1 x2 ⋅ ⋅ ⋅ xn = b

✛✻

❄

f (x0)

Figure R.19: Left-hand sum (Similar to p. 291)

Area = f (x1)Δx

f (x)

x
a = x0 x1 x2 ⋅ ⋅ ⋅ xn = b

✛✻

❄

f (x1)

Figure R.20: Right-hand sum (Similar to p. 291)

If f is nonnegative, ∫
b

a
f (x) dx represents the area un-

der the curve between x = a and x = b (p. 300). If f has any

sign, ∫
b

a
f (x) dx is the sum of the areas above the x-axis,

counted positively, and the areas below the x-axis, counted

negatively (p. 301). If F ′(t) is the rate of change of some

quantity F (t), then ∫
b

a
F ′(t) dt is the total change in F (t)

between t = a and t = b (p. 310). The average value of f

on the interval [a, b] is given by
1

b − a ∫

b

a

f (x) dx (p. 325).

a b
x

f (x)Area = ∫
b

a
f (x) dx

❘

Figure R.21: The definite integral

∫
b

a
f (x) dx (p. 300)

a b

x

f (x)

Area under curve =
Area of rectangle

✲✛ b − a

✻

❄

Average
value
of f

Figure R.22: Area and average value

(p. 326)

The units of ∫
b

a
f (x) dx are Units of f (x) × Units of x

(p. 308).

The Fundamental Theorem of Calculus If f is continuous

on [a, b] and f (x) = F ′(x), then

∫

b

a

f (x) dx = F (b) − F (a) (p. 309).

Properties of Definite Integrals (pp. 319, 321)

If a, b, and c are any numbers and f , g are continuous func-

tions, then

∫

a

b

f (x) dx = −
∫

b

a

f (x) dx

∫

b

a

(f (x) ± g(x)) dx =
∫

b

a

f (x) dx ±
∫

b

a

g(x) dx

∫

c

a

f (x) dx +
∫

b

c

f (x) dx =
∫

b

a

f (x) dx

∫

b

a

cf (x) dx = c
∫

b

a

f (x) dx

Antiderivatives

An antiderivative of a function f (x) is a function F (x) such

that F ′(x) = f (x) (p. 334). There are infinitely many an-

tiderivatives of f since F (x) + C is an antiderivative of

f for any constant C , provided F ′(x) = f (x) (p. 334).

The indefinite integral of f is the family of antiderivatives

∫ f (x) dx = F (x) + C (p. 341).

Construction Theorem (Second Fundamental Theorem

of Calculus) If f is a continuous function on an interval and

a is any number in that interval, then F (x) = ∫
x

a
f (t) dt is

an antiderivative of f (p. 356).

Properties of Indefinite Integrals (p. 343)

∫
(f (x) ± g(x)) dx =

∫
f (x) dx ±

∫
g(x) dx

∫
cf (x) dx = c

∫
f (x) dx

Some antiderivatives:

∫
kdx = kx + C (p. 341)

∫
xn dx =

xn+1

n + 1
+ C, n ≠ −1 (p. 342)

∫

1

x
dx = ln |x| + C (p. 343)

∫
ex dx = ex + C (p. 343)

∫
cos xdx = sin x + C (p. 343)

∫
sinx dx = − cos x + C (p. 343)

∫

dx

1 + x2
= arctan x + C (p. 393)

∫

dx
√

1 − x2

= arcsin x + C (p. 390)

Substitution (p. 362) For integrals of the form

∫ f (g(x))g′(x) dx, let w = g(x). Choose w, find dw∕dx

and substitute for x and dx. Convert limits of integration for

definite integrals.
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Integration by Parts (p. 373) Used mainly for products;

also for integrating ln x, arctan x, arcsin x.

∫
uv′ dx = uv −

∫
u′v dx

Partial Fractions (p. 387) To integrate a rational function,

P (x)∕Q(x), express as a sum of a polynomial and terms of

the form A∕(x − c)n and (Ax + B)∕q(x), where q(x) is an

unfactorable quadratic.

Trigonometric Substitutions (p. 390) To simplify
√

x2 − a2, try x = a sin � (p. 391). To simplify a2 + x2

or
√

a2 + x2, try x = a tan � (p. 393).

Numerical Approximations for Definite Integrals (p. 398)

Riemann sums (left, right, midpoint) (p. 398), trapezoid rule

(p. 399), Simpson’s rule (p. 403)

Approximation Errors (p. 401)

f concave up: midpoint underestimates, trapezoid overesti-

mates (p. 401)

f concave down: trapezoid underestimates, midpoint over-

estimates (p. 401)

Evaluating Improper Integrals (p. 408)

• Infinite limit of integration: ∫
∞

a
f (x) dx =

limb→∞ ∫
b

a
f (x) dx (p. 408)

• For a < b, if integrand is unbounded at x = b, then:

∫
b

a
f (x) dx = limc→b− ∫

c

a
f (x) dx (p. 412)

Testing Improper Integrals for Convergence by Compar-

ison (p. 419):

• If 0 ≤ f (x) ≤ g(x) and ∫
∞

a
g(x) dx converges, then

∫
∞

a
f (x) dx converges

• If 0 ≤ g(x) ≤ f (x) and ∫
∞

a
g(x) dx diverges, then

∫
∞

a
f (x) dx diverges

Applications of Integration

Total quantities can be approximated by slicing them into

small pieces and summing the pieces. The limit of this sum

is a definite integral which gives the exact total quantity.

Applications to Geometry

To calculate the volume of a solid, slice the volume into

pieces whose volumes you can estimate (pp. 426, 436). Use

this method to calculate volumes of revolution (p. 436) and

volumes of solids with known cross sectional area (p. 438).

Curve f (x) from x = a to x = b has

Arc length =
∫

b

a

√

1 + (f ′(x))2 dx (p. 440).

Mass and Center of Mass from Density, �

Total mass =
∫

b

a

�(x) dx (p. 457)

Center of mass =
∫

b

a
x�(x) dx

∫
b

a
�(x) dx

(p. 461)

To find the center of mass of two- and three-dimensional ob-

jects, use the formula separately on each coordinate (p. 462).

Applications to Physics

Work done = Force × Distance (p. 468)

Pressure = Density × g × Depth (p. 472)

Force = Pressure × Area (p. 472)

Applications to Economics Present and future value of in-

come stream, P (t) (p. 479); consumer and producer surplus

(p. 483).

Present value =
∫

M

0

P (t)e−rtdt (p. 479)

Future value =
∫

M

0

P (t)er(M−t)dt (p. 479)

Applications to Probability Given a density function p(x),

the fraction of the population for which x is between a and b

is the area under the graph of p between a and b (p. 491). The

cumulative distribution function P (t) is the fraction having

values of x below t (p. 492). The median is the value T such

that half the population has values of x less than or equal to

T (p. 499). The mean (p. 501) is defined by

Mean value =
∫

∞

−∞

xp(x)dx.

Polar Coordinates

✻

❄

y

✲✛ x

(x, y)
P

y

x

r

�

Figure R.23: Cartesian and polar coordinates

for the point P

The polar coordinates (p. 447) of a point are related to

its Cartesian coordinates by

∙ x = r cos � and y = r sin �

∙ r =
√

x2 + y2 and tan � =
y

x
, x ≠ 0

For a constant a, the equation r = a gives a circle of

radius a, and the equation � = a gives a ray from the origin

making an angle of � with the positive x-axis. The equation

r = � gives an Archimedean spiral (p. 449).
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Area in Polar Coordinates (p. 452)

For a curve r = f (�), with � ≤ � ≤ �, which does not cross

itself,

Area of region enclosed =
1

2 ∫

�

�

f (�)2 d�.

Slope and Arclength in Polar Coordinates (p. 453)

For a curve r = f (�), we can express x and y in terms of �

as a parameter, giving

x = r cos � = f (�) cos � and y = r sin � = f (�) sin �.

Then

Slope =
dy

dx
=

dy∕d�

dx∕d�

and

Arc length =
∫

�

�

√

(

dx

d�

)2

+

(

dy

d�

)2

d�.

Alternatively (p. 456),

Arc length =
∫

�

�

√

(f ′(�))2 + (f (�))2 d�.

Sequences and Series

A sequence s1, s2, s3,… , sn,… has a limit L, written

lim
n→∞

sn = L, if we can make sn as close to L as we please by

choosing a sufficiently large n. The sequence converges if a

limit exists, diverges if no limit exists (see p. 510). Limits of

sequences satisfy the same properties as limits of functions

stated in Theorem 1.2 (p. 75) and

lim
n→∞

xn = 0 if |x| < 1 lim
n→∞

1∕n = 0 (p. 510)

A sequence sn is bounded if there are constants K and

M such that K ≤ sn ≤ M for all n (p. 511). A convergent

sequence is bounded. A sequence is monotone if it is either

increasing, that is sn < sn+1 for all n, or decreasing, that is

sn > sn+1 for all n (p. 511).

Theorem: Convergence of a Monotone, Bounded Se-

quence (p. 511): If a sequence sn is bounded and monotone,

it converges.

A series is an infinite sum
∑

an = a1 + a2 + ⋯. The

nth partial sum is Sn = a1 + a2 + ⋯ + an (p. 523). If

S = lim
n→∞

Sn exists, then the series
∑

an converges, and its

sum is S (p. 523). If a series does not converge, we say that

it diverges (p. 523). The sum of a finite geometric series is

(p. 516):

a + ax + ax2 +⋯ + axn−1 =
a(1 − xn)

1 − x
, x ≠ 1.

The sum of an infinite geometric series is (p. 517):

a + ax + ax2 +⋯ + axn +⋯ =
a

1 − x
, |x| < 1.

The p-series
∑

1∕np converges if p > 1 and diverges if p ≤ 1

(p. 527). The harmonic series
∑

1∕n diverges (p. 525),

the alternating harmonic series
∑

(−1)n−1(1∕n) converges

(p. 534). An alternating series can be absolutely or condi-

tionally convergent (p. 535).

Convergence Tests

Theorem: Convergence Properties of Series (p. 524)

1. If
∑

an and
∑

bn converge and if k is a constant, then

•
∑

(an + bn) converges to
∑

an +
∑

bn.

•
∑

kan converges to k
∑

an.

2. Changing a finite number of terms in a series does not

change whether or not it converges, although it may

change the value of its sum if it does converge.

3. If lim
n→∞

an ≠ 0 or lim
n→∞

an does not exist, then
∑

an di-

verges.

4. If
∑

an diverges, then
∑

kan diverges if k ≠ 0.

Theorem: Integral Test (p. 526) Suppose c ≥ 0 and

f (x) is a decreasing positive function, defined for all x ≥ c,

with an = f (n) for all n.

• If
∫

∞

c

f (x) dx converges, then
∑

an converges.

• If
∫

∞

c

f (x) dx diverges, then
∑

an diverges.

Theorem: Comparison Test (p. 529) Suppose 0 ≤

an ≤ bn for all n.

• If
∑

bn converges, then
∑

an converges.

• If
∑

an diverges, then
∑

bn diverges.

Theorem: Limit Comparison Test (p. 531) Suppose

an > 0 and bn > 0 for all n. If

lim
n→∞

an

bn
= c where c > 0,

then the two series
∑

an and
∑

bn either both converge or

both diverge.

Theorem: Convergence of Absolute Values Implies

Convergence (p. 532): If
∑

|an| converges, then so does
∑

an.

We say
∑

an is absolutely convergent if
∑

an and
∑

|an|

both converge and conditionally convergent if
∑

an con-

verges but
∑

|an| diverges (p. 535).

Theorem: The Ratio Test (p. 532) For a series
∑

an,

suppose the sequence of ratios |an+1|∕|an| has a limit:

lim
n→∞

|an+1|

|an|
= L.

• If L < 1, then
∑

an converges.

• If L > 1, or if L is infinite, then
∑

an diverges.

• If L = 1, the test does not tell us anything about the

convergence of
∑

an.
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Theorem: Alternating Series Test (p. 534) A series

of the form

∞
∑

n=1

(−1)n−1an = a1 − a2 + a3 − a4 +⋯ + (−1)n−1an +⋯

converges if 0 < an+1 < an for all n and limn→∞ an = 0.

Theorem: Error Bounds for Alternating Series

(p. 535) Let Sn =

n
∑

i=1

(−1)i−1ai be the nth partial sum of

an alternating series and let S = lim
n→∞

Sn. Suppose that 0 <

an+1 < an for all n and limn→∞ an = 0. Then |
|

S − Sn
|

|

< an+1.

Absolutely and conditionally convergent series behave

differently when their terms are rearranged (p. 535)

• Absolutely convergent series: Rearranging terms does

not change the sum.

• Conditionally convergent series: Rearranging terms

can change the sum to any number.

Power Series

P (x) = C0 + C1(x − a) + C2(x − a)2 +⋯

+Cn(x − a)n +⋯

=

∞
∑

n=0

Cn(x − a)n (p. 539).

The radius of convergence is 0 if the series converges

only for x = a, ∞ if it converges for all x, and the positive

number R if it converges for |x − a| < R and diverges for

|x − a| > R (p. 541). The interval of convergence is the

interval between a − R and a + R, including any endpoint

where the series converges (p. 541).

Theorem: Method for Computing Radius of Con-

vergence (p. 542) To calculate the radius of convergence,

R, for the power series

∞
∑

n=0

Cn(x− a)n, use the ratio test with

an = Cn(x − a)n.

• If lim
n→∞

|an+1|∕|an| is infinite, then R = 0.

• If lim
n→∞

|an+1|∕|an| = 0, then R = ∞.

• If lim
n→∞

|an+1|∕|an| = K|x − a|, where K is finite and

nonzero, then R = 1∕K .

Theorem: A Power Series is its Own Taylor Series

(p. 564) If a power series about x = a converges to f (x) for

|x − a| < R, then the power series is the Taylor series for

f (x) about x = a.

Approximations

The Taylor polynomial of degree n approximating f (x) for

x near a is:

Pn(x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +⋯⋯

+
f (n)(a)

n!
(x − a)n (p. 553)

The Maclaurin polynomial of degree n is the Taylor poly-

nomial of degree n near x = 0 (p. 553). The Taylor series

approximating f (x) for x near a is:

f (x) = f (a) + f ′(a)(x− a) +
f ′′(a)

2!
(x − a)2 +⋯

+
f (n)(a)

n!
(x − a)n +⋯ (p. 561)

The Maclaurin series is the Taylor series approximating

f (x) near x = 0 (p. 560).

Theorem: The Lagrange Error Bound for Pn(x)

(p. 578) Suppose f and all its derivatives are continuous.

If Pn(x) is the nth Taylor polynomial for to f (x) about a,

then

|En(x)| = |f (x) − Pn(x)| ≤
M

(n + 1)!
|x − a|n+1,

where max |

|

f (n+1)
|

|

≤ M on the interval between a and x.

Taylor Series for sin x, cos x, ex (p. 560):

sinx = x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
−⋯

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
−⋯

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+⋯

Taylor Series for ln x about x = 1 converges for

0 < x ≤ 2 (p. 562):

(x − 1) −
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+⋯

The Binomial Series for (1 + x)p converges for −1 <

x < 1 (p. 561):

1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)

3!
x3 +⋯

The Fourier Series of f (x) is (p. 588)

f (x) = a0 + a1 cos x + a2 cos 2x + a3 cos 3x +⋯

+b1 sin x + b2 sin 2x + b3 sin 3x +⋯ ,

where

a0 =
1

2� ∫

�

−�

f (x) dx,

ak =
1

� ∫

�

−�

f (x) cos(kx) dx for k a positive integer,

bk =
1

� ∫

�

−�

f (x) sin(kx) dx for k a positive integer.
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Differential Equations

A differential equation for the function y(x) is an equation

involving x, y and the derivatives of y (p. 600). The order

of a differential equation is the order of the highest-order

derivative appearing in the equation (p. 601). A solution to a

differential equation is any function y that satisfies the equa-

tion (p. 601). The general solution to a differential equation

is the family of functions that satisfies the equation (p. 601).

An initial value problem is a differential equation together

with an initial condition; a solution to an initial value prob-

lem is called a particular solution (p. 601). An equilibrium

solution to a differential equation is a particular solution

where y is constant and dy∕dx = 0 (p. 631).

First-order equations: methods of solution. A slope field

corresponding to a differential equation is a plot in the xy-

plane of small line segments with slope given by the differ-

ential equation (p. 605). Euler’s method approximates the

solution of an initial value problem with a string of small

line segments (p. 614). Differential equations of the form

dy∕dx = g(x)f (y) can be solved analytically by separation

of variables (p. 619).

First-order equations: applications. The differential equa-

tion for exponential growth and decay is of the form

dP

dt
= kP .

The solution is of the form P = P0e
kt, where P0 is the initial

value of P , and positive k represents growth while negative

k represents decay (p. 626). Applications of growth and de-

cay include continuously compounded interest (p. 626),

population growth (p. 647), and Newton’s law of heating

and cooling (p. 629). The logistic equation for population

growth is of the form

dP

dt
= kP

(

1 −
P

L

)

,

where L is the carrying capacity of the population (p. 647).

The solution to the logistic equation is of the form

P =
L

1 + Ae−kt
, where A =

L − P0

P0

(p. 649).

Systems of differential equations. Two interacting popu-

lations, w and r, can be modeled by two equations

dw

dt
= aw− cwr and

dr

dt
= −br+ kwr (p. 661).

Solutions can be visualized as trajectories in the wr-phase

plane (p. 662). An equilibrium point is one at which

dw∕dt = 0 and dr∕dt = 0 (p. 662). A nullcline is a curve

along which dw∕dt = 0 or dr∕dt = 0 (p. 668).

Multivariable Functions

Points in 3-space are represented by a system of Cartesian

coordinates (p. 696). The distance between (x, y, z) and

(a, b, c) is
√

(x − a)2 + (y − b)2 + (z − c)2 (p. 698).

Functions of two variables can be represented by

graphs (p. 703), contour diagrams (p. 711), cross-sections

(p. 705), and tables (p. 695).

Functions of three variables can be represented by the

family of level surfaces f (x, y, z) = c for various values of

the constant c (p. 732).

A linear function f (x, y) has equation

f (x, y) = z0 +m(x − x0) + n(y − y0) (p. 726)

= c + mx + ny, where c = z0 −mx0 − ny0.

Its graph is a plane with slopem in the x-direction, slope n in

the y-direction, through (x0, y0, z0) (p. 726). Its table of val-

ues has linear rows (of same slope) and linear columns (of

same slope) (p. 727). Its contour diagram is equally spaced

parallel straight lines (p. 727).

The limit of f at the point (a, b), written

lim(x,y)→(a,b) f (x, y), is the number L, if one exists, such that

f (x, y) is as close to L as we please whenever the distance

from the point (x, y) to the point (a, b) is sufficiently small,

but not zero. (p. 741).

A function f is continuous at the point (a, b) if

lim(x,y)→(a,b) f (x, y) = f (a, b). A function is continuous on

a region R if it is continuous at each point of R (p. 741).

Vectors

A vector v⃗ has magnitude (denoted ‖v⃗ ‖) and direction.

Examples are displacement vectors (p. 746), velocity and

acceleration vectors (pp. 755, 757). and force (p. 757). We

can add vectors, and multiply a vector by a scalar (p. 747).

Two non-zero vectors, v⃗ and w⃗ , are parallel if one is a

scalar multiple of the other (p. 748).

A unit vector has magnitude 1. The vectors i⃗ , j⃗ , and

k⃗ are unit vectors in the directions of the coordinate axes.

A unit vector in the direction of any nonzero vector v⃗ is

u⃗ = v⃗ ∕‖v⃗ ‖ (p. 752). We resolve v⃗ into components by

writing v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ (p. 749).

If v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ and w⃗ = w1 i⃗ + w2j⃗ +w3k⃗

then

‖v⃗ ‖ =

√

v2
1
+ v2

2
+ v2

3
(p. 750)

v⃗ + w⃗ = (v1 +w1)i⃗ + (v2 +w2)j⃗ + (v3 +w3)k⃗ (p. 751),

�v⃗ = �v1 i⃗ + �v2j⃗ + �v3k⃗ (p. 751).

The displacement vector from P1 = (x1, y1, z1) to P2 =

(x2, y2, z2) is

⃖⃖⃖⃖⃖⃖⃖⃗P1P2 = (x2 − x1)i⃗ + (y2 − y1)j⃗ + (z2 − z1)k⃗ (p. 750).

The position vector ofP = (x, y, z) is ⃖⃖⃖⃖⃖⃗OP (p. 750). A vector

in n dimensions is a string of numbers v⃗ = (v1, v2,… , vn)

(p. 759).

Dot Product (Scalar Product) (p. 763).

Geometric definition: v⃗ ⋅w⃗ = ‖v⃗ ‖‖w⃗ ‖ cos � where

� is the angle between v⃗ and w⃗ and 0 ≤ � ≤ �.

Algebraic definition: v⃗ ⋅ w⃗ = v1w1 + v2w2 + v3w3.
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Two nonzero vectors v⃗ and w⃗ are perpendicular if and

only if v⃗ ⋅ w⃗ = 0 (p. 765). Magnitude and dot product

are related by v⃗ ⋅ v⃗ = ‖v⃗ ‖2 (p. 765). If u⃗ = (u1,… , un)

and v⃗ = (v1,… , vn) then the dot product of u⃗ and v⃗ is

u⃗ ⋅ v⃗ = u1v1 +…+ unvn (p. 767).

The equation of the plane with normal vector n⃗ =

ai⃗ + bj⃗ + ck⃗ and containing the point P0 = (x0, y0, z0) is

n⃗ ⋅ (r⃗ − r⃗ 0) = a(x − x0) + b(y − y0) + c(z − z0) = 0 or

ax + by + cz = d, where d = ax0 + by0 + cz0 (p. 766).

If v⃗ parallel and v⃗ perp are components of v⃗ which are par-

allel and perpendicular, respectively, to a unit vector u⃗ , then

v⃗ parallel = (v⃗ ⋅ u⃗ )u⃗ and v⃗ perp = v⃗ − v⃗ parallel (p. 768).

The work, W , done by a force F⃗ acting on an object

through a displacement d⃗ is W = F⃗ ⋅ d⃗ (p. 769).

Cross Product (Vector Product) (p. 775, 775)

Geometric definition

v⃗ × w⃗ =

(

Area of parallelogram

with edges v⃗ and w⃗

)

n⃗

= (‖v⃗ ‖‖w⃗ ‖ sin �)n⃗ ,

where 0 ≤ � ≤ � is the angle between v⃗ and w⃗ and n⃗

is the unit vector perpendicular to v⃗ and w⃗ pointing

in the direction given by the right-hand rule.

Algebraic definition

v⃗ × w⃗ = (v2w3 − v3w2)i⃗ + (v3w1 − v1w3)j⃗

+(v1w2 − v2w1)k⃗

v⃗ = v1 i⃗ + v2j⃗ + v3k⃗ , w⃗ = w1 i⃗ +w2j⃗ +w3k⃗ .

To find the equation of a plane through three points

that do not lie on a line, determine two vectors in the

plane and then find a normal vector using the cross prod-

uct (p. 777). The area of a parallelogram with edges v⃗ and

w⃗ is ‖v⃗ × w⃗ ‖. The volume of a parallelepiped with edges

a⃗ , b⃗ , c⃗ is
|

|

|

(b⃗ × c⃗ ) ⋅ a⃗
|

|

|

(p. 779).

The angular velocity (p. 779) of a flywheel can be rep-

resented by a vector !⃗ whose direction is parallel to the

axis of rotation and magnitude is the angular speed of ro-

tation. The velocity vector v⃗ of a point P on the flywheel is

v⃗ = !⃗ × r⃗ where r⃗ is a vector from the axis of rotation to

P .

Differentiation of Multivariable Functions

Partial derivatives of f (p. 787).

fx(a, b) =
Rate of change of f with respect to x

at the point (a, b)

= lim
ℎ→0

f (a + ℎ, b) − f (a, b)

ℎ
,

fy(a, b) = Rate of change of f with respect to y

at the point (a, b)

= lim
ℎ→0

f (a, b + ℎ) − f (a, b)

ℎ
.

On the graph of f , the partial derivatives fx(a, b) and

fy(a, b) give the slope in the x and y directions, respectively

(p. 788). The tangent plane to z = f (x, y) at (a, b) is

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) (p. 801).

Partial derivatives can be estimated from a contour diagram

or table of values using difference quotients (p. 788), and can

be computed algebraically using the same rules of differen-

tiation as for one-variable calculus (p. 795). Partial deriva-

tives for functions of three or more variables are defined and

computed in the same way (p 796).

The gradient vector grad f of f is grad f (a, b) =

fx(a, b)i⃗ + fy(a, b)j⃗ (2 variables) (p. 811) or

grad f (a, b, c) = fx(a, b, c)i⃗ + fy(a, b, c)j⃗ + fz(a, b, c)k⃗

(3 variables) (p. 819). The gradient vector at P : Points in

the direction of increasing f ; is perpendicular to the level

curve or level surface of f through P ; and has magnitude

‖ grad f‖ equal to the maximum rate of change of f at P

(pp. 813, 819). The magnitude is large when the level curves

or surfaces are close together and small when they are far

apart.

The directional derivative of f at P in the direction of

a unit vector u⃗ is (pp. 809, 811)

fu⃗ (P ) =

Rate of change

of f in direction

of u⃗ at P

= grad f (P ) ⋅ u⃗

The tangent plane approximation to f (x, y) for (x, y)

near the point (a, b) is

f (x, y) ≈ f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

The right-hand side is the local linearization (p. 802). The

differential of z = f (x, y) at (a, b) is the linear function of

dx and dy

df = fx(a, b) dx + fy(a, b) dy (p. 804).

Local linearity with three or more variables follows the same

pattern as for functions of two variables (p. 803).

The tangent plane to a level surface of a function of

three-variables f at (a, b, c) is (p. 822)

fx(a, b, c)(x− a) + fy(a, b, c)(y− b) + fz(a, b, c)(z− c) = 0.

The Chain Rule for the partial derivative of one variable

with respect to another in a chain of composed functions

(p. 829):

• Draw a diagram expressing the relationship between the

variables, and label each link in the diagram with the

derivative relating the variables at its ends.

• For each path between the two variables, multiply to-

gether the derivatives from each step along the path.
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• Add the contributions from each path.

If z = f (x, y), and x = g(t), and y = ℎ(t), then

dz

dt
=

)z

)x

dx

dt
+

)z

)y

dy

dt
(p. 828).

If z = f (x, y), with x = g(u, v) and y = ℎ(u, v), then

)z

)u
=

)z

)x

)x

)u
+

)z

)y

)y

)u
,

)z

)v
=

)z

)x

)x

)v
+

)z

)y

)y

)v
(p. 830).

Second-order partial derivatives (p. 838)

)2z

)x2
= fxx = (fx)x,

)2z

)x)y
= fyx = (fy)x,

)2z

)y)x
= fxy = (fx)y,

)2z

)y2
= fyy = (fy)y.

Theorem: Equality of Mixed Partial Derivatives. If

fxy and fyx are continuous at (a, b), an interior point of their

domain, then fxy(a, b) = fyx(a, b) (p. 839).

Taylor Polynomial of Degree 1 Approximating

f (x, y) for (x, y) near (a, b) (p. 842)

f (x, y) ≈ L(x, y) = f (a, b)+fx(a, b)(x−a)+fy(a, b)(y−b).

Taylor Polynomial of Degree 2 (p. 843)

f (x, y) ≈ Q(x, y)

= f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

+
fxx(a, b)

2
(x − a)2 + fxy(a, b)(x − a)(y − b)

+
fyy(a, b)

2
(y − b)2.

Definition of Differentiability (p. 848). A function f (x, y)

is differentiable at the point (a, b) if there is a linear func-

tion L(x, y) = f (a, b) + m(x − a) + n(y − b) such that if the

error E(x, y) is defined by

f (x, y) = L(x, y) + E(x, y),

and if ℎ = x − a, k = y − b, then the relative error

E(a + ℎ, b + k)∕
√

ℎ2 + k2 satisfies

lim
ℎ→0
k→0

E(a + ℎ, b + k)
√

ℎ2 + k2
= 0.

Theorem: Continuity of Partial Derivatives Implies

Differentiability (p. 851). If the partial derivatives, fx and

fy, of a function f exist and are continuous on a small disk

centered at the point (a, b), then f is differentiable at (a, b).

Optimization

A function f has a local maximum at the pointP0 iff (P0) ≥

f (P ) for all points P near P0, and a local minimum at the

point P0 if f (P0) ≤ f (P ) for all points P near P0 (p. 856).

A critical point of a function f is a point where grad f is

either 0⃗ or undefined. If f has a local maximum or min-

imum at a point P0, not on the boundary of its domain,

then P0 is a critical point (p. 856). A quadratic function

f (x, y) = ax2 + bxy + cz2 generally has one critical point,

which can be a local maximum, a local minimum, or a sad-

dle point (p. 859).

Second derivative test for functions of two vari-

ables (p. 861). Suppose grad f (x0, y0) = 0⃗ . Let D =

fxx(x0, y0)fyy(x0, y0) − (fxy(x0, y0))
2.

• If D > 0 and fxx(x0, y0) > 0, then f has a local mini-

mum at (x0, y0).

• If D > 0 and fxx(x0, y0) < 0, then f has a local maxi-

mum at (x0, y0).

• If D < 0, then f has a saddle point at (x0, y0).

• If D = 0, anything can happen.

Unconstrained optimization

A function f defined on a region R has a global maximum

on R at the point P0 if f (P0) ≥ f (P ) for all points P in R,

and a global minimum on R at the point P0 if f (P0) ≤ f (P )

for all points P in R (p. 866). For an unconstrained opti-

mization problem, find the critical points and investigate

whether the critical points give global maxima or minima

(p. 866).

A closed region is one which contains its boundary; a

bounded region is one which does not stretch to infinity in

any direction (p. 871).

Extreme Value Theorem for Multivariable Func-

tions. If f is a continuous function on a closed and bounded

region R, then f has a global maximum at some point

(x0, y0) in R and a global minimum at some point (x1, y1)

in R (p. 872).

Constrained optimization

Suppose P0 is a point satisfying the constraint g(x, y) = c.

A function f has a local maximum at P0 subject to the

constraint if f (P0) ≥ f (P ) for all points P near P0 satisfy-

ing the constraint (p. 877). It has a global maximum at P0

subject to the constraint if f (P0) ≥ f (P ) for all points P

satisfying the constraint (p. 877). Local and global minima

are defined similarly (p. 877). A local maximum or mini-

mum of f (x, y) subject to a constraint g(x, y) = c occurs at

a point where the constraint is tangent to a level curve of f ,

and thus where grad g is parallel to grad f (p. 878).

To optimize f subject to the constraint g = c

(p. 878), find the points satisfying the equations

grad f = � grad g and g = c.

Then compare values of f at these points, at points on the

constraint where grad g = 0⃗ , and at the endpoints of the con-

straint. The number � is called the Lagrange multiplier.
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To optimize f subject to the constraint g ≤ c

(p. 879), find all points in the interior g(x, y) < c where

grad f is zero or undefined; then use Lagrange multipliers

to find the local extrema of f on the boundary g(x, y) = c.

Evaluate f at the points found and compare the values.

The value of � is the rate of change of the optimum

value of f as c increases (where g(x, y) = c) (p. 881). The

Lagrangian function (x, y, �) = f (x, y) − �(g(x, y) − c)

can be used to convert a constrained optimization problem

forf subject the constraint g = c into an unconstrained prob-

lem for  (p. 881).

Multivariable Integration

The definite integral of f , a continuous function of two

variables, over R, the rectangle a ≤ x ≤ b, c ≤ y ≤ d,

is called a double integral, and is a limit of Riemann sums

∫
R

f dA = lim
Δx,Δy→0

∑

i,j

f (uij , vij )ΔxΔy (p. 892).

The Riemann sum is constructed by subdividing R into sub-

rectangles of width Δx and height Δy, and choosing a point

(uij , vij ) in the ij-th rectangle.

A triple integral of f , a continuous function of three

variables, over W , the box a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q

in 3-space, is defined in a similar way using three-variable

Riemann sums (p. 909).

Interpretations

If f (x, y) is positive, ∫
R
f dA is the volume under graph of

f above the region R (p. 892). If f (x, y) = 1 for all x and y,

then the area of R is ∫
R
1 dA = ∫

R
dA (p. 894). If f (x, y) is

a density, then ∫
R
f dA is the total quantity in the region

R (p. 890). The average value of f (x, y) on the region R

is
1

Area of R
∫
R
f dA (p. 894). In probability, if p(x, y) is a

joint density function then ∫
b

a
∫

d

c
p(x, y) dy dx is the frac-

tion of population with a ≤ x ≤ b and c ≤ y ≤ d (p. 932).

Iterated integrals

Double and triple integrals can be written as iterated inte-

grals

∫
R

f dA =
∫

d

c
∫

b

a

f (x, y) dxdy (p. 899)

∫
W

f dV =
∫

q

p
∫

d

c
∫

b

a

f (x, y, z) dx dy dz (p. 909)

Other orders of integration are possible. For iterated inte-

grals over non-rectangular regions (p. 900), limits on outer

integral are constants and limits on inner integrals involve

only the variables in the integrals further out (pp. 902, 911).

Integrals in other coordinate systems

When computing double integrals in polar coordinates, put

dA = r dr d� or dA = r d� dr (p. 916). Cylindrical coor-

dinates are given by x = r cos �, y = r sin �, z = z, for

0 ≤ r < ∞, 0 ≤ � ≤ 2�, −∞ < z < ∞ (p. 921). Spherical

coordinates are given by x = � sin� cos �, y = � sin� sin �,

z = � cos�, for 0 ≤ � < ∞, 0 ≤ � ≤ �, 0 ≤ � ≤ 2�

(p. 924). When computing triple integrals in cylindrical or

spherical coordinates, put dV = r dr d� dz for cylindrical

coordinates (p. 923), dV = �2 sin�d� d� d� for spherical

coordinates (p. 925). Other orders of integration are also pos-

sible.

For a change of variables x = x(s, t), y = y(s, t), the

Jacobian is

)(x, y)

)(s, t)
=

)x

)s
⋅

)y

)t
−

)x

)t
⋅

)y

)s
=

|

|

|

|

|

|

|

|

|

|

|

)x

)s

)x

)t

)y

)s

)y

)t

|

|

|

|

|

|

|

|

|

|

|

(p. 1091).

To convert an integral from x, y to s, t coordinates (p. 1091):

Substitute for x and y in terms of s and t, change the xy re-

gion R into an st region T , and change the area element by

making the substitution dxdy =
|

|

|

)(x,y)

)(s,t)

|

|

|

dsdt. For triple in-

tegrals, there is a similar formula (p. 1092).

Parameterizations and Vector Fields

Parameterized curves

The motion of a particle is described by parametric equa-

tions x = f (t), y = g(t) (2-space) or x = f (t), y = g(t), z =

ℎ(t) (3-space). The path of the particle is a parameterized

curve (p. 938). Parameterizations are also written in vector

form r⃗ (t) = f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ (p. 940). For a curve

segment we restrict the parameter to to a closed interval

a ≤ t ≤ b (p. 941). Parametric equations for the graph

of y = f (x) are x = t, y = f (t).

Parametric equations for a line through (x0, y0) in the

direction of v⃗ = ai⃗ + bj⃗ are x = x0 + at, y = y0 + bt. In

3-space, the line through (x0, y0, z0) in the direction of v⃗ =

ai⃗ +bj⃗ +ck⃗ is x = x0+at, y = y0+bt, z = z0+ct (p. 939). In

vector form, the equation for a line is r⃗ (t) = r⃗ 0 + tv⃗ , where

r⃗ 0 = x0 i⃗ + y0j⃗ + z0k⃗ (p. 941).

Parametric equations for a circle of radius R in the

plane, centered at the origin are x = R cos t , y = R sin t

(counterclockwise), x = R cos t, y = −R sin t (clockwise).

To find the intersection points of a curve r⃗ (t) =

f (t)i⃗ + g(t)j⃗ + ℎ(t)k⃗ with a surface F (x, y, z) = c, solve

F (f (t), g(t), ℎ(t)) = c for t (p. 942). To find the intersection

points of two curves r⃗ 1(t) and r⃗ 2(t), solve r⃗ 1(t1) = r⃗ 2(t2)

for t1 and t2 (p. 942).

The length of a curve segment C given parametrically

for a ≤ t ≤ b with velocity vector v⃗ is ∫
b

a
‖v⃗ ‖dt if v⃗ ≠ 0⃗

for a < t < b (p. 954).

The velocity and acceleration of a moving object with po-

sition vector r⃗ (t) at time t are

v⃗ (t) = lim
Δt→0

Δr⃗

Δt
(p. 949)

a⃗ (t) = lim
Δt→0

Δv⃗

Δt
(p. 952)

We write v⃗ =
dr⃗

dt
= r⃗ ′(t) and a⃗ =

dv⃗

dt
=

d2r⃗

dt2
= r⃗ ′′(t).
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The components of the velocity and acceleration vec-

tors are

v⃗ (t) =
dx

dt
i⃗ +

dy

dt
j⃗ +

dz

dt
k⃗ (p. 950)

a⃗ (t) =
d2x

dt2
i⃗ +

d2y

dt2
j⃗ +

d2z

dt2
k⃗ (p. 952)

The speed is ‖v⃗ ‖ =
√

(dx∕dt)2 + (dy∕dt)2 + (dz∕dt)2

(p. 953). Analogous formulas for velocity, speed, and accel-

eration hold in 2-space.

Uniform Circular Motion (p. 953) For a particle

r⃗ (t) = R cos(!t)i⃗ + R sin(!t)j⃗ : motion is in a circle of

radius R with period 2�∕!; velocity, v⃗ , is tangent to the cir-

cle and speed is constant ‖v⃗ ‖ = !R; acceleration, a⃗ , points

toward the center of the circle with ‖a⃗ ‖ = ‖v⃗ ‖2∕R.

Motion in a Straight Line (p. 953) For a particle

r⃗ (t) = r⃗ 0 + f (t)v⃗ 0: Motion is along a straight line through

the point with position vector r⃗ 0 parallel to v⃗ 0; velocity, v⃗ ,

and acceleration, a⃗ , are parallel to the line.

Vector fields

A vector field in 2-space is a function F⃗ (x, y) whose value

at a point (x, y) is a 2-dimensional vector (p. 958). Similarly,

a vector field in 3-space is a function F⃗ (x, y, z)whose values

are 3-dimensional vectors (p. 958). Examples are the gradi-

ent of a differentiable function f , the velocity field of a fluid

flow, and force fields (p. 958). A flow line of a vector field

v⃗ = F⃗ (r⃗ ) is a path r⃗ (t)whose velocity vector equals v⃗ , thus

r⃗ ′(t) = v⃗ = F⃗ (r⃗ (t)) (p. 967). The flow of a vector field is

the family of all of its flow line (p. 967). Flow lines can be

approximated numerically using Euler’s method (p. 969).

Parameterized surfaces

We parameterize a surface with two parameters, x =

f1(s, t), y = f2(s, t), z = f3(s, t) (p. 1080). We also use

the vector form r⃗ (s, t) = f1(s, t)i⃗ + f2(s, t)j⃗ + f3(s, t)k⃗

(p. 1080). Parametric equations for the graph of z =

f (x, y) are x = s, y = t, and z = f (s, t) (p. 1080). Para-

metric equation for a plane through the point with posi-

tion vector r⃗ 0 and containing the two nonparallel vectors v⃗ 1

and v⃗ 2 is r⃗ (s, t) = r⃗ 0 + sv⃗ 1 + tv⃗ 2 (p. 1081). Paramet-

ric equation for a sphere of radius R centered at the ori-

gin is r⃗ (�, �) = R sin� cos � i⃗ + R sin� sin � j⃗ + cos� k⃗ ,

0 ≤ � ≤ 2�, 0 ≤ � ≤ � (p. 1081). Parametric equa-

tion for a cylinder of radius R along the z-axis is r⃗ (�, z) =

R cos �i⃗ + R sin �j⃗ + zk⃗ , 0 ≤ � ≤ 2�,−∞ < z < ∞

(p. 1079). A parameter curve is the curve obtained by hold-

ing one of the parameters constant and letting the other vary

(p. 1085).

Line Integrals

The line integral of a vector field F⃗ along an oriented

curve C (p. 974) is

∫
C

F⃗ ⋅ dr⃗ = lim
‖Δr⃗ i‖→0

n−1
∑

i=0

F⃗ (r⃗ i) ⋅ Δr⃗ i,

where the direction of Δr⃗ i is the direction of the orientation

(p. 975).

The line integral measures the extent to which C is go-

ing with F⃗ or against it (p. 976). For oriented curves C ,

C1, and C2, ∫
−C

F⃗ ⋅ dr⃗ = − ∫
C
F⃗ ⋅ dr⃗ , where −C is

the curve C parameterized in the opposite direction, and

∫
C1+C2

F⃗ ⋅dr⃗ = ∫
C1

F⃗ ⋅dr⃗ +∫
C2

F⃗ ⋅dr⃗ , where C1+C2 is the

curve obtained by joining the endpoint of C1 to the starting

point of C2 (p. 980).

The work done by a force F⃗ along a curve C is

∫
C
F⃗ ⋅dr⃗ (p. 977). The circulation of F⃗ around an oriented

closed curve is ∫
C
F⃗ ⋅ dr⃗ (p. 979).

Given a parameterization of C , r⃗ (t), for a ≤ t ≤ b,

the line integral can be calculated as

∫
C

F⃗ ⋅ dr⃗ =
∫

b

a

F⃗ (r⃗ (t)) ⋅ r⃗ ′(t) dt (p. 985).

Fundamental Theorem for Line Integrals (p. 992):

Suppose C is a piecewise smooth oriented path with starting

point P and endpoint Q. If f is a function whose gradient is

continuous on the path C , then

∫
C

grad f ⋅ dr⃗ = f (Q) − f (P ).

Path-independent fields and gradient fields

A vector field F⃗ is said to be path-independent, or con-

servative, if for any two points P and Q, the line integral

∫
C
F⃗ ⋅ dr⃗ has the same value along any piecewise smooth

path C from P to Q lying in the domain of F⃗ (p. 994). A

gradient field is a vector field of the form F⃗ = grad f for

some scalar function f , and f is called a potential func-

tion for the vector field F⃗ (p. 995). A vector field F⃗ is

path-independent if and only if F⃗ is a gradient vector field

(p. 995). A vector field F⃗ is path-independent if and only if

∫
C
F⃗ ⋅ dr⃗ = 0 for every closed curve C (p. 1004). If F⃗ is

a gradient field, then
)F2

)x
−

)F1

)y
= 0 (p. 1005). The quantity

)F2

)x
−

)F1

)y
is called the 2-dimensional or scalar curl of F⃗ .

Green’s Theorem (p. 1005):

Suppose C is a piecewise smooth simple closed curve that is

the boundary of an open region R in the plane and oriented

so that the region is on the left as we move around the curve.

Suppose F⃗ = F1 i⃗ + F2j⃗ is a smooth vector field defined at

every point of the region R and boundary C . Then

∫
C

F⃗ ⋅ dr⃗ =
∫
R

(

)F2

)x
−

)F1

)y

)

dx dy.

Curl test for vector fields in 2-space: If
)F2

)x
−

)F1

)y
=

0 and the domain of F⃗ has no holes, then F⃗ is path-

independent, and hence a gradient field (p. 1007). The con-

dition that the domain have no holes is important. It is not

always true that if the scalar curl of F⃗ is zero then F⃗ is a

gradient field (p. 1008).
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Surface Integrals

A surface is oriented if a unit normal vector n⃗ has been

chosen at every point on it in a continuous way (p. 1018).

For a closed surface, we usually choose the outward orien-

tation (p. 1018). The area vector of a flat, oriented surface

is a vector A⃗ whose magnitude is the area of the surface,

and whose direction is the direction of the orientation vector

n⃗ (p. 1019). If v⃗ is the velocity vector of a constant fluid

flow and A⃗ is the area vector of a flat surface, then the total

flow through the surface in units of volume per unit time is

called the flux of v⃗ through the surface and is given by v⃗ ⋅A⃗

(p. 1019).

The surface integral or flux integral of the vector field F⃗

through the oriented surface S is

∫
S

F⃗ ⋅ dA⃗ = lim
‖ΔA⃗ ‖→0

∑

F⃗ ⋅ ΔA⃗ ,

where the direction of ΔA⃗ is the direction of the orientation

(p. 1020). If v⃗ is a variable vector field and then ∫
S
v⃗ ⋅ dA⃗

is the flux through the surface S (p. 1021).

Simple flux integrals can be calculated by putting

dA⃗ = n⃗ dA and using geometry or converting to a double

integral (p. 1023).

The flux through a graph of z = f (x, y) above a re-

gion R in the xy-plane, oriented upward, is

∫
R

F⃗ (x, y, f (x, y)) ⋅
(

−fx i⃗ − fyj⃗ + k⃗

)

dx dy (p. 1030).

The area of the part of the graph of z = f (x, y) above

a region R in the xy-plane is

Area of S =
∫
R

√

(fx)
2 + (fy)

2 + 1 dxdy (p. 1031).

The flux through a cylindrical surface S of radius R

and oriented away from the z-axis is

∫
T

F⃗ (R, �, z) ⋅
(

cos �i⃗ + sin �j⃗
)

Rdz d� (p. 1032),

where T is the �z-region corresponding to S.

The flux through a spherical surface S of radius R

and oriented away from the origin is

∫
T
F⃗ (R, �, �) ⋅

(

sin� cos �i⃗ + sin� sin �j⃗ + cos�k⃗
)

R2 sin�d�d�, (p. 1034)

where T is the ��-region corresponding to S.

The flux through a parameterized surface S, param-

eterized by r⃗ = r⃗ (s, t), where (s, t) varies in a parameter

region R, is

∫
R

F⃗ (r⃗ (s, t)) ⋅

(

)r⃗

)s
×

)r⃗

)t

)

ds dt (p. 1095).

We choose the parameterization so that )r⃗ ∕)s × )r⃗ ∕)t is

never zero and points in the direction of n⃗ everywhere.

The area of a parameterized surface S, parameter-

ized by r⃗ = r⃗ (s, t), where (s, t) varies in a parameter region

R, is

∫
S

dA =
∫
R

‖

‖

‖

‖

‖

)r⃗

)s
×
)r⃗

)t

‖

‖

‖

‖

‖

ds dt (p. 1096).

Divergence and Curl

Divergence

Definition of Divergence (p. 1039).

Geometric definition: The divergence of F⃗ is

div F⃗ (x, y, z) = lim
Volume→0

∫
S
F⃗ ⋅ dA⃗

Volume of S
.

Here S is a sphere centered at (x, y, z), oriented out-

wards, that contracts down to (x, y, z) in the limit.

Cartesian coordinate definition: If F⃗ = F1 i⃗ +F2 j⃗ +

F3k⃗ , then

div F⃗ =
)F1

)x
+

)F2

)y
+

)F3

)z
.

The divergence can be thought of as the outflow per unit vol-

ume of the vector field. A vector field F⃗ is said to be diver-

gence free or solenoidal if divF⃗ = 0 everywhere that F⃗ is

defined. Magnetic fields are divergence free (p. 1042).

The Divergence Theorem (p. 1049). If W is a solid region

whose boundary S is a piecewise smooth surface, and if F⃗

is a smooth vector field which is defined everywhere in W

and on S, then

∫
S

F⃗ ⋅ dA⃗ =
∫
W

div F⃗ dV ,

where S is given the outward orientation. In words, the Di-

vergence Theorem says that the total flux out of a closed

surface is the integral of the flux density over the volume

it encloses.

Curl

The circulation density of a smooth vector field F⃗ at

(x, y, z) around the direction of the unit vector n⃗ is defined

to be

circn⃗ F⃗ (x, y, z) = lim
Area→0

Circulation around C

Area inside C

= lim
Area→0

∫
C

F⃗ ⋅ dr⃗

Area inside C
(p. 1056).

Circulation density is calculated using the right-hand rule

(p. 1056).
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Definition of curl (p. 1057).

Geometric definition The curl of F⃗ , written curl F⃗ ,

is the vector field with the following properties

• The direction of curl F⃗ (x, y, z) is the direction n⃗

for which circn⃗ (x, y, z) is greatest.

• The magnitude of curl F⃗ (x, y, z) is the circula-

tion density of F⃗ around that direction.

Cartesian coordinate definition If F⃗ = F1 i⃗ +F2j⃗ +

F3k⃗ , then

curl F⃗ =

(

)F3

)y
−

)F2

)z

)

i⃗ +

(

)F1

)z
−

)F3

)x

)

j⃗

+

(

)F2

)x
−

)F1

)y

)

k⃗ .

Curl and circulation density are related by circn⃗ F⃗ =

curl F⃗ ⋅ n⃗ (p. 1059). A vector field is said to be curl free

or irrotational if curl F⃗ = 0⃗ everywhere that F⃗ is defined

(p. 1060).

Given an oriented surface S with a boundary curve C

we use the right-hand rule to determine the orientation of C

(p. 1064).

Stokes’ Theorem (p. 1065). If S is a smooth oriented sur-

face with piecewise smooth, oriented boundary C , and if F⃗

is a smooth vector field which is defined on S and C , then

∫
C

F⃗ ⋅ dr⃗ =
∫
S

curl F⃗ ⋅ dA⃗ .

Stokes’ Theorem says that the total circulation around C is

the integral over S of the circulation density. A curl field is

a vector field F⃗ that can be written as F⃗ = curl G⃗ for some

vector field G⃗ , called a vector potential for F⃗ (p. 1067).

Relation between divergence, gradient, and curl

The curl and gradient are related by curl grad f = 0

(p. 1072). Divergence and curl are related by div curl F⃗ = 0

(p. 1073).

The curl test for vector fields in 3-space (p. 1072)

Suppose that curl F⃗ = 0⃗ , and that the domain of F⃗ has the

property that every closed curve in it can be contracted to

a point in a smooth way, staying at all times within the do-

main. Then F⃗ is path-independent, so F⃗ is a gradient field

and has a potential function.

The divergence test for vector fields in 3-space

(p. 1073) Suppose that div F⃗ = 0, and that the domain of F⃗

has the property that every closed surface in it is the bound-

ary of a solid region completely contained in the domain.

Then F⃗ is a curl field.
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ANSWERS TO ODD NUMBERED PROBLEMS

Section 1.1
1 Pop 8 million in 2025

5 (a) (V)

(b) (VI)

(c) (I)

(d) (IV)

(e) (III)

(f) (II)

7 y = (1∕2)x + 2

9 y = 2x + 2

11 Slope:−12∕7
Vertical intercept: 2∕7

13 Slope: 2

Vertical intercept: −2∕3

15 We use the point-slope form, getting y − c =
m(x − a). Alternatively, we can substitute the

point (a, c) into the equation y = b + mx and

solve for b:

c = ma + b

b = c −ma.

Substituting our value of b into y = b + mx

gives:

y = c − ma + mx = c + m(x − a).

17 y = −
1

5
x +

7

5

19 Parallel: y = m(x − a) + b
Perpendicular:

y = (−1∕m)(x − a) + b

21 Domain: 1 ≤ x ≤ 5
Range: 1 ≤ y ≤ 6

23 Domain: 0 ≤ x ≤ 5
Range: 0 ≤ y ≤ 4

25 Domain: all x

Range: 0 < y ≤ 1∕2

27 V = kr3

29 S = kℎ2

31 N = k∕l2

33

(5, 6)

a (years)

V (thousand dollars)

35 f (2) = 7.088

37 f (71) = f (20)

39

time

driving speed

41

time

distance from exit

45

start in
Chicago

arrive in
Kalamazoo

arrive in
Detroit

120
155

Time

Distance from
Kalamazoo

47 (a) About 10.4 kg∕hectare per mm

(b) Additional 1 mm annual rainfall corre-

sponds to additional 10.4 kg grass per

hectare

(c) Q = −440 + 10.4r

49 1939: more addl grass/addl rainfall

51 (a) −2.8 days∕ ◦C

(b) Come out of hibernation earlier in warmer

months

(c) 17 days

(d) y = 171 − 2.8x

53 (a) f (t) = 100 + 14.222t
(b) D: 0 ≤ t ≤ 18

R: 100 ≤ f (t) ≤ 356

55 y = −(950∕7)x + 950

57 (a) C1 = 40 + 0.15m
C2 = 50 + 0.10m

(b)

200 400 600 800
0
50

100
150

C2(m) = 50 + 0.10m

C1(m) = 40 + 0.15m

m (miles)

C (cost in dollars)

(c) For distances less than 200 miles, C1 is

cheaper.

For distances more than 200 miles, C2 is

cheaper.

59 (a) (i) f (2001) = 272

(ii) f (2019) = 607
(b) (f (2019) − f (2001))∕(2019 − 2001) =

18.611 billionaires/yr

(c) f (t) = 18.611t − 36,968.833

61 Q(m) = T + L + Pm
T = fuel for take-off

L = fuel for landing

P = fuel per mile in the air

m = length of the trip (miles)

63 (a) −0.01
(b) −0.2

65 (a) 50%; 75%
(b) No

(c) No

67 (a) 2015–2017
(b) 2012–2015

69 (a) 7.071 meters

(b) 1989, 1914
(c)

x 1889 1914 1939 1989 2014

S 6.900 6.985 6.964 7.083 7.071

71 (b) P = 73.5ℎ + 760
(c) ℎ = 10.34 m

73 (a) Higher price: customers want less

but owner wants to sell more

(b) (60, 18): No

(120, 12): Yes

(c) Shaded region is all possible quantities

of cakes owner is willing to sell and

customers willing to buy

40 80 120 160 200

5

10

15

20

25
d(q) = 20 − q∕20

s(q) = 11 + q∕40

(120, 14)

q

p

(d) (120, 14): equilibrium price.

77 x = 3 not a function of x

79 y = 0.5 − 3x is decreasing

81 y = 2x + 3

83 False

85 True

87 False; y = x + 1 at points

(1, 2) and (2, 3)

89 (b), (c)

Section 1.2
1 Concave up

3 Neither

5 5; 7%

7 3.2; 3% (continuous)

9 P = 15(1.2840)t ; growth

11 P = P0(1.2214)
t ; growth

13 (a) 1.5
(b) 50%

15 (a) P = 1000 + 50t
(b) P = 1000(1.05)t

17 (a) D to E, H to I

(b) A to B, E to F

(c) C to D, G to H

(d) B to C , F to G

19 (a) ℎ(x) = 31 − 3x
(b) g(x) = 36(1.5)x

21 Table D

23 f (s) = 2(1.1)s

g(s) = 3(1.05)s

ℎ(s) = (1.03)s

25 (a) g(x)
(b) ℎ(x)
(c) f (x)

27 y = 3(2x)

29 y = 2(3x)

31 y = 4
(

1

2

)x

33 (a)

2010 2011 2012 2013 2014 2015

5

10

15

20

Y

H

(b) No

(c) No
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35 (a)

advertising

revenue

(b)

time

temperature

37 17.882 mn barrels/day

39 (a) N = 2.7(1.0133)t

(b) 2.367 million

41 8.46%

43 (a) No

(b) Yes, a = 9

45 (a) S(t) = 219(1.05946)t

(b) 5.946%

47 (a) 2P0, 4P0, 8P0
(b) t∕50; P = P02

t∕50

49 (b) 80.731%

51 30 years; 2.31%∕yr

53 (a) Long run concentration

(b) a > 0
(c) a = b

(d) k < 0

55 (a) f (ℎ) = 760(0.867)ℎ

(b) ≈ 13.334%/km increase in elevation

(c) ≈ 14.172 km

57 (a) False

(b) (i) 2013

(ii) 2017

59 (a) 1729 trillion BTUs, 1780 trillion BTUs

(b)

2014 2016 2018

1500
1750
2000
2250
2500

year

consumption of wind
power energy (trillion BTU)

(c) 2016, 321 trillion BTUs

61 (a) a, c, p

(b) a, d, q

(c) c = p

(d) a and b are reciprocals

p and q are reciprocals

63 y = e−0.25x concave up

65 (2, 2e), (3, 3e) not on the graph

67 q = 2.2(0.97)t

69 y = e−x − 5

71 True

73 True

75 True

77 True

Section 1.3
1

−2 2

−4

4

x

y(a)

−2 2

−4

4

x

y(b)

−2 2

−4

4

x

y(c)

−2 2

−4

4

x

y(d)

−2 2

−4

4

x

y(e)

−2 2

−4

4

x

y(f)

3

−2 2

−4

4

x

y(a)

−2 2

−4

4

x

y(b)

−2 2

−4

4

x

y(c)

−2 2

−4

4

x

y(d)

−2 2

−4

4

x

y(e)

−2 2

−4

4

x

y(f)
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5

−4 4 6

−4

4

p(t)
t

y

7

−4 6

−4

4

w(t)

t

9 (a) 4
(b) 2
(c) (x + 1)2

(d) x2 + 1
(e) t2(t + 1)

11 (a) e

(b) e2

(c) ex
2

(d) e2x

(e) ett2

13 0

15 −1

17 (a) t2 + 2t + 2
(b) t4 + 2t2 + 2
(c) 5
(d) 2t2 + 2
(e) t4 + 2t2 + 2

19 2z + 1

21 2zℎ − ℎ2

23 Neither

25 Even

27 odd

29 Odd

31 Not invertible

33 not invertible

35 Invertible

39 (a) y = 2x2 + 1

2

4

6

8

y = x2

y = 2x2 + 1

x

(b) y = 2(x2 + 1)
(c) No

41 y = −(x + 1)2 + 3

43 Can’t be done

45 About 60

47 0.4

49 −0.9

51

−3 3

−3

3

x

g(f (x))

53 f (x) = x3

g(x) = x + 1

55 f (x) =
√

x

g(x) = x2 + 4

57 2(y − 1)3 − (y − 1)2

61 (a) −1
(b)

−4 6

−4

4

x

y

f−1(x)

f (x)

63 Not invertible

65 Not invertible

71 g(f (t)) ft3

73 f−1(30) min

75 (a) q =
C−100

2
= f−1(C)

(b) Number of articles produced at given cost

77 (a) f (15) ≈ 48
(b) Yes

(c) f−1(120) ≈ 35
Rock is 35 millions yrs old at depth

of 120 meters

79 Shift left

81 f (g(x)) ≠ x

83 f−1(x) = x

85 f (x) = x2 + 2

87 f (x) = 1.5x, g(x) = 1.5x + 3

89 True

91 True

93 False

95 False

97 True

99 Impossible

101 Impossible

Section 1.4
1 1∕2

3 5A2

5 −1 + lnA + lnB

7 (log 11)∕(log 3) = 2.2

9 (log(2∕5))∕(log 1.04) = −23.4

11 1.68

13 6.212

15 0.26

17 1

19 (log a)∕(log b)

21 (logQ − logQ0)∕(n log a)

23 ln(a∕b)

25 P = 15e0.4055t

27 P = 174e−0.1054t

29 p−1(t) ≈ 58.708 log t

31 f−1(t) = et−1

33 0.0693

35 f (t) = ln(te2.3) = ln (10t)

37 16 kg

39 P = 40,000,000(1.2)t∕10

Approximately 52,581,000 in 2020

Doubling time = 38.02 years

41 27 meters

43 (a) 30.2%

(b) A = 318,712, r = 0.052732;

318,712; 335,969; 354,161; 373,338
(c) 286,811 vehicles

45 (a) 5 years

(b) 5 years

(c) Decays by 1/2 at different starting times

(d) C = 100e−0.139t

47 (a) Q = Q0(1.04)
T−32

(b) about 24%
(c) approximately 18◦F

49 7.925 hours

51 (a) B(t) = B0e
0.067t

(b) P (t) = P0e
0.033t

(c) t = 20.387; in 2000

53 2026

55 (a) 0.00664
(b) t = 22.277; April 11, 2032

57 2054

59 It is a fake

61 (a) 63.096 million

(b) 3.162

63 (a) x = 1
(b) A= loge x, B= log10 x, C= log10 x, D=

loge x

65 No; it halves doubling time

67 (a) Increases

(b) Moves to the left

69 (a) No effect

(b) Moves toward the origin

71 Moves toward the origin

73 Function even

75 Only for x > 1

77 Correct property is ln(AB) = lnA + lnB

79 y = 0.7 log x

81 ln(x − 3)

83 False

85 False

Section 1.5
1 Negative

0

Undefined

✲

3 Positive

Positive

Positive

■
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5 Positive

Positive

Positive

▼

7 Positive

Negative

Negative

✯

9 Negative

Positive

Negative

✙

11 8�; 3

13 2; 0.1

15 f (x) = 5 cos(x∕3)

17 f (x) = −8 cos(x∕10)

19 f (x) = 2 cos(5x)

21 f (x) = 3 sin(�x∕9)

23 f (x) = 3 + 3 sin ((�∕4)x)

25 0.588

27 −0.259

29 0.727

31 (cos−1(0.5) − 1)∕2 ≈ 0.0236

33 (arctan(0.5) − 1)∕2 = −0.268

35 One year

37 0.3 seconds

39 (a) 4.76◦

(b) 7.13◦

(c) 2.86◦

41 (a) ℎ(t)
(b) f (t)
(c) g(t)

43

k

2�

−2�

k

−k

2�

−2�

x

y

45

k−k 2�−2�

k

2�

−2�

x

y

47

k−k

2�−2� k

2�

−2�

x

y

49

k−k 2�−2�

k

2�

−2�

x

y

51 18◦C

53 �∕6

55 450 thousand ft3∕sec

57 �∕6

59 f (t) = 75 − 15 cos (2�t∕12)

61 2∕� or −2∕�

63 60 − 20 cos(�t∕12)

65 (a)
1

60
second

(b) V0 represents the amplitude of oscillation.

(c)

1

120

1

60

V0

t

V

67 � = �∕4; R = v2
0
∕g

�

4

�

2

v2
0

g
R =

v2
0

g
sin 2�

�

R

69 (a) 12.566 hours

(b) 8 pm

71 f (t)is C; g(t) is B; ℎ(t) is A; r(t) is D

73 ℎw + ℎ2∕ tan �

75 (b)

−1 1

�

2

�y = arccos x

✲✛ Domain

✻

❄

Range

x

y

(c) The domain of arccos and arcsin are the

same because their inverses (sine and co-

sine) have the same range

(d) [0, �]
(e) On [−�∕2, �∕2] sine is invertible but co-

sine is not

77 Increasing B decreases period

79 Max y = A + C

81 400(cos x) + 1600.

83 False.

85 False

87 False

89 False

91 True

93 True

95 True

97 False

Section 1.6
1 As x→ ∞, y → ∞

As x→ −∞, y → −∞

3 f (x) → −∞ as x→ +∞
f (x) → −∞ as x→ −∞

5 f (x) → +∞ as x→ +∞
f (x) → +∞ as x→ −∞

7 f (x) → 3 as x→ +∞
f (x) → 3 as x→ −∞

9 f (x) → 0 as x→ +∞
f (x) → 0 as x→ −∞

11 0.2x5

13 1.05x

15 25 − 40x2 + x3 + 3x5

17 (I) (a) 3 (b) Negative

(II) (a) 4 (b) Positive

(III) (a) 4 (b) Negative

(IV) (a) 5 (b) Negative

(V) (a) 5 (b) Positive

19 y = −
1

2
(x + 2)2(x − 2)

21 f (x) = kx(x + 3)(x − 4)
(k < 0)

23 f (x) =
k(x + 2)(x − 2)2(x − 5)
(k < 0)

25 r

27 (III), (IV)

29 (II), (III), (IV)

31 (II), (IV)

33 IV

35 I, II, V

37 V

39 II

41 Zeros: x = 1, 2, 3
Asymptotes: None

43 Zeros: x = 1, 3
Asymptotes: x = 2

45 Logarithmic

47 Rational
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49 1, 2, 3, 4, or 5 roots

x

(a) 5 roots

x

(b) 4 roots

x

(c) 3 roots

x
(d) 2 roots

x
(e) 1 root

51 3 zeros:

x ≈ −1, x ≈ 3,

x > 10

53 ℎ = V ∕x2

ℎ = V ∕x2

x

ℎ

55 (a) 1.3 m2

(b) 86.8 kg

(c) ℎ = 112.6s4∕3

57 (a) R = kr4

(k is a constant)

(b) R = 4.938r4

(c) 3086.42 cm3/sec

59 (a) 0
(b) t = 2v0∕g
(c) t = v0∕g
(d) (v0)

2∕(2g)

61 Yes

63 No

65 No

67 Horizontal: y = 1;

Vertical: x = −2, x = 2

69 (a) −∞, −∞
(b) 3∕2, 3∕2
(c) 0, +∞

71 (3∕x) + 6∕(x − 2)
Horizontal asymptote: x-axis

Vertical asymptote: x = 0 and x = 2

73 ℎ(t) = abt

g(t) = kt3

f (t) = ct2

75 y = x

77 y = 100e−0.2z.

79 May tend to negative infinity

81 Only for x > 1

83 f (x) = x∕(x2 + 1) crosses its horizontal

asymptote y = 0

85 f (x) = 3x∕(x − 10)

87 f (x) = 1∕(x + 7�)

89 f (x) = (x − 1)∕(x − 2)

91 True

93 True.

Section 1.6 (online problems)
95 (a) (I)

(b) (III)

(c) (IV)

(d) (II)

Section 1.7
1 (a) x = −1, 1

(b) −3 < x < −1,−1 < x < 1, 1 < x < 3

3 (a) 1

(b) 2

(c) Does not exist

(d) 1

(e) 0

(f) 2

5 (a) x = −2, 3
(b) lim

x→−2
f (x) = −3; lim

x→3
f (x) does not exist

7 1

9 (b) 3

11 Yes

13 Yes

15 No

17 (a) Continuous

(b) Not continuous

23 4

25 6

27 5∕9

29 k = 2

31 k = 5∕3

33 k = 4

35 (a) Continuous

(b) Not continuous

(c) Not continuous

37 (a) No

(b) Yes

5 7
t

ℎ

g(t)

39 Not continuous

41 Does not exist

43 2

45 1

47 0.693

49 0

51 ≈ 1.099

53 −2

55 ≈ −1.099

57 k = � − 12

59 No value

61 k = �∕6

63 (a) x = 1, 3, 5
(b) x = 3

65 Q =

{

1.2t 0 ≤ t ≤ 0.5

0.6e0.001e−.002t 0.5 < t

67 x = 5; g(5) = 6

69 t = ±3; q(3) = −3, q(−3) = 3

71 No. Limit does not exist at 0

73 No. f (0) ≠ limit at 0

75 Three zeros: one between 5 and 10, one be-

tween 10 and 12, the third either less than 5 or

greater than 12

77 (a) No

(b) k = 3; other answers possible

79 e

81 (a) x = 1∕(n�),
n = 1, 2, 3,…

(b) x = 2∕(n�),
n = 1, 5, 9,…

(c) x = 2∕(n�),
n = 3, 7, 11,…

83 f (x) = 5 for some x, not necessarily for x = 1

85 f (x) =

{

1 x ≥ 15

−1 x < 15

87 f (x) =

{

1 x ≤ 2

x x > 2

89 False, f (x) =

{

1 x ≤ 3

2 x > 3

91 False

Section 1.8
1 (a) 1

(b) 0
(c) 0
(d) 1
(e) Does not exist

(f) 1

3 (a) 4
(b) 2
(c) −4
(d) 2
(e) 4
(f) 0
(g) Does not exist

(h) 2

5 (a) 3
(b) Does not exist or −∞

7 16

9 30

11 81

13 240

15 (a) 8
(b) 6
(c) 15
(d) 4

17 Other answers are possible

x
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19 Other answers are possible

3

x

y

21 Other answers are possible

3

5

x

23 ∞

25 ∞

27 0

29 ∞

31 0

33 0

35 lim
x→−∞

f (x) = −∞;

lim
x→∞

f (x) = −∞

37 lim
x→−∞

f (x) = −∞;

lim
x→∞

f (x) = ∞

39 lim
x→−∞

f (x) = 0;

lim
x→+∞

f (x) = 0

41 Yes; not on any interval containing 0

43 limx→2+ f (x) = limx→2− f (x) =
limx→2 f (x) = 0

1 2 3 4
0

1

x

f (x)

45 Yes; f (1) = 2

47 Yes; f (1) = 0

49 e

51 (a)

−10 −5 5 10

5

10

x

(b) Yes

53 −1

55 0

57 ∞

59 0

61 5∕7

63 (a)

3 5

2

9

x

(b) No

65 Other answers are possible

−5 5

−3

4

x

y

67 (a) (i) 50 mg

(ii) 150 mg

(b) t = 1, 2, 3, 4 sec

69 2

71 (a)
x − 5

(x + 5)(x − 5)
(b) 1∕10

(c) Neither lim
x→5

1

x − 5
nor −

10

x2−25
exist.

75 P (x)∕Q(x) is not necessarily defined at all x

77 f (x) = (x + 3)(x − 1)∕(x − 1)

79 True

81 True

83 True

85 True

87 False

89 True

91 False

Section 1.8 (online problems)
93 1

95 3

97 (a) Follows

(b) Does not follow (although true)

(c) Follows

(d) Does not follow

Section 1.9
1 3

3 Does not exist

5 −1∕9

7 −1∕11

9 −4

11 6∕7

13 6

15 5∕6

17 −1∕9

19 −1∕16

21 1∕6

23 4

25 (a) Yes

(b) 1

27 0

29 4∕5

31 ∞

33 28

35 1∕4

37 10

39 4

41 5

43 6

45 7 or −7

47 Any k

49 k ≤ 5

51 k ≥ 0

53 5

55 1∕3

57 2∕5

61 0

63 0

65 Does not exist

67 There are many possibilities, one being

g(x) = (x3 − 3x2 + x − 3)∕(x − 3); (3, 10)

69 There are many possibilities, one being

g(x) = (x ln x − ln x)∕(x − 1); (1, 0)

71 0

73 1

75 Does not exist

77 c = ±∞, L = 0

79 The limit of a function does not depend on the

value of a function at a point

81 True

83 False

85 False

87 False

Section 1.10 (online)
1 (a) No

(b) No

(c) Yes

(d) Yes

(e) Yes

3 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005

5 0.025

7 0.02

11 0.45, 0.0447, 0.00447

13 � = 1 − e−0.1

15 � = 1∕3

17 (b) 0
(c)

−0.015 0.015
−0.01

0.01

(d) −0.015 < x < 0.015,

−0.01 < y < 0.01

35 False

37 False

39 False

Section 2.1
1 265∕3 km/hr

3 −3 angstroms∕sec

5 1 meter∕sec

7 (a) 180 feet per second
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(b) 100 feet per second

9 0 cm∕sec

11 (a) (i) 0.04 m/sec

(ii) 0.0004 m/sec

(iii) 0.000004 m/sec

(b) 0 m/sec

13 6.773 ft/sec

15 distance

time
17 (a) 0 ft/sec

(b) 5 ft/sec

(c) 0 ft/sec

19 27

21 1.9

23 1

25
Slope −3 −1 0 1∕2 1 2

Point F C E A B D

27 From smallest to largest:

0, slope at C , slope at B

slope of AB, 1, slope at A

29 vavg = 2.5 ft/sec

v(0.2) = 4.5 ft/sec

31 (a) f starts fast, slows down

g starts slow, speeds up

(b) Between t = 0 and t = 1; other answers

possible

(c) (i): between t = 0 and t = 1∕2

33 Other answers possible

1 2 3 4 5

f (t)

t

s

35 4

37 12

39 |velocity| = speed

43 s(t) = t2

45 False

47 True

Section 2.2
1 12

3 (a) 70 $/kg; 50 $/kg

(b) About 60 $/kg

5 (b) 8.69
(c) 7.7

7 f ′(3) ≈ 31

9 f ′(1) ≈ 0.4343; underestimate

11 (a) x = 1 and x = 3
(b) f (5)
(c) f ′(1)

13 f ′(d) = 0, f ′(b) = 0.5, f ′(c) = 2, f ′(a) =
−0.5, f ′(e) = −2

15 (a) Pos: f ′(−1), f ′(0)
Zero: f ′(1)
Neg: f ′(2), f ′(3)

(b) f ′(3) < f ′(2) < f ′(1) < f ′(0) < f ′(−1)

17 14.9 million km2 covered by ice in Feb 2009

19 14.11 million km2 covered by ice on Feb 1,

2019

21 About 41

23 (a) f (4)
(b) f (2) − f (1)
(c) (f (2) − f (1))∕(2 − 1)
(d) f ′(1)

25 (4, 25); (4.2, 25.3); (3.9, 24.85)

27 (a) Line OA; x = 2
(b) (i) f (2)∕2 larger

(ii) f (2) larger

29 (a) f ′(−10) = −6
(b) f ′(0) = 0

31 (a) f ′(0) ≈ 0.01745

33 f ′(1) ≈ 1.0005;

f ′(2) ≈ 1.6934;

f is concave up between 1 and 2

35 6.15 million people/year

6.18 million people/year

37 (a) $12.21
(b) 10 cents/item sold

39 658.827 torr; −94.118 torr/km

41 39.7 gm; 0.91 gm/yr

43 0.4

45 −0.75

47 (a) They are the same

f (x) =
1

2
x2

g(x) = f (x) + 3

x

(b) f ′(x) = g′(x) for all x

49 −12

51 −2

53 3

55 −1∕4

57 100

59 −1

61 −1∕4

63 y = 100x − 500

65 y = x

67 f ′(0.5) > 0

69 f (x) = ex

71 True

73 True

Section 2.2 (online problems)
75

x x + ℎ
x

y

✲✛(d) ℎ

✻

❄

(a) f (x)

✻

❄

(b) f (x + ℎ)

✻
❄
(c) f (x + ℎ) − f (x)

(e) Slope =
f (x+ℎ)−f (x)

ℎ

x

❨

y = f (x)

77 f ′(0) ≈ −1
f ′(1) ≈ 3.5

Section 2.3
1 (a) About 3

(b) Positive: 0 < x < 4
Negative: 4 < x < 12

3 Between −9 and −6
Between 6 and 9

5

−4 4

−4

4

x

7

−4 4

−4

4

x

9

−3 3−
1

2

15

x

11

−4 4

−4

4

x

13

−4 4

−4

4

x

15

−2 2

2

4

x

f (x)

−2 −1 1 2

−4

−2

2

4

x

f ′(x)
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17

−3 −2 −1 1 2 3

2

4

6

8

10

f (x)

x

−3 −2 −1 1 2 3

2

4

6

8

10

f ′(x)

x

19

1−1

f (x)

x

1

1
f ′(x)
x

21 −2∕x3

23 −1∕(x + 1)2

25 2x + 2

27 −1∕(2x3∕2)

29 (a) −
(b) +
(c) −

31 (a) +, 0,−
(b) −, 0,+
(c) +, 0,−

33

−1
x

Other answers possible

35 f ′(x) positive: 4 ≤ x ≤ 8
f ′(x) negative: 0 ≤ x ≤ 3
f ′(x) greatest: at x ≈ 8

37 (a) x3
(b) x4
(c) x5
(d) x3

39

1 2

−2

−1

1

x

f ′(x)

41

1

2
x

f ′(x)

43

x

f ′(x)

45

−1 1 2 3

x
f ′(x)

47

x

f ′(x)

49 (V)

51 (II)

53 (a) Graph II

(b) Graph I

(c) Graph III

55

time

current

57 (a) x1 < x < x3
(b) 0 < x < x1; x3 < x < x5

59 (a) Periodic: period 1 year

J
t = 0

F M A M J J A S O N D J
t = 1

3500
4000
4500

t (in months)

P (t)

(b) Max of 4500 on July 1st

Min of 3500 on Jan 1st

(c) Growing fastest:

around April 1st

Decreasing fastest:

around Oct 1st

(d) ≈ 0

63 counterexample: f (x) = 1, g(x) = 2

65 f (x) = b + 2x

67 True

69 False

Section 2.3 (online problems)
71

1 2 3 4
x

y

Other answers possible

75 0.693

Section 2.4
1 (iv)

3 (a) ml; minutes

(b) ml; minutes/ml

5 (a) Negative

(b) Degrees/min

7 (a) Quarts; dollars.

(b) Quarts; dollars/quart

13 Feet/mile; negative

15 ◦C/min; positive

17 Min per mph; negative

19 Dollars/year; negative

21 (a) Investing the $1000 at 2%

would yield about $1221 after 10 years

(b) Extra percentage point would yield an in-

crease of about $122; dollars/%

23 (a) ΔR ≈ 3ΔS
(b) 0.6
(c) 13.6

25 (a) Meters per second per kilometer

(b) Wind speed is greater at distance slightly

more than 15 km from the center than at

15 km from center

27 About 1.453 bn ppl in 2022;

Growing at about 6.23 mn ppl/yr

29 (a) f

(b) g and ℎ

31 (b) Pounds∕(Calories∕day)

33 (a) Cost $2100 for 140 ft2

(b) Additional cost $10∕ ft2

(c) Average cost $15∕ ft2

35 (a) In 2008 pop Mexico increase 1.35 m peo-

ple/yr

(b) Pop 113.2 m in 2009
(c) 113.2 m: about 0.74 yrs for pop increase

of 1 m

37 (a) Depth 3 ft at t = 5 hrs

(b) Depth increases 0.7 ft/hr

(c) Time 7 hrs when depth 5 ft

(d) Depth at 5 ft increases 1 ft in 1.2 hrs

39 (a) The weight of the object, in Newtons, at

a distance of 80 kilometers above the sur-

face of the earth; positive

(b) For an object at a distance of 80 km from

the surface of the earth, f ′(80) represents

the approximate number of Newtons by

which the weight of an object will change

for each additional kilometer that the ob-

ject moves away from the earth’s surface;

negative
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(c) The distance of the object from the sur-

face of the earth, in kilometers, that would

be necessary for the object to weigh 200
Newtons; positive

(d) For an object that weighs 200 Newtons,

(f−1)′(200) represents the approximate

amount by which the object’s distance

from the earth’s surface must change in or-

der for its weight to increase by 1 Newton;

negative

41 (a) negative

45 mpg/mph

47 Barrels/year; negative

49 (a) Gal/minute

(b) (i) 0
(ii) Negative

(iii) 0

51 (a) meters

(b) mm (runoff depth) per meter (distance

down the slope)

(c) 0.08 mm

53 (a) meters3∕sec per million meters3

(b) 11 meters3∕second

55 (a) f ′(a) is always positive

(c) f ′(100) = 2: more

f ′(100) = 0.5: less

57 2075

59 (a) Liters per centimeter

(b) About 0.042 liters per centimeter

(c) Cannot expand much more

61 r(t) is decreasing

65 False

67 True

69 (b) or (e)

Section 2.4 (online problems)
71 f (points) = Revenue

f ′(4.3) ≈ 55 million dollars/point

73 Inches/year

g′(10) > 0
g′(30) = 0

75 Number of people 65.5–66.5 inches

Units: People per inch

P ′(66) between 17 and 34 million people/in

P ′(x) is never negative

Section 2.5
1 (a) Increasing, concave up

(b) Decreasing, concave down

3 B

5

x

f (x)(a)

x

f (x)(b)

x

f (x)(c)

x

f (x)(d)

7

time

height

9 f ′(x) < 0
f ′′(x) = 0

11 f ′(x) < 0
f ′′(x) > 0

13 f ′(x) < 0
f ′′(x) < 0

15 (a) Positive; positive

(b) Both positive and negative; positive

(c) Number of cars increasing at

about 4,450,000 cars/yr in 2017

17 (a)

2 4 6 8 101214161820
0
5

10
15
20
25
30
35

time (sec)

velocity (m/s)

(b) 3.6

19

−4 4

−4

4

x

y

21

−4 4
x

y

23

−4 4
x

y

25 (a) dP ∕dt > 0, d2P ∕dt2 > 0

(b) dP ∕dt < 0, d2P ∕dt2 > 0
(but dP ∕dt is close to zero)

27 (a) (i) Pos

(ii) Neg

(b) (i) p′(5)

(ii) p(2) − p(1)

29 (a) Positive

(c)

1 2 3 4
0

5

10

15

t (months)

extent (millions of km2)

31 (a)

t

N(t)

(b) dN∕dt is positive.

d2N∕dt2 is negative.

33 No

35 Yes

37 No

39 (a) x4, x5
(b) x3, x4
(c) x3, x4
(d) x2, x3
(e) x1, x2, x5
(f) x1, x4, x5

41 f ′(0) > f ′(4)

43 f ′′(1) < f ′′(3)

45

2 4 6 8 10 12
−4
−2

2
4
6
8
10

x

47 (a) b = −8; m = 3
(b) Below

49 22 only possible value

51 (a) All positive x

(b) All positive x

(c) All positive x

55 f (x) = x2

57 True

59 True

Section 2.6
1 (a) x = 1

(b) x = 1, 2, 3

3 No

5 Yes
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7 Yes

9 No

11 (a)

2
x

f (x)

(b)

2
x

f (x)

15 (a) B = B0 at r = r0
B0 is max

r0

B0

r

B

(b) Yes

(c) No

17 (a) Yes

(b) Yes

19 (a) No; yes.

(b) f ′(x) not differentiable at x = 0;

f ′′(x) neither differentiable nor continu-

ous at x = 0

21 Other cases are possible

23 f (x) = |x − 2|

25 f (x) = (x2 − 1)∕(x2 − 4)

27 True; f (x) = x2

29 True; f (x) =

{

1 x ≥ 0

−1 x < 0

31 (a) Not a counterexample

(b) Counterexample

(c) Not a counterexample

(d) Not a counterexample

Section 3.1
3 Do not apply

5 y′ = �x�−1 (power rule)

7 11x10

9 −12x−13

11 −3x−7∕4∕4

13 3x−1∕4∕4

15 3t2 − 6t + 8

17 −5t−6

19 −(7∕2)r−9∕2

21 x−3∕4∕4

23 −(3∕2)x−5∕2

25 6x1∕2 −
5

2
x−1∕2

27 2z −
1

2
z−2

29 6∕w4 + 3∕(2
√

w)

31 6t − 6∕t3∕2 + 2∕t3

33 3t1∕2 + 2t

35 (1∕2)�−1∕2 + �−2

37 (z2 − 1)∕3z2

39 1∕(2
√

�) + 1∕(2�3∕2)

41 3x2∕a + 2ax∕b − c

43 a∕c

45 3ab2

47 b∕(2
√

t)

49 4.44

51 −3.98

53 −4.15

55 Rules of this section do not apply

57 6x
(power rule)

59 −2∕3z3 (power rule)

61 y = 2x − 1

63 y = −9.333 + 6.333x

65 (a) f ′(1) < f ′(0) < f ′(−1) < f ′(4)
(b) f ′(1) = −1, f ′(0) = 2, f ′(−1) = 11,

f ′(4) = 26

67 For x < 0 or 2 < x < 3

69 (a) 0
(b) 5040

71 (a) 0
(b) −6
(c) (IV)

73 (a) 0
(b) 6
(c) (I)

75 245,000 kN/m

77 (a) Decreases

(b) −0.5 mN∕cm

79 (a) 12.5 liters

(b) −6.25 liters per atmosphere

(c) 1 atmosphere

81 (a) 15.2 m/sec

(b) 5.4 m/sec

(c) −9.8 m/sec2

(d) 34.9 m

(e) 5.2 sec

83 (a) 5159v−0.33

(b) 11030 m3∕sec per km3

87 Approximately 1%

89 Approximately 33%

91 (a) dg∕dr = −2GM∕r3

(b) dg∕dr is rate of change of acceleration

g decreases with distance from center of

earth

(c) −3.05 ⋅ 10−6 km∕sec2 per km

(d) Magnitude of dg∕dr small; reasonable

93 (a) dT∕dl = �∕
√

gl

(b) Positive, so period increases

as length increases

95 Proportional to r2

97 n = 4, a = 3∕32

99 (a) a = 4
(b) No

101 −2∕x3

103 g(x) = x2 + 1

105 True

107 True

109 False; f (x) = 2x2, g(x) = x2

Section 3.1 (online problems)
111 −3.98

113 (a) f ′(x) = 7x6; f ′′(x) = 42x5; f ′′′(x) =
210x4

(b) n = 8.

115 d2w∕dx2 = (−1∕4)x−3∕2 +
(3∕4)x−5∕2 ; d3w∕dx3 = (3∕8)x−5∕2 −
(15∕8)x−7∕2

117 (a) f ′(x) = g′(x) = 3x2 + 6x − 2
(b) One is a vertical shift of the other, so they

have the same slopes everywhere

(c) Any vertical shift has the same derivative

119 y = 2x and y = −6x

(−2, 12)

(2, 4)

y = −6x

y

y = x2 − 2x + 4

y = 2x

x

121 (a) x < 1∕2
(b) x > 1∕4
(c) x < 0 or x > 0

123 n = 1∕13

125 a = 2, b = 2

127 Infinitely many, each of the form f (x) = C

Section 3.2
1 2ex + 2x

3 5 ln(a)a5x

5 10x + (ln 2)2x

7 4(ln 10)10x − 3x2

9 ((ln 3)3x)∕3 − (33x−3∕2)∕2

11 (ln 4)24x

13 5 ⋅ 5t ln 5 + 6 ⋅ 6t ln 6

15 exe−1

17 (ln �)�x

19 (ln k)kx

21 et+2

23 ax ln a + axa−1

25 2 + 1∕(3x4∕3) + 3x ln 3

27 f ′′(t) = (ln 5)25t+1; f ′′′(t) = (ln 5)35t+1

29 2x + (ln 2)2x

31 Rules do not apply

33 ex+5

35 Rules do not apply

37 Rules do not apply

39 Rules do not apply

41 (a) y = −x∕2 + 5
(b) x = 10

43 16.021; pop incr ≈ 16 animals/yr when t = 5

45 1013.454 mb; increasing at 2.261 mb/hr

47 (a) 21 ⋅ ln 1.05
(

1.05t
)

mn tonnes/yr

(b) 1.442 mn tonnes/year

(c) 7.209 mn tonnes

(d) Smaller
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49 (a) 1.392 mn ppl/yr

(b) 2.638 mn ppl/yr

US, since dU∕dt > dM∕dt at t = 0

51 g(x) = x2∕2 + x + 1

ex

1

2
x2 + x + 1

x

53 f ′(x) = 0

55 f (x) = ex

57 False

Section 3.2 (online problems)
61 (a) f ′(0) = −1

(b) y = −x
(c) y = x

63 e

65 0 < a < 1 and C < 0

67 a > 1 and C < 0

Section 3.3
1 5x4 + 10x

3 ex(x + 1)

5 2x∕(2
√

x) +
√

x(ln 2)2x

7 3x[(ln 3)(x2 − x
1
2 ) +

(2x − 1∕(2
√

x))]

9 (1 − x)∕ex

11 (1 − (t + 1) ln 2)∕2t

13 6∕(5r + 2)2

15 1∕(5t + 2)2

17 2et + 2tet + 1∕(2t3∕2)

19 2y − 6, y ≠ 0

21
√

z(3 − z−2)∕2

23 2r(r + 1)∕(2r + 1)2

25 17ex(1 − ln 2)∕2x

27 1, x ≠ −1

29 (−4 − 6x)(6xe − 3�) +
(2 − 4x − 3x2)(6exe−1)

31 (a) 4
(b) Does not exist

(c) −4

33 (a) −2
(b) Does not exist

(c) 0

35 Approx 0.4

37 Approx 0.7

39 Approx −21.2

41 f ′(x) = 2e2x

43 x > −2

45 y = 5x

47 y = 7x − 5

49 4x(ln 4 ⋅ f (x) + ln 4 ⋅ g(x) + f ′(x) + g′(x))

51 (f ′(x)g(x)ℎ(x) + f (x)g′(x)ℎ(x) −
f (x)g(x)ℎ′(x))∕(ℎ(x))2

53 (a) 19

(b) −11

55 3

57 34∕9

59 779∕400

61 f (x) = x10ex

63 (a) f (140) = 15,000:

If the cost $140 per board then

15,000 skateboards are sold

f ′(140) = −100:

Every dollar of increase from $140 will

decrease the total sales by about 100

boards

(b) dR∕dp|p=140 = 1000
(c) Positive

Increase by about $1000

65 (a) g(v) = 1∕f (v)
g(80) = 20 km∕liter
g′(80) = −(1∕5) km∕liter for each

1 km∕hr increase in speed

(b) ℎ(v) = v ⋅ f (v)
ℎ(80) = 4 liters∕hr
ℎ′(80) = 0.09 liters∕hr for

each 1 km∕hr inc. in speed

67 (a) P (t) = A(t)∕N(t)
(b) Purchase more shares to offset loss

(c) Purchase 28,750 additional shares

69 (a) R(t) = p(t)q(t)
(b) $24,700; $14.75/day

71 Signs in numerator reversed

73 f (x) = ex sinx

75 False

77 False; f (x) = x2, g(x) = x2 − 1

79 False, choose g(2) = ℎ(2) = 10, for example

81 False, choose g(2) = ℎ(2) = −10

Section 3.3 (online problems)
83 0

85 0

87 y = 7x∕48 + 5∕48

89 4

91 r2
2
∕(r1 + r2)

2

93 (a) f ′(x) =
(x − 2) + (x − 1)

(b) f ′(x) =
(x − 2)(x − 3) +
(x − 1)(x − 3) +
(x − 1)(x − 2)

(c) f ′(x) =
(x − 2)(x − 3)(x − 4) +
(x − 1)(x − 3)(x − 4) +
(x − 1)(x − 2)(x − 4) +
(x − 1)(x − 2)(x − 3)

95 (a) (FGH)′ =
F ′GH + FG′H + FGH ′

(c) f ′
1
f2f3 ⋯fn +

f1f
′
2
f3 ⋯fn +⋯ +

f1 ⋯ fn−1f
′
n

97 f ′′(x)g(x) + 2f ′(x)g′(x) + f (x)g′′ (x)

Section 3.4
1 99(x + 1)98

3 56x(4x2 + 1)6

5 ex∕(2
√

ex + 1)

7 5(w4 − 2w)4(4w3 − 2)

9 2r3∕
√

r4 + 1

11 e2x
[

2x2 + 2x + (ln 5 + 2)5x
]

13 �e�x

15 −200xe−x
2

17 (ln �)�(x+2)

19 e5−2t(1 − 2t)

21 (2t − ct2)e−ct

23 (e
√

s)∕(2
√

s)

25 3s2∕(2
√

s3 + 1)

27 (e−z)∕(2
√

z) −
√

ze−z

29 5 ⋅ ln 2 ⋅ 25t−3

31 −(ln 10)(10
5
2
−
y

2 )∕2

33 (1 − 2z ln 2)∕(2z+1
√

z)

35

√

x + 3(x2 + 6x − 9)

2
√

x2 + 9(x + 3)2

37 −(3e3x + 2x)∕(e3x + x2)2

39 −1.5x2(x3 + 1)−1.5

41 (2t + 3)(1 − e−2t) +
(t2 + 3t)(2e−2t )

43 30e5x − 2xe−x
2

45 2wew
2
(5w2 + 8)

47 −3te−3t
2
∕
√

e−3t
2 + 5

49 2ye[e
(y2)+y2]

51 6ax(ax2 + b)2

53 ae−bx − abxe−bx

55 abce−cxe−be
−cx

57 6x
(

x2 + 5
)2 (

3x3 − 2
) (

6x3 + 15x − 2
)

59 (a) −2
(b) Chain rule does not apply

(c) 2

61 (a) 1
(b) 1
(c) 1

63 0

65 1∕2

67 y = 3x − 5

69 y = −16.464t + 87.810

71 (a) b = 5
(b) k = 4

73 x < 2

75 e(x
6)∕6

77 (a) H(4) = 1
(b) H ′(4) = 30
(c) H(4) = 4
(d) H ′(4) = 56
(e) H ′(4) = −1

79 (a) g′(2) = 42
(b) ℎ′(2) = −8

81 (a) 13,394 fish

(b) 8037 fish/month

83 2021 3rd quarter sales: f (3) = $2.23 bn

Change in 2021 3rd quarter sales: f ′(3) =
$0.05 bn∕yr

85 (a) $5000; 2% compounded continuously

(b) f (10) = 6107.01 dollars;

f ′(10) = 122.14 dollars per year

87 (a) Decrease

(b) −5.130e−0.054t deg C/min

89 7700 joules/sec

91 b = 1∕40 and a = 169.36

93 (a) P (1 + r∕100)t ln(1 + r∕100)
(b) P t(1 + r∕100)t−1∕100

95 (a) f (t): linear

g(t): exponential

ℎ(t): quadratic polynomial

(b) 1.3 ppm/yr; 1.507 ppm/yr; 2.403 ppm/yr
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(c) Linear < Exp < Quad

(d) No; Exponential eventually largest

97 w′(x) = 2xex
2

99 f (x) = sin (ex); g(x) = esin x

101 True

103 False;f (x) = 5x + 7, g(x) = x + 2

Section 3.4 (online problems)
105 (a) km∕min, speed, positive

(b) l∕min, rate of change quantity fuel in tank,

negative

(c) l∕km, rate of change quantity fuel in tank,

negative

(d) dq∕dx = (dq∕dt)∕(dx∕dt)

107 Decreasing

109 Increasing

111 Zero; decreasing

113 Positive; positive

117 (a) 4
(b) 2
(c) 1∕2

119 (a) g′(1) = 3∕4
(b) ℎ′(1) = 3∕2

123 f ′′(x)(g(x))−1 − 2f ′(x)(g(x))−2g′(x) +
2f (x)(g(x))−3 (g′(x))2 − f (x)(g(x))−2g′′(x)

Section 3.5
3 cos2 � − sin2 � = cos 2�

5 3 cos(3x)

7 −8 sin(2t)

9 3� sin(�x)

11 3� cos(�t)(2 + sin(�t))2

13 et cos(et)

15 (cos y)esin y

17 3 cos(3�)esin(3�)

19 2x∕ cos2(x2)

21 4 cos(8x)(3 + sin(8x))−0.5

23 cosx∕ cos2(sinx)

25 2 sin(3x) + 6x cos(3x)

27 e−2x[cos x − 2 sinx]

29 5 sin4 � cos �

31 −3e−3�∕ cos2(e−3� )

33 −2e2x sin(e2x)

35 −sin � + 3 cos �

37 3�2 cos � − �3 sin �

39 cos(cos x + sinx) ⋅
(cosx − sin x)

41 (−t sin t − 3 cos t)∕t4

43

√

1 − cosx(1 − cosx − sinx)

2
√

1 − sin x(1 − cosx)2

45 (6 sin x cosx)∕(cos2 x + 1)2

47 −ab sin(bt + c)

49 2x3e5x cos(2x) + 5x3e5x sin(2x) +
3x2e5x sin(2x)

51 f ′′(�) = −(� cos � + 2 sin �); f ′′′(�) =
� sin � − 3cos �

53 Decreasing, concave up

55 y = 3x + 1

57 (a)

�

4

�

2

1
cos x sinx

x

y

(b) �∕4
(c) No

59 F (x) = −(1∕4) cos(4x)

61 (a) dy∕dt = −(4.9�∕6) sin (�t∕6) ft/hr

(b) Occurs at t = 6, 12, 18, and 24 hrs

63 (a) v(t) = 2� cos(2�t)
(b)

1 2 3

14
15
16

y = 15 + sin 2�t

t

y

1 2 3
−2�

2�
v = 2� cos 2�t
t

v

65 (a) t = (�∕2)(m∕k)1∕2 ;

t = 0;

t = (3�∕2)(m∕k)1∕2

(b) T = 2�(m∕k)1∕2

(c) dT∕dm = �∕
√

km;

Positive sign means an increase in

mass causes the period to increase

67 (a) 0 ≤ t ≤ 2
(b) No, not at t = 2

69 CO2 increasing at 2.033 ppm/month on Dec

1, 2017

71 CO2 decreasing at 1.633 ppm/month on June

1, 2017

73 (a) d′(t) = −2e−t sin t
(b) t = 0, �, 2�, 3�,…
(c) 0; the wave stops

77 Cannot use product rule

79 sin x

81 True

Section 3.5 (online problems)
83 (sin x + x cosx)x sin x

85 2 sin(x4) + 8x4 cos(x4)

87 k = 7.46, (3�∕4, 1∕
√

2)

Section 3.6
1 2t∕(t2 + 1)

3 10x∕(5x2 + 3)

5 1∕
√

1 − (x + 1)2

7 (6x + 15)∕(x2 + 5x + 3)

9 2

11 e−x∕(1 − e−x)

13 ex∕(ex + 1)

15 aeax∕ (eax + b)

17 3w2 ln(10w) +w2

19 e

21 1∕t

23 −1∕(1 + (2 − x)2)

25 earctan(3t
2)(6t)∕(1 + 9t4)

27 (ln 2)z(ln 2−1)

29 k

31 −x∕
√

1 − x2

33 −1∕z(ln z)2

35 (cos x − sinx)∕(sin x + cosx)

37 3w−1∕2 − 2w−3 + 5∕w

39 −(x + 1)∕(
√

1 − (x + 1)2)

41 1∕(1 + 2u + 2u2)

43 −1 < x < 1

45 11∕6

47
d

dx
(log x) =

1

(ln 10)x

49 g(5000) = 32.189 years

g′(5000) = 0.004 years per dollar

51 1.029 gm/yr

53 (a) y = x − 1
(b) 0.1; 1
(c) Yes

55 (a) 12

(b) f−1(x) = 3
√

x

(c) 1∕12

57 The following functions look like the line y =
x:

y = x

y = sin x
y = tan x
y = ln(x + 1)

The following functions look like the line y =
0:

y = x2

y = x sin x

y = x3, y =
1

2
ln (x2 + 1)

y = 1 − cosx
The following functions look like the line x =
0:

y =
√

x

y =
√

x∕(x + 1)

y =
√

2x − x2

59 Any x with 50 < x < 75

61 Any x with 0 < x < 25

63 1.6

65 225

67 1∕3

69 (a) 4023 gals sold at $2
(b) 2 gal∕$
(c) Sales drop by 1250 gal/$1 incr

(d) −0.0008$/gal

71 (a) 750 mn registrations

(b) 20 mn registrations∕yr

(c) 40 yrs

(d) 0.05 yr∕mn registrations

73 w′(x) = 4x3∕(1 + x4)

75 Formula for (f−1)′ incorrect

77 y = c ln x for constant c.

79 f (x) = x

81 False; f (x) = x3
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Section 3.6 (online problems)
83 (a) 1 (b) 1 (c) 1

85 (f−1)′ does not change sign

87 (a) y = −x2∕2 + 2x − 3∕2
(b) From graph, notice that

around x = 1, the values

of ln x and its approximation

are very close

x

y

g(x) = −
1

2
x2 + 2x −

3

2

f (x) = lnx

(c) At x = 1.1, y ≈ 0.095
At x = 2, y = 0.5

89 (a) 1

(c) e

Section 3.7
1 dy∕dx = −x∕y

3 dy∕dx = (y2 − y − 2x)∕(x − 3y2 − 2xy)

5 −(1 + y)∕(1 + x)

7 dy∕dx = (y − 2xy3)∕(3x2y2 − x)

9 dy∕dx = −
√

y∕x

11 −3x∕2y

13 −y∕(2x)

15 dy∕dx = (2 − y cos(xy))∕(x cos(xy))

17 (y2 + x4y4 − 2xy)∕(x2 − 2xy − 2x5y3)

19 (a − x)∕y

21 (y + b sin(bx))∕
(a cos(ay) − x)

23 Slope is infinite

25 −23∕9

27 y = e2x

29 y = x∕a

31 (a) (4 − 2x)∕(2y + 7)
(b) Horizontal if x = 2,

Vertical if y = −7∕2

33 (a) −3∕4
(b) (−3,−4)

35 (a) (1,−1) and (1, 0).
(b) dy∕dx = −(y + 2x)∕(x + 2y)
(c) 1 at (1,−1) and −2 at (1, 0)

37 (a) y − 3 = −4(x − 4)∕3
and

y + 3 = 4(x − 4)∕3
(b) y = 3x∕4

and

y = −3x∕4
(c) (0, 0)

41 (a) −(1∕2P )f (1 − f 2)

43 Need to use implicit differentiation

45 dy∕dx = (x2 − 4)∕(y − 2)

47 True

Section 3.7 (online problems)
49 (−1∕3, 2

√

2∕3); (7∕3, 4
√

2∕3)

−1 1 2 3 4 5

−2
−1

1
2

x

y

Section 3.8
1 3 cosh(3z + 5)

3 2 sinh(2x)

5 sinh(sinh t) ⋅ cosh t

7 3t2 sinh t + t3 cosh t

9 cosh2 x + sinh2 x

11 18∕ cosh2(12 + 18x)

13 tanh(1 + �)

15 0

19 (t2 + 1)∕2t

23 sinh(2x) = 2 sinhx coshx

27 0

29 1

31 |k| ≤ 3

33 (a) 0.54 T∕w

35 1∕(1 − x2)

37 f ′(x) = sinh x

39 tanh x→ 1 as x→ ∞

41 k = 0

43 True

45 True

47 False

Section 3.8 (online problems)
49 c = (ln(B∕A))∕2

K = 2
√

AB

51 (a) f (x) = tanh(x∕2)∕2 + 1∕2
(b) tanh(x) = 2f (2x) − 1

Section 3.9
1

√

1 + x ≈ 1 + x∕2

3 1∕x ≈ 2 − x

5 ex
2
≈ 2ex − e

9 x2 concave up;
√

x concave down

11 Underestimate;

|Error| < 0.8

13 (a) sin x ≈ x

(b) Above for x > 0
below for x < 0

15 (a) 99.5 + 0.2(x − 50)
(b) 52.5
(c) Approx straight near x = 50

17 (a) and (c)

2

−3

3

True value
Approximation

✛ Error

f (x) = x3 − 3x2 + 3x + 1

y = 3x − 3
x

y

(b) y = 3x − 3

19 a = 1; f (a) = 1
Underestimate

f (1.2) ≈ 1.4

21 0.1

23 (a) f (20.2) ≈ 2.2
(b) Underestimate

25 (a) 2.5
(b) 7.25
(c) Underestimate

27 331.3 + 0.606T m∕sec

29 (a) 23.681L−0.421

(b) 23.681 days per cm

(c) 4.736 days

(d) 40.9 + 23.681(L − 1) days

31 (a) 10.034 mn users/yr

(b) 5.7 mn users/yr

(c) t = 1.6; mid 2011

(d) Rates of change constant

33 (a) L(t) = −(20∕3)t + 40
(b) L(0.2) = 38.667 �C; L(0.4) = 37.333 �C

35 (a) L1(t) = 179,938 − 8168(t − 2); 139,098
acre-feet

(b) L2(t) = 212,740 − 3279(t− 13); 193,066
acre-feet

37 (a) 1.216 cell divisions per hour

(b) 0.297∕(0.22 + C)2

(c) 0.0603 cell divisions per hour per 10−4

molar

(d) R ≈ 1.216 + 0.0603(C − 2) cell divisions

per hour

(e) Tangent line: 1.228

Original: 1.227

39 (a) ΔT ≈ −TΔg∕(2g)
(b) 0.5% decrease

41 (a) f ′(5)
(b) 0
(c) f (5) + f ′(5)Δx

43 (a) 34.9 sec

(b) 34.9 + 1.67(� − 20) sec

(c) True: 36.6 sec

Approx: 36.6 sec

45 f (x) ≈ 1 + rx
1.23∕5 ≈ 1.12

47 f (x) ≈ b + x∕(2b)
√

26 ≈ 5.1

49 E(x) = cosx − 1
k = −1∕2; f ′′(0) = −1
E(x) ≈ −(1∕2)x2

51 E(x) =
√

x − (1 + (1∕2)(x − 1))
k = −1∕8; f ′′(1) = −1∕4
E(x) ≈ −(1∕8)(x − 1)2

53 Only near x = 0

55 f (x) = x3 + 1, g(x) = x4 + 1

57 f (x) = |x + 1|
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Section 3.9 (online problems)
59 Method 1:

e2x = (ex)2 ≈ (1 + x)2

= 1 + 2x + x2

Method 2:

e2x ≈ 1 + 2x

61 ex sinx ≈ x
d

dx
(ex sin x)|x=0 = 1

ex sinx∕(1 + x) ≈ x − x3

d

dx
(
ex sinx

1+x
)|x=0 = 1

65 0.9 < x < 1.1

Section 3.10
1 False

3 False

5 True

7 No; no

9 No; no

11 Yes. Function nondecreasing on a < x < b

13 Hypotheses satisfied, c = 1

15 Hypotheses not satisfied

17 f ′(c) = −0.5, f ′(x1) > −0.5,

f ′(x2) < −0.5

19 6 distinct zeros

25 Racetrack

27 Constant Function

29 21 ≤ f (2) ≤ 25

37 Not continuous

39 1 ≤ x ≤ 2

41 Possible answer: f (x) = |x|

43 Possible answer

f (x) =

{

x2 if 0 ≤ x < 1

1∕2 if x = 1

45 False

47 False

Section 4.1
1

local max
❥

local min
✻

local max

✻

3

Local min

Critical point
Not local max or min

x

5 Critical points: x = 0, x = −
√

6, x =
√

6

Inflection points: x = 0, x = −
√

3, x =
√

3

7 Critical point: x = 3∕5
No inflection points

9 Critical points:

x = 0 and x = 1
Extrema:

f (1) local minimum

f (0) not a local extremum

11 Critical points:

x = 0 and x = 2

Extrema:

f (2) local minimum

f (0) not a local extremum.

13 Critical points: x = 0, x = 4
x = 0: local minimum

x = 4: local maximum

15 Critical point: x = 0
x = 0: local maximum

17 Critical point: x = 1∕3, local maximum

19 Crit pts: max: x =
�

3
+ 2n�,

min: x = 5�

3
+ 2n�

21 (a) Critical point x ≈ 0;

Inflection points between −1 and 0
and between 0 and 1

(b) Critical point at x = 0,

Inflection points at x = ±1∕
√

2

23 (a) Increasing for all x

(b) No maxima or minima

25 (a) Increasing: −1 < x < 0 and x > 1
Decreasing: x < −1 and 0 < x < 1

(b) Local max: f (0)
Local min: f (−1) and f (1)

27 II; a = 2, b = 2, c = 1 or a = 2, b = 1, c = 2;

Two

29 III; a = 1, b = 2, c = 1 or a = 1, b = 1, c = 2;

Two

31 VI; a = 2, b = 1, c = 1; None

33 (a) x = 5a∕4
(b) a = 4.8

35 (a) x =
3
√

2a

37 t = 0.5 ln(V ∕U )

39

x

f ′(x)

x­values of
these points give
inflection points of f

❄

❄✙

❯

41 (a) B, D, F

(b) B, C , E

(c) One; One

43

x1 x2 x3

x

y

y′′ < 0
y′ > 0

y′′ > 0
y′ > 0

y′′ < 0

y′ > 0

y′′ < 0
y′ < 0

y′′ = 0
y′ = 0

y′′ = 0 y′ = 0

y = f (x)

45

x1 x2

x

y
y′, y′′ undefined

y′′ > 0
y′ > 0

y′′ > 0
y′ < 0

y′′ > 0
y′ > 0

y = f (x)

y′ = 0

47 (a) x ≈ 2.5 (or any 2 < x < 3)

x ≈ 6.5 (or any 6 < x < 7)

x ≈ 9.5 (or any 9 < x < 10)

(b) x ≈ 2.5: local max;

x ≈ 6.5: local min;

x ≈ 9.5: local max

49

✠

Time at which water
reaches corner of vase

time

depth of water

51 x = 0: not max/min

x = 3∕7: local max

x = 1: local min

53 (a) Yes, at 2000 rabbits

10 20 30 40

500

1000

1500

2000

years since 1774

population of rabbits

(b) 1787

1000 rabbits

55 a = −1∕3

57 (a) x = 0
(b) Two

(c) Local maximum

61 B = f , A = f ′ , C = f ′′

63 III even; I, II odd

I is f ′′, II is f , III is f ′

65 Incr: −105 < x < 5
Decr: x < −105 and x > 5

67 Consider f (x) = x4

69 Both could be inflection points.

71 f (x) = |x − 1|

73 f (x) = −x4, x = 0

75 True

77 False

79 True

81 False
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83 f (x) = x2 + 1

85 f (x) = −x2 − 1

87 (a), (c)

Section 4.1 (online problems)
89 Unknown

91 True

93 No

95 (a) Decreasing

(b) Local minimum at x1
(c) Concave up at x2

97 (a) none

(b) x = 1, 2

99 (a) Critical point at x = 0
(b) Increases for x < 0, decreases for x > 0

101 Impossible

Section 4.2
1

1 2 3 4 5

2
4
6
8

Global and local min

Global and local max

Local min

x

y

3 (a)

4

50
57

x

y

(b) x = 4, y = 57

5 Max: 9 at x = −3;

Min: −16 at x = −2

7 Max: 2 at x = 1;

Min: −2 at x = −1, 8

9 Max: 8 at x = 4;

Min: −1 at x = −1, 1

11 (a) f (1) local minimum;

f (0), f (2) local maxima

(b) f (1) global minimum

f (2) global maximum

13 (a) f (2�∕3) local maximum

f (0) and f (�) local minima

(b) f (2�∕3) global maximum

f (0) global minimum

15 Global min = 2 at x = 1
No global max

17 Global min = 1 at x = 1
No global max

19 Global max = 2 at t = 0,±2�,…
Global min = −2 at t = ±�,±3�,…

21 Global min −4∕27 at x = ln(2∕3)

23 0.91 < y ≤ 1.00

25 0 ≤ y ≤ 2�

27 0 ≤ y < 1.61

29 Yes, at G; No

31 Global and local min: x = −2
Global and local max: x = 2
Inflection point: x = 1

33 Global and local max: x = 1
Global and local min: x = −2
Local min: x = 2
Inflection points: None

35 x = −b∕2a,

Max if a < 0, min if a > 0

37 r = C∕2

39 x = ±
√

a∕4

41 (a) D = C

(b) D = C∕2

43 27.273 on equipment;

72.727 on labor;

Max prod 415.955 items

45 (a) 0 ≤ y ≤ a

a∕2 a

Max rate

y (gm)

rate (gm/sec)

(b) y = a∕2

47 r = 3B∕(2A)

49 x = L∕2

51 (−1,−1∕2); (1, 1∕2)

53 (b) Yes, at x = 0
(c) Max: x = −2, Min: x = 2
(d) 5 > g(0) > g(2)

55 (a) f is always increasing; g is always de-

creasing

(b) 5

57 x =
(
∑n

i=1
ai
)

∕n

59 On 1 ≤ x ≤ 2, global minimum at x = 1

61 f (x) = 1 − x

63
√

2 ≤ x ≤
√

5

65 True

67 True

69 True

71 False

73 True

75 True

Section 4.2 (online problems)
77 (a) x = a∕2

(b) x = a∕2

Section 4.3
1 2500

3 9000

5 Square of side 16 cm

7 x = ℎ = 81∕3 cm

9 r = (4∕�)1∕3 cm, ℎ = 2(4∕�)1∕3 cm

11 11.270

13 (±1, 0) , (±1, 1∕2)

15 (a) 1∕(2e)
(b) (ln 2) + 1

17 2000 − (1200∕
√

5)

19 Sides: k∕4
Area: k2∕16

21 1∕2

23 (a) xy + �y2∕8
(b) 2x + y + �y∕2

(c) x = 100∕(4 + �), y = 200∕(4 + �)

25 (a) xy + �y2∕4 + �x2∕4
(b) �x + �y
(c) x = 0, y = 100∕�; x = 100∕�, y = 0

27 0, 10

29 10 + 5
√

3, 10
√

5

31 (1∕2, 1∕
√

2)

33 (−2.5,
√

2.5);
Minimum distance is 2.958

35 Radius 3.854 cm

Height 7.708 cm

Volume 359.721 cm3

37 13.13 mi from first smokestack

39 Min v =
√

2k; no max

41 Minimum: 0.148mg newtons

Maximum: 1.0mg newtons

43 Maximum revenue = $27,225
Minimum = $0

45 (a) q∕r months

(b) (ra∕q) + rb dollars

(c) C = (ra∕q) + rb + kq∕2 dollars

(d) q =
√

2ra∕k

47 0.8 miles from Town 1

49 65.1 meters

51 (a) x = e

(b) n = 3
(c) 31∕3 > �1∕�

53 Max slope = 1∕(3e) at x = 1∕3

55 (a) About $8 per unit

(b) About 30 units

57 (a) q = 6

2 4 6 8

50
100
150
200

C(q)

q (quantity)

C (cost)

(b) q = 6

59

C(q)∕q

q (quantity)

$/unit

61 (a) 10

(b) 9

63 (a)

200 400 600

1

2

3

Parasite
Drag

✛
Induced

Drag
✲

Total
Drag

❄

speed
(mph)

drag
(thousands
of pounds)
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(b) 160 mph or 320 mph; no; yes

(c) 220 mph

65 Approx. 75 kg

67 y = mg∕k

69 Max at x = 10

71 Optimum may occur at an endpoint

Section 4.4
1 (a)

❄

large a

❘

small a

x

(b) Critical point moves right

(c) x = a

3 (a)

❄

large a

❄

small a

x

(b) 2 critical points move closer to origin

(c) x = ±
√

1∕(3a)

5 (a)

❄

large a ❄

small a

x

(b) Nonzero critical point moves down to the

left

(c) x = 0, 2∕a

7 A has a = 1, B has a = 2, C has a = 5

9 (a) Larger |A|, steeper

(b) Shifted horizontally by B

Left for B > 0; right for B < 0
Vertical asymptote x = −B

(c)

−10

10

−10

10

x

y

A = 20, B = 0

✛ A = 2, B = 0

A = 2, B = 5

11 (a)

✻

large a

✒

small a

x

(b)

❄

large b

✒

small b x

(c) a moves critical point right;

b moves critical point up

(d) x = a

13 (a)

❄

large a

✻

small a

x

(b)

❄

large b

✲small b
x

(c) a moves one critical point up, does not

move the other;

b moves one critical point up to right,

moves the other right

(d) x = b∕3, b

15 (a)

❄

large a

❄

small a

x

(b)

✠

large b

❄

small b

x

(c) a moves critical points to the right;

b moves one critical point left, one up,

one right

(d) x = a, a ±
√

b

17 C has a = 1, B has a = 2, A has a = 3

19 (b) 4
(c)

m = 4, a = 0

m = 3, a = 1

✠
m = 0, a = 2

x

21 (a)

1 3

0.5

x

y

✠
b = 1

✠

b = 2

✠

b = 3

✻

b = 4

(b) (1∕b, 1∕be)

23 Two critical points: x = b, x = b∕(n + 1)

25 (a)

−10 10

−100

100
a = 1

a = 20

x

(b) −2 < a < 2

27 (a) x = −1∕b
(b) Local minimum

29 k > 0

31 (a) x = ea

(b) a = −1:

1 2 3

−1

1

x

a = 1:

1 2 3

−1

1

x

(c) Max at (ea−1, ea−1) for any a

35 f ′′(x) = a2e−ax + b2ebx; always positive

37 f ′(x) = a∕x − b; positive for x < a∕b, nega-

tive for x > a∕b

39 f ′′(x) = 12ax2 − 2b,
graph f ′′ is upward parabola with neg vert in-

tercept

41 (a) A: value for large negative x

B: value for large positive x

(c) (I) (8,−4)

(II) (−2, 5)

(III) (7, 0)

(IV) (2, 6).

43 (a) Local max: x = 1∕b
No local minima

Inflection point: x = 2∕b
(b) Varying a stretches or flattens the graph

vertically.

Incr b shifts critical, inflection points to

left; lowers max
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(c) Varying a

1 2

4

be
3

be
2

be
1

be

x

y

a = 1

a = 2

a = 3

a = 4

Varying b

1 2
x

b = 3

b = 2

b = 1

47 Ax3 + Cx, Two

49 y = 5(1 − e−bx)

51 y = e−(x−2)
2∕2

53 y = (2 + 2e)∕(1 + e1−t)

55 y = −2x4 + 4x2

57 y = (
√

2∕�) cos(�t2)

59 y = 2xe1−x∕3

61 (a) For a ≤ 0, all b; x = b ±
√

−a
(b) a = 1∕5, b = 3

63 (a)

A = B = 1

x

y

A = −B = 1

x

y

A = 2
B = 1

y

x

A = 2
B = −1

y

x

A = −2
B = −1

y

x

A = −2
B = 1

y

x

(b) U-shaped

(c) Incr (A > 0)

or Decr (A < 0)

(d) Max: A < 0, B < 0
Min: A > 0, B > 0

65 (a) Intercept: x = a
Asymptotes: x = 0,

U = 0
(b) Local min: (2a,−b∕4)

Local max: none

(c)

a 2a

(2a,−b∕4)

U

x

67 (a) +∞
(b) r = (2A∕B)1∕6 ; local minimum

(c) r = (2A∕B)1∕6

69 (a) Vertical intercept: W = Ae−e
b
, Horizon-

tal asymptote W = A

(b) No critical points, inflection point at t =
b∕c, W = Ae−1

(c)

A = 50, b = 2, c = 1

A = 50, b = 2, c = 5

A = 20, b = 2, c = 1

t

W

(d) Yes

71 Two critical points only if a and b have the

same sign.

73 f (x) = x3 + x

75 One possibility:

g(x) = ax3 + bx2, a, b ≠ 0

77 (b), (c)

Section 4.5
1 $5000, $2.40, $4

3 Below 4500

5 About $1.1 m, 70, $1.2 m

7 C(q) = 500+6q,R(q) = 12q, �(q) = 6q−500

9 C(q) = 5000 + 15q, R(q) = 60q,

�(q) = 45q − 5000

11 �(q) = 490q − q2 − 150
Max at q = 245

13 (a) $200
(b) $40,000

15 (a) q = 2500
(b) $3 per unit

(c) $3000

17 (a) Fixed costs

(b) Decreases slowly, then increases

19 Increased

21 (a) No

(b) Yes

23 L =
[

�pcK�∕w
]1∕(1−�)

25 (a) and (b)

x

Optimal point on r(x)

Line through origin
is tangent here

❄

❄

R(x)

r(x)

27 (a) C(q) = 0.01q3 − 0.6q2 + 13q
(b) $1

(c) q = 30, a(30) = 4
(d) Marginal cost is 4

29 (a)

10

5
✠

C = x + 2y = 10
✠

Q = 300
✠

Q = 200

✠

Q = 100

x

y

(c) 125

31 Cannot determine whether the profit will in-

crease or decrease

33 Maximum profit ≈ 13,000 units

35

C

R

x

y

37 (a)

Section 4.6
1 −0.32◦C∕min; −0.262◦C∕min

3 (a) 0
(b) −4.5
(c) −8

5 (a) �∕
√

9.8l
(b) Decr

7 9.6 joules/sec

9 0.9 cm2/min
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11 33.722 torr/min

13 −81∕R2

15 −4.8 l/min

17 0.211 units/sec

19 24meters3∕yr

21 0 atmospheres/hour

23 −1.440 atmospheres/hour

25 30 cm2/min

27 −7 cm2/sec

29 Moving closer at 4 mph

31 (a) CD −D2

(b) D < C

33 (a) (i) 5r $/yr

(ii) 5re0.02r $/yr

(b) 24.916 $/yr

35 (a) 0.218 m/sec

(b) 0.667 m/sec

37 0.038 meter∕min

39 2513.3 cm3/sec

41 (a) 2A∕r3−3B∕r4 ; units of force/units of dis-

tance

(b) k(2A∕r3 − 3B∕r4); units of force/units of

time

43 (a) �r4∕8�l; pos

(b) Increases P

45 −1000 ohms/min

47 (a) −92.8V −2.4 atm/cm3

(b) Decreasing at 0.0529 atm/min

49 (a) 94.248 m2∕min
(b) 0.0000267 m/min

51 (a) 80� = 251.327 sec

(b) V = 3�ℎ3∕25 cm3

(c) 0.0207 cm/sec

53 8∕� meters/min

55 0.253 meters/second

57 Between 12◦F/min and 21◦F/min

59 (a) z =
√

0.25 + x2

(b) 0.693 km/min

(c) 0.4 radians/min

61 1∕3

63 (a) ℎ(t) = 300 − 30t
0 ≤ t ≤ 10

(b) � = arctan((200 − 30t)∕150)
d�∕dt =

−
(

1

5

)(

1502

1502+(200−30t)2

)

(c) When elevator is at level of observer

65 dD∕dt = 2 ⋅ dR∕dt

67 y = f (x) = 2x + 1 and x = g(t) = 5t

69 True

71 (c)

Section 4.6 (online problems)
73 (1∕V )dV ∕dt

75 (a) 900

(b) 34 ships

(c) End of battle

(d) 30 ships

(e) y′(t) = kx; negative

(g) k = 2, 68 ships/hour

Section 4.7
1 Yes

3 Yes

5 No

7 No

9 Yes

11 No

13 1∕4

15 1.5

17 0

19 0

21 (1∕3)a−2∕3

23 −0.7

25 10∕9

27 0.75

29 Does not exist

31 Does not exist

33 7∕9

35 0

37 0

39 0.1x7

41 x0.2

43 −2

45 Positive

47 Negative

49 −21

51 0

53 0

55 none, no

57 ∞−∞, yes

59 ∞0, yes

61 0

63 0

65 0

67 0

69 1∕2

71 −2

73 0

75 Does not exist

77 e

79 ekt

81 e−�

83 5

85 2

87 −25∕2

89 1

91 −2

93 Limit of derivative does not exist

95 f (x) = x

97 (b)

Section 4.8
1 The particle moves on straight lines from

(0, 1) to (1, 0) to (0,−1) to (−1, 0) and back

to (0, 1)

3 Two diamonds meeting at (1, 0)

5 x = 3 cos t, y = −3 sin t, 0 ≤ t ≤ 2�

7 x = 2 + 5 cos t, y = 1 + 5 sin t,
0 ≤ t ≤ 2�

9 x = t, y = −4t + 7

11 x = −3 cos t, y = −7 sin t,
0 ≤ t ≤ 2�

13 Clockwise for all t

15 Clockwise: −
√

1∕3 < t <
√

1∕3

Counterclockwise: t < −
√

1∕3 or t >
√

1∕3

17 Clockwise: 2k� < t < (2k + 1)�
Counterclockwise: (2k − 1)� < t < 2k�

19 Line segment:

y + x = 4 , 1 ≤ x ≤ 3

21 Line y = (x − 13)∕3, left to right

23 Parabola y = x2 − 8x + 13, left to right

25 Circle x2 + y2 = 9, counterclockwise

27 dy∕dx = 3t4

29 x = −1

31 Speed = |t| ⋅
√

(4 + 9t2),
Particle stops when t = 0

33 Speed =

√

4 sin2 (2t) + cos2 t,

Particle stops when

t = (2n + 1)�∕2, for

any integer n

35 x = 4 + 4t
y = 8 + 12t

37

8 16 24 32
0

1
f (t)

t

x

8 16 24 32
0

1 g(t)

t

y

39 (a) Right of (2, 4)
(b) (−1,−3) to (2, 4)
(c) t < −2∕3

43 (I) = l2 , (II) = l3

45 (a)

x

y

(b) v ≈ 2.2
(c) v = 2.2363

47 (a) (5, 8)
(b) 3∕2

(c)
√

13

49 (a) (i) x = 2 + 3t, y = 1 + 9t

(ii) x = 3 − 4t, y = 4 − 12t
(b) y = −5 + 3x

51 (b) Starts/ends at (1, 0)
(c) Speed = 2�|1 − 2t|
(d) When t = 1∕2 at (0, 1)

53 (a) Increasing

(b) P to Q

(c) Concave down

55 (a) No
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(b) k = 1
(c) Particle B

57 (a) y +
1

2
= −

√

3

3
(x − �)

(b) t = �

(c) 0.291, concave up

59 (a) t = �∕4; at that time, speed =
√

9∕2
(b) Yes, when t = �∕2 or t = 3�∕2
(c) Concave down everywhere

61 Line traversed in the wrong direction

63 x = 2 cos t, y = 2 sin t, 0 ≤ t ≤
�

2

65 False

Section 4.8 (online problems)
69

x

y

1

1

71

−1 1

−1

1

x

y

Section 5.1
1 (a) Left sum

(b) Upper estimate

(c) 6

(d) Δt = 2
(e) Upper estimate ≈ 24.4

3 (a) 54 meters; upper

(b) 30 meters; lower

5 Between 140 and 150 meters

7 20 feet right

9 10 feet right

11 Change: 25 cm to the right

Total distance: 25 cm

13 Change: 15 cm to the right

Total distance: 17 cm

15 (a) b = 15
(b) 75 feet

17 (a) a = 20, b = 90, c = 12
(b) 660 feet

19 (a) 408

(b) 390

21 lower: 235.2 meters; upper: 295.0 meters

23 Lower est = 46 m

Upper est = 118 m

Average = 82 m

25 (a) 120, 240, 180 ft

(b) 180 ft

27 (a) 2; 15, 17, 19, 21, 23; 10, 13, 18, 20, 30

(b) 122; 162

(c) 4; 15, 19, 23; 10, 18, 30

(d) 112; 192

29 (a) Lower estimate = 5.25 mi

Upper estimate = 5.75 mi

(b) Lower estimate = 11.5 mi

Upper estimate = 14.5 mi

(c) Every 30 seconds

31 1∕5

33 0.0157

35 (a)

2.2

88

t (sec)

v (ft/sec)

(b) 96.8 ft

37 About 65 km from home

3 hours

About 90 km

39 (a) Up from 0 to 90 seconds; down from 100

to 190 seconds

(b) 870 ft

41 (a) A: 8 hrs

B: 4 hrs

(b) 100 km/hr

(c) A: 400 km

B: 100 km

43 (a)

5

50

v(t)

t

(b) 125 feet

(c) 4 times as far

45 20 minutes

47 Only true if car accelerates at a constant rate

49 f (x) = x2, [a, b] = [−2,−1]

51 True

53 False

Section 5.1 (online problems)
55 About 0.0635 miles or 335 feet

Section 5.2
1 (a) Right

(b) Upper

(c) 3

(d) 2

3 (a) Left; smaller

(b) 0, 2, 6, 1∕3

5 (a) 224

2 4 6 8

8

16

24

32

t

f (t)

(b) 96

2 4 6 8

8

16

24

32

t

f (t)

(c) About 200

2 4 6 8

8

16

24

32

t

f (t)

(d) About 136

2 4 6 8

8

16

24

32

t

f (t)

7 205.5

11 About 350

13 (a) Overestimate

(b) Overestimate

15 10.0989

17 3.406

19 6.111

21 (a) 300
(b) 280
(c) 540

23 (a) 438

(b) 928

(c) 592

25 (a) 13

(b) 1

27 (a) 16.25
(b) 15.75
(c) No

29 1

31 1.977

33 24.694

35 (a) 13
(b) −2
(c) 11
(d) 15

37 (a) −2
(b) −A∕2

39 0

41 35

43 (a)

−2 1

2

x

y
y = f (x)

A1

A2
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(b) 3.084
(c) 2.250

45 Positive

47 Left-hand sum = 378; Right-hand sum = 810

49 Left-hand sum = 109.5; Right-hand sum =

876

51 Left-hand sum = 77∕20; Right-hand sum =

57∕20

53 Left-hand sum = 81.25; Right-hand sum =

92.875

55 (a) (ln 1.5)0.5

1.5 21
x

lnx

(b) (ln 1.5)0.5 + (ln2)0.5

1.5 21
x

lnx

(c) Right: overestimate

left: underestimate

57 (a)

−� �

sin x

x

(b)

−� �

sin x

x

(c) 0

59 (a)

1 2

1 f (x)

x

(b) 1

(c) 1; same value

61 2∕125

63 ∫
3

0
2t dt

65 ∫
1∕2

0
(7t2 + 3) dt

67 ∫
4

1

√

t2 + t dt

69 ∫
4

0

√

t dt = 16∕3

71 ∫
2

1
(8t − 8) dt = 4

73 a = 1

75 a = 1, b = 5

77 Too many terms in sum

79 f (x) = −1, [a, b] = [0, 1]

81 False

83 False

85 True

87

10

1
f (x)

x

Section 5.2 (online problems)
89

a b

y

x

91 (c) n ≥ 105

Section 5.3
1 Dollars

3 Foot-pounds

5 Change in velocity; km/hr

7 Change in salinity; gm/liter

9 −14

11 ∫
5

2
6t + 4dt = 75

13 ∫
�∕2

0
cos t dt = 1

15 ∫
�∕4

−�∕4
1∕(cos2 t) dt = 2

17 6

19 e−2 − e−3

21 (a) cos t
(b) 1

23 (a) 2xex
2

(b) (i) 1.718

(ii) e − 1

25 75

27 25

29 Total amount = ∫
60

0
f (t) dt.

31 (a) About 3.6 acres

(b) About 6.9 acres

(c) About 5.25 acres

33 (a) 52 meters

(b) 33.333 meters below starting point

(c) Net change in position

35 40.3 j (or N-m)

37 (a) Upper estimate: 340 liters

Lower estimate: 240 liters

(b)

5 10 15

12
16
20
24

t

r(t)

39 $23,928.74

41 About $13,800

43 $300,000

45 45.8◦C.

47 741.6 liters

49 f (1) < f (0)

51 12 newton ⋅ meters

53 (iii) < (ii) < (i) < (iv)

55 (a) Falls

(b) Rises

(c) Falls

57 Amount oil pumped from well from 0 to t0

59 (a) Boys: black curve; girls: colored curve

(b) About 43 cm

(c) Boys: about 23 cm; girls: about 18 cm

(d) About 13 cm taller

61 (a) S(0) = 182,566 acre-feet; S(3) =
171,770 acre-feet

(b) Max in April; min in November

(c) Between June and July

63 −4.3

65 5; costs $5 mil more to plow 24 in than 15 in

67 0.4; cost increases by 0.4 million/inch after 24
in fallen

69 ∫
4

0
r(t) dt < 4r(4)

71 (II), (III), (I)

73 (III)<(II)<(I)

75
d

dx
(
√

x) ≠
√

x

77

1 2 3 4

50

t (hours)

velocity
(miles/hour)

Section 5.3 (online problems)
79 0.732 gals, 1.032 gals;

Better estimates possible

Section 5.4
1 10

3 9

5 2c1 + 12c2
2

7 2

9 2

11 (a) 8.5

(b) 1.7

13 4.389

15 0.083

17 7.799

19 0.172

21 ∫
1

0
x2 dx

23 ∫
3

2
cos(x) dx

25 (a) 4

(b) 16

(c) 12

27 ∫
3

0
f (x) dx =

1

2
∫

1

−1
f (x) dx + ∫

3

1
f (x) dx

29 (a) −2
(b) 6
(c) 1

31 4

33 2

35 2

37 −11

39 7

41 4



1137

43 (a) 13.183 ft
(b) 10 ft

45 (a) ∫
b

a
x dx = (b2 − a2)∕2

(b) (i) ∫
5

2
xdx = 21∕2

(ii) ∫
8

−3
x dx = 55∕2

(iii) ∫
3

1
5x dx = 20

47 10

49 42

51 (a) 0.375 thousand/hour

(b) 1.75 thousands

53 (a) 22◦C

(b) 183◦C

(c) Smaller

55 (a) Less

(b) 0.856

57 Lower 12, upper 15

59 Lower 12, upper 20

61

a b

f (x)

✻

❄
f (b) − f (a)

x

63

a b

f (x)

x

65 (a) Negative

(b) Negative

(c) Positive

(d) Negative

67 (a) (i) 1/4

(ii) 1/4

(iii) 0

(b) Not true

69 (a) 0.1574
(b) 0.9759

71 12

73 Not enough information

75 39

77

a b

✻

❄
F (b) − F (a)

F (x)

x

79 f (x) could have both positive and negative

values

81 Time should be in days

83 f (x) = 2 − x

85 True

87 False

89 False

91 False

93 False

95 True

97 True

99 False

101 (a) Does not follow

(b) Follows

(c) Follows

Section 6.1
1 (a) Increasing

(b) Concave up

3 1, 0,−1∕2, 0, 1

5

1

1

F (0) = 1

F (0) = 0

x

7

1

1

x
F (0) = 0

F (0) = 1

9

1

1

x

F (0) = 1

F (0) = 0

11

1

1

F (0) = 1

F (0) = 0

x

13 62

15 (a) F (2) = 6
(b) F (100) = F (0)

17 (a) −16
(b) 84

19 c = 10

21 c = 2

23 52.545

25 82, 107, 119

27 (0, 1); (2, 3); (6,−4); (8, 0)

4 8

(0, 1)

(2, 3)

(6,−4)

(8, 0)
x

F (x)

29 (a) 0; 3000; 12,000; 21,000; 27,000; 30,000
(b)

10 20 30 40 50

10,000

20,000

30,000

x

y

31 (a) −1 < x < 1
(b) x < 0

33 x1 local min;

x2 inflection pt;

x3 local max

x1 x2 x3

F (x)

x

35 x1 local max;

x2 inflection pt;

x3 local min

x1

x2

x3

F (x)

x

37 (a) f (3) = 1; f (7) = 0
(b) x = 0, 5.5, 7
(c)

1 2 3 4 5 6 7−1

1

2

3

x

y

39 (b) Maximum in July 2016

Minimum in Jan 2017

(c) Increasing fastest in May 2016

Decreasing fastest in Oct 2016

41 Statement has f (x) and F (x) reversed

43 f (x) = 1 − x

45 True

Section 6.1 (online problems)
47 Maximum = 6.17 at x = 1.77

49

t1 t2 t3 t4 t5

−2
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Section 6.2
1 ∫ q(x) dx = p(x) + C

3 (II) and (IV) are antiderivatives

5 (III), (IV) and (V) are antiderivatives

7 5t2∕2

9 t3∕3 + t2∕2

11 ln |z|

13 sin t

15 y5∕5 + ln |y|

17 −cos t

19 5x2∕2 − 2x3∕2∕3

21 t4∕4 − t3∕6 − t2∕2

23 x4∕4 − x2∕2 + C

25 2t3∕2∕3 + C

27 z2∕2 + ez + C

29 x4 − 7x + C

31 2t − cos t + C

33 7 tan t + C

35 F (x) = x2

(only possibility)

37 F (x) = 2x + 2x2 + (5∕3)x3

(only possibility)

39 F (x) = x3∕3
(only possibility)

41 F (x) = − cosx + 1
(only possibility)

43 (5∕2)x2 + 7x + C

45 2t + sin t + C

47 3ex − 2cosx + C

49 (5∕3)x3 + (4∕3)x3∕2 + C

51 16
√

x + C

53 ex + 5x + C

55 (2∕5)x5∕2 − 2 ln |x| + C

57 36

59 −(
√

2∕2) + 1 = 0.293

61 3e2 − 3 = 19.167

63 1 − cos 1 ≈ 0.460

65 16∕3 ≈ 5.333

67 True

69 False

71 False

73 False

75 False

77 (a) a2 + a3∕3 − 4∕3
(b) 2a + a2

(c) Original integrand

79 (a) ln 10 − ln a
(b) −1∕a
(c) Negative of integrand

81 9

83
√

3 − �∕9

85 (a) 253∕12
(b) −125∕12

87 8∕3

89 6

91 16

93 c = 3∕4

95 2

97 17

99 (a) Forward for t < 3

Backward for t > 3
(b) Farthest forward: t = 3

Farthest backward:

no upper bound

(c) s(t) = 6t − t2

101 3.92 × 1010 N

103 (a) 1.125 kw∕hr

(b) 4 pm

(c) 12 kw-hr

(d) 2 kw

105 26

107 (a) 5
(b) 14
(c) 12

109 (III)

111 Cannot integrate numerator and denominator

separately

113 F (x) = x4; G(x) = x4 − 8

115 True

117 True

119 False

121 True

123 True

Section 6.2 (online problems)
125 −104∕27

127 1.257

Section 6.3
3 y = x2 + C

5 y = x4∕4 + x5 + C

7 y = sin x + C

9 y = x3 + 5

11 y = ex + 6

13 80.624 ft∕sec downward

15 10 sec

17 (a) R(p) = 25p − p2

(b) Increasing for p < 12.5
Decreasing for p > 12.5

19 (a) a(t) = −9.8 m/sec2

v(t) = −9.8t+ 40 m/sec

ℎ(t) = −4.9t2 + 40t + 25 m

(b) 106.633 m; 4.082 sec

(c) 8.747 sec

21 (a) 32 ft∕sec2

(b) Constant rate of change

(c) 5 sec

(d) 10 sec

(e)

5

Highest
point

10

Ground

−160

160
v(t)

A
t (sec)

velocity (ft/sec)

(f) Height = 400 feet

(g) v(t) = −32t + 160
Height = 400 feet

23 5∕6 miles

25 −33.56 ft/sec2

27 (a) y = − cosx + 2x + C

−2� −� 2��

−15

−5

−10

10

15

5

x

y

C = −20

C = −15

C = −10

C = −5
C = −1.99
C = 0

C = 5

C = 10

C = 15

C = 20

(b) y = − cosx + 2x − 1.99

29 (a) 80 ft/sec

(b) 640 ft

31 128 ft/sec2

33 10 ft; 4 sec

35 Positive, zero, negative,

positive, zero

37 If y = cos(t2), dy∕dt ≠ − sin(t2)

39 dy∕dx = 0

41 dy∕dx = −5 sin (5x)

43 True

45 True

47 False

49 True

51 True

Section 6.3 (online problems)
53 (a) t = s∕( 1

2
vmax)

55 (a) First second: −g∕2
Second: −3g∕2
Third: −5g∕2
Fourth: −7g∕2

(b) Galileo seems to have been correct

Section 6.4
3 (a) Si(4) ≈ 1.76

Si(5) ≈ 1.55
(b) (sin x)∕x is negative on that interval

5 f (x) = 5 + ∫
x

1
(sin t)∕t dt

7

x

F (x)

9

x

F (x)

11 cos(x2)

13 (1 + x)200

15 arctan(x2)

17 Decreasing

19 Increasing

21 Concave up x < 0, concave down x > 0

23 F (0) = 0
F (0.5) = 0.041
F (1) = 0.310
F (1.5) = 0.778
F (2) = 0.805
F (2.5) = 0.431

25 Max at x =
√

�;

F (
√

�) = 0.895

27 500
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29 (a) 0
(b) −2
(c) 1 ≤ x ≤ 6
(d) 8

31 (a) F ′(x) = 1∕(ln x)
(b) Increasing, concave down

33 −3.905

35 −1.4; exact

37 −8, an overestimate; or −6, an underestimate

39 cos(sin2 t)(cos t)

41 4xex
4

43 e−x∕
√

�x

45 3x2e−x
6
− e−x

2

47 (a) −5
(b) 0
(c) 12
(d) −5

49 F (x) is non-decreasing; min at x = −2

51 F (x) = ∫
x

0
t2dt

53 True

55 True

57 True

Section 6.4 (online problems)
59 Increasing; concave up

61 (a) R(0) = 0, R is an odd function.

(b) Increasing everywhere

(c) Concave up for x > 0, concave down for

x < 0.

(d)

−10 10

−35

35
R(x)

x

(e) 1∕2

Section 7.1
1 (a) (ln 2)∕2

(b) (ln 2)∕2

3 (1∕3)e3x + C

5 −e−x + C

7 −0.5 cos(2x) + C

9 cos(3 − t) + C

11 (r + 1)4∕4 + C

13 (1∕18)(1 + 2x3)3 + C

15 (1∕6)(x2 + 3)3 + C

17 (1∕5)y5 + (1∕2)y4 + (1∕3)y3 + C

19 (1∕3)ex
3+1 + C

21 −2
√

4 − x + C

23 −10e−0.1t+4 + C

25 −(1∕8)(cos � + 5)8 + C

27 (1∕7) sin7 � + C

29 (1∕35) sin7 5� + C

31 (1∕3)(ln z)3 + C

33 t + 2 ln |t| − 1∕t + C

35 (1∕
√

2) arctan(
√

2x) + C

37 2 sin
√

x + C

39 2
√

x + ex + C

41 (1∕2) ln(x2 + 2x + 19) + C

43 ln(ex + e−x) + C

45 (1∕3) cosh 3t + C

47 (1∕2) sinh(2w + 1) + C

49
1

3
cosh3 x + C

51 (�∕4)t4 + 2t2 + C

53 sin x2 + C

55 (1∕5) cos(2 − 5x) + C

57 (1∕2) ln(x2 + 1) + C

59 0

61 1 − (1∕e)

63 2e(e − 1)

65 2(sin 2 − sin 1)

67 40

69 ln 3

71 14∕3

73 (2∕5)(y + 1)5∕2 − (2∕3)(y + 1)3∕2 + C

75 (2∕5)(t + 1)5∕2 − (2∕3)(t + 1)3∕2 + C

77 (2∕7)(x−2)7∕2 + (8∕5)(x−2)5∕2 + (8∕3)(x−
2)3∕2 + C

79 (2∕3)(t + 1)3∕2 − 2(t + 1)1∕2 + C

81 p(x) = 4x3; other answers possible

83 p(x) = cos x; other answers possible

85 ln(1 + et) + C

87 t = s2

89 Let t = � − x

91 1∕w2

93 e11 − e7

95 3

97 218∕3

99 (g(x))5∕5

101 − cos g(x) + C

103 k = 0.25; n = 7

105 k = −1 n = 0.5

107 w = sin t, k = 1, n = −1

109 w = −x2, k = −1∕2

111 w = 0.5r, k = 2

113 w = 5t, k = 1∕(5e4)

115 (a) Yes; −0.5 cos(x2) + C
(b) No

(c) No

(d) Yes; −1∕(2(1 + x2)) + C
(e) No

(f) Yes; − ln |2 + cosx| + C

117 ln 3

119 e3(e6 − 1)∕3

121 3 ln 3 − 2

123 3�a2∕8

127 (a) 3∕2
(b) 3
(c) 3∕2

129 0

131 (a) x4 + 2x2 + C
(b) (x2 + 1)2 + C
(c) Both correct but differ by a constant

133 w = x2

k = 0.5, a = 4, b = 25 or

k = −0.5, a = 25, b = 4

135 w = 6x
√

x, k = 1∕9, a = 6, b = 162

137 7.5

139 12.696

141 One possible answer:

f (x) = sin x, g(x) = cosx.

143 y = − ln cosx + x + 1

145 (a) ∫
60

0
f (t) dt

(b) ∫
1

0
f (60T ) 60 dT

147 (a) I C(t) = 1.73t + 339

II C(t) = 1.24t + 0.015t2 + 339

III C(t) = 280e0.005t + 59
(b) I 425.5 ppm

II 438.5 ppm

III 418.527 ppm

149 (a) 8.092 billion, 8.549 billion

(b) 8.096 billion

151 (a) Incr: 0 < t < 1
Decr: 1 < t < 2
Max: t = 1 min

(b) 2∕� = 0.637 m

153 (a) 18,812.5 cm3

(b) 94.063 cm3/hr

(c) 83.125 cm3/hr

(d) 40,629.167 cm3

155 (a) E(t) = 1.4e0.07t

(b) 0.2(e7 − 1) ≈ 219
million megawatt-hours

(c) 1972

(d) Graph E(t) and estimate t such that

E(t) = 219

157 Integrand needs extra factor of f ′(x)

159 Change limits of integration for substitution in

definite integral

161 ∫ sin(x3 − 3x)(x2 − 1) dx

163 False

Section 7.1 (online problems)
165 Substitute w = sin x

167 Substitute w = sin x, w = arcsin x

169 Substitute w = x + 1, w = 1 +
√

x

171 k = 1∕ ln 2, n = −1, w0 = 4, w1 = 35

173 a = 3, b = 11, A = 0.5, w = 2t − 3

175 25

177 (a) r(t)Δt

(b)
∑n−1

i=0
r(ti)(5∕n),

∫
5

0
r(t) dt

(c) 1000(e0.1 − 1) ≈ 105.17 gallons

(d) 1000e0.02t + 2000

179 −
1

k
ln(

1

2
(et

√

gk + e−t
√

gk)) + ℎ0

Section 7.2
1 (a) x3ex∕3 − (1∕3) ∫ x3exdx

(b) x2ex − 2 ∫ xexdx

3 −t cos t + sin t + C

5
1

5
te5t −

1

25
e5t + C

7 −10pe(−0.1)p − 100e(−0.1)p + C

9 (1∕2)x2 ln x − (1∕4)x2 + C

11 (1∕6)q6 ln 5q − (1∕36)q6 + C

13 −(1∕2) sin � cos � + �∕2 + C

15 t(ln t)2 − 2t ln t + 2t + C

17 (2∕3)y(y + 3)3∕2

− (4∕15)(y + 3)5∕2 + C

19 −(� + 1) cos(� + 1) + sin(� + 1) + C

21 −x−1 ln x − x−1 + C

23 −2t(5 − t)1∕2 − (4∕3)(5 − t)3∕2

− 14(5 − t)1∕2 + C

25 −(2∕3)y(1 − y)3∕2 − (4∕15)(1 − y)5∕2 + C
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27 w arcsinw +
√

1 −w2 + C

29
1

2
x2 arctan x2 −

1

4
ln(1 + x4) + C

31 (1∕3)x3 sinx3 + (1∕3) cosx3 + C

33 (x − 1) sinh x − coshx + C

35
1

3
�3 sin �3 +

1

3
cos �3 + C

37 −(1∕x)e1∕x + e1∕x + C

39 cos 5 + 5 sin 5 − cos 3 − 3 sin 3 ≈ −3.944

41 (9∕2) ln 3 − 2 ≈ 2.944

43 6 ln 6 − 5 ≈ 5.751

45 (1∕2)(�∕2 − 1) ≈ 0.285

47 0.386, 2 ln 2 − 1

49 p(x) = x; other answers possible

51 p(x) = x2; other answers possible

53 w = 4 − 5x, k = 1∕10

55 1 − 3e−2

57 �∕2 − 1

59 4 ln 4 − 3 ln 3 − 1

61 (1∕2)� − (1∕4) sin 2� + C

63 (1∕2)ex(sin x − cosx) + C

65 (1∕2)xex(sin x − cos x) +
(1∕2)ex cosx + C

67 (a) k − ke−2∕k

(b) k2 − (k2 + 2k)e−2∕k

69 xf ′(x) − f (x) + C

71 Integrate by parts choosing

u = xn, v′ = cos ax

73 Integrate by parts choosing u = cosn−1 x,

v′ = cosx

75 125

77 f (x) = x3, g(x) = (1∕3) cosx

79 ℎ(x) − 0.5g(x) + C

81 (a) −a2e−a − 2ae−a − 2e−a + 2
(b) Increasing

(c) Concave up

83 (a) 6(2 ln 2 − 1) = 2.318 kg

(b) 0.182 kg

85 ℎ(x) − g(x) + C

87 Li(x) ln x − x + C

89 Write arctan x = (1)(arctan x)

91 ∫ �2 sin � d�

93 ∫ ex sin xdx

95 True

Section 7.2 (online problems)
97 Approximately 77

99 (a) −(1∕a)T e−aT + (1∕a2)(1 − e−aT )
(b) limT→∞ E = 1∕a2

Section 7.3
1 No formula

3 IV-17; n = 4

5 No formula

7 V-26; a = 4, b = −1 or a = −1, b = 4

9 VI-31, then VI-29; a = 3

11 No formula

13 V-25; a = 3, b = 4, c = −2

15 (1∕6)x6 ln x − (1∕36)x6 + C

17 −(1∕5)x3 cos 5x + (3∕25)x2 sin 5x +
(6∕125)x cos 5x − (6∕625) sin 5x + C

19 (1∕7)x7 + (5∕2)x4 + 25x + C

21 −(1∕4) sin3 x cosx
− (3∕8) sinx cosx + (3∕8)x + C

23 ((1∕3)x2 − (2∕9)x + 2∕27)e3x + C

25 ((1∕3)x4 − (4∕9)x3 + (4∕9)x2 − (8∕27)x
+ (8∕81))e3x + C

27 (1∕
√

3) arctan(y∕
√

3) + C

29 (1∕4) arcsin(4x∕5) + C

31 (5∕16) sin 3� sin 5�
+ (3∕16) cos 3� cos 5� + C

33
1

2

sinx

cos2 x
+

1

4
ln
|

|

|

sin x+1

sin x−1

|

|

|

+ C

35 (1∕34)e5x(5 sin 3x − 3 cos 3x) + C

37 −(1∕2)y2 cos 2y + (1∕2)y sin 2y
+ (1∕4) cos 2y + C

39
1

21
(tan 7x∕cos2 7x) + 2

21
tan 7x + C

41 −
1

2 tan 2�
+ C

43
1

2
(ln |x + 1| − ln |x + 3|) + C

45 −(1∕3)(ln |z| − ln |z − 3|) + C

47 arctan(z + 2) + C

49 −(1∕3) sin2 x cosx − (2∕3) cosx + C

51
1

5
cosh5 x −

1

3
cosh3 x + C

53 −(1∕9)(cos3 a�) + (1∕15)(cos5 a�) + C

55
1

3
(1 −

√

2

2
)

57 9∕8 − 6 ln 2 = −3.034

59 1∕2

61 �∕12

63 0.5398

65 (2∕5�)(2 − e−3� ) = 0.255 cm

67 k = −1∕4, w = 2x + 1, n = 3

69 Form (i) with a = −1∕6, b = −1∕4, c = 5

71 Form (iii) with a = 1, b = −5, c = 6, n = 7

73 a = 5, b = 4, � = 2

77 (a) r′(t) = t∕(t2 + 1)3∕2 > 0; r(t) increases

from 0 to 1

(b) Increasing, concave up

(c) v(t) = t − ln |t +
√

t2 + 1|

79 If a = 3, denominator factors; answer involves

ln, not arctan

81 ∫ sinx cosx dx = (sin2 x)∕2 + C

83 ∫ 1∕
√

2x − x2 dx

85 True

87 False

Section 7.3 (online problems)
89 (a) 0

(b) V0∕
√

2
(c) 156 volts

Section 7.4
1 (1∕6)∕(x) + (5∕6)∕(6 + x)

3 1∕(w − 1) − 1∕w − 1∕w2 − 1∕w3

5 −2∕y + 1∕(y − 2) + 1∕(y + 2)

7 1∕(2(s − 1)) − 1∕(2(s + 1)) − 1∕(s2 + 1)

9 −2 ln |5 − x| + 2 ln |5 + x| + C

11 ln |y − 1| + arctan y −
1

2
ln |
|

y2 + 1|
|

+ C

13 ln |s| − ln |s + 2| + C

15 ln |x − 2| + ln |x + 1| + ln |x − 3| +K

17 2 ln |x − 5| − ln |
|

x2 + 1|
|

+K

19 x3∕3 + ln |x + 1| − ln |x + 2| + C

21 (1∕2) arcsin(2x∕3) + C

23 arcsin(x − 2) + C

25 (a) Yes; x = 3 sin �
(b) No

27 w = 3x2 − x − 2, k = 2

29 a = −5∕3, b = 4∕5, c = −2∕15, d = −3∕5

31 (a) 2 ln |x| + ln |x + 3| + C

33 x = (4 tan �) − 3

35 w = (x + 1)2

37 w = 1 − (z − 1)2

39 w = (� − 2)2 − 4

41 ln |x + 2| − ln |x + 3| + C

43 − ln |x − 1| + 2 ln |x − 2| + C

45 (ln |x + 1| − ln |x + 4|)∕3 + C

47 −4 ln |x − 1| + 7 ln |x − 2| + C

49 ln |x| − (1∕2) ln |
|

x2 + 1|
|

+ arctan x +K

51 y − 5 arctan(y∕5) + C

53 2 ln |s + 2| − ln |
|

s2 + 1|
|

+ 4 arctan s +K

55 (1∕3)(ln |ex − 1| − ln |ex + 2|) + C

57 −(
√

1 + x2)∕x + C

59 −
√

1 − 4x2∕x − 2 arcsin(2x) + C

61 (1∕6) ln |(
√

9 − 4x2−3)∕(
√

9 − 4x2+3)|+C

63 −(1∕4)
√

4 − x2∕x + C

65 (1∕16)(x∕
√

16 − x2) + C

67 −(x2 + 4)3∕2∕(12x3) + C

69 5 ln 2

71 �∕12 −
√

3∕8

73 ln(1 +
√

2)

75 (ln |1 + x| − ln |1 − x|)∕2 + C

77 ln |x| + ln |
|

x2 + 1|
|

+K

79 (a) (ln |x − a| − ln |x − b|)∕(a − b) + C
(b) −1∕(x − a) + C

81 (a) (ln
|

|

|

x −
√

a
|

|

|

− ln
|

|

|

x +
√

a
|

|

|

)∕(2
√

a) + C

(b) −1∕x + C

(c) (1∕
√

−a) arctan(x∕
√

−a) + C

83 1∕(x − 1) term missing

85 f (x) = 1∕(1 + x2)

87 P (x) = x, Q(x) = x2 + 1

89 False

91 (e)

Section 7.4 (online problems)
93 A = 3.5, B = −1.5, w = ex, dw = exdx, r =

1, s = 7

95 m(t) = et
2∕2

Section 7.5
1 (a) Underestimate

a b

x

(b) Overestimate
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a b

x

(c) Overestimate

a b
x

(d) Underestimate

a b

x

a b
x

3 (a) Underestimate

a b

x

(b) Overestimate

a b
x

(c) Underestimate

a b

x

(d) Overestimate

a b
x

a b
x

5 (a) Underestimate

a b
x

(b) Overestimate

a b
x

(c) Overestimate

a b
x

(d) Underestimate

a b
x

a b
x

7 (a) 27
(b) 135
(c) 81

(d) 67.5

9 (a) LEFT(2)= 12;

RIGHT(2)= 44
(b) LEFT(2) underestimate;

RIGHT(2) overestimate

2 4

f (x) = x2 + 1

Area shaded
= LEFT(2)

x

2 4

f (x) = x2 + 1

Area shaded
= RIGHT(2)

x

11 (a) �∕2 = 1.571
(b) �∕2 = 1.571
(c) �∕2 = 1.571

(d)
√

2�∕2 = 2.221

(e) (2
√

2 + 1)�∕6 = 2.005
Note that this integral can be computed

exactly: ∫
�

0
sin � d� = 2. Simpson’s rule gives

an excellent approximation.

13 (a) 32

(b) 544

(c) 288

(d) 164

(e) 205.333

15 18.1

17 4.863

19 I, IV

21 (a) −11.2, under

(b) −3.7, under

(c) −3.05, over

23 0.1649

25 LEFT(6) = 31
RIGHT(6) = 39
TRAP(6) = 35

27 (a) 12

(b) SIMP(2) = 12
SIMP(4) = 12
SIMP(100) = 12

29 (a) RIGHT = 0.368, LEFT = 1, TRAP =

0.684, MID =0.882, ∫
1

0
e−x

2∕2dx = 0.856
(b) LEFT = 0.368, RIGHT = 1, TRAP =

0.684, MID =0.882, ∫
0

−1
e−x

2∕2dx =
0.856

31 (a) TRAP(5) = 0.3846

(b) Concave down

(c) 0.3863

33 MID: over; TRAP: under

35 TRAP: over; MID: under

37 (a) f (x)
(b) f (x)

39 (a) Increasing; concave down

41 (a) |Err (ℎ)| < | Err (g)| < | Err (f )|
(b) |Err (f )| < | Err (g)| < | Err (ℎ)|
(c) 0 = |Err (f )| < | Err (g)| < | Err (ℎ)|

43 (a) 1
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(d) Ratio of errors:

LEFT = 1.78,

RIGHT = 2.18,

TRAP = 3.96,

MID = 3.93,

SIMP = 15.91

45 (a) 0

(c) MID(n) = 0 for all n

47 Large |f ′
| gives large error

49 (a) 9.5 years

(b) 8.33 hours

(c) 5 minutes

51 (a) 7.19 �C/sec

(b) 70.05 �C

(c) 1.47 �C/sec per sec

(d) 7.005�C/sec.

57 Midpoint rule exact for linear functions

59 If f concave down, TRAP(n) ≤ MID(n)

61 f (x) = 1 − x2

63 True

65 False

67 False

69 True

71 False

73 False

75 True

Section 7.5 (online problems)
77 (a) II

(b) III

(c) V

(d) V

(e) III

Section 7.6
1 (a) Not improper

(b) Improper

(c) Not improper

(d) Improper

(e) Improper

(f) Improper

3 2.5

e−0.4x

x

5 (a)

1 2 3 4−1−2−3−4

1

x

(b) 1.49365, 1.76416, 1.77241,

1.77245, 1.77245
(c) 1.77245

7 Converges to 1∕3

9 2

11 e−2∕2

13 Does not converge

15 �∕5

17 Diverges

19 23∕4

21 Does not converge

23 Does not converge

25 Converges to 2
√

2

27 �∕8

29 Does not converge

31 2 − 2e−
√

�

33 �∕2

35 (1∕2) ln(5∕3)

37 Converges; 3

39 Diverges

41 f (x) = ex

43 1

45 k2

47 1∕2

49 2∕27

51 500 m3

53 Slight exaggeration

57 1∕3

59 f (x) = g(x) = 1∕x

61 f (x) = 1∕x

63 False

65 True

67 True

69 False

71 False

73 True

75 False.

Section 7.6 (online problems)
77 (a) Γ(1) = 1

Γ(2) = 1
(c) Γ(n) = (n − 1)!

Section 7.7
1 Converges; behaves like 1∕x2

3 Diverges; behaves like 1∕x

5 Diverges; behaves like 1∕x

7 Converges; behaves like 5∕x3

9 Converges; behaves like 1∕x2

11 Inconclusive

13 Converges

15 Does not converge

17 Converges

19 Does not converge

21 Converges

23 Converges

25 Converges

27 Converges

29 Does not converge

31 (a) Converges

(b) Either

(c) Converges

(d) Either

(e) Converges

(f) Diverges

(g) Converges

33 Converges for p > 1
Diverges for p ≤ 1

35 (a) ∫
∞

3
e−x

2
dx ≤ e−9∕3

(b) ∫
∞

n
e−x

2
dx ≤ (1∕n)e−n

2

37 (a) Divergent

(b) Incorrect for large b

39 Cannot compare, first integrand sometimes

larger than second

41 Comparison test not applicable

43 f (x) = 3∕(2x2 + 1)

45 True

47 True

49 False

Section 8.1
1 (a)

∑

2xΔx
(b) 9

3 (a)
∑√

yΔy
(b) 18

5 15

7 9

9 9�

11 16

13 34∕3

15 ∫
9

0
4� dx = 36� cm3

17 ∫
6

0
�((6 − x)2∕9) dx = 8� cm3

19 ∫
7

0
20
√

72 − y2 dy = 245� m3

21 ∫
2

0
(2 − y)2dy = 8∕3 m3

23 ∫
15

0
6dx = 90 cm3

25 (a) 0.5
(b) 3.5

(c)
√

87.75
(d) 137.837

27 Semicircle r = 9

29 Triangle; b, ℎ = 5, 7

31 (a) ∫
3

0
(3x − x2) dx = 4.5

(b) ∫
9

0
(
√

y − (y∕3)) dy = 4.5

33 (a) ∫
2

0
x2 dx + ∫

6

2
(6 − x) dx = 2.667 + 8 =

10.667
(b) ∫

4

0
((6 − y) −

√

y) dy = 10.667

35 0.1087

37 Hemisphere, r = 12

39 Sphere, r = 8

41 Hemisphere r = 2

43 (a) 0.2.

(b) 0.2�
(

16 − ℎ2
)

45 36� = 113.097 m3

47 (a) 3Δx;

∫
4

0
3 dx = 12 cm3

✻

❄

3 cm

✛

✛Δ x ✛

✛

2 cm

(b) 8(1 − ℎ∕3)Δℎ;

∫
3

0
8(1 − ℎ∕3) dℎ = 12 cm3
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✻

❄
Δ ℎ ✛

✛w

✛

✛

4 cm

✛

✛

2 cm

49 ∫
150

0
1400(160 − ℎ) dℎ = 1.785 ⋅ 107 m3

51 36� = 113.097 m3

53 III

55 IV

57 Change to ∫
10

−10
�
(

102 − x2
)

dx

59 Region between positive x-axis, positive y-

axis, and y = 1 − x

61 False

63 True

65 True

Section 8.2
1 (a) 4� ∫

3

0
x2 dx

(b) 36�

3 (a) ∫
9

0
�ydy

(b) 40.5�

5 �∕5

7 256�∕15

9 �(e2 − e−2)∕2

11 �∕2

13 2�∕15

15 V = ∫
6

0
�y2∕9 dy = 8�

17 V = ∫
ln 2

0
�
(

4 − e2y
)

dy = 4� ln 2 − 3�∕2

19 2.958

21 2.302

23 �

25
√

41

27 ≈ 24.6

29 V = ∫
5

0
�((5x)2 − (x2)2) dx

31 V = ∫
5

0
�((4 + 5x)2 − (4 + x2)2) dx

33 V = ∫
2

0
[�(9 − y3)2 − �(9 − 4y)2] dy

35 V = ∫
9

0
[�(2 + 1

3
x)2 − �22] dx

37 3.820

39 (a) 8a∕3
(b) 32a2�∕5

41 V = (16∕7)� ≈ 7.18

x

y
(y = −1)

❘

Radius = 1 + x3

43 V = (�2∕2) ≈ 4.935

x

y

z

❥

Radius = sin x

45 4�∕5

47 8∕15

49
√

3∕8

51 V ≈ 42.42

53 V = (e2 − 1)∕2

55 V = ∫
4

0
�
(

3y2∕4 − 12y + 36
)

dy = 64�

57 V = ∫
1

0
�
(

(2 − y)4 − y4
)

dy = 6�

59 (a) 16�∕3
(b) 1.48

61 V = 32�a3∕105

63 40, 000LH3∕2∕(3
√

a)

65 2267.32 cubic feet

67 6.722

69 ∫
4

0

√

1 + (4 − 2x)2 dx

71 (a) (�∕2)(a2 − x2) Δx
(b) (�∕2) ∫

a

−a
(a2 − x2) dx

(c) 2�a3∕3

73 64
√

3∕15

75 k = 6

77 122.782 m

79 80

81 (a) 3�
(c) 2

83 (a) Change in x is 27
Change in y is 54

(b) (20, 65)
(c) 61

85 V = 2�

87 2595 cubic feet

89 y = 0.8x5∕4

91 ∫
3

1

√

1 +
(

4x3 − 24x2 + 36x + 3
)2
dx

93 ∫
5

−5

√

1 +
(

(ex∕a − e−x∕a)∕2
)2
dx

95 Change to ∫
�∕4

0

√

1 + cos2 x dx

97 Change to ∫
1

0

√

(−2� sin(2�t))2 + (2� cos(2�t))2 dt

99 Region bounded by y = 2x, x-axis, 0 ≤ x ≤ 1

101 f (x) = x2

103 False

105 False

Section 8.2 (online problems)
107 (c) f (x) =

√

3x

Section 8.3
1 (−1∕2,

√

3∕2)

3 (3,−
√

3)

5 (
√

2, �∕4)

7 (2
√

2,−�∕6)

9 (b)

−2 −1 1 2

−2

−1

1

2

x

y

(c) Cartesian:

(
√

3∕4, 1∕4);

(−
√

3∕4, 1∕4) or polar:

r = 1∕2, � = �∕6 or 5�∕6
(d)

−2 −1 1 2

−2

−1

1

2

x

y

11 Looks the same

13 Rotated by 90◦ clockwise

15 �∕4 ≤ � ≤ 5�∕4;

0 ≤ � ≤ �∕4 and 5�∕4 ≤ � ≤ 2�

17
√

8 ≤ r ≤
√

18 and �∕4 ≤ � ≤ �∕2

19 0 ≤ � ≤ �∕2 and 1 ≤ r ≤ 2∕ cos �

21 −1

23
√

2(e� − e�∕2)

25 (a)

r = 4

r = 3

� =
�

4
� =

3�

4

(b) 7�∕4
(c) 2 + 7�∕2

27

−1 1

−1

1

x

y

29 4�3

31 (a) r = 1∕ cos �; r = 2

(b)
1

2
∫
�∕3

−�∕3
(22 − (1∕ cos �)2) d�

(c) (4�∕3) −
√

3

33 2�a

35 (5�∕6) + 7
√

3∕8

37 (a)

1 2

1

2
r = 2 sin �

r = 2 cos �

� = �∕4

x

y
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(b) (�∕2) − 1

39 (a)

−2 2

−1.5

1.5

r =
√

2

r2 = 4 cos 2�

x

y

(b) 2
√

3 − 2�∕3

41 Horiz: (±1.633,±2.309); (0, 0)
Vert: (±2.309,±1.633); (0, 0)

43 (a) y = (2∕�)x + (2∕�)
(b) y = 1

45 21.256

49 2.828

51 Points are in quadrant IV

53

r = 3 sin 2�

x

y

55 r = 100

57 r = 1 + cos �

Section 8.4
1 1 − e−10 gm

3 (a)

N
∑

i=1

(2 + 6xi)Δx

(b) 16 gm

5 (b)
∑N

i=1
[600 +

300 sin(4
√

xi + 0.15)](20∕N)
(c) ≈ 11513

7 2 cm to right of origin

9 45

11 (a)

2

✻

❄
y

3

Δy

x

y

(b) ∫
3

0
2(4 + y)dy

(c) 33 g

13 257,296

15 ∫
5

0
200�f (r)rdr

17 30 gm

19 (a) 3 miles

(b) 282,743

21 (a) ∫
5

0
2�r(0.115e−2r)dr

(b) 181 cubic meters

23 x = 2

25 �∕2

27 (a) Right

(b) 2∕(1 + 6e − e2) ≈ 0.2

29 (a) 2∕3 gm

(b) Greater than 1∕2

✲ ✛
Δx

1

x2

x

y

(c) x = 3∕4 cm

33 x = (1 − 3e−2)∕(2 − 2e−2) ≈ 0.343; ȳ = 0

35 (a) �r2l∕2
(b) 2klr3∕3

37 (a)
∑

4�(re + ℎ)
2
⋅ 1.28e−0.000124ℎΔℎ

(b) 6.5 ⋅ 1016

39 Density cannot be negative

41 �(x) = x2, for − 1 ≤ x ≤ 1

43 �(x) =

{

5, 0 ≤ x ≤ 1
1, 1 < x < 5
4, 5 ≤ x ≤ 10

45 �(x) = 1

47 False

49 True

51 True

Section 8.5
1 30 ft-lb

3 1.333 ft-lb

5 27/2 joules

7 1.176 ⋅ 107 lb

9 20 ft-lb

11 1.489 ⋅ 1010 joules

13 3437.5 ft-lbs

15 180,000 ft-lb

17 3,088,800 ft-lbs

19 2,822,909.50 ft-lbs

21 661,619.41 ft-lb

23 (a) 62.4�(8y − 6y2 + y3)Δy

(b) ∫
1

0
62.4�(8y − 6y2 + y3) dy = 140.4�

25 6860 joules

27 (a) 187.2 lbs

(b) 2808 ft-lbs

29 Bottom: 187,200 lbs

15 × 10 side: 70,200 lbs

15 × 20 side: 140,400 lbs

31 Bottom: 1497.6 lbs

Front and back: 499.2 lbs

Both sides: 374.4 lbs

33 (a) 21,840 lb/ft2; 151.7 lb/in2

(b) (i) 546,000 pounds

(ii) 542,100 pounds

35 9800 ∫
100

0
ℎ(3600 − 6ℎ) dℎ

= 1.6 ⋅ 1011 newtons

37 (a) 5 − ℎ∕4 kg

(b) (49 − 9.8ℎ∕4)Δℎ joules

(c) 313.6 joules

39 (a) 1.025 kg

(b) f ′(ℎ) < 0 so decreasing

(c) 100.45 joules

(d) (9.408 + 0.637∕(1 + ℎ)) Δℎ joules

(e) 2355.520 joules

41 (2GMmy∕a2 )
(

y−1 − (a2 + y2)−1∕2
)

43 Less than twice as much

45 Book raised given vertical distance

47 False

49 False

51 False

Section 8.5 (online problems)
53

GmM

a(a + l)

55 GMmy(a2 + y2)−3∕2 toward center

57 1250�2 ergs

Section 8.6
1 C(1 + 0.02)20 dollars

3 C∕e0.02(10) dollars

5 ∫
15

0
C e0.02(15−t) dt dollars

7 ln(25,000∕C)∕30 per year

9 $22,658.65, $27,675.34

11 1.155%∕ yr

13 13.863%/yr

15 $414.458 million

17 2.6%

19 $2000∕ yr; $22,140.28

21 $6.562 billions

23 (a) $111,700.00
(b) $75,000.00
(c) $36,700.00

25 (a) $300 million

(b) 15 years

27 (a) Lump sum better at 6%

Continuous payments better at 3%

(b) Interest rates remain high, above 5.3% per

year

29 (a) $5716.59 per year

(b) $74,081.82

31 Accept installments

33 3.641%∕ yr

35 9.519%∕ yr

37 (a) Option 1

(b) Option 1: $10.929 million;

Option 2: $10.530 million

39 $3160.603 mn

41 In 10 years

43 (a)
∑n−1

i=0
(2000 − 100ti)e

−0.03tiΔt

(b) ∫
M

0
e−0.03t(2000 − 100t) dt

(c) After 20 years

$16,534.63

47 (a)

q∗

p∗

quantity

price

Supply ∶ S(q)

Demand ∶ D(q)
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(b)

q∗

p∗

quantity

price

Supply ∶ S(q)

Demand ∶ D(q)

(c)

q∗

p∗

quantity

price

Supply ∶ S(q)

Demand ∶ D(q)

(d)

q∗

p∗

quantity

price

Supply ∶ S(q)

Demand ∶ D(q)

(e)

q∗

p∗

quantity

price

Supply ∶ S(q)

Demand ∶ D(q)

(f)

q∗

p∗

quantity

price

Supply ∶ S(q)

Demand ∶ D(q)

49 (a) Less

(b) Cannot tell

(c) Less

51 Smaller with 4%

53 Dollars

57 Assuming 10%/yr and t in yrs from now:

t 0 1 2 3 4

$ 3855 4241 4665 5131 5644

Section 8.7
1 (a)-(II), (b)-(I), (c)-(III)

3

income

% of population
per dollar of income

income

% of population having
less than this income

5 pdf; 1∕4

1

4

1

x

P (x)

7 cdf; 1

5

1∕5

x

P (x)

9 cdf; 1∕3

2 4

1

3

1

6

x

p(x)

11 For small Δx around 70, fraction of families

with incomes in that interval about 0.05Δx

13 A is 300 kelvins;

B is 500 kelvins

15 (a) About 0.9 m–1.1 m

19 (a) Cumulative distribution

increasing

(b) Vertical 0.2,

horizontal 2

21 (a) 15%
(b) 30 minutes

23 (a) 22.1%

(b) 33.0%

(c) 30.1%

(d) C(ℎ) = 1 − e−0.4ℎ

25 (b) About 3∕4

27 Prob 0.02Δx in interval around 1

29 ∫
∞

−∞
p(t) dt ≠ 1

31 P (x) grows without bound as x→ ∞, instead

of approaching 1

33 Cumulative distribution increasing

35 P (t) =

{

0, t < 0
t, 0 ≤ t ≤ 1
1, t > 1

37 P (x) = (x − 3)∕4, 3 ≤ x ≤ 7

39 False

Section 8.8
5 2.65 m

7 (a) A = 0.015, B = 0.005
(b) 33.33
(c) 37.5

(d)

25 50 75 100
0

0.2
0.4
0.6
0.8
1

x (test score)

fraction of population

9 20%

11 22%

13 Mean 2∕3; Median 2 −
√

2 = 0.586

15 (a) c = 0.0176
(b) 9%

17 (a) a = 0.122
(b) P (x) = 1 − e−0.122x

(c) Median = 5.68 seconds

Mean = 8.20 seconds

(d)

0.122 p(x)

x

1
P (x)

x

19 (a) −e−2 + 1 ≈ 0.865
(b) −(ln 0.05)∕2 ≈ 1.5 km

21 (a) 0.2685
(b) 0.067

25 (a) 17.2%; 15.5%
(b) About $65,000
(c) False

27 Cumulative distribution function is 0.5 at me-

dian

29 (2∕
√

2�)e−2(x−1∕2)
2

31 False

33 True

35 True

Section 9.1
1 3, 5, 9, 17, 33

3 2∕3, 4∕5, 6∕7, 8∕9, 10∕11

5 1,−1∕2, 1∕4,−1∕8, 1∕16

7 sn = 2n+1

9 sn = n2 + 1

11 sn = n∕(2n + 1)

13 (a) (IV)

(b) (III)

(c) (II)

(d) (I)

15 (a) (II)

(b) (III)

(c) (I)

(d) (IV)

(e) (V)

17 Converges to 0
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19 Converges to 0

21 Converges to 0

23 Converges to 0

25 Converges to 1∕2

27 Diverges

29 1, 3, 6, 10, 15, 21

31 1, 5, 7, 17, 31, 65

33 13,27,50,85

35 (a) 1
(b) 2
(c) 4

37 45

39 2

41 sn = sn−1 + 2, s1 = 2

43 sn = sn−1 + n
2, s1 = 1

45 sn = (1∕sn−1) + 1, s1 = 1

49 0.25, 0.00, 0.25, 1.00, 2.25, 4.00

51 0.841, 0.455, 0.047, −0.189, −0.192, −0.047

53 0, 0, 6, 6, 6, 0, 0… and

0, 2, 4, 6, 4, 2,…

55 Converges to 0.7391

57 Decreasing slowly toward 0

59 (a) Sales Oct 2016
(b) Incr. sales month n − 1 to n

(c) Total sales in 2016
Total sales in n months

61 15,500 − 500n

63 (a) 20,000(0.12); 20,000(0.88)(0.12);
20,000(0.88)2(0.12)
dn = 20,000(0.88)n−1(0.12)

(b) 400, 400(1.18), 400(1.18)2

rn = 400(1.18)n−1

(c) 7799.52
(d) 6923.05; two-year-old

65 (a) 31∕8, 14∕9, 7 − �
(b) 1, 1∕2, 2, 1∕3, 3∕2, 2∕3

67 Limit could be 2

69 sn = −1∕n

71 False

73 True

75 False

77 True

79 True

Section 9.1 (online problems)
81 For all � > 0, there is an N such

that |sn − L| < � for all n ≥ N

Section 9.2
1 Series

3 Sequence

5 Series

7 Series

9 Yes, a = 2, ratio = 1∕2

11 No

13 No

15 Yes, a = 1, ratio = −y2

17 No

19 Geometric; diverges

21 Not geometric

23 Not geometric

25 10 terms; 0.222

27 14 terms; 15.999

29 194.4013

31 54

33 80
√

2∕(
√

2 − 1) = 273.137.

35 1∕(1 − 5x), −1∕5 < x < 1∕5

37 1∕x, 0 < x < 4

39 1∕(1 − z∕2),−2 < z < 2

41 y∕(1 + y),−1 < y < 1

43 3 + x∕(1 − x),−1 < x < 1

45 8∕(1 − (x2 − 5))

−
√

6 < x < −2 and 2 < x <
√

6

47 Does not converge

49 Does not converge

51 $5111.82

53 32 tons

55 (a) 0.232323… =
0.23 + 0.23(0.01)
+ 0.23(0.01)2 +⋯

(b) 0.23∕(1 − 0.01) = (23)∕(99)

57 (a) 150.706 mn

(b) 147.647 mn

(c) Option 1

59 $65,742.60

61 260.42 mg

63 (a) ≈ 7%
(b) Qn = 50(1 − (0.07)n+1)∕(1 − 0.07)
(c) Pn = 0.07(50)(1 − (0.07)n)∕(1 − 0.07)

65 1.0323 tablets

67 $900 million

69 (a) ℎn = 10(3∕4)n

(b) D1 = 10 feet

D2 = ℎ0 + 2ℎ1 = 25 feet

D3 = ℎ0 + 2ℎ1 + 2ℎ2 = 36.25 feet

D4 = ℎ0 + 2ℎ1 + 2ℎ2 + 2ℎ3
≈ 44.69 feet

(c) Dn = 10 + 60
(

1 − (3∕4)n−1
)

71 Sequence converges to 0

73 Geometric with r = 10

75 1 + (−1) + 1 + (−1) +…

77
∑∞

n=0
5(1∕2)n

79 an = (0.1)n , bn = (0.2)n

Section 9.3
1 1, 3, 6, 10, 15

3 1∕2, 2∕3, 3∕4, 4∕5, 5∕6

5 Converges

7 Converges

11 Terms not decreasing

13 Terms neither positive nor decreasing

15 Diverges

17 Converges

19 Diverges

21 Converges

23 Converges

25 Diverges

27 Diverges

29 Diverges

31 Diverges

33 Diverges

37 (b) 0 < r < 1∕e

47 Terms approaching zero does not guarantee

convergence

49 Converges for k < −1 and diverges for k ≥

−1

51
∑∞

n=1
1∕n

53 True

55 False

57 True

59 False

Section 9.3 (online problems)
65 (a) 1.596

(b) 3.09
(c) 1.635; 3.13
(d) 0.05; 0.01

69 (d)

Section 9.4
5 Behaves like

∑∞

n=1
1∕n; Diverges

7 Behaves like
∑∞

n=1
1∕n4 ; Converges

9 Converges

11 Converges

13 Converges

15 Converges

17 Converges

19 Converges

21 Converges

23 Converges

25 Diverges

27 Converges

29 Converges

31 Diverges

33 Diverges

35 Diverges

37 Alternating

39 Not alternating

41 Converges

43 Converges

45 Converges

47 (a) No

(b) Converges

(c) Converges

49 Conditionally convergent

51 Divergent

53 Conditionally convergent

55 Conditionally convergent

57 Terms not positive

59 Limit of ratios is 1

61 an+1 > an or limn→∞ an ≠ 0

63 limn→∞ an ≠ 0

65 Does not converge

67 Converges to approximately 0.3679

69 Diverges

71 Converges

73 Diverges

75 Converges

77 Converges

79 Diverges

81 Converges

83 Diverges
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85 Diverges

87 Diverges

89 Diverges

91 Diverges

93 Converges

95 Converges

97 (a) Converges

(b) Converges

99 (a) Converges

(b) Diverges

101 (a) Diverges

(b) Diverges

103 Unaffected

105 Affected

107 Converges for a > 2 and diverges for a ≤ 2

109 Converges for a > 1 and diverges for a ≤ 1

111 99 or more terms

113 2 or more terms

115 (−1)2n = 1 so series is not alternating

117 Need 1∕n3∕2 ≤ 1∕n2 for all n to make com-

parison

119
∑

(−1)nn

121 False

123 True

125 False

127 True

129 False

131 False

133 True

135 False

137 (b)

Section 9.4 (online problems)
143 Converges

Section 9.5
1 Yes

3 No

5 1 ⋅ 3 ⋅ 5⋯ (2n − 1)xn∕(2n ⋅ n!); n ≥ 1

7 (−1)k(x − 1)2k∕(2k)!; k ≥ 0

9 (x − a)n∕(2n−1 ⋅ n!); n ≥ 1

11 1

13 1

15 2

17 2

19 1

21 1∕4

23 1

25 a = −5; b = 11

27 Diverges when x =
1

2
,

converges when x = − 1

2

29 2 ≤ x < 4

31 3 ≤ x ≤ 7

33 x = 0

35 −1∕5 < x < 1∕5

37
∑∞

n=0
2(−y2)n ,−1 < y < 1

39
∑∞

n=0
2(−y∕4)n ,−4 < y < 4

41 (a) 5.833
(b) −4 < z < 10

43 (a) 0.625
(b) 2 < t < 12

45 Diverges, converges, converges

47 7 ≤ R ≤ 10

49 1

51 (a) 1
(b) All real numbers

(c)
∑∞

n=0
xn∕n!

(d) ex

53 Radius ∞, not 0

55 R ≤ 2 so series cannot converge at x = 3

57
∑∞

n=1
n!(x − 5)n

59
∑

xn∕n2

61 True

63 True

65 False

67 True

69 False

71 False

73 (d)

Section 9.5 (online problems)
75 (a) 1

(b) p(x) = cos x, q(x) = sin x

Section 10.1
1 P3(x) = 1 + x + x2 + x3

P5(x) = 1 + x + x2 + x3

+ x4 + x5

P7(x) = 1 + x + x2 + x3

+ x4 + x5 + x6 + x7

3 P2(x) = 1 + (1∕2)x − (1∕8)x2

P3(x) = 1 + (1∕2)x − (1∕8)x2 + (1∕16)x3

P4(x) = 1 + (1∕2)x − (1∕8)x2

+ (1∕16)x3 − (5∕128)x4

5 P2(x) = 1 − x2∕2!
P4(x) = 1 − x2∕2! + x4∕4!
P6(x) = 1 − x2∕2! + x4∕4! − x6∕6!

7 P3(x) = P4(x) = x − (1∕3)x3

9 P2(x) = 1 − (1∕2)x + (3∕8)x2

P3(x) = 1 − (1∕2)x + (3∕8)x2

− (5∕16)x3

P4(x) = 1 − (1∕2)x + (3∕8)x2

− (5∕16)x3 + (35∕128)x4

11 P3(x) = 1 −
x

2
−

x2

8
−

x3

16

13 P4(x) =
1

3
[1 −

x−2

3

+
(x−2)2

32
−

(x−2)3

33

+
(x−2)4

34
]

15 P3(x) =

√

2

2
[−1 +

(

x +
�

4

)

+
1

2

(

x +
�

4

)2

−
1

6

(

x +
�

4

)3

]

17 (a) 2

(b) −1
(c) −2∕3
(d) 12

19 160.5

21 P3(x) = 1 − 5x + 7x2 + x3

f (x) = P3(x)

23 1 − x∕3 + 5x2∕7 + 8x3

25 −3 + 5x − x2 − x4∕24 + x5∕30

27 (a) Positive

(b) P1(x) = ln 4 + (1∕2)x
(c) P2(x) = ln 4 + (1∕2)x − (1∕8)x2

P3(x) = ln 4+(1∕2)x−(1∕8)x2+(1∕24)x3

29 a > 0, b < 0, c < 0

31 a < 0, b < 0, c > 0

33 f ′′′(1) = 3

37 −2.616

39 g(2) ≈ 2

43 (a) 1∕2
(b) 1∕6

45 (a) fs are Figure 10.9

gs are Figure 10.8

(b) A = (0, 1)
B = (0, 2)

(c) f1 = III, f2 = I, f3 = II

g1 = III, g2 = II, g3 = I

47 (a) 1 + 3x + 2x2

(b) 1 + 3x + 7x2

(c) No

49 (a) P4(x) = 1 + x2 + (1∕2)x4

(b) If we substitute x2 for x in the Taylor poly-

nomial for ex of degree 2, we will get

P4(x), the Taylor polynomial for ex
2

of de-

gree 4

(c) P20(x) = 1 + x2∕1! + x4∕2!
+⋯ + x20∕10!

(d) e−2x ≈ 1 − 2x + 2x2

− (4∕3)x3 + (2∕3)x4 − (4∕15)x5

51 (a) Infinitely many; 3

(b) That near x = 0
Taylor poly only accurate near 0

53 (b) 0, 0.2

57 f ′(0) = 1

59 f (x) = sin x

61 f (x) = 1 + x; g(x) = 1 + x + x2

63 False

65 False

67 False

69 False

Section 10.2
1 f (x) = 1 + 3x∕2 + 3x2∕8 − x3∕16 +⋯

3 f (x) = −x + x3∕3! − x5∕5! + x7∕7! +⋯

5 f (x) = 1 + x + x2

+ x3 +⋯

7 f (y) = 1 − y∕3 − y2∕9
− 5y3∕81 −⋯

9 ln 5 + (2∕5)x − (2∕25)x2 + (8∕475)x3

11 cos � =
√

2∕2 − (
√

2∕2) (� − �∕4)

−(
√

2∕4) (� − �∕4)2+(
√

2∕12) (� − �∕4)3

−⋯

13 sin � = −
√

2∕2 + (
√

2∕2) (� + �∕4)

+ (
√

2∕4) (� + �∕4)2

− (
√

2∕12) (� + �∕4)3 +⋯

15 1∕x = 1 − (x − 1) +
(x − 1)2 − (x − 1)3 +⋯

17
1

x
= −1 − (x + 1)

− (x + 1)2 − (x + 1)3

−⋯

19 (−1)nxn; n ≥ 0

21 (−1)n−1xn∕n; n ≥ 1

23 (−1)kx2k+1∕(2k + 1); k ≥ 0

25 (−1)kx4k+2∕(2k)!; k ≥ 0

27 (a) 0

(b) Increasing

(c) Concave down

29 1
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31
d

dx
(x2ex

2
)|x=0 = 0

d6

dx6
(x2ex

2
)|x=0 =

6!

2
= 360

33 p(0) = 0; p′(0) = −1∕3;

p′′(0) = 4∕5; p′′′(0) = −8∕3

35 f (n)(0) > 0 for all n

37 f (n)(0) = 0 for even n

39 −1 < x < 1

41 (a) −1 < x < 1
(b) 1

43 1

45 e2

47 4∕3

49 ln(3∕2)

51 e3

53 e−0.1

55 4∕5

57 216

59 1

63 Only converges for −1 < x < 1

65 f (x) = cosx

67 False

69 True

71 True

73 True

Section 10.3
1 (a) ex

(b) e−x

(c) sin(−x)
(d) sin x
(e) cosx

(f) e−x
2

(g) cos(
√

x)

3
√

1 − 2x = 1 − x − x2∕2
− x3∕2 −⋯

5 ln(1 − 2y) = −2y − 2y2

− (8∕3)y3 − 4y4 −⋯

7 3t2 − (9∕2)t4 + (81∕40)t6 − (243∕560)t8 +⋯

9 z∕ez
2
= z − z3 + z5∕2!

− z7∕3! +⋯

11 r2 − r6∕3 + r10∕5 − r14∕7 +⋯

13 t + t3∕3! + t5∕5! + t7∕7! +⋯

15 −t7∕(3!) + t11∕(5!) +⋯ + (−1)kt4k+3∕(2k +
1)! +⋯;

k ≥ 1

17 e0.2

19 1∕(2 + x) = (1∕2)(1 − x∕2 + (x∕2)2

− (x∕2)3 +⋯)

21 1∕(a − r) = (1∕a)(1 + (r∕a)
+ (r∕a)2 + (r∕a)3 +⋯)

23
3
√

P + t =
3
√

P (1 + (1∕3)(t∕P )
− (1∕9)(t∕P )2 + (5∕81)(t∕P )3 +⋯)

25
√

(1 + t) sin t = t + (1∕2)t2

− (7∕24)t3 − (1∕48)t4 +⋯

27
√

1 + sin � = 1 + �∕2 − �2∕8
− �3∕48 +⋯

29 1−(x−1)+(x−1)2−(x−1)3+⋯+(−1)n(x−
1)n +⋯

31 (a) −4 < x < 4
(b) −4 < x < 4
(c) −1∕2 < x < 1∕2

33 (a) 2 + x2 + x4∕12 +⋯

(b) P2(x) = 2 + x2

35 P4(x) = 1 + x2 + x4∕2!; 1.433

37 1 − cos y < ln(1 + y2) < sin(y2)

39 2x + 8x3∕3 + 32x5∕5 + 128x7∕7 + 512x9∕9

41 (a) I

(b) IV

(c) III

(d) II

43 1.6053

45 (a) f (t) = t + t2 + t3∕2! + t4∕3!
+⋯

(b) ∫
x

0
f (t) dt = x2∕2 + x3∕3

+ x4∕(4 ⋅ 2!) + x5∕(5 ⋅ 3!) +⋯

(c) Substitute x = 1, and integrate by parts

49 (b) � ≈ −3b

51 (a) Higher

(b) Lower

(c) f = f0(1 + (vp∕v) + (vp∕v)
2 +⋯)

(d) Increases by 2%

53 (a) �′′ + (g∕l)� = 0
(b) 0.76%

55 (a) Shorter

(b) L = L0

(

1 − (1∕2)(v∕c)2 − (1∕8)(v∕c)4 −⋯

)

(c) L ≈ L0

57 (a) −c < v < c
(b) y-intercept: (0, m0)

asymptotes: x = ±c

−c c

m0
v

m

(c) m = m0(1 + (1∕2)(v2∕c2)
+ (3∕8)(v4∕c4) +⋯)

(d) When |v| < c

59 nRT (1∕V ) + n2(bRT − a)(1∕V )2

61 (a) E = (2Q∕R2)((1∕2)(R∕z)2 −
(3∕8)(R∕z)4 + (5∕16)(R∕z)6 ⋯)

(b) E ≈ Qz−2

63 24

65 42

67 Right hand missing a factor of 1∕2

69 ln x

71 True

73 False

75 False

Section 10.4
1 |E3| ≤ 0.00000460, E3 = 0.00000425

3 |E3| ≤ 0.000338, E3 = 0.000336

5 |E4| ≤ 0.0156, E3 = −0.0112

7 |E3| ≤ 16.5, E3 = 0.224

9 1∕5!

11 1∕5!

13 1∕50

15 (a) P5(x) = x − x3∕3! + x5∕5!
P7(x) = x − x3∕3! + x5∕5! − x7∕7!
sin x is I

P5 is II

P7 is III

(b) P7(4) better

(c) E5 < 0
E7 > 0

17 |E3| ≤ 0.039

21 (a) Underestimate:

0 < � ≤ 1
Overestimate:

−1 ≤ � < 0
(b) |E3| ≤ 0.0084

23 (a) Underestimate

(b) |E2| ≤ 0.047

25 For sin x and cosx,

|En| ≤ 1∕(n + 1)!

27 |E0| < 0.01 for |x| ≤ 0.1

−0.1 0.1

−0.01

0.01

x

E0

31 (a) (1∕2)n+1

(b) (1∕2)n+1

(c) Equal

33 (a) |x|2∕((2n + 2)(2n + 1))
(c) (1.1)6∕6! = 0.00246
(d) Degree 10 term

(e) 1014∕14! = 1147.075

35 Cannot make |f (x) − Pn(x)| < 1 for all x si-

multaneously

37 1 − (x − 1) + (x − 1)2 − (x − 1)3

39 False

41 False

43 False

Section 10.5
1 Not a Fourier series

3 Fourier series

5 F1(x) = F2(x) = (4∕�) sinx
F3(x) = (4∕�) sin x + (4∕3�) sin 3x

−�

�

−1

1

x

F1(x) = F2(x) =
4

�
sinx

−�

�

−1

1

x

F3(x) =
4

�
sin x +

4

3�
sin 3x

7 99.942% of the total energy

9 Hn(x) =
�∕4 +

∑n

i=1
((−1)i+1 sin(ix))∕i +

∑[n∕2]
i=1

(−2∕((2i − 1)2�)) cos((2i − 1)x),
where [n∕2] denotes the biggest integer

smaller than or equal to n∕2
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−� �

�

✛ H1(x)
✛ H2(x)

✛ H3(x)

✛ℎ(x)

x

11 a0 = 1∕2

13 (b) (1∕7) sin 7x
(c) f (x) = 1 for 2� ≤ x < −�

f (x) = −1 for −� ≤ x < 0
f (x) = 1 for 0 ≤ x < �

f (x) = −1 for � ≤ x < 2�. . .

Not continuous

15 F4(x) = 1∕2 − (2∕�) sin(2�x)
− (1∕�) sin(4�x) − (2∕3�) sin(6�x)
− (1∕2�) sin(8�x)

1

1 f (x) = x

F4(x)

x

17 52.93

23 (a) 6.3662%, 18.929%
(b) (4 sin2(k∕5))∕(k2�2)
(c) 61.5255%
(d) F5(x) =

1∕(5�) + (2 sin(1∕5)∕�) cosx
+ (sin(2∕5)∕�) cos 2x +
(2 sin(3∕5)∕(3�)) cos 3x
+ (sin(4∕5)∕(2�)) cos 4x +
(2 sin 1∕(5�)) cos 5x

−3� −2� −�
−

1

5

1

5

� 2� 3�

1

x

f (x)
F5(x)

25 The energy of the pulse train is spread out over

more harmonics as c gets closer to 0

33 a0 is average of f (x) on interval of approxi-

mation

35 Any odd function with period 2�

37 (b)

Section 11.1
1 Yes

3 (II)

5 (VI)

7 (V)

9 (a) Not a solution

(b) Solution

(c) Not a solution

11 (a) (I), (III)

(b) (IV)

(c) (II), (IV)

15 No

17 (a) Decreasing

(b) 7.75

21 P = 15∕t

23 Q = 12∕(t + 1)

25 ! = ±3

27 k = −0.03 andC is any number, orC = 0 and

k is any number

29 7∕3

31 k = −6

33 7∕2

35 (a) A = −1
(b) B = 2

37 (a) (IV)

(b) (III)

(c) (I)

(d) (II)

39 Is a solution

41 Is a solution

43 Q = 6e4t is particular solution, not general

45 dy∕dx = x∕y and y = 100 when x = 0

47 dy∕dx = 2x with solutions y = x2 and

y = x2 + 5

49 dy∕dx = 1∕x

51 dy∕dx = y − x2

53 False

55 False

57 False

59 True

61 False

Section 11.2
1 (a) 1; −1; 0; 3; −3; 0

(b)

1 2

1

2

x

y

3

−1 1

1

2

x

y

5 Possible curves:

y

x

y

x

7 Increasing

9 Increasing

11 (a)

−1

0

1

y

x

(b) y(x) = 1

13 (a) (A) is y′ = 0.3y
(B) is y′ = 0.3t

(b) For y′ = 0.3y:

(i) ∞

(ii) 0

For y′ = 0.3t:

(i) ∞

(ii) ∞

15 (a) Yes

(b) No

(c) Yes

(d) No

17

x

y

19 (a) Decreasing

(b) y = −0.6

21 (a) Decreasing

(b) Concave up

23 (a)

(b) y = x − 1
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25 (a) and (b)

y

x

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(c) Increasing:

−1 < y < 2
Decreasing:

y > 2 or y < −1
Horizontal:

y = 2 or y = −1

27 (a)

−6 6

−6

6

x

y

(i)

(ii)

(b) y = n�

29 (a) (III)

(b) (I)

(c) (II)

(d) (IV)

(e) (V)

(f) (VI)

31 (e) y′ = 0.05y(y − 10)

33 (b)

35 (a) (IV); a = −1 and b = 2
(b) (III); a = 3 and b = −3
(c) (II); a = 2 and b = 3
(d) (I); a = 1 and b = −1

37 y = C is a solution for any constant C

39 dy∕dx = x2 + 1

41

x

y

43 False

45 False

47 True

49 True

51 True

53 False

55 False

57 True

59 True

Section 11.3
3 1548, 1591.5917, 1630.860

5 1.97

7 (a) 24.39
(b) Concave up

(c) Underestimates

9 (a) y(0.4) ≈ 1.5282
(b) y(0.4) = −1.4

13 Solution curve concave up

15 (b) y = ln |t|, so at t = 2, y ≈ 0.693
(c) Bigger.

17 (a) Δx = 0.5, y(1) ≈ 1.5
Δx = 0.25, y ≈ 1.75

(b) y = x2 + 1, so y(1) = 2
(c) Yes

19 (a) (i) B ≈ 1050

(ii) B ≈ 1050.63

(iii) B ≈ 1050.94

23 Overestimate if x(0) < 0

25 dy∕dx = y, y(0) = 1

27 True

29 Error decreases by factor of approx 1∕2

31 We would need n = 300

Section 11.4
1 (a) Yes (b) No (c) Yes

(d) No (e) Yes (f) Yes

(g) No (h) Yes (i) No

(j) Yes (k) Yes (l) No

3 Separable; 1∕(ey − 1)dy = xdx

5 Separable; (1∕y)dy = 1∕(1 − x)dx

7 Yes

9 Yes

11 P = e−2t

13 L = 100ep∕2

15 P =
√

2t + 1

17 I = 6e0.2(x+1)

19 m = (2∕e)es = 2es−1

21 z = ey
2∕2

23 y = 200 − 150e0.5

25 y = 2 + 3e2x−4

27 m = 3000e0.1t − 2000

29 B = 25 + 75e2−2t

31 z = − ln(1 − t2∕2)

33 y = −2∕(t2 + 2t − 4)

35 w = 2∕(cos �2 + 1)

37 u = −1∕(ln |2x∕(x + 1)| − 1)

39 (a) P = 50 + Be0.2t

(b) P = 50−10e0.2t; P = 50; P = 50+10e0.2t

4

30

70

t

P

41 5000 ft2/hr

43 R = Aekt

45 P = a +Aet

47 P = a + Aekt

49 P = (1∕a)(Aeat − b)

51 R = tan(ax + C)

53 y = 1∕4

55 x = eAt

57 y = 2(2−e
−t
)

59 (a) and (b)

y

x

(c) y2 − x2 = 2C

63 Impossible to separate the variables in

dy∕dx = x + y

65 e−y dy = ex dx

67 f (x) = cos x

69 dy∕dx = x∕y

71 True

73 False

75 False

Section 11.5
1 (a) (III)

(b) (IV)

(c) (I)

(d) (II)

3 (a) y = 2: stable; y = −1: unstable

(b)

x

y

5

�

t

y

7 (a) H = 200 − 180e−kt

(b) k ≈ 0.027 (if t is in minutes)

9 (a) Positive

(b) Approximately 10 minutes

11 Increasing

13 r = 500

15 Increase

17 20.3219
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19 Michigan: 72 years

Ontario: 18 years

21 Is a solution

23 Not a solution

25 Unstable

27 Stable

29 (a) (II)

(b) (III)

(c) (I)

(d) (IV)

31 (a) N = amount of nicotine in mg at time t;

t = number of hours since smoking a

cigarette

(b) dN∕dt = −0.347N
(c) N = 0.4e−0.347t

33 (a) G = size in acres of Grinnell Glacier in

year t;

t = number of years since 2007

(b) dG∕dt = −0.043G
(c) G = 142e−0.043t

35 (a) dH∕dt = −k(H − 22)
(b) H = 22 − 19e−kt

37 (a) dq∕dt = −kq
(b) 11.513 sec

39 (a) dP ∕dt = −0.1P + 5
(b) P = 50 thousand fish

(c) Stable

41 (a)

37

1

2
Q0

Q0

t

Q

Q = Q0e
−0.0187t

(b) dQ∕dt = −0.0187Q
(c) 3 days

43 (a) 69,300 barrels/year

(b) 25.9 years

45 About 2150 B.C.

47 (a) dT∕dt = −k(T − 10)
(b) 48◦F

The pipes won’t freeze

49 (a) dH∕dt = k(68 −H)
(b) H = 68, stable

(c) H = 68 − Ae−kt

(d) 57.8◦F

51 (a) dB∕dt = (r∕100)B
Constant = r∕100

(b) B = 0, unstable

(c) B = Ae(r∕100)t

(d)

15 30

1000

10,000

20,000

t

B = 1000e0.10t

B = 1000e0.04t

B = 1000e0.15t

53 y = x2 is not a constant solution

55 dy∕dt = −2y

57

25

t

P

Section 11.6
1 (a) (III)

(b) (V)

(c) (I)

(d) (II)

(e) (IV)

3 dB∕dt = 0.037B + 5000

5 dB∕dt = −0.065B − 50,000

7 (a) H ′ = k(H − 50); H(0) = 90
(b) H(t) = 50 + 40e−0.05754t

(c) 24 minutes

9 k = 0.026

11 (a) dC∕dt = 21e0.05t

(b) C = 420e0.05t − 420 mn tons

(c) In 21.8 years, end of 2039

13 dD∕dt = −0.75(D − 4)
Equilibrium = 4 g/cm2

4

t

D

15 dA∕dt = −0.17A + 130; A = 764.7 −
764.7e−0.17t; 625 mg

17 (a) dP ∕dt = 0.079 − 0.000857t
(b) P = 0.079t− 0.000857t2∕2 + 7.052
(c) 9.435 bn

19 (a) Mt. Whitney:

17.50 inches

Mt. Everest:

10.23 inches

(b) 18,661.5 feet

21 (b) dQ∕dt = −0.347Q + 2.5
(c) Q = 7.2 mg

23 P = AV k

25 5.7 days, 126.32 liters

27 (a) dp∕dt = −k(p − p∗)
(b) p = p∗ + (p0 − p

∗)e−kt

(c)

p∗

t

p

p0 > p
∗

p0 < p
∗

(d) As t → ∞, p→ p∗

29 (a) Q = (r∕�)(1 − e−�t)
Q∞ = r∕�

r

�

Q

t

Q =
r

�
(1 − e−�t)

(b) Doubling r doubles Q∞;

Altering r does not alter the time it takes

to reach (1∕2)Q∞

(c) Both Q∞ and the time to reach (1∕2)Q0

are halved by doubling �

31 t = 133.601 min

33 y = A
√

x

35 (a) (0, a)

(b) dy∕dx = −y∕
√

a2 − y2

37 Units of time are not consistent

39 dQ∕dt = 0.2 3
√

Q + 100

Section 11.6 (online problems)
41 (a) B60 =

∑59

k=0
100e(0.02)k∕12

(b) B60 = 6304.998
(c) Smaller because deposits are made later

Section 11.7
1 (b) 1

3

1250

2500

(a)

(b)

(c)

x

y

5

5000
A

dA∕dt

7

800
Q

dQ∕dt

9 (a) P = 0, P = 2000
(b) dP ∕dt positive; P increasing

11 (a) k = 0.035; gives relative growth rate when

P is small

L = 6000; gives limiting value on the size

of P

(b) P = 3000

13 P = 2800∕(1 +Ae−0.05t)

15 P = 4000∕(1 +Ae−0.68t)

17 k = 10, L = 2, A = 3, P = 2∕(1+3e−10t), t =
ln(3)∕10

19 k = 0.3, L = 100, A = 1∕3, P = 100∕(1 +
e−0.3t∕3), t = − ln(3)∕0.3

21 P = 8500∕(1 + 16e−0.8t)

23 (a) Between 80,000 and 85,000 cases

(b) About 6500 cases/week

25 (a) 539,226 cases

(b) 47,182 cases/week

27 (a) 30,000 cases

(b) 6000 cases/week

29 44 days

31 (a) 1

(b) 2 people; 48 people

(c)

5 10 15 20

200

400

t

N(t)
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(d) About 15 hours; 30 hours

(e) When 200 people have heard the rumor

33 (a) 0.252

(b) All available land used for farming

(c) In 1974

(d) In 1974

35 (a) 7.5 at t = 50
(b) 540

37 (a) 36 thousand; total number infected

(b) t ≈ 16, n ≈ 18 thousand

(c) Virus spreading fastest

(d) Number infected half total

39 (a) 24.5 bn barrels/yr, 30.3 bn barrels/yr

(b) 2.91% per year, 2.19% per year

(c) (1∕P )(dP ∕dt) = −0.000013P + 0.04
(d) 3077 billion barrels

(e) dP ∕dt = 0.04P
(

1 −
P

3077

)

P = 3077∕(1 + 2.66e−0.04t)

41 (a)

1000 2000

10

20

30

40

2003

2008
2013

P (bn barrel)

dP∕dt (bn barrel/yr)

(b)

1998 2008 2018

1000

2000

3000 3077

2003 2013

t (year)

P (bn barrel)

43 (a) 1524.2 bn barrels

(b) 2078

45 Occurs at Q = 25 not t = 25

47 Sales of a new product

49

500
Q

dQ∕dt

51 False

Section 11.7 (online problems)
53 (a) dI∕dt = k(M − I)

(k > 0)

M

t

I

(b) dI∕dt = kI(M − I)
(k > 0)

I0 = 0
I0 = 0.05M

I0 = 0.75M

0.5M

M

t

I

55 (a) logistically

(b) k ≈ 0.045
L ≈ 5.8

57 (a) dp∕dt = kp(B − p)
(k > 0)

(b) Half of the tin

B

2

B

t

t

Section 11.8
1 x and y increase, about same rate

3 x decreases quickly while y increases more

slowly

5 (0, 0) and (5, 3)

7 (0, 0) and (−5, 3)

9 (a) Both x and y are decreasing

(b) x is increasing; y is decreasing

11 P3

13 (0, 0), (3, 0), (0, 6), (4.5, 1.5)

15 1

17 Helpful

19 (a) −5 members∕yr.

(b) Beneficial

21 (a) Susceptibles: 1950,1850, 1550, 1000, 750,

550, 350, 250, 200, 200, 200

Infecteds: 20, 80, 240, 460, 500,

460, 320, 180, 100, 40, 20

(b) Day 22, 500

(c) 1800, 200

23 (a) a is negative; b is negative; c is positive

(b) a = −c

29 Symmetric about the line r = w;

solutions closed curves

31 Robins:

Max ≈ 2500
Min ≈ 500

When robins are at a max,

the worm population is about 1 million

35 Robin: 180–3000.

Worms: 200,000–3,000,000.

870,000 worms

37 (a) Competition

(b) x→ 2, y → 0

39 Decreasing by 20% per year

41 Populations benefit each other

43 (a) dy∕dx = bx∕ay

45 (b) dx∕dt = −xy, dy∕dt = −x
(c) dy∕dx = 1∕y

soln: y2∕2 = x + C
(d) If C > 0, y wins

If C < 0, x wins

If C = 0, mutual annihilation

(e)

1 2 3 4

1

2

3

4

x (guerrilla)

y (conventional)

C > 0
conventional wins

y2

2
= x

(i.e. C = 0)

C < 0
guerrilla wins

47 dy∕dx = (dy∕dt)∕(dx∕dt)

49 dx∕dt = 0.5x−0.2xy; dy∕dt = 0.1y−0.3xy

51 True

Section 11.8 (online problems)
53 p = 30.6515; q = 43.2890

55 (a) dx∕dt = −axy, dy∕dt = −bxy
(b) dy∕dx = b∕a

soln:y = (b∕a)x + C
(c) if C > 0, y wins

if C < 0, x wins

if C = 0, mutual annihilation

(d)

1 2 3 4

1

2

3

4

x (guerrilla)

y (guerrilla)

C > 0
y wins

C < 0
x wins

y = bx∕a
(i.e. C = 0)

Section 11.9
1 (4, 10)

3

2 4 6

5

10

15

x

y

5 Tends towards point (4, 10)

7 (a) dx∕dt > 0 and dy∕dt > 0
(b) dx∕dt < 0 and dy∕dt = 0
(c) dx∕dt = 0 and dy∕dt > 0

9

5 10 15

2

4

6

x

y
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11

5

3

x

y

13 Vertical nullclines:

x = 0, x + y = 2
Horizontal nullclines:

y = 0, x + y = 1
Equilibrium points:

(0, 0), (0, 1), (2, 0)

1 2

1

2

x

y

✠

x + y = 1
dy∕dt = 0

✠

x + y = 2
dx∕dt = 0

1 2

1

2

x

y

(I)

(II)

(III)

15 Horizontal nullclines;

y = 0, y = 1 − 2x
Vertical nullclines;

x = 0, y = (1∕2)(2 − x)
Equilibrium points;

(0, 0), (0, 1), (2, 0)

0.5 2

1

I II

III

0.5 2

1

✒ ❘

✠

✲ ✲
✻

✻

x

y

17 dx∕dt = 0 when

x = 0 or x + y∕3 = 1
dy∕dt = 0 when

y = 0 or y + x∕2 = 1
Equilibrium points:

(0, 0), (0, 1), (1, 0), (4∕5, 3∕5)

1 2

1

3

x

y

✛ x + y∕3 = 1
dx∕dt = 0

✠

y + x∕2 = 1
dy∕dt = 0

(
4

5
,
3

5
)

1 2

1

3

x

y

(I)

(IV)
(III)

(II)

(
4

5
,
3

5
)

19 (a) dS∕dt = 0 where S = 0 or I = 0
dI∕dt = 0 where I = 0 or S = 192

(b) Where S > 192,

dS∕dt < 0 and dI∕dt > 0
Where S < 192,

dS∕dt < 0 and dI∕dt < 0
(c)

192
S

I

21 (a) In the absence of the other, each company

grows exponentially

The two companies restrain each other’s

growth if they are both present

(b) (0, 0) and (1, 2)
(c) In the long run, one of the companies will

go out of business

1 2 3 4

1

2

3

4

A

B

23 (a) dP1∕dt = 0 where P = 0 or

P1 + 3P2 = 13
dP2∕dt = 0 where P = 0 or

P2 + 0.4P1 = 6

25 dx∕dt ≠ 0

27

1 2 3

1

2

3

x

y

29 False

31 False

Section 11.10
1 A =

√

32 + 42 = 5

3 ! = 2, A = 13,  = tan−112∕5

5 (a)

−2� 2�

−10

−5

5

10

t

s

s = 4 cos t + 3 sin t

(c) A = 5, � = 0.93

11 A ≈ −1.705
� = ±

√

5

13 k = 16

15 No

17 Yes

19 z(t) = A cos�t + B sin�t

21 (a) d2s∕dt2 = −0.08s

(b) s(t) = C1 cos(
√

0.08t) + C2 sin(
√

0.08t)

23 Highest point, at rest

25 Lowest point, at rest

27 (a) y(t) = A sin(3t) + B cos(3t)
(b) (i) y(t) = (1∕3) sin(3t)

(ii) y(t) = cos(3t)

(iii) y(t) =
(− cos 3∕ sin 3) sin(3t) + cos(3t)

(iv) y(t) = (1∕ sin 3) sin(3t)

(c)

−� �

−
1

3

1

3

t

y
(i)

−� �

−1

1

t

y(ii)
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−�

�

−
1

sin(3)

1

sin(3)

t

y(iii)

−� �
t

y

−
1

sin(3)

1

sin(3)

(iv)

29 (a) goes with (II)

(b) goes with (I) and (IV)

(c) goes with (III)

(I) x = 2 sin 2t
(II) x = −sin t
(III) x = cos 4t
(IV) x = −3 sin 2t

31 (a) x = v0

√

l∕g sin
√

g∕lt

(b) x = x0 cos
√

g∕lt

33 (a) x′′ + (g∕2)x = 0, x(0) = 5, x′(0) = 0

(b) x = 5 cos((
√

g∕2)t)

35 (a) Q = 36 sin(1∕18)t
(b) Q = 6cos(1∕18)t

37 Oscillate, same frequency, out of phase

39 Need two arbitrary constants

41 s′′ = −s; s(0) = 3 and s(1) = 5

Section 11.11
1 y(t) = C1e

−t + C2e
−3t

3 y(t) =
C1e

−2t cos t + C2e
−2t sin t

5 s(t) =

C1 cos
√

7t + C2 sin
√

7t

7 z(t) = C1e
−t∕2 + C2e

−3t∕2

9 p(t) = C1e
−t∕2 cos

√

3

2
t+

C2e
−t∕2 sin

√

3

2
t

11 y(t) = A + Be−2t

13 y(t) = C1e
t∕3 + C2e

−t∕3

15 y(t) = e−t(A sin
√

2t + B cos
√

2t)

17 y(t) = −2e−3t + 3e−2t

19 y(t) =
1

5
e4t +

4

5
e−t

21 y(t) =
5

4
e−t −

1

4
e−5t

23 y(t) = 2e−3t sin t

25 y(t) =
1

1−e
e−2t +

−e

1−e
e−3t

27 p(t) = 20e(�∕2)−t sin t

29 Critically damped

31 Yes

33 No

35 (a) (IV)

(b) (II)

(c) (I)

(d) (III)

37 (iii)

39 (iv)

41 (ii)

43 Overdamped: c < 2
Critically damped: c = 2
Underdamped: c > 2

45 Overdamped if:

b > 2
√

5
Critically damped if:

b = 2
√

5
Underdamped if:

0 < b < 2
√

5

47 (a) k = 100; a = 70
(b) s(t) = −4e−2t + 3e−5t

(c) s = −1.58; s = 0
(d) t ≥ 1.843

49 (a) a > 447.216
(b) a = 447.216
(c) 0 < a < 447.216

53 z(t) = 3e−2t

55 (a) d2y∕dt2 − y = 0
(b) y = C1e

t + C2e
−t,

so x = C2e
−t − C1e

t

59 (a) Q(t) = 2te−t∕2

(b) Q(t) = (2 + t)e−t∕2

61 As t → ∞, Q(t) → 0

63 Curve shows s′(0) < 0

65 d2s∕dt2 + 2ds∕dt + s = 0

Section 12.1
1 Q

3 (−4, 2, 7)

5 (1,−1, 1); Front, left, above

7 (2, 4.5, 3)

9 (−1, 1, 0), (−2,−2, 4)

11 (2, 2, 4), (−2,−2, 4)

13

x

y

z

x = −3

−3

15 z

x

y
2

4

(0, 4, 2)

(2, 4, 2)

(4, 4, 2)

17 x2 + y2 + z2 = 25

19 y = 3

21

✲north✛ south

100

90

80

70

Topeka
distance from
Topeka

predicted high temperature

23 f (w, 60): 23.4, 27.3, 31.2, 35.2, 39.1

25 25

29 f (20, p): 2.65, 2.59, 2.51, 2.43
f (100, p): 5.79, 5.77, 5.60, 5.53
f (I, 3.00): 2.65, 4.14, 5.11, 5.35, 5.79
f (I, 4.00): 2.51, 3.94, 4.97, 5.19, 5.60

31 Increasing function

33 57.9 kg

37 (a) R = 100s + 5m
(b) 125,000 dollars

39 (b) Increasing

(c) Decreasing

41 (b) Increasing

(c) Increasing

43 (1.5, 0.5, −0.5)

45 Cone, tip at origin, along x-axis with slope of

1

47 Yes; (2, 5, 4)

49 (a) z = 7, z = −1
(b) x = 6, x = −2
(c) y = 7, y = −1

51 (a) (12, 7, 2); (5, 7, 2); (12, 1, 2)
(b) (5, 1, 4); (5, 7, 4); (12, 1, 4)

53 (a) (3, 9, 13)
(b) (2, 7, 10)
(c) (4, 11, 16)

55 xy-plane is z = 0
xy = 0 is yz-plane and xz-plane

57 f (x, y) = x − y

59 True

61 False

63 True

65 False

67 False

69 False

71 True

Section 12.1 (online problems)
73 (a) yz-plane: circle (y + 3)2 + (z − 2)2 = 3

xz-plane: none

xy-plane: point (1,−3, 0)

(b) Does not intersect

Section 12.2
1 (III)

3 (I), (IV)

5 (a) (IV)

(b) (II)

(c) (I)
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(d) (V)

(e) (III)

7 (a) Decreases

x

z

(b) Increases

y

z

9 Sphere, radius 3

3 3

3

x y

z

11 Upside-down bowl, vertex (0, 0, 5)

5

x
y

z

13 Plane, x-intercept 6, y-intercept 3, z-

intercept 4

6 3

4

x y

z

15 Circular cylinder extended in the y-direction

2

2

x
y

z

17 x2 + (y −
√

7)2 + z2 = 9

19 (a)

−1

1−2 2

−5

5

−10

10 x = 1

x = 0

x = −1

y

(b)

−2 −1 1 2

−3

−2

−1

1

2

3
✛ y = 1

✛ y = −1

✠

y = 0

x

21 (a)

1 2 3 4 5

0.1

0.2

0.3 C = f (4, t)

C (mg per liter)

t (hours)

(b)

1 2 3 4 5

0.1

0.2
0.3

0.4
0.5

C = f (x, 1)

x (mg)

C (mg per liter)

23 f (2, 10) = 100 joules

25 f (2, 12) = 731.9 millibars.

27 (I) cross-sections with x fixed, (II) cross-

sections with y fixed

29 (a) Bowl

(b) Neither

(c) Plate

(d) Bowl

(e) Plate

31 (a) (II)

(b) (I)

(c) (III)

(d) (VI)

(e) (V)

(f) (IV)

33 Cross-sections graph I:

some lots

none

some

lots
❄

Pizza fixed: Some

✻

Pizza fixed: Little
(or pizza fixed: Lots)

cola

happiness

(a)

some lots

none

some

lots
❄

Cola fixed: Some

✻

Cola fixed: Little
(or cola fixed: Lots)

pizza

happiness

(b)

Cross-sections graph II:

some lots

none

some

lots

cola

happiness
✛ Pizza fixed: Some

❄

Pizza fixed: Lots
(or pizza fixed: Little)

(a)

some lots

none

some

lots

pizza

happiness

✻
Cola fixed: Lots

❄

Cola fixed: Little(b)

Cross-sections graph III:
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some lots

none

some

lots

cola

happiness

✻
Pizza fixed: Little

❄

Pizza fixed: Lots(a)

some lots

none

some

lots

pizza

happiness

❘

Cola fixed:
Some

■
Cola fixed: Little
(or cola fixed: Lots)

(b)

Cross-sections graph IV:

some lots

none

some

lots

cola

happiness

❘

Pizza
fixed: Lots

■
Pizza fixed:
Little

(a)

some lots

none

some

lots

cola

happiness

❘

Pizza
fixed: Lots

■
Pizza fixed:
Little

(a)

35

y

x

z

37

y
x

z

39 (a) y = 0
(b) x = 0
(c) z = 1

41 (a)

x

z
t = −1

x

z
t = 0

t = 1

x

z

t = 2
z

x

(b) Increasing x

(c)

t

x

z

43 Graph is surface in 3-space

45 f (x, y) = x2 + y2 + 2

47 f (x, y) = 1 − x2 − y2

49 True

51 False

53 False

55 True

57 True

59 False

61 True

Section 12.2 (online problems)
63 (a)

�

−1

1 ❄

t = 0

✠

t = �∕4

x

� 2�

−1

1
❄

x = �∕2

❄

x = �∕4

t

(b) f = 0; ends of string don’t move

Section 12.3
1

x

y

4

z
=
3

z
=
2

z
=
1

3

x

y

z
=
1

z
=
2

z
=
3

5 −1

7 (0, 0), other answers possible.

9 3x2y + 7x + 20 = 805

11 (a) (III)

(b) (I)

(c) (V)

(d) (II)

(e) (IV)

13 Table 12.6 matches (II)

Table 12.7 matches (III)

Table 12.8 matches (IV)

Table 12.9 matches (I)

15 Contours evenly spaced parallel lines

x

y

−2 −1 1 2

−2

−1

1

2

c
=
0

c
=
−
3

c
=
−
6

c
=
−
9

c
=
3

c
=
6

c
=
9
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17

x

y

c
=
0

c
=
−
3c

=
−
1

c
=
−
2

−2 −1 1 2

−2

−1

1

2

c = 1

19

−2 −1 1 2

−2

−1

1

2

x

y

c
=
1

c
=
0

c
=
−
1

c
=
−
2

21

42

4

2

−4 −2

−4

−2

x

y

c
=
2

c
=
3

c
=
4

23

−2� −� � 2�

−2�

−�

�

2�

x

y

25 (a) is (II)

(b) is (I)

(c) is (III)

27 (a) −2 Grapes∕Cherry

(b) No change in happiness when replacing

2 grapes with one cherry

29 Underweight: below 18.5, Normal: 18.5-25

31 (a) is III

(b) is VI

(c) is I

(d) is IV

(e) is II

(f) is V

33 Answers in ◦C:

(a)

−10

0

10

(b)

5

10

15

(c)

40

35

30

(d)

26

24

22

35

5 10 15 20 25 30
0

65

70

75

80

85

x

H

t = 20

t = 5

37 (a) 2
(b) −2
(c) −1

39 (a)
√

5
(b) 0
(c) 0

41 (a) About $137
(b) About $250

(a) About $122
(b) About $350

43 Other answers possible

20 40 60 80 100
50

60

70
75
80

90

100

2 6 10 14 18

n, workers

T ◦F

45 (a) II

(b) IV

(c) III

(d) I

47 (a) � = 3q1 + 12q2 − 4 (thousands)

(b)

2 4 6 8 10 12

1

2

3

q1

q2

� = 0

� = 10

� = 20

� = 30

49 (a) (II) (E)

(b) (I) (D)

(c) (III) (G)

51 (a) (I) g

(II)f

(b) 0.2 < � < 0.8

53 (a)

−6
−3
0
3
6

x

y

(b)

−12
−11
−10
−9
−8

x

y

(c)

−4
−3
−2
−1
0

x

y

(d)

−2
−1
0
1
2

x

y

55 y = 2x, y = (1∕3)x

59 (a) P (d, v) = kd2v3

(b) 1∕
3
√

4
(c)

50

40

1000

100,000

10,000,000

x

y

61 Spacing of the contours of f and g are differ-

ent

63 f (x, y) = y − x2

65 Might be true

67 Not true

69 True
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71 True

73 False

75 False

Section 12.4
1 −1.0

3 Not a linear function

5 Linear function

7 z =
4

3
x −

1

2
y

9 z = −2y + 2

11 Δz = 0.4; z = 2.4

13 Linear

15 Basic subscription cost $8
Premium subscription cost $12

17 (a) Linear

(b) Linear

(c) Not linear

19 180 lb person at 8 mph

120 lb person at 10 mph

21 g(x, y) = 3x + y

23 Not linear

25 f (x, y) = 2x − 0.5y + 1

27 Could be linear; z = −4 + x + 4y

29 Could be linear; z = 5 + (3∕2)x

31 Could be linear; z = −5 + (3∕2)x − 2y

33 Could be linear; z = 2x + y + 3

35

x

y

60

70

80

90

100

0.5 1 1.5 2

1

2

3

4

Other answers possible

37

x

y

20

25

30

35

40

0.5 1 1.5 2

1

2

3

4

Other answers are possible

39

x

y

z

1

−2

2

41

x

y

z

2

−4

4

43 8

45 (a) Impossible

(b) Impossible

(c) 20

47 f (x, y) = xy has linear cross-sections

49 z = −2x + y

51 False

53 True

55 True

57 False

59 False

61 False

Section 12.4 (online problems)
65 (a) 7∕

√

29

(b) −5∕
√

104

Section 12.5
1 (a) I

(b) II

3 f (x, y) =
1

3
(5 − x − 2y)

5 f (x, y) = (1 − x2 − y)2

7 Elliptical and hyperbolic paraboloid, plane

9 Hyperboloid of two sheets

11 Ellipsoid

13 Yes, f (x, y) = (2x + 3y − 10)∕5

15 No

17 f (x, y) = 2x − (y∕2) − 3
g(x, y, z) = 4x − y − 2z = 6

19 f (x, y) = −
√

2(1 − x2 − y2)
g(x, y, z) = x2 + y2 + z2∕2 = 1

21 (a) 1596 kcal/day

(b) 1284 kcal/day

(c) Plane; weight, height, age combinations of

woman whose BMR is 2000 kcal/day

(d) Lose weight

23 (a) P (1 + 0.01r)t = 2653.3
(b) (P , r, t) = (1628.9, 5, 10); other answers

possible

25 (a) r2ℎ� = 120
(b) (r, ℎ, �) = (2, 5, 6); other answers possible

27 f (x, y) = 3
√

1 − x2 − y2∕4;

g(x, y) = −3
√

1 − x2 − y2∕4

29 f (x, y, z), r(x, y, z), m(x, y, z)

31 (a) Graph of f is the graph of

y2 + z2 = 1, z ≥ 0

(b)
√

1 − y2 − z = 0

33 Elliptical cylinder along y-axis

35 Parallel planes

37 Surface of rotation

39 Spheres

43

y

z

x ✒

f = 2

✲f = 1

❘

f = 0

45 Vertical shifts

47 Graph of f (x, y, z) needs 4 dimensions

49 Level surfaces cylinders

51 f (x, y, z) = x2 + z2

53 f (x, y, z) = x2 + y2 − z

55 False

57 False

59 False

61 True

63 True

Section 12.6
1 Not continuous

3 Continuous

5 Not continuous

7 1

9 0

11 1

13 2

15 Does not exist

23 No

25 c = 1

27 (c) No

29 For quotient, need g(a, b) ≠ 0

31 f (x, y) = (x2 + 2y2)∕(x2 + y2)

33 f (x, y) = 1∕((x − 2)2 + y2)

35 False

37 True

39 True

Section 13.1
1 a⃗ = i⃗ + 3j⃗

b⃗ = 3i⃗ + 2j⃗

v⃗ = −2i⃗ − 2j⃗

w⃗ = −i⃗ + 2j⃗

3 −3i⃗ − 4j⃗

5 a⃗ = b⃗ = c⃗ = 3k⃗
d⃗ = 2i⃗ + 3k⃗
e⃗ = j⃗

f⃗ = −2i⃗

7 i⃗ + 3j⃗

9 −4.5i⃗ + 8j⃗ + 0.5k⃗

11 −3i⃗ − 12j⃗ + 3k⃗

13 0.9i⃗ + 0.2j⃗ − 0.7k⃗

15
√

6

17
√

11

19 5.6

21 −6i⃗ + 20j⃗ + 13k⃗

23 21j⃗

25 2
√

73

27 0.6i⃗ − 0.8k⃗

29 −i⃗ ∕2 + j⃗ ∕4 +
√

11k⃗ ∕4

31 0,−10

33 (a) (3∕5)i⃗ + (4∕5)j⃗

(b) 6i⃗ + 8j⃗
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35 (a)
√

2i⃗ +
√

2j⃗

(b) (
√

3∕2)i⃗ + k⃗ ∕2

37 p⃗ = −
4
√

5

5
i⃗ −

2
√

5

5
j⃗

39 (a) a⃗ = i⃗ and b⃗ = −i⃗ ; other answers possi-

ble

(b) a⃗ = (1∕
√

2)i⃗ − (1∕
√

2)j⃗ and b⃗ =

(1∕
√

2)j⃗ + (1∕
√

2)k⃗ ; other answers pos-

sible

(c) a⃗ = i⃗ and b⃗ = i⃗ ; other answers possible

(d) Not possible

41 (a) t = 1
(b) No t values

(c) Any t values

43 (i⃗ + j⃗ )∕
√

2, (i⃗ − j⃗ )∕
√

2, (−i⃗ + j⃗ )∕
√

2,

(−i⃗ − j⃗ )∕
√

2

45 (a) (a, 0, 0)

(b)
(

b∕
√

b2 + c2
)

j⃗ +
(

c∕
√

b2 + c2
)

k⃗

47 ‖u⃗ + v⃗ ‖ could be less than 1

49 Longer diagonal if angle between u⃗ and v⃗

more than 90◦

51 v⃗ = j⃗ +
√

3 k⃗

53 u⃗ = i⃗ , v⃗ = 3i⃗ + 3j⃗

55 False

57 False

59 False

61 False

63 False

Section 13.2
1 Scalar

3 Scalar

5 Vector

7 −37.59i⃗ ,−13.68j⃗

9 21i⃗ + 35j⃗

11 (a) 8.64 km/hr

(b) 0.093 radian or about 5◦ off course

13 (a) 17.93i⃗ − 7.07j⃗
(b) 19.27 km/hr

(c) 21.52◦ south of east

15 48.3◦ east of north

744 km/hr

17 4.87◦ north of east

540.63 km/hr

19 38.7◦ south of east

21 −98.76i⃗ + 18.94j⃗ + 2998.31k⃗
2998.31 newtons directly up

23 0.4vi⃗ + 0.7vj⃗

25 0.1i⃗ +0.08j⃗ +0.1625k⃗ or (0.1, 0.08, 0.1625)

37 42.265i⃗ + 42.265j⃗ − 5.229k⃗ mph

39 Not if |j⃗ -component| ≥ 2

41 Let v⃗ = cv⃗ for any c > 0

43 No

45 No

47 No

Section 13.2 (online problems)
49 3.4◦ north of east

Section 13.3
1 14

3 29

5 7.5
√

2

7 −14

9 14

11 −2

13 28j⃗ + 14k⃗

15 185

17 i⃗ + 3j⃗ + 2k⃗ (multiples of)

19 3i⃗ + 4j⃗ − k⃗ (multiples of)

21 3x − y + 4z = 6

23 x − y + z = 3

25 2x + 4y − 3z = 5

27 2x − 3y + 5z = −17

29 2�∕3 radians (120◦)

31 �∕6 radians (30◦)

33 (a) - (II)

(b) - (I)

(c) - (III)

35 (a) (2∕
√

13)i⃗ + (3∕
√

13)j⃗

(b) Multiples of 3i⃗ − 2j⃗

37 −1∕5

39 (a) � = −2.5
(b) a = −6.5

41 (a) (21∕5, 0, 0)
(b) (0,−21, 0); (0, 0, 3) (for example)

(c) n⃗ = 5i⃗ − j⃗ + 7k⃗ (for example)

(d) 21j⃗ + 3k⃗ (for example)

43 Possible answers:

(a) 2i⃗ + 3j⃗ − k⃗

(b) 3i⃗ − 2j⃗

45 (a) is (I); (b) is (III), (IV); (c) is (II), (III); (d)

is (II)

47 v⃗ 1, v⃗ 4, v⃗ 8 all parallel

v⃗ 3, v⃗ 5, v⃗ 7 all parallel

v⃗ 1, v⃗ 4, v⃗ 8 perpendicular to v⃗ 3, v⃗ 5, v⃗ 7

v⃗ 2 and v⃗ 9 perpendicular

49 u⃗ ⟂ v⃗ for t = 2 or −1.

No values of t make u⃗ parallel to v⃗

51 2

53
√

20

55 a⃗ = −
8

21
d⃗ + (

79

21
i⃗ +

10

21
j⃗ −

118

21
k⃗ )

57 Lengths:
√

34,
√

29,
√

13
Angles: 37.235◦, 64.654◦, 78.111◦

59 39 joules; 28.765 foot-pounds

61 120 foot-pounds; 162.698 joules

63 (a) F⃗ parallel = −0.168i⃗ − 0.224j⃗

(b) F⃗ perp = 0.368i⃗ − 0.276j⃗

(c) W = −1.4

65 (a) F⃗ parallel = 0⃗

(b) F⃗ perp = F⃗

(c) W = 0

67 (a) F⃗ parallel = F⃗

(b) F⃗ perp = 0⃗

(c) W = −50

69 (a) F⃗ parallel = 3.846i⃗ − 0.769j⃗

(b) F⃗ perp = −3.846i⃗ − 19.231j⃗

(c) W = 20

71 (a) F⃗ parallel = 0⃗

(b) F⃗ perp = F⃗

(c) W = 0

73 70.529◦

75 w⃗ 4 increases most

w⃗ 3 decreases most

77 (a) (20, 20,−10)
(b) 108.167

79 $710 revenue

87 Can’t take dot product of a scalar and a vector

89 Normal vector is 2i⃗ + 3j⃗ − k⃗

91 f (x, y) = (−1∕3)x + (−2∕3)y

93 True

95 False

97 True

99 False

101 True

103 True

Section 13.4
1 −i⃗

3 −i⃗ + j⃗ + k⃗

5 i⃗ + 3j⃗ + 7k⃗

7 7i⃗ + j⃗ + 4k⃗

9 −2k⃗

11 i⃗ − j⃗

13 v⃗ × w⃗ = −6i⃗ + 7j⃗ + 8k⃗

w⃗ × v⃗ = 6i⃗ − 7j⃗ − 8k⃗
v⃗ × w⃗ = −(w⃗ × v⃗ )

15 x − y − z = −3

17 4

19 0

21 −i⃗ − j⃗ − k⃗

23 0⃗

25 x + 2y + 2z = 0

27 3x − y − 2z = 0

29 4i⃗ + 26j⃗ + 14k⃗

31 4(x − 4) + 26(y − 5) + 14(z − 6) = 0

33 (a) u⃗ and −u⃗ where

u⃗ =
12

13
i⃗ −

4

13
j⃗ −

3

13
k⃗

(b) � ≈ 49.76◦

(c) 13∕2

(d) 13∕
√

29

35 (a) (4, 0, 0)
(b) (0, 2, 0)
(c) (0, 0, 4)
(d) 9.798

37 (a) 0.6
(b) 0.540

39 (a) 1.625
(b) 1.019

41 (a) Increases force

(b) Ball moves down and to the left

43 (b) (−y, x)

45 i⃗ − 3j⃗ − 5k⃗

47 (a) 4k⃗
(b) 3j⃗

(c) 2i⃗

49 � = �∕4 or 3�∕4

51 0 ≤ � < �∕4 or 3�∕4 < � ≤ �

55 4�i⃗

57 (a) ((u2v3 −u3v2)
2 +(u3v1 −u1v3)

2 +(u1v2 −
u2v1)

2)1∕2

(b) |

|

u1v2 − u2v1
|

|

(c) m = (u2v3 − u3v2)∕(u2v1 − u1v2),
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n = (u3v1 − u1v3)∕(u2v1 − u1v2)

59 Parallel, not perpendicular

61 v⃗ = (8i⃗ − 6j⃗ )∕5

63 False

65 True

67 True

69 True

71 False

Section 14.1
1 fx(3, 2) ≈ −2∕5; fy(3, 2) ≈ 3∕5

3 −0.0493, −0.3660
−0.0501, −0.3629

5 )P ∕)t:
dollars/month

Rate of change in pay-

ments with time

negative

)P ∕)r:
dollars/percentage point

Rate of change in pay-

ments with interest rate

positive

7 (a) Payment $376.59/mo at 1% for 24 mos

(b) 4.7c/ extra/mo for $1 increase

(c) Approx $44.83 increase for 1% interest in-

crease

9 (a) Negative

(b) Positive

11 (a) f (A) = 15
(b) Zero

(c) Negative

13 (a) f (A) = 88
(b) Negative

(c) Negative

15 (a) f (A) = 40
(b) Negative

(c) Positive

17 fx > 0, fy < 0

19 fx < 0, fy > 0

21 Positive, Negative, 10, 2, −4

23 (i)(c); (ii)(a)

25 (a) Both negative

(b) Both negative

27 fT (5, 20) ≈ 1.2◦F∕◦F

29 −1.5 and −1.22

31 (a)

10

10

10

20
30

40
50

60

5060

x

y

(b)

10

10

10

20
30

40
50
60

50
60

x

y

33 (a) Negative

(b) Positive

35 (a) 2.5, 0.02
(b) 3.33, 0.02
(c) 3.33, 0.02

37 −2.5

39

T (◦C)

w (gm/m3)

0.1 0.2 0.3

10 1300 900 1200

20 800 800 900

30 800 700 800

41 (a)

−
5

−
4

−
3

−
2

−
1

0
1
2
3
4
5

x

y

(b)

−
5

−
4

−
3

−
2

−
1

0
1
2
3
4
5

x

y

(c)

−
5−

4−
3−

2−
10

1
2

3
4

5

x

y

(d)

5
4
3
2
1
0
−
1

−
2

−
3

−
4

−
5

x

y

43 There are many possibilities.

−8

−6

−4

−2

0

24

6

8

x

y

45 There are many possibilities.

−2 −1 1 2

−2

−1

1

2

−4

−2

0

2 4

x

y

47 fy = 0

49 f (x, y) = 4x − y

51 False

53 False

55 True

57 True

59 True

Section 14.2
1 (a) 7.01

(b) 7

3 fx(1, 2) = 15,

fy(1, 2) = −5

5 )z∕)x = 14x+7

(x2+x−y)−6

)z∕)y = −7(x2 + x − y)6

7 fx = 0.6∕x
fy = 0.4∕y

9 2xy + 10x4y

11 Vr =
2

3
�rℎ

13 e
√

xy(1 +
√

xy∕2)

15 g

17 (a + b)∕2

19 2B∕u0

21 2mv∕r

23 (15x2y − 3y2) cos(5x3y − 3xy2)

25 y

27 zx = 7x6 + yxy−1

zy = 2y ln 2 + xy ln x

29 Gm1∕r
2

31 −e−x
2∕a2 (a2 − 2x2)∕a4

33 cos(���) ⋅ �� +
1

�2 + �
⋅ 2�

35 fa = ea sin(a + b) + ea cos(a + b)

37 )V ∕)r =
8

3
�rℎ,

)V ∕)ℎ =
4

3
�r2
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39 −(x − �)e−(x−�)
2∕(2�2)∕(

√

2��3)

41 (a) fx(1, 1) = 2; fy(1, 1) = 2
(b) (II)

43 (a) fx(1, 1) = 2; fy(1, 1) = 2e
(b) (I)

45 (a) fw(2, 2) ≈ 2.78
fz(2, 2) ≈ 4.01

(b) fw(2, 2) ≈ 2.773
fz(2, 2) = 4

47 (a) P rert

(b) ert

49 1.277 m2, 0.005 m2/kg, 0.006 m2/cm

51 ℎx(2, 5) ≈ −0.38 cm/meter

ℎt(2, 5) ≈ 0.76 cm/second

55 No such points exist

57 (0, 1), (0,−1), (−2, 1) and (−2,−1)

59 )f∕)x or )f∕)y?

61 f (x, y) = 2x + 3y + x2

63 f (x, y) = y2 + 1

65 True

67 False

69 False

71 False

Section 14.3
1 z = ex

3 z = 6y − 9

5 z = −4 + 2x + 4y

7 z = −36x − 24y + 148

9 df = y cos(xy) dx + x cos(xy) dy

11 dz = −e−x cos(y)dx − e−x sin(y)dy

13 dg = 4 dx

15 dP ≈ 2.395dK + 0.008 dL

17 −5

19 0.99

21 95

23 12.005

25 (a) Dollars∕Square foot

(b) Larger plots at same distance $3∕ft2 more

(c) Dollars∕Foot

(d) Farther from beach but same area $2∕ft

less

(e) 998 ft2

27 (b) f (x, y) ≈
0.3345 − 0.33(x − 1) − 0.15(y − 2)

(c) f (x, y) ≈ 0.3345 −
0.3345(x − 1) − 0.1531(y − 2)

29 (a) fx(1, 2) = 3; fy(1, 2) = 2
(b) 2

(c) 2.1

31 df = −3dx + 2dy at (2,−4)

33 376

35 df =
1

3
dx + 2dy

f (1.04, 1.98) ≈ 2.973

37 136.09◦C

39 P (r, L) ≈
80 + 2.5(r − 8) + 0.02(L − 4000)
P (r, L) ≈
120 + 3.33(r − 8) + 0.02(L − 6000)
P (r, L) ≈
160 + 3.33(r − 13) + 0.02(L − 7000)

43 (a) nRT∕(V − nb) − n2a∕V 2

(b) ΔP ≈ (nR∕(V0 − nb))ΔT + (2n2a∕V 3
0
−

nRT0∕((V0 − nb)
2))ΔV

45 (a) d� = −��dT
(b) 0.00015, � ≈ 0.0005

47 −43200Δt
Slow if Δt > 0; fast if Δt < 0

49 (a) 4x dx = 2y dy + 6z dz

(b) dz =
2

3
dx −

1

2
dy

(c) z = 2 +
2

3
(x − 2) −

1

2
(y − 3)

51 (a) ey dx+xey dy+2z dz = −sin(x−1) dx+
z

√

z2+3
dz

(b) dz = −
2

3
dx −

2

3
dy

(c) z = 1 −
2

3
(x − 1) −

2

3
(y − 0)

53 z = f (3, 4) + fx(3, 4)(x−3)+ fy(3, 4)(y−4)

55 Equation not linear

57 sphere of radius 3 centered at the origin

59 True

61 False

63 True

65 False

Section 14.4
1 ( 15

2
x4)i⃗ − ( 24

7
y5)j⃗

3 2mi⃗ + 2nj⃗

5

(

5�
√

5�2+�

)

i⃗ +

(

1

2

√

5�2+�

)

j⃗

7 ∇z = ey i⃗ + ey(1 + x + y)j⃗

9 sin �i⃗ + r cos �j⃗

11 ∇z =
1

y
cos (

x

y
)i⃗ −

x

y2
cos (

x

y
)j⃗

13

(

−12�

(2� − 3�)2

)

i⃗ +

(

12�

(2� − 3�)2

)

j⃗

15 60i⃗ + 85j⃗

17 10�i⃗ + 4�j⃗

19 (�∕2)1∕2 i⃗

21
1

100
(2i⃗ − 6j⃗ )

23 i⃗

25 i⃗ + j⃗

27 i⃗ − j⃗

29 Negative

31 Negative

33 Approximately zero

35 −i⃗

37 i⃗

39 −i⃗ + j⃗

41 i⃗ + j⃗

43 6.325

45 −46∕5

47 22∕5

49 84∕5

51 (2x + 3ey)dx + 3xeydy

53 (x + 1)yex i⃗ + xexj⃗

55 50.2

57 (a) Should be number

(b) 11∕5

59 −2

61 i⃗ + 2j⃗ or any multiple

63 0.316

65 1

67 100

69 (a) −
√

2∕2

(b)
√

3 + 1∕2

71 (a) 2∕
√

13

(b) 1∕
√

17

(c) i⃗ +
1

2
j⃗

73 (a) 5∕
√

2
(b) 510

75 (a) −16i⃗ + 12j⃗

(b) 16i⃗ − 12j⃗

(c) 12i⃗ + 16j⃗ ; answers may vary

77 1.7; closer estimate is 1.35

79 2.5; better estimate is 1.8

81 −0.9; better estimate is −1.8

83 Fourth quadrant

85 (a) Negative

(b) Positive

(c) Positive

(d) Negative

87 fu⃗ (P ) < fw⃗ (P ) < fv⃗ (P )

89 f (P ) ≈ 6, f (Q) ≈ −24

91 3i⃗ + 2j⃗ ; 3(x − 2) + 2(y − 3) = 0

93 −5i⃗ ; x = 2

95 5∕
√

2

97 (a) ellipses centered at (0, 0)
(b) decreasing at 49.9◦C per meter

(c) −i⃗ − 2j⃗ . Other answers possible

99 (a)
√

13 meters ascended/horizontal meter

(b) 3.54 meters ascended/horizontal meter

(c) u⃗ = 3i⃗ + 2j⃗ ; u⃗ = −3i⃗ − 2j⃗

101 grad f (0, 0) is vector, not scalar

103 −i⃗

105 False

107 False

109 True

111 False

113 True

115 True

Section 14.4 (online problems)
117 (a) Perpendicular to contour of f at P

(b) Maximum directional derivative of f at P

(c) Directional derivative fu⃗ (P )

119 19.612

121 356.5

123 (a) −3.268
(b) −4.919

125 Yes

127 Yes

129 (a)

x
y

z
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(b)

z = 4

z = 1

z = 0

z = 1
z = 4

z = 9

z = 164

−2

x

y

(c) j⃗

131 (a) Circles centered at P

(b) away from P

(c) 1

133 (3
√

5 − 2
√

2)i⃗ + (4
√

2 − 3
√

5)j⃗

135 4
√

2,

6i⃗ + 2j⃗

139 (a)
√

m2 + n2

(b) (C2 − C1)∕
√

m2 + n2

141 (a) ai⃗ + 2bj⃗

(b)
√

(2 + a)∕(2 − a)

(c)
√

(2 − a)∕(2 + a)

143 True

145 True

147 False

Section 14.5
1 2xi⃗

3 exeyez(i⃗ + j⃗ + k⃗ )

5
−2xyz2

(1 + x2)2
i⃗ +

z2

1 + x2
j⃗ +

2yz

1 + x2
k⃗

7 (xi⃗ + yj⃗ + zk⃗ )∕
√

x2 + y2 + z2

9 yi⃗ + xj⃗ + ez cos (ez) k⃗

11 ep i⃗ + (1∕q)j⃗ + 2rer
2
k⃗

13 0⃗

15 6i⃗ + 4j⃗ − 4k⃗

17 −�i⃗ − �k⃗

19 9∕
√

3

21 −1∕
√

2

23 −
√

77∕2

25 −2i⃗ − 2j⃗ + 4k⃗ ;

−2(x + 1) − 2(y − 1) + 4(z − 2) = 0

27 2j⃗ − 4k⃗ ; 2(y − 1) − 4(z − 2) = 0

29 −2i⃗ + k⃗ ; −2(x + 1) + (z − 2) = 0

31 6(x − 1) + 3(y − 2) + 2(z − 1) = 0

33 2x + 3y + 2z = 17

35 z = 2x + y + 3

37 x + 4y + 10z = 18

39 10∕3

41 2z + 3x + 2y = 17

43 x + 3y + 7z = −9

i⃗ + 3j⃗ + 7k⃗

45 grad g(−1,−1) lies directly under path of

steepest descent

47 (a) (x − 2) + 4(y − 3) − 6(z − 1) = 0
(b) z = 1 + (1∕6)(x − 2) + (2∕3)(y − 3)

49 3x + 10y − 5z + 19 = 0

51 16∕
√

14

53 (a) Spheres centered at the origin

(b) 2x sin(x2 + y2 + z2)i⃗ + 2y sin(x2 + y2 +

z2)j⃗ + 2z sin(x2 + y2 + z2)k⃗
(c) 0, 180◦

55 (a) Circle: (y + 1)2 + (z − 3)2 = 10
(b) Yes

(c) Multiples of −10i⃗ + 4j⃗ − 12k⃗

57 (a) (−3i⃗ + 6j⃗ + 12k⃗ )∕
√

21
(b) (8.345, 2.309, 4.619)

59 Any multiple of 2i⃗ + 2j⃗ + k⃗

61 (−1∕6, 1∕3,−1∕12)

63 (a) 6.33i⃗ + 0.76j⃗
(b) −34.69

65 (a) 23

(b) −9.2
(c) −16i⃗ + 6j⃗
(d) 16x − 6y − z = 23

67 (a) Parallel planes: 2x − 3y + z = T − 10
(b) fz(0, 0, 0) = 1, temp increases 1◦C per

unit in z-direction

(c) 2i⃗ − 3j⃗ + k⃗
(d) Yes; 27◦C

69 (a) −25∕
√

21

(b) −8i⃗ + 7j⃗ + 4k⃗

(c)
√

129

71 1.131 atm/sec

73 (a) is (V); (b) is (IV); (c) is (V)

75 fx(0, 0, 0)x + fy(0, 0, 0)y
+ fz(0, 0, 0)z = 0

77 f (x, y, z) = 2x + 3y + 4z + 100

79 False

81 False

Section 14.6
1

dz

dt
= e−t sin(t)(2 cos t − sin t)

3 2 cos
(

2t

1−t2

)

1+t2

(1−t2)2

5 2e1−t
2
(1 − 2t2)

7
)z

)u
=

1

vu
cos

(

ln u

v

)

)z

)v
= −

ln u

v2
cos

(

ln u

v

)

9
)z

)u
=
ev

u
)z

)v
= ev ln u

11
)z

)u
= 2ue(u

2−v2)(1 + u2 + v2)

)z

)v
= 2ve(u

2−v2)(1 − u2 − v2)

13
)z

)u
=

(e−v cos u − v(cos u)e−u sin v) sin v
− (−u(sin v)e−v cos u + e−u sinv)v sin u
)z

)v
=

(e−v cos u − v(cos u)e−u sin v)u cos v
+ (−u(sin v)e−v cos u + e−u sinv) cos u

15
)z

)u
=

−2uv2

u4 + v4

)z

)v
=

2vu2

u4 + v4

17 −2� cos 2�, 0

19 (a) )f∕)t
(b) ()f∕)x)(dx∕dt)
(c) ()f∕)y)(dy∕dt)

21 −5 pascal/hour

23 −0.6

25 (a) 1∕
√

10 = 0.316 ◦F/mile

(b) 2.5∕
√

10 = 0.791◦F∕hr

(c) 2.5 ◦F∕hr

27 Three

29
dw

dt
=

)w

)x

dx

dt
+

)w

)y

dy

dt
+

)w

)z

dz

dt

31 (a) Fu(x, 3)
(b) Fv(3, x)
(c) Fu(x, x) + Fv(x, x)
(d) Fu(5x, x

2)(5) + Fv(5x, x
2)(2x)

33 b ⋅ e + d ⋅ p

35 b ⋅ e + d ⋅ p

37 (a)
)z

)r
= cos �

)z

)x
+ sin �

)z

)y
)z

)�
= r(cos �

)z

)y
− sin �

)z

)x
)

(b)
)z

)y
= sin �

)z

)r
+

cos �

r

)z

)�
)z

)x
= cos �

)z

)r
−

sin �

r

)z

)�

39 (
)U3
)P

)V

41 (
)U

)T
)V = 7∕2

(
)U

)V
)T = 11∕4

45 dz∕dt = fx(g(t), ℎ(t))g
′(t) +

fy(g(t), ℎ(t))ℎ
′(t)

47 dz∕dt|t=0 = fx(2, 3)g
′(0) + fy(2, 3)ℎ

′(0)

49 f (x, y) = 4x + 2y

51 w = uv, u = 2s2 + t and v = est, many other

answers are possible

53Section 14.6 (online problems)
(c)

57 ∫
b

0
Fu(x, y) dy

Section 14.7
1 fxx = 2
fyy = 2
fyx = 2
fxy = 2

3 fxx = 6y
fxy = 6x + 15y2

fyx = 6x + 15y2

fyy = 30xy

5 fxx = 0
fyx = ey = fxy
fyy = ey(x + 2 + y)

7 fxx = −
(

sin
(

x

y

))(

1

y2

)

fxy = −
(

sin
(

x

y

))(

−x

y2

)(

1

y

)

+
(

cos
(

x

y

))(

−1

y2

)

= fyx

fyy = −
(

sin
(

x

y

))(

−x

y2

)2

+
(

cos
(

x

y

))(

2x

y3

)

9 fxx = 30xy2 + 18
fxy = 30x2y − 21y2

fyx = 30x2y − 21y2

fyy = 10x3 − 42xy

11 fxx = −12 sin 2x cos 5y
fxy = −30 cos 2x sin 5y
fyx = −30 cos 2x sin 5y
fyy = −75 sin 2x cos 5y

13 Q(x, y) = 1 + 2x − 2y + x2 − 2xy + y2

15 Q(x, y) = 1 + x + x2∕2 − y2∕2
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17 Q(x, y) = 1 − x2∕2 − 3xy − (9∕2)y2

19 Q(x, y) = −y + x2 − y2∕2

21 1 + x − y∕2 − x2∕2 + xy∕2 − y2∕8

23 (a) Negative

(b) Zero

(c) Negative

(d) Zero

(e) Zero

25 (a) Positive

(b) Zero

(c) Positive

(d) Zero

(e) Zero

27 (a) Zero

(b) Negative

(c) Zero

(d) Negative

(e) Zero

29 (a) Positive

(b) Positive

(c) Zero

(d) Zero

(e) Zero

31 (a) Positive

(b) Negative

(c) Negative

(d) Negative

(e) Positive

33 (a) Positive

(b) Negative

(c) Positive

(d) Negative

(e) Negative

35 −8

37 3

39 Not possible

41 6

43 L(x, y) = y

Q(x, y) = y + 2(x − 1)y
L(0.9, 0.2) = 0.2
Q(0.9, 0.2) = 0.16
f (0.9, 0.2) = 0.162

49 a = −b2

51 Positive or zero, negative or zero

53 (a) zyx = 4y
(b) zxyx = 0
(c) zxyy = 4

55 d = e = f = 0

57 d = 0, e > 0, f < 0

59 (a)

Trail

1000

101
0

10
20

990980

Elevation in meters

(b) )ℎ∕)x = 0, )ℎ∕)y > 0, ()2ℎ)∕()x)y) <
0

(c) ()2ℎ)∕()x)y)

61 (a) A

(b) B

63 (a) (II)

(b) (I)

(c) (III)

65 (a) xy

1 −
1

2
(x −

�

2
)2 −

1

2
(y −

�

2
)2

(b)

x

y

0

0

x

y

�

2

�

2

67 f (x, y):

−0.6 0.6

−0.6

0.6

0.8

1.1

1.4

x

y

L(x, y):

−0.6 0.6

−0.6

0.6

0.8

1.1

1.4

1.7

x

y

Q(x, y):

−0.6 0.6

−0.6

0.6

0.8

1.1

1.4

x

y

f (x, y):

−2 2

−2

2

0.8
1.1

1.4

1.7

2.0

2.3

2.6

x

y

L(x, y):

−2 2

−2

2

0.8
1.1
1.4
1.7

2.0
2.3
2.6
2.9
3.2
3.5
3.8

x

y

Q(x, y):

−2 2

−2

2

0.8
1.1

1.4

1.4

1.1
0.8

x

y

69 None since fxy ≠ fyx

71 f (x, y) = 2x + y2, g(x, y) = 2x + y2 + x3

Section 14.8
1 (0, 0)

3 x-axis and y-axis

5 None

7 None

9 (1, 2)

11 (a)

2

2

4

4

3

3

4
3

43

−
4 −
3

−3
−4

−3
−4

−
3 −
4

−2 2

−2

2

x

y
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(b) No

(c) No

(d) No

(e) Exist, not continuous

13 (a)

−2 2

−2

2

x

y
−
0
.2

−
0
.4

−
0.
2

−0
.4

0
.2 0
.4

0
.2

0.4

−
0
.2

−
0
.4

−
0
.2

−0.4

0
.2

0
.4

0.
2

0.4

(b) Yes

(c) Yes

(d) No

(e) Exist, not continuous

15 (a)

−2 2

−2

2

x

y

−0.8

−0.6
−0.4

−0.2

0.8

0.6
0.4

0.2

−0.8

−0.6
−0.4

−0.2

0.8

0.6
0.4

0.2

(b) Yes

(d) No

(f) No

17 (a)

−2 2

−2

2

x

y

−0
.4

−0.
4

−0.2

−
0.
2

−0.4

−0.4
−0.2

−
0.2

0.4

0.4

0.2

0.2
0.4

0.4

0.2

0.
2

(c) No, no

19 (a) fx(x, y) =
(x4y + 4x2y3 − y5)∕(x2 + y2)2

fy(x, y) =

(x5 − 4x3y2 − xy4)∕(x2 + y2)2

(c) Yes

(d) Yes

21 Counterexample:
√

x2 + y2

23 f (x, y) =
√

x2 + y2

25 (a) Differentiable

(b) Not differentiable

(c) Not differentiable

(d) Differentiable

Section 15.1
1 (I) and (V) Local maximum, (II) and (VI) Lo-

cal minimum, (III) and (IV) Saddle point

3 (a) None

(b) E, G

(c) D, F

5 (a)

3

5

Cross­section for x = 2

y

z

2

5

Cross­section for y = 3

x

z

(b)

3

5

Cross­section for x = 2

y

z

2

5

Cross­section for y = 3

x

z

(c)

3

5

Cross­section for x = 2

y

z

2

5

Cross­section for y = 3

x

z

7 Saddle point

9 Local minimum

11 Local maximum

13 Local minimum

15 Local max: (4, 2)

17 Local max: (1, 5)

19 Saddle point: (0, 0)
Saddle point: (2, 0)
Local min: (1, 0.25)

21 Saddle pts: (1,−1), (−1, 1)
Local max: (−1,−1)
Local min: (1, 1)

23 Local max: (−1, 0)
Saddle pts: (1, 0), (−1, 4)
Local min: (1, 4)

25 Saddle point: (0, 0)
Local max: (1, 1), (−1,−1)

27 Local min: (0, 0)

29 (a) All values of k

(b) None

(c) None

31 a = −9, b = −12, c = 50

33 (a) k < 4
(b) None

(c) k ≥ 4

35

QR

P

S
T✗✒✿③❘❲☛

✙■
❖

❨✯
✛✲❘ ✠◆✌

✒✒ ❑❑

123
−1
−2
−3

1 23
−1
−2
−3

0

00

0

1

−1−1 −2−2

2

2

−3−3

3

3

37 Saddle point: (0, 0).

39 Critical points: (0, 0), (±�, 0),
(±2�, 0), (±3�, 0), ⋯

Local minima: (0, 0),
(±2�, 0), ±4�, 0), ⋯

Saddle points: (±�, 0),
(±3�, 0), (±5�, 0), ⋯

41 (a) (1, 3) is a local minimum

(b)

1

3

x

y

✠

0

1
41632

64
12
0

47

−1 1 2 3 4 5 6
−1

1

2

3

4

5

6

0 1 2 3 4

−1

−1

−2
−3

−4

x

y
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49 (a) (0, 0)
(b) D = −24x2

(c) Saddle point

51

−2
−1 21

0
0

−1
−2

0

11
2

0

−1
−2

0

11
2

✛
y = x∕

√

3

✛
y = −x∕

√

3

f > 0f < 0

f < 0f > 0

f > 0 f < 0

x

y

53 (1, 3) could be saddle point

55 Can be saddle if fxy large

57 f (x, y) = 4 − (x − 2)2 − (y + 3)2

59 False

61 True

63 True

65 True

67 False

69 False

Section 15.2
1 Mississippi:

87 − 88 (max), 83 − 87 (min)

Alabama:

88 − 89 (max), 83 − 87 (min)

Pennsylvania:

89 − 90 (max), 80 (min)

New York:

81 − 84 (max), 74 − 76 (min)

California:

100 − 101 (max), 65 − 68 (min)

Arizona:

102 − 107 (max), 85 − 87 (min)

Massachusetts:

81 − 84 (max), 70 (min)

3 Max: 30.5 at (0, 0)
Min: 20.5 at (2.5, 5)

5 High: (0, 0, 8)
Low: (0, 0,−6)

7 High: None

Low: (5, �, 2�)

9 None

11 Min = 0 at (0, 0)
(not on boundary)

Max = 2 at (1, 1), (1,−1),
(−1,−1) and (−1, 1)

(on boundary)

13 max= 1 at (1, 0) and (−1, 0)
(on boundary)

min= −1 at (0, 1), (0,−1)
(on boundary)

15 Global min; no global max

17 Global max; no global min

19 Global max; no global min

21 Global min at (0, 2�n), all n

No global max

23 Saddle at (0, 1∕2); local min at (−2∕3, 7∕6);
no global max or min

25 Saddle at (0, 0); local max at (2∕9, 4∕27); no

global max or min

27 All edges (32)1∕3 cm

29 l = w = ℎ = 45 cm

31 (3∕14, 1∕7, 1∕14)

35 q1 = 300, q2 = 225.

37 (a) L =

[

pA

(

a

k

)a (
l

b

)(a−1)
]1∕(1−a−b)

K =
la

kb
L

(b) No

39 y = 24x2∕49 − 2∕7

41 y =
25

6
−

3

2
x

43 (b) f (
√

1∕2,
√

3∕5) =

4
√

2 + 2
√

15 ≈ 13.403

45 (a) Decrease; increase

(d) Both zero

47 Some do, like f (x, y) = x2 + y2; some don’t

49 f (x, y) = x + y

51 True

53 True

55 True

57 False

59 True

Section 15.3
1 Min = −

√

2, max =
√

2

3 Max: 20 at (−1, 2);
Min: 0 at (1,−2)

5 Min = −22, max = 22

7 Maximum f (10, 12.5) = 250;

No minimum

9 Min =
3

4
, no max

11 Max = 0, no min

13 Max:f (0, 2) = f (0,−2) = 8
Min:f (0, 0) = 0

15 Max =

√

2

4
, min = −

√

2

4

17 Max: 32 at (1,−1);
Min:8 at (−1, 1)

19 (a) P minimum, Q minimum, R neither, S

maximum

(b) P minimum, Q neither, R neither, S max-

imum

21 K = 4, L = 5, � = 0.072

23 K = 100, L = 400, � = 4

25 Global max (12∕5, 8∕5); global min (1, 3)

27 0.5

29 (a)

20 40 60 80 100

500

1000

1500
I

II
III

(50, 500)

s = 1000 − 10l

l

s

(b) s = 1000 − 10l

31 (a) Min; max at endpt of constraint

� neg

(b) Max; min at endpt of constraint

� pos

33 Δc∕4; −Δc∕4

37 (a) C = $4349

(b) $182

39 (a) W = 225
K = 37.5

(c) W = 225
K = 37.5
� = 0.29

41 (a) No

(b) Yes

(c) a + b = 1

43 x1 = ((v1)
1∕2 + (v2)

1∕2)∕(m(v1 )
1∕2)

x2 = ((v1)
1∕2 + (v2)

1∕2)∕(m(v2 )
1∕2)

45 (a) f1 =
k1

k1+k2
mg, f2 =

k2
k1+k2

mg

(b) Distance the mass stretches the top spring

and compresses the lower spring

49 (a) Cost of producing quantity u when prices

are p, q

(b) 2
√

pqu

51 (a) −5�2 + 15�
(b) 1.5, 11.25
(c) 11.25, 1.5
(d) same

53 (a) S = ln(aa(1 − a)(1−a)) + ln b − a ln p1 −
(1 − a) ln p2

(b) b = ecpa
1
p
(1−a)

2
∕(aa(1 − a)(1−a))

55

6

3

6
−
2 −

1
0

−
2
6

−
1
8

−
3
4

x

y

57 f (x, y) = x2 + y2

59 f (x, y) = 10 − x2 − y2

63 True

65 True

67 False

69 False

71 True

73 False

75 False

Section 15.3 (online problems)
77 (a)

1 2 3 4

1

2

3

4

8

11

14

17

5

2

x

y

(b)

1 2 3 4
0

5

10

15

20

y = 1
y = 2

y = 3
y = 4

y = 5

x

z
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Section 16.1
1 24; 43.5

3 Over: Approx 137

Under: Approx 60

5 about 2300

7 Average height of a tent in meters

9 Positive

11 Zero

13 Zero

15 Positive

17 About 4.888 km3

19 120

21 Need f nonnegative everywhere

23 f (x, y) = 5 − x− y; R is square with vertices

(±1,±1)

25 False

27 False

29 True

31 True

33 False

Section 16.1 (online problems)
35 25.2◦C

Section 16.2
1

�

�

∫

�

0 ∫

x

0

y sinx dy dx

x

y

3

2 4

1

2

∫

2

0 ∫

y2

0

y2x dx dy

x

y

5 150

7 54

9 e − 2

11 3 − sin 3

13 (e4 − 1)(e2 − 1)e

15 −2.678

17 15

19
2

3
(e8 − 1)

21 ∫
4

1
∫

2

1
f dy dx or ∫

2

1
∫

4

1
f dx dy

23 ∫
3

−1
∫

(1−3x)∕4

−2
f dy dx

or ∫
1

−2
∫

(1−4y)∕3

−1
f dx dy

25 ∫
3

1
∫

−
1
2
(y−5)

1
2
(y−1)

f dx dy or

∫
1

0
∫

2x+1

1
f dydx+

∫
2

1
∫

−2x+5

1
f dydx

27 ∫
2

1
∫
x

0
f dy dx or

∫
1

0
∫

2

1
f dxdy+

∫
2

1
∫

2

y
f dxdy

29
4

15
(9
√

3 − 4
√

2 − 1) = 2.38176

31 32∕9

33 13∕6

35 0

37 2/3

39 ∫
6

0
∫
x∕2

0
f (x, y)dy dx

41 ∫
9

0
∫

√

9−y

−
√

9−y
f (x, y) dx dy

43 (e − 1)∕2

45
2

9
(3
√

3 − 2
√

2)

47
1

2
(e2 − 1)

49 ln(17)∕4

51 {(I),(IV),(V)}, {(II),(III),(VI)}

53 (a) 8∕3
(b) 16∕3

55 (a) ∫
1∕2

0
∫

1−y

y
f (x, y)dx dy

∫
1∕2

0
∫
x

0
f (x, y)dy dx +

∫
1

1∕2
∫

1−x

0
f (x, y)dy dx

(b) 1/8

57 15

59 (a) Plate 1

(b) Plate 1: 5 coulombs; Plate 2: 4 coulombs

61 18 gm

63 ∫
3

−3
∫

√

9−y2

−

√

9−y2
(9 − x2 − y2) dx dy

65 4

67 117.45

69 Volume = 1∕(6abc)

71 (a) Circles centered at (1, 0)

(b) ∫

√

3

−
√

3
e−y

2
dy

(c) ∫
2

−2
∫

√

4−x2

−
√

4−x2
e−(x−1)

2−y2 dy dx

73 (a)

1

1

100

98

96
94

x

y

(b)

1

1

0

0.1

0.2
0.3

x

y

75 (a) (4∕3)a + b + (4∕3)c = 20

(b) f (x, y) = x2 +
44

3
xy + 3y2:

x

y

f (x, y) = −3x2 + 24xy:

x

y

77 Outside limits on right should be constants

79 f (x, y) = 12x

81 False

83 True

85 True

87 True

Section 16.2 (online problems)
89 Volume = 6

91 k(a3b + ab3)∕3

Section 16.3
1 2

3 −8

5

x y

z

1 1

1

7

x

y

z

1

1

1

9

1
1

1

x
y

z



1167

11

1
1

1

x
y

z

13

1
1

1

x

y

z

15 Mass of E in kg

17 Positive

19 Positive

21 Zero

23 Positive

25 Zero

27 Positive

29 Positive

31 Positive

33 Zero

35 1

37 4∕3

39 500∕3

41 V = ∫
1

−1
∫

√

1−x2

−
√

1−x2
∫

√

4−x2−y2

x2+y2
1 dz dy dx

Can reverse order x, y

43 V = ∫
2

0
∫

(y+2)∕2

y
∫

√

9−x2−y2

0
1 dz dx dy

45 V = ∫
1

0
∫

√

4−x2

0
∫

√

4−x2−y2

0
1 dz dy dx

47 ∫
1

0
∫

2

−2
∫

√

4−z2

0
f (x, y, z) dy dz dx

49 ∫
r

0
∫

√

r2−x2

−
√

r2−x2
∫

√

r2−x2−y2

0
f (x, y, z) dz dy dx

51 125∕3

53 2∕3

55 15∕2

57 (a) Mass of pyramid in grams

(b) Four

(c) 27 grams

59 ∫
3∕4

0
∫

2−2y

2y
3

∫
4−2x−4y

0
f (x, y, z) dz dx dy

61 ∫

1
2

0
∫

4−8x

0
∫

1−
x
2
−
z
4

3x
2

f (x, y, z) dy dz dx

63 (a) z =
√

1 − x2, 0 ≤ y ≤ 10

(b) ∫
10

0
∫

1

−1
∫

√

1−x2

0
f (x, y, z) dz dx dy

65 ∫
2

0
∫

√

12−3y2

0
∫

6y2

0
f (x, y, z) dz dx dy

67 ∫

√

12

0
∫

24−2x2

0
∫

√

12−x2

3
√

z
6

f (x, y, z) dy dz dx

69 ∫
2

0
∫

(3∕2)

√

4−y2

0
∫

5

(15−5x)∕3
f (x, y, z) dz dx dy

71 ∫
5

0
∫

(15−3z)∕5

0
∫

(2∕3)
√

9−x2

0
f (x, y, z) dy dx dz

73 ∫
2

0
∫

4−x2

0
∫

2−x

0
f (x, y, z) dy dz dx

75 m = 2;

(x̄, ȳ, z̄) = (13∕24, 13∕24, 25∕24)

77 Not true for f (x, y, z) = z

79 f (x, y, z) = 7∕(12�)

81 False

83 False

85 True

87 False

89 False

Section 16.3 (online problems)
91 4

93 1

95 (a) ∫
2

0
∫

4−x
2

√

x
2

∫
4−x−2y

0
f (x, y, z) dz dy dx

(b) ∫
2

0
∫

4−x−
√

2x

0
∫

4−x−z
2

√

x
2

f (x, y, z) dy dz dx

97 m(b2 + c2)∕3

Section 16.4
1 ∫

�∕2

0
∫

1∕2

0
f rdr d�

3 ∫
3�∕4

�∕4
∫

2

0
f rdr d�

5 ∫
5

1
∫

4

2
f (x, y) dy dx

7 ∫
2�

�
∫

4

2
f (r cos �, r sin �) r dr d�

9

x

y

� = −�∕2

� = �∕2 ✠

r = 4

11

1 2
x

y

✠

r = 2

✙
r = 1

13

x

y

� = �∕4

r = 1∕ cos �
or r cos � = 1
or x = 1

15

x

y

r = 2∕ sin �
or r sin � = 2
or y = 2

� = �∕4

17 �(1 − cos 4)

19 −2∕3

21 1.

23 ∫
0

−1
∫

−
√

3x

0
2y dy dx; ∫

√

3

0
∫

−y∕
√

3

−1
2y dx dy

25 16

27 (a)

x

y

1

3

y = x∕3

(b) ∫
1

0
∫

3y

0
f (x, y) dx dy

(c) ∫
�∕2

tan−1(1∕3)
∫

1∕ sin �

0

f (r cos �, r sin �)r dr d�

29 2∕
√

3

31 625�∕2

33 (a) �(1 − e−a
2
)

(b) Volume tends to �

35 (a) ∫
3�∕2

�∕2
∫

4

1
�(r, �) rdr d�

(b) (i)

(c) About 39,000

37 Total charge = 2k�R

39 (a)

1 2

r = 2 cos �r = 1 ❄

� = �∕3

✻

� = −�∕3

x

y

(b)
√

3∕2 + �∕3

41 Integrand r3 instead of r2

43 Regions of integration are not the same

45 Quarter disk 0 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2

47 f (x, y) = 1∕
√

x2 + y2

49 (a), (c), (e)

51 True

53 False

55 False

Section 16.4 (online problems)

57 (a) ∫

√

3∕2

−
√

3∕2
∫

√

1−y2

1−

√

1−y2
dxdy

(b) ∫
1

0
∫

arccos(r∕2)

− arccos(r∕2)
r d�dr

Section 16.5
1 (a) is (IV); (b) is (II); (c) is (VII); (d) is (VI);

(e) is (III); (f) is (V)

3 z =
√

1 − r2

5 � = �∕4

7 � = 4∕ cos�

9 (a) Cones opening vertically.

One vertex at origin, opening upward.

One vertex at (0, 0, 6) opening downward
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(b) z = r; z = 6 − r
(c) Circle, horizontal

(d) z = 3; r = 3
(e) x2 + y2 = 9; z = 3

11 200�∕3

13 25�

15 ∫
1

0
∫

2�

0
∫

4

0
f ⋅ rdr d� dz

17 ∫
�

0
∫
�

0
∫

3

2
f ⋅ �2 sin�d� d� d�

19 ∫
5

0
∫

2

0
∫
x∕5

0
f dz dy dx

21 ∫
2�

0
∫

2

0
∫

4

2r
f (r, �, z)r dz dr d�

23 ∫
2

−2
∫

√

4−x2

−
√

4−x2

∫
4

2

√

x2+y2
ℎ(x, y, z) dz dy dx

25 ∫
�

0
∫
K

0
∫

2�

0
�2 sin�d� d� d�

27 (a) ∫
1∕

√

2

−1∕
√

2
∫

√

(1∕2)−x2

−

√

(1∕2)−x2

∫

√

1−x2−y2

√

x2+y2
dz dy dx

(b) ∫
2�

0
∫

1∕
√

2

0
∫

√

1−r2

r
r dz dr d�

(c) ∫
2�

0
∫
�∕4

0
∫

1

0
�2 sin�d� d�d�

29 (a) ∫
2�

0
∫

√

2

0
∫

√

4−r2

r
r dz dr d�

(b) ∫
2�

0
∫
�∕4

0
∫

2

0
�2 sin�d� d�d�

31 V = ∫
2�

0
∫
�∕3

0
∫

3

0
�2 sin�d� d� d�

Order of integration can be altered;

other coordinates can be used

33 V = ∫
�

0
∫

√

3
√

2
∫

10

5
r dz dr d�;

Order of integration can be altered;

other coordinates can be used

35 V = ∫
2�

0
∫

3

0
∫

√

10−r2

1
r dz dr d�

or

V = ∫
2�

0
∫

√

10

1
∫

√

10−z2

0
r dr dz d� Order of

integration can be altered;

other coordinates can be used

37 (a) ∫
2�

0
∫

1∕
√

3

0
∫

1
√

3r
r dz dr d�

(b) �∕9

39 16�(
√

2 − 1)∕(3
√

2)

41 28�∕15

43 ∫
2�

0
∫

5∕
√

2

0
∫

5∕
√

2

r
r dz dr d� =

125�∕(6
√

2) = 46.28 cm3

45 (a) Positive

(b) Zero

47 ∫
2�

0
∫
l

0
∫
a+ℎ

a
r drdzd� =

�l((a + ℎ)2 − a2)

49 ∫
2�

0
∫
a

0
∫
ℎ

ℎr∕a
r dzdrd� = �ℎa2∕3

51 (a) ∫
2�

0
∫

5

1
∫

√

25−r2

−
√

25−r2
r dz dr d�

(b) 64
√

6� = 492.5 mm3

53 81�(−
√

2 + 2)∕4

55 324�∕5 gm

57 1702� gm

59 Mass = ∫
2

−2
∫

√

4−x2

−
√

4−x2

∫
4−x2−y2

0
e−x−y dz dy dx gm

61 1∕27

63 Total charge = 2�kR2

65 (a) �∕5
(b) 5∕6

67 3a∕8b above center of base

69 Limits of outer integral not constant

71 ∫
2�

0
∫
�∕2

0
∫

5

0
�2 sin�d� d�d�

73 (c)

Section 16.5 (online problems)

75 W = ∫
1

0
∫

2�

0
∫

(
√

9−r2)−1
√

1−r2
r dz d�dr +

∫
2
√

2

1
∫

2�

0
∫

(
√

9−r2)−1

0
r dz d� dr

77 3I =
6

5
a2; I =

2

5
a2

79 (q2∕8��)((1∕a) − (1∕b))

81 r2 sin � dr d� d�

Section 16.6
1 Is a joint density function

3 Not a joint density function

5 Is joint density function

7 1∕16

9 3∕16

11 0.28

13 0.19

15 0

17 1

19 7∕8

21 1∕16

23 (a) 20/27

(b) 199/243

25 (a) k = 3∕8
(b) 15/32

(c) 1/16

27 (a) 0.60
(b) 0.70
(c) 0.32

29 (a) �∕(� + �)

31 (a) 0 if t ≤ 0, 2t2 if 0 < t ≤ 1∕2,

1 − 2(1 − t)2 if 1∕2 < t ≤ 1,

1 if 1 < t
(b) 0 if t ≤ 0, 4t if 0 < t ≤ 1∕2,

4 − 4t if 1∕2 < t ≤ 1,

0 if 1 < t

0.5 1

2

0
x

p(t)

(c) x, y: All equally likely

z: Near 1∕2

33 p(60, 170) not a probability

35 g(y) = y

37 False

39 True

Section 17.1
1 x = 0, y = t, −2 ≤ t ≤ 1

3 x = 1 + 2t, y = 1 + t, 0 ≤ t ≤ 1

5 x = t, y = 3 − 3t, 0 ≤ t ≤ 1

7 x = t, y = 1, z = −t

9 x = 1, y = 0, z = t

11 x = 1 + 3t, y = 2 − 3t, z = 3 + t

13 x = −3 + 2t, y = −2 − t, z = 1 − 2t

15 x = 2 + 3t, y = 3 − t, z = −1 + t

17 x = 3 − 3t, y = 0, z = −5t

19 x = 3cos t, y = 3 sin t, z = 5, 0 ≤ t < 2�

21 x = 2cos t, y = −2 sin t, z = 0

23 x = 2cos t, y = 0, z = 2 sin t

25 x = 0, y = 3cos t, z = 2 + 3 sin t

27 x = t2, y = t, z = 0

29 x = −3t2, y = 0, z = t

31 x = t, y = 4 − 5t4, z = 4

33 x = 3cos t, y = 2 sin t, z = 0

35 x = −1 + 3t, y = 2, z = −3 + 5t

37 r⃗ (t) = i⃗ − 3j⃗ + 2k⃗ + t(3i⃗ + 4j⃗ − 5k⃗ ),
0 ≤ t ≤ 1, x = 1+3t, y = −3+4t, z = 2−5t,
0 ≤ t ≤ 1

39 x = cos t, y = sin t, z = 0, 0 ≤ t ≤ �

41 Two arcs:

r⃗ (t) = 5i⃗ + 5(− cos ti⃗ + sin tj⃗ ),
0 ≤ t ≤ � or

r⃗ (t) = 5i⃗ + 5(cos ti⃗ + sin tj⃗ ),
� ≤ t ≤ 2�

43 x = 10 cos t, y = 10 sin t, z = t

45 x = 2cos t, y = t, z = 2 sin t

47 r⃗ (t) = (2 + 10t)i⃗ + (5 + 4t)j⃗

49 r⃗ (t) = (2 + ((t − 20)∕10)10)i⃗

+(5 + ((t − 20)∕10)4)j⃗

51 r⃗ (t) = (2 − 10t)i⃗ + (5 − 4t)j⃗

53 No

55 (b) −i⃗ − 10j⃗ − 7k⃗

(c) r⃗ = (1 − t)i⃗ + (3 − 10t)j⃗ − 7tk⃗

57 (a) r⃗ = (i⃗ + 3j⃗ + 7k⃗ ) + t(2i⃗ − 3j⃗ − k⃗ )
(b) (3, 0, 6)

(c)
√

14

59 (b) Reverse of part (a)

61 (−9,−2, 1)

63 Not the same

65 Not the same

67 Same lines

69 c = 2

71 x =
8

3
, y = 3t −

1

3
, z = 3t

73 x = 1 + 2t, y = 2 + 4t, z = 5 − t

75 Yes

77 (a) (II)

(b) (III)

(c) (I)

(d) (IV)

79 25∕�

81 10

83 (a) Repeats every year

(b) Mid-August

(c) Mid-April

(d) 2◦C per month

85 (a) Center: (1, 2), Radius: 3

(b) x = 1 + 3 cos t
y = 2 + 3 sin t
0 ≤ t ≤ 2�

(c) x = 1 + 3 cos t
y = 2 + 3 sin t
z = 14 + 6 cos t + 12 sin t
0 ≤ t ≤ 2�
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87 (a) II, y = x

(b) IV, x + y = a

(c) V, x2 − y2 = a2

(d) I, x2 + y2 = a2

(e) III, x2 + y2 = a2

89 Many possible answers

(a) a = −2, b = 7, c = 4, d = 0
(b) a = −2, b = 7, c = 4, d = 11
(c) a = 7, b = 2, c = 0, d = 41

91 Line Equation:

x = 1 + 2t
y = 2 + 3t
z = 3 + 4t

Shortest distance:
√

6∕29

93 (a) (vii)

(b) (ii)

(c) (iv)

95 (a) (i) is (C); (ii) is (A); (iii) is (D); (iv)

is (G)

(b) (iii)

97 (a) Parallel

(b) (i) Perpendicular

(ii) Parallel

99 Distance |R| from z-axis

Distance
√

R2 + t2 from origin

101 i⃗ + 2j⃗ + 3k⃗ + t
(

i⃗ + 2j⃗
)

i⃗ + 2j⃗ + 3k⃗ + t
(

i⃗ − k⃗
)

103 False

105 False

107 False

109 True

111 True

113 True

Section 17.1 (online problems)
115 (a) Center: (a∕2, b∕2), Radius:

√

c + (a2 + b2)∕4.

(b) x = a∕2 +
√

c + (a2 + b2)∕4 cos t

y = b∕2 +
√

c + (a2 + b2)∕4 sin t
0 ≤ t ≤ 2�

(c) x = a∕2 +
√

c + (a2 + b2)∕4 cos t

y = b∕2 +
√

c + (a2 + b2)∕4 sin t
z = (a2 + b2)∕2 +

c + a
√

c + (a2 + b2)∕4 cos t +

b
√

c + (a2 + b2)∕4 sin t
0 ≤ t ≤ 2�

117 (a) −2e−1∕3 �g/m3/m

(b) t = ±
√

3∕2 sec

Section 17.2
1 v⃗ = 3i⃗ + j⃗ − k⃗ , a⃗ = 0⃗

3 v⃗ = i⃗ + 2tj⃗ + 3t2k⃗ , a⃗ = 2j⃗ + 6tk⃗

5 v⃗ = −3 sin ti⃗ + 4cos tj⃗ ,

a⃗ = −3cos ti⃗ − 4 sin tj⃗

7 v⃗ = i⃗ + 2tj⃗ + 3t2k⃗ ,

Speed =
√

1 + 4t2 + 9t4,
Particle never stops

9 v⃗ = 6ti⃗ + 3t2 j⃗ ,

‖v⃗ ‖ = 3|t| ⋅
√

4 + t2 ,
Stops when t = 0

11 v⃗ = 6t cos(t2)i⃗ − 6t sin(t2)j⃗ ,
‖v⃗ ‖ = 6|t|,
Stops when t = 0

13 Length =
√

42

15 Length = e − 1

17 v⃗ = −6� sin(2�t)i⃗ + 6� cos(2�t)j⃗ ,

a⃗ = −12�2 cos(2�t)i⃗ − 12�2 sin(2�t)j⃗ ,

v⃗ ⋅ a⃗ = 0, ‖v⃗ ‖ = 6�, ‖a⃗ ‖ = 12�2

19 Line through (2, 3, 5) in direction of

i⃗ − 2j⃗ − k⃗ ,

v⃗ = 2t(i⃗ − 2j⃗ − k⃗ ), a⃗ = 2(i⃗ − 2j⃗ − k⃗ )

21 x = 1 + 2(t − 2), y = 2, z = 4 + 12(t − 2)

23 Vertical: t = 3
Horizontal: t = ±1
As t → ∞, x → ∞, y → ∞
As t → −∞, x→ ∞, y → −∞

−10 10 20
−10

40

90

140

190

x

y

25 (a) v⃗ (2) ≈ −4i⃗ + 5j⃗ ,

Speed ≈
√

41
(b) About t = 1.5
(c) About t = 3

27 (a) x = 2 + 0.6t, y = −1 + 0.8t, z = 5 − 1.2t,
0 ≤ t ≤ 5

(b) x = 2 + 1.92t, y = −1 + 2.56t, z =
5 − 3.84t, 0 ≤ t ≤ 1.56

29 (a) 6.4 meters

(b) 1.14 sec

(c) 15.81 m/sec

(d) (11.4,−5.7,0)
(e) −9.8 m/sec2

31 (a) 5 secs; (10, 15, 100)

(b) t = 0, 10 secs,
√

113 cm/sec

(c) 5 secs,
√

13 cm/sec

33 (a) t = 5.181 sec

(b) x = 103.616 meters

(c) 2 meters

(d) 9.8 meters/sec2

(e) � = 0.896; v = 32.016 meters/sec

35 (a) (IV); 4.5 sec; (0, 8.9 m, 0)
(b) (II); 3.2 sec; base of tower

(c) (V); 10 sec; halfway up

37 (a) −2i⃗
(b) (0, 3)
(c) �

39 (a) � m/sec

(b) 2.45 m

(c) 3.01 m

41 (a) (x, y) = (t, 1)
(b) (x, y) = (t + cos t, 1 − sin t)

x

y

45 (a) R, counterclockwise, 2�∕!

(b) v⃗ = −!R sin(!t)i⃗ + !R cos(!t)j⃗
(c) a⃗ = −!2 r⃗

47 Same path, B moves twice as fast

49 Counterclockwise

51 Orthogonal only if speed is constant

53 Length = ∫
B

A
‖v⃗ (t)‖ dt

55 0 ≤ t ≤ 10∕
√

2

57 True

59 False

61 True

63 False

65 False

67 False

Section 17.2 (online problems)
69 (a) x −

√

6y + z = 3 − 7
√

6i
(b) �∕3
(c) 4 ppm/sec

Section 17.3
1 V⃗ = xi⃗

3 V⃗ = xi⃗ + yj⃗ = r⃗

5 V⃗ = −xi⃗ − yj⃗ = −r⃗

7 (a) y-axis

(b) Increasing

(c) Neither

9 (a) x-axis

(b) Increases

(c) Decreases

11

x

y

13

x

y

15

x

y
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17

x

y

19

x

y

21 (a) III

(b) II

(c) IV

(d) VI

23 3i⃗ − 4j⃗ , other answers possible

25 (1∕
√

1 + x2)(i⃗ −xj⃗ ), other answers possible

27 F⃗ (x, y) = (y + cosx)((1 + y2)i⃗ − (x + y)j⃗ ),
other answers possible

29 I, II, III

31 (a) (III)

(b) (II)

(c) (VI)

(d) (V)

(e) (IV)

(f) (I)

33 F⃗ (x, y) =
−xi⃗ −yj⃗
√

x2+y2
(for example)

35 (a) (1,−3,−7); other answers possible

(b) (0, 0, 0); other answers possible

(c) −4x + y − 3z = 0; plane through origin

37 (a) Radiates out from origin

x

y

(b) Spirals outward counterclockwise around

origin

x

y

(c) Spirals outward clockwise around origin

x

y

39 (a) z = f (x, y):

5
4
3
2
10

x

y

z = g(x, y):

5
43
2
1

0

x

y

(b)

x

z

f (x, y)

g(x, y)

41 To plot G⃗ (x, y, z) move arrows of

F⃗ (2x, 2y, 2z) halfway to origin

43 (x2 + 1)
(

i⃗ + j⃗ + k⃗
)

Section 17.4
1 Field:

−12 12

−12

12

x

y

Flow, x = constant:

−12 12

−12

12

x

y

3 Field:

−9 9

−9

9

x

y

Flow, y = −(2∕3)x + c:

−9 9

−9

9

x

y

5 Field:

x

y

Flow:

x

y
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7 Field:

x

y

Flow:

x

y

9 Field:

x

y

Flow:

x

y

15 (a) Same directions, different magnitudes

(b) Same curves, different parameterizations

23 (a) v⃗ = �(−yi⃗ + xj⃗ )∕12
(b) Horizontal circles

25 Counterexample: F⃗ = −yi⃗ + xj⃗

27 F⃗ (x, y, z) = i⃗ + 2xj⃗ + 3yk⃗

29 True

31 False

33 True

35 True

37 True

Section 18.1
1 Negative

3 Zero

5 Zero

7 0

9 0

11 28

13 16

15 −48

17 19∕3

19 20

21 28

23 −10

25 −9

27 0

29 C1 is zero; C2 is pos; C3 is neg

31 C1 is 0; C2 is neg; C3 is pos

33 −8

35 C1, C2

37 a < 0

39 c > 1

41 (a)

x

y(i)

x

y(ii)

x

y(iii)

x

y(iv)

(b) (i), (iii)

43 Positive

45 0

47 11

49 6

51 13

53 −1.2 ⋅ 107 meter2∕sec

55 14�; tangent to C

Same direction, ||F⃗ || = 7
−14�; tangent to C

Opposite direction, ||F⃗ || = 7

59 −2.5 ⋅ 10−5GMm

61 If ∫
C
F⃗ ⋅ dr⃗ < 0, then ∫

−C
F⃗ ⋅ dr⃗ > 0

63 F⃗ = i⃗ − j⃗

65 False

67 True

69 False

71 True

73 False

Section 18.1 (online problems)
75 − ∫

C
E⃗ ⋅ dr⃗

77 Spheres centered at origin

Section 18.2
1 ∫

�

0
(cos2 t − sin2 t) dt

Other answers are possible

3 ∫
2�

0
(− sin t cos(cos t) + cos t cos(sin t))dt

5 24

7 −4

9 −6

11 9

13 82∕3

15 12

17 116.28

19 12

21 21

23 0

25 ∫
C
3xdx − y sinxdy

27 (x + 2y)i⃗ + x2yj⃗

29 3124

31 144

33 77,000/3

35 (a) 11∕6
(b) 7∕6

37 (a) 3∕2
(b) 3∕2

39 200�

43 (a) −5
(b) 5

(c) 0

45 F could point with C at some points and

against C at others

47 y = �∕2, x = t, 0 ≤ t ≤ 3, ∫
C
F⃗ ⋅ dr⃗ = 3

49 True

51 True

53 False

55 False

57 (a)
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Section 18.3
1 12

3 Negative, not path-independent

5 Negative, not path-independent

7 Path-independent

9 Path-independent

11 Path-independent

13 f (x, y) = x2y +K

15 f (x, y, z) = exyz + sin(xz2) + C
C = constant

17 −2

19 2

21 0

23 e3 − 1

25 0

27 PQ

31 Yes

33 Yes.

35 5xy + y2∕2

(a) 50

(b) 50

37 (a) 50�
(b) No, integral over closed path not zero

39 Use fxy = fyx

41 (a) e

(b) e

43 9/2

45
3
√

2
ln(

3
√

2
+ 1)

47 e(1.25�)
2∕2 − 1

49 (a) 7e3 − 2e
(b) 7e3 − 2e

51 (a) 9
(b) 0

53 (a)

P

Q

1
3

5 7

9

x

y

(b) Shorter

(c) 6

55 (a) Positive

(b) Not gradient

(c) F⃗2

57 (a) (8, 9)
(b) 50

59 (a) 2�mg
(b) Yes

61 f (Q) − f (P ) where F⃗ = grad f

63 Methods other than Theorem 18.1 can be used

65 Gradient of any function

71 True

73 True

75 False

77 True

79 False

Section 18.3 (online problems)
83 If A′(x) = a(x), then f (x, y) = A(x) is poten-

tial function

x + x2∕2 + x3∕3 + C , any C

85 (a) F⃗ − grad� = −y gradℎ
(b) 30

87 (a) F⃗ − grad� = −(x + 2y) gradℎ
(b) −50

89 (a) Increases

Section 18.4
1 No

3 No

5 f (x, y) = x3∕3 + xy2 + C

7 Yes, f = lnA|xyz| where A > 0

9 No

11 −2�

13 −6

15 −12

17 −3�m2

19 (a)

1−1

1

−1

x

y

(b) −�

21 e − cos 1

23 1∕4

25 1∕24

27 −9�∕8

29 (a) 0
(b) 0
(c) 0
(d) −6�
(e) −6�
(f) 0
(g) −6�

31 (a) 0
(b) 10
(c) −8�
(d) 7

33 (b) 0

(c) G⃗ = ∇(xyz + zy + z)

(d) H⃗1 = ∇(yx2), H⃗2 = ∇(y(x + z))

35 �ab

a

b

x

y

37 3∕2

2

2

x

y

39

x

y

41 (a) Possible answers are:

F⃗ = grad(xy)

G⃗ = grad(arctan(x∕y)), y ≠ 0

H⃗ = grad
(

(x2 + y2)1∕2
)

, (x, y) ≠ (0, 0)
(b) 0, −2�, 0

(c) Does not apply to G⃗ , H⃗ ; holes in domain

43 L1 < L2 < L3

45 (a) 21�∕2
(b) 2

47 (a) 0⃗
(b) q∕||r⃗ ||

49 Green’s Theorem does not apply;

Line integral depends on F⃗

51

C1

C2

(0, 1)

(1, 0)
x

y

53 True

55 True

57 True

59 True

Section 19.1
1 −3i⃗

3 15j⃗

5 Rectangle in xz plane with area 150, oriented

pos y direction

7 (a) Positive

(b) Negative

(c) Zero

(d) Zero

(e) Zero

9 (a) Zero

(b) Zero

(c) Zero



1173

(d) Negative

(e) Zero

11 (a) 45
(b) −45

13 −12

15 4

17 12�

19 4

21 0

23 10�∕
√

3

25 6

27 −75�

29 −�3

31 2000�

33 32000�

35 0

37 12.8

39 Zero

41 24

43 −160�

45 130∕
√

2

47 42

49 −96�

51 4
√

3

53 � sin 9

55 0

57 −27

61 (a) Zero

(b) Zero

63 4�

65 (a) 0

(b) 32�

67 (a) Zero

(b) Zero

71 (a)

−2−4 2 4
−2

−4

2

4

x

y

(b) 0

(c) Iℎ ln |b∕a|∕2�

73 Sign of ∫
S
F⃗ ⋅dA⃗ depends on both F⃗ and S

75 F⃗ = zk⃗

S: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 1,

oriented upwards

77 True

79 False

81 True

83 True

85 True

Section 19.1 (online problems)
87 (a) 0

(b) 0

Section 19.2
1

(

−3i⃗ + 5j⃗ + k⃗
)

dx dy

3
(

−4xi⃗ + 6yj⃗ + k⃗
)

dx dy

5 ∫
3

−2
∫

5

0
70 dy dx

7 ∫
5

0
∫

5−x

0
(yz sinx − 2xy cos 2y + xy) dy dx

9 −500

11 −5∕3 − sin 1 = −2.508

13 ∫
�∕2

0
∫

5

0
10 (cos � + 2 sin �) dz d�

15 ∫
2�

0
∫

8

−8

(

6z2 cos � + 6 sin �e6 cos �
)

dz d�

17 2000

19 100
√

2∕3

21 ∫
2�

0
∫
�∕2

0
100 (sin� cos � + 2 sin� sin �

+ 3cos�) sin�d�d�

23 ∫
�∕2

−�∕2
∫
�

0
16 cos2 � sin2 � cos � d�d�

25 8000∕3

27 (8 − 5
√

2)�∕6 = 0.486

29 6

31 6

33 18

35 36�

37 7∕3

39 � sin 25

41 �∕2

43 1296�

45 �

47 100
√

27

49 2.228

51 (a) ∫
R
a∕

√

a2 − x2 − y2 dx dy

(b) ∫
2�

0
∫
a

0
ar∕

√

a2 − r2 dr d�.

(c) 2�a2

53 36�

55 2�∕3

57 4�a3

59 −1

61 11�∕2

65 (a) Constant inside cylinder radius a

(b) E⃗ =

⎧

⎪

⎨

⎪

⎩

1

2
k�0re⃗ r if r ≤ a

1

2
k�0

a2

r
e⃗ r if r > a

67 n⃗ =
(

−fx i⃗ − fy j⃗ + k⃗
)

∕
√

f 2
x
+ f 2

y
+ 1

dA =
√

f 2
x
+ f 2

y
+ 1 dx dy

69 r = 10, 0 ≤ � ≤ 2, 0 ≤ z ≤ 3, oriented

outwards

71 False

Section 19.3
1 Scalar; 2x + xez

3 (I)

5 0

7 4x

9 2x∕(x2 + 1) − sin y + xyez

11 0

13 (a) Positive

(b) Zero

(c) Negative

15

x

y

x

y

17 −0.030

19 (a) (i) 0.016�∕3

(ii) −0.08
(b) Flux positive at (2, 0, 0) and negative at

(0, 0, 10)

21 (a) 4w3

(b) 4
(c) 4

23 div v⃗ = −6

25 (a) −1∕3, 1
(b) 1∕3

27 Undefined

29 (b)

31 (a) 0
(b) Undefined

33 (a) �(0) < �(1000) < �(5000)
(b) cars/hour

(d) �(x) = 4125∕(55 − x∕50)
if 0 ≤ x < 2000
�(x) = 4125∕15 = 275

if 2000 ≤ x < 7000

�(x) =
4125

(15 + (x − 7000)∕25)
if 7000 ≤ x < 8000
�(x) = 4125∕55 = 75

if x ≥ 8000
(e) 139 ft. at x = 0

89 ft. at x = 1000
38 ft. at x = 5000

35 (a) 0

(b) 0

39 0

41 b⃗ ⋅ (a⃗ × r⃗ )

43 (d)

45 div F⃗ = 2x + 2 − 2z

47 F⃗ (x, y, z) = 2xi⃗ + 3yj⃗ + 4zk⃗

49 F⃗ (x, y) = 2xi⃗

51 False

53 False
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55 False

57 False

59 False

61 False

Section 19.4
1 24

3 8

5 Zero

7 24

9 72

11 288

13 36�

15 620�

17 5�

19 420

21 8

23 20∕3

25 10�a3

27 Yes; −3.22

29 ∫
S
F⃗ ⋅ dA⃗ = ∫

W
div F⃗ dV = 0

31 (a) cb(12a − a2)
(b) 6, 10, 10; 3600

33 (a) 4�
(b) 0

(c) 4�

35 4�

37 (a) 2
(b) 0.016
(c) 0.016053⋯

39 (a) 30 watts/km3

(b) � = 10 watts/km3

(d) 6847◦C

41 (a) 0
(c) No

43 S not the boundary of a solid region

45 Any sphere

47 False

49 False.

51 True.

53 True

55 True

57 True

59 True

Section 20.1
1 Vector; i⃗ + j⃗ − k⃗

3 Vector; (x + 1)i⃗ − (y + 2)j⃗

5 Vector; 0⃗

7 4yk⃗

9 4xi⃗ − 5yj⃗ + zk⃗

11 0⃗

13 0⃗

15 Zero curl

17 Nonzero curl

19 0

21 50i⃗ + 300j⃗ + 2k⃗

23 (a) (f−c)i⃗ +(bez−e cosx)j⃗ +(2dx−3ay2)k⃗
(b) f = c

(c) f = c, b = e = 0

25 (a) Horizontal

(b) Vertical

(c) Parallel to the yz-plane,

making angle t with horizontal

27 (a) w = 1

y

x

w = −1

y

x

(b) |!| ⋅
√

x2 + y2

(c) div v⃗ = 0

curl v⃗ = 2!k⃗
(d) 2�!R2

35 Counterexample: F⃗ = yi⃗

37 F⃗ = zi⃗

39 True.

41 True

43 False

45 False

47 (a)-z, (c)-y, (d)-x

Section 20.2
1 (a) �

(b) 0

3 Positive

5 −8�

7 −2

9 0

11 18�

13 (a) −2�

(b) −2k⃗
(c) −2�
(d) Stokes’ Theorem

15 No

17 (a) 45�
(b) 81�∕2

19 (a) −i⃗ − j⃗ − k⃗
(b) (i) −4�

(ii) 15∕2

21 0

23 0

25 8�∕
√

3

27 (a) All 3-space

(b)
2axi⃗ +2byj⃗ +2czk⃗

1+ax2+by2+cz2

(c) 0

(d) ln(3 + 507�2∕4) − ln(2)

29 −8�

31 4�

33 63�

35 (a) 0⃗
(b) 0
(c) 0

37 (a) Parallel to xy-plane; same in all horizontal

planes

(b) ()F2∕)x − )F1∕)y)k⃗
(d) Green’s Theorem

39 C not the boundary of a surface

41 Any oriented circle

43 True

45 False

47 True

49 True

51 False

Section 20.3
1 Yes

3 Yes

5 No

7 Yes

9 Yes

11 Yes

13 (a) No

(b) Yes

15 Curl yes; Divergence yes

17 Curl yes; Divergence yes

21 (1∕2)b⃗ × r⃗

23 No

25 (a) Yes

(b) Yes

(c) Yes

27 (a) Yes

(b) No

(c) No

29 (b) ∇2 = −div A⃗

31 Curl of scalar function not defined

33 f (x, y, z) = x2

35 False

37 True

Section20.3(onlineproblems)
39 (a) curl E⃗ = 0⃗

(b) 3-space minus a point if p > 0
3-space if p ≤ 0.

(c) Satisfies test for all p.

�(r) = r2−p if p ≠ 2.

�(r) = ln r if p = 2.

Section 21.1
1 Curve

3 Surface

5 Horizontal disk of radius 5 in plane z = 7

7 Helix radius 5 about z-axis

9 Top hemisphere

11 Vertical segment
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13 x = 1
y = s

z = t

15 x = 1 + t
y = 1 + s
z = s + t

17 r⃗ (s, t) = (s + 2t)i⃗ + (2s + t)j⃗ + 3sk⃗ ,

other answers possible

19 (0, 0, 0), 2i⃗ + j⃗ − k⃗ , 3i⃗ − 5j⃗ + 2k⃗

21 r⃗ (s, t) = (3 + s + t)i⃗ + (5 − s)j⃗ + (7 − t)k⃗ ,

other answers possible

23 (a) Yes

(b) No

25 s = s0: lines parallel to y-axis with z = 1
t = t0: lines parallel to x-axis with z = 1

27 s = s0: parabolas in planes parallel to yz-

plane

t = t0: parabolas in planes parallel to xz-plane

29 s = 4, t = 2
(x, y, z) = (x0 + 10, y0 − 4, z0 + 18)

31 Horizontal circle

33 (a) x =
(

cos
(

�

3
t

)

+ 3
)

cos �

y =
(

cos
(

�

3
t

)

+ 3
)

sin �

z = t 0 ≤ � ≤ 2�, 0 ≤ t ≤ 48
(b) 456� in3

35 If � < �, then (� + �, �∕4)
If � ≥ �, then (� − �, �∕4)

37 x = r cos �, 0 ≤ r ≤ a

y = r sin �, 0 ≤ � ≤ 2�
z = (1 − r∕a)ℎ

39 (a) −x + y + z = 1,

0 ≤ x ≤ 2,

−1 ≤ y − z ≤ 1
(b)

x

y

z

41 (a) z = (x2∕2) + (y2∕2)
0 ≤ x + y ≤ 2
0 ≤ x − y ≤ 2

(b)

x

y

z

43 Radius: R sin�

45 x + y − z − 3 = 0

47 True

49 True

51 True

53 False

Section 21.2
1 1

3 e2s

5 a = 1∕10, b = 1

7 a = 1∕50, b = 1∕10

9 3

11 �2 sin�

13 13.5

15 72

17 (a) (1∕(2��2 ) ∫
∞

−∞
∫

2t−x

−∞
e−(x

2+y2)∕(2�2)dy dx

(b) (1∕(
√

��)) ∫
t

−∞
e−u

2∕�2du

(c) (1∕(
√

��))e−t
2∕�2

(d) Normal, mean 0, standard deviation �∕
√

2

19 R does not correspond to T

21 x = 2s, y = 3t

23 False

Section 21.3
1 ((s + t)i⃗ − (s − t)j⃗ − 2k⃗ ) ds dt

3 −es(cos t j⃗ + sin t k⃗ ) ds dt

5 4/3

7 6(e4 − 1)

9 −�R7∕28

11 200
√

14

13
√

6�

15 kℎw3∕6 meter3∕sec.

21 Integral gives volume

23 r⃗ (s, t) = 2si⃗ + tj⃗

25 True

27 False

Appendix A
1 (a) y ≤ 30

(b) two zeros

3 −1.05

5 2.5

7 x = −1.1

9 0.45

11 1.3

13 (a) x = −1.15
(b) x = 1, x = 1.41,

and x = −1.41

15 (a) x ≈ 0.7
(b) x ≈ 0.4

17 (a) 4 zeros

(b) [0.65, 0.66], [0.72, 0.73],
[1.43, 1.44], [1.7, 1.71]

19 (b) x ≈ 5.573

21 Bounded −5 ≤ f (x) ≤ 4

23 Not bounded

Appendix B
1 2ei�∕2

3
√

2ei�∕4

5 0ei� , for any �.

7
√

10ei(arctan(−3)+�)

9 −3 − 4i

11 −5 + 12i

13 1∕4 − 9i∕8

15 −1∕2 + i
√

3∕2

17 −125i

19
√

2∕2 + i
√

2∕2

21
√

3∕2 + i∕2

23 −250

25 2i
3
√

4

27 (1∕
√

2) cos(−�∕12) + (i∕
√

2) sin(−�∕12)

29 −i, −1, i, 1
i−36 = 1, i−41 = −i

31 A1 = 1 + i
A2 = 1 − i

37 True

39 False

41 True

Appendix C
1 (a) f ′(x) = 3x2 + 6x + 3

(b) At most one

(c) [0, 1]
(d) x ≈ 0.913

3
4
√

100 ≈ 3.162

5 x ≈ 0.511

7 x ≈ 1.310

9 x ≈ 1.763

11 x ≈ 0.682328

Appendix D
1 3, 0 radians

3 2, 3�∕4 radians

5 7j⃗

7 ‖3i⃗ + 4j⃗ ‖ = ‖ − 5i⃗ ‖ = ‖5j⃗ ‖, ‖i⃗ + j⃗ ‖ =

‖

√

2j⃗ ‖

9 5j⃗ and −6j⃗ ;
√

2j⃗ and −6j⃗

11 (a) (−3∕5)i⃗ + (4∕5)j⃗

(b) (3∕5)i⃗ + (−4∕5)j⃗

13 8i⃗ − 6j⃗

15 i⃗ + 2j⃗

17 Equal

19 Equal

21 i⃗ + j⃗ ,
√

2, i⃗ − j⃗

23 Pos: (1∕
√

2)i⃗ + (1∕
√

2)j⃗

Vel: (−1∕
√

2)i⃗ + (1∕
√

2)j⃗
Speed: 1
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Δt, 291, 292

Δ, Delta, notation, 5, 151

∇f , gradient, 812

∇⋅ F⃗ , divergence, 1039

�, delta, online

�, epsilon, online


 , Euler’s constant, online

∫ , 341

∫
C
F⃗ ⋅ dr⃗ , 974

∫
b

a
, 299

�, mean, 502

∇ × F⃗ , curl, 1058

)∕)x, partial derivative, 787

�, �, �, spherical coordinates, 924

�, standard deviation, 502

∫
S
F⃗ ⋅ dA⃗ , 1020

∑

, Sigma, notation, 298

→, tends to, 57

i⃗ , j⃗ , k⃗ , 749

v⃗ × w⃗ , cross product, 775

v⃗ ⋅ w⃗ , dot product, 763

d∕dx notation, 113

e, the number, 18

as limit, 267, online

property of, 35

f ′(x) notation, 105

g, 350, 469

i, the number, online

n factorial, 509

p-series, 527

r, �, z, cylindrical coordinates, 921

r, �, polar coordinates, 447

∫
C

P dx +Qdy + Rdz, 988

absolute growth rate, 626

absolute value function, 130

absolutely convergent, 535, 1107

acceleration, 352, 951–953

average, 124

instantaneous, 124

straight line motion, 953

uniform circular motion, 952

vector, 757, 951–953, 1113, on-

line

components of, 952

limit definition, 951

acceleration due to gravity, 350

accuracy, online

to p decimal places, online

adding sines and cosines, 678

addition of vectors, online

components, 751, 1109

geometric view, 746

properties, 758

Adele, 520

air pressure, 24, 103, 116, 118, 164,

191, 258, 645, 708

alternating series, 534

error bounds for, 535, 581

test, 534, 1108

Ampere’s law, 1028, online

amplitude, 44, 678, 679

analytical solution

of differential equation, 619

angular frequency, 592

antiderivative, 334, 1105

computing, 335, 342

constructing with definite inte-

gral, 355

Construction Theorem for, 356,

1105

differential equations and, 348

family of, 334

from graph, 335

Fundamental Theorem and, 335

most general, 341

of 0, 341

of 1∕x, 343, 1105

of ex, 343, 1105

of e−x
2
, 334, 356

of xn, 342, 1105

of constant function, 341

of rational functions, 390

of same function, 341

of sinx, cos x, 343, 1105

of sinmx cosnx, 381

properties of, 343

reduction formulas, 379

xn cos ax, 379

xn sin ax, 379

xnex, 379

cosnx, 379

tables of, 380

visualizing, 334

apple orchard yield, online

approximation

bisection, online

error in Taylor polynomial, 577,

578, 1108

Euler’s method, 615

finite difference, online

Fourier polynomial, 585

global vs. local, 588

linear, 185, 550, 800–803, 1103

Newton’s method, online

of definite integral, 398

Picard’s method, online

quadratic, 551, 840–843

tangent line, 185, 550, 1103

tangent plane, 802

arc length, 439, 954, 1106, online

circle, 43

in polar coordinates, 454

of hanging cable, online

of parametric curve, 440

arccosh, online

arccosine function, 52, 1101

Archimedean spiral, 449

Archimedes’ Principle, 444, 1053

arcsine function, 47, 1101

derivative of, 173

domain and range, 47, 1101

graph of, 48

arcsinh, online

arctangent function, 48, 1101

derivative of, 173

domain and range, 48, 1101

graph, 48

Taylor series, 568

area

between curves, 322

definite integral and, 300, 310,

426

double integral for, 894

finding by slicing, 426

of parallelogram, 778

of parameterized surface, 1096

polar coordinates, 451

area vector, 778, 783, 1019

of parallelogram, 1029

Aristotle (384-322 BC), 352

arithmetic mean, 231

Aswan Dam, 477

asymptote

horizontal, 19, 57, 73, 1101

of rational functions, 57, 1101

vertical, 35, 57, 1101

atmospheric pressure, 24, 103, 116,

118, 164, 191, 258, 645,

708

average cost, 231, 252

average rate of change, 96, 1103

average value of function, 325, 1105

two-variable, 894, 1112

average velocity, 88, online

slope and, 91

axes

1177
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coordinate, 696

right-handed, 696

bakery, 13

bank deposits as series, 518

barometric pressure, 24, 103, 116,

118, 164, 191, 258, 645,

708

base

of exponential function, 16

of logarithm function, 34, 1100

basketball, online

Bay of Fundy, 168

beef consumption, 701

behaves like principle, 419

bell-shaped curve, 234, 330, 501

bending of light, 574

Bernoulli, Johann (1667-1748), 646

Bessel functions, online

binomial series, 561, 1108

biodiesel fuel, 12, 24

birthdays, online

bisection, method of, online

bladder, 340

body mass index, BMI, 695

Bohr radius, 505

Bohr, Niels (1885-1962), 505

Boltzmann constant, online

bonds, online

trading at a discount, 522

trading at a premium, 522

bound, 578

above, 324

below, 324

best possible, 215, online

greatest lower, online

least upper, online

lower, 215, online

upper, 215, online

boundary

of region, 871

of solid region, 1048

of surface, 1064

point, 801, 871

boundary-value problem, 677

bounded region, 871, 1111

bounded sequence, 511

Boyle’s Law, online

Brahe, Tycho (1546–1601), online

bridge design, online

caffeine, 39, 644

calculators

round-off error, 148, online

Cantor Set, online

carbon dioxide

level, 10, 372

US emissions, 315

carbon-14, 17, 636, online

cardiac output, 794

cardioid, 455, 456

carrying capacity, 60, 123, 648, 655,

1109

Cartesian coordinates, 447

conversion to

cylindrical, 921

spherical, 924

three-dimensional, 696

catalog of surfaces, 735

catenary, 182, 184, online

Cauchy, Augustin (1789-1857)

formal definition of limit, 64

cdf, 493

center of mass, 459, 930, 1106

continuous mass density, 461

moment, 460

of point masses, 460

triple integral for, 915

central vector field, online

cephalexin, antibiotic, online

cesium-137, 23, 101, 103, 118, 176

chain rule, 159, 827–831

and units, 159

application to chemistry, 831

applications, 171

diagram for, 828

integration and, 362

change of coordinates, 1089–1092

channel capacity, 829

chaos, online

characteristic equation, 683

critically damped case, 684

overdamped case, 683

underdamped case, 684

Chernobyl accident, 23

chikungunya, 654

chlorofluorocarbons, 119, 129

circle

parameterization of, 271

circulation, 979

density, 1056, 1114

path-dependent field and, 1004

climate change, 10, 40, 119, 129, 315,

372, 478–482

closed curve, 979

closed form of series, 515

closed interval, 2

closed region, 871, 1111

closed surface, 1018, 1048

CO2 in pond water, 311

coal production in US, 315

coaxial cable, online

Cobb-Douglas function, 251, 718,

799, online

contour diagram of, 717

formula for, 718

returns to scale, 724

code-red computer virus, 656

common ratio, 516

comparison test

for improper integrals, 419

for series, 529, 1107

competition, 666

Competitive Exclusion

Principle of, 667

completing the square, 383, 394, 860

complex number

algebra of, online

complex plane, online

conjugates, online

definition, online

differential equations and, 683

imaginary part, online

polar representation, online

powers of, online

real part, online

roots of, online

complex plane, online

polar coordinates, online

compliance, 120

components of vector, 275, 749, 751,

online

composite functions, 26, 827

derivative of, 158

compound interest, 479, 638

continuous, 626

Rule of Seventy, online

compressibility index, online

concavity, 15

downward, 15, 121, 1103

error in definite integrals and,

400

Euler’s method and, 615

inflection point and, 204

of parametric curve, 279

power functions and, 140

second derivative and, 121, 200

upward, 15, 121, 1103

concentration, 642

conditionally convergent, 535, 1107

cone, 735

parameterization of, 1084

Congressional Budget Office, 486

conjugates, online

conservation of energy, online

conservative force, online

conservative vector field, 995

consols, online

Constant Function Theorem, 195,

198, 1104

constant of proportionality, 6

constrained optimization, 876–880,
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1111

graphical approach, 877
inequality constraint, 879

Lagrange multiplier, 878

Lagrangian function, 881

constraint, 877

Construction Theorem for An-

tiderivatives, 356

consumer surplus

definite integral for, 484

definition, 484

consumption vector, 760

continuity, 3, 62

at a point, 62, 65

definition, 65, 1103

differentiability and, 131, 851,

1104

extrema and, 211

graphically, 62

limits and, 63

numerically, 63

of composite functions, 76

of function, 63, 741

of sums, products, quotients of

functions, 75, 1103

of vector field, 975

on an interval, 62, 65, 1102,

1103

continuous rate, 18

continuous variable, 2, 4

contour diagram, 711–718

algebraic formula, 714

Cobb-Douglas, 717

critical point, 858

local maximum, 856

density and, 890

linear function, 727

partial derivative and, 788

reading, 694

saddle, 716

table and, 716

contour line, 712

convergence

of p-series, 527

of alternating series, 534

of geometric series, 517

of improper integrals, 409, 413

of partial sums, 523, 1107

of power series, 540

of sequence, 510, 1107

bounded, monotone, 511

of Taylor series, 562, 580

of upper and lower sums, 895

radius of, 543

rearranging terms, 535

Coober Pedy, 50

coordinate

plane, 697

axis, 696

coordinates

Cartesian, three-space, 696

cylindrical, 921–922

relation between Cartesian and

polar, 447

space-time, 760

spherical, 924–926

corn production, 712, 827

Coroner’s Rule of Thumb, 262

correlation coefficient, 871

cosh x, 181, 1101

Taylor polynomial, 576

cosine function, 43

addition formula, online

derivative of, 165, 167

graph of, 44, 1101

Taylor polynomial approxima-

tion, 554

Taylor series, 560

convergence, 580

cost

average, 231, 252

fixed, 11, 244, 347

marginal, 115, 245, 347

definition of, 245

total, 244

variable, 11

cost function, 244

cost stream, 481

Coulomb’s law, online

coupon, online

credit multiplier, online

critical point, 201, 336, 856, 1104

classifying, 859, 861

contour diagram and, 858

critical value, 201

discriminant and, 861

extrema and, 202, 856, 1104

how to find, 857

local maximum

contour diagram and, 856

graph of, 858

local minimum

graph of, 857

second derivative test and, 859,

861

crop yield, 233

cross product, 774–779

components of, online

definition, 775, online

determinant and, 779

diagram of, 777

equation of plane and, 777

properties, 777

cross-section, 438

cross-section of functions, 704–705

cubic polynomial, 55, 1101

cumulative distribution function, 492

probability and, 497

properties of, 493

curl, 1056–1058

alternative notation, 1058

Cartesian coordinates, 1115

definition

Cartesian coordinate, 1057

geometric, 1057

device for measuring, 1056

divergence and, 1072

field, 1067, 1115

divergence test for, 1073

formula for, 1057, 1115

gradient and, 1071

scalar, 1005

test for gradient field, 1072,

1115

three-space, 1010

two-space, 1007

curl free, 1060, 1066

current in a circuit, 407

curve

closed, 979

indifference, 884

integral, 967

length of, 440, 954, online

level, 712

graph and, 714

oriented, 974

parameter, 1085

parameterization, 277, 938

piecewise smooth, 975

curve fitting, 869

cylinder

parabolic, 706, 735

parameterization of, 1079

cylindrical coordinates, 921–922

conversion to Cartesian, 921

integration in, 922

volume element, 923

damped spring equation, 682

damping, 682, 683

coefficient, 682

critical, 684

over, 683

term, 682

under, 684

daylight hours

as a function of latitude, online

Madrid, online

decreasing, 5

decreasing function, 6

derivative of, 106, 121, 200,

1103

integral of, 291
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Decreasing Function Theorem, 197

definite integral, 298, 1104

∫
∞

−∞
e−x

2
dx, online

odd and even functions, 323

symmetry and, 323

as antiderivative, 356

as area, 300, 310, 426, 1105

in polar coordinates, 451

as area above axis minus area

below axis, 301

as average, 325

as total change, 310, 1105

by substitution, 366

changing limits of, 366

comparison of, 324, 327

definition of, 299

for arc length, 440

in polar coordinates, 454

of parametric curve, 440

for average value, 325

for center of mass, 459

for consumer surplus, 484

for cumulative distribution

function, 492

for electric potential, 477

for force, 472

for force of gravity, 478, online

for fraction of population, 491

for kinetic energy, online

for mass, 457

for mean, 500

for present/future value, 481

for probability, 497

for producer surplus, 484

for surface area, online

for volume, 427

for volume of revolution, 436

for work, 469

Fundamental Theorem of Cal-

culus, 309, 313, 344, 1105

geometry and, 436

interpretation, 300, 310

limits of integration, 319

notation for, 308

of density, 457

of density function, 491

of rate of change, 310

of sums and multiples, 321

one variable, 890

properties of, 319, 1105

units, 308

definite integral, double, 890–904

change of coordinates, 1091

change of variables, 1112

definition, 891, 892, 1112

for area, 894

for average value, 894

for fraction of population, 932

for probability, 932

for surface area, 1096

for volume, 892

of joint density function, 932

polar coordinates, 916–918

definite integral, triple, 908–911

change of coordinates, 1092

cylindrical coordinates, 921–

924

for center of mass, 915

for electrical energy, online

for moment of inertia, online

spherical coordinates, 924–926

degree

homogeneous function, online

degree of a polynomial, 55

degree-days, online

Delta, Δ, notation, 5, 151

demand curve, 13, 483

density, 456

circulation, 1056

of earth, 467

of water, 472

probability, 491

slicing and, 457

density function, 491, 1106

definite integral and, 890

flux, 1039

joint, 932, 1112

probability and, 497

properties of, 491, 932

two-variable, 898, 931, 932

probability and, 932

dependent variable, 2, 4, 694

depreciation, 11

derivative, 1103

ex, 1103

ntℎ, 143

of inverse function, 174

approximation of, online

as a function, 105

definition of, 105

finding algebraically, 108

finding graphically, 106

finding numerically, 106

formulas for, 107

at a point, 96

chain rule, 159, 1103

critical points, 201, 1104

definition of, 96, 1103

differentiability and, 130

directional, 809–811, 819

estimating graphically, 105

estimating numerically, 99

graphical interpretation, 106

higher, 121

higher-order partial, 838

inflection point, 1104

interpretation, 96, 114

Leibniz notation for, 113

local maxima/minima, 202

test for, 202

of ax, 149

of ex, 147

of composite functions, 158,

1103

of constant functions, 108

of constant multiples of a func-

tion, 136, 1103

of cosine, 166, 1103

of exponential functions, 147,

148, 173, 1103

of hyperbolic functions, 183

of implicit functions, 178

of integral, online

of inverse trigonometric func-

tions, 173, 1103

of linear functions, 108

of ln x, 172, 1103

of polynomials, 140

of positive integer powers, 137

of power functions, 138, 171,

1103

of products of functions, 151,

1103

of quotients of functions, 153,

1103

of sine, 167, 169, 1103

of sums and differences of func-

tions, 136, 1103

of tangent function, 167, online

ordinary, 786

partial, 786–790

power rule, 109

product rule, 152, 1103

quotient rule, 153, 1103

second derivative, 121, 1103

concavity and, 121

test, 204

second-order partial, 838

slope of curve, 98

in polar coordinates, 453

slope of tangent line, 98

units of, 114, 1103

visualizing, 97, 605

visualizing, 1103

derivative function, 105

Descartes, René (1596-1650), 352

determinant, online

area and, 778

cross product, online

Jacobian, 1091

volume and, 778
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diagram, for chain rule, 828

difference quotient, 5, 96
partial derivative and, 787

differentiability, 801, 847

continuity and, 131, 851, 1104

determining from graph, 130,

132

local linearity and, 187, 189,

1104

partial derivatives and, 848, 851

differentiable, 96, 105, 130

everywhere, 105

differential, 804–805

computing, 804

local linearity, and, 804

notation, 805

differential equations, 600, 1109

LRC circuits, 690

S-I-R model, 658

SARS, online

account balance, 626

analytical solution, 619

antiderivatives and, 348

arbitrary constants, 602

compartmental analysis, 641

concentration, 642

damped spring equation, 682

damping, 683, 684, 686

decay, 625

electric circuit, 681

equilibrium solution, 632, 1109

Euler’s method, 614, 969

existence of solutions, 608

exponential decay, 620

exponential growth, 619

SARS, online

exponential growth and decay,

1109

first-order, 601

flow of vector field, 967

general solution, 601, 1109

exponential equation, 620,

626

growth, 625

guess-and-check

spring equation, 675

Hooke’s Law, 675

implicit functions and, 607

initial conditions, 349, 601,

1109

initial value problem, 349, 601,

676, 1109

linear second-order, 682

logistic, 647, 649, 1109

Lotka-Volterra, 661

net worth of a company, 639

Newton’s Law of Cooling

(Heating), 629

nullclines, 667, 668

numerical solutions of first-

order, 614

oil prices, 647

order of, 1109

particular solution, 349, 601,

1109

pendulum, 681

phase plane, 659

Picard’s method, online

pollution, 627

population growth, 652

predator-prey model, 661

second-order, 602, 674

characteristic equation, 683

separable, 622

separation of variables, 619, 640

slope field, 605, 1109

solution(s) to, 601, 1109

spring equation, 675

systems of, 657, 1109

thickness of ice, 638

uniqueness of solutions, 608

differential notation

for line integral, 988

differentiation

implicit, 178

of series, 568

convergence, 568

radius of convergence, 568

dipole, 572, 1034, 1043, online

direction cosine, 751, online

direction field, online

direction of vector, online

directional derivative, 809–811

definition, 809

examples, 813

from contour diagram, 809

gradient vector and, 811

partial derivatives and, 811

three-variable, 819

directly proportional, 6

disability index, 935

discrete variable, 2, 4

discriminant, 860, 861

disease, 657

disease incidence, 592

displacement, 460

displacement vector, 746–750, online

direction of, 746

magnitude of, 746

distance

estimating from velocity, 286

on parametric curve, 440

visualizing on velocity graph,

287

distance formula

in three-space, 698

in two-space, 698

distribution function, 489

cumulative, 492

probability and, 497

distribution of resources, online

divergence, 1039

alternative notation, 1039

curl and, 1072

definition

Cartesian coordinate, 1039

geometric, 1039

free, 1114

of geometric series, 517

of harmonic series, 524

of improper integrals, 409, 413

of partial sums, 523, 1107

of sequence, 510, 1107

test for curl field, 1073, 1115

with spherical symmetry, online

Divergence Theorem, 1048–1051,

1071

divergence-free, 1042, 1050

diverging to infinity, 67, 410

domain, 2

restricting, 3

dominance and l’Hopital’s rule, 266

dominates, 54

Doppler effect, 575

Dorfman-Steiner rule, 875

dot product, 763–765

definition, 763

equation of plane and, 766

line integral and, 974

properties, 764

work and, 769

double angle formulas, 371, 379,

1101, online

double factorial, online

doubling time, 17, 626, 1100

drug concentration, 24

drug desensitization, online

drug dosage as series, 515, 521

Dubois formula, 60, 258, 799

Ebbinghaus model, 645

economic cost

hurricane damage, 486

sea level rise, 486

storm surge, 486

economy of scale, 244

Einstein, Albert (1879-1955), 574

Theory of Relativity, 164

elastic potential energy, 258

electric charge, online

electric circuits, 681, 690, online

resonance, 575

electric dipole, 571
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electric field, 1046, online

electric potential, online

definite integral for, 477

electricity usage, 347

electron wave function, online

elementary functions, 362

ellipsoid, 735

ellipsoid, volume of, 1092

emissions of toxic pollutants, 487

end behavior of a function, 57

endocrinologist, 317

energy

conservation of, online

electrical, 372

potential, 576, 994

elastic, 258

wind, online

energy spectrum, 590

musical instruments, 591, 597

energy theorem, 589

entropy function, online

Envelope Theorem, online

epidemic, 657, 660, online

equations of motion, 350

equilibrium, stable, online

equilibrium point, 668

predator-prey model, 662

equilibrium price/quantity, 483

equilibrium solution

of differential equation, 601

of differential equation, 631,

639, 1109

stable, 631, 632

unstable, 632

equipotential surface, online

erf(x), 360, 380, online

error, online

alternating series bounds, 535

Taylor polynomial, 581

concavity and, 400

Euler’s method, 616

in approximating definite inte-

gral, 1106

in approximating derivative, on-

line

in linear approximation, 185

in numerical integration, 400,

401

left and right rules, 401

Riemann sum approximation,

291

round-off, 148, online

tangent line approximation, 187,

188

estimation of, 187

Taylor polynomial, 577, 578

trapezoid vs. midpoint rule, 402

error bound, 578

Lagrange, 578

error function, erf(x), 360, 380, online

escape velocity, 646

Ethanol fuel, 39

Euler’s Constant, online

Euler’s formula, 685, online

Euler’s method, 614, 1109

accuracy of, 616

error, 616

for flow lines, 969

Euler’s theorem, 799

Euler, Leonhard (1707-1783), 614,

online

Eulerian logarithmic integral, 380

even function, 27, 1102

definite integral of, 323

expansions, Taylor, 561

explicit function, 178

exponential decay, 16, 18, 1100

differential equation for, 625

half-life, 17, 626, 1100

radioactive decay, 17

exponential function, 14, 16, 1100

y-intercept, 18

population growth, 14

as solution to differential equa-

tion, 619

base e, 18

base of, 16

compared to power functions,

54

concavity, 15

derivative of, 146, 173

domain, 16

formula for, 16, 18, 1100

Padé approximant to, 574

table of values, 15

Taylor polynomial approxima-

tion, 554

Taylor series, 560

convergence, 583

exponential growth, 15, 16, 18, 1100

annual, 627, 1100

continuous, 627, 1100

differential equation for, 625

doubling time, 17, 626, 1100

growth factor, 15, 17

rate

absolute, 626

annual, 627, 1100

continuous, 18, 627, 1100

continuous vs. annual, 627

relative, 626

SARS, online

exponential growth and decay

differential equation, 1109

extrapolation, 4, 651

extrema, 211, 856

continuity and, 211

critical point and, 202, 1104

global, 872

local, 201

Extreme Value Theorem, 211, 872,

1103

extremum

on closed bounded region, 872

factorial, 553

double, online

factoring, online

family of functions, 5, 234

antiderivatives, 334

exponential, 17

with limit, 236

Gompertz growth, 243

linear, 5

logistic, 238

motion due to gravity, 236

normal density, 234

power, 53

sinusoidal, 44

surge, 242

family of level surfaces, 735

Fermat’s Principle, 230

Fibonacci sequence, 514

finite difference approximation, on-

line

firebreaks, online

first derivative

inflection point and, 205

First Fundamental Theorem of Calcu-

lus, 309

first-derivative test, 202, 1104

fixed cost, 11, 244, 347

flow

fluid, 958

flux and, 1021

through surface, 1019

flow line

definition, 966

Euler’s method, 969

numerical solution, 969

fluid flow and flux, 1021

flux

orientation and, 1018

through cylinder, 1032

through function graph, 1030

through parameterized surface,

1095

through sphere, 1034

flux density, 1039

flux diagram, online

flux integral, 1018–1024

definition, 1020
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Divergence Theorem and, 1048
independent of parameteriza-

tion, 1098

fog clearance, 794

foot-pound, 472

force, 352, 472, 1106

between atoms, online

between molecules, online

conservative, online

definite integral for, 472

from pressure, 472

gravitational, 757

of gravity

definite integral for, 478, on-

line

spring, 347, 468

units, 468

vector, 757

force of gravity, 469

Four, Rule of, 2

Fourier coefficients

formulas for

period 2�, 586

period b, 592

justification of, 593, 597, 598

Fourier polynomial, 586

square wave, 586

Fourier series, 584, 1108

period 2�, 588

period b, 592

square wave, 588

Fourier, Joseph (1768–1830), 584

fox population, 890, 898

fraction of population

from cumulative distribution

function, 493

from density function, 491, 932

frequency

angular, 592

fuel consumption, 233

function, 2

absolute value, 130

average value of, 325, 1105

bounded, online

Cobb-Douglas, 251, 718, 799

composite, 26, 827

concave (up or down), 15, 1103

continuous, 739, 741

at a point, 741

cost, 244

cross-section of, 704–705

cumulative distribution, 492

decreasing, 5, 6, 1103

density, 491

two-variable, 932

differentiable

two-variable, 847–852

differential of, 804

discontinuous, 739

distribution, 489

drug buildup, 19

elementary, 362

energy theorem, 590

even, 27

exponential, 14, 16, 1100

family of, 236

fixing one variable, 705

Fourier series for, 588

gamma, online

global approximation, 588

global behavior of, 54

graph of, 2

hyperbolic, 1101

increasing, 4, 6, 1103

input, 2

inverse, 28

inverse trigonometric, 47

invertible, 28

joint cost, online

Lagrangian, 881

limit of, 741

linear, 4, 5, 706, 725–728, 734,

1100

local approximation, 588

local behavior of, 54

logarithm, 34

logistic, 649

monotonic, 6

notation, 694

objective, 877

odd, 27

output, 2

periodic, 43, 585

piecewise linear, 130

polynomial, 54, 1101

potential, 995, 1113

power, 53

probability density, 491, 497,

932

profit, 244

pulse train, 588

quadratic, 734, 859

graph of, 860

rational, 56, 1101

reflection across x-axis, 26

representation, 2

revenue, 244

shift and stretch, 26

sinusoidal, 44, 1100

smooth, 839

surge, 242

table, 2

Taylor series for, 561

three-variable, 732

level surface of, 732

surface, 735

trigonometric, 42

cosine, 43

sine, 43

tangent, 46

two-variable, 694

algebraic formula, 695

contour diagram of, 711

graph of, 702–705

surface, 735

unbounded, online

utility, 887

zeros of, 55, online

fundamental harmonic, 588

Fundamental Theorem of Calculus,

309, 313, 335, 344, 355,

992, 1105

for Line Integrals, 992, 1071

line integral, 1113

future value, 1106

annual compounding, 479

continuous compounding, 479

definite integral for, 481

definition, 479

of cost/income stream, 481

G. H. Hardy, 1847 − 1947, online

Galilei, Galileo (1564-1642), 14, 636,

online

Dialogues Concerning Two

New Sciences, 352

gamma function, online

gauge equivalent, 1076

Gause yeast population model, 673,

online

Gauss’s law, 1023, online

Gauss’s Theorem, 1051

Gauss, Carl Friedrich (1777–1855),

1051

gemstones, 50

general solution of differential equa-

tion, 348

general term, 561

general term of a series, 522

genetics, online

geometric mean, 231

geometric series, 514, 516, 1107

as binomial series, 562

common ratio, 516

convergence of, 517

divergence of, 517

finite, sum of, 516, 1107

infinite, 516

infinite, sum of, 517, 1107

partial sum of, 517

geometry and the definite integral,

436

Gini’s index of inequality, online
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global behavior of a function, 54, 56

global extremum, 211, 856

closed bounded region, 872

definition, 866

how to find, 866, 871

global maxima/minima, 211, 856,

1104

global warming, 40, 835

Golden Gate Bridge, online

golden ratio, 514

Gompertz equation, online

Gompertz growth, 243

gradient field

curl and, 1071

curl test for, 1072

line integral of, 992

path-independence and, 995

gradient vector, 811

alternative notation, 812

examples, 813

field, 962

geometric properties, 813, 819

three-variable, 819

two-variable, 811

Grand Canyon flooding, online

Grand Coulee Dam, 435

graph

circular symmetry of, 704

in polar coordinates, 448

in three-space, 697

partial derivative and, 788

plane, 726

two-variable function, 726

gravitational constant, 962, online

gravitational field, online

picture of, 959

gravity

acceleration due to, 145, 192,

350, 352, 354, 646, online

force of, 258, 478, online

Gravity, Law of, 961

Great Lakes, 627, 634

Great Pyramid of Giza, Egypt , 429,

471

greatest lower bound, online

Green’s Theorem, 1005, 1075

Greenland Ice Sheet, 117

Gregory, James (1638–1675), 568

Grinnell Glacier, 635

growth factor, 15, 17

growth of children, 317

growth rate

absolute, 626

annual, 627

continuous, 18, 627

relative, 626

guess-and-check, 362

spring equation, 675

guitar string, vibrating, 796

Gulf Stream, 958, 966

Half Dome

Yosemite National Park, 739

half-life, 17, 626, 1100

hanging cable, 604

arc length, online

harmonic series, 524

harmonics, 588

heat equation, online

heated metal plate, 786

heater in room, 789, online

height velocity graph, 317

helix, 938

higher derivative, 121

higher-order partial derivative, 838

histogram, 489, 490, 931

homogeneous function, online

Hooke’s Law, 468, 675

Hooke, Robert (1635–1703), 675

Hoover Dam, 473

l’Hopital, Marquis de (1661–1704),

646, online

l’Hopital’s rule, 264, 1104

horizontal asymptote, 19, 57

horizontal line, 5

horizontal line test, 29

Hubbert, M. King (1903–1989), 647

hybrid cars, online

hydroelectric power, 12, 24

hydrogen, reduced mass of, 575

hyperbola, 183

hyperbolic

cosine, 181, 1101

identities, 183

sine, 181, 1101

tangent, 183

inverse, 185, online

hyperbolic functions

derivative of, 183

hyperboloid

of one sheet, 735

of two sheets, 735

hyperinflation, 41

ideal gas equation, 804

identities, 1101

imaginary numbers, online

imaginary part of complex number,

online

implicit differentiation, 178, 1104

implicit function

as solution to differential equa-

tion, 607

derivative of, 178

improper integral, 408, 1106

comparing, 417, 419

with 1∕xp, 419, 421

with e−ax, 419, 421

comparison test, 419, 1106

convergence/divergence, 409,

413

energy and, 411

infinite integrand, 412

income stream, 481

increasing function, 4, 6, 194

derivative of, 106, 121, 200,

1103

integral of, 291

Increasing Function Theorem, 194,

1104

indefinite integral, 341, 1105

computing, 342

properties of, 343, 1105

visualizing, 334

independent variable, 2, 4, 694

index in power series, 561

index in Taylor series, 561

indifference curve, 723, 884

inertia, moment of, online

triple integral for, online

inertia, principle of, 352

infinite series

geometric, 516

sum of, 514

inflection point, 204, 336, 1104

first derivative and, 205

initial condition, 349

initial value problem, 349, 601, 677,

1109

mass/spring system, 676

input into a function, 2

instantaneous

growth rate, 627

rate of change, 96, 787, 1103

speed, 275

velocity, 90, 91, 949

integral

definite

one variable, 890

definite vs. indefinite, 341

definite see definite integral, 298

double

limits of, 902

equation, online

improper see improper integral,

408

indefinite see indefinite integral,

341

iterated, 898, 899

triple

limits of, 911

integral test for series, 526
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integrand, 299
infinite, 412

sums and multiples, 321

integration

applications, 1106

Cartesian coordinates, 899, 909,

1112

cylindrical coordinates, 922

iterated, 898

limits of, 299, 319, 902, 911

non-rectangular region, 894,

900–904

numerical methods, 398

error, 400

LEFT(n), 398

left-hand sum, 299

MID(n), 398

midpoint rule, 398

Riemann sums, 299, 398

RIGHT(n), 398

right-hand sum, 299

SIMP(n), 403

TRAP(n), 399

of series, 568

order of, 900, 904

polar coordinates, 916–918

reduction formulas, 379, 381

spherical coordinates, 925

techniques

by parts, 373, 374, 1106

completing the square, 383,

394

factoring, 382

guess-and-check, 362

long division, 383

partial fractions, 387, 1106

reduction formulas, 381

sine substitution, 390

substitution, 362, 363, 366,

1105

tangent substitution, 392

trigonometric substitutions,

390

using table, 380

intercept

factored form and, 55

vertical, 4, 5, 1100

interest, 638

compound, 479

continuously compounded, 626

Rule of Seventy, online

interior

point, 801

Intermediate Value Theorem, 65,

1103

intersection

of curve and surface, 942

of two curves, 942

interval notation, 2

interval of convergence, 540, 541,

1108

inverse function, 28

definition, 29

derivative of, 174

domain and range, 28

for exponential function, 38

formulas for, 29

graphs of, 30

hyperbolic tangent, 185, online

inverse square law, online

inverse trigonometric functions, 47

arccosine, 52, 1101

arcsine, 47, 1101

arctangent, 48, 1101

derivative of, 173

inversely proportional, 6

invertible function, 28

irrotational vector field, 1060, 1115

island species, online

isotherms, 694

isotopes, 40

iterated integral, 898, 899

double integral and, 899, 1112

limits of, 902

non-rectangular region, 900–

904

numerical view, 898

triple integral and, 909, 1112

iteration, online

Iwo Jima, Battle of, 666

Jacobian, 1091, 1112

joint

density function, 1112

joint cost function, online

joint density function, 932

joule, 468

Keeling Curve, 165

Kepler’s Laws, 757, online

Kepler, Johann (1571–1630), online

kinetic energy, 259, online

definite integral for, online

l’Hopital’s rule, 264, 265, 1104

0 ⋅∞, 266

and e, 267

and dominance, 266

limits involving ∞, 265

l’Hopital, Marquis de (1661–1704),

646, online

Lagrange error bound, 578, 1108

Lagrange multiplier, 878

constrained optimization, 878

meaning of, 880–881

Lagrange, Joseph-Louis (1736–

1813), 578, 876

Lagrangian function, 881

Lake Mead, 435

Lambert function, online

Lanchester, F.W. (1868–1946)

differential equations, 666

square law, 667

Laplace equation, online

lapse rate, 117

Law

of Cosines, 764, 773

law

Ampere’s, online

Kepler’s, online

leading coefficient, 54

leaf decomposition, 644

least squares, 869, online

least upper bound, online

left rule, LEFT(n), 398

error in approximation, 401

left-hand limit, 72

left-hand sum, 1104

Leibniz, Gottfried Wilhelm (1646-

1716), 113, 622

lemniscate, 456

Lennard-Jones model, 243

Leonardo di Pisa, 514

level

curve, 712

graph and, 714

set, 712, 714, 732

surface, 732, 735

tangent plane to, 822

light

reflection, 230

light, bending of, 574

limaçon, 450

limit, 741, 1102

�, � definition, 1102, online

at infinity, 73, 1102, online

continuity and, 63

continuous function, 66

definite integral and, 298

definition, 64, 1102, online

evaluating limits using a new

variable, 83

instantaneous acceleration and,

124

instantaneous velocity and, 90

left-hand, 72

definition, online

local linearity and, 264

meaning of, 64

of (1 + ℎ)1∕ℎ, 147, online

of xn∕n, 581

of (sin ℎ)/ℎ, 166

of a constant function, 75
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of a constant multiple, 75
of a product, 75

of a quotient, 75

of a sum, 75

of improper integrals, 408

of sequence, 510

of sum, 137

of the type 0∕0, 80

one-sided, 72, 1102

properties of, 75, 1102, online

quotients of functions, 80

right-hand, 72

definition, online

round-off error and, 148

rules, 75

two-sided, 72

limit comparison test, 531, 1107

limits of integration, 299, 319

substitution and, 366

line

best fitting, online

contour, 712

equation of, 5, 1100

least squares, 869

parametric equation for, 274,

939, 941, 1112

regression, 869

tangent, 98

line integral, 974–980

circulation, 979

computing, 984–988

conversion to one-variable inte-

gral, 985

definition, 974

differential notation for, 988

for electric potential, online

for work, 977

Fundamental Theorem of, 1113

Fundamental Theorem of Cal-

culus for, 992, 1071

justification, online

independent of parameteriza-

tion, 988

meaning of, 976

of gradient field, 992

properties, 980

simple case, 983

using parameterization, 985

linear approximation, 185, 550, 802,

1103

linear function, 4, 5, 706, 725–728,

734, 1100

contour diagram of, 727

derivative of, 108

equation for, 726

intercept of, 5, 1100

numerical view, 727

slope of, 5, 1100

table of, 5, 727

two-variable, 725

linearization, local, 800–803

differential, and, 804

from table, 803

three-variable or more, 803

two-variable function, 800, 802

linearization, 185

Lissajous figure, 278, online

Liu Hui, online

loading curve, 230

local behavior of a function, 54, 56

local extrema, 201, 856

how to find, 856, 861

local linearity, 187, 264, 1104

differentiability and, 187

local linearization, 185, 1103

local maxima/minima, 201, 856, 1104

tests for, 201

logarithm function, 34

derivative of, 172

domain, 35, 1100

graph, 35

intercept, 35

Taylor polynomial approxima-

tion, 556

Taylor series, 563

vertical asymptote, 35

logarithms, 34

base e (natural), 35

base ten (common), 34, 1100

definition of, 34

properties, 35

rules of manipulation, 35, 1100

solving equations, 36

logistic equation, 647

logistic function, 649

logistic model, 123, 238, 647, 1109,

online

analytic solution to, 649

carrying capacity, 123, 648

equation, 653

peak oil, 647

qualitative solution to, 648

SARS, online

spread of information, online

long division, 383, 389

lot size, 230

Lotka-Volterra equations, 661

lottery winnings, 486

lower bound, 215, online

lung, 120

Machin’s formula for �, online

Maclaurin polynomial

nth, 553

first, 550

second, 552

Maclaurin series, 560

magnetic field, 1043, online

magnitude of vector, online

Magnus force, 782

marginal, 244, 245

costs/revenues, 115, 245, 347

marginal utility, 887

Marquis de l’Hopital (1661–1704),

646, online

mass

center of, 459

from density, 457

of earth, 467

relativistic, 576

vs weight, 469, 472

Mass Action, Law of, online

Massachusetts Turnpike, 457

Mauna Loa Observatory, 52, 165

maxima/minima

concavity and, 203

global, 211, 1104

continuity and, 211

on (a, b), 212

on [a, b], 212

local, 201, 249, 1104

first-derivative test, 202,

1104

second derivative test, 203,

1104

Maxwell distribution, online

mean, 499

arithmetic vs. geometric, 231

definite integral for, 500

of normal distribution, 502

Mean Value Inequality, 198

Mean Value Theorem, 193, 1104, on-

line

measles, 592

median, 499

metal plate, heated, 786

meteorology, 117

Michelson-Morley experiment, 575

midpoint rule, MID(n), 398

error in approximation, 400, 402

mixed partials, 839

Mobius strip, 1024

modeling, 220

and differential equations, 600,

637

compartmental analysis, 641

competitive exclusion, 667

epidemic, 657

growth and decay, 625

logistic

peak oil, 647

optimization, 222

predator-prey, 661
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US population, 652

vibrating spring, 674, 682

with random numbers, online

moment, 460

moment of inertia

triple integral for, online

monkey saddle, 724, 864

monotone sequence, 511

monotonic function, 6, 121, 129, 200

Montgolfier brothers, online

morphine, 645

motion

xy-plane, 276

damped simple harmonic, 686

parametric equations, 271, 938

position vectors and, online

simple harmonic, 677

straight line, 953

undamped, 686

uniform circular, 952

Mt. Shasta, online

murder, 629, 636

natural logarithm, 35

derivative of, 172

graph of, 35

Nelson, Admiral Horatio, online

newton, 468, 472

Newton’s law of gravity, online

Newton’s method, online

chaos, online

failure, online

initial estimate, online

Newton, Isaac (1642–1727)

Law of Gravity, 757, 961, online

Newton, Isaac (1642-1727)

Law of Cooling (Heating), 164,

629

Law of Gravity, 53

laws of motion, 352

First Law, 352

Second Law, 352, 640, 675,

682

Nicotine, 635

Noise levels, online

nondecreasing function, 194

nondifferentiability, examples, 130

normal distribution, 234, 330, 501,

502

standard, 502

normal line, online

normal vector, 766

to curve, 813

to plane, 766

nullclines, 667, 668

numerical methods

accuracy, online

bisection, online

decimal answer, online

differential equations, 614

error, online

left and right rules, 401

trapezoid and midpoint rules,

402

Euler’s method, 614

for flow lines, 969

finding derivative, 106

integration, 398, 1106

error, 400, 401

left rule, 398

midpoint rule, 398

right rule, 398

Simpson’s rule, 403

trapezoid rule, 399

iterative, online

Newton’s method, online

Picard’s method, online

objective function, 877

odd function, 27, 1102

definite integral of, 323

oil prices, 647

oil production, worldwide, 656

Olympic pole vault, 4

one-sided limit, 72

opals, 50

open interval, 2

optimization, 211, 220

constrained, 252, 876–880

maximizing/minimizing aver-

ages, 226

unconstrained, 866–872

optimal values, 211

orientation

of curve, 974

of surface, 1018

origin, 696

orthogonal surfaces, online

oscillations, 675

of spring, 675

damped, 682

output of a function, 2

ozone, 129

ozone depleting gas index, 119

Padé approximants, 574

parabola, 55

parabolic cylinder, 706, 735

paraboloid, 703

parallel lines, 8

parallelepiped, volume of, 779

parallelogram

area of, 778

parameter, 6, 234

change of, 273

curve, 1085

rectangle, 1087

parameterization, 1087

length of a curve and, 440

line in three-space, of, 1112

line integral and, 985, 988

of circle, 271

of cone, 1084

of curve, 277, 938

changing, 273

of cylinder, 1079

of graph of function, 278

of helix, 938

of line, 274, 939, 941

of plane, 1081, 1113

speed and, 275

of sphere, 1081

of surface, 1079–1087

of surface of revolution, 1084

of torus, online

surface

cylindrical coordinates, 1084

tangent lines and, 276

using position vector, 940, 1080

velocity, 275

components, 275

parametric curve, 938

concavity of, 279

slope of, 279

parametric equations, 271, 938

parasite drag, 232

Pareto’s Law, online

partial derivative, 786–790

alternative notation, 787

computing

algebraically, 795

graphically, 789

contour diagram and, 788

definition, 787

difference quotient and, 787

differentiability and, 848, 851

directional derivatives and, 811

graph and, 788

higher-order, 838

interpretation of, 789

rate of change and, 786–787

second-order, 838

units of, 789

partial fractions, 387, 1106

method of, 1106

partial sum, 523, 1107

of geometric series, 517

particular solution, 349

parts

integration by, 373, 1106

pascal, 472

path-dependent vector field

circulation and, 1004
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definition, 994
path-independent vector field, 994–

997

definition of, 1113

definition, 994

gradient field and, 995, 997

pdf, 491

peak oil, 647

US, 651

pendulum, 146, 258, 681, 808

differential equation for, 559

period, 44, 677, 1101

angular frequency and, 592

periodic function, 43, 585

permittivity, online

perpendicular lines, 8

perpendicular vector, 764

pH, 176

phase difference, 44

phase plane, 659, 661

equilibrium point, 668

nullclines, 668

trajectories, 659, 662, 670

phase shift (angle), 44, 678, 679

vs. horizontal translation, 679

phyllotaxis, 514

Picard’s method, online

piecewise linear function, 131

piecewise smooth curve, 975

Pisa, Tower of, 352

Planck, Max (1858-1947)

radiation law, 423, online

plane, 725, 735

contour diagram of, 727

coordinate, 697

equation for, 726, 766, 777

parameterization of, 1113

parameterization of, 1081

points on, 726

tangent, 801

planimeter, online

plutonium, 40

point

boundary, 801, 871

interior, 801

sink, 1047

source, 1047

Poiseuille’s Law, 60, 260, online

polar coordinates, 447

Archimedean spiral, 449

area, 451

area element, 917

cardioid, 455

circle, 448

cylindrical, 921–922

graphing equations, 448

integration in, 916–918

lemniscate, 456

limaçon, 450

negative r, 449

roses, 450

slope, 453

spherical, 924–926

polynomial, 54, 1101

cubic, 55, 1101

degree of, 55

derivative of, 140

double zero, 56

factoring, online

Fourier, 586

intercepts, 55

leading coefficient, 58

quadratic, 55, 1101

quartic, 55, 1101

quintic, 55, 1101

zeros, 56

population

of Burkina Faso, 14, 36

of China, 41

of Hungary, online

of India, 41, 635

of Jamaica, online

of Mexico, 151, 329

of US, 39, 151, 164, 372, 652,

online

of world, 22, 41, 149, 164, 258,

313, 372, 513, , online 644

population growth, 652

equilibrium population, 662

exponential, 14

logistic, 652

predator-prey model, 661

population vector, 760

position vector, 750, online

motion and, online

notation for vector field, 960

parameterization, 940

parameterization with, 1080

positive flow, 1018

potential

electric

line integral for, online

function, 995, 1113

vector, 1067, 1115

potential energy, 576, 994

elastic, 258

power function, 53, 1101

compared to exponential func-

tions, 54

concavity of, 140

derivative of, 137, 171

formula for, 53

long-term behavior, 1102

power rule, 109, 138

power series, 539, 545, 1108

convergence of, 540

interval of convergence, 541,

1108

radius of convergence, 541

ratio test, 542, 1108

Taylor, 561

predator-prey model, 661

equilibrium values, 662

prednisone, immunosuppressant, on-

line

present value, 520, 1106

annual compounding, 479

continuous compounding, 479

definite integral for, 481

definition, 479

of cost/income stream, 481

pressure, 472, 1106

air (barometric), 24, 103, 116,

118, 164, 191, 258, 645,

708

below surface, 145

definite integral of, 472

units, 472

price vector, 760

principal, online

Principle of Competitive Exclusion,

667

probability, 497, 931

cumulative distribution func-

tion, 497

definite integral for, 497

density function and, 497, 932

double integral for, 932

histogram, 489, 931

probability density function, 491

producer surplus, 484

definite integral for, 484

product rule, 152

three dimensional, online

production and price of raw materials,

online

production function

Cobb-Douglas, 251, 718

general formula, 717

production possibility curve, 120

profit, 244

maximizing, 867

maximizing, 247, 248

projectile

motion of, 192

projection

of vector on line, 768

projection, stereographic, online

properties

of continuous functions, 75

properties of

addition and scalar multiplica-
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tion, 758

cross product, 777

dot product, 764

gradient vector, 813

line integral, 980

proportional

directly, 6

inversely, 6

pulmonologist, 120

pulse train, 588, 597

Pyramid of Giza, Egypt, 429, 471

Pythagoras’ theorem, 698

Quabbin Reservoir, 340

quadratic approximation, 551, 840–

843

quadratic formula, online

quadratic function, 734, 859

discriminant of, 860

graph of, 860

quadratic polynomial, 55, 1101

second derivative test and, 859

quarantine, online

quartic polynomial, 55, 1101

quintic polynomial, 55, 1101

quotient rule, 153

Racetrack Principle, 195, 197, 1104

radians, 42

conversion to degrees, 43

vs degrees for calculus, 99

radius of convergence, 541

and ratio test, 543

range, 2

Rankine model of tornado, online

rate of change, 253, 786–787, 809

absolute, online

average, 96, 1103

instantaneous, 96, 1103

related, 254

relative, online

rate of substitution

economic and technical, online

ratio test

finding radius of convergence,

543

power series, 542, 1108

series of constants, 532, 1107

rational functions, 56, 1101

asymptotes, 56, 1101

end behavior, 57

intercepts, 57

real part of complex number, online

rectangle

parameter, 1087

recurrence relations, 510

recursive sequence, 509

reduction formulas

p(x)cos x, 381

p(x)sin x, 381

p(x)ex, 381

xnln x, 381

cosnx, 381

sinnx, 381

reflection coefficient, online

reflection of light, 230

reflection, Law of, 230

region

bounded, 871, 1111

closed, 871, 1111

regression line, 869

related rate, 253, 254

relative growth rate, 626

relative rate of change, online

relativistic mass, 576

Relativity, Theory of, 164, 576

rent controls, 488

repeating decimal, 520

resistance, wind, online

resonance, 575

returns to scale, 724

revenue

marginal, 245

definition of, 246

total, 244

revenue function, 244

Richardson arms race model, 672, on-

line

Riemann sum, 299, 302

area, 426

in polar coordinates, 451

density, 457

for arc length, 439

for center of mass, 459

for consumer surplus, 484

for force, 472

for mass, 457

for mean, 500

for producer surplus, 484

for volume of revolution, 436

for work, 468

slicing and, 427

three-variable, 908

two-variable, 891

right rule, RIGHT(n), 398, 407

error in approximation, 401

right-hand limit, 72

right-hand rule, 775, 777, 1056

right-hand sum, 1104

right-handed axes, 696

rise, 5, 1100

Rolle’s Theorem, 194, online

root mean square, online

root test, online

roots, online

by bisection method, online

by factoring, online

by Newton’s method, online

by numerical methods, online

by zooming, online

roses, 450

round-off error, 148

Rule of Four, 2

Rule of Seventy, online

run, 5, 1100

saddle, 705, 858

monkey, 864

saddle point, 860

sample a signal, 513

SARS, online

satellite power, online

saturation level, 19, 236

scalar, 746, online

scalar curl, online

scalar multiplication, online

definition, 747

properties, 758

vectors

components, 751

scalar product, 763

second derivative, 121

concavity and, 121, 200

inflection point and, 204

interpretation, 123

maxima/minima, 203

test, 203, 859, 861, 1104

Second Fundamental Theorem of

Calculus, 356

second-order differential equations,

674

second-order partial derivative, 838

interpretation of, 839

sensitivity of a drug, 218

separable differential equation, 622

separation of variables, 619, 640,

1109

exponential growth equation,

619

justification, 622

sequence, 508, 510

bounded, 511

bounded, monotone

convergence of, 511

Calkin-Wilf-Newman, 514

convergence of, 510, 1107

divergence of, 510, 1107

Fibonacci, 514

general term, 508

limit of, 510

monotone, 511

of partial sums, 523

recursive, 509



1190 INDEX

smoothing, 513
series, 514

p-series, 527

general term, 561

alternating, 534

harmonic, 534

alternating series test, 534

binomial, 561, 1108

closed form, 515

comparison test, 529, 1107

convergence, 523

absolute vs conditional, 535,

1107

convergence properties, 524,

1107

divergence, 523

Fourier, 584, 588, 1108

period b, 592

general term, 522

geometric, 514, 516, 1107

as binomial series, 562

harmonic, 524

alternating, 534

infinite, 514

integral test, 526, 1107

limit comparison test, 531, 1107

of constants, 1107

partial sum of, 523, 1107

power, 539, 1108

ratio test, 532, 1107

root test, online

sum of, 514

Taylor, 561, 1108

terms in, 515

Si(x), 357

Sigma,
∑

, notation, 298

sigmoid curve, 648

signal, 513

simple harmonic motion, 677

Simpson’s rule, SIMP(n), 403

approximating by quadratic, on-

line

sine function, 43

addition formula, online

derivative of, 165, 167

graph of, 44, 1101

Taylor polynomial approxima-

tion, 553

Taylor series, 560

convergence, 583

sine-integral, Si(x), 357–359, online

sinh x, 181, 1101

Taylor polynomial, 576

sink, 1039, 1045, 1047

sinusoidal functions, 44, 1100

S-I-R model, 658

SARS, online

threshold value, 660, online

slicing, 427, 457

slope, 5

of curve, 90, 97

of line, 5, 1100

of parametric curve, 279

parallel lines, 8

perpendicular lines, 8

polar coordinates, 453

units of, 5

velocity and, 91

slope field, 605, 1109, online

smooth

curve, 975

function, 839

smooth a sequence, 513

Snowy tree cricket, 2

solar panels, 13

solar photovoltaic installations, 635

solar power, 51

solar radiation, 316

solenoidal vector field, 1042, 1114

solid angle, online

solid of revolution, 436

surface area, online

solution curve, 606

source, 1039, 1045, 1047

Soviet-German pipeline, online

space-time coordinates, 760

species on islands, online

speed, 88, 440, 953, online

instantaneous, 275

parameterized curve, 276

velocity and, 755

vs. velocity, 88

speed of sound, 191

sphere

equation for, 699

parameterization of, 1081

surface area of, 1096

spherical coordinates, 924–926

conversion to Cartesian, 924

integration in, 925

parameterizing a sphere, 1082

volume element, 925

spinning baseball, 782

spiral, Archimedean, 449

spring, 170, 674, 886

spring constant, 675

square wave, 585

Fourier polynomial, 586

Fourier series, 588

Squeeze Theorem, 83

Srinivasa Ramanujan, 1887 − 1920,

online

St. Louis arch, 185

stable equilibrium, 631, online

standard deviation of normal distribu-

tion, 502

state equation, 804

Statue of Liberty, 230

stereographic projection, online

Stokes’ Theorem, 1064–1067, 1071

streamline, 967

strontium-90, 23, online

substitution, 1105

into definite integrals, 366

into indefinite integrals, 363

into Taylor series, 567

subtraction of vectors

components, 751, 1109

geometric view, 747

sum

left-hand, 291

of infinite series, 514

overestimate vs. underestimate,

291

Riemann, 299, 302

right-hand, 291

visualizing left- and right-hand,

291, 292

sum formulas for sin/cos, 1101

summation notation, 298

superposition, 682

supply curve, 13, 483

surface

of revolution

parametric equations, 1084

boundary of, 1064

catalog of, 735

closed, 1018, 1048

cylindrical, 735

level, 732

nonorientable, 1024

orientation of, 1018

parameterization, 1079–1087

saddle-shaped, 705, 858

three-variable function, 735

two-variable function, 735

surface area, 1096, online

of sphere, 1096

of surface of revolution, 1097,

online

surge function, 214, 242

surplus, consumer and producer, 483

survival time, 505

symbiosis, 661, 666

symmetry, 27

definite integral and, 323

systems of differential equations, 657,

1109

table, 2

contour diagram and, 716

exponential function, and, 15

linear function and, 727
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linear function, and, 5

reading, 695

two-variable function, 695

table of integrals, 380

tangent approximation, 802

tangent field, online

tangent function, 46

asymptotes, 47

derivative of, 167, online

domain, 47

graph, 47

period, 47

tangent line, 98, 1103

approximation, 185, 550, 1103

error, 185, 187, 188, 1104,

online

for parametric curves, 276, 951

slope of, 98

velocity vector and, 951

tangent plane, 801

to level surface, 822

tangential surfaces, online

tanh x, 183

tax cut, 521

Taylor expansions, 561

Taylor polynomial

for ln x near x = 1, 556

about x = 0, 553

about x = a, 556

accuracy, 557

alternating series error bound,

581

degree n, 553, 1108

degree one, 550, 841, 842

degree two, 552, 841, 843

error, 577

bound, 578, 1108

for 1∕(1 − x), 555

for cos x, 554

for cosh x, 576

for sinh x, 576

for sin x, 553

for ex, 554

inequalities, online

linear approximation and, 188

Taylor series, 560, 1108

(1 + x)p, 562

cos x, 560, 1108

sinx, 560, 1108

ex, 560, 1108

e−x
2
, 567

general term, 561

about x = 0, 561

about x = a, 561

arctan x, 568

comparing, 570

condition for, 561

convergence of, 562, 579

ex, 583

cos x, 579, 580

ln(1 + x), 563

sin x, 583

differentiation of, 568

convergence, 568

radius of convergence, 568

general, 561

integration of, 568

ln(1 + x), 563

manipulations of, 567

multiplying, 569

substitution, 567, 569

terminal velocity, 118, 236, 641

terms in series, 515

theorem

Antiderivative Construction,

356

Constant Function, 195

Divergence, 1049, 1071, 1114

Euler’s, 799

Extreme Value, 211, 872

Fundamental, for Line Integrals,

992, 1071

Fundamental, of Calculus, 309,

356

Green’s, 1005, 1075

Increasing Function, 194

Lagrange Error Bound, 578

Mean Value, 193

Pythagoras’, 698

squeeze, 83

Stokes’, 1064, 1065, 1071

Theory of Relativity, 164, 575, 576

thermal conductivity, online

Three Gorges Dam, 477

threshold value, 660, online

tin pest, online

Titanic, 473, 477

topographical map, 711

tornado model, online

Torricelli’s Law, 643, online

torus, online

total cost, 244

total quantity

from density, 457

total revenue, 244

total utility, 128

tractrix, 646

Trafalgar, Battle of, online

trajectories

phase plane, 659, 662, 670

transmission coefficient, online

trapezoid rule, TRAP(n), 399, 407

error in approximation, 400, 402

trapezoid, area of, 400

triangular wave, 585

trigonometric functions, 42

amplitude, 44, 678, 679, 1101

cosine, 43

derivatives of, 165, online

inverse, 47

period, 44, 1101

phase difference, 44

phase shift, 678

sine, 43

superposition of, 678

tangent, 46

trigonometric identity, 43, 1101

addition formula, online

double angle, 371, 379, online

trigonometric substitutions, 390

method of, 390

truss, online

two-sided limit, 72

unbounded function, online

unconstrained optimization, 866–872

unit circle, 42, 44, 1100

unit vector, 752

units

force, 468, 472

pressure, 472

work, 468

universal gravitational constant, 962

unstable equilibrium, 632

upper bound, 215, online

urologist, 340

US carbon dioxide emissions, 315

utility, 723

utility function, 887

Van der Waal’s equation, 181, 576,

807

variable

continuous, 2

dependent, 2, 4, 694

discrete, 2

discrete vs. continuous, 4

independent, 2, 4, 694

variable cost, 11

vector, 746, online

n-dimensional, 759

acceleration, 757, 951, online

addition, 746, 751, online

area, 778, 783, 1019

components, 749, 751, online

consumption, 760

cross product, 774–779

direction, online

displacement, 746–750, online

dot product, 763–765

force, 757

geometric definition, 746
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gradient, 811

magnitude, 750, 765, 1109, on-

line

normal, 766

notation, 749

orthogonal, 764

parallel, 748

perpendicular, 764

population, 760

position, 750, online

potential, 1115

price, 760

projection on line, 768

scalar multiplication, 747, on-

line

subtraction, 747, 751

unit, 752, online

velocity, 275, 755, 948–951, on-

line

zero, 750

vector area

of parallelogram, 1029

vector field, 958–962

central, online

conservative, 995

continuous, 975

curl free, 1115

curl of, 1056–1058

curl-free, 1060, 1066

definition, 960

definition of, 1113

divergence free, 1042, 1114

divergence of, 1039

divergence-free, 1050

electric, 1046, 1051, online

flow, 966, 967, 1113

flow line

definition of, 1113

flow line of, 967

force, 959

gradient, 962, 992

gravitational, 959, 961, online

integral curve, 967

irrotational, 1060, 1115

magnetic, 1043, online

path-independent, 994–997

solenoidal, 1042, 1114

streamline, 967

velocity, 275, 755, 948–951,

958, 1113, online

writing with position vector,

960

vector potential, 1067

gauge equivalence, 1076

velocity

xy-plane, 276

as derivative, 96

average, 88, online

escape, 646

instantaneous, 90, 124, 949

of a falling body, 640

parameterized curve, 276

slope and, 91

speed, 440

speed and, 755, 953

terminal, 118, 641

vector, 275, 755, 948–951, 958,

1113, online

components of, 950

geometric definition, 948

limit definition, 950

tangent line and, 951

vector field, 958

visualizing from distance graph,

90

vs. speed, 88

Verhulst, P. F. (1804–1849), 648

Vermeer (1632–1675), 41

vertical asymptote, 35, 57

vibrating guitar string, 796

voltage, 51, online

volume

definite integral for, 427

double integral for, 892

element, 908

cylindrical, 922

spherical, 925

finding by slicing, 427

from cross-sections, 438

of ellipsoid, 1092

of parallelepiped, 778

of revolution, 436

surface area, online

vortex, free, online

vorticity, online

warfarin, anticoagulant, 636

water clock, online

water, density of, 472

wave, 710

wave-guide, online

weather map, 694

weight, 469

weight vs mass, 472

Wilson lot size, 230

wind chill, 700, 721, 792

wind power, 25

wind resistance, online

winning probability, online

work, 467, 769, 1106

definite integral for, 469

definition, 468, 769, 977

dot product and, 769, 977

line integral for, 977

units, 468

Yosemite National Park

Half Dome, 739

Zeno, 88

zero vector, 747

components of, 750

zeros, online

zeros of a function, 55

continuity and, 65

double, 56

multiplicity m, online

zooming, online



Differentiation Formulas

1. (f (x) ± g(x))′ = f ′(x) ± g′(x) 2. (kf (x))′ = kf ′(x)

3. (f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x) 4.

(

f (x)

g(x)

)′

=
f ′(x)g(x) − f (x)g′(x)

(g(x))2

5. (f (g(x)))′ = f ′ (g(x)) ⋅ g′(x) 6.
d

dx
(xn) = nxn−1

7.
d

dx
(ex) = ex 8.

d

dx
(ax) = ax ln a (a > 0) 9.

d

dx
(lnx) =

1

x

10.
d

dx
(sin x) = cosx 11.

d

dx
(cosx) = − sin x 12.

d

dx
(tanx) =

1

cos2 x

13.
d

dx
(arcsinx) =

1
√

1 − x2
14.

d

dx
(arctanx) =

1

1 + x2

A Short Table of Indefinite Integrals

I. Basic Functions

1.
∫

xn dx =
1

n + 1
xn+1 + C , n ≠ −1

2.
∫

1

x
dx = ln |x| + C

3.
∫

ax dx =
1

ln a
ax + C , a > 0

4.
∫

lnx dx = x lnx − x + C

5.
∫

sin x dx = − cosx + C

6.
∫

cosx dx = sinx + C

7.
∫

tanx dx = − ln | cosx| + C

II. Products of ex, cosx, and sinx

8.
∫

eax sin(bx) dx =
1

a2 + b2
eax[a sin(bx) − b cos(bx)] + C

9.
∫

eax cos(bx) dx =
1

a2 + b2
eax[a cos(bx) + b sin(bx)] + C

10.
∫

sin(ax) sin(bx) dx =
1

b2 − a2
[a cos(ax) sin(bx) − b sin(ax) cos(bx)] + C , a ≠ b

11.
∫

cos(ax) cos(bx) dx =
1

b2 − a2
[b cos(ax) sin(bx) − a sin(ax) cos(bx)] + C , a ≠ b

12.
∫

sin(ax) cos(bx) dx =
1

b2 − a2
[b sin(ax) sin(bx) + a cos(ax) cos(bx)] + C , a ≠ b

III. Product of Polynomial p(x) with lnx, ex, cosx, sinx

13.
∫

xn ln x dx =
1

n + 1
xn+1 lnx −

1

(n + 1)2
xn+1 + C , n ≠ −1

14.
∫

p(x)eax dx =
1

a
p(x)eax −

1

a ∫
p′(x)eax dx

=
1

a
p(x)eax −

1

a2
p′(x)eax +

1

a3
p′′(x)eax −⋯

(+ − + −…)

(signs alternate)



15.
∫

p(x) sinax dx = −
1

a
p(x) cosax +

1

a ∫
p′(x) cosax dx

= −
1

a
p(x) cosax +

1

a2
p′(x) sinax +

1

a3
p′′(x) cosax −⋯

(− + + − − + +…)

(signs alternate in pairs after first term)

16.
∫

p(x) cosax dx =
1

a
p(x) sinax −

1

a ∫
p′(x) sinax dx

=
1

a
p(x) sinax +

1

a2
p′(x) cosax −

1

a3
p′′(x) sin ax −⋯

(+ + − − + + − −…) (signs alternate in pairs)

IV. Integer Powers of sinx and cosx

17.
∫

sinn x dx = −
1

n
sinn−1 x cosx +

n − 1

n ∫
sinn−2 x dx, n positive

18.
∫

cosn x dx =
1

n
cosn−1 x sinx +

n − 1

n ∫
cosn−2 x dx, n positive

19.
∫

1

sinm x
dx =

−1

m − 1

cos x

sinm−1 x
+

m − 2

m − 1 ∫

1

sinm−2 x
dx, m ≠ 1, m positive

20.
∫

1

sinx
dx =

1

2
ln
|

|

|

|

(cosx) − 1

(cosx) + 1

|

|

|

|

+ C

21.
∫

1

cosm x
dx =

1

m − 1

sinx

cosm−1 x
+

m − 2

m − 1 ∫

1

cosm−2 x
dx, m ≠ 1, m positive

22.
∫

1

cosx
dx =

1

2
ln
|

|

|

|

(sinx) + 1

(sinx) − 1

|

|

|

|

+ C

23.
∫

sinm x cosn x dx: If m is odd, let w = cos x. If n is odd, let w = sinx. If both m and n are even and positive,

convert all to sinx or all to cosx (using sin2 x + cos2 x = 1), and use IV-17 or IV-18. If m and n are even and

one of them is negative, convert to whichever function is in the denominator and use IV-19 or IV-21. If both m

and n are even and negative, substitute w = tanx, which converts the integrand to a rational function that can

be integrated by the method of partial fractions.

V. Quadratic in the Denominator

24.
∫

1

x2 + a2
dx =

1

a
arctan

x

a
+ C , a ≠ 0

25.
∫

bx + c

x2 + a2
dx =

b

2
ln |x2 + a2| +

c

a
arctan

x

a
+ C , a ≠ 0

26.
∫

1

(x − a)(x − b)
dx =

1

a − b
(ln |x − a| − ln |x − b|) + C , a ≠ b

27.
∫

cx + d

(x − a)(x − b)
dx =

1

a − b
[(ac + d) ln |x − a| − (bc + d) ln |x − b|] + C , a ≠ b

VI. Integrands Involving
√

a2 + x2,
√

a2 − x2,
√

x2 − a2, a > 0

28.
∫

1
√

a2 − x2
dx = arcsin

x

a
+ C

29.
∫

1
√

x2 ± a2
dx = ln

|

|

|

x +
√

x2 ± a2
|

|

|

+ C

30.
∫

√

a2 ± x2 dx =
1

2

(

x
√

a2 ± x2 + a2
∫

1
√

a2 ± x2
dx

)

+ C

31.
∫

√

x2 − a2 dx =
1

2

(

x
√

x2 − a2 − a2
∫

1
√

x2 − a2
dx

)

+ C
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