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The mean number of 3-torsion elements in the class
groups and ideal groups of quadratic orders

Manjul Bhargava and Ila Varma

Abstract

We determine the mean number of 3-torsion elements in the class groups of quadratic orders,
where the quadratic orders are ordered by their absolute discriminants. Moreover, for a quadratic
order O we distinguish between the two groups: Cl3(O), the group of ideal classes of order 3;
and I3(O), the group of ideals of order 3. We determine the mean values of both |Cl3(O)| and
|I3(O)|, as O ranges over any family of orders defined by finitely many (or in suitable cases,
even infinitely many) local conditions.

As a consequence, we prove the surprising fact that the mean value of the difference |Cl3(O)| −
|I3(O)| is equal to 1, regardless of whether one averages over the maximal orders in complex
quadratic fields or over all orders in such fields or, indeed, over any family of complex quadratic
orders defined by local conditions. For any family of real quadratic orders defined by local
conditions, we prove similarly that the mean value of the difference |Cl3(O)| − 1

3
|I3(O)| is equal

to 1, independent of the family.

1. Introduction

In their classical paper [9], Davenport and Heilbronn proved the following theorem.

Theorem 1. When quadratic fields are ordered by their absolute discriminants:

(a) The average number of 3-torsion elements in the class groups of imaginary quadratic
fields is 2.

(b) The average number of 3-torsion elements in the class groups of real quadratic
fields is 4

3 .

This theorem yields the only two proven cases of the Cohen–Lenstra heuristics for class
groups of quadratic fields.

In their paper [5, p. 59], Cohen and Lenstra raise the question as to what happens when
one looks at class groups over all orders, rather than just the maximal orders corresponding
to fields. The heuristics formulated by Cohen and Lenstra for class groups of quadratic fields
are based primarily on the assumption that, in the absence of any known structure for these
abelian groups beyond genus theory, we may as well assume that they are ‘random’ groups in
the appropriate sense.

For orders, however, as pointed out by Cohen and Lenstra themselves [5], when an imaginary
quadratic order is not maximal, there is an additional arithmetic constraint on the class
group coming from the class number formula. Indeed, if h(d) denotes the class number of the
imaginary quadratic order of discriminant d, and if D is a (negative) fundamental discriminant,
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then the class number formula gives

h(Df2) =

⎡⎣f ·
∏
p|f

(
1 − (D|p)

p

)⎤⎦h(D), (1)

where (· | ·) denotes the Kronecker symbol. Thus, one would naturally expect that the
percentage of quadratic orders having class number divisible by 3 should be strictly larger than
the corresponding percentage for quadratic fields. Similarly, the average number of 3-torsion
elements across all quadratic orders would also be expected to be strictly higher than the
corresponding average for quadratic fields. (Note that the class number formula does not give
complete information on the number of 3-torsion elements; indeed, extra factors of 3 in the
class number may mean extra 3-torsion, but it could also mean extra 9-torsion or 27-torsion,
etc.!)

In this article we begin by proving the latter statement, by determining the mean number
of 3-torsion elements in the class groups of quadratic orders.

Theorem 2. When orders in quadratic fields are ordered by their absolute discriminants:

(a) The average number of 3-torsion elements in the class groups of imaginary quadratic
orders is 1 + ζ(2)/ζ(3).

(b) The average number of 3-torsion elements in the class groups of real quadratic
orders is 1 + 1

3 · ζ(2)/ζ(3).

Note that ζ(2)/ζ(3) ≈ 1.36843 > 1.
More generally, we may consider the analogue of Theorem 2 when the average is taken not

over all orders, but over some subset of orders defined by local conditions. More precisely, for
each prime p, let Σp be any set of isomorphism classes of orders in étale quadratic algebras
over Qp. We say that the collection (Σp) of local specifications is acceptable if, for all sufficiently
large p, the set Σp contains all the maximal quadratic rings over Zp. Let Σ denote the set of
quadratic orders O, up to isomorphism, such that O ⊗ Zp ∈ Σp for all p. Then we may ask
what the mean number of 3-torsion elements in the class groups of imaginary (respectively,
real) quadratic orders in Σ is.

To state such a result for general acceptable Σ, we need a bit of notation. For an étale
cubic algebra K over Qp, we write D(K) for the unique quadratic algebra over Zp satisfying
Disc(D(K)) = Disc(K). Also, for an order R in an étale quadratic algebra over Qp, let C(R)
denote the weighted number of étale cubic algebras K over Qp such that R ⊂ D(K):

C(R) :=
∑

K étale cubic/Qp

s.t. R ⊂ D(K)

1
#Aut(K)

. (2)

We define the ‘cubic mass’ MΣ of the family Σ as a product of local masses:

MΣ :=
∏
p

∑
R∈Σp

C(R)/Discp(R)∑
R∈Σp

(1/#Aut(R)) · (1/Discp(R))
=
∏
p

∑
R∈Σp

C(R)/Discp(R)∑
R∈Σp

1/(2 · Discp(R))
, (3)

where Discp(R) denotes the discriminant of R viewed as a power of p. We then prove the
following generalization of Theorem 2.
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Theorem 3. Let (Σp) be any acceptable collection of local specifications as above, and let
Σ denote the set of all isomorphism classes of quadratic orders O such that O ⊗ Zp ∈ Σp for
all p. Then, when orders in Σ are ordered by their absolute discriminants:

(a) The average number of 3-torsion elements in the class groups of imaginary quadratic
orders in Σ is 1 + MΣ.

(b) The average number of 3-torsion elements in the class groups of real quadratic
orders in Σ is 1 + 1

3MΣ.

If Σ is the set of all orders in Theorem 3, then we show in Section 5 that MΣ = ζ(2)/ζ(3),
and we recover Theorem 2; if Σ is the set of all maximal orders, then MΣ = 1 and we recover
Theorem 1. As would be expected, the mean number of 3-torsion elements in class groups of
quadratic orders depends on which set of orders one is taking the average over. However, a
remarkable consequence of Theorem 3 is the following generalization of Theorem 1.

Corollary 4. Suppose one restricts to just those quadratic fields satisfying any specified
set of local conditions at any finite set of primes. Then, when these quadratic fields are ordered
by their absolute discriminants:

(a) The average number of 3-torsion elements in the class groups of such imaginary
quadratic fields is 2.

(b) The average number of 3-torsion elements in the class groups of such real
quadratic fields is 4

3 .

Thus the mean number of 3-torsion elements in class groups of quadratic fields (that is, of
maximal quadratic orders) remains the same even when one averages over families of quadratic
fields defined by any desired finite set of local conditions.

We turn next to 3-torsion elements in the ideal group of a quadratic order O, that is, the
group I(O) of invertible fractional ideals of O, of which the class group Cl(O) is a quotient. It
may come as a surprise that if a quadratic order is not maximal, then it is possible for an ideal
to have order 3, that is, I can be a fractional ideal of a quadratic order O satisfying I3 = O,
but I �= O. We first illustrate this phenomenon with an example.

Example 5. Let O = Z[
√−11] and let I = (2, (1 −√−11)/2). Then I ⊂ O ⊗ Q is a

fractional ideal of O and has norm one. Since I3 ⊂ O, and I has norm one, we must have
I3 = O, even though clearly I �= O. Hence I has order 3 in the ideal group of O. It follows, in
particular, that the ideal class represented by I also has order 3 in the class group of O!

Example 5 shows that an element of the ideal class group can have order 3 simply because
there exists an ideal representing it that has order 3 in the ideal group. This raises the question
as to how many 3-torsion elements exist in the ideal group on average in quadratic orders. For
maximal orders, it is easy to show that any 3-torsion element (indeed, any torsion element) in
the ideal group must be simply the trivial ideal. For all orders, we have the following theorem.

Theorem 6. When orders in quadratic fields are ordered by their absolute discriminants,
the average number of 3-torsion elements in the ideal groups of either imaginary or real
quadratic orders is ζ(2)/ζ(3).

In the case of general sets of orders defined by any acceptable set of local conditions, we
have the following generalization of Theorem 6.
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Theorem 7. Let (Σp) be any acceptable collection of local specifications as above, and let
Σ denote the set of all isomorphism classes of quadratic orders O such that O ⊗ Zp ∈ Σp for
all p. Then, when orders in Σ are ordered by their absolute discriminants:

(a) The average number of 3-torsion elements in the ideal groups of imaginary quadratic
orders in Σ is MΣ.

(b) The average number of 3-torsion elements in the ideal groups of real quadratic
orders in Σ is MΣ.

In the preceding theorems, we have distinguished between the two groups Cl3(O), the group
of ideal classes of order 3, and I3(O), the group of ideals of order 3. Theorems 3 and 7 give
the mean values of |Cl3(O)| and |I3(O)|, respectively, as O ranges over any family of orders
defined by local conditions. In both Theorems 3 and 7, we have seen that unless the family
consists entirely of maximal orders satisfying a finite number of local conditions, these averages
depend on the particular families of orders over which the averages are taken. However, we see
that these two theorems together imply the following theorem.

Theorem 8. Let (Σp) be any acceptable collection of local specifications as above, and let
Σ denote the set of all isomorphism classes of quadratic orders O such that O ⊗ Zp ∈ Σp for
all p. Then, when orders in Σ are ordered by their absolute discriminants:

(a) The mean size of |Cl3(O)| − |I3(O)| across imaginary quadratic orders O in Σ is 1.

(b) The mean size of |Cl3(O)| − 1
3 |I3(O)| across real quadratic orders O in Σ is 1.

It is a remarkable fact, which begs for explanation, that the mean values in Theorem 8 do
not depend on the family of orders that one averages over! In particular, the case of maximal
orders gives Corollary 4, because the only 3-torsion element of the ideal group in a maximal
order is the trivial ideal.

We end this introduction by describing the methods used in this paper. Our approach
combines the original methods of Davenport–Heilbronn with techniques that are class field theo-
retically ‘dual’ to those methods, which we explain now. First, recall that Davenport–Heilbronn
proved Theorem 1 in [9] by:

(1) counting appropriate sets of binary cubic forms to compute the number of cubic fields
of bounded discriminant, using a bijection (due to Delone and Faddeev [10]) between
irreducible binary cubic forms and cubic orders;

(2) applying a duality from class field theory between cubic fields and 3-torsion elements of
class groups of quadratic fields.

In Sections 2 and 3, we give a new proof of Theorem 1 without class field theory, by using
a direct correspondence between binary cubic forms and 3-torsion elements of class groups of
quadratic orders proved in [1], in place of the Delone–Faddeev correspondence. We describe
a very precise version of this correspondence in Section 2 (cf. Theorem 9). In Section 3, we
then show how the original counting results of Davenport [7, 8], as applied in the asymptotic
count of cubic fields in Davenport–Heilbronn [9], can also be used to extract Theorem 1, using
the direct correspondence between integral binary cubic forms and 3-torsion elements of class
groups of quadratic orders.

To fully illustrate the duality between the original strategy of [9] and our strategy described
above, we give two ‘dual’ proofs of Theorem 2. In Section 4, we first generalize the proof
of Theorem 1 given in Sections 2 and 3, and then in Section 5, we give a second proof of
Theorem 2 via ring class field theory, generalizing the original proof of Davenport–Heilbronn
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[9]. Both methods involve counting irreducible binary cubic forms in fundamental domains for
the action of either SL2(Z) or GL2(Z), as developed in the work of Davenport [7, 8]. However,
in our direct method described in Section 4, one must also count points in the ‘cusps’ of these
fundamental regions! The points in the so-called cusp correspond essentially to reducible cubic
forms. We find that reducible cubic forms correspond to 3-torsion elements of ideal groups of
quadratic orders (cf. Theorem 17). In the case of maximal orders, the only torsion element of
the ideal group is the identity, and thus the points in the cusps can be ignored when proving
Theorem 1. However, in order to prove Theorems 2 and 3 (which do not restrict to maximal
orders), we must include reducible forms in our counts, and this is the main goal of Section 4.
Isolating the count of reducible forms in the fundamental domain for the action of SL2(Z) is
also what allows us to deduce Theorem 6.

On the other hand, in Section 5, we describe the duality between non-trivial 3-torsion
elements of class groups of a given quadratic order and cubic fields whose Galois closure is
a ring class field of the fraction field of the quadratic order (cf. Proposition 35). To then count
3-torsion elements in the class groups of quadratic orders, we use the count of cubic fields of
bounded discriminant proved by Davenport–Heilbronn [9], but we allow a given cubic field to
be counted multiple times, as the Galois closure of a single cubic field can be viewed as the ring
class field (of varying conductor) of multiple quadratic orders (cf. Subsection 5.2). This yields a
second proof of Theorem 2; furthermore, it allows us to prove also Theorem 3 and Corollary 4,
using a generalization of Davenport and Heilbronn’s theorem on the density of discriminants of
cubic fields established in [3, Theorem 8], which counts cubic orders of bounded discriminant
satisfying any acceptable collection of local conditions.

Finally, in Section 6, we generalize the proof of Theorem 2 given in Section 3 to general
acceptable families of quadratic orders, which in combination with Theorem 3 allows us to
deduce Theorems 7 and 8. We note that, in order to conclude Theorem 7, we use both of the
‘dual’ perspectives provided in the two proofs of Theorem 2.

2. Parametrization of order 3 ideal classes in quadratic orders

In this section, we recall the parametrization of elements in the 3-torsion subgroups of ideal
class groups of quadratic orders in terms of (orbits of) certain integer-matrix binary cubic forms
as proved in [1]. We also deduce various relevant facts that will allow us to prove Theorems 1
and 2 in Sections 3 and 4, respectively, without using class field theory.

2.1. Binary cubic forms and 3-torsion elements in class groups

The key ingredient in the new proofs of Theorems 1 and 2 is a parametrization of ideal classes
of order 3 in quadratic rings by means of equivalence classes of integer-matrix binary cubic
forms, which was obtained in [1]. We begin by briefly recalling this parametrization.

Let VR denote the four-dimensional real vector space of binary cubic forms ax3 + bx2y +
cxy2 + dy3, where a, b, c, d ∈ R, and let VZ denote the lattice of those forms for which
a, b, c, d ∈ Z (that is, the integer-coefficient binary cubic forms). The group GL2(Z) acts on VR

by the so-called ‘twisted action’, that is, an element γ ∈ GL2(Z) acts on a binary cubic form
f(x, y) by

(γf)(x, y) :=
1

det(γ)
f((x, y)γ). (4)

Furthermore, the action preserves VZ. We will be interested in the sublattice of binary cubic
forms of the form f(x, y) = ax3 + 3bx2y + 3cxy2 + dy3, called classically integral or integer-
matrix if a, b, c, d are integral. We denote the lattice of all integer-matrix forms in VR by V ∗

Z .
Note that V ∗

Z has index 9 in VZ and is also preserved by GL2(Z). We also define the reduced
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discriminant disc(·) on V ∗
Z by

disc(f) := − 1
27Disc(f) = −3b2c2 + 4ac3 + 4b3d + a2d2 − 6abcd, (5)

where Disc(f) denotes the usual discriminant of f as an element of VZ. It is well known and
easy to check that the action of GL2(Z) on binary cubic forms preserves (both definitions of)
the discriminant.

In [11], Eisenstein proved a beautiful correspondence between certain special SL2(Z)-classes
in V ∗

Z and ideal classes of order 3 in quadratic rings. We state here a refinement of Eisenstein’s
correspondence obtained in [1], which gives an exact interpretation for all SL2(Z)-classes in V ∗

Z

in terms of ideal classes in quadratic rings.
To state the theorem, we first require some terminology. We define a quadratic ring over Z

(respectively, Zp) to be any commutative ring with unit that is free of rank 2 as a Z-module
(respectively, Zp-module). An oriented quadratic ring O over Z is then defined to be a quadratic
ring along with a specific choice of isomorphism π : O/Z → Z. Note that an oriented quadratic
ring has no non-trivial automorphisms. Finally, we say that a quadratic ring (or binary cubic
form) is non-degenerate if it has non-zero discriminant.

Theorem 9 ([1, Theorem 13]). There is a natural bijection between the set of non-
degenerate SL2(Z)-orbits on the space V ∗

Z of integer-matrix binary cubic forms and the set of
equivalence classes of triples (O, I, δ), where O is a non-degenerate oriented quadratic ring over
Z, I is an ideal of O, and δ is an invertible element of O ⊗ Q such that I3 ⊆ δ · O and N(I)3 =
N(δ). (Here two triples (O, I, δ) and (O′, I ′, δ′) are equivalent if there is an isomorphism
φ : O → O′ and an element κ ∈ O′ ⊗ Q such that I ′ = κφ(I) and δ′ = κ3φ(δ).) Under this
bijection, the reduced discriminant of a binary cubic form is equal to the discriminant of the
corresponding quadratic ring.

The proof of this statement can be found in [1, Subsection 3.4]; here we simply sketch the
map. Given a triple (O, I, δ), the binary cubic form f corresponds to the symmetric trilinear
form

I × I × I −→ Z (i1, i2, i3) 
−→ π(δ−1 · i1 · i2 · i3) (6)

given by applying multiplication in O, dividing by δ, and then applying π. More explicitly, let
us write O = Z + Zτ where 〈1, τ〉 is a positively oriented basis for an oriented quadratic ring,
that is, π(τ) = 1. Furthermore, let us write I = Zα + Zβ, where 〈α, β〉 is a positively oriented
basis for the Z-submodule I of O ⊗ Q, that is, the change-of-basis matrix from the positively
oriented 〈1, τ〉 to 〈α, β〉 has positive determinant. We can then find integers e0, e1, e2, e3, a, b,
c, and d satisfying the following equations:

α3 = δ(e0 + aτ),

α2β = δ(e1 + bτ),

αβ2 = δ(e2 + cτ),

β3 = δ(e3 + dτ).

(7)

The binary cubic form corresponding to the triple (O, I, δ) is then f(x, y) = ax3 + 3bx2y +
3cxy2 + dy3.

Conversely, given a binary cubic form f(x, y) = ax3 + 3bx2y + 3cxy2 + dy3, we can explicitly
construct the corresponding triple as follows. The ring O is completely determined by having
discriminant equal to disc(f). Examining the system of equations in (7) shows that a positively
oriented basis 〈α, β〉 for I must satisfy

α : β = (e1 + bτ) : (e2 + cτ),
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where

e1 = 1
2 (b2c − 2ac2 + abd − εb), and e2 = − 1

2 (bc2 − 2b2d + acd + εc). (8)

Here, ε = 0 or 1 in accordance with whether Disc(O) ≡ 0 or 1 modulo 4, respectively. This
uniquely determines α and β up to a scalar factor in O ⊗ Q, and once α and β are fixed, the
system in (7) determines δ uniquely. The O-ideal structure of the rank 2 Z-module I is given
by the following action of τ on the basis elements of I:

τ · α =
B + ε

2
· α + A · β and τ · β = −C · α +

ε − B

2
· β, where

A = b2 − ac, B = ad − bc, C = c2 − bd. (9)

This completely (and explicitly) determines the triple (O, I, δ) from the binary cubic form
f(x, y). Note that the equivalence defined on triples in the statement of the theorem exactly
corresponds to SL2(Z)-equivalence on the side of binary cubic forms.

We may also deduce from this discussion a description of the stabilizer in SL2(Z) of an
element in V ∗

Z in terms of the corresponding triple (O, I, δ).

Corollary 10. The stabilizer in SL2(Z) of a non-degenerate element v ∈ V ∗
Z is naturally

isomorphic to U3(O0), where (O, I, δ) is the triple corresponding to v as in Theorem 9, O0 =
EndO(I) is the endomorphism ring of I, and U3(O0) denotes the group of units of O0 having
order dividing 3.

Indeed, let v ∈ V ∗
Z be associated to the triple (O, I, δ) under Theorem 9. Then an SL2(Z)-

transformation of the basis 〈α, β〉 for I preserves the map in (6) precisely when γ acts by
multiplication by a cube root of unity in the endomorphism ring O0 of I.

We may also similarly describe the orbits of V ∗
Z under the action of GL2(Z). This simply

removes the orientation of the corresponding ring O, thus identifying the triple (O, I, δ) with
its quadratic conjugate triple (O, Ī, δ̄).

Corollary 11. There is a natural bijection between the set of non-degenerate GL2(Z)-
orbits on the space V ∗

Z of integer-matrix binary cubic forms and the set of equivalence classes
of triples (O, I, δ), where O is a non-degenerate (unoriented) quadratic ring, I is an ideal of
O, and δ is an invertible element of O ⊗ Q such that I3 ⊆ δ · O and N(I)3 = N(δ). Under this
bijection, the reduced discriminant of a binary cubic form is equal to the discriminant of the
corresponding quadratic ring. The stabilizer in GL2(Z) of a non-degenerate element v ∈ V ∗

Z is
given by the semidirect product

Aut(O; I, δ) � U3(O0),

where: (O, I, δ) is the triple corresponding to v as in Theorem 9; Aut(O; I, δ) is defined to
be C2 if there exists κ ∈ (O ⊗ Q)× such that Ī = κI and δ̄ = κ3δ, and is defined to be trivial
otherwise; O0 = EndO(I) is the endomorphism ring of I; and U3(O0) denotes the group of
units of O0 having order dividing 3.

Proof. Given Theorem 9, it remains to check where the now-combined SL2(Z)-orbits of
an integer-matrix binary cubic form f and of γf, where γ = ( 0 1

1 0 ) map to. If the SL2(Z)-
orbit of f corresponds to a triple (O, I, δ) under the above bijection, then the SL2(Z)-orbit
of γf corresponds to the triple (O, Ī , δ̄) where ·̄ denotes the image under the non-trivial
automorphism of the unoriented quadratic ring O. Thus we obtain a correspondence between
GL2(Z)-orbits of integer-matrix binary cubic forms and triples (O, I, δ) as described above
except that O is viewed as a quadratic ring without orientation.



242 MANJUL BHARGAVA AND ILA VARMA

For the stabilizer statement, note that an element g of GL2(Z) preserving v must have
determinant either +1 or −1. If g has determinant 1, then when it acts on the basis 〈α, β〉 of
I, it preserves the vector v = (a, b, c, d) in (7) if and only if α3, α2β, αβ2, β3 remain unchanged;
thus g must act by multiplication by a unit u in the unit group U(O0) of O0 whose cube is 1.
If g has determinant −1, then the basis element τ gets replaced by its conjugate τ̄ in addition
to 〈α, β〉 being transformed by g. If this is to preserve the vector v = (a, b, c, d) in (7), then this
means that conjugation on O maps I to κI and δ to κ3δ for some κ ∈ (O ⊗ Q)×. The result
follows.

Remark 12. The statements in Theorem 9, Corollary 10, and Corollary 11 also hold after
base change to Zp, with the same proofs. In the case of Theorem 9, in the proof, by a positively
oriented basis 〈α, β〉 of an ideal I of R, we mean that the change-of-basis matrix from 〈1, τ〉 to
〈α, β〉 has determinant equal to a power of p (so that all positively oriented bases 〈α, β〉 of I
form a single orbit for the action of SL2(Zp)); all other details remain identical. Corollary 11
and its analogue over Zp will be relevant in Section 6, during the proofs of Theorems 7 and 8.

2.2. Composition of cubic forms and 3-class groups

Let us say that an integer-matrix binary cubic form f , or its corresponding triple (O, I, δ) via
the correspondence of Theorem 9, is projective if I is projective as an O-module (that is, if
I is invertible as an ideal of O); in such a case we have I3 = (δ). The bijection of Theorem 9
allows us to describe a composition law on the set of projective integer-matrix binary cubic
forms, up to SL2(Z)-equivalence, having the same reduced discriminant. This turns the set
of all SL2(Z)-equivalence classes of projective integer-matrix binary cubic forms having given
reduced discriminant D into a group, which is closely related to the group Cl3(O), if O also has
discriminant D. In this section, we describe this group law and establish some of its relevant
properties.

Fix an oriented quadratic ring O. Given such an O, we obtain a natural law of composition
on equivalence classes of triples (O, I, δ), where I is an invertible ideal of O and δ ∈ (O ⊗ Q)×

such that I3 = δ · O and N(I)3 = N(δ). It is defined by

(O, I, δ) ◦ (O, I ′, δ′) = (O, II ′, δδ′).

The equivalence classes of projective triples (O, I, δ) thus form a group under this composition
law, which we denote by H(O) (note that two oriented quadratic rings O and O′ of the
same discriminant are canonically isomorphic, and hence the groups H(O) and H(O′) are
also canonically isomorphic). By Theorem 9, we also then obtain a corresponding composition
law on SL2(Z)-equivalence classes of integer-matrix cubic forms f having a given reduced
discriminant D (a higher-degree analogue of Gauss composition). We say that such a binary
cubic form f is projective if the corresponding (O, I, δ) is projective. We will sometimes view
H(O) as the group consisting of the SL2(Z)-equivalence classes of integer-matrix binary cubic
forms having reduced discriminant equal to Disc(O).

In order to understand the relationship between H(O) and Cl3(O), we first establish a lemma
describing the number of preimages of an ideal class under the ‘forgetful’ map H(O) → Cl3(O)
defined by (O, I, δ) 
→ [I].

Lemma 13. Let O be an order in a quadratic field and I be an invertible ideal of O whose
class has order 3 in the class group of O. Then the number of elements δ ∈ O (up to cube factors
in (O ⊗ Q)×) yielding a valid triple (O, I, δ) in the sense of Theorem 9 is 1 if Disc(O) < −3,
and 3 otherwise.
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Proof. Fix an invertible ideal I of O that arises in some valid triple. The number of
elements δ having norm equal to N(I)3 and yielding distinct elements of H(O) is then
|U+(O)/U+(O)×3|, where U+(O) denotes the group of units of O having norm 1. In fact,
we have an exact sequence

1 −→ U+(O)
U+(O)×3

−→ H(O) −→ Cl3(O) −→ 1. (10)

We see that, for all orders O in imaginary quadratic fields other than the maximal order
Z[
√−3], the unit group has cardinality 2 or 4, and therefore |U+(O)/U+(O)×3| = 1. For

real quadratic orders O, the unit group has rank one and torsion equal to {±1}, and so
|U+(O)/U+(O)×3| = 3. Finally, for O = Z[

√−3], we have |U+(O)/U+(O)×3| = 3 as well.

Equation (10) thus makes precise the relationship between H(O) and Cl3(O). With regard
to the sizes of these groups, we obtain the following corollary.

Corollary 14. We have |H(O)| = |Cl3(O)| when O has discriminant Disc(O) < −3, and
|H(O)| = 3 · |Cl3(O)| otherwise.

2.3. Projective binary cubic forms and invertibility

We now wish to explicitly describe the projective binary cubic forms. Recall that the quadratic
Hessian covariant of f(x, y) = ax3 + 3bx2y + 3cxy2 + dy3 is given by Q(x, y) = Ax2 + Bxy +
Cy2, where A, B, C are defined by (9); then Q also describes the norm form on I mapping
into Z. It is well known, going back to the work of Gauss, that I is invertible if and only if
Q(x, y) is primitive, that is, (A,B,C) = (b2 − ac, ad − bc, c2 − bd) = 1 (see, for example, [6,
Proposition 7.4 and Theorem 7.7(i)–(ii)]). Thus,

f(x, y) = ax3 + 3bx2y + 3cxy2 + dy3 is projective

⇐⇒ (b2 − ac, ad − bc, c2 − bd) = 1. (11)

Let S denote the set of all projective forms f(x, y) = ax3 + 3bx2y + 3cxy2 + dy3 in V ∗
Z .

Let V ∗
Zp

denote the set of all forms f(x, y) = ax3 + 3bx2y + 3cxy2 + dy3 such that a, b, c, d ∈ Zp,
and let μ∗

p(S) denote the p-adic density of the p-adic closure of S in V ∗
Zp

, where we normalize
the additive measure μ∗

p on V ∗
Zp

= Z4
p so that μ∗

p(V
∗

Zp
) = 1. The following lemma gives the value

of μ∗
p(S).

Lemma 15. We have μ∗
p(S) = 1 − 1/p2.

Proof. Suppose
b2 − ac ≡ bc − ad ≡ c2 − bd ≡ 0 (mod p). (12)

Then the pair (a, b) can take any value except (0, r), where r �≡ 0 (mod p). Given any such
non-zero pair (a, b), the variables c and d are then clearly determined modulo p from (a, b).
If (a, b) ≡ (0, 0) (mod p), then c must also vanish (mod p), while d can be arbitrary (mod p).
We conclude that the total number of solutions (mod p) to (12) for the quadruple (a, b, c, d) is
(p2 − p) + p = p2. Thus μ∗

p(S) = (p4 − p2)/p4, as claimed.

2.4. Reducible forms

As summarized in the introduction, the correspondence of Delone–Faddeev in [10] between
irreducible binary cubic forms and orders in cubic fields was used by Davenport–Heilbronn [9]
to determine the density of discriminants of cubic fields. Theorem 9, however, gives a different
correspondence than the one due to Delone–Faddeev [10]; in particular, it does not restrict to
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irreducible forms. The question then arises: which elements of H(O) correspond to the integer-
matrix binary cubic forms that are reducible, that is, that factor over Q (equivalently, Z)? We
answer this question here, first by establishing which triples (O, I, δ) correspond to reducible
binary cubic forms.

Lemma 16. Let f be an element of V ∗
Z , and let (O, I, δ) be a representative for the

corresponding equivalence class of triples as given by Theorem 9. Then f has a rational zero
as a binary cubic form if and only if δ is a cube in (O ⊗ Q)×.

Proof. Suppose δ = ξ3 for some invertible ξ ∈ O ⊗ Q. Then, by replacing I by ξ−1I and
δ by ξ−3δ if necessary, we may assume that δ = 1. Let α be the smallest positive element in
I ∩ Z, and extend to a basis 〈α, β〉 of I. Then the binary cubic form f corresponding to the
basis 〈α, β〉 of I via Theorem 9 evidently has a zero, since α ∈ Z, δ = 1, and so a = 0 in (7).

Conversely, suppose (x0, y0) ∈ Q2 with f(x0, y0) = 0. Without loss of generality, we may
assume that (x0, y0) ∈ Z2. If (O, I, δ) is the corresponding triple and I has positively oriented
basis 〈α, β〉, then, by (7) or (6), we obtain

(x0α + y0β)3 = nδ for some n ∈ Z.

If ξ = x0α + y0β, then we have ξ3 = nδ, and taking norms to Z on both sides reveals that
N(ξ)3 = n2N(δ) = n2N(I)3. Thus n = m3 is a cube. This then implies that δ must be a cube
in (O ⊗ Q)× as well, namely δ = (ξ/m)3, as desired.

The reducible forms thus form a subgroup of H(O), which we denote by Hred(O); by the
previous lemma, it is the subgroup consisting of those triples (O, I, δ), up to equivalence, for
which δ is a cube. As in the introduction, let I3(O) denote the 3-torsion subgroup of the ideal
group of O, that is, the set of invertible ideals I of O such that I3 = O. We may then define
a map

ϕ : I3(O) −→ H(O) ϕ : I 
−→ (O, I, 1). (13)

It is evident that im(I3(O)) ⊆ Hred(O). In fact, we show that ϕ defines an isomorphism between
I3(O) and Hred(O).

Theorem 17. The map ϕ yields an isomorphism of I3(O) with Hred(O).

Proof. The preimage of the identity (O,O, 1) ∈ H(O) can only contain 3-torsion ideals
of the form κ · O for κ ∈ (O ⊗ Q)×. To be a 3-torsion ideal, we must have (κO)3 = O which
implies that κ3 ∈ O× and so κ ∈ O×. Therefore, the preimage of the identity is simply the ideal
O, and the map is injective. It remains to show surjectivity onto Hred(O). Assume (O, I, δ) ∈
Hred(O). Since δ is a cube by definition, let δ = ξ3 and recall that (O, I, δ) ∼ (O, ξ−1I, 1). Thus
ξ−1I ∈ I3(O).

Corollary 18. Assume that O is maximal. Then Hred(O) contains only the identity
element of H(O), which can be represented by (O,O, 1).

Proof. Since maximal orders are Dedekind domains, the only ideal that is 3-torsion in the
ideal group is O.

3. A proof of Davenport and Heilbronn’s theorem on class numbers without class field theory

Using the direct correspondence of Theorem 9, we can now deduce Theorem 1 by counting the
relevant binary cubic forms. To do so, we need the following result of Davenport describing the
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asymptotic behavior of the number of binary cubic forms of bounded reduced discriminant in
subsets of V ∗

Z defined by finitely many congruence conditions.

Theorem 19 ([7, 8, 9, Section 5, 3, Theorem 26]). Let S denote a set of integer-matrix
binary cubic forms in V ∗

Z defined by finitely many congruence conditions modulo prime powers.

Let V
∗(0)

Z denote the set of elements in V ∗
Z having positive reduced discriminant, and V

∗(1)
Z

be the set of elements in V ∗
Z having reduced negative discriminant. For i = 0 or 1, let N∗(S ∩

V
∗(i)

Z ,X) denote the number of irreducible SL2(Z)-orbits on S ∩ V
∗(i)

Z having absolute reduced
discriminant |disc| less than X. Then

lim
X→∞

N∗(S ∩ V
∗(i)

Z ,X)
X

=
π2

4 · n∗
i

∏
p

μ∗
p(S), (14)

where μ∗
p(S) denotes the p-adic density of S in V ∗

Zp
, and n∗

i = 1 or 3 for i = 0 or 1, respectively.

Note that, in both [3, 9], this theorem is expressed in terms of GL2(Z)-orbits of binary cubic
forms in VZ with discriminant Disc(·) defined by −27 · disc(·). Here, we have stated the theorem
for SL2(Z)-orbits of integer-matrix binary cubic forms, and the p-adic measure is normalized
so that μ∗

p(V
∗

Zp
) = 1. This version is proved in exactly the same way as the original theorem,

but since:

(a) V ∗
Z has index 9 in VZ;

(b) we use the reduced discriminant disc(·) instead of Disc(·); and
(c) there are two SL2(Z)-orbits in every irreducible GL2(Z)-orbit,

the constant on the right-hand side of (14) changes from π2/12ni as in [3] to π2/4n∗
i , where

ni = 6 or 2 for i = 0 or 1, respectively.
Our goal then is to count the SL2(Z)-orbits of forms in V

∗(i)
Z that correspond, under the

bijection described in Theorem 9, to equivalence classes of triples (O, I, δ), where O is a maximal
quadratic ring and I is projective. However, if O is a maximal quadratic ring, then all ideals
of O are projective, and so our only restriction on elements f ∈ V

∗(i)
Z then is that disc(f) be the

discriminant of a maximal quadratic ring. It is well known that a quadratic ring O is maximal
if and only if the odd part of the discriminant of O is squarefree, and disc(O) ≡ 1, 5, 8, 9, 12,
or 13 (mod 16). We therefore define, for every prime p,

Vp :=

{
{f ∈ V ∗

Z : disc(f) ≡ 1, 5, 8, 9, 12, 13 (mod 16)} if p = 2;
{f ∈ V ∗

Z : discp(f) is squarefree} if p �= 2.

Here, discp(f) is the p-part of disc(f). If we set V := ∩pVp, then V is the set of forms in V ∗
Z for

which the ring O in the associated triple (O, I, δ) is a maximal quadratic ring. The following
lemma describes the p-adic densities of V (here, we are using the fact that the p-adic closure
of V is Vp).

Lemma 20 ([9, Lemma 4]). We have μ∗
p(Vp) = (p2 − 1)2/p4.

We define N∗(V ∩ V
∗(i)

Z ,X) analogously, as the number of irreducible orbits in V ∩ V
∗(i)

Z

having absolute reduced discriminant between 0 and X (for i = 0, 1). Since we are restricting
to irreducible orbits, N∗(V ∩ V

∗(i)
Z ,X) counts those (equivalence classes of) triples (O, I, δ),

where O is maximal with |Disc(O)| < X, but, by Corollary 18, the identity of H(O) is not
included in this count.

We cannot immediately apply Theorem 19 to compute N∗(V ∩ V
∗(i)

Z ,X), as the set V is
defined by infinitely many congruence conditions. However, the following uniformity estimate
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for the complement of Vp for all p will allow us in Subsection 3.1 to strengthen (14) to also
hold when S = V.

Proposition 21 ([9, Proposition 1]). Define W∗
p = V ∗

Z \Vp for all primes p. Then
N(W∗

p ;X) = O(X/p2) where the implied constant is independent of p.

Remark 22. None of the proofs of the quoted results in this section use class field theory
except for [9, Proposition 1], which invokes one lemma (namely, [9, Lemma 7]) that is proved
in [9] by class field theory; however, this lemma immediately follows from our Theorems 9
and 19, which do not appeal to class field theory.

3.1. The mean number of 3-torsion elements in the class groups of quadratic fields without
class field theory (Proof of Theorem 1)

We now complete the proof of Theorem 1. Suppose that Y is any positive integer. It follows
from Theorem 19 and Lemma 20 that

lim
X→∞

N∗(∩p<Y Vp ∩ V
∗(i)

Z ,X)
X

=
π2

4n∗
i

·
∏
p<Y

(
1 − 1

p2

)2

.

Letting Y tend to ∞, we obtain

lim sup
X→∞

N∗(V ∩ V
∗(i)

Z ,X)
X

� π2

4n∗
i

·
∏
p

(
1 − 1

p2

)2

=
3

2n∗
i ζ(2)

.

To obtain a lower bound for N∗(V ∩ V
∗(i)

Z ,X), we use the fact that

⋂
p<Y

Vp ⊂
⎛⎝V ∪

⋃
p�Y

W∗
p

⎞⎠ . (15)

By Proposition 21 and (15), we have

lim inf
X→∞

N∗(V ∩ V
∗(i)

Z ,X)
X

� π2

4n∗
i

·
∏
p

(
1 − 1

p2

)2

− O

⎛⎝∑
p�Y

p−2

⎞⎠ .

Letting Y tend to ∞ again, we obtain

lim inf
X→∞

N∗(V ∩ V
∗(i)

Z ,X)
X

� π2

4n∗
i

·
∏
p

(
1 − 1

p2

)2

=
3

2n∗
i ζ(2)

.

Thus,

lim
X→∞

N∗(V ∩ V
∗(i)

Z ,X)
X

=
9

n∗
i π

2
.

Finally, we use Corollaries 14 and 18 to relate N∗(V ∩ V
∗(i)

Z ,X) and 3-torsion ideal classes
in maximal quadratic rings with discriminant less than X:∑

0<Disc(O)<X,
O maximal

(3 · |Cl3(O)| − 1) = N∗(V ∩ V
∗(0)

Z ,X);

∑
0<−Disc(O)<X,

O maximal

(|Cl3(O)| − 1) = N∗(V ∩ V
∗(1)

Z ,X).
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Since

lim
X→∞

∑
0<Disc(O)<X,

O maximal

1

X
=

3
π2

and lim
X→∞

∑
0<−Disc(O)<X,

O maximal

1

X
=

3
π2

, (16)

we conclude

lim
X→∞

∑
0<Disc(O)<X,

O maximal

|Cl3(O)|∑
0<Disc(O)<X,

O maximal

1
=

1
3

⎛⎝1 + lim
X→∞

N∗(V ∩ V
∗(0)

Z ;X)∑
0<Disc(O)<X,

O maximal

1

⎞⎠ =
1
3

(
1 +

9/n∗
0

3

)
=

4
3
,

lim
X→∞

∑
0<−Disc(O)<X,

O maximal

|Cl3(O)|∑
0<−Disc(O)<X,

O maximal

1
= 1 + lim

X→∞
N∗(V ∩ V

∗(1)
Z ;X)∑

0<−Disc(O)<X,
O maximal

1
= 1 +

9/n∗
1

3
= 2.

3.2. Generalization to orders

The above proof of Theorem 1 can be generalized to orders to yield the special case of Theorem 8
where we average over all quadratic orders. This will also explain why the quantities being
averaged in Theorem 8 arise naturally. All the ingredients remain the same as in the previous
subsection, except that we now replace V ⊂ V∗

Z with the set S of all projective integer-matrix
binary cubic forms as defined in Subsection 2.3. Recall that projective forms correspond under
Theorem 9 to valid triples with an invertible ideal. However, since N∗(S,X) only counts
irreducible orbits, by Corollary 14 and Theorem 17, we obtain

N∗(S ∩ V
∗(i)

Z ,X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

0<Disc(O)<X

3 · |Cl3(O)| −
∑

0<Disc(O)<X

|I3(O)| if i = 0,

∑
0<−Disc(O)<X

|Cl3(O)| −
∑

0<−Disc(O)<X

|I3(O)| if i = 1.
(17)

As before, let Y be any positive integer and let Sp denote the p-adic closure of S in V ∗
Zp

, so
that ∩pSp = S. It follows from Lemma 15 and Theorem 19 that

lim
X→∞

N∗(∩p<Y Sp ∩ V
∗(i)

Z ,X)
X

=
π2

4n∗
i

·
∏
p<Y

(
1 − 1

p2

)
.

Letting Y tend to ∞ gives

lim sup
X→∞

N∗(S ∩ V
∗(i)

Z ,X)
X

� π2

4n∗
i

·
∏
p

(
1 − 1

p2

)
=

3
2n∗

i

.

Using again W∗
p to denote V ∗

Z \Vp, we still have that

⋂
p<Y

Sp ⊂
⎛⎝S ∪

⋃
p�Y

W∗
p

⎞⎠ .

Thus, it follows from Theorem 21 that

lim inf
X→∞

N∗(S ∩ V
∗(i)

Z ,X)
X

� π2

4n∗
i

·
∏
p

(
1 − 1

p2

)
− O

⎛⎝∑
p�Y

p−2

⎞⎠ ,
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and letting Y tend to ∞ gives

lim inf
X→∞

N(S ∩ V
∗(i)

Z ,X)
X

� π2

4n∗
i

·
∏
p

(
1 − 1

p2

)
=

3
2n∗

i

.

Thus

lim
X→∞

N∗(S ∩ V
∗(i)

Z ,X)
X

=
3

2n∗
i

.

Since

lim
X→∞

∑
0<Disc(O)<X 1

X
=

1
2

and lim
X→∞

∑
0<−Disc(O)<X 1

X
=

1
2
, (18)

by (17) we conclude that

lim
X→∞

∑
0<Disc(O)<X |Cl3(O)| − 1

3 |I3(O)|∑
0<Disc(O)<X 1

=
1
3

(
3/2n∗

0

1/2

)
= 1, and

lim
X→∞

∑
0<−Disc(O)<X |Cl3(O)| − |I3(O)|∑

0<−Disc(O)<X 1
=

3/2n∗
1

1/2
= 1.

(19)

This proves Theorem 8 in the case that Σ is the set of all isomorphism classes of quadratic
orders.

In the next section, we will count also the reducible SL2(Z)-orbits of S ∩ V
∗(i)

Z having
bounded reduced discriminant, which will establish the mean total number of 3-torsion elements
in the class groups of imaginary quadratic orders and of real quadratic orders, as stated in
Theorem 2.

4. The mean number of 3-torsion elements in the ideal groups of quadratic orders
(Proofs of Theorems 2 and 6)

We have seen in Subsection 3.2 that counting irreducible orbits of integer-matrix binary
cubic forms and using the correspondence described in Theorem 9 is not enough to conclude
Theorem 2. In addition, Theorem 17 shows that in order to establish Theorem 6, we must
compute the number of reducible integer-matrix binary cubic forms, up to the action of SL2(Z),
having bounded reduced discriminant. In [7, 8], Davenport computed the number of SL2(Z)-
equivalence classes of irreducible integer-coefficient binary cubic forms of bounded non-reduced
discriminant. In this section, we similarly count reducible integer-matrix forms with bounded
reduced discriminant and establish the following result, from which both Theorems 2 and 6
follow.

Proposition 23. Let hproj,red(D) denote the number of SL2(Z)-equivalence classes of
projective and reducible integer-matrix binary cubic forms of reduced discriminant D. Then∑

0<Disc(O)<X

|Hred(O)| =
∑

0<D<X

hproj,red(D) =
ζ(2)
2ζ(3)

· X + o(X)

and ∑
0<−Disc(O)<X

|Hred(O)| =
∑

0<−D<X

hproj,red(D) =
ζ(2)
2ζ(3)

· X + o(X).

Recall that, by definition, if O is the quadratic ring of discriminant D, then |Hred(O)| =
hproj,red(D).
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By Theorem 17, (18), and Proposition 23, we then obtain the following corollary.

Corollary 24 (Theorem 6). Let I3(O) denote the 3-torsion subgroup of the ideal group
of the quadratic order O. Then

lim
X→∞

∑
0<Disc(O)<X |I3(O)|∑

0<Disc(O)<X 1
=

ζ(2)
ζ(3)

and lim
X→∞

∑
0<−Disc(O)<X |I3(O)|∑

0<−Disc(O)<X 1
=

ζ(2)
ζ(3)

.

Finally, combining Theorem 6 with (19), we conclude the following corollary.

Corollary 25 (Theorem 2). We have

lim
X→∞

∑
0<Disc(O)<X |Cl3(O)|∑

0<Disc(O)<X 1
= 1 +

1
3
· ζ(2)
ζ(3)

,

and

lim
X→∞

∑
0<−Disc(O)<X |Cl3(O)|∑

0<−Disc(O)<X 1
= 1 +

ζ(2)
ζ(3)

.

We now turn to the proof of Proposition 23.

4.1. Counting reducible forms of negative reduced discriminant

We first consider the case of negative reduced discriminant, when the quadratic Hessian
covariant of a binary cubic form is positive definite. Gauss described a fundamental domain for
the action of SL2(Z) on positive-definite real binary quadratic forms in terms of inequalities on
their coefficients. This allows us to describe an analogous fundamental domain for the action
of SL2(Z) on real binary cubic forms of negative reduced discriminant. Bounding the reduced
discriminant cuts out a region of the fundamental domain which can be described via suitable
bounds on the coefficients of the binary cubic forms (cf. Lemma 26). Within this region, we
show that the number of SL2(Z)-classes of reducible integer-matrix cubic forms of bounded
reduced discriminant can be computed, up to a negligible error term, by counting the number
of integer-matrix binary cubic forms f(x, y) in the region whose x3-coefficient is zero and
x2y-coefficient is positive. We then carry out the latter count explicitly.

4.1.1. Reduction theory. Recall that if f(x, y) = ax3 + 3bx2y + 3cxy2 + dy3 is a binary
cubic form where a, b, c, d ∈ Z, then there is a canonically associated quadratic form Q, called
the quadratic (Hessian) covariant of f , with coefficients defined by (9):

Q(x, y) = Ax2 + Bxy + Cy2, where A = b2 − ac, B = ad − bc, and C = c2 − bd. (20)

Note that Disc(Q) = disc(f), and so if disc(f) is negative, then its quadratic covariant is
definite. The group SL2(Z) acts on the set of positive-definite real binary quadratic forms, and
it is well known that a fundamental domain for this action consists of those quadratic forms
whose coefficients satisfy

− A < B � A < C or 0 � B � A = C. (21)

We call a binary quadratic form whose coefficients satisfy (21) reduced. Any binary cubic
form of negative reduced discriminant is SL2(Z)-equivalent to one whose quadratic covariant
is reduced. Furthermore, if two such binary cubic forms are equivalent under SL2(Z) and
both have quadratic covariants that are reduced, then their quadratic covariants are equal.
The automorphism group of a reduced quadratic form always includes the identity matrix Id2

and its negation −1 · Id2. In all but two cases, this is the full automorphism group (the binary
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quadratic form x2 + y2 has two more distinct automorphisms while x2 + xy + y2 has four more
distinct automorphisms).

We now describe bounds on the coefficients of a binary cubic form f with reduced quadratic
covariant Q satisfying 0 < −Disc(Q) < X.

Lemma 26 ([7, Lemma 1]). Let a, b, c, d be real numbers, and let A, B, C be defined as
in (20). Suppose that

− A < B � A � C and 0 < 4AC − B2 < X. (22)

Then

|a| <

√
2

4
√

3
· X1/4, |b| <

√
2

4
√

3
· X1/4,

|ad| <
2√
3
· X1/2, |bc| <

2√
3
· X1/2,

|ac3| <
4
3
· X, |b3d| <

4
3
· X,

|c2(bc − ad)| < X.

Note that in the previous lemma, we have included some non-reduced quadratic forms,
specifically when A = C. However, such cases are negligible by the following lemma.

Lemma 27 ([7, Lemma 2]). The number of integral binary cubic forms satisfying

−A < B � A � C and 0 < 4AC − B2 < X

such that A = C is O(X3/4 log X).

Finally, the following lemma implies that the number of reducible integer-matrix binary cubic
forms with reduced quadratic covariant and bounded reduced discriminant is asymptotically
the same as the number of binary cubic forms with a = 0, reduced quadratic covariant, and
bounded reduced discriminant.

Lemma 28 ([7, Lemma 3]). The number of reducible integral binary cubic forms f with
a �= 0 that satisfy −A < B � A � C and for which 0 < −Disc(Q) < X is O(X3/4+ε), for any
ε > 0.

Let h(D) denote the number of SL2(Z)-classes of integer-matrix binary cubic forms of
reduced discriminant D, and define h′(D) to be the number of SL2(Z)-classes of integer-matrix
binary cubic forms of reduced discriminant D having a representative with a = 0 and quadratic
covariant that satisfies −A < B � A � C. Then, by the previous two lemmas, we see that∑

0<−D<X

h(D) =
∑

0<−D<X

h′(D) + O(X3/4+ε). (23)

Thus, we focus our attention on computing
∑

0<−D<X h′(D).

4.1.2. The number of binary cubic forms of bounded reduced discriminant with a = 0, b > 0,
and reduced quadratic covariant. If f(x, y) = 3bx2y + 3cxy2 + dy3, then the coefficients of the
quadratic covariant of f are given by

A = b2, B = −bc, and C = c2 − bd,
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and, furthermore, disc(f) = Disc(Q) = −3b2c2 + 4b3d. We are interested in the number of
SL2(Z)-equivalence classes of integer-matrix binary cubic forms with a = 0 such that

− A < B � A � C and 0 < −Disc(Q) < X. (24)

Note that in order for Disc(Q) to be non-zero, we must have b �= 0. Furthermore, the SL2(Z)-
element −Id2 acts on a form f(x, y) by negating its coefficients, and thus we can assume that our
choice of representative for a given SL2(Z)-equivalence class has both a = 0 and non-negative b.
Apart from the cases when A = B = C or A = C and B = 0, the restrictions a = 0 and b > 0
describe a unique representative in each SL2(Z)-equivalence class of forms satisfying (24) and
a = 0. If A = B = C, then the binary cubic form is of the form 3bx2y − 3bxy2. Similarly, if
A = C and B = 0, then a binary cubic form with such a quadratic covariant is of the form
3bx2y − by3. Thus, by Lemma 26, there are O(X1/4) such forms in the region described by (22)
with a = 0. If we define h′

1(D) to be the number of integer-matrix binary cubic forms of reduced
discriminant D with a = 0, b > 0, and whose quadratic covariant satisfies −A < B � A � C,
then, by (23), we also have∑

0<−D<X

h(D) =
∑

0<−D<X

h′
1(D) + O(X3/4+ε). (25)

To compute
∑

0<−D<X h′
1(D), note that the inequalities in (24) imply that −b2 < bc < b2 �

c2 − 3bd and 0 < 3b2c2 − 4b3d < X when a = 0; hence if b > 0, then

−b < c � b and d < 3
4 · b.

Also, since B2 � AC, we have bd � 0, so d � 0. Using the upper bound on the reduced
discriminant of f and the inequality A � C from (24), we conclude that

3c2

4b
− X

4b3
< d � c2

b
− b.

The number of integer-matrix binary cubic forms with a = 0 and b > 0 satisfying (24) is
therefore ∑

0<−D<X

h′
1(D) =

∑
0<b<(

√
2/ 4√3)X1/4

∑
−b<c�b

#
{

d ∈ Z :
3c2

4b
− X

4b3
< d � c2

b
− b

}

=
∑

0<b<(
√

2/ 4√3)X1/4

∑
−b<c�b

((
c2

b
− b

)
−
(

3c2

4b
− X

4b3

)
+ O(1)

)

=
∑

0<b<(
√

2/ 4√3)X1/4

(
2b · X

4b3
+ O(b2)

)

=
ζ(2)
2

X + O(X3/4).

Thus, by (25) the number of SL2(Z)-equivalence classes of reducible integer-matrix binary
cubic forms having bounded negative reduced discriminant is given by∑

0<−D<X

h(D) =
ζ(2)
2

· X + O(X3/4+ε).

4.1.3. Restriction to projective forms. We now complete the proof of Proposition 23 in the
case of negative reduced discriminant by further restricting to projective forms. Let h′

1,proj(D)
be the number of projective integer-matrix binary cubic forms of reduced discriminant D
with a = 0, b > 0, and reduced quadratic covariant. By (11), we know that such a form is
projective if and only if (b2, bc, c2 − bd) = 1, or equivalently if and only if (b, c) = 1. Thus
h′

1,proj(D) counts those integer-matrix binary cubic forms having reduced discriminant D,
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a = 0, b > 0, (b, c) = 1, and reduced quadratic covariant. Define h′
1,n(D) to be the number of

integer-matrix binary cubic forms of reduced discriminant D with a = 0, b > 0, n | (b, c), and
reduced quadratic covariant. Note that h′

1,1(D) = h′
1(D). We compute

∑
0<−D<X h′

1,proj(D)
by using the inclusion–exclusion principle:∑

0<−D<X

h′
1,proj(D) =

∑
0<−D<X

∞∑
n=1

μ(n)h′
1,n(D) =

∞∑
n=1

μ(n) ·
( ∑

0<−D<X

h′
1,n(D)

)
,

where μ(·) denotes the Möbius function.
Fix n ∈ Z, and let 3bx2y + 3cxy2 + dy3 have reduced discriminant D = −3b2c2 + 4b3d, b > 0,

and n | (b, c). Let b = n · b1 and c = n · c1. Assume that A = b2, B = −bc, C = c2 − bd satisfy
(24). Then

−b1 < c1 � b1 and d < 3
4nb1.

Furthermore, d � 0 and d satisfies

3nc2
1

4b1
− X

4n3b3
1

< d � nc2
1

b1
− nb1.

Therefore, the number of integer-matrix binary cubic forms with a = 0, b > 0, and n | (b, c)
satisfying (24) is∑
0<−D<X

h′
1,n(D) =

∑
0<b1<(

√
2/ 4√3n)X1/4

∑
−b1<c1�b1

#
{

d :
3nc2

1

4b1
− X

4n3b3
1

< d � nc2
1

b1
− nb1

}

=
∑

0<b1<(
√

2/ 4√3n)X1/4

∑
−b1<c1�b1

((
nc2

1

b1
− nb1

)
−
(

3nc2
1

4b1
− X

4n3b3
1

)
+ O(1)

)

=
∑

0<b1<(
√

2/ 4√3n)X1/4

(
2b1 · X

4n3b3
1

+ O(nb2
1)
)

=
ζ(2)
2n3

X + O

(
X3/4

n2

)
,

where the implied constants are independent of n. We conclude that∑
0<−D<X

h′
1,proj(D) =

∞∑
n=1

μ(n) ·
(

ζ(2)
2n3

X + O

(
X3/4

n2

))
=

ζ(2)
2ζ(3)

· X + O(X3/4).

If we now let hproj,red(D) denote the number of SL2(Z)-equivalence classes of projective
reducible integer-matrix cubic forms of reduced discriminant D, then by the analogous
reduction formula as in (25), we obtain∑

0<−D<X

hproj,red(D) =
ζ(2)
2ζ(3)

· X + o(X).

4.2. Counting reducible forms of positive reduced discriminant

Recall that implicit in our study of reducible binary cubic forms of negative reduced discrim-
inant was the fact that their quadratic covariants were definite, and thus the fundamental
domain for positive definite quadratic forms allowed us to make a well-defined choice for
a representative for each SL2(Z)-class of binary cubic forms we were counting. If f(x, y) =
ax3 + 3bx2y + 3cxy2 + dy3 has positive reduced discriminant, then its quadratic covariant as
defined in (20) is indefinite. However, if we can associate a different SL2(Z)-covariant quadratic
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form that is positive definite to each binary cubic form of positive reduced discriminant, then
we can carry out the analogous count. Again, we follow Davenport [8] and note that a binary
cubic form of the form f(x, y) = ax3 + 3bx2y + 3cxy2 + dy3 with positive reduced discriminant
has one real root and two complex roots. Thus, if α denotes the real root, then we can write

f(x, y) = (y − α · x)(Px2 + Qxy + Ry2), where P = 3b + 3cα + dα2, Q = 3c + dα, R = d.

We call the binary quadratic form with coefficients P , Q, and R the (definite) quadratic factor
of the binary cubic form f .

4.2.1. Reduction theory. As in the case of reduced negative discriminant, a fundamental
domain for the action of SL2(Z) consists of those real quadratic forms Px2 + Qxy + Ry2 whose
coefficients satisfy

− P < Q � P < R or 0 � Q � P = R. (26)

It is clear that any real binary cubic form having positive reduced discriminant is properly
equivalent to one with quadratic factor satisfying the inequalities in (26). If there are two such
binary cubic forms that are equivalent under SL2(Z) and both quadratic factors satisfy (26),
then the element of SL2(Z) taking one cubic form to another must preserve the quadratic
factor up to scaling. Thus, it must be an element of the automorphism group of the quadratic
factor, hence either Id2 or −Id2 when the quadratic factor is not a scalar multiple of x2 + y2

or x2 + xy + y2. Apart from these two exceptional cases, in each such SL2(Z)-equivalence class
there is one binary cubic form with reduced quadratic factor and b > 0. Furthermore, using
the fact that the non-reduced discriminant of a binary form is the product of the pairwise
differences of the roots, one can show that

disc(f) = 1
27 (4PR − Q2)(P + Qα + Rα2)2

if α, P , Q, R are defined as above. We now state the analogues of Lemmas 26–28.

Lemma 29 ([8, Lemma 1]). Let α, P, Q, R be real numbers satisfying

− P < Q � P � R and 0 < 1
27 (4PR − Q2)(P + Qα + Rα2)2 < X. (27)

If a, b, c, and d are given by the formulas

a = −Pα, b =
P − Qα

3
, c =

Q − Rα

3
, d = R,

then

a <
√

6X1/4, |b| < 2 4

√
2
9
X1/4,

|ad| < 3
√

2X1/2, |bc| <
4
√

2
3

X1/2,

|ac3| <
20
3

X, |b3d| <
20
3

X,

c2|9bc − ad| < 432X.

Lemma 30 ([8, Lemma 2]). The number of integral binary cubic forms f satisfying

−P < Q � P � R and 0 < disc(f) < X

such that P = R is O(X3/4 log X).

Lemma 31 ([8, Lemma 3]). The number of reducible integral binary cubic forms f with
a �= 0 that satisfy −P < Q � P � R and for which 0 < disc(f) < X is O(X3/4+ε), for any
ε > 0.
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Define h′(D) to be the number of SL2(Z)-classes of integer-matrix binary cubic forms having
reduced discriminant D with a = 0 and whose quadratic factor satisfies

−P < Q � P � R.

Then, by the previous two lemmas, we see that∑
0<D<X

h(D) =
∑

0<D<X

h′(D) + O(X3/4+ε). (28)

Thus, we focus our attention on computing
∑

0<D<X h′(D).

4.2.2. The number of binary cubic forms of bounded reduced discriminant with a = 0,
b > 0 and reduced quadratic factor. If f(x, y) = 3bx2y + 3cxy2 + dy3, then the coefficients of
its quadratic factor are given by

P = 3b, Q = 3c, R = d.

Furthermore, disc(f) = − 1
27Disc(Px2 + Qxy + Ry2)P 2 = −3b2c2 + 4b3d. We are interested in

the number of SL2(Z)-equivalence classes of integer-matrix binary cubic forms f with a = 0
such that

−P < Q � P � R and 0 < disc(f) < X.

Note that in order for the discriminant of f to be non-zero, we must have b �= 0. Thus, we can
assume that our choice of representative for a given SL2(Z)-equivalence class has both a = 0 and
positive b. Apart from the cases when P = Q = R or P = R and Q = 0, the restrictions a = 0
and b > 0 describe a unique representative in each SL2(Z)-equivalence class of forms satisfying
(26) and a = 0. If P = Q = R, then the binary cubic form is of the form 3bx2y + 3bxy2 + 3by3.
Similarly, if P = R and Q = 0, then the binary cubic form is of the form 3bx2y + 3by3. Thus, by
Lemma 29, there are O(X1/4) such forms in the region described by (27) with a = 0. If we define
h′

1(D) to be the number of integer-matrix binary cubic forms having reduced discriminant D
with a = 0 and b > 0 and whose quadratic factor satisfies −P < Q � P � R, then, by (28), we
have ∑

0<D<X

h(D) =
∑

0<D<X

h′
1(D) + O(X3/4+ε). (29)

To compute
∑

0<D<X h′
1(D), note that the inequalities in (27) imply that −3b < 3c � 3b � d

and 0 < −3b2c2 + 4b3d < X when a = 0; hence if b > 0, then

−b < c � b and 3b < d.

Thus d > 0. Using the upper bound on the reduced discriminant of f , we conclude that

3b < d <
X

4b3
+

3c2

4b
.

Therefore, the number of integer-matrix binary cubic forms with a = 0 and b > 0 satisfying
(27) is ∑

0<D<X

h′
1(D) =

∑
0<b< 4

√
32/9X1/4

∑
−b<c�b

#
{

d : 3b < d <
X

4b3
+

3c2

4b

}

=
∑

0<b< 4
√

32/9X1/4

∑
−b<c�b

(
X

4b3
+

3c2

4b
− 3b + O(1)

)

=
∑

0<b< 4
√

32/9X1/4

(
2b · X

4b3
+ O(b2)

)
=

ζ(2)
2

X + O(X3/4).
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Hence, by (29), the number of SL2(Z)-equivalence classes of reducible integer-matrix binary
cubic forms of bounded positive reduced discriminant is given by∑

0<D<X

h(D) =
ζ(2)
2

· X + O(X3/4+ε).

4.2.3. Restriction to projective forms. We have seen that the number of SL2(Z)-equivalence
classes of reducible integer-matrix binary cubic forms with positive reduced discriminant less
than X is (ζ(2)/2)X + o(X). We complete the proof of Proposition 23 by further restricting to
projective forms. Let h′

1,proj(D) be the number of projective integer-matrix binary cubic forms
having reduced discriminant D, a = 0, b > 0, and reduced definite quadratic factor. By (11), we
know that such a form is projective if and only if (b2, bc, c2 − bd) = 1, or equivalently if and only
if (b, c) = 1. Thus, h′

1,proj(D) counts those integer-matrix forms having reduced discriminant
D, a = 0, b > 0, (b, c) = 1, and reduced quadratic factor. Define h′

1,n(D) to be the number
of SL2(Z)-classes of integer-matrix binary cubic forms having reduced discriminant D, a = 0,
b > 0, n | (b, c), and reduced quadratic factor. Then we have h′

1,1(D) = h′
1,proj(D). As before,

we compute
∑

0<D<X h′
1,proj(D) by using the inclusion–exclusion principle:∑

0<D<X

h′
1,proj(D) =

∑
0<D<X

∞∑
n=1

μ(n)h′
1,n(D) =

∞∑
n=1

μ(n) ·
( ∑

0<D<X

h′
1,n(D)

)
.

Fix n ∈ Z, and let 3bx2y + 3cxy2 + dy3 have reduced discriminant D = −3b2c2 + 4b3d, b > 0,
and n | (b, c). Let b = n · b1 and c = n · c1. Assume that P , Q, R satisfy (26); then

−b1 < c1 � b1 and 3nb1 < d.

Furthermore, d > 0 and d satisfies

3nb1 < d <
X

4n3b3
1

− 3nc2
1

4b1
.

Therefore, the number of integer-matrix binary cubic forms with a = 0, b > 0, and n | (b, c)
satisfying (26) is∑

0<D<X

h′
1,n(D) =

∑
0<b1< 4

√
32/9nX1/4

∑
−b1<c1�b1

#
{

d : 3nb1 < d <
X

4n3b3
1

+
3nc2

1

4b1

}

=
∑

0<b1< 4
√

32/9nX1/4

∑
−b1<c1�b1

(
X

4n3b3
1

+
3nc2

1

4b1
− 3nb1 + O(1)

)

=
∑

0<b1< 4
√

32/9nX1/4

(
2b1 · X

4n3b3
1

+ O(nb2
1)
)

=
ζ(2)
2n3

X + O

(
X3/4

n2

)
,

where the implied constants are again independent of n. We conclude that∑
0<D<X

h′
1,proj(D) =

∞∑
n=1

μ(n) ·
(

ζ(2)
2n3

X + O

(
X3/4

n2

))
=

ζ(2)
2ζ(3)

X + O(X3/4).

If we let hproj,red(D) denote the number of SL2(Z)-equivalence classes of projective reducible
integer-matrix binary cubic forms of reduced discriminant D, then by the analogous reduction
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formula as in (25), we obtain∑
0<D<X

hproj,red(D) =
ζ(2)
2ζ(3)

· X + o(X).

5. The mean number of 3-torsion elements in class groups of quadratic orders via ring class
field theory (Proofs of Theorems 2 and 3)

In the previous sections, we have proven Theorems 1, 2, and 6 without appealing to class
field theory. To prove Theorem 3 and Corollary 4, we use a generalization of the class field
theory argument originally due to Davenport and Heilbronn. In particular, we show that the
elements of Cl3(O) for a quadratic order O can be enumerated via certain non-Galois cubic
fields. This involves the theory of ring class fields (see [6, Section 9]), together with the theorem
of Davenport and Heilbronn on the density of discriminants of cubic fields.

Theorem 32 ([9]). Let N3(ξ, η) denote the number of cubic fields K up to isomorphism
that satisfy ξ < Disc(K) < η. Then

N3(0,X) =
1

12ζ(3)
X + o(X) and N3(−X, 0) =

1
4ζ(3)

X + o(X).

Using class field theory, Davenport and Heilbronn were able to deduce Theorem 1 using this
count. The new contribution of this section is to extend their argument to all orders and to
acceptable sets of orders, using the theory of ring class fields, thus re-proving Theorem 2 from
this perspective and also proving Theorem 3.

5.1. Ring class fields associated to quadratic orders

For a fixed quadratic order O, let k denote the field O ⊗ Q, and let Ok denote the maximal
order in k. If [Ok : O] = f , then we say that the conductor of O is equal to f (or sometimes,
the ideal in Ok generated by f).

We begin with a well-known description of Cl(O) in terms of ideal classes of Ok:

Lemma 33 ([6, Proposition 7.22]). Let Ik(f) denote the subgroup of the group of invertible
ideals of Ok consisting of ideals that are prime to f, and let Pk,Z(f) denote the subgroup of the
group of principal ideals of Ok consisting of those (α) such that α ≡ a (mod fOk) for some
integer a that is coprime to f . Then

Cl(O) ∼= Ik(f)/Pk,Z(f).

Recall that the ray class group of k of conductor f is defined as the quotient Clk(f) :=
Ik(f)/Pk,1(f), where Pk,1(f) is the subgroup of principal ideals of Ok consisting of those (α)
such that α ≡ 1 (mod fOk). By Lemma 33, we have the following exact sequence:

1 −→ Pk,Z(f)/Pk,1(f) −→ Clk(f) −→ Cl(O) −→ 1. (30)

Let σ denote the non-trivial automorphism of Gal(k/Q). For a finite abelian group G, let
G[3] denote its 3-Sylow subgroup, and if G is a finite Gal(k/Q)-module, then we can decompose
G[3] = G[3]+ ⊕ G[3]−, where G[3]± := {g ∈ G : σ(g) = g±1}.

Lemma 34 ([13, Lemma 1.10]). If O is a quadratic order of conductor f, k the quadratic
field O ⊗ Q, and Clk(f) the ray class group of k of conductor f, then Clk(f)[3]− ∼= Cl(O)[3].
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Proof. It is clear that the exact sequence in (30) is a sequence of finite Gal(k/Q)-modules,
implying the exactness of the following sequences:

1 −→ (Pk,Z(f)/Pk,1(f))[3]+ −→ Clk(f)[3]+ −→ Cl(O)[3]+ −→ 1,

1 −→ (Pk,Z(f)/Pk,1(f))[3]− −→ Clk(f)[3]− −→ Cl(O)[3]− −→ 1.

We see that (Pk,Z(f)/Pk,1(f))[3]− is trivial, since any element [(α)] such that α ≡ a
(mod fOk), for some integer a that is coprime to f , can also be represented by aOk. Moreover,
for any such class [aOk] ∈ (Pk,Z(f)/Pk,1(f))[3]−, we must have

[aOk] = [σ(aOk)] = [aOk]−1.

Hence [aOk] has order dividing 2 and equal to a power of 3, and so must be trivial. Similarly,
Cl(O)[3]+ is trivial since if [I] ∈ Cl(O)[3]+, then [I] = [σ(I)]. Because N(I) = σ(I)I ∈ Z, [I]
has order dividing 2 and equal to a power of 3 in Cl(O), and is therefore trivial.

Proposition 35. Let O be a quadratic order. The number of isomorphism classes of cubic
fields K such that Disc(O) = c2Disc(K) for some integer c is (|Cl3(O)| − 1)/2.

Proof. We prove the proposition by showing that such isomorphism classes of cubic fields
K are in bijection with subgroups of Cl(O) of index 3.

We first show how to associate a quadratic order O and an index 3 subgroup H of Cl(O)[3]
to any non-cyclic cubic extension K of Q. If K is a non-Galois cubic field, then the normal
closure K̃ of K over Q contains a unique quadratic field k. One checks that the discriminants
of K and k satisfy Disc(K) = Disc(k)f2, where f is the conductor of the cubic extension K̃/k
(see [12] or [4, Theorem 9.2.6]). By class field theory, K̃/k corresponds to a subgroup H of
Clk(f)[3] of index 3. Since K̃/Q is a Galois extension, H is a Gal(k/Q)-module. If σ denotes
the non-trivial automorphism in Gal(k/Q), then we see that K̃ is Galois over Q if and only
if σ(K̃) = K̃. Artin reciprocity implies that the subgroup of Clk(f)[3] corresponding to σ(K̃)
is the image of H under the action of σ on Clk(f)[3]. As K̃ is Galois, we conclude that H is
stable under σ, and we can write H = H+ ⊕ H− where H± := H ∩ Clk(f)[3]±.

We now show that H+ = Clk(f)[3]+. Consider the exact sequence

1 −→ Gal(K̃/k) −→ Gal(K̃/Q) −→ Gal(k/Q) −→ 1. (31)

Note that, by definition, Gal(K̃/k) ∼= Clk(f)[3]/H. For any lift of σ to σ̃ ∈ Gal(K̃/Q), Artin
reciprocity implies that the action of conjugation on Gal(K̃/k) by σ̃ corresponds to the action
of σ on Clk(f)[3]/H. Since Gal(K̃/Q) is isomorphic to the symmetric group (and is not a
direct product), conjugation Gal(K̃/k) acts as inversion. Since the index of H in Clk(f)[3] is
of odd prime order, either H+ = Clk(f)[3]+ or H− = Clk(f)[3]−. For σ̃ to act as inversion on
Clk(f)[3]/H, we must have Clk(f)[3]/H ∼= Clk(f)[3]−/H−. By Lemma 34, H corresponds to a
subgroup of Cl(O)[3] of index 3, where O is the unique quadratic order of index f in the ring
of integers Ok.

It remains to show that, for any given order O in a quadratic field k, each index three
subgroup of Cl(O) corresponds in this way to a unique cubic field K up to isomorphism. Let
H be a subgroup of Cl(O)[3] ∼= Clk(f)[3]− of index 3 where O has index f in Ok. Then H
corresponds to a cubic extension K̃/k of conductor d | f , and the action of σ is by inversion.
Hence the exact sequence (31) does not split, and Gal(K̃/Q) = Gal(K̃/k) � Gal(k/Q) ∼= S3,
and thus K̃ is the Galois closure of a unique cubic field K up to isomorphism.
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We conclude that∑
d|f

#{cubic fields K such that Disc(K) = d2Disc(k)}

= #{subgroups of Cl(O) of index 3} =
1
2
(|Cl3(O)| − 1),

(32)

where O is the quadratic order of index f in the maximal order of k, that is, O is the unique
quadratic order with discriminant equal to f2Disc(k); note that conjugate cubic fields are
counted only once, and so we have obtained the desired statement (with c = f/d).

The integer c corresponding to a cubic field K via Proposition 35 is called the conductor of K
relative to O. In particular, we see that the conductor c of K relative to O must divide the
conductor f of O.

5.2. A second proof of the mean number of 3-torsion elements in the class groups of quadratic
orders (Proof of Theorem 2 via class field theory)

Proposition 35 shows that Theorem 2 may be proved by summing, over all quadratic orders O
of absolute discriminant less than X, the number of cubic fields K such that Disc(O)/Disc(K)
is a square. However, in this sum, a single cubic field K may be counted a number of times since
there are many O for which Disc(O)/Disc(K) is a square, and one must control the asymptotic
behavior of this sum as X → ∞.

To accomplish this, we rearrange the sum as a sum over the conductor f of O, and then
sum over O in the interior of this main sum. This allows us to use a uniformity estimate for
large f , yielding the desired asymptotic formulae. More precisely, for X large and i = 0, 1, we
are interested in evaluating

N (i)(X) :=
∑

0<(−1)iDisc(O)<X

#
{

cubic fields K such that
Disc(O)
Disc(K)

= c2, c ∈ Z

}
. (33)

We rearrange this as a sum over c and subsequently over cubic fields:

N (i)(X) =
∞∑

c=1

∑
0<(−1)iDisc(O)<X

#
{

cubic fields K such that Disc(K) =
Disc(O)

c2

}

=
∞∑

c=1

∑
non-Galois K s.t.

0<(−1)iDisc(K)<X/c2

1. (34)

Let Y be an arbitrary positive integer. From (34) and Theorem 32, we obtain

N (i)(X) =
Y −1∑
c=1

1
2niζ(3)

· X

c2
+ o(X) + O

( ∞∑
c=Y

X/c2

)

=
Y −1∑
c=1

1
2niζ(3)

· X

c2
+ o(X) + O(X/Y ),

where n0 = 6 and n1 = 2 (that is, ni is the size of the automorphism group of R3 if i = 0 and
R ⊗ C if i = 1). Thus,

lim
X→∞

N (i)(X)
X

=
Y −1∑
c=1

1
2niζ(3)

· 1
c2

+ O(1/Y ).
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Letting Y tend to ∞, we conclude that

lim
X→∞

N (i)(X)
X

=
∞∑

c=1

1
2niζ(3)

· 1
c2

=
ζ(2)

2niζ(3)
.

Finally, using Proposition 35 and (18), we obtain

lim
X→∞

∑
0<(−1)iDisc(O)<X |Cl3(O)|∑

0<(−1)iDisc(O)<X 1
= 1 + lim

X→∞
4 · N (i)(X)

X
=

⎧⎪⎪⎨⎪⎪⎩
1 +

ζ(2)
3ζ(3)

if i = 0,

1 +
ζ(2)
ζ(3)

if i = 1.

5.3. The mean number of 3-torsion elements in the class groups of quadratic orders in
acceptable families (Proof of Theorem 3)

We now determine the mean number of 3-torsion elements in the class groups of quadratic
orders satisfying any acceptable set of local conditions. As described in the introduction, for
each prime p, let Σp be a set of isomorphism classes of non-degenerate quadratic rings over
Zp. Recall that a collection Σ = (Σp) is acceptable if, for all sufficiently large p, the set Σp

contains the maximal quadratic rings over Zp. We denote by Σ the set of quadratic orders O
over Z, up to isomorphism, such that O ⊗ Zp ∈ Σp for all p. For a quadratic order O, we write
‘O ∈ Σ’ (or say that ‘O is a Σ-order’) if O ⊗ Zp ∈ Σp for all primes p.

Let us fix an acceptable collection Σ = (Σp) of local specifications. We first recall a necessary
generalization of Theorem 32.

Theorem 36 ([3, Theorem 8]). Let (Σ(3)
p ) ∪ Σ(3)

∞ be an acceptable collection of local

specifications for cubic orders, that is, for all sufficiently large primes p, Σ(3)
p contains all

maximal cubic rings over Zp that are not totally ramified. Let Σ(3) denote the set of all

isomorphism classes of orders O3 in cubic fields for which O3 ⊗ Qp ∈ Σ(3)
p for all p and

O3 ⊗ R ∈ Σ(3)
∞ , and denote by N3(Σ(3),X) the number of cubic orders O3 ∈ Σ(3) that satisfy

|Disc(O3)| < X. Then

N3(Σ(3),X)=

⎛⎝1
2

∑
R3∈Σ

(3)
∞

1
|Aut(R3)|

⎞⎠ ·
∏
p

⎛⎝p − 1
p

·
∑

R3∈Σ
(3)
p

1
Discp(R3)

· 1
|Aut(R3)|

⎞⎠ ·X + o(X),

where Discp(·) denotes the p-power of Disc(·).

We can use the above theorem to prove Theorem 3 by comparing the number of 3-torsion
elements in the class groups of quadratic Σ-orders O of absolute discriminant less than X and
the number of cubic fields corresponding to such class group elements of O ∈ Σ with absolute
discriminant less than X via Proposition 35. Analogous to (33), we define

N (i)(X, Σ) :=
∑

O∈Σ s.t.
0<(−1)iDisc(O)<X

#
{

cubic fields K such that
Disc(O)
Disc(K)

= c2, c ∈ Z

}

=
∞∑

c=1

∑
O∈Σ s.t.

0<(−1)iDisc(O)<X

#
{

cubic fields K such that Disc(K) =
Disc(O)

c2

}
. (35)

For any c ∈ Z, let c−2Σ denote the set of quadratic orders O that contain an index c Σ-order. We
can decompose c−2Σ into the following local specifications: for all p, if pcp || c where cp ∈ Z�0,
let p−2cpΣp denote the set of non-degenerate quadratic rings over Zp which contain an index
pcp subring that lies in Σp. It is then clear that (p−2cpΣp) = c−2Σ is acceptable since Σ is.
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Finally, let Σ(3),c be the set of cubic fields K such that there exists a quadratic order
O ∈ c−2Σ with Disc(K) = Disc(O). These are the set of cubic fields K such that their quadratic
resolvent ring contains a Σ-order with index c, or equivalently, is a c−2Σ-order. Let D(K) denote
the quadratic resolvent ring of the cubic field K, that is, D(K) is the unique quadratic order
with discriminant equal to that of K. The local specifications for Σ(3),c are as follows: for all p

and with cp defined as above, Σ(3),cp
p is the set of étale cubic algebras Kp over Qp such that the

quadratic resolvent ring D(Kp) over Zp is a p−2cpΣp-order. Meanwhile, Σ(3),c
∞ has one cubic

ring over R specified by the choice i = 0 or 1: it contains R3 if i = 0 and R ⊗ C if i = 1. Then
Σ(3),c = (Σ(3),cp

p ) ∪ Σ(3),c
∞ , and in order to use Theorem 36, it remains to show that Σ(3),c is

acceptable.
To show the acceptability of Σ(3),c, consider any p > 2 large enough so that Σp contains

all maximal quadratic rings and cp = 0, that is, p � c. Let Kp be an étale cubic algebra over
Qp that is not totally ramified. This implies that p2 � Disc(Kp), and so p2 � D(Kp); therefore,
D(Kp) must be maximal. By our choice of p, we have D(Kp) ∈ Σp, and so Kp ∈ Σ(3),c. Hence
Σ(3),c is acceptable.

Using these definitions, we can rewrite N (i)(X,Σ) as

N (i)(X, Σ) =
∞∑

c=1

∑
O∈Σ s.t.

0<(−1)iDisc(O)<X

#
{

cubic fields K such that Disc(K) =
Disc(O)

c2

}

=
∞∑

c=1

∑
O∈c−2Σ s.t.

0<(−1)iDisc(O)<X/c2

#{cubic fields K such that Disc(K) = Disc(O)}

=
∞∑

c=1

∑
K∈Σ(3),c s.t.

0<(−1)iDisc(K)<X/c2

1 =
∞∑

c=1

N3

(
Σ(3),c,

X

c2

)
. (36)

Again, let Y be an arbitrary positive integer. From (36), Theorem 36, and Theorem 32, we
obtain

N (i)(X, Σ) =
Y −1∑
c=1

1
2ni

·
∏
p

⎛⎜⎝p − 1
p

·
∑

Kp∈Σ
(3),cp
p

1
Discp(Kp)

· 1
|Aut(Kp)|

⎞⎟⎠ · X

c2

+ O

( ∞∑
c=Y

X/c2

)
+ o(X),

where n0 = 6 and n1 = 2 as before. Thus, since O(
∑∞

c=Y X/c2) = O(X/Y ), we have

lim
X→∞

N (i)(X, Σ)
X

=
Y −1∑
c=1

1
2ni

·
∏
p

⎛⎜⎝p − 1
p

·
∑

Kp∈Σ
(3),cp
p

1
Discp(Kp)

· 1
|Aut(Kp)|

⎞⎟⎠ · 1
c2

+ O(1/Y ).

Letting Y tend to ∞, we conclude that

lim
X→∞

N (i)(X,Σ)
X

=
∞∑

c=1

1
2ni

·
∏
p

⎛⎜⎝p − 1
p

·
∑

Kp∈Σ
(3),cp
p

1
Discp(Kp)

· 1
|Aut(Kp)|

⎞⎟⎠ · 1
c2

.
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Let MΣ be defined as in (3) and let M eq
Σ be the following product of local masses:

M eq
Σ :=

∏
p

∑
R∈Σp

Ceq(R)/Discp(R)∑
R∈Σp

1/Discp(R) · 1/#Aut(R)

=
∏
p

∑
R∈Σp

Ceq(R)/Discp(R)∑
R∈Σp

1/(2 · Discp(R))
, (37)

where Ceq(R) is defined for an étale quadratic algebra R over Zp as the (weighted) number of
étale cubic algebras Kp over Qp such that R = D(Kp):

Ceq(R) :=
∑

Kp étale cubic /Qp

s.t. R=D(Kp)

1
#Aut(Kp)

.

Then

lim
X→∞

N (i)(X,Σ)
X

=
1

2ni
·

∞∑
c=1

1
c2

·
∏
p

⎛⎜⎝p − 1
p

·
∑

Kp∈Σ
(3),cp
p

1
Discp(Kp)

· 1
|Aut(Kp)|

⎞⎟⎠
=

1
2ni

·
∞∑

c=1

1
c2

·
∏
p

⎛⎝p − 1
p

·
∑

R∈p−2cpΣp

1
Discp(R)

· Ceq(R)

⎞⎠

=
1

2ni
·
∏
p

⎛⎜⎜⎝p − 1
p

·
∞∑

i=0

∑
R∈Σp s.t.

∃R′ s.t. [R′:R]=pi

1
Discp(R)

· Ceq(R′)

⎞⎟⎟⎠
=

1
2ni

·
∏
p

⎛⎝p − 1
p

·
∑

R∈Σp

1
Discp(R)

· C(R)

⎞⎠. (38)

Recall that C(R) is defined as the (weighted) number of etale cubic algebras Kp over Qp

such that R ⊂ D(Kp) (cf. equation (2)). The final equality follows from the fact that if we fix
R ∈ Σp, the cubic algebras Kp with discriminant p2i · Discp(R) are disjoint for distinct choices
of i. (The penultimate equality follows from unique factorization of integers.)

Using (32) and (35), we see that

2 · N (i)(X, Σ) =
∑

O∈Σ s.t.
0<(−1)iDisc(O)<X

(#Cl3(O) − 1). (39)

We now have the following elementary lemma counting quadratic orders.

Lemma 37 ([2, § 4]). (a) The number of real Σ-orders O with |Disc(O)| < X is
asymptotically

1
2
·
∏
p

(
p − 1

p
·
∑
R∈Σ

1
Discp(R)

· 1
#Aut(R)

)
· X.

(b) The number of complex Σ-orders O with |Disc(O)| < X is asymptotically

1
2
·
∏
p

(
p − 1

p
·
∑
R∈Σ

1
Discp(R)

· 1
#Aut(R)

)
· X.
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By (38), (39), and Lemma 37, we then obtain

lim
X→∞

∑
O∈Σ,

0<(−1)iDisc(O)<X

#Cl3(O)∑
O∈Σ,

0<(−1)iDisc(O)<X

1

= 1 + lim
X→∞

2 · N (i)(X,Σ)∑
O∈Σ,

0<(−1)iDisc(O)<X

1

= 1 +
(1/ni) ·

∏
p((p − 1)/p ·∑R∈Σp

1/Discp(R) · C(R))

(1/2) ·∏p((p − 1)/p ·∑R∈Σp
1/Discp(R) · 1/#Aut(R))

= 1 +
2
ni

·
∏
p

∑
R∈Σp

C(R)/Discp(R)∑
R∈Σp

1/(2 · Discp(R))
= 1 +

2
ni

· MΣ. (40)

As n0 = 6 and n1 = 2, this proves Theorem 3.

5.4. Families of quadratic fields defined by finitely many local conditions always have the same
average number of 3-torsion elements in their class groups (Proof of Corollary 4)

We now consider the special case of Theorem 3 where (Σp) is any acceptable collection of local
specifications of maximal quadratic rings over Zp. Then, if Σ denotes the set of all isomorphism
classes of quadratic orders O such that O ⊗ Zp ∈ Σp for all p, then Σ will be a set of maximal
orders satisfying a specified set of local conditions at some finite set of primes. We prove in
this section that regardless of what the acceptable set of maximal orders Σ is, the average size
of the 3-torsion subgroup in the class groups of imaginary (respectively, real) quadratic orders
in Σ is always given by 2 (respectively, 4

3 ). To do so, we use Theorem 3 and show that MΣ = 1
in these cases.

Lemma 38. For any maximal quadratic ring R over Zp, we have C(R) = 1
2 , where C(R)

denotes the weighted number of étale cubic algebras Kp over Qp such that R is contained in
the unique quadratic algebra over Zp with the same discriminant as Kp (cf. equation (2)).

Proof. For all primes p �= 2, there are four maximal quadratic rings over Zp (up to
isomorphism), namely Zp ⊕ Zp, Zp[

√
p], Zp[

√
ε], and Zp[

√
ε · p], where ε is an integer that

is not a square mod p. For each choice of R, we compute C(R):

C(Zp ⊕ Zp) =
1

#Aut(Qp ⊕ Qp ⊕ Qp)
+

1
#Aut(Qp3)

=
1
6

+
1
3

=
1
2
,

C(Zp[
√

α]) =
1

#Aut(Qp ⊕ Qp[
√

α])
=

1
2

for α = p, ε and p · ε.

Here, Qp3 denotes the unique unramified cubic extension of Qp. Note that any ramified cubic
field extension Kp of Qp has discriminant divisible by p2 (since p will have ramification index 3
in Kp). This implies that D(Kp) is not maximal for ramified Kp, and so no maximal quadratic
ring is contained in D(Kp).

When p = 2, there are eight maximal quadratic rings over Z2 (up to isomorphism), namely
Z2 ⊕ Z2 and Z2[

√
α], where α = 2, 3, 5, 6, 7, 10, or 14. As above, we have that C(Z2 ⊕ Z2) = 1

2 .
Finally, it is easy to see that, for each possible value of α,

C(Z2[
√

α]) =
1

#Aut(Q2 ⊕ Q2[
√

α])
=

1
2
.

Again, any ramified cubic extension K2 of Q2 has discriminant divisible by 4, which implies
that D(K2) does not contain any maximal orders.
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By the above lemma, we see that if (Σp) is any acceptable collection of local specifications
of maximal quadratic rings over Zp, then

∑
R∈Σp

C(R)
Discp(R)

=
∑

R∈Σp

1
2 · Discp(R)

.

Thus MΣ = 1, and so by Theorem 3 we obtain Corollary 4.

6. The mean number of 3-torsion elements in the ideal groups of quadratic orders in
acceptable families (Proof of Theorems 7 and 8)

Finally, we prove Theorems 7 and 8, which generalize Theorem 6 and the work of Subsection 3.2
by determining the mean number of 3-torsion elements in the ideal groups of quadratic orders
satisfying quite general sets of local conditions.

To this end, fix an acceptable collection (Σp) of local specifications for quadratic orders, and
fix any i ∈ {0, 1}. Let S = S(Σ, i) denote the set of all irreducible elements v ∈ V

∗(i)
Z such that,

in the corresponding triple (O, I, δ), we have that O ∈ Σ and I is invertible as an ideal class
of O (implying that I ⊗ Zp is the trivial ideal class of O ⊗ Zp for all p).

Proposition 39 ([3, Theorem 31]). Let Sp(Σ, i) denote the closure of S(Σ, i) in V ∗
Zp

. Then

lim
X→∞

N∗(S(Σ, i);X)
X

=
1

2n∗
i

·
∏
p

⎛⎝p − 1
p

·
∑

x∈Sp(Σ,i)/GL2(Zp)

1
discp(x)

· 1
|StabGL2(Zp)(x)|

⎞⎠ ,

(41)

where discp(x) denotes the reduced discriminant of x ∈ V ∗
Zp

as a power of p and StabGL2(Zp)(x)
denotes the stabilizer of x in GL2(Zp).

Proof. First, note that although S(Σ, i) might be defined by infinitely many congruence
conditions, the estimate provided in Proposition 21 (and the fact that Σ is acceptable) shows
that equation (14) continues to hold for the set S(Σ, i), that is,

lim
X→∞

N∗(S(Σ, i),X)
X

=
π2

4 · n∗
i

∏
p

μ∗
p(S(Σ, i)).

The argument is identical to that in Subsections 3.1 or 3.2.
If μp(S) denotes the p-adic density of S in VZ, where μp is normalized so that μp(VZ) = 1,

then μ∗
p(S) = μp(S) for p �= 3 and μ∗

3(S) = 9μ3(S). (This is just a reformulation of the fact
that [VZ : V ∗

Z ] = 9.) Thus,

lim
X→∞

N∗(S(Σ, i),X)
X

=
9 · π2

4 · n∗
i

∏
p

μp(S(Σ, i)).

By [3, Lemma 32], we have that

μp(S(Σ, i)) =
#GL2(Fp)

p4
·

∑
x∈Sp/GL2(Zp)

1
Discp(x)

· 1
|StabGL2(Zp)(x)| ,



264 MANJUL BHARGAVA AND ILA VARMA

where Discp(x) denotes the discriminant of x ∈ V ∗
Zp

as a power of p. Note that since Discp(x) =
discp(x) for all p �= 3 and Disc3(x) = 27 · disc3(x), we have that

lim
X→∞

N∗(S(Σ, i),X)
X

=
9 · π2

4 · n∗
i

· 1
27

·
∏
p

#GL2(Fp)
p4

·
∑

x∈Sp(Σ,i)/GL2(Zp)

1
discp(x)

· 1
|StabGL2(Zp)(x)|

=
1

2n∗
i

·
∏
p

(
p − 1

p

) ∑
x∈Sp(Σ,i)/GL2(Zp)

1
discp(x)

· 1
|StabGL2(Zp)(x)| .

Now, if we set

Mp(S(Σ, i)) :=
∑

x∈Sp(Σ,i)/GL2(Zp)

1
discp(x)

· 1
|StabGL2(Zp)(x)| , (42)

then the description of the stabilizer in Corollary 11 (in its form over Zp; see Remark 12)
allows us to express Mp(S(Σ, i)) in another way. Namely, if R ∈ Σp is a non-degenerate
quadratic ring over Zp, then in a corresponding triple (R, I, δ) we can always choose I = R,
since I is a principal ideal (recall that invertible means locally principal). Let τ(R) denote
the number of elements δ, modulo cubes, yielding a valid triple (R,R, δ) over Zp. Then
τ(R) = |U+(R)/U+(R)×3|, where U+(R) denotes the group of units of R having norm 1.
Since (R,R, δ) is GL2(Zp)-equivalent to the triple (R,R, δ̄), and δ̄ = κ3δ for some κ ∈ R ⊗ Q
if and only if δ is itself a cube (since δ̄ = N(I)3/δ), then we see that

Mp(S(Σ, i)) =
∑ |U+(R)/U+(R)×3|

Discp(R) · |Aut(R)| · |U+
3 (R)| , (43)

where the sum is over all isomorphism classes of quadratic rings R over Zp lying in Σp, and
where U+

3 (R) denotes the subgroup of 3-torsion elements of U+(R). We have the following
lemma.

Lemma 40. Let R be a non-degenerate quadratic ring over Zp. Then

|U+(R)/U+(R)×3|
|U+

3 (R)|
is 1 if p �= 3, and is 3 if p = 3.

Proof. The unit group of R, as a multiplicative group, is a finitely generated, rank 2 Zp-
module. Hence the submodule U+(R), consisting of those units having norm 1, is a finitely
generated rank 1 Zp-module. It follows that there is an isomorphism U+(R) ∼= F × Zp as
Zp-modules, where F is a finite abelian p-group.

Let F3 denote the 3-torsion subgroup of F . Since F3 is the kernel of the multiplication-by-3
map on F , it is clear that |F/(3 · F )|/|F3| = 1. Therefore, it suffices to check the lemma on
the ‘free’ part of U+(R), namely the Zp-module Zp, where the result is clear. (The case p = 3
differs because 3 · Zp equals Zp for p �= 3, while 3 · Z3 has index 3 in Z3.)

Combining (41)–(43), and Lemma 40, we obtain

lim
X→∞

N∗(S(Σ, i),X)
X

=
3

2n∗
i

·
∏
p

⎛⎝p − 1
p

·
∑

R∈Σp

1
2 · Discp(R)

⎞⎠ . (44)
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By Corollary 14 and Theorem 17, we have

N∗(S(Σ, i),X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
O∈Σ,

0<Disc(O)<X

(3 · |Cl3(O)| − |I3(O)|) if i = 0,

∑
O∈Σ,

0<−Disc(O)<X

(|Cl3(O)| − |I3(O)|) if i = 1.
(45)

Hence we conclude using Lemma 37 that∑
O∈Σ,

0<Disc(O)<X

(|Cl3(O)| − 1
3 · |I3(O)|)∑

O∈Σ
0<Disc(O)<X

1

=
1
3
·
(3/2n∗

0) ·
∏

p((p − 1)/p ·∑R∈Σp
1/(2 · Discp(R)))

(1/2) ·∏p((p − 1)/p ·∑R∈Σp
1/(2 · Discp(R)))

= 1,

and ∑
O∈Σ,

0<−Disc(O)<X

(|Cl3(O)| − |I3(O)|)∑
O∈Σ,

0<−Disc(O)<X

1

=
(3/2n∗

1) ·
∏

p((p − 1)/p ·∑R∈Σp
1/(2 · Discp(R)))

(1/2) ·∏p((p − 1)/p ·∑R∈Σp
1/(2 · Discp(R)))

= 1,

yielding Theorem 8. In conjunction with Theorem 3, we also then obtain Theorem 7.
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