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Preface

These are the lecture notes from a graduate-level Algebraic Number
Theory course taught at the Georgia Institute of Technology in Fall
2006. The notes are a revised version of those written for an Algebraic
Number Theory course taught at the University of Georgia in Fall 2002.

We assume that the reader is familiar with the material covered in
a one-year course on Abstract Algebra at the graduate level, including
various standard facts about groups, rings, fields, vector spaces, mod-
ules, and Galois Theory. A good reference for this material is Dummitt
and Foote’s book “Abstract Algebra”.

Our goal in designing this course was to cover as many of the funda-
mental ideas of Algebraic Number Theory as possible in one semester,
while retaining a concrete and motivated approach to the subject. We
do not claim any novelty in our approach, except perhaps in our se-
lection and organization of the material. Algebraic Number Theory is
often presented in either a very elementary way which does not take
full advantage of students’ backgrounds in Abstract Algebra, or in a
very abstract and high-powered way which runs the danger of divorcing
itself in the students’ minds from the concrete origins and applications
of the subject. We have tried to steer a middle ground between these
approaches. In the process, we have hopefully designed a course which
is at once accessible, motivated, and challenging, which fits neatly into
one semester, and which gives students a solid foundation for further
explorations in number theory.

We have benefitted from many different sources in assembling this
material, including (but not limited to) Marcus’ “Number Fields”, Es-
monde and Murty’s “Problems in Algebraic Number Theory”, Janusz’s
“Algebraic Number Fields”, Cassels’ “Local Fields”, and Neukirch’s
“Algebraic Number Theory”. We have also used some material from an
Algebraic Number Theory course taught by Paul Vojta at UC Berkeley
in Fall 1994.

v



vi PREFACE

I would like to thank Michael Guy, Sungkon Chang, Jim Blair, Paul
Pollack, Xander Faber, Roy Smith, Robert Rumely, Ander Steele, Far-
bod Shokrieh, Ye Luo, Brad Green, Subrahmanyam Kalyanasundaram,
and Yan Ding for their helpful comments on these notes.

Special thanks go to David Krumm, Elmar Grosse-Klönne, Shelly
Manber, and Eugenia Rosu for providing me with detailed lists of cor-
rections, and to Shelly Manber and Eugenia Rosu for helping to imple-
ment those corrections.



CHAPTER 1

Unique Factorization (and lack thereof) in number
rings

1. UFD’s, Euclidean Domains, Gaussian Integers, and
Fermat’s Last Theorem

We will begin by exploring the ring Z[i] of Gaussian integers. By
definition,

Z[i] = {a+ bi : a, b ∈ Z} ⊂ C.
We will see later that this ring is a unique factorization domain

(UFD), a fact which has many useful consequences.

1.1. Unique Factorization Domains. Let R be a commutative
ring with a multiplicative identity element 1. (All rings in this course
will be commutative with a multiplicative identity unless otherwise
specified.)

A unit of R is an element with a multiplicative inverse.
A nonzero element x ∈ R is called irreducible if x is not itself a unit,

but whenever x = ab with a, b ∈ R, one of a or b must be a unit. This
is one way to generalize the concept of a prime number to an arbitrary
ring.

Another way is with the notion of a prime element: a nonzero
element π ∈ R is prime if π is not a unit, and whenever π | xy in R,
we have π | x or π | y. In an integral domain R, every prime element is
irreducible, but the converse is false in general – see §1 of Appendix A
for details.

Two elements x, y ∈ R are called associate (written x ∼ y) if there
exists a unit u ∈ R such that x = uy. It is easy to see that ∼ is an
equivalence relation.

By definition, a ring R is a UFD if:

• R is an integral domain, i.e., xy = 0 in R implies that one of
x, y is zero.

• Every non-zero non-unit element x ∈ R can be written as a
product x = q1 · · · qr of irreducible elements.

• The decomposition of x into irreducibles is unique up to units
and the order of the factors; in other words, if x = q1 · · · qr

1



2 1. UNIQUE FACTORIZATION IN NUMBER RINGS

and also x = q′1 · · · q′s, then r = s, and after relabeling we have
qi ∼ q′i for all i = 1, . . . , r.

1.2. A Diophantine Problem. We all know that Z is a UFD
(this is the “fundamental theorem of arithmetic”). It’s also true that
Z[i] is a UFD. Let’s assume this for the moment and see how to use
this fact to find all integer solutions to a famous diophantine equation.

Problem 1: Find all x, y ∈ Z such that x3 − y2 = 1.

Remark: This is a special case of a general problem known as
“Catalan’s conjecture”, which is that the only solution to xm − yn = 1
with x, y positive integers and m,n ≥ 2 is 32− 23 = 1. In other words,
the only consecutive perfect powers are 8 and 9. Catalan’s conjecture
was posed in 1844 and remained open until a proof was finally found in
2002 by the Swiss mathematician Preda Mihailescu. Mihailescu’s proof
uses the theory of cyclotomic fields, which is one of the main topics of
this course, although we will not have time to go into enough detail to
understand the proof of Catalan’s conjecture.

Remark: The equation y2 = x3 − 1 is an example of an elliptic
curve. Elliptic curves play an important role in modern number theory;
for example, they are central to Wiles’ proof of Fermat’s Last Theorem.

Before solving Problem 1, we need to determine the units of Z[i].

Lemma 1.1. The units of Z[i] are ±1,±i.

Proof. It is clear that ±1,±i are units. Conversely, suppose x =
a+bi is a unit. Then there exists y = c+di such that xy = 1. Taking the
square of the complex absolute value of each side of this equation (and
using the fact that |xy| = |x| · |y|), we find that (a2 + b2)(c2 + d2) = 1.
Since a, b, c, d are integers, this implies that a2 + b2 = 1, and therefore
that (a, b) ∈ {(±1, 0), (0,±1)} as desired. �

Note the key role played in the proof of the lemma by the function
N : Z[i] → Z given by N(a+ bi) = a2 + b2. (We call N(x) the norm of
the Gaussian integer x.)

We see from the proof that for x ∈ Z[i], N(x) = 1 if and only if x
is a unit. This easily leads to the following criterion for irreducibility
in Z[i]:

Lemma 1.2. If x ∈ Z[i] and N(x) is prime, then x is irreducible.
(Note: The converse is false!)

Proof. If x = yz in Z[i] and N(x) = N(y)N(z) is prime, then one
of N(y), N(z) must be 1, hence one of y, z is a unit. As N(x) 6= 1, x is
not itself a unit. Therefore x is irreducible. �
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Solution to Problem 1: (Assuming Z[i] is a UFD)

Suppose x3 − y2 = 1. We will prove in a sequence of steps that
(x, y) = (1, 0).

Proof. Step 1: If x is even, then

x3 ≡ 0 (mod 8) ⇒ y2 ≡ −1 (mod 8).

But −1 is not a square mod 8. Therefore

x is odd and y is even.

Step 2: Factor the equation y2 + 1 = x3 in Z[i]: we get

(y + i)(y − i) = x3.

Step 3: We claim that y + i and y − i are relatively prime, i.e.,
a common factor of both must be a unit. Suppose, for the sake of
contradiction, that there exists α ∈ Z[i], α not a unit, such that α | y+i
and α | y − i.

Then α | (y+i)−(y−i) = 2i. But 2i = (1+i)2, so α | (1+i)2. Now
(1 + i) is irreducible (since its norm is 2, which is prime). By unique
factorization, since α is not a unit, we must have (1 + i) | α.

But then (1 + i) | (y + i)(y − i) = x3, and by unique factorization,
(1 + i) | x. Therefore there exists β ∈ Z[i] such that x = (1 + i)β.
Multiplying this equation by its complex conjugate, we get xx = (1 +
i)(1 − i)ββ, i.e., x2 = 2ββ, so that 2 | x2. But then x is even, a
contradiction.

We conclude that no such α exists, proving the claim.

Step 4: By unique factorization, it follows that y+ i and y− i are
each of the form uβ3 for some unit u and some β ∈ Z[i]. As ±1,±i are
the only units in Z[i] and each is itself a perfect cube, we find that:

y + i, y − i are both cubes in Z[i].

Step 5: Write y + i = (a+ bi)3 with a, b ∈ Z. Then

y + i = a3 + 3a2bi− 3ab2 − b3i = (a3 − 3ab2) + (3a2b− b3)i.

Comparing real and imaginary parts, we find that y = a(a2 − 3b2) and
1 = b(3a2 − b2). From the second equation, it follows that

b = ±1.

Step 6: If b = 1, then 1 = 3a2− 1 ⇒ 3a2 = 2, which is impossible.
If b = −1, then −1 = 3a2 − 1 ⇒ a = 0.
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So a = 0, and therefore, since y = a(a2−3b2), it follows that y = 0.
As x3 = y2 + 1, we have x = 1, so that

(x, y) = (1, 0)

as claimed.
�

1.3. Unique Factorization in Euclidean Domains. The solu-
tion of Problem 1 relied crucially on the fact that Z[i] is a UFD. In
order to give a proof of this fact, we introduce the notion of a Euclidean
domain.

Let R be an integral domain, and let φ : R→ Z be a function such
that φ(x) ≥ 0 for all x and φ(0) = 0. (We call such a function a norm
on R.)

We say that R is a Euclidean domain (with respect to φ) if the
division algorithm holds: whenever we are given x, y ∈ R with y 6= 0,
there exist q, r ∈ R such that x = yq+r and either r = 0 or φ(r) < φ(y).
Note that q, r are not required to be unique.

It is a basic fact of arithmetic that Z is a Euclidean domain (with
φ(x) = |x|). Similarly, if k is any field then the polynomial ring k[x] is
a Euclidean domain (with φ(f) = deg(f) for f 6= 0).

By Theorem A.5, every Euclidean domain is a UFD.

Let N : Z[i] → Z be the norm given by N(a + bi) = a2 + b2. Note
that N(x) = 0 iff x = 0, which is stronger than what is required of φ
in the definition of a Euclidean domain. We want to prove:

Proposition 1.3. If x, y ∈ Z[i] with y 6= 0, then there exist q, r ∈
Z[i] such that x = yq + r with N(r) < N(y). In particular, Z[i] is a
Euclidean domain (and therefore also a unique factorization domain).

Proof. We can think of the elements of Z[i] as forming a lattice
inside the complex plane C. Intuitively, since q is the “quotient” in the
division algorithm, q should be close to the complex number z := x

y
.

So we let q be any element of Z[i] such that |z − q| ≤ |z − q′| for all
q′ ∈ Z[i]. In other words, q is the lattice point closest to x

y
(and if

there is a tie for the “closest lattice point”, we simply choose one). By
elementary geometry, we have |z − q| ≤ 1√

2
.

Now let r = x− yq. Then

N(r) = N(x−yq) = |x−yq|2 = |y(x
y
−q)|2 = |y|2|z−q|2 ≤ 1

2
N(y) < N(y)

as desired. �
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1.4. Decomposition of rational primes in Z[i]. In this section,
we investigate how a prime number p factors into irreducibles in Z[i].
We will see that the type of factorization depends on the congruence
class of p modulo 4.

If p = 2, then we have 2 = −i(1+ i)2, and (1+ i) is irreducible. For
odd primes, we have the following proposition:

Proposition 1.4. Let p be an odd prime number. Then:

(i) If p ≡ 3 (mod 4) then p is irreducible in Z[i].
(ii) If p ≡ 1 (mod 4) then p = ππ in Z[i], where π and π are

irreducible.

Proof. We begin with some preliminary remarks. SinceN(p) = p2

and N(xy) = N(x)N(y), we see that if π is irreducible in Z[i] and
π | p, then N(π) = p or p2. Moreover, if N(π) = p2 then π and p are
associate, so that p is irreducible. In particular, p is irreducible if and
only if N(π) = p2.

Suppose p ≡ 3 (mod 4). If some element π = a + bi has norm p,
then a2 + b2 = p ≡ 3 (mod 4). But this is impossible, since 0 and 1
are the only squares modulo 4. So we conclude in this case that p is
irreducible.

Now suppose p ≡ 1 (mod 4). By elementary number theory, −1 is
a square mod p, i.e., there exists an integer n such that p | n2 + 1 =
(n + i)(n− i). Suppose p is irreducible in Z[i]. Then since irreducible
elements of Z[i] are prime, we must have p | (n ± i). However, if
p | (n + i) then it is easy to see that p | (n − i) also, and vice-versa.
It follows that p divides both n+ i and n− i. It therefore also divides
(n + i) + (n − i) = 2n. As p is irreducible and its norm is odd, p - 2,
so p | n. This contradicts the fact that p | n2 + 1. We conclude that p
is not irreducible. Let π be an irreducible factor of p. Then we must
have N(π) = p, and it is easy to see that π | p as well, and N(π) = p.
By considering norms, we conclude that p ∼ ππ. Since p and ππ are
both positive real numbers and the only units of Z[i] are ±1,±i, we
conclude that p = ππ as desired. �

As a corollary of the proof, we obtain a famous result of Fermat:

Corollary 1.5. Let p be an odd prime. Then p = a2 +b2 for some
integers a, b if and only if p ≡ 1 (mod 4).

Using this result, together with the fact that N(xy) = N(x)N(y),
it is straightforward to deduce:

Corollary 1.6. Let n be a positive integer. Then n = a2 + b2

for some integers a, b if and only if all prime divisors of n which are
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congruent to 3 (mod 4) occur with even exponent in the factorization
of n.

1.5. Kummer and Fermat’s Last Theorem. In this section,
we give a brief glimpse of how the ideas discussed so far can be used
to try to tackle Fermat’s Last Theorem.

Let p ≥ 5 be a prime number, and let ζ be a primitive pth root of
unity. Is is a standard result from algebra that the minimal polynomial
for ζ over Q is Φp(X) = Xp−1 +Xp−2 + · · ·+X +1. (The point here is
that Φp(X) is irreducible; this follows, for example, from Eisenstein’s
Criterion.) Thus the set {1, ζ, ζ2, . . . , ζp−2} forms a basis for Q(ζ) as a
vector space over Q.

Since Xp−1 = (X−1)(X−ζ) · · · (X−ζp−1), we have (substituting
−x/y for X, multiplying out the −1’s, and clearing denominators)

xp + yp = (x+ y)(x+ yζ) · · · (x+ yζp−1).

So in the ring

Z[ζ] := {a0 + a1ζ + · · ·+ ap−2ζ
p−2 : ai ∈ Z for i = 0, . . . , p− 2},

with ζp−1 = −(1 + ζ + · · ·+ ζp−2), the equation xp + yp = zp becomes

(1.1) zp = (x+ y)(x+ yζ) · · · (x+ yζp−1).

Suppose x, y, z are nonzero integers with p - xyz (this is called the
“first case” of Fermat’s Last Theorem). Then it is not hard to prove
that the terms on the right-hand side of (1.1) are relatively prime in
Z[ζ]. (Try this as an exercise.) Therefore, if Z[ζ] were a UFD, we could
conclude that x+ yζ = uαp for some u, α ∈ Z[ζ] with u a unit.

Suppose we knew further that u = ±ζj for some j ∈ Z. (Such
elements of Z[ζ] are clearly units, although we have no reason to believe
that all units are of this form.) Then writing α = a0 + a1ζ + · · · +
ap−2ζ

p−2 with all ai’s in Z, it follows by the binomial theorem and
Fermat’s little theorem that αp ≡ a0 + a1 + · · · + ap−2 (mod p). In
particular, αp ≡ a (mod p) for some a ∈ Z. But then we would have
x + yζ ≡ ±aζj (mod p) for some 0 ≤ j ≤ p − 1. Comparing powers
of ζ on both sides, and using the relation ζp−1 = −(1 + ζ + · · · +
ζp−2), it follows from the assumption p ≥ 5 that xy ≡ 0 (mod p), a
contradiction.

This is the starting point for the strategy used by Kummer to try
to tackle Fermat’s Last Theorem. However, Kummer realized that
Z[ζ] is hardly ever a UFD. (In fact, it turns out that Z[ζ] is a UFD if
and only if p ≤ 19, but that wasn’t proved until long after Kummer’s
time!) Moreover, when p ≥ 5 there are always infinitely many units in
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Z[ζ]. So the above strategy has a very small (in fact, empty) range of
applicability!

Nonetheless, Kummer was able to make a lot of progress towards
resolving Fermat’s Last Theorem by suitably modifying this argument.
First of all, he realized that even though unique factorization of ele-
ments into irreducibles often fails in Z[ζ], a weaker property always
holds: every ideal factors uniquely into a product of prime ideals.
This discovery was really the birth of modern algebraic number the-
ory. Kummer then initiated a careful study of the discrepancy between
ideals of Z[ζ] and elements of Z[ζ]. This involves studying the so-called
ideal class group, as well as the unit group, of the number ring Z[ζ]. In
this way, Kummer was able to sufficiently understand the units, and
to recover enough of a fragment of the unique factorization property
in Z[ζ], to show that Fermat’s Last Theorem holds for what are now
called “regular primes”. We will discuss all of this in more detail later
in the course. In fact, it can be fairly said that understanding the ideal
class group and unit group of a number ring is our primary objective
in this class.

2. Rings of integers, Dedekind domains, and unique
factorization of ideals

A number field is a field K which is a finite extension of Q. An
algebraic number is an element of a number field K, i.e., a root of some
nonzero polynomial with rational coefficients.

We want to define what it means for an algebraic number α to be
an algebraic integer. In particular, we will see that if K is a number
field, then there is a natural subring of K called the ring of integers of
K which consists of all algebraic integers lying in K. For example, the
ring of integers in Q(i) is just Z[i]. Rings of integers in number fields
will be the fundamental object of study in this course.

2.1. Integral Dependence. Let A and B be rings with A ⊆ B.
We say that an element x ∈ B is integral over A if it is a root of a
monic polynomial with coefficients in A. In other words, x is integral
if it satisfies a relation of the form

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

with all ai’s in A.
It is clear that every element of A is integral over A, since a ∈ A

satisfies the relation x− a = 0.
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We say that B is integral over A if every element of B is integral
over A.

This notion of integrality is a generalization of the relationship be-
tween Z and Q. In fact, we claim that x ∈ Q is integral over Z if and
only if x ∈ Z. To see this, write x = r/s where r, s ∈ Z and (r, s) = 1.
If

(r/s)n + an−1(r/s)
n−1 + · · ·+ a1(r/s) + a0 = 0

with ai ∈ Z, then clearing denominators gives

rn + an−1sr
n−1 + · · ·+ a1s

n−1r + a0s
n = 0.

Therefore s | rn, which implies that s = ±1 and therefore x ∈ Z.

More generally, we define an algebraic integer to be an algebraic
number which is integral over Z. In other words, if K is a number
field, then the algebraic integers (or just integers, for brevity) in K are
the elements which are roots of monic polynomials with coefficients in
Z.

Note that it is not obvious that the sum or product of two algebraic
integers is again an algebraic integer. However, this is true! More
generally, we will prove that the set of elements of a ring B which are
integral over A forms a subring of B. The most convenient way to do
this is to use modules.

Recall that an A-module M is just an abelian group M together
with an action of A on M satisfying certain natural axioms generalizing
those of a vector space. We say that M is a finitely generated A-module
(or that M is finitely generated over A) if there exist m1, . . . ,mr ∈
M such that every element m ∈ M can be written as m = a1m1 +
· · · + armr for some a1, . . . , ar ∈ A. In this case, we say that the
elements m1, . . . ,mr generate M as an A-module. Note that we do not
require that the set of generators is unique, nor do we require that the
representation of m as a linear combination of the generators is unique.

It follows from the definitions that a module M is finitely generated
as a Z-module if and only if it is finitely generated as an additive group.

The notion of being finitely generated is transitive:

Lemma 1.7. Let M be a B-module and let B ⊇ A be a ring. Suppose
that M is finitely generated as a B-module and that B is finitely gen-
erated as an A-module. Then M is finitely generated as an A-module.

Proof. Let x1, . . . , xm (resp. y1, . . . , yn) denote a set of generators
for M as a B-module (resp. for B as an A-module). Then we claim
that the set of products xiyj generates M as an A-module. To see this,
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let x ∈ M , and write x =
∑

i bixi with bi ∈ B. Also, for each i, write
bi =

∑
j aijyj with aij ∈ A. Then

x =
∑

i

(
∑

j

aijyj)xi =
∑
i,j

aijxiyj,

so that x is a linear combination over A of the xiyj’s. �

If x ∈ B, we denote by A[x] the smallest subring of B containing
both A and x. In other words,

A[x] := {anx
n +an−1x

n−1 + · · ·+a1x+a0 : n ∈ N and ai ∈ A for all i}

is the set of all polynomials in x with coefficients in A.
Under what conditions will A[x] be finitely generated as an A-

module? In other words, how do we determine whether or not we
need to look at polynomials in x of arbitrarily large degree to obtain
all of A[x]? The answer is closely related to integrality. To see this, we
need a lemma concerning determinants of matrices over an arbitrary
ring.

Lemma 1.8. Let B be a ring, and let M be an B-module. If T =
(aij) is an n × n matrix with coefficients aij ∈ B, and if Tv = 0 for
some vector v with coefficients in M , then (detT )v = 0.

Proof. (Sketch) The key point is that if adj(T ) = (bij) is the
n× n matrix whose ijth entry is (−1)i+j times the determinant of the
jith minor of T , then the identity adj(T ) · T = (detT )I holds, where I
is the n×n identity matrix. (The jith minor of T is the (n−1)×(n−1)
matrix obtained by deleting the jth row and ith column from T .) You
have probably seen this formula before in the context of linear algebra;
this identity is valid in any ring B, and the proof is the same as the
proof from linear algebra.

Given this formula, the proof of the lemma is immediate: multiply
the given equation Tv = 0 on both sides by adj(T ) to obtain (detT )v =
0. �

Theorem 1.9. Let A ⊆ B be rings, and let x ∈ B. The following
are equivalent:

(i) x is integral over A
(ii) A[x] is a finitely generated A-module
(iii) A[x] is contained in a subring of B which is finitely generated

as an A-module.

(Note that (i) and (iii) imply (ii).)
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Proof. (i)⇒ (ii): If x is integral over A, then xn+an−1x
n−1+· · ·+

a1x+a0 = 0 with ai ∈ A for all i, so xn = −(an−1x
n−1 + · · ·+a1x+a0).

It follows that A[x] is generated as an A-module by 1, x, x2, . . . , xn−1.
(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i): This is the trickiest direction. Suppose A[x] ⊆ C with

C a subring of B that is finitely generated over A. We want to show
that x satisfies a monic polynomial with coefficients in A. To see this,
first note that since C is a ring, we have xC ⊂ C, i.e., whenever y ∈ C
we have xy ∈ C as well. Let y1, . . . , yn generate C as an A-module.
If we express each product xyi as a linear combination of the yi’s, we
obtain xyi =

∑
j aijyj for some elements aij ∈ A, 1 ≤ i, j ≤ n. We can

encode the aij’s in an n× n matrix T with coefficients in A, so that xy1
...
xyn

 = T

 y1
...
yn

 .
This is equivalent to saying that

(xI − T )

 y1
...
yn

 = 0,

where I is the n × n identity matrix and (xI − T ) is viewed as a
matrix with coefficient in B. Since 1 is a linear combination of the
yi’s, it follows from Lemma 1.8 that det(xI − T ) = 0. Expanding this
determinant in terms of the entries of xI − T , we see that

det(xI − T ) = xn +Q(x),

where Q(x) is a polynomial of degree at most n− 1 having coefficients
in A. So x satisfies a monic polynomial of degree n with coefficients in
A, and is therefore integral over A. �

Corollary 1.10 (Transitivity of integrality). If C is integral over
B and B is integral over A, then C is integral over A.

Proof. This follows easily from Lemma 1.7 and Theorem 1.9. �

Corollary 1.11. If x, y ∈ B are integral over A, then so are x±y
and xy. Therefore the set of elements of B which are integral over A
forms a ring.

Proof. Since x is integral over A, it follows from Theorem 1.9 that
A[x] is finitely generated as an A-module. Since y is integral over A, it
is in particular integral over A[x], so that A[x, y] = (A[x])[y] is finitely
generated over A[x]. By Lemma 1.7, it follows that the ring A[x, y]
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is finitely generated as an A-module. By Theorem 1.9, every element
of A[x, y] is therefore integral over A. In particular, x ± y and xy are
integral over A. �

In particular, let K be a number field, and let OK be the set of all
algebraic integers in K. Then OK is a subring of K. By definition, a
number ring is a ring of the form OK for some number field K.

2.2. Examples of number rings. To recognize whether a given
element α of a number field K is integral (i.e., is an element of OK), one
can use the following lemma. Recall, for the statement, that if L/K is
an algebraic field extension and α ∈ L, then the minimal polynomial of
α over K is the unique monic polynomial fα of minimal degree among
all nonzero polynomials f ∈ K[x] with f(α) = 0. If g ∈ K[x] is any
nonzero polynomial with g(α) = 0, then fα | g.

Lemma 1.12. Let α be an algebraic number, and let fα(x) ∈ Q[x]
be its minimal polynomial. Then α is an algebraic integer if and only
if fα ∈ Z[x].

Proof. One direction is obvious: if fα ∈ Z[x] then clearly α is an
algebraic integer.

Now suppose α is an algebraic integer, and let α1, . . . , αn be the
roots of fα. Since α is integral over Z, there exists a monic polynomial
h(x) ∈ Z[x] with h(α) = 0. Since fα | h, we must have h(αi) = 0 for
all i. Therefore all of the roots of fα are algebraic integers. Since fα is
monic, the coefficients of fα are the elementary symmetric polynomials
in the αi’s. In particular (since the set of all algebraic integers forms a
ring), the coefficients of fα are all algebraic integers. But they are also
in Q, and we have already seen that the set of algebraic integers which
lie in Q is just Z. Therefore fα ∈ Z[x] as desired. �

One can use the lemma to prove the following useful result:

Exercise 1.13. Let d be a squarefree integer. Then the ring of
integers OK in K = Q(

√
d) is:

Z[
√
d] if d ≡ 2, 3 (mod 4)

Z[1+
√

d
2

] if d ≡ 1 (mod 4).

It is very important to remember that OK can be strictly larger

than Z[
√
d]. A concrete example is that if ω = 1+

√
−3

2
, then ω is not in

Z[
√
−3], but ω is integral, because it satisfies the equation x2+x+1 = 0.

It follows from Proposition 1.13 that if K is a quadratic field (which
is common parlance for “K is a number field of degree 2 over Q”), then
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OK is a free abelian group of rank 2. We will see soon that an analogous
fact holds for the ring of integers in an arbitrary number field.

2.3. OK is integrally closed. We begin with a simple lemma.

Lemma 1.14. Let α be an algebraic number. Then there exists a
nonzero integer m ∈ Z such that mα is an algebraic integer.

Proof. Let f(x) = anx
n + · · · + a1x + a0 ∈ Z[x], an 6= 0, be a

polynomial with integer coefficients which is satisfied by α. Then an ·α
is a root of the monic polynomial

xn + an−1x
n−1 + · · ·+ an−2

n a1x+ an−1
n a0 ∈ Z[x] ,

and is therefore an algebraic integer. We may thus take m = an. �

Recall that if A is an integral domain, its field of fractions L is the
smallest field containing A. Concretely, we have

L = {x
y

: x, y ∈ A, y 6= 0}

endowed with the usual laws of addition and multiplication for frac-
tions.

Corollary 1.15. If K is a number field, then K is the field of
fractions of OK.

Proof. Let L be the field of fractions of OK . Clearly L ⊆ K. On
the other hand, if α ∈ K, then mα = β ∈ OK for some nonzero integer
m, and therefore α = β

m
is in L. �

A domain R with field of fractions K is called integrally closed if
whenever α ∈ K is integral over R, we have α ∈ R.

Lemma 1.16. If K is a number field, then OK is integrally closed.

Proof. Suppose α ∈ K is integral over OK . By definition, OK is
integral over Z, and since integrality is transitive, it follows that α is
integral over Z, and therefore α ∈ OK . �

2.4. Ideals of number rings and lattices. In this section, we
prove the important fact that if K is a number field and OK is its ring
of integers, then OK is a lattice in K. More generally, we show that
any ideal I of OK is a lattice in K, and we deduce from this that the
quotient ring OK/I is finite.

Let k be either the field Q of rational numbers or the field R of
real numbers. Recall that a complete lattice in a finite-dimensional
vector space V over k is an additive subgroup of V which is discrete
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and spans V . (A subset Λ ⊆ V is discrete if every bounded subset of
V contains only finitely many points of Λ.) If dimk(V ) = n, then a
discrete additive subgroup Λ of V will span some subspace W of V ; if
dimk(W ) = m ≤ n, we say that Λ is a lattice of rank m in V .

Convention: When we say that Λ is a lattice in V , without spec-
ifying the rank, we will mean (unless otherwise noted) that Λ is a
complete lattice.

Proposition 1.17. Let V be a finite dimensional k-vector space,
and suppose Λ ⊆ V is a Z-module which spans V . Let n = dimk(V ).
Then the following are equivalent:

(i) Λ is discrete.
(ii) Λ is generated by n elements.
(iii) Λ ∼= Zn as Z-modules.

Proof. The equivalence of (ii) and (iii) is a consequence of the
structure theorem for finitely generated abelian groups, since Λ ⊆ V
implies that Λ is torsion-free. We therefore focus on proving that (i) is
equivalent to (ii).

If Λ is free, let x1, . . . , xn be a basis. Then every point of V can be
written uniquely as

∑
λixi with λi ∈ k. Since the open neighborhood

{
∑
λixi : |λi| < 1 ∀ i} of 0 contains no non-zero element of Λ, it

follows easily that Λ is discrete.
Conversely, suppose that Λ is discrete. Let x1, . . . , xn be elements

of Λ which form a basis for V , and let Λ0 be the Z-module spanned by
x1, . . . , xn. Since Λ is discrete, there exists an integer M > 0 such that
if x =

∑
λixi ∈ Λ with all |λi| < 1/M , then x = 0. Let y1, y2, . . . be

coset representatives for Λ/Λ0. Without loss of generality each yi can
be chosen to lie in the cube

C = {x =
∑

λixi : 0 ≤ λi < 1 ∀ i} .

Cover C by Mn boxes of the form mi

M
≤ λi <

mi+1
M

with mi ∈ Z and
0 ≤ mi < M . Then |Λ/Λ0| ≤ Mn, or else some distinct elements yi

and yj would lie in the same box, implying that

yi − yj ∈ Λ ∩ {
∑

λixi : |λi| <
1

M
∀ i} = {0} ,

a contradiction. Now we’re done, since Λ is generated by the xi’s and
the finitely many yj’s. �

For the proof of the next result, we recall the notion of norm for field
extensions. Let σ1, . . . , σn be the n distinct embeddings of a number
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field K into C, and define the norm NK/Q(γ) of an element γ ∈ K by
the formula

NK/Q(γ) =
∏

i

σi(γ) .

By field theory, we have NK/Q(γ) ∈ Q, and NK/Q(γ) = 0 iff γ =
0. Moreover, if γ is an algebraic integer then so is σi(γ) for each i,
and therefore NK/Q(γ) ∈ Z, since an algebraic integer which is also a
rational number must be an (ordinary) integer.

Theorem 1.18. If a number field K having degree n over Q is
identified with the vector space Qn, then OK is a lattice in K.

Proof. By Lemma 1.14, there exists a basis α1, . . . , αn for K/Q
with αi ∈ OK for each i. Suppose OK is not discrete in K. Then
there are arbitrarily small λ1, . . . , λn ∈ Q such that α =

∑
λiαi is

nonzero and inOK . Since σ(α) =
∑
λiσ(αi) for each embedding σ ofK

into C, it follows that NK/Q(α) = φ(λ1, . . . , λn) for some homogeneous
polynomial φ ∈ C[x1, . . . , xn] of degree n. Therefore |φ(λ1, . . . , λn)| < 1
if the |λi| are sufficiently small. But NK/Q(α) is a nonzero integer, a
contradiction. �

Corollary 1.19. If I is a nonzero ideal of OK, then I is a sub-
lattice of OK in K.

Proof. Since I is a Z-submodule of OK , it is discrete. Also, I
contains a basis for K, since if α1, . . . , αn is a basis for K contained in
OK , then cα1, . . . , cαn is a basis for K contained in I for any nonzero
element c ∈ I ∩ Z. (To see that I ∩ Z 6= (0), note for example that
NK/Q(α) ∈ I∩Z for any nonzero element α ∈ I.) Thus I is a sublattice
of OK . �

From this, we deduce the following important result:

Proposition 1.20. If OK is a number ring and I is a nonzero
ideal in OK, then the quotient ring OK/I is finite.

Proof. Since I is a sublattice of OK , we know from Proposi-
tion 1.17 that both OK and I are isomorphic to Zn as abelian groups.
By Theorem A.11, it follows that I has finite index in OK . �

2.5. OK is Noetherian. Recall that a ring R is called Noetherian
if every ideal of R is finitely generated.

Lemma 1.21. Let R be a ring. Then the following are all equivalent
to the condition that R is Noetherian:

(i) Every ideal of R is finitely generated.
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(ii) If I0 ⊆ I1 ⊆ I2 ⊆ · · · is an increasing chain of ideals in R,
then there exists n0 such that In = In0 for n ≥ n0.

(iii) Every non-empty set Σ of ideals of R has a maximal element.

Proof. (i) implies (ii): Set I = ∪∞n=0In; this is an ideal of R, hence
is finitely generated. The generators all lie in some In0 , and therefore
In = In0 for all n ≥ n0.

(ii) implies (iii): If no such maximal element exists, then there must
be an infinite chain I0 ( I1 ( I2 ( · · · with each containment proper,
contradicting (ii).

(iii) implies (i): For any ideal I of R, let ΣI be the set of finitely
generated ideals contained in I. Since (0) ∈ ΣI , we have ΣI 6= ∅.
Therefore ΣI has a maximal element I ′. Suppose I ′ 6= I, let x ∈ I\I ′,
and define I ′′ = (I ′, x). Then I ′′ ∈ ΣI and I ′ ( I ′′, contradicting the
maximality of I ′. Therefore I = I ′ and I is finitely generated. �

From Proposition 1.20, we deduce:

Corollary 1.22. OK is a Noetherian ring.

Proof. Let I = I0 ⊆ I1 ⊆ I2 ⊆ · · · be an ascending chain of
ideals in OK , and assume without loss of generality that I0 6= 0. By
Proposition 1.20, the quotient OK/I is finite. Therefore there are only
finitely many ideals of OK which contain I, and in particular the chain
I = I0 ⊆ I1 ⊆ I2 ⊆ · · · must stabilize. By Lemma 1.21, it follows that
OK is Noetherian. �

2.6. OK has dimension 1. Let R be a ring. The (Krull) dimen-
sion of R is the supremum of all integers n ≥ 0 such that there exists
a chain

p0 ( p1 ( p2 ( · · · ( pn

of prime ideals in R.
If R is an integral domain, then (0) is a prime ideal, and we have

the following straightforward lemma, whose proof is left to the reader:

Lemma 1.23. Let R be an integral domain. Then dim(R) = 0 iff
R is a field, and dim(R) ≤ 1 iff every nonzero prime ideal of R is
maximal.

As another corollary of Proposition 1.20, we deduce:

Corollary 1.24. If K is a number field, then OK has dimension
1.

Proof. ClearlyOK is not a field, sinceOK∩Q = Z. By Lemma 1.23,
it suffices to prove that if p is a nonzero prime ideal of OK , then OK/p
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is a field. Since OK/p is an integral domain, and is finite by Proposi-
tion 1.20, the desired result follows from the well-known fact that every
finite integral domain is a field. �

2.7. Dedekind rings and Unique Factorization of Ideals. A
Dedekind ring is a ring R satisfying the following four properties:

(1) R is an integral domain.
(2) R is Noetherian.
(3) R is integrally closed.
(4) R is 1-dimensional.

The results of the previous sections imply:

Theorem 1.25. If K is a number field, then OK is a Dedekind
ring.

Exercise 1.26. Show that a PID which is not a field is a Dedekind
ring.

Recall that the product of two ideals I, J in a ring R is defined as
the smallest ideal containing all products xy with x ∈ I and y ∈ J . If
I = (a1, . . . , am) and J = (b1, . . . , bn) are finitely generated ideals, then
the product ideal IJ is generated by the products of the generators for
I and J :

IJ = (aibj | 1 ≤ i ≤ m, 1 ≤ j ≤ n) .

An ideal of R is called proper if it is not the zero ideal or the unit
ideal.

We will say that a ring R admits unique factorization of ideals
(UFI) if every proper ideal can be written uniquely as a product of
prime ideals. (The uniqueness is only up to the order of the factors, of
course.)

The following result is one of the most important theorems in Alge-
braic Number Theory, and its proof will occupy the rest of this section.
It will enable us to bypass the unfortunate fact that we don’t always
have unique factorization of elements into irreducibles in a number ring.

Theorem 1.27. If R is a Dedekind ring, then R admits unique
factorization of ideals.

Remark 1.28. Conversely, it can be shown that if R is an inte-
gral domain which admits unique factorization of ideals, then R is a
Dedekind ring.

Exercise 1.29. Prove that Z[
√
−3] is not a Dedekind domain, and

does not admit unique factorization of ideals.
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As an illustrative example, consider the ring R = Z[
√
−5]. We have

two distinct factorizations of the element 6 into irreducibles in this ring:

(1.2) 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5) .

Exercise 1.30. Show that 2, 3, 1 ±
√
−5 are all irreducible and

mutually non-associate. [Hint: Use the fact that the norm function
defined by N(x+ y

√
−5) = x2 + 5y2 is multiplicative.]

In particular, Z[
√
−5] is neither a PID nor a UFD.

Although 2, 3, 1 ±
√
−5 are all irreducible, they do not generate

prime ideals. If we look on the level of ideals, then there is further
splitting of the above factorizations of 6. In fact, if we let p1 = (2, 1 +√
−5), p2 = (2, 1−

√
−5), p3 = (3, 1 +

√
−5), p4 = (3, 1−

√
−5), then:

Exercise 1.31. (i) p1, . . . , p4 are all prime ideals of Z[
√
−5].

(ii) (2) = p1p2, (3) = p3p4, (1 +
√
−5) = p1p3, and (1 −

√
−5) =

p2p4.

So there is no failure of unique factorization on the level of ideals:
in terms of prime ideals, equation (1.2) becomes

(6) = (2) · (3) = (p1p2)(p3p4) = (p1p3)(p2p4) = (1 +
√
−5)(1−

√
−5).

Note also that using ideals rather than elements lets us avoid having
to deal with units in the statement of the unique factorization property!

We now begin preparing for the proof of Theorem 1.27. The first
thing we will need are some lemmas about Noetherian rings and prime
ideals.

Lemma 1.32. Suppose I1, . . . , In are ideals of R and that p is a
prime ideal of R. If I1 · · · In ⊆ p, then Ij ⊆ p for some j.

Proof. Suppose that for each j there exists αj ∈ Ij which is not
in p. Then α1 · · ·αn ∈ I1 · · · In ⊆ p, so α1 · · ·αn ∈ p. As p is a prime
ideal, we must have αj ∈ p for some j, a contradiction. �

Lemma 1.33. If I is a nonzero ideal in a noetherian ring R, then
there exist nonzero prime ideals p1, . . . , pr of R such that p1 · · · pr ⊆ I.

Proof. Let Σ be the set of all ideals for which the conclusion of
the lemma fails. If Σ 6= ∅, then since R is Noetherian, Σ has a maximal
element J . Clearly J cannot be prime, so there exist a, b ∈ R such that
ab ∈ J but a, b 6∈ J . Let a := (J, a), b := (J, b). Then a ) J and b ) J ,
so by maximality of J ,

a ⊇ p1 · · · pm, b ⊇ q1 · · · qn,
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where pi, qj are nonzero prime ideals. Since ab = (J2, aJ, bJ, ab) ⊆ J ,
it follows that p1 · · · pmq1 · · · qn ⊆ J , a contradiction. Therefore Σ = ∅
and the lemma is true. �

Let R be an integral domain with fraction field K, and suppose I
is a nonzero ideal of R. We define I−1 to be

I−1 := {x ∈ K : xI ⊆ R},

considered as an R-submodule of K. Note that R ⊆ I−1, and that if
I = (a) is principal, then I−1 = Ra−1.

Note also that we can multiply two R-submodules M and N of K
by defining their product MN to be the R-submodule of K generated
by all products of the form xy with x ∈ M and y ∈ N . If M,N are
ideals of R, this coincides with the usual ideal-theoretic product.

Exercise 1.34. If M,M ′, N are R-submodules of K with M ⊆M ′,
show that MN ⊆M ′N .

Proposition 1.35. Let R be a Dedekind ring, let I be a nonzero
ideal of R, and let p be a nonzero prime ideal of R. Then p−1I 6= I.

Proof. We first consider the special case where I = R. In this
case, we are trying to show that p−1 6= R, so we need to find an
element x ∈ p−1 which is not in R. Recall that by definition, x ∈ p−1

if and only if xp ⊆ R. An idea for finding such an element x is to take
x = a−1b for cleverly chosen elements a, b ∈ R so that bp ⊆ (a) (i.e.,
a−1b ∈ p−1) but b 6∈ (a) (i.e., a−1b 6∈ R). Let a ∈ p be any nonzero
element of p; we will try to then find an appropriate element b which
makes our strategy work.

By Lemma 1.33, we know that there exist nonzero prime ideals pi

such that p1p2 · · · pr ⊆ (a). We may assume without loss of generality
that r ≥ 1 is chosen as small as possible. Since (a) ⊆ p, it follows from
Lemma 1.32 that one of the prime ideals pi must be contained in p.
But R is 1-dimensional, so pi is a maximal ideal, and therefore pi = p.
Without loss of generality, we may assume that i = 1.

If r = 1, we conclude that p = (a), and then p−1 = Ra−1 cannot be
equal to R (or else a would be a unit and therefore (a) = (1), which is
not prime).

Now assume that r ≥ 2. As p2 · · · pr 6⊆ (a) by the minimality
of r, it follows that there exists b ∈ p2 · · · pr such that b 6∈ (a). By
construction, bp = bp1 ⊆ (a). As discussed above, it follows that
x := a−1b is in p−1\R, which proves the proposition in the special case
I = R.
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In general, we can use the fact that R is Noetherian to write I =
(α1, . . . , αn). Suppose for the sake of contradiction that p−1I = I.
Then for every x ∈ p−1, we can write

(1.3) xαi =
n∑

j=1

aijαj

with aij ∈ R. Let A = (aij), and define T := xIn − A, where In is the
n×n identity matrix over the fraction field K of R (which exists since
R is an integral domain). Then

T

 α1
...
αn

 = 0

and therefore (since (1.3) is an equation inside the field K) det(T ) = 0.
Since det(T ) is a monic polynomial in x with coefficients in R, it follows
that x is integral over R. But R is integrally closed, so we must have
x ∈ R. This implies that p−1 = R, contradicting the special case which
was proved above. �

Corollary 1.36. Let R be a Dedekind ring, and let p be a nonzero
prime ideal of R. Then p−1p = R.

Proof. By definition, we have xp ⊆ R for all x ∈ p−1. We also
have R ⊆ p−1, so that p ⊆ p−1p ⊆ R. Note that p−1p is an ideal of
R, and p−1p 6= p by Proposition 1.35. Since R is 1-dimensional, p is a
maximal ideal, and therefore we must have p−1p = R as desired. �

We now come to the proof of the main theorem of this section.

Proof of Theorem 1.27. We need to prove the existence and
uniqueness of the factorization. Let’s prove uniqueness first. Suppose
we have

(1.4) I = p1p2 · · · pr = q1q2 · · · qs.

Then q1q2 · · · qs = p1p2 · · · pr ⊆ p1. Since p1 is prime, we must
have qi ⊆ p1 for some i by Lemma 1.32. By relabeling if necessary, we
may suppose that q1 ⊆ p1. Since R is 1-dimensional, q1 is maximal,
so p1 = q1. Multiplying both sides of (1.4) by p−1

1 , we obtain (using
Corollary 1.36) p2 · · · pr = q2 · · · qs. Continuing in this fashion, we find
that r = s and (after relabelling if necessary) that pi = qi for all i.

We now prove existence, i.e., that I can be written as a product
of prime ideals. The argument will be a very clever use of the noe-
therian property, together with Proposition 1.35. Let Σ be the set of
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all proper ideals of R which cannot be written as a product of prime
ideals. Suppose for the sake of contradiction that Σ 6= ∅. Then since
R is Noetherian, there exists a maximal element J of Σ. The ideal J
must be contained in a maximal ideal p, and the inclusion R ⊆ p−1

gives us
J ⊆ Jp−1 ⊆ pp−1 = R.

By the maximality of J , together with Proposition 1.35 (which guaran-
tees that J 6= Jp−1), it follows that Jp−1 = p1 · · · pr for some nonzero
prime ideals pi. Multiplying both sides of this equation by p, we find
using Corollary 1.36 that J = p1 · · · prp is a product of prime ideals,
a contradiction. We conclude that the set Σ must be empty, which is
what we wanted to prove. �

As an application of Theorem 1.27, the reader might wish to try
the following exercise:

Exercise 1.37. A Dedekind ring is a UFD if and only if it is a
PID.

We conclude this section with a couple of simple but important
applications of Theorem 1.27.

Exercise 1.38. Let I be a nonzero ideal in a Dedekind ring R with
factorization I = p1 · · · pr into prime ideals. Then:

(a) I−1 = p−1
1 · · · p−1

r .
(b) II−1 = R.

Let R be a ring. If a and b are ideals of R, we say that a divides b
(written a | b) if there exists an ideal c of R such that b = ac.

Lemma 1.39. If R is a Dedekind ring and a, b are ideals, then a | b
if and only if a ⊇ b. In other words, in a Dedekind ring:

TO CONTAIN IS TO DIVIDE.

Proof. If a ⊇ b, then c := ba−1 ⊆ aa−1 = R. Therefore c is an
ideal of R and b = ac.

Conversely, if b = ac with c an ideal, then a ⊇ ac = b. �

3. The ideal class group

3.1. Fractional ideals and the definition of the class group.
The reader will probably have noticed the important role played in the
proof of Theorem 1.27 by the gadget p−1. This is an example of what
is called a fractional ideal.

By definition, a fractional ideal of an integral domain R with frac-
tion field K is an R-submodule J of K such that aJ ⊆ R for some
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nonzero element a ∈ R. Note that, in this situation, aJ will auto-
matically be an ideal of R. The element a should be thought of as a
“common denominator” for the elements of J .

Exercise 1.40. (a) Show that a fractional ideal of R is the
same thing as an additive subgroup J of K such that there
exists a nonzero element a ∈ R for which aJ is an ideal of R.

(b) Show that the product of two fractional ideals (asR-submodules
of K) is again a fractional ideal.

(c) Prove that if R is noetherian, then J is a fractional ideal of R
if and only if it is a finitely generated R-submodule of K.

We have the following lemma:

Lemma 1.41. If I is a nonzero ideal of an integral domain R, then
I−1 = {x ∈ K : xI ⊆ R} is a fractional ideal of R.

Proof. Let a ∈ I be any nonzero element. Then aI−1 ⊆ R as
desired. �

Lemma 1.42. If R is a Dedekind domain, then the set of nonzero
fractional ideals of R forms an abelian group under multiplication with
identity element R.

Proof. The only thing which needs to be checked is the existence
of inverses. Let J be a nonzero fractional ideal of R, and choose a
nonzero element a ∈ R for which I := aJ is an ideal of R. Then aI−1

is a fractional ideal of R, and

J · aI−1 = aJ · I−1 = II−1 = R .

�

We denote by I(R) the group of all nonzero fractional ideals of R.

A fractional ideal is called principal if it has the form xR for some
x ∈ K. For example, the subgroup 1

2
Z of Q consisting of all half-

integers is a principal fractional ideal of Z.

Exercise 1.43. If R is a Dedekind ring, show that the set of all
nonzero principal fractional ideals of R forms a subgroup of I(R).

We denote by P (R) the group of all nonzero principal fractional
ideals of R.

Let R be a Dedekind ring. The ideal class group of R is the quotient
group

Cl(R) := I(R)/P (R) .
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One can give an equivalent definition of Cl(R) without ever men-
tioning fractional ideals, as follows. We say that two ideals I, J of R
are equivalent (and write I ∼ J) if there exist nonzero elements a, b of
R such that aI = bJ .

Exercise 1.44. (a) Prove that ∼ defines an equivalence rela-
tion.

(b) If I ∼ I ′ and J ∼ J ′, show that II ′ ∼ JJ ′. Deduce that there
is a natural group structure on the set of equivalence classes
of nonzero ideals.

(c) Prove that the group of equivalence classes of nonzero ideals
of R is isomorphic to the ideal class group Cl(R).

Remark 1.45. Suppose K is a number field with ring of integers
OK . By abuse of terminology, one often calls Cl(OK) the ideal class
group of K (rather than of OK). We will write ClK instead of Cl(OK)
when we wish to emphasize this point of view.

The ideal class group is one of the central objects of study in alge-
braic number theory. While it is not at all obvious, we will show the
ideal class group of the ring of integers in a number field K is always
a finite group. Note that this is a special fact about number fields, it
is not a general fact about Dedekind domains.

Theorem 1.27 extends in a straightforward way to fractional ideals:

Exercise 1.46. If R is a Dedekind ring, then every fractional ideal
J 6= (0), (1) has a unique representation as a product

J =
∏

p∈Max(R)

pνp ,

where Max(R) is the set of maximal ideals of R, νp ∈ Z for all p, and
all but finitely many of the νp are zero. In other words, I(R) is the free
abelian group on the set Max(R).

3.2. The norm of an ideal. In this section, we define the norm
of an ideal in a number ring, which plays an important role in proving
the finiteness of the ideal class group.

Let OK be the ring of integers in a number field K of degree n, and
let a be a nonzero ideal of OK . We have already seen, in the proof of
Proposition 1.20, that both a and OK are free abelian groups of rank
n, and therefore that the index [OK : a] is finite. We define the norm
of the ideal a by the formula

N(a) = [OK : a] .
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In other words, we have N(a) = |OK/a|. By convention, we define the
norm of the zero ideal to be zero.

Recall that we already have a notion of norm for elements: if α ∈ K,
then N(α) := NK/Q(α) = σ1(α) · · ·σn(α), where σ1, . . . , σn are the
distinct embeddings of K into C.

The reader may be concerned at this point that if a = (α) is a
principal ideal, then we will have to write N((α)) for the norm of the
ideal (α) in order to distinguish it from the norm N(α) of the element
α. This would be typographically irritating. Fortunately, one has the
following fact:

Proposition 1.47. If a = (α) is principal, then N(a) = |N(α)|.

Before giving the proof, we need to introduce the discriminant,
which is of independent interest and will be discussed in much more
detail later on.

Let L/K be a separable field extension of degree n, and let α1, . . . , αn ∈
L. Let σ1, . . . , σn be the distinct embeddings of L into an algebraic clo-
sure K of K, and form the matrix T = T (α1, . . . , αn) whose (i, j)th en-
try is σi(αj). The discriminant ∆(α1, . . . , αn) is defined to be det(T )2.
By standard facts about determinants, this is independent of the la-
belling of the αi’s and σj’s. We clearly have ∆(α1, . . . , αn) ∈ L, since
the images of the embeddings σ1, . . . , σn is L, and we will see in a
moment that in fact ∆(α1, . . . , αn) ∈ K.

Lemma 1.48. Let L/K be a separable extension of degree n, and
let α1, . . . , αn ∈ L. Then ∆(α1, . . . , αn) ∈ K, and ∆(α1, . . . , αn) = 0 if
and only if α1, . . . , αn are linearly dependent over K.

Proof. Let T := T (α1, . . . , αn), and let ∆ := ∆(α1, . . . , αn). If
α1, . . . , αn are linearly dependent over K, then the columns of T are
linearly dependent, and therefore ∆ = 0.

Conversely, assume that α1, . . . , αn form a basis for L/K. By the
theorem of the primitive element, we have L = K(θ) for some θ ∈ L.
Then 1, θ, θ2, . . . , θn−1 is a basis for L/K, and by linear algebra there
exists a matrix M with coefficients in K, having nonzero determinant,
such that  α1

...
αn

 = M

 1
...
θn−1

 .
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Applying σi to this equation, and using the fact that M has coefficients
in K, we see that for each i we have σi(α1)

...
σi(αn)

 = M

 1
...
σi(θ

n−1)

 .
It follows that if T ′ := T (1, θ, . . . , θn−1) and ∆′ := ∆(1, θ, . . . , θn−1),

then T = T ′M t, so that ∆ = det(M)2∆′, where det(M) is a nonzero
element of K.

It therefore suffices to prove that ∆′ ∈ K and ∆′ 6= 0. To see this,
we note that T ′ is a Vandermonde matrix, whose determinant (by a
well-known formula from linear algebra) is∏

1≤i<j≤n

(σi(θ)− σj(θ)),

which is nonzero since the σi(θ)’s are all distinct (see the proof of
Proposition A.7).

Therefore

∆′ :=
∏
i6=j

(σi(θ)− σj(θ))

is nonzero. It is also a symmetric function of σ1(θ), . . . , σn(θ), which are
precisely the roots of the minimal polynomial f of θ over K. Therefore
∆′ is a polynomial (with Z-coefficients) in the coefficients of f , and
hence ∆′ ∈ K as desired. �

Proof of Proposition 1.47. Let ω1, . . . , ωn be a Z-basis forOK .
Since a = (α) is principal, {α1, . . . , αn} = {αω1, . . . , αωn} clearly forms
a Z-basis for a. Write  α1

...
αn

 = A

 ω1
...
ωn


with A an invertible n × n matrix with integer coefficients. Then by
Theorem A.11, N(a) = | det(A)|.

We also have

∆(α1, . . . , αn) = det(A)2∆(ω1, . . . , ωn)

by linear algebra.
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On the other hand, it follows from the definition of the discriminant
that ∆(αω1, . . . , αωn) is the square of the determinant of the matrix σ1(αω1) · · · σ1(αωn)

...
...

σn(αω1) · · · σn(αωn)

 ,

This determinant is σ1(α) · · ·σn(α) times the determinant of the matrix
(σi(ωj)). In other words, we have

∆(αω1, . . . , αωn) = N(α)2∆(ω1, . . . , ωn).

Therefore N(a) = | det(A)| = |N(α)|. �

Exercise 1.49. Let α ∈ K, and let Tα : K → K be the linear
transformation given by multiplication by α on K, considered as a
Q-vector space. Show that |N(α)| = | det(Tα)|.

3.3. The norm is multiplicative. In this section, we prove the
important fact that the norm function on ideals is multiplicative, i.e.,
that N(ab) = N(a)N(b). This has some important consequences, for
example Theorem 1.55 below. It will also be used in our proof that the
ideal class group of a number ring is finite.

We first show that if a and b are relatively prime ideals in OK

then N(ab) = N(a)N(b). Recall that two ideals a, b in a ring R are
called relatively prime if a + b = (1). This is a natural generalization
of the notion of two integers being relatively prime, since a, b ∈ Z are
relatively prime iff am+bn = 1 for somem,n ∈ Z, i.e., iff (a)+(b) = (1).

We will in fact show that if a and b are relatively prime ideals of
OK , then OK/ab ∼= OK/a⊕OK/b, from which the desired formula for
norms follows. This result is a special case of the Chinese Remainder
Theorem for rings, which we recall in the following form:

Lemma 1.50. Suppose a1, . . . , an are pairwise relatively prime ideals
in the ring R. Then:

(a) For each x1, . . . , xn ∈ R, there exists x ∈ R such that x ≡ xi

(mod ai) for all i.
(b) a1 ∩ · · · ∩ an = a1 · · · an.
(c) R/(a1 · · · an) ∼= ⊕R/ai.

Proof. By induction, it suffices to prove the the result when n = 2.
Let a = a1, b = a2. For part (a), note that since a+b = (1), there exist
elements a ∈ a, b ∈ b such that a+ b = 1. Now take x = ax2 + bx1.

To prove (b), note that we clearly have ab ⊆ a∩ b. For the reverse
inclusion, let x ∈ a ∩ b. Then (taking a, b as above) we have x =
xa+ xb ∈ ab as desired.
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For part (c), note that a∩b is contained in the kernel of the natural
map from R to R/a⊕R/b, so there is an induced map φ : R/(a∩b) →
R/a ⊕ R/b. The map φ is clearly injective, and surjectivity follows
immediately from part (a). Now apply part (b). �

We also have:

Lemma 1.51. Let p, q be distinct nonzero prime ideals in a 1-dimensional
ring R, and let s, t be positive integers. Then ps and qt are relatively
prime.

Proof. Let m = max(s, t). Then we claim that (p+q)2m ⊆ ps+qt.
To see this, note that every element of (p + q)2m is a sum of elements
of the form (x1 + y1)(x2 + y2) · · · (x2m + y2m) with xi ∈ p and yj ∈ q.
Furthermore, each expression (x1 + y1)(x2 + y2) · · · (x2m + y2m) is itself
a sum of terms each of which contains at least m xi’s or m yj’s. By
the definition of m, all such terms are in either ps or qt. This proves
the claim.

Therefore it suffices to prove that p + q = (1). This follows from
the 1-dimensionality of R: since p 6= q we have p + q ) p, and since p
is maximal this implies that p + q = (1). �

If p is a nonzero prime ideal of OK and a is any ideal, we define
ordp(a) to be the largest integer m such that pm | a, if such an m exists.
Otherwise, we set ordp(a) = ∞. If α ∈ OK , we set ordp(α) = ordp(a),
where a = (α).

Exercise 1.52. (a) If a 6= (0), (1) is an ideal of OK , show that
ordp(a) equals the number of copies of p which appear in the
factorization of a into a product of nonzero prime ideals. (In
particular, ordp(a) is finite.)

(b) If a, b are ideals ofOK , prove that ordp(ab) = ordp(a)+ordp(b).

We now prove:

Theorem 1.53. If a, b are ideals of OK, then N(ab) = N(a)N(b).

Proof. By the Chinese Remainder Theorem and the fact that pr

and qs are relatively prime when p 6= q, it is enough (using the factor-
ization of ideals in OK into prime ideals) to prove that N(pm) = N(p)m

whenever p is a prime ideal.
For this, first note that we have a chain of ideals

OK ⊃ p ⊃ p2 ⊃ · · · ⊃ pm,

so it is enough to prove that for each 0 ≤ k ≤ m−1, [pk : pk+1] = N(p).
(Use induction and the fact that (OK/p

k+1)/(pk/pk+1) ∼= (OK/p
k) as

abelian groups.)
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We will prove something stronger, namely that for each k, there is
an isomorphism of abelian groups OK/p ∼= pk/pk+1. To see this, first
note that there is a (non-canonical) group homomorphism

φ : OK → pk/pk+1

given by choosing an element γ ∈ pk\pk+1 and sending x ∈ OK to γx.
(We know that pk 6= pk+1 by unique factorization, so such an element γ
certainly exists). If x ∈ p, then γx ∈ pk+1, so φ induces a map (which
we continue to call φ)

φ : OK/p → pk/pk+1.

We will show that this map is an isomorphism.

Claim 1: (γ) + pk+1 = pk.
Given Claim 1, it follows immediately that φ is surjective.

Claim 2: (γ) ∩ pk+1 = γp.
Given Claim 2, it follows that if φ(x) = 0, then γx ∈ γp and hence

x ∈ p, and thus φ is injective.

To prove Claim 1, let I = (γ) + pk+1. Then since pk | (γ), we also
have pk | I. But I ) pk+1, so I | pk+1 and I 6= pk+1. By unique
factorization, we must have I = pk as claimed.

To prove Claim 2, let I ′ = (γ)∩pk+1. Since γ ∈ pk, we have γp ⊆ I ′.
Conversely, let x ∈ I ′ and write x = γy with y ∈ OK and γy ∈ pk+1,
and note that ordp(γ)+ordp(y) = ordp(γy) ≥ k+1. Since ordp(γ) = k
by construction, it follows that ordp(y) ≥ 1, i.e, y ∈ p. Therefore
x = γy ∈ γp as desired. �

Remark 1.54. Note that it took a bit of messy verification to prove
that OK/p ∼= pk/pk+1. In the case where p = (π) is principal, this is
very simple: one proves easily in that case that multiplication by πk

gives an isomorphism.
In general, there is a useful technique called localization which al-

lows one to prove certain results about Dedekind domains by first re-
ducing them to the case of a PID. We will see this in action later on.
Localization is also a very useful tool in other contexts.

As an immediate corollary, we obtain another fundamental result:

Theorem 1.55. Let K be a number field of degree n, and let p be
a prime number. Write

(p) =
r∏

i=1

pei
i
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with the pi’s distinct prime ideals. Then there exist positive integers fi

such that N(pi) = pfi for all i, and we have
r∑

i=1

eifi = n.

Proof. Since the norm is multiplicative, we have pn = N(p) =∏
N(pi)

ei . Therefore N(pi) is a power of p for all i and
∑r

i=1 eifi =
n. �

We will prove a more general version of this result later on.

3.4. Finiteness of the ideal class group. In this section, we
show that if K is a number field, then the ideal class group Cl(OK) is
finite. A preliminary result in this direction is:

Lemma 1.56. Let K be a number field. For each M > 0, there are
only finitely many ideals of OK having norm at most M .

Proof. It suffices to prove that the set of ideals of norm equal to m
is finite for each m ≥ 1. If I is a nonzero ideal with N(I) = |OK/I| =
m, then mx = 0 in OK/I for all x ∈ OK , i.e., I contains the idealmOK .
As noted in the proof of Corollary 1.22, since OK/mOK is finite, there
are only finitely many ideals which contain mOK . Therefore there are
only finitely many possibilities for I. �

Before giving the next lemma, we remark that every ideal class in
Cl(OK) can be represented by a genuine ideal of OK , and not just by a
fractional ideal; this follows from the definition of a fractional ideal and
the fact that [aJ ] = [J ] for every fractional ideal J and every nonzero
a ∈ R.

Lemma 1.57. Let K be a number field. The class group Cl(OK) is
finite if and only if there exists a constant M (depending only on K)
such that every ideal class contains an ideal of norm at most M .

Proof. If Cl(OK) is finite, let I1, . . . , Ih be ideals representing the
different ideal classes, and take M = max1≤j≤hN(Ij). The converse
follows from the previous lemma. �

Theorem 1.58. Let K be a number field. Then there exists a con-
stant M such that every nonzero ideal I of OK contains a nonzero
element α with

|N(α)| ≤M ·N(I) .

Remark 1.59. Note that if α ∈ I, then (α) ⊆ I and thus N(I) ≤
|N(α)|.
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Remark 1.60. If we fix an integral basis (i.e., a Z-basis) α1, . . . , αn

for OK , and let σ1, . . . , σn be the embeddings of K into C, then the
proof will show that M can be taken to be

n∏
i=1

n∑
j=1

|σi(αj)| = (|σ1α1|+ · · ·+ |σ1αn|) · · · (|σnα1|+ · · ·+ |σnαn|) .

Proof of Theorem 1.58. The idea of the proof is to use the
pigeonhole principle to find an element α ∈ I whose coordinates with
respect to some integral basis are small, and then the norm of α will
too be small.

Take α1, . . . , αn to be an integral basis of OK . Let I be an ideal of
OK and choose m ∈ Z so that mn ≤ N(I) < (m + 1)n. Consider the
subset Σ of elements of OK defined by

Σ :=

{
n∑

j=1

mjαj : 0 ≤ mj ≤ m,mj ∈ Z

}
.

Since #Σ = (m + 1)n > N(I) = |OK/I|, it follows by the pigeonhole
principle that there are two distinct elements of Σ, say x and y, which
are congruent modulo I. Taking their difference to be α = x − y, we
get a nonzero element of I of the form α =

∑n
j=1mjαj with |mj| ≤ m

for all j. We estimate the norm of α:

|N(α)| =
n∏

i=1

|σiα| ≤
n∏

i=1

(
n∑

j=1

|mj| · |σiαj|

)

≤ mn

(
n∏

i=1

n∑
j=1

|σiαj|

)
≤ N(I) ·M.

�

Corollary 1.61. With M as in Theorem 1.58, every ideal class
in OK contains a nonzero ideal of norm at most M .

Proof. Let c ∈ Cl(OK) be an ideal class and let I be an ideal of
OK such that [I] = c−1. (Here [J ] denotes the class of a fractional ideal
J in the group Cl(OK).) Choose α ∈ I such that |N(α)| ≤ M ·N(I).
By Lemma 1.39, it follows that I ⊇ (α) ⇒ (α) = IJ for some ideal J .
Clearly [J ] = [I]−1 = c, and multiplicativity of the norm implies that
N(J) = |N(α)|/N(I) ≤M as desired. �

Combining this result with Lemma 1.57, we obtain the following
fundamental result:



30 1. UNIQUE FACTORIZATION IN NUMBER RINGS

Theorem 1.62. If K is a number field, then Cl(OK) is finite.

We also obtain the following useful criterion for OK to be a PID:

Proposition 1.63. If every ideal of OK of norm less than or equal
to M is principal, then Cl(OK) = 1.

Exercise 1.64. Show that OK is a PID if and only if every ideal
I of OK contains an element α with |N(α)| = N(I).

4. Exercises for Chapter 1

(1) Prove that the following rings are not UFD’s by explicitly find-
ing two distinct factorizations of the same element.
(a) Z[

√
−13]

(b) Z[
√

10] (Hint: Factor 6 in two different ways.)
(2) Prove that the following rings are Euclidean domains (and

hence UFD’s).
(a) Z[

√
−2] (Hint: For x, y ∈ Z[

√
−2] with y 6= 0, write

x/y = a+b
√
−2 with a, b ∈ Q, and choose q = c+d

√
−2 ∈

Z[
√
−2] so that |c− a| ≤ 1/2, |d− b| ≤ 1/2.)

(b) Z[
√

2] (Hint: Use the norm φ(a+ b
√

2) = |a2 − 2b2|.)
(3) Find all integers x, y such that x3 − y2 = 2.
(4) (a) Prove that every quadratic number field (a field of degree

2 over Q) is of the form Q(
√
d) for some square-free integer

d.
(b) Find an explicit example of a cubic number field which is

not of the form Q(d1/3) for any integer d.

(5) (a) Determine the ring of integers in Q(
√
d) for all square-free

integers d.
(b) Determine the unit group of the ring of integers in Q(

√
d)

for all square-free integers d < 0.
(6) Let R = Z[

√
−5], and define the following four ideals in R:

p1 = (2, 1 +
√
−5), p2 = (2, 1−

√
−5), p3 = (3, 1 +

√
−5), p4 =

(3, 1−
√
−5).

(a) Show that p1, . . . , p4 are all maximal (hence prime) ideals
of R. (Hint: Prove in each case that the factor group
R/pi is a field.)

(b) Verify that (2) = p1p2, (3) = p3p4, (1+
√
−5) = p1p3, (1−√

−5) = p2p4.
(7) Let R = Z[

√
−3], and let I be the ideal of R generated by 2

and 1 +
√
−3.
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(a) Show that I2 = (2)I but I 6= (2). Conclude that proper
ideals in R do not factor uniquely into products of prime
ideals.

(b) Show that I is the unique prime ideal of R containing
(2). Conclude that the ideal (2) cannot be written as a
product of prime ideals of R.

(c) Why do parts (a) and (b) above not contradict the theo-
rem which says that every Dedekind domain admits unique
factorization of proper ideals into products of prime ideals?

(8) (a) Prove that a PID that is not a field is a Dedekind ring.
(b) Prove that a Dedekind ring is a UFD if and only if it is a

PID.
(9) Let R be a Noetherian integral domain with fraction field K.

Prove that an R-submodule J of K is finitely generated if and
only if there is a nonzero element a ∈ R such that aJ ⊆ R.

(10) If R is a Dedekind ring, prove that every fractional ideal J 6=
(0), (1) has a unique representation as a product

J =
∏

p∈Max(R)

pνp

where νp ∈ Z for all p, and all but finitely many of the νp are
zero.

(11) Which of the following are Dedekind rings?
(a) C[X, Y ]/(Y 2 −X3)
(b) R = {a

b
∈ Q : a, b ∈ Z, 3 - b}





CHAPTER 2

Examples and Computational Methods

1. Computing the ring of integers in a number field

1.1. The discriminant of a number ring and integral bases.
Let L/K be a separable field extension of degree n, and let α1, . . . , αn ∈
L. Recall from Lemma 1.48 that ∆(α1, . . . , αn) ∈ K, with ∆(α1, . . . , αn) =
0 if and only if α1, . . . , αn are linearly dependent over K.

Note that in the case where L and K are number fields, if α1, . . . , αn

are algebraic integers, then ∆L/K(α1, . . . , αn) is also an algebraic inte-
ger. This follows from the definition of the discriminant, together with
the fact that if α is an algebraic integer, then so is σi(α) for all i.

In particular, if K is a number field and α1, . . . , αn are algebraic in-
tegers which form a basis for K/Q, then ∆K/Q(α1, . . . , αn) is a nonzero
element of Z.

We now use our knowledge about discriminants to say something
about integral bases for rings of integers in number fields. (Recall that
α1, . . . , αn is an integral basis for OK if it is a basis for OK as a Z-
module.)

Proposition 2.1. Let K be a number field of degree n, and let
α1, . . . , αn be elements of OK which form a basis for K/Q. Let d :=
∆(α1, . . . , αn). Then OK is contained in the Z-module spanned by
α1

d
, . . . , αn

d
.

Proof. Let α ∈ OK , and write α = c1α1 + · · · + cnαn with each
cj ∈ Q. We need to show that dcj ∈ Z for all j.

Applying σi to the relation α = c1α1 + · · · + cnαn, we find that
σi(α) = c1σi(α1) + · · ·+ cnσi(αn), so that σ1(α)

...
σn(α)

 = T

 c1
...
cn

 ,
where T := (σi(αj)). Note that σi(αj) is an algebraic integer for any i
and j, since all αj are algebraic integers.

33
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Multiplying this equation on both sides by the adjoint of T , and
letting δ := det(T ), we obtain β1

...
βn

 = δ

 c1
...
cn


for some algebraic integers β1, . . . , βn.

Let mj := δβj. Then since δ2 = d, we have m1
...
mn

 = d

 c1
...
cn

 .
For any j, we see that δ and βj are algebraic integers, and thus mj is

an algebraic integer. Furthermore cj and d are both rational numbers,
so dcj = mj is an algebraic integer that is also in Q. Thus dcj is in Z
for all j. This proves that α is in the Z-module spanned by α1

d
, . . . , αn

d
as claimed. �

Note that Proposition 2.1 provides another proof of the fact that if
K/Q is a finite extension of degree n, then OK is a lattice in K. Indeed,
Proposition 2.1 shows that OK is contained in a finitely generated Z-
module of rank n, and therefore is itself a finitely generated Z-module
of rank at most n. Since OK contains a basis for K, the rank must be
exactly n.

Integral bases are not unique. However, the discriminant of every
integral basis for OK is the same, as the next lemma shows.

Lemma 2.2. If α1, . . . , αn and α′1, . . . , α
′
n are integral bases for OK,

then ∆(α1, . . . , αn) = ∆(α′1, . . . , α
′
n).

Proof. Let ∆ := ∆(α1, . . . , αn),∆′ := ∆(α′1, . . . , α
′
n). Writing

each basis in terms of the other, we find that there are nonsingular n×n
matrices M,M ′ with integer coefficients such that ∆ = det(M)2∆′ and
∆′ = det(M ′)2∆. The result follows easily from this. �

Because of Lemma 2.2, we may define the discriminant of OK (or,
by abuse of terminology, the discriminant of K) to be the discrimi-
nant of any integral basis for OK . We write ∆(OK) or ∆K for the
discriminant of OK .

Using an argument similar to the proof of Proposition 1.47, we see:

Lemma 2.3. If α1, . . . , αn ∈ OK form a basis for K/Q and M
denotes the Z-module spanned by α1, . . . , αn, then

∆K/Q(α1, . . . , αn) = |OK/M |2 ·∆K .
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Proof. Let ω1, . . . , ωn be an integral basis for OK , and write α1
...
αn

 = A

 ω1
...
ωn

 .
By Theorem A.11, we have |OK/M | = | det(A)|. The result now follows
from the fact that

∆K/Q(α1, . . . , αn) = det(A)2∆(ω1, . . . , ωn) .

�

Corollary 2.4. If α1, . . . , αn ∈ OK form a basis for K/Q and
d = ∆K/Q(α1, . . . , αn) is square-free, then α1, . . . , αn form an integral
basis for OK.

A lemma which is useful in conjunction with Lemma 2.3 is the
following:

Lemma 2.5. (a) If OK/(Z·α1⊕· · ·⊕Z·αn) is an abelian group
of exponent m (i.e. each element has order dividing m), then

OK ⊆ Z · α1

m
⊕ · · · ⊕ Z · αn

m
.

(b) If OK 6= Z · α1 ⊕ · · · ⊕ Z · αn, then OK must contain some
element of the form

m1
α1

m
+ · · ·+mn

αn

m
with 0 ≤ mi ≤ m− 1 and not all mi equal to zero.

Proof. Let M = Z ·α1⊕· · ·⊕Z ·αn. Part (a) follows immediately
from the fact that mOK ⊂ M , and part (b) follows easily from part
(a) and the fact that

{m1
α1

m
+ · · ·+mn

αn

m
| 0 ≤ mi ≤ m− 1}

forms a set of coset representatives for
(

1
m
M
)
/M . �

As an application of these ideas, we determine the ring of integers
OK in K = Q(

√
d) when d is a square-free integer (c.f. Exercise 1.13).

Let θ =
√
d, so thatOK contains Z[θ]. We will determine when equality

holds, and describe OK in all cases.
Let σ1 be the identity map on K, and let σ2 : K → C be the map

sending
√
d to −

√
d. Then

∆K/Q(1, θ) = det

(
1
√
d

1 −
√
d

)2

= 4d .
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By Lemma 2.3, we know that |OK/Z[θ]|2 divides 4d, and since
d is square-free, it follows that |OK/Z[θ]| equals 1 or 2. Suppose
|OK/Z[θ]| = 2. Then by Lemma 2.5, OK must contain either 1

2
, θ

2
,

or 1+θ
2

. The minimal polynomials of the first two elements do not have
integer coefficients, so those can be ruled out. The minimal polynomial
of 1+θ

2
is X2 − X + 1−d

4
, so 1+θ

2
is an algebraic integer if and only if

d ≡ 1 (mod 4). From this, we conclude:

Proposition 2.6. Let d be a squarefree integer. Then the ring of
integers in K = Q(

√
d) is

OK =

{
Z[
√
d] if d ≡ 2, 3 (mod 4)

Z[1+
√

d
2

] if d ≡ 1 (mod 4) ,

and the discriminant of OK is 4d if d ≡ 2, 3 (mod 4) and d if d ≡
1 (mod 4).

The following result is useful for computing discriminants.

Exercise 2.7. Let α be an algebraic integer of degree n, and let
f(x) be its minimal polynomial over Q. Define the discriminant of α,
denoted ∆(α), to be the discriminant of the basis {1, α, . . . , αn−1} for
Q(α)/Q, and let α1, . . . , αn be the conjugates of α.

(a) Show that

∆(α) = (−1)(
n
2)

n∏
i=1

f ′(αi) = (−1)(
n
2)NQ(α)/Q(f ′(α)).

(b) Suppose α is a root of the polynomial f(x) = xn + ax + b,
where a, b ∈ Z are chosen so that f(x) is irreducible. Use part
(a) to show that

∆(α) = (−1)
n(n−1)

2

(
(−1)n−1(n− 1)n−1an + nnbn−1

)
.

In particular, show that if f(x) = x2 + ax + b then ∆(α) =
a2 − 4b, and if f(x) = x3 + ax+ b then ∆(α) = −4a3 − 27b2.

Exercise 2.8. (a) Find an integral basis for the ring of inte-
gers of Q(θ), where θ is a root of the polynomial x3 − 2x+ 3.

(b) Find an integral basis for the ring of integers of Q(θ), where θ
is a root of the polynomial x3 − x− 4.

1.2. Example: The ring of integers in Q( 3
√

2). In order to
apply Corollary 2.4 in an efficient manner, one often requires some
supplemental information. The following proposition can be very useful
in this context.
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Proposition 2.9. Let K be a number field of degree n, and let
α ∈ K be a nonzero algebraic integer of degree n. Suppose the minimal
polynomial of α is Eisenstein with respect to the prime p. Then p does
not divide |OK/Z[α]|.

Proof. Let f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 be the minimal

polynomial of α. Recall that f(x) is Eisenstein at p if p | aj for 0 ≤
j ≤ n− 1 and p2 - a0.

Suppose that p | |OK/Z[α]|. Then the quotient group OK/Z[α] has
order divisible by p, so by Cauchy’s theorem there exists ξ ∈ OK such
that the class of ξ has order p. It follows that pξ ∈ Z[α] and ξ /∈ Z[α].

Write
pξ = b0 + b1α+ · · ·+ bn−1α

n−1.

Then each bi ∈ Z, and not every bi is divisible by p. Let j be the
smallest index with 0 ≤ j ≤ n− 1 for which p - bj. Then

η := ξ −
(
b0
p

+
b1
p
α+ · · ·+ bj−1

p
αj−1

)
=
bj
p
αj +

bj+1

p
αj+1 + · · ·+ bn

p
αn ∈ OK ,

since both ξ and b0
p

+ b1
p
α+ · · ·+ bj−1

p
αj−1 are in OK .

If η ∈ OK , then we also have

ηαn−j−1 =
bj
p
αn−1 +

αn

p

(
bj+1 + bj+2α+ · · ·+ bnα

n−j−2
)
∈ OK .

Since
αn

p
= −(a0 + a1α+ · · ·+ an−1α

n−1)/p ∈ OK ,

it follows that
bj

p
αn−1 ∈ OK . This implies that NK/Q(

bj

p
αn−1) ∈ Z.

However,

NK/Q(
bj
p
αn−1) =

bnjNK/Q(α)n−1

pn
=
bnj a

n−1
0

pn
6∈ Z

since p - bj and p2 - a0. This contradiction proves that p - |OK/Z[α]|
as claimed. �

As an application, we now find the ring of integers in Q( 3
√

2).

Proposition 2.10. The ring of integers in Q( 3
√

2) is Z[ 3
√

2].

Proof. Let α := 3
√

2, and let M = Z[α] be the Z-submodule of
OK generated by 1, α, α2. Let m = |OK/M |. Using Lemma 2.3 and
Exercise 2.7, we have

m2∆(OK) = ∆K/Q(1, α, α2) = −4 · 03 − 27 · (−2)2 = −108.
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Since 108 = 22 · 33, the only primes that could divide m are 2 and
3.

We will use Proposition 2.9 to show that neither 2 nor 3 divides m;
it follows that m = 1, and consequently OK = M .

Since x3 − 2 is the minimal polynomial of α and is Eisenstein at
2, Proposition 2.9 implies that 2 - m. Now set β := α − 2, so that
K = Q(α) = Q(β). The minimal polynomial of β is g(x) := (x +
2)3 − 2 = x3 + 6x2 + 12x + 6, which is Eisenstein at both 2 and 3.
Proposition 2.9 therefore tells us that 3 - |OK/Z[β]|. But one sees
easily that Z[β] = Z[α], and therefore 3 - m as well. �

2. Kummer’s theorem on factoring ideals

In this section, we show how to explicitly factor ideals of the form
pOK where p is a prime number and OK is a number ring. The main
result, Theorem 2.16 below, is very useful for doing computations in
algebraic number theory. Before studying the general case, we begin
by analyzing the special case where K is a quadratic number field.

We saw in §1.4 that if p is a prime number, then in the ring Z[i] of
Gaussian integers we have:

(a) (p) = p2 if p = 2, where p = (1 + i).
(b) (p) = p1p2 if p ≡ 1 (mod 4), where p1, p2 are distinct prime

ideals.
(c) (p) is prime if p ≡ 3 (mod 4).

In case (a), we say that the prime ideal (p) of Z ramifies in Z[i]. In
case (b), we say that (p) splits completely in Z[i]. In case (c), we say
that (p) is inert in Z[i].

In case (b), we can describe (p) = (p)Z[i] explicitly: if we choose
positive a, b ∈ Z such that a2+b2 = p, then we have (p) = (a+bi)(a−bi).

Remark 2.11. When we want to emphasize that we are thinking
of (p) as an ideal of Z[i] rather than Z, we will usually write pZ[i] or
(p)Z[i] rather than just (p).

Let’s see if we can generalize these results to other quadratic exten-
sions of Q.

Proposition 2.12. Let K = Q(
√
d) with d ∈ Z squarefree. Let p

be an odd prime number such that p does not divide d. Then:

(a) If (d
p
) = 1 then pOK factors into prime ideals as (p, a +√

d)(p, a−
√
d), where a2 ≡ d (mod p). Moreover, these prime

ideals are distinct.
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(b) If (d
p
) = −1, then pOK is prime.

Proof. For (a), note that in OK , we have

(p, a+
√
d)(p, a−

√
d) = (p2, p(a+

√
d), p(a−

√
d), a2 − d) ⊆ (p)

since a2 − d ≡ 0 (mod p). On the other hand, (p, a +
√
d)(p, a −

√
d)

contains both p2 and p(a +
√
d) + p(a −

√
d) = 2ap, and therefore it

contains gcd(p2, 2ap) = p. So we have pOK = (p, a+
√
d)(p, a−

√
d).

To see that the ideals on the right hand side are prime ideals, it
is enough to show that a +

√
d 6∈ (p), for then the norm of each ideal

must be p, and an ideal whose norm is prime is a prime ideal. But if
p | a+

√
d, then also p | a−

√
d, so p | 2a, a contradiction.

To see that the ideals (p, a ±
√
d) are distinct, note that if a −√

d ∈ (p, a +
√
d), then we would also have 2a ∈ (p, a +

√
d), so that

(1) = (p, 2a) ⊆ (p, a+
√
d), a contradiction.

For part (b), it is enough to show that if p is any prime ideal of
OK then N(p) 6= p. Equivalently, we need to show that OK/p is not
isomorphic to Z/pZ. For this, consider the polynomial x2− d. It has a
root in OK and therefore in OK/p. If the latter ring were isomorphic
to Z/pZ, then we would have (d

p
) = 1, contrary to assumption. �

Exercise 2.13. Work out what happens for p = 2 and for p | d.

We now develop a general method for factoring the ideal generated
by a rational prime in a number ring which contains Proposition 2.12
as a special case. We begin with the following lemmas.

Lemma 2.14. Let θ be an algebraic integer with minimal polynomial
m(x) ∈ Z[x]. Let p be a prime number, let f(x) ∈ Z[x] be a polynomial,

and let f(x) (resp. m(x)) denote the reduction modulo p of f(x) (resp.

m(x)). Suppose f(x) | m(x) in Fp[x]. Then

Z[x]/ (p, f(x)) ∼= Z[θ]/ (p, f(θ)) .

Proof. Let ψ : Z[x] → Z[θ]/ (p, f(θ)) be the map sending x to θ.
It suffices to prove that ker(ψ) ⊆ (p, f(x)) as ψ is clearly surjective and
(p, f(x)) ⊆ ker(ψ).

Let k(x) ∈ ker(ψ), so that k(θ) ∈ (p, f(θ)), implying that k(θ) =
a(θ)·p+b(θ)f(θ) for some polynomials a(x), b(x) ∈ Z[x]. Define h(x) :=
a(x) · p + b(x)f(x) − k(x). Since h(θ) = 0 and m(x) is the minimal
polynomial of θ, we have m(x) | h(x), which implies that h(x) =
m(x)n(x) for some n(x) ∈ Z[x]. As m(x) ∈ (p, f(x)) by assumption,
we have h(x) ∈ (p, f(x)). Hence k(x) ∈ (p, f(x)) as desired. �
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Lemma 2.15. Let K = Q(θ) be a number field, where θ is an al-
gebraic integer, and suppose that p is a prime number which does not
divide |OK/Z[θ]|. Then OK/pOK

∼= Z[θ]/pZ[θ].

Proof. Let ψ : Z[θ] → OK/pOK be the natural map sending θ to
θ (mod pOK). Clearly pZ[θ] ⊆ ker(ψ). Conversely, if α ∈ ker(ψ), then
α ∈ Z[θ]∩ pOK . Hence α = pβ for some β ∈ OK . Since pβ ∈ Z[θ], the
image β ∈ OK/Z[θ] has order dividing p. Since p does not divide the
order of OK/Z[θ], it follows that β = 0. Thus β ∈ Z[θ], which implies
that α ∈ pZ[θ]. It follows that ker(ψ) = pZ[θ].

Finally, we show that ψ is surjective. For this, note that if G is any
finite abelian group of order prime to p, then the multiplication by p
map [p] : G→ G is injective and hence surjective. So if γ ∈ OK , then
γ ∈ OK/Z[θ] can be written as γ = pγ′ for some γ′ ∈ OK . But then
γ − pγ′ ∈ Z[θ]. So ψ(γ − pγ′) = γ (mod pOK) as desired. �

Theorem 2.16 (Kummer’s Factorization Theorem). Let K = Q(θ)
be a number field, where θ is an algebraic integer, and suppose that p
is a prime number which does not divide |OK/Z[θ]|. Let g(x) be the
minimal polynomial of θ, and write

g(x) ≡ g1(x)
e1 · · · gr(x)

er (mod p) ,

where gi(x) ∈ Z[x], gi(x) := gi(x) (mod p) is irreducible over Fp, and
the gi’s are pairwise distinct. Then

pOK = pe1
1 · · · per

r ,

where pi = (p, gi(θ)) is a prime ideal and N(pi) = pfi with fi = deg(gi).
Moreover, the pi’s are all distinct.

Proof. By Lemmas 2.14 and 2.15, we have

OK/pi = OK/(p, gi(θ))
∼= Z[θ]/ (p, gi(θ))
∼= Z[x]/ (p, gi(x))

∼= Fp[x]/
(
gi(x)

)
.

Since gi(x) is irreducible over Fp, we know that Fp[x]/
(
gi(x)

)
is a

field of degree fi := deg(gi) over Fp. Therefore pi is a prime ideal with
norm pfi . Also, if n := [K : Q], then

(2.1)
r∑

i=1

eifi = deg
(
g(x)

)
= n.
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We now prove that the pi’s are distinct. Given i 6= j, we know
that gi(x) and gj(x) are relatively prime in Fp[x]. So there exist

a(x), b(x) ∈ Z[x] such that 1 = a(x) · gi(x) + b(x) · gj(x) in Fp[x].
But then 1 ∈ (p, gi(x), gj(x)) in Z[x], from which we deduce that
1 ∈ (p, gi(θ), gj(θ)) ⊆ OK . As (p, gi(θ), gj(θ)) ⊆ (p, gi(θ)) + (p, gj(θ)),
it follows that 1 ∈ pi + pj. So pi 6= pj as desired.

Finally, we prove that

pOK = pe1
1 · · · per

r .

A simple inductive argument, plus the fact that g(θ) = 0, shows that

pe1
1 · · · per

r = (p, g1(θ))
e1 · · · (p, gr(θ))

er

⊆ (p, g1(θ)
e1 · · · gr(θ)

er) = (p, g(θ))

= pOK .

Therefore pOK | pe1
1 · · · per

r , from which it follows that pOK = p
e′1
1 · · · p

e′r
r

with 0 ≤ e′i ≤ ei for all i. By Theorem 1.55 and (2.1), we know that

n =
r∑

i=1

e′ifi ≤
r∑

i=1

eifi = n .

Since e′i ≤ ei for every i, it follows that all terms in the displayed
inequality must be equalities. Therefore e′i = ei for all i. �

Remark 2.17. Kummer’s Factorization Theorem applies to all primes
p if OK = Z[θ]. More generally, we know that p - |OK/Z[θ]| whenever
p2 - ∆(θ), or if the minimal polynomial of θ is Eisenstein at p.

Unfortunately, one can find a number field K and a prime p such
that p divides |OK/Z[θ]| for all algebraic integers θ ∈ K of degree n,
and in such examples Kummer’s theorem does not suffice to determine
the factorization of pOK into prime ideals.

3. The splitting of primes

3.1. Terminology. Let OK be a number ring, and let p be a ra-
tional prime. By Theorem 1.55, we know that

pOK = pe1
1 · · · per

r

with p1, . . . , pr distinct prime ideals having norm NK/Q(pi) = pfi , and
that

r∑
i=1

eifi = n .
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We call the prime ideals pi the prime ideals lying over (or dividing)
p. The integer ei is called the ramification index of pi, and fi is called
the residue degree of pi.

Exercise 2.18. Show that every nonzero prime ideal p of OK lies
over a unique prime number p.

We say that p is ramified in OK (or in K) if ei ≥ 2 for some i, i.e.,
if p2 | pOK for some nonzero prime ideal p of OK . In addition, p is
called totally ramified in OK if pOK = pn for some prime ideal p.

A prime p is said to be inert in OK if pOK is a prime ideal, and p is
said to split completely in OK if r = n, i.e., if pOK factors as a product
of n distinct prime ideals, each having norm p.

As a consequence of Kummer’s factorization theorem, we can de-
duce several useful results about the splitting behavior of rational
primes in number rings:

Corollary 2.19. Let θ be an algebraic integer whose minimal poly-
nomial g(x) is Eisenstein at the prime p. If K = Q(θ), then p is totally
ramified in OK.

Proof. We know that θ Eisenstein at p implies p - |OK/Z[θ]|. By
the preceding remarks, it suffices to note that

g(x) ≡ xn (mod p) ⇒ pOK = pn,

where p = (p, θ) and [K : Q] = n. �

Corollary 2.20. If p - |OK/Z[θ]|, then p ramifies in OK if and
only if p | ∆K.

Proof. Let θ ∈ OK be a primitive element for K so that K =
Q(θ). Let g(x) =

∏n
i=1(x− θi) be the minimal polynomial of θ, where

θ1, . . . , θn are its conjugates. Let ∆ = ∆(θ) be the discriminant of θ.
Since

∆ =
∏
i<j

(θi − θj)
2 ,

we know from field theory that g(x) will have a multiple root in Fp if

and only if p | ∆. Moreover, it also follows from field theory that g(x)
has a multiple root in Fp if and only if there exists an irreducible monic

polynomial h(x) ∈ Fp[x] such that h(x) | g(x) in Fp[x].
But if p - |OK/Z[θ]|, then by Theorem 2.16, p ramifies in OK if and

only if g(x) has a multiple root in Fp. �

Corollary 2.21. If K is a number field, then only finitely many
prime numbers p ramify in K.
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Proof. There are only finitely many primes which divide either
|OK/Z[θ]| or ∆K . �

One can show that Corollary 2.20 is true for any number field K
without the hypothesis that p - |OK/Z[θ]|. We will see later that OK

is not always of the form Z[θ] for some θ ∈ OK . (If OK = Z[θ], we say
that OK is monogenic over Z.)

3.2. Examples of prime splittings.

Example 2.22. We know that if K = Q( 3
√

2), then OK = Z[ 3
√

2].
Let p = 5; then x3 − 2 factors modulo 5 into irreducibles as

x3 − 2 ≡ (x− 3)(x2 + 3x− 1) (mod 5).

So the ideal 5OK has the prime factorization 5OK = p1p2, where
f(p1/5) = 1 and f(p2/5) = 2. Here p1 = (5, 3

√
2 − 3), p2 = (5, 3

√
4 +

3 3
√

2 − 1). Note in particular that the fi’s are not equal. (We will see
later that if K/Q is a Galois extension, then all of the fi’s are equal to
one another.)

Exercise 2.23. Prove that two quadratic fields K,K ′ are isomor-
phic if and only if their discriminants are the same.

Example 2.24. In contrast to the preceding exercise, there exist
non-isomorphic cubic fields with the same discriminant.

On the one hand, let θ be a root of g(x) = x3 +10x+1, K = Q(θ).
We know the discriminant of x3 + ax + b is −4a3 − 27b2. So ∆(θ) =
−4027, which is prime (and hence square-free). Thus OK = Z[θ]. It
is not hard to verify that g(x) (mod 17) is irreducible so that (17) is a
prime ideal in OK .

On the other hand, let α be a root of f(x) = x3−8x+15, L = Q(α).
Then ∆(α) = −4027, so again OL = Z[α]. However, f(x) ≡ (x+4)(x+
6)(x+7) (mod 17), so (17) = p1p2p3 splits completely in OL. It follows
that L 6∼= K as fields since any field isomorphism would have to respect
rings of integers and the splitting types of rational primes.

Interestingly, 17 is the smallest prime that works in this example—
for all prime p ≤ 13, f(x) and g(x) split the same way modulo p.

Exercise 2.25. Factor the ideals (2), (3), (7) into prime ideals in
R = Z[ 3

√
2].

3.3. Computing ideal class groups. Kummer’s factorization
theorem can also be used to determine ideal class groups. We turn
now to a couple of examples which illustrate the general method.
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Example 2.26. Let K = Q(
√

2), so that OK has the integral basis
1,
√

2. Then every ideal class contains a nonzero ideal of norm at most
5, since M = (1 +

√
2)2 = (3 + 2

√
2) ≈ 5.8 < 6.

Using Kummer’s factorization theorem, we factor x2 − 2 mod p for
p = 3, 5, and we find that both (3) and (5) remain prime in OK , and
therefore have norms 9, 25, respectively. So the only nonzero ideals of
norm at most 5 in OK are (1), (

√
2), and (2), all of which are principal.

It follows that OK is a PID.
Note that if we had used the integral basis 1,−1 +

√
2 instead, we

could have obtained a better value of M , concluding that every ideal
class contains a nonzero ideal of norm at most 4. This would remove
the need to factor (5) in OK .

Example 2.27. Let K = Q(
√
−5), so that OK has the integral

basis 1,
√
−5. We obtain M = (1 +

√
5)2 = 6 + 2

√
5 < 11, so that

every ideal class in Cl(OK) contains a nonzero ideal of norm at most
10. Using Kummer’s factorization theorem, we find that

(2) = (2, 1 +
√
−5)2 = p2

2

(3) = (3, 1 +
√
−5)(3, 1−

√
−5) = p3p

′
3

(5) = (
√
−5)2 = p2

5

(7) = (7, 3 +
√
−5)(7, 3−

√
−5) = p7p

′
7.

Note that p2 is not principal, since if it were equal to (α), then
we would have |N(α)| = 2, and therefore N(α) = ±2. However, if
α = a+ b

√
−5, then N(α) = a2 + 5b2 6= ±2, a contradiction.

Similarly, there are no elements of norm ±3,±7 in OK , so that
p3, p

′
3, p7, p

′
7 are not principal. The prime ideal p5, of course, is principal.

The nonzero ideals of norm at most 10 in OK are all products of
p2, p3, p

′
3, p5, p7, p

′
7 to various powers between 0 and 3. Moreover, since

p2
2 = (2), we have [p2]

2 = 1 in Cl(OK). We now seek to relate the
classes of p3 and p7 to the class of p2. For this, we search for elements
of K with norm divisible only by 2, 3 (resp 2, 7). This is simple: for
example, we have N(1 +

√
−5) = 6, from which it follows easily that

(1 +
√
−5) = p2p3. (Note that 1 +

√
−5 is in both p2 and p3, so that

p2p3 = p2 ∩ p3 ⊆ (1 +
√
−5) and therefore the equality of ideals follows

from the equality of the norms.) We conclude from this that

[p3] = [p2]
−1 = [p2],

where the last equality follows from the fact that [p2]
2 = 1. Since

p3p
′
3 = (3), we also have

[p′3] = [p3]
−1 = [p2]

−1 = [p2].
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Similarly, it follows from the fact that N(3 +
√
−5) = 14 that

[p7] = [p′7] = [p2], and therefore every ideal class in Cl(OK) coincides
with either 1 or [p2]. We conclude that Cl(OK) ∼= Z/2Z. In particular,
the class number of Z[

√
−5] (i.e., the order of its ideal class group) is

2.

It turns out that by using Minkowsi’s theory of geometry of numbers
(to be discussed later), we can dramatically reduce the value of M in
the above examples. For example, with K = Q(

√
−5), Minkowski’s

theory will give the bound M = 2 instead of M = 10!

Finally, we end this section with a significant generalization of
Proposition 2.10.

Proposition 2.28. Let p be a prime, and let a 6∈ {0,±1} be a
squarefree integer not divisible by p. Let θ = p

√
a be a pth root of a.

Then OK = Z[θ] if and only if ap−1 6≡ 1 (mod p2).

Proof. Let K = Q(θ). Assume ap 6≡ a (mod p2). By Lemma 2.3
and Exercise 2.7, the polynomial xp − a has discriminant ∆(θ) =
±ppap−1 and

∆(θ) = |OK/Z[θ]|2 ·∆K .

Since xp − a is Eisenstein at every prime divisor of a, it follows that
|OK/Z[θ]| is relatively prime to a, and thus is a power of p. Moreover,
the polynomial (x+a)p−a is Eisenstein at p by hypothesis, and Z[θ] =
Z[θ − a]. Therefore p - |OK/Z[θ]| by Proposition 2.9. It follows that
|OK/Z[θ]| = 1, i.e., OK = Z[θ].

Conversely, suppose OK = Z[θ]. Then by Kummer’s factorization
theorem, we have pOK = pp where p = (p, θ − a) is a prime ideal of
norm p. Clearly θ − a ∈ p, and since p ∈ p2, we must have θ − a 6∈ p2.
Thus

(θ − a) = pa

for some ideal a of OK relatively prime to p. Since p is the only prime
ideal of OK containing p, it is the only prime ideal of OK whose norm
is a power of p, and thus (p,N(a)) = 1. Since the constant term of the
minimal polynomial of θ − a is ap − a, it follows that

ap − a = |N(θ − a)| = N(pa) = pN(a) ,

so that p2 - ap − a as desired. �

3.4. Application: The Diophantine equation y2 = x3 − 5.
We now show how knowledge of the ideal class group can be of help in
solving certain Diophantine equations.
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Earlier on, we used the fact that Z[i] is a UFD to solve the equation
y2 = x3 − 1 in integers. We now use arithmetic in Z[

√
−5] (which has

class number 2) to solve the equation y2 = x3 − 5.

Theorem 2.29. The equation y2 = x3−5 has no integer solutions.

Proof. Suppose (x, y) is an integer solution. If x is even, then y
is odd and y2 ≡ −1 (mod 4), which is impossible. Therefore x is odd.

Also, it is easy to see that x and y must be coprime, since the only
possible prime dividing both is 5, but if 5 | x, y then 52 would divide
the left-hand side but not the right-hand side of the above equation, a
contradiction.

We now factor the equation in R = Z[
√
−5] to obtain

(y +
√
−5)(y −

√
−5) = x3 .

If a prime ideal p of R divides both (y+
√
−5) and (y−

√
−5), then

p | (x3) (and therefore p | (x)) and p | (2y). Since x is odd, and p | (x),
p - (2), so p | (y). This contradicts the fact that x and y are relatively
prime. Therefore the ideals (y +

√
−5) and (y −

√
−5) are coprime.

It follows by unique factorization into prime ideals that (y+
√
−5) =

a3 and (y −
√
−5) = b3 for some ideals a, b of R.

As [a]3 = [b]3 = 1 in Cl(R), and as the class number of Z[
√
−5] is

2, we conclude that a and b are principal ideals.
Since the only units in R are ±1, it follows in particular that

y +
√
−5 = (a+ b

√
−5)3

for some a, b ∈ Z. This implies that 1 = 3ba2 − 5b3 = b(3a2 − 5b2), so
that b = ±1. But then 3a2 − 5 = ±1, which is impossible.

This contradiction proves that no integral solutions (x, y) exist. �

4. Cyclotomic Fields

4.1. The cyclotomic field Q(ζm) with m a prime power. Let
m = pk be a prime power. In this section, we determine the ring of
integers in Q(ζm) and the factorization of certain ideals into products
of prime ideals. The case of a general positive integer m will be dealt
with in a subsequent section.

It is well-known that the polynomial

(2.2) Φm(x) =
xpk − 1

xpk−1 − 1
= x(p−1)pk−1

+ x(p−2)pk−1

+ · · ·+ xpk−1

+ 1

is irreducible over Z, and therefore is the minimal polynomial of ζm.
This polynomial has degree φ(m), where φ is Euler’s φ-function.
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The irreducibility of Φm(x) is most conveniently proved using the
fact that Φm(x+ 1) is Eisenstein at p. To see this, note that

Φm(x+ 1) =
(x+ 1)pk − 1

(x+ 1)pk−1 − 1
≡ (xpk

+ 1)− 1

(xpk−1 + 1)− 1
≡ xφ(pk) (mod p),

and that Φm(1) = p 6≡ 0 (mod p2).
In particular, Φm(x + 1), and therefore Φm(x), is irreducible over

Z, and [Q(ζm) : Q] = φ(m).

More generally, for any positive integer m, the minimal polynomial
Φm(x) of ζm has degree φ(m), and therefore [Q(ζm) : Q] = φ(m).
However, one cannot in general write down a simple explicit formula
for Φm(x) as in (2.2). We will sometimes write Km to denote the
cyclotomic field Q(ζm).

We recall for later use that Km/Q is a Galois extension with Galois
group isomorphic to (Z/mZ)∗. The fact that Km/Q is Galois follows
from the fact that, by the irreducibility of Φm(x), ζt

m ∈ Km is a root
of Φm(x) whenever 1 ≤ t < m and gcd(t,m) = 1. Furthermore,
the map from (Z/mZ)∗ to Gal(Km/Q) sending t to the automorphism
σt : ζm → ζt

m is a group isomorphism.

In order to compute the ring of integers in Q(ζm) whenm is a prime-
power, we will use the following lemma (which applies more generally
to any positive integer m):

Lemma 2.30. Let m be a positive integer, and let d = φ(m) be
the degree of the minimal polynomial Φm(x) of ζm over Q. Then the
discriminant ∆(ζm) of ζm divides md.

Proof. Since Φm(x) | xm − 1, we have xm − 1 = Φm(x)g(x) for
some g(x) ∈ Z[x]. Differentiating and setting x = ζm, we obtain

(2.3) mζm−1
m = Φ′

m(ζm)g(ζm)

since Φm(ζm) = 0. Noting that the constant term of Φm(x) must be
±1 and taking the norm of both sides of (2.3), we obtain

md = NQ(ζm)/Q(ζm) ·NQ(ζm)/Q(g(ζm))

= ±∆(ζm) ·NQ(ζm)/Q(g(ζm))

where the second equality comes from Exercise 2.7. As g(ζm) is a
nonzero algebraic integer, its norm is a nonzero element of Z. �

Theorem 2.31. If m = pk is a prime power and ζm = e2πi/m is a
primitive pkth root of unity, then:

(a) The absolute value of the discriminant of Q(ζm) is a power of
p.
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(b) The ring of integers in Q(ζm) is Z[ζm].

Proof. Part (a) is an immediate consequence of Lemma 2.30,
since the discriminant of Q(ζm) divides the discriminant of the basis

{1, ζm, ζ2
m, . . . , ζ

φ(m)−1
m } for Q(ζm)/Q.

Part (b) follows from the fact that Φm(x + 1) is Eisenstein at p,
since on the one hand this implies that p - |OKm/Z[ζm]|, and on the
other hand we have

∆(ζm) = ∆(Q(ζm)) · |OKm/Z[ζm]|2 ,
which implies that |OKm/Z[ζm]| is a power of p. �

As a consequence of Kummer’s factorization theorem, we obtain:

Corollary 2.32. (a) If m = pk, then p is totally ramified in
Km, and p is the only prime which ramifies in Km.

(b) The principal ideal (1− ζm) has norm p, and

pZ[ζm] = (1− ζm)φ(m).

Proof. Part (a) follows from Theorem 2.31 using Corollary 2.19
and Corollary 2.20.

For (b), note that ζm − 1 is a root of Φm(x+ 1), that Q(ζm − 1) =
Q(ζm), and that Φm(x + 1) ≡ xφ(m) (mod p). Therefore pZ[ζm] =
(p, ζm − 1)φ(m) = (ζm − 1)φ(m), since N(1 − ζm) = ±p implies that
p ∈ (ζm − 1) = (1− ζm). �

4.2. The first case of Fermat’s Last Theorem for regular
primes. Our next goal is to establish a result concerning the units
of Z[ζp] which was used by Kummer to prove the first case of Fer-
mat’s Last Theorem for regular primes. Before stating the first of
several preliminary lemmas, we remark that if the integer m is odd,
then Q(ζm) = Q(ζ2m).

Lemma 2.33. If m is a positive integer, the only roots of unity in
Q(ζm) are the mth roots of unity, if m is even, and the 2mth roots of
unity, if m is odd.

Proof. It is enough to prove the statement when m is even, so
we assume this from now on. Let ζ be a primitive kth root of 1 in
Km = Q(ζm). We want to show that k | m, for then ζ will be an mth

root of unity as desired. Without loss of generality (replacing ζ by an
appropriate power), we may assume that ζ = ζk = e2πi/k.

Since Km contains both ζk and ζm, we claim that it contains ζr,
where r = lcm(k,m). To see this, note that r = km/d, where d =
gcd(k,m), and that there exist a, b ∈ Z such that ak + bm = d. It
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follows that Km contains ζb
kζ

a
m == ζ

bm/m
k ζ

ak/k
m = e2πi(bm+ak)/km = ζr as

claimed.
But then Q(ζr) ⊆ Q(ζm), so that φ(r) ≤ φ(m) by a consideration

of degrees. Since m | r, it follows from Exercise 2.34 below that r = m.
Therefore k | m as desired. �

Exercise 2.34. If m, r are even positive integers with m | r and
φ(r) ≤ φ(m), then m = r.

We also note that since ζm = e2πi/m has complex absolute value
1, the complex conjugation automorphism τ of Gal(Km/Q) coincides
with the automorphism σ ∈ Gal(Km/Q) sending ζm to ζ−1

m . And since
Gal(Km/Q) is abelian, τ commutes with σ for all σ ∈ Gal(Km/Q).
Concretely, this implies that if α ∈ Km and σ ∈ Gal(Km/Q), then

σ(α) = σ(α).

The following lemma is usually attributed to Kronecker.

Lemma 2.35. If α ∈ C is a nonzero algebraic integer, all of whose
conjugates have complex absolute value at most 1, then α is a root of
unity.

Proof. Let f(x) ∈ Z[x] be the minimal polynomial of α, and let
n = deg(f). Since the coefficients ai of f(x) are elementary symmetric
functions of the conjugates of α, it follows from the triangle inequality
that |ai| ≤ 2n for all i. Therefore there are only finitely many possi-
bilities for the polynomial f(x), and hence for α. Applying the same
reasoning to αj for each positive integer j, we see that {α, α2, α3, . . .}
is a finite set. Therefore there exist positive integers j < k such that
αj = αk, from which it follows that αk−j = 1. �

The next lemma is a simple application of the binomial theorem.

Lemma 2.36. If α ∈ Z[ζp], then there exists an element a ∈ Z such
that αp ≡ a (mod p).

Proof. Write α = a0 + a1ζp + · · · + ap−2ζ
p−2. By the binomial

theorem, if α1, α2 ∈ Z[ζp] then (α1 + α2)
p ≡ αp

1 + αp
2 (mod p). By

induction, it follows that a similar statement holds for the sum of n
elements for all n ≥ 2, and in particular

αp ≡ ap
0 + ap

1ζ
p
p + · · ·+ ap

p−2(ζ
p−2
p )p (mod p).

Using Fermat’s little theorem and the fact that ζp
p = 1, we obtain

αp ≡ a0 + a1 + · · ·+ ap−2 (mod p).

Set a := a0 + a1 + · · ·+ ap−2. �
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We can now prove the following result due to Kummer:

Proposition 2.37. Let p be an odd prime number. If u ∈ Z[ζp] is
a unit, then u/u = ζk

p for some integer k.

Proof. Let α := u/u ∈ Z[ζp] ⊂ C. We claim that all conjugates of
α have absolute value 1. To see this, note that for all σ ∈ Gal(Q(ζp)/Q),
we have

σ(α) = σ(α) = σ(u/u) = σ(α−1) = σ(α)−1.

In particular,

|σ(α)|2 = σ(α)σ(α) = 1

as claimed. By Lemma 2.35, it follows that α is a root of unity.
By Lemma 2.33, we must have α = ±ζk

p for some integer k. We need
to show that the plus sign holds. Suppose for the sake of contradiction
that α = u/u = −ζk

p . Then (raising both sides to the pth power) we
have up = −up. Furthermore, we know from Lemma 2.36 that there
exists an integer a ∈ Z such that up ≡ a (mod p). Therefore up ≡ a
(mod p) also, and we have a ≡ −a (mod p). Since p is odd, this implies
that a ≡ 0 (mod p), so that p | up. This contradicts the fact that u is
a unit. �

Corollary 2.38. If p is an odd prime, then every unit in Z[ζp]
can be written as rζj

p for some integer 0 ≤ j ≤ p− 1, where r is a real
number belonging to the field Q(ζp).

Proof. Let u be a unit in Z[ζp]. By Proposition 2.37, we know
that u/u = ζk

p for some integer k. Choose an integer 0 ≤ j ≤ p − 1

such that 2j ≡ k (mod p). Then uζ−j
p = uζj

p . Setting r := uζ−j
p , we

have r = r, i.e., r ∈ R. Therefore u = rζj
p with r ∈ R, as desired. �

We now turn to the “first case” of Fermat’s Last Theorem for reg-
ular primes. We recall first that if p is a prime number and ζp = e2πi/p,
then Z[ζp] is the ring of integers in Q(ζp). Also, since the minimal
polynomial of ζp is xp−1 + xp−2 + · · ·+ x2 + x+ 1, it follows that every
element α ∈ Z[ζp] can be written uniquely in the form

α = a0 + a1ζp + · · ·+ ap−2ζ
p−2
p

with ai ∈ Z.
A prime p is called regular if p - hp, where hp is the class number of

Z[ζp]. Otherwise p is called irregular. It can be shown that there are
infinitely many irregular primes, the smallest of which is 37. However,
heuristics show that “most” primes are regular.
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We now prove the first case of Fermat’s Last Theorem for regular
primes, following Kummer. The case p = 3 is easy to handle directly,
so we assume in the proof that p ≥ 5.

Theorem 2.39 (Kummer). Suppose p ≥ 5 is a regular prime. Then
the equation xp + yp = zp has no solution in nonzero integers x, y, z
with p - xyz.

Proof. Without loss of generality, we may assume that x, y, z are
pairwise relatively prime.

We factor the given equation in Z[ζp] into ideals:

(2.4) (x+ y)(x+ yζp) · · · (x+ yζp−1
p ) = (z)p.

By Exercise 2.40 below, we know that the ideals on the left-hand
side of (2.4) are pairwise relatively prime. Therefore (x+ yζp) = Ip for
some ideal I (and similarly for the other terms on the left-hand side of
(2.4)). The ideal I has the property that [I]p = 1 in the class group of
Z[ζp]. Since p is regular, the order of the class group is not divisible by
p. It follows that I is principal, so that

x+ yζp = uαp

for some α ∈ Z[ζp] and some unit u ∈ Z[ζp].

Claim: x ≡ y (mod p).

Assume the claim for the moment. By symmetry, since we can also
write xp + (−z)p = (−y)p, it follows that x ≡ (−z) (mod p) as well.
But then

2xp ≡ xp + yp ≡ zp ≡ −xp (mod p),

so that p | 3xp, a contradiction. (We’re assuming that we’re in the first
case, so p - x, and also p > 3 by assumption.)

So we’ll be done once we prove the claim. For this, we note by
Lemma 2.36 that there exists a ∈ Z such that x+ yζp ≡ uap (mod p).

Noting that ζp = ζ−1
p , it follows that x + yζ−1

p ≡ x+ yζp ≡ uap (mod
p). It is easy to see that p - a, and it follows that

(x+ yζp)u ≡ (x+ yζ−1
p )u (mod p).

But u/u = ζk for some 0 ≤ k ≤ p − 1 by Corollary 2.38, so we
obtain:

(2.5) x+ yζp ≡ xζk
p + yζk−1

p (mod p).

Since every element α of Z[ζp] is uniquely expressible in the form
α = a0 + a1ζp + · · ·+ ap−2ζ

p−2
p , it follows that p | α if and only if p | ai

for all i.
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Since p - xy and p ≥ 5, it is not hard to see that (2.5) yields a
contradiction unless k = 1, in which case x + yζp ≡ xζp + y (mod p).
(If k = p − 1, it is necessary to first make the substitution ζp−1

p =

−(1 + ζp + · · ·+ ζp−2
p ) in (2.5).) Thus x ≡ y (mod p) as claimed. �

Exercise 2.40. Show that the ideals (x + yζ i
p) and (x + yζj

p) are
coprime in Z[ζp] whenever i and j are distinct modulo p.

Exercise 2.41. Prove the first case of Fermat’s last theorem in the
special case p = 3.

We see from this argument that it is very useful to understand the
structure of the unit group of a number field. A general result known
as Dirichlet’s unit theorem says that the unit group in a number ring
is always a finitely generated abelian group. We will prove Dirichlet’s
unit theorem later on by utilizing Minkowski’s geometry of numbers.

4.3. The cyclotomic field Q(ζm) for arbitrary m. We seek to
generalize the facts we already know concerning Q(ζm) when m is a
prime power to arbitrary positive integers m. To do this, first note
that by Theorem 2.31, if m = pk and m′ = qk′ , with p, q distinct
primes, then the discriminants of Km, Km′ are relatively prime.

We will need the following result.

Proposition 2.42. Let K,K ′ be number fields of degrees m and
m′, respectively. Assume that:

(i) K and K ′ are Galois over Q
(ii) K ∩K ′ = Q.
(iii) The discriminants d and d′ of K and K ′ are relatively prime.

If α1, . . . , αm (resp. α′1, . . . , α
′
m′) is an integral basis for OK (resp.

OK′), then αiα
′
j (1 ≤ i ≤ m, 1 ≤ j ≤ m′) is an integral basis for OKK′.

Remark 2.43. Let L be an overfield containing both K ′ and K,
and let KK ′ be the compositum of K and K ′ in L (i.e., the smallest
subfield of L containing both K and K ′). Then by Galois theory, the
hypothesis K ′ ∩K = Q implies that:

(a) KK ′ is Galois and [KK ′ : Q] = mm′. In fact, there is a natural
isomorphism Gal(KK ′/Q) ∼= Gal(K/Q)×Gal(K ′/Q).

(b) The mm′ elements αiα
′
j form a basis for KK ′/Q.

(c) There are natural isomorphisms Gal(K ′/Q) ∼= Gal(KK ′/K)
and Gal(K/Q) ∼= Gal(KK ′/K ′). In particular, [KK ′ : K] =
m′ and [KK ′ : K ′] = m,

(d) If Gal(KK ′/K) = {σ′1, . . . , σ′m′} and Gal(KK ′/K ′) = {σ1, . . . , σm},
then Gal(KK ′/Q) = {σkσ

′
l} (1 ≤ k ≤ m, 1 ≤ l ≤ m′).
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Remark 2.44. One can show under the hypotheses of the propo-
sition that the discriminant of KK ′ is dm′

d′m.

Proof. Let α ∈ OKK′ be arbitrary, and write

α =
∑
i,j

aijαiα
′
j, aij ∈ Q.

We want to show that each aij ∈ Z. We claim first that daij ∈ Z for
all i, j.

Assuming the claim for the moment, we show how to conclude. By
symmetry (switching the roles of K,K ′), we also have d′aij ∈ Z for all
i, j. But we are assuming that d and d′ are relatively prime, so there
exist s, t ∈ Z such that sd+ td′ = 1. Therefore aij = sdaij + td′aij ∈ Z
as desired.

We now prove the claim. Set βj =
∑m′

i=1 aijα
′
i for j = 1, . . . ,m

and let T be the m × m matrix whose (`, j)th entry is σ`(αj), where
{σ1, . . . , σm} = Gal(KK ′/K ′). Also, set

a :=

 σ1α
...
σm(α)

 , b :=

 β1
...
βm

 .

By Galois theory, the m embeddings of K into C are just the
restrictions of the embeddings σ1, . . . , σn to K. Therefore we have
d = det(T )2. Also, we have a = Tb. Indeed, the `th row of Tb is

m∑
j=1

σ`(αj)βj =
∑

i=1,...,m′

j=1,...,m

σ`(αj)aijα
′
i

=
∑

i=1,...,m′

j=1,...,m

σ`(αjaijα
′
i)

= σ`(
∑
i,j

aijαjα
′
i)

= σ`(α)

since σ` ∈ Gal(KK ′/K ′) fixes K ′. Multiplying both sides of this iden-
tity by adj(T ), we obtain adj(T )a = det(T )b. Therefore det(T )adj(T )a =
db. Since the entries of T , adj(T ), and a are all algebraic integers, it
follows that the entries of db are also algebraic integers, i.e.,

dβj =
∑

i

daijα
′
i ∈ OK′ ∀ j.
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As the set {α′i} forms an integral basis for OK′ , it follows that
daij ∈ Z for all i, j, as claimed.

�

We can now prove:

Theorem 2.45. Let m > 1 be a positive integer and let Km =
Q(ζm). Let the prime factorization of m be m = pk1

1 · · · pks
s . Then:

(a) The field Km is the compositum of the fields K
p

ki
i

for all i.

(b) [Km : Q] = φ(m) and Km/Q is Galois with Galois group iso-
morphic to (Z/mZ)∗.

(c) ∆Km is divisible only by the primes pi.
(d) The ring of integers of Km is Z[ζm].

Proof. Parts (a) and (b) are proved in Section 14.5 of Dummit
and Foote’s “Abstract Algebra”, along with the fact that if m = m′m′′

with m′′ = pk and p - m′, and if K ′ = Km′ and K ′′ = Kpk , then
K ′ ∩K ′′ = Q. We refer to Dummit and Foote for those facts, or leave
them as exercises for the reader.

Part (c) follows from Lemma 2.30, and in particular, this shows
that the discriminants of K ′ and K ′′ above are relatively prime. Part
(d) now follows by induction from Theorem 2.31 and Proposition 2.42,
since

{ζ i
m′ζ

j
m′′} 0≤i≤φ(m′)−1

0≤j≤φ(m′′)−1

= {ζk
m}0≤k≤φ(m)−1

by the Chinese remainder theorem. �

5. Exercises for Chapter 2

For some of these problems, you may wish to use the following
theorem of Minkowski, which will be proved in the next chapter:

Theorem: Let K be a number field. Then every ideal class in OK

contains a nonzero ideal of norm at most MK , where

MK :=
n!

nn
(
4

π
)r2
√
|∆K |

is Minkowski’s constant. (Here n = [K : Q], ∆K is the discriminant of
K, and r2 is one-half the number of complex embeddings of K. An em-
bedding σ : K ↪→ C is called real if σ(K) ⊆ R, and complex otherwise.)

(1) Let K be a number field, let α ∈ K, and let Tα : K → K be
the linear transformation from the Q-vector space K to itself
corresponding to multiplication by α. Show that det(Tα) =
NK/Q(α).
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(2) Let α be an algebraic integer of degree n, and let f(x) be its
minimal polynomial over Q. Define the discriminant of α, de-
noted ∆(α), to be the discriminant of the basis {1, α, . . . , αn−1}
for Q(α)/Q, and let α1, . . . , αn be the conjugates of α.
(a) Show that

∆(α) = (−1)(
n
2)

n∏
i=1

f ′(αi) = (−1)(
n
2)NQ(α)/Q(f ′(α)).

(b) Use part (a) to compute the discriminant of α if α is a
root of the polynomial f(x) = xn + ax+ b, where a, b ∈ Z
are chosen so that f(x) is irreducible.

(c) Find an integral basis for the ring of integers of Q(θ),
where θ is a root of the polynomial x3 − 2x+ 3.

(d) Find an integral basis for the ring of integers of Q(θ),
where θ is a root of the polynomial x3 − x− 4.

(3) Let K be a number field of degree n, let α1, . . . , αn ∈ OK ,
and let d = ∆K/Q(α1, . . . , αn). Show that d ≡ 0 or 1 (mod 4).
In particular, this implies that the discriminant of a number
field is congruent to 0 or 1 (mod 4). (Hint: Let σ1, . . . , σn

be as usual. Then the determinant of (σi(αj)) is a sum of n!
terms, one for each permutation of {1, . . . , n}. Let P (resp.
N) be the sum of the terms corresponding to even (resp. odd)
permutations, so that d = (P − N)2. Show that P + N and
PN are in Z.)

(4) Let I be a non-zero ideal in a Dedekind ring R. Show that I
can be generated by 2 elements. (Hint: Let α ∈ I be arbitrary,
and write I =

∏
pai

i . Show that (α) = (
∏

pbi
i )
∏

q
cj

j for some
bi ≥ ai and cj ≥ 1, and use the Chinese Remainder Theorem
to show that there exists β ∈ R such that β ∈ pai

i \p
ai+1
i and

β 6∈ qj for all i, j.)
(5) (a) Prove that a Dedekind ring with only finitely many prime

ideals is a PID. (Hint: Use the Chinese Remainder The-
orem to prove that every prime ideal is principal.)

(b) Deduce from this and the fact that Z[
√
−5] is not a UFD

an incredibly indirect proof of the fact that there are in-
finitely many prime numbers in Z.

(6) Factor the ideals (2), (3), (7), (29), and (31) into prime ideals
in R = Z[ 3

√
2].

(7) Let K = Q(θ), where θ is a root of f(x) = x3 − 2x− 2.
(a) Show that [K : Q] = 3 and that Z[θ] is the ring of integers

in K.
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(b) Show that Cl(OK) is trivial.
(8) Let K = Q(

√
−6). Determine which rational primes p split,

ramify, and remain inert in K. Your answer should be ex-
pressed in terms of congruence conditions on p. (Hint: Use
quadratic reciprocity.)

(9) Let p be a prime, and let a be a squarefree integer which is
relatively prime to p. Let K = Q(θ), where θ = p

√
a. Show

that OK = Z[θ] if and only if ap−1 6≡ 1 (mod p2).
(10) Determine the ideal class group of Z[ 3

√
2].

(11) Determine the ideal class groups (not just their orders) of:
(a) Z[

√
−14].

(b) Z[
√
−21].



CHAPTER 3

Geometry of numbers and applications

1. Minkowski’s geometry of numbers

1.1. Embedding the ring of integers as a lattice in Rn. In
order to enable more efficient computation of the ideal class group,
we now introduce a new technique for studying number fields due to
Minkowski. It will be a very powerful tool, which will also help us
better understand topics as diverse as the discriminant, the group of
units, and the zeta function of a number field.

Minkowski’s idea is to view the ring of integers in a number field as
a lattice in a suitable Euclidean space. Minkowski’s lattice embedding
is slightly different from the one which we studied earlier. We now
explain in detail how this works.

Let K be a number field of degree n with ring of integers OK .
An important role will be played by the n embeddings σ1, . . . , σn of
K into C. In particular, it is important to divide these embeddings
into two categories: the real embeddings (those for which σ(K) ⊂ R)
and the complex embeddings (those for which σ(K) 6⊂ R). Note that
the complex embeddings come in conjugate pairs: if σ is a complex
embedding then so is σ. Following the traditional notation, we let r1
denote the number of real embeddings and r2 the number of pairs of
complex embeddings, so that r1 + 2r2 = n.

Furthermore, we label the embeddings so that σ1, . . . , σr1 are real,
and we let τ1, . . . , τr2 consist of one representative from each pair of
complex conjugate embeddings.

The basic fact, which will be established below, is that if we embed
K into the vector space Rr1 × Cr2 by the map

α 7→ (σ1(α), . . . , σr1(α), τ1(α), . . . , τr2(α))

and then identify Rr1 × Cr2 with Rn using the isomorphism C ∼= R2

given by

z 7→ (Re(z), Im(z)),

then the image of OK in Rn is a lattice of rank n.

57



58 3. GEOMETRY OF NUMBERS AND APPLICATIONS

Recall that a lattice of rank n in Rn is the Z-span of a vector space
basis for Rn. (More generally, Λ is a lattice of rank m in Rn if it can be
written as Λ = Zβ1 ⊕ · · · ⊕ Zβm with β1, . . . , βm linearly independent
over R.)

Before proving that the image of OK in Rn under the embedding
ι : K ↪→ Rn described above is a lattice of maximal rank, we first
explain why we chose to distinguish one embedding from each complex
conjugate pair. Had we not done this, we could have defined a map
ι′ : K → Rr1 × C2r2 ∼= Rr1+4r2 = Rn+2r2 , but the image of OK would
clearly not be a lattice of maximal rank, since if τj(α) = xj + iyj, the
coordinates of ι′(α) would be

(· · · , xj, yj, · · · , xj,−yj, · · · )

and therefore ι′(K) would lie in a linear subspace of codimension 2r2
in Rn+2r2 .

We now prove:

Proposition 3.1. The image ι(OK) of OK in Rn is a lattice of
rank n.

Proof. It suffices to prove that if α1, . . . , αn is an integral basis
for OK , then ι(α1), . . . , ι(αn) is a basis for Rn, since the image of OK

is clearly the Z-span of {ι(α1), . . . , ι(αn)}.
For this, we need to show that the n × n matrix A obtained by

writing out the n column vectors {ι(α1), . . . , ι(αn)} in terms of their
coordinates in Rn has nonzero determinant.

Explicitly, the determinant of the matrix A is∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

σ1(α1) · · · σ1(αn)
...

...
σr1(α1) · · · σr1(αn)
Re(τ1(α1)) · · · Re(τ1(αn))
Im(τ1(α1)) · · · Im(τ1(αn))
...

...
Re(τr2(α1)) · · · Re(τr2(αn))
Im(τr2(α1)) · · · Im(τr2(αn))

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

By elementary row operations, and viewing A as an n × n matrix
over C, we can relate det(A) to the discriminant of OK as follows.
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First, we add iIm(τi(αj)) to Re(τi(αj)) to find that det(A) equals∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

σ1(α1) · · · σ1(αn)
...

...
σr1(α1) · · · σr1(αn)
τ1(α1) · · · τ1(αn)
Im(τ1(α1)) · · · Im(τ1(αn))
...

...
τr2(α1) · · · τr2(αn)
Im(τr2(α1)) · · · Im(τr2(αn))

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Next, we multiply Im(τi(αj)) by −2i to find that (−2i)r2 det(A)
equals ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

σ1(α1) · · · σ1(αn)
...

...
σr1(α1) · · · σr1(αn)
τ1(α1) · · · τ1(αn)
−2iIm(τ1(α1)) · · · −2iIm(τ1(αn))
...

...
τr2(α1) · · · τr2(αn)
−2iIm(τr2(α1)) · · · −2iIm(τr2(αn))

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Finally, we add τi(αj) to −2iIm(τi(αj)) and find that (−2i)r2 det(A)
equals ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

σ1(α1) · · · σ1(αn)
...

...
σr1(α1) · · · σr1(αn)
τ1(α1) · · · τ1(αn)
τ1(α1) · · · τ1(αn)
...

...
τr2(α1) · · · τr2(αn)
τr2(α1) · · · τr2(αn)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

which equals ±|∆K |1/2, where ∆K is the discriminant of OK .
Since ∆K 6= 0, we find that | det(A)| = 2−r2|∆K |1/2 6= 0 as desired.

�

Given a lattice Λ in Rn of rank n, we define a fundamental domain
for Λ to be a set of the form

F := {
n∑

j=1

ajvj : aj ∈ R, 0 ≤ aj < 1},
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where v1, . . . , vn is a Z-basis for Λ. It is easy to see that given any
x ∈ Rn, there exists a unique point x′ ∈ F such that x − x′ ∈ Λ. In
other words, there is a unique translate of x by a lattice point which
lies in the given fundamental domain.

Since F is always a a parallelotope in Rn, it follows from multivari-
able calculus that the n-dimensional Euclidean volume of F is the ab-
solute value of the determinant formed by the coordinates of v1, . . . , vn.
Moreover, it follows from linear algebra that any two Z-bases for Λ give
rise to the same determinant (up to ±1). Therefore it makes sense to
define the covolume of a lattice Λ, written covol(Λ) or vol(Rn/Λ), to
be the volume of any fundamental domain for Λ.

As a corollary of the above proof, we note the following important
calculation:

Corollary 3.2. If Λ = ι(OK), then vol(Rn/Λ) = 2−r2
√
|∆K |.

If Λ is a rank n lattice in Rn and Λ′ is a Z-submodule of Λ of rank
n, then it is easy to see that Λ′ is also a rank n lattice in Rn, and
by the structure theorem for finitely generated abelian groups (Theo-
rem A.11),

vol(Rn/Λ′) = [Λ : Λ′]vol(Rn/Λ).

Applying these remarks to the image in Rn of an ideal I of OK , we
find:

Corollary 3.3. If I is an ideal of OK, then

vol(Rn/ι(I)) = 2−r2
√
|∆K |N(I).

Now recall from §3.4 that the key to proving the finiteness of the
class number is to find a constant M such that every ideal I of OK

contains an element α such that |N(α)| ≤ M · N(I). Moreover, the
smaller the value of M the better for the purpose of estimating the
class number of OK .

With our new geometric picture in mind, we see that if we define a
norm function on Rn = Rr1+2r2 by setting

N(a1, a2, . . . , ar1 , x1, y1, x2, y2, . . . , xr2 , yr2) =
a1a2 · · · ar1(x

2
1 + y2

1)(x
2
2 + y2

2) · · · (x2
r2

+ y2
r2

),

then for all α ∈ K, we have NK/Q(α) = N(ι(α)). In other words, the
function N on Rn is compatible with the norm function on K under
the embedding ι.

This allows us to view the norm on OK geometrically in terms of
the function N restricted the lattice Λ. Minkowski’s brilliant idea was
to prove a general result (the convex body lemma) about lattices in
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Euclidean space which implies a much sharper version of the key result
used for proving the finiteness of the class number. We will discuss this
result and its applications next.

1.2. Minkowski’s convex body theorem. Let S be a subset of
Rn. We say that S is convex if whenever x, y ∈ S, all points on the
line segment joining x and y are also in S. More formally, S is convex
if x, y ∈ S implies λx+ (1− λ)y ∈ S for all real numbers λ ∈ [0, 1].

We call S symmetric if it is symmetric with respect to reflection
across the origin. In other words, S is symmetric if x ∈ S implies
−x ∈ S.

We will need to use some properties of volumes of convex sets in
Rn. For our purposes, we just need to know that every convex set is
measurable, i.e., it has a well-defined volume. The reader who is not
familiar with measure theory should take on faith the following facts:

There is a large class M of bounded subsets of Rn, called (Lebesgue)
measurable sets, containing all convex sets, such that:

• If A ∈M then the volume vol(A) is well-defined.
• If A is a convex set, then the volume of A coincides with the

volume as defined by the Riemann integral.
• If A is a finite (or more generally countable) disjoint union

of measurable sets Ai, then A is measurable and vol(A) =∑
vol(Ai).

• If A ⊆ B are measurable sets, then vol(A) ≤ vol(B).

Let S ⊂ Rn be a bounded measurable set. We say that T : S → Rn

is piecewise volume-preserving if S can be written as a finite disjoint
union of measurable subsets Si such that vol(T (Si)) = vol(Si) for all i.

The following result is a geometric analogue of the pigeonhole prin-
ciple:

Lemma 3.4. Let S ⊂ Rn be a bounded measurable set, and suppose
that T : S → Rn is piecewise volume-preserving. If vol(S) > vol(T (S)),
then T is not injective.

Proof. If T is injective, then T (S) is the disjoint union of the sets
T (Si), and therefore

vol(T (S)) =
∑

i

vol(T (Si)) =
∑

i

vol(Si) = vol(S).

�

Exercise 3.5. Let F be a fundamental domain for a lattice Λ in Rn,
and consider the map T : Rn → F which sends z ∈ Rn to the unique
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point T (z) ∈ F such that z − T (z) ∈ Λ. Show that T is a piecewise
translation, and in particular T is piecewise volume-preserving.

The following famous result of Minkowski gives conditions which
guarantee the existence of nonzero elements of a given lattice Λ inside
a given convex symmetric set S.

Theorem 3.6 (Minkowski’s Convex Body Theorem). Let Λ ⊂ Rn

be a rank n lattice, and let S ⊂ Rn be a bounded, convex, symmetric
set. If

vol(S) > 2n vol(Rn/Λ),

then S contains a nonzero element of Λ. If S is compact, then the same
conclusion holds with the weaker hypothesis

vol(S) ≥ 2n vol(Rn/Λ).

Remark 3.7. The constant 2n in the lemma is sharp, as shown
by the example of the standard lattice Zn in Rn spanned by e1, . . . , en

together with S = {a1e1 + · · ·+ anen : aj ∈ (−1, 1)}.

Proof. We will prove just the first part, and leave the proof of the
second part of the theorem (the compact case) as an exercise.

Suppose that vol(S) > 2n vol(Rn/Λ). Consider the lattice

Λ′ = 2Λ = {2x ∈ Rn : x ∈ Λ} ⊂ Λ.

By our previous remarks, we have vol(Rn/Λ′) = 2n vol(Rn/Λ).
Let F ′ be a fixed fundamental domain for Λ′, and consider the map

T : Rn → F ′ which sends z ∈ Rn to the unique point T (z) ∈ F ′

such that z − T (z) ∈ Λ′. By Exercise 3.5, the map T is a piecewise
volume-preserving.

Since vol(S) > vol(F ′) ≥ vol(T (S)) by hypothesis, it follows from
Lemma 3.4 that the restriction of T to the set S is not injective. There-
fore there exist distinct points x′, y′ ∈ S such that T (x′) = T (y′).

In particular, it follows that P ′ := x′−y′ is a nonzero element of Λ′.
Write P ′ = 2P with P a nonzero element of Λ. Since S is symmetric,
−y′ is in S, and since S is convex, we find that P = 1

2
P ′ = 1

2
x′+ 1

2
(−y′)

is also in S. Therefore P is a nonzero element of S ∩Λ, as desired. �

Exercise 3.8. Let Λ ⊂ Rn be a rank n lattice, and let S ⊂ Rn be
a compact, convex, and symmetric set. If

vol(S) ≥ 2n vol(Rn/Λ).

prove that S contains a nonzero element of Λ.
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We would like to apply Minkowski’s theorem to the study of ideal
classes in OK . For this, we want to find a symmetric, convex, compact
set S contained in the set {x ∈ Rn : |N(x)| ≤ 1}, where N is
the norm function on Rn defined above. If we do that, then we can
apply Minkowski’s theorem to the homogeneously expanding region
{tS : t > 0} as follows:

Proposition 3.9. Suppose S is a symmetric, convex, compact set
contained in {x ∈ Rn : |N(x)| ≤ 1}. Then for each nonzero ideal I
in OK, there exists a nonzero element α ∈ I such that

|N(α)| ≤
2n2−r2

√
|∆K |

vol(S)
N(I) .

Proof. Consider the region tS for real t > 0; it is bounded, sym-
metric, and convex, its volume is tn vol(S), and since N(tx) = tnN(x),
tS is contained in the set {x ∈ Rn : |N(x)| ≤ tn}. If we choose the real
number t so that tn vol(S) = 2n vol(Rn/ι(I)), then by Minkowski’s the-
orem tS contains a nonzero element of ι(I). It follows that there exists
a nonzero element α ∈ I such that |N(α)| ≤ tn. Since vol(Rn/ι(I)) =

2−r2
√
|∆K |N(I), this gives the desired upper bound for |N(α)|. �

It is pretty clear that such a set S exists: for example, take S to be
any sufficiently small closed ball around the origin in Rn. This already
gives another proof of the finiteness of the class number. However, for
applications we would like to find a set S as above having as large a
volume as possible. The first obvious candidate for a set contained in
H := {x ∈ Rn : |N(x)| ≤ 1} is the set H itself. Explicitly, we have:

H = {x = (a1, . . . , ar1 , x1, y1, . . . , xr2 , yr2) ∈ Rn :

|a1 · · · ar1(x
2
1 + y2

1) · · · (x2
r2

+ y2
r2

)| ≤ 1}.

Unfortunately, however, the set H is in general neither bounded
nor convex. For example, consider the case where K is a real quadratic
field. Then r1 = 2, r2 = 0, and H = {(a, b) ∈ R2 : |ab| ≤ 1}. This
is the region in R2 bounded by the hyperbolas xy = 1 and xy = −1,
which is clearly not bounded or convex. However, the diamond-shaped
region D := {(a, b) ∈ R2 : |a| + |b| ≤ 2} is contained in H, and it is
bounded and convex! Geometrically, this is clear if you graph the two
regions that D ⊆ H. To see this algebraically, we can use the inequality
between the geometric and arithmetic means: since

√
xy ≤ (x + y)/2

for all nonnegative real numbers x, y, we have (for (a, b) ∈ D):

|ab| ≤ (|a|+ |b|)2

4
≤ 4

4
= 1.
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We can use a similar idea in general to produce a suitable region
S. In fact, define

S = {x = (a1, . . . , ar1 , x1, y1, . . . , xr2 , yr2) ∈ Rn :

|a1|+ · · ·+ |ar1|+ 2(
√
x2

1 + y2
1 + · · ·+

√
x2

r2
+ y2

r2
) ≤ n}.

The set S is clearly symmetric and compact. In addition:

Exercise 3.10. Show that S is convex.

Since for all x ∈ S the average of

|a1|, . . . , |ar1|,
√
x2

1 + y2
1,
√
x2

1 + y2
1, . . . ,

√
x2

r2
+ y2

r2
,
√
x2

r2
+ y2

r2

is at most 1, it follows by the arithmetic-geometric mean inequality
that |N(x)| ≤ 1 for all x ∈ S as desired.

It remains to use some basic tools from multivariable calculus to
compute the volume of S:

Lemma 3.11. The volume of S is

nn

n!
2r1(

π

2
)r2 .

Assuming this calculation, we state the big final result as follows.

Theorem 3.12. Let K be a number field. Then every ideal class
in OK contains a nonzero ideal of norm at most MK, where

MK :=
n!

nn
(
4

π
)r2
√
|∆K |.

is Minkowski’s constant.

Proof. We calculate that

2n2−r2
√
|∆K |

nn

n!
2r1(π

2
)r2

=
n!

nn
(
4

π
)r2
√
|∆K |,

and then apply Proposition 3.9. �

Theorem 3.12 is an extremely useful result, primarily because n!
nn ( 4

π
)r2

goes to zero rapidly as n increases. The constant MK , obtained by geo-
metric methods, represents a substantial improvement over the previ-
ous value of M obtained using the pigeonhole principle applied to linear
combinations of an integral basis. For example, if K = Q(

√
−5), we

previously showed that every ideal class contains a nonzero ideal of
norm at most 10, and by working with the primes above 2, 3, 5, 7, we
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were able to show that K has class number 2. Applying the Minkowski
bound instead, we find that

MK =
2!

22
(
4

π
)
√
|20| = 4

√
5

π
< 3,

so every ideal class contains a nonzero ideal of norm at most 2. It
follows that we only have to check that the prime above 2 is non-
principal (which is simple) in order to conclude thatK has class number
2.

We conclude this section with another useful consequence of The-
orem 3.12. Since every nonzero ideal in a number ring has norm at
least 1, Minkowski’s constant MK must be at least 1, and thus we can
deduce from Theorem 3.12 the following result:

Corollary 3.13 (Minkowski’s discriminant bound). If K is a
number field, then √

|∆K | ≥ (
π

4
)r2
nn

n!
.

An elementary induction argument shows that r2 ≤ n/2 and nn/n! ≥
2n−1 for all n ≥ 2. Therefore for n ≥ 2 we have√

|∆K | ≥ (
π

4
)n/22n−1 = πn/2/2 ≥ π/2 > 1 ,

from which we can deduce:

Corollary 3.14. If K 6= Q is a number field, then |∆K | ≥ 2.

One can show that p | ∆K iff p is ramified in OK . (This was
proved in the special case where OK is monogenic in Corollary 2.20.)
Therefore Corollary 3.14 implies the important fact that in any number
field K 6= Q, there is some prime number p which ramifies in OK .

1.3. A volume computation. We now finish the proof of Theo-
rem 3.12 by establishing Lemma 3.11.

Proof. It suffices to prove that if

Sr1,r2 := {x = (a1, . . . , ar1 , x1, y1, . . . , xr2 , yr2) ∈ Rn :

|a1|+ · · ·+ |ar1|+ 2(
√
x2

1 + y2
1 + · · ·+

√
x2

r2
+ y2

r2
) ≤ 1},

then

Vr1,r2 := vol(Sr1,r2) =
2r1

n!
(
π

2
)r2 .

For this, we note that

Vr1,r2 =

∫
R1

da1 · · · dar1dx1dy1 · · · dxr2dyr2 ,
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where

R1 := {|a1|+ · · ·+ |ar1|+ 2(
√
x2

1 + y2
1 + · · ·+

√
x2

r2
+ y2

r2
) ≤ 1}.

We now change each pair (xj, yj) to polar coordinates (uj, θj) with
0 ≤ θj ≤ 2π and uj ≥ 0 to obtain

Vr1,r2 =
∫

R2
u1 · · ·ur2da1 · · · dar1du1 · · · dur2dθ1 · · · dθr2

= (2π)r2
∫

R2
u1 · · ·ur2da1 · · · dar1du1 · · · dur2 ,

where

R2 := {|a1|+ · · ·+ |ar1|+ 2u1 + · · ·+ 2ur2 ≤ 1, uj ≥ 0 ∀j}.

If we change the region of integration to

R3 := {a1 + · · ·+ ar1 + 2u1 + · · ·+ 2ur2 ≤ 1, aj, uj ≥ 0 ∀j},

so that the aj’s are required to be positive, then the integral over R2

is 2r1 times the integral over R3. If we furthermore make the change
of variables 2uj = wj for j = 1, . . . , r2 (so that uj = (1/2)wj and
duj = (1/2)dwj), then we obtain

Vr1,r2 = 2r14−r2(2π)r2Wr1,r2(1),

where

Wr1,r2(t) =

∫
R4(t)

w1 · · ·wr2da1 · · · dar1dw1 · · · dwr2

and

R4(t) := {a1 + · · ·+ ar1 + w1 + · · ·+ wr2 ≤ t, aj, wj ≥ 0 ∀j}.

It suffices, then, to show that Wr1,r2(1) = 1
n!

.
Note that by homogeneity, Wr1,r2(t) = tr1+2r2Wr1,r2(1). If r1 > 0

then as a1 ranges from 0 to 1 in R4(1), the sum a2 + · · · + ar1 + w1 +
· · ·+ wr2 ranges from 0 to 1− a1. Therefore

Wr1,r2(1) =

∫ 1

0

Wr1−1,r2(1− u1)du1,

which by homogeneity is

Wr1−1,r2(1)

∫ 1

0

(1− u1)
r1+2r2−1du1 =

1

r1 + 2r2
Wr1−1,r2(1).

By induction, we obtain (letting n = r1 + 2r2)

Wr1,r2(1) =
1

n(n− 1) · · · (n− r1 + 1)
W0,r2(1).
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Similarly, we have

W0,r2(1) =
∫ 1

0
W0,r2−1(1− u1)u1du1

= W0,r2−1(1)
∫ 1

0
(1− u1)

2r2−2u1du1

= 1
(2r2)(2r2−1)

W0,r2−1(1),

so that by induction we find

W0,r2(1) =
1

(2r2)!
W0,0(1) =

1

(2r2)!
.

Therefore

Wr1,r2(1) =
1

n(n− 1) · · · (n− r1 + 1)

1

(2r2)!
=

1

n!

as desired. �

1.4. Application: Representing integers as the sum of four
squares. Our goal in this section is to use Minkowski’s theorem to
prove a famous theorem of Lagrange which asserts that every positive
integer is a sum of four integer squares. As a warm-up, we give a new
proof of Fermat’s theorem that every prime congruent to 1 modulo 4
is a sum of two squares.

Theorem 3.15. If p ≡ 1 (mod 4) is prime, then there exist a, b ∈ Z
such that a2 + b2 = p.

Proof. From elementary number theory, we know that the equa-
tion x2 ≡ −1 (mod p) has an integer solution u. Let Λ ⊂ Z2 be
the lattice in R2 consisting of all pairs (a, b) ∈ Z such that b ≡ au
(mod p). An easy computation (see Exercise 3.18(a) below) shows that
covol(Λ) = p. By Minkowski’s theorem, if πr2 = 4p then the closed
disk of radius r centered at the origin in R2 contains a nonzero element
of Λ. So there exists a point (a, b) ∈ Λ such that

0 6= a2 + b2 ≤ r2 =
4

π
p < 2p .

Since

a2 + b2 ≡ a2 + a2u2 ≡ 0 (mod p) ,

it follows that a2 + b2 = p as desired. �

We now apply a similar argument to prove Lagrange’s theorem. We
begin with the following lemma:

Lemma 3.16. If p is an odd prime, then the congruence x2+y2 ≡ −1
(mod p) has a solution (u, v) ∈ Z2.
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Proof. Counting 0, there are (p + 1)/2 squares in Fp. Letting
A = {1 + x2 : x ∈ Fp} and B = {−y2 : y ∈ Fp}, we have |A| + |B| =
p+ 1 > p, and therefore A ∩B 6= ∅. �

Theorem 3.17. Every positive integer n is a sum of four integer
squares.

Proof. It suffices to consider the case where n = p is prime, thanks
to the identity

(a2 + b2 + c2 + d2)(A2 +B2 + C2 +D2)

= (aA− bB − cC − dD)2 + (aB + bA+ cD − dC)2

+(aC − bD + cA+ dB)2 + (aD + bC − cB + dA)2 .

(Conceptually, this identity comes from the fact that the norm of a
product of two Hamilton quaternions is the product of their norms.)

Since 2 = 12 + 12 + 02 + 02, we may assume that p is odd. By
Lemma 3.16, we may choose (u, v) ∈ Z2 such that u2 + v2 ≡ −1
(mod p). Let Λ ⊂ Z4 be the lattice in R4 consisting of all (a, b, c, d) ∈
Z4 such that

c ≡ ua+ vb d ≡ ub− va (mod p) .

By Exercise 3.18(b), we have covol(Λ) = p2. If Br is the 4-dimensional
closed ball of radius r centered around the origin in R4, then by Exer-
cise 3.18(c) we have vol(Br) = π2r4/2. By Minkowski’s theorem, if r
is chosen so that π2r4/2 = 16p2, then Br contains a nonzero element
(a, b, c, d) of Λ. Since

0 6= a2 + b2 + c2 + d2 ≤ r2 =
4
√

2

π
p < 2p

and

a2 + b2 + c2 + d2 ≡ a2 + b2 + (ua+ vb)2 + (ub− va)2 ≡ 0 (mod p) ,

it follows as before that a2 + b2 + c2 + d2 = p. �

Exercise 3.18. Let p be a prime number.

(a) Let u be an integer relatively prime to p, and define Λ ⊂ Z2

to be the lattice in R2 consisting of all pairs (a, b) ∈ Z2 such
that b ≡ au (mod p). Show that covol(Λ) = p.

(b) Let Λ ⊂ Z4 be the lattice in R4 consisting of all (a, b, c, d) ∈ Z4

such that

c ≡ ua+ vb d ≡ ub− va (mod p) .

Show that covol(Λ) = p2.
(c) Show that the volume of a ball of radius r in R4 is π2r4/2.
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2. Dirichlet’s Unit Theorem

2.1. Statement of Dirichlet’s theorem. Dirichlet’s unit theo-
rem tells us the structure of the unit group in a general number field.
Recall that if K is a number field, then r1 (resp. r2) denotes the num-
ber of real (resp. half the number of complex) embeddings of K into
C. Dirichlet’s result is the following:

Theorem 3.19 (Dirichlet’s Unit Theorem). Let K be a number
field, and let O∗

K be the group of units in OK. Then O∗
K is a finitely

generated abelian group. More precisely, let WK denote the group of
roots of unity contained in K. Then WK is a finite cyclic group, and
O∗

K
∼= WK × Zr−1, where r = r1 + r2.

We give some concrete examples of Dirichlet’s theorem.

Example 3.20. If K is an imaginary quadratic field, then r1 =
0, r2 = 1, so that r − 1 = 0 and therefore O∗

K = WK is a finite group.
This agrees with what we already know from studying the norm

function on K: the unit group in an imaginary quadratic field K =
Q(
√
d), with d < 0 a squarefree integer, is:

O∗
K = {±1,±i} d = −1

O∗
K = {±1,±ω,±ω2} d = −3

O∗
K = {±1} d ≤ −5

Example 3.21. If K is a real quadratic field, then we must have
W = {±1}, since ±1 are the only roots of unity in R. Also, we have
r1 = 2, r2 = 0, so that r− 1 = 1. Therefore Dirichlet’s theorem implies
that O∗

K = {±1} × Z. In particular, there exists a unit u ∈ O∗
K such

that O∗
K = {±um : m ∈ Z}. If we fix an embedding of K into R,

then u is uniquely determined by requiring that u > 1. This generator
of O∗

K is called the fundamental unit of K.
For example, let K = Q(

√
2). (By thinking of

√
2 as the positive

square root of 2, we have secretly fixed an embedding of K into R.)
We claim that the fundamental unit of K is then u = 1 +

√
2, so that

every element of O∗
K can be written uniquely as ±uk with k ∈ Z.

It is clear that u is a unit of OK , since
√

2 − 1 is an inverse for u.
It is also clear that u is not a root of unity, since (for example) it does
not have absolute value 1. It remains to show that every positive unit
in OK is a power of u. Assuming Dirichlet’s unit theorem, it is easily
checked that this is equivalent to proving that if v is any unit of OK

with v > 1 then v ≥ u.
For this, suppose v > 1 is a unit, and write v = a + b

√
2 with

a, b ∈ Z. Let τ : K → R be the embedding sending
√

2 to −
√

2. Then
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a2 − 2b2 = (a + b
√

2)(a − b
√

2) = ±1. Suppose that a2 − 2b2 = 1.
Then we must have 0 < τ(v) = a − b

√
2 < 1. Since a + b

√
2 > 1 and

a − b
√

2 > 0, it follows that a ≥ 1. And since a − b
√

2 < 1, we must
have b ≥ 1, and thus v ≥ u.

Similarly suppose a2 + 2b2 = −1. Then −1 < a − b
√

2 < 0. The
inequalities a− b

√
2 > −1 and a+ b

√
2 > 1 imply that a ≥ 1, and then

a−b
√

2 < 0 implies that b ≥ 1. So again, we must have v ≥ u = 1+
√

2,
as claimed.

Exercise 3.22. If K = Q(
√
d) is a real quadratic field with d

squarefree, show that the units of K are in bijection with the set of
integer solutions to the Pell equation

a2 − db2 = ±1 d ≡ 2, 3 (mod 4)
a2 − db2 = ±4 d ≡ 1 (mod 4).

By the previous exercise, Dirichlet’s unit theorem gives us informa-
tion about the solutions to Pell equations. For example, it follows from
Dirichlet’s theorem that a2 − db2 = 1 is always solvable in integers
when d ≡ 2, 3 (mod 4) is a positive squarefree integer. In addition,
Dirichlet’s theorem tells us that every solution to this equation can be
derived in a simple way from a single fundamental solution. Note, how-
ever, that Dirichlet’s theorem by itself does not provide us with a way
to determine, for example, whether or not the equation a2 − db2 = −1
has a solution. The rules which govern whether the fundamental unit
in K has norm +1 or −1 turn out to be rather subtle.

Example 3.23. If K = Q(ζm) is a cyclotomic field, then we have
already determined WK ; it consists of the group of all mth roots of
unity when m is even, and the group of all 2mth roots of unity when
m is odd. The field K clearly has no real embeddings when m > 2, so
we have r1 = 0, r2 = φ(m)/2. Therefore the rank of the unit group of
K is r − 1 = φ(m)/2− 1. Where do all these units come from?

Suppose, for simplicity, that m = pk is a prime power, and consider
the subgroup C of O∗

K generated by WK and

{1− ζa
m

1− ζm
, 1 ≤ a ≤ (p− 1), (a, p) = 1}.

We leave it as an exercise to show that the elements of C are indeed
units. It is not hard to show that C is a finitely generated abelian group
of rank at most φ(m)/2− 1, called the group of cyclotomic units in K.
What is in fact true, but is harder to prove, is that C has rank exactly
φ(m)/2−1, so that C in fact has finite index in O∗

K . In general, one has
[O∗

K : C] > 1, which is an indication that units in cyclotomic fields are
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rather complicated objects. A lot of beautiful and deep mathematics
has been developed to try to understand the situation more completely
– see, for example, Larry Washington’s book “Cyclotomic Fields”.

2.2. Lattices and logarithmic space. In order to prove Dirich-
let’s unit theorem, we need to establish a geometric setting for the prob-
lem to which Minkowski’s convex body theorem will apply. Our pre-
vious method of embedding OK as a lattice in the “Minkowski space”
Rn is very beautiful, but it sheds no direct light on the structure of
the unit group. This is because we were embedding OK as a subgroup
of the additive group of K into Minkowski space, but the unit group
O∗

K is a subgroup of the multiplicative group of K. Therefore, in order
to apply geometric methods to the current problem, we need to find a
multiplicative analogue of our previous embedding.

This is accomplished as follows. As before, let σ1, . . . , σr1 denote the
real embeddings ofK into C, and let τ1, . . . , τr2 be complex embeddings,
consisting of one representative from each complex conjugate pair. We
define a map L : K∗ → Rr by

L(α) := (log |σ1(α)|, . . . , log |σr1(α)|, log |τ1(α)|2, . . . , log |τr2(α)|2).
It is easy to verify that L is a group homomorphism. We call the image
space Rr “logarithmic space” (as opposed to Minkowski space). The
reason for squaring the absolute values of the τj(α)’s is that it implies
the following identity:

log |N(α)| = S(L(α)),

where S : Rr → R is the linear transformation defined by S(x1, . . . , xr) :=
x1 + · · ·+ xr.

Let G = L(O∗
K) be the image of the unit group of K under the

homomorphism L, so that G is an additive subgroup of Rr. Unlike the
“analogous” situation in Minkowski space, G does not contain enough
linearly independent vectors to span logarithmic space. This follows
from the simple observation that since N(u) = ±1 for every unit u ∈
O∗

K , every x = (x1, . . . , xr) ∈ G satisfies the relation S(x) = 0. In
other words, G lies in the hyperplane (i.e., r−1-dimensional subspace)
H of Rr defined by x1 + · · ·+xr = 0. Our main goal in the next section
will be to prove that G is in fact a lattice of maximal rank r− 1 in H.

2.3. Proof of Dirichlet’s theorem. We start out by character-
izing the group WK in terms of the map L.

Lemma 3.24. The kernel of the restriction of L to O∗
K is finite, and

is precisely the group WK of roots of unity contained in K∗.
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Proof. If we fix an embedding of K into C, then it is easy to see
that the kernel of L (restricted to O∗

K) consists of the set of u ∈ O∗
K

such that all conjugates of u have absolute value 1. By Lemma 2.35,
the set of such u is finite, and consists precisely of the set of roots of
unity contained in K. �

Remark 3.25. Since WK is a finite subgroup of the multiplicative
group of K, it must be cyclic.

Remark 3.26. A word of caution: if we do not restrict at least
to OK , then there are many more elements in the kernel of L. For
example, let K = Q(i), and let (a, b, c) be any Pythagorean triple.
Then both conjugates of α := (a/c) + (b/c)i have absolute value 1,
so that α is in the kernel of L. It is easy to see that infinitely many
distinct α’s arise in this way. (The point, of course, is that these α’s
are not algebraic integers, so in particular they are not units!)

By the structure theorem for finitely generated abelian groups, to
prove Dirichlet’s theorem it suffices to prove that G = L(O∗

K) is a
lattice of rank r − 1 in Rr. Since G is an additive subgroup of the
hyperplane H, it suffices to prove that:

(D1) G is discrete.
(D2) G contains r − 1 vectors which are linearly independent over

R.

For once we know that G is discrete, it follows by Proposition 1.17
that G is a lattice of rank at most r− 1. If, moreover, G contains r− 1
vectors which are linearly independent over R, then the rank must be
exactly r − 1.

The discreteness part is easy, and follows from the following simple
lemma (compare with Lemma 2.35):

Lemma 3.27. Let M > 0, and for each n ≥ 1 define SM(n) to be
the set of all algebraic integers of degree n whose conjugates all have
complex absolute value at most M. Then SM(n) is a finite set.

Proof. Suppose α ∈ SM , and let f(x) ∈ Z[x] be the minimal
polynomial of α, so that deg(f) = n. Since the coefficients ai of f(x)
are elementary symmetric functions of the conjugates of α, it follows
from the triangle inequality that |ai| ≤ 2nM for all i. Therefore there
are only finitely many possibilities for the polynomial f(x), and hence
for α. �

Property (D1) now follows:

Corollary 3.28. G is a discrete subset of Rr.
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Proof. Let M > 1 be any real number; it suffices to show that
the intersection S of G and the closed ball Blog M(0) of radius logM
around 0 in Rr is finite. Note that if α ∈ O∗

K maps to an element of S,
then all conjugates of α have absolute value bounded by M . Therefore
(L)−1(S) is contained in the finite set SM(n) defined in the statement
of Lemma 3.27. It follows that S is finite. �

It remains to prove (D2). Our strategy for obtaining this result will
be based on the following elementary lemma:

Lemma 3.29. Let A = (aij) be an r × r matrix with coefficients in
R such that:

(i) The entries in every row of A sum to zero.
(ii) The diagonal entries of A are all positive.
(iii) The off-diagonal entries of A are all negative.

Then A has rank r − 1.

Proof. It suffices to prove that the first r−1 columns of A are lin-
early independent. Suppose for the sake of contradiction that

∑r−1
j=1 cjvj =

0, where vj is the jth column of A and cj ∈ R are not all 0. By rescal-
ing, we may assume that there is an index k with 1 ≤ k ≤ r − 1 such
that ck = 1 and cj ≤ 1 for all j 6= k. Since akj < 0 for all j 6= k, we
have cjajk ≥ ajk for such j. Similarly, since k < r we must have

r−1∑
j=1

akj >
r∑

j=1

akj.

Just by focusing in on the kth row of A, we therefore see that

0 =
r−1∑
j=1

cjakj ≥
r−1∑
j=1

akj >
r∑

j=1

akj = 0 ,

a contradiction. �

Now comes the crucial step in which we use Minkowski’s convex
body theorem. For this, we will use the fact that the Minkowski space
Rr1×Cr2 and logarithmic space are related in the following way. Recall
that the embedding ι : OK → Rr1 × Cr2 is given by

ι(α) = (σ1(α), . . . , σr1(α), τ1(α), . . . , τr2(α)).

If we define π : Rr1 −{0}×Cr2 −{0} → Rr to be the map given by

π(x1, . . . , xr1 , z1, . . . , zr2) = (log |x1|, . . . , log |xr1|, log |z1|2, . . . , log |zr2|2),
then it follows from the definitions that for α ∈ O∗

K , we have L(α) =
π ◦ ι(α).
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Lemma 3.30. Fix any integer k with 1 ≤ k ≤ r. There is a constant
C (depending only on K) such that given any α ∈ OK, α 6= 0 there
exists β ∈ OK, β 6= 0, satisfying the following two properties:

(i) |N(β)| ≤ C.
(ii) If L(α) = (a1, . . . , ar) and L(β) = (b1, . . . , br), then bi < ai for

all i 6= k.

Proof. We will work in the Minkowski space Rr1 × Cr2 , and for
simplicity of notation, we will write a point x ∈ Rr1×Cr2 as (x1, . . . , xr).

We claim that we can take the constant C to be ( 2
π
)r2
√
|∆K |. Let

n = [K : Q], and for 1 ≤ i ≤ r = r1 + r2, define εi to be 1 if 1 ≤ i ≤ r1
and 2 if r1 + 1 ≤ i ≤ r. Choose real numbers a′1, . . . , a

′
r such that

a′i < ai for all i = 1, . . . , r. Define E to be the subset of Rr1 × Cr2

defined by inequalities of the form

|xi|εi ≤ Ci,

where Ci = ea′i for i 6= k and Ck is chosen so that
∏

iCi = C. It is
easy to see that E is symmetric, compact, and convex. Moreover, a
straightforward computation shows that

vol(E) = 2r1πr2
∏

iCi = 2r1πr2( 2
π
)r2
√
|∆K |

= 2r1+2r2(2−r2
√
|∆K |)

= 2n vol(Rn/ι(OK)).

By Minkowski’s convex body theorem, E must contain a nonzero
element of ι(OK). The lemma is proved by taking β to be the corre-
sponding element of OK . �

Remark 3.31. The exact value of the constant C is irrelevant if
we just want to prove Dirichlet’s theorem as stated (though it becomes
relevant if we are interested in finding “small” generators for the unit
group). The qualitative version of the argument we have just given is
as follows. The region E is a product of lines and circles in Rn in which
all but one of the coordinates is constrained to lie in a thin strip. The
other (kth) coordinate is constrained linearly in terms of the constant
C. By choosing C sufficiently large, we can make the volume of E
as big as we like. In particular, for sufficiently large C, Minkowski’s
theorem implies that E contains a nonzero lattice point.

We now prove Dirichlet’s unit theorem.

Proof. By Lemma 3.29, we see that to prove (D2) (and hence
Dirichlet’s theorem), it suffices to prove that for any given integer
k with 1 ≤ k ≤ r, there exists a unit u ∈ O∗

K such that L(u) =
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(a1, . . . , ar) with ak > 0 and ai < 0 for i 6= k. For this, we use
Lemma 3.30.

Let α0 ∈ OK be any nonzero element. Applying Lemma 3.30 re-
peatedly, we produce a sequence of elements αj ∈ OK , αj 6= 0 such
that for all j = 1, 2, . . ., we have (letting L(αj) = (a1(j), . . . , ar(j))):

(i) |N(αj)| ≤ C.
(ii) ai(j) < ai(j − 1) for all i 6= k.

Since there are only finitely many ideals of norm at most C, there
must be distinct positive integers j1 > j2 such that (αj1) = (αj2). Let

u := αj1/αj2 .

Since αj1 and αj2 generate the same ideal, it follows that u is a unit.
Moreover, since ai(j1) < ai(j2) for all i 6= k, it follows that

L(u) = (a1, . . . , ar)

with ai < 0 for i 6= k. Finally, we must have ak > 0, since
∑r

i=1 ai =
0. �

Exercise 3.32. Choose a basis ε1, . . . , εr1+r2−1 for the free abelian
group O∗

K/WK , and let M be the (r1 + r2−1)× (r1 + r2) matrix whose
jth row is

(log |σ1(εj)|, . . . , log |σr1(εj)|, 2 log |τ1(εj)|, . . . , 2 log |τr2(εj)|) .

Let M ′ be the (r1 + r2− 1)× (r1 + r2) matrix obtained by deleting any
column of M . Show that | det(M ′)|, which is called the regulator of K,
is independent of which particular column is deleted, and is a nonzero
real number which depends only on the field K. [Hint: Use the fact
that the columns of M add up to zero.]

It is not hard to see that the regulator ofK, defined in Exercise 3.32,
is the covolume of the lattice O∗

K under its logarithmic embedding into
the Euclidean space H ∼= Rr−1 ⊂ Rr. It is therefore the “multiplica-
tive” version of the quantity 2−r2

√
|∆K |, which is the covolume of OK

under its embedding ι into Minkowski space.

2.4. Units in real quadratic fields. The most efficient proce-
dure for finding the fundamental unit in a real quadratic field is to use
continued fractions. We state the relevant results mostly without proof
(see, for example, §9.3–9.5 of Koch’s book “Number Theory: Algebraic
Numbers and Functions” for details). 1

1Our exposition here is based on H. Koch’s book and on J. S. Milne’s online
“Algebraic Number Theory” lecture notes.
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A continued fraction is an expression of the form

(3.1) a1 +
1

a2 + 1
a3+ 1

a4+···

where a1, a2, . . . are positive integers called the successive quotients.
For typographical reasons, we abbreviate (3.1) by the expression

[a1, a2, a3, a4, . . .] .

The truncated expression

[a1, a2, . . . , an] = a1 +
1

a2 + 1
a3+···+ 1

an

is called the nth convergent to the continued fraction, and the value
of the continued fraction is limn→∞[a1, a2, . . . , an], which one can show
always exists.

It is known from elementary number theory that every irrational
real number α > 1 has a unique continued fraction expansion, and this
expansion is periodic if and only if [Q(α) : Q] = 2. (See, for example,
Chapter X of Hardy and Wright’s “An Introduction to the Theory of
Numbers”.)

To obtain the continued fraction expansion of a real number α > 1,
one proceeds inductively as follows. Set α1 = α, and a1 = [α] (where [·]
denotes the greatest integer function). If α ∈ Z, the continued fraction
terminates at this point. Otherwise, continue inductively by setting

αn+1 =
1

αn − an

, an+1 = [αn+1] .

If αn+1 ∈ Z for some n, then the continued fraction expansion of α ter-
minates with an+1 = αn+1; otherwise, one obtains an infinite sequence
a1, a2, a3, . . .. The numbers αn are called the successive remainders.

Exercise 3.33. Show that the continued fraction expansion of α
terminates if and only if α is rational.

Define a sequence P0, P1, . . . of 2× 2 matrices with positive integer
coefficients by setting, for n ≥ 1:

An =

(
an 1
1 0

)
and

P0 =

(
p0 p−1

q0 q−1

)
=

(
1 0
0 1

)
, Pn =

(
pn pn−1

qn qn−1

)
= A1A2 · · ·An .
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Then one checks easily that pn+1 = an+1pn + pn−1 and qn+1 =
an+1qn + qn−1 for all n ≥ 0, and from the relation

pnqn−1 − pn−1qn = detPn =
n∏

i=1

(−1) = (−1)n ,

one finds that gcd(pn, qn) = 1 for all n ≥ 1. Moreover, it is clear that

0 < p1 < p2 < · · · , 0 < q1 < q2 < · · · .
From this, one shows easily that if α > 1 is irrational, then

|α− pn

qn
| < 1

q2
n

.

In particular, it follows that α = limn→∞
pn

qn
. More precisely, one

has the formula

[a1, . . . , an] =
pn

qn
,

and therefore

lim
n→∞

[a1, . . . , an] = lim
n→∞

pn

qn
= α .

The main theorem connecting continued fractions and units of qua-
dratic fields is:

Theorem 3.34. Let d be a square-free positive integer with d ≡ 2, 3
(mod 4), and let ε > 1 be the fundamental unit for Q(

√
d). Let k be

the period of the continued fraction expansion for
√
d. Then

ε = pk + qk
√
d .

Corollary 3.35. With notation as in Theorem 3.34, if d is a
square-free positive integer with d ≡ 2, 3 (mod 4), then all solutions to
the Pell equation x2 − dy2 = ±1 are given by

x+ y
√
d = ±(pk + qk

√
d)m

with m ∈ Z.

In general (if d is not necessarily congruent to 2 or 3 (mod 4)),
one can proceed as follows. An irrational number θ > 1 is said to be
reduced if

− 1

θ′
> 1 ,

where θ′ denotes the conjugate of θ. According to a theorem of Galois,
the continued fraction expansion of θ is purely periodic if and only if θ
is reduced. (Purely periodic means that

α = [a1, a2, . . . , ak]
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for some integer k ≥ 1; the minimal such k is called the period of the
continued fraction expansion of α.) Then:

Theorem 3.36. Let D be the discriminant of K = Q(
√
d), let θ be

a reduced element of K having discriminant D, and let [a1, a2, . . . , ak]
be the continued fraction expansion of θ, with period k. Then the fun-
damental unit of OK is

ε = qk−1 + qkθ .

In applying this theorem, the following exercise is useful:

Exercise 3.37. If

ω =

{
1+
√

d
2

if d ≡ 1 (mod 4)√
d if d ≡ 2, 3 (mod 4) ,

show that the second successive remainder

θ = α2 =
1

ω − [ω]

of ω is reduced.

The advantage of Theorem 3.36 over Theorem 3.34 is that it ap-
plies even when d ≡ 1 (mod 4). We illustrate both theorems with the
following example.

Example 3.38. Let K = Q(
√

19). Then one computes that
√

19 = [4, 2, 1, 3, 1, 2, 8] ,

and the period of this continued fraction is 6. We have

(p−1, p0, p1, p2, p3, p4, p5, p6) = (0, 1, 4, 9, 13, 48, 61, 170) ,

(q−1, q0, q1, q2, q3, q4, q5, q6) = (1, 0, 1, 2, 3, 11, 14, 39)

and therefore, by Theorem 3.34, we have

ε = p6 + q6
√

19 = 170 + 39
√

19 .

On the other hand, we have

θ =
1√

19− 4
= [2, 1, 3, 1, 2, 8] ,

and for this continued fraction we get

(q−1, q0, q1, q2, q3, q4, q5, q6) = (1, 0, 1, 1, 4, 5, 14, 117) .

By Theorem 3.36, the fundamental unit ε of K is

q5 + q6θ = 14 + 117 · 1√
19− 4

= 170 + 39
√

19 .
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Remark 3.39. The coefficients of the fundamental unit can be
quite large, even when d is small. For example, using the above proce-
dure one checks that the fundamental unit of Q(

√
94) is

ε = 2143295 + 221064
√

94 ,

and the constant coefficient of the fundamental unit of Q(
√

9199) has
88 decimal digits.

2.5. The fundamental unit in cubic fields with negative
discriminant. We begin with a result which explains the meaning of
the sign of the discriminant.

Exercise 3.40. If K is a number field, show that the sign of ∆K

is (−1)r2 .

Therefore a cubic field has negative discriminant if and only if it
has precisely one real embedding. For example, every ‘pure’ cubic field
of the form Q( 3

√
d) has this property. By Dirichlet’s unit theorem, such

fields have a unit group of rank one (and the torsion subgroup is just
{±1}). It therefore makes sense to define the fundamental unit of a
cubic field with negative discriminant as in the quadratic case: If we
identify K with a subfield of R via the unique real embedding, then
O∗

K = {±εm} for a unique unit ε > 1, called the fundamental unit of
K. 2

Lemma 3.41. If K is a cubic field with negative discriminant, then
the fundamental unit ε of K satisfies the inequality

ε >
3

√
|∆K | − 24

4
.

Proof. It is easy to check that K = Q(ε) (since [K : Q] = 3 is
prime) and that NK/Q(ε) = 1, since if ε2, ε3 denote the other conjugates
of ε = ε1, then ε3 = ε2. Write ε = u2 with u > 1, and since |ε2|2 =
1/u2, we may assume without loss of generality that ε2 = u−1eiθ with
0 ≤ θ ≤ π. A determinant calculation and some trigonometry shows
that

|∆(ε)|1/2 = 2i(u3 + u−3 − 2 cos θ) sin θ .

Setting 2a = u3 + u−3, we obtain

|∆(ε)|1/2 = 4(a− cos θ) sin θ ,

which by calculus is maximized (for a given value of u) when

a cos θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 .

2The statement and proof of the next lemma are adapted from J. S. Milne’s
online Algebraic Number Theory lecture notes.
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If we substitute x = cos θ and let g(x) = 2x2 − ax− 1, then we are
trying to solve the equation g(x) = 0 for some x with |x| ≤ 1. Since
u > 1, we have a > 1 and therefore g(1) = 1− a < 0. As g(x) > 0 for
x sufficiently large, it follows that g(x) has a root bigger than 1. Also,
g(− 1

2u3 ) = 3
4
(u−6 − 1) < 0 and g(−1) = 1 + a > 0. It follows that g(x)

has exactly one root x0 ∈ [−1,− 1
2u3 ]. Therefore

|∆(ε)|1/2 ≤ 4(a− x0)(1− x2
0)

1/2

which, in view of the fact that ax0 = 2x2
0− 1 and a2x2

0 = 4x4
0− 4x2

0 +1,
yields

|∆(ε)| ≤ 16(a2 − 2ax0 + x2
0)(1− x2

0)

= 16(a2 − a2x2
0 − 5x2

0 + 3x4
0 + 2)

= 16(a2 + 1− x2
0 − x4

0)

= 4u6 + 24 + 4(u−6 − 4x2
0 − 4x4

0)

< 4u6 + 24

= 4ε3 + 24 .

Since |∆K | ≤ |∆(ε)|, we are done. �

Example 3.42. Let α = 3
√

2. We can use Lemma 3.41 to show that
the fundamental unit ε in the field K = Q(α) is u = 1 + α + α2. This
is indeed a unit, since 1/u = −1 + α ∈ OK , and it is clearly not a root
of unity, since u > 1 is real. Since α < 2, we have 1 < u < 7 < 212/3,
and since ∆K = −108, it follows from Lemma 3.41 that

ε3 >
108− 24

4
= 21 ,

and therefore

(3.2) 1 < u < 212/3 < ε2 .

But we know that u = ±εm for some m ∈ Z, and since u > 1, we must
in fact have u = εm with m ≥ 1. By (3.2), it follows that m = 1 as
desired.

Example 3.43. Let K = Q(α) with α the real root of X3+10X+1,
which has discriminant −4027. Since 4027 is prime, we know that
OK = Z[α]. By Lemma 3.41, the fundamental unit ε of K satisfies

ε >
3

√
4027− 24

4
≈ 10.002499 . . .

Since NK/Q(α) = −1, it follows that α is a unit. A calculation shows
that β := −α−1 ≈ 10.00998 . . ., so that 1 < β < ε2, and as in the
previous example it follows that ε = β.
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Knowledge of the fundamental unit is often of great utility when
trying to compute the ideal class group. We illustrate this in the fol-
lowing example taken from Cassels’ book “Local Fields”.

Example 3.44. We now calculate the group of units in the field
K = Q( 3

√
11), and use this information to compute the ideal class group

of OK .
Let α = 3

√
11. Since 112 6≡ 1 (mod 9), it follows from Proposi-

tion 2.28 that OK = Z[α].
The discriminant of K is ∆K = −33 · 112, and the Minkowski con-

stant of K is

MK =
3!

33
(
4

π
)
√

33 · 112 < 17 ,

so we need to see how 2, 3, 5, 7, 11, and 13 factor in OK . Using Kum-
mer’s factorization theorem, we find that:

x3 − 11 ≡



(x− 1)(x2 + x+ 1) (mod 2)
(x+ 1)3 (mod 3)
(x− 1)(x2 + x+ 1) (mod 5)
x3 − 4 (mod 7)
x3 (mod 11)
x3 + 2 (mod 13) .

Letting (2) = p2p
′
2 with N(p2) = 2, (3) = p3

3, (5) = p5p
′
5 with

N(p5) = 5, and noting that (11) = p3
11 with p11 = (α) principal, it

follows that Cl(OK) is generated by [p2], [p3], and [p5].
We now find some relations between these generators by searching

for elements ofOK with small norm. For t ∈ Z, the minimal polynomial
of α− t is (x+ t)3 − 11, and therefore N(α− t) = −t3 − 11. Plugging
in various small values of t gives the following information:

(α) = p11 , (α− 1) = p2p5 , (α− 2) = p3 , (α+ 1) = p2
2p3 .

This tells us that [p3] = 1, [p5] = [p2]
−1, and [p2]

2 = 1. Thus
Cl(OK) = {0} if [p2] = 1 and Cl(OK) ∼= Z/2Z if [p2] 6= 1. So the
computation of Cl(OK) boils down to the question: is the ideal p2

principal? To answer this question, we need to first calculate the unit
group of K.

First, we try to find some nontrivial unit of OK . We do this by
looking at principal ideals whose factorizations involve only p2 and p3.
We have already seen that p3 = (α − 2) and p2

2p3 = (α + 1). We have
also seen that p2

2 = (β) for some β ∈ OK , and we know that

(β)(α− 2) = (α+ 1) ,
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so we can take

β =
α+ 1

α− 2
= α2 + 2α+ 5 .

We also have (β)2 = p4
2 = (α − 3), since N(α − 3) = 16 and

(α− 3) 6= p2
2p
′
2 or else we would have 2 | α− 3, which is clearly not the

case. Therefore

u = − β2

α− 3
= 18α2 + 40α+ 89 ≈ 266.9889 . . .

is a unit in OK .
Let ε be the fundamental unit of K. By Lemma 3.41, we have

ε >
3

√
3267− 24

4
≈ 9.3437 . . .

and thus
ε2 > 87 , ε3 > 815 ,

from which it follows that u = ε or u = ε2.
We rule out u = ε2 by constructing a homomorphism from Z[α] to

Fp for which the image of u is not a square in Fp. Since p5 = (5, α− 1)
has norm 5, reduction modulo p5 gives a homomorphism ψ : Z[α] → F5

sending α to 1. As ψ(u) = 2 and 2 is not a square in F5, we win.
We conclude that ε = u and that O∗

K = {±um}. We note that the
unit group modulo ±1 is also generated by v = 1/u = −2α2 + 4α + 1,
which is a bit simpler to work with algebraically.

We now show that p2 is not principal. Recall that p2
2 = (β), where

β = α2 + 2α + 5. Suppose for the sake of contradiction that p2 = (γ)
is principal. Then we would have

p2
2 = (β) = (γ2)

and thus
±vmβ = γ2

for some γ ∈ Z[α]. Without loss of generality, we may assume (after
multiplying by the appropriate power of v−2) that m = 0 or 1. We
therefore conclude that either (a) β, (b) −β, (c) vβ, or (d) −vβ is a
square in Z[α].

We rule these possibilities out by again using a cleverly chosen ho-
momorphism from Z[α] to a finite field. In this case, using Kummer’s
factorization theorem, we see that 19 splits completely in K, and the
cube roots of 11 in F19 are 5,−3,−2. Therefore there is a homomor-
phism ψ1 : Z[α] → F19 sending α to 5. A simple calculation shows that
ψ1(β) = 2 and ψ1(vβ) = −1, both of which are non-squares in F19.
This rules out (a) and (c).
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The other elements −β and −vβ must go to squares under ψ1,
since 19 ≡ 3 (mod 4). However, sending α to −2 gives a different
homomorphism ψ2 : Z[α] → F19, and we calculate that ψ2(−β) = −5
and ψ2(−vβ) = −1, both of which are non-squares in F19. This rules
out (b) and (d)!

We conclude that p2 is not principal, and therefore that Cl(OK) ∼=
Z/2Z.

3. Exercises for Chapter 3

(1) Let m be a nonzero integer.
(a) Let t ∈ Z and define Λ ⊂ Z2 to be the lattice in R2 con-

sisting of all pairs (a, b) ∈ Z such that b ≡ at (mod m).
Show that covol(Λ) = m.

(b) Let u, v ∈ Z, and let Λ ⊂ Z4 be the lattice in R4 consisting
of all (a, b, c, d) ∈ Z4 such that

c ≡ ua+ vb , d ≡ ub− va (mod m) .

Show that covol(Λ) = m2.
(2) (a) Show that the volume of a ball of radius r in R4 is π2r4/2.

(b) A quaternion is an expression of the form a+ bi+ cj+dk,
where i, j, k are formal symbols satisfying i2 = j2 = k2 =
−1 and ij = −k. Quaternions can be added componen-
twise (like complex numbers). They can also be multi-
plied, but unlike with complex numbers, multiplication
of quaternions is associative but not commutative. If
z = a + bi + cj + dk is a quaternion, its conjugate z
is given by a − bi − cj − dk. Show that zz is always a
positive real number, so that we can define the norm of
z to be

√
zz. Prove that the norm of a product of two

quaternions is the product of their norms.
(3) Let Λ ⊂ Rn be a rank n lattice, and let S ⊂ Rn be a compact,

convex, and symmetric set. If

vol(S) ≥ 2nvol(Rn/Λ).

prove that S contains a nonzero element of Λ.
(4) For x = (x1, . . . , xn) ∈ Rn, let

Li(x) =
n∑

j=1

aijxj , 1 ≤ i ≤ n

be n linear forms with coefficients aij ∈ R. If λ1, . . . , λn are
positive real numbers for which λ1 · · ·λn ≥ | det(aij)| > 0,
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prove that there exist integers y1, . . . , yn ∈ Z, not all zero,
such that |Li(y1, . . . , yn)| ≤ λi for all i = 1, . . . , n. (Bonus:
Does the conclusion still hold if det(aij) = 0?)

(5) Let p be a prime number which is congruent to 5 modulo 12.
If p > 3n, show that the ideal class group of K = Q(

√
−p)

contains an element of order greater than n. In particular,
it follows from Dirichlet’s theorem on primes in arithmetic
progressions that the class number of an imaginary quadratic
field can be arbitrarily large. (Hint: Factor (3) in OK .)

(6) Let d be a square-free even positive integer, and suppose d =
an − 1 for some integers a, n ≥ 2.
(a) Show that (1 +

√
−d) = an for some ideal a of Z[

√
−d].

(b) Show that the class of a has order exactly equal to n in
the ideal class group of Q(

√
−d).

(7) Let k > 0 be a squarefree positive integer such that:
(i) k ≡ 1, 2 (mod 4).
(ii) k 6= 3a2 ± 1 for any integer a.
(iii) 3 does not divide the class number of Q(

√
−k).

(a) Prove that the Diophantine equation y2 = x3 − k has no
integral solution.

(b) Find two integers k which satisfy the above 3 hypotheses.
(c) Show that all 3 hypotheses are necessary. (Hint: For

hypothesis (iii), consider k = 61.)
(8) (a) If p = 4n−1 ≥ 11 is a prime number, show that Q(

√
−p)

has class number 1 if and only if x2 + x + n is prime
whenever 0 ≤ x ≤ n− 2.

(b) Find a monic quadratic polynomial f(x) ∈ Z[x] which has
prime values at 40 consecutive integers.

(9) Choose a basis ε1, . . . , εr1+r2−1 for the free abelian groupO∗
K/WK ,

and let M be the (r1 + r2−1)× (r1 + r2) matrix whose jth row
is

(log |σ1(εj)|, . . . , log |σr1(εj)|, 2 log |τ1(εj)|, . . . , 2 log |τr2(εj)|) .
Let M ′ be the (r1 + r2 − 1) × (r1 + r2 − 1) matrix obtained
by deleting any column of M . Show that | det(M ′)|, which is
called the regulator of K, is independent of which particular
column is deleted, and is a nonzero real number which depends
only on the field K. [Hint: Use the fact that the columns of
M add up to zero.]

(10) Let K = Q(
√

223).
(a) Find the group of units of K.
(b) Show that the ideal class group of OK is cyclic of order 3.
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(11) Which of the following Diophantine equations have integer so-
lutions?
(a) X2 − 223Y 2 = ±11.
(b) X2 − 223Y 2 = ±113.
(c) X2 − 223Y 2 = ±1119.

(12) (a) If α ∈ K is a root of a monic polynomial f ∈ Z[x], and if
f(r) = ±1 with r ∈ Z, show that α− r is a unit of OK .

(b) Find the fundamental unit in Q( 3
√

7).
(13) Show that 1 − ζm is a unit in Z[ζm] if and only if m is not a

prime power.
(14) Let K = Q(ζp), where p is an odd prime.

(a) Show that the ring of integers in Q(ζp+ζ−1
p ) is Z[ζp+ζ−1

p ].
(b) Show that the unit group of OK is the direct product of

the cyclic group generated by ζp and the unit group of
Z[ζp + ζ−1

p ].





CHAPTER 4

Relative extensions

1. Localization

1.1. Introduction to localization. We now introduce the tech-
nique of localization. This is a way of starting with one ring R and
constructing from it a ring R′ in which some of the prime ideals of
R have been “removed”. Frequently, if R is a Dedekind ring, we can
arrange for the localized ring to be a PID.

An example you already know of localization is the field of frac-
tions K of an integral domain R. This is a ring in which all nonzero
prime ideals of R have been deleted! The process of adding all nonzero
elements of R as denominators is a bit too drastic, since K does not
retain much arithmetic information about the original ring R. So the
idea is to invert some, but not all, elements of R, to form a ring R′

which is intermediate between R and K. This ring will hopefully be
close enough to K to be simple, but also close enough to R to still
contain interesting information about R.

When we are interested in studying quantities related to a particular
prime ideal p of R, such as the ramification index or residue degree of
p, localization allows us to focus on p without letting the other prime
ideals make our view too “hazy”.

That was probably sufficiently vague — now let’s actually define
localization and prove some of its important properties.

For simplicity, let R be an integral domain with field of fractions
K. (You should be aware that one can define localization in a more
general context.) Let S be a multiplicative subset of R, which we define
to mean a subset which is closed under multiplication and contains 1
but not 0. One of the main examples to keep in mind is where S is the
complement of a prime ideal p. Note that R\p is indeed a multiplicative
subset of R, since if x 6∈ p and y 6∈ p, then xy 6∈ p by the definition of
a prime ideal.

The localization S−1R is the subring of K given by

S−1R := {r
s

: r ∈ R, s ∈ S}.

87
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The fact that S is closed under multiplication guarantees that S−1R
is closed under the usual addition and multiplication of fractions, and
therefore S−1R is indeed a ring.

When S = R\p for some prime ideal p, we will often write Rp for
S−1R. We call Rp the localization of R at the prime ideal p.

Note that by definition, the field of fractions K is just R(0), the
localization of R at the prime ideal (0). In general we always have
R ⊆ S−1R ⊆ K.

The most important thing to know about localization is its effect
on prime ideals. We denote by Spec(R) the set of prime ideals of a ring
R.

Proposition 4.1. The prime ideals of R′ := S−1R are in bijection
with the prime ideals of R which are disjoint from S.

Proof. The correspondence is as follows: we associate to any q ∈
Spec(R) disjoint from S the ideal S−1q = qR′ = { q

s
: q ∈ q, s ∈ S} in

R′, and to any q′ ∈ Spec(R′) the ideal q′ ∩ R in R. We need to check
that these associations establish the claimed bijection.

Suppose first that q ∈ Spec(R) is disjoint from S. We claim that
the ideal S−1q of R′ is prime. Indeed (with the obvious notation),
suppose x = r1

s1
, y = r2

s2
∈ R′ and xy ∈ qR′. Then r1r2

s1s2
= q

s
, so clearing

denominators we have r1r2s ∈ q. But s 6∈ q since S ∩ q = ∅, so r1 ∈ q
or r2 ∈ q, which implies that x ∈ S−1q or y ∈ S−1q. We also need to
check that S−1q 6= R′, but this is easy: we cannot have q

s
= 1 with

q ∈ q and s ∈ S since q ∩ S = ∅.
Next suppose that q′ ∈ Spec(R′). We claim that q′ ∩ R is a prime

ideal which is disjoint from S. The fact that it is a prime ideal is
clear. To see disjointness, suppose s ∈ S ∩ q′. Then 1 = 1

s
s ∈ q′, a

contradiction.
Finally, we verify that the maps q 7→ S−1q and q′ 7→ q′ ∩ R are

inverse to one another, i.e.:

(a) S−1q ∩R = q
(b) S−1(q′ ∩R) = q′.

For (a), it suffices to show that S−1q ∩ R ⊆ q, since the other
direction is clear. If x = q

s
∈ S−1q ∩ R, then sx ∈ q, and since s 6∈ q,

we must have x ∈ q as desired.
For (b), it suffices to show that q′ ⊆ S−1(q′ ∩ R), since the other

containment follows directly from the fact that q′ is an ideal. If x ∈ q′,
we can write x = r

s
with r ∈ R, s ∈ S. Then r = sx ∈ q′ ∩ R and

therefore x ∈ S−1(q′ ∩R). �
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Exercise 4.2. Prove that every ideal of S−1R is of the form S−1I
for some ideal I of R.

Corollary 4.3. The prime ideals of the ring Rp are in bijection
with the prime ideals of R contained in p.

Proof. If S = R\p, then q ∩ S = ∅ iff q ⊆ p. �

In particular, the corollary shows that Rp is a local ring, i.e., a ring
having just one maximal ideal. The proof of Proposition 4.1 shows that
the unique maximal ideal of Rp is just pRp. For notational convenience,
we will sometimes write mp instead of pRp.

For example, the ring R′ = Z(2) consists of all rational numbers
which, when written in reduced form, have odd denominator. The
unique maximal ideal M ′ in this ring is the set of all rational numbers
with even numerator and odd denominator. Note that every element
of R′\M ′ is a unit in R′. Also, since the difference of any two elements
of R′\M ′ is in M ′, we see that the quotient ring R′/M ′ is isomorphic
to Z/2Z.

We generalize some of these observations.

Lemma 4.4. Let R be a local ring with maximal ideal m. Then
every element of R\m is a unit in R.

Proof. This is clear, since every non-unit element of a ring is
contained in some maximal ideal. �

Lemma 4.5. Let m be a maximal ideal in a ring R. If s ∈ R\m
then mn + (s) = (1) for all n ≥ 1, i.e., s is a unit in R/mn.

Proof. This is clear when n = 1 by maximality of m. For general
n it follows by induction:

(1) = mn−1 + (s) ⇒ m = m(mn−1 + (s)) ( mn + (s).

By maximality of m, it follows that mn + (s) = (1) as desired. �

Lemma 4.6. If R is an integral domain and p is a maximal ideal of
R, then for each n ≥ 1 the natural map

φ : R/pn ∼= Rp/m
n
p .

is an isomorphism of rings. In particular, the residue fields R/p and
Rp/mp are isomorphic.

Proof. To see that φ is injective, let x ∈ R be such that x ∈ mn
p ,

i.e., x = y
s

with y ∈ pn and s 6∈ p. By Lemma 4.5, s is a unit in
R/pn. On the other hand, since sx = y ∈ pn, we have sx = 0 in R/pn.
Therefore x = 0 in R/pn, i.e., x ∈ pn as desired.
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To see that φ is surjective, let r
s
∈ Rp with r ∈ R, s 6∈ p. By

Lemma 4.5, there exists r′ ∈ R such that r ≡ r′s (mod pn). But then
r
s
≡ r′ (mod mn

p ), so that φ(r′) = r
s

+ mn
p . �

Next, we will show that any localization of a Dedekind ring is again
a Dedekind ring (or a field), and that the localization of a Dedekind
ring at a nonzero prime ideal is a PID.

We start with a couple of easy lemmas. In the statements, R will
denote an integral domain, and S will be a multiplicative subset of R.

Lemma 4.7. If R is a noetherian integral domain, then so is S−1R.

Proof. As noted in Exercise 4.2, every ideal of S−1R is of the form
S−1I for some ideal I of R. If x1, . . . , xn generate I, then it is easy to
see that x1, . . . , xn also generate S−1I. �

Lemma 4.8. If R is integrally closed, then so is S−1R.

Proof. Suppose x = a
b
∈ K satisfies a monic polynomial relation

xn + an−1x
n−1 + · · · + a1x + a0 = 0 with coefficients ai = ri

si
∈ S−1R.

Then letting s = s0s1 · · · sn−1 ∈ S and multiplying through by sn to
clear denominators, we find that

(sx)n + an−1s(sx)
n−1 + · · ·+ a1s

n−1(sx) + a0s
n = 0.

Since sai ∈ R for all i, this shows that sx is integral over R. As R
is integrally closed, we must have sx ∈ R, and therefore x ∈ S−1R as
desired. �

Proposition 4.9. If R is a Dedekind ring and S is a multiplicative
subset of R, then S−1R is either a field or a Dedekind ring.

Proof. It is clear that S−1R is an integral domain, since it is a
subring of the fraction field K of R. The two lemmas above show that
S−1R is noetherian and integrally closed. Finally, note that since the
prime ideals of S−1R are in bijection with the primes ideals of R disjoint
from S, and since this bijection is inclusion-preserving, it follows that
S−1R has dimension at most 1. This implies the desired result. �

Corollary 4.10. If R is a Dedekind ring, then Rp is a PID for
every nonzero prime ideal p of R.

Proof. We know thatRp is a local Dedekind ring whose only prime
ideals are (0) and mp. Since every nonzero ideal in a Dedekind ring is
a product of prime ideals, it follows that every nonzero ideal of Rp is
a power of mp. Therefore to show that Rp is a PID, it suffices to show
that mp is principal. For this, choose any element π ∈ p\p2. We claim
that mp = πRp. To see this, note that we must have πRp = mk

p for
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some k ≥ 1. If k ≥ 2 then π ∈ m2
p ∩R = p2, a contradiction. Therefore

k = 1 as desired. �

Remark 4.11. A discrete valuation ring (DVR) is by definition a
local PID. The name comes from the fact that every element x of such
a ring R can be written as x = uπn for some integer n ≥ 0, where
u is a unit and π generates the maximal ideal of R. The function
v(uπn) = n is an example of a discrete valuation; it has the property
that (a) = (π)v(a) for all nonzero elements a ∈ R. The valuation v
extends naturally to a function v : Frac(R)∗ → Z by setting v(a/b) =
v(a)− v(b).

With this terminology, Corollary 4.10 says that if R is a Dedekind
ring, then Rp is a DVR for all nonzero prime ideals p of R.

Example 4.12. The localization of Z at the prime ideal pZ is the
ring

Z(p) = {a
b
∈ Q : a, b ∈ Z, p - b} .

The unique maximal ideal pZ(p) of this ring consists of all rational
numbers a/b (written in lowest terms) such that p | a and p - b, and
the unit group Z∗

(p) consists of all a/b such that p - a, p - b. The
associated valuation vp : Q∗ → Z is called the p-adic valuation, and
has the property that if x = pk a

b
∈ Q∗ with k ∈ Z and a, b relatively

prime to p, then vp(x) = k.

We now prove a converse to Corollary 4.10. We begin with the
following lemma. In the statement, Max(R) denotes the set of maximal
ideals of R.

Lemma 4.13. If R is an integral domain, then

R = ∩p∈Spec(R)Rp = ∩p∈Max(R)Rp .

Proof. It suffices to prove that ∩p∈Max(R)Rp ⊆ R. Suppose a
b
∈

∩pRp with a, b ∈ R. Define I = {y ∈ R : ay ∈ bR}. Then I is an
ideal of R. Let p be a maximal ideal of R. Then by assumption, we
have

a

b
∈ Rp ⇒

a

b
=
x

y
with x ∈ R and y 6∈ p .

But then ya = xb and thus y ∈ I\p. It follows that I is not contained
in any maximal ideal p of R, and hence that I = R. But then a =
1 · a ∈ bR, i.e., a

b
∈ R. �

Theorem 4.14. If R is a Noetherian integral domain which is not
a field, then R is a Dedekind ring if and only if Rp is a PID for all
nonzero prime ideals p of R.
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Proof. We already know that if R is Dedekind then Rp is a PID
for all p. Conversely, suppose Rp is a PID for all nonzero p ∈ Spec(R).
It follows from Proposition 4.1 that every nonzero prime ideal of R is
maximal, since this is true in each Rp. So it suffices to prove that R
is integrally closed. But each Rp is a PID, hence integrally closed, and
therefore ∩pRp = R is integrally closed as well. �

1.2. Rings of S-integers, S-units, and the S-class group.
Let R be an integral domain with field of fractions K. It is easy to see
from the definition of a prime ideal that if S is any set of prime ideals
of R, then the set

T := {x ∈ R : x 6∈ ∪p6∈Sp}
is a multiplicative subset of R.

For the rest of this section, let S be a finite subset of Spec(R).
Define

RS := T−1R = {x
y
∈ K : x, y ∈ R and y 6∈ p for all p /∈ S} .

If R is a Dedekind ring, then RS consists of all elements of K which
can be written as x/y with (y) divisible only by the prime ideals in S.
It follows from Proposition 4.9 that RS is also a Dedekind ring.

Example 4.15. If R = Z and S = {(2), (3)}, then

RS := {x
y
∈ Q : x, y ∈ Z and y = ±2a3b for some integers a, b ≥ 0} .

The relationship between the ideal class groups and unit groups of
R and RS is encoded by the following exercise:

Exercise 4.16. Let K be a number field with ring of integers R,
and let S be a finite subset of nonzero prime ideals of R. Show that
there is a canonical exact sequence of abelian groups

1 → R∗ → (RS)∗ → ⊕p∈S

(
K∗/R∗

p

)
→ Cl(R) → Cl(RS) → 1 ,

and that K∗/R∗
p
∼= Z for each p ∈ S. [Hint: Use Lemma 4.13 to show

that R∗ = ∩pR
∗
p.]

When R = OK is the ring of integers in a number field K, then
OS

K is called the ring of S-integers in K, the group ClSK := Cl(OS
K) is

called the S-class group of K, and KS := (OS
K)∗ is called the group of

S-units of K.
It follows from Exercise 4.16 and the finiteness of Cl(OK) that the

S-class group of a number field K is finite. Moreover, from Dirichlet’s
unit theorem and Exercise 4.16 we see that the torsion subgroup of KS



1. LOCALIZATION 93

is the group WK of roots of unity contained in K, and (since ClSK is
finite) that KS is finitely generated of rank

rank(KS) = rank(O∗
K) + rank(⊕p∈SZ) = |S|+ r1 + r2 − 1 .

In summary, we have:

Proposition 4.17. If K is a number field and S is a finite subset
of nonzero prime ideals of OK, then ClSK is finite and

KS ∼= WK × Z|S|+r1+r2−1 .

The latter half of this proposition is sometimes known as Dirichlet’s
S-unit theorem.

Exercise 4.18. Let Q denote an algebraic closure of Q. Show that
a subgroup G of Q∗

is finitely generated if and only if G ⊆ KS for some
number field K and some finite set S ⊂ Spec(OK).

The main utility of rings of S-integers is that if S is large enough,
then OS

K is always a PID, as the following result shows:

Proposition 4.19. If K is a number field, then there exists a finite
set S of nonzero prime ideals of OK such that OS

K is a PID.

Proof. By Exercise 4.16, for every S the natural map ρ : Cl(OK) →
Cl(OS

K) given by sending the class of a to the class of aOS
K is surjective.

(The surjectivity comes from the fact that the prime ideals of OS
K are

in bijection with the prime ideals p 6∈ S, and Cl(OS
K) is generated by

the classes of such prime ideals.) Let a1, . . . , at be nonzero ideals of OK

whose classes generate the finite group Cl(OK), and let S consist of the
set of all nonzero prime ideals of OK dividing some ai. For p ∈ S, we
have pOS

K = (1), from which it follows easily that ρ([ai]) = 1 for all
i. Therefore ρ(Cl(OK)) = {1}, from which it follows that Cl(OS

K) is
trivial. This is equivalent to the statement that OS

K is a PID. �

The reader should note that the ring OS
K is much “closer” to OK

than the ring (OK)p, since we have inverted many fewer elements. Thus
Proposition 4.19 is a stronger result than Corollary 4.10 in the context
of number rings.

1.3. Siegel’s theorem and the S-unit equation. This section
can be skipped without any loss of continuity. The purpose is to il-
lustrate how to use Proposition 4.19 in practice to prove interesting
things.

We begin by stating the following theorem, whose proof is beyond
the scope of this course.



94 4. RELATIVE EXTENSIONS

Theorem 4.20 (Siegel, Mahler). Let K be a number field, let S be
a finite set of nonzero prime ideals in OK, and let KS = (OS

K)∗ be the
group of S-units in K. Then the equation x + y = 1 has only finitely
many solutions with x, y ∈ KS.

The equation x + y = 1 with x, y ∈ KS is called the S-unit equa-
tion. Theorem 4.20 can be proved using methods from the theory of
Diophantine approximation, for example Roth’s theorem. See §D.8 of
Hindry and Silverman’s book “Diophantine Geometry: An Introduc-
tion” for details.

Our goal in the rest of this section is to show that Theorem 4.20
implies a famous theorem of Siegel’s which says that there are only
finitely many integral points on an elliptic (or more generally hyperel-
liptic) curve. Without defining these terms, we show more concretely
that Theorem 4.20 implies the following result:

Theorem 4.21 (Siegel). Let K be a number field, and let S be
a finite set of nonzero prime ideals of OK. Let f(x) ∈ K[x] be a
polynomial of degree at least 3 with distinct roots in K. Then the
equation

Y 2 = f(X)

has only finitely many solutions (x, y) with x, y ∈ OS
K (and in particular

only finitely many solutions with x, y ∈ OK).

Remark 4.22. Even if one is only interested in proving the finite-
ness of solutions with x, y ∈ OK , the argument we give below requires
working in OS

K for a sufficiently large finite set S, and it turns out to
be no harder to prove the more general result which we have stated.

Proof. Without loss of generality, we may replace K by a finite
extension in order to assume that

f(X) = a(X − α1) · · · (X − αn)

with a, α1, . . . , αn ∈ K, a 6= 0. By hypothesis, we have n ≥ 3 and the
αi’s are all distinct.

We may also clearly enlarge S if we wish. By doing so, we may
assume that:

1. a ∈ KS and α1, . . . , αn ∈ OS
K .

2. αi − αj ∈ KS for all i 6= j.
3. OS

K is a PID.

Let L be the compositum (inside a fixed algebraic closure K of K)
of the fields K(

√
u) for all u ∈ KS. Since KS is finitely generated

(by Dirichlet’s S-unit theorem), the group KS/(KS)2 is finite, and
therefore L is a finite extension of K.
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Let T be the set of prime ideals of OL containing some element of
S, and let OT

L be the ring of T -integers in L.

Now suppose that y2 = f(x) with x, y ∈ OS
K .

If p is a prime ideal of OS
K and p | (x− αi), then for j 6= i we have

x− αj = (x− αi) + (αi − αj) ≡ αi − αj 6≡ 0 (mod p) ,

so that p divides at most one term x− αi.
Since

(x− α1) · · · (x− αn) = a−1y2

and a ∈ KS, it follows by unique factorization in the Dedekind ring OS
K

that every prime ideal dividing the ideal (x− αi) divides it to an even
power. Therefore there exist ideals ai of OS

K such that (x − αi) = a2
i

for 1 ≤ i ≤ n.
As OS

K is a PID, we have ai = (ai) for some ai ∈ OS
K , so that there

exist S-units ui ∈ KS with

x− αi = uia
2
i

for all i.
Furthermore, we can write ui = v2

i with vi ∈ LT . Therefore

x− αi = v2
i a

2
i = w2

i

with wi ∈ OT
L .

All of this work so far has been to show that x − αi is a perfect
square in the ring OT

L for all i. The key point here is that the ring OT
L

is independent of x. We now show that this unusual situation places
such limitations on x that there are only finitely many choices for it!

We have

αj − αi = w2
i − w2

j = (wi − wj)(wi + wj).

Since αj − αi ∈ KS, it follows that wi − wj and wi + wj are in LT

for all i 6= j.
We now use the fact that n ≥ 3 (we have to use this somewhere!)

to write down Siegel’s identities, which are very useful and completely
trivial to prove:

w1 − w2

w1 − w3

+
w2 − w3

w1 − w3

= 1

and
w1 + w2

w1 − w3

− w2 + w3

w1 − w3

= 1.

By Theorem 4.20, the equation A + B = 1 with A,B lying in the
finitely generated group LT has only finitely many solutions.
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Therefore there are only finitely many choices for(
w1 − w2

w1 − w3

)(
w1 + w2

w1 − w3

)
=

α2 − α1

(w1 − w3)2
,

and hence only finitely many choices for w1 − w3.
Therefore there are only finitely many choices for

w1 + w3 =
α3 − α1

w1 − w3

and hence only finitely many choices for

w1 =
1

2
((w1 − w3) + (w1 + w3)) .

It follows that there are only finitely many choices for

x = α1 + w2
1.

Finally, since y2 = f(x), we see that for any given value of x, there
are at most 2 possibilities for y. �

2. Galois theory and prime decomposition

2.1. Relative extensions. We first recall the statement of The-
orem 1.55: Let K be a number field of degree n, and let p be a prime
number. Write pOK =

∏r
i=1 pei

i with the pi’s distinct prime ideals of
OK . Then there exist positive integers fi such that N(pi) = pfi for all
i, and

∑r
i=1 eifi = n.

In this section we will prove a more general version of this result for
relative extensions where the base field is not necessarily Q. We will
use localization to simplify the otherwise more laborious proof.

To state the result, we first need to introduce some notation and
definitions. Suppose L/K is a finite extension of fields, and that B ⊇ A
are Dedekind rings whose fraction fields are L,K respectively. Assume,
moreover, that B is a finitely generated A-module. (For example, if L
and K are number fields and B = OL, A = OK , then B is a finitely
generated A-module, since it is even finitely generated as a Z-module.)
Recall that this implies that B is integral over A.

Note in this situation that B ∩ K = A. This is because every
element of B is integral over A, and A is assumed to be integrally
closed in its fraction field K.

Remark 4.23. One can show that if L/K is a finite extension of
fields, and if A is a Dedekind ring with field of fractions K, then the
integral closure B of A in L is again a Dedekind ring, and B is finitely
generated as an A-module. When L/K is separable, this can be proved



2. GALOIS THEORY AND PRIME DECOMPOSITION 97

using the fact that the bilinear form 〈x, y〉 = TrL/K(xy) on the K-
vector space L is non-degenerate if L/K is separable. The general case
requires some additional facts from the theory of purely inseparable
field extensions.

Now suppose p is a nonzero prime ideal of A. The field A/p is called
the residue field of p. We say that a prime ideal q of B lies over p (or
that p lies under q) if q contains p. This is equivalent to saying that q
divides the ideal pB of B, which by definition is the smallest ideal of
B containing p. (The ideal pB may of course not be a prime ideal in
B).

Lemma 4.24. A prime ideal q of B lies over p if and only if q∩A =
p.

Proof. If q ∩ A = p then certainly q ⊇ p, i.e., q lies over p.
Conversely, if q ⊇ p then q∩A is a prime ideal of A containing p. Since
A is 1-dimensional, p is maximal, so we conclude that q ∩ A = p as
desired. �

Let q1, . . . , qr be the prime ideals ofB lying over p, which are exactly
the prime ideals appearing in the factorization of the ideal pB. This is
well-defined because of the following lemma.

Lemma 4.25. If p is a nonzero prime ideal of A, then pB 6= B.

Proof. Let π ∈ p\p2, so that πA = pa with p not dividing a. Then
p and a are relatively prime in A, so we can write 1 = b+ a with b ∈ p
and a ∈ a. If pB = B, then we would have aB = apB ⊆ πB. But then
a = πx for some x ∈ B. As x = a

π
∈ K, we have x ∈ B ∩K = A and

therefore a ∈ πA ⊆ p. But then 1 = b+ a ∈ p, a contradiction. �

Exercise 4.26. Show that the residue fieldB/qi is a finite-dimensional
vector space over the residue field A/p. (Note that if R ⊆ S are rings,
I is an ideal of R, and J is an ideal of S containing I, then S/J is
naturally an R/I-module.)

Let fi = f(qi/p) := [B/qi : A/p] be the residue degree of qi over p.
Also, write the prime ideal factorization of pB as

pB = qe1
1 qe2

2 · · · qer
r .

We call ei = e(qi/p) the ramification index of qi over p.
With this terminology, we have:

Theorem 4.27. Let L/K be a finite extension of fields. Let B ⊇ A
be a finitely generated extension of Dedekind rings with fraction fields
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L,K respectively. Let q1, . . . , qr be the prime ideals of B lying over the
nonzero prime ideal p of A. Then

r∑
i=1

e(qi/p)f(qi/p) = [L : K].

Proof. Let S := A\p. We claim that in order to prove the desired
formula, we may replace A by A′ = S−1A, B by B′ = S−1B, p by
p′ = pA′, and each qi by q′i = qiB

′. A few remarks are in order to
justify this claim:

(i) Since S is a multiplicative subset of A, it is also a multiplicative
subset of B. Therefore S−1B is well-defined.

(ii) By Proposition 4.9, A′ and B′ are both Dedekind rings.
(iii) Since B is finitely generated over A, it follows that B′ is finitely

generated over A′ (use the same set of generators).
(iv) The fi’s don’t change after localization. To see this, first note

that p′ is a maximal ideal in A′ andA/p ∼= A′/p′ by Lemma 4.6.
Similarly, since qi∩A = p, we have qi∩S = ∅, and therefore q′i
is a maximal ideal of B′. In addition, we have B/qi

∼= B′/q′i.
(v) The ei’s don’t change after localization. Indeed, it is straight-

forward to check that after localizing both sides of the equation
pB = qe1

1 · · · qer
r , we obtain the factorization pB′ = (q′1)

e1 · · · (q′r)er .

For simplicity of notation, we now write A instead of A′, etc. What
has this localization accomplished? Well, we have reduced to the case
where A is a PID! This simplifies the rest of the argument. (Note
that B is not necessarily a PID, since Corollary 4.10 only applies to
localization at a prime ideal.)

Since A is a PID and B is a finitely generated torsion-free A-module,
the structure theorem for finitely generated modules over a PID tells
us that B is a free A-module of finite rank. By Exercise 4.28 below,
the rank of B over A must be n = [L : K], and [B/pB : A/p] = n as
well.

We have pB = qe1
1 qe2

2 · · · qer
r , so by the Chinese Remainder Theorem,

there is a ring isomorphism

B/pB ∼= ⊕r
i=1B/q

ei
i .

It therefore suffices to prove that dimk(B/q
ei
i ) = eifi for each i, where

k = A/p.
As in the proof of Theorem 1.53, by considering the chain of ideals

B ⊃ qi ⊃ q2
i ⊃ · · ·
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it is enough by induction to prove that dimk(q
m
i /q

m+1
i ) = fi for each

m ≥ 0. And for this, it suffices to prove the stronger fact that there is
an isomorphism B/qi

∼= qm
i /q

m+1
i for each m ≥ 0.

This can be verified as in the proof of Theorem 1.53. Alternatively,
since B/qm

i
∼= Bqi

/(qiBqi
)m for each m, we may without loss of gener-

ality replace B by Bqi
and assume that B is a PID. Writing qi = (πi),

the map B/qi → qm
i /q

m+1
i given by multiplication by πm

i is then easily
checked to be an isomorphism. �

Exercise 4.28. In the proof of Theorem 4.27, assuming that A is
a PID, show that the rank of B over A is n = [L : K], and that the
dimension of B/pB over A/p is also n. [Hint: For the first part, show
that if x1, . . . , xn is a basis for B as an A-module, then it is also a basis
for L as a K-vector space. For the second part, show that x1, . . . , xn

gives a basis for B/pB as a vector space over A/p.]

If L/K is a Galois extension, then we can say more about the ei’s
and fi’s.

Lemma 4.29. If in the setting of Theorem 4.27 the extension L/K
is Galois, then the Galois group G of L/K acts transitively on the set
of prime ideals of B lying over p.

Proof. Let qi, qj be distinct prime ideals of B lying over p. Sup-
pose σqi 6= qj for all σ ∈ G. Then by the Chinese Remainder Theorem,
there exists x ∈ B such that x ≡ 0 (mod qj) and x ≡ 1 (mod σqi) for
all σ ∈ G. It is easy to see that NL/K(x) =

∏
σ∈G σx lies in B∩K = A,

and in fact lies in qj ∩ A = p. But x 6∈ σ−1qi for all σ ∈ G, so σx 6∈ qi

for all σ ∈ G. This contradicts the fact that
∏

σ∈G σx belongs to the
prime ideal p. �

Corollary 4.30. If in Theorem 4.27 the extension L/K is Galois,
then e1 = e2 = · · · = er and f1 = f2 = · · · = fr. Therefore, letting e
(resp. f) denote the common value of the ei’s (resp. the fi’s), we have
ref = [L : K].

Proof. Since the Galois group G of L/K acts transitively on the
qi’s, given i, j we can find σ ∈ G mapping qi to qj. Then applying σ
to both sides of the relation

pB = qe1
1 qe2

2 · · · qer
r ,

we get

pB = (σq1)
e1(σq2)

e2 · · · (σqr)
er .
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As σqi = qj, it follows from unique factorization that ei = ej. More-
over, it is easy to see that σ induces an isomorphism of residue fields

σ : B/qi
∼−→B/qj ,

so that fi = fj as desired. �

Exercise 4.31. Prove that e and f are multiplicative in towers, in
the sense that if p1 ⊂ p2 ⊂ p3 are nonzero prime ideals contained in
the Dedekind rings A1 ⊂ A2 ⊂ A3, then e(p3/p1) = e(p3/p2) · e(p2/p1)
and f(p3/p1) = f(p3/p2) · f(p2/p1).

2.2. Decomposition and inertia groups. For simplicity, we
suppose throughout this section that L/K is a Galois extension of
number fields, 1 and we let p be a nonzero prime ideal of OK .

We have already seen that the action of the Galois group G =
Gal(L/K) on the set of prime ideals of OL lying over p is transitive.
Our goal now is to understand some of the finer structure associated
with this action. This investigation will have a number of payoffs. For
example, we will be soon able to:

• Describe how rational primes factor in the ring of integers of
a cyclotomic field.

• Give examples of number rings which are not monogenic.
• Give a short and insightful proof of Gauss’ law of quadratic

reciprocity.

Let S be the set of prime ideals of OL lying over p, and fix a
particular prime ideal q ∈ S. Since the action of G on S is transitive,
it follows from group theory that the stabilizer of q is a subgroup of G
of order n/r = ef , where e = e(q/p) and f = f(q/p) are independent
of q, and n := [L : K]. We denote this stabilizer by Dq/p (or simply
by Dq when p is understood), and call it the decomposition group of q.
As we will see later, the decomposition group is so named because it is
closely related to the factorization of p in OL. By definition, we have

Dq/p := {σ ∈ G : σ(q) = q} .

In order to understand the decomposition group better, we now
introduce an important homomorphism. Let k (resp. `) denote the
residue field OK/p (resp. OL/q). Then `/k is an extension of finite
fields of characteristic p, where pZ = p ∩ Z. By definition, we have
f := f(q/p) = [` : k].

1In principle, everything we are doing here works in the more general context
where L/K is a Galois extension of Dedekind domains, all of whose residue fields
are finite.
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It follows from the theory of finite fields that `/k is a Galois ex-
tension. Moreover, the Galois group Gal(`/k) is cyclic, with a natural
generator given by the Frobenius automorphism of `. (Recall that the
Frobenius automorphism is the map which sends x to x|k| for all x ∈ `.)

An important observation is the fact that every σ ∈ Dq/p induces
an automorphism σ of Gal(`/k) in a natural way. Indeed, if x ∈ `, we
can lift it to some element x ∈ OL, and then we can define σ(x) to be
the class of σ(x) mod q. We claim that the map σ 7→ σ is well-defined
(independent of the choice of a lifting of x). Assuming this, it follows
easily that this map gives us a natural homomorphism from Dq/p to
Gal(`/k).

To see that the map σ 7→ σ is well-defined, suppose x, x′ are both
lifts in OL of x, so that x ≡ x′ (mod q). We need to show that
σ(x), σ(x′) are congruent modulo q. But this follows directly from the
fact that σ ∈ Dq/p, since x− x′ ∈ q implies that

σ(x)− σ(x′) ∈ σ(q) = q .

The next proposition has numerous applications.

Proposition 4.32. The natural homomorphism Dq/p → Gal(`/k)
sending σ to σ is surjective.

Proof. As `/k is separable, there exists a primitive element α for
this extension. Since an element of Gal(`/k) is uniquely determined by
what it does to α, it suffices to prove that every conjugate of α is of
the form σ(α) for some σ ∈ Dq/p.

Let α ∈ OL be a lift of α such that α ∈ q′ for all q′ 6= q lying over
p. We can find such an α by the Chinese Remainder Theorem, since
this is equivalent to solving the system of congruences

α ≡ α (mod q), α ≡ 0 (mod q′) .

Let f(x) ∈ OK [x] be the minimal polynomial of α over K, and let
g(x) ∈ k[x] be the minimal polynomial of α over k. Since every root of
f(x) is a Galois conjugate of α, there exists a subset H of G such that

f(x) =
∏
σ∈H

(x− σ(α)) .

Let H ′ = H ∩ Dq/p. Note that if σ ∈ G and σ 6∈ Dq/p, then
σ−1 6∈ Dq/p. Therefore σ−1q 6= q, so that α ∈ σ−1q by our choice of α.
Equivalently, we have σ(α) ∈ q whenever σ ∈ G\Dq/p. Therefore, if we
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use a bar to denote reduction modulo q, then we have

f(x) =
∏

σ∈H(x− σ(α))

=
∏

σ∈H′(x− σ(α))
∏

σ 6∈H′(x− σ(α))
= xm

∏
σ∈H′(x− σ(α))

for some positive integer m.
In particular, all nonzero roots of f(x) are of the form σ(α) with

σ ∈ Dq/p. But f(α) = f(α) = 0, so g(x) | f(x). Since 0 is not a root
of g(x), we must have

g(x) |
∏

σ∈H′

(x− σ(α)) .

Therefore every conjugate of α is of the form σ(α) for some σ ∈ Dq/p,
as desired. �

The kernel of the natural map Dq/p → Gal(`/k) is called the inertia
group of q in G, and is denoted Iq/p, or simply Iq when p is understood.
Explicitly, we have:

Iq := {σ ∈ G : σ(x) ≡ x (mod q) ∀x ∈ OL} .
Proposition 4.32 implies thatDq/p/Iq/p

∼= Gal(`/k). In particular, since
the cardinality of Dq is e(q/p)f(q/p) and the cardinality of Gal(`/k) is
f(q/p), we obtain the following:

Corollary 4.33. The inertia group Iq/p has cardinality equal to
e(q/p). In particular, q/p is unramified if and only if Iq/p = 1.

Similarly, we deduce the following important result:

Corollary 4.34. The quotient group Dq/p/Iq/p is cyclic of order
f(q/p), and there is a canonical element Frobq/p ∈ Dq/p/Iq/p having
the property that its image in Gal(`/k) is the Frobenius automorphism.
In particular, if q/p is unramified, then Frobq/p is well-defined as an
element of the decomposition group Dq/p.

2.3. Decomposition and inertia fields. We will now use Galois
theory to study the fixed fields of the groups Dq/p and I = Iq/p defined
in the previous section.

We will maintain the basic setup from the previous section. To
simplify notation, we fix a prime q over p and write D = Dq/p and
I = Iq/p. We also write e = e(q/p) and f = f(q/p). If H is any
subgroup of G, we denote by LH the fixed field of H. By Galois theory,
Gal(L/LH) = H.

We now introduce some common sense terminology: the fixed field
LD of the decomposition group is called the decomposition field of q/p,



2. GALOIS THEORY AND PRIME DECOMPOSITION 103

and the fixed field LI of the inertia group is called the inertia field of
q/p. We have the following chain of inclusions:

K ⊆ LD ⊆ LI ⊆ L.

If K ′ is any intermediate field between K and L, we let p′ be the
prime ideal q ∩ OK′ of OK′ , and we let D′ (resp. I ′) be the decompo-
sition group (resp. the inertia group) of q/p′, which is a subgroup of
Gal(L/K ′).

Lemma 4.35. Let H be a subgroup of G and let K ′ := LH . Then
D′ = D ∩H and I ′ = I ∩H.

Proof. This follows immediately from the definitions: D is the
stabilizer of q in G, while D′ is the stabilizer of q in H, so D′ = D∩H.
Similarly, I is the kernel of D → Gal(`/k) and I ′ is the kernel of
D′ → Gal(`/k′) ⊆ Gal(`/k), so I ′ = I ∩D′ = I ∩H. �

We note that, by Galois theory, if H and H ′ are subgroups of G,
then LH∩H′

= LHLH′
. Using this fact, we will see that the decomposi-

tion and inertia fields have the following pleasant (and useful) charac-
terizations:

Proposition 4.36. (i) LD is the largest intermediate field K ′

for which e(p′/p) = f(p′/p) = 1.
(ii) LI is the largest intermediate field K ′ for which e(p′/p) = 1.

Proof. First, we claim that if K ′ = LD then e(p′/p) = f(p′/p) =
1. To see this, note that by Lemma 4.35, we have D′ = D, so that
e(q/p′)f(q/p′) = e(q/p)f(q/p). By the multiplicativity of e and f in
towers (Exercise 4.31), we must have e(p′/p) = f(p′/p) = 1 as claimed.
Similarly, if K ′ = LI , then I ′ = I and we deduce that e(p′/p) = 1.

We now prove that if K ′ is any intermediate field between K and
L with e(p′/p) = f(p′/p) = 1, then K ′ ⊆ LD. For this, write K ′ =
LH for some subgroup H, and note that since D′ = D ∩ H, we have
LD′

= LDK ′. The hypothesis e(p′/p) = f(p′/p) = 1 implies, using
multiplicativity of e and f in towers, that |D′| = e(q/p′)f(q/p′) =
e(q/p)f(q/p) = |D|. Therefore D′ = D and LD = LD′

= LDK ′, so
that K ′ ⊆ LD as desired.

Similarly, suppose K ′ = LH is any intermediate field between K
and L with e(p′/p) = 1. Then on one hand we have LI′ = LIK ′, and
on the other hand (by multiplicativity of ramification indices) we have
|I ′| = e(q/p′) = e(q/p) = |I|, so that I ′ = I. Therefore LI = LI′ =
LIK ′, so that K ′ ⊆ LI as desired. �



104 4. RELATIVE EXTENSIONS

Exercise 4.37. Let L/K be a Galois extension of number fields.
Suppose q is a nonzero prime ideal of OL lying over the nonzero prime
ideal p of OK . Let D = Dq/p and I = Iq/p. Show that:

(i) LD is the smallest intermediate field K ′ such that q is the only
prime ideal of OL lying over p′ = OK′ ∩ q.

(ii) LI is the smallest intermediate field K ′ such that q is totally
ramified over p′ = OK′ ∩ q.

We have the following useful corollary of Proposition 4.36:

Corollary 4.38. Suppose L1, L2 are finite extensions of the num-
ber field K, and let p be a nonzero prime ideal of OK. Then p is
unramified (resp. splits completely) in both L1 and L2 if and only if p
is unramified (resp. splits completely) in L1L2.

Proof. We will treat the unramified case; the case where p splits
completely works exactly the same.

If p is unramified in L1L2, then p is unramified in both L1 and
L2 by multiplicativity of the ramification index in towers. Conversely,
suppose p is unramified in L1 and L2. Let p′ be a prime of OL1L2 lying
over p. Let M be a Galois extension of K containing L1L2, and let q
be a prime ideal of OM lying over p′. Let I = Iq/p, and let M I be the
corresponding inertia field. Then M I contains both L1 and L2, since
q ∩ OL1 and q ∩ OL2 are unramified over p. Therefore M I ⊇ L1L2,
which implies that q ∩ OL1L2 = p′ is unramified over p. �

Corollary 4.39. Suppose L is a finite extension of the number
field K, and let M be the Galois closure of L/K. Let p be a nonzero
prime ideal of OK. Then p is unramified (resp. splits completely) in L
if and only if p is unramified (resp. splits completely) in M .

Proof. If p is unramified in L/K, then clearly p is also unramified
in σ(L)/K for each embedding σ of L into C which fixes K. Since M is
the compositum of all such fields σ(L), the result follows by induction
from Corollary 4.38. (Again, the case where p splits completely follows
from the exact same argument.) �

2.4. A number ring which is not monogenic. In this section,
we apply Corollary 4.38 to give examples of number fields K whose
rings of integers are not monogenic, i.e., are not of the form Z[α] for
any α ∈ OK .

Note that we have already shown that the ring of integers in every
quadratic and cyclotomic field is monogenic, so we will have to look
elsewhere to find our examples.
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Let d1, d2 be distinct squarefree integers (different from 1). Define
K1 = Q(

√
d1), K2 = Q(

√
d2), and K = K1K2.

Exercise 4.40. Show that [K : Q] = 4.

Suppose now that OK = Z[α] for some α ∈ OK . Let f(x) be the
minimal polynomial of α over Q. According to Kummer’s decomposi-
tion theorem, a rational prime p splits completely in K if and only if
f(x) splits into four distinct linear factors mod p. If p = 3, for exam-
ple, then this is impossible, since the field Z/pZ contains only 3 distinct
elements. In particular, 3 can never split completely in K.

By Corollary 4.38, we will have a contradiction if 3 splits completely
in both K1 and K2, since this would imply that 3 splits completely in
K. By Kummer’s decomposition theorem, 3 splits completely in Q(

√
d)

if and only if d ≡ 1 (mod 3). We have therefore proved:

Theorem 4.41. Let d1, d2 6= 1 be distinct squarefree integers con-
gruent to 1 mod 3, and let K = Q(

√
d1,
√
d2). Then OK is not mono-

genic.

As a concrete example, the ring of integers in Q(
√

7,
√

10) is not
monogenic.

Remark 4.42. In fact, we have proved more: the argument just
given shows that under the hypotheses of Theorem 4.41, we have 3 |
|OK/Z[α]| for any α ∈ OK such that K = Q(α).

2.5. Frobenius elements in Gal(L/K). Suppose that L/K is a
Galois extension of number fields with Galois group G, and let p be
a nonzero prime ideal of OK . The first question which we address in
this section is how the decomposition groups Dq/p and Dq′/p (resp. the
inertia groups) are related when q, q′ are distinct primes of OL lying
over p.

Lemma 4.43. Suppose q, q′ are distinct primes of OL lying over p,
and write q′ = σq with σ ∈ G. (This is always possible by Lemma 4.29.)
Then

Dq′/p = σDq/pσ
−1

and

Iq′/p = σIq/pσ
−1.

Proof. We give a proof for the decomposition group, and leave
the corresponding fact for the inertia group as an exercise.
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Dq′ = {τ ∈ G : τq′ = q′}
= {τ ∈ G : τσq = σq}
= {τ ∈ G : σ−1τσq = q}
= {στσ−1 ∈ G : τq = q}
= σ{τ ∈ G : τq = q}σ−1

= σDqσ
−1.

�

Corollary 4.44. If L/K is abelian (i.e., if L/K is Galois and
the group Gal(L/K) is an abelian group), then the groups Dq/p and
Iq/p depend only on p, and not on the chosen prime q above p.

Because of this corollary, when L/K is abelian we frequently write
Dp instead of Dq/p or Dq, and similarly for inertia groups.

Assume now that L/K is Galois and that p is a prime ideal of OK

which is unramified in OL. This is equivalent to assuming that Iq/p is
trivial for all q lying over p.

Fix a prime ideal q lying over p, and let `/k be the corresponding
extension of residue fields. As discussed in Section 2.2, there is then a
canonical generator Frobq = Frobq/p of Dq. It is the unique element of
Dq which maps to the Frobenius automorphism in Gal(`/k). Equiva-
lently, Frobq can be characterized as the unique automorphism σ in Dq

such that

(4.1) σ(x) ≡ xN(p) (mod q) ∀x ∈ OL,

since N(p) = |k| by definition.
In fact, Frobq is the unique element of the Galois group G with this

property, since (4.1) clearly implies that σq = q and hence σ ∈ Dq.
This is important enough of an observation to state it as a propo-

sition:

Proposition 4.45. Frobq is the unique element σ ∈ G such that

σ(x) ≡ xN(p) (mod q) ∀x ∈ OL.

The importance of Frobq can partly be seen in the fact that its order
in G is precisely f(q/p). We will exploit this fact in the next section.

Next, we would like to know how Frobq depends on q. The answer
is not surprising, in view of Lemma 4.43, and we leave it as an exercise
to supply a proof.

Exercise 4.46. Let L/K be a Galois extension of number fields
with Galois group G. Suppose q, q′ are prime ideals of OL lying over
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p, and assume that p is unramified in L. If q′ = σq with σ ∈ G, show
that

Frobq′/p = σ Frobq/p σ
−1.

Remark 4.47. We see, in particular, that if L/K is abelian, then
the Frobenius element Frobq/p of G depends only on p, and not on the
choice of a particular prime q lying over p.

In general, there is at least a well-defined conjugacy class Frobp in
G (depending only on p) whenever p is unramified.

If L/K is abelian and p is unramified in L, then Frobp satisfies (4.1)
for all q | p. Since pOL is the product of all the prime ideals of OL

lying over it, we conclude by the Chinese Remainder Theorem that:

Proposition 4.48. If L/K is abelian and p is a nonzero prime
ideal of OK unramified in OL, then Frobp is the unique element σ ∈
Gal(L/K) such that

σ(x) ≡ xN(p) (mod pOL) ∀x ∈ OL.

2.6. Factorization in cyclotomic fields. Suppose Km = Q(ζm)
is a cyclotomic field, with ζm a primitive mth root of unity for some
positive integer m. Since OKm = Z[ζm] by Theorem 2.45(d), we know
that to find the prime factorization of a rational prime p in OKm , it
suffices by Kummer’s criterion to factor the minimal polynomial Φm(x)
of ζm mod p. A priori, it is not obvious that there is a simple rule
governing how Φm(x) factors mod p. But in fact, there is a simple
and elegant way to determine this factorization. The rule is as follows
(where for simplicity, we stick to the case p - m).

Theorem 4.49. Let m be a positive integer, and let p be a prime not
dividing m. Let f be the order of p in (Z/mZ)∗. Then the factorization
of (p) into distinct prime ideals in Z[ζm] has the form (p) = p1 · · · pr,
where f(pi/p) = f for all i and r = φ(m)/f .

Corollary 4.50. With m, p, f, r as above, the cyclotomic poly-
nomial Φm(x) splits into r distinct irreducible factors mod p, each of
which has degree f .

Before proving the theorem, we need to study Frobenius elements
in cyclotomic fields.

Note that since p - m by assumption, it follows from Corollary 2.20
and Theorem 2.45(c) that the prime p is unramified in Km. Therefore
Ip/p = 1 for all p | p. Also, Km/Q is abelian, so it follows from Re-
mark 4.47 that Frobp is well-defined as an element of Gal(Km/Q). The
following lemma identifies the Frobenius element Frobp explicitly; for
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the statement, recall that Gal(Km/Q) consists of the elements σt for
(t,m) = 1, where σt(ζm) = ζt

m.

Lemma 4.51. If Km = Q(ζm), p is a prime with p - m, and p is a
prime ideal of Z[ζm] lying over p, then Frobp = σp.

Proof. Let n = φ(m). By Proposition 4.48, Frobp is the unique
element σ of G = Gal(Km/Q) such that σ(x) ≡ xp (mod p) for all
x ∈ Z[ζm]. But the automorphism σp has this property, since

σp(a0 + a1ζm + · · ·+ an−1ζ
n−1
m ) = a0 + a1ζ

p
m + · · ·+ an−1ζ

(n−1)p
m

≡ (a0 + a1ζm + · · ·+ an−1ζ
n−1
m )p

modulo p by the binomial formula and Fermat’s Little Theorem. There-
fore Frobp = σp. �

For future use, we note the following corollary:

Corollary 4.52. Let m be a positive integer, and let p be a prime
number with p - m. If we identify the Galois group G of Km/Q with
(Z/mZ)∗, then the decomposition group at any prime above p is iden-
tified with the cyclic subgroup 〈p〉 ⊆ (Z/mZ)∗ generated by p.

We can now prove Theorem 4.49.

Proof. We know already that p - m implies that p is unramified
in K. Also, since Km/Q is Galois, we know that f(p1/p) = · · · =
f(pr/p) = f ′ for some f ′. We also know that rf ′ = [Km : Q] = φ(m).
It therefore suffices to prove that f ′ = f .

We do this by showing that if p is a fixed prime ideal of OKm lying
over p, the decomposition group D of p/p has order f . (Note that since
e(p/p) = 1, the decomposition group has order f(p/p) = f ′).

For this, we recall from above that D is cyclic of order f ′, and is
generated by the Frobenius element Frobp = σp inside G taking ζm
to ζp

m. Since (σp)
t = σpt , the order f ′ of the automorphism Frobp is

clearly the smallest positive integer t such that pt ≡ 1 (mod m). In
other words, f ′ = f as desired. �

As an example, let’s see how the prime ideals (2) and (31) factor in
the ring Z[ζ15].

Since the order of 2 mod 15 is 4 and φ(15) = 8, we find that
(2) = p1p2 with p1, p2 distinct prime ideals of norm 16.

On the other hand, the order of 31 mod 15 is 1, so that (31) =
q1 · · · q8 in Z[ζ31], where the qi’s are distinct prime ideals of norm 31.

The polynomial counterpart of these results is as follows. Let
Φ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1 be the minimal polynomial
of the primitive 15th roots of unity. Kummer’s decomposition theorem
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tells us that over F2, Φ15(x) splits into 2 distinct irreducible factors of
degree 4, and that over F31, Φ15(x) splits into 8 distinct linear factors.
Indeed, according to MAPLE 2 we have

Φ15(x) ≡ (x4 + x3 + 1)(x4 + x+ 1) (mod 2)
Φ15(x) ≡ (x+ 3)(x+ 11)(x+ 12)(x+ 13)(x+ 17) · · ·

(x+ 21)(x+ 22)(x+ 24) (mod 31).

As an immediate consequence of Theorem 4.49, we obtain the fol-
lowing important result:

Corollary 4.53. The rational primes which split completely in
Z[ζm] are exactly the primes congruent to 1 mod m.

Finally, we mention that one can formulate the following more gen-
eral version of Theorem 4.49, which deals with the ramified primes as
well. We leave this stronger formulation as an exercise for the reader:

Exercise 4.54. Let m be a positive integer, and let p be a prime
number. Let pν be the largest power of p dividing m, let m′ = m/pν ,
and let f be the order of p in (Z/m′Z)∗. Then the factorization of (p)
into distinct prime ideals in Z[ζm] has the form (p) = (p1 · · · pr)

φ(pν),
where f(pi/p) = f for all i and r = φ(m′)/f .

2.7. Gauss’ law of quadratic reciprocity. In this section, we
will give a proof of Gauss’ celebrated law of quadratic reciprocity. This
result is almost certainly in the top five (along with the “Big Kahuna”
– Fermat’s Last Theorem) in terms of its historical impact on the de-
velopment of Algebraic Number Theory. First, though, we need some
background material on subfields of cyclotomic fields.

Let p be an odd prime, and let Kp = Q(ζp). The extension Kp/Q
is Galois, with Galois group isomorphic to (Z/pZ)∗ ∼= Z/(p − 1)Z.
Since a cyclic group of order m has exactly one subgroup of every
order dividing m, it follows by Galois theory that Kp contains a unique
subfield of order m for all m | p−1. In particular, Kp contains a unique
quadratic subfield L, which we will now determine explicitly.

The “abstract” way to determine L is to use ramification. We know
that p is the only rational prime which ramifies in Kp, and it is totally
ramified. Since ramification indices are multiplicative, it follows that p
is the unique prime which ramifies in L. But for quadratic fields (which
are necessarily monogenic), we know that a rational prime ` ramified

2To obtain these results, use the Maple commands:
with(numtheory); Phi(x) := cyclotomic(15,x); Factor(Phi(x)) mod 2; Fac-
tor(Phi(x)) mod 31;
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in L if and only if ` | ∆L. Furthermore, if L =
√
d with d squarefree,

then ∆L = d (resp. 4d) if d ≡ 1 (mod 4) (resp. d ≡ 2, 3 (mod 4)).
Therefore the only quadratic field in which p is the unique prime which

ramifies is L = Q(
√
p∗), where p∗ = (−1)

p−1
2 p. This is because p∗ ≡ 1

(mod 4), so that |∆Q(
√

p∗)| = p, whereas |∆Q(
√
−p∗)| = 4p.

In summary, we have proved:

Proposition 4.55. Let p be a prime number, and let p∗ = (−1)
p−1
2 p.

Then the cyclotomic field Kp contains a unique quadratic subfield L,
and L is isomorphic to Q(

√
p∗).

Remark 4.56. A more constructive proof of Proposition 4.55 will
be given in §2.8.

We have the following alternative characterization of the unique
quadratic subfield of Kp.

Lemma 4.57. Let p be a prime, and identify the Galois group of
Kp/Q with (Z/pZ)∗. Let L be the unique quadratic subfield of Kp.
Then L = KH

p , where H is the index 2 subgroup of (Z/pZ)∗ consisting
of all elements which are squares.

Proof. It is clear from group theory thatH has index 2 in (Z/pZ)∗.
By Galois theory, KH

p has degree 2 over Q, and must therefore coincide
with L. �

Combining our two different characterizations of L (as KH
p on the

one hand and Q(
√
p∗) on the other), we obtain:

Theorem 4.58 (Gauss’ Law of Quadratic Reciprocity). Let p, q be
distinct odd primes. Then

(
p

q
) = (−1)

p−1
2

q−1
2 (

q

p
).

Proof. Since (−1
q

) = (−1)
q−1
2 by elementary considerations, qua-

dratic reciprocity is equivalent to the assertion

(
p∗

q
) = (

q

p
) .

Now note that on one hand, since L = Q(
√
p∗), it follows by Kum-

mer’s criterion that q splits completely in L if and only if x2−p∗ factors
into linear factors modulo q, i.e., if and only if (p∗

q
) = 1.

On the other hand, let D = 〈q〉 ⊆ (Z/pZ)∗ be the decomposition
group at any prime ideal q lying over q in Kp/Q, and recall that KD

p is

the largest subfield of Kp in which q splits completely. Since L = KH
p ,
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where H is the subgroup of squares in (Z/pZ)∗, we find by Galois
theory that

q splits completely in L⇔ L = KH
p ⊆ KD

p ⇔ D = 〈q〉 ⊆ H ⇔ (
q

p
) = 1.

�

Although there are many more elementary proofs of quadratic reci-
procity, this proof we have just given is arguably the most important
and most insightful one. It guided E. Artin to formulate and prove
a deep result now known as Artin’s Reciprocity Law, which is one of
the cornerstones of Class Field Theory and generalizes all previously
known reciprocity laws.

2.8. Gauss sums. In this section, we give a more constructive
proof of Proposition 4.55 using Gauss sums. We also use Gauss sums
to give another proof of the law of quadratic reciprocity.

Let ζp = e2πi/p as usual, and let

g :=
∑

t∈(Z/pZ)∗

(
t

p
)ζt

p ∈ Z[ζp] .

We need:

Lemma 4.59. Let b ∈ Z. Then∑
t∈(Z/pZ)

ζbt
p =

{
0 b 6≡ 0 (mod p)
p b ≡ 0 (mod p).

Proof. This follows easily from the fact that if b 6≡ 0 (mod p),
then ∑

t∈(Z/pZ)

ζbt
p =

ζbp
p − 1

ζb
p − 1

= 0.

�

Proposition 4.60. In Z[ζp], we have the relation g2 = p∗.

Remark 4.61. In particular, this gives an independent proof of the
fact that Kp contains the quadratic field Q(

√
p∗).

Proof. For a ∈ (Z/pZ), define ga =
∑

t∈(Z/pZ)∗(
t
p
)ζat

p . We claim

that ga = (a
p
)g. If a = 0, this formula follows from the fact that

the number of squares in (Z/pZ)∗ equals the number of nonsquares.
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Otherwise, if a ∈ (Z/pZ)∗ then multiplication by a is an automorphism
of (Z/pZ)∗, and therefore

(
a

p
)ga =

∑
t∈(Z/pZ)∗

(
at

p
)ζat

p =
∑

b∈(Z/pZ)∗

(
b

p
)ζb

p = g,

which proves the claim.
We now prove the proposition by evaluating the sum∑

a∈(Z/pZ)

gag−a

in two different ways.
On one hand, the claim implies that

gag−a = (
a

p
)(
−a
p

)g2 =

{
0 a = 0
(−1

p
)g2 a 6= 0.

Therefore ∑
a∈(Z/pZ)

gag−a =
∑

a∈(Z/pZ)∗

(
−1

p
)g2 = (p− 1)(

−1

p
)g2.

On the other hand, we have

gag−a =
∑

x,y∈(Z/pZ)∗

(
x

p
)(
y

p
)ζax

p ζ−ay
p =

∑
x,y∈(Z/pZ)∗

(
xy

p
)ζa(x−y)

p .

Using Lemma 4.59, we therefore have∑
a∈(Z/pZ)

gag−a =
∑

x,y∈(Z/pZ)∗

(
xy

p
)
∑

a∈(Z/pZ)

ζa(x−y)
p = p(p− 1).

The result follows. �

We conclude this section with a second proof of the law of quadratic
reciprocity.

Proof. Let p, q be odd primes, and let g =
∑p−1

t=0 ( t
p
)ζt

p. By the

binomial theorem and Lemma 4.59, we have

gq ≡
p−1∑
t=0

(
t

p
)ζtq

p = gq = (
q

p
)g (mod qZ[ζp]) .

By Proposition 4.60, if we multiply both sides of this congruence by g,
we obtain

p∗ · (p∗)
q−1
2 ≡ (

q

p
)p∗ (mod qZ[ζp])

and therefore (since p and q are relatively prime)

(4.2) (p∗)
q−1
2 ≡ (

q

p
) (mod qZ[ζp]) .
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On the other hand, Euler’s criterion from elementary number theory
implies that

(4.3) (p∗)
q−1
2 ≡ (

p∗

q
) (mod qZ[ζp]) .

Combining (4.2) and (4.3), and using the fact that q is odd, yields
the desired equality

(
p∗

q
) = (

q

p
) .

�

3. Exercises for Chapter 4

(1) Let A be an integral domain, and let S be a multiplicative
subset of A.
(a) Prove that every ideal of S−1A is of the form S−1I for

some ideal I of A.
(b) Let g : A → B be a ring homomorphism such that g(s)

is a unit in B for all s ∈ S. Prove that there is a unique
ring homomorphism h : S−1A → B such that g = h ◦ f ,
where f : A→ S−1A is the natural inclusion.

(2) Let K be a number field with ring of integers R, and let S be
a finite subset of nonzero prime ideals of R.
(a) Prove that R∗ = ∩pR

∗
p.

(b) Show that there is a canonical exact sequence of abelian
groups

1 → R∗ → (RS)∗ → ⊕p∈S

(
K∗/R∗

p

)
→ Cl(R) → Cl(RS) → 1 .

(c) Prove that K∗/R∗
p
∼= Z for each p ∈ S.

(d) If K is a number field and R = OK , use Dirichlet’s unit
theorem to show that

(RS)∗ ∼= WK × Zr1+r2−1+|S| .

(3) Let Q denote an algebraic closure of Q. Show that a subgroup

G of Q∗
is finitely generated if and only if G ⊆ (OS

K)∗ for some
number field K and some finite set S of nonzero prime ideals
of OK .

(4) Prove that e and f are multiplicative in towers, in the sense
that if p1 ⊂ p2 ⊂ p3 are nonzero prime ideals contained in
the number rings A1 ⊂ A2 ⊂ A3, then e(p3/p1) = e(p3/p2) ·
e(p2/p1) and f(p3/p1) = f(p3/p2) · f(p2/p1).

(5) Find a prime number p and quadratic extensions K and L of
Q illustrating each of the following:
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(a) p can be totally ramified in K and L without being totally
ramified in KL.

(b) K and L can each contain unique primes lying over p
while KL does not.

(c) p can be inert in K and L without being inert in KL.
(d) The residue degrees of p in K and L can be 1 without

being 1 in KL.
(6) Let L/K be a Galois extension of number fields with Galois

group G. Suppose q, q′ are prime ideals of OL lying over p,
and assume that p is unramified in L. If q′ = σq with σ ∈ G,
show that

Frobq′/p = σ Frobq/p σ
−1.

(7) Let L/K be a Galois extension of number fields. Suppose q
is a nonzero prime ideal of OL lying over the nonzero prime
ideal p of OK . Let D = Dq/p and I = Iq/p. Show that:
(a) LD is the smallest intermediate field K ′ such that q is the

only prime ideal of OL lying over p′ = OK′ ∩ q.
(b) LI is the smallest intermediate field K ′ such that q is

totally ramified over p′ = OK′ ∩ q.



CHAPTER 5

Introduction to completions

1. The field Qp

We now turn to the study of absolute values on number fields,
and the corresponding completions. The idea is to generalize the
well-known construction of the real numbers as equivalence classes of
Cauchy sequences of rational numbers to a wider context. This opens
up the door to many new techniques for studying number fields.

Before we give formal definitions, we describe the prototypical ex-
ample (other than R) of a completion, namely the field Qp of p-adic
numbers. Because of the large number of details which need to be
checked, we proceed in this section mostly without proof. The moti-
vated reader should be able to fill in most of the details herself without
too much trouble.

For many more details, and for a number of examples and applica-
tions, see e.g. the book “p-adic Numbers” by Fernando Gouvea.

Let p be a prime number, and for x ∈ Z, x 6= 0, let vp(x) = ordp(x)
be the maximum power of p dividing x. We can extend vp to Q in
a natural way by setting vp(x/y) = vp(x) − vp(y) when x, y ∈ Z and
y 6= 0. We also set vp(0) = +∞ by convention.

For x ∈ Q, define the p-adic absolute value |x|p of x to be p− ordp(x),
where by convention we have |0|p = 0. The intuition is that x and y are
“p-adically close” when x−y is divisible by a large positive power of p.
So for example, |29−2|3 = 1

27
and |3−2|3 = 1, which means that 2 and

29 are closer 3-adically than 2 and 3. It is easy to check that Q, together
with the function | · |p, defines a normed vector space, and in particular
that Q together with the distance function d(x, y) = |x − y|p defines
a metric space. In fact, the p-adic absolute value satisfies stronger
properties than those required to define a metric. More precisely, it is
easy to verify that for x, y ∈ Q we have:

(1) |x|p = 0 iff x = 0.
(2) |xy|p = |x|p · |y|p
(3) |x− y|p ≤ max{|x|p, |y|p}.

115
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The third of these properties goes by various names such as the
ultrametric inequality or the non-archimedean triangle inequality. The
point is that it is much stronger than the usual triangle inequality

|x− y| ≤ |x|+ |y|.

We want to consider the completion Qp of Q with respect to the
absolute value | · |p. Recall that a sequence of elements {xn} in a metric
space X is a Cauchy sequence with respect to the metric | · | if given
ε > 0, there exists N such that for m,n ≥ N , we have |xm − xn| < ε.
We put an equivalence relation on the set of such Cauchy sequences by
declaring that {xn} ∼ {yn} if limn→∞ |xn − yn| = 0. By definition, the
completion of X with respect to | · | is the set of equivalence classes of
Cauchy sequences in X.

Exercise 5.1. Verify that the completion Qp of Q with respect to
the p-adic absolute value is naturally a field.

We call the field Qp described in Exercise 5.1 the field of p-adic
numbers.

Exercise 5.2. Show that the absolute value | · |p extends in a
natural way to Qp, and that this extension still satisfies properties (1)-
(3) above for x, y ∈ Qp.

The key property possessed by Qp which Q does not have is that
it is complete, i.e., every Cauchy sequence in Qp converges. In fact, Qp

is the completion of Q with respect to | · |p, in the sense that it is the
unique field L (up to isomorphism) containing Q for which:

• There is an absolute value on L satisfying (1)-(3) above which
extends | · |p on Q.

• Q is dense in L (with respect to the topology induced by | · |p).
• L is complete with respect to | · |p.

Inside Qp, there is the important subring Zp of p-adic integers,
which can be defined as the completion of Z with respect to | · |p, or as

Zp = {x ∈ Qp : |x|p ≤ 1} .

Exercise 5.3. Show that

pZp := {x ∈ Zp : |x|p < 1}
is the unique maximal ideal of Zp. In particular, Zp is a local ring.

Exercise 5.4. Show that there is a natural isomorphism

Zp/pZp
∼= Z/pZ .
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We rarely think of R in terms of Cauchy sequences, and the same
is true for Qp. In fact, there are several alternate ways to think of Qp.
For simplicity, we give the descriptions for Zp, and simply note that Qp

can then be described as the field of fractions of Zp. One concrete way
to think of Zp is in terms of coherent sequences of integers modulo pn,
as follows.

For every integer n ≥ 1, suppose we are given elements an ∈ Z
such that 0 ≤ an ≤ pn − 1 and an ≡ an−1 (mod pn−1). We call such
a sequence {an} a coherent (p-adic) sequence. For example, if p = 3,
then {1, 4, 22, . . .} is the beginning of a coherent sequence, since 4 ≡ 1
mod 3 and 22 ≡ 4 mod 9.

We claim that there is a bijection between coherent sequences and
elements of Zp. For on one hand, it is easy to see that a coherent
sequence is Cauchy with respect to | · |p, so defines an element of Zp.
Conversely, if x ∈ Zp, then it is not hard to show that there exists a
unique coherent sequence which converges to x.

Algebraically, this means that the ring Zp is the inverse limit of the
rings Z/pnZ.

Using this characterization of elements of Zp, one can then form “p-
adic expansions” analogous to the decimal expansion of real numbers:

Theorem 5.5. Every p-adic integer x ∈ Zp can be written uniquely
in the form

x = b0 + b1p+ · · ·+ bnp
n + · · ·

with bn ∈ {0, 1, 2, . . . , p− 1} for all n.

The proof just comes down to the fact that the sequence of partial
sums

{b0, b0 + b1p, b0 + b1p+ b2p
2, . . .}

is a coherent sequence, and conversely every coherent sequence can be
written uniquely in this way.

Exercise 5.6. Show that a p-adic integer b = b0 + b1p+ b2p
2 + · · ·

is a unit in the ring Zp if and only if b0 6= 0.

Similarly:

Theorem 5.7. Every x ∈ Qp can be written uniquely in the form

x = b−kp
−k + b−k+1p

−k+1 + · · ·+ b0 + b1p+ · · ·+ bnp
n + · · ·

for some integer k, where b−k 6= 0 and 0 ≤ bn ≤ p− 1 for all n.

Exercise 5.8. Show that vp(x) = −k, so that |x|p = pk.
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Arithmetic in Qp is done in the “obvious” way. For example, sup-
pose p = 3 and

x = 1 + 1 · 3 + 2 · 32 + 2 · 34 +O(35),
y = 1 · 3 + 2 · 32 + 1 · 34 +O(35),

where O(35) means that all remaining terms are divisible by 35, and so
are 3-adically “small”.

Then we have, for example,

x+ y = 1 + 2 · 3 + 1 · 32 + 1 · 33 +O(35),

which we obtain by adding componentwise and “carrying” the remain-
ders to the right, so for example

2 · 32 + 2 · 32 = 4 · 32 = (1 + 3) · 32 = 1 · 32 + 1 · 33.

Exercise 5.9. Devise a similar algorithm for multiplication of p-
adic expansions.

Exercise 5.10. Verify the following identities in Zp:

(1) 1
1−p

= 1 + p+ p2 + · · ·+ pn + · · ·
(2) −1 = (p− 1) + (p− 1)p+ · · ·+ (p− 1)pn + · · ·

An important property of p-adic numbers is described by the fol-
lowing result:

Proposition 5.11. A polynomial F (x) ∈ Z[x] has a root in Zp if
and only if F (x) has a root modulo pn for all n ≥ 1.

Proof. If F (x) has a root in Zp, then from the natural map Zp �
Z/pnZ we see that F (x) has a root modulo pn for all n. Conversely,
suppose F (x) has a root modulo pn for all n. Let (xn) be a sequence
of integers such that F (xn) ≡ 0 (mod pn) for n = 1, 2, . . .. Since Z/pZ
is finite, there are infinitely many terms xn which reduce to the same

element y1 ∈ Z/pZ. Therefore there is a subsequence x
(1)
n of xn for

which

x(1)
n ≡ y1 (mod p) and F (x(1)

n ) ≡ 0 (mod p)

for all n. Continuing inductively, we find that for each k ≥ 1 there is a

subsequence x
(k)
n of x

(k−1)
n for which

x(k)
n ≡ yk (mod pk) and F (x(k)

n ) ≡ 0 (mod pk)

for some yk ∈ Z/pkZ such that yk ≡ yk−1 (mod pk−1). Then (yk)k≥1

forms a coherent sequence, and hence defines an element y ∈ Zp for
which F (yk) ≡ 0 (mod pk) for all k, i.e., for which F (y) = 0. �
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Exercise 5.12. Show that the equation x2 = 2 has two solutions
in Z7, and no solutions in Z3.

Exercise 5.13. Extend Proposition 5.11 to the multivariable case
by showing that F (x1, . . . , xm) ∈ Z[x1, . . . , xm] has a root modulo pn

for all n ≥ 1 iff F (x1, . . . , xm) has a root in (Zp)
m.

2. Absolute values

2.1. Absolute values on a field. Our goal in this section is to
present the abstract notion of an absolute value on a field K, and to
classify such objects in the case where K is a number field. We continue
to omit most proofs for the time being, in order to give an overview of
what completions and absolute values are all about.

Let K be a field. An absolute value on K is a function | · | : K → R
such that for all x, y ∈ K:

(1) |x| ≥ 0, and |x| = 0 iff x = 0.
(2) |xy| = |x| · |y|.
(3) |x+ y| ≤ |x|+ |y|.

If | · | satisfies the stronger inequality

(3′) |x+ y| ≤ max{|x|, |y|},
then it is called a non-archimedean (or ultrametric) absolute value.
Otherwise, | · | is called archimedean.

If | · | is an absolute value, the function v : x 7→ − log |x| (or any
scalar multiple of this function) is called a valuation. For example, | · |p
is an absolute value on Q, and vp = − logp |x|p is the corresponding
valuation.

An absolute value makes K into a metric space using the rule
d(x, y) = |x − y|. If two absolute values | · |, | · |′ define the same
underlying topology on K (i.e., if (K, | · |) and (K, | · |′) have the same
open sets), then we call them equivalent and write | · | ∼ | · |′.

The trivial absolute value on K is the function sending x ∈ K to
1 if x 6= 0 and 0 if x = 0. Every other absolute value on K is called
non-trivial.

A place of K is an equivalence class of nontrivial absolute values on
K. We are typically interested only in those properties of an absolute
value which depend only on the underlying place. For example, it is
not hard to see that whether or not an absolute value is archimedean
depends only on the underlying place. Archimedean places are also
called infinite places, and the non-archimedean ones finite places.
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Lemma 5.14. Let |·|, |·|′ be absolute values on K. Then the following
are equivalent:

(1) | · |, | · |′ are equivalent.
(2) |x| < 1 ⇔ |x|′ < 1.
(3) There is a constant s > 0 such that |x|′ = |x|s for all x ∈ K.

Proof. If | · |′ = | · |s with s > 0, then | · | and | · |′ are clearly
equivalent. Also, |x| < 1 if and only if the sequence (xn) converges to
zero, so if | · |, | · |′ are equivalent then |x| < 1 ⇔ |x|′ < 1. It remains to
show that if |x| < 1 ⇔ |x|′ < 1, then there is a constant s > 0 such that
|x|′ = |x|s for all x ∈ K. For this, fix a nonzero element y ∈ K with
|y| < 1. If x is a nonzero element of K, then |x| = |y|α for some α ∈ R.
Let mi

ni
be a sequence of rational numbers with ni > 0 converging to α

from above. Then |x| = |y|α < |y|
mi
ni , and therefore | xni

ymi
| < 1, which

implies that | xni

ymi
|′ < 1. This in turn shows that |x|′ ≤ (|y|′)α. Using a

sequence mi

ni
converging to α from below shows that |x|′ ≥ (|y|′)α, and

thus |x|′ = (|y|′)α. It follows that for all nonzero x ∈ K, we have

log |x|′

log |x|
= s ,

where

s =
log |y|′

log |y|
,

and thus |x|′ = |x|s. Since |y| < 1 implies |y|′ < 1, we must have
s > 0. �

Lemma 5.15. Let | · | be an absolute value on K, and suppose there
exists N > 0 such that |n| ≤ N for all n ∈ N. Then | · | is non-
archimedean.

Proof. If x, y ∈ K, then by the binomial theorem and the triangle
inequality, we have

|x+ y|n ≤ N(n+ 1) max{|x|, |y|}n

for all n ≥ 1. Taking nth roots and letting n→∞ gives

|x+ y| ≤ max{|x|, |y|}
as desired. �

We have the following famous theorem describing all places of Q:

Theorem 5.16 (Ostrowski). Every archimedean absolute value on
Q is equivalent to the usual absolute value | · |∞ on R, and every non-
trivial non-archimedean absolute value on Q is equivalent to the p-adic
absolute value | · |p for some prime number p.
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Proof. Let | · | be a non-trivial absolute value on Q. Suppose first
that | · | is non-archimedean. Then |n| ≤ 1 for all integers n ≥ 1, and
there exists a prime p such that |p| < 1 (or else | · | would be trivial).
The set I = {n ∈ Z : |n| < 1} is an ideal of Z containing p, and
since |1| = 1, we have 1 6∈ I. Therefore I = pZ. If n = mpk ∈ Z
with (m, p) = 1, then m 6∈ I, so |m| = 1 and |n| = |p|k = |n|sp, where
s = − logp |p|. Therefore | · | is equivalent to | · |p.

Now suppose that | · | is archimedean, and fix integers n,m > 1
with n large enough so that |n| > 1. Write m in base n as m =
a0 + a1n+ · · ·+ akn

k with ai ∈ {0, 1, . . . , n− 1}. Then k ≤ lognm and
|ai| ≤ ai|1| < n, so that

|m| ≤
∑

|ai| · |n|k ≤ (1 + lognm)n · |n|logn m .

(Here we have used the fact that |n| > 1 implies |n|i ≤ |n|k for i ≤ k.)
Substituting mt for m, taking the tth root of both sides, and letting
t → ∞ gives |m| ≤ |n|logn m. Switching the roles of m and n and
rearranging the terms gives

(5.1) |m|1/ log m = |n|1/ log n

whenever |m|, |n| > 1. Let s = log |n|/ log n, which by (5.1) is inde-
pendent of n. Since |n| > 1 by assumption, we have s > 0. For every
positive rational number x, we can write x = m/n with m,n large
enough so that |m|, |n| > 1, and it follows that

|x|s∞ = es log x = es log m/es log n = elog |m|/elog |n| = |m|/|n| = |x| .

Since |−1| = |1|, it follows that |x|s∞ = |x| for all x ∈ K, and therefore
|x| is equivalent to |x|∞. �

In summary, Q has one archimedean place, corresponding to the
“usual” absolute value, and it has one non-archimedean place for each
prime number p.

We let MQ denote the set of places of Q, and for v ∈ MQ, we
let | · |v be the usual absolute value on Q if v is archimedean, and
the normalized p-adic absolute value | · |p if v corresponds to a prime
number p. We have the following simple but extremely useful result:

Proposition 5.17 (The product formula for Q). For every nonzero
rational number x ∈ Q, we have∏

v∈MQ

|x|v = 1 .
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We leave the (almost trivial) proof to the reader.

We conclude this section with one more useful general result about
absolute values, due to Artin and Whaples, which is known as the
Weak Approximation Theorem. It should be thought of as a valuation-
theoretic analogue of the Chinese Remainder theorem.

Theorem 5.18 (Weak Approximation Theorem). Let | · |1, . . . , | · |n
be pairwise inequivalent absolute values on a field K, and let a1, . . . , an ∈
K be arbitrary. Then for every ε > 0, there exists x ∈ K such that
|x− ai|i < ε for all 1 ≤ i ≤ n.

Proof. Since | · |1 and | · |n are not equivalent, it follows from
Lemma 5.14 that there exists α ∈ K such that |α|1 < 1 and |α|n ≥ 1.
Similarly, there exists β ∈ K such that |β|n < 1 and |β|1 ≥ 1. Setting
y = β/α, we have |y|1 > 1 and |y|n < 1. We claim that there exists
z ∈ K such that |z|1 > 1 and |z|j < 1 for j = 2, . . . , n. We prove
this by induction on n. We have just proved this for the base case
n = 2, and if |w|1 > 1 and |w|j < 1 for j = 2, . . . , n − 1, then either
|w|n ≤ 1, in which case we can set z = wmy for m sufficiently large, or
else |w|n > 1, in which case we can set z = wm

1+wmy for m sufficiently
large. This proves the claim.

Finally, since zm

1+zm converges to 1 with respect to | · |1 and to 0 with
respect to | · |j for 2 ≤ j ≤ n, for each 1 ≤ i ≤ n we can (by symmetry)
find an element zi ∈ K which is arbitrarily close to 1 with respect to
| · |i and arbitrarily close to 0 with respect to | · |j for j 6= i. The element

x = a1z1 + · · ·+ anzn

will then have |x− ai|i < ε for all 1 ≤ i ≤ n. �

2.2. Absolute values on number fields and their comple-
tions. Suppose now that K is a number field. Let OK be the ring of
integers of K, and let p be a nonzero prime ideal of OK . Then p defines
an absolute value | · |p on K as follows. Set |0|p = 0, and if α ∈ K is
nonzero, define vp(α) = ordp(α) to be the power of p appearing in the
factorization of the fractional ideal (α) into prime ideals. Now define

(5.2) |α|p = (Np)−vp(α) .

(The reason for this normalization will become apparent when we state
the product formula for K below.) Then it is easy to verify that |·|p is a
non-archimedean absolute value. The completion Kp of K with respect
to | · |p is easily verified to be a field containing K, and | · |p induces an
absolute value on Kp which extends the given one on K. Furthermore,
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K is dense in Kp, Kp is complete with respect to the induced absolute
value, and Kp is in fact the unique field with these properties.

We denote by Ôp the corresponding completion of OK , which is a
subring of Kp. It is not hard to see that

Ôp = {x ∈ Kp : |x|p ≤ 1} .
Moreover, the set

m̂p := {x ∈ Kp : |x|p < 1}

is clearly an ideal in Ôp. In fact, Ôp is a local ring and m̂p is its unique

maximal ideal, since if x ∈ Ôp\m̂p then |x−1|p = 1 and thus x−1 ∈ Ôp.

Note that the value group

|K∗| = {|x|p : x ∈ K∗} = {(Np)k : k ∈ Z}

is discrete in R∗. The maximal ideal m̂p of Ôp is therefore principal;
this follows from the following more general result:

Lemma 5.19. Let | · | be a non-archimedean absolute value on a field

K, let K̂ be the corresponding completion, let A = {x ∈ K : |x| ≤ 1

be the valuation ring of K̂, and let m = {x ∈ A : |x| < 1} be the
unique maximal ideal of A. Then m is principal if and only if |K∗| is
discrete.

Proof. Suppose |K∗| is discrete, and let π ∈ m have maximal
absolute value. We claim that m = πA. Indeed, if x ∈ m, then
|x/π| ≤ 1 and thus x/π ∈ A, so that x ∈ πA. Conversely, suppose
m = πA is principal. Then every x ∈ K∗ can be written as u · πt with
t ∈ Z and u ∈ A∗, and therefore |K∗| = {|π|t : t ∈ Z, which is a
discrete set. �

Exercise 5.20. With the notation of the preceding lemma, show
that |K∗| = |(K̂)∗|.

The quotient Ôp/m̂p is canonically isomorphic to the residue field
OK/p, which one sees by an argument similar to the proof of Lemma 4.6.
More generally, the natural map

(5.3) ψ : OK/p
n → Ôp/m̂

n
p

is an isomorphism for all n ≥ 1.
We sketch a topological proof of (5.3). Since every x ∈ OK ∩ m̂n

p

is a limit of elements of pn, and since pn = {x ∈ OK : |x|p ≤
1/(Np)n} is closed in the p-adic topology on OK , it follows that ψ

is injective. Similarly, since OK is dense in Ôp, everything in Ôp is
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congruent modulo m̂n
p to an element of OK , which means that ψ is

injective.

As with Qp, elements ofKp have ‘p-adic expansions” of the following
type. Let π be a uniformizer in OK , i.e., an element of p\p2. Let S be
coset representatives in OK for the N(p) distinct residue classes OK/p.
Then we have:

Theorem 5.21. Every element x ∈ Kp can be written uniquely in
the form

(5.4) x =
∞∑

m=−n

amπ
m,

where am ∈ S for all m and a−n 6≡ 0 mod p. Moreover, we have
n = vp(x) and |x|p = N(p)n.

Proof. Let A = Ôp and let m = m̂p be its unique maximal ideal.
We have just seen that m = πA. For any sequence (am)m≥−n with

am ∈ S, let SM =
∑M

m=−n amπ
m, and choose N > M . Then |SM −

SN | ≤ |π|M+1, from which one deduces that (SM) is a Cauchy sequence.

This shows that series of the form (5.4) are convergent in K̂ = Kp.

Conversely, suppose a ∈ K̂. Since |K̂| = |K|, we can write α = u · πn

with u ∈ A∗. By the definition of S and the isomorphism (5.3), there
exists a0 ∈ S such that u − a0 ∈ m. As (u − a0)/π ∈ A, there exists
a1 ∈ S with u−a0

π
− a1 ∈ m, i.e., π(u− (a0 + a1π)) ∈ m2. Continuing in

this way, we find a sequence a1, a2, . . . for which

u = a0 + a1π + a2π
2 + · · ·

and therefore

α = πn(a0 + a1π + a2π
2 + · · · ) .

We leave the uniqueness part, as well as the other assertions of the
theorem, to the reader. �

The same proof shows that if A is any complete discrete valuation
ring with maximal ideal m = πA, then every element x ∈ A can be
written uniquely in the form

∞∑
m=0

amπ
m

with am ∈ S, where S is any fixed set of coset representatives for A/πA.

Exercise 5.22. Prove that Ôp is isomorphic to the inverse limit of
OK/p

n as n→∞.
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The generalized version of Ostrowski’s theorem (Theorem 5.16),
whose proof we omit, gives a complete description of the places of a
number field K:

Theorem 5.23. Every archimedean absolute value on K is equiva-
lent to the restriction to K of the usual absolute value on C for some
embedding of K into C, and every non-archimedean absolute value on
K is equivalent to the p-adic absolute value |·|p for some nonzero prime
ideal p of OK. More precisely, there are bijections:

{non-archimedean places of K} ↔ {nonzero prime ideals p of OK}

{archimedean places of K} ↔ {real embeddings K ↪→ R} ∪
{conjugate pairs of complex embeddings K ↪→ C} .

The product formula (Proposition 5.17) can be generalized to num-
ber fields as follows. Let MK denote the set of places of K. If v
corresponds to a nonzero prime ideal p of OK , define |x|v = |x|p to
be the corresponding p-adic absolute value, as defined in (5.2). If v
correponds to an embedding σ : K ↪→ R, define |x|v = |σ(x)|∞, where
| · |∞ denotes the usual absolute value on R. Finally, if v correponds
to a complex embedding σ : K ↪→ C, define |x|v = |σ(x)|2∞, where
| · |∞ denotes the usual absolute value on C. (In this last case, note
that | · |v is not itself an absolute value, since | · |2∞ doesn’t satisfy the
triangle inequality.) With these normalizations, we have the following
fundamental result, whose proof we omit:

Theorem 5.24 (Product formula for number fields). For every
nonzero element x ∈ K, we have∏

v∈MK

|x|v = 1 .

We also state without proof the following theorem, which illustrates
one of the many uses for completions in algebraic number theory:

Theorem 5.25. If K is a number field and p is a nonzero prime
ideal of OK lying over the rational prime p, then Kp is a finite extension
of Qp of degree

[Kp : Qp] = e(p/p) · f(p/p) .

Moreover, if K/Q is Galois, then so is Kp/Qp, and

Gal(Kp/Qp) ∼= Dp/(p) .
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3. Hensel’s Lemma

Consider the following two examples.

Example 5.26. 2 is not a square in Q5. Indeed, suppose that
α ∈ Q5 satisfies α2 = 2. Then |α|5 = 1, since |2|5 = 1, and in particular
α ∈ Z5. Let α denote the image of α in the residue field Z5/5Z5; then
α2 = 2. But since Z5/5Z5

∼= Z/5Z, this would imply that 2 is a square
modulo 5, which it is not.

On the other hand:

Example 5.27. −1 is a square in Q5. More precisely, we claim that
the equation x2 = −1 has 2 solutions in Z5, one congruent to 2 and one
congruent to 3 modulo 5. To see this, we will find the 5-adic expansions
of these numbers explicitly. Write α = a0 + a1 · 5 + a2 · 52 + · · · with
ai ∈ {0, 1, 2, 3, 4}, and suppose that α2 + 1 = 0. Since

α2 + 1 = (a2
0 + 1) + 2a0a1 · 51 + (2a0a2 + a2

1) · 52 +O(53) ,

it follows in particular that a2
0 +1 ≡ 0 (mod 5), and therefore a0 ≡ ±2

(mod 5). Suppose a0 = 2 (the other case works the same way). Then
the equation α2 + 1 ≡ 0 (mod 52) implies that

(2 + a1 · 51)2 + 1 ≡ 0 (mod 52) ,

so that 5 + 20a1 ≡ 0 (mod 52), which implies that a1 ≡ 1 (mod 5), so
that a1 = 1. Similarly, suppose that we have found cn = a0 + a1 · 51 +
· · ·+an ·5n such that c2n +1 ≡ 0 (mod 5n+1), and we want to find an+1

such that

(a0 + a1 · 51 + · · ·+ an · 5n + an+1 · 5n+1)2 + 1 ≡ 0 (mod 5n+2) .

Then we need to solve the equation

(cn + an+1 · 5n+1)2 + 1 ≡ 0 (mod 5n+1) ,

which simplifies to

2cnan+1 ≡
−1− c2n

5n+1
(mod 5) ,

which means (since cn ≡ 2 (mod 5) and 4 ≡ −1 (mod 5)) that

an+1 ≡
1 + c2n
5n+1

(mod 5) .

This allows us to inductively solve for all the coefficients of α.

The same argument which was used in the last example can be used
to prove a general result called Hensel’s lemma. A closer look reveals
that what actually made the previous argument work was the fact that
2 is a simple root of f(x) = x2 + 1 modulo 5.
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Proposition 5.28 (Hensel’s Lemma). Let A be a complete discrete
valuation ring with maximal ideal m = πA. Let f(x) ∈ A[x], and let
α0 be a simple root of f(x) modulo π, i.e., f(α0) ≡ 0 (mod π) and
f ′(α0) 6≡ 0 (mod π). Then there exists a unique root α ∈ A of f(x)
with α ≡ α0 (mod π).

Proof. We prove by induction on n that for each n ≥ 0, there is
an element αn ∈ A such that f(αn) ≡ 0 (mod πn+1), and such that
αn ≡ αn−1 for n ≥ 1. The base case n = 0 is obvious. Suppose we
have constucted αn with the required properties, and write αn+1 =
αn + aπn+1 for some a ∈ A to be determined. The condition on a is
that

f(αn+1) = f(αn + aπn+1) ≡ 0 (mod πn+2) ,

which by Taylor’s expansion is equivalent to

f(αn) + f ′(αn)(bπn+1) ≡ 0 (mod πn+2) .

By hypothesis, this equation has the unique solution

b ≡ − f(αn)

πn+1f ′(αn)
(mod π) ,

which makes sense because πn+1 | f(αn) and f ′(αn) ≡ f ′(α0) 6≡ 0
(mod π). �

Example 5.29. As an application of Proposition 5.28, since xp−x
splits into linear factors over Fp and has derivative −1, we see that
Zp contains p− 1 distinct (p− 1)st roots of unity, one in each nonzero
residue class modulo p.

Hensel’s lemma can be viewed as a p-adic version of Newton’s method
from calculus for approximating roots of polynomials. Indeed, the proof
we have just given can be generalized to show:

Proposition 5.30 (Hensel’s Lemma, Version II). Let K be a field
which is complete with respect to a non-archimedean absolute value | · |,
and let A = {x ∈ K : |x| ≤ 1} be the valuation ring of K. Let
f(x) ∈ A[x], and suppose there exists α0 ∈ A with |f(α0)| < |f ′(α0)|2.
Then the sequence defined inductively by

αn+1 = αn −
f(αn)

f ′(αn)

converges to a root α of f(x) in A, and

|α− α0| ≤ | f(α0)

f ′(α0)2
| < 1 .
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Hensel’s Lemma can be generalized in many different ways. We
give one more version here:

Proposition 5.31 (Hensel’s Lemma, Version III). Let K be a field
which is complete with respect to a non-archimedean absolute value | · |,
and let A = {x ∈ K : |x| ≤ 1} be the valuation ring of K, with
maximal ideal m. Let f(x) ∈ A[x] be a primitive polynomial, meaning
that f(x) ∈ (A/m)[x] is nonzero, and suppose that

f(x) = g(x) · h(x)

with g(x), h(x) ∈ (A/m)[x] relatively prime polynomials. Then there
exist polynomials g(x), h(x) ∈ A[x] with deg(g) = deg(g) such that

g(x) ≡ g(x) (mod m) and h(x) ≡ h(x) (mod m) .

Exercise 5.32. Let p be an odd prime. Show that an element
x ∈ Qp is a square if and only if x = p2ny2 for some n ∈ Z and y ∈ Z∗

p.
What happens for p = 2?

4. Introductory p-adic analysis

LetK be a field which is complete with respect to a non-archimedean
absolute value | · |, and let A denote the valuation ring of K. In this
section, we will investigate some basic properties of power series with
coefficients in K. Applications to Diophantine equations and linear
recurrence sequences will be given in the next section. In both this sec-
tion and the next, we follow rather closely the exposition from J.W.S.
Cassels’ book “Local Fields”.

Perhaps the most basic fact in p-adic analysis is the following result,
which we leave as a simple exercise to the reader:

Exercise 5.33. A series
∑∞

n=0 an with an ∈ K converges if and only
if |an| → 0. In particular, a power series f(x) =

∑∞
n=0 anx

n ∈ K[[x]]
converges for all x ∈ A if and only if |an| → 0.

Note that the corresponding statements over R are utterly false,
despite the beliefs of many Calculus II students.

The radius of convergence of a power series f(x) =
∑∞

n=0 anx
n ∈

K[[x]] is defined as in the real or complex case to be

R =
1

lim supn |an|1/n
∈ [0,+∞] .
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Exercise 5.34. Let

D = {x ∈ K :
∞∑

n=0

anx
n converges }

be the domain of convergence of f . Then:

(1) If R = 0, then D = {0}.
(2) If R = ∞, then D = K.
(3) If 0 < R < ∞ and |an|Rn tends to 0, then D = {x ∈ K :

|x| ≤ R}.
(4) If 0 < R < ∞ and |an|Rn does not tend to 0, then D = {x ∈

K : |x| < R}.

Exercise 5.35. Show that a power series f(x) =
∑∞

n=0 anx
n ∈

K[[x]] is continuous on its domain of convergence.

The following result, concerning rearrangement of double series, is
another result whose real or complex analogue is much more delicate:

Exercise 5.36. Let bij ∈ K for i, j = 0, 1, 2, . . . Suppose that for
every ε > 0, there exists M such that |bij| < ε whenever max(i, j) ≥M .
Then the series ∑

i

(∑
j

bij

)
,
∑

j

(∑
i

bij

)
both converge, and their sums are equal.

The next result again has no real or complex analogue, and is one
of the most useful facts in p-adic analysis:

Theorem 5.37 (Strassmann’s theorem). Let f(x) =
∑∞

n=0 anx
n

with an ∈ K, and suppose that |an| → 0 (i.e., f(x) converges for all x
in the unit disc A). Suppose furthermore that not all of the coefficients
an are zero. Define the nonnegative integer N = N(f) by

|aN | = max
n
|an| , |an| < |aN | for n > N .

Then f(x) has at most N zeroes in A.

Proof. The proof is by induction on N . For the base case N = 0,
note that if f(α) = 0 for some α ∈ A, then

|a0| = | −
∑
n≥1

anα
n| ≤ max

n≥1
|anα

n| ≤ max
n≥1

|an| < |a0| ,
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a contradiction. Now suppose that N ≥ 1, and suppose f(α) = 0 with
α ∈ A. Then for any β ∈ A, we have

f(β) = f(β)− f(α) =
∑
n≥1

an(βn − αn) = (β − α)
∑
n≥1

n−1∑
j=0

anβ
jαn−1−j .

By Exercise 5.36, we have f(β) = (β − α)g(β) with

g(x) =
∞∑

j=0

bjx
j , bj =

∞∑
t=0

aj+1+tα
t .

It is easy to check that N(g) = N(f) − 1, and therefore by induction
we may assume that g(x) has at most N−1 zeros in A. Since f(β) = 0
iff β = α or g(β) = 0, it follows that f(x) has at most N zeros in A,
as desired. �

We conclude our very brief introduction to p-adic analysis with a
p-adic version of the binomial theorem.

For t ∈ Qp and n a positive integer, define the binomial coefficient(
t
n

)
by (

t

n

)
=

{
t(t−1)···(t−n+1)

n!
n 6= 0

1 n = 0.

Lemma 5.38. If t ∈ Zp, then
(

t
n

)
∈ Zp for all integers n ≥ 0.

Proof. If t ∈ Z, then it is well-known that
(

t
n

)
∈ Z. For fixed

n, the map t 7→
(

t
n

)
is continuous in the p-adic topology on Zp, and

|
(

t
n

)
|p ≤ 1 for all t ∈ Z. Since Z is dense in Zp, it follows that |

(
t
n

)
|p ≤ 1

for all t ∈ Zp. �

Exercise 5.39. (1) If n ∈ N and p is a prime, prove that
|n!|p = p−M , where

M = vp(n!) = [n/p] + [n/p2] + [n/p3] + · · ·
(Here [·] denotes the greatest integer function.)

(2) Let s be the sum of the digits in the base p expansion of n.
Show that

vp(n) =
n− s

p− 1
.

(3) In particular, show that |n!|p > p−
n

p−1 .

The p-adic binomial theorem has two parts; the first is analogous to
the usual binomial theorem, and the second is unique to p-adic analysis
in that it expands (1 + x)t as a power series in t, rather than in x.
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Theorem 5.40 (The p-adic binomial theorem). Let p be an odd
prime.

1. If t is a nonnegative integer, then

(5.5) (1 + x)t =
t∑

n=0

(
t

n

)
xn

for all x ∈ pZp.
2. If x ∈ pZp, then there exists a power series

Φx(t) =
∞∑

n=0

γnt
n ∈ Qp[[t]]

converging for all t ∈ Zp such that

Φx(t) = (1 + x)t

for all t ∈ Z.

Remark 5.41. With slight modifications, the statement and proof
can be modified to work for p = 2, and more generally for any finite
extension K of Qp.

Proof. Since |
(

t
n

)
|p ≤ 1 for all t, n, the right-hand side of (5.5)

converges and is continuous for all x ∈ pZp. The left-hand side of (5.5)
is continuous for all x ∈ Qp, since it’s a polynomial in x. Also, if x ∈ Z,
then (5.5) holds by the usual binomial theorem. As pZ is dense in pZp,
it follows that (5.5) holds for all x ∈ pZp. This proves (1).

To prove (2), suppose first that t ≥ 0. We use the fact that
(

t
n

)
= 0

when n > t to write (5.5) as

(5.6) (1 + x)t =
∞∑

n=0

t(t− 1) · · · (t− n+ 1)
xn

n!
.

Since |x|p ≤ 1
p

by assumption, it follows from Exercise 5.39 that

|xn

n!
|p → 0 as n → ∞. By Exercise 5.36, we may therefore rearrange

the terms of (5.6) according to powers of t. Doing so, we obtain a
power series representation

(5.7) (1 + x)t =
∞∑

n=0

γnt
n

where each γn ∈ Qp is independent of t and |γn|p → 0 as n→∞. This
proves the desired result for t ≥ 0.
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Now suppose t < 0. Then pm + t > 0 for m sufficiently large, and
applying (5.7) with t replaced by pm + t gives

(5.8) (1 + x)pm+t =
∞∑

n=0

γn(pm + t)n .

As m → ∞ (in the usual sense), it follows from (5.7) that (1 +
x)pm → 1 in the p-adic topology, and therefore the left-hand side of
(5.8) tends to (1 + x)t. The right-hand side of (5.8) tends to

∑
γnt

n,
since pm → 0 and a power series is continuous in its domain of conver-
gence by Exercise 5.35. Therefore (5.7) holds for t < 0 as well. �

Exercise 5.42. If p is an odd prime, show that vp(n!) ≤ n−2, and
conclude that for x ∈ pZp and t ∈ Zp, we have

Φx(t) ≡ 1 + tx (mod p2) .

Exercise 5.43. Using Lemma 5.38, we see that if p is an odd prime,
t ∈ Zp, and x ∈ pZp, then the binomial series

(5.9) B(t, x) =
∞∑

n=0

(
t

n

)
xn

converges p-adically. Show that the right-hand side of (5.9) with p = 7,
t = 1/2, and x = 7/9 converges to 4/3 in R and to a 7-adic number
α 6= 4/3 in Q7.

Exercise 5.44. (1) Show that the power series

logp(x) =
∞∑

n=1

(−1)n+1 (x− 1)n

n

(called the p-adic logarithm) converges if and only if |x−1|p <
1.

(2) Show that the power series

expp(x) =
∞∑

n=0

xn

n!

(called the p-adic exponential) converges if and only if |x|p <
p−1/(p−1).

5. Applications to Diophantine equations

5.1. The Diophantine equation x3 − 11y3 = 1. In this section,
we illustrate the utility of p-adic analysis by finding all integer solutions
to the Diophantine equation x3 − 11y3 = 1.
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We begin with the observation that if x, y are integers for which
x3 − 11y3 = 1, then x − y 3

√
11 is a unit of norm 1 in the cubic field

K = Q( 3
√

11). Let α = 3
√

11. Recall from Example 3.44 that the
fundamental unit in K is

u = 18α2 + 40α+ 89 ,

and that v = 1/u = −2α2 + 4α + 1. A short calculation shows that
both of these units have norm 1. Since every unit in OK has the form
±vn (n ∈ Z), and since NK/Q(−1) = −1, it follows that every unit of
norm 1 in K can be written as vn for some integer n. We will now
show that x− y 3

√
11 = vn implies that n = 0.

Proposition 5.45. If x− y 3
√

11 = vn with x, y, n ∈ Z, then n = 0.

Proof. As noted in Example 3.44, the prime 19 splits completely
in K. Equivalently, there are three distinct roots in F19 to the equation
x3 − 11 = 0. By Hensel’s Lemma, there are three distinct solutions
α1, α2, α3 to x3 − 11 = 0 in Q19, and a short computation shows that,
after relabelling if necessary, we have

α1 = −3 + 5 · 19 +O(192)

α2 = −2 + 8 · 19 +O(192)

α3 = 5 + 6 · 19 +O(192)

The three different cube roots of 11 in Q19 correspond to three
different embeddings ψ1, ψ2, ψ3 of K into Q19. A calculation shows
that, letting vi = ψi(v) ∈ Q19, we have:

v1 = 9 + 2 · 19 +O(192)

v2 = 4 + 0 · 19 +O(192)

v3 = 9 + 6 · 19 +O(192)

Since x−y 3
√

11 = vn inK, we have x−yαi = vn
i in Q19 for i = 1, 2, 3.

In particular, noting that

α1 + α2 + α3 = −{ coefficient of x2 in x3 − 11} = 0 ,

α2
1 + α2

2 + α2
3 = −{ coefficient of x2 in x3 − 112} = 0 ,

it follows that

(5.10) α1v
n
1 + α2v

n
2 + α3v

n
3 = 0 .

The advantage of (5.10), of course, is that we have eliminated the
unknown quantities x and y. We would like to use the p-adic binomial
theorem to expand the left-hand side of (5.10) as a power series in
n. Unfortunately, we cannot do this directly, since v1, v2, v3 are not
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congruent to 1 modulo 19. However, with a bit of manipulation, we
can rewrite (5.10) in such a way that the p-adic binomial theorem will
apply.

Since NK/Q(v) = 1, it follows as above that v1v2v3 = 1 Multiplying
both sides of (5.10) by vn

2 v
n
3 , we obtain

(5.11) α1 + α2β
n
2 + α3β

n
3 = 0

with β2 = v2
2v3 ≡ 11 (mod 19) and β3 = v2v

2
3 ≡ 1 (mod 19). In

particular,

2− 2 · 11n ≡ 0 (mod 19) ,

which means that 11n ≡ 1 (mod 19), i.e., n ≡ 0 (mod 3). Writing
n = 3m, expressing (5.11) as

(5.12) α1 + α2(β
3
2)

m + α3(β
3
3)

m = 0 ,

and noting that

β3
2 = 1 + 7 · 19 +O(192)

β3
3 = 1 + 11 · 19 +O(192) ,

it follows from the p-adic binomial theorem that we can express (5.12)
in power series form as

(5.13)
∞∑
i=1

γim
i = 0

with γi ∈ Q19. Moreover, the proof of the p-adic binomial theorem
allows us to explicitly calculate the coefficients γj. In particular, by
Exercise 5.42 we have

(β3
2)

m ≡ (1 + 7 · 19)m ≡ 1 + (7 · 19)m (mod 192)

(β3
3)

m ≡ (1 + 11 · 19)m ≡ 1 + (11 · 19)m (mod 192)

α1 + α2(β
3
2)

m + α3(β
3
3)

m ≡ (−2 · 7 + 5 · 11) · 19 ·m (mod 192),

from which it follows that |γ1|19 = 1
19

and |γj|19 ≤ 1
192 for j ≥ 2. By

Strassmann’s theorem, we conclude that m = 0 is the only solution to
(5.13) in Z19. In particular, m = 0 is the only solution to (5.13) in Z,
and therefore n = 3 · 0 = 0 is the only solution to (5.10). �

As a consequence, we find:

Corollary 5.46. The only integer solution to x3 − 11y3 = 1 is
(x, y) = (1, 0).
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5.2. The Diophantine equation 2x2+1 = 3m. The Diophantine
equation

(5.14) 2x2 + 1 = 3m

with x,m nonnegative integers, clearly has the solutions (x,m) =
(0, 1), (1, 1), (2, 2), and (11, 5). Are there any others? We will answer
this question by once again employing p-adic methods.

Let K = Q(
√
−2), and let α = 1 + x

√
−2 ∈ OK = Z[

√
−2]. Then

letting N = NK/Q and α = 1− x
√
−2, the equation (5.14) becomes

Nα = 3m .

Since Nα = αα and 3 = β1β2 with β1 = 1 +
√
−2 and β2 = 1 −

√
−2

both irreducible, and since Z[
√
−2] is a PID, it follows that

α = ±βm1
1 βm2

2

with m1,m2 nonnegative integers. Without loss of generality, we may
assume that m1 ≤ m2. Since Tr(α) = α+ α = 2, we have

βm1
1 βm2

2 + βm1
2 βm2

1 = ±2 .

Factoring out βm1
1 βm1

2 gives

3m1
(
βm2−m1

2 + βm2−m1
1

)
= ±2

in OK , which by unique factorization implies that m1 = 0. Therefore
(setting n = m2), we have

βn
1 + βn

2 = ±2 ,

where β1, β2 ∈ Q(
√
−2) are the two roots of the polynomial f(x) =

x2 − 2x+ 3 ∈ Z[x].
So we will be finished once we establish the following result:

Proposition 5.47. There are at most 4 integer values of n for
which

(5.15) βn
1 + βn

2 = ±2 ,

where β1, β2 ∈ Q(
√
−2) are the roots of the polynomial f(x) = x2 −

2x+ 3.

Proof. By Hensel’s lemma, there are two roots of f(x) = x2 −
2x + 3 in Z11, and this allows us to define two embeddings of K =
Q(
√
−2) into Q11. Identifying K with a subfield of Q11 via one of

these embeddings, we may identify the two roots of f(x) in Q11 with
β1 and β2, respectively. Without loss of generality, we have β1 ≡ 9
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(mod 11) and β2 ≡ 4 (mod 11). Since β5
i ≡ 1 (mod 11) for i = 1, 2, if

we let λi = β5
i −1 ∈ 11Z11, we have (writing n = k+5t with 0 ≤ k ≤ 4):

(5.16) βk
1 (1 + λ1)

t + βk
2 (1 + λ2)

t = ±2 .

Looking at this equation modulo 11, we see that we need only consider
k = 0, 1, 2.

For example, consider k = 0. Then (5.16) reduces to

(5.17) (1 + λ1)
t + (1 + λ2)

t = 2 ,

since the left-hand-side cannot be congruent to −2 modulo 11. We now
use the p-adic binomial theorem to expand

Φ0(t) = (1 + λ1)
t + (1 + λ2)

t − 2

as a power series in t. Doing so, we obtain

Φ0(t) = 0 + (λ1 + λ2)t+ (λ2
1 + λ2

2)

(
t

2

)
+ · · ·

= (7 · 112 + 10 · 113 + 10 · 114)
t(t− 1)

2
+ 8 · 114 ·

(
t

4

)
+O(115)

= γ1t+ γ2t
2 + γ3t

3 + · · ·

with |γ1|11 = 11−2, |γ2|11 = 11−2, and |γn|11 ≤ 11−4 for n ≥ 3. It follows
by Strassmann’s theorem that there are at most 2 roots of Φ0(t) in Z11,
and in particular there are at most two solutions to (5.16) in Z when
k = 0.

Similarly, when k = 1 we find at most 1 solution to (5.16) in Z11,
and when k = 2 we also find at most 1 solution in Z11. All together, this
shows that there are at most 4 integer solutions to (5.15), as claimed.

�

Corollary 5.48. The only solutions to (5.14) with x,m nonneg-
ative integers are (x,m) = (0, 1), (1, 1), (2, 2), and (11, 5).

Note that (5.15) is equivalent to the equation an = ±2, where
an is the linear recurrence sequence defined by a0 = 2, a1 = 2, and
an+2 = 2an+1 − 3an for n ≥ 2. Therefore we have proved:

Corollary 5.49. Let an be the linear recurrence defined by a0 = 2,
a1 = 2, and an+2 = 2an+1 − 3an for n ≥ 2. Then an = ±2 only for
n = 0, 1, 2, 5.

The p-adic method used to prove Proposition 5.47 is the main idea
behind the proof of the following beautiful general theorem:
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Theorem 5.50 (The Skolem-Mahler-Lech Theorem). Let an be a
sequence of elements in a field K of characteristic zero satisfying a
linear recurrence relation over K, and let c ∈ K. Then either an = c
for at most finitely many n, or else an = c for all n in some arithmetic
progression.

Remark 5.51. Theorem 5.50 is false if K has characteristic p, as
the following example shows. Let K = Fp(t), and define an by an =
(t+ 1)n − tn. Then an = 1 iff n is a power of p.

The idea behind the proof of Theorem 5.50 is the following (see §5.5
of Cassels’ “Local Fields” for further details). If F (x) ∈ K[x] denotes
the generating polynomial for the linear recurrence, then

an =
∑

j

Pj(n)θn
j

with θj ∈ L and Pj(x) ∈ L[x] for some field L which is finitely generated
over Q. The Cassels-Lech Embedding Theorem (see Theorem 1.1 in
Chapter 5 of Cassels’ “Local Fields”) asserts that if k/Q is a finitely
generated field extension and C is a finite set of nonzero elements of
k, then there are infinitely many primes p for which there is a field
embedding α : k ↪→ Qp such that |α(c)|p = 1 for all c ∈ C. Applying
this result to the situation at hand, we see that there exists a prime
p > 2 and an embedding ψ : L ↪→ Qp such that |ψ(θj)|p = 1 for all j.

Setting λj = ψ(θp−1
j − 1), it follows from Fermat’s Little Theorem that

|λj|p ≤ 1
p
. Writing n = r + (p− 1)s with 0 ≤ r < p− 1, for each fixed

r we can use the p-adic binomial theorem to develop

ar+(p−1)s − c = −c+
∑

j

Pj(r + (p− 1)s)θr
j (1 + λj)

s

as a power series Φr(s) in s which converges for all s ∈ Zp. If Φr(s) ≡
0 for some r, then an = c for all n ≡ r (mod p − 1). Otherwise,
Strassmann’s theorem ensures that each Φr(s) vanishes for at most
finitely many s ∈ Zp, which gives the desired result.





APPENDIX A

Some background results from abstract algebra

1. Euclidean Domains are UFD’s

In this section, we show that every Euclidean domain is a UFD
(unique factorization domain). See §1.1 and §1.3 for the definition of a
UFD and a Euclidean domain, respectively. The usual way to do this
is to show that every Euclidean domain is a PID, and every PID is a
UFD. Here, we give a somewhat more direct argument.

Recall that a nonzero element π ∈ R which is not a unit is called
prime if whenever π | xy in R, we have π | x or π | y, and is called
irreducible if whenever π = ab with a, b ∈ R, one of a or b must be a
unit.

Lemma A.1. In any integral domain R, every prime element is
irreducible.

Proof. Suppose π is prime, and that π = xy for some x, y ∈ R.
By the definition of primality, we have π | x or π | y. Suppose WLOG
that π | y, so that y = πβ for some β ∈ R. Then π = πxβ in R.
Since R is an integral domain and π 6= 0, we must have xβ = 1, which
implies that x is a unit. Therefore π is irreducible. �

The converse of the above lemma is false. Here is an example, which
also gives an example of a ring of the form Z[

√
d] which is not a UFD.

Example: Consider the ring Z[
√
−5]. By considering the norm

function N(a + b
√
−5) = a2 + 5b2, one shows easily that ±1 are the

only units in Z[
√
−5], and that N(x) = 1 iff x is a unit. Note that we

have the identity

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

We claim that 2, 3, 1 ±
√
−5 are all irreducible. To see this, it

suffices to note that there are no elements of norm 2 or 3 in Z[
√

5], and
N(2) = 4, N(3) = 9, N(1±

√
−5) = 6.

Note also that 2 is not associate to either 1 +
√
−5 or 1 −

√
−5.

This is clear, since associate elements must have the same norm. We
therefore have two genuinely distinct factorizations of 6 into irreducible

139
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elements in Z[
√
−5]. Also, 2 is an example of an irreducible element

which is not prime, for we have 2 | (1 +
√
−5)(1 −

√
−5), but we

cannot have 2 | 1 ±
√
−5 or else (taking norms), we would have 4 | 6,

a contradiction. (If x | y then y = xβ for some β, so y = xβ and
therefore |y|2 = |x|2|β|2 and N(x) | N(y).)

We need a few simple lemmas before being able to prove that Eu-
clidean domains are UFD’s. The first concerns elements of norm zero
in a Euclidean domain.

Lemma A.2. Let R be a Euclidean domain and suppose that x is a
nonzero element of R with φ(x) = 0. Then x is a unit.

Proof. Use the division algorithm to write 1 = xq + r with r = 0
or φ(r) < φ(x). The latter is impossible since φ(x) = 0 and φ(r) ≥ 0.
Therefore 1 = xq and x is a unit. �

We need the notion of a least common multiple in an integral do-
main R. Let a, b,m ∈ R, a, b,m 6= 0. We say that m is a least common
multiple (LCM) of a and b if a and b both divide m, and if m | M for
every other common multiple M of a and b.

Lemma A.3. If R is a Euclidean domain, then any two nonzero
elements a, b ∈ R have a least common multiple.

Proof. Let S = {M ∈ R : a | M, b | M}. Then ab ∈ S, so
S 6= ∅. Choose a nonzero element m ∈ S of least possible norm. We
claim that m is an LCM of a and b. To see this, suppose that M ∈ S
is any common multiple of a and b, and write M = mq + r with r = 0
or φ(r) < φ(m). Since r = M −mq, we have r ∈ S, and since φ(m) is
minimal among all nonzero elements of S, we must have r = 0, so that
m |M as desired. �

The following lemma is the key to proving that Euclidean domains
are UFD’s.

Lemma A.4. If R is a Euclidean domain, then every irreducible
element is prime.

Proof. Let p be an irreducible element of R and suppose p | ab
with a, b 6= 0. Suppose p does not divide a; we claim that p | b. Let m
be an LCM of a and p. Then m | ap, so x = ap

m
is in R. As a | m, we

have p = xm
a
. Since p is irreducible, either x or m

a
is a unit. If m

a
is a

unit, then m ∼ a, and since p | m we would have p | a, a contradiction.
Therefore x is a unit, so m ∼ ap. As ab is a multiple of both a and p,
we have m | ab, and therefore ap | ab. This implies that p | b, so we are
done. �
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We can now prove the main theorem of this section.

Theorem A.5. A Euclidean domain is a UFD.

Proof. To show that every element of the Euclidean domain R has
(at least one) factorization into irreducibles, it suffices by induction to
prove that up to multiplication by units, every element of R has only
finitely many divisors. (Convince yourself that this suffices!)

In other words, it suffices to prove:

Claim: If x ∈ R then there exist x1, . . . , xn such that if y | x then
y ∼ xi for some i.

To prove this, suppose y | x, and write y = qx + r with r = 0 or
φ(r) < φ(x). If r = 0 then x | y, and it follows easily that y ∼ x.
Now suppose φ(r) < φ(x). Then by induction on φ(x), we can assume
that there exist r1, . . . , rm such that every divisor of r is associate to
one of r1, . . . , rm. (If φ(x) = 0 then x is a unit and we’re done, which
establishes the base case of the induction). But y = qx + r and y | x,
so y | r, and therefore y is associate to one of r1, . . . , rm. So we can
take {x1, . . . , xn} = {x, r1, . . . , rm}.

For uniqueness, suppose that f1 · · · fm = g1 · · · gn with each fi, gi

irreducible. Since f1 is irreducible and R is Euclidean, f1 is prime.
Since f1 | g1 · · · gn, it follows that f1 | gi for some i. As gi is irreducible
and f1 is not a unit, we must have f1 ∼ gi.

After relabeling, we may assume WLOG that i = 1, so that f1 = g1.
We find that f1(f2 · · · fm − g2 · · · gn) = 0, and since R is an integral
domain, this implies that f2 · · · fm = g2 · · · gn. We are now finished by
induction on the number of factors. �

In particular, this theorem gives us a proof of the Fundamental
Theorem of Arithmetic.

2. The theorem of the primitive element and embeddings
into algebraic closures

Let K be a field, and fix an algebraically closed field K containing
K.

Recall that a field extension L/K is separable if the minimal poly-
nomial over K of every element α ∈ L has distinct roots in K. This
does not depend on the choice of K. We recall the following basic
results from field theory. The first is often proved as a consequence of
Galois theory, but one does not really need Galois theory in order to
prove it.
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Theorem A.6 (Theorem of the primitive element). If L/K is a
separable field extension of degree n, then there exists an element θ ∈ L
of degree n.

Proof. If K is a finite field, then the result follows from the fact
that the multiplicative group of a finite field is cyclic. We therefore
assume that K is infinite. By induction, it suffices to prove that if
L = K(α, β), then in fact L = K(θ) for some θ ∈ L.

Let f and g be the minimal polynomials over K of α and β, respec-
tively. Suppose that f and g factor over K as

f(x) = (x− α1) · · · (x− αs), g(x) = (x− β1) · · · (x− βt),

with α1 = α and β1 = β. Note that the αi’s are distinct (since L/K is
separable), as are the βj’s.

In particular, the fact that the βj’s are distinct implies that for each
i and each k 6= 1, there is at most one element γ′ ∈ K such that

αi + γ′βk = α+ γ′β.

There are only finitely many such equations, and K is infinite, so we
can find an element γ ∈ K such that for each i and for each k 6= 1,

αi + γβk 6= α+ γβ.

Define θ := α + γβ, and note that by construction, θ is not of the
form αi + γβk for any (i, k) 6= (1, 1).

We claim that L = K(θ). Clearly K(θ) ⊆ L, and since γ ∈ K and
α = θ − γβ, it suffices to prove that β ∈ K(θ).

Let L′ := K(θ). Since f(θ − γβ) = f(α) = 0, if we define h(x) :=
f(θ− γx) ∈ L′[x], then h(β) = 0. We claim that β is the only common
zero of g(x) and h(x) in K, so that the GCD in K[x] of g(x) and h(x)
is (x− β). Indeed, if λ ∈ K and g(λ) = h(λ) = 0, then λ is one of the
βj’s and θ− γλ is one of the αi’s. By our choice of θ, this implies that
λ = β as claimed.

Let G(x) be the minimal polynomial of β over L′. Then G(x)
divides both g(x) and h(x), so it divides their GCD. But then we must
have G(x) = (x− β), and in particular β ∈ L′ as desired. �

The following is a standard result in Galois theory, but can also be
proved directly using the primitive element theorem as follows.

Proposition A.7. If L/K is a separable extension of degree n,
then there are precisely n distinct embeddings of L into K which fix
every element of K.
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Proof. By the theorem of the primitive element, there exists an
element θ ∈ L of degree n. Let θ1, . . . , θn ∈ K be the conjugates of θ.
By basic field theory, there exists a unique embedding (i.e., injective
field homomorphism) σi : L→ K which fixes K and sends θ to θi. Let
fθ be the minimal polynomial of θ over K. If σ is any embedding of L
into K fixing K, then fθ(σ(θ)) = σ(fθ(θ)) = 0, so that σ(θ) = θi for
some i. Therefore σ = σi for some i. �

Corollary A.8. Let L/K be a finite separable extension, and let
σ1, . . . , σn denote the embeddings of L into K. If β ∈ L is fixed by σi

for all i = 1, . . . , n, then β ∈ K.

Proof. Let d = [K(β) : K]. Then there are exactly d embeddings,
call them τ1, . . . , τd, of K(β) into K which fix K, and they are given by
sending β to each of its conjugates over K. Note that we can extend
each τi to L. If α is a primitive element for L/K, so that L = K(α),
then each τi must send α to one of its conjugates over K, and therefore
must equal σj for some j. Since the σj’s all fix β, we conclude that
d = 1, i.e., β ∈ K. �

3. Free modules over a PID

Let R be a commutative ring with 1. An R-module M is called
torsion-free if m ∈ M , r ∈ R, and rm = 0 imply that either m = 0
or r = 0. A module M is free of rank n if there is a generating set
m1, . . . ,mn with the property that r1m1 + · · · + rnmn = 0 if and only
if ri = 0 for all i. In this case, M is isomorphic to a direct sum of n
copies of R, and the set {m1, . . . ,mn} is called a free basis for M .

The following result is proved as Theorem B.3 of Appendix B in
[Janusz].

Theorem A.9. Suppose R is a PID, and let M be a finitely gen-
erated, torsion-free R module which can be generated by n elements
but no fewer. Then M is free of rank n, and any generating set of n
elements gives a free basis of M .

Corollary A.10. If K is the quotient field of the PID R and L/K
is a finite field extension, then every finitely generated R-submodule of
L is free of rank at most [L : K].

Proof. Since R is a subring of the field L, any R-submodule M of
L must be torsion-free. By Theorem A.9, M is free of rank n for some
n. By clearing denominators, one shows easily that the elements of a
free basis of M over R are linearly independent over K. Therefore the
rank of M is at most [L : K]. �
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We will also use the fundamental theorem for finitely generated
abelian groups, in the following (slightly non-standard) form.

Theorem A.11. Let G be a free Z-module of rank n, and let H be
a subgroup of G. Then:

(a) H is free of rank m ≤ n.
(b) There exists a basis α1, . . . , αn for G and positive integers

c1, . . . , cm such that c1α1, . . . , cmαm forms a basis for H.
(c) The index [G : H] is finite if and only if m = n. In this case,

let x1, . . . , xn (resp. y1, . . . , yn) be any basis for G (resp. H),
and write  y1

...
yn

 = A

 x1
...
xn


with A ∈Mn(Z). Then [G : H] = | det(A)|.

Proof. (Sketch) Although part (a) follows from Theorem A.9, we
sketch a direct proof by induction on n. If n = 1 then H = aZ for some
a ∈ Z and therefore H is free of rank 1 (if a 6= 0) or 0 (if a = 0). In
general, we identify G with Zn and let π : Zn → Z be projection onto
the last coordinate. Let H ′ = ker(π)∩H and let H ′′ = π(H). Then by
inductionH ′ is free of rank≤ n−1 (sinceH ′ is isomorphic to a subgroup
of Zn−1) and H ′′ is free of rank at most 1. If H ′′ = (0) then H = H ′ and
we are done. Otherwise, H ′′ = aZ is free of rank 1. Choose x ∈ H such
that π(x) = a. Then π maps G′′ := xZ isomorphically onto H ′′, so to
prove (a) it suffices to prove that H = H ′⊕G′′. This is straightforward
and we leave it to the reader.

We assume m = n and prove (b) and (c) at the same time. (We
leave the case m < n to the reader). Let x = [x1, . . . , xn]t (resp.
y = [y1, . . . , yn]t) be a basis for G (resp. H), and write y = Ax with
A ∈Mn(Z). The reader can verify that multiplying A on the right by a
unimodular matrix T (i.e., an element of Mn(Z) with determinant ±1)
corresponds to replacing x by another basis x′. Similarly, multiplying
A on the left by a unimodular matrix T ′ corresponds to replacing y by
another basis y′. Therefore, it is enough to prove that by performing
elementary row and column operations on A, we can change it into a
diagonal matrix. (Convince yourself that this is enough).

For this, it is enough by symmetry and induction to use elementary
row operations to obtain a matrix A′ with a′i1 = 0 for all i > 1. This can
be done using the division algorithm and induction on M := max{|ai| :
i > 1}: Let φ(x) = |x| and swap two rows if necessary so that φ(a11) ≤
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φ(ai1) for i > 1. Then add a suitable integer multiple of row 1 to row
i for each i > 1 so that M is decreased. �

Remark A.12. The theorem is in fact valid when Z is replaced by
any PID R. The proof we have given works whenever R is a Euclidean
domain.




