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1. Introduction

Serre ([Ser75]) conjectured that every continuous, odd, irreducible repre-
sentation

ρ : Gal(Q/Q)� GL2(Fp)

is modular. That is, there should exist positive integers N and k ≥ 2, and
a modular form f 6= 0 (over Fp) of weight k and level Γ1(N) which is an
eigenvector of all the Hecke operators such that

tr ρ(Frob−1
l ) = θf (Tl),

det ρ(Frob−1
l ) = θf (Sl)l,

for all primes l ∤ pN at which ρ is unramified. Here, Frobl is a geometric
Frobenius element at l and, whenever T is a Hecke operator, θf (T ) denotes
the eigenvalue of T on f . The representation ρ is said to be attached to f .
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Later Serre ([Ser87]) refined his conjecture, predicting which “minimal”
level N = N(ρ) prime to p and weight k = k(ρ) admit such an eigenform f .
He defined N(ρ) in terms of the ramification of ρ outside p (it is the Artin
conductor) and gave a combinatorial recipe for k(ρ) in terms of ρ|Ip where Ip
is the inertia group at p. Due to the work of a lot of people it is now known
that the original conjecture implies the refined form when p 6= 2. Until very
recently, the modularity of ρ was known only in very special cases. The
work of Khare and Khare-Wintenberger ([KWa], [Kha] and [KWb]) shows
that ρ is modular if either p is odd and ρ is unramified at 2 or p = 2 and
k(ρ) = 2.

1.1. Reformulation of Serre’s weight recipe. After Serre’s original pa-
pers, several people noticed that Serre’s original prescription of the weight
simplifies if a different notion of weight is used. A Serre weight is an isomor-
phism class of (absolutely) irreducible representations of GL2(Fp) over Fp.
Let Y1(N)/Q be the affine modular curve associated to Γ1(N) and Lk the lo-
cally constant sheaf defined by the representation of π1(Y1(N)) on Symk−2 F2

p

via π1(Y1(N)) ։ GL2(Fp) (coming from an auxiliary full level p structure).
Given f as above, there is an eigenclass in H1

et(Y1(N)Q,Lk) with the same

Hecke eigenvalues θf . If {F1, . . . , Fn} are the Jordan-Hölder constituents of

Symk−2 F2
p as GL2(Fp)-representation, then it is not hard to see that the

existence of a Hecke eigenclass of type θf in H1
et(Y1(N)Q,Lk) is equivalent

to the existence of a Hecke eigenclass of type θf in H1
et(Y1(N)Q,LFi) for

some i (it is essential that ρ is irreducible). Here, the LFi are defined in the
same way as Lk.

Let N = N(ρ) and define

W (ρ) = {F : ρ is attached to an eigenclass in H1
et(Y1(N)Q,LF )}.

Using that ρ is attached to an eigenform f of weight k if and only if Fi ∈
W (ρ) for some i and thatW (ρ⊗ω) ∼=W (ρ)⊗det, the original weight recipe
of Serre can be translated into a prediction Wconj(ρ) for W (ρ) (ω is the

mod p cyclotomic character). For example, if ρ|Ip ∼
(
ωi

1

)
,

Wconj(ρ) =





F (i− 1, 0), F (p− 2, i) if 1 < i < p− 2,

F (p− 2, 0) if i = 0,

F (0, 0), F (p− 2, 1), F (p− 1, 0) if i = 1,

F (p− 3, 0), F (p− 2, p− 2), F (2p− 3, p− 2) if i = p− 2.

where ω is the mod p cyclotomic character and F (a, b) = Syma−b F2
p ⊗ detb

(0 ≤ a − b ≤ p − 1, 0 ≤ b < p − 1). If ρ|Ip ∼
(
ωi ∗

1

)
with ∗ 6= 0, then

Wconj(ρ) is a subset of the above set of Serre weights (generically, it is a
proper subset). There is a similar recipe in case ρ|Gp is irreducible, where
Gp denotes the decomposition group at p (the “supersingular case”).
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1.2. A Serre-type conjecture for GL3. We give a conjecture for the
weights in which a given three-dimensional Galois representations over Fp

can arise (Conjecture A) and present some theoretical evidence (Theorem B).
Ash, Sinnott, Doud and Pollack were the first to make a conjecture in this
setting ([AS00], [ADP02]). In contrast to the case of two-dimensional Galois
representations, it is essential to work with the second notion of weight. A
Serre weight now is an isomorphism class of (absolutely) irreducible repre-
sentations of GL3(Fp) over Fp. Serre weights are parametrised by triples
(a, b, c) of integers with 0 ≤ a − b, b − c ≤ p − 1, 0 ≤ c < p − 1. The Serre
weight corresponding to (a, b, c) is denoted by F (a, b, c).

If N is a positive integer, let Γ1(N) ⊂ SL3(Z) be the subgroup of ma-
trices with last row congruent to (0, 0, 1) modulo N . If, moreover, F is
a Serre weight and e ≥ 0 then Γ1(N) acts on F via reduction mod p and
He(Γ1(N), F ) inherits a Hecke action. A Hecke eigenclass α ∈ He(Γ1(N), F )
is said to have attached Galois representation ρ : Gal(Q/Q) � GL3(Fp) if
for all primes l ∤ pN , ρ is unramified at l and

3∑

i=0

(−1)ili(i−1)/2a(l, i)Xi = det(1− ρ(Frob−1
l )X),

where the a(l, i) are the eigenvalues of Hecke operators at l and ρ is assumed
to be continuous, semisimple, and odd (i.e., ρ(c) 6= ±1 if p > 2 and c is a
complex conjugation). Note that these conditions determine ρ, if it exists.
Any eigenclass α is conjectured to have an attached Galois representation
([Ash92]). Very little is known about this conjecture at present.

Conversely, start with an continuous, irreducible, and odd

ρ : Gal(Q/Q)� GL3(Fp).

The “minimal” level N(ρ) is again defined to be the Artin conductor of
ρ (in particular, it is prime to p). The weight set W (ρ) is defined to be
the set of Serre weights F such that ρ is attached to a Hecke eigenclass in
He(Γ1(N(ρ)), F ) for some e. (Note that W (ρ) for two-dimensional ρ can be
defined analogously.)

From now on, suppose that ρ is tamely ramified at p, or equivalently, that
ρ|Ip is diagonalisable. It is important to understand this case first since it
is expected that W (ρ) ⊂ W (ρ′) if ρ|ssIp ∼= ρ′|Ip (as in the example in §1.1).
Under this assumption, ρ|Ip is isomorphic to the sum of three characters,
which are permuted under the action of Frobenius. If the action is trivial, ρ
is said to be of niveau 1 ; if Frobenius fixes precisely one character, ρ is said
to be of niveau 2 ; otherwise it is said to be of niveau 3.

There is a simple and natural way to associate to ρ a Deligne-Lusztig rep-
resentation V (ρ|Ip) of GL3(Fp) over Qp (see definition 6.4). It only depends
on ρ|Ip . For example, if ρ|Ip is of niveau 1, then V (ρ|Ip) is the induction of
a character on the Borel subgroup of upper-triangular matrices. Reducing
a Zp-lattice in V (ρ|Ip) modulo the maximal ideal of Zp and semisimplifying
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gives rise to a representation V (ρ|Ip) of GL3(Fp) over Fp. It is independent
of the choice of lattice and isomorphic to the direct sum of a collection of
Serre weights (since all irreducible representations of GL3(Fp) over Fp can
be defined over Fp).

A Serre weight F (a, b, c) is called regular if a−b 6= p−1 and b−c 6= p−1.
The set of regular Serre weights is denoted by Wreg. Define an operation on
the set of Serre weights by

(1.1) R : F (a, b, c) 7� F (c− 2, b− 1, a)reg,

where the right-hand side denotes the unique regular Serre weight F (x, y, z)
with (x, y, z) ≡ (c− 2, b− 1, a) modulo p− 1.

In fact, by construction, F (a, b, c) arises from a representation of the
algebraic group GL3 of highest weight (a, b, c). Restricting to SL3, and
assuming a − b, b − c < p − 1, the action of R on highest weights can be
visualised as a reflection inside the weight space of SL3:

(0, p− 2)

(a− b, b− c)

(1, 0)

(0, 0)

(p− 2, 0)

Here, (a−b, b−c) indicates the restriction of the GL3-weight (a, b, c) to SL3.

Conjecture A. Suppose that ρ : Gal(Q/Q)� GL3(Fp) is continuous, irre-
ducible, odd, and tame at p. Then

W (ρ) ∩Wreg = R(JH(V (ρ|Ip))),
where JH(W ) denotes the set of Jordan-Hölder constituents of W .

Conjecture A improves upon the conjecture of Ash, Doud, Pollack and
Sinnott—denoted by ADPS for brevity. Their weight conjecture consists
of a combinatorial recipe for the weights suggested by theoretical results,
heuristics, and computations ([AS00], [ADP02]). Conjecture A, however, is
conceptual in relating the weights of ρ with modular representation theory.
It predicts at least as many, and in many cases even more, weights in Wreg
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Figure 1.1. The partial order on the six regions of GL4.

than the ADPS conjecture. In all examples covered in [ADP02] with irre-
ducible, tame ρ, these extra weights were confirmed (up to Hecke eigenvalues
at l = 47) by calculations of D. Doud and D. Pollack. Here is a chart of
the generic numbers of weights F (a, b, c) predicted with a− c ≤ p− 2 (resp.
a − c ≥ p − 2), depending on the niveau of ρ. Note that these two regions
correspond to the upper and lower gray triangles in the figure above.

ADPS Conj. A
niveau 1 3/6 3/6
niveau 2 3/5 3/6
niveau 3 3/3∗ 3/6

(∗Doud, in unpublished work, independently generalised the combinatorial
recipe of ADPS in the niveau 3 case so as to predict the same weights in
Wreg as Conjecture A.) In particular, as R switches the two regions, this
provides an explanation why an operator like R is needed in order to relate
the weight recipe to the decomposition of a characteristic zero representation
of GL3(Fp).

At present it is not completely clear what non-regular weights should
be predicted by the conjecture. Computational evidence suggests that the
answer is more involved. Note however that a proportion of (1 − 1/p)2

of the Serre weights are regular and thus covered by Conjecture A. The
ADPS conjecture does predict non-regular weights and covers ρ that are
not tame at p, but these predictions are based on little supporting evidence.
The computations mentioned show that their predictions outside Wreg are
incomplete, even in the niveau 1 case.

1.3. Generalisation to GLn. The formalism of Conjecture A carries over
immediately to GLn. Yet the bigger n gets, the more complicated the mod-
ular representation theory of GLn becomes. For n = 4 it is still tractable.
Instead of the two regions discussed above, there are now (4 − 1)! = 6 and
there is a natural partial order on them (see figure 1.1).
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Using automorphic induction of Hecke characters over totally complex CM
quartic fields with Galois groupD8, we are able to produce many eigenclasses
in He(Γ1(N), V ) for some (N, p) = 1 and some e with attached Galois
representations ρ that are odd, irreducible, and tame at p. Here, V is a
GL4(Fp)-module which is not necessarily irreducible but of small length.

Even though the eigenclasses produced generally have prime-to-p level
bigger than N(ρ), it is still expected—in analogy with the GL2-case—that
ρ can be attached only to eigenclasses in predicted weights. Thus the above
collection of eigenclasses can be considered as evidence that ρ should predict
one of the Jordan-Hölder constituents of V . The result obtained can best
be stated if the conjecture is turned around, i.e., considered as predicting
which tame ρ|Ip occur among ρ attached to an eigenclass in a given weight
F . It turns out that for F lying sufficiently deep inside a region, all ρ|Ip
obtained are predicted. The proportion of predicted ρ|Ip found, depending
on the niveau, is summarised in the following table:

F lies in region

0 1∗ 2∗ 3∗ 4∗ 5∗

niveau 1 1 1
2 0 0 1

5
1
8

niveau (2,2) 1 1
2 0 0 1

5
1
8

niveau (2,1,1) 1
3

1
6 0 0 1

15
1
24

niveau 4 1
3

1
6 0 0 1

15
1
24

niveau (3,1) 0 0 0 0 0 0

For F outside region 0, the evidence is weaker in the sense that it depends
on assuming that the conjecture is correct in all regions below the one con-
taining F (whence the “∗”).
1.4. Serre’s Conjecture for Hilbert modular forms. In [BDJ] Buz-
zard, Diamond and Jarvis formulated a generalisation of Serre’s Conjecture
to Hilbert modular forms, a significant part of which was proved recently
by Gee, assuming residual modularity ([Gee]). Our next result shows that
their weight recipe, in the tame case, is indeed related to the modular rep-
resentation theory of GL2(Fq), analogous to Conjecture A.

Suppose that K is a totally real field that is unramified at p (a neces-
sary assumption in [BDJ]). Pick a prime p|p of K of residue degree f and
residue field kp. A Serre weight at p is an isomorphism class of (absolutely)
irreducible representations of GL2(kp) over kp. Suppose

ρ : Gal(K/K)� GL2(Fp)

is continuous, irreducible and totally odd. In [BDJ], §3 a set Wconj,p(ρ)
of Serre weights at p is specified with respect to which ρ is conjectured
to be modular in some level prime to p. (Strictly speaking, to talk about
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modularity, a Serre weight Fp needs to be fixed for each p|p, and ρ is said to
be modular if it occurs in the component cut out by

⊗
Fp of the p-torsion

of the Jacobian of an appropriate Shimura curve. The weights at different p
are predicted independently of one another, and so we can focus on one p.)

From now on, suppose that ρ is tame at p. Again there is a simple
and natural way to associate to ρ a Deligne-Lusztig representation Vp(ρ) of

GL2(kp) over Qp which only depends on ρ|Ip (see definition 14.1). If ρ|Ip
is reducible, then it is the induction of a character on the Borel subgroup
of upper-triangular matrices; otherwise it is a cuspidal representation. The
representation Vp(ρ) has a well-defined semisimplified reduction Vp(ρ) over

Fp which is a direct sum of Serre weights at p (since all irreducible repre-

sentations of GL2(kp) over Fp can be defined over kp).
Serre weights at p are parametrised by pairs (a, b) of integers with

0 ≤ a− b ≤ pf − 1, 0 ≤ b < pf − 1.

The Serre weight corresponding to (a, b) is denoted by F (a, b). In fact, if we

write a− b =
∑f−1

i=0 mip
i, b =

∑f−1
i=0 bip

i with 0 ≤ mi, bi ≤ p− 1 then

F (a, b) ∼=
f−1⊗

i=0

(Symmi k2p ⊗ detbi)⊗kp,φi kp

where φ(x) = xp. If mi 6= p− 1 for all i, then F (a, b) is said to be a regular
Serre weight at p. The set of Serre weights at p (resp. regular Serre weights
at p) is denoted by WSer,p (resp. Wreg,p). Define an operation on Wreg,p by

Rp : F (a, b) 7� F (b−∑f−1
i=0 p

i, a)reg,

where the right-hand side is the unique regular Serre weight F (x, y) with

(x, y) ≡ (b−∑f−1
i=0 p

i, a) modulo pf−1. Observe the analogy with R in (1.1).
In particular, in the special case f = 1, which is Serre’s original conjecture,
Rp : F (a, b) 7� F (b− 1, a)reg.

Theorem B. Suppose that ρ : Gal(K/K) � GL2(Fp) is continuous, irre-
ducible, totally odd, and tame at p.

(i) Wconj,p(ρ) ∩Wreg,p = Rp(JH(Vp(ρ)) ∩Wreg,p).
(ii) There is a multi-valued function Rext,p : WSer,p � WSer,p that

extends Rp such that

Wconj,p(ρ) = Rext,p(JH(Vp(ρ))).

A function Rext,p as in (ii) is described on page 68. It is bijective on
Wreg,p, with the exception of taking two values on weights F with Rp(F )
one-dimensional. Note that it is not unique.

Diamond [Dia] found a different way of relating the predicted Serre weights
at p for ρ to the decomposition of a characteristic zero representation of
GL2(kp). In his case, the weight recipe is directly compared to the reduc-
tion of such a representation—a point of view that does not generalise to
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GL3 (as mentioned at the end of §1.2). Another advantage of Theorem B is
that the characteristic zero representation Vp(ρ) is very naturally defined in
terms of ρ|Ip . In particular, if ρ is of niveau 1, then Vp(ρ) is a “principal se-
ries” and if ρ is of niveau 2, then Vp(ρ) is a cuspidal representation. For the
correspondence in [Dia], this is the case only if f is even, whereas the types
are switched if f is odd. Combining Theorem B with the theorem of [Dia]
shows thatRp (generically) maps the constituents of an irreducible GL2(kp)-
representation to the constituents of another such—an a priori unexpected
fact.

1.5. Decomposition of GL3(Fp)-representations. In order to formu-
late Conjecture A, we required the decomposition of irreducible GL3(Fp)-
representations in characteristic zero when reduced modulo p. This is ap-
parently lacking in the literature.

Theorem C. The explicit determination of the constituents of V for any
irreducible representation V of GL3(Fp) over Qp.

The proof is an exercise, once the correct decomposition formulae are
spotted, in comparing the (known) characters of ordinary and modular ir-
reducible representations.

As we learnt later, Jantzen [Jan81] had already established the decompo-
sition of Deligne-Lusztig representations of G(Fq) for G semisimple, simply
connected, defined and split over Fq; in particular for SL3(Fp). When asked
about GL3(Fp), he generalised his result to G reductive with simply con-
nected derived group, defined and split over Fq ([Jan05]). This yields an
alternative proof of Theorem C, at least in the case of Deligne-Lusztig rep-
resentations.

1.6. Organisation of this paper. In sections 3 and 4 we recall the ordi-
nary and modular representation theory of GL3(Fp). These are combined
in section 5 to establish Theorem C. Conjecture A is stated in section 6; it
is compared with the ADPS conjecture in section 7. The following section
lists some computational evidence supporting Conjecture A. Sections 9–13
discuss the conjecture for GLn, obtaining in particular the results of §1.3.
Finally, Theorem B is proved in section 14.

2. Notation

Throughout this thesis let p denote a prime number. Fix an algebraic
closure Qp of Qp and denote by Fp its residue field. Fix an embedding

Q � Qp, and let Gp (resp. Ip) denote the corresponding decomposition

group (resp. inertia group) in GQ = Gal(Q/Q). Let ˜ : F×
p � Q

×
p denote the

Teichmüller lift and let χn be its restriction to F×
pn .
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2.1. Cuspidal representations of GLn(Fq). Fix q, a p-power.
Call a homomorphism from F×

qn into an abelian group primitive if it does

not factor through the norm map F×
qn � F×

qm for any m|n, m 6= n. We have
a bijection for any n ≥ 1:{

cuspidal representations

of GLn(Fq) over Qp

}
/ ∼= 1:1
��

{
primitive characters

F×
qn

χ−� Q
×
p

}
/(χ ∼ χq)

Θ(χ, χq, . . . ) �− [ [χ](2.1)

Θ(χ, χq, . . . ) is characterized by demanding that it is cuspidal and has char-
acter value

(−1)n−1(χ(α) + χ(α)q + · · ·+ χ(α)q
n−1

)

on matrices with eigenvalues α, . . . , αqn−1
(α ∈ F×

qn such that Fq(α) = Fqn).
There is an alternative characterisation. An Fq-basis of Fqn determines

an algebra homomorphism i : Fqn �Mn(Fq); on the other hand, any homo-
morphism Fqn �Mn(Fq) is a GLn(Fq)-conjugate of i by the Skolem-Noether
theorem. Moreover, those i with a fixed image form a q-power orbit. Thus

for any primitive χ : F×
qn � Q

×
p , Ind

GLn(Fq)

F×

qn
(χ) is well-defined up to isomor-

phism and only depends on the q-power orbit of χ, where F×
qn is embedded

using any i. Let St denote the Steinberg representation. It is an irreducible

constituent of Ind
GLn(Fq)
Bn(Fq)

(1) of dimension q(
n
2) (Bn(Fq) is the subgroup of

upper-triangular matrices).
Then Θ(χ, χq, . . . ) is characterised among cuspidal representations by

Θ(χ, χq, . . . )⊗ St ∼= Ind
GLn(Fq)

F×

qn
(χ).

To see that this is equivalent to the previous description, use the character
of St ([DL76], §7) and prop. 7.3 in [DL76] together with lemma 10.1 below
(note that even though that lemma is only stated for GLn(Fp), it works
equally well for GLn(Fq)).

A proof of the above correspondence can be obtained from [Spr70a]. First
note that a character is in the discrete series in Springer’s nomenclature
([Spr70b], §4.3) if and only if it is cuspidal (see [Car85], cor. 9.1.2). Theo-
rems 8.6 and 7.12 in [Spr70a] show that the cuspidal characters are precisely

the ones denoted there by χn(φ), for primitive characters φ : F×
qn � Q

×
p (and

F×
qn embedded in GLn(Fq) as above; this is denoted by Tn in Springer’s

notes), with χn(φ) = χn(φ
′) if and only if φ is in the q-power orbit of φ′.

Combining thm. 7.12(i) and thm. 6.3(iii) in [Spr70a], we obtain the values
of these characters on F×

qn . This establishes the correspondence above (with
φ = χ).

It is interesting that there is a simple formula computing the character of
a cuspidal representation.

Lemma 2.1. The character of Θ(χ, χq, . . . ) on g ∈ GLn(Fq) is zero unless
the characteristic polynomial of g is the power of an irreducible polynomial
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f ∈ Fq[x]. In that case, suppose that the elementary divisors of g are fn1 ,
fn2, . . . , fnr with (

∑
ni)(deg f) = n, and let α ∈ F×

qn be a root of f . Then
the character of Θ(χ, χq, . . . ) on g is

(−1)n−r
r−1∏

i=1

(qi − 1) · (χ(α) + χ(α)q + . . . χ(α)q
deg(f)−1

).

Proof. In Springer’s notation, χn(φ) = (−1)n−1χn(n; θ), where θ is an ex-

tension of φ to F
×
p (see his proof of thm. 7.12; he incorrectly states that θ

can be chosen to be injective; but this does not seem to be relevant to his
argument). Now we claim that Springer’s character χn(d; θ) of GLn(Fq) (for

d|n) is isomorphic to Green’s character Ikd [v] ([Gre55], thm. 5 on p. 419),

if we set v = n/d and k is any integer such that φ(x) = x̃k (then we can
also assume that θ(x) = x̃k). This can be seen by a tedious comparison
of Springer’s proof of thm. 7.16 and [Gre55], pp. 415–420. Note in partic-
ular the following errors in Springer’s proof. (i) The induction has to be
not just over n alone, but also over d. Thus, whenever it says “all v such
that sv(s,B) < n,” it should say instead “all v such that sv(s,B) < n and
v(s,B) < d.” (ii) In the third-last sentence in the proof “χn(d; θ)” has to
be replaced by “χn(n/d; θ)”.

Thus Θ(χ, χq, . . . ) has character (−1)n−1Ikn[1]. Finally this is computed
in [Gre55], example (ii), p. 430f. �

2.2. Hecke pairs and Hecke algebras. We will use the same terminology
as Ash-Stevens ([AS86]), but prefer left actions for our modules. Thus a
Hecke pair is a pair (Γ, S) consisting of a subgroup Γ and a subsemigroup
S of a fixed ambient group G such that

(i) Γ ⊂ S.
(ii) Γ and sΓs−1 are commensurable for all s ∈ S.

The Hecke algebra H(Γ, S) consists of left Γ-invariant elements in the free
abelian group of left cosets sΓ (s ∈ S), with the usual multiplication law:

∑
ai(siΓ)

∑
bj(tjΓ) =

∑
aibj(sitjΓ),

where ai, bj ∈ Z, si, tj ∈ S. In particular, any double coset ΓsΓ =
∐

i siΓ
(a finite disjoint union) becomes a Hecke operator in H(Γ, S) in the natural
way; it is denoted by [ΓsΓ]. IfM is a left S-module (over any ring), the group
cohomology modules H ·(Γ,M) inherit a natural linear action of H(Γ, S).
This action is δ-functorial, i.e., long exact sequences associated to short
exact sequences of S-modules are H(Γ, S)-equivariant. It is thus determined
by demanding that

[ΓsΓ]m =
∑

i

sim

for all s ∈ S, m ∈ H0(Γ,M). It is also possible to explicitly describe the
action on cocyles in any degree (see [AS86], p. 194).
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A Hecke pair (Γ0, S0) is compatible with (Γ, S) if Γ0 ⊂ Γ, S0 ⊂ S, S0Γ = S,
and Γ ∩ S−1

0 S0 = Γ0. In this case, it is easy to check that there is a natural
injection

H(Γ, S) �֒ H(Γ0, S0)

induced by restriction from the map on left cosets sending s0Γ 7� s0Γ0

(s0 ∈ S0).

3. Representations of GL3(Fq) in characteristic zero

The irreducible finite-dimensional representations of GL3(Fq) over C were
first determined by Steinberg in [Ste51]. The notations here are adapted
from his paper. Here is a list of (the Jordan normal forms of) representatives
of the conjugacy classes of GL3(Fq):

A1:



a

a
a


 , A2:



a 1

a
a


 , A3:



a 1

a 1
a


 , A4:



a

a
b


 ,

A5:



a 1

a
b


 , A6 :



a

b
c


 , B1 :



a

β
βq


 , C1:



α

αq

αq2


 ,

with a, b, c running over F×
q , β over F×

q2
\F×

q , and α over F×
q3
\F×

q (the latter

two up to the action of the q-power map).
The character table that Steinberg calculated, with values in Qp, can be

found in figure 3.1. The ranges of the superscripts are listed in figure 3.2.
The representation space corresponding to any of these characters will be
denoted by V with the same sub- and superscript (strictly speaking, a choice

is made). For example, V
(i)
1

∼= Qp(χ
i ◦ det).

Finally define G3 = GL3(Fq) and denote by P3 and B3 two standard
“parabolic” subgroups:

P3 =



∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


 , B3 =



∗ ∗ ∗
0 ∗ ∗
0 0 ∗


 .

Proposition 3.1. (i) The “principal series” representation IndG3
B3

(χi⊗χj⊗
χk) (which is independent of the order of i, j, k ∈ Z/(q − 1)) is isomorphic
to

V
(i)
1 ⊕ 2V

(i)
q2+q

⊕ V
(i)
q3

if i = j = k

V
(i,j)
q2+q+1

⊕ V
(i,j)
q(q2+q+1)

if i 6= j = k

V
(i,j,k)
(q+1)(q2+q+1)

if i, j, k are distinct

(Adding up the corresponding entries in the character table shows that the
character of this induction has a uniform shape for all i, j, k.)
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χ
(n)
1 χ

(n)
q2+q

χ
(n)
q3

A1 ã3n (q2 + q)ã3n q3ã3n

A2 ã3n qã3n 0
A3 ã3n 0 0

A4 ã2nb̃n (q + 1)ã2nb̃n qã2nb̃n

A5 ã2nb̃n ã2nb̃n 0

A6 ãnb̃nc̃n 2ãnb̃nc̃n ãnb̃nc̃n

B1 ãnβ̃n(q+1) 0 −ãnβ̃n(q+1)

C1 α̃n(q2+q+1) −α̃n(q2+q+1) α̃n(q2+q+1)

χ
(m,n)
q2+q+1 χ

(m,n)
q(q2+q+1)

A1 (q2 + q + 1)ãm+2n q(q2 + q + 1)ãm+2n

A2 (q + 1)ãm+2n qãm+2n

A3 ãm+2n 0

A4 (q + 1)ãm+nb̃n + ã2nb̃m (q + 1)ãm+nb̃n + qã2nb̃m

A5 ãm+nb̃n + ã2nb̃m ãm+nb̃n

A6

∑
(a,b,c) ã

mb̃nc̃n
∑

(a,b,c) ã
mb̃nc̃n

B1 ãmβ̃n(q+1) −ãmβ̃n(q+1)

C1 0 0

χ
(l,m,n)
(q+1)(q2+q+1) χ

(m,n)
(q−1)(q2+q+1) χ

(n)
(q−1)2(q+1)

A1 (q + 1)(q2 + q + 1)ãl+m+n (q − 1)(q2 + q + 1)ãm+n (q − 1)2(q + 1)ãn

A2 (2q + 1)ãl+m+n −ãm+n −(q − 1)ãn

A3 ãl+m+n −ãm+n ãn

A4 (q + 1)
∑

(l,m,n) ã
l+mb̃n (q − 1)ãnb̃m 0

A5

∑
(l,m,n) ã

l+mb̃n −ãnb̃m 0

A6

∑
(l,m,n) ã

lb̃mc̃n 0 0

B1 0 −ãm(β̃n + β̃nq) 0

C1 0 0 α̃n + α̃nq + α̃nq2

Figure 3.1. The character table of GL3(Fq) with values in

Qp. Here,
∑

(a,b,c) f(a, b, c) denotes the symmetric polyno-

mial in a, b, c with typical term f(a, b, c). (So there are one,
two, three or six terms depending on the symmetries of f .)
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family range of the parameters

χ
(n)
1 n ∈ Z/(q − 1)

χ
(n)
q2+q

n ∈ Z/(q − 1)

χ
(n)
q3

n ∈ Z/(q − 1)

χ
(m,n)
q2+q+1 m 6= n ∈ Z/(q − 1)

χ
(m,n)
q(q2+q+1) m 6= n ∈ Z/(q − 1)

χ
(l,m,n)
(q+1)(q2+q+1) {l,m, n} ⊂ Z/(q − 1) distinct

χ
(m,n)
(q−1)(q2+q+1) m ∈ Z/(q − 1), {n, nq} ⊂ Z/(q2 − 1)− Z/(q − 1)

χ
(n)
(q−1)2(q+1) {n, nq, nq2} ⊂ Z/(q3 − 1)− Z/(q − 1)

Figure 3.2. Parameter ranges for the characters in fig-
ure 3.1. Writing {l,m, n} makes sense because the cor-
responding character only depends on this set. Similarly,
{n, nq} makes sense because (m,n) and (m,nq) index the
same character in the second-last line.

(ii) IndG3
P3

(Θ(χm
2 , χ

qm
2 )⊗ χi) (q + 1 ∤ m) is isomorphic to

V
(i,m)
(q−1)(q2+q+1)

.

(iii) The cuspidal representation Θ(χm
3 , χ

qm
3 , χq2m

3 ) (q2 + q + 1 ∤ m) is
isomorphic to

V
(m)
(q−1)2(q+1)

.

Remark 3.2. Note that part (iii) is a special case of lemma 2.1.

Proof. (i) In each case the dimensions agree on both sides, as B3 has index
(q + 1)(q2 + q + 1), so it suffices to check that the (non-zero) multiplicities
on the right-hand side are correct. Suppose now that i, j, k are distinct
(the other cases follow in exactly the same way). By Frobenius reciprocity
it suffices to show

1 = 〈χ(i,j,k)
(q+1)(q2+q+1)

, χi ⊗ χj ⊗ χk〉B3

= (#B3)
−1
∑

h∈B3

χ
(i,j,k)
(q+1)(q2+q+1)

(h)(χi ⊗ χj ⊗ χk)(h−1).

The sum over B3 splits up into six parts depending on the G3-conjugacy
class of h (B1, C1 cannot occur). The contribution of each is a polynomial
in q (even each term is, in case of A1, A2 and A3), and counting (resp. trivial
estimates of the size of the terms) show that
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# of terms each term

A1 O(q) O(q3)
A2 O(q3) O(q)
A3 O(q4) O(1)
A4 O(q4) O(q)
A5 O(q5) O(1)
A6 O(q6) O(1)

As #B3 ∼ q6, it follows that we only need to show that the sum over
the A6 terms is also asymptotically equivalent to q6. Explicitly this sum is
(with a, b, c ∈ F×

q )

= q3
∑

a,b,c
distinct

{ ∑

(i,j,k)

ãib̃j c̃k
}
ã−ib̃−j c̃−k

= q3
∑

a,b,c
distinct

(
1 + ãj−ib̃i−j + b̃k−j c̃j−k + c̃i−kãk−i

+ ãj−ib̃k−j c̃i−k + ãk−ib̃i−j c̃j−k
)

= q6 +O(q5)

as all the terms in the sum, except the first, only contribute O(q5) to the
total (it is essential that i, j, k are distinct, because this implies

∑
a ã

i−j = 0,
etc.).

(ii) It suffices to show

〈χ(i,m)
(q−1)(q2+q+1)

,Θ(χm
2 , χ

qm
2 )⊗ χi〉P3 = 1.

Here is the relevant table for the number of terms for each G3-conjugacy
class, and the estimate for each term, split up into the contribution of the
term on the left-hand side (resp. right-hand side) of the inner product:

# of terms 1st factor 2nd factor

A1 O(q) O(q3) O(q)
A2 O(q4) O(1) O(q)
A3 O(q5) O(1) O(1)
A′

4 O(q4) O(q) O(q)
A′′

4 O(q5) O(q) O(1) [even 0]
A5 O(q6) O(1) O(1)
A6 ∼ 1

2q
7 0 O(1)

B1 ∼ 1
2q

7 O(1) O(1)

Here A′
4 denotes those matrices of type A4 whose top left 2× 2 matrix is a

scalar, and A′′
4 denotes the others.

Analogously to the proof of (i), it suffices to show that the contribution
of the B1 terms is asymptotically equivalent to q7. This follows easily, as in
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part (i), because Θ(χm
2 , χ

qm
2 )⊗χi has character −ãi(β̃m+ β̃mq) on matrices

in P3 with eigenvalues a, β, βq (see (2.1)). The point this time is that

∑

β∈F×

q2
\F×

q

β̃i =

{
q2 − q if i ≡ 0 (mod q2 − 1),

O(q) otherwise.

(iii) It is well-known that every character has to occur as constituent of
some “parabolic induction” ([Bum97], ex. 4.1.17). The first two parts thus
show that the irreducible characters of dimension (q−1)2(q+1) are cuspidal.
The characterization of Θ in (2.1) completes the proof. �

4. Representations of GL3(Fp) in characteristic p

Let G be a connected split reductive group over the finite field F = Fq

(q = pr). Let T ⊂ G be a maximal torus defined and split over F. Let
R ⊂ X(T ) be the root system of G. Choose a set of positive roots R+ and
a corresponding Borel subgroup B ⊃ T . Denote by B− the opposite Borel.
Denote byW the Weyl group of (G, T ) and by X(T )+ the dominant weights
with respect to this choice of positive roots.

It will be useful in the following to also use a modified action of the Weyl
group on X(T ). Let ρ′ ∈ X(T )⊗Q be any weight in 1

2

∑
α∈R+ α+(X(T )⊗

Q)W and define

(4.1) w · λ = w(λ+ ρ′)− ρ′.

Of course, this is independent of the choice of ρ′. (In the literature, usually
ρ = 1

2

∑
α∈R+ α is used for ρ′, but in the case of G = GLn it will later be

convenient to fix a different choice of ρ.)
For λ ∈ X(T )+ the (dual) Weyl module W (λ) is defined as algebraic

induced module:

W (λ) = indGB−(F(λ))

= {f ∈ MorF(G,F) : f(gb) = λ(b)−1f(g)

∀F-algebras A, g ∈ G(A), b ∈ B−(A)}.
This is in fact a finite-dimensional F-vector space, which becomes a left

G-module in the natural way:

(xf)(g) = f(x−1g) for all F� A, f ∈W (λ)⊗A, g, x ∈ G(A).

Define F (λ) = socGW (λ) (the socle of the Weyl module, as G-module).

Theorem 4.1. The set of simple G-modules is {F (λ) : λ ∈ X(T )+}. If
F (λ) ∼= F (µ) (λ, µ ∈ X(T )+) then λ = µ.

More generally, considered in the Grothendieck group of G-modules we
can extend the definition of Weyl module to all of X(T ), as an Euler char-
acteristic (see [Jan03], II.5.7):

W (λ) =
∑

i

(−1)i(Ri indGB−)(F(λ)).
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(If λ is dominant, only the i = 0 term is non-zero, so this agrees with the
previous definition.) The context should always make it clear whetherW (λ)
refers to a genuine representation (and λ dominant) or to an element of the
Grothendieck group. The formal character is given by the Weyl character
formula ([Jan03], II.5.10):

(4.2) chW (λ) =

∑
w∈W detw · e(w(λ+ ρ′))∑

w∈W detw · e(w(ρ′)) ∈ Z[X(T )]W .

Here e(λ) ∈ Z[X(T )] denotes the weight λ considered in the group algebra.
In particular it follows that

(4.3) W (w · λ) = det(w)W (λ),

and in turn that W (λ) = 0 if and only if λ + ρ′ lies on the wall of a Weyl
chamber, whereas in all other cases, this formula allows to express W (λ) as
±W (λ+) with λ+ dominant.

Note also that the map

ch : {G-modules}� Z[X(T )]W

induces an isomorphism between the Grothendieck group of G-modules and
Z[X(T )]W (see [Jan03], II.5.8).

Definition 4.2.

X0(T ) = {λ ∈ X(T ) : 〈λ, α∨〉 = 0 ∀α ∈ R}.

The (r-)restricted region is defined to be:

Xr(T ) = {λ ∈ X(T ) : 0 ≤ 〈λ, α∨〉 < q = pr for all simple roots α}.
Remark 4.3.

(i) Note that X0(T ) = X(T )W , by looking at the basic reflections sα
(α ∈ R) generating W .

(ii) Note that if µ ∈ X(T )+, ν ∈ X0(T ), then

W (µ+ ν) ∼=W (µ)⊗W (ν), F (µ+ ν) ∼= F (µ)⊗ F (ν)

and W (ν) = F (ν) is a one-dimensional representation with charac-
ter e(ν). This follows immediately from the Weyl character formula.

Proposition 4.4 (Brauer’s formula). If
∑

µ∈X(T ) aµe(µ) ∈ Z[X(T )]W , then

for all λ ∈ X(T ),

W (λ)⊗
∑

µ∈X(T )

aµe(µ) ∼=
∑

µ∈X(T )

aµW (λ+ µ)

in the Grothendieck group of G-modules.

For the proof, see for example [Jan77], §2(1).
As G is split reductive over F, thm. 3.6.6 in Demazure’s thesis ([Dem65])

shows that G can be canonically defined over Z, in particular over Fp. In
particular, there is a Frobenius endomorphism F : G � G. For any i ≥ 0
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and any G-module V , corresponding to a homomorphism r : G � GL(V ),

define a new G-module V (i) which equals V abstractly but whose G-action
is obtained by composing r with F i. (Correction: not true that G is
canonically defined over Z—still have automorphisms. Better to fix a Z- or
even just Fp-structure at the start.)

Theorem 4.5 (Steinberg). Suppose λ =
∑r

i=0 λip
i with λi ∈ X1(T ). Then

F (λ) ∼= F (λ0)⊗ F (λ1)
(1) ⊗ . . .⊗ F (λr)

(r).

For the proof, see for example [Jan03], cor. II.3.17.
Now we can state the classification theorem for irreducible modular rep-

resentations of G(F), under a further condition on G.

Theorem 4.6 ([Jan05]). Suppose that G has simply connected derived group
(e.g., G = GLn).

(i) If λ ∈ Xr(T ), F (λ) ⊗ F is irreducible as representation of G(F).
Any irreducible representation of G(F) over F arises in this way.

(ii) F (λ)⊗F ∼= F (µ)⊗F as representation of G(F) if and only if λ−µ ∈
(q − 1)X0(T ).

Remark 4.7. In particular this result shows that F is a splitting field for
representations of G(F). Since Schur’s lemma together with Hilbert’s theo-
rem 90 shows that

F (λ) ∼= F (µ) ⇐⇒ F (λ)⊗ F ∼= F (µ)⊗ F,

isomorphism classes of representations of G(F) over F and over F (or over
any intermediate field) are in natural bijection with one another.

To apply these results to G = GL3/Fp
, let T be the diagonal matrices and

B the upper-triangular matrices. Then X(T ) ∼= Z3 naturally: for (a, b, c) ∈
Z3 let (a, b, c) denote the weight

( t1
t2

t3

)
7� ta1t

b
2t

c
3

in X(T ). Then X0(T ) = (1, 1, 1)Z, X1(T ) = {(a, b, c) : 0 ≤ a − b, b − c ≤
p−1}, (a, b, c) is dominant if and only if a ≥ b ≥ c, and choose ρ′ = (2, 1, 0).

Corollary 4.8.

(i) The irreducible algebraic GL3-modules are the F (a, b, c), a ≥ b ≥ c.
(ii) The irreducible modular representations of GL3(Fp) are the F (a, b, c),

0 ≤ a − b, b − c ≤ p − 1. F (a, b, c) ∼= F (a′, b′, c′) if and only if
(a, b, c)− (a′, b′, c′) ∈ (p− 1, p− 1, p− 1)Z.

It will be convenient to use the terminology of “alcoves” in the following.
They are the complements of a family of hyperplanes in weight space X(T )⊗
R. In the case of GL3, these hyperplanes are (for each n ∈ Z)

{a− b = np− 1}, {b− c = np− 1}, {a− c = np− 2}.
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The corollary concerns precisely (the dominant weights in the closures of)
two alcoves: the lower alcove

{(a, b, c) ∈ R3 : −1 < a− b, b− c and a− c < p− 2}
and the upper alcove

{(a, b, c) ∈ R3 : p− 2 < a− c and a− b, b− c < p− 1}.
Proposition 4.9 (Jantzen). Suppose that (a, b, c) is in the restricted region
X1(T ).

(i) If (a, b, c) is in the upper alcove then there is an exact sequence

0� F (a, b, c)�W (a, b, c)� F (c+ p− 2, b, a− p+ 2)� 0.

(ii) Otherwise, i.e., if (a, b, c) is in the lower alcove or on the boundary
of the upper alcove, F (a, b, c) =W (a, b, c).

Notation: r(a, b, c) = (c+ p− 2, b, a− p+ 2).

Proof. (ii) follows from the strong linkage principle (Prop. II.6.13 in [Jan03]).
(i) is a consequence of prop. II.7.11 and lemma II.7.15 ([Jan03]): Let λ =
(a, b, c). Then rλ = (c + p − 2, b, a − p + 2) is the unique weight which is
strictly smaller than λ in the ↑-ordering of X(T ). Pick a weight µ in the
upper closure of the lower alcove, but not in the lower alcove itself (e.g.
µ = (p − 2, 0, 0)), and apply the translation functor Tµ

rλ to the identity of
formal characters

chW (λ) = chF (λ) +m chF (rλ),

which holds for some integer m by the strong linkage principle, to deduce
that m = 1. �

5. Decomposition of GL3(Fp)-representations

Suppose that V/Qp is a finite-dimensional representation of a finite group
G. Then we can define the (semisimplified) reduction of V “modulo p” to be
V = (M/mZp

M)ss for any G-stable Zp-lattice M ⊂ V . This is a semisimple

representation over Fp which, by the Brauer-Nesbitt theorem, is independent
of the choice of M .

Theorem 5.1. The following identities hold in the Grothendieck group of
representations of GL3(Fp) over Fp:

V
(i)
1 =W (i, i, i)

V
(i)
p2+p =W (p− 1 + i, i, i) +W (p− 1 + i, p− 1 + i, i)

V
(i)
p3 =W (2p− 2 + i, p− 1 + i, i)

V
(i,j)
p2+p+1 =W (i, j, j) +W (p− 1 + j, p− 1 + j, i) + F (p− 1 + j, i, j)



THE WEIGHT IN SERRE’S CONJECTURE FOR GLn 19

(0 < i− j < p− 1)

V
(i,j)
p(p2+p+1) =W (p− 2 + j, i, j + 1) +W (p− 1 + j, i, j)

+W (2p− 2 + j, p− 1 + j, i) +W (p− 1 + i, p− 1 + j, j)

(0 < i− j < p− 1)

V
(i,j,k)
(p+1)(p2+p+1) =W (i, j, k) +W (p− 1 + j, p− 1 + k, i)

+W (p− 1 + k, i, j) +W (2p− 2 + k, p− 1 + j, i)

+W (p− 1 + i, p− 1 + k, j) +W (p− 1 + j, i, k)

(i > j > k, i− k ≤ p− 2)

V
(i,j+pk)
(p−1)(p2+p+1) =W (i, j − 1, k + 1) +W (p− 2 + k, i, j + 1)

+W (p− 2 + j, p+ k, i) +W (p− 2 + j, i, k + 1)

+W (p− 1 + i, p− 1 + k, j) +W (2p− 2 + k, p− 1 + j, i)

(i ≥ j > k, i− k ≤ p− 1)

V
(i+jp+kp2)
(p−1)2(p+1) =W (i− 2, j + 1, k + 1) +W (p− 2 + k, i, j + 1)

+W (p− 2 + j, p+ k, i) +W (2p− 2 + k, p− 1 + j, i)

+W (p− 1 + j, i− 1, k + 1) +W (p− 2 + i, p− 1 + k, j + 1)

(i > j ≥ k, i− k ≤ p, resp. i < j ≤ k, k − i ≤ p)

Remark (Nov 2010):
when i < j ≤ k, k − i ≤ p

the highest weights don’t
generally stay inside the
restricted region. The
easiest way to obtain a
nice formula in this case
is to dualise the formula
for i > j ≥ k, i − k ≤ p.

Remark 5.2. (i) The identities hold for all integers i, j, k, as long as the
left-hand side is defined (see fig. 3.2 ). The ranges listed in brackets beneath
the formulae (modulo ∼ defined below) are chosen so as to cover all possible
cases exactly once while at the same time (in all but a few exceptional cases)
keeping the highest weights of the Weyl modules in the restricted region.
The equivalence relation ∼ is generated by the relations (depending on the
family):

(i, j, k) ∼ (i+ p− 1, j + p− 1, k + p− 1), (all cases)

(i, j, k) ∼ (k + p− 1, i, j), (χ
(i,j,k)
(p+1)(p2+p+1)

)

(i, j, k) ∼ (k + p, i− 1, j),
(χ

(i+jp+kp2)
(p−1)2(p+1)

)
resp. (i, j, k) ∼ (j, k − 1, i+ p).

In the stated ranges, zero Weyl modules occur only in the last two decompo-
sition formulae, and Weyl modules outside the closures of lower and upper
alcove can only appear in the last (i.e., cuspidal) decomposition formula, in
which case one has to keep in mind that W (a, b, c) = −W (b − 1, a + 1, c)
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(use if a− b = −2) and W (a, b, c) = −W (a, c− 1, b+1) (use if b− c = −2);
c.f. (4.3).

(ii) Decomposing Weyl modules in the upper alcove into its two irreducible
constituents (proposition 4.9) shows that generically there are the following
number of irreducible constituents in each family (if p is not too small):

dimension of rep. # of constituents

1 1
p2 + p 2
p3 1
p2 + p+ 1 3
p(p2 + p+ 1) 5
(p+ 1)(p2 + p+ 1) 9
(p− 1)(p2 + p+ 1) 9
(p− 1)2(p+ 1) 9

Proof. It suffices to check that, in each case, the Brauer character on the
right-hand side agrees with the character on the left-hand side on semisimple
conjugacy classes. The Brauer character of a Weyl module W (a1, a2, a3)
is computed in the following way (see [Jan87]). Each semisimple element
g ∈ GL3(Fp) is diagonalisable, hence is conjugate (over Fp) to an element t of
a fixed maximal torus T ⊂ GL3. If the formal character of the GL3-module
W (a1, a2, a3) is ∑

µ∈X(T )

m(µ)µ

then the Brauer character evaluated at g equals
∑

µ∈X(T )

m(µ)µ̃(t)

(Here ˜ denotes the Teichmüller lift again.) Finally, the formal character of
W (a1, a2, a3) is obtained from (4.2): it is the Schur polynomial

s(a1,a2,a3)(x1, x2, x3) =
det(x

aj+3−j
i )

det(x3−j
i )

,

where xi is the weight
( t1

t2
t3

)
7� ti (denoted above by (0, . . . , 1, . . . , 0)

with a 1 in the i-th position) considered as element of Z[X(T )].
By proposition 4.9, we also know the Brauer character of F (a1, a2, a3) if

0 ≤ a1 − a2, a2 − a3 ≤ p− 1.

To check the claim for χ
(i)
1 , note that

s(i,i,i)(x, y, z) = (xyz)i.

Thus the Brauer character of W (i, i, i) on the semisimple conjugacy classes,

as listed above, equals ã3i on A1, ã
2ib̃i on A4, ã

ib̃ic̃i on A6, ã
iβ̃i(p+1) on B1

and α̃i(p2+p+1) on C1, precisely as claimed.
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Similarly for χ
(i)
p3
, we can calculate

s(2p−2+i,p−1+i,i)(x, y, z) = (xyz)i
(xp − yp)(xp − zp)(yp − zp)

(x− y)(x− y)(y − z)
.

So the Brauer character of W (2p − 2 + i, p − 1 + i, i) is again immediately
evaluated, and agrees with the ordinary character on semisimple conjugacy
classes.

For χ
(i,j)
(p2+p+1)

: the Brauer character of

W (i, j, j) +W (p− 1 + j, p− 1 + j, i) + F (p− 1 + j, i, j)

is computed by evaluating

(5.1) s(i,j,j) + s(p−1+j,p−1+j,i) + s(p−1+j,i,j) − s(j+p−2,i,j+1)

on eigenvalues. For matrices of type A1 note first that in general

s(a,b,c)(x, x, x) =

∣∣∣∣∣∣

xa+2 xb+1 xc

(a+ 2)xa+1 (b+ 1)xb cxc−1

(a+ 2)(a+ 1)xa (b+ 1)bxb−1 c(c− 1)xc−2

∣∣∣∣∣∣
∣∣∣∣∣∣

x2 x 1
2x 1 0
2 0 0

∣∣∣∣∣∣

=
1

2
(a− b+ 1)(b− c+ 1)(a− c+ 2)xa+b+c

where the first equality follows from two applications of de l’Hôpital’s rule.
(Observe that this recovers the Weyl dimension formula for GL3, which we
could have used alternatively.)

Thus (5.1) evaluated at (ã, ã, ã) becomes (p2+p+1)ãi+2j after a few lines
of calculation.

For matrices of type A4 again de l’Hôpital gives in general

s(a,b,c)(x, x, y) =

∣∣∣∣∣∣

xa+2 xb+1 xc

(a+ 2)xa+1 (b+ 1)xb cxc−1

ya+2 yb+1 yc

∣∣∣∣∣∣
∣∣∣∣∣∣

x2 x 1
2x 1 0
y2 y 1

∣∣∣∣∣∣

.

Evaluating (5.1) at (ã, ã, b̃) yields a common denominator −(ã− b̃)2 and
a numerator
∣∣∣∣∣∣

ãi+2 ãj+1 ãj

(i+ 2)ãi+1 (j + 1)ãj jãj−1

b̃i+2 b̃j+1 b̃j

∣∣∣∣∣∣
+

∣∣∣∣∣∣

ãi ãj+2 ãj+1

iãi−1 (j + p+ 1)ãj+1 (j + p)ãj

b̃i b̃j+2 b̃j+1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

ãi+1 ãj ãj+2

(i+ 1)ãi jãj−1 (j + p+ 1)ãj+1

b̃i+1 b̃j b̃j+2

∣∣∣∣∣∣
−

∣∣∣∣∣∣

ãi+1 ãj+1 ãj+1

(i+ 1)ãi (j + 1)ãj (j + p)ãj

b̃i+1 b̃j+1 b̃j+1

∣∣∣∣∣∣
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by cyclically permuting the columns. Note that we can subtract integer
multiples of ã−1 times the first row from the second row. By taking out
scalars from rows, moreover, and letting n = i− j we get

ã2j b̃j





∣∣∣∣∣∣

ãn+2 ã 1
(n+ 2)ãn+1 1 0

b̃n+2 b̃ 1

∣∣∣∣∣∣
+ ã2b̃

∣∣∣∣∣∣

ãn−1 ã 1
(n− p)ãn−2 1 0

b̃n−1 b̃ 1

∣∣∣∣∣∣

+ ã

∣∣∣∣∣∣

ãn+1 1 ã2

(n+ 1)ãn−1 0 p+ 1

b̃n+1 1 b̃2

∣∣∣∣∣∣
− ãb̃

∣∣∣∣∣∣

ãn 1 1
nãn 0 p− 1

b̃n 1 1

∣∣∣∣∣∣





which expands out to the desired answer (keeping in mind the denominator
from before)

−(ã− b̃)2((p+ 1)ãi+j b̃j + ã2j b̃i).

For type A6, evaluate (5.1) at (ã, b̃, c̃), noting that one of the terms van-
ishes. The numerator equals

∣∣∣∣∣∣

ãi+2 ãj+1 ãj

b̃i+2 b̃j+1 b̃j

c̃i+2 c̃j+1 c̃j

∣∣∣∣∣∣
+

∣∣∣∣∣∣

ãi ãj+2 ãj+1

b̃i b̃j+2 b̃j+1

c̃i c̃j+2 c̃j+1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

ãi+1 ãj ãj+2

b̃i+1 b̃j b̃j+2

c̃i+1 c̃j c̃j+2

∣∣∣∣∣∣
.

Expanding the matrices (with π running through the permutations of ã,

b̃, c̃) this becomes:

∑

π

(−1)ππ
(
ãib̃j c̃j(ã2b̃+ b̃2c̃+ c̃2ã)

)

=

{ ∑

π even

π(ãib̃j c̃j)

}
(ã2b̃+ b̃2c̃+ c̃2ã− ãb̃2 − b̃c̃2 − c̃ã2)

which is as required, since the second factor is the denominator.
For type B1, evaluate (5.1) at (ã, β̃, β̃p) which gives a numerator of

∣∣∣∣∣∣

ãi+2 ãj+1 ãj

β̃i+2 β̃j+1 β̃j

β̃ip+2p β̃jp+p β̃jp

∣∣∣∣∣∣
+

∣∣∣∣∣∣

ãi ãj+2 ãj+1

β̃i β̃j+p+1 β̃j+p

β̃ip β̃jp+p+1 β̃jp+1

∣∣∣∣∣∣

+

∣∣∣∣∣∣

ãi+1 ãj ãj+2

β̃i+1 β̃j β̃j+p+1

β̃ip+p β̃jp β̃jp+p+1

∣∣∣∣∣∣
−

∣∣∣∣∣∣

ãi+1 ãj+1 ãj+1

β̃i+1 β̃j+1 β̃j+p

β̃ip+p β̃jp+p β̃jp+1

∣∣∣∣∣∣
.

Note that the negative terms in these determinants (i.e., those involving an
odd permutation) are, up to sign, the conjugates over Fp of the positive

ones. So, denoting by
∑′A the difference A − A of A and its conjugate A
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we get

=
∑′ [

ãiβ̃j(p+1)(ã2β̃ + β̃p+2 + ãβ̃p+1 − ãβ̃2)

+ ãj β̃i+jp
(
(β̃p+2 − ãβ̃2) + (ãβ̃p+1 − ã2β̃)

+ (ã2β̃ − β̃p+2)− (ãβ̃p+1 − ãβ̃2)
)]

= ãiβ̃j(p+1)(ã− β̃)(ã− β̃p)(β̃ − β̃p)

as required (the product again being the denominator).

For type C1, evaluate (5.1) at (α̃, α̃p, α̃p2). Here again is the numerator:

∣∣∣∣∣∣

α̃i+2 α̃j+1 α̃j

α̃ip+2p α̃jp+p α̃jp

α̃ip2+2p2 α̃jp2+p2 α̃jp2

∣∣∣∣∣∣
+

∣∣∣∣∣∣

α̃i α̃j+p+1 α̃j+p

α̃ip α̃jp+p2+p α̃jp+p2

α̃ip2 α̃jp2+p2+1 α̃jp2+1

∣∣∣∣∣∣

+

∣∣∣∣∣∣

α̃i+1 α̃j α̃j+p+1

α̃ip+p α̃jp α̃jp+p2+p

α̃ip2+p2 α̃jp2 α̃jp2+p2+1

∣∣∣∣∣∣
−

∣∣∣∣∣∣

α̃i+1 α̃j+1 α̃j+p

α̃ip+p α̃jp+p α̃jp+p2

α̃ip2+p2 α̃jp2+p2 α̃jp2+1

∣∣∣∣∣∣
.

Observe then that as the rows in each determinant are mutual conjugates
over Fp, each of the four terms is the trace of just two terms (one even, one
odd). We obtain:

= trFp3/Fp

{
α̃i+j(p+p2)

(
(α̃p+2 − α̃p2+2) + (α̃p2+p+1 − α̃2p2+1)

+ (α̃p2+2 − α̃p2+p+1)− (α̃p+2 − α̃2p2+1)
)}

= 0,

as we needed.
This completes the proof for the decomposition of the characters of di-

mension p2 + p+ 1.

Claim: It remains to check that IndG3
B3

(χi ⊗ χj ⊗ χk) equals

W (i, j,k) +W (p− 1 + j, p− 1 + k, i)

+W (p− 1 + k, i, j) +W (2p− 2 + k, p− 1 + j, i)

+W (p− 1 + i, p− 1 + k, j) +W (p− 1 + j, i, k)

(5.2)

(in the Grothendieck group, for all i, j, k) and to prove the decomposition for
the families of characters of dimensions (p−1)(p2+p+1) and (p−1)2(p+1).

The claim holds simply by proposition 3.1 together with the decomposi-
tions we have already checked.

There are two ways to proceed:

Method 1: Continue along the same lines, in each case evaluating the
Brauer character of the sum of Weyl modules in question. Note that in the
case of (5.2) the character of the induction is uniformly of the same shape
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for all values of i, j, k—as observed in proposition 3.1. The calculations are
lengthier, but not more difficult, than the ones above.

Method 2: It is a simple consequence of Jantzen’s result (thm. 10.3)
on the decomposition of Deligne-Lusztig representations—we will use the
notation of section 10. In the case of GL3, Jantzen’s result becomes (again
in the Grothendieck group):

Rw(i, j, k) =W ((i, j + 1, k + 2)− w(0, 1, 2))

+W ((j + p− 1, i, k + 1)− (1 2)w(0, 0, 1))

+W ((i+ p− 1, k + p, j + 1)− (2 3)w(0, 1, 1))

+W ((k + p− 1, i, j + 1)− (1 2 3)w(0, 1, 0))

+W ((j + p− 1, k + p, i+ 1)− (1 3 2)w(1, 0, 1))

+W ((k + 2p− 2, j + p− 1, i)).

Set now µ = (i, j, k). If w = 1, Tw = T ⊂ B. By lemmas 10.1 and 10.2,

R1(i, j, k) ∼= IndG3
B3

(χi ⊗ χj ⊗ χk).

If w = (2 3) and p + 1 ∤ j + pk, the same two lemmas together with
prop. 3.1 give

R(2 3)(i, j, k) ∼= V
(i,j+pk)
(p−1)(p2+p+1)

.

If w = (1 2 3) and p2+p+1 ∤ i+pj+p2k, lemma 10.1 and prop. 3.1 yield

R(1 2 3)(i, j, k) ∼= V
(i+pj+p2k)
(p−1)2(p+1)

.

Finally just plug these into Jantzen’s formula. �

6. Statement of a conjecture for GL3

Definition 6.1. A Serre weight is an isomorphism class of irreducible repre-
sentations of GL3(Fp) over Fp (note that by remark 4.7 we could equally well

replace the base field by Fp). Let WSer denote the set of all Serre weights:

WSer = {F (a, b, c) : 0 ≤ a− b, b− c ≤ p− 1}.
A regular Serre weight is an element of

Wreg = {F (a, b, c) : 0 ≤ a− b, b− c < p− 1} ⊂WSer.

Note that #WSer = p2(p− 1), #Wreg = (p− 1)3.
Define a surjective map R :WSer �Wreg by

(6.1) F (a, b, c) 7� F (c+ 2(p− 2), b+ (p− 2), a)reg,

where F (x1, x2, x3)reg is the regular Serre weight F (x′1, x
′
2, x

′
3) with x

′
i ≡ xi

(mod p − 1) for all i (note that this is well defined, even though the x′i are
not). On regular Serre weights, the subscript “reg” can be omitted in the
definition.
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Fix for now a continuous Galois representation ρ : GQ � GL3(Fp) that
is irreducible and odd (i.e., if p > 2, ρ(c) 6= ±1 for any complex conjugation
c).

For any positive integer N which is prime to p, define Γ0(N) to be the
group of matrices in SL3(Z) with last row congruent to (0, 0, ∗) modulo
N . Also let S0(N) be the group of matrices in GL+

3 (Z(N)) with last row

congruent to (0, 0, ∗) modulo N and let S′
0(N) = S0(N)∩GL+

3 (Z(Np)). Here
Z(N) is the ring of rational numbers with denominators prime to N .

Then (Γ0(N), S′
0(N)), (Γ0(N), S0(N)) are Hecke pairs (see §2.2). The cor-

responding Hecke algebras over the integers are denoted by H′
0(N), H0(N);

clearly H′
0(N) ⊂ H0(N). Whenever M is an Fp[S

′
0(N)]-module and for any

e, H′
0(N) acts on the group cohomology group He(Γ0(N),M).

For primes l ∤ N and 0 ≤ k ≤ 3 define the Hecke operator Tl,k =

[Γ0(N)

(
l . . .

1

)
Γ0(N)] in H0(N) (k entries equal l). Note that:

H0(N) = Z[Tl,1, Tl,2, Tl,3, T
−1
l,3 : l ∤ N ]

∪
H′

0(N) = Z[Tl,1, Tl,2, Tl,3, T
−1
l,3 : l ∤ Np]

We say that ρ is attached to an H′
0(N)-eigenvector α ∈ He(Γ0(N),M) if for

all l ∤ Np, ρ is unramified at l and

(6.2)
3∑

i=0

(−1)ili(i−1)/2a(l, i)Xi = det(1− ρ(Frob−1
l )X),

where a(l, i) ∈ Fp is the eigenvalue of Tl,i on α, and Frobl ∈ GQ is any
geometric Frobenius element at l.

If F is a GL3(Fp)-representation and ǫ as above, then let F (ǫ) = F⊗ Fp(ǫ)
with S′

0(N) acting on the first factor via reduction modulo p (S′
0(N) �

GL3(Fp)), and on the second factor via reduction modulo N of the (3, 3)-
entry (S′

0(N)� (Z/N)×).
The given Galois representation ρ has an associated level N = N(ρ),

prime to p, defined in terms of the ramification of ρ away from p, and
nebentype ǫ = ǫ(ρ), defined in terms of the determinant of ρ, much as in
Serre’s original conjecture (see [ADP02]).

Definition 6.2. Let W (ρ) be the set of all GL3(Fp)-representations F such
that ρ is attached to a non-zero element of He(Γ0(N), F (ǫ)) (for some e)
with N = N(ρ) and ǫ = ǫ(ρ).

Remark 6.3. As discussed in [ADP02], rk. 3.2, e can be replaced with 3 in
this definition.

Definition 6.4.



26 FLORIAN HERZIG

If ρ|Ip ∼
(

ωi

ωj

ωk

)
then

V (ρ|Ip) = IndG3
B3

(χi ⊗ χj ⊗ χk).

If ρ|Ip ∼
(

ωm
2

ωpm
2

ωi

)
, p+ 1 ∤ m then

V (ρ|Ip) = IndG3
P3

(Θ(χm
2 , χ

pm
2 )⊗ χi).

If ρ|Ip ∼
( ωm

3

ωpm
3

ωp2m
3

)
, p2 + p+ 1 ∤ m then

V (ρ|Ip) = Θ(χm
3 , χ

pm
3 , χp2m

3 ).

Remark 6.5. ρ is tamely ramified at p if and only if ρ|Ip is diagonalisable.
Because of the Frobenius action on ρ|Ip, only the above three cases occur in
this case.

Conjecture 6.6. Suppose that ρ : GQ � GL3(Fp) (as above) is tamely
ramified at p. Then

W (ρ) ∩Wreg = R(JH(V (ρ|Ip))).

7. Comparison with the ADPS conjecture

The framework of the conjecture as stated here differs slightly from that
of [ADP02], so here is how to translate between them. Let Γ′

0(N) be the ma-
trices with first row congruent to (∗, 0, 0) mod N , and S′

0(N) the matrices
in GL+

3 (Z(Np)) with first row congruent to (∗, 0, 0) mod N . Then H′
0(N) is

the Hecke algebra defined by this Hecke pair, but now it is the subgroup of
the free abelian group on all right cosets Γ′

0(N)s (s ∈ S′
0(N)) that are right

invariant under Γ′
0(N), with corresponding multiplication. T ′

l,i is defined

as Tl,i with Γ0(N) replaced by Γ′
0(N). Let F ′(a, b, c) be the simple right

GL3-module with highest weight (a, b, c) over Fp.

Lemma 7.1. Under the natural isomorphism

He(Γ0(N), F (a, b, c)) ∼= He(Γ′
0(N), F ′(−c,−b,−a)),

if an eigenclass on the left has the Galois representation ρ attached, then
the corresponding eigenclass on the right has ρ∨ ⊗ ω2 attached.

Proof. Let η =
(

1
1

1

)
. Note that g 7� ηg−1 defines isomorphisms Γ′

0(N)�

Γ0(N), S′
0(N)� S0(N). LetM = F (a, b, c), and letM ′ be the right S′

0(N)-
module whose underlying vector space is M and if s ∈ S′

0(N) then ms =
ηs−1m. So we get a natural isomorphism He(Γ0(N),M) ∼= He(Γ′

0(N),M ′)
such that the action of [Γ0(N)sΓ0(N)] on the left corresponds to that of
[Γ′

0(N)ηs−1Γ′
0(N)] under it. So for an eigenclass the Tl,i eigenvalues a(l, i)

on the left give T ′
l,i eigenvalues a(l, 3 − i)/a(l, 3) on the right. This easily
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implies the statement about the attached Galois representations. Finally,
looking at the torus action, we see that M ′ ∼= F ′(−c,−b,−a). �

Remark 7.2. Note that the conjecture for the weights formally looks the
same in both formulations.

Proposition 7.3. Suppose that ρ is as above. Consider the set A of all
F (x′ − 2, y′ − 1, z′)reg where (x′, y′, z′) is a restricted weight (i.e., 0 ≤ x′ −
y′, y′ − z′ ≤ p − 1) that has a permutation (x, y, z) satisfying the following
conditions.

If ρ|Ip ∼
(

ωi

ωj

ωk

)
then

x ≡ i, y ≡ j, z ≡ k (mod p− 1).

If ρ|Ip ∼
(

ωm
2

ωpm
2

ωi

)
, p+ 1 ∤ m then

x ≡ i (mod p− 1),

y + pz ≡ m (mod p2 − 1).

If ρ|Ip ∼
( ωm

3

ωpm
3

ωp2m
3

)
, p2 + p+ 1 ∤ m then

x+ py + p2z ≡ m (mod p3 − 1).

Then

Wreg,conj(ρ) = A ∪ {F (rλ) : F (λ) ∈ A, λ in the lower alcove}.
Recall that the reflection r arose in the context of decomposing Weyl

modules into simples (p. 18). For simplicity, we will also use the notation
rF (λ) = F (rλ) if λ and rλ are both dominant (equivalently, F (λ) is a regular
Serre weight). The proof of the proposition depends on the following lemma.

Lemma 7.4. (i) Let i ≥ j ≥ k, i− k ≤ p− 1. Suppose that (x′, y′, z′) ∈ Z3

is a restricted weight and has a permutation (x, y, z) satisfying

x ≡ i, y ≡ j, z ≡ k (mod p− 1).

Then, modulo (p− 1, p− 1, p− 1)Z, (x′, y′, z′) is among

(i, j, k), (j, k, i− p+ 1), (k + p− 1, i, j),

(j + p− 1, i, k), (i, k, j − p+ 1), (k + p− 1, j, i− p+ 1).

All of these do occur.
(ii) Let i ≥ j > k, i − k ≤ p − 1. Suppose that (x′, y′, z′) ∈ Z3 is a

restricted weight and has a permutation (x, y, z) satisfying

x ≡ i (mod p− 1),

y + pz ≡ j + pk (mod p2 − 1).
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Then, modulo (p− 1, p− 1, p− 1)Z, (x′, y′, z′) is among

(i, j, k), (j, k, i− p+ 1), (k + p, i, j − 1),

(j + p, i, k − 1), (i, k + 1, j − p), (k + p, j − 1, i− p+ 1),

(i+ p− 1, j, k), (j, k, i− 2p+ 2).

All of these that are restricted do occur.
(iii) Let i > j ≥ k, i− k ≤ p. Suppose that (x′, y′, z′) ∈ Z3 is a restricted

weight and has a permutation (x, y, z) satisfying

x+ py + p2z ≡ i+ pj + p2k (mod p3 − 1).

Then, modulo (p− 1, p− 1, p− 1)Z, (x′, y′, z′) is among

(i, j, k), (j + 1, k, i− p), (k + p, i− 1, j),

(j + p, i, k − 1), (i, k + 1, j − p), (k + p, j + 1, i− p− 1).

All of these that are restricted do occur.

Proof. (i) Note that lemma is invariant under the coordinate change

θ : (x, y, z; i, j, k) 7� (z, x, y; k + p− 1, i, j).

Case 1: i, j, k are distinct modulo p−1: Without loss of generality (using
θ), x > y > z or x < y < z, and y = j. In the first case (x′, y′, z′) = (i, j, k),
as it is restricted. Similarly, (x′, y′, z′) = (k+p−1, j, i−p+1) in the second
case.

Case 2: Precisely two of i, j, k are congruent modulo p−1: Without loss
of generality, j ≡ k. It follows that j = k and 0 < i− j < p− 1. Then it is
easily seen that, modulo (p−1, p−1, p−1)Z, the only solutions for (x′, y′, z′)
are (i, j, j), (j, j, i − p + 1), (j, j, i − p + 1), (j + p− 1, i, j), (i, j, j − p + 1),
(j + p− 1, j, i− p+ 1), as claimed.

Case 3: i ≡ j ≡ k: Without loss of generality, i = j = k. It is easily
seen that, modulo (p− 1, p− 1, p− 1)Z, the only solutions for (x′, y′, z′) are
(i, i, i), (i, i, i− p+ 1), (i+ p− 1, i, i), (i+ p− 1, i, i− p+ 1), as claimed.

(ii) Without loss of generality, y+pz = j+pk. Note that |y−z| ≤ 2p−2.
Thus (y, z) = (j, k) + n(p,−1) with −2 ≤ n ≤ 1.

If n = −2: since j−2p < i−2p+2 < i−p+1 < k+2, this can’t happen.
If n = −1: at most the possibilities (i+p−1, k+1, j−p), (i, k+1, j−p),

(k+ 1, i− p+ 1, j − p) and (k+ 1, j − p, i− 2p+ 2), (k+ 1, j − p, i− 3p+ 3)
can arise. But note that the first and last can never be restricted, so will
not occur.

If n = 0, at most (i, j, k), (i+ p− 1, j, k), (j, k, i− p+1), (j, k, i− 2p+2)
arise.

If n = 1, the only possibility is (j+p, i, k−1), since (j+p)−(k−1) > p−1
and j + p > i > k − 1.

(iii) The lemma is invariant under the coordinate change

(x, y, z; i, j, k) 7� (z, x, y; k + p, i− 1, j).
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So, without loss of generality, either x ≥ y ≥ z or x < y < z.
In the first case, (x′, y′, z′) = (x, y, z). Without loss of generality, A +

pB + p2C = 0, with A = x− i, B = y − j, C = z − k. Noting that

|A− C| = |(x− z)− (i− k)|
≤ max(p, 2p− 3) ≤ 2p− 2,

|B − C| ≤ p− 1,

it follows that

|(1 + p+ p2)C| = |(A− C) + p(B − C)| ≤ p2 + p− 2.

Thus C = 0, and A+ pB = 0 implies

|(1 + p)B| = |A−B| ≤ p

and hence B = A = 0. So, if x ≥ y ≥ z, (x′, y′, z′) = (i, j, k).
In the second case, (x′, y′, z′) = (z, y, x). Letting A = x − (i − p − 1),

B = y − (j + 1), C = z − (k + p), note that

|C −A| ≤ 2p− 2, |C −B| ≤ p− 1,

so that again C = 0. Also, |B − A| ≤ p once more, so that A = B = 0 and
(x′, y′, z′) = (k + p, j + 1, i− p− 1). �

Proof of Prop. 7.3. First note that, for λ a restricted weight,

R(JH(W (λ)))

consists of F = R(F (λ)) and, if the highest weight of F lies in the lower
alcove, also rF .

If ρ|Ip ∼
(

ωi

ωj

ωk

)
, without loss of generality, i ≥ j ≥ k, i− k ≤ p− 1.

Now combine the above observation with the lemma and thm. 5.1.

If ρ|Ip ∼
(

ωm
2

ωpm
2

ωi

)
, we can write m ≡ j + pk (mod p2 − 1) with

i ≥ j > k, i−k ≤ p−1 (replacing m with mp if necessary). The argument is
only slightly more complicated than the previous one. Note on the one hand
that the last two triples in the lemma, part (ii) do not contribute to A (e. g.,
for (i+p−1, j, k) to occur we need i = j in which case F (i+p−3, j−1, k)reg =
F (i− 2, j − 1, k)reg). On the other hand, of the remaining six triples in the
lemma, only the fourth through the sixth can fail to be restricted. In each
case the failure is caused by two consecutive coordinates differing by p. But
this happens, in each instance, if and only if the corresponding Weyl module
in thm. 5.1 vanishes, so we are done.

If ρ|Ip ∼
( ωm

3

ωpm
3

ωp2m
3

)
, assume first that there are i > j ≥ k, i− k ≤ p

such that m ≡ i+pj+p2k (mod p3−1) (up to replacing m by mp or mp2).
We know from the previous case that no problem arises if two consecutive
coordinates in a triple differ by p. But this time, the fourth through sixth
triple of the lemma can fail to be restricted by having their second and third
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coordinate differ by p+1. This happens, respectively, when i = k+p, j = k,
i = j+1. Using the cyclic symmetry exploited in the lemma, we may assume
without loss of generality that i = k+ p and i 6= j+1 (because not all three
equalities can hold simultaneously).

Observe first that (i, k + 1, j − p) from the lemma fails to be restricted
iff j − k ≤ 1 iff W (j + p − 2, k + p, i) = 0 in thm. 5.1 (by (4.3)). The only
other triple which can (and does) have this coordinate difference of p+ 1 is
(j + p, i, k − 1). The corresponding Weyl module in thm. 5.1 equals

W (k + p− 2, i, j + 1) = −W (i− 1, k + p− 1, j + 1),

which cancels the second irreducible constituent ofW (j+p−1, i−1, k+1). It
remains to check that the loss of this constituent does not affectWreg,conj(ρ).
Indeed, just note that

R(F (i− 1, k + p− 1, j + 1)) = F (j + p− 2, k + p− 2, i− p)reg

= R(F (i+ p− 2, k + p− 1, j + 1)).

Finally, the remaining half of ρ of niveau 3 are duals of the above. It thus
suffices to show that

Wreg,conj(ρ
∨) = {F∨ ⊗ det−2 : F ∈Wreg,conj(ρ)}(7.1)

and

A(ρ∨) = {F∨ ⊗ det−2 : F ∈ A(ρ)},(7.2)

and that r and ∨ commute when applied to a regular Serre weight F (here ∨

denotes the dual). First note that F (a, b, c)∨ ∼= F (−c,−b,−a) if a ≥ b ≥ c
(consider the highest weight) which also implies the last claim. Equa-
tion (7.1) holds because the characteristic zero representations associated
to ρ and ρ∨ are dual to each other (for example by the character ta-
ble), hence have dual constituents after reduction mod p and R(F∨) =
R(F )∨ ⊗ det−2. On the other hand, in prop. 7.3 each (x′, y′, z′) can be
replaced by (−z′,−y′,−x′) when passing from ρ to its dual. This demon-
strates (7.2). �

Theorem 7.5. Suppose that ρ is as above.
(i) If ρ is of niveau 1, the regular Serre weights predicted in [ADP02] agree

exactly with the ones here.

(ii) If ρ is of niveau 2, we can write ρ|Ip ∼
(

ωm
2

ωpm
2

ωi

)
, with m ≡ j+pk

(mod p2 − 1) and i ≥ j > k, i − k ≤ p− 1. Then the regular Serre weights
predicted in [ADP02] are precisely the ones given by proposition 7.3 and
lemma 7.4(ii), with (j + p, i, k − 1) excluded from the list.

(iii) If ρ is of niveau 3, then (up to taking a dual) we can write ρ|Ip ∼( ωm
3

ωpm
3

ωp2m
3

)
with m ≡ i+pj+p2k (mod p3−1) and i > j ≥ k, i−k ≤ p.

Then the regular Serre weights predicted in [ADP02] are precisely the ones
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given by proposition 7.3 when the following weights are removed from the
list in lemma 7.4(iii): the last three and those among the first three of the
form (x′, y′, z′) with x′ − z′ = p and x′ − 1 > y′ > z′.

Proof. (i) This is obvious.
(ii) Note that according to [ADP02] we write m ≡ j + pk (note that 0 ≤

j−k ≤ p−1) andmp ≡ (k+p)+p(j−1) (note that 0 ≤ (k+p)−(j−1) ≤ p−1
unless j = k + 1, in which case mp cannot be so expressed). So the regular
weights predicted there are F (i−2, j−1, k)reg, F (j−2, i−1, k)reg, F (j−2, k−
1, i)reg and, if j 6= k+1, F (i−2, k+p−1, j−1)reg, F (k+p−2, i−1, j−1)reg,
F (k + p − 2, j − 2, i)reg together with the reflections rF for any F in this
list that is in the lower alcove. Since F (k + p − 2, i − 1, j − 1) lies in the
lower alcove, and applying r gives F (j − 2, i − 1, k)reg, the latter weight
can be omitted whenever j 6= k + 1. But if j = k + 1, these two weights
coincide. Also, j 6= k + 1 is precisely the condition for (i, k + 1, j − p) and
(k+p, j−1, i−p+1) to be restricted. Now put all this together and compare
with lemma 7.4(ii).

(iii) Using the cyclic symmetry employed in the proof of lemma 7.4(iii),
this is straightforward. �

Remark 7.6. Doud independently extended the conjecture of [ADP02] to
include the remaining weights in niveau 3 predicted here (see [Dou]).

8. Computational evidence for the conjecture

In [ADP02], Ash, Doud and Pollack verify the ADPS conjecture for some
irreducible, odd ρ that are tame at p and have small Artin conductor N(ρ).
In particular, they considered seven examples of such ρ of niveau 2, in which
case conjecture 6.6 predicts one further weight F than the ADPS conjecture.
There is one further such example in [Dou02], §3. Upon my request, Doud
and Pollack verified with their computer programs that there is indeed an
eigenclass in H3(Γ0(N), F (ǫ)) which appears to have attached Galois repre-
sentation ρ in the sense that (6.2) is satisfied for all l ≤ 47 (except in the
one case of level N = 144, which was too large for their programs).

To summarise, here is a table of the further weight confirmed in each case:

p level(s) N ρ|Ip weight

5 73, 83, 89, 151, 157

(
ω8
2

ω16
2

1

)
F (6, 3, 0)

7 67

(
ω12
2

ω36
2

ω3

)
F (13, 8, 3)

11 17

(
ω40
2

ω80
2

1

)
F (16, 9, 2)

The image of ρ in these cases is either S4 (N = 17, 67, 73), A5 (N = 89,
151, 157) or a suitable semi-direct product (Z/3× Z/3)⋊ S3 when N = 83
([ADP02], [Dou02]).
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9. Representations of GLn(Fp) in characteristic p

We keep the notations from section 4. Consider G = GLn/Fp
or G =

SLn/Fp
. Now define

ρ = (n− 1, n− 2, . . . , 1, 0) ∈ 1

2

∑

α∈R+

α+ (X(T )⊗Q)W .

As before, let T be the diagonal matrices and B the upper-triangular ma-
trices. Denote by ǫi ∈ X(T ) the character

(
t1

t2 . . .
tn

)
7� ti,

and we identify X(T ) with Zn, also writing (a1, a2, . . . , an) for
∑
aiǫi. Then

R = {ǫi − ǫj : i 6= j} and the simple roots are given by αi = ǫi − ǫi+1 for
1 ≤ i ≤ n − 1. The coroots (ǫi − ǫj)

∨ for i 6= j then sends t to a diagonal
matrix whose only entries are 1’s except for a t in the (i, i)-entry and a t−1

in the (j, j)-entry. We will identify W with Sn so that w(ǫi) = ǫw(i).
Consider the following collection of hyperplanes in X(T ) ⊗ R for n ∈ Z,

α ∈ R+:

{λ : 〈λ+ ρ, α∨〉 = np}.

Definition 9.1. An alcove is a connected component of the complement of
these hyperplanes.

Thus each alcove is determined by a collection of inequalities

nαp < 〈λ+ ρ, α∨〉 < (nα + 1)p ∀α ∈ R+

for some nα ∈ Z. In particular there is the lowest alcove

C0 : 0 < 〈λ+ ρ, α∨〉 < p ∀α ∈ R+.

In fact, this is an open n-simplex (times R if G = GLn/Fp
) determined by

the n+ 1 inequalities

0 < 〈λ+ ρ, α∨
i 〉 ∀i; 〈λ+ ρ, (ǫ1 − ǫn)

∨〉 < p.

The affine Weyl group Wp = ZR ⋊ W is defined with respect to the
natural action of W on ZR. It acts faithfully on X(T )⊗R as follows, using
the notation introduced in (4.1):

(ν, w) : λ 7� w · λ+ pν.

Often we will identify Wp with its image in the group of affine linear auto-
morphisms of X(T )⊗ R.

It is easy to check that Wp preserves the set of hyperplanes above, and
hence maps alcoves to alcoves. (This is also true for the translations pX(T ),
a fact that will be used in the sequel.) Moreover, it is an important (basic)
fact that an alcove is a fundamental domain for the Wp-action.



THE WEIGHT IN SERRE’S CONJECTURE FOR GLn 33

Definition 9.2. An alcove C is restricted if it is contained in

(9.1) Ares = {λ : 0 < 〈λ+ ρ, α∨
i 〉 < p ∀i}.

An alcove C is dominant if it is contained in

{λ : 0 < 〈λ+ ρ, α∨
i 〉 ∀i}.

Note that Ares compares with the restricted region (def. 4.2) as follows:

X(T ) ∩Ares ⊂ X1(T ) ⊂ X(T ) ∩ Āres.

Also, it is clear from the definition that Āres is a union of closures of alcoves.

∗ ∗ ∗
Let us now describe the relation between the representation theory for

GLn and SLn. For the remainder of this section, G = GLn/Fp
and its

derived group G′ = SLn/Fp
. Let T1 = T ∩ G′ be the subgroup of diagonal

matrices in G′. Then the restriction map X(T ) � X(T1) is surjective and
has kernel X0(T ). Every irreducible G-module yields, by restriction to G′,
an irreducible G′-module (see [Jan03], II.2.10(2)). Thus by thm. 4.6 every
irreducible G′-module arises by restriction from an irreducible G-module.
Also, two irreducible G-modules F (µ1), F (µ2) restrict to isomorphic G′-
modules if and only if µ1 − µ2 ∈ X0(T ).

We can identify root systems, Weyl groups and affine Weyl groups of G,
G′. Then X(T ) � X(T1) is equivariant for the actions of W , Wp. Also,
X(T ) ⊗ R � X(T1) ⊗ R projects alcoves of G to alcoves G′ and induces a
bijection between them.

∗ ∗ ∗
For G = GL4/Fp

(equivalently, for G′ = SL4/Fp
), we will need an explicit

list of the following dominant alcoves, consisting of all (a, b, c, d)−ρ ∈ X(T )⊗
R satisfying respectively:

C0 : 0 < a− b, b− c, c− d; a− d < p,

C1 : 0 < b− c; p < a− d; a− c, b− d < p,

C2 : 0 < c− d; p < a− c; a− b, b− d < p,

C3 : 0 < a− b; p < b− d; c− d, a− c < p,

C4 : p < a− c, b− d; b− c < p; a− d < 2p,

C5 : 2p < a− d; a− b, b− c, c− d < p,

C0′ : 0 < b− c, c− d; p < a− b; a− d < 2p,

C0′′ : 0 < a− b, b− c; p < c− d; a− d < 2p.

Ci will also be called alcove i. As C0 is the lowest alcove, the notation is
compatible with the above.

The first six alcoves in this list are all the restricted ones. In general there
is a partial ordering of weights and of alcoves, denoted by ↑ (see [Jan03],
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0′′

0

2 3

1

4

5

0′

Figure 9.1. The ↑-relation for certain alcoves of GL4.

§II.6.4, §II.6.5). In particular,

λ ↑ µ⇒ λ ≤ µ and λ ∈Wp · µ
and if λ ∈ C, µ ∈ C ′ (two alcoves), then

λ ↑ µ ⇐⇒ C ↑ C ′.

We will say that alcove C lies below alcove C ′ and C ′ above C if C ↑ C ′. The
↑-ordering on the above eight alcoves of GL4 is visualised in figure 9.1: the
partial order is generated by i ↑ j whenever alcoves i and j are connected by
a line and j lies above i. In fact, alcoves 0′, 0′′ are the only non-restricted,
dominant alcoves lying below a restricted alcove.

Proposition 9.3 ([Jan74]). Suppose that λ0 lies in alcove 0 and for each
alcove i, denote by λi the unique Wp-translate of λ0 in alcove i. Then in the
Grothendieck group of G-modules,

W (λ0) = F (λ0),

W (λ1) = F (λ1) + F (λ0),

W (λ2) = F (λ2) + F (λ1),

W (λ3) = F (λ3) + F (λ1),

W (λ4) = F (λ4) + F (λ3) + F (λ2) + F (λ1) + F (λ0),

W (λ5) = F (λ5) + F (λ0′) + F (λ0′′) + F (λ4)

+ F (λ3) + F (λ2) + F (λ1).

Remark 9.4. Note that it is a general phenomenon, called the “linkage
principle” that all constituents F (ν) of W (µ) satisfy ν ↑ µ. That the mul-
tiplicities are independent of p for (p not too small) is by now understood
to some extent (there is a general conjecture due to Lusztig on these, which
was proved for p≫ 0 using quantum groups; see [Jan03], §8.22 ).
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If p > 3 it follows from results of Jantzen how all W (µ) with µ lying on
the boundary of a restricted alcove decompose (see [Jan03] prop. II.7.11 and
lemma II.7.15). For p ≤ 3, when alcoves are devoid of weights, the decom-
position formulas were shown to be compatible with the ones for general p
in [Jan74].

It will also be useful to write down explicitly certain elements of the affine
Weyl group. Let us denote by rij the unique element ofWp mapping alcove i
to alcove j. It is easy to check that:

r01 : λ 7� (1 4) · λ+ p(1, 0, 0,−1),

r13 = r24 = r0′5 : λ 7� (2 4) · λ+ p(0, 1, 0,−1),

r12 = r34 = r0′′5 : λ 7� (1 3) · λ+ p(1, 0,−1, 0),

r45 : λ 7� (1 4) · λ+ p(2, 0, 0,−2).

(9.2)

Moreover all of these are reflections.

10. Decomposition of GLn(Fp)-representations

We keep the notation from last section; in particular, G = GLn/Fp
and

G′ = SLn/Fp
. In either G or G′, let w0 denote the longest Weyl group

element: it is the unique element sending positive roots to negative roots.
Concretely, w0(i) = n+ 1− i.

Consider for now only G′. As G′ is semisimple, there is a fundamental
weight ωα ∈ X(T1) for each simple root α. It is determined by 〈ωα, β

∨〉 =
δαβ for all simple roots α, β. (Note that ωαi = ǫ1 + · · · + ǫi.) Hence,
Ares, defined in (9.1), is a fundamental domain for the translation action of
pX(T1) on X(T1) ⊗ R. Thus, for any σ ∈ W there is a unique ρσ ∈ X(T1)
such that σ · C0 + pρσ is a restricted alcove. A simple lemma shows that

(10.1) ρσ =
∑

α simple
σ−1(α)<0

ωα

([Jan77], lemma 1). Also let εσ = σ−1ρσ and define

W1 = {σ ∈W : σ · C0 + pρσ = C0}.

W acts on the set of alcoves modulo translations by elements of pX(T1) (this
set is in natural bijection with the set of restricted alcoves). The stabiliser
of C0 is W1, and we see that the number of restricted alcoves is (W : W1).
It is not hard to see that W1 is generated by (1 2 . . . n) (with the notations
of section 9), so that there are (n − 1)! restricted alcoves. (More generally,
for a root system of a simply connected group, W1 is isomorphic to the root
lattice modulo the weight lattice; see [Jan77], lemmas 3 and 2.)

Now consider again G. For each simple root α, choose a lift ω′
α ∈ X(T )

of ωα, and define ρ′σ by (10.1) with ωα replaced by ω′
α. Let ε

′
σ = σ−1ρ′σ and
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let (compatibly with notation of section 4),

ρ′ = ρ′w0
=

∑

α simple

ω′
α ∈ 1

2

∑

α∈R+

α+ (X(T )⊗Q)W .

It is known, due to a theorem of Hulsurkar, that the matrix

(det(τ) chW (−ε′w0σ + ε′τ − ρ′))σ,τ∈W

with entries in Z[X(T )]W is upper triangular with respect to some ordering
of W (not the Bruhat ordering!). It is easy to see that its diagonal entries
are invertible, as the highest weight of the Weyl module is in X0(T ) if σ = τ .
Denote by (γ′σ,τ )σ,τ∈W the inverse matrix. It depends on the choice of the
ω′
α. By restriction to X(T1) (or by the analogous definition), we also get
γσ,τ ∈ Z[X(T1)]

W .
Not very much seems to be known about the γ′σ,τ ; for n ≤ 3 this matrix is

diagonal, but this is no longer true when n = 4 (see the proof of lemma 12.11
below).

Let F : G � G be the (absolute) Frobenius morphism, and also denote
by F its base change to GFp

. We will now use the language of classical

algebraic geometry for varieties over Fp, as is common in the representation
theory of algebraic groups. For every F -stable maximal torus T ′ ⊂ GFp

and every character θ : (T ′)F � Q
×
p , Deligne and Lusztig define a virtual

representation Rθ
T ′ (see [DL76]). These can also be parametrised by elements

of W × X(T )(see [Jan81], §3.1 or [Jan05], §4.1): Suppose that (w, µ) in
W ×X(T ). Let nw ∈ N(TFp

) be a representative of w ∈ W = N(TFp
)/TFp

.

By Lang’s theorem it is possible to find a gw ∈ GFp
such that g−1

w ·F (gw) =
nw. Then the maximal torus Tw = gwTFp

g−1
w is F -stable. Recalling that ˜

denotes the Teichmüller lift, we let

θµ : TF
w � Q

×
p

tw 7� µ̃(g−1
w twgw).

With these notations,

Rw(µ) = (−1)n−N(w)R
θµ
Tw
,

where N(w) is the number of orbits of w in its action on {1, 2, . . . , n} (which
also equals the Fp-rank of Tw). This virtual representation has the property
that its character at 1 is positive. It is moreover independent of the choice
of gw and nw.

With the natural action of W on X(T ) form the semi-direct product
X(T )⋊W : that is, (ν1, σ1)(ν2, σ2) = (ν1+σ1ν2, σ1σ2). The groupX(T )⋊W
acts on W ×X(T ) as follows:

(ν,σ)(w, µ) = (σwσ−1, σµ+ (p− σwσ−1)ν).
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We will also use the notation (w, µ) ∼ (w′, µ′) if these elements are conjugate
under the above action. Then

〈Rw(µ), Rw′(µ′)〉 = #{(ν, σ) ∈ X(T )⋊W : (ν,σ)(w, µ) = (w′, µ′)}.
(see [Jan05], §A.7–9 for the deduction from Deligne-Lusztig’s results). In
particular,

(10.2)
Rw(µ) ∼= Rw′(µ′) if (w, µ) ∼ (w′, µ′),

〈Rw(µ), Rw′(µ′)〉 = 0 otherwise.

The following two lemmas will be useful.

Lemma 10.1. Suppose w = (1 2 . . . n), µ = (i1, . . . , in) and i1 + pi2 + · · ·+
pn−1in is not divisible by pn−1

pd−1
for all d|n, 0 < d 6= n. Then

Rw(µ) ∼= Θ(χi1+pi2+···+pn−1in
n , . . . ).

(This lemma thus explicitly identifies all cuspidal representations ofGLn(Fp)
as Deligne-Lusztig representations.)

Proof. To see this, note that Tw is not contained in any proper F -stable
parabolic subgroup. Also, no non-trivial element of (N(Tw)/Tw)

F (a cyclic
group of order n) fixes θµ, because of the condition imposed on µ. Thm. 8.3
of [DL76] then shows that Rw(µ) is cuspidal. Finally, cor. 7.2 of [DL76]
allows the computation of the character value of this representation on(

α . . .
αpn−1

)
for all α ∈ F×

pn such that Fp(α) = Fpn , and a comparison

with the definition of Θ in (2.1) completes the proof of the lemma. �

Lemma 10.2. Suppose there is a partition λ : n1 ≥ · · · ≥ nr > 0 of n such
that

w = (1 2 · · · n1)(n1 + 1 · · · n1 + n2) · · · .
Write µ = (a1, . . . , an). Then

Rw(µ) ∼= Ind
GLn(Fp)
Pλ

( r⊗

i=1

R(1 2 ··· ni)(µi)

)
,

where Pλ is the standard “parabolic” subgroup of type λ and µi is the weight
for GLni given by

µi = (an1+···+ni−1+1, . . . , an1+···+ni).

Proof. This follows from prop. 8.2 of [DL76] together with the Künneth
formula. �

Theorem 10.3 ([Jan05], Cor. 4.8). In the Grothendieck group of GLn(Fp)-
modules,

Rw(µ) =
∑

σ,τ∈W

γ′σ,τW (σ(µ− wε′w0τ ) + pρ′σ − ρ′).

This theorem holds, in fact, for G as in theorem 4.6.
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Remark 10.4. Jantzen had in fact proved the analogue of this theorem
in the case of simply-connected semisimple groups, defined and split over a
finite field (in particular for SLn/Fp

); this is the main theorem of [Jan05].

In fact, there is a unique lifting, modulo (p−1)X0(T ), of each highest weight

in X(T1) occurring in Jantzen’s formula for Rw(µ) over SLn(Fp) to X(T )
which is, for fixed w, a polynomial over Z in p and the coordinates of µ.
(For: the central character of any Weyl module that occurs has to agree with

that of Rw(µ); the lifts of ν1 ∈ X(T1) to ν ∈ X(T ) with a fixed central

character differ by an element in p−1
n X0(T ). In particular, the choice of lift

is even forced in case gcd(p− 1, n) = 1.) The content of the above theorem
is that when all highest weights in Jantzen’s formula for SLn are lifted to
GLn in this natural way, the correct decomposition formula is obtained.

Let us analyse the statement of Jantzen’s formula a little. Notice first
that a typical highest weight appearing, σ(µ−wε′w0τ ) + pρ′σ − ρ′, is a small
perturbation of σ ·µ+pρ′σ. If µ lies in alcove C, the latter weight is contained
in alcove σ ·C+pρ′σ. This alcove is automatically restricted if C = C0, which
can always be achieved, up to a small error, by varying (w, µ) in its orbit
(see lemma 12.1(ii)).

To use Jantzen’s formula to find the complete decomposition of Rw(µ)
into irreducible GLn(Fp)-modules, we use Brauer’s formula (prop. 4.4) to
express each γ′σ,τW (λ) as a linear combination of Weyl modules, thus

Rw(µ) =
∑

ν

aνW (ν), some aν ∈ Z.

There is a small neighbourhood of the restricted region which contains all
ν occurring in this expression. Any non-dominant W (ν) can be converted
into a dominant one using (4.3). Next, we decompose each W (ν) as GLn-
module. This is a difficult problem which has not been solved in general
(see however [Jan03], II.8.22).

For this, let us assume for simplicity that n = 3 or 4 and that ν lies in
one of the restricted alcoves (this will be true if µ is sufficiently deep inside
C0). Then we can use prop. 4.9 or prop. 9.3.

Finally it can happen (for n ≥ 4) that a constituent of a restricted W (ν)
lies outside the restricted region, e.g., for n = 4 a Weyl module in alcove 5
has constituents in alcoves 0′, 0′′ (see prop. 9.3). To decompose these over
GLn(Fp), use the Steinberg tensor product theorem, thm. 4.5, noting that
the Frobenius endomorphism is trivial on GLn(Fp). For example, if ν and
ν + ǫi (1 ≤ i ≤ 4) all lie in alcove 0′, then ν ′ = ν − pǫ1 and ν ′ + ǫi lie in
alcove 0 and

F (ν) = F (ν ′ + pǫ1) = F (ν ′)⊗ F (ǫ1)

=W (ν ′)⊗
4∑

i=1

ǫi

= F (ν ′ + ǫ1) + F (ν ′ + ǫ2) + F (ν ′ + ǫ3) + F (ν ′ + ǫ4).

(10.3)
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We used Brauer’s formula (prop. 4.4), the fact that W (λ) = F (λ) if λ is in
alcove 0, and that chW (ǫ1) =

∑
ǫi.

11. The conjecture for GLn

For (w, µ) ∈ W × X(T ), µ =
∑
aiǫi, define ρ(w, µ) to be the following

tame n-dimensional Galois representation of Ip which extends to Gp. Let I
be a set of representatives for the orbits with respect to the action of (the
powers of) w on {1, 2, . . . , n}. For each 1 ≤ k ≤ n, let nk be the size of the
orbit of k. Then

(11.1) ρ(w, µ) =
⊕

k∈I

⊕

imodnk

ω

∑
j modnk

(a
wj(k)

pi+j)
nk .

It is easy to check that ρ(w, µ) only depends on the orbit of (w, µ).

Definition 11.1. (w, µ) ∈W×X(T ) is said to be good if for all 1 ≤ k ≤ n,

∑

jmodnk

awj(k)p
j 6≡ 0 (mod

pnk − 1

pd − 1
)

for all d|nk, d 6= nk.

Intuitively this means that we cannot express ρ(w, µ) in terms of tame
fundamental characters of level smaller than nk in (11.1). It is easy to check
that this property only depends on the orbit of (w, µ).

For example, if n = 4, w = (1 2)(3 4), µ = (a, b, c, d) then

ρ(w, µ) =

(
ωa+pb
2

∗∗
ωc+pd
2

∗∗

)
,

where “∗∗” stands for the p-th power of the previous diagonal matrix entry.
Also, (w, µ) is good if and only if p+1 does not divide either of a− b, c− d.

Definition 11.2. A representation V of GLn(Fp) is said to be a parabolic
induction if it is of the form

(11.2) V ∼= Ind
GLn(Fp)
P (σ1 ⊗ . . .⊗ σr)

where P is a standard “parabolic” subgroup of type (d1, . . . , dr) and σi is a
cuspidal representation of GLdi(Fp).

That is,
∑
di = n, P consists of matrices with di×di square blocks along

the diagonal (in that order) with arbitrary entries above the blocks and
zeroes below, and σi is considered as representation of P via projection to
the i-th square block.

We have the following bijections:
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−−−−−−−−−−−−�

R−(−)

−−−−−−−−−−−�

ρ(−,−)

{
good X(T )⋊W -orbits

on W ×X(T )

}

{
tame τ : Ip � GLn(Fp)

that extend to Gp

}
/ ∼=

{
parabolic inductions

of GLn(Fp) over Qp

}
/ ∼=

The map on the right is injective by (10.2) and surjective by (2.1) and
lemmas 10.1, 10.2. As for the other map, note first that a parabolic induction
V arises from a unique set of {σi} as in (11.2), and the order of the σi is
irrelevant (this follows e.g. from [Bum97], ex. 4.1.19). Thus domain and
codomain of the map have the same cardinality, as both are in bijection with

sets of primitive characters {F×
i � Q

×
p }, Fi a finite field of characteristic

p and
∑

i[Fi : Fp] = n (this uses (2.1)). That the map is a bijection now
follows from (2.1) and lemmas 10.1, 10.2.

Suppose ρ : GQ � GLn(Fp) is continuous, irreducible, and tamely rami-
fied at p. We also require it to be odd : that is, either p = 2 or |n+−n−| ≤ 1
where n+ (resp. n−) is the number of eigenvalues 1 (resp. −1) of a complex
conjugation in GQ.

Definition 11.3. As ρ|Ip is tame, we can write ρ|Ip ∼= ρ(w, µ) for a good
(w, µ) (unique up to X(T )⋊W -action). Then let

V (ρ|Ip) = Rw(µ)

be the parabolic induction defined above.

We define R both as operator on weights and as an operation on Serre
weights.

Definition 11.4. If µ ∈ X(T ) define

R(µ) = w0 · µ− pw0ρ.

In particular, R preserves alcoves and sends restricted alcoves to restricted
alcoves. Explicitly,

R(a1, . . . , an) = (an + (n− 1)(p− 2), . . . , a2 + (p− 2), a1).

With the obvious generalisation of Freg from (6.1) define for µ ∈ X1(T ),

R(F (µ)) = F (R(µ))reg.

The notions of ρ being attached to an eigenclass in He(Γ0(N),M) for a
GLn(Fp)-moduleM and of the predicted weight setW (ρ) will be the obvious
generalisations from section 6.
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Conjecture 11.5. Suppose ρ : GQ � GLn(Fp) is continuous, odd, irre-
ducible, and tamely ramified at p. Then

W (ρ) ∩Wreg = R(JH(V (ρ|Ip))).

In case F ∈ R(JH(V (ρ|Ip))), it will be convenient to say both that ρ|Ip
predicts F and that F predicts ρ|Ip .

12. Analysing the conjecture for GL4

Lemma 12.1.

(i) Every orbit on W × X(T ) contains an element (w, µ) with µ re-
stricted.

(ii) Every orbit on W ×X(T ) contains an element (w, µ) with µ close
to the lowest alcove. That is, there is a δ > 0, independent of p,
such that µ can be chosen with

−δ < 〈µ+ ρ, α∨〉 < p+ δ ∀α ∈ R+.

Proof. Suppose (w, µ) ∈ W ×X(T ) and µ =
∑
aiǫi. Its span is span(µ) =

maxi,j |ai − aj |. Suppose that span(µ) ≥ p. Let S = {i : ai ≥ minj aj + p},
ν = −∑i∈S ǫi. Then (ν,1)(w, µ) = (w, µ + (p − w)ν). By definition of S,
span(µ + pν) = span(µ) − p, hence span(µ + (p − w)ν) ≤ span(µ) − p + 1.
Thus, using the (X(T )⋊W )-action, we can always achieve span(µ) < p.
Finally, using the action of (0, w) ∈ X(T )⋊W , we can also assume that
a1 ≥ · · · ≥ an. Moreover, a1 − an ≤ p − 1. Thus on the one hand µ is
restricted, which proves (i). On the other hand, (ii) follows from

1 ≤ 〈µ+ ρ, α∨〉 ≤ p+ n− 2 ∀α ∈ R+. �

Definition 12.2. µ ∈ X(T ) (or (w, µ) ∈ W ×X(T )) is said to lie δ-deep
in a restricted alcove C for some δ > 0 if

(12.1) nαp+ δ < 〈µ+ ρ, α∨〉 < (nα + 1)p− δ ∀α ∈ R+

where C is the alcove determined by putting δ = 0 in these inequalities.

A statement in which p varies is said to be true for all µ sufficiently deep in
some alcove C if there is a δ > 0, independent of p, such that the statement
is true for all δ-deep µ ∈ C.

Lemma 12.3. Suppose that C, C ′ are restricted alcoves and σ ·C+pν = C ′

((ν, σ) ∈ X(T )⋊W ). Then if (w, µ) is sufficiently deep inside C, (ν,σ)(w, µ)
lies as deep inside C ′ as we like.

Proof. Recall that (ν,σ)(w, µ) = (w′, σµ + (p − w′)ν) with w′ = σwσ−1. By
making (w, µ) lie sufficiently deep inside C, we can certainly achieve that
σ ·µ+pν = σ(µ+ρ)−ρ+pν lies as deep inside C ′ as we like. It thus suffices
to consider the difference of this weight and σµ + (p − w′)ν. But clearly,
|〈w′ν + σρ− ρ, α∨〉| is bounded for all α ∈ R+, independent of p. �
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Lemma 12.4. Suppose (w, µ) lies sufficiently deep in a restricted alcove. If
(ν,1)(w, µ) = (w′, µ′) is restricted, then ν ∈ X0(T ). In particular, F (µ) ∼=
F (µ′) as representations of GLn(Fp).

Proof. Take any δ > n− 1 and assume that

δ < 〈µ+ ρ, α∨
i 〉 < p− δ ∀i

(i.e., we don’t even assume that µ necessarily lies in an alcove, just that it
lies sufficiently deep inside the restricted region). Suppose now that (w′, µ′)
is restricted:

0 < 〈µ+ (p− w)ν + ρ, α∨
i 〉 ≤ p ∀i.

Then |〈(p− w)ν, α∨
i 〉| < p− δ for all i. Writing ν =

∑
biǫi, this yields

|p(bi − bi+1)− (bw−1(i) − bw−1(i+1))| < p− δ ∀i.
Letm = maxi |bi−bi+1| and assume the maximum is achieved when i = j.

Then we find

(p− n+ 1)m ≤ |〈(p− w)ν, α∨
j 〉| < p− δ;

so by our choice of δ, m = 0 and ν ∈ X0(T ).
The last part follows by thm. 4.6 as W acts trivially on X0(T ). �

For µ =
∑
aiǫi, define its norm to be ‖µ‖ =

∑ |ai|. Also let ‖(w, µ)‖ =
‖µ‖.
Lemma 12.5. Given δ > 0 and suppose that (w, µ) lies sufficiently deep

in a restricted alcove. Then (ν,σ)(w, µ) = (w′, µ′) with ‖µ − µ′‖ < δ implies
(ν, σ) = (0, 1). In particular, #StabX(T )⋊W (w, µ) = 1.

Proof. Without loss of generality, we may assume that µ ∈ C0. For suppose
C is the alcove containing µ and that σ0 · C + pν0 = C0. Then

(ν0,σ0)(w, µ)
can be assumed to lie in the lowest alcove (by lemma 12.3). Also,

‖(ν0,σ0)(w, µ)− (ν0,σ0)(w′, µ′)‖ = ‖σ0(µ− µ′)− σ0(w − w′)σ−1
0 ν0‖

< δ +max
w,w′

‖σ0(w − w′)σ−1
0 ν0‖

is bounded independent of p. So if we replace ((w, µ), (w′, µ′)) by ((ν0,σ0)(w, µ), (ν0,σ0)(w′, µ′))
we are reduced to the lowest alcove. Note that the new (ν, σ) is a conjugate
of the original one.

Now suppose µ ∈ C0. Letting w
′ = σwσ−1, we have

(12.2) (p− w′)ν = µ′ − σµ.

Write µ′−σµ =
∑
ciǫi. Given δ′ > 1. If µ lies sufficiently deep in the lowest

alcove,
|ci| ≤ δ + |(µ− σµ)i| < p− δ′

for all i. Suppose that ν =
∑
biǫi. Let m = maxi |bi| and suppose m = |bj |.

Then, looking at the j-th coordinate in (12.2) shows that

(p− 1)m ≤ |pbj − b(w′)−1(j)| < p− δ′.
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Hence m = 0, ν = 0, µ′ = σµ. This implies σ = 1 if µ lies sufficiently deep
in the lowest alcove (even if µ lies just one layer inside the lowest alcove, it
will be inside the (open) dominant Weyl chamber and thus not fixed by any
element of the Weyl group). �

Definition 12.6. (w, µ) ∈W ×X(T ) is special if µ ∈ C, a restricted alcove
and for all (ν, σ) ∈ X(T )⋊W ,

(ν,σ)(w, µ) = (w′, µ′) with µ′ restricted

⇔ σ · C + pν is a restricted alcove.

Moreover, in each such case we demand that (w′, µ′) ∈ σ · C + pν.

It is easy to check that this property only depends on the orbit of (w, µ)
(in the sense that it doesn’t matter for which (w′, µ′) in the orbit with µ′

restricted the above condition is checked; by lemma 12.1 there always is such
a (w′, µ′)). Note that for each σ ∈W there is a unique νσ ∈ X(T ) (modulo
X0(T )) such that σ · C + pνσ is a restricted alcove (see p. 35).

Lemma 12.7.

(i) If (w, µ) lies sufficiently deep in a restricted alcove then it is good.
(ii) If (w, µ) lies sufficiently deep in a restricted alcove then it is special.
(iii) If (w, µ) lies sufficiently deep in a restricted alcove then Rw(µ) is

irreducible.
(iv) If µ lies sufficiently deep in a restricted alcove then F (µ− ρ) is not

predicted by any non-special or non-good ρ(w, µ).

Proof. (i) By lemma 12.3 we may assume without loss of generality that
(w, µ) is in the lowest alcove. If µ =

∑
aiǫi, note that

∑r
j=1 aij ǫj is in the

lowest alcove for GLr whenever 1 ≤ i1 < · · · < ir ≤ n. We are thus reduced
to the case when w is an n-cycle. We need to show that if µ is sufficiently
deep in the lowest alcove,

(12.3)
n−1∑

i=0

awi(1)p
i 6≡ 0 (mod

pn − 1

pd − 1
)

for all d|n, d 6= n. Fix n = de with d < n. Using

pn − 1

pd − 1
=

e−1∑

j=0

pdj ,

equation (12.3) becomes

(12.4)

d(e−1)−1∑

i=0

(ci − cd(e−1)+d{ i
d
})p

i 6≡ 0 (mod
e−1∑

j=0

pdj),

where ci = awi(1) and {x} ∈ [0, 1) denotes the fractional part of a real

number x. As µ is in the lowest alcove, |ci − cj | ≤ p− 1 for all i, j. So if µ
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lies sufficiently deep in the lowest alcove then ci 6= cj for all i 6= j and (12.4)
is automatic as (p− 1)(1 + p+ · · ·+ pi) < pi+1 for all i.

(ii) Suppose µ lies in alcove C. For each σ ∈ W , fix a choice of νσ ∈
X(T ) as above. By lemma 12.3 we can certainly achieve that if µ lies

sufficiently deep in C, (νσ ,σ)(w, µ) lies as deep as we wish in the restricted

alcove σ ·C + pνσ for all σ. Moreover, suppose that (ν,σ)(w, µ) is restricted.
Applying lemma 12.4 to

(νσ ,σ)(w, µ) = (νσ−ν,1)
(
(ν,σ)(w, µ)

)
,

we see that νσ − ν ∈ X0(T ). Thus σ · C + pν is a restricted alcove, as
required.

(iii) By (i), we may assume (w, µ) to be good. By lemma 12.5 we may
assume that #StabX(T )⋊W (w, µ) = 1. Thus the claim follows by (10.2).
(Alternatively, by [Bum97], ex. 4.1.19, for example, a parabolic induction is
irreducible if and only if it is induced from a collection of distinct cuspidal
representations. This easily leads to a more elementary proof.)

(iv) A weight µ is said to lie δ-close to an alcove boundary for some δ > 0
if (12.1) does not hold for any alcove (not necessarily restricted). If moreover

nαp− δ < 〈µ+ ρ, α∨〉 < (nα + 1)p+ δ ∀α ∈ R+,

where C is the alcove determined by putting δ = 0, then µ is said to lie
δ-close to the boundary of C.

It suffices to show that all constituents of Rw(µ) for (w, µ) non-special or
non-good can be made to lie δ-close to an alcove boundary for some δ > 0.
Note that it makes sense to talk about a simple module F of GLn(Fp) lying
in an alcove (or being δ-close to an alcove boundary) as F = F (ν) for a
restricted weight ν which is uniquely determined up to (p − 1)X0(T ) (see
thm. 4.6).

We may assume that µ satisfies the conclusion of lemma 12.1(ii). By
increasing δ if necessary, µ lies δ-close to the boundary of the lowest alcove
(otherwise it would be good/special by parts (i), (ii)). Now consider any

term in Jantzen’s formula for Rw(µ):

γ′σ,τW (σ(µ− wε′w0τ ) + pρ′σ − ρ′).

Note that

σ(µ− wε′w0τ ) + pρ′σ − ρ′ = (σ · µ+ pρ′σ)− (σ(ρ+ wε′w0τ ))

where the first term is δ-close to the boundary of the restricted alcove σ ·
C0 + pρ′σ, whereas the second term is bounded independent of p. Also, γ′σ,τ
is bounded independent of p. The result is a consequence of the following
facts:

◦ Brauer’s formula (prop. 4.4) for decomposing tensor products.
◦ Equation (4.3) for Weyl modules with non-dominant highest weights.
◦ All constituents of a Weyl module W (µ) (as GLn-representation)
are of the form F (ν) with ν related to µ by the affine Weyl group
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and lie in lower alcoves (see prop. 9.3 for n = 4 and µ restricted;
in general see [Jan03], II.6.13). Thus if µ is δ-close to an alcove
boundary, then so is any of the ν.

◦ Steinberg’s tensor product formula, prop. 4.5, for decomposing a
non-restricted F (ν) over GLn(Fp).

(Compare with the discussion after thm. 10.3.) �

Definition 12.8.

(i) Suppose that (w, µ) is good and special. Using the X(T )⋊W -
action, we may assume that µ is in the lowest alcove. Then the
diagonal predictions for ρ(w, µ) is the set of all

R(γ′σ,σF (σ(µ− wε′w0σ) + pρ′σ − ρ′))

∼= R(F (σ(µ− wε′w0σ) + (p− 1)ρ′ + pw0ρ
′
w0σ)).

(ii) Suppose that F is a regular Serre weight which is not predicted by
any non-special or non-good ρ(w, µ) (this can be achieved by requir-
ing F to lie sufficiently deep in a restricted alcove; see lemma 12.7 (iv)).
Then the diagonal predictions for F is the set of all good, special
ρ(w, µ) such that F is a diagonal prediction of ρ(w, µ).

Remark 12.9. (i) We need to check in part (i) of the definition that the set
of diagonal predictions is independent of the choice of (X(T )⋊W )-translate
lying in the lowest alcove. This is an exercise using rk. 4.3 and (12.5).

(ii) The reason for the terminology is as follows. Given ρ(w, µ) as in
part (i) of the lemma, with µ lying in the lowest alcove. Then the Jantzen
formula (thm. 10.3 ) contains the following “diagonal” terms (i.e., σ = τ):

∑

σ∈W

γ′σ,σW (σ(µ− wε′w0σ) + pρ′σ − ρ′).

These Weyl modules will decompose further, and the off-diagonal terms
might cancel some of the resulting simple modules. But in generic cases,
at least all γ′σ,σF (σ(µ − wε′w0σ) + pρ′σ − ρ′) will survive as constituents of

Rw(µ); thus applying R to this collection will give a subset of the predicted
weights for ρ(w, µ).

Proposition 12.10. Suppose that (w, µ) is good and special (e.g., µ is suf-
ficiently deep in a restricted alcove). Then the set of diagonal predictions
for ρ(w, µ) is

{F (µ′ − ρ) : (w′, µ′) ∼ (w, µ), µ′ restricted }.

There are #W = n! diagonal predictions, #W1 = n in each restricted alcove.
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Proof. As (w, µ) is special, we may assume without loss of generality that
it lies in the lowest alcove. For σ ∈W consider

R(F (σ(µ− wε′w0σ) + (p− 1)ρ′ + pw0ρ
′
w0σ))

= F (w0σ(µ− wε′w0σ) + (p− 1)w0ρ
′ + pρ′w0σ + (p− 2)ρ))

∼= F (w0σµ+ (p− w′)ρ′w0σ − ρ)

where w′ = w0σw(w0σ)
−1, using that w0ρ

′ + ρ ∈ X0(T ). Now note that

(ρ′w0σ
,w0σ)(w, µ) = (w′, w0σµ+ (p− w′)ρ′w0σ).

The first claim of the proposition follows by observing that λ 7� τ · λ + pν
sends C0 to a restricted alcove if and only if ν ≡ ρ′τ (mod X0(T )).

The proof of lemma 12.5 shows that #StabX(T )⋊W (w, µ) = 1 for all
special (w, µ). This implies the second claim. �

Lemma 12.11. Suppose that n = 4. If µ is sufficiently deep in a restricted
alcove, the off-diagonal elements in Jantzen’s formula are irrelevant in the
following sense: an irreducible representation of GLn(Fp) occurs in Rw(µ)
if and only if it occurs in one of the diagonal terms of Jantzen’s formula for
this representation.

Proof. For the reason discussed in remark 10.4, it will be enough to show this
result for SLn(Fp)-representations. Throughout this proof, ̟ will denote
an arbitrary element of W1.

The following formulae will be useful, which are easily verified from the
definition of ρσ (or see [Jan77], lemma 2).

(12.5)
ρσ̟ = σρ̟ + ρσ, εσ̟ = ε̟ +̟−1εσ,

γσ̟,τ̟ = γσ,τ
∀σ ∈W.

Note that γσ,σ = 1 for all σ ∈W . It will be necessary to know when γσ,τ 6= 0
for σ 6= τ . It can be checked (by hand) that the only such cases are given
by

γ̟,(1 2 4 3)̟ = −1, γ(1 4)̟,(1 2)(3 4)̟ = 1.

The corresponding off-diagonal terms in these cases are, respectively,

−W (̟(µ− wεw0(1 2 4 3)̟) + pρ̟ − ρ),

W ((1 4)̟(µ− wεw0(1 2)(3 4)̟) + pρ(1 4)̟ − ρ).

The corresponding highest weights are contained in alcove 0, respectively
alcove 1. By prop. 9.3, the first Weyl module is irreducible whereas the
second has another irreducible constituents in alcove 0. Using r01 ∈ Wp

from (9.2) and simplifying with the help of (12.5) these become, respectively,

−F (̟µ+ pρ̟ −̟w̟−1(ρ̟ + εw0(1 2 4 3))− ρ),(12.6a)

F ((1 4)̟(µ− wεw0(1 2)(3 4)̟) + pρ(1 4)̟ − ρ)(12.6b)

+F (̟µ+ pρ̟ −̟w̟−1(ρ̟ + εw0(1 2)(3 4))− ρ).(12.6c)
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To prove the proposition, it will in fact suffice to analyse the diagonal
terms in Jantzen’s formula whose highest weight is in alcove 5. Since C5 =
(2 4) · C0 + pρ(2 4), these terms are W (ν) with

ν = (2 4)̟(µ− wεw0(2 4)̟) + pρ(2 4)̟ − ρ.

By prop. 9.3 and using r0′5 from (9.2), the irreducible constituent ofW (ν)
in alcove 0′ has highest weight

(2 4) · ν + p(0, 1, 0,−1).

This constituent decomposes further over SL4(Fp) by Steinberg’s tensor
product theorem, yielding four irreducible constituents in alcove 0 (1 ≤ i ≤
4):

F ((2 4) · ν + p(−1, 1, 0,−1) + ǫi)

(see the discussion after thm. 10.3). Plugging in ν, using (12.5) and the fact
that ρ(2 4) = (1, 1, 0,−1), this becomes

(12.7) F (̟µ+ pρ̟ −̟w̟−1(ρ̟ + ε(1 4 3 2))− ρ+ ǫi).

Using instead the irreducible constituent of W (ν) in alcove 0′′ we get the
following constituents in alcove 0 instead (1 ≤ i ≤ 4):

(12.8) F (̟µ+ pρ̟ −̟w̟−1(ρ̟ + ε(1 2 3 4))− ρ− ǫi).

Finally we need to consider the constituent of W (ν) in alcove 1. Since
we can also write C5 = (1 2)(3 4) · C0 + pρ(1 2)(3 4), the diagonal terms in
alcove 5 are also given by Weyl modules with highest weights

ν ′ = (1 2)(3 4)̟(µ− wεw0(1 2)(3 4)̟) + pρ(1 2)(3 4)̟ − ρ.

(Replacing ̟ by (1 2 3 4)̟ with (1 2 3 4) ∈W1, we recover ν.) It can easily
be checked that the unique element of Wp sending alcove 5 to alcove 1 is
given by

ν ′ 7� (1 2 4 3) · ν ′ + p(1,−1, 1,−1).

Using that (1,−1, 1,−1) = ρ(1 4) − (1 4)ε(1 2)(3 4) and (12.5), the irreducible
constituent of W (ν ′) in alcove 1 is the representation in (12.6b).

To finish the proof of the proposition, notice that

ε(1 4 3 2) − ǫ2 = εw0(1 2)(3 4), ε(1 2 3 4) + ǫ3 = εw0(1 2)(3 4),

ε(1 4 3 2) − ǫ3 = εw0(1 2 4 3), ε(1 2 3 4) + ǫ2 = εw0(1 2 4 3).

and compare representations (12.7), (12.8) for the appropriate choice of i
with representations (12.6a), (12.6c). �
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When n = 4 and µ = (a, b, c, d), define

µ0 = (a, b, c, d),

µ1 = (a− p, b, c, d+ p),

µ2 = (a− p, b, c+ p, d),

µ3 = (a, b− p, c, d+ p),

µ4 = (a− p, b− p, c+ p, d+ p),

µ5 = (a− 2p, b, c, d+ 2p),

µ0′ = (a− 2p, b, c+ p, d+ p),

µ0′′ = (a− p, b− p, c, d+ 2p).

Proposition 12.12. Suppose that (w, µ) lies sufficiently deep in a restricted
alcove.

(i) The set of diagonal predictions for F (µ− ρ) is

{ρ(w, µ) : w ∈W}.
There are #W = n! diagonal predictions.

(ii) Suppose that n = 4. The set of predictions for F (µ− ρ) in alcove c
is

{ρ(w, µi) : w ∈W, i ↑ c}.
There are #W ·#{i : i ↑ c} predictions.

Remark 12.13. Note that the labelling of the µi (especially for i = 0′, 0′′)
is purely to simplify the statement of the proposition. It is unclear whether
even the number of the weights predicted in the generic case will behave in
the same way for n > 4.

As an example, let us consider only predictions of niveau 1 for n = 4.
Then for µ = (a, b, c, d) sufficiently deep in alcove 2, F (µ − ρ) predicts the
following tame, inertial Galois representations:(

ωa

ωb

ωc

ωd

)
,

(
ωa−1

ωb

ωc

ωd+1

)
,

(
ωa−1

ωb

ωc+1

ωd

)
.

Proof. (i) By lemma 12.7(iv), we may assume that F (µ−ρ) is not predicted
by any non-good or non-special ρ(w, µ). Then we are done immediately by
prop. 12.10 and lemma 12.5.

(ii) For any weight ν that lies in a restricted alcove define

M↑(ν) = {λ restricted : ν ↑ λ},
M↓(ν) = {λ restricted : λ ↑ ν}.

By abuse of notation, also set M↑(F (ν)) =M↑(ν), M↓(F (ν)) =M↓(ν).
Let F = F (µ − ρ). By lemma 12.7(iv) we may assume that F is not

predicted by any non-good or non-special ρ(w, µ). Consider νd = R−1(µ−ρ).
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If c 6= 5 (so that νd does not lie in the lowest alcove) we claim that the
set of predicted tame inertial representations for F is the set of diagonal
predictions for all F (ν), ν ∈ M↓(µ − ρ). By lemma 12.11, F will be a
predicted weight for some ρ(w, µ) if and only if Fd is a constituent of a Weyl

module appearing as diagonal term in Jantzen’s formula for Rw(µ).
Suppose F is predicted for ρ(w, µ) so, by assumption, ρ(w, µ) is good and

special. As νd does not lie in the lowest alcove, the highest weights of the
Weyl modules in the restricted region which contain F (νd) as constituent
are precisely M↑(νd) (see prop. 9.3). Take ν ∈ M↑(νd) such that W (ν) is

diagonal term in Jantzen’s formula for Rw(µ). Thus F (R(ν)) = R(F (ν))
is a diagonal prediction for ρ(w, µ), by definition, and note that R(ν) ∈
M↓(µ− ρ), as required. The converse follows by reversing the argument.

To find the predictions for F explicitly, we use the reflections inWp of (9.2)
to find M↓(µ− ρ) and then apply part (i). Let µ = (a, b, c, d).

If c = 0, everything is clear.
If c = 1, applying the reflection r01 to µ− ρ in alcove 1 we get

(d+ p, b, c, a− p)− ρ.

If c = 2, applying to µ− ρ in alcove 2 successively r12, r01, we get

(c+ p, b, a− p, d)− ρ, (d+ p, b, a− p, c)− ρ.

If c = 3, analogously we get

(a, d+ p, c, b− p)− ρ, (b, d+ p, c, a− p)− ρ.

If c = 4, we get respectively in alcoves 3, 2, 1, 0:

(c+ p, b, a− p, d)− ρ, (a, d+ p, c, b− p)− ρ,

(c+ p, d+ p, a− p, b− p), (b, d+ p, a− p, c)− ρ.

If c = 5 (so that νd is in the lowest alcove), the argument changes in that
F (νd) can occur as constituent only in Weyl modules of alcoves 1, 4 and 5.
The way it occurs in the latter is as follows: if ν is in alcove 5, then W (ν),
as representation of GL4, has no constituent in alcove 0 (see prop. 9.3),
but its constituents in alcoves 0′, 0′′ each decompose into four irreducible
constituents in the closure of alcove 0 over GL4(Fp) (they might be zero if
they land on one of the three non-dominant alcove walls). See the discussion
after thm. 10.3.

The highest weights of the Weyl modules in alcove 5 which contain F (νd)
as GL4(Fp)-constituent are the Wp-translates of νd + pǫ1 − ǫi in alcove 0′

and νd − pǫ4 + ǫi in alcove 0′′ (1 ≤ i ≤ 4). (We assume here that µ lies
sufficiently deep in alcove 5, so that these eight weights do not land on the
alcove boundary.) Explicitly,

νd = (d+ 3p, c+ 2p, b+ p, a)− ρ,

νd + pǫ1 − ǫi = (d+ 4p, c+ 2p, b+ p, a)− ǫi − ρ.
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Its Wp-translate into alcove 5 is:

ν ′ = (d+ 4p, a+ p, b+ p, c+ p)− ǫj − ρ

and

R(ν ′) = (c+ p, b, a− p, d+ p)− ǫk − ρ.

In the same way, going via alcove 0′′ gives:

R(ν ′′) = (a− p, d+ p, c, b− p) + ǫk − ρ.

Finally, the Wp-translates of µ− ρ into alcoves 4 and 1 are

(d+ 2p, b, c, a− 2p)− ρ, (c+ p, a− p, d+ p, b− p)− ρ.

The result follows from (i) by noticing that

(12.9) ρ(w, (c+ p, b, a− p, d+ p)− ǫk)

= ρ(w, (c+ p, b, a− p, d+ p)− pǫw−1(k)) ∀k
and similarly in the other case.

It is an interesting fact that, even though F (νd) does not occur as GL4-
constituent of a Weyl module in alcoves 2, 3, 5, pretending that it does, yields
no further ρ. That is, no matter what c, the set of diagonal predictions for
all F (ν), ν ∈ M↓(µ − ρ) is always a subset of the predicted tame inertial
representations of F (µ− ρ).

The claim about the number of predictions follows using lemma 12.5 once
we have used the analogue of (12.9) to convert all p’s in the µi into 1’s
(depending on w). �

13. Theoretical evidence for the conjecture

In this section we will assume that n > 1.
Define Γ1(N) to be the subgroup of those γ ∈ Γ0(N) with γn,n ≡ 1

(mod N), and let S1(N) be the subgroup of s ∈ S0(N) with sn,n ≡ 1
(mod N). Then (Γ1(N), S1(N)) is a Hecke pair, and the corresponding
Hecke algebra is denoted by H1(N). For l ∤ N let

Tl,i = [Γ1(N)

(
l . . .

1

)
ω̂N (l)Γ1(N)],

with i entries l on the diagonal (the order is irrelevant). Here ωN (l) is any

element of Γ0(N) such that lωN (l)(n,n) ≡ 1 (mod N), and ω̂N (l) stands for
ωN (l) if the diagonal matrix has an l as its (n, n)-entry and for 1 otherwise
(note that the choice of ωN (l) is irrelevant).

Define

U1(N) = {g ∈ GLn(Ẑ) : last row ≡ (0, . . . , 0, ∗) (mod N)},
Σ1(N) = {g ∈ GLn(A

∞) : gN ∈ U1(N)},
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where gN =
∏

l|N gl. Then (U1(N),Σ1(N)) is a Hecke pair, and we denote

by HA
1 (N) the Hecke algebra associated to it.

Lemma 13.1. There is an isomorphism of Hecke algebras

HA
1 (N)

∼−� H1(N)

determined by requiring that

[U1(N)sU1(N)] 7� [Γ1(N)sΓ1(N)]

for all s ∈ S1(N).

Proof. First we will show that (Γ1(N), S1(N)) ⊂ (U1(N),Σ1(N)) are com-
patible as Hecke pairs (see §2.2). To see that S1(N)U1(N) = Σ1(N), note
that by strong approximation

GLn(Q)U1(N) = G(A∞) ⊃ Σ1(N),

so for σ ∈ Σ1(N) write σ = γu (γ ∈ GLn(Q), u ∈ U1(N)). W.l.o.g.,
det γ > 0. Then it follows immediately that γ ∈ S1(N). Next, U1(N) ∩
S1(N)−1S1(N) = Γ1(N) is obvious. Thus the Hecke pairs are indeed com-
patible, and we get an injectionHA

1 (N)� H1(N) sending sU1(N) to sΓ1(N)
(s ∈ S1(N)).

We claim that U1(N)sU1(N) = Γ1(N)sU1(N) for all s ∈ S1(N). It suf-
fices to show that U1(N) = Γ1(N)(U1(N) ∩ sU1(N)). As sN ∈ U1(N)
and U1(N) is compact open, U1(N) ∩ sU1(N) ⊃ U1(N) ∩ U(M) for some

(M,Np) = 1, where U(M) = {g ∈ GLn(Ẑ) : g ≡ 1 (mod M)}. Since
Γ1(N) ։ SLn(Z/M), it follows that

{u ∈ U1(N) : detu ≡ 1 (mod M)} ⊂ Γ1(N)(U1(N) ∩ sU1(N)).

The desired equality follows by noting that the determinant of the right-

hand side is Ẑ×, which can be seen by using the theorem on elementary
divisors for all l|M .

The lemma now follows by noting that if s ∈ S1(N) and U1(N)sU1(N) =∐
siU1(N), then Γ1(N)sΓ1(N) =

∐
siΓ1(N) (intersect with S1(N) and use

the properties established above). �

Remark 13.2. In a completely analogous way it follows that H0(N)
∼−�

H1(N), sending [Γ0(N)sΓ0(N)] to [Γ1(N)sΓ1(N)] for s ∈ S1(N). In par-
ticular, Tl,i is sent to Tl,i for l ∤ N .

Proposition 13.3. Suppose that π is a cuspidal automorphic representation
of GLn(AQ) of conductor N . Suppose moreover that for some integers

c1 > c2 > · · · > cn,

π∞ corresponds, under the Local Langlands Correspondence, to a represen-
tation of WR sending z ∈ C× to

diag(z−c1 z̄−cn , z−cn z̄−c1 , z−c2 z̄−cn−1 , . . . )⊗ (zz̄)(n−1)/2 ∈ GLn(C)
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and j to an element of determinant (−1)
∑

ci+⌊n/2⌋ (in particular, π is reg-
ular algebraic; c.f. [Clo90], def. 1.8 and def. 3.12 ). Let r be the irreducible
representation of GLn/C with highest weight (c1−(n−1), c2−(n−2), . . . , cn).
Then there is an H1(N)-equivariant injection

(π∞)U1(N)
�֒ He(Γ1(N), r)

for any e in the range

n2 − 1

4
≤ e ≤

(n+ 1

2

)2
− 1.

Remark 13.4.

(i) As N is the conductor of π, (π∞)U1(N) is one-dimensional. Thus
we get a Hecke eigenclass in group cohomology.

(ii) It is known that Γ1(N) has virtual cohomological dimension n(n−
1)/2. In particular, He(Γ1(N), r) = 0 for e > n(n − 1)/2. (see
[Ser71], p. 132 and the remark on p. 101 ).

Proof. Let G = GLn/Q, A = AQ. For any open compact subgroup U ⊂
G(A∞), define

X̃U = G(R)/O(n)×G(A∞)/U

and
XU = G(Q)\

(
G(R)/O(n)×G(A∞)/U

)
.

and denote by πU : X̃U � XU the natural projection. Then X̃U and XU

are real manifolds of dimension
(
n+1
2

)
(XU is not necessarily connected). If

U is sufficiently small, G(Q) will act properly discontinuously on the total

space in brackets and the constant sheaf on X̃U with fibre r gives rise to a
local system on the quotient XU , which will be denoted by Lr: for any open
subset Z ⊂ XU , Lr(Z) is the set of locally constant functions

(13.1) {f : π−1
U (Z)� r : f(γx) = γf(x) ∀γ ∈ G(Q), x ∈ Z}.

Notice that r∨ is the representation ofG associated to π∞ defined in [Clo90],
pp. 112–113 (where it is denoted by τ). By [Clo90], lemma 3.15 there is a
G(A∞)-equivariant injection

⊕

Π

He(sln, O(n); Π∞ ⊗ r)⊗Π∞
�֒ lim−�

V

He(XV ,Lr)

where Π runs through all cuspidal automorphic representations of G(AQ)
whose central character agrees with that of r∨ on R×

+, and the limit is over
all (sufficiently small) compact open subgroups V ⊂ G(A∞). The G(A∞)-
action on the right-hand side is as in sublemma 13.5(ii) below. Here sln
denotes the complexified Lie algebra of SLn(R).

When n is even, lemma 3.14 in [Clo90] shows that

He(sln, O(n);π∞ ⊗ r) ∼= ∧e−n2/4Cn/2−1,

(by the remark on p. 120 in the same reference, there is no quadratic char-
acter appearing on the left-hand side).
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When n is odd, the condition on the determinant of j made above implies
that π∞ is the induction, using a parabolic subgroup of type (2, 2, . . . , 2, 1),
of σ1⊗σ2⊗· · ·⊗σ(n−1)/2⊗χ (keeping Clozel’s notation), where σi is the dis-

crete series representation of central character |.|−ci−cn+1−i+n−1 sgnci+cn+1−i+1

and lowest weight ci−cn+1−i+1 and χ = |.|−c(n+1)/2+(n−1)/2 sgnc(n+1)/2 . This
has the consequence that the character considered in [Clo90], p. 120 is even
and again we get (without quadratic character on the left-hand side):

He(sln, O(n);π∞ ⊗ r) ∼= ∧e−(n2−1)/4C(n−1)/2.

Thus we get an H1(N)-equivariant homomorphism

(π∞)U1(N) �֒

(
lim−�
U

He(XU ,Lr)
)U1(N)

for any e in the range claimed above. It remains to identify the right-hand
side with the appropriate group cohomology group.

Let He(X,Lr) = lim−�V
He(XV ,Lr) to simplify notations (X itself will not

have any meaning). The following sublemma, whose simple proof we omit,
will be useful.

Sublemma 13.5. Suppose that U , V are sufficiently small compact open
subgroups of G(A∞) and e ≥ 0 arbitrary.

(i) If U ⊂ V consider the natural projection map f : XU � XV . Then
f∗Lr

∼= Lr (canonically) and the induced map f∗ : He(XV ,Lr) �
He(XU ,Lr) is an injection.

(ii) If g ∈ G(A∞) and U ⊂ gV g−1, denote by [g] the natural map
XU � XV given by multiplication on the right by g. Again there
is a canonical isomorphism [g]∗Lr

∼= Lr and an induced map [g]∗ :
He(XV ,Lr)� He(XU ,Lr). It is compatible with the maps defined
in (i) and yields a smooth left action of G(A∞) on the direct limit
He(X,Lr).

(iii) The image of the natural map He(XU ,Lr) � He(X,Lr), which is
an injection by (i), is precisely the subspace of U -invariants.

Choose an auxiliary prime q ∤ 2N , and let

U = {g ∈ U1(N) : g ≡ 1 (mod q)}⊳ U1(N).

The projection of U to G(Qq) contains no elements of finite order, which
implies that U is sufficiently small in the above sense, so that Lr is defined
on XU . By the sublemma, He(X,Lr)

U1(N) = He(XU ,Lr)
U1(N)/U .

For now, we allow r to be any C[G(Q)]-module. Let Γ = G(Q) ∩ U1(N),
an arithmetic subgroup of G.

Claim: He(XU ,Lr)
U1(N)/U and He(Γ, r) are universal δ-functors, and

they are canonically isomorphic.

First note that if H ≤ K are two groups and V is an injective K-module
(over C, say), then V |H is an injective H-module. The reason is that the
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left adjoint of the forgetful functor K-mod� H-mod is CK⊗CH −, which
is exact. By putting H = Γ, K = G(Q), we see that He(Γ, r) is a universal
δ-functor.

As for the first sequence of functors, note that it is at least a δ-functor:
U1(N)/U is a finite group so that taking U1(N)/U -invariants is an exact
functor (we are in characteristic zero!). To demonstrate universality, it suf-
fices to show that He(XU ,Lr) = 0 if e > 0 and r is an injective C[G(Q)]-
module. By the strong approximation theorem,

G(A) =
t∐

i=1

G(Q)giUG(R)

for some gi ∈ G(A∞). This implies that

XU
∼=

t∐

i=1

(G(Q) ∩ giU)\G(R)/O(n).

Under this isomorphism, Lr corresponds to a local system on each space in
the disjoint union. It is easy to see that on the i-th piece it is the one induced
by the constant sheaf on G(R)/O(n) with fibre r under the (G(Q) ∩ giU)-
action (as in (13.1)). It will be denoted by Lr as well. By [Mum70], appendix
to §I.2, for example, He((G(Q) ∩ giU)\G(R)/O(n),Lr) = 0 if e > 0 and
r injective as (G(Q) ∩ giU)-module; in particular if r is injective as G(Q)-
module. (Note that for the constant sheaf r, H i(G(R)/O(n), r) = 0 for i > 0
since G(R)/O(n) is contractible; see [Bre97], thm. III.1.1 for the comparison
of sheaf cohomology with singular cohomology).

To check that the two universal δ-functors above are canonically isomor-
phic, it is enough to identify them in degree 0. By (13.1), H0(XU ,Lr)

U1(N)/U

is the set of locally constant, G(Q)-invariant functions f : G(A)/U1(N)O(n)�

r. By the strong approximation theorem, using that detU1(N) = Ẑ×, such
a function is determined by its values on G(R); by local constancy it is even
determined by f(1) ∈ r. It follows easily that the set of possibly values of
f(1) is precisely rΓ = H0(Γ, r). This establishes the claim.

Claim: The map of δ-functorsHe(Γ, r)
res−−� He(Γ1(N), r) is a (canonically

split) injection.

As (Γ : Γ1(N)) = 2, this is clear: 1
2 cores provides the splitting, where

cores is the corestriction map.

Claim: The above canonical injection

He(X,Lr)
U1(N)

�֒ He(Γ1(N), r)

of δ-functors is HA
1 (N) ∼= H1(N)-equivariant.

Note that the Hecke action on the left is defined through the G(A∞)-
action of sublemma 13.5, whereas the one on the right is the usual one
on group cohomology (see §2.2). Both Hecke actions are clearly maps of δ-
functors, so again it suffices to check the claim in degree 0. Given s ∈ S1(N),
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we know by lemma 13.1 that the Hecke operator Ts = [Γ1(N)sΓ1(N)] ∈
H1(N) corresponds to Ts = [U1(N)sU1(N)] ∈ HA

1 (N). Moreover, the same
lemma shows that if si ∈ S1(N) (1 ≤ i ≤ n) are chosen such that

Γ1(N)sΓ1(N) =
∐

siΓ1(N),

then also
U1(N)sU1(N) =

∐
siU1(N).

An element of H0(X,Lr)
U1(N) is a locally constant, G(Q)-invariant function

f : G(A)/U1(N)O(n)� r

which is determined by f(1) ∈ rΓ ⊂ rΓ1(N). By the sublemma, Ts(f) is
the function sending g ∈ G(A) to

∑
f(gsi); in particular, the image of 1 is∑

f(si) =
∑
sif(1) = Ts(f(1)) (we used that f is locally constant). This

verifies the Hecke equivariance. �

Fix an isomorphism ι : C� Qp.

Proposition 13.6. Suppose p > 2. Given integers a > b > c > d with a+
d = b+ c. Let τ be any of the following tame inertial Galois representations
τ : Ip � GL4(Fp):(

ωa

ωb

ωc

ωd

)
,

(
ωa+pd
2

∗∗
ωb+pc
2

∗∗

)
,

(
ωa+pb
2

∗∗
ωc+pd
2

∗∗

)
,

(
ωa+pc
2

∗∗
ωb+pd
2

∗∗

)
,

(
ωa+pd
2

∗∗
ωb

ωc

)
,

(
ωb+pc
2

∗∗
ωa

ωd

)
,

(
ωa+pb+p2d+p3c
4

∗∗
∗∗

∗∗

)
,

(
ωa+pc+p2d+p3b
4

∗∗
∗∗

∗∗

)
.

Then there is an integer N prime to p, a continuous, irreducible, odd Ga-
lois representation ρ : GQ � GL4(Fp) with ρ|Ip ∼= τ and a Hecke eigenclass
in

He(Γ1(N), F )

with attached Galois representation ρ for some e and for some Jordan-Hölder
constituent F of W (a− 3, b− 2, c− 1, d).

Note that the symbol “∗∗” stands for the p-th power of the previous
diagonal matrix entry. Part (iii) of the following lemma will be needed in
the proof, whose proof is given on p. 64.

Lemma 13.7. Given a prime p.

(i) The Galois group of a quartic (totally complex ) CM field can be
either of Z/2× Z/2, Z/4 or D8.

(ii) There is a quartic (totally complex ) CM field K with Galois group
Z/2 × Z/2, unramified at p such that Frobp is (a) trivial, (b) the
complex conjugation, or (c) another element of order 2.
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(iii) There is a cyclic quartic (totally complex ) CM field K, unramified
at p such that Frobp is (a) trivial, (b) the complex conjugation, or
(c) an element of order 4.

(iv) There is a quartic (totally complex ) CM field K with Galois group
G ∼= D8, unramified at p such that Frobp ∈ G is (a) trivial, (b)
the complex conjugation, (c) a (non-central) element of order 2 not
fixing K+, (d) a non-central element of order 2 fixing K+, or (e)
an element of order 4.

Note that if K is a CM field, we have denoted its totally real subfield
by K+, so that [K : K+] ≤ 2. Also note that the above cases (ii)(a)–(c)
(iii)(a)–(c) and (iv)(a)–(e) exhaust the respective Galois group.

For both the proof of the proposition and the lemma it will be very useful
to keep a diagram of the subgroup lattice of D8 at hand, together with
explicit generators of each subgroup.

Proof of prop. 13.6. By lemma 13.7, choose a quartic totally complex CM
field K/Q, unramified at p, with Galois group G dihedral of order 8. We
will fix the conjugacy class of Frobp later. Let µ(K) be the torsion subgroup
of O×

K and let w(K) be its order; denote by L the Galois closure of K/Q
and let c ∈ G denote the complex conjugation (which is central!).

We now want to make a careful choice of a Hecke character χ over K that
is unramified outside l. For this recall:

Sublemma 13.8. There is a bijection between Hecke characters χ over

K and 4-tuples (f, ǫ, ǫf, ǫ∞), where f ⊳ OK , ǫ : I fK � C× (I fK being the
ideals prime to f), ǫf : (OK/f)

× � C× primitive (i.e., not factoring through
(OK/f1)

× for any proper divisor f1|f), ǫ∞ : K×
∞ � C× continuous such that

for all x ∈ K×, x prime to f,

(13.2) ǫ((x)) = ǫf(x)ǫ∞(x).

(By weak approximation, ǫf and ǫ∞ are determined by (f, ǫ).) The conductor
of χ is f. The bijection is determined by demanding that

χ(x) = ǫf(xf)
−1ǫ∞(x∞)−1ǫ((x))

for all x ∈ A×
K that are prime to f.

Fix for each σ : K � C an integer nσ with the property that nσ+nσc = w
for all σ (some w). These will be pinned down further on. Let ǫ∞ : K×

∞ �

C× be given by ǫ∞(x) = |x|−3/2
∏

σ σ(x)
nσ . (Here, for x ∈ A×

K , |x| is the

norm on A×
K and σ(x) means σ(xv) for the unique place v|∞ which is induced

by σ on K.)

Claim: ǫ∞(O×
K) ⊂ µw(L)[L:K](C).

Fix an embedding j : L� C and for τ ∈ G let mτ = njτ |K . In particular,
mτ +mτc = w for all τ . It will suffice to show that

∏
τ τ(−)mτ acts trivially
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on (O×
L )tor−free. For, this group contains (O×

K)tor−free as subgroup and on

it, j
∏

τ τ(−)mτ =
∏

σ σ(−)nσ [L:K].
By the unit theorem, (O×

L )tor−free �֒ Map(S∞,R)0 as G-module, where
S∞ is the set of archimedean places of L and the subscript “0” denotes
the subspace of f : S∞ � R with

∑
v f(v) = 0. As G acts transitively

on S∞ with stabiliser 〈c〉, Map(S∞,R)0 ∼= R[G/〈c〉]0 as RG-module, where
the subscript “0” now refers to

∑
G/〈c〉 λgg with

∑
G/〈c〉 λg = 0 (i.e., the

augmentation ideal). It will suffice to show that for ν̄ ∈ G/〈c〉, the action
of
∑

Gmττ(−) on ν̄ ∈ R[G/〈c〉] is independent of ν̄. Indeed,
∑

τ∈G

mττ ν̄ =
∑

τ∈G/〈c〉

(mττ + (w −mτ )τc)ν̄ = w
∑

τ∈G/〈c〉

τν = w
∑

τ∈G/〈c〉

τ

is independent of ν̄. This proves the claim.
So far, the argument only depended on K being a CM field. Note now

that in our situation (K being quartic totally complex CM with dihedral
Galois group), L does not have any abelian totally complex CM subfields.
Thus w(L) = 2 and by the claim ǫ∞(O×

K) ⊂ µ4(C).
Choose now distinct rational primes qi ∤ 2p (1 ≤ i ≤ t, any t ≥ 3) that

stay inert in K (equivalently, Frobqi ∈ G has order 4). This can be achieved
by the Cebotarev density theorem. Denote by qi the prime of K lying above
qi.

If α ≡ 1 (mod
∏

qi) then in particular ǫ∞(α) ≡ 1 (mod q1) (in the
subring Z̄ ⊂ C). But ǫ∞(α) ∈ µ4(C) by above and hence it is 1 (as q1 odd).
Therefore ǫ∞|O×

K
can be written as

ǫ∞|O×

K
: O×

K � (OK/
∏

qi)
× θ−� C×

where θ is not uniquely determined! Letting A be the image of O×
K in

(OK/
∏

qi)
×, we see that θ is determined by ǫ∞ on A but nowhere else (the

characters of (OK/
∏

qi)
×/A separate points).

Let Bp be the p-Sylow subgroup of (OK/
∏

qi)
×. Observe that

t∏

i=1

((OK/qi)
×)q

2
i −1 6⊂ A ·Bp.

This is because the size of the 2-torsion on the left-hand side is exactly
2t ≥ 8, whereas on the right it is bounded above by 4 due to the unit
theorem. Therefore we can assume, without loss of generality, that θ is non-

trivial on
∏t

i=1((OK/qi)
×)q

2
i −1 while being of order prime to p (simply first

extend the given map on A to A ·Bp by making it trivial on Bp).
Let f =

∏
qi and ǫf = θ−1 (if necessary, some of the qi’s need to be removed

from f to make ǫf primitive). Writing ǫf =
∏
ǫqi (with the obvious meaning),

we see that ǫqi has order not dividing q
2
i − 1 for some i. By permuting the

qi, let us assume that this happens when i = 1 and set q = q1, q = q1.
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By construction, ǫfǫ∞ is trivial on O×
K . Now ǫ can be defined by (13.2)

on the finite index subgroup of I fK generated by (x) with x ∈ K× prime

to f and extended arbitrarily to I fK . The above sublemma yields a Hecke
character χ over K; we record here some of its properties:

◦ χ∞(x) = |x|3/2∏σ σ(x)
−nσ ,

◦ χ has conductor
∏

qi (prime to p),

◦ χq|O×

Kq

has order dividing q4 − 1 but not dividing q2 − 1,

◦ χ(
∏

v∤∞O×
Kv

) has order prime to p.

(13.3)

By [AC89], §III.6 we can consider the automorphic induction π = IndQK χ,
which is obtained in two stages: first inducing along the cyclic extension

K/K+: Π = IndK
+

K χ; then inducing along the cyclic extension K+/Q:

π = IndQ
K+ Π.

Suppose now that the nσ above are a permutation of {a, b, c, d} (note that
there are only 8 possible choices due to the restriction nσ+nσc = w ∀σ made
above).

Claim: π is a cuspidal automorphic representation of GL4(AQ) of conduc-
tor prime to p to which prop. 13.3 applies with (c1, c2, c3, c4) = (a, b, c, d).

Note the following facts about Arthur-Clozel’s cyclic automorphic induc-
tions: (i) they construct them using cyclic base change ([AC89], thm. III.6.2),
(ii) global cyclic base change is compatible with local base change at all
(finite or infinite) places (see [AC89], thm. III.5.1), (iii) local cyclic base
change is compatible with restriction under the Local Langlands Correspon-
dence (see [AC89], p. 71 in the archimedean case and [HT01], thm. VII.2.6
in the non-archimedean case).

As χ ≇ χc (look at the either of the infinite components), Π is cuspidal
and is determined by

BCK+

K Π ∼= χ⊕ χc,

where BC denotes base change ([AC89], bottom of p. 216). In particular,
under the Local Langlands Correspondence the infinite components of Π
correspond to the representations sending

z 7� |z|3 diag(z−az̄−d, z−dz̄−a), resp.

z 7� |z|3 diag(z−bz̄−c, z−cz̄−b),

for z ∈ WC = C×. Repeating the argument shows that π is cuspidal and
that under the Local Langlands Correspondence π∞ corresponds to a rep-
resentation sending

z 7� |z|3 diag(z−az̄−d, z−dz̄−a, z−bz̄−c, z−cz̄−b)



THE WEIGHT IN SERRE’S CONJECTURE FOR GLn 59

for z ∈ WC. As a 6= d and b 6= c, by the classification of representations of
WR (see e.g. [Tat79], (2.2.2)), this representation is the direct sum of

z 7� |z|3
(
z−az̄−d

z−dz̄−a

)

j 7�
(

1
(−1)a+d

)

and the same with (a, d) replaced by (b, c). This shows that (c1, c2, c3, c4) =
(a, b, c, d) in the notation of prop. 13.3.

Let S be the set of primes l that either ramify in K or divide a prime
where χ is ramified. For l 6∈ S, πl is an unramified principal series which
corresponds to

(13.4) σl =
⊕

λ|l

IndWl
Wλ

χλ

under the Local Langlands Correspondence (see [AC89], p. 214f). In partic-
ular, the conductor N of π is prime to p.

Let Σ = Ind
WQ

WK
χ. Since

Σ|Iq ∼=
⊕

imod 4

(χq|Iq)q
i
,

Σ is irreducible (this uses (13.3)). The previous paragraph shows that Σv and
πv correspond to each other under the unramified Langlands Correspondence
for almost all places v. Therefore we can use corollary 4.5 of [Hen86] to see
that at all finite places v, the L-factors (and even the ǫ-factors) of Σv and
πv agree. In particular, Σ and π are ramified at the same set of finite places
(namely those finite primes at which the L-factor has degree less than 4;
for π this characterisation follows from [Jac79], §3). It follows that S is
precisely the set of prime divisors of N .

This establishes the claim. We get, for e as in the sublemma, an H1(N)-
equivariant injection

(13.5) (π∞)U1(N) �֒ He(Γ1(N), r)

with r of highest weight (a− 3, b− 2, c− 1, d).
For l ∤ N , let tl,j (1 ≤ j ≤ 4) denote the eigenvalues of σl(Frobl). It is

a standard (and easy) fact that [G(Zl)

(
l . . .

1

)
G(Zl)] (i times l) has eigen-

value si(tl,1, . . . )l
i(4−i)/2 on π

G(Zl)
l , where si denotes the i-th elementary sym-

metric function. Therefore [U1(N)

(
l . . .

1

)

l

U1(N)] has the same eigenvalue

on (π∞)U1(N). Since this Hecke operator corresponds to Tl,i ∈ H1(N), equa-
tion (13.5) gives a Hecke eigenclass in He(Γ1(N), r) whose Tl,i-eigenvalue

is si(tl,1, . . . ) · li(4−i)/2 (∀l ∤ N , ∀i). Equivalently, there is an eigenclass in

He(Γ1(N), r⊗C,ιQp) with Tl,i-eigenvalue ι(si(tl,1, . . . ) · li(4−i)/2) (∀l ∤ N , ∀i).
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Claim: There is a Hecke eigenclass inHe(Γ1(N), F (λ)) with Tl,i-eigenvalue

ι(si(tl,1, . . . ) · li(4−i)/2)

(∀l ∤ Np, ∀i) for some Jordan-Hölder constituent F (λ) of W (a− 3, b− 2, c−
1, d) (λ ∈ X(T )+).

It is a classical fact that every representation r of the algebraic group
GLn over C can be defined over Q (e.g., it follows from [FH91], §15.3; or
see [Jan03] II.2.7, II.5.6, II.5.10 in the much more general context of con-
nected, split reductive groups over a field of characteristic zero). By [Jan03]
I.10.4 it has a model M even over Z(p) (a representation of the reductive

group scheme GLn/Z(p)
). Let M denote its reduction modulo p, a represen-

tation of GLn over Fp. By [Jan03] I.2.11(3) (or II.1.1(2) over Z), M has a
weight space decomposition which has to be compatible with that of r and
M so that each weight occurs with the same multiplicity in each of r, M ,
M .

By [Ser71], §2.4, thm. 4, Γ1(N) is of type (WFL). In particular, for any
noetherian ring A, He(Γ1(N), P ) is a finite A-module whenever P is a finite
A-module with commuting Γ1(N)-action (see [Ser71], rk. on p. 101).

Consider now only the Hecke operators Tl,i with l ∤ Np. For any Z(p)-
algebra R, let rR = M ⊗Z(p)

R. Note that rZp
is a GLn(Z(p))-invariant

Zp-lattice in rQp

∼= r ⊗C,ι Qp. Since

He(Γ1(N), rQp
) ∼= He(Γ1(N), rQp)⊗Qp Qp

(Hecke equivariantly) and this space is finite-dimensional over Qp, the si-
multaneous generalised eigenspaces for Tl,i with l ∤ Np can be defined over
some finite extension E/Qp. Thus the above set of Hecke eigenvalues also
occurs in He(Γ1(N), rE). Consider the following Hecke equivariant map:

He(Γ1(N), rOE
)tor−free �֒ He(Γ1(N), rE).

The image of the map is a lattice in He(Γ1(N), rE); this follows by looking
at the long exact sequence associated to 0� rOE

� rE � rE/rOE
� 0. By

scaling the Hecke eigenclass in He(Γ1(N), rE), we may assume it lies in this
sublattice and has non-zero reduction in He(Γ1(N), rOE

)tor−free ⊗OE
kE .

Consider the Hecke equivariant map:

He(Γ1(N), rOE
)⊗OE

kE ։ He(Γ1(N), rOE
)tor−free ⊗OE

kE .

By the Ash-Stevens lifting lemma ([AS86], prop. 1.2.2), by enlarging E if
necessary, we can lift the system of Hecke eigenvalues toHe(Γ1(N), rOE

)⊗OE

kE . That is, there is an eigenclass in it with the same system of Hecke
eigenvalues, although this eigenclass does not necessarily lift the eigenclass
we had in He(Γ1(N), rOE

)tor−free ⊗OE
kE .

Finally, the long exact sequence associated to 0� rOE
� rOE

� rkE � 0
yields a Hecke equivariant injection

He(Γ1(N), rOE
)⊗OE

kE �֒ He(Γ1(N), rkE ) �֒ He(Γ1(N), rFp
).
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Thus there is an eigenclass inHe(Γ1(N), rFp
) with Tl,i-eigenvalue ι(si(tl,1, . . . ) · li(4−i)/2)

(∀l ∤ N , ∀i).
Note that the GL4-representations rFp

=M⊗Fp Fp andW (a−3, b−2, c−
1, d) have the same formal character: by above, M has the same formal
character as r, and both r and W (a−3, b−2, c−1, d) have formal character
given by the Weyl character formula for the highest weight (a− 3, b− 2, c−
1, d) ([Jan03] II.5.10). Now by [Jan03] II.2.7 and II.5.8, rFp

andW (a−3, b−
2, c−1, d) have isomorphic semisimplifications (as GL4-modules). Using the
Ash-Stevens lifting lemma ([AS86], prop. 1.2.2), the same system of Hecke
eigenvalues obtained in He(Γ1(N), rFp

) also occurs in He(Γ1(N), F (λ)) for

some Jordan-Hölder constituent F (λ) ofW (a−3, b−2, c−1, d) (λ ∈ X(T )+).
This establishes the claim.

The Hecke character η = χ−1|.|3/2 is algebraic with algebraic infinity type
η∞(x) =

∏
σ(x)nσ . Recall the definition of the associated p-adic Galois

character η(p) (using the global Artin map; see e.g. [HT01], p. 20f):

η(p) : Gab
K

∼= K×K×
∞,+\A×

K � Q
×
p

x 7� ιη(x∞)
∏

τ :K�Qp

τ(xp)
nι−1(τ) .(13.6)

Here, the convention is that σ(xp) means σ(xv) for the unique v|p induced

by σ on K. In particular, η(p)|GKλ
= ιχ−1

λ under the local Artin map for all

λ|l, l ∤ Np.
Claim: The Galois representation

ρ = Ind
GQ

GK

(
η(p)
)

is attached to the eigenclass in He(Γ1(N), F (λ)) constructed above. It it
continuous, irreducible, odd and its ramification outside p occurs precisely
at all l|N .

Clearly, ρ is continuous. By Mackey’s formula, using the local Artin map,
for any prime l,

ρ|Il ∼=
⊕

λ|l

⊕

g∈Gal(K0
λ/Ql)

IndIlIλ(ιχ
−1
λ |gIλ),

where K0
λ is the maximal unramified subextension of Kλ/Ql. By Frobenius

reciprocity, Il acts trivially on the direct summand corresponding to the
index (λ, g) if and only if Iλ = Il and ιχ|Iλ = 1. Thus the claim about
ramification outside p follows from (13.3) and the fact that S is the set of
primes dividing N . Specialising now to l = q we even get:

ρ|Iq ∼=
⊕

imod 4

(ιχq|Iq)−qi .

Note that even ιχq|Iq has order not dividing q2 − 1, by (13.3). Hence ρ|GQq

is irreducible; a fortiori, so is ρ.
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For l ∤ Np,

ρ|GQl

∼=
⊕

λ|l

Ind
GQl
GKλ

(η(p)|GKλ
).

We know by above that this is unramified. Using an explicit basis, we see
that ρ(Frobl) has characteristic polynomial

X [Kλ:Ql] − η(p)(Frobλ)

on the λ-direct summand. A similar consideration applied to σl in (13.4)

shows that the eigenvalues of ρ(Frobl) are ι(t
−1
l,j l

−3/2) (recall that the tl,j are

the eigenvalues of σl(Frobl) and that η(p)|GKλ
= ι(χ−1

λ |.|3/2λ )). Incidentally,

ρ(Frobl) is not semisimple in case p|[Kλ : Ql].
By the following simple computation, and the fact that S is the set of

prime divisors of N , we see that ρ is attached to the eigenclass constructed
above: for all l ∤ Np,

4∑

i=0

(−1)ili(i−1)/2si(ιtl,1, . . . ) · ιli(4−i)/2Xi =
4∏

j=1

(1− ι(tl,jl3/2) ·X).

Finally, note that

ρ|GR
∼=
(
IndGR

GC
(1)
)⊕2

,

which has eigenvalues 1 and −1 twice each on complex conjugation. Thus
ρ is odd and the claim is established.

To determine ρ|Ip , note that

ρ|Ip ∼=
⊕

p|p

⊕

imod fp

η(p)|piIp

where fp is the inertial degree. Also, as χ is unramified at all p|p we get
from (13.6),

η(p) : xp 7�
∏

τ :K�Qp

τ(xp)
nι−1(τ)

for xp ∈
∏

p|pO×
Kp

. Fix for each p an embedding τp : K � Qp which induces

the place p on K and denote by φ : Qnr
p � Qnr

p the arithmetic Frobenius.

Recall that the composite IKp
։ O×

Kp
� k×p , where the first map is induced

by local class field theory and the second is xp 7� x̄p, is the fundamental
tame character θp of level fp (see [Ser72], prop. 3 with L = Kd in Serre’s
notation; notice the different sign convention for the local Artin map). We
get

η(p) : xp 7� τpθ

∑
imod fp

pinι−1(φiτp)

p

for xp ∈ O×
Kp

.

Now we let the nσ vary through the 8 allowed permutations of {a, b, c, d}
(recall that nσ+nσc = w ∀σ has to hold). To see which ρ|Ip can be obtained
for a fixed conjugacy class of Frobp ∈ G, it thus only matters how complex
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conjugation acts on the set of p|p, and what fp is in each case. In the
notation of lemma 13.7(iv) we can obtain all of the following:

(
ωa

ωb

ωc

ωd

)
in case (a),

(
ωa+pd
2

∗∗
ωb+pc
2

∗∗

)
in case (b),

(
ωa+pb
2

∗∗
ωc+pd
2

∗∗

)
,

(
ωa+pc
2

∗∗
ωb+pd
2

∗∗

)
in case (c),

(
ωa+pd
2

∗∗
ωb

ωc

)
,

(
ωb+pc
2

∗∗
ωa

ωd

)
in case (d),

(
ωa+pb+p2d+p3c
4

∗∗
∗∗

∗∗

)
,

(
ωa+pc+p2d+p3b
4

∗∗
∗∗

∗∗

)
in case (e).

as claimed.
�

Theorem 13.9. Generically, proposition 13.6 is compatible with the conjec-
ture. That is, suppose given ν = (a, b, c, d)− ρ with a+ d = b+ c sufficiently
deep in a restricted alcove C for GL4 (in particular, a > b > c > d). Then
whenever prop. 13.6 produces a Hecke eigenclass in

⊕

e≥0
F∈JH(W (ν))

He(Γ1(N), F )

with attached Galois representation ρ, ρ|Ip is actually predicted by the con-
jecture for some F ∈ JH(W (ν)).

Assume moreover that the conjecture correctly predicts tame ρ|Ip for all
weights in all alcoves strictly below C, at least for all δ-deep weights, some
δ > 0. Say

JH(W (ν)) = {F (ν)} ⊔ {Fα : α ∈ I},
where all Fα lie in alcoves strictly below C. Then in the above situation if Fα

does not predict ρ|Ip for any α and ν lies sufficiently deep in C, we obtain
evidence for F (ν) predicting ρ|Ip. This happens for a certain proportion of
the predicted tame ρ|Ip; see table 1.

Remark 13.10. We hope to verify that prop. 13.6 is compatible with the
conjecture in every case. We have so far done this in the case of niveau 1
and assuming that all constituents of W (µ− ρ) are regular Serre weights.

Proof. Note first that, in the notation of prop. 9.3, all tame inertial Galois
representations produced by prop. 13.6 are of the form ρ(w, µ0).

Suppose first C 6= C5. Let W = W (µ − ρ) and F = F (µ − ρ). Then
by the proof of prop. 12.12(ii), the predictions for F are the union of the
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alcove

0 1∗ 2∗ 3∗ 4∗ 5∗

niveau 1 1 1
2 0 0 1

5
1
8

niveau (2,2) 1 1
2 0 0 1

5
1
8

niveau (2,1,1) 1
3

1
6 0 0 1

15
1
24

niveau 4 1
3

1
6 0 0 1

15
1
24

niveau (3,1) 0 0 0 0 0 0

Table 1. The proportion of predicted tame ρ|Ip of a given
niveau produced by prop. 13.6 for all sufficiently deep weights
in a given alcove. The ∗ indicates that this is conditional on
the conjecture being correct in all lower alcoves.

diagonal predictions for all F (ν), ν ∈M↓(µ− ρ). Thus, taking into account
prop. 9.3, we see that, if all predictions in lower alcoves are correct, F has
to predict ρ(w, µ0) for all w ∈W .

Now suppose C = C5. As µ − ρ is sufficiently deep inside C5, W has
13 irreducible constituents over GL4(Fp), 8 of which are in alcove 0 (use
prop. 9.3 and the comments after thm. 10.3 to decompose irreducible GL4-
representations in alcoves 0′, 0′′ over GL4(Fp)). Let us determine all tame
inertial representations predicted by F but not by any of the other con-
stituents of W .

The Wp-translates of µ− ρ in alcoves 0–4 have respective highest weights

(b, a− p, d+ p, c)− ρ,

(c+ p, a− p, d+ p, b− p)− ρ, (d+ 2p, a− p, c, b− p)− ρ,

(c+ p, b, d+ p, a− 2p)− ρ, (d+ 2p, b, c, a− 2p)− ρ.

Combining this with prop. 12.12, we see that the constituents ofW in alcoves
1–4 predict precisely all ρ(w, µi) for w ∈W , i ∈ {1, 4, 0′, 0′′, 5}.

By (9.2), (10.3), the GL4-constituent of W in alcove 0′ decomposes into
the following four weights in alcove 0:

F ((a− p, d+ p, c, b− p) + ǫi − ρ), 1 ≤ i ≤ 4,

Prop. 12.12 together with the observation of (12.9) shows that these con-
stituents of W predict precisely all ρ(w, µi) for w ∈W , i ∈ {1, 3, 4, 0′′}.

Similarly (or by dualising), the constituents of W that arise through al-
cove 0′′ predict precisely all ρ(w, µi) for w ∈W , i ∈ {1, 2, 4, 0′}. The upshot
is, once again, that if all predictions in lower alcoves are correct, F has to
predict ρ(w, µ0) for all w ∈W . �
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Proof of lemma 13.7. (i) Choose σ ∈ GQ inducing the non-trivial automor-
phism of K+/Q. Then the compositum L = K · σ(K) is the normal closure
over K/Q. We are done if K = σ(K), so assume the contrary. Then the
Galois group is a transitive permutation group on four letters which has a
central element of order 2 (as L is CM). The result follows by considering
the centralisers of a 2-cycle (it is the Klein 4-group) and of a permutation
of cycle type (2, 2) (it is dihedral of order 8).

(ii) Such a K contains three quadratic subextensions that are unramified
at p, precisely one of which is totally real; conversely any such K is obtained
as the compositum of two quadratic fields that are unramified at p, precisely
one of which is totally real. It is easy to see that the three cases correspond
respectively to: (a) all three quadratic fields are split at p, (b) only the totally
real quadratic field is split it p, (c) only one of the imaginary quadratic fields
is split at p. The claim is now obvious.

(iii) Here is one way of doing it, obtaining aK which is ramified at at most
two rational primes. A proof as in part (iv) would also work. Suppose first
that p > 2. Using Dirichlet’s theorem on primes in arithmetic progressions,
we find primes l, l′ such that l ≡ 5 (mod 8), l′ ≡ 1 (mod 8) and both are
quadratic non-residues mod p. Choose generators ω of F×

l and ω′ of F×
l′ . For

any integer a consider the following map

φ : Ẑ× ∼=
∏

Z×
ℓ ։ Z/4

(nℓ) 7� logω(n̄l) + a logω′(n̄l′) mod 4.

Note that φ(−1) 6= 0. Thus by “class field theory”, kerφ corresponds to
a cyclic degree 4 CM field. The choice of a controls whether it is of type
(a), (b) or (c). For p = 2, it is not hard to see that there is unique such K
with (a) K ⊂ Q(µ3·17), (b) K ⊂ Q(µ7·17), (c) K = Q(µ5). (Explicitly, in

(a), K = Q(
√
3(−17 + 4

√
17), and in (b), K = Q(

√
7(−17 + 4

√
17).)

(iv) ConsiderK = Q(
√
a+ b

√
d) with integers a, b, d, with normal closure

(over Q) denoted by L. Suppose that a < 0 and that d > 0 and a2− b2d > 0
lie in different (non-trivial) square classes of Q×. In that case K is a quartic
CM field with dihedral Galois group. For, K is a totally complex quadratic
extension of Q(

√
d), a totally real quadratic field. Moreover, K/Q is not

Galois, as it would otherwise contain a square root of (a+ b
√
d)(a− b

√
d) =

a2 − b2d > 0, which is ruled out by the assumptions.
Note that cases (c) and (d) are equivalent, upon interchanging K and

τ(K), where τ is any element in the Galois group of order 4.
First suppose that p is odd. In addition to requiring a < 0, a2 − b2d > 0

and d > 1 with d square-free, also impose that:

◦ a ≡ d ≡ 1, b ≡ 0 (mod p) and d ∤ a in case (a),

◦
(
a
p

)
= −1, d ≡ 1, b ≡ 0 (mod p) and d ∤ a in case (b),

◦
(
2a−1
p

)
= −1, d ≡ 1, b ≡ a− 1 (mod p) in case (c),
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◦
(
d
p

)
=
(
a2−b2d

p

)
= −1 and d ∤ a in case (e).

In the first three cases it is easy to choose a, b, d (d could always taken to
be prime, for example). In the fourth case, choose d first with

(
d
p

)
= −1,(

d−1
p

)
= 1. Then a ≡ d, b ≡ 1 (mod p) will work.

Clearly, the conditions ensure that a2 − b2d and d lie in different non-
trivial square classes. The corresponding CM field K is unramified at p,
as d and a2 − b2d are prime to p. In the first two cases, L+ is split at p,

as
(
d
p

)
=
(
a2−b2d

p

)
= 1. Moreover Qp(

√
a+ b

√
d) = Qp in the first, but not

the second, case as the reduction mod p of a + b
√
d is a square, resp. a

non-square, in F×
p . Thus K is as required in the first two cases. In the third

case, K+ is split at p whereas the other two quadratic subfields of L are
inert at p, establishing that K is as in (c). The fourth case is similar with

Q(
√
d(a2 − b2d)) split at p and the other two quadratic subfields of L inert

at p, once we see that the quadratic field just mentioned is indeed the one

fixed by the elements of order 4 in G. As L = Q(α, α′) with α =
√
a+ b

√
d,

α′ =
√
a− b

√
d, any element of G is determined by its action on α and α′.

The conjugates of α are S = {±α,±α′}. Given s1, s2 ∈ S, s1 6= ±s2 there is
a τ ∈ G such that τ(α) = s1 and τ(α′) = s2 (as #G = 8). Thus an element
of order 4 in G is given by τ with τ(α) = α′, τ(α′) = −α. In particular,

τ(
√
d) = −

√
d and hence τ fixes αα′

√
d, as required.

If p = 2, it is not hard to check that the following work instead:

◦ a ≡ d ≡ 1, b ≡ 0 (mod 8), d ∤ a in case (a),

◦ a ≡ 5, d ≡ 1, b ≡ 0 (mod 8), d ∤ a in case (b),

◦ a odd, b ≡ 2 (mod 4), d ≡ 1 (mod 8) in case (c),

◦ a odd, b ≡ 2 (mod 4), d ≡ 5 (mod 8), d ∤ a in case (e),

in addition to requiring a < 0, a2−b2d > 0 and d > 1 with d square-free. �

14. Weights in Serre’s Conjecture for Hilbert modular forms

In [BDJ], Buzzard, Diamond and Jarvis formulate a version of Serre’s
conjecture for Hilbert modular forms. Theorem 14.2 below will show that
their weight conjecture in the tame case is related, via an operation on the
Serre weights analogous toR in section 6, to the decomposition of irreducible
representations of GL2(F) over Qp when reduced mod p (where F is a finite
field of characteristic p).

Suppose that K is a totally real number field unramified at p and ρ :
GK � GL2(Fp) is a (continuous) irreducible, totally odd representation. A
Serre weight in this context is an isomorphism class of irreducible repre-
sentations of GL2(OK/p) ∼=

∏
p|pGL2(kp) over Fp where kp is the residue

field of K at p. Any such representation is isomorphic to
⊗

p|pWp with Wp

an irreducible representation of GL2(kp). The weight conjecture in [BDJ]
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defines these components independently of one another in terms of ρ|Ip . Let
us therefore restrict our attention to a single prime dividing p.

Fix an embedding K � Qp, determining a place p|p of K. Let Ip denote
the corresponding inertia subgroup. Let k′p be the quadratic intermediate

field of kp � Fp. Then there are canonical fundamental tame characters
ψ : Ip ։ k×p and ψ′ : Ip ։ (k′p)

×.

Let f = [kp : Fp]. For i ∈ Z/f , let λi be the pi-th power of k×p � F
×
p

induced by the embedding above and for i ∈ Z/2f let λi′ be the p
i-th power

of (k′p)
× � F

×
p induced by the above embedding.

Also let ψi = λi ◦ψ (resp. ψi′ = λi′ ◦ψ′) be the fundamental tame level f
(resp. 2f) characters of Ip.

To describe the set WSer,p of isomorphism classes of irreducible represen-
tations of GL2(kp) over kp (Serre weights at p), note first that theorem 4.6
together with remark 4.7 show that

WSer,p = {F (a, b) : 0 ≤ a− b ≤ pf − 1, 0 ≤ b < pf − 1}.
If we write a− b =

∑f−1
i=0 mip

i, b =
∑f−1

i=0 bip
i with 0 ≤ mi, bi ≤ p− 1 then

by the Steinberg tensor product theorem (thm. 4.5),

F (a, b) ∼=
f−1⊗

i=0

F (bi +mi, bi)
(pi).

Since F (bi +mi, bi) ∼= Symmi ⊗ detbi ,

F (a, b) ∼=
f−1⊗

i=0

(Symmi k2p ⊗ detbi)⊗kp,φi kp

where φ is the Frobenius element. This representation will also be denoted
by F

~m,~b
.

Suppose that ρ : GK � GL2(Fp) is (continuous) irreducible, totally odd
and assume that it is tame at p. Then we can write ρ|Ip ∼= χ1 ⊕ χ2. We say

that ρ|Ip is of niveau 1 if χpf−1
i = 1 (i = 1, 2) and of niveau 2 otherwise.

Let us recall the definition of the conjectured set of weights from [BDJ] in
the tame case. If ρ|Ip is of niveau 1 then Wconj,p(ρ) consists of all F~m,~b

such

that

(14.1) ρ|Ip ∼
(∏

J ψ
mi+1
i ∏

Jc ψ
mi+1
i

)∏
ψbi
i

for some J ⊂ Z/f . If ρ|Ip is of niveau 2 then Wconj,p(ρ) consists of all F~m,~b

such that

ρ|Ip ∼
(∏

J ψ
mi+1
i′ ∏

Jc ψ
mi+1
i′

)∏
ψbi
i

for some J ⊂ Z/2f projecting bijectively onto Z/f (under the natural map).
Here we are abusing notation: mi = mimod f and bi = bimod f .
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Associated to each ρ|Ip define a representation Vp(ρ|Ip) of GL2(kp) over

Qp. The Teichmüller lift will again be denoted by .̃ For characters χi :

k×p � Q
×
p , I(χ1, χ2) will denote the induction from the Borel subgroup of

upper-triangular matrices to GL2(kp) of χ1 ⊗ χ2, whereas for a character

χ : (k′p)
× � Q

×
p which does not factor through the norm (k′p)

× � k×p , the
cuspidal representation Θ(χ) of GL2(kp) was defined in §2.1:

Definition 14.1.

(i) If ρ|Ip ∼
(∏

ψmi
i ∏

ψni
i

)∏
ψci
i is of niveau 1,

Vp(ρ|Ip) = I(
∏
λ̃mi
i ,
∏
λ̃ni
i )⊗∏ λ̃cii .

(ii) If ρ|Ip ∼
(∏

ψmi
i′ ∏

ψpfmi

i′

)
∏
ψci
i is of niveau 2,

Vp(ρ|Ip) = Θ(
∏
λ̃mi
i′ )⊗∏ λ̃cii .

Note that in (ii), in the products involving ψi′ or λi′ , i runs over Z/2f ,
whereas in the other products i runs through Z/f . In particular, Vp(ρ|Ip ⊗
(χ ◦ ψ)) ∼= Vp(ρ|Ip)⊗ χ̃ for any character χ : k×p � F

×
p .

A regular Serre weight at p is any Serre weight F
~m,~b

with 0 ≤ mi < p− 1

for all i. The set of regular Serre weights at p is denoted by Wreg,p. Define
Rp :Wreg,p �Wreg,p by

Rp(F (a, b)) = F (b+ (p− 2)
∑f−1

i=0 p
i, a),

(compare this with (6.1) on page 24 in the GL3-case).

Theorem 14.2. Suppose that ρ : GK � GL2(Fp) is continuous, irreducible,
totally odd, and tame at p.

(i) Wconj,p(ρ) ∩Wreg,p = Rp(JH(Vp(ρ|Ip)) ∩Wreg,p).
(ii) There is a multi-valued function Rext,p : WSer,p � WSer,p that

extends Rp such that

Wconj,p(ρ) = Rext,p(JH(Vp(ρ|Ip))).

The following definition of Rext,p will be shown to satisfy part (ii) of the

theorem. Suppose F = F (a, b), 0 ≤ a − b ≤ pf − 1. Express a − b as∑f−1
i=0 mip

i (0 ≤ mi ≤ p− 1). Define a collection S(F ) of subsets of Z/f by:
S ∈ S(F ) if and only if for all s ∈ S, ms 6= 0 and there is an i such that
mi = p − 1, mi+1 = · · · = ms−1 = p − 2 and {i, i + 1, . . . , s − 1} ∩ S = ∅.
Then Rext,p(F ) is defined to be

{F (a′, b′) : ∃S ∈ S(F ), a′ ≡ b−
∑

i 6∈S

pi, b′ ≡ a−
∑

i∈S

pi (mod pf − 1)}.
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In particular, for this choice of Rext,p, if F is a regular Serre weight then
S(F ) = {∅} and Rp(F ) = Rext,p(F ) unless F is a twist of F ((p−2)

∑
pi, 0)

in which case Rext,p(F ) contains one more weight.
The proof will require several lemmas, proved below.

Lemma 14.3. Suppose that 0 ≤ mi ≤ p− 1 (i ∈ Z/f).
(i) Suppose that ρ|Ip is of niveau 1. Then F

~m,~b
is a constituent of Vp(ρ|Ip)

if and only if

ρ|Ip ∼
(∏

Jc ψ
p−1−mi
i ∏

J ψ
p−1−mi
i

)∏
ψmi+bi
i

for some J ⊂ Z/f .
(ii) Suppose that ρ|Ip is of niveau 2. Then F

~m,~b
is a constituent of Vp(ρ|Ip)

if and only if

ρ|Ip ∼
(∏

Jc ψ
p−1−mi

i′ ∏
J ψ

p−1−mi

i′

)∏
ψmi+bi
i

for some J ⊂ Z/2f projecting bijectively onto Z/f .

Let me explain the idea of the proof of the theorem. The above lemma is
the key tool that lets us relate the conjectured weight setWconj,p(ρ) with the

decomposition of Vp(ρ|Ip). This works perfectly for regular Serre weights.

In general the problem is that the number of constituents of Vp(ρ|Ip) might
be a lot smaller than #Wconj,p(ρ). This suggests looking for a multi-valued
function extending R. In view of lemma 14.3, we have to find rules to
convert an expression of the form

ρ|Ip ∼
(∏

J ψ
α(i)
i ∏

Jc ψ
α(i)
i

)
χ

for some J ⊂ Z/f , 0 ≤ α(i) ≤ p−1 and some character χ into an expression
of the form

ρ|Ip ∼
(∏

L ψ
β(i)
i ∏

Lc ψ
β(i)
i

)
χ′

for some L ⊂ Z/f , 1 ≤ β(i) ≤ p and some character χ′ in such a way that
the map

(α, χ) 7� (β, χ′)

does not depend on J and works equally well for the analogous expressions
of niveau 2. The theorem shows, roughly speaking, that there are enough
such rules to explain all of Wconj,p(ρ).

To make this principle concrete, consider f = 3 and ~α = (0, 1, p− 1) and
χ = 1. It is very instructive to check that there are such rules giving rise to
the following pairs (β, χ′):

((p, p, p− 2), 1), ((p, 2, p− 1), ψ−1
1 ), ((p, p, p), ψ−1

2 ).
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For example, here are two instances of the second rule:
(
ψ1

ψp−1
2

)
∼
(
ψ2
1

ψp
0ψ

p−1
2

)
ψ−1
1

and (
ψ1′ψ

p−1
2′

ψ4′ψ
p−1
5′

)
∼
(
ψp
3′ψ

2
1′ψ

p−1
2′

ψp
0′ψ

2
4′ψ

p−1
5′

)
ψ−1
1 .

In the end, these rules consist of multiple uses of the identity

ψj+1 = ψp
i ψ

p−1
i+1 · · ·ψp−1

j

when α(i) = · · · = α(j) = 0 (α(i) = 1 is allowed if ψi is itself to be expanded
in this manner!). Of course this works equally well for ψ(j+1)′ . To compare
with the formalism below, let us indicate in each case the corresponding
choice of I:

0,
−
1,

−
p− 1, 0,

+
1, p− 1, 0,

−
1,

+
p− 1.

Note that the last of these is not covered by the Rext,p we defined above. In
fact, it is not hard to see that axiom A4 below could be weakened to:

A4′ If an I-interval is positive, its successor does not lie in any I-
interval.

This corresponds to removing the condition ms 6= 0 in the definition of
Rext,p above. If we denote this modified version of Rext,p by R′

ext,p then it
is clear that any multi-valued function between Rext,p and R′

ext,p (i.e., such
that there is a containment pointwise) satisfies thm. 14.2(ii).

∗ ∗ ∗
For our purposes, an interval in Z/f is any stretch of numbers Ji, jK =

{i, i + 1, . . . , j} in Z/f . That is, the start and end points are remembered.
For example, J0, p − 1K 6= J1, 0K, even though the underlying sets are the
same. The successor of an interval Ji, jK is j + 1.

Suppose that α is a function Z/f � {0, 1, . . . , p− 1}, and suppose that I
a collection of disjoint intervals I in Z/f , each labelled with a sign (thought
of as pertaining to the entry following that interval). Define the set L[0,p−1]

to consist of all (α, I) which satisfy the following rules:

A1 For each interval I ∈ I, α(I) ⊂ {0, 1}.
A2 If i ∈ ⋃ I then α(i) = 1 if and only if i is start point of an I-interval

and i− 1 ∈ ⋃ I.
A3 If i 6∈ ⋃ I and α(i) = 0, then i− 1 ∈ ⋃ I.
A4 If an I-interval is positive, its successor does not lie in any I-interval

and has α-value in [0, p− 2].
A5 If an I-interval is negative, its successor lies in another I-interval

or has α-value in [2, p− 1].

Note that every function α : Z/f � {0, 1, . . . , p − 1} can be equipped
with intervals and signs satisfying these rules.
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Similarly, suppose that β is a function Z/f � {1, 2, . . . , p}, and suppose
that I a collection of disjoint intervals in Z/f , each labelled with a sign
(thought of as pertaining to the entry following that interval). Define the
set L[1,p] to consist of all (β, I) which satisfy the following rules:

B1 For each interval I ∈ I, β(I) ⊂ {p− 1, p}.
B2 The set of start points of I-intervals is β−1(p).
B3 If an I-interval is positive, its successor does not lie in any I-interval

and has β-value in [1, p− 1].
B4 If an I-interval is negative, its successor lies in another I-interval

or has β-value in [1, p− 2].

Note that every function β : Z/f � {1, 2, . . . , p} can be equipped with
intervals and signs satisfying these rules.

To define a map φ : L[0,p−1] � L[1,p], represent α as the string of numbers
α(0), α(1), . . . , α(f−1); underline each I-interval and put the corresponding
sign just after the last entry of the interval. In this way the function φ has
the following effect on each interval and its successor (it leaves all other
entries unchanged):

(1), 0, . . . , 0,
±
a, . . . 7� p, p− 1, . . . , p− 1,

±
a± 1, . . .

. . . , 0, 0,
−
1, 0, . . . 7� . . . , p− 1, p− 1,

−
p, p− 1, . . .

Lemma 14.4. The map φ is well defined and in fact a bijection.

Lemma 14.5. Suppose that α : Z/f � {0, 1, . . . , p−1}. Then the following
are equivalent for a subset S ⊂ Z/f :

(i) S ∈ S(F~p−~1−~α,~x) for some ~x.

(ii) S ∈ S(F~p−~1−~α,~x) for all ~x.

(iii) S is the set of successors of positive intervals in I for some I with
(α, I) ∈ L[0,p−1].

Proof of the theorem. (i) This is a straightforward application of lemma 14.3.
First consider the niveau 1 case. Suppose F ∈ Wconj,p(ρ) and F regular.
By twisting, we can assume without loss of generality that F = F~b−~1,~0
(1 ≤ bi ≤ p− 1) and

ρ|Ip ∼
(∏

J ψ
bi
i ∏

Jc ψ
bi
i

)

for some J ⊂ Z/f . By lemma 14.3, the regular Serre weight F
~p−~1−~b,~b

is a

constituent of Vp(ρ|Ip). Applying Rp produces F~b−~1,~0. Reversing the argu-

ment yields the other inclusion.
The niveau 2 case works exactly the same way.

(ii) Step 1: Show that Rext,p(F ) ⊂ Wconj,p(ρ) if F is a constituent of

Vp(ρ|Ip).
Without loss of generality (twisting ρ and F ) we may assume that F =

F~m,~0 (0 ≤ mi ≤ p − 1). If ρ|Ip has niveau 1, then by lemma 14.3 we can
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write

(14.2) ρ|Ip ∼
(∏

J ψ
p−1−mi
i ∏

Jc ψ
p−1−mi
i

)∏
ψmi
i

for some subset J ⊂ Z/f . Define α : Z/f � {0, 1, . . . , p−1}, i 7� p−1−mi.
Given S ∈ S(F ), we can by lemma 14.5 choose a collection I of signed
intervals such that (α, I) ∈ L[0,p−1] and S is the set of successors of positive
I-intervals. Let J+ (resp. J−) denote those elements of J that succeed
positive (resp. negative) intervals of I. Similarly define Jc

+ and Jc
−. Let

J0 (resp. Jc
0) denote those elements of J (resp. Jc) that do not lie in any

interval of I. Note that S = J+ ∪ Jc
+. Then

(14.3) ρ|Ip ∼
(
χ1

χ2

)∏

S

ψ−1
i

∏

i

ψmi
i

where

χ1 =
∏

J+

ψ
α(i)+1
i

∏

J0\(J+∪J−)

ψ
α(i)
i

∏

J0∩J−

ψ
α(i)−1
i

∏

j+1∈J−∪Jc
+

Ji,jK∈I

(ψp
i ψ

p−1
i+1 · · ·ψp−1

j )

and χ2 is obtained by interchanging the roles of J and Jc. Note that each
ψi appears with non-zero exponent in precisely one of χ1, χ2 (the way they
are expressed here); call this non-zero exponent β(i). It is not hard to see
that φ(α, I) = (β, I). Thus

χ1 =
∏

L

ψ
β(i)
i , χ2 =

∏

Lc

ψ
β(i)
i

for some L ⊂ Z/f and all exponents β(i) are in [1, p], so (14.3) gives rise to a
Serre weight F (A,B) ∈ Wconj,p(ρ) (by (14.1)). Combining equations (14.2)
and (14.3) we find that

det(ρ|Ip ·
∏
ψ−mi
i ) = ψ

−
∑

mip
i

0 = ψ
∑

(β(i)−2·1S(i))p
i

0 .

Using this, we easily see that F (A,B) satisfies

A ≡ −
∑

Sc

pi, B ≡
∑

mip
i −
∑

S

pi (mod pf − 1).

We are done except for showing that any other weight F (A′, B′) satisfying
these congruences is in the conjectured weight set. But these congruences
determine F (A,B) except for the pairs {F (x, x), F (x + pf − 1, x)} and for
all x, F (x, x) ∈ Wconj,p(ρ) if and only if F (x + pf − 1, x) ∈ Wconj,p(ρ) (this
follows directly from the definition). Therefore Rext,p(F ) ⊂Wconj,p(ρ).

If ρ|Ip has niveau 2, then

ρ|Ip ∼
(∏

J ψ
p−1−mi

i′ ∏
Jc ψ

p−1−mi

i′

)∏
ψmi
i

for some J ⊂ Z/2f projecting bijectively onto Z/f . The argument is now
formally identical to the niveau 1 case provided we replace each ψi by ψi′
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and “Ji, jK ∈ I” in the subscript of the right-most product in the expression

for χ1 by “Ji, jK ∈ Ĩ”, where Ĩ is the set of intervals in Z/2f which project
bijectively onto the I-intervals in Z/f .

Step 2: Show that all weights F in Wconj,p(ρ) are obtained in this way.
If ρ|Ip has niveau 1, then we can twist by characters and assume without

loss of generality that F = F~β−~1,~0
(1 ≤ β(i) ≤ p) and

(14.4) ρ|Ip ∼
(∏

L ψ
β(i)
i ∏

Lc ψ
β(i)
i

)

for some L ⊂ Z/f . Define a collection I of disjoint signed intervals in Z/f
which is in bijection with β−1(p), as follows. Whenever β(i) = p and i ∈ L
(resp. Lc) choose j such that all numbers in β(Ji, jK−{i}) ⊂ {p−1}, Ji, jK ⊂ L
(resp. Lc) and j is maximal with respect to these properties (i.e., j cannot
be replaced by j + 1). In that case Ji, jK is the I-interval corresponding to
i ∈ β−1(p). We let it be negative if and only if β(j + 1) = p or j + 1 ∈ L
(resp. Lc). Observe that (β, I) ∈ L[1,p].

Let ΣL (resp. ΣLc) be the set of successors of I-intervals contained in L
(resp. Lc). The notations L0, L

c
0 have the same meaning as in the previous

part. Note that S = ΣL ∩ Lc
0 ∪ ΣLc ∩ L0 is the set of successors of positive

I-intervals. We see that

(14.5) ρ|Ip ∼
(
χ1

χ2

)∏

S

ψi

where

χ1 =
∏

L0∩ΣLc

ψ
β(i)−1
i

∏

L0\(ΣL∪ΣLc )

ψ
β(i)
i

∏

L0∩ΣL

ψ
β(i)+1
i

∏

ΣL\(L0∪Lc
0)

ψi

and χ2 is obtained by interchanging the roles of L and Lc. Every ψi occurs
with a non-zero exponent in at most one of χ1, χ2 (the way they are ex-
pressed here); call this exponent α(i) ∈ {0, 1, . . . , p−1}. By lemma 14.3, tak-
ing into account the twist, this decomposition shows that F ′ = F~p−~1−~α,~α+ ~1S

is a constituent of Vp(ρ|Ip) (here 1S is the characteristic function of S).

It is not hard to see that φ−1(β, I) = (α, I). In particular, by lemma 14.5
S ∈ S(F ′). Equations (14.4), (14.5) yield

det(ρ|Ip) = ψ
∑

(α(i)+2·1S(i))p
i

0 = ψ
∑

β(i)pi

0 .

We see that the weight in Rext,p(F
′) corresponding to S ∈ S(F ′) is F~β−~1,~0

=

F , and we are done.
If ρ|Ip has niveau 2, the argument is completely analogous (as in Step 1).

�



74 FLORIAN HERZIG

Proof of lemma 14.3. (i) First let us show the implication “⇒”. Without
loss of generality,

ρ|Ip ∼
(∏

ψni
i

1

)

for some 0 ≤ ni ≤ p− 1. By [Dia], prop. 1.1, the constituents of Vp(ρ|Ip) are
the F

~cJ ,~dJ
where J ⊂ Z/f and

cJ,i =

{
ni + δJ(i)− 1 if i ∈ J

p− 1− ni − δJ(i) if i 6∈ J

dJ,i =

{
0 if i ∈ J

ni + δJ(i) if i 6∈ J

where δJ is the characteristic function of {i+1 : i ∈ J}. Also, the convention
is that F

~cJ ,~dJ
= (0) if cJ,i = −1 for some i. Now note that

ρ|Ip ∼
(∏

Jc ψ
ni+δJ (i)
i ∏

J ψ
p−ni−δJ (i)
i

)
∏

J

ψ
ni+δJ (i)−1
i

∏

Jc

ψp−1
i .

Conversely, suppose without loss of generality that ρ|Ip is as in the state-

ment of the lemma with~b = 0. Note that whenevermi = p−1 it is irrelevant
whether i ∈ J or not. Thus for all such i we can prescribe whether or not
i ∈ J . There is a unique way to alter J in this manner such that for all i
with mi = p − 1, i ∈ J ⇔ i − 1 ∈ J (the latter is equivalent to δJ(i) = 1).
Note that

Vp(ρ|Ip) ∼= I(
∏
Jc

λp−1−mi
i

∏
J

λmi+1−p
i , 1)⊗∏λmi

i

∏
J

λp−1−mi
i

∼= I(
∏
Jc

λ
p−1−mi−δJ (i)
i

∏
J

λ
mi+1−δJ (i)
i , 1)⊗∏λmi

i

∏
J

λp−1−mi
i .

By our choice of J , all exponents of the first character in the induction are
contained in {0, 1, . . . , p−1}. It follows from [Dia], prop. 1.1 (using the same

subset J) that F~m,~0 is a constituent of Vp(ρ|Ip), as required.
(ii) This works completely analogously, it is only more cumbersome to

write out. Note that we can assume ~m 6= ~p−~1 as on the one hand

dimF
~p−~1,~b

= pf > pf − 1 = dimVp(ρ|Ip)

and on the other hand ρ|Ip cannot be unramified up to twist (being of
niveau 2). �

Proof of lemma 14.4. This is straightforward. �

Proof of lemma 14.5. Note that the first two statements are equivalent, by
the definition of S(F ), to

(i′) For all s ∈ S,
(a) α(s) 6= p− 1.
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(b) There is an i ∈ Z/f such that Ji, s− 1K ∩ S = ∅ and α(i) = 0,
α(i+ 1) = · · · = α(s− 1) = 1.

We will now show that (i′) ⇔ (iii).
First suppose that (α, I) ∈ L[0,p−1] and let S be the set of successors of

positive intervals. Then by property A4 (see p. 70), α(s) 6= p − 1 if s ∈ S.
Moreover, α(s− 1) ∈ {0, 1} and s− 1 6∈ S (as s− 1 is in an interval). If it is
1, by property A2 the preceding entry lies in a different (negative) interval
and iterating this process gives the desired interval Ji, s− 1K. Note that the
process has to stop (i.e., eventually we hit a 0) because s ∈ S cannot itself
lie in an interval (by A4).

Conversely, suppose given S satisfying (i) and (ii). Here is a way to
define I having S as set of successors of positive intervals and such that
(α, I) ∈ L[0,p−1] (in fact it is the unique way). It is easier to define

⋃ I
first: we let i ∈ ⋃ I if and only if there is a j such that Jj, iK ⊂ Sc and
α(j) = 0, α(j + 1) = · · · = α(i) = 1 (in particular, this whole interval will
be contained in

⋃ I). We let i ∈ ⋃ I be start point of an I-interval if and
only if i − 1 6∈ ⋃ I or i − 1 ∈ ⋃ I and α(i) = 1. We let an I-interval be
positive if and only if its successor is in S.

It is straightforward to see that (α, I) ∈ L[0,p−1]; by definition S is the
set of successors of positive intervals. �
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Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, 1974), pages 109–117.
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