
Chapter 2

Rings and Modules

2.1 Rings

Definition 2.1.1. A ring consists of a set R together with binary operations+ and · satisfying:

1. (R,+) forms an abelian group,

2. (a · b) · c = a · (b · c) ∀a,b, c ∈ R,

3. ∃1 , 0 ∈ R such that a· 1 = 1 · a = a ∀a ∈ R, and

4. a · (b+ c) = a · b+ a · c and(a+ b) · c = a · c+ b · c ∀a,b, c ∈ R.

Note:

1. Some people (e.g. Dummit+ Foote) do not require condition 3, and refer to a “ring with
identity” if they want to assume· has an identity element.

2. People who include existence of a unit in their defn. of a ring refer to a “ring without identity”
for an object satisfying the other three axioms. Some people(e.g. Jacobson) call this a “rng”.

3. Some people (e.g. Lang) do not require 1, 0 in condition 3.

Definition 2.1.2. R is calledcommutativeif its multiplication is commutative, ie.

ab= ba ∀a,b ∈ R.

Definition 2.1.3. A ring homomorphismfrom R to S is a function f: R 7→ S such that∀a,b ∈ R:

1. f(a+ b) = f (a) + f (b),
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2. f(ab) = f (a) f (b), and

3. f(1) = 1.

A bijective ring homomorphism is called anisomorphism.

Definition 2.1.4. A subring of R is a subset A which forms a ring such that the inclusion A֒→ R is a
ring homomorphism. A subgroup I of the abelian group(R,+) is called a (two -sided)ideal if

x ∈ I , r ∈ R⇒ rx ∈ I and xr ∈ I .

Similarly if a subgroup I satisfies
x ∈ I , r ∈ R⇒ rx ∈ I ,

I is called aleft ideal, and if it satisfies

x ∈ I , r ∈ R⇒ xr ∈ I ,

it is called aright ideal.

Example 2.1.5.If f : R 7→ S is a homomorphism thenker f := {x ∈ R | f (x) = 0} is an ideal in R.
(An ideal is always a subrng but never a subring, unless it is all of R.)

Theorem 2.1.6.Let I ⊆� R be a proper ideal. Then∃ a ring R/I and a surjective ring homomorphism
f : R 7→→R/I such thatker f = I.

Proof. Define an equivalence relation onRby x ∼ y ⇐⇒ x− y ∈ I . Let

R/I := {equiv. classes}.

Define operations onR/I by

[x] + [y] := [x+ y],

[x] · [y] := [xy].

Check that these are well-defined and produce a ring structureonR/I .
Define f : R 7→ R/I by f (x) = [x]. f is a ring homomorphism. Moreover,f (x) = 0 iff [x] = 0 iff

x = x− 0 ∈ I . �

Definition 2.1.7. The ring R is called adivision ring if (R− {0}, ·) forms a group. A commutative
division ring is called afield.
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An elementu ∈ R for which∃v ∈ R such thatuv= vu= 1 is called aunit .
Notation: R× = {units of R}. This forms a group under multiplication.

A non-zero elementx ∈ R is called azero divisor if ∃y , 0 such that eitherxy = 0 or yx = 0. A
commutative ring with no zero divisors is called anintegral domain.

Proposition 2.1.8. If x , 0 is not a zero divisor and xy= xz then y= z.

Proof. x(y− z) = 0 andx is not a zero divisor so eitherx = 0 ory− z= 0. But x , 0 soy = z. �

Theorem 2.1.9(First Isomorphism Theorem). Let f : R 7→ S be a ring homomorphism. Then
R/ ker f � Im f .

Theorem 2.1.10(Second Isomorphism Theorem). Let A⊂ R be a subring and let I⊆� R be a proper
ideal. Then A+ I := {a+ x | a ∈ A, x ∈ I } is a subring of R, A∩ I is a proper ideal in A, and

(A+ I )/I � A/(A∩ I ).

Theorem 2.1.11(Third Isomorphism Theorem). Let I ⊂ J be proper ideals of R. Then J/I := {[x] ∈
R/I | x ∈ J} is an ideal in R/I, and

R/I
J/I
� R/J.

Theorem 2.1.12(Fourth Isomorphism Theorem). Let I be a proper ideal of R. Then the correspon-
dence J7→ J/I is a bijection between the ideals of J containing I and the ideals of R/I.

Let I , J be ideals inR. Define ideals

I + J := {x+ y | x ∈ I , y ∈ J},
I ∩ J,

IJ :=















n
∑

i=1

xiyy | n ∈ N, xi ∈ I , yi ∈ J















Then
IJ ⊂ I ∩ J ⊂ I ∪ J ⊂ I + J.

(Note thatI ∪ J may not be an ideal.)I + J is the smallest ideal containing bothI andJ.
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2.2 Maximal and Prime Ideals

Definition 2.2.1. An ideal M⊆� R is called amaximal idealif ∄ an ideal I s.t. M⊆� I ⊆� R.

Lemma 2.2.2.Given an ideal I⊆� R,∃ a maximal ideal M s.t. I⊂ M.

Proof. Let
S = {idealsJ | I ⊂ J ⊆� R}.

ThenS is a partially ordered set (ordered by inclusion). IfC ⊂ S is a chain (ie. a totally ordered
subset) then

J =
⋃

C∈C
C

is an ideal which forms an upper bound forC in S (it is indeed a proper ideal since 1< J).
∴ Zorn’s Lemma⇒ S has a maximal elementM. �

For the rest of this section, suppose thatR is commutative.

Proposition 2.2.3.R is a field⇐⇒ the only ideals of R are{0} and R.

Proof.
⇒: Let R be a field and letI ⊂ Rbe an ideal. IfI , {0} then∃x , 0 ∈ I .

R a field⇒ ∃y ∈ R such thatxy = yx = 1. SinceI is an ideal, 1∈ I , so r ∈ I ∀r ∈ R. Thus
I = R.

⇐: Suppose the only ideals inR are{0} andR. Let x , 0 ∈ R. Let

I = Rx := {rx | r ∈ R}.

I is an ideal andx = 1x ∈ R, soI , 0. HenceI = R, so 1∈ I . ie. 1= yzfor somey ∈ R.

∴ Every x , 0 ∈ Rhas an inverse, soR is a field.

�

Corollary 2.2.4. Let f : F 7→ S be a ring homomorphism where F is a field. Then f is injective.

Proof. ker f is a proper ideal inF, so kerf = 0. �

Theorem 2.2.5.M is a maximal ideal⇐⇒ R/M is a field.

Proof. The 4th iso. thm. says∃ a bijection between the ideals ofR containingM and the ideals of
R/M.
∴ ∃I s.t.M ⊆� I ⊆� R ⇐⇒ ∃J s.t.{0} ⊆� J ⊆� R/M. ie. M is not maximal⇐⇒ R/M is not a field. �
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Definition 2.2.6. An idealP ⊆� R is called aprime idealif ab ∈ P implies a∈ P or b ∈ P.

Theorem 2.2.7.P is a prime ideal⇐⇒ R/P is an integral domain.

Proof.
⇒: SupposeP is a prime ideal. If [xy] = [x][y] = 0 in R/P thenxy ∈ P, so eitherx ∈ P or y ∈ P.

ie. either [x] = 0 or [y] = 0. ThusR/P has no zero divisors.

⇐: SupposeR/P is an integral domain. Ifxy ∈ P then [x][y] = 0 in R/P, so [x] = 0 or [y] = 0. ie.
eitherx ∈ P or y ∈ P.

�

Corollary 2.2.8. A maximal ideal is a prime ideal.

Proof. A field is an integral domain. �

Notation: a | b means∃c s.t.b = ac (saya dividesb).

Proposition 2.2.9. In an integral domain, if a| b and b| a then b= ua for some unit u.

Proof. a | b⇒ b = ua for someu ∈ R. b | a⇒ a = vb for somev ∈ R.
∴ b = ua= uvb, and sinceb is not a zero divisor, 1= uv. Thus,u is a unit. �

Definition 2.2.10. q is called agreatest common divisorof a and b if:

1. q | a and q| b, and

2. If c also satisfies c| a, c | b then c| q.

Notation: q = gcd(a,b) meansq is the greatest common divisor ofa andb.
We saya andb arerelatively prime if gcd(a,b) = 1.

Proposition 2.2.11.Let R be an integral domain. If q= gcd(a,b) and q′ = gcd(a,b) then q′ = uq for
some unit u. Conversely, if q= gcd(a,b) and q′ = uq where u is a unit then q′ = gcd(a,b).

Proof. Let q = gcd(a,b). If q′ = gcd(a,b) thenq′ | q andq | q′ soq′ = uq for some unitu.
Conversely, ifq′ = uq for some unitu thenq′ | q soq′ | a andq′ | b. Also q | q′ so wheneverc | a

andc | b, c | q soc | q′. �

Definition 2.2.12. A non-unit p, 0 ∈ R is called aprime if p | ab⇒ p | a or p | b.
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Notation: Let x ∈ R. (x) := Rx = {rx | r ∈ R} is called theprincipal ideal generated byx. Thus
y ∈ (x) iff x | y.

Likewise, forx1, . . . , xn ∈ R, let (x1, . . . , xn) denote the following ideal:

{r1x1 + · · · + rnxn | r1, . . . , rn ∈ R},

ie. the ideal generated byx1, . . . , xn.

Proposition 2.2.13.If p , 0 then p is prime⇐⇒ (p) is a prime ideal.

Proof.
⇒: Supposep is prime. Ifab ∈ (p) thenab= rp for somer, sop | ab. Sop | a or p | b. ie. a ∈ (p)

or b ∈ (p).

⇐: Suppose (p) is a prime ideal. Ifp | ab thenab ∈ (p) soa ∈ (p) or b ∈ (p).

∴ p | a or p | b.

�

Nonzero elementsx andy are calledassociatesif ∃ a unitu s.t. x = uy, y = u−1x. Thus,x, y are
associate⇐⇒ (x) = (y). ie. For associatesx andy, x | a iff y | a.

x ∼ y iff x, y are associate forms an equivalence relation onR− {0}.

Definition 2.2.14. x ∈ R is irreducible if x , 0, x is not a unit, and whenever x= ab, either a is a
unit or b is a unit.

Definition 2.2.15. Ideals I and J are calledcomaximalor relatively primeif I + J = R.

Theorem 2.2.16(Chinese Remainder Theorem). Let R be a commutative ring. Let

I1, . . . , Ik ⊂ R

be ideals. Suppose Ii and Ij are comaximal whenever i, j. Let

φ : R 7→ R/I1 × R/I2 × · · · × R/Ik

r 7→ (r + I1, r + I2, . . . , r + Ik).

Thenφ is surjective and
kerφ = I1 ∩ I2 ∩ · · · ∩ Ik = I1 · · · Ik.
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Proof. Consider first the case whenk = 2. SupposeI , J are comaximal. Then∃x ∈ I , y ∈ J s.t.x+y =
1. Soφ(x) = (0,1) andφ(y) = (1,0). Since (0,1) and (1,0) generateR/I × R/J, φ is surjective.

Clearly kerφ = I ∩ J, and in general,IJ ⊂ I ∩ J. For anyc ∈ I ∩ J,

c = c1 = cx+ cy ∈ IJ.

∴ IJ = I ∩ J.
General case: setI = I1, J = I2 · · · Ik. For eachi = 2, . . . , k, ∃xi ∈ I andyi ∈ I i s.t. xi + yi = 1.

Sincexi + yi ≡ yi mod I ,

1 = 1 · · · 1 = (x2 + y2)(x3 + y3) · · · (xk + yk) ≡ y2 · · · yk mod I

So 1∈ I + J.
∴ R 7→→R/I × R/J and by induction,

R/I × R/J 7→→R/I1 × R/I2 × R/I3 × · · · × R/Ik

and
I1I2 · · · Ik = IJ = I ∩ J = I1 ∩ I2 ∩ · · · Ik.

�
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2.3 Polynomial Rings

Let Rbe a ring.

R[x] := {anxn
+ an−1xn−1

+ · · · + a1x+ a0 | n ≥ 0 ∈ Z andaj ∈ R for j = 0, · · · ,n}

(modulo 0xn
+ an−1xn−1

+ · · · + a0 ∼ an−1xn−1
+ · · · + a0). Operations are

n
∑

i=1

ai x
i
+

n
∑

i=1

bi x
i :=

n
∑

i=1

(ai + bi)x
i , and















n
∑

i=1

ai x
i





























m
∑

i=1

bi x
i















:=
n+m
∑

k=0















k
∑

i=0

aibk−i















xk.

More formally,

(R[x],+) =
∞

⊕

n=0

R,

with multiplication defined by

(ai)i≥0(bj) j≥0 = (ck)k≥0 whereck =

k
∑

i=0

aibk−i .

Inductively, set
R[x1, . . . , xn] := (R[x1, . . . , xn−1])[ xn].

(called thepolynomial ring in n variables). For an arbitrary setS, set

R[S] :=
⋃

T=finite subset ofS

R[T].

If q(x) =
∑n

i=0 ai xi andan , 0 thenn is called thedegreeof q. EmbedR ֒→ R[x] via

r 7→ r (polynomial of degree 0).

Some properties:

1. R[x] is commutative⇐⇒ R is commutative.

2. R[x] is an integral domain⇐⇒ R is an integral domain.

3. If R is an integral domain thenq(x) ∈ R[x] is invertible ⇐⇒ q(x) ∈ R and is invertible inR.
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Proposition 2.3.1. Let I ⊂ R be an ideal. Let I[x] denote the ideal of R[x] generated by I. Then
R[x]/I [x] � (R/I )[x].

Proof. Defineφ : R[x] 7→ (R/I )[x] by

φ(
∑

ai x
i) :=

∑

ai x
i .

Thenφ is onto and kerφ = I [x], so
R[x]/I [x] � (R/I )[x].

�

Corollary 2.3.2. I [x] is a prime ideal⇐⇒ I is a prime ideal.
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2.4 Modules

Definition 2.4.1. Let R be a ring. A (left) R-moduleconsists of an abelian group(M,+), together
with a function· : R× M 7→ M s.t.

1. (r + s)m= rm+ sm∀r, s ∈ R,m ∈ M,

2. r(m+ n) = rm+ rn ∀r ∈ R,m,n ∈ M,

3. (rs)m= r(sm) ∀r, s ∈ R,m ∈ M, and

4. 1m= m∀m ∈ M.

If R is a field, an R-module is also called avector spaceover R.

Definition 2.4.2. An R-module homomorphismf : M 7→ N is a function satisfying

1. f(a+ b) = f (a) + f (b) ∀a,b ∈ M and

2. f(ra) = r f (a) ∀r ∈ R,a ∈ M.

If R is a field, an R-module homomorphism is also called alinear transformation. A bijective homo-
morphism is called anisomorphism.

Definition 2.4.3. A submoduleof M is a subset A which forms an R-module s.t. the inclusion A֒→ M
is an R-module homomorphism. The R-module M issimpleif its only submodules are M and{0}.

Example 2.4.4.
1. M = R with R× M 7→ M given by mult. in R. Submodules of R are left ideals.

2. R= Z and M= abelian grp., with

n · x := x+ · · · + x, for n ≥ 0, and

(−n) · x := −(n · x), for n ≥ 0.

Conversely, anyZ-module is just an abelian group.

3. F a field, V a vector space over F, T: V 7→ V a linear transformation. Let R= F[x] and
M = V. Define

xn · v := Tn(v) = T(Tn−1v) ∀v ∈ V

and extend linearly to an action of F[x] on V.
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If f : M 7→ N is anR-module homomorphism then kerf is a submodule ofM and Imf is a
submodule ofR. If M,N areR-modules, set

homR(M,N) := {R-module homomorphisms fromM to N}.

homR(M,N) is an abelian group in general, and ifR is commutative, it becomes anR-module via

(r f )(m) = f (rm).

Let N be a submodule ofM. On the abelian groupM/N, define the action ofR by r ·m := r ·m.
This is well-defined and produces anR-module structure onM/N.

Theorem 2.4.5.
1. First Isomorphism Theorem

Let f : M 7→ N be an R-module homomorphism. Then M/ ker f � Im f .

2. Second Isomorphism Theorem Let A, B be submodules of M. Then

(A+ B)/B � A/(A∩ B)

where A+ B = {a+ b | a ∈ A,b ∈ B}, which itself forms a submodule.

3. Third Isomorphism Theorem Let A⊂ B ⊂ M be R-modules. Then

M/A
B/A

� M/B.

4. Fourth Isomorphism Theorem Let N⊂ M be R-modules. Then A↔ A/N sets up a bijection
between the submodules of M containing N and the submodules ofM/N.

A sequence

0 > A
j

> B
f

> C > 0

of R-module homomorphisms s.t.j is injective, f is surjective, and kerf = Im j is called ashort exact
sequenceof R-modules. 1st iso. thm.⇒ C � B/Im j.

Proposition 2.4.6.Let

0 > A
j

> B
f

> C > 0

be a short exact sequence of R-modules. Then TFAE:
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1. ∃s : C 7→ B s.t. f s: C 7→ C is an isomorphism.

2. ∃r : B 7→ A s.t. r j : A 7→ A is an isomorphism.

3. B� A⊕C.

Remarks:

1. The fact that the above are isomorphic as abelian groups was discussed in the section on semidi-
rect products, since for abelian groups, all subgroups are normal and semidirect products be-
come products.

2. As discussed in semidirect product section, 2⇐⇒ 3, even for nonabelian groups, but in that
situation, 1; 2 or 3.

Given a setS, ∃ anR-moduleM having the property that for anyR-moduleM,

homR(M,N) = morphismssets(S,N).

ie. An R-module homomorphism fromM is uniquely determined by the images of the elts. ofS.
Explicitly,

M � RS ≡
⊕

S

R.

M is called thefree R-module with basisS. An R-module which possesses a basis is called a free
R-module. An arbitrary elt. of a freeR-module can be uniquely written as a finite linear combination

x =
∑

r i si

wherer i ∈ R andsi ∈ S. WhenR = Z, the freeZ-module onS is also called thefree abelian group
onS, denotedFab(S).

Let M be a rightR-mod. and letN be a leftR-mod. Define an abelian groupM ⊗R N (tensor
product ofM,N overR) by

M ⊗R N = Fab(M × N)/ ∼
where

1. (m,n1 + n2) ∼ (m,n1) + (m,n2) ∀m ∈ M,n1,n2 ∈ N,

2. (m1 +m2,n) ∼ (m1,n) + (m2,n) ∀m1,m2 ∈ M,n ∈ N, and

3. (m · r,n) ∼ (m, r · n) ∀r ∈ R,m ∈ M,n ∈ N.
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Write m⊗ n for the equiv. class of (m,n) in M ⊗R N. So an arbitrary elt. ofM ⊗R N has the form

k
∑

i=1

ci(mi ⊗ ni)

wheremi ∈ M,ni ∈ N, ci ∈ Z.
Note thatR⊗R N � N andM ⊗R R� M.
M ⊗R N has the universal property:q is R-bilinear and given bilinearf : M × N 7→ A,

M × N
q
>> M ⊗R N

@
@

@
@

@
f

R

A

∃! f

∨

f bilinear means:

f (m1 +m2,n) = f (m1,n) + f (m2,n),

f (m,n1 + n2) = f (m,n1) + f (m,n2), and

f (mr,n) = f (m, rn)

If R is commutative thenM ⊗R N becomes anR-module via

r · (m⊗ n) := m⊗ (r · n).

More generally, ifM is anR-bimodule (ie. has both a left and a rightR-module action which commute
with each other) thenM ⊗R N becomes a leftR-module via

r · (m⊗ n) := (r ·m) ⊗ n.

Notice thatR is anR-bimodule even ifR is not commutative. (ie. Left multiplication commutes with
right multiplication –R is associative.)

More generally, letf : R 7→ S be a ring homomorphism. ThenS becomes anR-bimodule via

r · s := f (r)s

s · r := s f(r)

This induces a map fromR-modules toS-modules given byN 7→ S ⊗R N.
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Example 2.4.7(Extension of Coefficients). Let N be a vector space over a field F. Let F֒→ K be an
extension field. Elts. of N are finite sums

∑

aiei

where{ei}i∈T forms a basis for N. Then elts. of K⊗F N are finite sums
∑

aiei

where ai ∈ K, i ∈ T. (So{ei} forms a basis for K⊗F N as a vector space over K.)
In general,

M ⊗R (
⊕

i∈T
Ni) �

⊕

i∈T
(M ⊗R Ni),

so
S ⊗R (

⊕

i∈T
R) �

⊕

i∈T
(S ⊗R R) �

⊕

i∈T
S.

Thus if N is a free R-module with basis T then S⊗R N forms a free S -module with basis T.

Theorem 2.4.8(Steinitz Exchange Theorem). Let R be a commutative ring. Let B and T be bases for
a free R-module N. ThenCardB = CardT.

Proof. If g : R 7→ S is any ring homomorphism thenS⊗R N is a freeS-module with bothB andT as
bases. Lettingg : R 7→→R/M whereM is a maximal ideal inR, we may reduce to the case whereR is
a field.

Case I: At least one of CardB,CardT is finite. Say CardB ≤ CardT and suppose CardB < ∞. Write
B = {b1, . . . ,bn}. ∃t1 ∈ T s.t. whenti is written in the basisB, the coeff. of b1 is nonzero (or else
b2, . . . ,bn would spanN). Then{t1,b2, . . . ,bn} forms a basis forN. Inductively,∀ j = 1, . . . ,n,
find t j s.t.{t1, . . . , t j ,bj+1, . . . ,bn} forms a basis forN. Then{t1, . . . , tn} forms a basis forN, so

T = {t1, . . . , tn}

and|T | = |B|.

Case II: Both CardB and CardT are infinite. For eachb ∈ B, set

Tb = {elts. ofT occuring in the expression forb in basisT} ∈ 2T .

ThenTb is finite ∀b. Define f : B 7→ 2T by f (b) = Tb. If X ⊂ T is finite with say|X| = n, at
mostn elts. ofB lie in the span ofX. So| f −1(X)| ≤ |X|.
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B =
⋃

X ⊂ T
X finite

f −1(X) =
∞
⋃

n=1

⋃

X ⊂ T
|X| = n

f −1(X).

SinceT is infinite, the cardinality of

{X ⊂ T | |X| = n}

is equal to the cardinality of|T |. Since| f −1(X)| ≤ |X|,

CardB = Card
∞
⋃

n=1

⋃

X ⊂ T
|X| = n

f −1(X)

≤ Card(
∞
⋃

n=1

CardT)

= CardT.

Similarly, CardT ≤ CardB.

�

Note: Once we reduced to the case of a division ring, we no longer needed the commutativity ofR,
so the thm. also holds wheneverR is a division ring, or indeed whenR admits a homomorphism to a
division ring. However, we used commutativity ofR to produce our mapR 7→ (division ring), since

R/2-sided max. ideal

need not be a division ring ifR is not commutative.
If R is a commutative ring andN is a freeR-module, the cardinality of any basis forN is called

therank of N. If R is a field then everyR-module is free and its rank is called itsdimension.

Proposition 2.4.9. If φ : M 7→→N is a surjective R-module homomorphism and N is a free R-module
then∃ an R-module homomorphism s: N 7→ M s.t.φs= 1N. In particular, M � N ⊕ kerφ.

Proof. Let S be a basis forN. For eachx ∈ S, choosem ∈ M s.t.φ(m) = x and sets(x) = m. SinceN
is free, this extends (uniquely) to anR-module map. �
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An R-moduleP is calledprojective if given a surjectiveR-mod. homom.φ : M 7→ P, ∃ anR-mod.
homom.s : P 7→ M s.t.φs = 1P. Equivalently,P is surjective iff ∃Q s.t. P ⊕ Q � RN for someN.
Equivalently,P is projective iff

P

@
@

@
@

@

θ

R

M

∃s

∨ f
>> N > 0

∃ a lift s (not necessarily unique).
∴ Free⇒ Projective.

Example 2.4.10(A projective module which is not free). Let R= Mn×n(F) (n×n matrices with entries
in a field F), with n> 1. Let

P =























∗ 0 · · · 0
...

...
...

∗ 0 · · · 0























(matrices which are0 beyond the first column). Then P forms a left ideal in R, ie. P isa left R-module.
Let

Q =























0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗























(matrices which are0 in the first column). Then P⊕ Q = R, so P is projective. But P is not free,
because if P� Rs then, regarded as vector spaces over F, we would have

n = dimP = dimRs
= sn2.

This is a contradiction since n> 1.

Definition 2.4.11. Let R be an integral domain. An elt. x in an R-module M is calleda torsion
elementif ∃r , 0 ∈ R s.t. rx= 0. M is called atorsion moduleif x is a torsion elt.∀x ∈ M. M is
calledtorsion-freeif it has no torsion elements.

x, y torsion elts.⇒ x + y is a torsion elt. Ifx is a torsion elt. andr ∈ R thenrx is a torsion elt.
Hence,

TorM := {x ∈ M | x is a torsion elt.}
forms a submodule ofM.
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Theannihilator of x ∈ M is the left ideal

Ann(x) := {r ∈ R | rx = 0}.

Theannihilator of M is the 2-sided ideal

AnnM := {r ∈ R | rx = 0 ∀x ∈ M}.
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2.5 Localization and Field of Fractions

From the 4th isomorphism theorem we get:

Proposition 2.5.1.A left ideal I is maximal if and only if the quotient module R/I is a simple (left)
R-module.

Note: It is important to remember thatR/I (when I is a left ideal) is a quotient module and not
(necessarily) a quotient ring.

Definition 2.5.2. A ring with a unique maximal left ideal is called alocal ring.

While it appears initially that replacing “left ideal” by “right ideal” might give a different concept,
as we shall see, “left local” equals “right local”. That is, aring has a unique maximal left ideal if
and only if it has a unique maximal right ideal. Note however that while, as we shall see, a unique
maximal left ideal must in fact be a 2-sided ideal, the existence of a unique maximal 2-sided ideal is
not sufficient to guarantee that a ring be local. For example, whenn > 1, {0} forms a unique maximal
ideal for matrix ringsMn×n(F) over a fieldF, but these rings are not local since they contain nontrivial
left ideals, as we saw in the previous section.

Theorem 2.5.3.Let R be a local ring with max. left ideal M. Then M is a2-sided ideal.

Proof. Supposey ∈ R. Must showMy ⊂ M. If y ∈ M this is trivial sinceM is a left ideal, so assume
y < M. Let Iy := {x ∈ R | xy ∈ M}. To finish the proof, we must show thatM ⊂ Iy.

For r ∈ R and x ∈ Iy, (rx)y = r(xy) ∈ rM ⊂ M, using thatM is a left ideal. ThereforeIy is a
left ideal. Note that 1< Iy, sincey < M. Thus Iy is a proper left ideal soIy ⊂ M. Let ȳ denote
the equivalence class ofy in the quotient moduleR/M. Defineφ : R → R/M by φ(r) = rȳ. Then
kerφ = Iy by definition ofIy. SinceM is maximal,R/M is a simple module, so Imφ = R/M. Therefore
as leftR-modules we haveR/Iy � Imφ = R/M, which is simple and soIy is a maximal leftR-module.
ThusIy = M. �

Corollary 2.5.4. Let R be a local ring with max. left ideal M. Then

1. x∈ R− M iff x is a unit.

2. R has a unique maximal right ideal.

3. The unique maximal right ideal of R is M.

4. R/M is a division ring.

Conversely, if R is a ring with an ideal M s.t. x is a unit∀x ∈ R− M then R is a local ring.
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Proof. Since no proper ideal can contain a unit, parts (2), (3), and (4) are immediate consequences of
part (1).

Given x ∈ R− M, maximality ofM shows thatRx= R so∃ y ∈ R such thatyx = 1. SinceM is a
2-sided ideal andx ∈ R− M it follows thaty cannot lie inM. Therefore the same argument applies
to y and shows that∃ z ∈ R such thatzy = 1. But thenz = z(yx) = (zy)x = x, soy forms a 2-sided
inverse tox, establishing (1).

Conversely if every element ofR−M is a unit, then the fact that no proper ideal can contain a unit
shows thatR is a local ring. �

For the rest of this section, suppose thatR is commutative.
A subsetS ⊂ Rcontaining 1 and s.t. 0< S, which is closed under the multiplication ofR is called

a multiplicative subset. For example, letP ⊂ R be a prime ideal. ThenR− P is a multiplicative
subset. Form a ring called thelocalization of R w.r.t. S, denotedS−1R. As a set,

S−1R := R× S/ ∼,

where (r, s) ∼ (r ′, s′) if ∃t ∈ S s.t. t(rs′ − r ′s) = 0. Think of (r, s) as r
s. Check∼ is an equiv. reln.:

If ( r, s) ∼ (r ′, s′) and (r ′, s′) ∼ (r ′′, s′′) then

∃t ∈ S s.t. t(rs′ − r ′s) = 0

and∃t′ ∈ S s.t. t′(r ′s′′ − r ′′s′) = 0

Then
s′tt′rs′′ = tt′r ′ss′′ = tt′r ′′s′s

ie. s′tt′(rs′′ − r ′′s) = 0, (ands′tt′ ∈ S) so (r, s) ∼ (r ′′, s′′).
Define addition by (r, s) + (r ′, s′) = (rs′ + r ′s, ss′). Check+ is well-defined: suppose

(r ′, s′) ∼ (r ′′, s′′), sotr ′s′′ = tr ′′s′.

Is (rs′ + r ′s, ss′) ∼ (rs′′ + r ′′s, ss′′)?
Formally,s2tr ′s′′ = s2tr ′′s′ so

t
(

ss′′(rs′ + r ′s) − ss′(rs′′ + r ′′s
)

= t(s2r ′s′′ − s2r ′′s) = 0.

Define · by (r, s) · (r ′, s′) = (rr ′, ss′) (easy to check· is well-defined). (S−1R,+, ·) becomes a
commutative ring ring with identity (1,1).

Define the ring homomorphism

ψ : R 7→ S−1R

r 7→ (r,1)
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Note thatψ(s) is a unit inS−1R∀s ∈ S. ie. (1, s)ψ(s) = (1, s)(s,1) = (s, s) ∼ (1,1).
ψ : R 7→ S−1R has the universal property: Iff : R 7→ A is a ring homomorphism s.t.f (s) is a unit

in A ∀s ∈ S then

R
ψ

> S−1R

@
@

@
@

@
f

R

A

∃!

∨

Proposition 2.5.5. If R is an integral domain thenψ : R 7→ S−1R is injective.

Proof. Suppose (r,1) = ψ(r) = 0 = (0,1). Thent(r − 0) = 0 for somet ∈ S, sor = 0. �

Note: if R is an integral domain, we can define the equiv. reln. simply by

(r, s) ∼ (r ′, s′) iff rs′ = r ′s

Special cases:

1. Ran integral domain,S = R− {0}. ThenS−1R is a field called thefield of fractions of R.

2. S = R− P whereP is a prime ideal. Thenψ(P) forms an ideal inS−1R and every element of
S−1R outside ofψ(P) is invertible (quotient of images of elts. inS).

∴ S−1R is a local ring with max. idealψ(P). S−1R, also writtenRP, is called thelocalization of
Rat the prime P.

3. S = I − {0}, whereI is an ideal without 0-divisors.S−1R is sometimes calledRwith I inverted.

e.g.R= Z, I = Zp. Then

S−1R= Z[
1
p

] = {m
pt
∈ Q}

is “Z with p inverted” or “Z with 1
p adjoined”. Sometimes called the localization ofZ away

from p.
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2.6 Noetherian Rings and Modules

Definition 2.6.1. An R-module M is calledNoetherianif, given any increasing chain of submodules

M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ · · ·

∃N s.t. Mn = MN ∀n ≥ N. The ring R is called aNoetherian ring if it is Noetherian when regarded
as an R-module.

If R is not commutative, notions of Noetherian, “right Noetherian”, and “2-sided Noetherian” do
not necessarily coincide.

Theorem 2.6.2.Let R be a ring and let M be a left R-module. Then TFAE:

1. M is a Noetherian R-module.

2. Every non-empty set of submodules of M contains a maximal element.

3. Every submodule of M is finitely generated (and in particular, M is finitely generated).

Proof.
1⇒ 2: LetΣ be a nonempty collection of submodules ofM. ChooseM1 ∈ Σ. If M1 is not maximal in

Σ then∃M2 ∈ Σ s.t. M1 ⊆� M2. Having chosenM1, . . . ,Mn−1, if Mn−1 is not maximal inΣ then
∃Mn ∈ Σ s.t.

M1 ⊆� M2 ⊆� · · · ⊆� Mn−1 ⊆� Mn.

By hypothesis, no infinite chain of this sort exists, so eventually reach a max. elt.

2⇒ 3: Let N be a submodule ofM. Let Σ be the collection of all finitely generated submodules ofN.
By the hypothesis,Σ contains a maximal elementN′. If N′ , N then pickx ∈ N − N′. Then
〈N′, x〉 is f.g. and properly containsN′, which is a contradiction.

∴ N′ = N, soN is f.g.

3⇒ 1: Suppose every submod. ofM is f.g. Let

M1 ⊂ M2 ⊂ M3 ⊂ · · ·

be a chain of submodules. LetN =
⋃∞

i=1 Mi. ThenN ⊂ M is a submodule, so

N = 〈a1,a2, . . . ,an〉

for some finite seta1, . . . ,an ∈ N.
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Sinceai ∈ N, eachai ∈ Mk for somek. So∃K s.t. MK contains all ofa1, . . . ,an. But then
N ⊂ MK, so

MK = MK+1 = · · · = MK+m = · · · = N.

ie. Mn = MK ∀n ≥ K.

�

Corollary 2.6.3. Let f : M 7→ N be an R-module homomorphism. Then M is Noetherian iff ker f
andIm f are Noetherian.

Proof.
⇒: SupposeM is Noetherian. Every submodule of kerf is a submodule ofM, and thus is f.g., so

ker f is Noetherian.

If A ⊂ Im f then f −1(A) is a submodule ofM, thus f.g. But then the images of the generators of
f −1(A) generateA, soA is f.g.

⇐: Suppose kerf and Imf are f.g. LetB ⊂ M be a submodule ofM. Let

∆ = f (B) ⊂ Im f .

Pick a setx1, . . . , xk of generators for∆ and letx1, . . . , xk be pre-images inB.
Claim. B = 〈ker f ∩ B, x1, . . . , xk〉.
Proof. Givenb ∈ B, f (b) ∈ f (B) so

f (b) =
n

∑

i=1

r i xi , for somer1, . . . , rk ∈ R.

Then f (b−∑n
i=1 r i xi) = 0 so

b−
n

∑

i=1

r i xi ∈ ker f ∩ B.

ie. b ∈ 〈ker f ∩ B, x1, . . . , xk〉.
But ker f ∩ B ⊂ ker f is f.g., soB is f.g.

�

Corollary 2.6.4. Let R be Noetherian. Then R/I is Noetherian.

Proof. It follows from the preceding corollary thatR/I is Noetherian when regarded as anR-module.
However an increasing chain ofR/I -submodules ofR/I is also a increasing chain ofR-submodules
of R/I and so the corollary follows. �
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Theorem 2.6.5(Hilbert Basis Theorem). Let R be a commutative Noetherian ring. Then R[x] is
Noetherian.

Note: The converse is trivial, sinceR� R[x]/R[x]x.

Proof. Let I ⊂ R[x] be an ideal. LetL ⊂ Rbe the set of leading coefficients of elts. inI . That is,

L = {a ∈ R | axn
+ cn−1xn−1

+ · · · + c1x+ c0 ∈ I , for somecn−1, . . . , c0}.

ThenL is an ideal inR, so

L = (a1, . . . ,an), for somea1, . . . ,an.

For eachi = 1, . . . ,n, choosefi ∈ I s.t. leading coeff. of fi is ai. Let N := max{N1, . . . ,Nn} where
Ni = deg fi. For eachd = 0, . . . ,N − 1, let

Ld := {0} ∪ {leading coefficients of elts. ofI of degreed}.

ThenLd ⊂ R is an ideal, so

Ld = (b(d)
1 , . . . ,b(d)

nd
), someb(d)

1 , . . . ,b(d)
nd
∈ I .

Let f (d)
i be a polynomial of degreed with leading coeff. b(d)

i . To finish the proof, it suffices to show:
Claim. I is generated by

{ f1, . . . , fn} ∪
N−1
⋃

d=0

{ f (d)
i }i=1,...,nd.

Proof. Let I ′ be the ideal generated by this set. IfI ′ ⊆� I then∃ f ∈ I of minimal degree s.t.f < I ′. Let
e= deg f and leta be the leading coeff. of f .

Supposee≥ N. a ∈ L so

a =
n

∑

i=1

r iai , for somer1, . . . , rn ∈ R.

Then
n

∑

i=1

r i x
e−Ni fi ∈ I ′

has degreee and leading coeff. a. So f − ∑

r i xe−Ni fi ∈ I − I ′ has degree less thane, which is a
contradiction.
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∴ e< N. Hencea ∈ Le, so

a =
ne
∑

i=1

r ib
(e)
i , for somer1, . . . , rne ∈ R.

Then
∑

r i f
(e)
i has degreeeand leading coeff. a, so f −∑

r i f
(e)
i ∈ I − I ′ and has degree less thane. This

is a contradiction, soI = I ′ andI is f.g. �
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2.7 Unique Factorization Domains

Note: For the remainder of this chapter, all the rings considered are integral domains, and in partic-
ular, are commutative.

x ∈ R is calledirreducible if x , 0, x is not a unit, and wheneverx = ab, eithera is a unit orb is
a unit.

Proposition 2.7.1. In an integral domain, prime⇒ irreducible.

Proof. Let R be an integral domain. Letp ∈ R be a prime and supposep = ab. Thenp | a or p | b.
Sayp | a, soa = zpfor somez ∈ R. Thusp = ab= zpbso 1= zb.
∴ b is a unit. Similarly, ifp | b thena is a unit. Hencep is irreducible. �

Example 2.7.2.Let

R= Z[
√
−5] = {a+ b

√
−5 | a,b ∈ Z} � Z[x]/(x2

+ 5).

Claim. 2 is irreducible but not prime in R. To see2 is irreducible, consider N: R 7→ Z given by

N(a+ b
√
−5) = |a+ b

√
−5|2 = a2

+ 5b2,

(the “norm” map). N is not a ring homorphism but N(yz) = N(y)N(z).
∴ If 2 = αβ then4 = N(α)N(β), so N(α) ≤ 4 and N(β) ≤ 4. The only elements with norm≤ 4 are
1,−1,2,−2, so

α, β ∈ {1,−1,2,−2}.
Sinceαβ = 2, eitherα = ±1 or β = ±1, so2 is irreducible.

However, in R/(2),
(1+

√
5)2 = 6+ 2

√
5 ≡ 0

so R/(2) has zero divisors.
∴ R/(2) is not an integral domain, so2 is not prime. What are the primes in R?

Consider first y∈ Z+ ⊂ R. If y is not prime inZ then y is reducible so it is not prime in R. We
already saw that2 is not prime in R and since5 = (−

√
−5)(
√
−5) is reducible,5 is not prime in R.

Therefore suppose y is a prime p∈ Z+ with p , 2 or 5. R/(y) fails to be an integral domain iff ∃
nonzero s= a+ b

√
−5 and t= c+ d

√
−5 such that

st= (ac− 5bd) + (ad+ bc)
√
−5

is zero in R/(y) = (Z/p)[
√
−5]. That is, ac= 5bd and ad= −bc inZ/p. None of a, b, c, d can be0 in

Z/p since otherwise these equations would imply either s= 0 or = 0 in R/(y). But then the equations
yield

a2

b2
=

c2

d2
= −5,
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so if R(y) fails to be an integral doman than−5 is a square modulo p.
Conversely, if∃ z such that z2 � −5 (mod p), then

(z+
√
−5)(z−

√
−5) = z2

+ 5 = 0

in R/(y) so R/(y) is not an integral domain. Thus y∈ Z is a prime in R iff |y| is a prime p, 5 in Z
such that−5 is not a square modulo p.

Now consider y= a+ b
√
−5 with b, 0.

a2
+ 5b2

= (a− b
√
−5)y ∈ (y)

so R7→→R/(a2
+ 5b2)

q
7−→→ R/(y). q is not injective since y< (a2

+ 5b2).
If a2

+ 5b2 is not a prime inZ then we can see that y is not prime in R as follows. Suppose that
a2
+ 5b2

= cd (c,d , ±1) and suppose that y is prime in R. Then y| cd so either y| c or y | d. Say
y | c. Write c= λy for someλ ∈ R. λ is not a unit since application of the norm map shows that the
only units in R are±1, and c, ±y because c∈ Z, y < Z. Lettingx̄ denote the complex conjugate of x,
we have

yȳ = N(y) = cd = λyd

so ȳ = λd. Thus y= λ̄d̄ and sinceλ̄ and d̄ = d are not units, this shows that y is reducible and
therefore not prime.

If a2
+ 5b2 is a prime p inZ then

x2
+ 5 ≡ 0 mod p

has a solution x= a/b, so−5 is a square mod p. Set c:= a/b ∈ Z/p.
Defineφ : R/(y) 7→ Z/p � Fp byφ(

√
−5) = c and extending linearly. Then

φ(y) = a+ bc≡ 0 mod p

soφ is well-defined.
∣

∣

∣R/(a2
+ 5b2)

∣

∣

∣ = p2 and q is not injective so|R/(y)| = p andφ is an isomorphism.

∴ y = a+ b
√
−5 is prime in R whenever a2

+ 5b2 is prime inZ.

Remark 2.7.3.The question of which primes p have the property that−5 is a square modulo p can be
solved with the aid of Gauss’ Law of Quadratic Reciprocity, which says that for odd primes p and q,





















p
−
q









































q
−
p





















= (−1)(
p−1
2 )( q−1

2 )
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where





















p
−
q





















is the Legendre symbol, defined by





















x
−
p





















=















1 if x is a square modulop;

−1 if x is a not square modulop.

Therefore




















−5
−
p





















=





















−1
−
p









































5
−
p





















=





















−1
−
p





















(−1)4( p−1
2 )





















p
−
5





















=





















−1
−
p









































p
−
5





















.

Since





















−1
−
p





















=















1 p � 1 mod 4;

−1 p � 3 mod 4,
and





















p
−
5





















=















1 p � 1 or 4 mod 5;

−1 p � 2 or 3 mod 5,
, we get





















−5
−
p





















= 1 iff

one of the following4 pairs of congruences holds:

p � 1 mod 4
p � 1 mod 5

or
p � 1 mod 4
p � 4 mod 5

or
p � 3 mod 4
p � 2 mod 5

or
p � 3 mod 4
p � 3 mod 5.

By the Chinese Remainder Theorem, this is equivalent to saying that −5 is a square modulo the
prime p iff p � 1, 3, 7, or 9 mod (20).

Definition 2.7.4. An integral domain R is called aunique factorization domain(UFD) if every
nonzero element can be factored into primes.

Lemma 2.7.5. In an integral domain, a factorization into primes (should one exist) is always unique
up to associates. ie. If x= p1 · · · pn and x= q1 · · · qk then k= n and∃ some renumberingσ of the q’s
such that pj and qσ( j) are associate primes∀ j.

Proof. Suppose
p1 · · · pn = q1 · · · qk

and sayn ≤ k. Thenp1 | q1 · · · qk so p1 | qj for some j. Renumber so thatqj is q1.
∴ q1 = ap1 for somea. But q1 is a prime and thus irreducible, so eithera or p1 is a unit. Sincep1 is
prime, it is not a unit, soa is a unit. ie.p1 andq1 are associates.
∴ p1 · · · pn = q1 · · · qk = ap1q2 · · · qk,
∴ p2 · · · pn = q′2q3 · · · qk whereq′2 = aq2 is associate toq2. Continuing,∀i = 1, . . . ,n, after renumber-
ing qj associate topi, eventually reach

1 = q′n+1 · · · qk

whereq′n+1 is associate toqn+1. If k > n this is a contradiction since primeqn+1 is not invertible. Hence
k = n. �
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Proposition 2.7.6. In a UFD, prime⇐⇒ irreducible.

Proof. Prime⇒ irreducible in any integral domain, so must show irreducible⇒ prime. Letx ∈ R be
irreducible. Writex = p1 · · · pn be a product of primes and supposen > 1. Sincex is irreducible,p1

is a unit orp2 · · · pn is a unit. Butp1 is not a unit sincep1 is prime andp2 · · · pn is not a unit since
p2, . . . , pn are primes. So this is a contradiction and thusn = 1 andx = p1 is prime. �

Theorem 2.7.7.An integral domain is a UFD iff every nonzero elt. can be factored uniquely (up to
associates) into irreducibles.

Proof.
⇒: SupposeR is a UFD. Then prime⇐⇒ irreducible and every nonzero elt. has a unique factor-

ization into primes.

⇐: Suppose every nonzero elt. has a unique factorization (up to associates) into irreducibles. It
suffices to show thatx is prime iff x is irreducible. ie. Show irreducible⇒ prime.

Let x , 0 be irreducible. Supposex | ab. Thenab= zx for somez. Let

a = a1 · · · an and b = b1 · · · bk

be the factorizations ofa,b into irreducibles. So

zx= a1 · · · anb1 · · · bk

is the factorization ofzx into irreducibles, so by uniqueness,x is associate to some factor on the
RHS.

∴ x is assoc. toaj for some j, in which casex | a, or x is assoc. tobj for some j, in which case
x | b. Thusx is prime.

�

Proposition 2.7.8. In a UFD, every pair of elts. has a g.c.d.

Proof. Let R be a UFD and supposex , 0, y , 0 ∈ R. Factorx into primes and, replacing primes by
associate ones when necessary, write

x = upr1
1 · · · p

rn
n

whereu is a unit andp1, . . . , pn are primes withpi not associate topj for i , j. Similarly, write

y = vqs1
1 · · · q

sk
k
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where, replacing by associate if necessary, we may assume that if qj is associate topi for somei then
qj = pi. Lettingz1, . . . , zm be the union{p1, . . . , pn,q1, . . . ,qk} of all primes occurring, we can write

x = uze1
1 · · · z

em
m and y = vzf1

1 · · · z
fm
m

for some exponentse1, . . . ,em, f1, . . . , fm ≥ 0. Let

d =
∏

z
min{ej , f j }
j .

Thend = (x, y). �
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2.8 Principal Ideal Domains

Definition 2.8.1. A principal ideal domain(PID) is an integral domain in which every ideal is prin-
cipal.

Proposition 2.8.2. In a PID, every nonzero prime ideal is maximal.

Proof. Let I , 0 be a prime ideal. SupposeI ⊆� J ⊆� R. Write I = (x), J = (y). SinceI is a prime ideal,
x is prime. SinceI ⊂ J, x ∈ J sox = ay for somea ∈ R. Thusx | a or x | y.

If x | a thena = bx for someb ∈ R. Thenx = ay= abxy⇒ 1 = by, soy is a unit andJ = R.
If x | y theny ∈ (x) = I , soJ ⊂ I , contradictionI ⊆� J. HenceI is maximal. �

Example 2.8.3.Let R= Z[x]. R/(x) � Z is an integral domain but not a field. So(x) is a prime ideal
which is not maximal.
∴ Z[x] is not a PID. In fact, I= (2, x) is an example of a non-principal ideal in R.

Theorem 2.8.4.Every PID is Noetherian

Proof. Every ideal inR is generated by a single element, so in particular, every ideal is finitely gen-
erated. By Theorem 2.6.2, this means thatR is Noetherian. �

Theorem 2.8.5.Every PID is a unique factorization domain.

Proof. Let R be a PID and letx , 0 ∈ Rbe a non-unit. Must show thatx can be factored into primes.
(x) ⊆� R so∃ a maximal idealM1 s.t.

(x) ⊂ M1 ⊆� R.

Write M1 = (p1). M1 is maximal and thus prime, sop1 is prime. x ∈ (p1) saysx = p1x1 for some
x1 ∈ R. If x1 is a unit thenp1x1 is a prime associate top1 and we are done, so suppose not. Continuing,
we get

xn = pnxn+1 ∀n.
∴ xn ∈ (xn+1) so (xn) ⊂ (xn+1). If xn is a unit for somen then we have a factorization ofx into primes.
If not, we get a chain of ideals

(x) ⊂ (x1) ⊂ · · · ⊂ (xn) ⊂ · · ·
SinceR is Noetherian,∃N s.t. (xn) = (xN) ∀n ≥ N. SoxN+1 ∈ (xN) soxN+1 = λxN = λpN+1xN+1 so that
1 = λpN+1 showing thatpN+1 is a unit, which is a contradiction.

So the infinite chain does not exist, so the procedure terminated giving a factorization ofx. �

Proposition 2.8.6.Let R be a PID. Let a,b ∈ R and let q= gcd(a,b). Then∃s, t ∈ R s.t. q= sa+ tb.
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Proof. Let I = 〈a,b〉 = {xa+ yb | x, y ∈ R}. ThenI is an ideal soI = (c) for somec ∈ R. c ∈ I so
c = xa+ yb for somex, y. a ∈ I soc | a andb ∈ I soc | b. Moreover, ifz | a andz | b then leta = αz
andb = βz for someα, β. Then

c = xa+ yb= xαz+ yβz= (xα + yβ)z

and thusz | c. Soc = gcd(a,b).
If q is another g.c.d. ofa,b thenq = uc for some unitu, so

q = (ux)a+ (uy)b.

�
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2.9 Norms and Euclidean Domains

Definition 2.9.1. A Euclidean domainis an integral domain R together with a function d: R− {0} 7→
Z+ = {n ∈ Z | n ≥ 0} s.t.

1. d(a) ≤ d(ab) ∀a,b , 0, and

2. Given a,b , 0 ∈ R,∃t, r s.t. a= tb+ r where either r= 0 or d(r) < d(b).

Example 2.9.2.
1. R= Z, d(n) = |n|.

2. R= F[x] where F is a field. d(p(x)) = polynomial degree of p.

Notice that if (R,d) is a Euclidean domain then so is (R,d′) where

d′(x) = d(x) + c, for some constantc ∈ Z+.

∴ May assume thatd takes values inN = {n ∈ Z | n ≥ 1}. Then extendd by definingd(0) = 0.

Definition 2.9.3. A Dedekind-Hasse norm on an integral domain R is a function
N : R 7→ Z+ s.t.

1. N(x) = 0 iff x = 0, and

2. For a,b , 0 ∈ R either a∈ (b) or ∃ a nonzero x∈ (a,b) s.t. N(x) < N(b).

If (R,d) is a Euclidean domain thend (modified s.t.d(0) = 0) is a Dedekind-Hasse norm: given
a,b , 0,

a = tb+ r

for somet andr, so eitherb | a (ie. r = 0) or r = a− tb ∈ (a,b) with d(r) < d(b).

Theorem 2.9.4.Let R be an integral domain.

1. R is a PID iff R has a Dedekind-Hasse norm. In particular, a Euclidean domain is a PID.

2. If R has a Dedekind-Hasse norm then it is has a multiplicative Dedekind-Hasse norm (ie. one
satisfying N(ab) = N(a)N(b).)

Proof.
1. ⇒: SupposeR has a Dedekind-Hasse norm. LetI ⊂ R be a nonzero ideal. Choose 0, b ∈ I

s.t.N(b) is minimum. Leta ∈ I . Then (a,b) ⊂ I so∄ nonzerox ∈ (a,b) s.t.N(x) < N(b).
Hencea ∈ (b). ThusI = (b).
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⇐: SupposeR is a PID. DefineN : R 7→ Z+ as follows: N(0) := 0. If u ∈ R is a unit, set
N(u) = 1. If x , 0 ∈ R is a nonunit, writex = p1 · · · pn where eachpj is prime and set
N(x) = 2n. Notice thatN is multiplicative.

Supposea,b , 0 ∈ R. R is a PID so (a,b) = (r) for somer ∈ R, sob = xr for somex ∈ R.
If a < (b) thenr < (b) sox is not a unit, and thus

N(b) = N(x)N(r) > N(r),

ie. ∃r ∈ (a,b) s.t.N(r) < N(b).

2. If Rhas a Dedekind-Hasse norm then by part 1, it is a PID, in which case it has a multiplicative
Dedekind-Hasse norm as constructed above.

�

2.9.1 Euclidean Algorithm

Let (R,d) be a Euclidean domain. ThenR is a PID, so givena,b ∈ R, ∃s, t ∈ R s.t.

as+ bt = gcd(a,b).

The Euclidean algorithm is an algorithm for findings andt (and thus gcd(a,b)).
Procedure:
Sayd(b) ≥ d(a). Setr−1 := b, r0 := a. Write

r−1 = q1r0 + r1, someq1, r1 with d(r1) < d(r0),
...

r j−1 = qj+1r j + r j+1, someqj+1, r j+1 with d(r j+1) < d(r j)

∴ d(r−1) ≥ d(r0) > d(r1) > · · · > d(r j) > · · · . Continue untilrk+1 = 0, somek. Set

s0 := 0

s1 := 1

sj := −qj−1sj−1 + sj−2

t0 := 1

t1 := 0

t j := −qj−1t j−1 + t j−2

Claim. rk = gcd(a,b) andrk = sa+ tb wheres= sk+1 andt = tk+1.
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Proof. rk+1 = 0 sork−1 = qk+1rk+0. Suppose by induction thatrk | r i for i ≥ j. Thenr j−1 = qj+1r j+r j+1

sork | r j−1, concluding induction step.
∴ rk | r j ∀ j and in particular,rk | r0 = a andrk | r−1 = b.

Conversely, supposez divides botha andb. Sincer j+1 = r j−1 − qj+1r j, induction (going the other
way) showsz | r j ∀ j. In particular,z | rk. Sork = gcd(a,b). �

Also,

as0 + bt0 = a · 0+ b · 1 = b = r−1

as1 + bt1 = a · a+ b · 0 = a = r0

as2 + bt2 = a(−q1s1 + s0) + b(−q1t1 + t0) = −q1(as1 + bt1) + (as0 + bt0)

= −q1r0 + r−1 = r1

...

asj + btj = a(−qj−1sj−1 + sj−2) + b(−qj−1t j−1 + t j−2) = −qj−1(asj−1 + btj−1) + (asj−2 + btj−2)

= −qj−1r j−2 + r j−3 = r j−1

By induction,asj + btj = r j−1 ∀ j. In particular,as+ bt = ask+1 + btk+1 = rk = gcd(a,b).

Remark: In Computer Science, the speed of the Euclidean Algorithm overZ is important. Estimate
of the number of steps required: The faster ther ’s go down, the quicker the algorithm goes, so the
worst case scenario is when all theq’s are only 1. In this case,

r j−1 = r j + r j+1.

ie. Worst case scenario occurs whena,b are consecutive terms of the Fibonacci Sequence. The
smallest possible numbers requiringN steps would be when:

rN = 1 rN−1 = 2 rN−2 = 3 rN−3 = 4 · · · rN− j = j th Fibonacci Number

∴ r0 = Nth Fibonacci NumberFN. ie. N steps can handle all numbers up toFN.
Fn+1 = Fn + Fn−1⇒ Fn+1

Fn
= 1+ Fn−1

Fn
. So if L = limn→∞

Fn+1
Fn

thenL = 1+ 1
L . So

L2 − L − 1 = 0

L =
1±
√

5
2

L =
1+
√

5
2

= G

SoFn ≈ GN, ie. for largeN, the number of steps required is no worse than around logG(r0).
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Lemma 2.9.5(Gauss). Let R be a UFD and let F be its field of fractions. Let q(x) ∈ R[x]. If q(x) is
reducible in F[x] then q(x) is reducible in R[x]. Futhermore, if q(x) = A(x)B(x) in F[x] then in R[x],
q(x) = a(x)b(x) where A(x) = a(x)

r and B(x) = b(x)
s for some nonzero r, s ∈ F.

Proof. Supposeq(x) = A(x)B(x) where the coefficients ofA, B lie in F. Multiplying by a common
denominator we get

dq(x) = a′(x)b′(x)

for somed ∈ R and polynomialsa′(x),b′(x) ∈ R[x]. If d ∈ R is a unit, we can divide byd to get
q(x) = a′(x)

d b′(x).
∴ Supposed is not a unit. Writed = p1 · · · pn as a product of primes inR. Let

R[x] 7→→ R[x]
p1R[x]

� (
R

p1R
)[x]

f (x) 7→ f (x)

Reducing modulo (p1R)[x] gives 0= a′(x) b′(x) in the integral domain (Rp1R)[x]. Hencea′(x) = 0 or

b′(x) = 0. Saya′(x) = 0. Then all the coeffs. of a′(x) are divisible byp1, so can dividedq(x) =
a′(x)b′(x) by p1 to get

p2 · · · png(x) =
a′(x)

p1
b′(x) = a′′(x)b′(x)

with a′′,b′ ∈ R[x]. Continuing, eventually reachq(x) = a(x)b(x) with a(x),b(x) ∈ R[x] anda(x),b(x)
obtained froma′(x),b′(x) by multiplying by nonzero elements ofF. �

A polynomial whose leading coefficient is 1 is calledmonic.

Corollary 2.9.6. Let R be a UFD with field of fractions F. Let p(x) ∈ R[x]. Suppose

gcd{coeffs. of p} = 1.

Then p(x) is irreducible in R[x] iff it is irreducible in F[x]. In particular, if p(x) is monic and irre-
ducible in F[x] then it is irreducible in R[x].

Proof. If p(x) is reducible inF[x] then Gauss impliesp(x) is reducible inR[x].
Conversely, ifp(x) is reducible inR[x] then the hypothesis on gcd⇒ p(x) = a(x)b(x) where

neithera(x) nor b(x) is constant. Hence,a(x),b(x) are not units inF[x] so this factorization shows
p(x) is reducible inF[x]. �

Lemma 2.9.7.Let R be a UFD and let p(x) ∈ R[x] be irreducible. Then p(x) is prime.
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Proof. Let F be the field of fractions ofR.

R[x]
(p(x))

֒→ F[x]
(p(x))

.

∴ To showp(x) R[x]/(p(x)) is an integral domain, it suffices to show thatF[x]/(p(x)) is an integral
domain.

p(x) irreducible inR[x] ⇒ p(x) irreducible inF[x]. However,F[x] is a UFD (being a Euclidean
Domain). Sop(x) is prime inF[x] and thusF[x]/(p(x)) is an integral domain. �

Theorem 2.9.8.R is a UFD⇐⇒ R[x] is a UFD.

Proof.
⇐: SupposeR[x] is a UFD. Letr ∈ R. Write r = p1(x) · · · pn(x) as a product of primes inR[x].

Since degr = 0 andR is an integral domain, degpj(x) = 0 ∀ j, ie. pj(x) = pj ∈ R.

R[x]/(pj) =

(

R
(pj)

)

[x]

∴ R/(pj) is an integral domain, sopj is prime inR.

Thusr = p1 · · · pn is a factorization ofr into primes inR.

⇒: SupposeR is a UFD and let 0, q(x) ∈ R[x]. Let F be the field of fractions ofR. SinceF[x] is
a UFD, inF[x] we can factorq(x)

q(x) = p1(x) · · · pr(x)

wherepj(x) is a prime inF[x]. By Gauss’ lemma, inR[x] we can write

q(x) = p′1(x) · · · p′n(x)

where∀ j∃sj , 0 ∈ F such thatp′j(x) = sj pj(x).

∴ It suffices to show thatp′j(x) can be factored uniquely into primes inR[x], as in the following
claim:

Claim. If p(x) is prime inF[x] andsp(x) = p′(x) ∈ R[x] for some 0, s ∈ F thenp′(x) can be
factored uniquely into primes inR[x].

Proof. Let
d = gcd{coeffs. of p′(x)}.

Thenp′(x) = dp′′(x) where
gcd{coeffs. of p′′(x)} = 1.
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In F[x], havep′′(x) = p′(x)
d =

s
d p(x), which is prime inF[x] sincep(x) is prime ands

d is a unit.

∴ Cor. 2.9.6⇒ p′′(x) is irreducible inR[x] and thus prime inR[x] by the previous lemma. Since
d can be factored into primes inR and a prime inR is also a prime inR[x], p′(x) = dp′′(x) can
be factored into primes inR[x].Uniqueness is easy to show. This concludes the proof of the
claim and thus concludes the proof of the theorem.

�
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2.10 Modules over PID’s

Note: In this section, and elsewhere, we will sometimes abuse notation and writeR/p in place of
R/(p). (The notationZ/n is generally quite common).

Theorem 2.10.1.Over a PID, a submodule of a free module is free.

Proof. Let R be a PID. LetP =
⊕

j∈J Rj be a freeR-module with basisJ (Rj � R∀ j), and suppose
M ⊂ P is a submodule.

Choose a well-ordering of the setJ. For eachj ∈ J, setPj =
⊕

i≤ j Ri and Pj =
⊕

i< j Ri, so

Pj = Pj ⊕ R.
Let f j be the composite

Pj ∩ M ֒→ Pj = Pj ⊕ R 7→→R.

Then kerf j = Pj ∩ M. Im f j ⊂ R is an ideal, so let Imf j = (λ j), someλ j ∈ R. Pickcj ∈ Pj ∩ M such
that f (cj) = λ j. Let

J′ = { j ∈ J | λ j , 0}.
To finish the proof we show:
Claim: {cj} j∈J′ is a basis forM.
Proof. Check{cj} j∈J′ is linearly independent:
Suppose

n
∑

k=1

akcjk = 0, where j1 < j2 < · · · < jn (∗)

Since jk < jn for k < n, cjk ∈ Pjn for k < n.
∴ Applying f jn to (∗) gives

n
∑

k=1

ak · 0+ anλ jn = 0,

whencean = 0, sinceλ jk , 0. Inductively,cjk = 0 ∀k = n,n− 1, . . . ,1.
∴ {cjk} j∈J′ is linearly independent.

Check that{cj} j∈J′ spansM:
Suppose not. Then∃ a leasti ∈ J such thatPi ∩ M contains an elementa not in span{cj} j∈J′. Must
havei ∈ J′, since if not,fi(a) = 0, soa ∈ Pi, and thusa ∈ Pk for somek < i, contradicting minimality
of i.
∴ i ∈ J′. fi(a) ∈ (λi), so fia = rλi, for somer ∈ R. Setb := a− rci. Sincea = b+ rci cannot be

written as a linear combination of{ci}, neither canb. But

fib = f (a) − r f (ci) = rλi − rλi = 0

92



sob ∈ Pk ∩ M for somek < i, contradicting the minimality ofi.
∴ {cj} j∈J′ spansM. �

Theorem 2.10.2.Over a PID, a finitely generated torsion-free module is free.

Proof. Let R be a PID and letM be a finitely generated torsion-freeR-module. LetR ֒→ K be the
inclusion ofR into its field of fractions, and let

M̃ := K ⊗R M

be the extension ofM to aK-vector space.
Let x1, . . . , xm ∈ M be a generating set forM. The images ofx1, . . . , xm generateM̃, so∃ a subset

y1 . . . , yn whose images iñM form a basis forM̃. Eachxj can be written inM̃ as aK-linear combina-
tion of y1, . . . , yn, so clearing denominators gives thatbj xj is anR-linear combination ofy1, . . . , yn ∀ j.

Setb = b1 · · · bm, so thatbxj is anR-linear combination ofy1, . . . , yn ∀ j.
∴ bz is anR-linear combination ofy1, . . . yn ∀z ∈ M, sincex1, . . . , xm spanM. SinceM is torsion-

free,

b : M 7→ M

z 7→ bz

is injective. Hence,
M � M/ kerφ � Imb = bM.

However,
n

⊕

j=1

yj
φ
7−→bM

yj 7→ yj

is an isomorphism (onto sincebzis a linear combination ofy1, . . . , yn ∀z ∈ M, (1-1) sincey1, . . . yn are
linearly independent iñM).
∴ M � bM � a freeR-module. �

Corollary 2.10.3. If M is a finitely generated module over a PID then R� Tor(M) ⊕ Rn for some
n ∈ N.

Proof. M/Tor(M) is finitely generated and torsion-free. Hence,

M/Tor(M) � Rn, for somen.

Rn free⇒ M 7→→M/Tor(M) � Rn splits, so

M � Tor(M) ⊕ Rn.

�
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A torsion-free module over a PID which is not finitely generated need not be free:

Example 2.10.4.Let R= Z, M = Q. ClearlyQ is torsion-free as aZ-module. Suppose M� Rs. Then
as a vector space/Q we get

Q ⊗Z Q � M ⊗ Q
� Rs⊗ Q
� (R⊗ Q)s

� Qs

Let

φ : Q ⊗Z Q 7→ Q
x⊗ y 7→ xy,

ψ : Q 7→ Q ⊗Z Q
x 7→ x⊗ 1.

Clearly xy= 1Q. ψφ(x⊗ y) = (xy) ⊗ 1. Write x= p
q , y =

p′

q′ . Then inQ ⊗Z Q,

x⊗ y =
p
q
⊗ p′

q′

= q′
p

qq′
⊗ p′

1
q′

= p′
p

qq′
⊗ q′

1
q′

=
pp′

qq′
⊗ 1

= (xy) ⊗ 1.

∴ ψφ = 1Q⊗Q. HenceQ ⊗Z Q � Q, and thusQ � Q ⊗Z Q � Qs. So counting dimensions gives
CardS = 1.

ie. If Q is a free R-module then its rank as aZ-module is1. SoQ � Z as aZ-module. ie.∃q ∈ Q
s.t.Q = Zq; that is to say,∀x ∈ Q ∃n ∈ Z s.t. x= nq. This is a contradiction.

SoQ is not a freeZ-module.

We now consider decompositions of finitely generated torsion modules over a PID. LetR be a
PID (throughout this section). We will show that every finitely generatedR-module decomposes as a
direct sum of finitely manyR-modules with a single generator (called cyclic modules).

First consider torsion modules.
Notation: For r ∈ R, let µr : M 7→ M be multiplication byr.
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Lemma 2.10.5.Let M be a torsion R-module. WriteAnn(M) = (a) and suppose b∈ R such that
(a,b) = 1. Then multiplication by b,

M
µb7−→ M

is an isomorphism.

Proof. SinceR is a PID,∃s, t ∈ Rsuch thatsa+ tb = 1. Hence, forx ∈ M,

x = sax+ tbx= tbx,

∴ bx= 0 ⇒ x = 0, soµb is injective. Moreover,

x = b(tx) = µb(tx)

soµb is surjective. �

Let M , 0 be a torsion module. Let Ann(M) = (a). Supposea , 0. (Note: if M is torsion and f.g.
thena , 0 automatically.)

M , 0 ⇒ a is not a unit. Write
a = upe1

1 · · · p
ek
k

whereu is a unit andp1, . . . , pk are distinct primes. Replacinga by u−1a, may assume

a = pe1
1 · · · p

ek
k .

Let
Mp j := {x ∈ M | pe

j x = 0 for somee}.

Lemma 2.10.6.M � Mp1 ⊕ · · · ⊕ Mpk.

Proof. ∀x ∈ M,
pe1

1 µp
e2
2 ···p

ek
k

(x) = pe1
1 pe2

2 · · · p
ek
k x = 0

so Imµp
e2
2 ···p

ek
k
⊂ Mp1.

Sincepe2
2 · · · p

ek
k is coprime to Ann(Mp1), by the preceding lemma,

µp
e2
2 ···p

ek
k
|Mp1

is an isomorphism, so it splits the inclusionMp1 ֒→ M. Hence,

M � Mp1 ⊕ kerµp
e2
2 ···p

ek
k
.
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Ann(kerµp
e2
2 ···p

ek
k

) = pe2
2 · · · p

ek
k . By induction,

kerµp
e2
2 ···p

ek
k
� M′p2

⊕ · · · ⊕ M′pk

where

M′p j
= {x ∈ kerµp

e2
2 ···p

ek
k
| pe

j x = 0 for somee}
⊂ Mp j = {x ∈ M | pe

j x = 0 for somee}.

However,Mp j ⊂ kerµp
e2
2 ···p

ek
k

soMp j ⊂ M′p j
and thusMp j = M′p j

.
HenceM � Mp1 ⊕ · · · ⊕ Mpk. �

In the finitely generated case, we now decomposeMp j into cyclic summands for eachpj. ie. We
have reduced to the case where Ann(M) = (pe) for some primep.

SupposeM is a f.g. R-module with Ann(M) = (pe). ∃x ∈ M such thatpe−1x , 0 (or else
Ann(M) = pe−1 rather thanpe). Let x,m1, . . . ,mk be a generating set forM. Let M j be the submodule

M j := 〈x,m1, . . . ,mj〉.

Beginning with the identity mapr0 : M0 7→ Rx, we inductively constructr j : M j 7→ Rx extending
r j−1 : M j−1 7→ Rx to produce a splittingr : M 7→ Rxof the inclusionRx ֒→ M.

Suppose by induction thatr j−1 : M j−1 7→ Rx has been defined such thatr j−1|Rx = 1Rx. M j is
generated byM j−1 andmj. So to definer j extendingr j−1, must definer j(mj) ∈ Rx, ie. r j(mj) = λx for
the correctλ.

Let (ps) = Ann(M j/M j−1), sopsmj ∈ M j−1. r j−1(psmj) ∈ Rx, sor j−1(psmj) = αx for someα ∈ R.

pe−sαx = pe−s(r j−1psmj) = r j−1(p
emj) = r j−1(0) = 0

so pe−sα = λpe for someλ ∈ R ⇒ α = λps.
Definer j(mj) = λx andr j(y) = r j−1(y)∀y ∈ M j−1. Then

r j(p
smj) = psλx = αx = r j−1(p

smj)

sor j is well-defined. ThusM � Rx⊕ M′.
Applying the procedure toM′ gives

M � Rx⊕ Rx′ ⊕ M′′.

Continuing, the procedure eventually terminates sinceM is Noetherian.
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∴ M � Rx1 ⊕ Rx2 ⊕ · · · ⊕ Rxn for somex1, . . . , xn with Annxj = (pj) for some j. Notice that

R
ψ j7−→Rxj

r 7→ rx j

is surjective with kerψ j = Annxj. ThusRxj � R/(pj).
Putting it all together, we get:

Theorem 2.10.7(Structure Theorem for Finitely Generated Modules over a PID). Let M be a finitely
generated module over a PID R. Then

M � R/(ps1
1 ) ⊕ R/(ps2

2 ) ⊕ · · · ⊕ R/(psn
n ) ⊕ Rk,

where p1, . . . , pn ∈ R are primes (not necessarily distinct), s1, . . . , sn ∈ N and k≥ 0.

Note that the generator of Ann(M) is lcm{ps1
1 , . . . , p

sn
n }.

We now show that this decomposition is unique.k is the dimension ofM ⊗R K, whereK is the
field of fractions, sok is unique, and we need only be concerned with the torsion partof the module.

Theorem 2.10.8.Suppose

R/(ps1
1 ) ⊕ R/(ps2

2 ) ⊕ · · · ⊕ R/(psn
n ) � R/(qt1

1 ) ⊕ R/(qt2
2 ) ⊕ · · · ⊕ R/(qtk

k ),

with p1, . . . , pn,q1, . . . qk primes in R and s1, . . . sn, t1, . . . tk ∈ N. Then n= k and {qt1
1 , . . . ,q

tk
k } is a

permutation of (associates of){ps1
1 , . . . , p

sn
n }.

Proof. Let

M = R/(ps1
1 ) ⊕ R/(ps2

2 ) ⊕ · · · ⊕ R/(psn
n ) and

N = R/(qt1
1 ) ⊕ R/(qt2

2 ) ⊕ · · · ⊕ R/(qtk
k ).

For any primep, let

Mp = {x ∈ M | pex = 0, for somee},
Np = {x ∈ N | pex = 0, for somee}.

If M � N thenMp � Np. Moreover,

Mp �

⊕

p j assoc. top

R/(psj

j ),

Np �

⊕

q j assoc. top

R/(qt j

j ).
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∴ It suffices to consider one prime at a time. ie. We are reduced to the case wherepj = qj = p ∀ j.
Suppose

M = R/(ps1) ⊕ · · · ⊕ R/(psn) and N = R/(pq1) ⊕ · · · ⊕ R/(pqk).

ForZ = R/(ps), ∃ a short exact sequence

0 7→ pZ 7→ Z 7→ R/p 7→ 0,

ie. Z/pZ � R/p, a field.
SinceM � N,

⊕

n

R/p � M/pM � N/pN �
⊕

k

R/p.

Since the dimension of a vector space is an invariant of the isomorphism class of the vector space,
n = k.

Also, M � N⇒ pM � pN; that is:

R/ps1−1 ⊕ · · · ⊕ R/psn−1
� R/pt1−1 ⊕ · · · ⊕ R/ptk−1.

Ann(pM) has one less power ofp than AnnM. So by induction on the size of Ann(M), the positive
elts. in the list{t1 − 1, . . . , tk − 1} is a permutation of those in{s1 − 1, . . . , sn − 1}. ie. Information
about summandsR/p has been lost, sincep(R/p) = 0, sopM and pN have no record of how many
summandsR/p there were inM and N. But they see all the remaining summands, showing that
entries in{t1, . . . , tk} which are at least 2 are the same (up to a permutation) as thosein {s1, . . . , sn}.
The remaining entries on each list are 1, and there are the same number of them on each list since
n = k and the entries greater than 1 correspond.
∴ {t1, . . . , tk} is a permutation of{s1, . . . , sn}. �

Thus,{psj

j } is uniquely determined by (and uniquely determines)M. It is called the set ofelemen-
tary divisors of M.

Example 2.10.9.
1. R= Z. List all non-isomorphic abelian groups of order16:

Z/16, Z/8⊕ Z/2, Z/4⊕ Z/4 Z/4⊕ Z/2,⊕Z/2 Z/2⊕ Z/2⊕ Z/2⊕ Z/2

(all non-isomorphic by the theorem).

2. Let F be a field, V a f.d. vector space/F, T : V 7→ V a linear transformation. Let R= F[x] (a
PID) and M= V with R-action

f (x)(v) = f (T)(v) =
n

∑

j=0

ajT
j(v).
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Let
Ch(λ) = det(T − λI ),

thecharacteristic polynomialof T. ThenCh(T) = 0 (Cayley-Hamilton Theorem).

∴ Ch(x)v = 0 ∀v ∈ V. ie. M is a torsion R-module andCh(x) ∈ Ann(M). Hence

M � F[x]/p1(x)r1 ⊕ · · · ⊕ F[x]/pk(x)rk

for some primes p1(x), . . . , pk(x) ∈ F[x].

Suppose F is algebraically closed so that every poly. in F[x] factors completely as a product of
linear factors. Then the primes in F[x] are the degree1 polynomials. So mult. by a scalar to
make pj monic:

pj(x) = x− λ j

for someλ j ∈ F. Then
M � · · · ⊕ F[x]/(x− λ j)

r j ⊕ · · ·
implies that∃v ∈ V s.t.(x− λ j) ∈ AnnV. ie.(T − λ j)v = 0. (And conversely, if(T − λ)v = 0 for
some v then x− λ = pj(x) for some j.)

∴ {λ1, . . . , λk} = eigenvalues of T.

Examine F[x]/(x−λ j)r j more closely. Writeλ for λ j and r for rj. As an F[x]-module, F[x]/(x−
λ)r is gen. by(x− λ). Elts. can be written uniquely as

r−1
∑

k=0

ak(x− λ)k

where ak ∈ F. ie. Over F, F[x]/(x− λ)r has dimension r with basis

1, x− λ, (x− λ)2, . . . , (x− λ)r−1.

Let B= Bj ⊂ V = M be the image of F[x] = (x− λ j)r j under the iso.

ψ :
⊕

i

F[x]/(x− λi)
r i
�7−→ M

and let vj = ψ((x − λ) j−1) for j = 1, . . . , r be the F-basis for B corresponding to the basis
{(x− λ)i}.
B is a F[x]-submodule of V so it is closed under the action of any f(x) ∈ F[x]. For f (x) = x−λ,
by construction,

f (x) · vj = vj+1 j < r

f (x) · vr = 0.

99



ie. when written in the basis v1, . . . , vr , the matrix T− λ is

















































0 0 · · · 0
1

0
. . .

. . .
...

...
. . .

. . .

0 · · · 0 1 0

















































.

ie. T looks like
















































λ 0 · · · 0
1 λ

0
. . .

. . .
...

...
. . .

. . . λ

0 · · · 0 1 λ

















































.

Therefore:

Theorem 2.10.10(Jordan Canonical Form). Let T : V 7→ V be a linear transformation where V is a
f.d. vector space over an algebraically closed field F. Then∃ a basis for V in which T has the form





































B1 0 · · · 0

0 B2
. . .

...
...

. . .
. . . 0

0 · · · 0 Bk





































where

Bj =





















































λ j 0 · · · 0

1 λ j
. . .

0
. . .

. . .
. . .

...
...

. . .
. . . λ j 0

0 · · · 0 1 λ j





















































.

Note: While Ch(λ) ∈ Ann(V), it does not necessarily generate the ideal Ann(V). Letting Ann(V) =
(M(λ)), M(λ) is called theminimum polynomial of T. ie.

Ch(x) =
∏

j

(x− λ j)
r j but M(x) = lcm{(x− λ j)

r j }.
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Reformulation of the Structure Theorem for f.g. torsion modules.
Let R be a PID and leta,b ∈ R be relatively prime. ThenRa+ Rb = 1 so the Chinese Remainder
Thm. applies:

R
φ
7−→→ R/(a) × R/(b)

and kerφ = (a) ∩ (b) = (a)(b).
Claim. Ra PID and gcd(a,b) = 1⇒ (a)(b) = (ab).

Proof. (a)(b) = (c) for somec. Sinceab ∈ (a)(b) = (c), c | ab.
Conversely, (c) = (a)∩(b) ⊂ (a) soa | c and similarlyb | c. Writec = λa andc = µb. gcd(a,b) = 1

⇒ ∃s, t s.t.sa+ tb = 1. So

λ = λsa+ λbt

= sc+ λbt

= sµb+ λbt

= (sµ + λt)b

∴ (ab) = (c). �

Thus
R/(ab) � R/(a) × R/(b).

By continual application of this iso. we can rewrite our decomposition thm. as follows:

Theorem 2.10.11.Let M be a f.g. R-module (R a PID). Then

M � Rk ⊕ R/(a1) ⊕ R/(a2) ⊕ · · · ⊕ R/(an)

where an | an−1 | · · · | a1 , 0.

a1, . . . ,an are called theinvariant factors of M.

Example 2.10.12.Suppose

M � Z/8⊕ Z/2⊕ Z/2⊕ Z/9⊕ Z/3⊕ Z/5.

Then
M � Z/360⊕ Z/6⊕ Z/2

The number of summands required is

max{r | some primep occursr times among the elementary divisors}.

Reformulation of Chinese Remainder Thm. over a PID. Supposem1, . . . ,mk satisfy gcd(mi ,mj) =
1 for i , j. Givena1, . . . ,ak, ∃x ∈ R/(m1 · · ·mk) s.t.x ≡ aj mod mj∀ j = 1, . . . , k.
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Example 2.10.13.Find x s.t. x≡ 2 mod 9, x ≡ 3 mod 5, x ≡ 3 mod 7.

Solution. m1 = 9,m2 = 5,m3 = 7, a1 = 2,a2 = 3,a3 = 3. Setz1 := m2m3 = 35. Then

y1 := z−1
1 mod 9

= 8−1 mod 9

= 8.

Likewise,

z2 := m1m2 = 60

y2 := z−1
2 mod 5

= 3−1 mod 5

= 2,

z3 := m1m2 = 45

y3 := z−1
3 mod 7

= 3−1 mod 7

= 5.

Setx := a1y1z1+a2y2z2+a3y3z3 mod (m1m2m3). Then modulom1, z2 ≡ 0, z3 ≡ 0, y1z1 ≡ 1, sox ≡ a1

mod m1, etc. In our example,

x = 2 · 8 · 35+ 3 · 2 · 63+ 5 · 3 · 45 mod (9· 5 · 7)

= 1613 mod 315

= 38 mod 315.

In general,x =
∑

j ajyjzj wherezj = m1 · · ·mj−1mj+1 · · ·mn andyj = z−1
j mod mj.
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