## Chapter 2

## Rings and Modules

### 2.1 Rings

Definition 2.1.1. A ring consists of a set $R$ together with binary operations + and $\cdot$ satisfying:

1. $(R,+)$ forms an abelian group,
2. $(a \cdot b) \cdot c=a \cdot(b \cdot c) \forall a, b, c \in R$,
3. $\exists 1 \neq 0 \in R$ such that $a \cdot 1=1 \cdot a=a \forall a \in R$, and
4. $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c \forall a, b, c \in R$.

Note:

1. Some people (e.g. Dummit + Foote) do not require condition 3, and refer to a "ring with identity" if they want to assume $\cdot$ has an identity element.
2. People who include existence of a unit in their defn. of a ring refer to a "ring without identity" for an object satisfying the other three axioms. Some people (e.g. Jacobson) call this a "rng".
3. Some people (e.g. Lang) do not require $1 \neq 0$ in condition 3 .

Definition 2.1.2. $R$ is called commutative if its multiplication is commutative, ie.

$$
a b=b a \quad \forall a, b \in R .
$$

Definition 2.1.3. A ring homomorphism from $R$ to $S$ is a function $f: R \mapsto S$ such that $\forall a, b \in R$ :

1. $f(a+b)=f(a)+f(b)$,
2. $f(a b)=f(a) f(b)$, and
3. $f(1)=1$.

A bijective ring homomorphism is called an isomorphism.
Definition 2.1.4. A subring of $R$ is a subset $A$ which forms a ring such that the inclusion $A \hookrightarrow R$ is a ring homomorphism. A subgroup I of the abelian group $(R,+)$ is called a (two -sided) ideal if

$$
x \in I, r \in R \Rightarrow r x \in I \text { and } x r \in I .
$$

Similarly if a subgroup I satisfies

$$
x \in I, r \in R \Rightarrow r x \in I,
$$

I is called a left ideal, and if it satisfies

$$
x \in I, r \in R \Rightarrow x r \in I,
$$

it is called a right ideal.
Example 2.1.5. If $f: R \mapsto S$ is a homomorphism then $\operatorname{ker} f:=\{x \in R \mid f(x)=0\}$ is an ideal in $R$. (An ideal is always a subrng but never a subring, unless it is all of $R$.)

Theorem 2.1.6. Let $I \varsubsetneqq R$ be a proper ideal. Then $\exists$ a ring $R / I$ and a surjective ring homomorphism $f: R \mapsto R / I$ such that $\operatorname{ker} f=I$.

Proof. Define an equivalence relation on $R$ by $x \sim y \Longleftrightarrow x-y \in I$. Let

$$
R / I:=\text { \{equiv. classes }\} .
$$

Define operations on $R / I$ by

$$
\begin{aligned}
{[x]+[y] } & :=[x+y], \\
{[x] \cdot[y] } & :=[x y] .
\end{aligned}
$$

Check that these are well-defined and produce a ring structure on $R / I$.
Define $f: R \mapsto R / I$ by $f(x)=[x] . f$ is a ring homomorphism. Moreover, $f(x)=0$ iff $[x]=0$ iff $x=x-0 \in I$.

Definition 2.1.7. The ring $R$ is called a division ring if $(R-\{0\}, \cdot)$ forms a group. A commutative division ring is called a field.

An element $u \in R$ for which $\exists v \in R$ such that $u v=v u=1$ is called a unit.
Notation: $R^{\times}=\{$units of $R\}$. This forms a group under multiplication.
A non-zero element $x \in R$ is called a zero divisor if $\exists y \neq 0$ such that either $x y=0$ or $y x=0$. A commutative ring with no zero divisors is called an integral domain.

Proposition 2.1.8. If $x \neq 0$ is not a zero divisor and $x y=x z$ then $y=z$.
Proof. $x(y-z)=0$ and $x$ is not a zero divisor so either $x=0$ or $y-z=0$. But $x \neq 0$ so $y=z$.
Theorem 2.1.9 (First Isomorphism Theorem). Let $f: R \mapsto S$ be a ring homomorphism. Then $R / \operatorname{ker} f \cong \operatorname{Im} f$.

Theorem 2.1.10 (Second Isomorphism Theorem). Let $A \subset R$ be a subring and let $I \varsubsetneqq R$ be a proper ideal. Then $A+I:=\{a+x \mid a \in A, x \in I\}$ is a subring of $R, A \cap I$ is a proper ideal in $A$, and

$$
(A+I) / I \cong A /(A \cap I)
$$

Theorem 2.1.11 (Third Isomorphism Theorem). Let $I \subset J$ be proper ideals of $R$. Then $J / I:=\{[x] \in$ $R / I \mid x \in J\}$ is an ideal in $R / I$, and

$$
\frac{R / I}{J / I} \cong R / J .
$$

Theorem 2.1.12 (Fourth Isomorphism Theorem). Let I be a proper ideal of $R$. Then the correspondence $J \mapsto J / I$ is a bijection between the ideals of $J$ containing I and the ideals of $R / I$.

Let $I$, $J$ be ideals in $R$. Define ideals

$$
\begin{aligned}
& I+J:=\{x+y \mid x \in I, y \in J\}, \\
& I \cap J, \\
& I J:=\left\{\sum_{i=1}^{n} x_{i} y_{y} \mid n \in \mathbb{N}, x_{i} \in I, y_{i} \in J\right\}
\end{aligned}
$$

Then

$$
I J \subset I \cap J \subset I \cup J \subset I+J .
$$

(Note that $I \cup J$ may not be an ideal.) $I+J$ is the smallest ideal containing both $I$ and $J$.

### 2.2 Maximal and Prime Ideals

Definition 2.2.1. An ideal $M \varsubsetneqq R$ is called a maximal ideal if $\nexists$ an ideal $I$ s.t. $M \varsubsetneqq I \varsubsetneqq R$.
Lemma 2.2.2. Given an ideal $I \varsubsetneqq R, \exists$ a maximal ideal $M$ s.t. $I \subset M$.
Proof. Let

$$
\mathcal{S}=\{\text { ideals } J \mid I \subset J \varsubsetneqq R\} .
$$

Then $\mathcal{S}$ is a partially ordered set (ordered by inclusion). If $\mathcal{C} \subset \mathcal{S}$ is a chain (ie. a totally ordered subset) then

$$
J=\bigcup_{C \in C} C
$$

is an ideal which forms an upper bound for $\mathcal{C}$ in $\mathcal{S}$ (it is indeed a proper ideal since $1 \notin J$ ).
$\therefore$ Zorn's Lemma $\Rightarrow \mathcal{S}$ has a maximal element $M$.
For the rest of this section, suppose that $R$ is commutative.
Proposition 2.2.3. $R$ is a field $\Longleftrightarrow$ the only ideals of $R$ are $\{0\}$ and $R$.
Proof.
$\Rightarrow$ : Let $R$ be a field and let $I \subset R$ be an ideal. If $I \neq\{0\}$ then $\exists x \neq 0 \in I$.
$R$ a field $\Rightarrow \exists y \in R$ such that $x y=y x=1$. Since $I$ is an ideal, $1 \in I$, so $r \in I \forall r \in R$. Thus $I=R$.
$\Leftarrow:$ Suppose the only ideals in $R$ are $\{0\}$ and $R$. Let $x \neq 0 \in R$. Let

$$
I=R x:=\{r x \mid r \in R\} .
$$

$I$ is an ideal and $x=1 x \in R$, so $I \neq 0$. Hence $I=R$, so $1 \in I$. ie. $1=y z$ for some $y \in R$.
$\therefore$ Every $x \neq 0 \in R$ has an inverse, so $R$ is a field.

Corollary 2.2.4. Let $f: F \mapsto S$ be a ring homomorphism where $F$ is a field. Then $f$ is injective.
Proof. ker $f$ is a proper ideal in $F$, so $\operatorname{ker} f=0$.
Theorem 2.2.5. $M$ is a maximal ideal $\Longleftrightarrow R / M$ is a field.
Proof. The $4^{\text {th }}$ iso. thm. says $\exists$ a bijection between the ideals of $R$ containing $M$ and the ideals of $R / M$.
$\therefore \exists I$ s.t. $M \varsubsetneqq I \varsubsetneqq R \Longleftrightarrow \exists J$ s.t. $\{0\} \varsubsetneqq J \varsubsetneqq R / M$. ie. $M$ is not maximal $\Longleftrightarrow R / M$ is not a field.

Definition 2.2.6. An ideal $\mathcal{P} \nsubseteq R$ is called a prime ideal if ab $\in \mathcal{P}$ implies $a \in \mathcal{P}$ or $b \in \mathcal{P}$.
Theorem 2.2.7. $\mathcal{P}$ is a prime ideal $\Longleftrightarrow R / \mathcal{P}$ is an integral domain
Proof.
$\Rightarrow$ : Suppose $\mathcal{P}$ is a prime ideal. If $[x y]=[x][y]=0$ in $R / \mathcal{P}$ then $x y \in \mathcal{P}$, so either $x \in \mathcal{P}$ or $y \in \mathcal{P}$. ie. either $[x]=0$ or $[y]=0$. Thus $R / \mathcal{P}$ has no zero divisors.
$\Leftarrow$ : Suppose $R / \mathcal{P}$ is an integral domain. If $x y \in \mathcal{P}$ then $[x][y]=0$ in $R / \mathcal{P}$, so $[x]=0$ or $[y]=0$. ie. either $x \in \mathcal{P}$ or $y \in \mathcal{P}$.

Corollary 2.2.8. A maximal ideal is a prime ideal.
Proof. A field is an integral domain.
Notation: $a \mid b$ means $\exists c$ s.t. $b=a c$ (say $a$ divides $b$ ).
Proposition 2.2.9. In an integral domain, if $a \mid b$ and $b \mid a$ then $b=$ ua for some unit $u$.
Proof. $a \mid b \Rightarrow b=u a$ for some $u \in R . b \mid a \Rightarrow a=v b$ for some $v \in R$.
$\therefore b=u a=u v b$, and since $b$ is not a zero divisor, $1=u v$. Thus, $u$ is a unit.
Definition 2.2.10. $q$ is called a greatest common divisor of $a$ and $b$ if:

1. $q \mid a$ and $q \mid b$, and
2. If $c$ also satisfies $c|a, c| b$ then $c \mid q$.

Notation: $q=\operatorname{gcd}(a, b)$ means $q$ is the greatest common divisor of $a$ and $b$.
We say $a$ and $b$ are relatively prime if $\operatorname{gcd}(a, b)=1$.
Proposition 2.2.11. Let $R$ be an integral domain. If $q=\operatorname{gcd}(a, b)$ and $q^{\prime}=\operatorname{gcd}(a, b)$ then $q^{\prime}=u q$ for some unit $u$. Conversely, if $q=\operatorname{gcd}(a, b)$ and $q^{\prime}=u q$ where $u$ is a unit then $q^{\prime}=\operatorname{gcd}(a, b)$.

Proof. Let $q=\operatorname{gcd}(a, b)$. If $q^{\prime}=\operatorname{gcd}(a, b)$ then $q^{\prime} \mid q$ and $q \mid q^{\prime}$ so $q^{\prime}=u q$ for some unit $u$.
Conversely, if $q^{\prime}=u q$ for some unit $u$ then $q^{\prime} \mid q$ so $q^{\prime} \mid a$ and $q^{\prime} \mid b$. Also $q \mid q^{\prime}$ so whenever $c \mid a$ and $c|b, c| q$ so $c \mid q^{\prime}$.

Definition 2.2.12. A non-unit $p \neq 0 \in R$ is called a prime if $p|a b \Rightarrow p|$ a or $p \mid b$.

Notation: Let $x \in R .(x):=R x=\{r x \mid r \in R\}$ is called the principal ideal generated by $x$. Thus $y \in(x)$ iff $x \mid y$.

Likewise, for $x_{1}, \ldots, x_{n} \in R$, let $\left(x_{1}, \ldots, x_{n}\right)$ denote the following ideal:

$$
\left\{r_{1} x_{1}+\cdots+r_{n} x_{n} \mid r_{1}, \ldots, r_{n} \in R\right\}
$$

ie. the ideal generated by $x_{1}, \ldots, x_{n}$.
Proposition 2.2.13. If $p \neq 0$ then $p$ is prime $\Longleftrightarrow(p)$ is a prime ideal.
Proof.
$\Rightarrow$ : Suppose $p$ is prime. If $a b \in(p)$ then $a b=r p$ for some $r$, so $p \mid a b$. So $p \mid a$ or $p \mid b$. ie. $a \in(p)$ or $b \in(p)$.
$\Leftarrow:$ Suppose $(p)$ is a prime ideal. If $p \mid a b$ then $a b \in(p)$ so $a \in(p)$ or $b \in(p)$.
$\therefore p \mid a$ or $p \mid b$.

Nonzero elements $x$ and $y$ are called associates if $\exists$ a unit $u$ s.t. $x=u y, y=u^{-1} x$. Thus, $x, y$ are associate $\Longleftrightarrow(x)=(y)$. ie. For associates $x$ and $y, x \mid a$ iff $y \mid a$.
$x \sim y$ iff $x, y$ are associate forms an equivalence relation on $R-\{0\}$.
Definition 2.2.14. $x \in R$ is irreducible if $x \neq 0, x$ is not a unit, and whenever $x=a b$, either $a$ is $a$ unit or $b$ is a unit.

Definition 2.2.15. Ideals $I$ and $J$ are called comaximal or relatively prime if $I+J=R$.
Theorem 2.2.16 (Chinese Remainder Theorem). Let $R$ be a commutative ring. Let

$$
I_{1}, \ldots, I_{k} \subset R
$$

be ideals. Suppose $I_{i}$ and $I_{j}$ are comaximal whenever $i \neq j$. Let

$$
\begin{aligned}
\phi: R & \mapsto R / I_{1} \times R / I_{2} \times \cdots \times R / I_{k} \\
r & \mapsto\left(r+I_{1}, r+I_{2}, \ldots, r+I_{k}\right) .
\end{aligned}
$$

Then $\phi$ is surjective and

$$
\operatorname{ker} \phi=I_{1} \cap I_{2} \cap \cdots \cap I_{k}=I_{1} \cdots I_{k} .
$$

Proof. Consider first the case when $k=2$. Suppose $I, J$ are comaximal. Then $\exists x \in I, y \in J$ s.t. $x+y=$ 1. So $\phi(x)=(0,1)$ and $\phi(y)=(1,0)$. Since $(0,1)$ and $(1,0)$ generate $R / I \times R / J, \phi$ is surjective.

Clearly ker $\phi=I \cap J$, and in general, $I J \subset I \cap J$. For any $c \in I \cap J$,

$$
c=c 1=c x+c y \in I J
$$

$\therefore I J=I \cap J$.
General case: set $I=I_{1}, J=I_{2} \cdots I_{k}$. For each $i=2, \ldots, k, \exists x_{i} \in I$ and $y_{i} \in I_{i}$ s.t. $x_{i}+y_{i}=1$. Since $x_{i}+y_{i} \equiv y_{i} \bmod I$,

$$
1=1 \cdots 1=\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right) \cdots\left(x_{k}+y_{k}\right) \equiv y_{2} \cdots y_{k} \quad \bmod I
$$

So $1 \in I+J$.
$\therefore R \mapsto R / I \times R / J$ and by induction,

$$
R / I \times R / J \mapsto R / I_{1} \times R / I_{2} \times R / I_{3} \times \cdots \times R / I_{k}
$$

and

$$
I_{1} I_{2} \cdots I_{k}=I J=I \cap J=I_{1} \cap I_{2} \cap \cdots I_{k} .
$$

### 2.3 Polynomial Rings

Let $R$ be a ring.

$$
R[x]:=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \mid n \geq 0 \in \mathbb{Z} \text { and } a_{j} \in R \text { for } j=0, \cdots, n\right\}
$$

(modulo $0 x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \sim a_{n-1} x^{n-1}+\cdots+a_{0}$ ). Operations are

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} x^{i}+\sum_{i=1}^{n} b_{i} x^{i} & :=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right) x^{i}, \quad \text { and } \\
\left(\sum_{i=1}^{n} a_{i} x^{i}\right)\left(\sum_{i=1}^{m} b_{i} x^{i}\right) & :=\sum_{k=0}^{n+m}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) x^{k} .
\end{aligned}
$$

More formally,

$$
(R[x],+)=\bigoplus_{n=0}^{\infty} R,
$$

with multiplication defined by

$$
\left(a_{i}\right)_{i \geq 0}\left(b_{j}\right)_{j \geq 0}=\left(c_{k}\right)_{k \geq 0} \quad \text { where } c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i} .
$$

Inductively, set

$$
R\left[x_{1}, \ldots, x_{n}\right]:=\left(R\left[x_{1}, \ldots, x_{n-1}\right]\right)\left[x_{n}\right] .
$$

(called the polynomial ring in $n$ variables). For an arbitrary set $S$, set

$$
R[S]:=\bigcup_{T=\text { finite subset of } S} R[T] .
$$

If $q(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $a_{n} \neq 0$ then $n$ is called the degree of $q$. Embed $R \hookrightarrow R[x]$ via

$$
r \mapsto r \quad(\text { polynomial of degree } 0) .
$$

Some properties:

1. $R[x]$ is commutative $\Longleftrightarrow R$ is commutative.
2. $R[x]$ is an integral domain $\Longleftrightarrow R$ is an integral domain.
3. If $R$ is an integral domain then $q(x) \in R[x]$ is invertible $\Longleftrightarrow q(x) \in R$ and is invertible in $R$.

Proposition 2.3.1. Let $I \subset R$ be an ideal. Let $I[x]$ denote the ideal of $R[x]$ generated by $I$. Then $R[x] / I[x] \cong(R / I)[x]$.

Proof. Define $\phi: R[x] \mapsto(R / I)[x]$ by

$$
\phi\left(\sum a_{i} x^{i}\right):=\sum \overline{a_{i}} x^{i}
$$

Then $\phi$ is onto and $\operatorname{ker} \phi=I[x]$, so

$$
R[x] / I[x] \cong(R / I)[x] .
$$

Corollary 2.3.2. $I[x]$ is a prime ideal $\Longleftrightarrow I$ is a prime ideal.

### 2.4 Modules

Definition 2.4.1. Let $R$ be a ring. A (left) $R$-module consists of an abelian group ( $M,+$ ), together with a function $\cdot: R \times M \mapsto M$ s.t.

1. $(r+s) m=r m+s m \forall r, s \in R, m \in M$,
2. $r(m+n)=r m+r n \forall r \in R, m, n \in M$,
3. $(r s) m=r(s m) \forall r, s \in R, m \in M$, and
4. $1 m=m \forall m \in M$.

If $R$ is a field, an $R$-module is also called a vector space over $R$.
Definition 2.4.2. An R-module homomorphism $f: M \mapsto N$ is a function satisfying

1. $f(a+b)=f(a)+f(b) \forall a, b \in M$ and
2. $f(r a)=r f(a) \forall r \in R, a \in M$.

If $R$ is a field, an $R$-module homomorphism is also called a linear transformation. A bijective homomorphism is called an isomorphism.

Definition 2.4.3. A submodule of $M$ is a subset $A$ which forms an $R$-module s.t. the inclusion $A \hookrightarrow M$ is an $R$-module homomorphism. The $R$-module $M$ is simple if its only submodules are $M$ and $\{0\}$.

Example 2.4.4.

1. $M=R$ with $R \times M \mapsto M$ given by mult. in $R$. Submodules of $R$ are left ideals.
2. $R=\mathbb{Z}$ and $M=$ abelian grp., with

$$
\begin{aligned}
n \cdot x & :=x+\cdots+x, \quad \text { for } n \geq 0, \text { and } \\
(-n) \cdot x & :=-(n \cdot x), \quad \text { for } n \geq 0 .
\end{aligned}
$$

Conversely, any $\mathbb{Z}$-module is just an abelian group.
3. $F$ a field, $V$ a vector space over $F, T: V \mapsto V$ a linear transformation. Let $R=F[x]$ and $M=V$. Define

$$
x^{n} \cdot v:=T^{n}(v)=T\left(T^{n-1} v\right) \quad \forall v \in V
$$

and extend linearly to an action of $F[x]$ on $V$.

If $f: M \mapsto N$ is an $R$-module homomorphism then $\operatorname{ker} f$ is a submodule of $M$ and $\operatorname{Im} f$ is a submodule of $R$. If $M, N$ are $R$-modules, set

$$
\operatorname{hom}_{R}(M, N):=\{R \text {-module homomorphisms from } M \text { to } N\} .
$$

$\operatorname{hom}_{R}(M, N)$ is an abelian group in general, and if $R$ is commutative, it becomes an $R$-module via

$$
(r f)(m)=f(r m)
$$

Let $N$ be a submodule of $M$. On the abelian group $M / N$, define the action of $R$ by $r \cdot \bar{m}:=\overline{r \cdot m}$. This is well-defined and produces an $R$-module structure on $M / N$.

## Theorem 2.4.5.

1. First Isomorphism Theorem

Let $f: M \mapsto N$ be an $R$-module homomorphism. Then $M / \operatorname{ker} f \cong \operatorname{Im} f$.
2. Second Isomorphism Theorem Let $A, B$ be submodules of $M$. Then

$$
(A+B) / B \cong A /(A \cap B)
$$

where $A+B=\{a+b \mid a \in A, b \in B\}$, which itselfforms a submodule.
3. Third Isomorphism Theorem Let $A \subset B \subset M$ be $R$-modules. Then

$$
\frac{M / A}{B / A} \cong M / B .
$$

4. Fourth Isomorphism Theorem Let $N \subset M$ be R-modules. Then $A \leftrightarrow A / N$ sets up a bijection between the submodules of $M$ containing $N$ and the submodules of $M / N$.

A sequence

$$
\left.0 \longrightarrow A \longrightarrow \begin{array}{l}
j \\
0
\end{array}\right] \xrightarrow{f} C \longrightarrow
$$

of $R$-module homomorphisms s.t. $j$ is injective, $f$ is surjective, and $\operatorname{ker} f=\operatorname{Im} j$ is called a short exact sequence of $R$-modules. $1^{\text {st }}$ iso. thm. $\Rightarrow C \cong B / \operatorname{Im} j$.

Proposition 2.4.6. Let

$$
\left.0 \longrightarrow A \longrightarrow \begin{array}{l}
j \\
\end{array}\right] \xrightarrow{f} C \longrightarrow
$$

be a short exact sequence of $R$-modules. Then TFAE:

1. $\exists s: C \mapsto B$ s.t. $f s: C \mapsto C$ is an isomorphism.
2. $\exists r: B \mapsto A$ s.t. $r j: A \mapsto A$ is an isomorphism.
3. $B \cong A \oplus C$.

## Remarks:

1. The fact that the above are isomorphic as abelian groups was discussed in the section on semidirect products, since for abelian groups, all subgroups are normal and semidirect products become products.
2. As discussed in semidirect product section, $2 \Longleftrightarrow 3$, even for nonabelian groups, but in that situation, $1 \neq 2$ or 3 .

Given a set $S, \exists$ an $R$-module $M$ having the property that for any $R$-module $M$,

$$
\operatorname{hom}_{R}(M, N)=\operatorname{morphisms}_{\text {sets }}(S, N)
$$

ie. An $R$-module homomorphism from $M$ is uniquely determined by the images of the elts. of $S$. Explicitly,

$$
M \cong R^{S} \equiv \bigoplus_{S} R
$$

$M$ is called the free $R$-module with basis $S$. An $R$-module which possesses a basis is called a free $R$-module. An arbitrary elt. of a free $R$-module can be uniquely written as a finite linear combination

$$
x=\sum r_{i} s_{i}
$$

where $r_{i} \in R$ and $s_{i} \in S$. When $R=\mathbb{Z}$, the free $\mathbb{Z}$-module on $S$ is also called the free abelian group on $S$, denoted $F_{a b}(S)$.

Let $M$ be a right $R$-mod. and let $N$ be a left $R$-mod. Define an abelian group $M \otimes_{R} N$ (tensor product of $M, N$ over $R$ ) by

$$
M \otimes_{R} N=F_{a b}(M \times N) / \sim
$$

where

1. $\left(m, n_{1}+n_{2}\right) \sim\left(m, n_{1}\right)+\left(m, n_{2}\right) \forall m \in M, n_{1}, n_{2} \in N$,
2. $\left(m_{1}+m_{2}, n\right) \sim\left(m_{1}, n\right)+\left(m_{2}, n\right) \forall m_{1}, m_{2} \in M, n \in N$, and
3. $(m \cdot r, n) \sim(m, r \cdot n) \forall r \in R, m \in M, n \in N$.

Write $m \otimes n$ for the equiv. class of $(m, n)$ in $M \otimes_{R} N$. So an arbitrary elt. of $M \otimes_{R} N$ has the form

$$
\sum_{i=1}^{k} c_{i}\left(m_{i} \otimes n_{i}\right)
$$

where $m_{i} \in M, n_{i} \in N, c_{i} \in \mathbb{Z}$.
Note that $R \otimes_{R} N \cong N$ and $M \otimes_{R} R \cong M$.
$M \otimes_{R} N$ has the universal property: $q$ is $R$-bilinear and given bilinear $f: M \times N \mapsto A$,

$f$ bilinear means:

$$
\begin{aligned}
f\left(m_{1}+m_{2}, n\right) & =f\left(m_{1}, n\right)+f\left(m_{2}, n\right), \\
f\left(m, n_{1}+n_{2}\right) & =f\left(m, n_{1}\right)+f\left(m, n_{2}\right), \quad \text { and } \\
f(m r, n) & =f(m, r n)
\end{aligned}
$$

If $R$ is commutative then $M \otimes_{R} N$ becomes an $R$-module via

$$
r \cdot(m \otimes n):=m \otimes(r \cdot n)
$$

More generally, if $M$ is an $R$-bimodule (ie. has both a left and a right $R$-module action which commute with each other) then $M \otimes_{R} N$ becomes a left $R$-module via

$$
r \cdot(m \otimes n):=(r \cdot m) \otimes n .
$$

Notice that $R$ is an $R$-bimodule even if $R$ is not commutative. (ie. Left multiplication commutes with right multiplication $-R$ is associative.)

More generally, let $f: R \mapsto S$ be a ring homomorphism. Then $S$ becomes an $R$-bimodule via

$$
\begin{aligned}
r \cdot s & :=f(r) s \\
s \cdot r & :=s f(r)
\end{aligned}
$$

This induces a map from $R$-modules to $S$-modules given by $N \mapsto S \otimes_{R} N$.

Example 2.4.7 (Extension of Coefficients). Let $N$ be a vector space over a field $F$. Let $F \hookrightarrow K$ be an extension field. Elts. of $N$ are finite sums

$$
\sum a_{i} e_{i}
$$

where $\left\{e_{i}\right\}_{i \in T}$ forms a basis for $N$. Then elts. of $K \otimes_{F} N$ are finite sums

$$
\sum a_{i} e_{i}
$$

where $a_{i} \in K, i \in T$. (So $\left\{e_{i}\right\}$ forms a basis for $K \otimes_{F} N$ as a vector space over $K$.)
In general,

$$
M \otimes_{R}\left(\bigoplus_{i \in T} N_{i}\right) \cong \bigoplus_{i \in T}\left(M \otimes_{R} N_{i}\right),
$$

so

$$
S \otimes_{R}\left(\bigoplus_{i \in T} R\right) \cong \bigoplus_{i \in T}\left(S \otimes_{R} R\right) \cong \bigoplus_{i \in T} S
$$

Thus if $N$ is a free $R$-module with basis $T$ then $S \otimes_{R} N$ forms a free $S$-module with basis $T$.
Theorem 2.4.8 (Steinitz Exchange Theorem). Let $R$ be a commutative ring. Let $B$ and $T$ be bases for a free $R$-module $N$. Then $\operatorname{Card} B=\operatorname{Card} T$.

Proof. If $g: R \mapsto S$ is any ring homomorphism then $S \otimes_{R} N$ is a free $S$-module with both $B$ and $T$ as bases. Letting $g: R \mapsto R / M$ where $M$ is a maximal ideal in $R$, we may reduce to the case where $R$ is a field.

Case I: At least one of $\operatorname{Card} B, \operatorname{Card} T$ is finite. Say $\operatorname{Card} B \leq \operatorname{Card} T$ and suppose $\operatorname{Card} B<\infty$. Write $B=\left\{b_{1}, \ldots, b_{n}\right\} . \exists t_{1} \in T$ s.t. when $t_{i}$ is written in the basis $B$, the coeff. of $b_{1}$ is nonzero (or else $b_{2}, \ldots, b_{n}$ would span $N$ ). Then $\left\{t_{1}, b_{2}, \ldots, b_{n}\right\}$ forms a basis for $N$. Inductively, $\forall j=1, \ldots, n$, find $t_{j}$ s.t. $\left\{t_{1}, \ldots, t_{j}, b_{j+1}, \ldots, b_{n}\right\}$ forms a basis for $N$. Then $\left\{t_{1}, \ldots, t_{n}\right\}$ forms a basis for $N$, so

$$
T=\left\{t_{1}, \ldots, t_{n}\right\}
$$

and $|T|=|B|$.
Case II: Both Card $B$ and Card $T$ are infinite. For each $b \in B$, set

$$
T_{b}=\{\text { elts. of } T \text { occuring in the expression for } b \text { in basis } T\} \in 2^{T} .
$$

Then $T_{b}$ is finite $\forall b$. Define $f: B \mapsto 2^{T}$ by $f(b)=T_{b}$. If $X \subset T$ is finite with say $|X|=n$, at most $n$ elts. of $B$ lie in the span of $X$. So $\left|f^{-1}(X)\right| \leq|X|$.

$$
B=\bigcup_{\substack{X \subset T \\ X \text { finite }}} f^{-1}(X)=\bigcup_{n=1}^{\infty} \bigcup_{\substack{X \subset T \\|X|=n}} f^{-1}(X)
$$

Since $T$ is infinite, the cardinality of

$$
\{X \subset T||X|=n\}
$$

is equal to the cardinality of $|T|$. Since $\left|f^{-1}(X)\right| \leq|X|$,

$$
\begin{aligned}
\operatorname{Card} B & =\operatorname{Card} \bigcup_{n=1}^{\infty} \bigcup_{\substack{X \subset T \\
|X|=n}} f^{-1}(X) \\
& \leq \operatorname{Card}\left(\bigcup_{n=1}^{\infty} \operatorname{Card} T\right) \\
& =\operatorname{Card} T
\end{aligned}
$$

Similarly, $\operatorname{Card} T \leq \operatorname{Card} B$.

Note: Once we reduced to the case of a division ring, we no longer needed the commutativity of $R$, so the thm. also holds whenever $R$ is a division ring, or indeed when $R$ admits a homomorphism to a division ring. However, we used commutativity of $R$ to produce our map $R \mapsto$ (division ring), since

$$
R / 2 \text {-sided max. ideal }
$$

need not be a division ring if $R$ is not commutative.
If $R$ is a commutative ring and $N$ is a free $R$-module, the cardinality of any basis for $N$ is called the rank of $N$. If $R$ is a field then every $R$-module is free and its rank is called its dimension.

Proposition 2.4.9. If $\phi: M \mapsto N$ is a surjective $R$-module homomorphism and $N$ is a free $R$-module then $\exists$ an $R$-module homomorphism s: $N \mapsto M$ s.t. $\phi s=1_{N}$. In particular, $M \cong N \oplus \operatorname{ker} \phi$.

Proof. Let $S$ be a basis for $N$. For each $x \in S$, choose $m \in M$ s.t. $\phi(m)=x$ and set $s(x)=m$. Since $N$ is free, this extends (uniquely) to an $R$-module map.

An $R$-module $P$ is called projective if given a surjective $R$-mod. homom. $\phi: M \mapsto P, \exists$ an $R$-mod. homom. $s: P \mapsto M$ s.t. $\phi s=1_{P}$. Equivalently, $P$ is surjective iff $\exists Q$ s.t. $P \oplus Q \cong R^{N}$ for some $N$. Equivalently, $P$ is projective iff

$\exists$ a lift $s$ (not necessarily unique).
$\therefore$ Free $\Rightarrow$ Projective.
Example 2.4.10 (A projective module which is not free). Let $R=M_{n \times n}(F)(n \times n$ matrices with entries in a field $F$ ), with $n>1$. Let

$$
P=\left(\begin{array}{cccc}
* & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
* & 0 & \cdots & 0
\end{array}\right)
$$

(matrices which are 0 beyond the first column). Then $P$ forms a left ideal in $R$, ie. $P$ is a left $R$-module. Let

$$
Q=\left(\begin{array}{cccc}
0 & * & \cdots & * \\
\vdots & \vdots & & \vdots \\
0 & * & \cdots & *
\end{array}\right)
$$

(matrices which are 0 in the first column). Then $P \oplus Q=R$, so $P$ is projective. But $P$ is not free, because if $P \cong R^{s}$ then, regarded as vector spaces over $F$, we would have

$$
n=\operatorname{dim} P=\operatorname{dim} R^{s}=s n^{2} .
$$

This is a contradiction since $n>1$.
Definition 2.4.11. Let $R$ be an integral domain. An elt. $x$ in an $R$-module $M$ is called a torsion element if $\exists r \neq 0 \in R$ s.t. $r x=0 . M$ is called a torsion module if $x$ is a torsion elt. $\forall x \in M . M$ is called torsion-free if it has no torsion elements.
$x, y$ torsion elts. $\Rightarrow x+y$ is a torsion elt. If $x$ is a torsion elt. and $r \in R$ then $r x$ is a torsion elt. Hence,

$$
\operatorname{Tor} M:=\{x \in M \mid x \text { is a torsion elt. }\}
$$

forms a submodule of $M$.

The annihilator of $x \in M$ is the left ideal

$$
\operatorname{Ann}(x):=\{r \in R \mid r x=0\} .
$$

The annihilator of $M$ is the 2 -sided ideal

$$
\text { Ann } M:=\{r \in R \mid r x=0 \forall x \in M\} .
$$

### 2.5 Localization and Field of Fractions

From the $4^{\text {th }}$ isomorphism theorem we get:
Proposition 2.5.1. A left ideal I is maximal if and only if the quotient module $R / I$ is a simple (left) $R$-module.

Note: It is important to remember that $R / I$ (when $I$ is a left ideal) is a quotient module and not (necessarily) a quotient ring.

Definition 2.5.2. A ring with a unique maximal left ideal is called a local ring.
While it appears initially that replacing "left ideal" by "right ideal" might give a different concept, as we shall see, "left local" equals "right local". That is, a ring has a unique maximal left ideal if and only if it has a unique maximal right ideal. Note however that while, as we shall see, a unique maximal left ideal must in fact be a 2 -sided ideal, the existence of a unique maximal 2 -sided ideal is not sufficient to guarantee that a ring be local. For example, when $n>1,\{0\}$ forms a unique maximal ideal for matrix rings $M_{n \times n}(F)$ over a field $F$, but these rings are not local since they contain nontrivial left ideals, as we saw in the previous section.

Theorem 2.5.3. Let $R$ be a local ring with max. left ideal $M$. Then $M$ is a 2-sided ideal.
Proof. Suppose $y \in R$. Must show $M y \subset M$. If $y \in M$ this is trivial since $M$ is a left ideal, so assume $y \notin M$. Let $I_{y}:=\{x \in R \mid x y \in M\}$. To finish the proof, we must show that $M \subset I_{y}$.

For $r \in R$ and $x \in I_{y},(r x) y=r(x y) \in r M \subset M$, using that $M$ is a left ideal. Therefore $I_{y}$ is a left ideal. Note that $1 \notin I_{y}$, since $y \notin M$. Thus $I_{y}$ is a proper left ideal so $I_{y} \subset M$. Let $\bar{y}$ denote the equivalence class of $y$ in the quotient module $R / M$. Define $\phi: R \rightarrow R / M$ by $\phi(r)=r \bar{y}$. Then $\operatorname{ker} \phi=I_{y}$ by definition of $I_{y}$. Since $M$ is maximal, $R / M$ is a simple module, so $\operatorname{Im} \phi=R / M$. Therefore as left $R$-modules we have $R / I_{y} \cong \operatorname{Im} \phi=R / M$, which is simple and so $I_{y}$ is a maximal left $R$-module. Thus $I_{y}=M$.

Corollary 2.5.4. Let $R$ be a local ring with max. left ideal M. Then

1. $x \in R-M$ iff $x$ is a unit.
2. $R$ has a unique maximal right ideal.
3. The unique maximal right ideal of $R$ is $M$.
4. $R / M$ is a division ring.

Conversely, if $R$ is a ring with an ideal $M$ s.t. $x$ is a unit $\forall x \in R-M$ then $R$ is a local ring.

Proof. Since no proper ideal can contain a unit, parts (2), (3), and (4) are immediate consequences of part (1).

Given $x \in R-M$, maximality of $M$ shows that $R x=R$ so $\exists y \in R$ such that $y x=1$. Since $M$ is a 2-sided ideal and $x \in R-M$ it follows that $y$ cannot lie in $M$. Therefore the same argument applies to $y$ and shows that $\exists z \in R$ such that $z y=1$. But then $z=z(y x)=(z y) x=x$, so $y$ forms a 2 -sided inverse to $x$, establishing (1).

Conversely if every element of $R-M$ is a unit, then the fact that no proper ideal can contain a unit shows that $R$ is a local ring.

For the rest of this section, suppose that $R$ is commutative.
A subset $S \subset R$ containing 1 and s.t. $0 \notin S$, which is closed under the multiplication of $R$ is called a multiplicative subset. For example, let $\mathcal{P} \subset R$ be a prime ideal. Then $R-\mathcal{P}$ is a multiplicative subset. Form a ring called the localization of $R$ w.r.t. $S$, denoted $S^{-1} R$. As a set,

$$
S^{-1} R:=R \times S / \sim,
$$

where $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ if $\exists t \in S$ s.t. $t\left(r s^{\prime}-r^{\prime} s\right)=0$. Think of $(r, s)$ as $\frac{r}{s}$. Check $\sim$ is an equiv. reln.:
If $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ and $\left(r^{\prime}, s^{\prime}\right) \sim\left(r^{\prime \prime}, s^{\prime \prime}\right)$ then

$$
\begin{gathered}
\exists t \in S \text { s.t. } t\left(r s^{\prime}-r^{\prime} s\right)=0 \\
\text { and } \exists t^{\prime} \in S \text { s.t. } t^{\prime}\left(r^{\prime} s^{\prime \prime}-r^{\prime \prime} s^{\prime}\right)=0
\end{gathered}
$$

Then

$$
s^{\prime} t t^{\prime} r s^{\prime \prime}=t t^{\prime} r^{\prime} s s^{\prime \prime}=t t^{\prime} r^{\prime \prime} s^{\prime} s
$$

ie. $s^{\prime} t t^{\prime}\left(r s^{\prime \prime}-r^{\prime \prime} s\right)=0$, (and $\left.s^{\prime} t t^{\prime} \in S\right)$ so $(r, s) \sim\left(r^{\prime \prime}, s^{\prime \prime}\right)$.
Define addition by $(r, s)+\left(r^{\prime}, s^{\prime}\right)=\left(r s^{\prime}+r^{\prime} s, s s^{\prime}\right)$. Check + is well-defined: suppose

$$
\left(r^{\prime}, s^{\prime}\right) \sim\left(r^{\prime \prime}, s^{\prime \prime}\right), \quad \text { so } t r^{\prime} s^{\prime \prime}=t r^{\prime \prime} s^{\prime}
$$

Is $\left(r s^{\prime}+r^{\prime} s, s s^{\prime}\right) \sim\left(r s^{\prime \prime}+r^{\prime \prime} s, s s^{\prime \prime}\right)$ ?
Formally, $s^{2} t r^{\prime} s^{\prime \prime}=s^{2} t r^{\prime \prime} s^{\prime}$ so

$$
t\left(s s^{\prime \prime}\left(r s^{\prime}+r^{\prime} s\right)-s s^{\prime}\left(r s^{\prime \prime}+r^{\prime \prime} s\right)=t\left(s^{2} r^{\prime} s^{\prime \prime}-s^{2} r^{\prime \prime} s\right)=0\right.
$$

Define $\cdot$ by $(r, s) \cdot\left(r^{\prime}, s^{\prime}\right)=\left(r r^{\prime}, s s^{\prime}\right)$ (easy to check $\cdot$ is well-defined). $\left(S^{-1} R,+, \cdot\right)$ becomes a commutative ring ring with identity $(1,1)$.

Define the ring homomorphism

$$
\begin{aligned}
\psi: R & \mapsto S^{-1} R \\
r & \mapsto(r, 1)
\end{aligned}
$$

Note that $\psi(s)$ is a unit in $S^{-1} R \forall s \in S$. ie. $(1, s) \psi(s)=(1, s)(s, 1)=(s, s) \sim(1,1)$.
$\psi: R \mapsto S^{-1} R$ has the universal property: If $f: R \mapsto A$ is a ring homomorphism s.t. $f(s)$ is a unit in $A \forall s \in S$ then


Proposition 2.5.5. If $R$ is an integral domain then $\psi: R \mapsto S^{-1} R$ is injective.
Proof. Suppose $(r, 1)=\psi(r)=0=(0,1)$. Then $t(r-0)=0$ for some $t \in S$, so $r=0$.
Note: if $R$ is an integral domain, we can define the equiv. reln. simply by

$$
(r, s) \sim\left(r^{\prime}, s^{\prime}\right) \text { iff } r s^{\prime}=r^{\prime} s
$$

Special cases:

1. $R$ an integral domain, $S=R-\{0\}$. Then $S^{-1} R$ is a field called the field of fractions of $R$.
2. $S=R-\mathcal{P}$ where $\mathcal{P}$ is a prime ideal. Then $\psi(\mathcal{P})$ forms an ideal in $S^{-1} R$ and every element of $S^{-1} R$ outside of $\psi(\mathcal{P})$ is invertible (quotient of images of elts. in $S$ ).
$\therefore S^{-1} R$ is a local ring with max. ideal $\psi(\mathcal{P}) . S^{-1} R$, also written $R_{\mathcal{P}}$, is called the localization of $R$ at the prime $\mathcal{P}$.
3. $S=I-\{0\}$, where $I$ is an ideal without 0 -divisors. $S^{-1} R$ is sometimes called $R$ with $I$ inverted.
e.g. $R=\mathbb{Z}, I=\mathbb{Z} p$. Then

$$
S^{-1} R=\mathbb{Z}\left[\frac{1}{p}\right]=\left\{\frac{m}{p^{t}} \in \mathbb{Q}\right\}
$$

is " $\mathbb{Z}$ with $p$ inverted" or " $\mathbb{Z}$ with $\frac{1}{p}$ adjoined". Sometimes called the localization of $\mathbb{Z}$ away from $p$.

### 2.6 Noetherian Rings and Modules

Definition 2.6.1. An R-module $M$ is called Noetherian if, given any increasing chain of submodules

$$
M_{1} \subset M_{2} \subset \cdots \subset M_{n} \subset \cdots
$$

$\exists N$ s.t. $M_{n}=M_{N} \forall n \geq N$. The ring $R$ is called a Noetherian ring if it is Noetherian when regarded as an $R$-module.

If $R$ is not commutative, notions of Noetherian, "right Noetherian", and "2-sided Noetherian" do not necessarily coincide.

Theorem 2.6.2. Let $R$ be a ring and let $M$ be a left $R$-module. Then TFAE:

1. $M$ is a Noetherian $R$-module.
2. Every non-empty set of submodules of $M$ contains a maximal element.
3. Every submodule of $M$ is finitely generated (and in particular, $M$ is finitely generated).

Proof.
$1 \Rightarrow 2$ : Let $\Sigma$ be a nonempty collection of submodules of $M$. Choose $M_{1} \in \Sigma$. If $M_{1}$ is not maximal in $\Sigma$ then $\exists M_{2} \in \Sigma$ s.t. $M_{1} \varsubsetneqq M_{2}$. Having chosen $M_{1}, \ldots, M_{n-1}$, if $M_{n-1}$ is not maximal in $\Sigma$ then $\exists M_{n} \in \Sigma$ s.t.

$$
M_{1} \varsubsetneqq M_{2} \varsubsetneqq \cdots \varsubsetneqq M_{n-1} \varsubsetneqq M_{n} .
$$

By hypothesis, no infinite chain of this sort exists, so eventually reach a max. elt.
$2 \Rightarrow 3$ : Let $N$ be a submodule of $M$. Let $\Sigma$ be the collection of all finitely generated submodules of $N$. By the hypothesis, $\Sigma$ contains a maximal element $N^{\prime}$. If $N^{\prime} \neq N$ then pick $x \in N-N^{\prime}$. Then $\left\langle N^{\prime}, x\right\rangle$ is f.g. and properly contains $N^{\prime}$, which is a contradiction.
$\therefore N^{\prime}=N$, so $N$ is f.g.
$3 \Rightarrow 1$ : Suppose every submod. of $M$ is f.g. Let

$$
M_{1} \subset M_{2} \subset M_{3} \subset \cdots
$$

be a chain of submodules. Let $N=\bigcup_{i=1}^{\infty} M_{i}$. Then $N \subset M$ is a submodule, so

$$
N=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle
$$

for some finite set $a_{1}, \ldots, a_{n} \in N$.

Since $a_{i} \in N$, each $a_{i} \in M_{k}$ for some $k$. So $\exists K$ s.t. $M_{K}$ contains all of $a_{1}, \ldots, a_{n}$. But then $N \subset M_{K}$, so

$$
M_{K}=M_{K+1}=\cdots=M_{K+m}=\cdots=N
$$

ie. $M_{n}=M_{K} \forall n \geq K$.

Corollary 2.6.3. Let $f: M \mapsto N$ be an $R$-module homomorphism. Then $M$ is Noetherian iff $\operatorname{ker} f$ and $\operatorname{Im} f$ are Noetherian.

Proof.
$\Rightarrow$ : Suppose $M$ is Noetherian. Every submodule of $\operatorname{ker} f$ is a submodule of $M$, and thus is f.g., so $\operatorname{ker} f$ is Noetherian.
If $A \subset \operatorname{Im} f$ then $f^{-1}(A)$ is a submodule of $M$, thus f.g. But then the images of the generators of $f^{-1}(A)$ generate $A$, so $A$ is f.g.
$\Leftarrow$ : Suppose $\operatorname{ker} f$ and $\operatorname{Im} f$ are f.g. Let $B \subset M$ be a submodule of $M$. Let

$$
\Delta=f(B) \subset \operatorname{Im} f
$$

Pick a set $\overline{x_{1}}, \ldots, \overline{x_{k}}$ of generators for $\Delta$ and let $x_{1}, \ldots, x_{k}$ be pre-images in $B$.
Claim. $\quad B=\left\langle\operatorname{ker} f \cap B, x_{1}, \ldots, x_{k}\right\rangle$.
Proof. Given $b \in B, f(b) \in f(B)$ so

$$
f(b)=\sum_{i=1}^{n} r_{i} \overline{x_{i}}, \quad \text { for some } r_{1}, \ldots, r_{k} \in R
$$

Then $f\left(b-\sum_{i=1}^{n} r_{i} x_{i}\right)=0$ so

$$
b-\sum_{i=1}^{n} r_{i} x_{i} \in \operatorname{ker} f \cap B
$$

ie. $b \in\left\langle\operatorname{ker} f \cap B, x_{1}, \ldots, x_{k}\right\rangle$.
But $\operatorname{ker} f \cap B \subset \operatorname{ker} f$ is f.g., so $B$ is f.g.

Corollary 2.6.4. Let $R$ be Noetherian. Then $R / I$ is Noetherian.
Proof. It follows from the preceding corollary that $R / I$ is Noetherian when regarded as an $R$-module. However an increasing chain of $R / I$-submodules of $R / I$ is also a increasing chain of $R$-submodules of $R / I$ and so the corollary follows.

Theorem 2.6.5 (Hilbert Basis Theorem). Let $R$ be a commutative Noetherian ring. Then $R[x]$ is Noetherian.

Note: The converse is trivial, since $R \cong R[x] / R[x] x$.
Proof. Let $I \subset R[x]$ be an ideal. Let $L \subset R$ be the set of leading coefficients of elts. in $I$. That is,

$$
L=\left\{a \in R \mid a x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0} \in I, \text { for some } c_{n-1}, \ldots, c_{0}\right\} .
$$

Then $L$ is an ideal in $R$, so

$$
L=\left(a_{1}, \ldots, a_{n}\right), \quad \text { for some } a_{1}, \ldots, a_{n} \text {. }
$$

For each $i=1, \ldots, n$, choose $f_{i} \in I$ s.t. leading coeff. of $f_{i}$ is $a_{i}$. Let $N:=\max \left\{N_{1}, \ldots, N_{n}\right\}$ where $N_{i}=\operatorname{deg} f_{i}$. For each $d=0, \ldots, N-1$, let

$$
L_{d}:=\{0\} \cup\{\text { leading coefficients of elts. of } I \text { of degree } d\} .
$$

Then $L_{d} \subset R$ is an ideal, so

$$
L_{d}=\left(b_{1}^{(d)}, \ldots, b_{n_{d}}^{(d)}\right), \quad \text { some } b_{1}^{(d)}, \ldots, b_{n_{d}}^{(d)} \in I
$$

Let $f_{i}^{(d)}$ be a polynomial of degree $d$ with leading coeff. $b_{i}^{(d)}$. To finish the proof, it suffices to show:
Claim. I is generated by

$$
\left\{f_{1}, \ldots, f_{n}\right\} \cup \bigcup_{d=0}^{N-1}\left\{f_{i}^{(d)}\right\}_{i=1, \ldots, n_{d}} .
$$

Proof. Let $I^{\prime}$ be the ideal generated by this set. If $I^{\prime} \varsubsetneqq I$ then $\exists f \in I$ of minimal degree s.t. $f \notin I^{\prime}$. Let $e=\operatorname{deg} f$ and let $a$ be the leading coeff. of $f$.

Suppose $e \geq N . a \in L$ so

$$
a=\sum_{i=1}^{n} r_{i} a_{i}, \quad \text { for some } r_{1}, \ldots, r_{n} \in R .
$$

Then

$$
\sum_{i=1}^{n} r_{i} x^{e-N_{i}} f_{i} \in I^{\prime}
$$

has degree $e$ and leading coeff. $a$. So $f-\sum r_{i} x^{e-N_{i}} f_{i} \in I-I^{\prime}$ has degree less than $e$, which is a contradiction.
$\therefore e<N$. Hence $a \in L_{e}$, so

$$
a=\sum_{i=1}^{n_{e}} r_{i} b_{i}^{(e)}, \quad \text { for some } r_{1}, \ldots, r_{n_{e}} \in R
$$

Then $\sum r_{i} f_{i}^{(e)}$ has degree $e$ and leading coeff. $a$, so $f-\sum r_{i} f_{i}^{(e)} \in I-I^{\prime}$ and has degree less than $e$. This is a contradiction, so $I=I^{\prime}$ and $I$ is f.g.

### 2.7 Unique Factorization Domains

Note: For the remainder of this chapter, all the rings considered are integral domains, and in particular, are commutative.
$x \in R$ is called irreducible if $x \neq 0, x$ is not a unit, and whenever $x=a b$, either $a$ is a unit or $b$ is a unit.

Proposition 2.7.1. In an integral domain, prime $\Rightarrow$ irreducible.
Proof. Let $R$ be an integral domain. Let $p \in R$ be a prime and suppose $p=a b$. Then $p \mid a$ or $p \mid b$. Say $p \mid a$, so $a=z p$ for some $z \in R$. Thus $p=a b=z p b$ so $1=z b$. $\therefore b$ is a unit. Similarly, if $p \mid b$ then $a$ is a unit. Hence $p$ is irreducible.
Example 2.7.2. Let

$$
R=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\} \cong \mathbb{Z}[x] /\left(x^{2}+5\right) .
$$

Claim. 2 is irreducible but not prime in $R$. To see 2 is irreducible, consider $N: R \mapsto \mathbb{Z}$ given by

$$
N(a+b \sqrt{-5})=|a+b \sqrt{-5}|^{2}=a^{2}+5 b^{2}
$$

(the "norm" map). $N$ is not a ring homorphism but $N(y z)=N(y) N(z)$.
$\therefore$ If $2=\alpha \beta$ then $4=N(\alpha) N(\beta)$, so $N(\alpha) \leq 4$ and $N(\beta) \leq 4$. The only elements with norm $\leq 4$ are $1,-1,2,-2$, so

$$
\alpha, \beta \in\{1,-1,2,-2\} .
$$

Since $\alpha \beta=2$, either $\alpha= \pm 1$ or $\beta= \pm 1$, so 2 is irreducible.
However, in $R /(2)$,

$$
(1+\sqrt{5})^{2}=6+2 \sqrt{5} \equiv 0
$$

so $R /(2)$ has zero divisors.
$\therefore R /(2)$ is not an integral domain, so 2 is not prime. What are the primes in $R$ ?
Consider first $y \in \mathbb{Z}^{+} \subset R$. If $y$ is not prime in $\mathbb{Z}$ then $y$ is reducible so it is not prime in $R$. We already saw that 2 is not prime in $R$ and since $5=(-\sqrt{-5})(\sqrt{-5})$ is reducible, 5 is not prime in $R$. Therefore suppose $y$ is a prime $p \in \mathbb{Z}^{+}$with $p \neq 2$ or 5 . $R /(y)$ fails to be an integral domain iff $\exists$ nonzero $s=a+b \sqrt{-5}$ and $t=c+d \sqrt{-5}$ such that

$$
s t=(a c-5 b d)+(a d+b c) \sqrt{-5}
$$

is zero in $R /(y)=(\mathbb{Z} / p)[\sqrt{-5}]$. That is, ac $=5 b d$ and $a d=-b c$ in $\mathbb{Z} / p$. None of $a, b, c, d$ can be 0 in $\mathbb{Z} / p$ since otherwise these equations would imply either $s=0$ or $=0$ in $R /(y)$. But then the equations yield

$$
\frac{a^{2}}{b^{2}}=\frac{c^{2}}{d^{2}}=-5
$$

so if $R(y)$ fails to be an integral doman than -5 is a square modulo $p$.
Conversely, if $\exists z$ such that $z^{2} \cong-5(\bmod p)$, then

$$
(z+\sqrt{-5})(z-\sqrt{-5})=z^{2}+5=0
$$

in $R /(y)$ so $R /(y)$ is not an integral domain. Thus $y \in \mathbb{Z}$ is a prime in $R$ iff $|y|$ is a prime $p \neq 5$ in $\mathbb{Z}$ such that -5 is not a square modulo $p$.

Now consider $y=a+b \sqrt{-5}$ with $b \neq 0$.

$$
a^{2}+5 b^{2}=(a-b \sqrt{-5}) y \in(y)
$$

so $R \mapsto R /\left(a^{2}+5 b^{2}\right) \stackrel{q}{\longmapsto} R /(y)$. q is not injective since $y \notin\left(a^{2}+5 b^{2}\right)$.
If $a^{2}+5 b^{2}$ is not a prime in $\mathbb{Z}$ then we can see that $y$ is not prime in $R$ as follows. Suppose that $a^{2}+5 b^{2}=c d(c, d \neq \pm 1)$ and suppose that $y$ is prime in $R$. Then $y \mid c d$ so either $y \mid c$ or $y \mid d$. Say $y \mid c$. Write $c=\lambda y$ for some $\lambda \in R$. $\lambda$ is not a unit since application of the norm map shows that the only units in $R$ are $\pm 1$, and $c \neq \pm y$ because $c \in \mathbb{Z}, y \notin \mathbb{Z}$. Letting $\bar{x}$ denote the complex conjugate of $x$, we have

$$
y \bar{y}=N(y)=c d=\lambda y d
$$

so $\bar{y}=\lambda d$. Thus $y=\bar{\lambda} \bar{d}$ and since $\bar{\lambda}$ and $\bar{d}=d$ are not units, this shows that $y$ is reducible and therefore not prime.

If $a^{2}+5 b^{2}$ is a prime $p$ in $\mathbb{Z}$ then

$$
x^{2}+5 \equiv 0 \quad \bmod p
$$

has a solution $x=a / b$, so -5 is a square $\bmod p$. Set $c:=a / b \in \mathbb{Z} / p$.
Define $\phi: R /(y) \mapsto \mathbb{Z} / p \cong \mathbb{F}_{p}$ by $\phi(\sqrt{-5})=c$ and extending linearly. Then

$$
\phi(y)=a+b c \equiv 0 \quad \bmod p
$$

so $\phi$ is well-defined. $\left|R /\left(a^{2}+5 b^{2}\right)\right|=p^{2}$ and $q$ is not injective so $|R /(y)|=p$ and $\phi$ is an isomorphism. $\therefore y=a+b \sqrt{-5}$ is prime in $R$ whenever $a^{2}+5 b^{2}$ is prime in $\mathbb{Z}$.

Remark 2.7.3. The question of which primes $p$ have the property that -5 is a square modulo $p$ can be solved with the aid of Gauss' Law of Quadratic Reciprocity, which says that for odd primes $p$ and $q$,

$$
\left(\begin{array}{l}
p \\
- \\
q
\end{array}\right)\left(\begin{array}{l}
q \\
- \\
p
\end{array}\right)=(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}
$$

where $\left(\begin{array}{l}p \\ - \\ q\end{array}\right)$ is the Legendre symbol, defined by

$$
\left(\begin{array}{l}
x \\
- \\
p
\end{array}\right)= \begin{cases}1 & \text { if } x \text { is a square modulo } p \\
-1 & \text { if } x \text { is a not square modulo } p\end{cases}
$$

Therefore

$$
\left(\begin{array}{c}
-5 \\
- \\
p
\end{array}\right)=\left(\begin{array}{c}
-1 \\
- \\
p
\end{array}\right)\left(\begin{array}{c}
5 \\
- \\
p
\end{array}\right)=\left(\begin{array}{c}
-1 \\
- \\
p
\end{array}\right)(-1)^{4\left(\frac{p-1}{2}\right)}\left(\begin{array}{l}
p \\
- \\
5
\end{array}\right)=\left(\begin{array}{c}
-1 \\
- \\
p
\end{array}\right)\left(\begin{array}{c}
p \\
- \\
5
\end{array}\right) .
$$

Since $\left(\begin{array}{l}-1 \\ - \\ p\end{array}\right)=\left\{\begin{array}{ll}1 & p \cong 1 \bmod 4 ; \\ -1 & p \cong 3\end{array} \bmod 4, \quad\right.$ and $\quad\left(\begin{array}{l}p \\ - \\ 5\end{array}\right)=\left\{\begin{array}{ll}1 & p \cong 1 \text { or } 4 \bmod 5 ; \\ -1 & p \cong 2 \text { or } 3 \bmod 5,\end{array}\right.$ we get $\left(\begin{array}{l}-5 \\ - \\ p\end{array}\right)=1$ iff one of the following 4 pairs of congruences holds:

By the Chinese Remainder Theorem, this is equivalent to saying that -5 is a square modulo the prime $p$ iff $p \cong 1,3,7$, or $9 \bmod (20)$.

Definition 2.7.4. An integral domain $R$ is called a unique factorization domain (UFD) if every nonzero element can be factored into primes.
Lemma 2.7.5. In an integral domain, a factorization into primes (should one exist) is always unique up to associates. ie. If $x=p_{1} \cdots p_{n}$ and $x=q_{1} \cdots q_{k}$ then $k=n$ and $\exists$ some renumbering $\sigma$ of the $q$ 's such that $p_{j}$ and $q_{\sigma(j)}$ are associate primes $\forall j$.
Proof. Suppose

$$
p_{1} \cdots p_{n}=q_{1} \cdots q_{k}
$$

and say $n \leq k$. Then $p_{1} \mid q_{1} \cdots q_{k}$ so $p_{1} \mid q_{j}$ for some $j$. Renumber so that $q_{j}$ is $q_{1}$.
$\therefore q_{1}=a p_{1}$ for some $a$. But $q_{1}$ is a prime and thus irreducible, so either $a$ or $p_{1}$ is a unit. Since $p_{1}$ is prime, it is not a unit, so $a$ is a unit. ie. $p_{1}$ and $q_{1}$ are associates.
$\therefore p_{1} \cdots p_{n}=q_{1} \cdots q_{k}=a p_{1} q_{2} \cdots q_{k}$,
$\therefore p_{2} \cdots p_{n}=q_{2}^{\prime} q_{3} \cdots q_{k}$ where $q_{2}^{\prime}=a q_{2}$ is associate to $q_{2}$. Continuing, $\forall i=1, \ldots, n$, after renumbering $q_{j}$ associate to $p_{i}$, eventually reach

$$
1=q_{n+1}^{\prime} \cdots q_{k}
$$

where $q_{n+1}^{\prime}$ is associate to $q_{n+1}$. If $k>n$ this is a contradiction since prime $q_{n+1}$ is not invertible. Hence $k=n$.

## Proposition 2.7.6. In a UFD, prime $\Longleftrightarrow$ irreducible.

Proof. Prime $\Rightarrow$ irreducible in any integral domain, so must show irreducible $\Rightarrow$ prime. Let $x \in R$ be irreducible. Write $x=p_{1} \cdots p_{n}$ be a product of primes and suppose $n>1$. Since $x$ is irreducible, $p_{1}$ is a unit or $p_{2} \cdots p_{n}$ is a unit. But $p_{1}$ is not a unit since $p_{1}$ is prime and $p_{2} \cdots p_{n}$ is not a unit since $p_{2}, \ldots, p_{n}$ are primes. So this is a contradiction and thus $n=1$ and $x=p_{1}$ is prime.

Theorem 2.7.7. An integral domain is a UFD iff every nonzero elt. can be factored uniquely (up to associates) into irreducibles.

Proof.
$\Rightarrow$ : Suppose $R$ is a UFD. Then prime $\Longleftrightarrow$ irreducible and every nonzero elt. has a unique factorization into primes.
$\Leftarrow$ : Suppose every nonzero elt. has a unique factorization (up to associates) into irreducibles. It suffices to show that $x$ is prime iff $x$ is irreducible. ie. Show irreducible $\Rightarrow$ prime.
Let $x \neq 0$ be irreducible. Suppose $x \mid a b$. Then $a b=z x$ for some $z$. Let

$$
a=a_{1} \cdots a_{n} \quad \text { and } \quad b=b_{1} \cdots b_{k}
$$

be the factorizations of $a, b$ into irreducibles. So

$$
z x=a_{1} \cdots a_{n} b_{1} \cdots b_{k}
$$

is the factorization of $z x$ into irreducibles, so by uniqueness, $x$ is associate to some factor on the RHS.
$\therefore x$ is assoc. to $a_{j}$ for some $j$, in which case $x \mid a$, or $x$ is assoc. to $b_{j}$ for some $j$, in which case $x \mid b$. Thus $x$ is prime.

Proposition 2.7.8. In a UFD, every pair of elts. has a g.c.d.
Proof. Let $R$ be a UFD and suppose $x \neq 0, y \neq 0 \in R$. Factor $x$ into primes and, replacing primes by associate ones when necessary, write

$$
x=u p_{1}^{r_{1}} \cdots p_{n}^{r_{n}}
$$

where $u$ is a unit and $p_{1}, \ldots, p_{n}$ are primes with $p_{i}$ not associate to $p_{j}$ for $i \neq j$. Similarly, write

$$
y=v q_{1}^{s_{1}} \cdots q_{k}^{s_{k}}
$$

where, replacing by associate if necessary, we may assume that if $q_{j}$ is associate to $p_{i}$ for some $i$ then $q_{j}=p_{i}$. Letting $z_{1}, \ldots, z_{m}$ be the union $\left\{p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{k}\right\}$ of all primes occurring, we can write

$$
x=u z_{1}^{e_{1}} \cdots z_{m}^{e_{m}} \quad \text { and } \quad y=v z_{1}^{f_{1}} \cdots z_{m}^{f_{m}}
$$

for some exponents $e_{1}, \ldots, e_{m}, f_{1}, \ldots, f_{m} \geq 0$. Let

$$
d=\prod z_{j}^{\min \left\{e_{j}, f_{j}\right\}} .
$$

Then $d=(x, y)$.

### 2.8 Principal Ideal Domains

Definition 2.8.1. A principal ideal domain (PID) is an integral domain in which every ideal is principal.

Proposition 2.8.2. In a PID, every nonzero prime ideal is maximal.
Proof. Let $I \neq 0$ be a prime ideal. Suppose $I \varsubsetneqq J \varsubsetneqq R$. Write $I=(x), J=(y)$. Since $I$ is a prime ideal, $x$ is prime. Since $I \subset J, x \in J$ so $x=a y$ for some $a \in R$. Thus $x \mid a$ or $x \mid y$.

If $x \mid a$ then $a=b x$ for some $b \in R$. Then $x=a y=a b x y \Rightarrow 1=b y$, so $y$ is a unit and $J=R$. If $x \mid y$ then $y \in(x)=I$, so $J \subset I$, contradiction $I \varsubsetneqq J$. Hence $I$ is maximal.

Example 2.8.3. Let $R=\mathbb{Z}[x] . R /(x) \cong \mathbb{Z}$ is an integral domain but not a field. So $(x)$ is a prime ideal which is not maximal.
$\therefore \mathbb{Z}[x]$ is not a PID. In fact, $I=(2, x)$ is an example of a non-principal ideal in $R$.
Theorem 2.8.4. Every PID is Noetherian
Proof. Every ideal in $R$ is generated by a single element, so in particular, every ideal is finitely generated. By Theorem 2.6.2, this means that $R$ is Noetherian.

Theorem 2.8.5. Every PID is a unique factorization domain.
Proof. Let $R$ be a PID and let $x \neq 0 \in R$ be a non-unit. Must show that $x$ can be factored into primes. $(x) \varsubsetneqq R$ so $\exists$ a maximal ideal $M_{1}$ s.t.

$$
(x) \subset M_{1} \varsubsetneqq R .
$$

Write $M_{1}=\left(p_{1}\right) . M_{1}$ is maximal and thus prime, so $p_{1}$ is prime. $x \in\left(p_{1}\right)$ says $x=p_{1} x_{1}$ for some $x_{1} \in R$. If $x_{1}$ is a unit then $p_{1} x_{1}$ is a prime associate to $p_{1}$ and we are done, so suppose not. Continuing, we get

$$
x_{n}=p_{n} x_{n+1} \quad \forall n .
$$

$\therefore x_{n} \in\left(x_{n+1}\right)$ so $\left(x_{n}\right) \subset\left(x_{n+1}\right)$. If $x_{n}$ is a unit for some $n$ then we have a factorization of $x$ into primes. If not, we get a chain of ideals

$$
(x) \subset\left(x_{1}\right) \subset \cdots \subset\left(x_{n}\right) \subset \cdots
$$

Since $R$ is Noetherian, $\exists N$ s.t. $\left(x_{n}\right)=\left(x_{N}\right) \forall n \geq N$. So $x_{N+1} \in\left(x_{N}\right)$ so $x_{N+1}=\lambda x_{N}=\lambda p_{N+1} x_{N+1}$ so that $1=\lambda p_{N+1}$ showing that $p_{N+1}$ is a unit, which is a contradiction.

So the infinite chain does not exist, so the procedure terminated giving a factorization of $x$.
Proposition 2.8.6. Let $R$ be a PID. Let $a, b \in R$ and $\operatorname{let} q=\operatorname{gcd}(a, b)$. Then $\exists s, t \in R$ s.t. $q=s a+t b$.

Proof. Let $I=\langle a, b\rangle=\{x a+y b \mid x, y \in R\}$. Then $I$ is an ideal so $I=(c)$ for some $c \in R . c \in I$ so $c=x a+y b$ for some $x, y . a \in I$ so $c \mid a$ and $b \in I$ so $c \mid b$. Moreover, if $z \mid a$ and $z \mid b$ then let $a=\alpha z$ and $b=\beta z$ for some $\alpha, \beta$. Then

$$
c=x a+y b=x \alpha z+y \beta z=(x \alpha+y \beta) z
$$

and thus $z \mid c$. So $c=\operatorname{gcd}(a, b)$.
If $q$ is another g.c.d. of $a, b$ then $q=u c$ for some unit $u$, so

$$
q=(u x) a+(u y) b .
$$

### 2.9 Norms and Euclidean Domains

Definition 2.9.1. A Euclidean domain is an integral domain $R$ together with a function $d: R-\{0\} \mapsto$ $\mathbb{Z}^{+}=\{n \in \mathbb{Z} \mid n \geq 0\}$ s.t.

1. $d(a) \leq d(a b) \forall a, b \neq 0$, and
2. Given $a, b \neq 0 \in R, \exists t$, $r$ s.t. $a=t b+r$ where either $r=0$ or $d(r)<d(b)$.

## Example 2.9.2.

1. $R=\mathbb{Z}, d(n)=|n|$.
2. $R=F[x]$ where $F$ is a field. $d(p(x))=$ polynomial degree of $p$.

Notice that if $(R, d)$ is a Euclidean domain then so is $\left(R, d^{\prime}\right)$ where

$$
d^{\prime}(x)=d(x)+c, \quad \text { for some constant } c \in \mathbb{Z}^{+} .
$$

$\therefore$ May assume that $d$ takes values in $\mathbb{N}=\{n \in \mathbb{Z} \mid n \geq 1\}$. Then extend $d$ by defining $d(0)=0$.
Definition 2.9.3. A Dedekind-Hasse norm on an integral domain $R$ is a function $N: R \mapsto \mathbb{Z}^{+}$s.t.

1. $N(x)=0$ iff $x=0$, and
2. For $a, b \neq 0 \in R$ either $a \in(b)$ or $\exists$ a nonzero $x \in(a, b)$ s.t. $N(x)<N(b)$.

If $(R, d)$ is a Euclidean domain then $d$ (modified s.t. $d(0)=0)$ is a Dedekind-Hasse norm: given $a, b \neq 0$,

$$
a=t b+r
$$

for some $t$ and $r$, so either $b \mid a$ (ie. $r=0$ ) or $r=a-t b \in(a, b)$ with $d(r)<d(b)$.
Theorem 2.9.4. Let $R$ be an integral domain.

1. $R$ is a PID iff $R$ has a Dedekind-Hasse norm. In particular, a Euclidean domain is a PID.
2. If $R$ has a Dedekind-Hasse norm then it is has a multiplicative Dedekind-Hasse norm (ie. one satisfying $N(a b)=N(a) N(b)$.)

Proof.

1. $\Rightarrow$ : Suppose $R$ has a Dedekind-Hasse norm. Let $I \subset R$ be a nonzero ideal. Choose $0 \neq b \in I$ s.t. $N(b)$ is minimum. Let $a \in I$. Then $(a, b) \subset I$ so $\nexists$ nonzero $x \in(a, b)$ s.t. $N(x)<N(b)$. Hence $a \in(b)$. Thus $I=(b)$.
$\Leftarrow$ : Suppose $R$ is a PID. Define $N: R \mapsto \mathbb{Z}^{+}$as follows: $N(0):=0$. If $u \in R$ is a unit, set $N(u)=1$. If $x \neq 0 \in R$ is a nonunit, write $x=p_{1} \cdots p_{n}$ where each $p_{j}$ is prime and set $N(x)=2^{n}$. Notice that $N$ is multiplicative.
Suppose $a, b \neq 0 \in R . R$ is a PID so $(a, b)=(r)$ for some $r \in R$, so $b=x r$ for some $x \in R$. If $a \notin(b)$ then $r \notin(b)$ so $x$ is not a unit, and thus

$$
N(b)=N(x) N(r)>N(r),
$$

ie. $\exists r \in(a, b)$ s.t. $N(r)<N(b)$.
2. If $R$ has a Dedekind-Hasse norm then by part 1, it is a PID, in which case it has a multiplicative Dedekind-Hasse norm as constructed above.

### 2.9.1 Euclidean Algorithm

Let $(R, d)$ be a Euclidean domain. Then $R$ is a PID, so given $a, b \in R, \exists s, t \in R$ s.t.

$$
a s+b t=\operatorname{gcd}(a, b)
$$

The Euclidean algorithm is an algorithm for finding $s$ and $t$ (and thus $\operatorname{gcd}(a, b)$ ).

## Procedure:

Say $d(b) \geq d(a)$. Set $r_{-1}:=b, r_{0}:=a$. Write

$$
\begin{aligned}
r_{-1} & =q_{1} r_{0}+r_{1}, \quad \text { some } q_{1}, r_{1} \text { with } d\left(r_{1}\right)<d\left(r_{0}\right), \\
& \vdots \\
r_{j-1} & =q_{j+1} r_{j}+r_{j+1}, \quad \text { some } q_{j+1}, r_{j+1} \text { with } d\left(r_{j+1}\right)<d\left(r_{j}\right)
\end{aligned}
$$

$\therefore d\left(r_{-1}\right) \geq d\left(r_{0}\right)>d\left(r_{1}\right)>\cdots>d\left(r_{j}\right)>\cdots$. Continue until $r_{k+1}=0$, some $k$. Set

$$
\begin{aligned}
s_{0} & :=0 \\
s_{1} & :=1 \\
s_{j} & :=-q_{j-1} s_{j-1}+s_{j-2} \\
t_{0} & :=1 \\
t_{1} & :=0 \\
t_{j} & :=-q_{j-1} t_{j-1}+t_{j-2}
\end{aligned}
$$

Claim. $r_{k}=\operatorname{gcd}(a, b)$ and $r_{k}=s a+t b$ where $s=s_{k+1}$ and $t=t_{k+1}$.

Proof. $r_{k+1}=0$ so $r_{k-1}=q_{k+1} r_{k}+0$. Suppose by induction that $r_{k} \mid r_{i}$ for $i \geq j$. Then $r_{j-1}=q_{j+1} r_{j}+r_{j+1}$ so $r_{k} \mid r_{j-1}$, concluding induction step.
$\therefore r_{k} \mid r_{j} \forall j$ and in particular, $r_{k} \mid r_{0}=a$ and $r_{k} \mid r_{-1}=b$.
Conversely, suppose $z$ divides both $a$ and $b$. Since $r_{j+1}=r_{j-1}-q_{j+1} r_{j}$, induction (going the other way) shows $z \mid r_{j} \forall j$. In particular, $z \mid r_{k}$. So $r_{k}=\operatorname{gcd}(a, b)$.

Also,

$$
\begin{aligned}
a s_{0}+b t_{0} & =a \cdot 0+b \cdot 1=b=r_{-1} \\
a s_{1}+b t_{1} & =a \cdot a+b \cdot 0=a=r_{0} \\
a s_{2}+b t_{2} & =a\left(-q_{1} s_{1}+s_{0}\right)+b\left(-q_{1} t_{1}+t_{0}\right)=-q_{1}\left(a s_{1}+b t_{1}\right)+\left(a s_{0}+b t_{0}\right) \\
& =-q_{1} r_{0}+r_{-1}=r_{1} \\
& \vdots \\
a s_{j}+b t_{j} & =a\left(-q_{j-1} s_{j-1}+s_{j-2}\right)+b\left(-q_{j-1} t_{j-1}+t_{j-2}\right)=-q_{j-1}\left(a s_{j-1}+b t_{j-1}\right)+\left(a s_{j-2}+b t_{j-2}\right) \\
& =-q_{j-1} r_{j-2}+r_{j-3}=r_{j-1}
\end{aligned}
$$

By induction, $a s_{j}+b t_{j}=r_{j-1} \forall j$. In particular, $a s+b t=a s_{k+1}+b t_{k+1}=r_{k}=\operatorname{gcd}(a, b)$.
Remark: In Computer Science, the speed of the Euclidean Algorithm over $\mathbb{Z}$ is important. Estimate of the number of steps required: The faster the $r$ 's go down, the quicker the algorithm goes, so the worst case scenario is when all the $q$ 's are only 1 . In this case,

$$
r_{j-1}=r_{j}+r_{j+1} .
$$

ie. Worst case scenario occurs when $a, b$ are consecutive terms of the Fibonacci Sequence. The smallest possible numbers requiring $N$ steps would be when:

$$
r_{N}=1 \quad r_{N-1}=2 \quad r_{N-2}=3 \quad r_{N-3}=4 \cdots r_{N-j}=j^{\text {th }} \text { Fibonacci Number }
$$

$\therefore r_{0}=N^{\text {th }}$ Fibonacci Number $F_{N}$. ie. $N$ steps can handle all numbers up to $F_{N}$.
$F_{n+1}=F_{n}+F_{n-1} \Rightarrow \frac{F_{n+1}}{F_{n}}=1+\frac{F_{n-1}}{F_{n}}$. So if $L=\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}$ then $L=1+\frac{1}{L}$. So

$$
\begin{aligned}
L^{2}-L-1 & =0 \\
L & =\frac{1 \pm \sqrt{5}}{2} \\
L & =\frac{1+\sqrt{5}}{2}=G
\end{aligned}
$$

So $F_{n} \approx G^{N}$, ie. for large $N$, the number of steps required is no worse than around $\log _{G}\left(r_{0}\right)$.

Lemma 2.9.5 (Gauss). Let $R$ be a UFD and let $F$ be its field of fractions. Let $q(x) \in R[x]$. If $q(x)$ is reducible in $F[x]$ then $q(x)$ is reducible in $R[x]$. Futhermore, if $q(x)=A(x) B(x)$ in $F[x]$ then in $R[x]$, $q(x)=a(x) b(x)$ where $A(x)=\frac{a(x)}{r}$ and $B(x)=\frac{b(x)}{s}$ for some nonzero $r, s \in F$.

Proof. Suppose $q(x)=A(x) B(x)$ where the coefficients of $A, B$ lie in $F$. Multiplying by a common denominator we get

$$
d q(x)=a^{\prime}(x) b^{\prime}(x)
$$

for some $d \in R$ and polynomials $a^{\prime}(x), b^{\prime}(x) \in R[x]$. If $d \in R$ is a unit, we can divide by $d$ to get $q(x)=\frac{a^{\prime}(x)}{d} b^{\prime}(x)$.
$\therefore$ Suppose $d$ is not a unit. Write $d=p_{1} \cdots p_{n}$ as a product of primes in $R$. Let

$$
\begin{aligned}
R[x] & \mapsto \frac{R[x]}{p_{1} R[x]} \cong\left(\frac{R}{p_{1} R}\right)[x] \\
f(x) & \mapsto \overline{f(x)}
\end{aligned}
$$

Reducing modulo $\left(p_{1} R\right)[x]$ gives $0=\overline{a^{\prime}(x)} \overline{b^{\prime}(x)}$ in the integral domain $\left(\frac{R}{p_{1} R}\right)[x]$. Hence $\overline{a^{\prime}(x)}=0$ or $\overline{b^{\prime}(x)}=0$. Say $\overline{a^{\prime}(x)}=0$. Then all the coeffs. of $a^{\prime}(x)$ are divisible by $p_{1}$, so can divide $d q(x)=$ $a^{\prime}(x) b^{\prime}(x)$ by $p_{1}$ to get

$$
p_{2} \cdots p_{n} g(x)=\frac{a^{\prime}(x)}{p_{1}} b^{\prime}(x)=a^{\prime \prime}(x) b^{\prime}(x)
$$

with $a^{\prime \prime}, b^{\prime} \in R[x]$. Continuing, eventually reach $q(x)=a(x) b(x)$ with $a(x), b(x) \in R[x]$ and $a(x), b(x)$ obtained from $a^{\prime}(x), b^{\prime}(x)$ by multiplying by nonzero elements of $F$.

A polynomial whose leading coefficient is 1 is called monic.
Corollary 2.9.6. Let $R$ be a UFD with field of fractions $F$. Let $p(x) \in R[x]$. Suppose

$$
\operatorname{gcd}\{\text { coeffs. of } p\}=1 .
$$

Then $p(x)$ is irreducible in $R[x]$ iff it is irreducible in $F[x]$. In particular, if $p(x)$ is monic and irreducible in $F[x]$ then it is irreducible in $R[x]$.

Proof. If $p(x)$ is reducible in $F[x]$ then Gauss implies $p(x)$ is reducible in $R[x]$.
Conversely, if $p(x)$ is reducible in $R[x]$ then the hypothesis on $\operatorname{gcd} \Rightarrow p(x)=a(x) b(x)$ where neither $a(x)$ nor $b(x)$ is constant. Hence, $a(x), b(x)$ are not units in $F[x]$ so this factorization shows $p(x)$ is reducible in $F[x]$.

Lemma 2.9.7. Let $R$ be a UFD and let $p(x) \in R[x]$ be irreducible. Then $p(x)$ is prime.

Proof. Let $F$ be the field of fractions of $R$.

$$
\frac{R[x]}{(p(x))} \hookrightarrow \frac{F[x]}{(p(x))}
$$

$\therefore$ To show $p(x) R[x] /(p(x))$ is an integral domain, it suffices to show that $F[x] /(p(x))$ is an integral domain.
$p(x)$ irreducible in $R[x] \Rightarrow p(x)$ irreducible in $F[x]$. However, $F[x]$ is a UFD (being a Euclidean Domain). So $p(x)$ is prime in $F[x]$ and thus $F[x] /(p(x))$ is an integral domain.

Theorem 2.9.8. $R$ is a UFD $\Longleftrightarrow R[x]$ is a UFD.

## Proof.

$\Leftarrow$ : Suppose $R[x]$ is a UFD. Let $r \in R$. Write $r=p_{1}(x) \cdots p_{n}(x)$ as a product of primes in $R[x]$. Since $\operatorname{deg} r=0$ and $R$ is an integral domain, $\operatorname{deg} p_{j}(x)=0 \forall j$, ie. $p_{j}(x)=p_{j} \in R$.

$$
R[x] /\left(p_{j}\right)=\left(\frac{R}{\left(p_{j}\right)}\right)[x]
$$

$\therefore R /\left(p_{j}\right)$ is an integral domain, so $p_{j}$ is prime in $R$.
Thus $r=p_{1} \cdots p_{n}$ is a factorization of $r$ into primes in $R$.
$\Rightarrow$ : Suppose $R$ is a UFD and let $0 \neq q(x) \in R[x]$. Let $F$ be the field of fractions of $R$. Since $F[x]$ is a UFD, in $F[x]$ we can factor $q(x)$

$$
q(x)=p_{1}(x) \cdots p_{r}(x)
$$

where $p_{j}(x)$ is a prime in $F[x]$. By Gauss' lemma, in $R[x]$ we can write

$$
q(x)=p_{1}^{\prime}(x) \cdots p_{n}^{\prime}(x)
$$

where $\forall j \exists s_{j} \neq 0 \in F$ such that $p_{j}^{\prime}(x)=s_{j} p_{j}(x)$.
$\therefore$ It suffices to show that $p_{j}^{\prime}(x)$ can be factored uniquely into primes in $R[x]$, as in the following claim:

Claim. If $p(x)$ is prime in $F[x]$ and $s p(x)=p^{\prime}(x) \in R[x]$ for some $0 \neq s \in F$ then $p^{\prime}(x)$ can be factored uniquely into primes in $R[x]$.
Proof. Let

$$
d=\operatorname{gcd}\left\{\text { coeffs. of } p^{\prime}(x)\right\}
$$

Then $p^{\prime}(x)=d p^{\prime \prime}(x)$ where

$$
\operatorname{gcd}\left\{\operatorname{coeffs} . \text { of } p^{\prime \prime}(x)\right\}=1
$$

In $F[x]$, have $p^{\prime \prime}(x)=\frac{p^{\prime}(x)}{d}=\frac{s}{d} p(x)$, which is prime in $F[x]$ since $p(x)$ is prime and $\frac{s}{d}$ is a unit. $\therefore$ Cor. 2.9.6 $\Rightarrow p^{\prime \prime}(x)$ is irreducible in $R[x]$ and thus prime in $R[x]$ by the previous lemma. Since $d$ can be factored into primes in $R$ and a prime in $R$ is also a prime in $R[x], p^{\prime}(x)=d p^{\prime \prime}(x)$ can be factored into primes in $R[x]$.Uniqueness is easy to show. This concludes the proof of the claim and thus concludes the proof of the theorem.

### 2.10 Modules over PID's

Note: In this section, and elsewhere, we will sometimes abuse notation and write $R / p$ in place of $R /(p)$. (The notation $\mathbb{Z} / n$ is generally quite common).

Theorem 2.10.1. Over a PID, a submodule of a free module is free.
Proof. Let $R$ be a PID. Let $P=\bigoplus_{j \in J} R_{j}$ be a free $R$-module with basis $J\left(R_{j} \cong R \forall j\right)$, and suppose $M \subset P$ is a submodule.

Choose a well-ordering of the set $J$. For each $j \in J$, set $P_{j}=\bigoplus_{i \leq j} R_{i}$ and $\bar{P}_{j}=\bigoplus_{i<j} R_{i}$, so $P_{j}=\bar{P}_{j} \oplus R$.

Let $f_{j}$ be the composite

$$
P_{j} \cap M \hookrightarrow P_{j}=\bar{P}_{j} \oplus R \mapsto R .
$$

Then $\operatorname{ker} f_{j}=\bar{P}_{j} \cap M . \operatorname{Im} f_{j} \subset R$ is an ideal, so let $\operatorname{Im} f_{j}=\left(\lambda_{j}\right)$, some $\lambda_{j} \in R$. Pick $c_{j} \in P_{j} \cap M$ such that $f\left(c_{j}\right)=\lambda_{j}$. Let

$$
J^{\prime}=\left\{j \in J \mid \lambda_{j} \neq 0\right\} .
$$

To finish the proof we show:
Claim: $\left\{c_{j}\right\}_{j \in J^{\prime}}$ is a basis for $M$.
Proof. Check $\left\{c_{j}\right\}_{j \in J}$ is linearly independent:
Suppose

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} c_{j_{k}}=0, \quad \text { where } j_{1}<j_{2}<\cdots<j_{n} \tag{*}
\end{equation*}
$$

Since $j_{k}<j_{n}$ for $k<n, c_{j_{k}} \in \bar{P}_{j_{n}}$ for $k<n$.
$\therefore$ Applying $f_{j_{n}}$ to (*) gives

$$
\sum_{k=1}^{n} a_{k} \cdot 0+a_{n} \lambda_{j_{n}}=0
$$

whence $a_{n}=0$, since $\lambda_{j_{k}} \neq 0$. Inductively, $c_{j_{k}}=0 \forall k=n, n-1, \ldots, 1$.
$\therefore\left\{c_{j_{k}}\right\}_{j \in J^{\prime}}$ is linearly independent.
Check that $\left\{c_{j}\right\}_{j \in J^{\prime}}$ spans $M$ :
Suppose not. Then $\exists$ a least $i \in J$ such that $P_{i} \cap M$ contains an element $a$ not in $\operatorname{span}\left\{c_{j}\right\}_{j \in J^{\prime}}$. Must have $i \in J^{\prime}$, since if not, $f_{i}(a)=0$, so $a \in \bar{P}_{i}$, and thus $a \in P_{k}$ for some $k<i$, contradicting minimality of $i$.
$\therefore i \in J^{\prime} . f_{i}(a) \in\left(\lambda_{i}\right)$, so $f_{i} a=r \lambda_{i}$, for some $r \in R$. Set $b:=a-r c_{i}$. Since $a=b+r c_{i}$ cannot be written as a linear combination of $\left\{c_{i}\right\}$, neither can $b$. But

$$
f_{i} b=f(a)-r f\left(c_{i}\right)=r \lambda_{i}-r \lambda_{i}=0
$$

so $b \in P_{k} \cap M$ for some $k<i$, contradicting the minimality of $i$.
$\therefore\left\{c_{j}\right\}_{j \in J^{\prime}}$ spans $M$.
Theorem 2.10.2. Over a PID, a finitely generated torsion-free module is free.
Proof. Let $R$ be a PID and let $M$ be a finitely generated torsion-free $R$-module. Let $R \hookrightarrow K$ be the inclusion of $R$ into its field of fractions, and let

$$
\tilde{M}:=K \otimes_{R} M
$$

be the extension of $M$ to a $K$-vector space.
Let $x_{1}, \ldots, x_{m} \in M$ be a generating set for $M$. The images of $x_{1}, \ldots, x_{m}$ generate $\tilde{M}$, so $\exists$ a subset $y_{1} \ldots, y_{n}$ whose images in $\tilde{M}$ form a basis for $\tilde{M}$. Each $x_{j}$ can be written in $\tilde{M}$ as a $K$-linear combination of $y_{1}, \ldots, y_{n}$, so clearing denominators gives that $b_{j} x_{j}$ is an $R$-linear combination of $y_{1}, \ldots, y_{n} \forall j$.

Set $b=b_{1} \cdots b_{m}$, so that $b x_{j}$ is an $R$-linear combination of $y_{1}, \ldots, y_{n} \forall j$.
$\therefore b z$ is an $R$-linear combination of $y_{1}, \ldots y_{n} \forall z \in M$, since $x_{1}, \ldots, x_{m}$ span $M$. Since $M$ is torsionfree,

$$
\begin{aligned}
b: M & \mapsto M \\
z & \mapsto b z
\end{aligned}
$$

is injective. Hence,

$$
M \cong M / \operatorname{ker} \phi \cong \operatorname{Im} b=b M .
$$

However,

$$
\begin{gathered}
\bigoplus_{j=1}^{n} y_{j} \stackrel{\phi}{\longmapsto} b M \\
y_{j} \mapsto y_{j}
\end{gathered}
$$

is an isomorphism (onto since $b z$ is a linear combination of $y_{1}, \ldots, y_{n} \forall z \in M,(1-1)$ since $y_{1}, \ldots y_{n}$ are linearly independent in $\tilde{M}$ ).
$\therefore M \cong b M \cong$ a free $R$-module.
Corollary 2.10.3. If $M$ is a finitely generated module over a PID then $R \cong \operatorname{Tor}(M) \oplus R^{n}$ for some $n \in \mathbb{N}$.

Proof. $M / \operatorname{Tor}(M)$ is finitely generated and torsion-free. Hence,

$$
M / \operatorname{Tor}(M) \cong R^{n}, \quad \text { for some } n
$$

$R^{n}$ free $\Rightarrow M \mapsto M / \operatorname{Tor}(M) \cong R^{n}$ splits, so

$$
M \cong \operatorname{Tor}(M) \oplus R^{n} .
$$

A torsion-free module over a PID which is not finitely generated need not be free:
Example 2.10.4. Let $R=\mathbb{Z}, M=\mathbb{Q}$. Clearly $\mathbb{Q}$ is torsion-free as a $\mathbb{Z}$-module. Suppose $M \cong R^{s}$. Then as a vector space $/ \mathbb{Q}$ we get

$$
\begin{aligned}
\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} & \cong M \otimes \mathbb{Q} \\
& \cong R^{s} \otimes \mathbb{Q} \\
& \cong(R \otimes \mathbb{Q})^{s} \\
& \cong \mathbb{Q}^{s}
\end{aligned}
$$

Let

$$
\begin{gathered}
\phi: \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \mapsto \mathbb{Q} \\
x \otimes y \mapsto x y, \\
\psi: \mathbb{Q} \mapsto \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \\
x \mapsto x \otimes 1 .
\end{gathered}
$$

Clearly $x y=1_{\mathbb{Q}} \cdot \psi \phi(x \otimes y)=(x y) \otimes 1$. Write $x=\frac{p}{q}, y=\frac{p^{\prime}}{q^{\prime}}$. Then in $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$,

$$
\begin{aligned}
x \otimes y & =\frac{p}{q} \otimes \frac{p^{\prime}}{q^{\prime}} \\
& =q^{\prime} \frac{p}{q q^{\prime}} \otimes p^{\prime} \frac{1}{q^{\prime}} \\
& =p^{\prime} \frac{p}{q q^{\prime}} \otimes q^{\prime} \frac{1}{q^{\prime}} \\
& =\frac{p p^{\prime}}{q q^{\prime}} \otimes 1 \\
& =(x y) \otimes 1 .
\end{aligned}
$$

$\therefore \psi \phi=1_{\mathbb{Q} \otimes \mathbb{Q}}$. Hence $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$, and thus $\mathbb{Q} \cong \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^{\text {s }}$. So counting dimensions gives $\operatorname{Card} S=1$.
ie. If $\mathbb{Q}$ is a free $R$-module then its rank as a $\mathbb{Z}$-module is 1 . So $\mathbb{Q} \cong \mathbb{Z}$ as a $\mathbb{Z}$-module. ie. $\exists q \in \mathbb{Q}$ s.t. $\mathbb{Q}=\mathbb{Z} q$; that is to say, $\forall x \in \mathbb{Q} \exists n \in \mathbb{Z}$ s.t. $x=n q$. This is a contradiction.

So $\mathbb{Q}$ is not a free $\mathbb{Z}$-module.
We now consider decompositions of finitely generated torsion modules over a PID. Let $R$ be a PID (throughout this section). We will show that every finitely generated $R$-module decomposes as a direct sum of finitely many $R$-modules with a single generator (called cyclic modules).

First consider torsion modules.
Notation: For $r \in R$, let $\mu_{r}: M \mapsto M$ be multiplication by $r$.

Lemma 2.10.5. Let $M$ be a torsion $R$-module. Write $\operatorname{Ann}(M)=(a)$ and suppose $b \in R$ such that $(a, b)=1$. Then multiplication by $b$,

$$
M \stackrel{\mu_{b}}{\longmapsto} M
$$

is an isomorphism.
Proof. Since $R$ is a PID, $\exists s, t \in R$ such that $s a+t b=1$. Hence, for $x \in M$,

$$
x=s a x+t b x=t b x,
$$

$\therefore b x=0 \Rightarrow x=0$, so $\mu_{b}$ is injective. Moreover,

$$
x=b(t x)=\mu_{b}(t x)
$$

so $\mu_{b}$ is surjective.
Let $M \neq 0$ be a torsion module. Let $\operatorname{Ann}(M)=(a)$. Suppose $a \neq 0$. (Note: if $M$ is torsion and f.g. then $a \neq 0$ automatically.)
$M \neq 0 \Rightarrow a$ is not a unit. Write

$$
a=u p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}
$$

where $u$ is a unit and $p_{1}, \ldots, p_{k}$ are distinct primes. Replacing $a$ by $u^{-1} a$, may assume

$$
a=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}
$$

Let

$$
M_{p_{j}}:=\left\{x \in M \mid p_{j}^{e} x=0 \text { for some } e\right\} .
$$

Lemma 2.10.6. $M \cong M_{p_{1}} \oplus \cdots \oplus M_{p_{k}}$.
Proof. $\forall x \in M$,

$$
p_{1}^{e_{1}} \mu_{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}}(x)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} x=0
$$

so $\operatorname{Im} \mu_{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}} \subset M_{p_{1}}$.
Since $p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ is coprime to $\operatorname{Ann}\left(M_{p_{1}}\right)$, by the preceding lemma,

$$
\mu_{p_{2}}^{\left.e_{2} \ldots p_{k}^{p_{k}}\right|_{M_{p_{1}}}}
$$

is an isomorphism, so it splits the inclusion $M_{p_{1}} \hookrightarrow M$. Hence,

$$
M \cong M_{p_{1}} \oplus \operatorname{ker} \mu_{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}} .
$$

$\operatorname{Ann}\left(\operatorname{ker} \mu_{\left.p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}\right)}=p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right.$. By induction,

$$
\operatorname{ker} \mu_{p_{2} \ldots p_{k}^{e_{2}}}{ }^{e_{k}} \cong M_{p_{2}}^{\prime} \oplus \cdots \oplus M_{p_{k}}^{\prime}
$$

where

$$
\begin{aligned}
M_{p_{j}}^{\prime} & =\left\{x \in \operatorname{ker} \mu_{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}} \mid p_{j}^{e} x=0 \text { for some } e\right\} \\
& \subset M_{p_{j}}=\left\{x \in M \mid p_{j}^{e} x=0 \text { for some } e\right\} .
\end{aligned}
$$

However, $M_{p_{j}} \subset \operatorname{ker} \mu_{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}}$ so $M_{p_{j}} \subset M_{p_{j}}^{\prime}$ and thus $M_{p_{j}}=M_{p_{j}}^{\prime}$.
Hence $M \cong M_{p_{1}} \oplus \cdots \oplus M_{p_{k}}$.
In the finitely generated case, we now decompose $M_{p_{j}}$ into cyclic summands for each $p_{j}$. ie. We have reduced to the case where $\operatorname{Ann}(M)=\left(p^{e}\right)$ for some prime $p$.

Suppose $M$ is a f.g. $R$-module with $\operatorname{Ann}(M)=\left(p^{e}\right) . \exists x \in M$ such that $p^{e-1} x \neq 0$ (or else $\operatorname{Ann}(M)=p^{e-1}$ rather than $\left.p^{e}\right)$. Let $x, m_{1}, \ldots, m_{k}$ be a generating set for $M$. Let $M_{j}$ be the submodule

$$
M_{j}:=\left\langle x, m_{1}, \ldots, m_{j}\right\rangle .
$$

Beginning with the identity map $r_{0}: M_{0} \mapsto R x$, we inductively construct $r_{j}: M_{j} \mapsto R x$ extending $r_{j-1}: M_{j-1} \mapsto R x$ to produce a splitting $r: M \mapsto R x$ of the inclusion $R x \hookrightarrow M$.

Suppose by induction that $r_{j-1}: M_{j-1} \mapsto R x$ has been defined such that $\left.r_{j-1}\right|_{R x}=1_{R x} . M_{j}$ is generated by $M_{j-1}$ and $m_{j}$. So to define $r_{j}$ extending $r_{j-1}$, must define $r_{j}\left(m_{j}\right) \in R x$, ie. $r_{j}\left(m_{j}\right)=\lambda x$ for the correct $\lambda$.

Let $\left(p^{s}\right)=\operatorname{Ann}\left(M_{j} / M_{j-1}\right)$, so $p^{s} m_{j} \in M_{j-1} . r_{j-1}\left(p^{s} m_{j}\right) \in R x$, so $r_{j-1}\left(p^{s} m_{j}\right)=\alpha x$ for some $\alpha \in R$.

$$
p^{e-s} \alpha x=p^{e-s}\left(r_{j-1} p^{s} m_{j}\right)=r_{j-1}\left(p^{e} m_{j}\right)=r_{j-1}(0)=0
$$

so $p^{e-s} \alpha=\lambda p^{e}$ for some $\lambda \in R \Rightarrow \alpha=\lambda p^{s}$.
Define $r_{j}\left(m_{j}\right)=\lambda x$ and $r_{j}(y)=r_{j-1}(y) \forall y \in M_{j-1}$. Then

$$
r_{j}\left(p^{s} m_{j}\right)=p^{s} \lambda x=\alpha x=r_{j-1}\left(p^{s} m_{j}\right)
$$

so $r_{j}$ is well-defined. Thus $M \cong R x \oplus M^{\prime}$.
Applying the procedure to $M^{\prime}$ gives

$$
M \cong R x \oplus R x^{\prime} \oplus M^{\prime \prime}
$$

Continuing, the procedure eventually terminates since $M$ is Noetherian.
$\therefore M \cong R x_{1} \oplus R x_{2} \oplus \cdots \oplus R x_{n}$ for some $x_{1}, \ldots, x_{n}$ with Ann $x_{j}=\left(p^{j}\right)$ for some $j$. Notice that

$$
\begin{aligned}
R & \stackrel{\psi_{j}}{\longmapsto} R x_{j} \\
r & \mapsto r x_{j}
\end{aligned}
$$

is surjective with $\operatorname{ker} \psi_{j}=\operatorname{Ann} x_{j}$. Thus $R x_{j} \cong R /\left(p^{j}\right)$.
Putting it all together, we get:
Theorem 2.10.7 (Structure Theorem for Finitely Generated Modules over a PID). Let $M$ be a finitely generated module over a PID R. Then

$$
M \cong R /\left(p_{1}^{s_{1}}\right) \oplus R /\left(p_{2}^{s_{2}}\right) \oplus \cdots \oplus R /\left(p_{n}^{s_{n}}\right) \oplus R^{k},
$$

where $p_{1}, \ldots, p_{n} \in R$ are primes (not necessarily distinct), $s_{1}, \ldots, s_{n} \in \mathbb{N}$ and $k \geq 0$.
Note that the generator of $\operatorname{Ann}(M)$ is $\operatorname{lcm}\left\{p_{1}^{s_{1}}, \ldots, p_{n}^{s_{n}}\right\}$.
We now show that this decomposition is unique. $k$ is the dimension of $M \otimes_{R} K$, where $K$ is the field of fractions, so $k$ is unique, and we need only be concerned with the torsion part of the module.

Theorem 2.10.8. Suppose

$$
R /\left(p_{1}^{s_{1}}\right) \oplus R /\left(p_{2}^{s_{2}}\right) \oplus \cdots \oplus R /\left(p_{n}^{s_{n}}\right) \cong R /\left(q_{1}^{t_{1}}\right) \oplus R /\left(q_{2}^{t_{2}}\right) \oplus \cdots \oplus R /\left(q_{k}^{t_{k}}\right),
$$

with $p_{1}, \ldots, p_{n}, q_{1}, \ldots q_{k}$ primes in $R$ and $s_{1}, \ldots s_{n}, t_{1}, \ldots t_{k} \in \mathbb{N}$. Then $n=k$ and $\left\{q_{1}^{t_{1}}, \ldots, q_{k}^{t_{k}}\right\}$ is a permutation of (associates of) $\left\{p_{1}^{s_{1}}, \ldots, p_{n}^{s_{n}}\right\}$.

Proof. Let

$$
\begin{aligned}
M & =R /\left(p_{1}^{s_{1}}\right) \oplus R /\left(p_{2}^{s_{2}}\right) \oplus \cdots \oplus R /\left(p_{n}^{s_{n}}\right) \quad \text { and } \\
N & =R /\left(q_{1}^{t_{1}}\right) \oplus R /\left(q_{2}^{t_{2}}\right) \oplus \cdots \oplus R /\left(q_{k}^{t_{k}}\right) .
\end{aligned}
$$

For any prime $p$, let

$$
\begin{aligned}
M_{p} & =\left\{x \in M \mid p^{e} x=0, \text { for some } e\right\}, \\
N_{p} & =\left\{x \in N \mid p^{e} x=0, \text { for some } e\right\} .
\end{aligned}
$$

If $M \cong N$ then $M_{p} \cong N_{p}$. Moreover,

$$
\begin{gathered}
M_{p} \cong \bigoplus_{p_{j} \text { assoc. to } p} R /\left(p_{j}^{s_{j}}\right), \\
N_{p} \cong \bigoplus_{q_{j} \text { assoc. to } p} R /\left(q_{j}^{t_{j}}\right) .
\end{gathered}
$$

$\therefore$ It suffices to consider one prime at a time. ie. We are reduced to the case where $p_{j}=q_{j}=p \forall j$. Suppose

$$
M=R /\left(p^{s_{1}}\right) \oplus \cdots \oplus R /\left(p^{s_{n}}\right) \quad \text { and } \quad N=R /\left(p^{q_{1}}\right) \oplus \cdots \oplus R /\left(p^{q_{k}}\right) .
$$

For $Z=R /\left(p^{s}\right), \exists$ a short exact sequence

$$
0 \mapsto p Z \mapsto Z \mapsto R / p \mapsto 0
$$

ie. $Z / p Z \cong R / p$, a field.
Since $M \cong N$,

$$
\bigoplus_{n} R / p \cong M / p M \cong N / p N \cong \bigoplus_{k} R / p
$$

Since the dimension of a vector space is an invariant of the isomorphism class of the vector space, $n=k$.

Also, $M \cong N \Rightarrow p M \cong p N$; that is:

$$
R / p^{s_{1}-1} \oplus \cdots \oplus R / p^{s_{n}-1} \cong R / p^{t_{1}-1} \oplus \cdots \oplus R / p^{t_{k}-1}
$$

$\operatorname{Ann}(p M)$ has one less power of $p$ than $\operatorname{Ann} M$. So by induction on the size of $\operatorname{Ann}(M)$, the positive elts. in the list $\left\{t_{1}-1, \ldots, t_{k}-1\right\}$ is a permutation of those in $\left\{s_{1}-1, \ldots, s_{n}-1\right\}$. ie. Information about summands $R / p$ has been lost, since $p(R / p)=0$, so $p M$ and $p N$ have no record of how many summands $R / p$ there were in $M$ and $N$. But they see all the remaining summands, showing that entries in $\left\{t_{1}, \ldots, t_{k}\right\}$ which are at least 2 are the same (up to a permutation) as those in $\left\{s_{1}, \ldots, s_{n}\right\}$. The remaining entries on each list are 1 , and there are the same number of them on each list since $n=k$ and the entries greater than 1 correspond.
$\therefore\left\{t_{1}, \ldots, t_{k}\right\}$ is a permutation of $\left\{s_{1}, \ldots, s_{n}\right\}$.
Thus, $\left\{p_{j}^{s_{j}}\right\}$ is uniquely determined by (and uniquely determines) $M$. It is called the set of elementary divisors of $M$.

## Example 2.10.9.

1. $R=\mathbb{Z}$. List all non-isomorphic abelian groups of order 16 :

$$
\mathbb{Z} / 16, \quad \mathbb{Z} / 8 \oplus \mathbb{Z} / 2, \quad \mathbb{Z} / 4 \oplus \mathbb{Z} / 4 \quad \mathbb{Z} / 4 \oplus \mathbb{Z} / 2, \oplus \mathbb{Z} / 2 \quad \mathbb{Z} / 2 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 2
$$

(all non-isomorphic by the theorem).
2. Let $F$ be a field, $V$ a f.d. vector space $/ F, T: V \mapsto V$ a linear transformation. Let $R=F[x]$ (a PID) and $M=V$ with $R$-action

$$
f(x)(v)=f(T)(v)=\sum_{j=0}^{n} a_{j} T^{j}(v)
$$

Let

$$
\operatorname{Ch}(\lambda)=\operatorname{det}(T-\lambda I),
$$

the characteristic polynomial of $T$. Then $\mathrm{Ch}(T)=0$ (Cayley-Hamilton Theorem).
$\therefore \mathrm{Ch}(x) v=0 \forall v \in V$. ie. $M$ is a torsion $R$-module and $\mathrm{Ch}(x) \in \operatorname{Ann}(M)$. Hence

$$
M \cong F[x] / p_{1}(x)^{r_{1}} \oplus \cdots \oplus F[x] / p_{k}(x)^{r_{k}}
$$

for some primes $p_{1}(x), \ldots, p_{k}(x) \in F[x]$.
Suppose $F$ is algebraically closed so that every poly. in $F[x]$ factors completely as a product of linear factors. Then the primes in $F[x]$ are the degree 1 polynomials. So mult. by a scalar to make $p_{j}$ monic:

$$
p_{j}(x)=x-\lambda_{j}
$$

for some $\lambda_{j} \in F$. Then

$$
M \cong \cdots \oplus F[x] /\left(x-\lambda_{j}\right)^{r_{j}} \oplus \cdots
$$

implies that $\exists v \in V$ s.t. $\left(x-\lambda_{j}\right) \in \operatorname{AnnV.ie.}\left(T-\lambda_{j}\right) v=0$. (And conversely, if $(T-\lambda) v=0$ for some $v$ then $x-\lambda=p_{j}(x)$ for some $j$.)
$\therefore\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}=$ eigenvalues of $T$.
Examine $F[x] /\left(x-\lambda_{j}\right)^{r_{j}}$ more closely. Write $\lambda$ for $\lambda_{j}$ and $r$ for $r_{j}$. As an $F[x]$-module, $F[x] /(x-$ $\lambda)^{r}$ is gen. by $(x-\lambda)$. Elts. can be written uniquely as

$$
\sum_{k=0}^{r-1} a_{k}(x-\lambda)^{k}
$$

where $a_{k} \in F$. ie. Over $F, F[x] /(x-\lambda)^{r}$ has dimension $r$ with basis

$$
1, x-\lambda,(x-\lambda)^{2}, \ldots,(x-\lambda)^{r-1}
$$

Let $B=B_{j} \subset V=M$ be the image of $F[x]=\left(x-\lambda_{j}\right)^{r_{j}}$ under the iso.

$$
\psi: \bigoplus_{i} F[x] /\left(x-\lambda_{i}\right)^{r_{i}} \stackrel{\cong}{\rightleftarrows} M
$$

and let $v_{j}=\psi\left((x-\lambda)^{j-1}\right)$ for $j=1, \ldots, r$ be the $F$-basis for $B$ corresponding to the basis $\left\{(x-\lambda)^{i}\right\}$.
$B$ is a $F[x]$-submodule of $V$ so it is closed under the action of any $f(x) \in F[x]$. For $f(x)=x-\lambda$, by construction,

$$
\begin{aligned}
& f(x) \cdot v_{j}=v_{j+1} \quad j<r \\
& f(x) \cdot v_{r}=0 .
\end{aligned}
$$

ie. when written in the basis $v_{1}, \ldots, v_{r}$, the matrix $T-\lambda$ is

$$
\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
1 & & & \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \\
0 & \cdots & 0 & 1
\end{array}\right)
$$

ie. T looks like

$$
\left(\begin{array}{cccc}
\lambda & 0 & \cdots & \\
1 & \lambda & & \\
0 & \ddots & \ddots & \\
\vdots & \ddots & \ddots & \lambda \\
0 & \cdots & 0 & 1
\end{array}\right)
$$

Therefore:
Theorem 2.10.10 (Jordan Canonical Form). Let $T: V \mapsto V$ be a linear transformation where $V$ is a f.d. vector space over an algebraically closed field $F$. Then $\exists$ a basis for $V$ in which $T$ has the form

$$
\left(\begin{array}{cccc}
B_{1} & 0 & \cdots & 0 \\
0 & B_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & B_{k}
\end{array}\right)
$$

where

$$
B_{j}=\left(\begin{array}{ccccc}
\lambda_{j} & 0 & \cdots & & 0 \\
1 & \lambda_{j} & \ddots & & \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \lambda_{j} & 0 \\
0 & \cdots & 0 & 1 & \lambda_{j}
\end{array}\right)
$$

Note: While $\mathrm{Ch}(\lambda) \in \operatorname{Ann}(V)$, it does not necessarily generate the ideal $\operatorname{Ann}(V)$. Letting $\operatorname{Ann}(V)=$ $(M(\lambda)), M(\lambda)$ is called the minimum polynomial of $T$. ie.

$$
\operatorname{Ch}(x)=\prod_{j}\left(x-\lambda_{j}\right)^{r_{j}} \quad \text { but } \quad M(x)=\operatorname{lcm}\left\{\left(x-\lambda_{j}\right)^{r_{j}}\right\} .
$$

## Reformulation of the Structure Theorem for $\mathbf{f} . \mathrm{g}$. torsion modules.

Let $R$ be a PID and let $a, b \in R$ be relatively prime. Then $R a+R b=1$ so the Chinese Remainder Thm. applies:

$$
R \stackrel{\phi}{\longmapsto} R /(a) \times R /(b)
$$

and $\operatorname{ker} \phi=(a) \cap(b)=(a)(b)$.
Claim. $R$ a PID and $\operatorname{gcd}(a, b)=1 \Rightarrow(a)(b)=(a b)$.
Proof. $(a)(b)=(c)$ for some $c$. Since $a b \in(a)(b)=(c), c \mid a b$.
Conversely, $(c)=(a) \cap(b) \subset(a)$ so $a \mid c$ and similarly $b \mid c$. Write $c=\lambda a$ and $c=\mu b . \operatorname{gcd}(a, b)=1$ $\Rightarrow \exists s, t$ s.t. $s a+t b=1$. So

$$
\begin{aligned}
\lambda & =\lambda s a+\lambda b t \\
& =s c+\lambda b t \\
& =s \mu b+\lambda b t \\
& =(s \mu+\lambda t) b
\end{aligned}
$$

$\therefore(a b)=(c)$.
Thus

$$
R /(a b) \cong R /(a) \times R /(b) .
$$

By continual application of this iso. we can rewrite our decomposition thm. as follows:
Theorem 2.10.11. Let $M$ be a f.g. $R$-module ( $R$ a PID). Then

$$
M \cong R^{k} \oplus R /\left(a_{1}\right) \oplus R /\left(a_{2}\right) \oplus \cdots \oplus R /\left(a_{n}\right)
$$

where $a_{n}\left|a_{n-1}\right| \cdots \mid a_{1} \neq 0$.
$a_{1}, \ldots, a_{n}$ are called the invariant factors of $M$.
Example 2.10.12. Suppose

$$
M \cong \mathbb{Z} / 8 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 9 \oplus \mathbb{Z} / 3 \oplus \mathbb{Z} / 5
$$

Then

$$
M \cong \mathbb{Z} / 360 \oplus \mathbb{Z} / 6 \oplus \mathbb{Z} / 2
$$

The number of summands required is
$\max \{r \mid$ some prime $p$ occurs $r$ times among the elementary divisors $\}$.
Reformulation of Chinese Remainder Thm. over a PID. Suppose $m_{1}, \ldots, m_{k}$ satisfy $\operatorname{gcd}\left(m_{i}, m_{j}\right)=$ 1 for $i \neq j$. Given $a_{1}, \ldots, a_{k}, \exists x \in R /\left(m_{1} \cdots m_{k}\right)$ s.t. $x \equiv a_{j} \bmod m_{j} \forall j=1, \ldots, k$.

Example 2.10.13. Find $x$ s.t. $x \equiv 2 \bmod 9, x \equiv 3 \bmod 5, x \equiv 3 \bmod 7$.
Solution. $m_{1}=9, m_{2}=5, m_{3}=7, a_{1}=2, a_{2}=3, a_{3}=3$. Set $z_{1}:=m_{2} m_{3}=35$. Then

$$
\begin{array}{rlr}
y_{1} & :=z_{1}^{-1} \quad \bmod 9 \\
& =8^{-1} \quad \bmod 9 \\
& =8 .
\end{array}
$$

Likewise,

$$
\begin{aligned}
z_{2} & :=m_{1} m_{2}=60 \\
y_{2} & :=z_{2}^{-1} \quad \bmod 5 \\
& =3^{-1} \quad \bmod 5 \\
& =2, \\
z_{3} & :=m_{1} m_{2}=45 \\
y_{3} & :=z_{3}^{-1} \quad \bmod 7 \\
& =3^{-1} \quad \bmod 7 \\
& =5 .
\end{aligned}
$$

Set $x:=a_{1} y_{1} z_{1}+a_{2} y_{2} z_{2}+a_{3} y_{3} z_{3} \bmod \left(m_{1} m_{2} m_{3}\right)$. Then modulo $m_{1}, z_{2} \equiv 0, z_{3} \equiv 0, y_{1} z_{1} \equiv 1$, so $x \equiv a_{1}$ $\bmod m_{1}$, etc. In our example,

$$
\begin{aligned}
x & =2 \cdot 8 \cdot 35+3 \cdot 2 \cdot 63+5 \cdot 3 \cdot 45 \bmod (9 \cdot 5 \cdot 7) \\
& =1613 \bmod 315 \\
& =38 \bmod 315 .
\end{aligned}
$$

In general, $x=\sum_{j} a_{j} y_{j} z_{j}$ where $z_{j}=m_{1} \cdots m_{j-1} m_{j+1} \cdots m_{n}$ and $y_{j}=z_{j}^{-1} \bmod m_{j}$.

