Chapter 2

Rings and Modules

2.1 Rings

Definition 2.1.1. Aring consists of a set R together with binary operatiensnd- satisfying:
1. (R +) forms an abelian group,
2. (a-b)-c=a-(b-c)v¥a,b,ceR,
3.31+#0eRsuchthatal=1-a=aVvYaeR, and
4. a-(b+c)=a-b+a-cand(a+b)-c=a-c+b-cVvab,ceR.
Note:

1. Some people (e.g. Dummit Foote) do not require condition 3, and refer to a “ring with
identity” if they want to assumehas an identity element.

2. People who include existence of a unit in their defn. ohg refer to a “ring without identity”
for an object satisfying the other three axioms. Some pe@pte Jacobson) call this a “rng”.

3. Some people (e.g. Lang) do not require 0 in condition 3.
Definition 2.1.2. R is calledcommutativelf its multiplication is commutative, ie.
ab=ba VabeR
Definition 2.1.3. Aring homomorphismfrom Rto S is a function fR+— S such thav¥a, b € R:
1. f(a+b) = f(a) + f(b),
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2. f(ab) = f(a)f(b), and
3. f(1)=1.
A bijective ring homomorphism is called omorphism

Definition 2.1.4. A subring of R is a subset A which forms a ring such that the inclusicr/R is a
ring homomorphism. A subgroup | of the abelian gr¢Rp+) is called a (two -sidedideal if

Xxel,reR= rxelandxrel.

Similarly if a subgroup | satisfies
xel,reR= rxel,

| is called aleft ideal, and if it satisfies
Xel,reR= xrel,

it is called aright ideal.

Example 2.1.5.1f f : R+ S is a homomorphism thé&erf := {x € R| f(x) = 0} is an ideal in R.
(Anideal is always a subrng but never a subring, unless itlisfaR.)

Theorem 2.1.6.Let | ¢ R be a proper ideal. Thef a ring R/l and a surjective ring homomorphism
f : R~ R/l such thatker f = 1.

Proof. Define an equivalence relation &by x ~y < x-yel. Let
R/1 := {equiv. classés

Define operations oR/I by

[X] +[y] := [x+V]l,
[X] - [y] := [xyi.
Check that these are well-defined and produce a ring struotuiR#| .

Definef : R— R/I by f(xX) = [X]. f is aring homomorphism. Moreovef(x) = 0 iff [x] = O iff
x=Xx-0¢€l. |

Definition 2.1.7. The ring R is called alivision ring if (R - {0}, ) forms a group. A commutative
division ring is called dield.

56



An elementu € Rfor which 3v € Rsuch thauv = vu = 1 is called aunit.
Notation: R* = {units of R. This forms a group under multiplication.

A non-zero elemenk € Ris called azero divisor if Ay # 0 such that eithexy = 0 oryx= 0. A
commutative ring with no zero divisors is called iategral domain.

Proposition 2.1.8.1f x # 0is not a zero divisor and xy xz then y= z.
Proof. Xy —2) = 0 andx s not a zero divisor so either=0ory—-z= 0. Butx# 0 soy = z O

Theorem 2.1.9(First Isomorphism Theorem)let f : R — S be a ring homomorphism. Then
R/ kerf = Imf.

Theorem 2.1.10(Second Isomorphism Theorem)et Ac R be a subring and let & R be a proper
ideal. Then A+ | :={a+ x|ae A xe l}isasubring of R, A\ | is a proper ideal in A, and

(A+1)/1 = A/(AN ).

Theorem 2.1.11(Third Isomorphism Theorem)_et | ¢ J be proper ideals of R. ThenlJ:= {[X] €

R/l | x e J}is anideal in RI, and
R/
J_/I — R/\].

Theorem 2.1.12(Fourth Isomorphism Theorem).et | be a proper ideal of R. Then the correspon-
dence J— J/I is a bijection between the ideals of J containing | and thaldef R/I.

Letl, J be ideals irR. Define ideals

l+J:={Xx+y|xel,yeJ}
N J

n
1J = {inyylneN,xi el,y eJ}
i=1

Then
JcIindcludcl+Jd

(Note thatl U J may not be an ideall) + J is the smallest ideal containing badtlandJ.
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2.2 Maximal and Prime Ideals

Definition 2.2.1. An ideal Mg R is called amaximal idealif A anideal | s.t. Mc | ¢ R.
Lemma 2.2.2.Given an ideal Ic R, a maximal ideal M s.t. £ M.

Proof. Let
S ={idealsJ |1 c JZR}.

ThenS is a partially ordered set (ordered by inclusion).Clfc S is a chain (ie. a totally ordered
subset) then
J=|Jc

CeC

is an ideal which forms an upper bound t©in S (it is indeed a proper ideal sinceglJ).
. Zorn’'s Lemma= S has a maximal elemem. O

For the rest of this section, suppose tRas commutative.

Proposition 2.2.3.R is a field < the only ideals of R ar@d} and R.

Proof.
=:. LetRbe afield and let c Rbe anideal. i # {0} thendx#0¢€I.
Ra field= 3y € R such thatxy = yx = 1. Sincel is an ideal, 1€ I, sor € | ¥r € R Thus
l =R

&: Suppose the only ideals Rare{0} andR. Letx # 0 € R. Let
| =Rx:={rx|r eR}.
| is anideal anck = 1x € R, sol # 0. Hencel = R, so 1€ I. ie. 1=yzfor somey € R
. Everyx # 0 € Rhas an inverse, dis a field.
o

Corollary 2.2.4. Let f: F — S be a ring homomorphism where F is a field. Then f is injective.
Proof. kerf is a proper ideal i, so kerf = 0. ]
Theorem 2.2.5.M is a maximal ideal< R/M is a field.

Proof. The 4" iso. thm. says] a bijection between the ideals BfcontainingM and the ideals of
R/M.
SAlstMcl gR & 3Js.t.{0} ¢ J < R/M. ie. M is not maximal< R/M isnotafield. O
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Definition 2.2.6. An ideal? ¢ R is called gprime idealif ab € £ implies ac $ or b € P.
Theorem 2.2.7.#P is a prime ideal < R/® is an integral domain.

Proof.
=: Suppose” is a prime ideal. If ky] = [X][y] = 0 in R/® thenxy € P, so eitherx e P ory € P.
ie. either K] = 0 or [y] = 0. ThusR/# has no zero divisors.

&: Suppose&r/P is an integral domain. Iky € £ then [x][y] = 0inR/P, so [x] = 0or[y] = 0. ie.
eitherxe Porye P.

Corollary 2.2.8. A maximal ideal is a prime ideal.

Proof. A field is an integral domain. O
Notation: a|bmeansics.t.b = ac(saya dividesb).

Proposition 2.2.9.In an integral domain, if 4 b and b| a then b= ua for some unit u.

Proof. a|b= b=uaforsomeue R b|a= a=vbforsomeveR
.. b =ua=uvh and sincéb is not a zero divisor, & uv. Thus,u is a unit. O

Definition 2.2.10. q is called agreatest common divisasf a and b if:
1. glaandq| b, and
2. If c also satisfies ¢£a, c| b then c| g.

Notation: g = gcd@, b) meangyis the greatest common divisor afandb.
We saya andb arerelatively prime if gcd(a, b) = 1.

Proposition 2.2.11.Let R be an integral domain. If g gcd@, b) and d = gcd@, b) then d = uq for
some unit u. Conversely, ifggcd@, b) and d = ug where u is a unit then’ ¢ gcd@, b).

Proof. Letg = gcd@, b). If g = gcd@ b) thend | gandq| g soq = uqfor some unitu.
Conversely, ifgf = uqfor some unituthenq | gsoq | aandq | b. Alsoq| g so whenevec | a
andc|b,c|qgsoc| (. O

Definition 2.2.12. A non-unit p# 0 € R is called gprimeif p|ab= p|aor p|b.
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Notation: Letx e R (X) := Rx= {rx | r € R} is called theprincipal ideal generated byx. Thus

y e (X)iff x|y.
Likewise, forxy, ..., X, € R, let (X, ..., X,) denote the following ideal:

{riXg+---+rpXy | ry,...,r R},
ie. the ideal generated by, .. ., X,.
Proposition 2.2.13.1f p # O then p is prime— (p) is a prime ideal.

Proof.
= Suppose is prime. Ifab € (p) thenab = rp for somer, sop | ab. Sop|aorp|b. ie.ae (p)
orb e (p).

<: Suppose() is a prime ideal. Ifp | abthenab e (p) soa € (p) orb € (p).
S plaorp|hb.

O

Nonzero elements andy are calledassociatesf 3 a unitu s.t. x = uy,y = u™*x. Thus,x,y are
associate= (X) = (y). ie. For associatesandy, x| aiffy| a.
X ~ yiff X,y are associate forms an equivalence relatiofRen{0}.

Definition 2.2.14. x € R isirreducible if x # 0, X is not a unit, and whenever= ab, either a is a
unit or b is a unit.

Definition 2.2.15. Ideals | and J are calledomaximalor relatively primeif | + J = R.

Theorem 2.2.16(Chinese Remainder Theorenet R be a commutative ring. Let
l1,...,IkcR
be ideals. Supposednd |; are comaximal whenever j. Let

¢ R R/ xXR/lax - xR/l
F—(+1,r+1s...,r+1).

Theng is surjective and
kerg =1,nln--Nlg=1ly-- I
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Proof. Consider first the case whén= 2. Supposeé, J are comaximal. TheAx e |,y € Js.t.x+y =
1. So¢(x) = (0,1) andg(y) = (1,0). Since (01) and (10) generatd?/l x R/J, ¢ is surjective.
Clearly kerp = 1 nJ, and in generalld c I n J. Foranyce | N J,

c=cl=cx+cyeld

1 =1nJd.
General case: sét= 1, J = I,---1x. Foreach = 2,...,k, A% € | andy; € | s.t.x +y; = 1.
Sincex; +Yy; =Yy, modl,

1=1---1=(X+Y2)(Xa+VYa) - (X+Y¥) =Y2---y« modl

Solel +J.
. R R/l x R/J and by induction,

R/I XxXR/I—=> R/11 X R/1; xR/l x -+ X R/l

and
1l k=13 =1NnJ=l1nlN--- I
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2.3 Polynomial Rings
LetRbe aring.
RIX := @ X"+ 8y 1 X" + - + X+ a | n>0€ Zanda; e Rfor j =0,---,n}

(modulo O¢" + a,_1 X" + -+ + ag ~ 3,1 X" + - - - + a). Operations are

n

Zn:aixi + an bx := Z(a +b)x, and
i=1 i=1

i=1

k=0

More formally,

(R, +) = PR
n=0

with multiplication defined by

K
(@)i>0(bj)jz0 = (G0 Wherec, = Z aibyi.

i=0

Inductively, set
R[X1, ..., %] := (R[X4, ..., %n_1])[ Xa]-

(called thepolynomial ring in nvariables). For an arbitrary se®, set

R[S] := ) RTIL

T=finite subset o5
If g(x) = 3, ax anda, # 0 thenn is called thedegreeof g. EmbedR — R[X] via
r —r (polynomial of degree 0)
Some properties:
1. R[X] is commutative < Ris commutative.
2. R[X] is an integral domain—= Ris an integral domain.

3. If Ris an integral domain theq(x) € R[] is invertible < q(x) € Rand is invertible iR
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Proposition 2.3.1.Let | ¢ R be an ideal. Let[ix] denote the ideal of [X] generated by I. Then
RIX]/1[X = (R/1)[X].

Proof. Define¢ : R[X] — (R/1)[X] by
6> ax):= > ax.

RIX]/1[X] = (R/1)[X].

Theng is onto and kep = 1[X], SO

Corollary 2.3.2. I[X] is a prime ideal < | is a prime ideal.
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2.4 Modules

Definition 2.4.1. Let R be a ring. A (left) Rnodule consists of an abelian groufM, +), together
with a function- : Rx M - M s.t.

1. r+sm=rm+smvr,se Rme M,
2. rfm+n)=rm+rnVyYre R mne M,
3. (rsm=r(sm ¥r,se Rme M, and
4. Im=mVme M.
If R is a field, an R-module is also calledractor spacever R.
Definition 2.4.2. An Rmodule homomorphisnt : M — N is a function satisfying
1. f(a+b) = f(a)+ f(b) va,be M and
2. f(ra)=rf(a) Vre Rae M.

If R is a field, an R-module homomorphism is also calléid@ar transformation A bijective homo-
morphism is called arsomorphism

Definition 2.4.3. A submoduleof M is a subset A which forms an R-module s.t. the inclusiepr M
is an R-module homomorphism. The R-module Bingpleif its only submodules are M an(@}.

Example 2.4.4.
1. M =Rwith Rx M — M given by mult. in R. Submodules of R are left ideals.

2. R=7Z and M = abelian grp., with

n-x:=x+---+x, forn>0,and
(-n)-x:=-(n-x), forn>0.
Conversely, angZ-module is just an abelian group.

3. F afield, V a vector space over F, TV — V a linear transformation. Let R= F[x] and
M = V. Define
XVvi=T"V) = T(T") YveV

and extend linearly to an action of[k] on V.
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If f: M — N is anR-module homomorphism then kéris a submodule oM and Imf is a
submodule oR. If M, N areR-modules, set

honmg(M, N) := {R-module homomorphisms frofd to N}.
homr(M, N) is an abelian group in general, andRfs commutative, it becomes &imodule via
(rf)(m) = f(rm).

Let N be a submodule dfi. On the abelian group/N, define the action dRbyr - m:=r-m.
This is well-defined and produces Brimodule structure oM/N.

Theorem 2.4.5.
1. First Isomorphism Theorem
Let f : M — N be an R-module homomorphism. Thehker f = Imf.

2. Second Isomorphism Theorem LeBAe submodules of M. Then
(A+B)/B=A/(ANB)
where A+ B={a+ b|ae€ A b e B}, which itself forms a submodule.

3. Third Isomorphism Theorem Let@AB c M be R-modules. Then

M/A _
B/A = M/B

4. Fourth Isomorphism Theorem Let & M be R-modules. Then A A/N sets up a bijection
between the submodules of M containing N and the submodulA\of

A sequence

0 A B C 0

of R-module homomorphisms sjtis injective, f is surjective, and kefr = Imj is called ashort exact
sequenceof R-modules. ¥ iso. thm.= C = B/Imj.

Proposition 2.4.6. Let

0 A B C 0

be a short exact sequence of R-modules. Then TFAE:
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1. ds:C - Bs.t. fs: C Cis anisomorphism.
2. dr : B As.t.rj: A Ais anisomorphism.
3. B=AaC.

Remarks:

1. The fact that the above are isomorphic as abelian groupslisaussed in the section on semidi-
rect products, since for abelian groups, all subgroups armal and semidirect products be-
come products.

2. As discussed in semidirect product sections2 3, even for nonabelian groups, but in that
situation, 1=» 2 or 3.

Given a sef5, 3 anR-moduleM having the property that for arfg-moduleM,
homgr(M, N) = morphisms,{S, N).

ie. An R-module homomorphism fronM is uniquely determined by the images of the elts Sof
Explicitly,
M=R =R
S

M is called thefree R-module with basisS. An R-module which possesses a basis is called a free
R-module. An arbitrary elt. of a freB-module can be uniquely written as a finite linear combimatio

X= Z rS
wherer; € Rands € S. WhenR = Z, the freeZ-module onS is also called théree abelian group

onS, denotedF,(S).
Let M be a rightR-mod. and letN be a leftR-mod. Define an abelian groud ® N (tensor

product ofM, N overR) by
M®&r N = Fap(M X N)/ ~

where
1. (MM + ) ~ (Mmng) +(Mmny) Yme M,n, n; €N,
2. (Mg + My, n) ~ (Mg, n) + (M, n) Ym, My € M,n e N, and

3. Mm-r,n)~(mr-n)VreRme M,ne N.
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Write m® n for the equiv. class ofg, n) in M ®s N. So an arbitrary elt. oM ®g N has the form

k
D cmen)
i=1

wherem € M, n; € N, ¢ € Z.
Note thatR®@gr N = N andM g R= M.

M ®gr N has the universal propertg.is R-bilinear and given bilineaf : M x N — A,

M x N —Ls M @ N

A f
f 1
v
A
f bilinear means:

f(my + mp,n) = f(mg, n) + f(mp, n),
f(mny+ny) = f(mny) + f(m, ny),
f(mr,n) = f(m,rn)

If Ris commutative thetM @z N becomes aR-module via

r-(men):=me(r-n).

and

More generally, ifM is anR-bimodule (ie. has both a left and a rigRimodule action which commute

with each other) theM ®z N becomes a lefR-module via

r-(meon):=(-maen.

Notice thatR is anR-bimodule even iR is not commutative. (ie. Left multiplication commutes with

right multiplication —R is associative.)

More generally, leff : R+— S be a ring homomorphism. Théhbecomes aR-bimodule via

r-s:= f(r)s
s-r:=sf(r)

This induces a map frorR-modules tdS-modules given b\N — S ®g N.
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Example 2.4.7(Extension of Cofficients) Let N be a vector space over a field F. Letk K be an
extension field. Elts. of N are finite sums
> ae

where{e }icr forms a basis for N. Then elts. ofds N are finite sums

> ae

where ac K,i € T. (So{e} forms a basis for K9 N as a vector space over K.)

In general,
M & (D N) = (DM - N,
ieT ieT
o]
ser (PR =P (serR =Ps
ieT ieT ieT

Thus if N is a free R-module with basis T the®SN forms a free S -module with basis T.

Theorem 2.4.8(Steinitz Exchange Theoremlet R be a commutative ring. Let B and T be bases for
a free R-module N. ThebardB = Cardr .

Proof. If g: R~ Sis any ring homomorphism thed®g N is a freeS-module with bothB andT as
bases. Letting : R~ R/M whereM is a maximal ideal irR, we may reduce to the case wh&és
a field.

Case I: At least one of CaBjCardr is finite. Say Car8 < Cardl' and suppose CaBl< co. Write
B ={by,...,by}. 3ty € T s.t. whert; is written in the basi®, the cod. of b, is nonzero (or else
b,,...,b, would spanN). Then({ty, by, ..., by} forms a basis foN. Inductively,¥j =1,...,n,
findt; s.t.{ty, ..., tj,bj41, ..., by} forms a basis foN. Then{t,,...,t,} forms a basis foN, so

T ={tg,...,t}
and|T| = |B.
Case II: Both CarB and Card are infinite. For each € B, set
Ty, = {elts. of T occuring in the expression farin basisT} € 27.

ThenTy, is finite Yb. Definef : B — 2T by f(b) = T,,. If X c T is finite with say|X| = n, at
mostn elts. of B lie in the span oi. So|f~1(X)| < |X|.
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B= U f‘l(X):O U f1(X).

XcT n=l xXcT
X finite IX|=n

SinceT is infinite, the cardinality of
{(XcT||Xl=n}
is equal to the cardinality dT|. Since|f~1(X)| < |X],
Card = Card | | ] (X
n=1 XcT
IXI=n
< CardU Cardr)
n=1
= Cardr.

Similarly, Cardr < CardB.

O

Note: Once we reduced to the case of a division ring, we nodongeded the commutativity &
so the thm. also holds whenewis a division ring, or indeed whelR admits a homomorphism to a
division ring. However, we used commutativity Bfto produce our mapR +— (division ring), since

R/2-sided max. ideal

need not be a division ring Ris not commutative.
If Ris a commutative ring antll is a freeR-module, the cardinality of any basis fbris called
therank of N. If Ris a field then everjR-module is free and its rank is called démension

Proposition 2.4.9.1f ¢ : M + N is a surjective R-module homomorphism and N is a free R-lmodu
thend an R-module homomorphism 8l — M s.t.¢s = 1y. In particular, M = N @ ker¢.

Proof. Let S be a basis foN. For eachx € S, choosan € M s.t.¢(m) = x and sets(xX) = m. SinceN
is free, this extends (uniquely) to &module map. O
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An R-moduleP is calledprojective if given a surjectiveR-mod. homom¢ : M — P, 3 anR-mod.
homom.s: P — M s.t.¢s = 1p. Equivalently,P is surjective ff 3Q s.t. P® Q = RN for someN.
Equivalently,P is projective it

P
s,
v
M >N 0
d a lift s(not necessarily unique).
.. Free= Projective.

Example 2.4.1Q(A projective module which is not free) et R= M.n(F) (nxn matrices with entries
in a field F), with n> 1. Let

«* 0 --- 0

P=[: : :
« 0 --- 0

(matrices which ar® beyond the first column). Then P forms a leftideal in R, ie. &lest R-module.

Let
O k . e *k

Q=] : : :
0 * -+ =
(matrices which aré in the first column). Then B Q = R, so P is projective. But P is not free,
because if P= R® then, regarded as vector spaces over F, we would have
n=dimP =dimR® = sr’.
This is a contradiction since n 1.

Definition 2.4.11. Let R be an integral domain. An elt. x in an R-module M is calersion
elementif Ir # 0 € R s.t. rx= 0. M is called atorsion moduleif x is a torsion elt¥x € M. M is
calledtorsion-freeif it has no torsion elements.

X,y torsion elts= x + y is a torsion elt. Ifx is a torsion elt. and € R thenrx is a torsion elt.
Hence,

TorM = {x € M | xis a torsion elt.
forms a submodule dfA.

70



Theannihilator of x € M is the left ideal
Ann(x) :={r e R| rx = 0}.
Theannihilator of M is the 2-sided ideal

AnnM ={reR|rx=0Vxe M}.
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2.5 Localization and Field of Fractions

From the &' isomorphism theorem we get:

Proposition 2.5.1. A left ideal | is maximal if and only if the quotient modul¢l & a simple (left)
R-module.

Note: It is important to remember th&/1 (whenl is a left ideal) is a quotient module and not
(necessarily) a quotient ring.

Definition 2.5.2. A ring with a unique maximal left ideal is calledacal ring.

While it appears initially that replacing “left ideal” by ‘ght ideal” might give a dierent concept,
as we shall see, “left local” equals “right local”. That isfiag has a unique maximal left ideal if
and only if it has a uniqgue maximal right ideal. Note howevattwhile, as we shall see, a unique
maximal left ideal must in fact be a 2-sided ideal, the existeof a unique maximal 2-sided ideal is
not suficient to guarantee that a ring be local. For example, wherl, {0} forms a unique maximal
ideal for matrix ringsMn.»(F) over a fieldF, but these rings are not local since they contain nontrivial
left ideals, as we saw in the previous section.

Theorem 2.5.3.Let R be a local ring with max. left ideal M. Then M i2aided ideal.

Proof. Suppose/ € R. Must showMy c M. If y € M this is trivial sinceM is a left ideal, so assume
y ¢ M. Letl, := {x € R| Xy € M}. To finish the proof, we must show thist c .

Forr e Randx € Iy, (rx)y = r(xy) € rM c M, using thatM is a left ideal. Thereforé¢, is a
left ideal. Note that 1¢ 1, sincey ¢ M. Thusl, is a proper left ideal s&, c M. Lety denote
the equivalence class gfin the quotient modul&/M. Define¢ : R - R/M by ¢(r) = ry. Then
ker¢ = |, by definition ofl,. SinceM is maximal,R/M is a simple module, so lth= R/M. Therefore
as leftR-modules we hav®/l, = Im¢ = R/M, which is simple and sg, is a maximal lefR-module.
Thusly = M. o

Corollary 2.5.4. Let R be a local ring with max. left ideal M. Then
1. xe R—Miffxisaunit.
2. R has a unique maximal right ideal.
3. The unique maximal right ideal of R is M.
4. R/M is a division ring.

Conversely, if R is aring with an ideal M s.t. x is a uvit € R— M then R is a local ring.
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Proof. Since no proper ideal can contain a unit, parts (2), (3), dhdre immediate consequences of
part (1).

Givenx € R— M, maximality of M shows thaRx= Rso3dy € Rsuch thayx = 1. SinceM is a
2-sided ideal ana € R— M it follows thaty cannot lie inM. Therefore the same argument applies
to y and shows thall z € R such thazy = 1. But thenz = z(yx) = (zy)x = X, soy forms a 2-sided
inverse tox, establishing (1).

Conversely if every element &— M is a unit, then the fact that no proper ideal can contain a unit
shows thaRis a local ring. m|

For the rest of this section, suppose tRas commutative.

A subsetS c Rcontaining 1 and s.t. @ S, which is closed under the multiplication Bfis called
a multiplicative subset For example, le? c R be a prime ideal. TheR — # is a multiplicative
subset. Form a ring called thecalization of Rw.r.t. S, denoted5—*R. As a set,

SR:=Rx S/ ~,

where ¢, s) ~ (', ) if At € Ss.t.t(rs’ —r’s) = 0. Think of (t, s) as;. Check~ is an equiv. reln.:
If(r,s) ~(r',s)and ¢’,s) ~ (r’,s’) then
dteSs.tt(rs—r's)=0
anddt' e Ss.t.t/(r's’ —r”s) =0

Then
Stt'rs” =tt'r’'ss’ =tt'r’s's

ie. Stt'(rs” —r”s) =0, (andstt’ e S)so ,s) ~ (r”’, s”).
Define addition by s) + (r’,S) = (rs’ + r’s, sS). Check+ is well-defined: suppose

(r',s)~(r”,s’), sotr's” =tr"s.

Is(rs’ +r’'s,88) ~ (rs” +r”s,ss’)?
Formally, s’tr’'s” = s’tr”’s so

t(sS/(rs’ +r's) — ss(rs” +r”s) = t(s’r's’ — sr”s) = 0.

Define- by (r,s) - (r’,s) = (rr’, ss) (easy to check is well-defined). 7R, +,:) becomes a
commutative ring ring with identity (11).
Define the ring homomorphism
¥ :R— SR
re—(r,1)
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Note thaty(s) is a unitinS'RVse S. ie. (1 9y (s) = (1, 9)(s, 1) = (s, 9) ~ (1, 1).
¥ : R~ SR has the universal property: ff: R+ Ais a ring homomorphism s.f(s) is a unit
in AV¥se Sthen

R v SR

Proposition 2.5.5.1f R is an integral domain then : R— SR is injective.
Proof. Supposer(1) = y(r) = 0= (0,1). Thent(r — 0) = O for somet € S, sor = 0. m]
Note: if Ris an integral domain, we can define the equiv. reln. simply by
(r,s) ~(r',s)iffrs’ =r’'s
Special cases:
1. Ran integral domairS = R- {0}. ThenS~'Ris a field called thdield of fractions of R.

2. S = R— P where® is a prime ideal. Theg(#) forms an ideal irS—R and every element of
S-IRoutside ofy(P) is invertible (quotient of images of elts. ).
. S7!Ris a local ring with max. ideal(P). SR, also writtenRy, is called thdocalization of
R at the prime P.
3. S =1 - {0}, wherel is an ideal without 0-divisorsS~'R is sometimes calleR with | inverted.
e.g.R=7Z,1 =Zp. Then
1 m
S'R=Z[Z] ={Z Q)
[IO] p'
is “Z with p inverted” or “Z with %) adjoined”. Sometimes called the localizationZbhway
from p.
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2.6 Noetherian Rings and Modules

Definition 2.6.1. An R-module M is callefloetherianif, given any increasing chain of submodules

MicMy,c---cM,C---

AN s.t. M, = My Yn > N. The ring R is called &oetherian ringif it is Noetherian when regarded
as an R-module.

If Ris not commutative, notions of Noetherian, “right Noetheti and “2-sided Noetherian” do
not necessarily coincide.

Theorem 2.6.2.Let R be aring and let M be a left R-module. Then TFAE:

1.
2.
3.

M is a Noetherian R-module.
Every non-empty set of submodules of M contains a maxierakeat.

Every submodule of M is finitely generated (and in paricu is finitely generated).

Proof.

1= 2:

2= 3:

LetX be a nonempty collection of submodulesMdf ChooseM; € X. If M; is not maximal in
¥ thendM; € X s.t. My ¢ M,. Having choseMy, ..., M4, if M,_; is not maximal inZ then
AM, € T s.t.

MlQMZQ ;Mn—lgMn-

By hypothesis, no infinite chain of this sort exists, so evalty reach a max. elt.
LetN be a submodule d¥1. LetX be the collection of all finitely generated submoduleof

By the hypothesisy contains a maximal elemeht’. If N’ # N then pickx € N — N’. Then
(N’, xy is f.g. and properly containd’, which is a contradiction.

-~ N" =N, soNisf.g.

. Suppose every submod. Bfis f.g. Let

MicMacMzC---
be a chain of submodules. LBt= [ J;2; M;. ThenN c M is a submodule, so
N =(a,a,...,an)

for some finite seay, ..., a, € N.
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Sincea € N, eacha, € My for somek. So3K s.t. Mk contains all ofay, ..., a,. Butthen
N c Mg, so

Mk = Mky1 == Mkym=---=N.
ie. Mn: MK VnZ K.

O

Corollary 2.6.3. Let f : M — N be an R-module homomorphism. Then M is Noetheyideer f
andIimf are Noetherian.

Proof.

=: SupposeM is Noetherian. Every submodule of kers a submodule oM, and thus is f.g., so
ker f is Noetherian.

If AcImfthenf-1(A)is a submodule oi, thus f.g. But then the images of the generators of
f~1(A) generated, soAis f.g.

&: Suppose kef and Imf are f.g. LetB c M be a submodule dfl. Let
A = f(B) c Imf.

Pick a seixy, ..., X of generators foA and letxy, ..., X be pre-images iB.
Claim. B=<(kerf NB,Xq,...,X).

Proof. Givenb € B, f(b) € f(B) so
n
f(b) = Z rix, forsomerq,...,rkeR
i=1

Thenf(b—- Y, rix)=0so0
n
b—Zrixi e kerf nB.

i=1

ie.bekerf NB, Xg,...,X).
But kerf n B c kerf is f.g., soBis f.g.

Corollary 2.6.4. Let R be Noetherian. Thery Rs Noetherian.

Proof. It follows from the preceding corollary th&/I is Noetherian when regarded asRimodule.
However an increasing chain &/1-submodules oR/I is also a increasing chain &submodules
of R/I and so the corollary follows. m|
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Theorem 2.6.5(Hilbert Basis Theorem)Let R be a commutative Noetherian ring. Thdix]Rs
Noetherian.

Note: The converse is trivial, sinée= R[X]/R[X]X.
Proof. Let| c R[X] be an ideal. Let. c R be the set of leading céiecients of elts. in. That is,
L={faeR|aX"+C X" 1+ - +c;X+ e l, forsomec,.q,. .., Col.
ThenL is an ideal inR, so
L=(ay,...,a,), forsomea,,...,a,.

For eachi = 1,...,n, choosef; € | s.t. leading cog. of fi isa. LetN := maxN,..., N,} where
N; = degfi. Foreacld =0,...,N -1, let

Ly := {0} U {leading coéicients of elts. of of degreed}.
ThenlLy c Ris anideal, so
Lg = (b, ...,b@), somebl®,....b® 1.

Let £ be a polynomial of degregwith leading coé. b®. To finish the proof, it sflices to show:

Claim. 1 is generated by
N-1

(s Fub U (Ut e
d=0
Proof. Let I’ be the ideal generated by this setl’I | then3f € | of minimal degree s.tf ¢ I’. Let
e = degf and leta be the leading cdg of f.
Suppose > N.ac L so

n
a= Z ria, forsomerq,...,rheR
i=1

Then .
Z I'iXe_I\Ii fi el
i-1
has degree and leading co& a. Sof — X rix*Nf € | — I’ has degree less tham which is a

contradiction.
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..e< N. Hencea€ L, so

Ne
a= Z rb®, forsomery,...,r, €R
i=1

Theny r; f® has degree and leading co& a, sof — Y rif® € | -1’ and has degree less thariThis
is a contradiction, sb = |’ andl is f.g. O
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2.7 Unique Factorization Domains

Note: For the remainder of this chapter, all the rings comsd are integral domains, and in partic-
ular, are commutative.

x € Ris calledirreducible if x # 0, xis not a unit, and whenever= ab, eitherais a unit orb is
a unit.

Proposition 2.7.1.In an integral domain, prime> irreducible.

Proof. Let R be an integral domain. Lgi € R be a prime and suppoge= ab. Thenp|aorp|b.
Sayp| a, soa = zpfor someze R Thusp = ab= zpbso 1= zh
. bis aunit. Similarly, ifp | b thenais a unit. Hencep is irreducible. m|

Example 2.7.2.Let
R=Z[V-5] = {a+bV-5|abe Z} = Z[x]/(x* + 5).
Claim. 2is irreducible but not prime in R. To seds irreducible, consider N R — Z given by
N(a+bV-5)=|a+bV-52 = a?+ 5b%,

(the “norm” map). N is not a ring homorphism but(ig) = N(y)N(2).
- 1f 2 = aB thend = N(a)N(B), so Na) < 4 and NB) < 4. The only elements with norm 4 are
1,-1,2,-2,so

a,Befl,-1,2 -2}

Sinceap = 2, eithera = 1 or § = +1, so2 is irreducible.
However, in R(2),
(1+ VB =6+2V5=0

so R/(2) has zero divisors.
.. R/(2) is not an integral domain, s@is not prime. What are the primes in R?

Consider first ye Z* c R. If y is not prime irnZ then y is reducible so it is not prime in R. We
already saw tha is not prime in R and sincg = (— V=5)(V-5) is reducible,5 is not prime in R.
Therefore suppose y is a primeegzZ* with p # 2 or 5. R/(y) fails to be an integral domairyfi3
nonzero s= a+ bv-5and t= ¢ + d V=5 such that

st= (ac— 5bd) + (ad + bc) V-5

is zero in R(y) = (Z/p)[ V-5]. That is, ac= 5bd and ad= —bc inZ/p. None of a, b, ¢, d can kin
Z/p since otherwise these equations would imply either0sor = 0in R/(y). But then the equations
yield
a c
[
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so if RYy) fails to be an integral doman thasb is a square modulo p.
Conversely, ifl z such thatZ= -5 (mod p), then

(z+ V-5)z- V-5)=Z+5=0

in R/(y) so R/(y) is not an integral domain. Thusy Z is a prime in Rff|y| is a prime p# 5in Z
such that-5 is not a square modulo p.
Now consider y= a + b V=5 with b # 0.

a®+5b* = (a—bV=B)y e (y)

so R R/(&2 + 50%) —» R/(y). q is not injective since ¥ (a2 + 50?).

If a® + 5b? is not a prime inZ then we can see that y is not prime in R as follows. Suppose that
a? +5b? = cd (cd # +1) and suppose that y is prime in R. Thehad so eithery c ory| d. Say
y | c. Write c= Ay for somel € R. 1 is not a unit since application of the norm map shows that the
only units in R aret1, and c+ +y because € Z, y ¢ Z. Lettingx denote the complex conjugate of x,
we have

yy = N(y) = cd = Ayd

soy = Ad. Thus y= Ad and sincel andd = d are not units, this shows that y is reducible and
therefore not prime.

If a2 + 5b? is a prime p inZ then

x*+5=0 modp

has a solution x a/b, so-5is a square mod p. Set.e a/b e Z/p.
Defineg : R/(y) = Z/p = F, by (V-5) = ¢ and extending linearly. Then

o(y)=a+bc=0 modp

so¢ is well-defined|R/(a? + 5b%)| = p? and q is not injective sfiR/(y)| = p and¢ is an isomorphism.
..y =a+bV-5is prime in R whenever?ar 5b? is prime inZ.

Remark 2.7.3. The question of which primes p have the property #its a square modulo p can be
solved with the aid of Gauss’ Law of Quadratic Reciprocity,cligays that for odd primes p and q,
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Y
where[—] is the Legendre symbol, defined by

q

[X] 3 {1 if xis a square modulq;

; -1 if xis a not square modulp.

Gl Gl

-1 - , p N . )
Sincel - | = 1 p=1 mod4 and . 1 p=lor4d mOdS:wege o1
D -1 p=3 mod4 5 -1 p=2o0r3 mod?5 D

one of the followingt pairs of congruences holds:

Therefore

p=1 mod4 or p=1 mod4 or p=3 mod4 or p=3 mod4
p=1 mod>5 p=4 mod5 p=2 mod>5 p=3 mod5

By the Chinese Remainder Theorem, this is equivalent to gdliet —5 is a square modulo the
prime pffp=137,0r9 mod (20)

Definition 2.7.4. An integral domain R is called anique factorization domain(UFD) if every
nonzero element can be factored into primes.

Lemma 2.7.5.1n an integral domain, a factorization into primes (shoulaeoexist) is always unique
up to associates. ie. If x p;--- p, and X= q; - - - g« then k= n and3 some renumbering of the g’s
such that pand q,(;) are associate primeg;.

Proof. Suppose

P Pn=0q1--- Ok
and sayn < k. Thenp, | g;--- g sSop1 | g; for somej. Renumber so that; is ;.
. 01 = apy, for somea. Butq;, is a prime and thus irreducible, so eitlgeor p; is a unit. Sincep; is
prime, it is not a unit, s@ is a unit. ie.p; andq; are associates.
SPr P =0 Qe = apQe - G
S P2 Pn = Qo0s - - - Ok Whered, = ap is associate top. Continuing,Yi = 1,...,n, after renumber-
ing g; associate tqy;, eventually reach

1=0ha - G

whereq,, is associate tq,,1. If k> nthis is a contradiction since printg,; is not invertible. Hence
k=n. m]
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Proposition 2.7.6.1n a UFD, prime < irreducible.

Proof. Prime= irreducible in any integral domain, so must show irredueisl prime. Letx € Rbe
irreducible. Writex = p; - - - p, be a product of primes and suppose 1. Sincex is irreducible,p,
IS aunitorp,--- pyis aunit. Butp; is not a unit sincey; is prime andp; - - - p, iS Not a unit since
P2, ..., Pn are primes. So this is a contradiction and thus 1 andx = p; is prime. ]

Theorem 2.7.7.An integral domain is a UFDft every nonzero elt. can be factored uniquely (up to
associates) into irreducibles.

Proof.
=: SupposeRis a UFD. Then prime— irreducible and every nonzero elt. has a unique factor-
ization into primes.

<: Suppose every nonzero elt. has a unique factorizationdwgss$ociates) into irreducibles. It
sufices to show that is prime if x is irreducible. ie. Show irreducible> prime.

Let x # O be irreducible. Suppose| ab. Thenab = zxfor somez. Let
a=a;---a, and b=Dby---by
be the factorizations dd, b into irreducibles. So
ZX=ay---aby - by

is the factorization ogxinto irreducibles, so by uniquenesss associate to some factor on the
RHS.

. Xis assoc. t@; for somej, in which casex | a, or X is assoc. td; for somej, in which case
X | b. Thusxis prime.

Proposition 2.7.8.In a UFD, every pair of elts. has a g.c.d.

Proof. Let Rbe a UFD and suppose+ 0,y # 0 € R. Factorx into primes and, replacing primes by
associate ones when necessary, write

X = udll...p;n

whereu is a unit andp,, . .., p, are primes withp; not associate t; for i # j. Similarly, write

y =V g
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where, replacing by associate if necessary, we may asswhi ¢fy is associate tq; for somei then
g; = pi. Lettingz, ..., z, be the unior(p,, ..., pn, 01, ..., 0k} Of all primes occurring, we can write

x=uf---Z0 and y=vz'---Z7

for some exponents, ..., ey, f1,..., f > 0. Let

_ min{e;j, fj}
d= 1—[ Z; .

Thend = (x, ). O
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2.8 Principal Ideal Domains

Definition 2.8.1. A principal ideal domain(PID) is an integral domain in which every ideal is prin-
cipal.

Proposition 2.8.2.1n a PID, every nonzero prime ideal is maximal.

Proof. Let| # O be a prime ideal. Suppose& J ¢ R. Write | = (X), J = (y). Sincel is a prime ideal,
X is prime. Sincd c J, xe Jsox = ayforsomea e R Thusx|aorx|y.

If x| athena = bxfor someb € R Thenx = ay = abxy= 1 = by, soyisaunitand] = R.

If x|ythenye (X) =1,so0Jc I, contradictionl ¢ J. Hencel is maximal. O

Example 2.8.3.Let R= Z[X]. R/(X) = Z is an integral domain but not a field. $g) is a prime ideal
which is not maximal.
. Z[X] is not a PID. In fact, I= (2, X) is an example of a non-principal ideal in R.

Theorem 2.8.4.Every PID is Noetherian

Proof. Every ideal inR is generated by a single element, so in particular, everl iddinitely gen-
erated. By Theorem 2.6.2, this means tRa Noetherian. m|

Theorem 2.8.5.Every PID is a unique factorization domain.

Proof. LetRbe a PID and lex # 0 € Rbe a non-unit. Must show thatcan be factored into primes.
(X) ¢ Rsod a maximal ideaM; s.t.
(X cMcR

Write M; = (p). My is maximal and thus prime, s, is prime. X € (p;) saysx = p;X; for some
X1 € R If X is a unit thenp; x; is a prime associate o and we are done, so suppose not. Continuing,
we get

Xn = PnXnrr VN

2 X0 € (Xni1) SO (Xn) € (Xne1)- If X, is @ unit for somen then we have a factorization a&finto primes.
If not, we get a chain of ideals
Nc)c---c()c---

SinceRis NoetheriandN s.t. (x,) = (Xn) YN > N. SOXns1 € (Xn) SOXn+1 = AXN = APns1Xns1 SO that
1 = Apn.1 Showing thatpy, 1 is a unit, which is a contradiction.
So the infinite chain does not exist, so the procedure temeuigiving a factorization ox. ]

Proposition 2.8.6.Let R be a PID. Let & € R and let g= gcd(@, b). Thends,t € R s.t. g= sa+ tb.
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Proof. Let]l = (a,b) = {xa+ yb| X,y € R}. Thenl is an ideal sd = (c) forsomec e R. c € | so
c = xa+ ybforsomex,y. ac | soc|aandbe | soc|b. Moreover, ifz| aandz| bthen leta = az

andb = Bz for somea, 8. Then
C=Xa+Yyb=xaz+yBz=(Xa +yB)z

and thug | c. Soc = gcdf, b).
If gqis another g.c.d. ad, b thenq = uc for some unitu, so

g = (uxya+ (uy)b.
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2.9 Norms and Euclidean Domains

Definition 2.9.1. A Euclidean domainis an integral domain R together with a function 8- {0}
Z*={neZ|n>0}s.t.

1. d(a) < d(ab) Ya,b # 0, and
2. Givenab # 0 e R,3t,r s.t. a=tb + r where either r= 0 or d(r) < d(b).

Example 2.9.2.
1. R=2,d(n) =n|.

2. R=F[x] where F is afield. fb(x)) = polynomial degree of p.
Notice that if R, d) is a Euclidean domain then so R, ') where
d’'(x) =d(x) + ¢, forsome constarte Z".

.. May assume that takes values iiN = {n € Z | n > 1}. Then extendl by definingd(0) = 0.

Definition 2.9.3. A Dedekind-Hasse normon an integral domain R is a function
N:Rm Z* sit.

1. N(x) =0ifx=0,and
2. Fora b # 0 € R either ae (b) or 3 a nonzero »x (a, b) s.t. N(X) < N(b).

If (R d) is a Euclidean domain thesh(modified s.t.d(0) = 0) is a Dedekind-Hasse norm: given
a,b+0,
a=tb+r

for somet andr, so eithetb | a (ie.r = 0) orr = a—tb € (a, b) with d(r) < d(b).
Theorem 2.9.4.Let R be an integral domain.

1. RisaPID jfR has a Dedekind-Hasse norm. In particular, a Euclidean darisaa PID.

2. If R has a Dedekind-Hasse norm then it is has a multipMeabedekind-Hasse norm (ie. one
satisfying Nab) = N(a)N(b).)

Proof.
1. =: Supposer has a Dedekind-Hasse norm. et R be a nonzero ideal. Choose#b € |
s.t.N(b) is minimum. Leta € |. Then @,b) c | soA nonzerox € (a, b) s.t. N(X) < N(b).
Hencea € (b). Thusl = (b).
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<: SupposeRis a PID. DefineN : R — Z* as follows: N(0) := 0. If u € Ris a unit, set

N(u) = 1. If x # 0 € Ris a nonunit, writex = p; - - - p, where eaclp; is prime and set
N(x) = 2". Notice thatN is multiplicative.

Suppose,b# 0 R Risa PID so & b) = (r) for somer € R, sob = xr for somex € R.
If a ¢ (b) thenr ¢ (b) soxis not a unit, and thus

N(b) = N(X)N(r) > N(r),
le. dr € (a,b) s.t.N(r) < N(b).

2. If Rhas a Dedekind-Hasse norm then by part 1, it is a PID, in whasle @ has a multiplicative
Dedekind-Hasse norm as constructed above.

2.9.1 Euclidean Algorithm
Let (R d) be a Euclidean domain. Théhis a PID, so givera, b € R, ds,t € Rs.t.
as+ bt = gcd@, b).

The Euclidean algorithm is an algorithm for findis@ndt (and thus gcdy, b)).
Procedure:

Sayd(b) > d(a). Setr_; := b, ry := a. Write

.1 =0hlo+r1, somedy,ry with d(ry) < d(ro),

Mj-1 = Qjsalj + ljy1,  SOMEQ;,1, Fjpa With d(rj,1) < d(rj)

s.d(r-q) > d(rg) > d(ry) > --- > d(r;) > - --. Continue untilr,,, = 0, somek. Set

S =0
s =1
Sj := —Qj-1Sj-1 + Sj-2
toi=1
tp =0

tj = _qj—ltj—l + tj_z

Claim. r¢ = gcd@, b) andr, = sa+ tb wheres = s, andt = t, .
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Proof. f.1 = 0sory_1 = gwark+0. Suppose by induction thgt| r; fori > j. Thenrj_q = Qj1rj+rj41
sory | rj-1, concluding induction step.
s nelrjVjandin particularry | ro = aandry | r_, = b.

Conversely, supposedivides botha andb. Sincerj.1 = rj_; — gj.1r}, induction (going the other
way) showsz| r; V. In particular,z | ry. Sor, = gcd@, b). O

Also,

ag+bty=a-0+b-1=b=r_4

as;+bt;=a-a+b-0=a=rg

as + bty = a(-o1s; + S) + b(=qits + to) = —qu(as + bty) + (as + blo)
=—fot+lr1="

as + btj = a(—qj_lsj_l + Sj_z) + b(—Qj_ltj_l + tj_z) = —qj_l(asj_l + btj_l) + (aSj_z + btj_z)
= —Qj-afj2+Tlj3=Tj1
By induction,as; + bt; = r;_; Vj. In particular,as+ bt = as.1 + b1 = ry = gcd@, b).
Remark: In Computer Science, the speed of the Euclidean ithgoioverZ is important. Estimate

of the number of steps required: The faster tleego down, the quicker the algorithm goes, so the
worst case scenario is when all ths are only 1. In this case,

M1 =1;+Tj1.

ie. Worst case scenario occurs whar are consecutive terms of the Fibonacci Sequence. The
smallest possible numbers requiriNgsteps would be when:

In=1 Inoaa=2 In2=38 Ing=4-In = jth Fibonacci Number

. To = N Fibonacci NumbeFy. ie. N steps can handle all numbers upRg.
Fria=Fn+Foa= S22 =14 52, SoifL = lim,.. S22 thenl = 1+ L. So

Fn Fn
L2-L-1=0
L:li\/g
2
L:1+2\/§:G

SoF, ~ GN, ie. for largeN, the number of steps required is no worse than aroung(tey
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Lemma 2.9.5(Gauss) Let R be a UFD and let F be its field of fractions. Lékpe R[X]. If g(X) is
reducible in {x] then (x) is reducible in Rx]. Futhermore, if §x) = A(X)B(X) in F[x] then in Rx],
g(x) = a(x)b(x) where Ax) = @ and Bx) = isx) for some nonzerase F.

Proof. Supposey(x) = A(X)B(x) where the cogicients ofA, B lie in F. Multiplying by a common
denominator we get
do(x) = a'(x)b'(x)
for somed € R and polynomialsa’(x),b’'(x) € R[X]. If d € Ris a unit, we can divide by to get
909 = %520/ (x).
.. Supposael is not a unit. Writed = p; - - - p, as a product of primes iR. Let
R[X] R
X] X
R[X] orRY (le)[ ]
f) = (%)

IR

Reducing modulo;R)[X] gives 0= & (X) br(x) in the integral domain%)[x]. Hencea’(x) = 0 or
br(x) = 0. Saya’(x) = 0. Then all the coés. of &(x) are divisible byp,, so can dividedg(x) =
a(X)b’'(x) by p; to get

a’ X / 44 /
pe-++ i) = =09 = & (909
with a’, b’ € R[X]. Continuing, eventually reacf(x) = a(x)b(x) with a(x), b(x) € R[x] anda(x), b(x)
obtained frome’(x), b’(X) by multiplying by nonzero elements &f. m]

A polynomial whose leading cdigcient is 1 is callednonic.

Corollary 2.9.6. Let R be a UFD with field of fractions F. Le( € R[X]. Suppose

gcdcogfs. of g = 1.

Then (§x) is irreducible in RX] iff it is irreducible in Hx]. In particular, if p(x) is monic and irre-
ducible in HX] then itis irreducible in RxX].

Proof. If p(x) is reducible inF[x] then Gauss impliep(X) is reducible inR[xX].

Conversely, ifp(x) is reducible inR[x] then the hypothesis on gceb p(x) = a(x)b(x) where
neithera(x) nor b(x) is constant. Hence&(x), b(x) are not units inF[X] so this factorization shows
p(x) is reducible inF[Xx]. O

Lemma 2.9.7.Let R be a UFD and let () € R[X] be irreducible. Then {x) is prime.
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Proof. Let F be the field of fractions oR.

RX _ FIX
(PO (PO

.. To showp(x) R[X]/(p(X)) is an integral domain, it $tices to show tha[x]/(p(X)) is an integral
domain.

p(x) irreducible inR[X] = p(X) irreducible inF[x]. However,F[x] is a UFD (being a Euclidean
Domain). Sop(x) is prime inF[x] and thusF[x]/(p(x)) is an integral domain. O

Theorem 2.9.8.R is a UFD < R[x] is a UFD.

Proof.
<: SupposeR[X] is a UFD. Letr € R. Writer = py(X)--- pn(X) as a product of primes iR[X].
Since deg = 0 andRis an integral domain, dgg(x) = 0Vj, ie. pj(X) = p; € R

R
R x]/(p;i) = (—) X
[X]/(p;) ) [X]
- R/(p;) is an integral domain, sp; is prime inR.
Thusr = p; - - - pn is a factorization of into primes inR.
=: Supposeris a UFD and let G~ q(x) € R[X]. Let F be the field of fractions oR. SinceF[x] is

a UFD, inF[x] we can factoig(x)

a(x) = pa(x) - - pr(X)

wherep;(x) is a prime inF[X]. By Gauss’ lemma, ifi[ X] we can write

a(x) = PL(¥) - - - Pr(X)
whereV jds; # 0 € F such thatp;(x) = sjp;().

.. It suffices to show thap}(x) can be factored uniquely into primesRfx], as in the following
claim:

Claim. If p(x) is prime inF[x] andsp(x) = p’(X) € R[X] for some 0+ s € F thenp/(X) can be
factored uniquely into primes iR[X].

Proof. Let
d = gcdcodfs. of p’(X)}.

Thenp'(x) = dp’(X) where
gcdcodfs. of p”(x)} = 1.
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In F[X], havep”(x) = % = $p(X), which is prime inF[x] since p(x) is prime andj is a unit.

. Cor. 2.9.6= p”(X) is irreducible inR[X] and thus prime ifR[X] by the previous lemma. Since

d can be factored into primes Rand a prime irR is also a prime irR[X], p'(X) = dp’(X) can

be factored into primes iR[x].Uniqueness is easy to show. This concludes the proof of the
claim and thus concludes the proof of the theorem.
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2.10 Modules over PID’s

Note: In this section, and elsewhere, we will sometimes almetation and writdR/p in place of
R/(p). (The notatiorZ/n is generally quite common).

Theorem 2.10.1.0ver a PID, a submodule of a free module is free.

Proof. LetRbe a PID. LetP = @jd R; be a freeR-module with basis) (R; = RVj), and suppose
M c Pis a submodule.
Choose a well-ordering of the sdt For eachj € J, setP; = @isj R andﬁj = @i<] R, so
P,=P;®R
Let f; be the composite
PiNnM— P;=Pj®R~R

Then kerf; = P; n M. Imf; c Ris an ideal, so let Iy = (4;), somed; € R. Pickc; € P; N M such
that f(c;) = 4;. Let
J={jedla #0}.

To finish the proof we show:

Claim: {cj}jcy is a basis foM.

Proof. Check{c;j}jcy is linearly independent:
Suppose

n
> ag, =0, whereji < jp <<y (+)
k=1
Sincejx < jafork < n, c; € P, fork <n.
. Applying f;, to (x) gives

n
Zak~0+an/ljn:0,
k=1

whencea, = 0, sinced;, # 0. Inductively,c, =0vVk=nn-1,...,1.

-~ ACjJjey is linearly independent.
Check tha{cj}jc; spansM:
Suppose not. TheH a leasti € J such thatP; N M contains an elemer not in spafc;}jcy. Must
havei € J, since if not,f,(a) = 0, soa € P;, and thusa € P, for somek < i, contradicting minimality
ofi.

~1e . fi(a) € (1), sofia=r4, forsomer € R. Setb := a-rc;. Sincea = b + rc¢; cannot be
written as a linear combination ¢6;}, neither carb. But

fb=f(@)-rf(c)=r4—rl =0
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sob e PN M for somek < i, contradicting the minimality off.
-~ ACj}jer SpansM. |

Theorem 2.10.2.0ver a PID, a finitely generated torsion-free module is free.

Proof. Let Rbe a PID and leM be a finitely generated torsion-fré&module. LetR — K be the
inclusion ofRinto its field of fractions, and let

~

M :=K®&g M

be the extension dfl to aK-vector space.

LetXy,..., Xn € M be a generating set fo. The images ok, ..., X, generateM, sod a subset
Yi...,Yn Whose images iVl form a basis foM. Eachx; can be written irM as aK-linear combina-
tion of y1, ..., yn, SO clearing denominators gives thex; is anR-linear combination ofs, ..., y, V.

Setb = by - - - by, so thatbx; is anR-linear combination of, ..., y, V.

.. bzis anR-linear combination 0¥, ...y, Yz € M, sincex, ..., Xn spanM. SinceM is torsion-
free,

b:M—~ M
Z— bz

is injective. Hence,
M = M/ ker¢ = Imb = bM.

However,

n
j=1

YiPYi

is an isomorphism (onto sindezis a linear combination ofy, ..., y, ¥z€ M, (1-1) sincey;, ... y, are
linearly independent ifM).
.. M = bM = a freeR-module. m]

Corollary 2.10.3. If M is a finitely generated module over a PID then=RTor(M) @ R" for some
neN.

Proof. M/Tor(M) is finitely generated and torsion-free. Hence,
M/Tor(M) = R", for somen.
R free= M — M/Tor(M) = R" splits, so
M = Tor(M) & R".
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A torsion-free module over a PID which is not finitely genedhheed not be free:
Example 2.10.4.Let R=Z, M = Q. ClearlyQ is torsion-free as &-module. Suppose M R®. Then
as a vector spacgQ we get

Q®zQ=MeQ
=R°®Q
= (R®Q)°
= Q°

Let

$:Q®:Q~Q

X®Y — XY,
y:Q-Q®zQ

X X® 1

Clearly xy= 1y. y¢(x®Y) = (xy) ® 1. Write x= £,y = £. Then inQ &, Q,

p_p
XQY=—Q —
Y q o
Ip /1
= — X —_
Y90 “Pq
/p /1
= — —
Paa ® 9y
_ PP
qq
=(xy)®1

Y = logg. HenceQ @z Q = Q, and thusQ = Q ®; Q = Q° So counting dimensions gives
Cards = 1.

ie. If Q is a free R-module then its rank aZamodule isl. SoQ = Z as aZ-module. iedqe Q
s.t.Q = Zq; that is to say¥x € Q dn € Z s.t. Xx= nqg. This is a contradiction.

SoQ is not a freezZ-module.

We now consider decompositions of finitely generated torsimdules over a PID. LeR be a
PID (throughout this section). We will show that every fitytgeneratedR-module decomposes as a
direct sum of finitely manyr-modules with a single generator (called cyclic modules).

First consider torsion modules.

Notation: Forr € R, lety, : M — M be multiplication byr.
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Lemma 2.10.5.Let M be a torsion R-module. Writthn(M) = (a) and suppose & R such that
(a b) = 1. Then multiplication by b,

Hb

M +— M

is an isomorphism.

Proof. SinceRis a PID,3ds,t € Rsuch thatsa+ tb = 1. Hence, forx e M,
X = sax+ tbx = thx
- bx=0 = x =0, souy is injective. Moreover,
X = b(tX) = up(tx)
Souy, is surjective. O

Let M # 0 be atorsion module. Let AnK() = (a). Supposea # 0. (Note: if M is torsion and f.g.
thena # 0 automatically.)
M # 0 = ais not a unit. Write
a= upil .. p%

whereu is a unit andp,, . .., px are distinct primes. Replacirby u—ta, may assume

Let
My, := {x € M | pjx = 0 for somes}.

Lemma 2.10.6.M = My, @ --- @ My,.

Proof. Yxe M,
P .. () = PIP5 - pex =0
SO Imup;zmp% C Mp,.
Sincep}? - - - py* is coprime to Annfl,,), by the preceding lemma,

Hp2..pImy,
is an isomorphism, so it splits the inclusidy, <— M. Hence,

M= My, @ ker/vtpgzmpiy.
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Ann(keru e, ) = p3 -+ pe. By induction,
kemp;zmp? =M, & &M,
where
M;,j ={xe ker/.lpgzmp% | pfx = 0 for somes}
C Mp, ={xeM| pj’x: 0 for somes}.

’ — ’
However,My, C keru e s« SOMy; ¢ My, and thusMy, = My, .

HenceM = M,, & -- & M,,. O

In the finitely generated case, we now decompidgginto cyclic summands for eaghy. ie. We
have reduced to the case where Adn(= (p°®) for some primep.

SupposeM is a f.g. R-module with AnnM) = (p?). dx € M such thatp®ix # 0 (or else
Ann(M) = p** rather tharp®). Let x, my, ..., m be a generating set fofl. Let M; be the submodule

Mj == (X, my, ..., m;).

Beginning with the identity map, : My = RX we inductively construct; : M; — Rxextending
ri-1 : Mj_1 = Rxto produce a splitting : M — Rxof the inclusionRx— M.

Suppose by induction that_; : M;_; — Rxhas been defined such thatilrx = 1rx. M is
generated b ;_; andm;. So to define; extending ;_,, must defing;(m;) € Rx ie.r;(m;) = Ax for
the correctl.

Let (p°) = Ann(M;/Mj_1), sop°m; € Mj_1. ri_1(p°m;) € Rx sorj_1(pm;) = ax for somea € R.

P Cax = p*3(rj-1p°m;) = rj-a(p°m;) =r;-1(0) = 0

sop®3a = Ap®forsomel e R = a = Ap°.
Definer;(m;) = Axandrj(y) = rj-1(y)Vy € Mj_1. Then

ri(p°m;) = p°Ax = ax = ri_1(p°m;)

sor; is well-defined. ThuM = Rxa M’.
Applying the procedure tt’ gives

M= RxeRX® M.

Continuing, the procedure eventually terminates sivicis Noetherian.
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MR ®R% & - ®Rx for somex,, ..., X, with Annx; = (p)) for somej. Notice that
R+5Rx
[ — er

is surjective with keg; = Annx;. ThusRx = R/(p).
Putting it all together, we get:

Theorem 2.10.7(Structure Theorem for Finitely Generated Modules overl@)PLet M be a finitely
generated module over a PID R. Then

M =R/(p) @R/(p) & & R/(p7) @ R,
where p, ..., pn € R are primes (not necessarily distinct), s., s, € Nand k> 0.

Note that the generator of Anl) is lcm{p3', ..., py}.
We now show that this decomposition is unigieis the dimension oM ®g K, whereK is the
field of fractions, sk is unique, and we need only be concerned with the torsiongbéine module.

Theorem 2.10.8.Suppose

R/(pH) @ R/(pF) @& R/(pT) = R/(d) ® R/(GF) @ - - ® R/(G)),

with pr,..., Pn, G, ... Gk primes in R and §... Sy, t1, ...t € N. Then n= k and{d},...,q*} is a
permutation of (associates dy', ..., py'}.

Proof. Let
M =R/(p?)®R/(py)e@---®R/(py) and
N =R/(a}) @ R/(67) @ - & R/(q)-

For any primep, let

Mp = {xe M | p°x = 0, for somee},
N, = {x e N | p°x = O, for somes}.

If M = N thenM, = N,. Moreover,

Mp = @ R/(p}),
pj assoc. tg

No= P R/I@).
qg; assoc. tq
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.. It suffices to consider one prime at a time. ie. We are reduced to feeveaerep; = q; = pv].
Suppose
M=R/(pM)®---®R/(p*) and N =R/(p") & - & R/(p%).

ForZ = R/(p°®), 1 a short exact sequence
O pZ—Z-R/p—0,

ie.Z/pZ= R/p, afield.
SinceM = N,
O Rrip=M/pM=N/pN= P R/p.
n k

Since the dimension of a vector space is an invariant of tdsphism class of the vector space,
n =Kk
Also,M = N = pM = pN; that is:

Rphle.---eR/p>l=R/prle. . -eR/pvL

Ann(pM) has one less power @fthan AnrM. So by induction on the size of Ankl), the positive
elts. in the list{t; — 1,...,t — 1} is a permutation of those ifs; — 1,..., s, — 1}. ie. Information
about summandR/p has been lost, sincg(R/p) = 0, sopM and pN have no record of how many
summandsR/p there were inM andN. But they see all the remaining summands, showing that
entries infty, ..., t} which are at least 2 are the same (up to a permutation) as thdsg..., S\}.

The remaining entries on each list are 1, and there are the samber of them on each list since
n = k and the entries greater than 1 correspond.

S Aty, ..., I} is a permutation ofs,, . . ., Sh). O

Thus,{pjs"} is uniquely determined by (and uniquely determinis)it is called the set oélemen-
tary divisors of M.

Example 2.10.9.
1. R=Z. List all non-isomorphic abelian groups of ord&eé:

Z]16, Z/88Z/2, Z/A®Z/4 Z|/ASZ|2,®L]2 Z|2@Z|2®Z/2&Z/2
(all non-isomorphic by the theorem).

2. Let F be afield, V af.d. vector spage, T : V +— V a linear transformation. Let R F[X] (a
PID) and M = V with R-action

FOM) = F(MM) = > aTi).
j=0
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Let
Ch() = det(T — al),

the characteristic polynomiabf T. ThenCh(T) = 0 (Cayley-Hamilton Theorem).
- Ch(X)v=0Vve V. ie. M is a torsion R-module arfdh(x) € Ann(M). Hence

M = F[x]/pi(¥)™* & -- & F[X]/pc(X)"™
for some primes f§x), ..., px(X) € F[X].

Suppose F is algebraically closed so that every poly.[ix| Factors completely as a product of
linear factors. Then the primes in[K] are the degred polynomials. So mult. by a scalar to
make p monic:

pj(X) = X—/lj
for somet; € F. Then
M 5...@F[x]/(x_/lj)rj@...

implies thatQv € V s.t.(x— 4;) € AnnV. ie.(T — 4;)v = 0. (And conversely, T — A)v = O for
some v then x A = p;(x) for some j.)

A4, ..., A} = eigenvalues of T.

Examine Fx]/(x— ;)" more closely. Write for 2; and r for r;. As an fx]-module, Fx]/(x—
A" is gen. by(x — 2). Elts. can be written uniquely as

r-1
D adx- )
k=0
where @ € F. ie. Over F, Hx]/(x— A)" has dimension r with basis
1L,x—A,(x=A>%...,(x-)L.
Let B= B; ¢ V = M be the image of FX] = (x— ;)" under the iso.

v (D FIX/(x= 1)+ M

and let vy = y((x — )"t for j = 1,...,r be the F-basis for B corresponding to the basis
((x= '}
B is a Hx]-submodule of V soitis closed under the action of af®) € F[x]. For f(x) = x—24,
by construction,
f(X)-vij=vj J<r
f(X)-v, =0.
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ie. when written in the basigy.. ., v, the matrix T— 1 is

O 0 .- 0
1
0
0 0O 10
ie. T looks like
A 0 0
1 2
1
0O --- 0 1 a2

Therefore:

Theorem 2.10.10Jordan Canonical Form)let T : V — V be a linear transformation where V is a
f.d. vector space over an algebraically closed field F. THenbasis for V in which T has the form

B, 0 --- 0
0 By :
e, .0
0 --- 0 B
where
4 0 - 0
1 4
Bj: 0
: oo 4 0
o ... 0 A

J

Note: While Ch@) € Ann(V), it does not necessarily generate the ideal Af)nLetting Ann{/) =
(M(A)), M(2) is called theminimum polynomial of T. ie.

Ch(X) = n(x— A7) but M(X) = lem{(x — 2;)"}.

J
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Reformulation of the Structure Theorem for f.g. torsion modules.
Let Rbe a PID and let, b € R be relatively prime. ThefRa+ Rb = 1 so the Chinese Remainder
Thm. applies:

R 2 R/(a)x R/(b)

and kerp = (a) N (b) = (a)(b).
Claim. RaPID and gc{,b) = 1 = (a)(b) = (ab).

Proof. (a)(b) = (c) for somec. Sinceab € (a)(b) = (c), c| ab.
Conversely,€) = (a)n(b) c (a) soa | cand similarlyb | c. Writec = Aaandc = ub. gcd@ b) = 1
= Jsts.t.sa+tbh=1. So

A1 = Asa+ Abt
= sc+ Abt
= sub + Abt
= (su + At)b
. (ab) = (c). O

Thus
R/(ab) = R/(a) x R/(b).

By continual application of this iso. we can rewrite our degmsition thm. as follows:
Theorem 2.10.11.Let M be a f.g. R-module (R a PID). Then
M=ReR/(a)oR/(a) @ & R/(an)
where g |an_1|---|a; #0.
ai, ..., a, are called thenvariant factors of M.
Example 2.10.12.Suppose
Mz=Z/8®Z/I2®Z/2®Z/90Z/3®Z/5.

Then
M=7Z/36006Z/607Z/2

The number of summands required is
maxr | some primep occursr times among the elementary divisprs
Reformulation of Chinese Remainder Thm. over a PID. Supposen, ..., msatisfy gcdfn, m;) =

1fori# j. Givenay,..., &, IXe R/(m---my) s.t.x=a; modmVj=1,... k
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Example 2.10.13.Find x s.t. x=2 mod 9x=3 mod 5x=3 mod 7
Solution.m =9 m=5m=7,a = 2,a, = 3,a3 = 3. Setz; := npmz = 35. Then

y: =2z mod 9
=8! mod?9
= 8.

Likewise,

Z = mnm, = 60

y>:=2" mod5
=31 mod5
=2

Zz ;= mm, =45

y3:=2" mod7
=31 mod7
=5.

SetX 1= a1y12) + @Yo + ag¥zZzs mod [ mpmg). Then modulan,, 2 = 0,23 =0,y,2; = 1, SoX = &
mod my, etc. In our example,

X=2-8-35+3-2-63+5-3-45 mod (95-7)
=1613 mod 315
=38 mod 315

In generalx = 3’; ajy;zy wherez; = my - - - mj_ym,; - - - my andy; = Zj_l mod m;.
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