
Chapter 1

Groups

1.1 Definitions and Elementary Properties

Definition 1.1.1. A binary operation∗ on a set S is a function

∗ : S × S→ S

(a,b) 7→ a ∗ b.

∗ is calledassociativeif (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a,b, c ∈ S .
∗ is calledcommutativeif a ∗ b = b ∗ a ∀a,b ∈ S .

Definition 1.1.2. A groupconsists of a set G together with a binary operation

∗ : G ×G 7→ G

(g,h) 7→ g ∗ h,

such that the following conditions are satisfied:

1. (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a,b, c ∈ S (associativity),

2. There exists an element e∈ G such that e∗ a = a and a∗ e= a ∀a ∈ G (identity),

3. For each a∈ G, there exists an element b∈ G such that a∗ b = e and b∗ a = e (inverse).

Definition 1.1.3. A group(G, ∗) is calledabelian(or commutative) if a∗ b = b ∗ a ∀a,b ∈ G.

Definition 1.1.4. Let H be a non-empty subset of the group G. Suppose that the product in G of two
elements of H lies in H and that the inverse in G of any element of H lies in H. Then H is called a
subgroupof G, written H≤ G.
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Notation: For X ⊂ G, write
〈X〉 =

⋂

X⊂H≤G

H.

This is calledthe subgroup ofG generated byX.
Exercise: show that〈X〉 is a subgroup.

Example 1.1.5.
1. Cyclic groupsCn

Let n∈ N. Cn := {e= x0, x, x2, . . . , xn−1}, with multiplication xj ∗ xk := x( j+k)mod n.
Also, the infinite cyclic group is C∞ := {xn | n ∈ Z} with xj ∗ xk := x j+k.

2. Permutation groups
Let X be a set. SX := { f : X 7→ X | f is a bijection}. Multiplication is composition

SX × SX 7→ SX

( f ,g) 7→ g ◦ f .

Notation: In case X= {1, . . . ,n} for some n∈ N, write Sn for SX (called asymmetric group).
If G ≤ Sn for some n, G is apermutation groupof degree n.

3. Linear groups
A field (F,+, ·) consists of a setF together with binary operations+ and ·, such that:

(a) (F,+) forms an abelian group,

(b) (F − {0}, ·) forms an abelian group (where0 is the identity for(F,+)),

(c) a · (b+ c) = a · b+ a · c ∀a,b, c ∈ F (distributivity).

LetF be a field. GLn(F) := {invertible n× n matrices with entries fromF}. The group operation
is matrix multiplication. GLn is called thegeneral linear group.
If G ≤ GLn(F) for someF and n then G is called alinear groupof degree n.

4. Symmetry groupsLet X⊂ Rn. The group of symmetries of X, denoted S ym(X), is the subgroup
of SX containing only isometries (that is, functions f: X 7→ X such that‖ f (x) − f (y)‖ =
‖x− y‖ ∀x, y ∈ X).
Notation: In case N= 2 and X= the regular n-gon, S ym(X) is called the nth dihedral group,
written D2n.

Proposition 1.1.6. Let G be a group. Then∃ exactly one element e∈ G such that e∗ g = g and
g ∗ e= g ∀g ∈ G.
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Proof. By definition, such an element exists. Ife,e′ ∈ G both have the property then

e= e∗ e′ = e′.

�

Proposition 1.1.7. Let G be a group and let g∈ G. Then∃ exactly one element h∈ G such that
g ∗ h = e and h∗ g = e.

Proof. By definition, such an element exists. Supposeh,h′ are both inverses tog. Then

h′ = h′ ∗ e= h′ ∗ (g ∗ h) = (h′ ∗ g) ∗ h = e∗ h = h.

�

Notation: The inverse tog will be denotedg−1.

Proposition 1.1.8.Let G be a group and let x, y, z ∈ G.

1. If xz= yz then x= y.

2. If zx= zy then x= y.

Proof.
1. x = xe= x(zz−1) = (xz)z−1

= (yz)z−1
= y(zz−1) = ye= y.

2. Likewise.

�

Note: xz= zy 6⇒ x = y; “mixed” cancellation doesn’t work.

Corollary 1.1.9. Let G be a group and let g,h ∈ G such that g∗ h = e. Then h= g−1 (and g= h−1).

Proof. g∗ h = e is given;g ∗ g−1
= eby the definition ofg−1. So by cancellation,h = g−1. �

Proposition 1.1.10.In a group G,(gh)−1
= h−1g−1.

Proof.
(gh)(h−1g−1) = g(hh−1)g−1

= geg−1
= gg−1

= e.

∴ h−1g−1 is the inverse ofgh. �

Proposition 1.1.11.Let G be a group and g,h ∈ G. Then
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1. ∃! solution x in G to the equation gx= h.

2. ∃! solution x in G to the equation xg= h.

Proof.
1. x = g−1h.

2. x = hg−1.

�

Proposition 1.1.12.A non-empty subset H of a group G is a subgroup iff x, y ∈ H implies xy−1 lies in
H.

Proof. Exercise. �

G is called afinite group if its underlying set is finite. In this case, the numberof elements inG is
called theorder of G, written |G|.

Definition 1.1.13.Let x∈ G. Theorderof x, written|x|, is the least integer k (if any) such that xk
= e.

Note: some, or even all elements of a group might have finite order even if|G| is infinite.

Definition 1.1.14. Let (G, ∗) and (H, △) be groups. A function f: G 7→ H is called a (group)homo-
morphismif f (x ∗ y) = f (x)△ f (y) ∀x, y ∈ G. A homomorphism f: G 7→ H which is a bijection is
called anisomorphism.

Notation: φ : G
�

7−→ H means thatφ is an isomorphism fromG to H.

G � H means that there exists an isomorphismφ : G
�

7−→ H.

Isomorphisms preserve all group properties. e.g. ifφ : G
�

7−→ H then:

G is abelian⇐⇒ H is abelian,
|x| = |φ(x)| ∀x ∈ G, etc.

Lemma 1.1.15.Letφ : G 7→ H be a homomorphism, and let e,e′ be the identities in G,H respectively.
Thenφ(e) = e′.

Proof. Let h = φ(e).
h2
= φ(e)φ(e) = φ(e2) = φ(e) = h = he′

∴ by cancellation,h = e′. �

Corollary 1.1.16. Letφ : G 7→ H be a homomorphism. Then∀g ∈ G, φ(g−1) = φ(g)−1.
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Proof.
φ(g)φ(g−1) = φ(gg−1) = φ(e) = e′.

Thus,φ(g)−1
= φ(g−1). �

Proposition 1.1.17.Letφ : G 7→ H be a group isomorphism. Letφ−1 : H 7→ G be the inverse function
to the bijectionφ. Thenφ−1 is an isomorphism.

Proof. Must showφ−1 is a homomorphism. Leth1,h2 ∈ H. Sinceφ is a bijection,∃!g1,g2 ∈ G such
thatφ(g1) = h1, φ(g2) = h2.

φ(g1g2) = φ(g1)φ(g2) = h1h2

Soφ−1(h1h2) = g1g2 = φ
−1(h1)φ−1(h2). �

Proposition 1.1.18.The composition of group homomorphisms is a homomorphism.
The composition of group isomorphisms is a isomorphism.

Proof. Trivial. �

Notation: Aut(G) = {self-isomorphisms ofG} ≤ SG.

Fundamental Problem of Group Theory:
Make a list of all possible types of groups. ie. Make a list of groups such that every group is isomorphic
to exactly one group on the list.

Given two groups (defined, for example, by multiplication tables, or by generators and relations),
the problem of determining whether or not the groups are isomorphic is, in general, very difficult
(NP-hard).
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1.2 New Groups from Old

1.2.1 Quotient Groups

Definition 1.2.1. Letφ : G 7→ H be a homomorphism. Thekernelof φ is

kerφ := {g ∈ G | φ(g) = e}.

Theimageof φ is
Imφ := {h ∈ H | h = φ(g) for some g∈ G}.

Proposition 1.2.2.kerφ ≤ G andImφ ≤ G.

Proof. Trivial. �

Definition 1.2.3. For x, y ∈ G, we say y isconjugateto x (in G) if∃g ∈ G such that y= gxg−1.

Proposition 1.2.4.Conjugacy is an equivalence relation.

Proof. Trivial. �

Notation: If A, B are subsets ofG, let AB := {ab | a ∈ A,b ∈ B}. For g ∈ G,H ≤ G, the setgH is
called theleft cosetof H generated byg; Hg is theright cosetof H generated byg.

Definition 1.2.5. A subgroup N of G is callednormal, written N⊳ G, if gN = Ng for all g∈ G.

Proposition 1.2.6.N ≤ G is normal⇐⇒ gxg−1 ∈ N ∀x ∈ N,g ∈ G.

Proof.
⇒: SupposeN is normal. Then for allx ∈ N,g ∈ G, gx ∈ gN = Ng, sogx = yg for somey ∈ N.

Thus,gxg−1
= y ∈ N.

⇐: Supposegxg−1 ∈ N ∀x ∈ N,g ∈ G. If z ∈ gN thenz= gx for somex ∈ N. Hence,

z= gx(g−1g) = (gxg−1)g ∈ Ng

∴ gN ⊂ Ng. Similarly, Ng⊂ gN.

�

Corollary 1.2.7. Letφ : G 7→ H be a homomorphism. Thenkerφ ⊳ G.
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Proof. Let x ∈ kerφ and letg ∈ G. Then

φ(gxg−1) = φ(g)eφ(g)−1
= e

sogxg−1 ∈ kerφ. �

Conversely:

Theorem 1.2.8.Suppose N⊳ G. Then∃ a group H and a homomorphismφ : G 7→ H such that
N = kerφ.

Proof. Exercise: check the details of the following:

1. Forg,g′ ∈ G, defineg ∼ g′ if g′g−1 ∈ N.

2. Check that∼ is an equivalence relation.

3. DefineH := G/N := {set of equivalence classes ofG under∼}.

4. Define binary operation∗ on G/N by x ∗ y = xy. Check that this is well-defined, ie. suppose
x′ ∼ x andy′ ∼ y. Is x′y′ ∼ xy?
Well, x′ ∼ x meansx′x−1

= n1 ∈ N, so x′ = n1x. Likewise,y′ ∼ y meansy′y−1
= n2 ∈ N, so

y′ = n2y. So
x′y′ = n1xn2y = n1(xn2x−1)xy= n1n

′
2xy,

wheren′2 = xn2x−1 ∈ N sinceN is normal. Hence,x′y′ ∼ xy.

5. Check that (G/N, ∗) forms a group.

6. Defineφ : G 7→ H by φ(x) = x.

7. Check thatφ is a group homomorphism.

8. Check thatN = kerφ.

�

G/N (as constructed above) is called aquotient group.
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1.2.2 Product Groups

Let G,H be groups. Theproduct group is the setG × H, with multiplication

(g,h) · (g′,h′) := (gg′,hh′).

Clearly the projection maps

ΠG : G × H 7→ G

(g,h) 7→ g

and

ΠH : G × H 7→ H

(g,h) 7→ h

are group homomorphisms.

Proposition 1.2.9.Let A,G,H be groups.

1. Universal Property of Product:
Given group homomorphisms p: A 7→ G and q: A 7→ H, ∃! group homomorphismφ : A 7→
G × H such that:

A

�


















p

J
J
J
J
J
J
J
J
J

q

^

G × H

∃!φ

∨

G
������

ΠG

HHHHHΠH j
H

This says that G× H is the product of G and H in the category of groups.

2. Given a functionφ : A 7→ G× H, φ is a group homomorphism if and only ifΠG ◦ φ andΠH ◦ φ

are group homomorphisms.
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1.2.3 Free Products

Let G,H be groups. The free product ofG andH is G ∗ H := {words inG∐ H}/ ∼, where∼ is the
equivalence relation generated by the following: forg,g′ ∈ G,

x1 · · · xngg′y1 · · · ym ∼ x1 · · · xn(gg′)y1 · · · ym,

and forh,h′ ∈ H,
x1 · · · xnhh′y1 · · · ym ∼ x1 · · · xn(hh′)y1 · · · ym.

Note: GivenA ⊂ X × X, the equivalence relation generated byA is
⋂
{B ⊂ X × X | B is an equivalence relation andA ⊂ B}.

Multiplication in G ∗ H is given by juxtaposition: (v1 · · · vn) ∗ (w1 · · ·wm) = v1 · · · vnw1 · · ·wm.

Proposition 1.2.10.Universal Property of Free Product:

G H
J
J
J
J
J
J
J
J
J

p

^

HH
g 7→ g

HHj
G ∗ H

�


















q

���
h 7→ h

��

A

∃!φ

∨

(Here, G and H each embed into the words of length1 in G× H).
This says that G∗ H is the coproduct of G and H in the category of groups.

F(x) = {xn | n ∈ Z}(= C∞) is called the free group on the generatorx.
F(x, y) := F(x) ∗ F(y) is the free group on 2 generators.
More generally, given a setS,

F(S) = {words inS}

is called thefree group on S. A group homomorphismF(S) 7→ G is uniquely determined by any
(set) functionS 7→ G.
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1.3 Centralizers, Normalizers, and Commutators

Let G be a group,X ⊂ G.
Notation:

CG(X) := {g ∈ G | gxg−1
= x ∀x ∈ X} is thecentralizer of X in G

NG(X) := {g ∈ G | gXg−1
= X} is thenormalizer of X in G

= {g ∈ G | gX = Xg}

These definitions do not require thatX be a subgroup, but note that CG(X) = CG(〈X〉). Also,

Z(G) := CG(G) is thecenterof G

= {g ∈ G | gx= xg ∀x ∈ G}

Note: Z(G) = G ⇐⇒G is abelian.

Example 1.3.1.Let G= GLn(F). ThenZ(G) = {cI | c ∈ F×}.

Proposition 1.3.2.CG(X) andNG(X) are subgroups of G.

Proof.

g,g′ ∈ CG(X)⇒ (gg′)(x)(gg′)−1
= g(g′xg′−1)g−1

= gxg−1
= x ∀x ∈ X

g ∈ CG(X)⇒ g−1xg= g−1(gxg−1)g = (g−1g)x(g−1g) = x ∀x ∈ X

Likewise,

g,g′ ∈ NG(X)⇒ (gg′)X(gg′)−1
= g(g′Xg′−1)g−1

= gXg−1
= X

g ∈ NG(X)⇒ g−1Xg= g−1(gXg−1)g = (g−1g)X(g−1g) = X

�

Clearly, Z(G) = CG(G) is always abelian, but for arbitraryH, CG(H) need not be abelian. For
example, in the extreme case, CG({e}) = G, which might not be abelian.

For H ≤ G, by construction,H ⊳ NG(H), andH ⊳ G ⇐⇒ NG(H) = G.

Proposition 1.3.3.For A ≤ B ≤ G,

g ∈ NG(NB(A))⇒ g(NB(A))g−1 ⊂ NG(A).
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Proof. If b ∈ NB(A) andg ∈ NG(NB(A)) thenb′ = gbg−1 ∈ NB(A), so

(gbg−1)a(gbg−1)−1
= b′a(b′)−1 ∈ A

�

Note: K ⊳ H andH ⊳ G 6⇒ K ⊳ G. For a counterexample, take

G = S4

H = 〈(1 2 3 4), (1 3)(2 4)〉 � D8

K = 〈(1 2 3 4)〉 � C4

Notation: Fora,b ∈ G, let [a,b] := aba−1b−1.

Definition 1.3.4. Thecommutator subgroupG′ is the subgroup of G generated by

{[a,b] | a,b ∈ G}.

Proposition 1.3.5.g[a,b]g−1
= [gag−1,gbg−1].

Corollary 1.3.6. G′ ⊳ G.

Gab := G/G′ is abelian. Universal property: given any homomorphismφ : G 7→ H with H abelian,

G >> Gab

@
@

@
@

@
φ

R

H

∃!

∨

That is, ifφ : G 7→ H with H abelian thenG′ ⊂ kerφ.

11



1.4 Isomorphism Theorems

Theorem 1.4.1(First Isomorphism Theorem). Let φ : G 7→ H be a group homomorphism. Then
G/ kerφ � Imφ.

Proof. SetN := kerφ. Elements ofG/N are cosetsNg, whereg ∈ G. Defineψ : G/N 7→ Imφ by
ψ(Ng) = φ(g).

1. ψ is well defined:
SupposeNg= Ng′. Theng = ng′ for somen ∈ N. Hence,

φ(g) = φ(ng′) = φ(n)φ(g′) = eHφ(g′) = φ(g′),

sincen ∈ N = kerφ.

2. ψ is a homomorphism – easy.

3. ψ is surjective – easy.

4. ψ is injective:
If ψ(Ng1) = ψ(Ng2) then

φ(g1) = φ(g2)⇒ φ(g1g
−1
2 ) = eH ⇒ g1g

−1
2 ∈ N⇒ Ng1 = Ng2

�

Proposition 1.4.2. If H,K subgroups of G then HK≤ G ⇐⇒ HK = KH.

Proof.
⇒: SupposeHK ≤ G. Let x ∈ HK. Thenx−1 ∈ HK. Write x−1

= hk for someh ∈ H, k ∈ K. Then

x = (hk)−1
= k−1h−1 ∈ KH,

soHK ⊂ KH, and similarly,KH ⊂ HK.

⇐: SupposeHK = KH. Let x, x′ ∈ HK. Write x = kh, x′ = h′k′, for someh,h′ ∈ H, k, k′ ∈ K.
Then

x′x−1
= h′k′h−1k−1

= h′h′′k′′k−1, lettingk′h−1
= h′′k′′, sinceHK = KH

∈ HK
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�

Corollary 1.4.3. Let H,K be subgroups of G. If H⊂ NG(K) then HK≤ G and K⊳ HK.

Proof. Let x = hk ∈ HK. Thenx = (hkh−1)h ∈ KH, sincehkh−1 ∈ K. So,HK ⊂ KH. Similarly, if
x = kh ∈ HK thenx = h(h−1kh) ∈ HK, whenceKH ⊂ HK. Hence

HK = KH ≤ G.

Also, K ⊂ NG(K) (always) andH ⊂ NG(K) (given), so

HK ⊂ NG(K)⇒ K ⊳ HK.

�

Corollary 1.4.4. If K ⊳ G then HK≤ G for any H≤ G.

Proof. If K ⊳ G then NG(K) = G, so automatically,H ⊂ NG(K). �

Theorem 1.4.5(Second Isomorphism Theorem). Let H,K be subgroups of G such that

H ⊂ NG(K).

Then H∩ K ⊳ H, K ⊳ HK, and
HK
K
�

H
H ∩ K

Proof. K ⊳ HK was shown above. Defineφ : H 7→ HK/K by φ(h) = Kh ∈ HK/K. ie. φ is the
composition

H ֒→ HK 7→→HK/K

1. φ is a homomorphism (composition of homomorphisms).

2. φ is surjective

Proof. Let Kx ∈ HK/K, wherex ∈ HK. By above,HK ≤ G, soHK = KH; thus letx = kh,
for somek ∈ K,h ∈ H. Hence,

Kx = Kkh= Kh = φ(h)

3. kerφ = H ∩ K

Proof.

kerφ = {y ∈ H | φ(y) = e}

= {y ∈ H | Ky = e}

= {y ∈ H | y ∈ K}

= H ∩ K
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H ∩ K ⊳ H and
H

H ∩ K
=

H
kerφ

� Imφ =
HK
K
.

�

Theorem 1.4.6(Third Isomorphism Theorem). Let K ⊳ G and H⊳ G with K ⊂ H. Then H/K ⊳ G/K
and

G/K
H/K

� G/H.

Proof. Defineφ by composition

G 7→→G/K 7→→
G/K
H/K

.

Check that kerφ = H (exercise). �

1.5 The Pullback

Definition 1.5.1. Let φ : G 7→ H and j : B 7→ H be group homomorphisms. Define thepullback
G ×H B ofφ and j by

G ×H B := {(g,b) ∈ G × B | φ(g) = j(b)}.

The pullback gives:

G ×H B
ΠG

> G

B

ΠB

∨

j
> H

φ

∨

Proposition 1.5.2.G ×H B ≤ G × B.

Proof. If (g,b) and (g′,b′) belong toG ×H B then

φ(gg′) = φ(g)φ(g′) = j(b) j(b′) = j(bb′).

If (g,b) ∈ G ×H B then
φ(g−1) = φ(g)−1

= j(b)−1
= j(b−1).

�
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Proposition 1.5.3.Letφ : G 7→ H, j : B 7→ H and i : A 7→ B be homomorphisms. Then

A×B (B×H G)
ΠB×HG

> B×H G
ΠG

> G

p.b. p.b.

A

ΠA

∨

i
> B

ΠB

∨

j
> H

φ

∨

and A×B (B×H G) � A×H G. (Composition of pullbacks is a pullback).

Proof.
A×B (B×H G) = {(a, (b,g)) | a ∈ A, (b,g) ∈ B×H G, i(a) = ΠB(b,g) = b}

In this description, b is redundant because it is determined bya via b = i(a). Also,
(b,g) ∈ B×H G means thatj(b) = φ(g). So,

A×B (B×H G) � {(a,g) | j(i(a)) = φ(g)} = A×H G.

�

Note some special cases:

1. If H = {e} then j(b) = φ(g) holds∀b,g, soB×{e} G = B×G.

2. If B ≤ H and j is the inclusion, then

B×H G = {(b,g) | j(b) = φ(g)}, sob is redundant

� {g ∈ G | φ(g) ∈ B}

= φ−1(B)

Proposition 1.5.4.Let

B×H G
ΠG

> G

B

ΠB

∨ j
> H

φ

∨

be a pullback. ThenkerΠB � kerφ andkerΠG � ker j.
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Proof.

kerΠB = {(b,g) ∈ B×G | b = eandφ(g) = j(b)}

= {(e,g) ∈ B×G | φ(g) = j(e) = e}

= {e} × kerφ ⊂ B×G

� kerφ

�

Now consider the special case whereB ≤ H and j is inclusion. SetA = B×H G = φ−1(B).

Proposition 1.5.5.
1. If B⊳ H then A⊳ G.

2. If B⊳ H andφ is onto then G/A � H/B.

Proof.
1. SupposeB ⊳ H. Let a ∈ A. Then forg ∈ G,

φ(gag−1) = φ(g)φ(a)φ(g)−1 ∈ B, sinceφ(a) ∈ B ⊳ H,

sogag−1 ∈ A.

2. Letψ be the composition

G
φ
7−→→ H

q
7−→→ H/B,

whereq is the quotient map. Thenφ(A) ⊂ B = kerq so A ⊂ kerψ. If g ∈ kerψ thenφ(g) ∈
kerq = B, sog ∈ φ−1(B) = A. Thus, kerψ = A. Hence,

G
A
=

G
kerψ

� Imψ =
H
B

since bothφ andq are onto.

�

Theorem 1.5.6(Fourth Isomorphism Theorem). Suppose N⊳ G. Then the quotient map q: G 7→→G/N
induces a bijection between the subgroups of G which contain N and the subgroups of G/N. Explicitly,

A ≤ G 7→ q(A) ≤ G/N, and

X ≤ G/N 7→ q−1(X) ≤ G

Moreover, this bijection satisfies
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1. A≤ B iff q(A) ≤ q(B), and in this case B: A = q(B) : q(A).

2. q(A∩ B) = q(A) ∩ q(B).

3. A⊳ B iff q(A) ⊳ q(B).

Proof. Exercise. �
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1.6 Symmetric Groups

|Sn| = n!

Notation for elements ofSn: Considerσ ∈ S6 given by:

σ(1) = 2

σ(2) = 4

σ(3) = 5

σ(4) = 6

σ(5) = 3

σ(6) = 1

Mapping Notation:

σ =
1 2 3 4 5 6
2 4 5 6 3 1

Cycle Notation:
σ = (1 2 4 6)(3 5)

Usually omit cycles of length one. eg.τ = (1 4 3) means (1 4 3)(2)(5)(6).
The group operation onSn is ∗ given by

σ ∗ τ = τ ◦ σ

Note: Dummit and Foote use the opposite convention:σ△τ = σ ◦ τ. However, the results are
isomorphic; (Sn, ∗) � (Sn, △).
Notation: SX := permutations ofX with f ∗ g = g ◦ f .
S′X := permutations ofX with f ∗ g = f ◦ g.

στ =
(
(1 2 4 6)(3 5)

)
(1 4 3)= (1 2 3 5)(4 6)

τσ = (1 4 3)
(
(1 2 4 6)(3 5)

)
= (1 6)(2 4 5 6)

SoSn is not abelian.
Note: There is an ambiguity in the cycle notation: (1 2 4 6)(3 5) could mean eitherσ or (1 2 4 6)∗
(3 5). This is not important because these are equal.
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1.6.1 Conjugation inSn

Example 1.6.1.Letσ = (1 2 3)(4 5), τ = (2 5). Then

τστ−1
= (2 5)(1 2 3)(4 5)(2 5)= (1 5 3)(4 2).

This is obtained fromσ by switching2 and5 (in the cycle notation).

Proposition 1.6.2.Letσ, τ ∈ Sn, with

σ = (a(1)
1 · · · a(r1)

1 ) · · · (a(1)
n · · · a(rn)

n ).

Then
τστ−1

= (τ−1(a(1)
1 ) · · · τ−1(a(r1)

1 )) · · · (τ−1(a(1)
n ) · · · τ−1(a(rn)

n )).

Proof. In general, (τστ−1)( j) = τ−1(σ(τ( j))
)
. So

(τστ−1)(τ−1a(1)
1 ) = τ−1(σ(τ(τ−1a(1)

1 ))
)
= τ−1(σ(a(1)

1 )
)
= τ−1a(2)

1

etc. �

Notice thatτστ−1 has the same cycle type asσ.

Corollary 1.6.3. σ is conjugate toσ′ ⇐⇒ σ andσ′ have the same cycle type.

Proof. Above shows that any conjugate ofσ has the same cycle type asσ. Conversely, suppose that
σ,σ′ have the same cycle type. Let

σ = (a(1)
1 · · · a(r1)

1 ) · · · (a(1)
n · · · a(rn)

n )

σ′ = (a(1)′
1 · · · a(r1)′

1 ) · · · (a(1)′
n · · · a(rn)′

n )

Chooseτ ∈ Sn such thatτ−1(a( j)
i ) = a( j)′

i . Thenσ′ = τστ−1. �

1.6.2 The Alternating Group

Define the polynomial∆ by
∆(x1, . . . , xn) =

∏

i< j

(xi − xj)

Forσ ∈ Sn, let
σ(∆)(x1, . . . , xn) = ∆(xσ(1), . . . , xσ(n)).
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Here, all the same factors appear, but with some signs reversed.
∴ σ∆ = ±∆.

Defineǫ : Sn 7→ {1,−1} by

ǫ(σ) =


1 if σ∆ = ∆

−1 if σ∆ = −∆
.

{1,−1} is a group under multiplication (� C2), andǫ is a group homomorphism.
SetAn := kerǫ ⊳ Sn. This is thealternating group.

Proposition 1.6.4.Letγ = (p q) ∈ Sn be a transposition (ie.2-cycle). Thenγ < An (ie. γ∆ = −∆).

Proof. Sayp < q.

∆ =

∏

i< j

(xi − xj)

= (xp − xq)
(∏

i<p

(xi − xp)
)(∏

i>p

(xp − xi)
)(∏

i<q

(xi − xq)
)(∏

i>q

(xq − xi)
)( ∏

i < j
i , p,q
j , p,q

(xi − xj)
)

By applyingγ to ∆:

• (xp − xq) becomes (xq − xp) = −(xp − xq),

• The factors
(∏

i<p(xi − xp)
)

and
(∏

i<q(xi − xq)
)

switch,

• The factors
(∏

i>p(xp − xi)
)

and
(∏

i>q(xq − xi)
)

switch, and

• The factor ( ∏

i < j
i , p,q
j , p,q

(xi − xj)
)

is unchanged.

Thus,γ∆ = −∆. �

Any permutation can be written (in many ways) as a product of transpositions.

Corollary 1.6.5. σ ∈ An ⇐⇒ σ is the product of an even number of transpositions.
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1.7 Group Actions

Theorem 1.7.1(Lagrange’s Theorem). Let G be finite, H≤ G. Then|H| divides|G|, and

G : H :=
|G|
|H|
= # of left cosets of H in G= # of right cosets of H in G.

(G : H is called theindexof H in G).

Proof. Define the equivalence relation∼ by g ∼ g′ ⇐⇒ gH = g′H. Forg ∈ G, |H| = |gH| (because
the mapx 7→ gx is a bijection). Hence,∼ partitionsG into equivalence classes (cosets ofH), each
containing|H| elements. ie.

|G| = (number of equiv. classes)× (number of elts. per equiv. class)

= (number of left cosets)× |H|

Similarly, |G| = (number of right cosets)× |H|. �

Corollary 1.7.2. If H ⊳ G then|G/H| = |G|/|H|.

Corollary 1.7.3. For x ∈ G, |x| divides|G|.

Proof. SetH = 〈x〉. Then|x| = |H| || |G|. �

Corollary 1.7.4. If |G| = p, a prime number, then G� Cp.

Proof. Let x ∈ G, x , e. Then|x| = p, soG = 〈x〉 � Cp(x). �

Definition 1.7.5. A left actionof a group G on a set X consists of an operation

G × X 7→ X

(g, x) 7→ g · x

such that:

1. (gh) · x = g · (h · x) ∀g,h ∈ G, x ∈ X, and

2. e.x = x ∀x ∈ X.

Equivalently, an action of G on X is a group homomorphism G7→ S′X.

Example 1.7.6.
1. F a field, G= GLn(F),X = Fn.

G acts on X by matrix multiplication, A· x = Ax.
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2. G any group, X= G.
G acts by left multiplication on X, ie. g· x = gx.

3. G a group, N⊳ G.
G acts by conjugation on N, ie. g· x = gxg−1.

(gh) · x = ghx(gh)−1
= ghxh−1g−1

= g(h · x)g−1
= g · (h · x).

In this example, the image of G7→ S′X lies inAut(N), ie.

g · (xy) = gxyg−1
= gxg−1gyg−1

= (g · x)(g · y).

Note special case where N= G.

Similarly, we may define a right action (it is a group homomorphism G 7→ SX). Given a right
action⊙ of G on X, can define a left action ofG on X by

g · x := x · g−1.

Example 1.7.7.G = Sn,X = {1, . . . ,n}. Then

X ×G 7→ X by j · σ = σ( j)

yields a right action of G on X, ie.

j · (στ) = (στ)( j) = (τ ◦ σ)( j) = τ(σ( j)) = ( j · σ) · τ.

∴ Define left action G× X 7→ X byσ · j := j · σ−1
= σ−1( j).

Definition 1.7.8. Let G× X 7→ X be a (left) action of G on X. Let x∈ X. Theorbit of x is

Orb(x) := {g · x | g ∈ G} ⊂ X.

Thestabilizerof x is
Stab(x) := {g ∈ G | g · x = x} ⊂ G.

Proposition 1.7.9.Stab(x) ≤ G.

Proposition 1.7.10.Orb(x) = Orb(y) ⇐⇒ y ∈ Orb(x).

Proof.
⇒ Suppose Orb(x) = Orb(y). Then

y = e · y ∈ Orb(y) = Orb(x).
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⇐ Supposey ∈ Orb(x). Write y = g · x, for someg ∈ G.
∴ g−1 · y = g−1 · (g · x) = g−1g · x = e · x = x and thusx ∈ Orb(y).

If z ∈ Orb(y) thenz= g′ · y = g′ · (g · x) = (gg′) · x soz ∈ Orb(x). Hence Orb(x) ⊂ Orb(y), and
similarly, Orb(y) ⊂ Orb(x).

�

Corollary 1.7.11. Given an action of G on X, the relation x∼ y ⇐⇒ Orb(x) = Orb(y) is an
equivalence relation.

Theorem 1.7.12.Let G be a finite group. Let G× X 7→ X be an action of G on X. Then for x∈ X,

|Orb(x)| |Stab(x)| = |G|.

Note: Lagrange’s Theorem is a special case. ie.H ≤ G, X = {left cosets ofH}.

G × X 7→ X by g ·C = gC

defines a left action. Setx = H.

Proof.
|G|

|Stab(X)|
= G : Stab(X) = # of left cosets of Stab(X) in G

Define

θ : {left cosets of Stab(X) = H} 7→ Orb(x)

gH 7→ g · x

1. θ is well-defined:
SupposegH = g′H. Theng = g′h for someh ∈ H. Hence,

g · x = (g′h) · x = g′ · (h · x) = g′ · x, sinceh ∈ Stab(x).

2. θ is surjective:
If y ∈ Orb(x) theny = g · x, for someg ∈ G. Thusy = θ(gH).

3. θ is injective:
Supposeθ(gH) = θ(g′H). Theng · x = g′ · x. Hence,

x = g−1 · (g · x) = g−1 · (g′ · x) = (g−1g′) · x.

∴ g−1g′ ∈ H, ie. g′ = gh for someh ∈ H. Thusg′H = gH.
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∴ θ is a bijection and the theorem follows. �

Corollary 1.7.13. Let G be a finite group acting on a finite set X. Then

|X| =
∑ |G|
|Stab(x)|

,

where the sum is taken over one element from each orbit.

Proof. The equivalence relationx ∼ y ⇐⇒ Orb(x) = Orb(y) partitionsX into disjoint subsets. So

|X| =
∑
|Orb(x)|, summed over one element from each orbit

=

∑ |G|
|Stab(x)|

�

Consider the action ofG on itself by conjugation. ie.X = G andg · x = gxg−1. Then

Stab(x) = {g ∈ G | g · x = x} = {g ∈ G | gxg−1
= x} = CG(x).

Corollary 1.7.14. Class Formula:

|G| =
∑ |G|
|CG(x)|

,

summed over one element from each conjugacy class.

Corollary 1.7.15. Let p be prime and let G be a p-group (ie.|G| is a power of p). ThenZ(G) , {e}.

Proof. CG(e) = G. By the class formula,

|G| =
∑

all conj. classes

|G|
|CG(x)|

=
|G|
|CG(e)|

+

∑

remaining conj.
classes

|G|
|CG(x)|

∴ pn
= 1+

∑

remaining conj.
classes

|G|
|CG(x)|

∴ ∃x , esuch that |G|
|CG(x)| is not divisible byp. Since|G| = pn, this can happen only when|CG(x)| = pn,

ie. when CG(X) = G. ie. ∃e, x ∈ G such that CG(x) = G, ie. x ∈ Z(G). �
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Corollary 1.7.16. If |G| = p2 where p is prime then G is abelian.

Proof. Let x , e such thatx ∈ Z(G). If G = 〈x〉 thenG is abelian. Otherwise,|x| = p, and since
x ∈ Z(G), 〈x〉 ⊳ G. So,∃y ∈ G such thaty generatesG/〈x〉 � Cp. Thenx andy generateG, and since
x ∈ Z(G), x↔ y. HenceG is abelian. �
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1.8 Semi Direct Products

Let H,K be subgroups ofG. Defineµ : H × K 7→ G by µ(h, k) = hk.

Proposition 1.8.1. If H ∩ K = {e} thenµ is injective.

Proof. Supposehk= h′k′. Then

(h′)−1h = k′k−1 ∈ H ∩ K = {e}

soh′−1
= e= k′k−1. ie. h = h′ andk = k′. �

Assuming (for the rest of this section) thatH ∩ K = {e}, the above says

µ : H × K 7→ HK ⊂ G

is a bijection. We wish to compareH × K to HK (which, in general, may not be a subgroup ofG).
Suppose thatH ⊳ G. ThenHK = KH is a subgroup ofG, but is not necessarily isomorphic toH ×K.
BesidesH × K, what other possibilities are there forHK?

Supposeg = hk andg′ = h′k′ lie in HK. Then

gg′ = hkh′k′ = hkh′k−1kk′ = h′′k′′

whereh′′ = h(kh′k−1) ∈ H andk′′ = kk′ ∈ K.
ie., Labelling elements ofHK by the corresponding element inH × K, the group operation inHK

can be written
(h, k)(h′, k′) = (hk · h′, kk′)

wherek · h′ := kh′k−1 (the restriction toK of the conjugation action ofG on the normal subgroupH).
Recall that this action satisfiesk · (h1h2) = (k · h1)(k · h2), ie. it is a homomorphism into Aut(H).
Reverse the process:

Definition 1.8.2. Given groups H,K together with a group homomorphismφ : K 7→ Aut(H), (an
action of K on H – denote k· h = φ(k)(h)), thesemidirect productH ⋊ K is the set H× K with the
binary operation

(h, k)(h′, k′) := (h(k · h′), kk′).

Proposition 1.8.3.H ⋊ K forms a group.
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Proof.
(
(h, k)(h′, k′)

)
(h′′, k′′) = (h(k · h′), kk′)(h′′, k′′)

= (h(k · h′)(kk′ · h′′), kk′k′′), and

(h, k)
(
(h′, k′)(h′′, k′′)

)
= (h, k)(h′(k′ · h′′), k′k′′)

=
(
h(k · (h′(k′ · h′′))), kk′k′′

)
.

However, since Imφ ⊂ Aut(H),

k · (h′(k′ · h′′)) = (k · h′)(k · (k′ · h′′)) = (k · h′)(kk′ · h′′).

∴

(
(h, k)(h′, k′)

)
(h′′, k′′) = (h, k)

(
(h′, k′)(h′′, k′′)

)
.

(e,e)(h′, k′) = (e(e · h′),ek′) = (eh′,ek′) = (h′, k′), and

(h, k)(e,e) = (h(k · e), ke) = (he, ke) = (h, k).

(Here,k · e= esince Imφ ⊂ Aut(H).) Hence (e,e) is the identity.

(h, k)(k−1 · h−1, k−1) =
(
h(k · (k−1 · h−1)), kk−1)

=
(
h((kk−1) · h−1), kk−1)

= (h(e · h−1), kk−1)

= (hh−1, kk−1)

= (e,e), and

(k−1 · h−1, k−1)(h, k) =
(
(k−1 · h−1)(k−1 · h), k−1k)

= (k−1 · (h−1h), k−1k), since Imφ ⊂ Aut(H)

= (k−1 · e,e)

= (e,e).

Hence (h, k)−1
= (k−1 · h−1, k−1). �

Define

iH : H 7→ H ⋊ K

h 7→ (h,e), and

iK : K 7→ H ⋊ K

k 7→ (e, k)
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Proposition 1.8.4. iH and iK are (injective) group homomorphisms.

Proof.

(h,e)(h′,e) = (h(e · h′),ee) = (hh′,e)

(e, k)(e, k′) = (e(k · e), kk′) = (ee, kk′) = (e, kk′)

�

Using iH andiK, regardH andK as subgroups ofH ⋊ K.

ie. H � iH(H) = {(h,e)} ≤ H ⋊ K

K � iK(K) = {(e, k)} ≤ H ⋊ K

Proposition 1.8.5.H ⊳ (H ⋊ K) and(H ⋊ K)/H � K.

Proof. Defineφ : H ⋊ K 7→→K by φ(h, k) = k. Then

φ((h, k)(h′, k′)) = φ(h(k · h′), kk′) = kk′

soφ is a group homomorphism.

kerφ = {(h,e) ∈ H ⋊ K} = iH(H) � H.

�

Returning to the motivating example,H ⊳ G,K ≤ G,H ∩ K = {e}, and by construction,

HK � H ⋊ K.

Proposition 1.8.6. If both H ⊳ G and K ⊳ G with H ∩ K = {e} thenµ : H × K 7→ HK is an
isomorphism.

Proof. Forh ∈ H, k ∈ K,

hkh−1k−1
= (hkh−1)k−1 ∈ K, and

hkh−1k−1
= h(kh−1k−1) ∈ H

Sohkh−1k−1 ∈ H ∩ K = {e}.
ie. hk= kh ∀h ∈ H, k ∈ K.

Hence
µ(h, k)µ(h′, k′) = hkh′k′ = hh′kk′ = µ(hh′, kk′) = µ((h, k)(h′, k′)).

∴ µ is a homomorphisms, soµ : H × K
�

7−→ HK. �
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Proposition 1.8.7.Let H,K be groups and letφ : K 7→ Aut(H). TFAE:

1. H× K � H ⋊ K.

2. φ is the trivial homomorphism.

3. K ⊳ (H ⋊ K).

Proof.

1⇒ 2:
∀h,h′ ∈ H, k, k′ ∈ K, (hh′, kk′) = (h, k)(h′, k′) = (h(k · h′), kk′)

∴ φ(k)(h′) = k · h′ = h′ ∀h′, ie. φ(k) = 1H.

2⇒ 3: SinceH,K generateH ⋊ K, it suffices to checkhKh−1 ⊂ K, ∀h ∈ H. Note that

(h,e)−1
= (h−1,e),

so

(h,e)(e, k)(h−1,e) = (h(e · e),ek)(h−1,e)

= (h, k)(h−1,e)

= (h(k · h−1), ke)

= (hh−1, ke), by 2

= (e, k) ∈ K

3⇒ 1: This is the previous proposition. �

In particular, this proposition says that ifG has normal subgroupsH,K such that
H ∩ K = {e} andHK = G thenG � H × K.

Theorem 1.8.8.Let φ : G 7→ K be a group homomorphism. Suppose∃ a group homomorphism
s : K 7→ G such thatφs= 1K. (s is called asectionor a right splitting of φ.) Then

G � (kerφ) ⋊ K

Proof. Observe that existence of a functions : K 7→ G such thatφs= 1K implies thatφ is onto ands
is injective. LetH = kerφ. Set

K̃ = Ims
�

←− s K.

Then
(kerφ) ⋊ K � H ⋊ K̃ � HK̃ ≤ G
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so it suffices to showHK̃ = G.
Giveng ∈ G, let k = φ(g) ∈ K and let

k̃ = s(k) = sφ(g) ∈ K̃.

Then
φ(k̃) = φsφ(g) = φ(g),

sinceφs= 1K. Hencegk̃−1 ∈ kerφ = H, and sog ∈ HK̃. ThusG = HK̃. �

A right splitting of φ does not makeG a product. In contrast, a left splitting doesimply thatG is
a product:

Theorem 1.8.9.Let H ⊳ G. Let i : H 7→ G be the inclusion map. Suppose∃ a group homomorphism
r : G 7→ H such that ri= 1H. Then

G � H ×G/H.

Proof. Defineθ : G 7→ H × (G/H) by
θ(g) = (rg,qg)

whereq : G 7→→G/H is the quotient projectiong 7→ gH. Thenθ is a homomorphism.
If θ(g) = θ(g′) thenr(g) = r(g′) andgH = g′H, so letg′ = gh for someh ∈ H. Hence

r(g) = r(g′) = r(g)r(h),

so
e= r(h) = ri (h) = h.

∴ g′ = gh= ge= g. Thusθ is injective.
To showθ is surjective, it suffices to showH × {e} ⊂ Imθ and {e} × (G/H) ⊂ Imθ, since these

generateH × (G/H).
Givenh ∈ H,

θ(h) = (r(h),hH) = (h,e).

Givenq(g) = gH ∈ G/H, let h = r(g) and setg′ = h−1g. Then

θ(g′) = (r(h−1g),q(h−1g))

= (r(h−1)r(g),q(g))

= (h−1h,q(g))

= (e,q(g))

Soθ is onto. �

30



Example 1.8.10.Useφ = ǫ : S3 7→ C2. Thenkerφ � A3. Let

s : C2 7→ S3 by

s(1) = e

s(−1) = (1 2)

s is a right splitting. Thus S3 � A3 ⋊C2.
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1.9 Sylow Theorems

Throughout this section,p denotes a prime andG is a finite group.
Suppose|G| = n. If H ≤ G then by Lagrange,|H| || n. However, the converse is false, eg. ifG = S5

thenn = 120, butG has no subgroups of order 15,30, or 40. However,∃ a partial converse:

Theorem 1.9.1((First) Sylow Theorem). If pt |
| |G| then∃H ≤ G such that|H| = pt.

Proof. Write |G| = mpt. Find r ≥ 0 such thatpr | mbut pr+1 ∤ m.

Lemma 1.9.2. pr |
|

(
mpt

pt

)
but pr+1 ∤

|

(
mpt

pt

)
.

Proof. (
mpt

pt

)
=

(mpt)(mpt − 1) · · · (mpt − pt
+ 1)

(pt)(pt − 1) · · · 3 · 2 · 1

If 0 < j < pt then

# of timesp dividespt − j = # of timesp divides j

= # of timesp dividesmpt − j

∴ Powers ofp cancel except for those in the factorm. �

Proof of Theorem continued.LetS = {S ⊂ G | |S| = pt}. Define right action

S ×G 7→ S by S · g = S g.

S has

(
mpt

pt

)
elements, so there exists an orbitX = {S1,S2, . . . ,Sk} (of sizek) such thatpr+1 ∤ k.

(If pr+1 divided the number of elements in each orbit thenpr+1 would divide|S|).
Orb(S1) = X by definition. SetH := Stab(S1) ≤ G. Then

|H| =
|G|
|X|
=

mpt

k
=

(m
k

)
pt.

By construction,pr+1 ∤ k so p dividesmat least as many times asp dividesk. Thus|H| is divisible by
pt, and in particular,

|H| ≥ pt.

Pick s ∈ S1. Then∀h ∈ H, sh∈ S1 buth , h′ ⇒ sh, sh′. Hence

pt
= |S1| ≥ |H|.

∴ |H| = pt. �
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Definition 1.9.3. Suppose|G| = n. Let p be a prime and let pt be the largest power of p dividing n.
Then a subgroup of G having order pt is called aSylowp-subgroupof G.

Notation: Sylp(G) := {Sylow p-subgroups ofG}.

Corollary 1.9.4 (Corollary to Sylow Theorem). Sylp(G) is non-empty∀p.

SupposeH ≤ G. Then∀g ∈ G, gHg−1 ≤ G and

H
�

7−→ gHg−1

x 7→ gxg−1

In particular,|gHg−1| = |H|. (gHg−1 is called aconjugate subgroupof H in G.)

P ∈ Sylp(G)⇒ gPg−1 ∈ Sylp(G) ∀g ∈ G.

Pick P ∈ Sylp(G). Let

X = {Sylow p-subgroups ofG which are conjugate toP}.

G acts onX by g · S = gS g−1.
If Q ≤ G, can restrict to get an action ofQ on X. For an action ofQ on Sylp(G), have

|Q| = |OrbQ(S)| |StabQ(S)|.

Here,
StabQ(S) = {q ∈ Q | qS q−1

= S} = NQ(S).

Lemma 1.9.5. If Q is a p-subgroup then for any Sylow p-subgroup S ,

NQ(S) = S ∩ Q.

Proof. Let H = NQ(S). From the definition,S ∩ Q ⊂ H. Conversely,H ⊂ Q, so it suffices to show
H ⊂ S. ConsiderS H.

S H= HS ≤ G, sinceS ⊳ H.

|S H| =
|S| |H|
|S ∩ H|

= |S|
|H|
|S ∩ H|

≥ |S|.

H = NQ(S) ≤ Q⇒ |H| is a power ofp⇒ |S H| is a power ofp. But S is a Sylowp-subgroup and
S ⊂ S H, soS = S H.
∴ H =⊂. ThusH = S ∩ Q. �
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Lemma 1.9.6. |X| ≡ 1 mod p.

Proof. Write X = {P = S1, . . . ,Sr}. For anyQ the action ofQ on X dividesX into orbits:

|X| =
∑

orbits

(# of elts. in that orbit).

Apply this with Q = S1 = P:
StabP(S) = NP(S) = P∩ S.

∴ |StabP(S)| || |P|, with equality only whenS = P. Hence,

|OrbP(S)| =
|P|

|StabP(S)|

is one whenS = P, and is divisible byp otherwise. So

|X| =
∑

orbits

(# of elts. in that orbit)

= 1+
∑

orbits not
containingP

(# of elts. in that orbit)

≡ 1 mod p.

�

Lemma 1.9.7. If Q is a p-subgroup then Q⊂ Pj for some Pj ∈ X.

Proof. Again,
|X| =

∑

orbits

(# of elts. in that orbit).

UnlessQ ⊂ Pj for some j then for eachj, Q∩ Pj will be a proper subset ofQ, so that

|OrbQ(Pj)| =
|Q|

|StabQ(Pj)|
is divisible byp ∀ j.

But if p | (# of elements in orbit) for each orbit thenp || |X|, contradicting the last lemma.
∴ Q ⊂ Pj for some j. �

Corollary 1.9.8. Sylp(G) = X.
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Proof. For S ∈ Sylp(G), |S| is a power ofp⇒ S ⊂ P j for somePj ∈ X. But |S| = |Pj | since both are
Sylow p-subgroups.
∴ S = Pj ∈ X. �

Lemma 1.9.9. |Sylp(G)| || |G|.

Proof. Consider the action ofG on Sylp(G). Let P ∈ SylP(G).

|G| = |OrbG(P)| |StabG(P)|

OrbG(P) = {subgroups ofG conjugate toP} = X = Sylp(G).

∴ |SylP(G)| dividesG. �

In summary:

Theorem 1.9.10((Main) Sylow Theorem). Let G be a finite group and let p be a prime.

1. |Sylp(G)| ≡ 1 mod p.

2. |Sylp(G)| || |G|.

3. Any two Sylow p-subgroups of G are conjugate (and in particular, isomorphic).

4. Every p-subgroup of G is contained in some Sylow p-subgroup. In particular, every element
whose order is a power of p is contained in some Sylow p-subgroup.

Proof. Showed that ifX = {Sylow p-subgroups conjugate toP} then SylP(G) = X ⇐⇒ 3.
Also showed|X| ≡ 1 mod p ⇐⇒ 1.
Also showed: everyp-subgroup ofG is contained in someS ∈ X ⇐⇒ 4.
Also showed|SylP(G)| || |G| ⇐⇒ 2. �

Corollary 1.9.11. Let P be a Sylow p-subgroup of G. Then P⊳ G ⇐⇒ P is the unique Sylow
p-subgroup.

Proof.
⇐: Suppose∃! Sylow p-subgroup. SincegPg−1 is a Sylowp-subgroup∀g,

gPg−1
= P ∀G,

ie. P ⊳ G.

⇒: SupposeP ⊳ G. Then the only subgroup ofG conjugate toP is P. By Sylow Theorem, 3,P is
the only Sylowp-subgroup.
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Corollary 1.9.12. Let P be a Sylow p-subgroup of G. Let N= NG(P). Then

NG(N) = N.

In particular, N ⊳ G iff P ⊳ G.

Proof. SetH := NG(N). Then∀h ∈ H, hPh−1 ⊂ N and|hPh−1| = |P|, sohPh−1 is a Sylowp-subgroup
of G. But thenhPh−1 is also a Sylowp-subgroup ofN. However,P ⊳ N, soP is the unique Sylow
p-subgroup ofN.
∴ hPh−1

= P, soh ∈ NG(P) = N. HenceH ⊂ N, soH = N.
In particular, ifN ⊳ G thenN = H = G soP ⊳ G. �
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1.10 Applications of Sylow’s Theorem

1. Suppose|G| = 15. Then

|Syl5(G)| ≡ 1 mod 5
|Syl5(G)| || 15

⇒ |Syl5(G)| = 1,

∴ ∃! element of Syl5(G). Let H be the unique Sylow 5-subgroup, soH ⊳ G. Similarly,

|Syl3(G)| ≡ 1 mod 3
|Syl3(G)| || 15

⇒ |Syl3(G)| = 1,

so∃! Sylow 3-subgroupK, and soK ⊳ G.

Pick generatorsh ∈ H, k ∈ K; |h| = 5, |k| = 3. H,K are normal⇒ hk = kh, so|hk| = 15. Hence,
G has an element of order 15, soG � C15.

2. Suppose|G| = 10.
|Syl5(G)| ≡ 1 mod 5
|Syl5(G)| || 10

⇒ |Syl5(G)| = 1.

Let H be the unique Sylow 5-subgroup. ThenH ⊳ G. Pick a generatorh.

|Syl2(G)| ≡ 1 mod 2
|Syl2(G)| || 10

⇒ |Syl2(G)| = 1 or 5.

Case I: |Syl2(G)| = 1. ThenG � C10, using argument above.

Case II: |Syl2(G)| = 5.
Let K be a Sylow 2-subgroup;K = {e, k}. If hk = kh then |hk| = 10 and we would be in
Case I. Hence,

hkh−1
= k2 = generator of a different Sylow 2-subgroup.

Similarly, h2kh−2,h3kh−3,h4kh−4 must be the generators of the other Sylow 2-subgroups.
(Again, if hikh−i

= hjkh− j for i , j thenhj−ik = khj−i and we would be in Case I.)

∴ Can list the ten elements ofG:
e k
h hkh−1

h2 h2kh−2

h3 h3kh−3

h4 h4kh−4
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From this, we can construct the group table. eg. what ishk?

Well, hk, hj for any j, sohk has order 2.

∴ hkhk= e

hkh= k−1
= k

∴ hk= h(hkh)

= h2kh

= h2(hkh)h

= h3kh2

= h3kh−3.

This group must beD10.

1

2

34

5

h 7→ (1 2 3 4 5)

k 7→ (2 5)(3 4)

Conclusion: If|G| = 10 thenG � C10 or G � D10.

In passing: note the existence of an elementk of order 2 inD10 gives a splitting

D10
>

<

s
D10/H � C2

where ifC2 = {e, x} thens(x) = k. Thus

D10 � H ⋊C2 = C5 ⋊C2.
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The corresponding homomorphismφ : C2 7→ Aut(C5) is given byk · h = h−1
= h4.

(Aut(C5) � C4 is generated by the mapτ, takingh to h2. The only element of order 2 in
Aut(C5) is τ ◦ τ, which ish 7→ h4.)

3. Suppose|G| = 12. Then

|Syl2(G)| = 1 or 3,

|Syl3(G)| = 1 or 4.

Case I: |Syl2(G)| = 3 and|Syl3(G)| = 4.
Since two distinct groups of order 3 intersect only in the identity, and each Sylow 3-
subgroup has 2 elements of order 3,G has 4× 2 = 8 elements of order 3. The remaining
4 elements must form a Sylow 2-subgroup.
∴ There aren’t enough elements left to form any more Sylow 2-subgroups. This is a
contradiction, so Case I doesn’t occur.

Case II: |Syl2(G) = 1.
Let H be the unique Sylow 2-subgroup, soH ⊳ G. |H| = 4, so eitherH � C4 or H �
C2 ×C2.

Case IIa:H � C4(σ).
Let τ be an element of some Sylow 3-subgroup,|τ| = 3.

τστ−1 ∈ H
|τστ−1| = |σ| = 4

⇒ τστ−1
= eitherσ orσ3.

If τστ−1
= σ3 then

τσ3τ−1
= (τστ−1)3

= σ9
= σ.

Moreover,τ3
= e, so

σ = τ3στ−3
= τ2(τστ−1)τ2

= τ2σ3τ−2
= τ(τσ3τ−1)τ−1

= σ3.

This is a contradiction. Thus,τστ−1
= σ.

Using the fact thatτ andσ commute,|τσ| = 12. ThusG � C12.
Equivalent way of phrasing argument thatτστ−1

= σ: Let T = {e, τ, τ2}. H is normal⇒ T
acts onH via τ · σ := τστ−1.

|Orb(σ)| |Stab(σ)| = |T | = 3.

σ has order 2⇒ x · σ has order 2∀x ∈ T. So Orb(σ) ⊂ {σ,σ3}. Since|Orb(σ)| divides 3,
Orb(σ) = {σ}.
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∴ τστ−1
= σ.

Another rephrasing:H ⊳ G.

G >
<

s
G/H � C3,

wheres takes the generatora to τ. ie. The existence of an elementτ of order 3 inG gives
a splitting, so

G � C4 ⋊φ C3

for someφ : C3 7→ Aut(C4). However, Aut(C4) � C2 = {1C4 andσ 7→ σ3}. so the only
homomorphismC3 7→ Aut(C4) is trivial.

∴G � C4 ×C3 � C12.

Case IIb: H � C2 ×C2.
Let

H = {e, σ1, σ2, σ3}, σ2
j = e.

Let T = {e, τ, τ2} be some Sylow 3-subgroup.

G >
<

s
G/H � C3,

and thus,
G � H ⋊φ T,

with φ : T 7→ Aut(H) � permutations of{σ1, σ2, σ3} � S3. So

(φ(τ))(σ1) = τσ1τ
−1
= σ1, σ2, orσ3.

Case IIbi: τσ1τ
−1
= σ1. Then since the order ofφ(τ) must divide the order ofτ, which is 3,φ(τ) = id.

Henceφ = id and
G � H × T � C2 ×C2 ×C3.

Case IIIbii: τσ1τ
−1
, σ1.

Soτσ1τ
−1
= σ2 orσ3. By symmetry, assumeτσ1τ

−1
= σ2. Thenφ(τ) must be a 3-cycle,

soτσ2τ
−1
= σ3.

Elements ofG:
e σ1 σ2 σ3

τ τσ1 τσ2 τσ3

τ2 τ2σ1 τ2σ2 τ2σ3
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Eachσ j has order 2, and the elementsτ, τ2, τσ j andτ2σ j each have order 3. Multiplication
is determined byτσ1τ

−1
= σ2 andτσ2τ

−1
= σ3. eg.

σ1τ = ττ
−1σ1τ = ττ

2σ1τ
−2
= ττσ2τ

−1
= τσ3.

What group is this? LetT1,T2,T3,T4 be the Sylow 3-subgroups. ie.

T j = {e, τσ j , (τσ j)
2} j = 1,2,3,

T4 = {e, τ, τ
2}

Let X = {T1,T2,T3,T4}. Conjugation by elements ofG permutes elements ofX, ie. have
morphism

θ : G 7→ SX = S4.

What isθ(τ)?

τT1τ
−1
= {τeτ−1, τ(τσ1)τ

−1
= τσ2, τ(τσ1)

2τ−1} = T2

τT2τ
−1
= {τeτ−1, τ(τσ2)τ

−1
= τσ3, · · · } = T3

τT3τ
−1
= T1

τT4τ
−1
= T4

ie. τ
θ
7−→ (1 2 3).

What isθ(σ1)?σ1T1σ
−1
1 = ?

Suffices to computeσ1(τσ1)σ−1
1 .

σ1(τσ1)σ
−1
1 = σ1τ = τσ3.

∴ σ1(τσ1)σ−1
1 = T3. |σ1| = 2⇒ σ1T3σ

−1
1 = T1. Likewise,σ1T4σ

−1
1 = T2. Soσ1 7→

(1 3)(2 4).

What isθ(σ2)?
σ2T1σ

−1
2 = σ2τσ1σ

−1
2 = τσ

2
1σ
−1
2 = τσ2 ∈ T2

etc., getσ2 7→ (1 2)(3 4).
G � A4.

Case III: |Syl2(G)| = 3, so|Syl3(G)| = 1.
Let T = {e, τ, τ2} be the unique Sylow 3-subgroup, soT ⊳ G. Let H be a Sylow 2-
subgroup.|H| = 4, soH � C4 or C2 ×C2. Then

H ֒→ G 7→→G/T
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is an isomorphism (it is an injection sinceH ∩ T = {e} for degree reasons, and since
|H| = 4 = |G/T |, it is bijective). This splitsq : G 7→→G/T, so

G � T ⋊φ H.

Case IIIa: H � C2 ×C2.
Let H = {e, σ1, σ2, σ3}.

φ : H 7→ AutT = AutC3 � C2.

If φ(h) = 1T ∀h ∈ H then G = T × H, transposing to Case II. Soφ is non-trivial,
ie. φ(h)(τ) = τ2 for someh ∈ H. Then

kerφ = C2

so∃h ∈ H such thath , e andφ(h) = 1T . φ(h′)(τ) = τ2 for the other two non-trivial
elementsh′ of H. By symmetry, supposeφ(σ3) = 1T , ie.

φ(σ1)(τ) = σ1τσ
−1
1 = τ

2,

φ(σ2)(τ) = σ2τσ
−1
2 = τ

2,

φ(σ3)(τ) = σ3τσ
−1
3 = τ.

This determines multiplication inG.
What group is this?σ3τ = τσ3, so |σ3τ| = |σ3| |τ| = 2 · 3 = 6. Setx = σ3τ. Elements of
G:

e x x2 x3 x4 x5

σ1 xσ1 x2σ1 x3σ1 x4σ1 x5σ1

Multiplication of elements in this form can be derived from:

σ1x = σ1xσ−1
1 σ1 = σ1σ3τσ

−1
1 σ1 = σ3(σ1τσ

−1
1 )σ1 = σ3τ

2σ1 = σ
5
3τ

5σ1 = x5σ1.

SoG � D12.

6

5

4

3

2

1

42



x 7→ (1 2 3 4 5 6)

σ1 7→ (2 6)(3 5)

What are the 3 Sylow 2-subgroups? One isH = {e, σ1, σ2, σ3}. Note that

σ3 = σ
3
3τ

3
= x3,

σ2 = σ3σ1 = x3σ1

∴ H = {e, σ1, x3σ1, x3}.
To find the others, pickg ∈ G and computegHg−1.

g = x ⇒ gHg−1
= {e, xσ1x−1, xx3σ1x−1, xx3x−1}

= {e, xσ1x5, x4σ1x5, x3}

= {e, x(x5)5σ1, x
4(x5)5σ1, x

3}

= {e, x26σ1, x
29σ1, x

3}

= {e, x2σ1, x
5σ1, x

3}.

The other is{e, x4σ1, xσ1, x3}.
Note that different Sylowp-subgroups can intersect non-trivially. eg. Here,x3 is in all
Sylow 2-subgroups.

Case IIIb: H � C4.
Let H = {e, σ, σ2, σ3}. Recall

G � T ⋊φ H,

T = {e, τ, τ2},

φ : H � C4 7→ Aut(T) � C2

Aside from trivialφ (yieldingG � T×H � C3×C4, which is Case IIa),φ acts non-trivially
onσ andσ3. ie.στσ−1

= τ2. Elements ofG are:

e σ σ2 σ3

τ τσ τσ2 τσ3

τ2 τ2σ τ2σ2 τ2σ3

Multiplication is determined byστσ−1
= τ2 (andτ3

= e, σ4
= e).

In summary, there are 5 (non-isomorphic) groups of order 12:C12, C2 ×C2 ×C3, A4, D12, and
C3 ⋊C4.
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1.11 Solvable and Nilpotent Groups

Let G be a group,A, B ⊂ G.
Notation: [A, B] := subgrp. ofG generated by{[a,b] | a ∈ A,b ∈ B}. So [G,G] is the commutator
subgroup ofG.

Inductively define:

G(0) := G,

G(n) := [G(n−1),G(n−1)], and

G′(0) := G,

G′(n) := [G(n−1),G].

Then

G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n) ≥ · · · Derived (or commutator) seriesof G
q q p∧ p∧

G′(0)≥G′(1)≥G′(2)≥ · · · ≥G′(n) ≥ · · · Lower central seriesof G

Definition 1.11.1. G is calledsolvableif ∃N such that G(N)
= {e}. G is callednilpotent if ∃N such

that G′(N)
= {e}.

SinceG(n) ≤ G′(n), nilpotent⇒ solvable. We already showed [G,G] ⊳ G, soG(n)
⊳ G(n−1). In fact:

Proposition 1.11.2.
1. G(n)

⊳ G ∀n. In particular, G(n)
⊳ G(n−1) (because for A≤ B ≤ G, if A ⊳ G then A⊳ B).

2. G′(n)
⊳ G ∀n. In particular, G′(n)

⊳ G′(n−1).

Proof.
1. Forg ∈ G and [a,b] a generator ofG(n), wherea,b ∈ G(n−1),

g[a,b]g−1
= [gag−1,gbg−1] ∈ [G(n−1),G(n−1)]

by induction.

2. Forg ∈ G and [a,b] a generator ofG′(n), wherea ∈ G′(n−1) andb ∈ G,

g[a,b]g−1
= [gag−1,gbg−1] ∈ [G′(n−1),G]

by induction.
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Notice thatG(n−1)/G(n)
= G(n−1)

ab is abelian. Conversely:

Proposition 1.11.3.G is solvable iff ∃ a finite sequence of subgroups

{e} = HN ⊳ HN−1 ⊳ · · · ⊳ H0 = G

such that Hn−1/Hn is abelian for all n.

Proof. Suppose that such a sequence exists. SinceHn−1/Hn is abelian, [Hn−1,Hn−1] ≤ Hn for all n.
Inductively,

G(n)
= [G(n−1),G(n−1)] ≤ [Hn−1,Hn−1] ≤ Hn

soG(n) ≤ Hn ∀n. Thus,
G(N) ≤ HN = {e}

∴G(N)
= {e}. �

Lemma 1.11.4.Sn is solvable iff n < 5.

Proof.
n = 1,2: Sn is abelian and thus solvable.

n = 3: Note that [σ, τ] is always an even permutation, so

[Sn,Sn] ≤ An ∀n.

Whenn = 3, A3 � C3 is abelian, soS3 is solvable.

n = 4: Since [S4,S4] ≤ A4, in suffices to check thatA4 is solvable. Let

H = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

ThenH � C2 ×C2 is abelian,H ⊳ A4, and

|A4/H| = 3,

soA4/H � C3 is abelian.
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n ≥ 5: Letσ = (1 5 3),τ = (1 4 2). Then

[σ, τ] = στσ−1τ−1

= (1 5 3)(1 4 2)(1 3 5)(1 2 4)

= (1 2 3)∈ [Sn,Sn]

Similarly, every 3-cycle is a commutator of 3-cycles, providedn ≥ 5. Thus,∀k, A(k)
n contains

every 3-cycle.

∴ A(k)
n , {e} ∀k, soAn is not solvable.

�

Theorem 1.11.5.Suppose A⊳ B. Then B is solvable⇐⇒ both A and B/A are solvable.
Furthermore, if A≤ B and B is solvable then A is solvable (even if A is not normal inB).

Proof. SupposeB is solvable andA ≤ B. ThenA( j) ≤ B( j) ∀ j, soB(k)
= {e} for somek⇒ A(k)

= {e},
soA is solvable.

⇒: Suppose now thatA ⊳ B and letπ : B 7→ B/A be the canonical projection. Ifx ∈ B lies in B′

thenπ(x) ∈ (B/A)′, and conversely, if

y = (uvu)−1(v)−1 ∈ (B/A)′

theny = π(uvu−1v−1) ∈ π(B′). Hence,

π(B′) = (B/A)′

π(B(2)) = π(B′′) = (π(B′))′ = (B/A)′′ = (B/A)(2)

...

π(B(k)) = · · · = (B/A)(k)

Sinceπ(B(k)) = {e}, (B/A)(k)
= {e}, whenceB/A is solvable.

⇐: SupposeA andB/A are both solvable. If{e} = (B/A)(k)
= π(B(k)) thenB(k) ⊂ A. Thus,B(k+ j)

=

(B(k))( j) ⊂ A( j). So if A(m)
= {e} thenB(k+m)

= {e}. Hence,B is solvable.

�

Theorem 1.11.6.G is finite and solvable⇒ ∃ subgroups

{e} = Am ⊳ Am−1 ⊳ · · · ⊳ A1 ⊳ A0 = G

such that Aj/Aj+1 is cyclic of prime order∀ j.
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Proof. The proceding theorem reduces the proof to the case whereG is abelian, and it is clear that a
finite abelian group has such a composition series. �

Upper Central Series:
Given a groupG, inductively defineZn(G) as follows: SetZ0 := {e}. Having definedZn−1 such that
Zn−1 ⊳ G, defineZn as the pullback:

Zn > Z(G/Zn−1)

G
∨ qn−1

>> G/Zn−1

△

∨

whereqn−1 : G 7→ G/Zn−1 is the quotient map. ie.

Zn := q−1
n−1(Z(G/Zn−1)).

Zn ⊳ G because Z(G/Zn−1) ⊳ G/Zn−1.

qn−1([Zn,G]) ⊂ [Z(G/Zn−1,G/Zn−1] = {e},

so [Zn,G] ⊂ kerqn−1 = Zn−1.

Lemma 1.11.7.G is nilpotent iff ZN(G) = G for some N.

Proof.
⇒: SupposeZN = G.

G′(1)
= [G,G] = [ZN,G] ≤ ZN−1.

Inductively,
G′(k)

= [G′(k−1),G] ≤ [ZN−(k+1),G] ≤ ZN−k.

∴G′(N) ≤ Z0 = {e} soG is nilpotent.

⇐: SupposeG′(N)
= {e}. Inductively (ask decreases), assume

[G′(k),G] = G′(k+1) ≤ ZN−k−1.

Supposex ∈ G′(k). Giveng = qN−k−1(g) ∈ G/ZN−k−1,

[qN−k−1(x),g] = qN−k−1[x,g]

∈ qN−k−1([G
′(k),G])

⊂ qN−k−1(ZN−k−1)

= {e}.
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∴ qN−k−1(x) commutes withg ∀g ∈ G/ZN−k−1 so

qN−k−1(x) ∈ Z(G/ZN−k−1).

∴ x ∈ ZN−k.

ThusG′(k) ≤ ZN−k ∀k. Therefore,
ZN ≥ G′(0)

= G

∴ ZN = G as required.

�

Corollary 1.11.8. If G is a finite group then G is nilpotent iff ∀n, Z(G/Zn) , {e} unless G/Zn = {e}.

Proof. If Z(G/Zn) = {e} thenZn+1 = q−1
n−1{e} = Zn, so the series

Z0 ≤ Z1 ≤ · · ·Zn ≤ Zn+1 ≤ · · ·

never reachesG (unlessZn = G already).
Conversely, if∀n, Z(G/Zn) , {e} then

Zn < Zn+1 ∀n

and sinceG is finite, eventuallyZn = G. �

Corollary 1.11.9. If G is a p-group then G is nilpotent.

Lemma 1.11.10.G is nilpotent iffG/Z(G) is nilpotent. More precisely, ZN+1(G) = G iff ZN(G/Z(G)) =
G/Z(G).

Proof. SetH := G/Z(G).

Z2(G) > Z(G)= Z1(H)

p.b.

G
∨

q1
> H
∨

∩

= G/Z(G) = G/Z1(G)

Suppose inductively thatZn−1(G) is isomorphic to the pullback

Pn−1 > Zn−2(H)

p.b.

G
∨

q1
>> H
∨
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By a property of pullbacks (Proposition 1.5.5),

G/Zn−1(G) � G/Pn−1 � H/Zn−2(H).

So

Pn > Zn−1(H) > Z(H/Zn−2(H))� Z(G/Zn−1(G))

p.b. p.b.

G
∨

q1
>> H
∨

>> H/Zn−2(H)
∨

� G/Zn−1(G)

ThenPn is isomorphic to the composite pullback, which, by definition, isZn(G). So

Zn(G) � Pn ∀n.

If H is nilpotent then∃N such thatZN(H) = H. Then

ZN+1(G) > ZN(H)

p.b.

G
∨

q1
>> H
∨

showsZN+1 = G.
Conversely, ifZN+1(G) = G for someN then the pullback shows

H/ZN(H) � G/ZN+1(G) � {e}

soZN(H) = H. �

Corollary 1.11.11. G is nilpotent iff the sequence of surjections

Q0 7→→ Q1 7→→ Q2 7→→ · · · 7→→ Qn 7→→ · · ·

q q q q

G G/Z(G) Q1/Z(Q1) Qn−1/Z(Qn−1)

eventually reaches{e}. (QN = {e} for some N).

49



Proof.
⇒: Qn is nilpotent iff Qn+1 is nilpotent. So, ifQN = {e} thenQN is nilpotent, soQ0 = G is nilpotent.

⇐: Suppose thatG is nilpotent withZN(G) = G. ThenZN−1(Q1) = Q1 and inductively,ZN−k(Qk) =
Qk ∀k. Then

Z(QN−1) = Z1(QN−1) = QN−1

soQN = QN−1/Z(QN−1) = {e}.

�

Corollary 1.11.12. A finite product of nilpotent groups is nilpotent.

Proof. By induction, it suffices to consider the product of two nilpotent groups,G1 andG2.

Q1(G1 ×G2) =
G1 ×G2

Z(G1 ×G2)

=
G1 ×G2

Z(G1) × Z(G2)
= G1/Z(G1) ×G2/Z(G2)

= Q1(G1) × Q1(G2)

By iterating, Qn(G1 × G2) = Qn(G1) × Qn(G2). So if QN1(G1) = {e} and QN2(G2) = {e} then
Qmax{N1,N2}(G1 ×G2) = {e}. �

Theorem 1.11.13.Let G be a finite group. For each prime p, let Pp be a Sylow p-subgroup. Then
TFAE:

1. G is nilpotent.

2. H < G⇒ H < NG(H) (every proper subgroup of G is a proper subgroup of its normalizer).

3. Pp ⊳ G ∀p.

4. G�
∏

p Pp.

Proof.
1⇒ 2: SupposeH < G. Z(G) ≤ NG(H), so unless Z(G) ⊂ H, it is immediate thatH < NG(H).

So assume Z(G) ⊂ H. Write G := G/Z(G) and let

q : G 7→→G
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be the quotient map. SetH = q(H) < G. G nilpotent⇒G nilpotent. By induction (assuming 1
⇒ 2 is known for all groups of order less than|G|),

H < NG

(
H

)
.

But then by the 4th Isomorphism Theorem,

H = q−1
(
H

)
< q−1NG

(
H

)
= NG(H).

2⇒ 3: Let N = NG(Pp). By a corollary to the Sylow Theorem (Corollary 1.9.12), NG(N) = N.

∴ Hypothesis 2⇒ N = G, soPp ⊳ G.

3⇒ 4: Write
|G| = pr1

1 pr2
2 · · · p

rm
m .

Suppose by induction (onm) that

H = Pp1 · · ·Ppm−1 � Pp1 × · · ·Ppm−1.

ThenH ⊳ G, Ppm ⊳ G, andH ∩ Ppm = {e}. Hence,

Pp1 · · ·Ppm = HPpm � H × Ppm � Pp1 × · · ·Ppm.

However,|Pp1 · · ·Ppm| = |G| soPp1 · · ·Ppm = G.

4⇒ 1: It was already shown thatp-groups are nilpotent and a finite product of nilpotent groups is
nilpotent.

�
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1.12 Free Groups

Theorem 1.12.1.A subgroup of a free group is free.

Proof. Let S be a set and letG = F(S). SupposeH ≤ G. Let

S′ = S∐ {inverses of elts. inS}.

Recall that elements ofG are finite length words inS andS′. Let M(S′) denote the free monoid
onS′ (so that inM(S′), ss−1 does not simplify fors ∈ S). ∃ a surjective map of monoidsq : M(S′) 7→
F(S) given by

q(x) = x ∀x ∈ M(S′).

Write x for q(x).
Say that a wordx = x1 · · · xk ∈ M(S′) (wherexi ∈ S′ ∀i) is reduced(or a reduced representative)

if ∄ a shorter wordy ∈ M(S′) s.t. q(x) = q(y) = x1 · · · xk in G.
Well-orderS′. This induces a well-order onM(S′) by ordering the words first by length, and then

lexicographically among words of the same length. Let

R= {reduced words} ⊂ M(S′).

ie. x ∈ R iff x = minq−1{q(x)}. Forg ∈ G, defineg̃ ∈ M(S′) by

g̃ = minq−1(Hg).

ie. g̃ = min{x ∈ M(S′) | Hx = Hg}. Let

R̃= {g̃ | g ∈ G} ⊂ M(S′)

be the set of chosen coset representatives. Clearly, only reduced words can occur:̃R⊂ R.

Lemma 1.12.2.A left substring of an element iñR is inR̃.

Proof. Supposeb = cu ∈ M(S′) with b ∈ R̃ andc a proper substring. Check thatc ∈ R̃.
Sinceb ∈ R̃ andc is shorter thanb, Hb , Hc (or else,c would be the chosen coset rep. forHb

rather thanb). If c < R̃ thenc′ < c andHc′ = Hc. So

Hb = Hcu = Hc′u = Hc′u.

However, the ordering is such thatx < y ⇒ xz < yz. Soc′ < c ⇒ c′u < b, which contradicts the
minimality of b. �
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Proof of Theorem continued.Givenr ∈ R̃, s ∈ S′, definevrs ∈ H by

vrs = rs(r ′)−1, wherer ′ = r̃s ∈ R̃.

ie. r ′ is the canonical rep. forHrs. SoHr ′ = Hrs, and thusvrs ∈ H.
Noticev−1

rs = r ′s−1(r)−1, and

Hr ′ = Hrs⇒ Hr = Hr ′s−1,

and sincer ∈ R̃, r is the canonical rep. forHr ′s−1. Thus

v−1
r,s = vr′,s−1,

so{vr,s | r ∈ R̃, s ∈ S′} is closed under inverses. Let

T = {vrs ∈ H | r ∈ R̃, s ∈ S′, vrs , e}.

Note that it is possible to havevr,s = vr′,s′ without r = r ′ ands= s′.
Defineφ : F(T) 7→ H by φ(vrs) := vrs ∀vrs ∈ T. To finish the proof thatH is free, we show thatφ

is an isomorphism.
Let h ∈ H. Write h = s1 · · · sℓ in terms of generators ofG. Setb1 = e and inductively set

bj+1 = b̃j sj (ie. bj+1 is the canon. rep. for cosetHbj sj).

∴ By construction,vb j ,sj = bj sjbj+1
−1

. By induction,

Hbj+1 = Hbj sj = Hbj−1sj−1sj = · · ·Hb1s1 · · · sj = Hs1 · · · sj .

∴ Hbℓ+1 = Hs1 · · · sℓ = Hh = H, sobℓ+1 = e.

φ(vb1,s1vb2,s2 · · · vbℓ,sℓ) = b1s1(b2)
−1b2s2(b2)

−1 · · · bℓsℓ(bℓ+1)
−1
= s1 · · · sℓ = h.

∴ φ is onto.
Supposeφ(x) = e for somex ∈ F(T) and x , e. Let x = x1 · · · xℓ be an expression forx as a

reduced word in the elts. ofT. Recall that the elemnts ofT can be written asvr,s in many ways. For
eachi = 1, . . . , ℓ, pick the expressionxi = vbi ,si in which bi ∈ R̃ be minimal. Thenvbi ,si contains
an occurrence ofsi, since if si cancelled then, using the fact thatR̃ is closed under left substrings, a
shorterb′i and ans′i could be picked such thatxi = vb′i ,s

′
i
.

Sinceφ(x) = e, within G, the stringφ(x), which initially contains all ofs1, . . . , sℓ, must reduce
to eliminate them. So∃m such thatφ(vbm,smvbm+1,sm+1) reduces to eliminatesm or sm+1 (or both). Write
vbm,smvbm+1,sm+1 as:

bmsm(y)−1bm+1sm+1(z)
−1,

wherey = canon. rep. forHbmsm andz = canon. rep. forHbm+1sm+1. Cancellation of at least one of
sm, sm+1 can happen in one of three ways:
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1. y = bm+1 andsm = s−1
m+1, or

2. bm+1sm+1 is a left substring ofy, or

3. ys−1
m is a left substring ofbm+1.

If 1: Hz = Hbm+1sm+1 = Hys−1
m = Hbm, soz = bm (both lie inR̃ and they represent the same coset).

Sovbm+1,sm+1 = (vbm,sm)−1 and the wordx was not reduced, which is a contradiction.

If 2: Sincebm, y,bm+1, z ∈ R̃ ⊂ R, all are reduced, sobm+1sm+1 is a left substring ofy⇒ bm+1sm+1

is a left substring ofy. Hencebm+1sm+1 ∈ R̃. Sobm+1sm+1 andz are canon. reps. for the coset
Hbm+1sm+1, soz= bm+1sm+1. But thenvbm+1,sm+1 = esovbm+1,sm+1 < T, which is a contradiction.

If 3: As in case 2,ys−1
m is a left substring ofbm+1 soys−1

m ∈ R̃and represents the same coset asbm. So
bm = ys−1

m and sovbm,sm = e < T, which is a contradiction.

∴ None of these cases can occur, soφ(x) = e for x , e is not possible. Henceφ is an injection. �

Note: it is possible thatH is not finitely generated, even ifG is finitely generated. e.g. LetG = F(x, y)
and letH = [G,G] (the commutator subgroup). Then

H = F(x, y, [y, x], [[y, x], x], . . . , [· · · [[y, x], x]x · · · , x], . . . }.

54


