Chapter 1

Groups

1.1 Definitions and Elementary Properties

Definition 1.1.1. A binary operationx on a set S is a function

*x.SXS—>S
(a,b)— axh.

x is calledassociativef (a«b)«c=ax(bxc) VYab,ceS.
x Is calledcommutativeifa«b=bxa VYabeS.

Definition 1.1.2. A group consists of a set G together with a binary operation

x:GxGH G
(@.h) — g=h,

such that the following conditions are satisfied:

1. (axb)xc=ax(bxc) Vab,ceS (associativity),

2. There exists an elementéds suchthateea=aandaxe=a VYae G (identity),

3. For each & G, there exists an elemen&G such that & b = e and b+ a = e (inverse).
Definition 1.1.3. A group(G, =) is calledabelian(or commutative) ifab=bxa VabeG.

Definition 1.1.4. Let H be a non-empty subset of the group G. Suppose that thdegirm G of two
elements of H lies in H and that the inverse in G of any elemEht lties in H. Then H is called a
subgroupof G, written H< G.



Notation: For X c G, write

(X) = f]H.

XcH<G

This is calledthe subgroup of G generated byX.
Exercise: show thaiX) is a subgroup.

Example 1.1.5.
1. Cyclic groupsC,
Letne N. C, :={e= X% x, X,...,x" 1}, with multiplication »  x¢ ;= x{i+kmodn
Also, the infinite cyclic group isC:= {X" | n € Z} with X % x¢ := xJ*k,

2. Permutation groups
Let X be aset. g:={f : X+ X| f is a bijectiorj. Multiplication is composition

Sx)(S%(Fé Sx
(f.g) > gof.

Notation: In case X= {1,...,n} for some re N, write S, for Sy (called asymmetric group.
If G < S, for some n, G is @ermutation groupof degree n.

3. Linear groups
Afield (FF, +, -) consists of a sét together with binary operations and-, such that:

(@) (F,+) forms an abelian group,
(b) (F - {0}, ) forms an abelian group (whefis the identity for(F, +)),
(c) a-(b+c)=a-b+a-c VaNb,c e F (distributivity).

LetF be a field. GL(F) := {invertible nx n matrices with entries fror}. The group operation
is matrix multiplication. Gl, is called thegeneral linear group
If G < GL,(F) for someF and n then G is called Anear group of degree n.

4. Symmetry groupset X c R". The group of symmetries of X, denoted £Xmis the subgroup
of Sy containing only isometries (that is, functions:fX — X such that]|f(x) — f(y)|| =
IX=yll VXyeX).

Notation: In case N= 2 and X = the regular n-gon, Sy¢X) is called the # dihedral group
written Dy,,.

Proposition 1.1.6.Let G be a group. TheA exactly one element e G such that e« g = g and
gxe=g VYVgeG.



Proof. By definition, such an element exists.elfe’ € G both have the property then
e=ex€ =¢.
m]

Proposition 1.1.7.Let G be a group and let @ G. Thend exactly one element b G such that
gxh=eandh:g=e.

Proof. By definition, such an element exists. Suppbgde are both inverses tg. Then

W=hWse=hx(g+h)=(0«g)+h=exh=h

Notation: The inverse ta will be denotedy™.
Proposition 1.1.8.Let G be a group and let, ¥,z G.
1. If xz=yz then x=y.
2. If zx=zy then x=y.

Proof.
1. x=xe=x(zzY) = (x9z! = (y9dz! = y(zzt) = ye=Yy.

2. Likewise.

Note: xz=1zy# Xx=Y; “mixed” cancellation doesn’t work.

Corollary 1.1.9. Let G be a group and let,tp € G such that g h = e. Then h= g™* (and g= h™).
Proof. gxh = eis given;g= g = eby the definition ofg~’. So by cancellatiorh = g*. ]
Proposition 1.1.10.In a group G,(gh)~ = h1g1.

Proof.
(@h(h g ") =ghh)g* =geg' =gg' =e
.. h~g7is the inverse ogh. o

Proposition 1.1.11.Let G be a group and,dp € G. Then

3



1. 3! solution x in G to the equation gx h.

2. ! solution x in G to the equation xg h.

Proof.
1. x=gh.
2. x=hg?.

O

Proposition 1.1.12.A non-empty subset H of a group G is a subgrgfig,iy € H implies xy! lies in
H.

Proof. Exercise. m|

G is called dinite group if its underlying set is finite. In this case, the numbieglements irG is
called theorder of G, written|G|.

Definition 1.1.13. Let xe G. Theorder of x, written|x|, is the least integer k (if any) such th&dtx e.
Note: some, or even all elements of a group might have finderogven ifiG| is infinite.

Definition 1.1.14. Let (G, ) and (H, ») be groups. A function f G — H is called a (grouphomo-
morphismif f(x«y) = f(X).f(y) Vx,y € G. A homomorphism f G — H which is a bijection is
called anisomorphism

Notation: ¢:G —s H means thap is an isomorphism fron® to H.
G = H means that there exists an isomorphismG — H.
Isomorphisms preserve all group properties. e.g.:ifc — H then:

G is abelian < H is abelian,
X =]p(X)] VxeG, etc.

Lemmal.1.15.Let¢ : G — H be a homomorphism, and letet be the identities in GH respectively.
Theng(e) = €.

Proof. Leth = ¢(e).
h* = ¢(e)4(€) = ¢(€°) = ¢(e) = h = he

.. by cancellationh = €. O

Corollary 1.1.16. Let¢ : G — H be a homomorphism. Thety € G, ¢(g™t) = ¢(g) 2.
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Proof.
(Q)¢(gh) = p(9g™!) = p(e) = €.
Thus,¢(9)" = ¢(g7). o

Proposition 1.1.17.Let¢ : G — H be a group isomorphism. Let! : H — G be the inverse function
to the bijectionp. Theng! is an isomorphism.

Proof. Must showg~! is a homomorphism. Lét;, h, € H. Sinceg is a bijection,!g;, g, € G such
thatg(g:) = hy, ¢(92) = ho.
#(9192) = ¢(91)#(92) = hihy

So¢H(hihy) = 910 = ¢~ (hy)p~*(hy). o

Proposition 1.1.18.The composition of group homomorphisms is a homomorphism.
The composition of group isomorphisms is a isomorphism.

Proof. Trivial. O

Notation: Aut(G) = {self-isomorphisms o6} < Sg.

Fundamental Problem of Group Theory:
Make a list of all possible types of groups. ie. Make a listriigps such that every group is isomorphic
to exactly one group on the list.

Given two groups (defined, for example, by multiplicatiobl&s, or by generators and relations),
the problem of determining whether or not the groups are @pimc is, in general, very éicult
(NP-hard).



1.2 New Groups from Old

1.2.1 Quotient Groups
Definition 1.2.1. Let¢ : G — H be a homomorphism. Thkernel of ¢ is

kerg :={ge G| ¢(g) = e}

Theimageof ¢ is
Im¢ :={h e H | h=¢(g) for some g G}.

Proposition 1.2.2.ker¢ < G andim¢ < G.

Proof. Trivial. ]
Definition 1.2.3. For x,y € G, we say y i€onjugateto x (in G) if 3g € G such that y= gxg*.
Proposition 1.2.4. Conjugacy is an equivalence relation.

Proof. Trivial. O

Notation: If A B are subsets db, letAB:={ab|ac Abe B}. Forge G,H < G, the segH is
called theleft cosetof H generated byg; Hg is theright cosetof H generated by.

Definition 1.2.5. A subgroup N of G is calledormal, written N< G, ifgN= Ng forallge G.
Proposition 1.2.6.N < G isnormal <= gxg'e N Vxe N,geG.

Proof.
=: SupposeN is normal. Then for alk € N,g € G, gx e gN = Ng, sogx = ygfor somey € N.
Thus,gxgt=yeN.

«: Suppos@xgle N VxeN,geG.If ze gNthenz= gxfor somex e N. Hence,
z=gxg'g) = (gxg)g € Ng

. gN c Ng. Similarly, Ng c gN.

Corollary 1.2.7. Let¢ : G — H be a homomorphism. Théerg < G.



Proof. Let x € ker¢ and letg € G. Then

o(axg™) = ¢(g)ep(g) * =e

sogxg? e kerg. o

Conversely:

Theorem 1.2.8.Suppose N« G. Thend a group H and a homomorphisth : G — H such that
N = kerg.

Proof. Exercise: check the details of the following:

1.

2
3.
4

© N o o

Forg,g € G, defineg ~ ¢ if gg™* € N.

. Check that- is an equivalence relation.

DefineH := G/N := {set of equivalence classes®funder~}.

. Define binary operation on G/N by X « y = Xy. Check that this is well-defined, ie. suppose

X ~xandy ~y.IsXy ~ xy?
Well, X ~ x meansx'x ! = n, € N, sox = n;x. Likewise,y ~ ymeansyy ! =n, € N, so
Yy =nmnmy. So

XY = nuXngy = Ny(XnXY)Xy = nanoxy,

wheren;, = xm,x~* € N sinceN is normal. Hencexy’' ~ xy.
Check that@/N, =) forms a group.

Defineg : G — H by ¢(X) = X.

Check that is a group homomorphism.

Check thalN = kerg.

G/N (as constructed above) is called@aotient group.



1.2.2 Product Groups
Let G, H be groups. Th@roduct group is the setG x H, with multiplication
(9.h) - (g',h') := (99, hh).
Clearly the projection maps
I[Ig:GXxXHHG
@.h)+—g
and
[Iy:GxH—H
(g.h)—h
are group homomorphisms.
Proposition 1.2.9.Let A G, H be groups.

1. Universal Property of Product:
Given group homomorphisms:pA — G and q: A — H, 3! group homomorphism : A -

G x H such that:

A
A
o/ q
\Y2
GxH
Lo
G ¢ : H

This says that & H is the product of G and H in the category of groups.

2. Given a functio® : A G x H, ¢ is a group homomorphism if and onlylii; o ¢ andIly o ¢
are group homomorphisms.



1.2.3 Free Products

Let G, H be groups. The free product & andH is G « H := {words inG LI H}/ ~, where~ is the
equivalence relation generated by the following: dog’ € G,

X1 XG0 Y1- Ym ~ X1+ Xn(Q)Y1 - Y,

and forh,h" € H,
X1 XahYp <« Ym ~ Xg - Xa(hH)y1 - - - Yo
Note: GivenA c X x X, the equivalence relation generatedAis

ﬂ{B c X x X | Bis an equivalence relation adc B}.

Multiplication in G = H is given by juxtaposition:\ - - - Vi) * (Wy -+ - W) = V1 -+ - VoWy - - - Wiy,

Proposition 1.2.10.Universal Property of Free Product:

G\ (H
h
Gx+H
p e q
v
A

(Here, G and H each embed into the words of lergith G x H).
This says that G H is the coproduct of G and H in the category of groups.

F(X) = {xX"| ne Z}(= C,) is called the free group on the generator
F(xYy) := F(X) = F(y) is the free group on 2 generators.
More generally, given a s&,

F(S) = {words inS}

is called thefree group on S. A group homomorphisnf(S) — G is uniquely determined by any
(set) functionS — G.



1.3 Centralizers, Normalizers, and Commutators

LetG be a groupX c G.
Notation:

Co(X):={geG|gxgt=x V¥xeX} isthecentralizerof XinG
Ng(X) :={ge G|gXg®t =X} isthenormalizer of Xin G
={ge G| gX=Xg

These definitions do not require thate a subgroup, but note thag(X) = Cs((X)). Also,

Z(G) := Cs(G) isthecenterof G
={geG|gx=xg VYxeG}

Note: ZG) = G < Gis abelian.
Example 1.3.1.Let G = GL,(F). ThenZ(G) = {cl | c € F*}.
Proposition 1.3.2. Cg(X) andNg(X) are subgroups of G.
Proof.
9.9 € Ca(X) = (99)(XN(O9) ™ =gl@xg gt =gxg' =x VYxeX
geCo(X) = g'xg=g(gxg g =(g'g)x(g'g) = x VxeX
Likewise,
9.9 € No(X) = (99)X(g9) ™' = g(gXg™Hg™* = gXg' =X
geNs(X) = g'Xg=g(gXg"g = (ggX(@'g) = X
O

Clearly, ZG) = Cs(G) is always abelian, but for arbitramd, Cs(H) need not be abelian. For
example, in the extreme case;(@}) = G, which might not be abelian.
ForH < G, by constructionH < Ng(H), andH < G < Ng(H) = G.

Proposition 1.3.3.For A< B< G,

g € Na(Ng(A) = g(Ns(A)g™ c Ng(A).
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Proof. If b € Ng(A) andg € Ng(Ng(A)) thenb’ = gbg? € Ng(A), so

(gbgha(gbg’)™ = ba(b’)™ € A

Note: K <« HandH <G # K < G. For a counterexample, take

G=S5
H=((1234)(13)(24) = Dg
K=¢(1234)=C,
Notation: Fora,be G, let [a, b] := abalb™.
Definition 1.3.4. Thecommutator subgrougs’ is the subgroup of G generated by
{{a.b] |a,be G}.
Proposition 1.3.5.9[a, b]g™* = [gag™, gbg™].
Corollary 1.3.6. G’ < G.
Gap ;= G/G’ is abelian. Universal property: given any homomorphisnG — H with H abelian,

G > Gap

Bl

v
H
Thatis, if¢ : G — H with H abelian ther©’ c kerg.
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1.4 Isomorphism Theorems

Theorem 1.4.1(First Isomorphism Theorem)let¢ : G — H be a group homomorphism. Then
G/ kerg = Img.

Proof. SetN := ker¢. Elements ofG/N are cosetdNg, whereg € G. Definey : G/N — Im¢ by
¥(Ng) = ¢(g).

1. ¢ is well defined:
SupposeNg = Ng. Theng = ng for somen € N. Hence,

¢(9) = ¢(ng) = p(N)¢(g) = ene(g) = ¢(9),
sincen € N = kerg.
2. ¢ is a homomorphism — easy.
3. ¢ is surjective — easy.

4. y is injective:
If y(Naw) = ¥(Ng) then

$(01) = (%) = ¢(01%") =en = 0%, € N= Ng = Ng

Proposition 1.4.2.1f H, K subgroups of G then HK G < HK = KH.

Proof.
=: SupposeHK < G. Letx € HK. Thenx* € HK. Write x ! = hk for someh € H, k € K. Then

x= (k)™ =k*h™eKH,
soHK c KH, and similarly,KH c HK.

<: SupposeHK = KH. Let x, X' € HK. Write x = kh, X' = h'k’, for someh,h" € H,k k" € K.
Then
Xx 1 =hKhik?
=hh'k’k™?, letingk'h™ = h’k”, sinceHK = KH
e HK
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Corollary 1.4.3. Let H, K be subgroups of G. If K Ng(K) then HK< G and K< HK.

Proof. Let x = hk € HK. Thenx = (hkhrt)h € KH, sincehkhr! € K. So,HK c KH. Similarly, if
X = kh € HK thenx = h(h~tkh) € HK, whenceKH c HK. Hence

HK =KH <G.
Also, K c Ng(K) (always) andH c Ng(K) (given), so
HK c Ng(K) = K < HK.

m]
Corollary 1.4.4. If K < G then HK< G for any H< G.
Proof. If K < G then N;(K) = G, so automaticallyH c Ng(K). ]
Theorem 1.4.5(Second Isomorphism Theorenbet H, K be subgroups of G such that

H c Ng(K).
Then Hh K < H, K < HK, and

K _H
K HnK

Proof. K <« HK was shown above. Defing: H —» HK/K by ¢(h) = Kh € HK/K. ie. ¢ is the
composition
H — HK - HK/K

1. ¢ is a homomorphism (composition of homomorphisms).
2. ¢ is surjective
Proof. Let Kx € HK/K, wherex € HK. By above HK < G, soHK = KH; thus letx = kh,
for somek € K, h € H. Hence,
Kx = Kkh= Kh = ¢(h)
3. kerg =HNK
Proof.
kerg ={ye H|o(y) =€
={yeH[Ky=¢
={yeH|yeK}
=HNK
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HNK < Hand
H H HK

HmK:ker¢

O

Theorem 1.4.6(Third Isomorphism Theorem).et K <« G and H< G with Kc H. Then HK <« G/K

and
G/K

—— = G/H.
H/K G/
Proof. Define¢ by composition
GC—»G/Km—> %
H/K"
Check that kep = H (exercise). m|

1.5 The Pullback

Definition 1.5.1. Let¢ : G — H and j: B — H be group homomorphisms. Define alback
G xy B ofg and j by
Gxy B:={(g,b) e Gx B[ ¢(0) = j(b)}.

The pullback gives:

Proposition 1.5.2.G x4y B< G x B.
Proof. If (g,b) and @', b’) belong toG xy B then
#(99) = ¢(9)¢(9) = j(0)j(0') = j(bb).

If (g,b) € G x4 Bthen
¢(g™) = (@) = j0)" = j(b™).
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Proposition 1.5.3.Let¢ : G— H,j: B~ Handi: A~ B be homomorphisms. Then

BxnG Ilg

11
AXB(BXHG)—\'BXHG G

A . B - H
! J

and Axg (B xy G) = Axy G. (Composition of pullbacks is a pullback).

Proof.
AXB (B XH G) = {(as (b’ g)) | ae A’ (b’ g) € B><H G»I(a) = HB(b’ g) = b}

In this description, b is redundant because it is determined ayvia b = i(a).

(b, g) € B xy G means thaj(b) = ¢(g). So,
Axg (Bxy G) ={(a,0)j(i(a)=¢Q)} = AxuG.

Note some special cases:
1. If H = {e} thenj(b) = ¢(g) holdsV¥b, g, soB x;q G =B xG.
2. If B< H andj is the inclusion, then

Bxy G={(b,g)] j(b) =¢(g)}, sobisredundant
={ge G| ¢(g) € B}

=¢7'(B)
Proposition 1.5.4.Let
BxuG & g
Ilg ¢
B— 1 .H

be a pullback. ThekerIlg = ker¢ andkerIlg = ker |.
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Proof.

kerllg = {(b,g) € Bx G| b =eand¢(g) = j(b)}
={(6 9 eBxG|#(g) = j(€) =€
={e} xkerp cBxG

kerg¢

IR

Now consider the special case wh@&e H andj is inclusion. SefA = B xy G = ¢1(B).

Proposition 1.5.5.
1. If B< Hthen A< G.

2. If B< Handg is onto then GA = H/B.

Proof.
1. Supposd <« H. Leta e A. Then forg € G,

¢(gag ™) = ¢(9)¢(@)p(g) "t € B, sincep(a) € B < H,
sogag? e A

2. Lety be the composition
G v H —» H/B,

whereq is the quotient map. Thep(A) c B = kerg soA c kery. If g € kery theng(g) €
kerg = B, sog € ¢71(B) = A. Thus, ke = A. Hence,

G G

w| T

since bothp andq are onto.
i

Theorem 1.5.6(Fourth Isomorphism Theorem$uppose N« G. Then the quotient map:ds — G/N
induces a bijection between the subgroups of G which containd\tee subgroups of . Explicitly,

A<Gr qA) <G/N, and
X<G/N-qgi(X)<G

Moreover, this bijection satisfies
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1. A<Biffq(A) < q(B), and in this case BA = q(B) : q(A).
2. AN B)=q(A) nq(B).
3. A< Biffq(A) < q(B).

Proof. Exercise.
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1.6 Symmetric Groups

1Snl = n!

Notation for elements ofS,: Consideto € Sg given by:

o(l)=2
o(2)=4
o(3)=5
o(4)=6
o(5)=3
oc6)=1

Mapping Notation:

N
BN
g1 w
o b~
w o1
= o

Cycle Notation:
oc=(1246)35)

Usually omit cycles of length one. eg.= (1 4 3) means (1 4 3)(2)(5)(6).
The group operation 08, is = given by

O*xT=TOoO

Note: Dummit and Foote use the opposite conventiont = o o r. However, the results are
isomorphic; 6, *) = (Sy, »).

Notation: Sy := permutations oX with f xg=go f.

S| = permutations oK with f g = f og.

or=(1246)35)(143)=(1235)(46)
170=(143((1246)(35)=(16)(2456)
So0S, is not abelian.

Note: There is an ambiguity in the cycle notation: (1 2 4 6)(8&uld mean eithes- or (1 2 4 6)=
(3 5). This is not important because these are equal.
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1.6.1 Conjugation inS,
Example 1.6.1.Letoc=(123)(45)7 = (25). Then

ot 1= (25)(123)(45)(25E (153)(42)
This is obtained frona- by switching2 and5 (in the cycle notation).

Proposition 1.6.2.Leto, T € S;,, with

@

Then
ot = (@) - EM) - D) o T E)).

Proof. In general, for1)(j) = v1(o(z(j))). So
(ror ) aY) = r o (r(raY)) = T (o (@) = v 1a?

etc. ]
Notice thatror~! has the same cycle type as
Corollary 1.6.3. o is conjugate tar’ < o ando’ have the same cycle type.

Proof. Above shows that any conjugate @thas the same cycle type as Conversely, suppose that
o, o’ have the same cycle type. Let

1)

O‘:(a(1 ..a(lfl))___(agl).__agn))
o = (agl)/ ag-fl)/).”(ar(.‘l)/ a,({”)’)

Chooser € S, such thatr (@) = &, Theno’ = ror7L. O

1.6.2 The Alternating Group

Define the polynomiah by
A, %) = [ |06 = x)

i<j
Foro € S, let
a(A)(Xes - - -5 Xn) = A% (1), . . ., X, (N)).
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Here, all the same factors appear, but with some signs eders
SoOA = A,
Definee : S, — {1,-1} by

1 if oA =A
e(o) = _ .
-1 if cA = -A

{1, -1} is a group under multiplicatiore{ C,), ande is a group homomorphism.
SetA, ;= kere < S,,. This is thealternating group.

Proposition 1.6.4.Lety = (p q) € S, be a transposition (ie2-cycle). Thery ¢ A, (ie. yA = —A).
Proof. Sayp < q.

A= H(Xi = Xj)

= 0% = xa)(| 06 =3 [ =] Jos = x| Joa = [ ] =)
i<p i>p i<q i>q ;.{gg
By applyingy to A:
o (Xp — Xq) becomesxy — Xp) = —(Xp — Xq),
e The factorg [Ti<p(% — Xp)) and( [Ti4(X — Xq)) switch,

e The factorg []i-p(Xp — X)) and( [Ti-q(Xq — X)) switch, and

( ﬂ (% = X))

i;&p,q
i#pq

e The factor

is unchanged.
Thus,yA = -A.
Any permutation can be written (in many ways) as a productasfepositions.

Corollary 1.6.5. o € A, < o is the product of an even number of transpositions.
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1.7 Group Actions

Theorem 1.7.1(Lagrange’s Theorem)Let G be finite, H< G. ThenH| divides|G|, and

G:H:= :clj—ll = # of left cosets of H in G # of right cosets of H in G

(G : His called theindexof H in G).

Proof. Define the equivalence relatiehbyg ~ g < gH = g'H. Forg € G, |H| = |gH| (because
the mapx — gxis a bijection). Hence; partitionsG into equivalence classes (cosetsHf each
containing/H| elements. ie.

|G| = (number of equiv. classes)(number of elts. per equiv. class)
= (number of left cosetsy |H]|

Similarly, |G| = (number of right cosetsj [H|. m|
Corollary 1.7.2. If H <« G then|G/H| = |G|/[H|.
Corollary 1.7.3. For x € G, |x| divides|G]|.
Proof. SetH = (x). Then|x| = |H]| | IG|. O
Corollary 1.7.4. If |G| = p, a prime number, then & C,.
Proof. Letx € G, x # €. Then|x| = p, s0G = (X) = Cy(X). O
Definition 1.7.5. A left action of a group G on a set X consists of an operation

Gx X X
(9.X) = g- X
such that:
1. (gh)-x=9g-(h-x) Vg,heG,xe X, and
2. ex=x VYxeX.
Equivalently, an action of G on X is a group homomorphismGs,.

Example 1.7.6.
1. Fafield, G= GL,(F), X = F".
G acts on X by matrix multiplication, Ax = AX.
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2. G any group, %= G.
G acts by left multiplication on X, ie. -gx = gx.

3. G agroup, N« G.
G acts by conjugation on N, ie.-x = gxg 2.

(gh) - x = ghxgh)™ = ghxtr'g™ = g(h-x)g™* = g- (h- X).
In this example, the image of & S lies in Aut(N), ie.
g-(xy) = gxyg™" = gxg'gyg™ = (g- (g y)-
Note special case where NG.

Similarly, we may define a right action (it is a group homontogm G — Sy). Given a right
actiono of G on X, can define a left action @ on X by

g-x:=x-gt

Example 1.7.7.G = S,, X ={1,...,n}. Then

Xx G Xby j-o=o(])
yields a right action of G on X, ie.

j-(or) =(07)(j) = (roo)(j) =7(c(})) =(j - 0) - 7.

. Define left action Gx X — X byo - j := j- o7t = o7(j).
Definition 1.7.8. Let Gx X — X be a (left) action of G on X. Let« X. Theorbit of x is

Orb(x) :={g-x|ge G} c X

Thestabilizerof x is
Stabk) :={geG|g-x=x} cG.

Proposition 1.7.9. Stabk) < G.
Proposition 1.7.10.0rb(x) = Orb(y) < y € Orb(x).

Proof.
= Suppose Ork) = Orb(y). Then

y =e-ye Orb(y) = Orb(x).
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& Suppose € Orb(x). Writey = g- X, for someg € G.
~gty=g?t-(g-¥ =glg-x=e-x=xand thusx € Orb(y).

If ze Orb(y) thenz=g -y=9 -(g-X) = (gg) - xsoz e Orb(x). Hence Orbx) c Orb(y), and
similarly, Orbfy) c Orb(x).

O

Corollary 1.7.11. Given an action of G on X, the relation x y <= Orb(x) = Orb(y) is an
equivalence relation.

Theorem 1.7.12.Let G be afinite group. Let & X — X be an action of G on X. Then forexX,
|Orb(X)| |Stab§)] = |G-
Note: Lagrange’s Theorem is a special caseHies G, X = {left cosets oH}.
Gx X Xbyg-C=gC
defines a left action. Set= H.

Proof.
(€]

[StabK)] G : Stab{) = # of left cosets of StalX) in G

Define

0 : {left cosets of Stal() = H} — Orb(x)
gHH— g- X

1. 6is well-defined:
SupposgH = g’H. Theng = g’h for someh € H. Hence,

g-x=(gh)-x=9g-(h-x) =g -x sinceh e Stabg).

2. 0 is surjective:
If y € Orb(X) theny = g- X, for someg € G. Thusy = 6(gH).

3. fis injective:
Suppos#(gH) = 6(g’'H). Theng- x =g - Xx. Hence,

X=g'-(@-x=g"(9-¥=(@"Y) x

-9y € H,ie.g = ghfor someh e H. Thusg’H = gH.
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.. @ is a bijection and the theorem follows. O

Corollary 1.7.13. Let G be a finite group acting on a finite set X. Then

(€]
Xi= D
|Stab)|’
where the sum is taken over one element from each orbit.

Proof. The equivalence relation~ y <= Orb(x) = Orb(y) partitionsX into disjoint subsets. So

IX| = Z |Orb(x)], summed over one element from each orbit
3 Z G|
|Stab)|

Consider the action d& on itself by conjugation. ieX = G andg- x = gxg*. Then
Stab§) = {ge G lg-x=x ={geGlgxg" = x} = Ca(X)
Corollary 1.7.14. Class Formula:

summed over one element from each conjugacy class.
Corollary 1.7.15. Let p be prime and let G be a p-group (|&| is a power of p). The@(G) # {€}
Proof. Cg(e) = G. By the class formula,

) Gl
Gl= )

all conj. classes

G| G|
= —+ _
|CG(e)| rema%l:g conj.|CG(X)|
classes

o G
LD Y

remaining conj.
classes

. AX # esuch thag'G—' is not divisible byp. Since|G| = p", this can happen only whé@g(X)| =
ie. when G(X) = G. Ile. de # x € G such that G(X) = G, ie. x € Z(G). m]
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Corollary 1.7.16. If |G| = p? where p is prime then G is abelian.

Proof. Let x # e such thatx € Z(G). If G = (x) thenG is abelian. Otherwisgx| = p, and since
x € Z(G), (X) < G. So,3y € G such thaly generate$s/(x) = C,. Thenx andy generat&s, and since
X € Z(G), x & y. HenceG is abelian. m|
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1.8 Semi Direct Products

Let H, K be subgroups d&. Defineu : H x K — G by u(h, k) = hk.
Proposition 1.8.1.1f H N K = {e} thenu is injective.
Proof. Supposék = h'k’. Then
Mth=Kk?*eHNK = {g}
sohl=e=kk?t ie.h=h andk=K. m
Assuming (for the rest of this section) thdtn K = {e}, the above says
u:HxKmHHKcG

is a bijection. We wish to compaitd x K to HK (which, in general, may not be a subgroup&t
Suppose thatl < G. ThenHK = KH is a subgroup o5, but is not necessarily isomorphicltbx K.
BesidesH x K, what other possibilities are there fEIiK?

Supposa = hkandg’ = 'k’ lie in HK. Then

gg = hkHk' = hkHk kK = h"k”

whereh” = h(kh'k™1) € H andk” = kk € K.
ie., Labelling elements dfiK by the corresponding elementhhx K, the group operation irlK
can be written
(h,K)(h', k) = (hk- ', kK)

wherek - ' := kitk™? (the restriction taK of the conjugation action d& on the normal subgroul).
Recall that this action satisfié&s (hihy) = (k- hy)(k - hy), ie. it is a homomorphism into Aut).
Reverse the process:

Definition 1.8.2. Given groups KK together with a group homomorphisgn: K — Aut(H), (an
action of K on H — denote kh = ¢(k)(h)), thesemidirect producH = K is the set Hx K with the
binary operation

(h,K)(H,K) := (h(k - h"), kK).

Proposition 1.8.3.H =« K forms a group.
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Proof.
((h, k)(h', K))(h", k") = (h(k - 1), kK)(h", k")
= (h(k- h")(kK - h"),kKk”), and
(h, )((h", K)(h", k")) = (h, )(h'(k" - h"), K'’k”)
= (h(k- (h'(k" - h"))), kKk™").
However, since I c Aut(H),
k- (WK -h")=(k-h)(K- (K -h"))=(k-h)KK-h").
S ((h k(S k) (7, k7)) = (h K)((H, K) (R, k7).

e o), K) = (e{e- ), eK) = (eH,eK) = (H.,K), and
(h,K)(e, € = (h(k- 6), ke) = (he ke) = (h, k).

(Here,k - e = esince Inp c Aut(H).) Hence € e) is the identity.

(h KKk -htk?) =(hk-(k?* hh),kk?
= (h((kk™) - h™%), kk'™)
= (h(e- %), kk™Y)
= (hh %, kkY)
=(e,e), and
(kL Lk D(hK) = (K- K- h), k%K)
=kt (h*h),k*k), since Imp c Aut(H)

=k ee
= (e €).
Hence b, k)™t = (k1. h1 k).
Define
iH:HP~ HxK
h— (h,e), and
iK K> HxK
k- (e k)
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Proposition 1.8.4.iy and ik are (injective) group homomorphisms.
Proof.

(h,e)(, e = (h(e- h),ed = (hH, g
(e K)(eK) = (e(k - €),kK) = (ee kK) = (e kK)

Usingiy andik, regardH andK as subgroups dfl ~ K.

ie. H=iy(H) = {(h,e)) < H=K
K = ix(K) = {(eK)} < HxK

Proposition 1.8.5.H < (H = K) and(H = K)/H = K.
Proof. Define¢ : H < K - K by ¢(h, k) = k. Then

¢((h, K)(h', k) = ¢(h(k - 1), kK) = kK
S0 ¢ is a group homomorphism.

kerg = {(h,e) e H= K} =iy(H) = H.

Returning to the motivating exampld, < G, K < G,H n K = {e}, and by construction,
HK = H < K.

Proposition 1.8.6.1f both H < G and K <« G with HN K = {e} thenu : H x K —» HK is an
isomorphism.

Proof. Forh e H,k € K,
hkh'k™? = (hkhH)k* e K, and
hkh k™t = h(khk ™) e H

Sohkirtk*e HN K = {e}.
ie. hk=kh VheH,keK.

Hence
u(h, Ku(h', k) = hkHk' = hitkk' = u(hh', kk') = u((h, k)(h’, k')).

~. it is a homomorphisms, 30: H x K — HK. O
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Proposition 1.8.7.Let H, K be groups and lep : K — Aut(H). TFAE:
1. Hx K= H =K.
2. ¢ is the trivial homomorphism.
3. K< (H = K).

Proof.

1= 2:
Yh,h" e H k. k' e K, (hh,kK) = (h,k)(h',K) = (h(k - h"), kkK)

Lo(()=k-h=h Vh,ie.¢(K) = 14.
2 = 3: SinceH, K generateH = K, it suffices to checkKh™* c K, Vh € H. Note that

(he)™ = (he),

SO
(h.e)(e.K)(h™.e) = (h(e- e).eR(h™,e)
= (h,K)(h™, e
= (h(k- h™),ke)
= (hht,ke), by?2
= (g k) e K
3 = 1. This s the previous proposition. O

In particular, this proposition says that i has normal subgroupdd,K such that
HNK ={e} andHK = G thenG = H x K.

Theorem 1.8.8.Let¢ : G — K be a group homomorphism. Suppasa@a group homomorphism
s: K - G such thaps = 1«. (s is called asectionor a right splitting of ¢.) Then

G = (kerg) K

Proof. Observe that existence of a functisn K — G such thatps = 1 implies thaty is onto ands
is injective. LetH = ker¢. Set

K=Ims «— sK

Then N N
(kerg) «~K = H <K =z=HK <G

29



so it sufices to showHK = G.
Giveng € G, letk = ¢(g) € K and let

k=s(K) = sp(g) € K.
Then 3
¢(K) = ¢sp(0) = #(9),
sincegs = 1¢. Hencegk™ € ker¢ = H, and sog € HK. ThusG = HK. O

A right splitting of ¢ does not maké& a product. In contrast, a left splitting doesply thatG is
a product:

Theorem 1.8.9.LetH< G. Leti: H — G be the inclusion map. Suppa3a@ group homomorphism
r : G- Hsuchthatri= 14. Then
G=HxG/H.

Proof. Defined : G — H x (G/H) by
6(9) = (r9.q9)

whereq : G — G/H is the quotient projectiog — gH. Thend is a homomorphism.
If 6(g) = 6(g’) thenr(g) = r(g’) andgH = g'H, so letg’ = ghfor someh € H. Hence

r(@) =r(g@) =r(g)r(h),
SO
e=r(h) =ri(h) = h.

.. =gh=ge=g. Thusé is injective.
To show@ is surjective, it stfices to showH x {e} c Imf and{e} x (G/H) c Imé, since these
generateH x (G/H).
Givenh e H,
o(h) = (r(h), hH) = (h, e).

Givenq(g) = gH € G/H, leth = r(g) and sety = h™'g. Then
6(g) = (r(h™*g). a(h™g))
= (r(h™)r(g). a(9))

= (h*h, q())
= (&.9(9)

Sod is onto. O
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Example 1.8.10.Use¢ = € : S3 — C,. Thenker¢ = A;. Let

s:C,—> Sz hy
s(l)=e
s(-1)=(12)

s is a right splitting. Thus $= Az < C,.

31



1.9 Sylow Theorems

Throughout this sectiorp denotes a prime ar@ is a finite group.
SupposéG| = n. If H < G then by LagrangeH| | n. However, the converse is false, edGit= Ss
thenn = 120, butG has no subgroups of order, 13, or 40. However a partial converse:

Theorem 1.9.1((First) Sylow Theorem)If pt | |G| thendH < G such thatH| = p'.
Proof. Write |G| = mpg. Findr > 0 such thap" | mbut p"*1 4 m.

Lemma 1.9.2.p' } ( r?f ) but g+t )I(( I’T;)? )

Proof.

( mp ): (MP)(mp - 1)--- (mP - p + 1)
p! (P)(pt-1)---3-2-1
If0 < j < ptthen

# of timesp dividesp' — j = # of timesp divides
= # of timesp dividesmg — j
.. Powers ofp cancel except for those in the factor ]

Proof of Theorem continuetlet S = {S c G | |S| = p'}. Define right action

SxG—~S8S by S-g=Sg

S has( rr;f ) elements, so there exists an orlit {S1, Sy, ..., Sk} (of sizek) such thatp™* 1 k.

(If p+! divided the number of elements in each orbit tigt would divide|S)).
Orb(S;) = X by definition. SeH := StabS,) < G. Then

_G_mp _ () e

X k k)"
By constructionp'* 1 k so p dividesmat least as many times aslividesk. Thus|H]| is divisible by
p', and in particular,

HI

H| > p.
Pickse S;. ThenYhe H, she S; buth # Y = sh+ sh. Hence
p' =S4l > [HI.
- Hl = ph. O
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Definition 1.9.3. SupposéG| = n. Let p be a prime and let' pe the largest power of p dividing n.
Then a subgroup of G having ordet ip called aSylow p-subgroupof G.

Notation: Syl (G) := {Sylow p-subgroups oG}.
Corollary 1.9.4 (Corollary to Sylow Theorem)Syl,(G) is non-empty/p.
SupposéH < G. Thenvg € G, gHg™? < G and
H +— gHg!
X - gxg*
In particular,gHg ™| = |H|. (gHg ! is called aconjugate subgroupof H in G.)
PeSyl(G) = gPg' e Syl(G) YgeG.
Pick P € Syl (G). Let
X = {Sylow p-subgroups o6 which are conjugate te}.

GactsonXbyg-S=gSg?.
If Q <G, can restrict to get an action & on X. For an action ofQ on Syl (G), have

Q| = |Orbgo(S)| Staky(S)|-

Here,
Staly(S) = {g€ Q1 aSq* = S} = Ng(S).

Lemma 1.9.5.1f Q is a p-subgroup then for any Sylow p-subgroup S,
No(S) =SnQ.

Proof. Let H = Ng(S). From the definitionS N Q c H. ConverselyH c Q, so it sufices to show
H c S. ConsidelS H.
SH=HS <G, sinceS <« H.

ISIHI IH
=|S > |S|.
IS N HI | ||SnH| = 1S
H = No(S) < Q = |H| is a power ofp = |[SH) is a power ofp. ButS is a Sylowp-subgroup and
ScSH,soS=SH.
. H=c. ThusH =SnQ. O

ISH =
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Lemma1.9.6.|1X| =1 modp.
Proof. Write X = {P = S, ..., S;}. For anyQ the action ofQ on X dividesX into orbits:

X| = > (#of elts. in that orbit)
orbits
Apply thiswithQ = S; = P:
Stalp(S) = Np(S) = PN S.
.. |Stalp(S)| | |P|, with equality only whers = P. Hence,

Pl

|Orbe(S)| = m

is one wherts = P, and is divisible byp otherwise. So

IX] = Z (# of elts. in that orbit)

orbits

=1+ Z (# of elts. in that orbit)

orbits not
containingP

=1 modp.

Lemma 1.9.7.1f Q is a p-subgroup then @ P; for some R € X.

Proof. Again,
IX| = Z (# of elts. in that orbit)

orbits

UnlessQ c P; for somej then for each, Q N P; will be a proper subset d, so that

Q|

|Orbo(P))l = m

is divisible byp V.

Butif p| (# of elements in orbit) for each orbit thqm| |X], contradicting the last lemma.
. Q c P; for some;j.

Corollary 1.9.8. Syl,(G) = X.
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Proof. For S € Syl (G), |S|is a power ofp = S c Pj for someP; € X. But|S| = |Pj| since both are
Sylow p-subgroups.
nS=PjeX |

Lemma 1.9.9.ISyl,(G)| | [GI.
Proof. Consider the action d& on Syl ,(G). LetP € Syl,(G).
|G| = |0rb(P)| IStaks(P)|
Orbg(P) = {subgroups o6 conjugate tP} = X = Syl (G).
. |Syl(G)| dividesG. |
In summary:
Theorem 1.9.10((Main) Sylow Theorem)Let G be a finite group and let p be a prime.
1. ISyl,(G)I =1 modp.
2. 1SYL(©)l | (Gl
3. Any two Sylow p-subgroups of G are conjugate (and in pagicisomorphic).

4. Every p-subgroup of G is contained in some Sylow p-sulpgrému particular, every element
whose order is a power of p is contained in some Sylow p-subgroup

Proof. Showed that iX = {Sylow p-subgroups conjugate #} then SyL(G) = X < 3.

Also showedX| =1 modp < 1.

Also showed: everp-subgroup ofs is contained in som8 € X < 4.

Also showedSylx(G)| | 1G] = 2. O

Corollary 1.9.11. Let P be a Sylow p-subgroup of G. Then<PG <= P is the unique Sylow
p-subgroup.

Proof.
«: Supposel! Sylow p-subgroup. SincgPg is a Sylowp-subgroup/g,

gPg'=P VG,
ie.P<G.

=: Suppose’ < G. Then the only subgroup & conjugate td? is P. By Sylow Theorem, 3P is
the only Sylowp-subgroup.
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Corollary 1.9.12. Let P be a Sylow p-subgroup of G. Let=NNg(P). Then
Ng(N) = N.
In particular, N< G iff P < G.

Proof. SetH := Ng(N). ThenVh € H, hPit! ¢ N and|hPhrl| = |P|, sohPh! is a Sylowp-subgroup
of G. But thenhPhr! is also a Sylowp-subgroup ofN. However,P < N, soP is the unique Sylow
p-subgroup ofN.

~.hPht = P, soh € Ng(P) = N. HenceH c N, soH = N.

In particular, ifN < GthenN =H = GsoP <« G. |
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1.10 Applications of Sylow’s Theorem
1. SupposéG| = 15. Then

ISyl(G)l=1 mod 5

. A element of Sy(G). Let H be the unique Sylow 5-subgroup, Bo< G. Similarly,

ISyL(G)l=1 mod 3

ISyL(G)| | 15 = ISyL(G) =1,

sod! Sylow 3-subgroug, and soK < G.

Pick generatord € H,k € K; |h| = 5, k] = 3. H, K are normalk= hk = kh, solhkl = 15. Hence,
G has an element of order 15, €0= Cs.

2. Supposé¢s| = 10.
ISyL(G)l =1 mod 5
ISyls(G)| | 10

Let H be the unique Sylow 5-subgroup. Thien< G. Pick a generatadn.

= |Syl(G)| = 1.

ISyL(G)l=1 mod 2

syL@) |10 T ISyL(G)| = 1 or &

Case I:|SyL(G)| = 1. ThenG = C,, using argument above.

Case II: |Syl,(G)| = 5.
Let K be a Sylow 2-subgroug = {e k}. If hk = khthen|hk = 10 and we would be in
Case |. Hence,

hkh* = k, = generator of a dierent Sylow 2-subgroup

Similarly, h’kh=2, h®kh~3, h*kh~* must be the generators of the other Sylow 2-subgroups.
(Again, if Wkh™ = hikh for i # j thenhi~'k = kh'=' and we would be in Case 1.)
.. Can list the ten elements Gf. )

e

h hkht

h?  hkh2

h® h3kh3

h* htkh
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From this, we can construct the group table. eg. whbkis
Well, hk # hi for any j, sohk has order 2.

- hkhk= e
hkh= k! = k
- hk = h(hkh)
— h%kh
= h?(hkh)h
= hekI?
= hekh3,

This group must b®.

his (12345)
ki (25)(34)

Conclusion: IfiG| = 10 thenG = Cig0or G = Dq.
In passing: note the existence of an elemeot order 2 inD,q gives a splitting

Dio=- -2 Dipo/H=GC;
S

where ifC, = {g, X} thens(x) = k. Thus

DlOEHNC2:C5><C2.
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The corresponding homomorphism C, — Aut(Cs) is given byk - h = h ! = h*,
(Aut(Cs) = C, is generated by the mayp takingh to h?. The only element of order 2 in
Aut(Cs) is T o 7, which ish - h?))

3. Supposé¢G| = 12. Then

ISyL(G)[=10r3
ISyl,(G)| = 1 or 4

Case I:|SyL,(G)| = 3 and|Syl;(G)| = 4.
Since two distinct groups of order 3 intersect only in theniity, and each Sylow 3-
subgroup has 2 elements of ordeiGhas 4x 2 = 8 elements of order 3. The remaining
4 elements must form a Sylow 2-subgroup.
.. There aren’t enough elements left to form any more Sylow l&gsaups. This is a
contradiction, so Case | doesn’t occur.

Case II: |Syl(G) = 1.
Let H be the unique Sylow 2-subgroup, Bb< G. |H| = 4, so eitheH = C, or H =
C2 X Cz.

Case lla:H = Cy(0).

Let r be an element of some Sylow 3-subgrolp= 3.

torteH

1 = 1ot ! = eithero or &>
[rot™| =lo| = 4

If ror~1 = o3 then
0t = (o) =0 =0
Moreover, 3 = e, so

3 2 3 1 3

o =701t =t = %0 = r(rtr ) = 00

This is a contradiction. Thusgr™! = 0.
Using the fact that ando- commutejro| = 12. ThusG = Cy,.

Equivalent way of phrasing argument thatr ' = o: LetT = {e,7,7%}. Hisnormal= T
actsonH viat-o ;= rtor 1.

IOrb(c)| |Stab¢r)| = [T| = 3.

o has order 2> x- o has order 2/x € T. So Orb¢) c {o, o°}. Since|Orb(o)| divides 3,
Orb(o) = {o}.
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Case llb:

Case llbi:

Case llIbii:

ntort =0,

Another rephrasingH < G.

G- _--G/H=C;,
S

wherestakes the generatarto 7. ie. The existence of an elementf order 3 inG gives
a splitting, so
G= C4 >y C3

for someg : C3 — Aut(C4). However, AutC,) = C, = {1c, ando +— o3}. so the only
homomorphisnCs — Aut(C,) is trivial.

LG = C4 X C3 = C12-
H = Cz X Cz.
Let

H={eo0003, o°=e

j
LetT = {e 7, 7%} be some Sylow 3-subgroup.

G- __-G/H=Cs,
S

and thus,
G = H ><1¢ T,

with ¢ : T — Aut(H) = permutations ofo 1, 0, 073} = S3. SO
(p(1))(0o1) = tot Tt = 0y, 02, OF 073,

o1t~ ! = 0. Then since the order @f(7) must divide the order of, which is 3,4(r) = id.
Henceg = id and
GzHXxT=C,xC,xCs.

TO'lT_l * 071.
Sotoit! = 0 or o3. By symmetry, assumeorit~! = 0. Theng(r) must be a 3-cycle,
S0ToRT ! = 0.
Elements ofG:
e 01 (o) 03
T TO1 TO 2 TO3

T2 T20'1 T20'2 T20'3
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Case llI:

Eacho; has order 2, and the elements?, ro-; andr?cj each have order 3. Multiplication
is determined byo 77! = 0 andro,r! = 0. eg.

o7 = 17 Yot = 10t = tro,r L = 1o,
What group is this? LeTy, T, T3, T4 be the Sylow 3-subgroups. ie.

T =10, (to))?} j=1,23
Ta={e1,7%
Let X = {T1, T,, T3, T4}. Conjugation by elements @& permutes elements o, ie. have

morphism
6:Gr Sx = S4.

What isé(r)?

Tyt = {rer Y 1(roy)t™ = 100, T(ro) 27 = T
tTort={rertr(ro)t =105, - - - }=T;3
TT3T_1 = Tl

T t=T,

ie. 7 5 (123).
What ISQ(O'l)’) O'1T10'11 =7
Sufices to computer;(to1)o ™.

oi(to)oyt = ot = 10,
O'l(TO'l)O'Il =Ta o1l = 2= 0'1T30'11 = Tq. LikeWise,O'lT40'11 =T, Soo1
(13)(24).

What is6(o)?
O'zT]_O'El = 0'27'0'10'51 = T(J'%O'El =t100€T,

etc., geto, — (1 2)(3 4).
G = A,

ISyL(G)| = 3, so|Syl,(G)| = 1.
Let T = {e 7,72} be the unique Sylow 3-subgroup, 3o< G. Let H be a Sylow 2-
subgroup|H| = 4, soH = C4 or C, x C,. Then

H—>G—>G/T
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Is an isomorphism (it is an injection sinéé N T = {e} for degree reasons, and since
[H| = 4 = |G/T], it is bijective). This splitg): G+ G/T, so

Casellla:H = C, x C,.
LetH = {e 01,05, 03}.
¢ H - AUtT = AutC; = C,.

If ¢(h) = 1+ Yh € H thenG = T x H, transposing to Case Il. Sp is non-trivial,
ie. p()(r) = 72 for someh € H. Then

kerg = C,
sodh € H such thath # eandg¢(h) = 1;. ¢()(r) = 72 for the other two non-trivial
elementdy of H. By symmetry, suppos¢(os) = 1r, ie.

¢(o1)(7) = o170t = 77,

$(02)(7) = o707t = 7,
$(03)(7) = ogTozt = 7.
This determines multiplication iG.
What group is this¥rzr = 103, SO|o37| = |o3| 1] = 2- 3 = 6. Setx = o37. Elements of

G:
e x X xX x X
o1 XOo1 X20'1 X3O'1 X4O'1 X50'1
Multiplication of elements in this form can be derived from:

o1X = 0'1X0'Ilo'1 = 0'10'37'0'110'1 = 0'3(0'170'11)0'1 = o370 = 0'2750'1 = X°0y.

So0G = Dyo.
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X~ (123456)
o1 (26)(35)
What are the 3 Sylow 2-subgroups? Onélis: {e, 01, 02, 03}. Note that
03 = 0'%7'3 =,
02 =0301 = X30'1
S H={eoy, XSO']_, Xs}.
To find the others, piclg € G and computgHg™.
g=x = gHg! = {e xo1x L, x> x7 L, xoex Y
= {e, xo1 X2, X}o 12, X}
= {& X()°o1, X*(x°)°01, %)
= {&, X%y, X0, X°)
= {e, X20'1, X50'1, X3}
The other ige, x*o1, Xo1, X}.
Note that diferent Sylowp-subgroups can intersect non-trivially. eg. Hex&js in all
Sylow 2-subgroups.
Case lllb: H = C,.
LetH = {e, o, 02, 03}). Recall

G = T ><1¢ H,
T = {e’ T’ Tz}’
¢ :H=Csm Aut(T) = C,
Aside from trivial¢ (yieldingG = T xH = C3xC4, which is Case lla)p acts non-trivially

ono ando3. ie. oro! = 2. Elements ofs are:

e g 0'2 0'3

T TO TO 2 TO 3

T2 TZO' T20'2 T20'3

Multiplication is determined byro* = 7% (and7® = e, o* = e).

In summary, there are 5 (non-isomorphic) groups of order,2; C, x C, x C3, A4, D1p, and
C3 ~ C4.
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1.11 Solvable and Nilpotent Groups

LetG be a groupA,B c G.
Notation: [A, B] := subgrp. ofG generated by[a,b] | a€ A,b € B}. So [G,G] is the commutator
subgroup ofG.

Inductively define:

GO =G,
G" =[G GV and
GO =G,

G .= [G"D,G].

Then

G=GO0>GW>G@>...>GM >... Derived (or commutator) seriesof G
1] I IA IA
GO>GW>G@>...>GM>... Lower central seriesof G

Definition 1.11.1. G is calledsolvableif IN such that @ = {e}. G is callednilpotentif IN such
that GMN) = {e}.

SinceG™ < G'™ nilpotent= solvable. We already showe@[G] <« G, soG™ <« G, In fact:

Proposition 1.11.2.
1. G « G Vn. In particular, GV <« G™1 (because for A B < G, if A< G then A< B).

2. GM 4G Vn. In particular, G <« G'(™Y),

Proof.
1. Forg € G and f, b] a generator o6™, wherea, b € G,

ola,blg* = [gag*, gbg™'] € [G" D, G 1]
by induction.

2. Forg e G and [, b] a generator o6'™, wherea ¢ GV andb € G,
gla.blg™ = [gag™t,gbg '] € [G"V,G]

by induction.
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Notice thatG™/G™ = GV is abelian. Conversely:
Proposition 1.11.3.G is solvableff 7 a finite sequence of subgroups
{ef=Hy<Hn1<---<Hg=G
such that H_1/H, is abelian for all n.

Proof. Suppose that such a sequence exists. Sthce/H, is abelian, Hy_1, H,_1] < H, for all n.
Inductively,
G" = [G™D,GM™Y] < [Hn_1, Hn1] < Hi

soG™ < H, ¥n. Thus,
GN < Hy = (g

=GN = (g} o
Lemma 1.11.4.S, is solvable ffn < 5.

Proof.
n=12: S,is abelian and thus solvable.

n = 3: Note that §, 7] is always an even permutation, so
[Sn,Sn] <A, VN
Whenn = 3, Az = C; is abelian, s@&3 is solvable.
n = 4: Since B4, S4] < A4, in sufices to check thady is solvable. Let
H=1{e (12)(34)(13)(24)(14)(23}).
ThenH = C, x C, is abelianH < A4, and
|As/HI =3,

SoAs/H = Csis abelian.
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n>5: Letoc=(153),7=(142). Then

[on7] = ottt

—(153)(142)(135)(124)
=(123)e[Sn S

Similarly, every 3-cycle is a commutator of 3-cycles, pardin > 5. Thus,vk, AY contains
every 3-cycle.

- AY % (e} VK, sSOA, is not solvable.

Theorem 1.11.5.Suppose A1 B. Then B is solvable— both A and BA are solvable.
Furthermore, if A< B and B is solvable then A is solvable (even if A is not normal)in

Proof. SupposeB is solvable andA < B. ThenAl) < BD) vj, soB® = {e} for somek = A¥ = {g},
SoAis solvable.

=: Suppose now thah < B and letr : B — B/A be the canonical projection. ¥ € Blies in B’
thenn(x) € (B/A)’, and conversely, if

y = @vo) '@ € (B/AY
theny = n(uvuiv?) e #(B"). Hence,

(B) = (B/AY
n(B?) = n(B") = (x(B"))’ = (B/A)" = (B/A)?

7T(B(k)) S — (B/A)(k)
Sincen(B®) = {e}, (B/A)® = {e}, whenceB/A is solvable.

< SupposeA andB/A are both solvable. Ife} = (B/A)® = n(BW) thenB® c A. Thus,B&)) =
(B c AD, So if AM = {e} thenB&*™ = {e}. Hence B is solvable.

Theorem 1.11.6.G is finite and solvable> 3 subgroups

{g=An<An1<9--- <A <A =G

such that A/A|.1 is cyclic of prime ordew j.
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Proof. The proceding theorem reduces the proof to the case whé&eabelian, and it is clear that a
finite abelian group has such a composition series. m]

Upper Central Series:
Given a grougs, inductively defineZ,(G) as follows: Set, := {e}. Having definedZ,_; such that
Z, 1 < G, defineZ, as the pullback:

Zn

Z(G/Zn—l)

G qn—l

whereq,_; : G — G/Z,_, is the quotient map. ie.

Zn = qﬁ_ll(Z(G/Zn—l))-

>G/Zn 1

Z, < G because 46/Z, 1) < G/Zn ;.

Onh-1([Zn, G]) € [2(G/Zn-1,G/Zn 1] = {€},
SO [Z,,G] c kergn_1 = Z,_1.
Lemma 1.11.7.G is nilpotent ff Zy(G) = G for some N.

Proof.
= Suppos&y = G.
GW =[G,G] =[Zn,C] < Zn-1.

Inductively,
G'® = [G'*Y,C] < [Zy-s1), C] < Znok

-GN < 7, = {e} soG is nilpotent.
<: Suppos&s’™ = {e}. Inductively (ask decreases), assume
[GW,G] = G*D < 7y a.
Supposex € G'®. Giveng = On_k-1(9) € G/Zn_k-1,

[AN-k-1(X), O] = On-k-1[X, 0]
€ Qu-k-1([G'Y, G))
C On-k-1(ZN—k-1)

= {e}.
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" On_k-1(X) commutes witlg Vg € G/Zy_k_1 SO
On-k-1(X) € Z(G/Zn-k-1).

SO X € k.
ThusG'® < Zy_ Yk. Therefore,
Zy>G9=G
. Zy = G as required.
i
Corollary 1.11.8. If G is a finite group then G is nilpotenfivn, Z(G/Z,) # {€} unless GZ, = {e}.
Proof. If Z(G/Z,) = {e} thenZ,,; = q;_ll{e} = Z,, So the series
Zy<Zy < Zy<Zp1 <
never reache® (unlessz, = G already).
Conversely, itVn, Z(G/Z,) + {€} then
Zn<Zna YN
and sinces is finite, eventuallyz, = G. ]

Corollary 1.11.9. If G is a p-group then G is nilpotent.

Lemma 1.11.10.G is nilpotentifG/Z(G) is nilpotent. More precisely,1(G) = G if Zn(G/Z(G)) =
G/Z(G).

Proof. SetH = G/Z(G).
Zy(G)

Z(G)= Zi(H)

p.b.

G

H =G/Z(G) = G/Z1(G)
O

Suppose inductively that, ,(G) is isomorphic to the pullback
Ppoi ——— Zn—Z(H)

p.b.

G——H
(o (]
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By a property of pullbacks (Proposition 1.5.5),
G/Z-1(G) = G/Pn-1 = H/Zy 5(H).

So
Pn ——— Zy1(H) — Z(H/Zy2(H)) = Z(G/Z,-1(G))

p.b. p.b.

G q > H > H/Zn—Z(H) =~ G/Zn_l(G)
1

ThenP, is isomorphic to the composite pullback, which, by defimties Z,(G). So
Z.(G) =P, Vvn.
If H is nilpotent therdN such tha@Zy(H) = H. Then
Zn+1(C) — Zn(H)

p.b.

G > H

a1

showsZy,1 = G.
Conversely, ifZy,1(G) = G for someN then the pullback shows

H/Zn(H) = G/Zn,1(G) = {€}
soZy(H) = H.
Corollary 1.11.11. G is nilpotent jf the sequence of surjections
Q> Q@ H» Q P > Qn >

G G/Z(G)  Q1/Z(Qy) Qn-1/Z(Qn-1)

eventually reachefg}. (Qy = {€} for some N).
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Proof.
=: Qqis nilpotent {f Q1 is nilpotent. So, iQy = {e} thenQy is nilpotent, sy = G is nilpotent.

&: Suppose thdb is nilpotent withZy(G) = G. ThenZy_1(Q1) = Q; and inductivelyZy_«(Qx) =
Q« Yk. Then

Z(Qn-1) = Z1(Qn-1) = Qn-1
SOQn = Qn-1/Z(Qn-1) = {€}.

Corollary 1.11.12. A finite product of nilpotent groups is nilpotent.
Proof. By induction, it sufices to consider the product of two nilpotent groups andG,.

Gl X Gz
Z(Gl X Gz)
_ Gl X Gz
~ Z(Gy) x Z(Gy)
= G1/Z(Gy) x G2/Z(G2)
= Qu(G1) X Qu(G2)

By iterating, Qn(G1 X Gz) = Qn(G1) X Qn(G2). So if Qn,(G1) = {e} and Qn,(G2) = {e} then
QmaXINl,Nz}(Gl X GZ) = {e} O

Theorem 1.11.13.Let G be a finite group. For each prime p, lef Be a Sylow p-subgroup. Then
TFAE:

Qi(G1xGy) =

1. Gis nilpotent.

2. H< G = H < Ng(H) (every proper subgroup of G is a proper subgroup of its nornes).

3. Pb<G Vp.
4. G= ], Pp.
Proof.

1= 2: SupposdH < G. Z(G) < Ng(H), so unless 4) c H, itis immediate thaH < Ng(H).
So assume Z§) c H. Write G := G/Z(G) and let

q:G—G
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be the quotient map. Sét = q(H) < G. G nilpotent= G nilpotent. By induction (assuming 1
= 2 is known for all groups of order less thi®|),

H < Ng(H).
But then by the # Isomorphism Theorem,
H =g (H) < g"Ng(H) = Ne(H).
2= 3: LetN = Ng(Pp). By a corollary to the Sylow Theorem (Corollary 1.9.12);(Nl) = N.

.. Hypothesis 2= N = G, soP, < G.

3= 4: Write
Gl = py'py - PRy
Suppose by induction (om) that

H=P,---P

Pm-1 1 Pm-1°
ThenH <« G, P,, < G, andH n P, = {e}. Hence,
Ppl ce Ppm = H Ppm = H X Ppm = Ppl X M Ppm.

However,|Pp, --- Py | = |G| S0Py, --- Py, = G.

4= 1: It was already shown thgt-groups are nilpotent and a finite product of nilpotent gmig
nilpotent.
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1.12 Free Groups

Theorem 1.12.1.A subgroup of a free group is free.

Proof. Let S be a set and et = F(S). SupposeH < G. Let
S’ = S1I {inverses of elts. ir5}.

Recall that elements @ are finite length words 15 andS’. Let M(S’) denote the free monoid
onS’ (so thatinM(S’), ss* does not simplify fors € S). 3 a surjective map of monoids: M(S’) —
F(S) given by

g(x) = x V¥xe M(S).

Write X for q(X).

Say that a wordk = x; - - - X € M(S’) (wherex € S’ Vi) is reduced (or a reduced representative)
if A a shorter wordy € M(S’) s.t.q(X) = q(y) = X1 - - - X in G.

Well-orderS’. This induces a well-order oM (S’) by ordering the words first by length, and then
lexicographically among words of the same length. Let

R = {reduced wordsc M(S’).
ie. x € Riff x = ming Y{g(x)}. Forg € G, defineg'e M(S’) by
g = ming~(Hg).
ie. § = min{x e M(S’) | HX = Hg}. Let
R=1{31geG}cM(S)

be the set of chosen coset representatives. Clearly, onlizeedwvords can occuR c R.
Lemma 1.12.2.A left substring of an element Ris inR.

Proof. Supposé = cue M(S") withb € Iiiandc a proper substring. Check that R. B
Sinceb € Randc is shorter tharb, Hb # HCT (or else,c would be the chosen coset rep. fab
rather tharb). If ¢ ¢ Rthenc’ < candHc’ = Hc. So

Hb = Htl = HC'U = Heu.
However, the ordering is such that< y = Xxz< yz Soc < ¢ = c'u < b, which contradicts the

minimality of b. ]
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Proof of Theorem continueGivenr e R se &, definev,s € H by
Vis = TS(7)Y, wherer’ =fse R
ie. r’ is the canonical rep. fddfs. SoHr’ = Hfs, and thusys € H.
Noticev;! = r’'s}(f)~%, and
Hr' = HIS = HF = Hr's ™,
and since € R, r is the canonical rep. fadr’s™t. Thus

—1 _
Vis = Vs,

sof{vis|re R se S’} is closed under inverses. Let
T={vseH|reRseS, vs+e.

Note that it is possible to hawgs = V- ¢ withoutr =r” ands=s.

Define¢ : F(T) = H by ¢(vis) := s YVis € T. To finish the proof thaH is free, we show thap
is an isomorphism.

Leth € H. Write h = s;---5 in terms of generators d6. Seth; = e and inductively set
bj+1 = bjs; (ie. bj,1 is the canon. rep. for cosetb; ;).
. By constructiony, s = bsib.: . By induction,

Hbj,; = Hbjs; = Hb; 15,15, = ---HbyS; - - -5 = Hsy -+ ;.
~ Hb,; =Hs---s, =Hh=H, sob,; = e.
G(Vo,s Vo5, * Vo) = D1S1(02) Do) -+ bysy(Dpst) =S s = h

. ¢ is onto.

Supposes(x) = e for somex € F(T) andx # e. Letx = X;--- X, be an expression fax as a
reduced word in the elts. df. Recall that the elemnts df can be written as, s in many ways. For
eachi = 1,...,¢, pick the expression; = vy, ¢ in which by € R be minimal. Therv, s contains
an occurrence o, since ifs cancelled then, using the fact tHais closed under left substrings, a
shorterty and ans could be picked such that = Vi -

Since¢(X) = e, within G, the stringg(x), which initially contains all ofs,, ..., s;, must reduce
to eliminate them. S@m such thaip(V,, s, Vom...sm.) Fe€duces to eliminata, or sy.1 (or both). Write
Vbm, S Vbms1,5me1 AS- L L

binSn(Y) b 1Smea (@~
wherey = canon. rep. foHb,,s,, andz = canon. rep. foHb,1Sn.1. Cancellation of at least one of
Sn Sme1 Can happen in one of three ways:

53



1. Y =bmiandsy,=sr,, or

2. bmi1Swi1 IS a left substring o, or

3. ys.!is a left substring oby,1.

If 1: HZ = Hbp1Sm1 = HYS, = Hbm, soz = by, (both lie inR and they represent the same coset).
SOy, s, = (Vbs,) "+ and the wordk was not reduced, which is a contradiction.

If 2: Sinceby,y, bm1,2 € R c R, all are reduced, sby.1Sn.1 is a left substring oy = by 1Sm1
is a left substring ofy. Henceby,,1Sw1 € R Sobn,.1Sn1 andz are canon. reps. for the coset
HBm1Sm1, SOZ = Dy 1S Butthenv, 5., = €S0V, 5., € T, Which is a contradiction.

If 3: Asin case 2ys.! is a left substring obn,; soys;! € Rand represents the same coseasSo
bm = ys,! and sov,, s, = e ¢ T, which is a contradiction.

.. None of these cases can occurggr) = efor x # eis not possible. Hencgis an injection. O

Note: itis possible thatl is not finitely generated, evend s finitely generated. e.g. L& = F(X,y)
and letH = [G, G] (the commutator subgroup). Then

H = F(X’y’[ya X]’[[y’ X],X],...,["'[[y,X],X]X'“ ’X]’---}-
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