Here are some practice problems in recurrence relations. The first 9 problems (roughly) are basic, the other ones are competition-level.

1. Find a formula for F_{n}, where F_{n} is the Fibonacci sequence: $F_{0}=0$, $F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$
2. Fix any positive integer k. Show that there are infinitely many Fibonacci numbers divisible by k.
3. Find a formula for a_{n}, where $a_{0}=a_{1}=2, a_{n+1}=4 a_{n}-4 a_{n-1}$.
4. Find a 3 -term recurrence relation for the sequence $a_{n}=3^{n+1}-2 \cdot 5^{n}$. Now do the same for $a_{n}=3^{n+1}-2 \cdot 5^{n}+n^{2}$.
5. Find $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)^{n}$.
6. Suppose that $a_{0}=0, b_{0}=1$ and that $a_{n}=a_{n-1}+2 b_{n-1}, b_{n}=-a_{n-1}+$ $4 b_{n-1}$. Find formulas for a_{n} and b_{n}.
7. Suppose that $x_{0}=18, x_{n+1}=\frac{10}{3} x_{n}-x_{n-1}$, and that the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ converges (to some real number). What is x_{1} ?
8. Show for positive integers $m, n: m \mid n$ if and only if $F_{m} \mid F_{n}$ (where $\left(F_{n}\right)_{n}$ is the Fibonacci sequence).
9. Suppose Bob keeps throwing a coin and each time scores one point for a head and two points for a tail. For a fixed $n \geq 1$, what is the probability that his score is precisely n points at some point? (Hint: let p_{n} be the probability this happens, and try to find a recurrence relation. Maybe wait until the probability session.)
10. Suppose $a_{0}=0, a_{1}=2$ and $a_{n+2}=4 a_{n+1}-4 a_{n}+n^{2}-5 n+2$. Show that n divides a_{n} for all $n \geq 1$.
11. Let $a_{n}=\left\lfloor(5+\sqrt{21})^{n}\right\rfloor+1$, so $a_{0}=2, a_{1}=10, a_{2}=92, \ldots$ Prove that a_{n} is divisible by 2^{n}.
12. Find the digit immediately to the left and right of the decimal point for $(\sqrt{7}+\sqrt{13})^{2008}$.
13. Write $(2+\sqrt{3})^{2 n-1}=a_{n}+b_{n} \sqrt{3}$ for integers a_{n} and $b_{n}(n \geq 1)$. Show that $a_{n}-1$ is a perfect square.
14. Let

$$
T_{0}=2, T_{1}=3, T_{2}=6,
$$

and for $n \geq 3$,

$$
T_{n}=(n+4) T_{n-1}-4 n T_{n-2}+(4 n-8) T_{n-3}
$$

The first few terms are

$$
2,3,6,14,40,152,784,5168,40576 .
$$

Find, with proof, a formula for T_{n} of the form $T_{n}=A_{n}+B_{n}$, where $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are well-known sequences. (A-1, Putnam 1990)
15. Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish. (B-1, Putnam 1996)
16. Let $\left(x_{n}\right)_{n \geq 0}$ be a sequence of nonzero real numbers such that $x_{n}^{2}-x_{n-1} x_{n+1}=$ 1 for $n=1,2,3, \ldots$. Prove there exists a real number a such that $x_{n+1}=a x_{n}-x_{n-1}$ for all $n \geq 1$. (A-2, Putnam 1993)
17. Define a sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ by $u_{0}=u_{1}=u_{2}=1$, and thereafter by the condition that

$$
\operatorname{det}\left(\begin{array}{cc}
u_{n} & u_{n+1} \\
u_{n+2} & u_{n+3}
\end{array}\right)=n!
$$

for all $n \geq 0$. Show that u_{n} is an integer for all n. (By convention, $0!=1$.) (A-3, Putnam 2004)
18. Let $1,2,3, \ldots, 2005,2006,2007,2009,2012,2016, \ldots$ be a sequence defined by $x_{k}=k$ for $k=1,2, \ldots, 2006$ and $x_{k+1}=x_{k}+x_{k-2005}$ for $k \geq 2006$. Show that the sequence has 2005 consecutive terms each divisible by 2006. (A-3, Putnam 2006)
19. Let $x_{0}=1$ and for $n \geq 0$, let $x_{n+1}=3 x_{n}+\left\lfloor x_{n} \sqrt{5}\right\rfloor$. In particular, $x_{1}=5$, $x_{2}=26, x_{3}=136, x_{4}=712$. Find a closed-form expression for x_{2007}. $(\lfloor a\rfloor$ means the largest integer $\leq a$.) (B-3, Putnam 2007)
20. Define a sequence by $a_{0}=1$, together with the rules $a_{2 n+1}=a_{n}$ and $a_{2 n+2}=a_{n}+a_{n+1}$ for each integer $n \geq 0$. Prove that every positive rational number appears in the set

$$
\left\{\frac{a_{n-1}}{a_{n}}: n \geq 1\right\}=\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \ldots\right\} .
$$

(A-5, Putnam 2002) (Note: you will need some number theory we didn't discuss two weeks ago.)
21. The sequence $\left(a_{n}\right)_{n \geq 1}$ is defined by $a_{1}=1, a_{2}=2, a_{3}=24$, and, for $n \geq 4$,

$$
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}}
$$

Show that, for all n, a_{n} is an integer multiple of n. (A-6, Putnam 1999)

