Here are some practice problems in number theory. They are, very roughly, in increasing order of difficulty.

1. (a) Show that \(n^7 - n \) is divisible by 42 for every positive integer \(n \).

(b) Show that every prime not equal to 2 or 5 divides infinitely many of the numbers 1, 11, 111, 1111, etc.

2. Show that if \(p > 3 \) is a prime, then \(p^2 \equiv 1 \pmod{24} \).

3. How many zeros are at the end of 1000!?

4. If \(p \) and \(p^2 + 2 \) are primes, show that \(p^3 + 2 \) is prime.

5. Show that \(\gcd(2^a - 1, 2^b - 1) = 2^{\gcd(a,b)} - 1 \) for positive integers \(a, b \).

6. Suppose that \(a, b, c \) are distinct integers and that \(p(x) \) is a polynomial with integer coefficients. Show that it is not possible to have \(p(a) = b, p(b) = c, p(c) = a \).

7. A triangular number is a positive integer of the form \(n(n + 1)/2 \). Show that \(m \) is a sum of two triangular numbers iff \(4m + 1 \) is a sum of two squares. \cite{A-1, Putnam 1975}

8. For positive integers \(n \) define \(d(n) = n - m^2 \), where \(m \) is the greatest integer with \(m^2 \leq n \). Given a positive integer \(b_0 \), define a sequence \(b_i \) by taking \(b_{k+1} = b_k + d(b_k) \). For what \(b_0 \) do we have \(b_i \) constant for sufficiently large \(i \)? \cite{B-1, Putnam 1991}

9. \(d, e \) and \(f \) each have nine digits when written in base 10. Each of the nine numbers formed from \(d \) by replacing one of its digits by the corresponding digit of \(e \) is divisible by 7. Similarly, each of the nine numbers formed from \(e \) by replacing one of its digits by the corresponding digit of \(f \) is divisible by 7. Show that each of the nine differences between corresponding digits of \(d \) and \(f \) is divisible by 7. \cite{A-3, Putnam 1993}

10. Define the sequence of decimal integers \(a_n \) as follows: \(a_1 = 0; a_2 = 1; a_{n+2} \) is obtained by writing the digits of \(a_{n+1} \) immediately followed by those of \(a_n \). When is \(a_n \) a multiple of 11? \cite{A-4, Putnam 1998}

11. Suppose \(n > 1 \) is an integer. Show that \(n^4 + 4^n \) is not prime.

12. (a) Let \(\alpha \) and \(\beta \) be irrational numbers such that \(1/\alpha + 1/\beta = 1 \). Then the sequences \(f(n) = \lfloor \alpha n \rfloor \) and \(g(n) = \lfloor \beta n \rfloor \), \(n = 1, 2, 3, \ldots \) are disjoint and their union is the set of positive integers. \cite{A classic due to Beatty; variations of this appear again and again.}

(b) Show the following converse: if \(\alpha, \beta \) are positive reals such that the sequences \(f(n) = \lfloor \alpha n \rfloor \) and \(g(n) = \lfloor \beta n \rfloor \), \(n = 1, 2, 3, \ldots \) are disjoint and their union is the set of positive integers, then \(\alpha, \beta \) are irrational and \(1/\alpha + 1/\beta = 1 \).
13. If p is a prime number greater than 3 and $k = \lfloor 2p/3 \rfloor$, prove that the sum
\[
\binom{p}{1} + \binom{p}{2} + \cdots + \binom{p}{k}
\]
of binomial coefficients is divisible by p^2. (A-5, Putnam 1996)

14. Find all positive integers a, b, m, n with m relatively prime to n such that
\[
(a^2 + b^2)^m = (ab)^n.
\]
(A-3, Putnam 1992)

15. Suppose the positive integers x, y satisfy $2x^2 + x = 3y^2 + y$. Show that
$x - y$, $2x + 2y + 1$, $3x + 3y + 1$ are all perfect squares.

16. Find all solutions of $x^{n+1} - (x + 1)^n = 2001$ in positive integers x and n.
(A-5, Putnam 2001)