Putnam Questions - Week 6

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, with $f(x) f(f(x))=1$ for all $x \in \mathbb{R}$. If $f(1000)=999$, find $f(500)$.
2. Find, with explanation, the maximum value of $f(x)=x^{3}-3 x$ on the set of all real numbers x satisfying $x^{4}+36 \leq 13 x^{2}$.
3. Suppose that a sequence $a_{1}, a_{2}, a_{3}, \ldots$ satisfies $0<a_{n} \leq a_{2 n}+a_{2 n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
4. Find all real-valued continuously differentiable functions f on the real line such that for all x,

$$
(f(x))^{2}=\int_{0}^{x}\left[(f(t))^{2}+\left(f^{\prime}(t)\right)^{2}\right] d t+1990 .
$$

5. Evaluate

$$
\int_{2}^{4} \frac{\sqrt{\ln (9-x)} d x}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}
$$

[Hint: try to exploit symmetry (antiderivative is hopeless).]
6. Suppose f and g are non-constant, differentiable, real-valued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers x and y,

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y), \\
g(x+y) & =f(x) g(y)+g(x) f(y)
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all x.
[Hint: try to find an expression for f^{\prime} and $g^{\prime} \ldots$]
7. For each continuous function $f:[0,1] \rightarrow \mathbb{R}$, let $I(f)=\int_{0}^{1} x^{2} f(x) d x$ and $J(x)=\int_{0}^{1} x(f(x))^{2} d x$. Find the maximum value of $I(f)-J(f)$ over all such functions f.

