Putnam Problems: Algebra (F.H., Fall 2016)

November 10, 2016

A1-2001 Consider a set S and a binary operation $*$, i.e., for each $a, b \in S, a * b \in S$. Assume $(a * b) * a=b$ for all $a, b \in S$. Prove that $a *(b * a)=b$ for all $a, b \in S$.

A1-1995 Let S be a set of real numbers which is closed under multiplication (that is, if a and b are in S, then so is $a b$). Let T and U be disjoint subsets of S whose union is S. Given that the product of any three (not necessarily distinct) elements of T is in T and that the product of any three elements of U is in U, show that at least one of the two subsets T, U is closed under multiplication.

A2-2012 Let $*$ be a commutative and associative binary operation on a set S. Assume that for every x and y in S, there exists z in S such that $x * z=y$. (This z may depend on x and y.) Show that if a, b, c are in S and $a * c=b * c$, then $a=b$.

A2-2014 Let A be the $n \times n$ matrix whose entry in the i-th row and j-th column is

$$
\frac{1}{\min (i, j)}
$$

for $1 \leq i, j \leq n$. Compute $\operatorname{det}(A)$.
A2-1991 Let A and B be different $n \times n$ matrices with real entries. If $A^{3}=B^{3}$ and $A^{2} B=B^{2} A$, can $A^{2}+B^{2}$ be invertible?

B2-1968 A is a subset of a finite group G, and A contains more than one half of the elements of G. Prove that each element of G is the product of two elements of A.

B2-1989 Let S be a non-empty set with an associative operation that is left and right cancellative $(x y=x z$ implies $y=z$, and $y x=z x$ implies $y=z)$. Assume that for every a in S the set $\left\{a^{n}: n=1,2,3, \ldots\right\}$ is finite. Must S be a group?

B3-1979 Let F be a finite field with n elements, where n is odd, and suppose that $p(x):=x^{2}+b x+c(b, c \in F)$ is an irreducible polynomial over F. For how
many elements $k \in F$ is $p(x)+k$ irreducible? (You don't need to know about the theory of finite fields for this question, it's enough to know what a field is.)

B3-1972 Let A and B be two elements in a group such that $A B A=B A^{2} B, A^{3}=1$ and $B^{2 n-1}=1$ for some positive integer n. Prove $B=1$.

A4-1997 Let G be a group with identity e and $\phi: G \rightarrow G$ a function such that

$$
\phi\left(g_{1}\right) \phi\left(g_{2}\right) \phi\left(g_{3}\right)=\phi\left(h_{1}\right) \phi\left(h_{2}\right) \phi\left(h_{3}\right)
$$

whenever $g_{1} g_{2} g_{3}=e=h_{1} h_{2} h_{3}$. Prove that there exists an element $a \in G$ such that $\psi(x)=a \phi(x)$ is a homomorphism (i.e. $\psi(x y)=\psi(x) \psi(y)$ for all $x, y \in G$).

Please let me know if there are any typos! You can find a lot more algebra problems at

> www.math.utoronto.ca/barbeau/putnamgp.pdf, www.math.utoronto.ca/barbeau/putnamalg.pdf, www.math.utoronto.ca/barbeau/putnamla.pdf.

