Putnam Problems: Algebra (F.H., Fall 2015)

October 8, 2015

A1-1999 Find polynomials $f(x), g(x)$, and $h(x)$, if they exist, such that for all x,

$$
|f(x)|-|g(x)|+h(x)= \begin{cases}-1 & \text { if } x<-1 \\ 3 x+2 & \text { if }-1 \leq x \leq 0 \\ -2 x+2 & \text { if } x>0\end{cases}
$$

B1-2005 Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$ for all real numbers a. (Note: $\lfloor\nu\rfloor$ is the greatest integer less than or equal to ν.)

- Do there exist $n \times n$ matrices with $A B-B A=1$ (identity)?
- Find the zeroes of the polynomial $x^{4}-6 x^{3}+18 x^{2}-30 x+25$, knowing that the sum of two of its roots is 4 .

B1-2004 Let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r)=0$. Show that the n numbers

$$
\begin{gathered}
c_{n} r, c_{n} r^{2}+c_{n-1} r, c_{n} r^{3}+c_{n-1} r^{2}+c_{n-2} r, \\
\ldots, c_{n} r^{n}+c_{n-1} r^{n-1}+\cdots+c_{1} r
\end{gathered}
$$

are integers.

- Find all polynomials $P(x)$ such that $(x+1) P(x)=(x-10) P(x+1)$.

A1-2001 Consider a set S and a binary operation $*$, i.e., for each $a, b \in S, a * b \in S$. Assume $(a * b) * a=b$ for all $a, b \in S$. Prove that $a *(b * a)=b$ for all $a, b \in S$.

B1-2003 Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that

$$
1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y)
$$

holds identically?

B2-1993 For nonnegative integers n and k, define $Q(n, k)$ to be the coefficient of x^{k} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$. Prove that

$$
Q(n, k)=\sum_{j=0}^{k}\binom{n}{j}\binom{n}{k-2 j},
$$

where $\binom{a}{b}$ is the standard binomial coefficient. (Reminder: For integers a and b with $a \geq 0,\binom{a}{b}=\frac{a!}{b!(a-b)!}$ for $0 \leq b \leq a$, with $\binom{a}{b}=0$ otherwise.)

A2-1999 Let $p(x)$ be a polynomial that is nonnegative for all real x. Prove that for some k, there are polynomials $f_{1}(x), \ldots, f_{k}(x)$ such that

$$
p(x)=\sum_{j=1}^{k}\left(f_{j}(x)\right)^{2}
$$

B2-1999 Let $P(x)$ be a polynomial of degree n such that $P(x)=Q(x) P^{\prime \prime}(x)$, where $Q(x)$ is a quadratic polynomial and $P^{\prime \prime}(x)$ is the second derivative of $P(x)$. Show that if $P(x)$ has at least two distinct roots then it must have n distinct roots.

B2-2001 Find all pairs of real numbers (x, y) satisfying the system of equations

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{2 y}=\left(x^{2}+3 y^{2}\right)\left(3 x^{2}+y^{2}\right) \\
& \frac{1}{x}-\frac{1}{2 y}=2\left(y^{4}-x^{4}\right) .
\end{aligned}
$$

A4-1997 Let G be a group with identity e and $\phi: G \rightarrow G$ a function such that

$$
\phi\left(g_{1}\right) \phi\left(g_{2}\right) \phi\left(g_{3}\right)=\phi\left(h_{1}\right) \phi\left(h_{2}\right) \phi\left(h_{3}\right)
$$

whenever $g_{1} g_{2} g_{3}=e=h_{1} h_{2} h_{3}$. Prove that there exists an element $a \in G$ such that $\psi(x)=a \phi(x)$ is a homomorphism (i.e. $\psi(x y)=\psi(x) \psi(y)$ for all $x, y \in G)$.

B-4 Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$
(P(X))^{2}+(Q(X))^{2}=X^{2 n}+1
$$

and $\operatorname{deg} P>\operatorname{deg} Q$.
You can find some more algebra problems at

