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Introduction and Motivation

1. p-adic groups

1.1. The p-adic numbers. A rational number x ∈ Q× may be uniquely written as x = a
b p
n with a,

b and n nonzero integers such that p - ab. We define ordp(x) = n, |x|p = p−n, |0|p = 0. |·|p defines an
absolute value on Q, satisfying the stronger ultrametric triangle equality |x+ y|p ≤ max(|x|p, |y|p).
We define Qp to be the completion Q with respect to this metric and we use the same notation | · |p
for the extension of | · |p to Qp; (Qp, | · |p) is a complete valued field. Put Zp = {x ∈ Qp | |x|p ≤ 1},
it is a local discrete valuation ring with maximal ideal pZp. The collection (pnZp)n≥0 of compact
open subgroups forms a fundamental system of neighbourhoods of 0.

1.2. p-adic reductive groups. There is a general theory p-adic reductive groups and their points
over some extension F/Qp but for simplicity we will stick to G = GLn(Qp). We give G the subspace
topology from the inclusion G ⊆ Mn(Qp) ∼= Qn2

p . With respect to this topology the maps g 7→ gij
and g 7→ det(g)−1 are continuous and G is a topological group.

Remark. Let H be any topological group.

(i) Left and right translations H → H are homeomorphisms
(ii) Any open subgroup of H is also closed (the complement is a union of cosets, hence open)
(iii) Any closed subgroup of finite index of H is open (the complement is a finite union of cosets,

hence closed).
(iv) If H is also compact then any open subgroup has finite index (the cosets form a disjoint

open cover).

In G, K = GLn(Zp) is a maximal compact open subgroup. We define K(r) = 1 + prMn(Zp) for
r ≥ 1, these are compact open subgroups of G that forms a fundamental system of neighbourhoods
of 1 (hence G is totally disconnected). The quotient K/K(r) is GLn(Z/prZ).

Next we define the some special subgroups of G. Let n1, . . . , nr ≥ 1 be integers such that
∑
ni = n.

Let Pn1,...,nr be the subgroup of block upper-triangular matrices in G with blocks along the diagonal
of size n1 × n1, . . . , nr × nr. Pn1,...,nr has two distinguished subgroups: Mn1,...,nr , consisting of the
block diagonal matrices (again with diagonal blocks of n1 × n1, . . . , nr × nr), and Nn1,...,nr , which
consists of those matrices in Pn1,...,nr with the identity matrix (of the appropriate size) in each
diagonal block. Nn1,...,nr is called the unipotent radical of Pn1,...,nr ; the Pn1,...,nr (for varying
n1, . . . , nr) are called the standard parabolic subgroups of G and the Mn1,...,nr are the standard
Levi subgroups. Nn1,...,nr is normal in Pn1,...,nr and we have Pn1,...,nr = Mn1,...,nr nNn1,...,nr . We
will often write P = MN to mean that P is a standard parabolic subgroup with standard Levi
subgroup M and unipotent radical N .

Remark.

(i) The subgroup P1,...,1 of upper-triangular matrices is called the Borel subgroup and will
be denoted B. Its standard Levi is the maximal torus of diagonal matrices and will be
denote T , and its unipotent radical is the subgroup of unipotent matrices of G and will be
denoted U .

(ii) A parabolic subgroup is any conjugate of a standard parabolic subgroup.
(iii) In fact, any subgroup containing B is a standard parabolic.
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(iv) For any standard parabolic P , we will denote its transpose (i.e. the corresponding subgroup
of block-lower triangular matrices) by P . Similarly we denote the transpose of N by N .

There are several useful decompositions of G in terms of various of the above subgroups that are
useful. We start with:

Proposition 1 (Iwasawa decomposition). G = BK. Hence G = PK for any standard parabolic
P , and P\G is compact.

Proof (sketch). We will use integral column operations to reduce any matrix to lower triangular
form. The column permutation matrices are integral, so without loss of generality the (1, 1)-entry
has the smallest valuation in the first row. Using this, we may add suitable integral multiples of
the first column to the others to reduce to the case where the (1, i)-entry is 0 for 2 ≤ i ≤ n. An
induction on n finishes the proof. �

Before moving on to the next, we recall, in our setting, a theorem from the theory of principal ideal
domains. Before we state it, we define a Zp-lattice in Qnp to be a finitely generated Zp-submodule
of Qnp that spans Qnp (such a submodule is necessarily free of rank n over Zp).

Theorem (Theorem on elementary divisors). Given a lattice Λ ⊆ Qnp there exists a basis e′1, . . . ,
e′n of Znp and unique integers a1 ≤ · · · ≤ an such that pa1e′1, . . . , pane′n is a basis for Λ.

Remark. The theorem is usually stated for Λ ⊆ Znp but we may reduce to this case by scaling.

Using this, we may now prove

Proposition 2 (Cartan decomposition). G =
∐

a1≤···≤an
K·diag (pa1 , . . . , pan)·K, where diag (pa1 , . . . , pan)

is the diagonal matrix with entries pa1 , . . . , pan along the diagonal.

Proof. Given g ∈ G, let Λ = gZnp . If e1, . . . , en is the standard basis of Znp then ge1, . . . , gen is a
basis for Λ. By the theorem of elementary divisors there is a basis e′1, . . . , e′n of Znp and integers
a1 ≤ · · · ≤ an such that pa1e′1, . . . , pane′n is a basis for Λ. Thus, as bases for Znp resp. Λ, e1, . . . , en
and e′1, . . . , e′n are related by some k1 ∈ K and ge1, . . . , gen and pa1e′1, . . . , pane′n are related by
some k2 ∈ K (say e′i = k1ei, paie′i = k2gei). Then g = k−1

2 diag (pa1 , . . . , pan) k1. Uniqueness of the
ai imply the disjointness of the decomposition. �

Proposition 3 (“Big cell lemma”). Let P = MN be a standard parabolic subgroup of G. The
multiplication map P ×N → G is injective and has open image (it is not a group homomorphism).

Proof (sketch). We assume P = B, the general case is analogous, using blocks. B × U → G is
injective as B ∩ U = 1, so it remains to show that the image is open. We claim that the image S
consists of those matrices g for which the upper left i×i minor deti(g) is nonzero for all i = 1, . . . , n.
This set is open as the map G → Qnp , g 7→ (deti(g))i is continuous and S is the preimage of the
open set Q×np under this map. To show that the image is S, note that deti(bu) = deti(b) deti(u) 6= 0

for all i and b ∈ B, u ∈ U as b resp. u are lower resp. upper triangular. To see that the image
is all of S, pick g ∈ S and write down the linear equations that the entries of some u ∈ U would
have to satisfy in order for gu to be lower triangular. These turn out to be solvable exactly because
g ∈ S. �
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2. Smooth Representations of p-adic Groups

In this section, G is any Hausdorff topological group that has a fundamental system of neighbour-
hoods of 1 consisting of compact open subgroups, E is a field and G-representation is an E-vector
space π with a linear action of G. If U is a subgroup of G we let πU = {x ∈ π | ux = x ∀u ∈ U}
denote the invariants of U .

Lemma 4. The following are equivalent:

(i) The stabilizer of any x ∈ π is open.
(ii) For any x ∈ π there exists an open subgroup U of G such that x ∈ πU .
(iii) π =

⋃
πU where the union is taken over all open subgroups of G.

(iv) The action map G× π → π is continuous with respect to the discrete topology.

Definition. A G-representation π is smooth if the equivalent conditions of the previous lemma
hold.

Example. Let G = Q×p . A character χ : Q×p → E× is smooth if and only if its kernel is open. We
have Q×p ∼= Z×p × pZ where pZ is equipped with the discrete topology. To give a smooth character
we thus need (i) an element χ(p) ∈ E×, and (ii) a character Z×p /(1 + prZp)→ E× for some r ≥ 1.

Any smooth irreducible representation of Q×p is a character (this follows from the commutativity
of Q×p ).

Remark.

(i) Any subquotient of a smooth representation is smooth.
(ii) To form the category of smooth representations we take as morphisms G-linear maps

(smoothness is equivalent to continuity with respect to the discrete topology on the vector
spaces, so there is no topological condition required on the G-linear maps).

Definition. We say a smooth G-representation π is irreducible if it has no subrepresentations apart
from 0 and π.

Induced representations. Let H ≤ G be a closed subgroup (note that this implies that H\G is
Hausdorff) and let σ be a smooth H-representation.

Definition. We define the smooth induction IndGH σ of σ from H to G to be the vector space of
functions f : G→ σ such that f(hg) = h · f(g) for all h ∈ H and g ∈ G, and such that there is an
open subgroup U ≤ G such that f(gu) = f(g) for all u ∈ U and g ∈ G. We let G act on IndGH σ by
(g · f)(x) = f(xg); the last condition in the definition ensures that this is a smooth representation
of G.

Example. If σ = 1H then IndGH 1H is the space of uniformly locally constant functions f : H\G→
E.

In general, if f ∈ IndGH σ we define the support of f as supp(f) = {g ∈ G | f(g) 6= 0}; it is a union
of right cosets of H. By the smoothness condition in the definition of IndGH σ, f is locally constant
and hence supp(f) is open and closed, which implies that the image of supp(f) in H\G is also open
and closed.
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Definition. We define the compact induction indGH σ of σ from H to G to be the subspace of IndGH σ
of functions f such that the image of supp(f) in H\G is compact. This is a G-subrepresentation
of IndGH σ since the action of G translates the support of functions.

Remark.

(i) If H\G is compact, then IndGH σ = indGH σ.
(ii) IndGH(−) and indGH(−) are left exact functors.

Proposition (Frobenius Reciprocity).

(i) HomG(π, IndGH σ) = HomH(π|H , σ).
(ii) If U is an open subgroup, then HomG(indGU σ, π) = HomU (σ, π|U ) and indGU (−) is exact.

Proof (sketch). (i) Given φ : π → IndGH σ define ϕ : π|H → σ by x 7→ ϕ(x)(1). Conversely, given
ψ : π|H → σ define ψ : π → IndGH σ by sending x ∈ π to the function (g 7→ ψ(gx)) ∈ IndGH σ. One
checks that these are well-defined and give the adjunction in (i).

(ii) U\G is discrete since U is open, so the support of an element in indGU σ is finite in U\G. To
give an element f of indGU σ we need a finite number of distinct cosets Ugi and elements yi ∈ σ;
the function is given by f(ugi) = uyi on the Ugi and zero outside them (using this description, one
checks that indGU (−) is exact). Write [g, y] for the function with support Ug−1 sending g−1 to y.
Then γ.[g, y] = [γg, y] for all g ∈ G and [gu, y] = [g, uy] for all u ∈ U . Now given ϕ : indGU σ → π
define ϕ : σ → π|U by sending y ∈ σ to ϕ([1, y]), and conversely, given ψ : σ → π|U define
ψ : indGU σ → π by [g, y] 7→ g · ψ(y) and extending linearly. One checks that these are well-defined
and give the adjunction in (ii). �

Remark. Alternatively, one may prove (ii) by noting that indGU σ is isomorphic E[G] ⊗E[U ] σ, the
isomorphism being given by g ⊗ y 7→ [g, y]. The adjunction in (ii) is then just the standard
extension/restriction of scalars-adjunction and the exactness follows from the fact that E[G] is free
over E[U ] (generated as a left module by a set of representatives of U\G).

Proposition 5.

(i) Assume that the projection map π : G→ H\G has a continuous section s and that H\G
is compact. Then IndGH(−) is exact.

(ii) If G = GLn(Qp) and P is a standard parabolic, then IndG
P

(−) is exact.

Proof. (i) Compactness of H\G ensures that “locally constant” is equivalent to “uniformly locally
constant”. Define a map IndGH σ → C∞(H\G, σ) by f 7→ (Hg 7→ f(s(Hg))) and a map the other
way by

ϕ 7→ ϕ = (g = h · s(Hg) 7→ h · ϕ(Hg))

The first map is well-defined as f is locally constant. To check that the second map is well-
defined, write h · ϕ(Hg) = g · s(π(g))−1 · ϕ(π(g)) and note this is locally constant as g · s(π(g))−1

is continuous in g, σ is smooth and ϕ is locally constant. One then checks that these maps are
inverses to one another and define a natural isomorphism of functors IndGH(−) ∼= C∞(H\G,−) (the
spaces C∞(H\G, σ) have a left action of G coming from the right action on H\G). Exactness of
IndGH(−) now follows from exactness of C∞(H\G,−) (left exactness is straightforward; to prove
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that it preserves surjections σ � τ choose any vector space section τ → σ and use that this is
continuous with respect to the discrete topology).

(ii) Write P = MN . We want to deduce (ii) from (i) so we need to construct a continuous section
s : P\G→ G. By the “big cell” lemma the image of N ↪→ P\G is open, hence the image Ω of the
compact open subgroup N(Zp) = N ∩K is open and closed, so we can define a continuous section
on Ω. By translation we may define a continuous section on Ωg for any g ∈ G; these sets form an
open cover of P\G. Since P\G is compact we can take a finite subcover {Ωgi}1≤i≤r. Now chop
these up into 2r disjoint open and closed subsets

(⋂
i∈I Ωgi

)
∩
(⋂

i∈Ic(Ωgi)
c
)
(for I ⊆ {1, . . . , r})

on which a continuous section exists, and then glue to get a continuous section on all of P\G. �

3. Smooth Representations in Characteristic p

We now to back to the caseG = GLn(Qp) and furthermore assume, from now, that the characteristic
of E is p.

Definition. A profinite group is a compact Hausdorff topological group with a fundamental sys-
tem of neighbourhoods of 1 consisting of normal subgroups. A profinite group is called pro-p if
furthermore the index of each of these normal subgroups is a power of p.

Any closed subgroup or quotient of a profinite (resp. pro-p) group is profinite (resp. pro-p).

Example. Zp is a pro-p group. K = GLn(Zp) is profinite.

Lemma 6. K(1) is a pro-p group.

Proof. The K(r) form a fundamental system of neighbourhoods of 1 so it suffices to show that
(K(1) : K(r)) is a power of p for all r ≥ 2. By multiplicativity of indices this reduces to showing
that (K(r) : K(r + 1)) is a power of p for r ≥ 1. But as groups, K(r)/K(r + 1) is isomorphic
to Mn(Fp) via the map sending 1 + prA ∈ K(r)/K(r + 1) to the reduction of A modulo p, and
therefore (K(r) : K(r + 1)) = pn

2

. �

Similarly, the subgroup I(1) ⊆ K consisting of matrices that are unipotent modulo p is pro-p,
as I(1)/K(1) ∼= U(Fp), where U(Fp) ⊆ GLn(Fp) is the subgroup of unipotent matrices, which
has order pn(n−1)/2 (we remark that I(1) is a Sylow pro-p subgroup of K, i.e. a maximal pro-p
subgroup).

Lemma 7 (“p-group lemma”). Any smooth representation τ 6= 0 in characteristic p of a pro-p
group H has invariant vectors, i.e. τH 6= 0.

Proof. Without loss of generality we may assume E = Fp (forget the E-action). Pick any nonzero
x ∈ τ . Since τ is smooth and H is profinite there exists an open normal subgroup U of H such that
x ∈ τU . Then H/U is a finite p-group acting on τU 6= 0, so we may reduce to the case where H is
finite.

Then, the Fp-span of Hx = {hx | h ∈ H} is finite dimensional (as Hx is finite), hence this span
is finite as a set, so without loss of generality τ is a finite set, of p-power order. Decompose τ
into H-orbits; by the orbit-stabilizer theorem all orbits have size a power of p and there is at least
one orbit of size 1, namely {0}, so looking modulo p there must be at least p orbits of size 1. In
particular, τH 6= 0. �
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Remark. The coinvariants of τ as in the lemma may be 0. Because of this, duals do not work well
in characteristic p.

Corollary. A pro-p group H has a unique irreducible representation, which is the trivial represen-
tation.

For us, the following corollaries are important:

Corollary. If π is a smooth representation of G, then πK(1) ⊇ πI(1) 6= 0.

We note that this fails in characteristic 0, even if n = 1.

Corollary. Any smooth irreducible representation of K factors through K/K(1) = GLn(Fp), so
there is a natural bijection between smooth irreducible representations of K and GLn(Fp).

Proof. Let V be a smooth irreducible representation of K. By above, V K(1) 6= 0 and since K(1) is
normal in K, V K(1) ⊆ V is K-stable, so we must have V K(1) = V since V is irreducible, i.e. K(1)
acts trivially on V . �

From now on we will assume that E is algebraically closed.

Definition. A smooth irreducible representation of K (or equivalently, a smooth irreducible rep-
resentation of GLn(Fp)) is called a weight.

Corollary. Any smooth representation π of G contains a weight, i.e. there is a weight V such that
V is a subrepresentation of π|K .

Proof. Pick a nonzero x ∈ πK(1). Then the E-span ofKx is a finite dimensionalK-subrepresentation
of π|K (Kx is finite since K(1) acts trivially on x and K/K(1) is finite), and therefore contains an
irreducible subrepresentation. �

Example. (n = 1) Any smooth character χ : Q×p → E× is trivial on K(1) = 1 + pZp. To define
χ we need an element χ(p) ∈ E× and a character χ|Z×p : F×p → E× (a weight for GL1). There are
p− 1 weights, all one-dimensional.

Next we determine the weights of GL2:

Proposition 8. The weights of GL2(Fp) are F (a, b) = Syma−bE2 ⊗ detb, where 0 ≤ a− b ≤ p− 1
and 0 ≤ b < p − 1, E2 is the standard representation GL2(Fp) ↪→ GL(E) on column vectors and
det is the determinant representation.

Before proving the proposition, we make a few remarks. First, we note that we may take b to be
arbitrary if we take into account that F (a+p−1, b+p−1) ∼= F (a, b). Second, the action on SymdE2

is by g(v1 · · · vd) = (gv1) · · · (gvd). More concretely, SymdE2 ∼= E[X,Y ](d), the space of homoge-

neous polynomials of degree d in X and Y . The isomorphism takes the basis
(

1
0

)i(
0
1

)d−i
to

the basis XiY d−i, and the action of a matrix
(
α β
γ δ

)
∈ GL2(Fp) takes a degree d homogeneous

polynomial f(X,Y ) to f(αX + γY, βX + δY ). We now prove the proposition:
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Proof. Step 1: Prove that the F (a, b) are irreducible.

We may twist and with loss of generality assume that b = 0. First we prove that (SymaE2)U(Fp) =
E ·Xa. The inclusion ⊇ is clear. Let f ∈ (SymaE2)U(Fp). We have, for all u ∈ Fp,((

1 u
1

)
f

)
(X,Y ) = f(X,uX + Y ) = f(X,Y ).

Consider g(Y ) = f(X,Y ) − f(X, 0) ∈ E(X)[Y ]. The degree (in Y ) of g is ≤ a < p. By the above
equation we have

g(−uX) = f(X,−uX)− f(X, 0) = 0

for all u ∈ Fp, so g has p > deg(g) distinct roots, hence g = 0. Thus f(X,Y ) = f(X, 0) for all X,Y ,
so f is a monomial in X, hence in E ·Xa.

Next, we want to show that Xa generates SymaE2. For u ∈ Fp, we have(
1
u 1

)
Xa = (X + uY )a =

a∑
i=0

(
a
i

)
uiXa−iY i.

SymaE2 has a basis
(
a
i

)
Xa−iY i for 0 ≤ i ≤ a. Consider the set

(
1
u 1

)
Xa for 0 ≤ u ≤

a. It follows from the equation above that the determinant for passing from
(
a
i

)
Xa−iY i to(

1
u 1

)
Xa is a Vandermonde determinant and hence nonzero, so

(
1
u 1

)
Xa, 0 ≤ u ≤ a

forms a basis for SymaE2, and hence Xa generates it.

Finally, we may finish the proof of Step 1. Let V 6= 0 be a subrepresentation of SymaE2. By
the p-group lemma V U(Fp) 6= 0, so it must be E · Xa. Since this subspace generates SymaE2,
V = SymaE2 and SymaE2 is irreducible.

Step 2: The F (a, b) are distinct.

Since T (Fp) normalises U(Fp) it acts on F (a, b)U(Fp) = E ·Xa−b. We compute this action:(
x

y

)
Xa−b = xXa−b(xy)b = xaybXa−b,

i.e. T (Fp) acts by the character χa,b sending diag(x, y) to xayb. If F (a, b) ∼= F (a′, b′), then first we
must have a− b = a′ − b′ by looking at the dimensions. Second, we must also have χa,b = χa′,b′ by
above, so a ≡ a′, b ≡ b′ mod p − 1. By our constraints on b this forces b = b′, and hence a = a′

as desired.

Step 3: These are all irreducible representations of GL2(Fp).

By modular representation theory of finite groups, the number of irreducible representations is
equal to the number of conjugacy classes of prime-to-p order. We may use Jordan normal form and
the fact that matrices are conjugate over Fp if and only if they are conjugate over Fp to find the
conjugacy classes (the latter follows e.g. from the rational canonical form; one may also use this
directly). We get the following four types of conjugacy classes:

(i) Central elements
(
x

x

)
, x ∈ F×p .
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(ii) Diagonal non-central elements
(
x

y

)
, x 6= y, x, y ∈ F×p .

(iii) Elements that may be diagonalised over Fp2
(
α

ᾱ

)
, α ∈ Fp2\Fp.

(iv) Non-diagonalisable elements
(
x 1

x

)
, x ∈ F×p .

The first three have order prime to p, the fourth does not. There are p − 1 conjugacy classes in
(i), (p− 1)(p− 2)/2 in (ii) and p(p− 1)/2 in (iii). Summing up, we get in total p(p− 1) conjugacy
classes of order prime to p, which is equal to the number of pairs (a, b) in the parametrisation of
the F (a, b). This finishes the proof of the proposition. �

There is an alternative way to prove the Step 3 without resorting to general results in modular
representation theory. Assume that V is any irreducible representation of GL2(Fp). Then we
get a nonzero T (Fp)-representation V U(Fp). As T (Fp) is commutative of order prime to p, this
representation splits as a direct sum of characters. Let χ be one of these characters, we have
χ ↪→ V U(Fp) as T (Fp)-representations and hence χ ↪→ V as B(Fp)-representations (where we extend
χ to a character of B(Fp) by letting U(Fp) act trivially). Frobenius reciprocity now gives us a
nonzero map

Ind
G(Fp)

B(Fp) χ� V

which has to surject since V is irreducible. Thus, to show that V is one of the F (a, b) it suffices to
classify the quotients of the representations Ind

G(Fp)

B(Fp) χ, as χ ranges over the characters of T (Fp).
First we need a lemma:

Lemma 9. F (a, b)U(Fp)
∼= χa,b as T (Fp)-representations, and the T (Fp)-linear map

F (a, b)U(Fp) ↪→ F (a, b) � F (a, b)U(Fp)

is an isomorphism.

Proof. Without loss of generality b = 0, so F (a, b) = F (a, 0) = SymaE2. As we saw in the previous
proof we have (

1
u 1

)
Xa −Xa =

a∑
i=1

(
a
i

)
uiXa−iY i

and they have the same span as Xa−1Y , . . . , Y a, moreover they get mapped to 0 in the coinvariants.
For 1 ≤ i ≤ a we have(

1
u 1

)
Xa−iY i −Xa−iY i =

a∑
k=1

(
a− i
k

)
ukXa−i−kY i+k

which shows that the kernel of F (a, b) � F (a, b)U(Fp) is spanned by Xa−1Y , . . . , Y a and hence
that as a T (Fp)-representation we have

F (a, 0) = F (a, 0)U(Fp) ⊕Ker
(
F (a, b) � F (a, b)U(Fp)

)
.

This gives both statements of the lemma. �
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We can now describe the irreducible subquotients of the Ind
G(Fp)

B(Fp) χ and hence finish the alternative
proof of Step 3:

Lemma 10. Let a, b ∈ Z with 0 ≤ a − b < p − 1. Then the irreducible quotients of Ind
G(Fp)

B(Fp) χa,b
are F (a, b), and also F (a+ p− 1, b) if a = b. The irreducible subrepresentations are F (b+ p− 1, a),
and also F (b, a) if a = b. In any case, the irreducible constituents are F (a, b) and F (b+ p− 1, a).

Proof (sketch). By Frobenius reciprocity Ind
G(Fp)

B(Fp) χa,b � F (a′, b′) if and only if χa,b ↪→ F (a′, b′)U(Fp) =

χa′,b′ and similarly F (a′, b′) ↪→ Ind
G(Fp)

B(Fp) χa,b if and only if F (a′, b′)U(Fp) � χa,b, which is seen to

be equivalent to χa′,b′ = F (a′, b′)U(Fp)
∼= χb,a by conjugating with

(
0 1
1 0

)
. Hence we know that

there do exist subrepresentations and quotients as in the statement of the lemma. To see that these
are the only ones, note that

dim F (a, b) + dim F (b+ p− 1, a) = (a− b+ 1) + (b+ p− a) = p+ 1

and

dim Ind
G(Fp)

B(Fp) χa,b = (G(Fp) : B(Fp)) = #P1(Fp) = p+ 1. �

Weights of principal series (n = 2). Let χ : T → E× be a smooth character (remember that
χ|T (Zp) factors through T (Fp)). Consider χ as a B-representation (via B � T ). Then χ defines a
so-called principal series representation IndG

B
χ.

Proposition 11. The weights of IndG
B
χ are all V such that VU(Fp)

∼= χ|T (Zp) as a T (Fp)-representation
(Lemma 9 therefore implies that IndG

B
χ has one or two weights). Each V occurs with multiplicity

one.

Proof. Let V be a weight. By the Iwasawa decomposition (Proposition 1) the restriction map
IndG

B
χ→ IndK

B∩K χ is an isomorphism of K-representations. Thus

HomK(V, IndG
B
χ) = HomK(V, IndK

B∩K χ)

which by Frobenius reciprocity is HomB∩K(V, χ), and

HomB∩K(V, χ) = HomB(Fp)(V, χ) = HomT (Fp)(VU(Fp), χ)

which is one-dimensional or 0 depending on whether VU(Fp)
∼= χ|T (Zp) or not, which is what we

wanted. �

Remark. Usually a principal series representation has a unique weight V occurring with multi-
plicity one. In this case, the G-subrepresentation generated by V is irreducible (because any G-
subrepresentation of this contains a weight). Later we will see that in fact V generates the whole
principal series representation.
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4. Hecke Algebras – Generalities

Let π be a smooth irreducible representation of G. We know that there is a weight V ↪→ π|K ;
Frobenius reciprocity gives us a G-linear map indGK V � π. We would therefore wish to understand
the representations indGK V .

Definition. The Hecke algebra of the weight V is HG(V ) = EndG(indGK V ).

Remark. More generally, one could study such Hecke algebras for indGHW with W a finite dimen-
sional smooth representation of any arbitrary open compact subgroup H of G.

Proposition 12. HG(V ) is isomorphic to the algebra of functions ϕ : G → EndE(V ) such that
supp(ϕ) is compact and ϕ(k1gk2) = k1 ◦ ϕ(g) ◦ k2 for all k1, k2 ∈ K, g ∈ G. The product on this
algebra is convolution

(ϕ1 ? ϕ2)(g) =
∑

γ∈K\G

ϕ1(gγ−1)ϕ2(γ)

where we use the notation “γ ∈ K\G” to mean that the γ runs through a set of coset representatives
of K\G, and that the sum is independent of this choice.

Proof. As vector spaces

HG(V ) = EndG(indGK V ) = HomK(V, indGK V ) ⊆ Map(V,Map(G,V )) = Map(G,Map(V, V ))

where we write Map(R,S) for the set of functions from one set R to another set S. It is natu-
rally a vector space when S is a vector space. To see that the image of HomK(V, indGK V ) inside
Map(G,Map(V, V )) is as claimed, take (v 7→ fv) ∈ HomK(V, indGK V ), then its image is defined by
ϕ(g)(v) = fv(g). The K-linearity of (v 7→ fv) means that fv(gk) = fkv(g) and by the definition
of the (compact) induction fv(kg) = k · fv(g). This translates into ϕ(k1gk2)(v) = fv(k1gk2) =
k1 · fk2v(g) = k1(ϕ(g)(k2v)) which is the desired identity, and furthermore the compact support
condition on ϕ translates into the (uniformly) compact support condition on the fv (using linearity
in v of fv and the finite dimensionality of V ).

Next we check the product. Take ϕ1, ϕ2 corresponding to ψ′1, ψ
′
2 ∈ HG(V ) and to ψ1, ψ2 ∈

HomK(V, indGK V ); we have ψi(x) = ψ′i([1, x]) by definition. Then

ψ′2([1, x])(γ2) = ψ2(x)(γ2) = ϕ2(γ2)(x)

and hence by K-equivariance

ψ′2([1, x]) =
∑

γ2∈K\G

[γ−1
2 , ϕ2(γ2)(x)] =

∑
γ2∈K\G

γ−1
2 [1, ϕ2(γ2)(x)]

which implies that

ψ′1(ψ′2([1, x])) = ψ′1

 ∑
γ2∈K\G

γ−1
2 [1, ϕ2(γ2)(x)]

 =

=
∑

γ2∈K\G

γ−1
2 ·

∑
γ1∈K\G

[γ−1
1 , (ϕ1(γ1) ◦ ϕ2(γ2))(x)]

which is equal to ∑
γ2∈K\G

∑
γ1∈K\G

[γ−1
2 γ−1

1 , (ϕ1(γ1) ◦ ϕ2(γ2))(x)].
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We need to make a change of variables in order to be able to interchange the sums. Put γ = γ1γ2

and interchange γ for γ1, then we get∑
γ2∈K\G

∑
γ∈K\G

[γ−1, (ϕ1(γγ−1
2 ) ◦ ϕ2(γ2))(x)] =

∑
γ∈K\G

∑
γ2∈K\G

[γ−1, (ϕ1(γγ−1
2 ) ◦ ϕ2(γ2))(x)]

which is equal to

∑
γ∈K\G

γ−1,
∑

γ2∈K\G

(ϕ1(γγ−1
2 ) ◦ ϕ2(γ2))(x)

 =
∑

γ∈K\G

[γ−1, (ϕ1 ? ϕ2)(γ)(x)]

as desired. �

Let π be a smoothG-representation. ThenHG(V ) acts on the right on HomK(V, π|K) ∼= HomG(indGK V, π).
This action is given explicitly by

(f ? ϕ)(x) =
∑

γ∈K\G

γ−1f(ϕ(γ)(x))

for f ∈ HomK(V, π|K) and ϕ in the explicit description of HG(V ). To see this, let ψ′ and ψ

correspond to ϕ as in the above proof and let f̄ ∈ HomG(indGK V, π) correspond to f . Then, by the
above proof

f̄(ψ(x)) = f̄

 ∑
γ∈K\G

γ−1 · [1, ϕ(γ)(x)]

 =
∑

γ∈K\G

γ−1 · f(ϕ(γ)(x)).

Example. Let V be the trivial representation, then HG(V ) = Cc(K\G/K,E), the algebra of
bi-K-invariant functions on G with compact support, under convolution. Let 1KgK denote the
characteristic function of the double coset KgK. Then, for a smooth G-representation π it acts on
πK = HomK(V, π) in the usual way; if

KgK =
∐
i

Kgi

then for x ∈ πK ,
1KgK(x) =

∑
i

g−1
i x.

5. Hecke Algebras for GL2

Recall the Cartan decomposition G =
∐
r≤s

K

(
pr

ps

)
K (Proposition 2).

Theorem 13. Fix a weight V .

(i) For any pair of integers r ≤ s there is a unique Hecke operator Tr,s ∈ HG(V ) such that
supp(Tr,s) = K · diag(pr, ps) ·K and the endomorphism

Tr,s

[(
pr

ps

)]
∈ EndE(V )

is a linear projection. The Tr,s form a basis of HG(V ).
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(ii) HG(V ) is isomorphic to E[T1, T2, T
−1
2 ] with T0,1 going to T1 and T1,1 going to T2. In

particular HG(V ) is commutative.

Proof. (i) Suppose that ϕ ∈ HG(V ) is such that A = ϕ

(
pr

ps

)
6= 0. Whenever k1, k2 ∈ K are

such that

k1

(
pr

ps

)
=

(
pr

ps

)
k2

we must have k1 ◦ A = A ◦ k2. It is easy to check that conversely, such an A determines a Hecke
operator supported onK ·diag(pr, ps)·K (just define ϕ to be k1◦A◦k2 for elements k1 ·diag(pr, ps)·k2

and 0 everywhere else, the condition on A then assures that this is well defined). For

k1

(
pr

ps

)
=

(
pr

ps

)
k2

to hold, we need

k1 ∈ K ∩
(
pr

ps

)
K

(
pr

ps

)−1

.

If r = s this is just K, and as
(
pr

pr

)
is central we have

k

(
pr

pr

)
=

(
pr

pr

)
k

for all k ∈ K, hence k ◦ A = A ◦ k for all k ∈ K. By the irreducibility of V and Schur’s Lemma,
A is a scalar. Since A is a nonzero projection, A must be the identity. For r < s, the intersection
above is (

Z×p Zp
ps−rZp Z×p

)
.

Write k1 =

(
α β

ps−rγ δ

)
, then k2 =

(
α ps−rβ
γ δ

)
. As the action of k ∈ K on V only depends

the reduction k̄ ∈ G(Fp), the condition k1 ◦A = A ◦ k2 may be written as(
ᾱ β̄
0 δ̄

)
◦A = A ◦

(
ᾱ 0
γ̄ δ̄

)
which is equivalent to the three conditions(

1 β̄
0 1

)
◦A = A,

A = A ◦
(

1 0
γ̄ 1

)
,

(
ᾱ 0
0 δ̄

)
◦A = A ◦

(
ᾱ 0
0 δ̄

)
.
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The first two implies the following factorization of A

V
A //

��

V

VU(Fp)
A // V U(Fp)

OO

and the third implies thatA is T (Fp)-linear. We know that VU(Fp)
∼= V U(Fp) as T (Fp)-representations

and that these are one-dimensional. Thus the space of Hecke operators supported onK ·diag(pr, ps)·
K is one-dimensional and we may take Tr,s to be the one corresponding to the projection

P = (V � VU(Fp) ← V U(Fp) ↪→ V ).

This finishes the proof of (i).

(ii) We first claim that Ti,iTr,s = Tr+i,s+i = Tr,sTi,i for all i, r, s. In particular this implies that T0,0

is the identity and that T2 = T1,1 is invertible, with T r2 = Tr,r. To prove the claim, first note that

K

(
pi 0
0 pi

)
K = K

(
pi 0
0 pi

)
which implies that

(Tr,sTi,i)(g) =
∑

γ∈K\G

Tr,s(gγ
−1)Ti,i(γ) = Tr,s

(
g

(
pi 0
0 pi

)−1
)

=

=



1 if r = s and g ∈ K

(
pr+i 0

0 ps+i

)
K

k1Pk2 if r < s and g = k1

(
pr+i 0

0 ps+i

)
k2 ∈ K

(
pr+i 0

0 ps+i

)
K

0 otherwise

which is equal to Tr+i,s+i(g) as desired. A similar calculation shows that Tr+i,s+i = Tr,sTi,i, which
proves the claim. Note also that this implies that T2 is central.

Next, we claim that Tr,sT1 = Tr,s+1 +
∑
i>0 aiTr+i,s+1−i for some ai ∈ E (note that implicitly

r + i ≤ s + 1 − i, i.e. i ≤ (s + 1 − r)/2). To show this we may first multiply by T−r2 and hence
without loss of generality assume that r = 0. If s = 0 as well we already know the result from
above, so we may assume s > 0. By looking at the convolution formula, we see that

supp(T0,sT1) ⊆ K
(

1 0
0 ps

)
K

(
1 0
0 p

)
K

and hence that

supp(T0,sT1) ⊆
∐

0≤i≤(s+1)/2

K

(
pi 0
0 ps+1−i

)
K

by looking at determinants in the Cartan decomposition. Thus we have an equation

T0,sT1 =
∑

0≤i≤(s+1)/2

aiTi,s+1−i
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and it remains to show that a0 = 1. We have

T0,sT1

(
1 0
0 ps+1

)
=

∑
γ∈K\G

T0,s

((
1 0
0 ps+1

)
γ−1

)
T1(γ) =

=
∑

γ∈K\K

 1 0
0 p

K
T0,s

((
1 0
0 ps+1

)
γ−1

)
P.

The double coset K
(

1 0
0 p

)
K has a right coset decomposition

K

(
1 0
0 p

)
K =

 ∐
0≤u≤p−1

K

(
1 u
0 p

) tK ( 0 1
−p 0

)
so the sum becomes ∑

0≤u≤p−1

T0,s

((
1 0
0 ps+1

)(
1 u
0 p

)−1
)
T1

(
1 u
0 p

)+

+T0,s

((
1 0
0 ps+1

)(
0 1
−p 0

)−1
)
T1

(
0 1
−p 0

)
.

Since T0,s is supported inside M2(Zp), we need the arguments for T0,s in the equation above to lie
in M2(Zp) for those terms not to vanish. But(

1 0
0 ps+1

)(
1 u
0 p

)−1

=

(
1 −up−1

0 ps

)
(

1 0
0 ps+1

)(
0 1
−p 0

)−1

=

(
0 p−1

ps+1 0

)
so only term corresponding to u = 0 survives, so we get

T0,s

(
1 0
0 ps

)
T1

(
1 0
0 p

)
= P ◦ P = P = T0,s+1

(
1 0
0 ps+1

)
so a0 = 1 as desired. Finally, combining these two results we have, for all r ≤ s,

T s−r1 T r2 = T r2 T
s−r
1 = Tr,s +

∑
1≤i≤(s−r)/2

a′iTr+i,s−i

for some a′i ∈ E (this follows by induction on s − r). Thus for all r ≤ s fixed there is a unipotent
(hence invertible) matrix expressing (T s−r−2i

1 T r+i2 )0≤i≤(s−r)/2 in terms of (Tr+i,s−i)0≤i≤(s−r)/2.
Therefore, the set (T s−r1 T r2 )r≤s forms another basis of HG(V ). This gives us the desired algebra
structure (as T2 is central). �

Corollary 13′. Let V be a weight, π a smooth representation of G and f : V ↪→ π|K a K-linear

injection. Then f ? T2 =

(
p 0
0 p

)−1

◦ f . (Note that
(
p 0
0 p

)−1

acts on π.)
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Proof. Let x ∈ V . Then

(f ? T2)(x) =
∑

g∈K\G

g−1f(T2(g)x) =

=

(
p 0
0 p

)−1

f

(
T2

(
p 0
0 p

)
x

)
=

(
p 0
0 p

)−1

f(x)

as T2

(
p 0
0 p

)
is the identity. �

Proposition 14. Suppose that χ : T → E× is a smooth character and f : V ↪→ IndG
B
χ is a

K-linear injection. Then f is an eigenvector for HG(V ) and

f ? T1 = χ

(
1 0
0 p

)−1

f,

f ? T2 = χ

(
p 0
0 p

)−1

f.

Proof. We know from Proposition 11 that dim HomK(V, IndG
B
χ) = 1 so f has to be an eigenvector.

For T2, the formula for the eigenvalue follows from Corollary 13′ upon noting that the center of G
acts as χ on IndG

B
χ (this follows directly from the definition of inductions).

For T1, since we already know that f is an eigenvector it suffices to compute the eigenvalue by
evaluating f ? T1 and f suitably. First, we claim that f(x)(1) 6= 0 if 0 6= x ∈ V U(Fp). To prove
this, note that f : V ↪→ IndG

B
χ
∼−→ IndK

B∩K χ corresponds to the T (Fp)-linear map θ : VU(Fp)
∼−→

χ|T (Zp) given by θ(kv) = f(v)(k) for k ∈ K, v ∈ V . Thus f(x)(1) = θ(x) 6= 0 since θ is an
isomorphism. Therefore the T1-eigenvalue will be the ratio between (f ? T1)(x)(1) and f(x)(1). We
have

(f ? T1)(x) =
∑

γ∈K\G

γ−1f(T1(γ)(x))

hence

(f ? T1)(x)(1) =
∑

γ∈K\G

f(T1(γ)(x))(γ−1).

T1(γ) = 0 unless γ ∈ K

(
1 0
0 p

)
K, so we can use the coset decomposition K

(
1 0
0 p

)
K =(∐

u∈Fp K

(
1 u
0 p

))
tK

(
0 1
−p 0

)
to write the above as

∑
u∈Fp

f

(
T1

(
1 u
0 p

)
x

)((
1 −up−1

0 p−1

))+ f

(
T1

(
0 1
−p 0

)
x

)((
0 −p−1

1 0

))
.
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Write
(

1 u
0 p

)
=

(
1 0
0 p

)(
1 u
0 1

)
and

(
0 1
−p 0

)
=

(
1 0
0 p

)(
0 1
−1 0

)
, remembering

that T1

(
1 0
0 p

)
= P and that x ∈ V U(Fp) we get∑

u∈Fp

f(x)

((
1 −up−1

0 p−1

))+ f

(
P

(
0 1
−1 0

)
x

)((
0 −p−1

1 0

))

(using P (x) = x because x ∈ V U(Fp)). Now
(

1 −up−1

0 p−1

)
has Iwasawa decomposition(

1 −up−1

0 p−1

)
=

(
up−1 0
−p−1 u−1

)(
1 pu−1

0 1

)(
0 −1
1 0

)
where the last two matrices are in K. We get

f(x)

((
1 −up−1

0 p−1

))
=


χ

(
1 0

0 p

)−1

f(x)(1)

χ

(
up−1 0

0 u−1

)
f(x)

[(
1 pu−1

0 1

)(
0 −1

1 0

)]
(the first option if u = 0, the second if u 6= 0) and we have (with θ corresponding to f via Frobenius
reciprocity as in Proposition 12):

f(x)

[(
1 pu−1

0 1

)(
0 −1
1 0

)]
= θ

((
0 −1
1 0

)
x

)
.

Now note that ±
(

0 −1
1 0

)
x = 0 in VU(Fp) unless dim V = 1, in which case it is x (use the

explicit description of the weights to see this), i.e. corresponding to a = b in our parametrisation of
weights. Thus if dim V > 1 we are done. If dim V = 1 then V = detb = χ|T (Zp) and we get

χ

(
1 0
0 p

)−1

f(x)(1) +

∑
u 6=0

χ

(
p−1 0
0 1

)
θ (x)

+ f(x)

((
0 −p−1

1 0

))
and

f(x)

((
0 −p−1

1 0

))
= f(x)

((
p−1 0
0 1

)(
0 −1
1 0

))
so using this and simplifying we get

χ

(
1 0
0 p

)−1

f(x)(1) + p

(
χ

(
p−1 0
0 1

)
θ (x)

)
.

As p = 0 in E we get the desired equality

(f ? T1)(x)(1) = χ

(
1 0
0 p

)−1

f(x)(1). �
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6. Comparison Between Compact and Parabolic Induction

Let V be a weight, χ a character of T assume that we have a K-linear embedding f : V ↪→ IndG
B
χ.

By Frobenius reciprocity we have a nonzero G-linear map f̃ : indGK V → IndG
B
χ. Proposition 14

implies that f̃ is a Hecke eigenvector and we know the eigenvalues. Let χ′ is the character of HG(V )

defined by χ′(T1) = χ

(
1 0
0 p

)−1

and χ′(T2) = χ

(
p 0
0 p

)−1

. Then f̃ factors as (think of χ′ as

a quotient of HG(V ))
indGK V ⊗HG(V ) χ

′ → IndG
B
χ.

Theorem 15. This map is an isomorphism if dim V > 1.

We will prove a stronger, universal version of this statement. Since VU(Fp)
∼= χ|T (Zp) we get a

T -linear surjection indTT (Zp) VU(Fp) � χ, and the converse is also true, so indTT (Zp) VU(Fp) is universal
for characters χ such that VU(Fp)

∼= χ|T (Zp). f̃ then factors as

indGK V
F−→ IndG

B
(indTT (Zp) VU(Fp)) � IndG

B
χ

where F is obtained from the canonical map VU(Fp) → indTT (Zp) VU(Fp) (sending y to [1, y]) by the
following series of equalities:

HomT (Zp)(VU(Fp), indTT (Zp) VU(Fp)) = HomB(Zp)=B∩K(V, indTT (Zp) VU(Fp)) =

= HomK(V, IndK
B∩K(indTT (Zp) VU(Fp))) = HomG(indGK V, IndG

B
(indTT (Zp) VU(Fp)))

noting that, as before IndK
B∩K(indTT (Zp) VU(Fp))

∼= IndG
B

(indTT (Zp) VU(Fp)) as K-representations. Our
theorem is then:

Theorem 16. Let F be as above. Then F is also HG(V )-linear, where T1 acts as
(

1 0
0 p

)−1

and T2 acts as
(
p 0
0 p

)−1

on indTT (Zp) VU(Fp) (these matrices are in T so act on indTT (Zp) VU(Fp)).

The induced map
(indGK V )[T−1

1 ]→ IndG
B

(indTT (Zp) VU(Fp))

is injective, and is an isomorphism if dim V > 1.

Here, (indGK V )[T−1
1 ] ∼= indGK V ⊗HG(V )HG(V )[T−1

1 ] is the localisation of the HG(V )-module indGK V
at T1.

This theorem implies Theorem 15 in the following way. Let dim V > 1. Apply (−)⊗HG(V )[T−1
1 ] χ

′

to the isomorphism in Theorem 16 to get an isomorphism

indGK V ⊗HG(V ) χ
′ −→ IndG

B
(indTT (Zp) VU(Fp))⊗HG(V )[T−1

1 ] χ
′.

We wish to show that IndG
B

(indTT (Zp) VU(Fp))⊗HG(V )[T−1
1 ]χ

′ ∼= IndG
B
χ. Note that we have a surjection

HG(V )[T−1
1 ] ∼= E[T±1

1 , T±1
2 ]

χ′−→ E =
E[T±1

1 , T±1
2 ]

(T1 − λ1, T2 − λ2)
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where λ−1
1 = χ

(
1 0
0 p

)
and λ−1

2 = χ

(
p 0
0 p

)
. By exactness of IndG

B
(Proposition 5) we deduce

IndG
B

(indTT (Zp) VU(Fp))⊗HG(V )[T−1
1 ] χ

′ ∼= IndG
B

(
indTT (Zp) VU(Fp)

(T1 − λ1, T2 − λ2)

)
and we know from before that the quotient in the right-hand side is χ.

Let us now prove the surjectivity in Theorem 16; the injectivity will be proven later.

Proof. First we prove that F is HG(V )-linear, proceeding as in Proposition 14. Fix a nonzero
x ∈ V U(Fp). We have

HomG(indGK V, IndG
B

(indTT (Zp) VU(Fp)))
∼= HomT (Zp)(VU(Fp), indTT (Zp) VU(Fp))

∼=
∼= EndT (indTT (Zp) VU(Fp))

(where the first isomorphism was explained above) and thus HomG(indGK V, IndG
B

(indTT (Zp) VU(Fp)))

is a free EndT (indTT (Zp) VU(Fp))-module of rank 1. The same calculation as in Proposition 14,
transposed to our setting, shows that

(F ◦ T1)(x)(1) =

(
1 0
0 p

)−1

F (x)(1),

(F ◦ T2)(x)(1) =

(
p 0
0 p

)−1

F (x)(1).

As F (x)(1) = [1, x̄] generates indTT (Zp) VU(Fp) as a T -representation (since VU(Fp) is one-dimensional;
in general, for any set (si) of σ as a U -representation, the [1, si] generate indGU σ as aG-representation)

we have that F ◦ T1 =

(
1 0
0 p

)−1

F and F ◦ T2 =

(
p 0
0 p

)−1

F .

Let us now get down to proving surjectivity. It suffices to show that f0 = F (x) (x as above)
generates the target under the G- and HG(V )-actions. f0 is a function G → indTT (Zp) VU(Fp),
sending an element tūk ∈ G (t ∈ T , ū ∈ U , k ∈ K) to [t, kx]. We want to work out when kx 6= 0 in
VU(Fp). The Bruhat decomposition says that

GL2(Fp) = B(Fp) tB(Fp)
(

0 1
1 0

)
B(Fp).

Multiplying by
(

0 1
1 0

)
on the left we get

GL2(Fp) =

(
0 1
1 0

)
B(Fp) tB(Fp)B(Fp).

Elements in the first summand on the right-hand side kills x because
(

0 1
1 0

)
x is in the kernel

of V � VU(Fp) if dim V > 1. Thus k needs to map to the second summand, which we may simplify
to B(Fp)U(Fp). Thus k lies in (

Z×p pZp
Zp Z×p

)(
1 Zp
0 1

)
=
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=

((
Z×p 0
Zp Z×p

)
×
(

1 pZp
0 1

))(
1 Zp
0 1

)
= B(Zp)

(
1 Zp
0 1

)

and hence the support of f0 lies in B

(
1 Zp
0 1

)
. Moreover, for any a ∈ Zp, f0

((
1 a
0 1

))
=

[1, x̄], so we have equality. The same technique that was used in Proposition 5 to construct the
section we deduce{

f ∈ IndG
B

(indTT (Zp) VU(Fp)) | supp(f) ⊆ BU
}
∼= C∞c (Qp, indTT (Zp) VU(Fp))

f 7−→
(
f ′ : a 7→ f

(
1 a
0 1

))
(the inverse of this map is extension by 0, this works because of the compact support condition).
This is compatible with the HG(V )-action. Since supp(g · f) = supp(f) · g−1, the subspace of
IndG

B
(indTT (Zp) VU(Fp)) above is B-stable. Transfer of structure to C∞c (Qp, indTT (Zp) VU(Fp)) gives us

a B-representation, with the following actions:((
1 u
0 1

)
f ′
)

(a) = f ′(a+ u),

((
x 0
0 y

)
f ′
)

(a) = f ′(ay/x).

We have

f ′0(a) =

{
[1, x̄] if a ∈ Zp,
0 otherwise.

Now acting by HG(V )[T−1
1 ] gives all functions supported and constant on Zp. The T -action scales,

so we get any function supported and constant on some pnZp, for any n ∈ Z. Finally the U -action
translates, and so we get functions supported and constant on some a + pnZp, a ∈ Qp, n ∈ Z.
These functions span C∞c (Qp, indTT (Zp) VU(Fp)). Translating this back to IndG

B
(indTT (Zp) VU(Fp)) we

know have all functions supported on BU . Translating by G, we have any function supported
on BUg, for any g ∈ G. As these sets cover G, we now argue as in Proposition 5 to get all of
IndG

B
(indTT (Zp) VU(Fp)), which finishes the proof that f0 = F (x) generates IndG

B
(indTT (Zp) VU(Fp)) and

hence that F is surjective. �

Remark. If dim V = 1, then F is not surjective.

Corollary 16′. If V is a weight of IndG
B
χ such that dim V > 1, then V generates IndG

B
χ as a

G-representation. In particular, if χ = χ1 ⊗ χ2 with χ1|Z×p 6= χ2|Z×p , then IndG
B
χ is irreducible.

Here, if χ1, χ2 are characters of Q×p , we let χ = χ1 ⊗ χ2 be defined by χ
(
x 0
0 y

)
= χ1(x)χ2(y).

We will use this notation without further comment in the future.
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Proof. We have a commutative diagram

V � _

��

� u

''
indGK V //

����

IndG
B
χ

indGK V ⊗HG(V ) χ
′

77

The map indGK V ⊗HG(V )χ
′ → IndG

B
χ is an isomorphism, so the horizontal map indGK V → IndG

B
χ is

surjective. As V ⊆ indGK V generates indGK V , V ⊆ IndG
B
χ generates IndG

B
χ. If furthermore V is the

unique weight (necessarily of multiplicity one), then IndG
B
χ is irreducible (as any subrepresentation

has to contain a weight).

By Proposition 11 V is a weight of IndG
B
χ if and only if VU(Fp)

∼= χ|T (Zp) = χa,b for unique
0 ≤ a− b < p− 1, 0 ≤ b < p− 1, and

V =

{
F (a, b) if a 6= b,
F (b, b), F (b+ p− 1, b) if a = b,

where in the second case F (b + p − 1, b) generates IndG
B
χ and F (b, b) = detb is one-dimensional.

Thus, in the first case we see that IndG
B
χ is irreducible, and the condition a 6= b is equivalent to

χ1|Z×p 6= χ2|Z×p . �

7. Steinberg Representation for GL2

The principal series IndG
B

(1B) = C∞(B\G,E) = C∞(P1(Qp), E) has a one-dimensional trivial sub-
representation 1G consisting of the constant functions.

Definition. The quotient of IndG
B

(1B) by 1G is called the Steinberg representation and will be
denoted by St.

If χ : Q×p → E× is a smooth character we may tensor the exact sequence

0→ 1G → IndG
B

(1B)→ St→ 0

by χ ◦ det to get an exact sequence

0→ χ ◦ det→ IndG
B

(χ ◦ det)→ St⊗(χ ◦ det)→ 0.

Theorem 17. St is irreducible.

Proof. StI(1) is one-dimensional (exercise: use the description of IndG
B

(1B) as C∞(P1(Qp), E) and
show that any function which is I(1)-invariant in the Steinberg quotient is actually I(1)-invariant
in C∞(P1(Qp), E)). This shows that St must have a unique weight, since each weight gives a
positive-dimensional contribution to the I(1)-invariants. St is therefore irreducible, proving the
theorem. �

Remark.
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(i) Let St denote the weight F (p − 1, 0) (“Steinberg weight”); it is a weight of IndG
B

(1B) and
is disjoint from 1G, hence a weight of St and therefore the unique weight of St.

(ii) The Hecke eigenvalues of St in St (and 1K ⊆ 1G) are the same as in IndG
B

(1B), namely

T1, T2 7→ 1

Similarly, for St⊗(χ ◦ det), we get T1 7→ χ(p)−1, T2 7→ χ(p)−2.
(iii) The sequence 0→ 1G → IndG

B
(1B)→ St→ 0 is nonsplit.

8. “Change of Weight” for GL2

We wish to show that the remaining principal series representations are irreducible. To this, we
will study G-linear maps indGK V → indGK V

′ for (distinct) weights V ,V ′.

Let HG(V, V ′) = HomG(indGK V, indGK V
′), it is a (HG(V ′),HG(V ))-bimodule, with the extra struc-

ture of composition maps (or three weights V , V ′, V ′′)

HG(V ′, V ′′)×HG(V, V ′)→ HG(V, V ′′).

We have the following generalisation of Proposition 12:

Proposition 18.

(i) HG(V, V ′) is isomorphic to the space of functions ϕ : G → HomE(V, V ′) such that ϕ
has compact support and ϕ(k1gk2) = k1 ◦ ϕ(g) ◦ k2 for any k1, k2 ∈ K, g ∈ G, with the
composition maps given by convolution as in Proposition 12.

(ii) HG(V, V ′) 6= 0 if and only if VU(Fp)
∼= V ′

U(Fp)
as T (Fp)-representations.

(iii) If V � V ′ and VU(Fp)
∼= V ′

U(Fp)
, there is a Hecke operator ϕ : G→ HomE(V, V ′) supported

on K
(
pr 0
0 ps

)
K if and only if r < s, and it is unique up to scalar.

Proof. This is proved in exactly the same way as Proposition 12. For parts (ii) and (iii) we trace the
explicit computation of the Hecke operators in Proposition 12 (changing one V for V ′) and note that

to find a Hecke operator supported onK
(
pr 0
0 pr

)
K we need aK-linear map ϕ

(
pr 0
0 pr

)
V →

V ′, which is zero unless V ∼= V ′, and to find a Hecke operator supported on K
(
pr 0
0 ps

)
K for

r < s we needed a T (Fp)-linear map VU(Fp) → (V ′)U(Fp) (denoted by A in the proof of Proposition
12), which is zero unless VU(Fp)

∼= V ′
U(Fp)

, in which case it is unique to scalar. �

From this proposition we conclude that HG(V, V ′) gives us something new only in the case V =
F (b, b), V ′ = F (b+ p− 1, b) (or vice versa), and that there are nonzero G-linear maps

indGK V
ϕ−

�
ϕ+

indGK V
′

such that supp(ϕ±) = K

(
1 0
0 p

)
K; they are furthermore unique up to scalar. Identify HG(V )

and HG(V ′) by identifying the Ti from Theorem 13 (we will see later that this identification is in
fact natural) and write HG for this algebra.
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Proposition 19.

(i) ϕ± are HG-linear.
(ii) ϕ− ◦ ϕ+ = ϕ+ ◦ ϕ− = T 2

1 − T2 up to a nonzero scalar.

Proof. (i) and the first equality in (ii) will be formal consequences later of the Satake isomorphism.
The second equality in (ii) is obtained by explicit calculation (again, see later for the generalisation
to GLn). �

Remark. Analogues of the ϕ± were used by Kisin in his paper “The Fontaine-Mazur conjecture for
GL2”.

Corollary 19′. If χ′ : HG → E is an algebra homomorphism with χ′(T 2
1 − T2) 6= 0, then

indGK V ⊗HG χ′ ∼= indGK V
′ ⊗HG χ′.

Proof. ϕ± induce G-linear maps between the these two representations, and their compositions
either way are T 2

1 −T2, which acts invertibly (by the nonzero scalar χ′(T 2
1 −T2)) on indGK V ⊗HG χ′

and indGK V
′ ⊗HG χ′, so ϕ± induce isomorphisms. �

Proposition 20. If χ = χ1 ⊗ χ2 : T → E× is a smooth character and χ1 6= χ2, then IndG
B
χ is

irreducible.

Proof. If χ1|T (Zp) 6= χ2|T (Zp) then this is Corollary 16′. Thus we may assume χ1|T (Zp) = χ2|T (Zp); it
follows that χ1(p) 6= χ2(p). Suppose the character χ1|T (Zp) = χ2|T (Zp) is given by Z×p → F×p → E×

where the latter map is x 7→ xb for some b ∈ Z. Then IndG
B
χ has weights V = F (b, b) and

V ′ = F (b+ p− 1, b) with Hecke eigenvalues

T1 7→ χ2(p)−1 , T2 7→ χ1(p)−1χ2(p)−1.

Suppose that σ ⊆ IndG
B
χ is a nonzero G-subrepresentation. σ has to contains one of the two weights

above. If it contains V ′ then σ = IndG
B
χ by Corollary 16′. Suppose that a priori we only know that

σ contains V . We have

χ′(T 2
1 − T2) = χ2(p)−2 − χ1(p)−1χ2(p)−1 6= 0

as χ1(p) 6= χ2(p). Therefore by Corollary 19′,

indGK V ⊗HG χ′ ∼= indGK V
′ ⊗HG χ′

and the former has a nonzero G-linear map to σ as V is a weight of σ, hence we get a nonzero
G-linear map indGK V

′ ⊗HG χ′ → σ and so a K-linear embedding V ′ ↪→ σ, so V ′ is a weight of σ,
and hence σ = IndG

B
χ as above. We conclude that IndG

B
χ is irreducible. �

9. Admissible Representations

In this section we will let G be any Hausdorff topological group that has a fundamental system of
open neighbourhoods of 1 consisting of pro-p subgroups, unless stated otherwise.

Definition. A smooth G-representation π is admissible if dim πU is finite for any open subgroup
U ⊆ G.

Remark.
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(i) Any subrepresentation of an admissible representation is admissible (clear from the defi-
nition).

(ii) In fact, for certain groups (e.g. GLn(Qp)) quotients of admissible representations are ad-
missible.

Lemma 21. π is admissible if and only if there is an open pro-p subgroup U of G such that dim πU

is finite.

Proof. If π is admissible then by definition di,mπU is finite for any open subgroup U . Conversely,
let U be as in the statement of the lemma and let U ′ be any other open subgroup of G, we wish to
show that πU

′
is finite-dimensional. As πU

′ ⊆ πU∩U ′ , we may assume that U ′ ⊆ U . We have

πU
′

= HomU ′(1U ′ , π) = HomU (indUU ′ 1U ′ , π)

with indUU ′ 1U ′ finite-dimensional as the index (U : U ′) is finite. To finish we show, by induction on
dim σ, that HomU (σ, π) is finite-dimensional for any finite-dimensional smooth representation σ of
U . If σ is one-dimensional, then σ = 1U (by Lemma 7) and this reduces to the hypothesis of the
lemma. For the induction step, by Lemma 7 we have 1U ⊆ σ, and so applying HomU (−, π) to

0→ 1U → σ → σ/1U → 0

we get an exact sequence

0→ HomU (σ/1U , π)→ HomU (σ, π)→ HomU (1U , π)

and hence HomU (σ, π) is finite-dimensional as HomU (σ/1U , π) and HomU (1U , π) are finite-dimensional.
�

Remark. This is false if the characteristic of E is 6= p (G = Q×p gives some easy examples).

Lemma 22. If π 6= 0 is an admissible G-representation, then π contains an irreducible subrepre-
sentation.

Proof. Fix an open pro-p subgroup U of G. Then, for any nonzero G-subrepresentation τ ⊆ π
we have 0 6= τU ⊆ πU . As πU is finite-dimensional we may pick τ such that τU has minimal
(nonzero) dimension. Then the G-subrepresentation τ ′ generated by τU is irreducible, as any
nonzero subrepresentation σ ⊆ τ ′ must have σU ⊆ τ ′U = τU but also dim σU ≥ dim τU , so
σ ⊇ σU = τU and hence σ = τ ′. �

Lemma 23. Here we take G = GLn(Qp). Suppose that π is any smooth G-representation. Then
π is admissible if and only if π has finitely many weights (counted with multiplicity).

Proof. Assume π is admissible. For any weight V its multiplicity in π is the dimension of HomK(V, π) =
HomK(V, πK(1)) which is finite-dimensional as πK(1) is. As there are only finitely many weights, π
only has finitely many weights counting with multiplicity.

For the converse, by Lemma 21 it is enough to show that πK(1) is finite-dimensional. We have

πK(1) = HomK(1)(1K(1), π) = HomK(indKK(1) 1K(1), π)

with indKK(1) 1K(1) finite-dimensional. As in Lemma 21, HomK(σ, π) is finite-dimensional for any
finite-dimensional K-representation σ by induction on the number of irreducible subquotients in
σ where the base case HomK(V, π) finite-dimensional for irreducible V is the hypothesis of the
lemma. �
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Remark. By this lemma and what we have proven earlier, all principal series representations are
admissible, as well as χ ◦ det and St⊗(χ ◦ det) for any smooth character χ : Q×p → E×.

Lemma 24. Take G = GLn(Qp).

(i) (Schur’s Lemma) If π is an irreducible admissible representation, then EndG(π) = E.
(ii) Any irreducible admissible representation π of G has a central character χπ : Q×p → E×.

Proof. (i) Let φ ∈ EndG(π). Then πK(1) 6= 0 is finite-dimensional and φ(πK(1)) ⊆ πK(1), so φ has
an eigenvector 0 6= v ∈ πK(1) with eigenvalue λ ∈ E say, so Ker(φ − λ · idπ) 6= 0. But it is also a
G-subrepresentation of π, and hence must be π itself as π is irreducible, so φ = λ · idπ.
(ii) If z ∈ Z(G), then z ∈ AutG(π) (thinking of z as an automorphism of the underlying vector
space; since z is central it intertwines the G-action). Moreover this map Z(G) → AutG(π) is a
group homomorphism. But AutG(π) = E× by (i) and Z(G) = Q×p , so we obtain a character
Q×p → E×. �

Remark. This result is not know if we merely assume π to be smooth and irreducible. Neither is it
known if any smooth irreducible π with a central character is admissible, except for n = 1, 2.

10. Classification of Irreducible Admissible GL2(Qp)-representations

In this section we are back to be the case G = GL2(Qp). Let π be an irreducible admissible
representation of G and let V be a weight of π, then HomK(V, π) is nonzero and finite-dimensional
(i.e. the multiplicity of V in π is finite, by admissibility of π) and moreover a module for the
commutative algebra HG(V ). Hence we may find 0 6= f ∈ HomK(V, π) which is a simultaneous
eigenvector for all elements of HG(V ), i.e. there is an algebra homomorphism χ′ : HG(V ) → E
such that

f ? ϕ = χ′(p)f

for all ϕ ∈ HG(V ). So we get a G-linear map surjection indGK V ⊗HG(V ) χ
′ � π. Recall that for

principal series representations we found that χ′(T1) 6= 0.

Definition. An irreducible admissible G-representation π is called supersingular if, for any weight
V , the following two equivalent conditions hold:

(i) T1 is nilpotent on HomK(V, π) (i.e. the only eigenvalue is 0).
(ii) HomK(V, π)[T−1

1 ] = 0.

Theorem 25 (Barthel-Livné). The irreducible admissible G-representations π fall into the following
4 disjoint categories:

(i) Irreducible principal series IndG
B

(χ1 ⊗ χ2), χ1 6= χ2.
(ii) One-dimensional representations χ ◦ det, χ : Q×p → E× smooth character.
(iii) St⊗(χ ◦ det), χ : Q×p → E× smooth character.
(iv) Supersingular representations.

Remark.

(i) Barthel and Livné proved this under the (a priori) weaker assumption that π is smooth
irreducible and has a central character.
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(ii) Any supersingular representation is by definition a quotient of indGK V ⊗HG(V ) χ
′ with

χ′(T1) = 0. Breuil showed that all these representations are irreducible (and hence super-
singular). This gives a classification of supersingular representations of GL2(Qp). A nice
proof can be found in Emerton’s paper “On a class of coherent rings, with applications
to the smooth representation theory of GL2(Qp) in characteristic p”. Work of Breuil and
Paskunas shows that, for GL2(F ) with F a proper finite extension of Qp, these compact
inductions typically (always?) have infinitely many non-isomorphic irreducible admissible
quotients.

Proof. We know that the four cases are disjoint and that all representations in them are irreducible
(in the cases (i)–(iii) we proved this, for (iv) this is in the definition). Moreover we have also proved
that the Hecke eigenvalues and the weights determine the characters χ1 and χ2 in (i) and χ in (ii)
and (iii). Let π be any irreducible admissible representation of G. We need to show that π is in one
of the four categories above, so assume that π is not supersingular and let V be a weight of π and
χ′ : HG(V )→ E an algebra homomorphism with χ′(T1) 6= 0 such that indGK V ⊗HG(V ) χ

′ � π. If
dim V > 1, then indGK V ⊗HG(V ) χ

′ = IndG
B
χ by Theorem 15, where χ is determined by

χ|T (Zp)
∼= VU(Fp),

χ

(
1 0
0 p

)−1

= χ′(T1) 6= 0,

χ

(
p 0
0 p

)−1

= χ′(T2),

and hence π is in one of (i)–(iii). If dim V = 1 and χ′(T 2
1 − T2) 6= 0, then by Corollary 19′,

indGK V ⊗HG(V ) χ
′ ∼= indGK V

′ ⊗HG(V ) χ
′ where V ′ is the unique weight such that dim V ′ > 1 and

V ′
U(Fp)

∼= VU(Fp). This then brings us into the previous case.

Now assume dim V = 1 and χ′(T 2
1 −T2) = 0. By replacing π with π⊗(η◦det) where (η◦det)−1|K ∼=

V and η(p) = χ′(T1), we may assume that V = 1K and χ′(T1) = χ′(T2) = 1. We claim that
indGK 1K ⊗HG(V ) χ

′ has finite length and that (indGK 1K ⊗HG(V ) χ
′)ss ∼= (IndG

B
1B)ss; if this holds

then we are done. We will need the following two facts:

(i) (indGK 1K)[T−1
1 ] is a free HG(V )[T−1

1 ]-module.
(ii) (indGK St)[T−1

1 ] is a free HG(V )[T−1
1 ]-module.

The second fact follows from Theorem 16. The first follows from comparison of Theorem 16 for 1K
and St.

Next, let us write HG for HG(1K) ∼= HG(St) (identified as in Section 8). By Proposition 19 there
are HG- and G-linear maps

indGK 1K
ϕ−

�
ϕ+

indGK St

such that ϕ− ◦ ϕ+ = ϕ+ ◦ ϕ− = T2 − T 2
1 (scale so the second equality holds on the nose). Let

σ =
indGK 1K

(T1 − 1) indGK 1K
, τ =

indGK St

(T1 − 1) indGK St
.
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Then we have induced maps

τ
ϕ−−→ σ

ϕ+

−→ τ
ϕ−−→ σ

(by abuse of notation) between the quotients that are both G-linear and HG/(T1 − 1) ∼= E[T±1
2 ]-

linear, and ϕ− ◦ ϕ+ = ϕ+ ◦ ϕ− = T2 − 1. By the facts above, σ and τ are free E[T±1
2 ]-modules

(as HG[T−1
1 ]/(T1 − 1)HG[T−1

1 ] = HG/(T1 − 1)) and hence T2 − 1 acts injectively on σ and τ , so

τ
ϕ−−→ σ

ϕ+

−→ τ
ϕ−−→ σ may be viewed as a chain of submodules

(T2 − 1)τ ⊆ (T2 − 1)σ ⊆ τ ⊆ σ.
Now

τ

(T2 − 1)τ
∼=

indGK St

(T1 − 1, T2 − 1) indGK St
∼= indGK St⊗HG χ′ ∼= IndG

B
(1B)

where the last isomorphism comes from Theorem 15. Hence both τ/(T2 − 1)τ and its subrepresen-
tation (T2 − 1)σ/(T2 − 1)τ ∼= σ/τ are of finite length and(

indGK 1K ⊗HG(V ) χ
′
)ss ∼=

(
indGK 1K

(T1 − 1, T2 − 1) indGK 1K

)ss

∼=

∼=
(

σ

(T2 − 1)σ

)ss

∼=
(

τ

(T2 − 1)τ

)ss

∼=
(

IndG
B

(1B)
)ss

which is what we wanted. �

Definition. An irreducible admissible representation is supercuspidal if it is not a subquotient of
a principal series representation.

Corollary.

(i) π is supersingular if and only if it is supercuspidal.
(ii) An irreducible admissible representation π “has constant Hecke eigenvalues”.
(iii) All principal series representations have finite length (which is 1 or 2, this is not really a

corollary but was proved earlier).

11. Weights for GLn

Let us state some results from the modular representation theory of GLn(Fp):

Theorem. The irreducible (smooth) representations of GLn(Fp) (over E) are parametrised by
equivalence classes of n-tuples ν ∈ (ν1, . . . , νn) ∈ Zn such that 0 ≤ νi − νi+1 ≤ p − 1 for all
1 ≤ i ≤ n−1, where ν and ν′ are equivalent if ν1−ν′1 = · · · = νn−ν′n ∈ (p−1)Z. The total number
of equivalence classes is pn−1(p− 1). We write F (ν) for the representation corresponding to ν.

We will now give an explicit description of F (ν). We may regard ν as a character T (E) → E×

defined by
diag(t1, . . . , tn) ∈ T (E) 7−→ tν11 · · · tνnn .

Let
W (ν) =

{
f ∈ OGLn(E) | f(tūg) = ν(t)f(g) ∀t ∈ T (E), ū ∈ U(E), g ∈ GLn(E)

}
where we let OGLn(E) denoted the ring of regular functions of GLn(E), i.e. the functions f :

GLn(E)→ E such f(g) is a polynomial in the matrix entries gij of g and det(g)−1. We let GLn(E)
act on W (ν) via the right regular representation (g · f)(x) = f(xg). This is a finite-dimensional
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representation of GLn(E) (one can see that W (ν) is in fact the space of global sections of a line
bundle on the projective variety B(E)\GLn(E)).

It turns out that W (ν)U(E) is one-dimensional (roughly, f ∈ W (ν)U(E) then f(1) determines f on
the big cell, which is Zariski dense in B(E)\GLn(E)). F (ν) is then the GLn(E)-, or as it turns
out, the GLn(Fp)-subrepresentation generated by W (ν)U(E).

Example.

(i) n = 1: f(x) = xν up to scalar.

(ii) f
(
a b
c d

)
= aν1−ν2 det

(
a b
c d

)ν2
spans W (ν)U(E). The elements

fi

(
a b
c d

)
= aibν1−ν2−i det

(
a b
c d

)ν2
for 0 ≤ i ≤ ν1 − ν2 span W (ν) = F (ν).

Remark.

(i) dim F (ν) is not known in all cases. For p � 0, there is an algorithm to compute the
dimension, based on a (proven) conjecture of Lusztig.

(ii) dim F (ν) = 1 if and only if ν1 = · · · = νn. Then F (ν) = detν .

If V is a weight and P = MN is standard parabolic then V N(Fp) and VN(Fp) are irreducible M(Fp)-
representations and the natural map V N(Fp) → VN(Fp) is an isomorphism. In particular, V U(Fp) is
an irreducible 1-dimensional representation (isomorphic to VU(Fp)). Explicitly, if P = Pn1,...,nr then
M =

∏
i GLni so

F (ν)N(Fp) = F (ν1, . . . , νn1
)⊗ · · · ⊗ F (νn−nr+1, . . . , νn).

There is another parametrisation of the weights. They are in bijection with pairs (θ,M) where
θ : T (Fp)→ E× is a character and M is a standard Levi such that θ extends to M(Fp). Explicitly,
the parametrisation is given by V 7→ (θV ,MV ) where θV ∼= V U(Fp) and MV is the largest standard
Levi M such that V U(Fp) are preserved by M(Fp) (hence by P (Fp)). Equivalently, V N(Fp) is one-
dimensional.

Remark. PV (Fp) = Stab(V U(Fp) ⊆ V ) (since the stabiliser contains B(Fp) it must be a standard
parabolic).

Example (n = 2).
F (a, b) 7−→ (χa,b, T ) if a 6= b,

F (b, b) 7−→ (
b

det, G) if a = b.

Example (n = 3).
F (a, b, c) 7−→ (χa,b,c, T ) if a > b > c,

F (b, b, c) 7−→ (χb,b,c, P2,1) if a = b > c,

F (a, b, b) 7−→ (χa,b,b, P1,2) if a > b = c,

F (b, b, b) 7−→ (
b

det, G) if a = b = c.
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12. Mod p Satake Isomorphism

Let us start by recalling the Yoneda Lemma. Let C be a category and let A and B be objects of C.
Suppose that

HomC(A,−)
ϕ−→ HomC(B,−)

is a natural transformation, i.e. a collection (ϕC)C∈Ob(C) of maps such that for all morphisms
f : C → D in C, the diagram

HomC(A,C)

f◦−
��

ϕC // HomC(B,C)

f◦−
��

HomC(A,D)
ϕD // HomC(B,D)

commutes. Then the Yoneda Lemma says that there exists a unique g : B → A such that
ϕC(f) = g ◦ f for all morphisms f and objects C. Explicitly, g = ϕA(idA).

Let P = MN be standard parabolic and V a weight.

Lemma 26. There is a natural isomorphism of functors from smooth M -representations to E-
vector spaces

HomG(indGK V, IndG
P

(−)) ∼= HomM (indMM(Zp) VN(Fp),−)

(cf. the proof of Proposition 11). We will denote the map by f 7→ fM .

Proof. We have
HomG(indGK V, IndG

P
(−)) ∼= HomK(V, IndG

P
(−)|K) ∼=

∼= HomK(V, IndKP (Zp)(−|M(Zp))) ∼= HomP (Zp)(V,−|M(Zp)) ∼=
∼= HomM(Zp)(VN(Fp),−|M(Zp)) ∼= HomM (indMM(Zp) VN(Fp),−)

where the first, third and fifth natural isomorphisms are Frobenius reciprocity, the second comes
from the Iwasawa decomposition and the fourth is the universal property of the coinvariants. �

Any ϕ ∈ HG(V ) induces a natural endomorphism of the functor HomG(indGK V, IndG
P

(−)), hence of
HomM (indMM(Zp) VN(Fp),−). The natural endomorphisms of HomM (indMM(Zp) VN(Fp),−) are given
by EndM (indMM(Zp) VN(Fp)) by the Yoneda Lemma, i.e. we get a unique endomorphism

SMG (ϕ) ∈ EndM (indMM(Zp) VN(Fp)) = HM (VN(Fp))

where the equality is the definition of the Hecke algebra HM (VN(Fp)). S
M
G (ϕ) is characterised by

(f ◦ ϕ)M = fM ◦ SMG (ϕ).

SMG is an algebra homomorphism. To prove that it preserves multiplication we note that, for all f ,

fM ◦ SMG (ϕ1 ◦ ϕ2) = (f ◦ ϕ1 ◦ ϕ2)M =

= (f ◦ ϕ1)M ◦ SMG (ϕ2) = fM ◦ SMG (ϕ1) ◦ SMG (ϕ2).

The uniqueness in the Yoneda Lemma then implies that SMG (ϕ1 ◦ ϕ2) = SMG (ϕ1) ◦ SMG (ϕ2). A
similar argument shows that SMG is linear as well.
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Proposition 27. We have the following explicit formula for SMG :

SMG (ϕ)(m) =
∑

n̄∈N(Zp)\N

pN ◦ ϕ(n̄m)

for all m ∈ M , where pN is the projection V � VN(Fp) and we are viewing ϕ as function G →
EndE(V ) and SMG (ϕ) as function M → EndE(VN(Fp)). The sum on the right-hand side is a sum of
linear maps V → VN(Fp) and implicit in the statement is the assertion that the sum factors through
V � VN(Fp) to a map VN(Fp) → VN(Fp).

Proof. If σ is a smooth M -representation, f : V → IndG
P

(σ)|K and fM : VN(Fp) → σ|M(Zp) are
related by the equation

f(v)(1) = fM (pN (v))

(cf. the proof of Proposition 14). By definition, (f ∗ϕ)M = fM ∗SMG (ϕ). To determine SMG (ϕ) take
“fM = id”, so σ = indMM(Zp) VN(Fp) and via Frobenius reciprocity,

fM : VN(Fp) −→ indMM(Zp) VN(Fp)

x 7−→ [1, x].

For v ∈ V ,
(f ∗ ϕ)M (pN (v)) = (f ∗ ϕ)(v)(1) =

=
∑

g∈K\G

(g−1 · f)(ϕ(g)v)(1) =
∑

g∈K\G

f(ϕ(g)v)(g−1).

By the Iwasawa decomposition we have

K\G = K\(KP ) = (P ∩K)\P = P (Zp)\P .

Using Lemma 28 (iii) below with P = M nN and the subgroup P (Zp) = M(Zp)N(Zp) we get∑
g∈K\G

f(ϕ(g)v)(g−1) =
∑

m∈M(Zp)\M

∑
n̄∈N(Zp)\N

f(ϕ(n̄m)v)(m−1n̄−1) =

=
∑

m∈M(Zp)\M

∑
n̄∈N(Zp)\N

m−1 · f(ϕ(n̄m)v)(1).

Now f(ϕ(n̄m)v)(1) = fM (pN (ϕ(n̄m)v)) = [1, pN (ϕ(n̄m)v)] and hence

∑
m∈M(Zp)\M

∑
n̄∈N(Zp)\N

m−1 · f(ϕ(n̄m)v)(1) =
∑

m∈M(Zp)\M

m−1,
∑

n̄∈N(Zp)\N

(pN ◦ ϕ(n̄m))v

 .
So under Frobenius reciprocity, SMG (ϕ) corresponds to the map VN(Fp) → indMM(Zp) VN(Fp)|M(Zp)

given by

pN (v) 7−→

m 7−→ ∑
n̄∈N(Zp)\N

(pN ◦ ϕ(n̄m))v


which is the element

m 7−→

pN (v) 7−→
∑

n̄∈N(Zp)\N

(pN ◦ ϕ(n̄m))v
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of HM (VN(Fp)), which is what we wanted to prove. �

Next we state the lemma used in the proposition:

Lemma 28.

(i) Let Γ be a group, Y / Γ a normal subgroup and Γ0 ⊆ Γ a subgroup. Moreover, let A be an
abelian group and ψ : Γ0\Γ→ A a function. Then

∑
γ∈Γ0\Γ

ψ(γ) =
∑

γ′∈Γ0Y \Γ

 ∑
y∈(Y ∩Γ0)\Y

ψ(yγ′)

 .

(ii) If in addition Γ = X n Y and π : Γ→ X is the associated projection, then

∑
γ∈Γ0\Γ

ψ(γ) =
∑

x∈π(Γ0)\X

 ∑
y∈(Y ∩Γ0)\Y

ψ(yx)

 .

(iii) If moreover Γ0 = (Γ0 ∩X)(Γ0 ∩ Y ), or equivalently π(Γ0) = Γ0 ∩X, we get

∑
γ∈Γ0\Γ

ψ(γ) =
∑

x∈(X∩Γ0)\X

 ∑
y∈(Y ∩Γ0)\Y

ψ(yx)

 .

Proof. (i) We have Γ =
∐

Γ0Y γ
′ and Y ∩Γ0\Y

∼−→ Γ0\Γ0Y (induced from the inclusion Y ↪→ Γ0Y )
and hence

Γ =
∐

γ′∈Γ0Y \Γ

 ∐
y∈(Y ∩Γ0)\Y

Γ0yγ
′


which implies the formula.

(ii) π induces an isomorphism Γ0Y \Γ
∼−→ π(Γ0)\X and hence we may substitute the outer sum to

a sum over π(Γ0)\X.

(iii) Immediate from (ii). �

Remark.

(i) We could have defined SMG by the formula in Proposition 27 and then proved all the
properties. However, the approach taken is more efficient.

(ii) When M = T , we will write SG for STG.
(iii) As a special case, take V = 1K , P = B. Then SG : HG(1K)→ HT (1T (Zp)) is given by

ϕ 7−→

t 7−→ ∑
ū∈U(Zp)\U

ϕ(ūt)

 .

As an aside, let us consider the classical Satake transform over C. There we have the Hecke algebra
HC
G of compactly supported functions ϕ : G → C such that ϕ(k1gk2) = ϕ(g) for all k1, k2 ∈ K

and g ∈ G, and HC
T the Hecke algebra of compactly supported functions ψ : T → C such that
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ψ(st) = ψ(t) for s ∈ T (Zp) and t ∈ T . Then the classical Satake isomorphism S is the map
HC
G → HC

T

ϕ 7−→
(
t 7−→ δ(t)−1/2

ˆ
U

ϕ(ūt)dū

)
where dū is Haar measure on U , normalised so that

´
U(Zp)

dū = 1, and δ is the modulus character
of B, defined by

diag(t1, . . . , tn) 7−→ |t1|−(n−1)|t2|−(n−3) · · · |tn|n−1.

The Weyl group W ∼= Sn acts on T = Q×p × · · · ×Q×p by permutation of factors. Then the theorem
of Satake is:

Theorem (Satake, 1963). S is an injective algebra homomorphism with image HWT (the W -
invariants of HT ).

Remark.

(i) For a reference, see Cartier’s article “Representations of p-adic groups: a survey” in the
Corvallis volumes, or Gross’s article “On the Satake isomorphism”.

(ii) HC
T = C[T/T (Zp)] ∼= C[T±1

1 , . . . , T±1
n ] and W ∼= Sn acts by permutation of the variables.

Now let us return to our case. Let P = B, and define

T− = {diag(t1, . . . , tn) | ordp(t1) ≤ · · · ≤ ordp(tn)} .

T− is a submonoid of T and we may therefore defined a subalgebra H−T (VU(Fp)) ⊆ HT (VU(Fp)) by

H−T (VU(Fp)) =
{
ψ ∈ HT (VU(Fp)) | supp(ψ) ⊆ T−

}
.

Then we have:

Theorem 29. SG = STG : HG(V )→ HT (VU(Fp)) is an injective algebra homomorphism with image
H−T (VU(Fp)).

Proof. Let us, to ease notation, put HG = HG(V ), HT = HT (VU(Fp)) and H−T = H−T (VU(Fp)) for
the duration of this proof.

Step 1: Find natural bases for HG and HT (cf. Theorem 13).

Put Λ = Zn and Λ− = {λ ∈ Zn | λ1 ≤ · · · ≤ λn}. For λ ∈ Λ, let tλ = diag(pλ1 , . . . , pλn) ∈ T . The
Cartan decomposition then says that G =

∐
λ∈Λ−

KtλK. Suppose that ϕ ∈ HG has support KtλK
for some λ ∈ Λ−. As in Theorem 13 specifying ϕ is equivalent to specifying an operator ϕ(tλ) such
that

k1 ◦ ϕ(tλ) = ϕ(tλ) ◦ k2

whenever k1tλ = tλk2. Then k1 ∈ tλKt−1
λ ∩K, so k1 is of the form (aij) with aij ∈ Zp for i ≤ j

and pλj−λiaij ∈ Zp for i > j, and conversely k2 is of the form (bij) with bij ∈ Zp for i ≥ j and
pλi−λj bij ∈ Zp for i < j. λ determines a standard parabolic P−λ = Pn1,...,nr where the ni are
defined by

λ1 = · · · = λn1
< λn1+1 = · · · < λn−nr+1 = · · · = λn.

Put Pλ = P−λ. Then we have
mn ◦ ϕ(tλ) = ϕ(tλ) ◦mn̄
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for m ∈Mλ(Fp) = M−λ(Fp), n ∈ N−λ(Fp) and n̄ ∈ Nλ(Fp), hence ϕ(tλ) factors through to a map
VNλ(Fp) → V N−λ(Fp). By Section 11 we know that there is a unique such map up to scalar, and
hence a unique such projection. We call the corresponding Hecke operator Tλ, and the (Tλ)λ∈Λ− is
a basis for HG.

For HT the situation is somewhat simpler. HT is the algebra of functions ψ : T → EndE(VU(Fp)) =

E with compact support and such that ψ(t0t) = t0ψ(t) for all t0 ∈ T (Zp) and t ∈ T . We have an
isomorphism T/T (Zp) ∼= Λ given by

diag(t1, . . . , tn) 7→ (ordp(t1), . . . , ordp(tn))

and under this isomorphism T−/T (Zp) corresponds to Λ−. Therefore there exists a unique τλ ∈ HT
whose support is tλT (Zp) and such that τλ(tλ) = 1. Then (τλ)λ∈Λ is our desired basis for HT , and
(τλ)λ∈Λ− is a basis for H−T .

Step 2: SG is injective.

If, for some λ ∈ Λ−, µ ∈ Λ,

(SGTλ)(tµ) =
∑

ū∈U(Zp)\U

pU ◦ Tλ(ūtµ) 6= 0

then there is a ū ∈ U such that ūtµ ∈ KtλK, or equivalently Utµ ∩KtλK 6= 0.

Fact 1. This implies that µ ≥ λ, where

µ ≥ λ⇔

{∑r
i=1 µi ≥

∑r
i=1 λi ∀r < nand∑n

i=1 µi =
∑n
i=1 λi

(note that ≥ is a partial order on Λ).

Fact 2. Utλ ∩KtλK = U(Zp)tλ for all λ ∈ Λ−.

We deduce that
SGTλ =

∑
µ∈Λ, µ≥λ

aµtµ

(from Fact 1) with aλ = 1 (from Fact 2). Now, suppose that SG(ϕ) = 0 for ϕ 6= 0. Choose
λ0 ∈ Λ−, minimal with respect to ≤, such that Ktλ0

K ⊆ supp(ϕ). Then by the above equation,
supp(SG(ϕ)) ⊇ T (Zp)tλ0 , a contradiction. Hence SG is injective.

Step 3: Suppose that ϕ ∈ HG, µ ∈ Λ is such that SG(ϕ)(tµ) 6= 0. Then µi − µi+1 ≤ 1 for all i.

Suppose that there is a k such that µk − µk+1 > 1. Fix such a k. Let

Uk = {(aij) ∈ GLn(Qp) | aii = 1, ak+1,k ∈ Qp aij = 0 otherwise}

and let U
′
be the kernel of the homomorphism π : U → Qp given by (aij) 7→ ak+1,k. We have

U = U
′ o Uk. Clearly π(U ∩K) = Zp. By Lemma 28(ii),

SG(ϕ)(tµ) =
∑

ū∈U(Zp)\U

pU ◦ ϕ(ūtµ) =
∑

ūk∈Uk(Zp)\Uk

 ∑
ū′∈U ′(Zp)\U ′

pU ◦ ϕ(ū′ūktµ)

 .
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Put ū′k = t−1
µ ūktµ, by a change of variables we get that the above sum is

∑
ū′k∈

Uk

t
−1
µ Uk(Zp)tµ

 ∑
ū′∈U ′(Zp)\U ′

pU ◦ ϕ(ū′tµū
′
k)

 .

Next, note that ϕ(gk) = ϕ(g) ◦ k = ϕ(g) if k ∈ K(1). Hence ū′k only matters modulo Uk ∩K(1).
π maps Uk isomorphically onto Qp and identifies Uk(Zp) with Zp, t−1

µ Uktµ with pµk−µk+1Zp and
Uk ∩K(1) with pZp. To simplify notation somewhat, put

ψ(ū′k) =
∑

ū′∈U ′(Zp)\U ′
pU ◦ ϕ(ū′tµū

′
k),

i.e. it is the inner sum in the formula above it. Identifying subgroups Uk of with their image under
π and using Lemma 28(ii), we get

∑
x∈Qp/pµk−µk+1Zp

ψ(x) =
∑

x2∈Qp/pZp

 ∑
x1∈pZp/pµk−µk+1Zp

ψ(x1 + x2)

 .

We noted above that ψ(x1 + x2) = ψ(x2) for x1 ∈ pZp (∼= Uk ∩K(1) ) and hence∑
x1∈pZp/pµk−µk+1Zp

ψ(x1 + x2) = pµk−µk+1−1ψ(x2) = 0

as µk − µk+1 > 1, so SG(ϕ)(tµ) = 0 which completes Step 3.

Step 4: The image of SG is contained in H−T .

Since (Tλ)λ∈Λ− is a basis for HG it is enough to show that supp(SG(Tλ)) ⊆ T− for all λ ∈ Λ−.
Suppose that SG(Tλ)(tµ) 6= 0 for some µ ∈ Λ− Λ−. Fix a k such that there is a µ ∈ Λ− Λ− with
SG(Tλ)(tµ) 6= 0 and µk − µk+1 > 0. Put

supp(λ) = {µ ∈ Λ | SG(Tλ)(tµ) 6= 0} .

This is a finite set since SG(Tλ) has compact support (and we assume that it is not contained in
Λ−). Consider the group homomorphism w : Λ→ Zn defined by

w(µ) = (µk − µk+1, µk+1 − µk+2, . . . , µk−1 − µk).

We claim that w is injective on supp(λ). If µ ∈ supp(λ) then µ ≥ λ, in particular
∑
µi =

∑
λi,

and this together with w(µ) determines µ, showing the injectivity.

Next we introduce the lexicographic (total) order ≤` on Zn. Choose µ ∈ supp(λ) such that w(µ) is
maximal with respect to ≤`. In particular µk − µk+1 = 1 (by Step 3) since we have assumed that
supp(λ) ( Λ−. We claim that SG(T 2

λ)(t2µ) 6= 0. This would contradict Step 3 and hence finish the
proof of Step 4. Since SG is an algebra homomorphism we have SG(T 2

λ) = SG(Tλ) ∗ SG(Tλ). Using
the formula for ∗ and evaluating at t2µ we get∑

µ′∈Λ

SG(Tλ)(tµ′) ◦ SG(Tλ)(t2µt
−1
µ′ ),
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identifying Λ = T/T (Zp). If the µ′-term is nonzero, then µ′, 2µ − µ′ ∈ supp(λ) and hence
w(µ′), w(2µ− µ′) ≤` w(µ) by maximality of µ. But then

w(2µ) = w(2µ− µ′) + w(µ′) ≤` w(µ) + w(µ) = w(2µ)

so we must in fact have equality. By injectivity of w on supp(λ) we may conclude that µ′ = µ, so
the sum above collapses into (SG(Tλ)(tµ))2 which is nonzero, since SG(Tλ)(tµ) is a nonzero scalar.
This completes Step 4.

Step 5: SG is surjective onto H−T .

It is enough to show that tµ ∈ Im(SG) for all µ ∈ Λ− as these form a basis for H−T . Fix µ ∈ Λ−.
We claim that the set

∑
(µ) = {λ ∈ Λ− | λ ≥ µ} is finite. This follows from noting that for such λ,

µ1 ≤ λ1 ≤ · · · ≤ λn ≤ µn and hence the claim follows. Next we claim that the matrix expressing
SG(Tλ) in terms of the τλ′ for λ, λ′ ∈

∑
(µ) is invertible. Note that this completes Step 5.

To show this, for all λ ∈
∑

(µ)

SG(Tλ) =
∑

λ≤λ′∈Λ−

aλ′λτλ′

with aλλ = 1 for all λ ∈
∑

(µ) (see just above Step 3). So if we extend ≥ arbitrarily to a total
order on

∑
(µ), the matrix (aλ′λ)λ,λ′∈

∑
(µ) is triangular with diagonal entries = 1. �

For 1 ≤ i ≤ n, let λi = (0, . . . , 0, 1, . . . , 1) ∈ Λ− with n − i zeroes and i ones. Put ti = tλi ∈ T−,
Ti = Tλi and τi = τλi ∈ HT (VU(Fp)).

Corollary. HG(V ) is commutative. It is an integral domain of finite type over E. Explicitly,

HG(V ) = E[T1, . . . , Tn−1, T
±1
n ]

(canonically; these are really the Ti above and there are no relations) and SG(Ti) = τi.

Remark. The last part does not generalise to other groups.

Proof. HG ∼= H−T with a basis τλ, λ ∈ Λ−. It is easy to check that τλ ∗ τµ = τλ+µ for λ , µ ∈ Λ.
Thus the inclusion H−T ⊆ HT is the inclusion E[Λ−] ⊆ E[Λ] and we see that HG is commutative.
Since Λ− = Z≥0λ1 ⊕ · · · ⊕ Z≥0λn−1 ⊕ Zλn as a monoid we get that H−T = E[T1, . . . , Tn−1, T

±1
n ], so

it is a finite type integral domain over E. It remains to show that SG(Ti) = τi for all i. We know
that

SG(Tλ) =
∑

λ≤µ∈Λ−

aµtµ

with aλ = 1. It is easy to check that if µ ≥ λi and µ ∈ Λ− then in fact µ = λi and hence SG(Ti) = τi
as desired. �

Exercise. Work out the Satake isomorphism more generally for products GLn1
(Qp)×· · ·×GLnr (Qp).

Let M = Mn1,...,nr be a standard Levi of GLn and let V be a weight of M(Zp) = M ∩ K. The
Satake transform from the exercise above is an injective algebra homomorphism

SM : HM (V ) ↪→ HT (V (U∩M)(Fp))
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with image those ψ ∈ HT (V (U∩M)(Fp)) whose support lies in the subset T−,M ⊆ T of those
diag(t1, . . . , tn) ∈ T such that (ord(t1), . . . , ord(tn)) ∈ Λ−,M , where Λ−,M is defined by

λ1 ≤ · · · ≤ λn1
,

λn1+1 ≤ · · · ≤ λn1+n2 ,

...
λn−nr+1 ≤ · · · ≤ λn.

Proposition 30. We have a commutative diagram

HG(V )
SMG //

� s

SG

&&

HM (VN(Fp))� _

SM

��
HT (VU(Fp))

Hence SMG is injective. Moreover, SMG is a localisation at one element, i.e. there exists a T ∈ HG(V )
such that the induced map HG(V )[T−1]→ HM (VN(Fp)) is an isomorphism.

Remark. U = (U ∩M)nN and hence
(
VN(Fp)

)
(U∩M)(Fp)

= VU(Fp).

Proof. IndG
B

(−) = IndG
P

(IndM
B∩M (−)) so by Lemma 26 we have natural isomorphisms

HomM (indMM(Zp) VN(Fp), IndM
B∩M (−)) ∼= HomG(indGK V, IndG

B
(−)) ∼= HomT (indTT (Zp) VU(Fp),−).

Let us denote the isomorphism from the first to the third object by f 7→ fM,T , then, using the
notation in Lemma 26, by definition we have (fM )M,T = fT . Also by definition we have, for all
ϕ ∈ HG(V ) and f ∈ HomG(indGK V, IndG

B
−),

(f ◦ ϕ)T = fT ◦ SG(ϕ).

Moreover (also by definition),

(f ◦ ϕ)T = ((f ◦ ϕ)M )M,T = (fM ◦ SMG (ϕ))M,T =

= (fM )M,T ◦ SM (SMG (ϕ)) = fT ◦ SM (SMG (ϕ)).

Hence the uniqueness in the Yoneda Lemma implies that SG = SM ◦ SMG , i.e. we get the commu-
tativity of the diagram. To prove the second part, note that we have

HT (VU(Fp))
∼= E[Λ],

Im(SG) ∼= E[Λ−],

Im(SM ) ∼= E[Λ−,M ].

Thus SMG may be identified with the inclusion E[Λ−] ↪→ E[Λ−,M ]. Pick λ ∈ Λ such that

λ1 = · · · = λn1
< λn1+1 = · · · = λn1+n2

< · · · .
Then Λ−,M = Λ− + Zλ as monoids (since Zλ ⊆ Λ−,M and for any λ′ ∈ Λ−,M and λ′ + mλ ∈ Λ−
for m� 0) and hence

E[Λ−]τλ = E[Λ−,M ]

which is what we wanted to prove. �
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Remark. We could also have proven the first part of the proposition by using the explicit formulae.

Two weights. Let V and V ′ be weights and let P = MN be a standard parabolic. Lemma 26
implies that

HomG(indGK V, IndG
P
−) ∼= HomM (indMM(Zp) VN(Fp),−)

and similarly for V ′. Any ϕ ∈ HG(V, V ′) = HomG(indGK V, indGK V
′) induces a natural transforma-

tion
HomG(indGK V

′, IndG
P
−)→ HomG(indGK V, IndG

P
−).

By the Yoneda Lemma there is a unique SMG (ϕ) ∈ HomM (indMM(Zp) VN(Fp), indMM(Zp) V
′
N(Fp)

) =

HM (VN(Fp), V
′
N(Fp)

). We get the same explicit formula for SMG (ϕ) as in Proposition 27. By

uniqueness SMG : HG(V, V ′) → HM (VN(Fp), V
′
N(Fp)

) is E-linear and whenever ϕ ∈ HG(V, V ′) and
ϕ′ ∈ HG(V ′, V ′′) then

SMG (ϕ′ ◦ ϕ) = SMG (ϕ′) ◦ SMG (ϕ).

Proposition 31.

(i) SMG is injective.
(ii) HG(V, V ′) 6= 0 if and only if VU(Fp)

∼= V ′
U(Fp)

as T (Fp)-representations.
(iii) If VU(Fp)

∼= V ′
U(Fp)

, then we can identify HG(V ) ∼= HG(V ′) via SG, and for all ϕ ∈
HG(V, V ′) and ϕ′ ∈ HG(V ′, V ), ϕ ◦ ϕ′ = ϕ′ ◦ ϕ.

Remark. We saw an instance of the last part of (iii) in Proposition 19.

Proof. (i) The same argument as in Step 1 of Theorem 29 shows that for λ ∈ Λ−,

dim {ϕ ∈ HG(V, V ′) | supp(ϕ) ⊆ KtλK} =

{
1 if VNλ(Fp)

∼= V ′Nλ(Fp),

0 otherwise.

Also, if supp(ϕ) = KtλK, supp(SG(ϕ)) ⊆
⋃
λ≤µ∈Λ T (Zp)tµ (Fact 1) and

SG(ϕ)(tλ) =
∑

ū∈U(Zp)\U

pU ◦ ϕ(ūtλ) = pU ◦ ϕ(tλ)

where ϕ(tλ) is the composition

V � VNλ(Fp)
∼−→ (V ′)N−λ(Fp) ↪→ V ′

where the middle isomorphism is Mλ(Fp)-linear and hence unique up to scalar (determined by ϕ; ϕ
too is unique to up scalar). As N−λ ⊆ U , Im(ϕ(tλ)) = (V ′)N−λ(Fp) ⊇ (V ′)U(Fp) so SG(ϕ)(tλ) 6= 0.
The same argument as in Theorem 29 shows that SG is injective. Since SM ◦ SMG = SG we deduce
that SMG is injective.

(ii) By (i), HG(V, V ′) 6= 0 implies that HT (VU(Fp), V
′
U(Fp)

) 6= 0. If χ, χ′ : T (Zp)→ E× are weights
of T (Zp), then for any ψ ∈ HT (χ, χ′) we have, for t0 ∈ T (Zp) and t ∈ T ,

ψ(t0t) = χ′(t0)ψ(t) = χ(t0)ψ(t)

and hence χ = χ′ if ψ 6= 0. Thus VU(Fp)
∼= V ′

U(Fp)
. For the converse, if VU(Fp)

∼= V ′
U(Fp)

, pick λ ∈ Λ−

such that λ1 < λ2 < · · · < λn. Then Nλ = U and from the conditions for existence of Hecke
operators we see that there is a ϕ ∈ HG(V, V ′) with support KtλK.
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(iii) Choose an isomorphism VU(Fp)
∼= V ′

U(Fp)
. ThenHT (VU(Fp), V

′
U(Fp)

) ∼= HT (VU(Fp))
∼= HT (V ′

U(Fp)
)

and hence
SG(ϕ ◦ ϕ′) = SG(ϕ) ◦ SG(ϕ′) = SG(ϕ′) ◦ SG(ϕ) = SG(ϕ′ ◦ ϕ)

by the commutativity of e.g. HT (VU(Fp)). By injectivity of SG, ϕ ◦ ϕ′ = ϕ′ ◦ ϕ. �

Remark. For V � V ′, Im(SG) * H−T (VU(Fp), V
′
U(Fp)

) in general.

13. Comparison of Compact and Parabolic Induction for GLn

Let P = MN be a standard parabolic subgroup of GLn and V a weight. Recall Lemma 26: for a
smooth M -representation σ, we have an isomorphism

HomG(indGK V, IndG
P

(σ)) ∼= HomM (indMM(Zp) VN(Fp), σ)

which is natural in σ and which we denote by f 7→ fM . By definition of SMG , (f ◦ϕ)M = fM ◦SMG (ϕ)
for ϕ ∈ HG(V ).

Let σ = indMM(Zp)(VN(Fp)), and let FV : indGK V → IndG
P

(indMM(Zp)(VN(Fp))) be such that (FV )M is
the identity. Then for all ϕ ∈ HG(V ),

(FV ◦ ϕ)M = id ◦SMG (ϕ) = SMG (ϕ) ◦ id = SMG (ϕ) ◦ (FV )M

and hence FV ◦ϕ = IndG
P

(SMG (ϕ)) ◦ϕ, i.e. FV is HG(V )-linear, where HG(V ) acts on the codomain
of FV via IndG

P
SMG . This commutes with commutes with the G-action and hence we get an induced

G- and HM (VN(Fp))-linear map

indGK(V )⊗HG(V ) HM (VN(Fp))→ IndG
P

(indMM(Zp) VN(Fp)).

Theorem 32. This map is

(i) injective and
(ii) surjective if V is M -regular.

Definition. V is M -regular if MV ⊆M , where MV is the unique largest standard Levi subgroup
L such that V U(Fp) ⊆ V is preserved by L(Fp) (see Section 11).

Remark.

(i) This generalises Theorem 16. In that case HT (VU(Fp)) = HG(V )[T−1
1 ].

(ii) When P = M = G any weight is G-regular and the theorem is trivial (the map is the
identity).

(iii) Let M = Mn1,...,nr . Then V = F (a) is M -regular if and only if an1
> an1+1, an1+n2

>
an1+n2+1, . . . , an−nr > an−nr+1. For example when G = GL2, V = F (a, b) is T -regular if
and only if dim V > 1.

(iv) The converse to part (ii) of the theorem is true; if the map is surjective then V isM -regular
(Henniart, Vignéras).

Proof. (i) SMG is a localisation by Proposition 30 and HG(V ) is an integral domain, so it is enough
to show that

FV : indGK V −→ IndG
P

(indMM(Zp) VN(Fp))
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is injective. Suppose not. Pick a weight V ′ ↪→ (Ker(FV ))|K . By Frobenius reciprocity we get a
nonzero G-linear map

θ : indGK V
′ −→ Ker(FV ).

By the same argument that we used to show that FV isHG(V )-linear we get a commutative diagram

indGK V
FV // IndG

P
(indMM(Zp) VN(Fp))

indGK V

θ

OO

FV ′ // IndG
P

(indMM(Zp) V
′
N(Fp)

)

IndP S
M
G θ

OO

By construction FV ◦ θ = 0, so (IndG
P
SMG θ) ◦ FV ′ = 0. Under Lemma 26 (FV ′)M is the identity on

indMM(Zp) VN(Fp), hence

((IndG
P
SMG θ) ◦ FV ′)M = SMG θ = 0

by naturality. Since SMG is injective we must have θ = 0, which is a contradiction. Hence FV is
injective.

(ii) (sketch; similar to the case of GL2 covered in Theorem 16)

Pick x ∈ V U(Fp) nonzero. Put f0 = FV ([1, x]) ∈ IndG
P

(indMM(Zp) VN(Fp)). One computes that

f0(mn̄k) = [m, pN (kx)]

for m ∈M , n̄ ∈ N and k ∈ K.

Fact 3. pN (γx) 6= 0 exactly when γ ∈ P (Fp) ·N(Fp) if and only if V is M -regular.

This implies that the support of f0 is P ·N(Zp). We have an isomorphism{
f ∈ IndG

P
(indMM(Zp) V

′
N(Fp)

) | supp(f) ⊆ P ·N
}
∼−→ C∞c (N, indMM(Zp) V

′
N(Fp)

)

by restriction to N . It maps f0 to the function

n 7−→

{
[1, x] if n ∈ N(Zp),
0 otherwise.

As in the proof of Theorem 16 one then shows (using this isomorphism) that f0 generates the
left-hand side of the above under the actions of P and HM (VN(Fp)) and that the left-hand side
generates IndG

P
(indMM(Zp) V

′
N(Fp)

) as a G-representation, which finishes the proof of surjectivity. �

Corollary 32′. If V is M -regular and χ : HM (VN(Fp)) → E is an algebra homomorphism then
there is an isomorphism

indGK V ⊗HG(V ),χ◦SMG E
∼−→ IndG

P
(indMM(Zp) V

′
N(Fp)

⊗HM (VN(Fp)),χ
E)

of G-representations (this generalises Theorem 15).

Proof. By the theorem we have a G- and HM (VN(Fp))-linear isomorphism

indGK(V )⊗HG(V ) HM (VN(Fp))
∼−→ IndG

P
(indMM(Zp) VN(Fp))
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and the actions commute. Now apply (−)⊗HM (VN(Fp)),χ
E to get a G-linear isomorphism

indGK(V )⊗HG(V ),χ◦SMG E → IndG
P

(indMM(Zp) VN(Fp))⊗HM (VN(Fp)),χ
E.

It remains to show that

IndG
P

(indMM(Zp) V
′
N(Fp)

⊗HM (VN(Fp)),χ
E) ∼= IndG

P
(indMM(Zp) VN(Fp))⊗HM (VN(Fp)),χ

E.

As HM (VN(Fp)) is noetherian the kernel of χ is finitely generated and hence there is an exact
sequence

HM (VN(Fp))
⊕m −→ HM (VN(Fp))

χ−→ E → 0

for some positive integer m. Applying the right exact functor indMM(Zp) VN(Fp) ⊗HM (VN(Fp))
(−) and

then the exact functor IndG
P

(−) gives the desired isomorphism. �

14. Supersingular Representations for GLn

If π is an admissible G-representation and V is a weight then HomK(V, π) is finite-dimensional
and furthermore admits an action by the commutative algebra HG(V ). If HomK(V, π) 6= 0 then it
contains a common eigenvector for the elements of HG(V ), i.e. it admits a character HG(V ) → E
as a submodule.

Definition. We define EvalG(V, π) to be the set of characters HG(V ) → E that occur as a sub-
module of HomK(V, π) (note that this is a finite set).

In what follows we will often identify HG(V ) with HT (VU(Fp)) = E[τ1, . . . , τn−1, τ
±1
n ] via SG (where

supp(τi) = T (Zp) diag(1, . . . , 1, p, . . . , p), with n− i 1’s).

Lemma 33. Let π be an irreducible admissible G-representation and V a weight. The following
are equivalent:

(i) For all χ ∈ EvalG(V, π), χ(τ1) = · · · = χ(τn−1) = 0.
(ii) For all χ ∈ EvalG(V, π) and for all standard Levi subgroups M 6= G, χ does not factor

through SMG : HG(V )→ HT (VN(Fp)).
(iii) HomK(V, π)⊗HG(V ),SMG

HM (VN(Fp)) = 0 for all standard Levi subgroups M 6= G.

Definition. An irreducible admissible representation is called supersingular if it satisfies the equiv-
alent conditions (i)–(iii) for all weights V .

Proof. Let us show that (i) is equivalent to (ii). The proof that (ii) is equivalent to (iii) will be
skipped and we will not need it.

Let M = Mn1,...,nr . Recall that SMG : HG(V )→ HM (VN(Fp)) is a localisation at one element. Let
us identify these two algebras with their images inside HT (VU(Fp)), we get

H−T (VU(Fp)) ⊆ H
−,M
T (VU(Fp)) ⊆ HT (VU(Fp)).

In Proposition 30 we saw that H−T (VU(Fp))[τ
−1
λ ] = H−,MT (VU(Fp)), for any λ that satisfies

λ1 = · · · = λn1
< λn1+1 = · · · = λn1+n2

< λn1+n2+1 = · · · .
Let us take λ = (0, . . . , 0, 1, . . . , 1, . . . , r − 1, . . . , r − 1) with each i ∈ {0, . . . , r − 1} occurring ni+1

times. Thus τλ = τn2+···+nrτn3+···+nr · · · τnr . Hence a character χ : HG(V ) ∼= H−T (VN(Fp)) → E
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factors through SMG if and only if χ(τλ) 6= 0, i.e. if and only if χ(τni+···+nr ) 6= 0 for 1 ≤ i ≤ r (note
that the case i = 1 is automatic). This gives the equivalence of (i) and (ii). �

15. Generalised Steinberg Representations

We wish to understand the irreducible subquotients of IndG
B

1B . Let P be a standard parabolic
subgroup. Define

SpP =
IndG

P
1P∑

Q)P IndG
Q

1Q

(note that IndG
Q

1Q ⊆ IndG
P

1P when P ⊆ Q). As special cases, we have SpG = 1G and SpB , the
Steinberg representation.

Theorem 34 (Grosse-Klönne + ε).

(i) SpP has a unique weight and is hence admissible.
(ii) SpP is irreducible.

Proof. (i) is not easy to prove (one needs to determine (SpP )I(1)).

(ii) Let χ : HM (1M(Zp))→ E denote the Hecke eigenvalues of 1M . Then we get a nonzeroM -linear
map

indMM(Zp) 1M(Zp) ⊗HM (1M(Zp)),χ
E → 1M .

Apply IndG
P

(−) to get a G-linear map:

IndG
P

(indMM(Zp) 1M(Zp) ⊗HM (1M(Zp)),χ
E)→ IndG

P
(1M ).

The left-hand side is isomorphic to indGK VP ⊗HG(V ),χ◦SMG E for any M -regular weight VP such that
(VP )N(Fp)

∼= 1M by Theorem 32. This gives us a surjection indGK VP � SpP and hence VP occurs
in SpP and generates it. By (i) this implies irreducibility of SpP . It therefore remains to construct
such a VP . Explicitly, take

VP = F ((r − 1)(p− 1), . . . , (r − 1)(p− 1), (r − 2)(p− 1), . . . )

where each (r − i)(p− 1) occurs ni times (M = Mn1,...,nr ). This is M -regular and (VP )N(Fp) is

F ((r − 1)(p− 1), . . . , (r − 1)(p− 1))⊗ · · · ⊗ F (0, . . . , 0) = 1M .

This finishes the proof (it follows from (i) that the VP constructed above is unique; this is also easy
to see from the construction). �

Corollary 34′.

(i) The SpP are pairwise non-isomorphic.
(ii) The irreducible subquotients of IndG

P
1P are the SpQ for Q ⊇ P .

(iii) For the unique χ ∈ EvalG(VP ,SpP ), χ(τi) = 1 for 1 ≤ i ≤ n.
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Proof. (i) Their weights are non-isomorphic.

(ii) This follows by an induction on the maximal number of elements r in a chain of parabolics
G = P0 ) P1 ) · · · ) Pr = P , the case of r = 0 being trivial. See the exercises.

(iii) VP lifts to IndG
P

1P and hence embeds into IndG
B

1B . By Lemma 26, using (VP )N(Fp) = 1M(Zp)

and hence equal to 1T (Zp) as a T (Zp)-representation, we have

HomK(VP , IndG
B

1B) = HomT (Zp)(1T (Zp), 1T ).

By definition the action of HG(V ) on the left hand side agrees via SG with the action of HT (1T (Zp))
on the right-hand side, and since each τi acts as 1 on the left-hand side the result follows. �

Remark. Let π = SpP ⊗(η ◦ det), for η : Q×p → E× a smooth character. Its unique weight is
VP ⊗ (η ◦ det)|K and its Hecke eigenvalues are given by χ(τi) = η(p)−i.

16. Change of Weight for GLn

Recall from Section 11 that weights are parametrised by n-tuples a = (a1, . . . , an) with 0 ≤ ai −
ai+1 ≤ p− 1, with a and a′ giving the same representation if and only if p− 1 | ai − ai+1 for all i.

Proposition 35. Let V = F (a). Suppose that there is a k such that ak − ak+1 = 0 (equivalent to
V not being T -regular). Then:

(i) There exists a unique weight V ′ = F (a′) such that VU(Fp)
∼= V ′

U(Fp)
and a′i − a′i+1 = 0 if

and only if ai − ai+1 = 0 and i 6= k.

(ii) There are G-linear maps indGK V
ϕ+

�
ϕ−

indGK V
′ such that (setting τ0 = 1)

SG(ϕ+ ◦ ϕ−) = SG(ϕ− ◦ ϕ+) = τ2
n−k − τn−k−1τn−k+1.

(iii) Write HG for HG(V ) ∼= HG(V ′) (identified via the Satake transform). Then for any
character χ : HG → E such that χ(τn−k)2 6= χ(τn−k−1)χ(τn−k+1),

indGK V ⊗HG,χ E ∼= indGK V
′ ⊗HG,χ E.

Remark. This generalises Proposition 19.

Proof. (i) Recall from Section 11 that VU(Fp)
∼= F (a1) ⊗ · · · ⊗ F (an). Hence VU(Fp)

∼= V ′
U(Fp)

for
V ′ = F (a′) if and only if ai ≡ a′i mod p− 1 for all i. Hence we are forced to have

a′i − a′i+1 =

{
ai − ai+1 if i 6= k,

p− 1 if i = k.

Conversely, this determines a′ uniquely modulo (p− 1)Z (embedded diagonally into Zn) and hence
we get a unique weight V ′ = F (a′).

(ii) By the proof of Proposition 31(i) there are ϕ+ and ϕ− such that supp(ϕ±) = KtλK, where
λ = (0, . . . , 0, 1, . . . , 1) ∈ Λ− (with k 0’s) (the condition is that VNλ(Fp)

∼= V ′Nλ(Fp); Pλ = P k,n−k and
we have that both are isomorphic to F (a1, . . . ak)⊗F (ak+1, . . . , an) ). The proof that SG(ϕ+◦ϕ−) =
τ2
n−k − τn−k−1τn−k+1 (up to non-zero scalar) requires work!



THE MOD p REPRESENTATION THEORY OF p-ADIC GROUPS 43

(iii) By the proof of Proposition 31(iii) ϕ+ : indGK V → indGK V
′ is HG-linear and similarly for ϕ−.

Hence we get induced G-linear maps

indGK V ⊗HG,χ E
ϕ+

�
ϕ−

indGK V
′ ⊗HG,χ E.

The composite is χ(τn−k)2−χ(τn−k−1)χ(τn−k+1) which is a non-zero scalar and hence indGK V ⊗HG,χ
E ∼= indGK V

′ ⊗HG,χ E. �

17. Irreducibility of Parabolic Inductions

Lemma 36. Let M = Mn1,...,nr be a standard Levi subgroup. The irreducible admissible M -
representations are given by σ =

⊗r
i=1 σi where the σi are irreducible admissible representations of

GLni(Qp). The weights of σ are given by
⊗r

i=1 Vi where Vi runs through the weights of σi. We
have a bijection

EvalM (V, σ) ∼=
r∏
i=1

EvalGLni (Qp)(Vi, σi)

χ 7−→ (χi)i

where
χ(τλ) = χ1(τλ1,...,λn1

)χ2(τλn1+1,...,λn1+n2
) · · ·

for λ ∈ Λ−,M .

Proof. Skipped. �

Theorem 37. Let P = MN = Pn1,...,nr be a standard parabolic. Suppose that σi is an irreducible
admissible representation of GLni(Qp) such that for each i either

(a) σi is supersingular and ni > 1 or
(b) σi = SpPi ⊗(ηi ◦ det) for some standard parabolic Pi ⊆ GLni(Qp) and ηi : Q×p → E×.

Suppose moreover that ηi 6= ηi+1 if σi and σi+1 are of type (b). Then IndG
P

(σ1 ⊗ · · · ⊗ σr) is
irreducible.

Remark.

(i) Note that any irreducible GL1(Qp)-representation is supersingular. Hence the condition
ni > 1 guarantees that (a) and (b) are disjoint (look at χ(τi)).

(ii) As a special case, we get that when ni = 1 for all i, IndG
B

(η1 ⊗ · · · ⊗ ηn) is irreducible if
and only if ηi 6= ηi+1 for all i.

Proof. For admissibility, it is enough to show that each weight occurs with finite multiplicity. We
have

HomK(V, IndG
P
σ) = HomM(Fp)(VN(Fp), σ)

which is finite dimensional since σ is admissible.

For irreducibility, suppose that π is a non-zero subrepresentation of IndG
P
σ and let V be a weight

of π. The strategy will be two divide into two cases:
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Case 1. If V is M -regular, we show that V generates IndG
P
σ as a G-representation and we are

done.

Case 2. If not, we change the weight to show that π contains a weight V ′ that is closer to being
M -regular; iterate to reduce to Case 1.

Pick an HG(V )-eigenvector
f : indGK V → π ⊆ IndG

P
σ

with eigenvalues χ. By Lemma 26

HomG(indGK V, IndG
P
σ) = HomM (indMM(Zp) VN(Fp), σ)

as Hecke modules via the Satake transform SMG : HG(V )→ HM (VN(Fp)) which is a localisation at
one element, which we may choose to be

τλ = τn2+···nrτn3+···+nr · · · τnr .

Since τλ acts invertibly on the right-hand side it acts invertibly on the left-hand side, so χ(τλ) 6= 0,
and hence χ extends (uniquely) to a character χM on HM (VN(Fp)).

Case 1: V is M -regular.

Consider fM (notation as in Lemma 26). fM is an HM (VN(Fp))-eigenvector with eigenvalues χM ,
and hence induces

indMM(Zp) VN(Fp) ⊗HM (VN(Fp)),χM
E � σ.

Apply IndG
P

(−):

IndG
P

(indMM(Zp) VN(Fp) ⊗HM (VN(Fp)),χM
E)

IndG
P

(fM⊗χM id)
// IndG

P
σ

indGK V ⊗HG(V ),χ E

FV ⊗χid

OO

where the horizontal arrow is a surjection by exactness of IndG
P

(−) and the vertical arrow is the
isomorphism of Corollary 32′; here FV is defined by (FV )M = id under Lemma 26. Thus a copy
of V generates IndG

P
σ as a G-representation. We need to show that this is the same copy of V as

we started with, i.e. we need to show the above composition is equal to f ⊗χ id. To do this, it is
enough to show that the following diagram commutes:

IndG
P

(indMM(Zp) VN(Fp))
IndG

P
fM // IndG

P
σ

indGK V

FV

OO
f

44

But we have (IndG
P
fM ◦ FV )M = fM ◦ (FV )M = fM , which implies IndG

P
fM ◦ FV = f as desired.

This gives us that the copy of V we started with generates IndG
P
σ, and hence that π = IndG

P
σ.

Case 2: V is not M -regular.
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We have V = F (a1, . . . , an) for some integers ai with 0 ≤ ai − ai+1 ≤ p− 1 for all i. Since V is not
M -regular there is an i such that, writing k = n1 + · · · + ni, ak = ak+1. Fix such an i and hence
the corresponding k. By Proposition 35(iii), provided that

χ(τn−k)2 − χ(τn−k+1)χ(τn−k+1) 6= 0

we may change weight to the V ′ described in the proposition, which is closer to being M -regular.
We want to show that this holds; as i will be arbitrary with the property ak = ak+1 this will imply
that we can apply Proposition 35(iii) as many times as we need and hence reduce to Case 1.

Recall that χ = χM |HG(V ). We know that χM (τn−k) 6= 0 because τn−k is a unit in HM (VN(Fp)).
By Lemma 36,

VN(Fp)
∼=

r⊗
j=1

Vj

where
Vj = F (an1+···+nj−1+1, . . . , an1+···+nj )

and χM corresponds to the collection (χj)
r
j=1 with χj ∈ HomGLnj (Zp)(Vj , σj). We have

χM (τn−k+1) = χi(τ0,...,0,1)

r∏
j=i+1

χj(τ1,...,1) = χi(τ0,...,0,1)χM (τn−k)

and (remember that τ1,...,1 is invertible)

χM (τn−k−1) = χi+1(τ0,1,...,1)

r∏
j=i+2

χj(τ1,...,1) =
χi+1(τ0,1,...,1)

χi+1(τ1,...,1)
χM (τn−k)

Hence
χ(τn−k)2 − χ(τn−k−1)χ(τn−k+1) = χM (τn−k)2 − χM (τn−k−1)χM (τn−k+1) =

= χM (τn−k)2

(
1− χi(τ0,...,0,1)

χi+1(τ0,1,...,1)

χi+1(τ1,...,1)

)
so since χM (τn−k) 6= 0 we see that this is zero if and only if

χi(τ0,...,0,1)
χi+1(τ0,1,...,1)

χi+1(τ1,...,1)
= 1.

If σi is of type (a) (as in the statement of the theorem) then χi(τ0,...,0,1) = 0 (by definition) and
hence the above does not hold, which is what we want. Similarly, if σi+1 is of type (a) we have
χi+1(τ0,1,...,1) = 0 and we get what we want. Thus we need to deal with the case when σi and σi+1

are of type (b), so put σi = SpPi ⊗(ηi ◦det) and σi+1 = SpPi+1
⊗(ηi+1 ◦det) for standard parabolics

Pi resp. Pi+1 of GLni(Qp) resp. GLni+1
(Qp) and smooth characters ηi, ηi+1 of Q×p . Then

χi(τ0,...,0,1) = ηi(p)
−1

and
χi+1(τ0,1,...,1)

χi+1(τ1,...,1)
=
ηi+1(p)−(ni+1−1)

ηi+1(p)−ni+1
= ηi+1(p).

Therefore
χi(τ0,...,0,1)

χi+1(τ0,1,...,1)

χi+1(τ1,...,1)
=
ηi+1(p)

ηi(p)

which is not equal to 1 if and only ηi+1(p) 6= ηi(p). By assumption we have that ηi 6= ηi+1.
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Claim: ηi|Z×p = ηi+1|Z×p .

Note that this implies that ηi 6= ηi+1 if and only if ηi(p) 6= ηi+1(p), which is what we want, and
hence would finish the proof of the theorem. To prove this, first recall that SpPi has a unique
weight VPi and that (VPi)Ui(Fp) = 1Ti(Fp) (here we are using Ui resp. Ti to denote the upper-
triangular unipotent matrices resp. the diagonal matrices of GLni(Qp)), hence SpPi ⊗(ηi ◦ det) has
a unique weight VPi ⊗ (ηi ◦ det) and (VPi ⊗ (ηi ◦ det))Ui(Fp) = ηi ◦ det |T (Zp). Hence we must have
Vi = VPi ⊗ (ηi ◦ det) and

(Vi)Ui(Fp) = ηi ◦ det |T (Zp).

Since Vi = F (an1+···+ni−1+1, . . . , an1+···+ni) we also have

(Vi)U(Fp) = F (an1+···+ni−1+1)⊗ · · · ⊗ F (an1+···ni)

and hence (n1 + · · ·+ ni = k)

ηi|Z×p = F (an1+···+ni−1+1) = · · · = F (an1+···+ni) = F (ak).

By the same argument replacing i with i + 1, we have that ηi+1|Z×p = F (ak+1). Since ak = ak+1,
this proves our claim, and finishes the proof of the theorem. �

18. Classifying irreducible admissible G-representations

We want to show that any irreducible admissible G-representations is as in Theorem 37. We
have seen this for n = 1 or 2. Let π be an irreducible admissible representation. Pick a weight
V = F (a1, . . . , an) of π and Hecke eigenvalues χ ∈ EvalG(V, π) and write HG = HG(V ). Then

indGK V ⊗HG,χ E � π.

By Corollary 32′,

indGK V ⊗HG,χ E
∼−→ IndG

P
(indMM(Zp) VN(Fp) ⊗HM ,χM E)

where P = MN = Pn1,...,nr is a standard parabolic subgroup and HM = HM (VN(Fp)), provided
that V is M -regular and χ factors through SMG : HG → HM . This is of course only interesting
if P 6= G. If P 6= G and the above happens, there is a smooth M -representation σ such that
IndG

P
σ � π. If σ is irreducible and admissible, we know that σ = σ1 ⊗ · · · ⊗ σr and by induction

each σi is as in Theorem 37.

Problem 1. If IndG
P
σ � π, show that there is an irreducible admissible σ′ such that IndG

P
σ′ � π.

Problem 2. Show that the irreducible constituents of IndG
P

(σ1 ⊗ · · · ⊗ σr), with each σi as in
Theorem 37, are again as in Theorem 37.

V is M -regular if an1+···+ni 6= an1+···+ni+1 for all i. The easiest way to satisfy this is to take
r = 2, then, for P = Pi,n−i, we want ai 6= ai+1. The condition that χ factors through SMG then
becomes χ(τn−i) 6= 0. There may not be such an i. If ai = ai+1, we may try to change weight. By
Proposition 35 we need ai = ai+1 and

χ(τ2
n−i − τn−i−1τn−i+1) 6= 0.

Recall that when we change weight, χ does not change. When do both methods fail?
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Case 1. χ(τn−i) = 0 for all i and all (V, χ) of π. If this happens, π is supersingular by definition
and we are done. If not, pick (V, χ) such that χ(τn−i) 6= 0 for some i.

Case 2. Whenever we have χ(τn−i) 6= 0, we also have ai = ai+1 and χ(τ2
n−i−τn−i−1τn−i+1) = 0

(and there is such an i). Arguing inductively, we see that χ(τn−i) 6= 0 for all i and hence
a1 = · · · = an. Denote the common value of the ai by α and put χ(τn−i) = ζn−i. Then
we have V = detα and from the relation ζ2

n−i = ζn−i−1ζn−i+1 for all i (with ζ0 = 1) we
deduce by induction that ζj = ζj1 for all j. If we replace π by π ⊗ (η ◦ det), where η is
the character defined by η(x) = x̄−α for x ∈ Z×p and η(p) = ζ1, we may without loss of
generality assume that α = 0 and ζ1 = 1, i.e. V = 1K and χ(τi) = 1 for all i.

We are then faced with:

Problem 3. Suppose that 1K ↪→ π|K with eigenvalues χ(τi) = 1 for all i. Show that π is as in
Theorem 37.

Remark. It is not too hard to see that in fact π then has to be 1G.

Let us first sketch the solution of Problem 2. For simplicity, let us take r = 2, the proof in the
general case is similar but notationally more complicated. By transitivity of parabolic induction
we have

IndG
P

(σ1 ⊗ σ2) = IndG
P12

(τ1 ⊗ · · · ⊗ τk ⊗ τ ′1 ⊗ · · · ⊗ τ ′`)
where P1 = M1N1 resp. P2 = M2N2 are standard parabolic subgroups of GLn1

(Qp) resp. GLn2
(Qp)

and P12 denotes the standard parabolic subgroup of GLn(Qp) with Levi subgroup M1 ×M2, and
we have written σ1 = Ind

GLn1
(Qp)

P1
(τ1 ⊗ · · · ⊗ τk) and σ2 = Ind

GLn2
(Qp)

P2
(τ ′1 ⊗ · · · ⊗ τ ′`) as in Theorem

37. Thus, IndG
P

(σ1 ⊗ σ2) is itself as in Theorem 37 (and hence irreducible and equal to π) unless
τk = SpQ1

⊗(η ◦ det) and τ ′1 = SpQ2
⊗(η ◦ det) for some character η. Note that this means that

neither τk−1 nor τ ′2 are of the form Sp⊗(η ◦ det), since σ1 and σ2 are as in Theorem 37. Let us, in
order to further simplify notation, assume that η = 1. Then (for appropriate m1,m2)

Ind
GLm1 (Qp)

Q1

1Q1
� SpQ1

= τk,

Ind
GLm2 (Qp)

Q2

1Q2
� SpQ2

= τ ′1,

so IndG
P

(σ1 ⊗ σ2) is a quotient of

IndG
P 12

(τ1 ⊗ · · · ⊗ τk−1 ⊗ Ind
GLm1 (Qp)

Q1

1Q1
⊗ Ind

GLm2 (Qp)

Q2

1Q2
⊗ τ ′2 ⊗ · · · ⊗ τ ′`)

which is the same as

IndG
P 12

(τ1 ⊗ · · · ⊗ τk−1 ⊗ Ind
GLm1+m2 (Qp)

Q12

1Q12
⊗ τ ′2 ⊗ · · · ⊗ τ ′`)

where Q12 is the parabolic associated to Q1 and Q2 in the same way that we got P12 from P1 and
P2. We know by Corollary 34′ that the irreducible subquotients of Ind

GLm1+m2
(Qp)

Q12

1Q12
are of the

form SpR for parabolics R ⊇ Q12 so π is a subquotient of some

IndG
P 12

(τ1 ⊗ · · · ⊗ τk−1 ⊗ SpR⊗τ ′2 ⊗ · · · ⊗ τ ′`)

(by exactness of parabolic induction). But these are now of the form in Theorem 37, hence irre-
ducible, since neither τk−1 nor τ ′2 are generalised Steinberg representations. Hence π ∼= IndG

P 12
(τ1⊗

· · · ⊗ τk−1 ⊗ SpR⊗τ ′2 ⊗ · · · ⊗ τ ′`) which is what we wanted to show.
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Ordinary parts. Let P = MN be a standard parabolic. If π is a smoothG-representation then the
N -coinvariants πN is a smooth M -representation (the “Jacquet module”). The association π 7→ πN
is a (right exact) functor. We will write it as (−)N .

Lemma 38. Let π be a smooth G-representation and σ a smooth M -representation. Then there is
a natural isomorphism

HomG(π, IndG
P
σ) ∼= HomM (πN , σ).

Proof. By Frobenius reciprocity we have a natural isomorphism HomG(π, IndG
P
σ) ∼= HomP (π, σ).

The universal property of coinvariants gives a natural isomorphism HomP (π, σ) ∼= HomM (πN , σ)
and the composition is our desired natural isomorphism. �

Remark. Since (−)N is a left adjoint, we see that it is right exact.

For smooth complex representations one has:

(i) If π is admissible then πN is admissible (in fact Emerton proved that this remains true in
characteristic p).

(ii) There is a natural isomorphism HomG(IndGP σ, π) ∼= HomM (σ, πN ) (due to Bernstein).

Note the IndGP rather than IndG
P

in Property (ii). Property (ii) implies that (−)N is left exact for
complex representations. However, in characteristic p (−)N is not left exact (and hence Property
(ii) must fail). Emerton defined a functor OrdP from smooth G-representations to smooth M -
representations in characteristic p which is left exact.

Fact 4. If π is admissible then OrdP π is admissible.

Fact 5. If π and σ are admissible then we have a natural isomorphism HomG(IndG
P
σ, π) ∼=

HomM (σ,OrdP π).

Fact 6. If σ has a central character then HomG(IndG
P
σ, π) ↪→ HomM(σ,OrdP π).

Fact 7. If σ is admissible then OrdP (IndG
P
σ) = σ.

Definition. Let P = MN = Pn1,...,nr be a standard parabolic subgroup as above. We will let ZM
denote the center of M (isomorphic to (Q×p )r). We define

M+ =
{
m ∈M | mN(Zp)m−1 ⊆ N(Zp)

}
.

The monoid M+ acts on πN(Zp) by the following action (which we call the Hecke action):

m · x =
∑

n∈N(Zp)/mN(Zp)m−1

nmx

for m ∈M+ and x ∈ πN(Zp).

Then OrdP π = MapM+(M,πN(Zp))ZM−finite = MapM+∩ZM (ZM , π
N(Zp))ZM−finite, where MapM+

(resp. MapM+∩ZM ) denotes M+-equivariant (resp. M+ ∩ ZM -equivariant) functions and the sub-
script ZM -finite means those functions whose ZM -orbit spans a finite-dimensional vector space. By
evaluation at 1, OrdP π embeds into πN(Zp).

Now we are in a position to solve Problem 1. Recall that we have a surjection (see the paragraph
above Problem 1)

IndG
P

(indMM(Zp) VN(Fp) ⊗HM ,χM E) � π.
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The representation indMM(Zp) VN(Fp) ⊗HM ,χM E might not be admissible, but it has a central char-
acter. By Fact 6 above we get

0 6= HomG(IndG
P

(indMM(Zp) VN(Fp) ⊗HM ,χM E), π) ↪→ HomM (indMM(Zp) VN(Fp) ⊗HM ,χM E,OrdP π)

and hence OrdP π 6= 0. OrdP π is admissible by Fact 4 (since π is admissible) and therefore
contains an irreducible subrepresentation σ by Lemma 22. By Frobenius reciprocity, the non-zero
map σ ↪→ OrdP π gives a non-zero map IndG

P
σ � π (necessarily surjective since π irreducible),

which is what we wanted since σ is admissible.

It remains to deal with Problem 3. Recall that we wish to show that if 1K ↪→ π|K with Hecke
eigenvalues χ such that χ(τi) = 1 for all i, π is of the form in Theorem 37. We will show that either
π = 1G (in which case we are done) or OrdP π 6= 0 for some standard parabolic P 6= G. In the
latter case we get a surjection IndG

P
σ � π coming from an irreducible admissible subrepresentation

σ ↪→ OrdP π as above, and we are done by the solution to Problem 2.

Remark.

(i) See notes at http://www.math.toronto.edu/~herzig/ihp.pdf, pages 24–25 for the case
n = 2.

(ii) There is another proof due to Abe, mentioned in the notes above when n = 2.

We will not say more about the proof. All in all, modulo some details, we have established:

Theorem 39. Any irreducible admissible representation of G is of the form given in Theorem 37.

Corollary 39′. Let π be an irreducible admissible G-representation.

(i) π has constant Hecke eigenvalues in the sense that all weights V of π and all Hecke eigen-
values EvalG(V, π) the n-tuple (χ(τ1), . . . , χ(τn)) is the same (in fact there exists a more
canonical and precise version of this statement).

(ii) Uniqueness: if IndG
P

(σ1⊗ · · · ⊗ σr) ∼= IndG
P ′

(σ′1⊗ · · · ⊗ σ′r′) and both are as in Theorem 37,
then P = P ′ (hence r = r′) and σi ∼= σ′i for all i.

Proof. (i) By Theorem 39 we can take π ∼= IndG
P
σ, σ = σ1 ⊗ · · · ⊗ σr, as in Theorem 37. Let V be

weight of π. We have a HG(V )-equivariant isomorphism HomK(V, IndG
P
σ) ∼= HomM(Zp)(VN(Fp), σ)

where HG(V ) acts on the right-hand side via SMG : HG(V ) ↪→ HM (VN(Fp)). Now each σi has
constant eigenvalues (it is supersingular or generalised Steinberg), hence σ has constant eigenvalues
by Lemma 36, so from the isomorphism HomK(V, IndG

P
σ) ∼= HomM(Zp)(VN(Fp), σ) we deduce that

π = IndG
P
σ has constant eigenvalues as desired.

(ii) Let π = IndG
P
σ, σ = σ1⊗· · ·⊗σr be as in Theorem 37. First let us compute the constant Hecke

eigenvalues of π using Lemma 36: In the i-th block, we have

χ(τj+ni+1+···+nr ) =


0 if σi of type (a) and j 6= 0, ni,

6= 0 if σi of type (a) and j = 0, ni,

χ(τni+1+···+nr )ηi(p)
−1 6= 0 if σi of type (b).

http://www.math.toronto.edu/~herzig/ihp.pdf
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Thus the zeroes determine the supersingular blocks of P . For 1 ≤ k ≤ n, suppose the kth diagonal
entry does not belong to a supersingular block. We wish to determine ηi. We have

ηi(p) =
χ(τn−k)

χ(τn−k+1)

by above. Also, ηi|Z×p = F (ak) for all weights V = F (a1, . . . , an) of π (see the end of Theorem
37). Hence the weights and the Hecke eigenvalues determine all characters ηi, so as ηi 6= ηi+1 this
determines all generalised Steinberg blocks and hence we get P . Thus if IndG

P
(σ1 ⊗ · · · ⊗ σr) ∼=

IndG
P ′

(σ′1 ⊗ · · · ⊗ σ′r′) as in the statement of (ii), we have proven that P = P ′. Thus, we can apply
OrdP to both sides. By Fact 7,

σ1 ⊗ · · · ⊗ σr = OrdP (IndG
P

(σ1 ⊗ · · · ⊗ σr)) ∼= OrdP (IndG
P

(σ′1 ⊗ · · · ⊗ σ′r)) = σ′1 ⊗ · · · ⊗ σ′r
and so we deduce from this that σi ∼= σ′i by Lemma 36. �

Corollary. Let P = MN be a standard parabolic subgroup and σ an irreducible admissible M -
representation. Then IndG

P
σ has finite length, all irreducible subquotients occur with multiplicity

one and they all have the same Hecke eigenvalues.

Proof. Write σ = σ1 ⊗ · · · ⊗ σr. By Theorem 39 each σi is as in Theorem 37, so in fact this was
Problem 2 of the proof of Theorem 39. �

Remark. The constant Hecke eigenvalues in this Corollary factor through HM : it is enough to show
this for a subrepresentation, in which case it is clear.

Definition. Let π be an irreducible admissible G-representation. π is said to be supercuspidal if
π does not occur in IndG

P
σ for any P 6= G parabolic and σ irreducible admissible representation of

M .

Corollary. Let π be an irreducible admissible G-representation.

(i) π is supercuspidal if and only if it is supersingular.
(ii) (“Supercuspidal support”) There exists a unique standard parabolic subgroup P = MN and

unique σi irreducible, admissible and supercuspidal (up to isomorphism) such that π occurs
in IndG

P
(σ1 ⊗ · · · ⊗ σr).

Proof. (i) Assume that π is supersingular. If π occurs in IndG
P
σ, with σ irreducible and admissible,

then the Hecke eigenvalues factor through HM by the remark above. Hence we must have M = G
and so π is supercuspidal.

For the converse, assume that π is supercuspidal. By Theorem 39 π = IndG
P

(σ1 ⊗ · · · ⊗ σr) as
in Theorem 37. Since π is supercuspidal, P = G so π = σ1 and so π is either supersingular or
SpQ⊗(η ◦ det) for some parabolic Q and character η. But the latter occurs in IndG

B
(η ◦ det) and is

therefore not supercuspidal, so π is supersingular.

(ii) Consider IndG
P

(σ1 ⊗ · · · ⊗ σr) with σi supersingular/supercuspidal for all i. Grouping together
adjacent characters among σi which are the same we may rewrite (by transitivity of parabolic
induction) IndG

P
(σ1 ⊗ · · · ⊗ σr) as IndG

Q
(σ′1 ⊗ · · · ⊗ σ′r′) where each σ′i is either supersingular or

Ind
GLn′

i
(Qp)

B
(ηi ◦ det), and if σ′i and σ′i+1 are both of the second type, then ηi 6= ηi+1. By exactness

of parabolic induction, Corollary 34′ and Theorem 37 the irreducible constituents of these are of the
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form IndG
Q

(σ′′1 ⊗· · ·⊗σ′′r′) with σ′i = σ′′i if σ′i supersingular and σ′′i = SpR⊗(ηi◦det). By Theorem 39
these irreducible constituents, for all P and σi, exhaust the irreducible admissible representations
of G, and by Corollary 39′(ii) each irreducible admissible representation of G occurs only in one
IndG

P
(σ1 ⊗ · · · ⊗ σr) (note that the decomposition as in Theorem 37 determines P and the σi

uniquely). �
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