MAT 347
 Problems for Homework 20
 March 26, 2020

1. Let K be a normal closure of $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ over \mathbb{Q}. Determine the intermediate fields in K / \mathbb{Q} that are of degree 4 over \mathbb{Q}, and for each one describe the corresponding subgroup of the Galois group. You may assume that $[\mathbb{Q}(\sqrt{1+\sqrt{2}}): \mathbb{Q}]=4$.
2. Suppose that K / F is a Galois extension with Galois group G. Suppose that $K=$ $F(\alpha)$. Suppose that M is an intermediate field, and that $H:=\widehat{G}(M)$ is the corresponding subgroup of G.
(a) Show that the minimal polynomial $m_{\alpha, M}(X)$ of α over M is $\prod_{h \in H}(X-h(\alpha))$.
(b) Show that coefficients of $m_{\alpha, M}(X)$ generate M over F. (Hint: let M^{\prime} be the subfield generated by the coefficients of $m_{\alpha, M}(X)$ over F. Prove that $M^{\prime}=M$ by e.g. considering $\left[M^{\prime}(\alpha): M^{\prime}\right]$.)
(c) Let $K:=\mathbb{F}_{2}(\alpha)$, where $\alpha^{6}+\alpha+1=0$ (you may assume this polynomial is irreducible over \mathbb{F}_{2}). Use part (b) to determine a primitive element for each intermediate field strictly between \mathbb{F}_{2} and K (i.e. don't worry about the extreme cases \mathbb{F}_{2} and K, which aren't so interesting). Express it in terms of α.
(d) Find the minimal polynomial over \mathbb{F}_{2} for each primitive element β you found in part (c). (Hint: it might be easiest to consider linear relations among the first few powers of β.)
3. Let p be any prime number.
(a) Briefly recall why $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$ is Galois with Galois group $(\mathbb{Z} / p)^{\times}$. Write down the isomorphism. (Here, ζ_{p} is a non-trivial p-th root of unity.)
(b) Find all intermediate fields in $\mathbb{Q}\left(\zeta_{11}\right)$ and find a primitive element for each intermediate field strictly between \mathbb{Q} and $\mathbb{Q}\left(\zeta_{11}\right)$. (Hint: don't forget the previous problem.)
(c) Find a non-square integer d such that $\mathbb{Q}(\sqrt{d})$ is contained in $\mathbb{Q}\left(\zeta_{11}\right)$. (Hint: use your answer to part (b) and don't forget the previous problem.)
(d) Show that $\mathbb{Q}(\sqrt[4]{3}) \not \subset \mathbb{Q}\left(\zeta_{p}\right)$ for all primes p.
