## MAT 347 <br> Problems for Homework 19 March 19, 2020

1. Let $a \in \mathbb{F}_{p}$ and consider $f(x):=x^{p}-x-a \in \mathbb{F}_{p}[x]$. Let $K$ be the splitting field of $f(x)$ over $\mathbb{F}_{p}$. Update (April 4): please assume $a \neq 0$, otherwise $f$ is reducible.
(a) Show that $f$ is separable and deduce that $K / \mathbb{F}_{p}$ is a Galois extension.
(b) Show that there is an $\alpha \in K$ such that $f(x)=\prod_{i=0}^{p-1}(x-\alpha-i)$. (Hint: show that if $\alpha$ is a root, then so is...) Deduce that $K=\mathbb{F}_{p}(\alpha)$.
(c) Show that Frobenius is in $\operatorname{Gal}\left(K / \mathbb{F}_{p}\right)$. What is its action on the set of roots of $f$ ?
(d) Compute the order of Frobenius in the Galois group and deduce that $f(x)$ is irreducible over $\mathbb{F}_{p}$.
