Lecture 9
 Finiteness results in the non-semisimple case

Yongquan Hu
Morningside Center of Mathematics

Essen Spring School
April 30, 2021

2 Generation by $D_{0}(\bar{\rho})$

(3) Finite length when $f=2$

Notation. Keep (mostly) the notation in previous lectures.

- $K=$ unramified extension over \mathbb{Q}_{p} of degree f;
- $\mathcal{O}_{K}=$ integers of $K, \mathbb{F}_{q} \cong \mathcal{O}_{K} / p$;
- $G=\mathrm{GL}_{2}(K), Z=$ center;
- $B=\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right), \bar{B}=\left(\begin{array}{cc}* & 0 \\ * & *\end{array}\right), T=\left(\begin{array}{cc}* & 0 \\ 0 & *\end{array}\right)$;
- $I=$ Iwahori, $I_{1}=$ pro- p-lwahori, $H:=\left(\begin{array}{cc}{\left[\mathbb{F}_{q}^{\times}\right]} & 0 \\ 0 & {\left[\mathbb{F}_{q}^{\times}\right]}\end{array}\right) \cong I / I_{1}$;
- $K_{1}=\operatorname{Ker}\left(\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)\right), Z_{1}=Z \cap K_{1}$;
- $(E, \mathcal{O}, \mathbb{F})$: for coefficients of representations.

Assumptions

Throughout the lecture, $\bar{\rho}: G_{K} \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ will be reducible non-split

$$
\bar{\rho} \cong\left(\begin{array}{cc}
\omega_{f}^{\sum_{i=0}^{f-1} p^{i}\left(r_{i}+1\right)} & * \\
0 & 1
\end{array}\right)
$$

with $3 \leq r_{i} \leq p-6$. Set

$$
\sigma_{0}:=\left(r_{0}, r_{1}, \ldots, r_{f-1}\right)
$$

called "ordinary" Serre weight. From Lecture 3, $\sigma_{0} \in W(\bar{\rho})$.
Let $\pi_{v}(\bar{r})=$ admissible smooth \mathbb{F}-representation of G in $\bmod p$ cohomology (cf. Lecture 1) with $\left.\bar{r}\right|_{F_{v}} \cong \bar{\rho}$. Assume $r=1$ (i.e. minimal case). Keep global technical conditions in Lecture 8.

Some useful facts
(1) $\mathrm{JH}\left(\operatorname{Ind}_{I}^{\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)} \chi_{\sigma_{0}}\right) \cap W(\bar{\rho})=\left\{\sigma_{0}\right\}$.
weight caching. $\quad \sigma \in W(\rho)$

$$
\left.\langle G \cdot \sigma\rangle \supset\left\langle G \cdot G_{0}\right\rangle\right\rangle
$$

(2) let $\pi_{0}:=\left\langle G . \sigma_{0}\right\rangle$, then π_{0} is principal series and $\operatorname{soc}_{G} \pi_{v}(\bar{r})=\pi_{0}$.
(3) (Le) $\pi_{v}(\bar{r})^{K_{1}} \cong D_{0}(\bar{\rho})$.

$$
\propto B P
$$

(4) If $\operatorname{Ext}_{K}^{1}\left(\sigma, \pi_{v}(\bar{r})\right) \neq 0$ for some Cere weight σ, then $\sigma \in W(\bar{\rho})$.

$$
\begin{aligned}
& \pi(\bar{r})=\tilde{H}_{m}^{0}[m], \quad m \subseteq \mathbb{T} \\
& \begin{array}{l}
m=\left(x_{1}, \ldots . . . x_{n}\right) \\
0 \rightarrow \pi(\tilde{r}) \rightarrow \tilde{H}_{m}^{0} \xrightarrow{\left(\begin{array}{c}
x_{1} \\
\vdots \\
\dot{x}_{n}
\end{array}\right)}\left(\tilde{H}_{m}^{0}\right)^{\oplus n}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \operatorname{Hom}\left(\sigma, H_{m o n}^{0}\right)^{f} \\
& \Rightarrow \sigma \in W(\bar{\rho}) \text {. }
\end{aligned}
$$

Some useful facts
(1) $\mathrm{JH}\left(\operatorname{Ind}_{I}^{\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)} \chi_{\sigma_{0}}\right) \cap W(\bar{\rho})=\left\{\sigma_{0}\right\}$.
(2) let $\pi_{0}:=\left\langle G . \sigma_{0}\right\rangle$, then π_{0} is principal series and $\operatorname{soc}_{G} \pi_{v}(\bar{r})=\pi_{0}$.
(3) (Le) $\pi_{v}(\bar{r})^{K_{1}} \cong D_{0}(\bar{\rho})$.
(4) If $\operatorname{Ext}_{K}^{1}\left(\sigma, \pi_{v}(\bar{r})\right) \neq 0$ for some Cere weight σ, then $\sigma \in W(\bar{\rho})$.
(i) $\xrightarrow{(5)}$ (H., Breuil-Ding) $\operatorname{Ord}_{B}\left(\pi_{v}(\bar{r})\right.$) is semisimple (as T-rep.).

$$
\operatorname{Ord}_{B}: \operatorname{Rep}_{G}^{\operatorname{sm}} \rightarrow \operatorname{Rep}_{T}^{s m}
$$

(Emerton)

- $\operatorname{Hom}_{G}\left(\operatorname{Ind}_{B} \frac{G}{B}, \pi\right) \simeq \operatorname{Hom}_{T}\left(\tau, \operatorname{ord}_{B} \pi\right)$
- $\operatorname{Ord}_{B}\left(\operatorname{I\operatorname {Ind}} \frac{G}{B} \tau\right) \simeq \tau . \quad \Rightarrow \operatorname{ord}_{B}(s . s)=0$
$\pi_{6} \longrightarrow \pi(\bar{r})$
excludes
$\left(\frac{r \pi_{0}}{\pi_{0}}\right) c \pi(\bar{r})$

Theorem 1 (H.-Wang)

The Gelfand-Kirillov dimension of $\pi_{v}(\bar{r})$ is f.

As in Lecture 6, can deduce that $\pi_{v}(\bar{r})^{\vee}$ is Cohen-Macaulay module of grade $2 f$ (over $\Lambda:=\mathbb{F} \llbracket l_{1} / Z_{1} \rrbracket$), and essentially self-dual.

Theorem 1 (H.-Wang)

The Gelfand-Kirillov dimension of $\pi_{v}(\bar{r})$ is f.

As in Lecture 6, can deduce that $\pi_{v}(\bar{r})^{\vee}$ is Cohen-Macaulay module of grade $2 f$ (over $\Lambda:=\mathbb{F} \llbracket I_{1} / Z_{1} \rrbracket$), and essentially self-dual.

Strategy of the proof: (Lecture 8).
(1) Show $\left[\pi_{v}(\bar{r})\left[\mathfrak{m}_{K_{1}}^{2}\right]: \sigma_{0}\right]=1$.

$$
m_{k_{1}}=\text { max ideal of } \mathbb{F}\left[k_{1} / z_{11}\right]
$$

(2) Show $\left[\pi_{v}(\bar{r})\left[\mathfrak{m}_{K_{1}}^{2}\right]: \sigma\right]=1$ for any $\sigma \in W(\bar{\rho})$.

(3) As in Lecture 6, deduce GK $\left(\pi_{v}(\bar{r})\right) \leq f$ (need to use results of [BHHMS1]). $\sim \operatorname{gr}(\Lambda), \overline{J=\left(y_{i} z_{i}, z_{i} y_{i}\right)}$, Conclude by Gee-Newton.

Steps (2), (2')
These steps are purely representation theoretic.

Proposition 2

Let $\bar{\rho}$ be as above, π be an admissible smooth \mathbb{F}-rep. of G satisfying :
(a) $\left.\pi^{K_{1}} \cong D_{0}(\bar{\rho}) ; \quad \Rightarrow \sigma_{G_{H_{2}}(Q)}\right) \pi=\underset{\sigma \in W(\bar{\rho})}{ } 6$
(b) if $\operatorname{Ext}_{K}^{1}(\sigma, \pi) \neq 0$ for some Sarre weight σ, then $\sigma \in W(\bar{\rho})$;
$\underline{\underline{(c)}}$ there exists one $\underline{\underline{\sigma_{0}}} \in W(\bar{\rho})$ such that $\left[\pi\left[\mathfrak{m}_{K_{1}}^{2}\right]: \sigma_{0}\right]=1$.
Then the following hold :
(i) $\left[\pi\left[\mathfrak{m}_{K_{1}}^{2}\right]: \sigma\right]=1$ for any $\sigma \in W(\bar{\rho})$;
(ii) $\left[\pi\left[\mathfrak{m}_{l_{1}}^{3}\right]: \chi\right]=1$ for any $\chi \in \pi^{/_{1}}$.
(2)

$$
\pi: \pi^{\pi_{1}} \rightarrow \pi^{k_{1}} \quad=\pi^{k_{1}} \bigoplus_{0} D_{0,6}(\bar{\rho})
$$

Proof. Recall : the diagram $\left(\underline{D_{1}(\bar{\rho})} \hookrightarrow D_{0}(\bar{\rho})\right)$ is indecomposable by Lecture 3.
Define

$$
\begin{aligned}
& \Sigma_{0}:=\left\{\sigma \in W(\bar{p}):\left[\pi\left[m_{k_{1}}^{2}\right]: \sigma\right]=1\right\} \\
& \Sigma_{1}:=\left\{x \in \pi^{I_{1}}:\left[\pi\left[m_{Z_{1}}^{3}\right]: x\right]=1\right\} \leq \pi^{F_{1}} S\left(\begin{array}{ll}
0 & 1 \\
p & 0
\end{array}\right) \\
& \hat{S}\left(\begin{array}{ll}
0 & 1 \\
p & 0
\end{array}\right)
\end{aligned}
$$

Use (a). (b) to show that.
if $x \in D_{0, \sigma}(\bar{p})^{F_{1}}$, then $x \in \Sigma_{1}$ if $\sigma \in \Sigma_{0}$.
ordinary

Step (1): Show $\left[\pi_{v}(\bar{r})\left[\mathfrak{m}_{K_{1}}^{2}\right]: \sigma_{0}\right]=1$.
Let $\Gamma:=\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ so that $\mathbb{F}[\Gamma] \cong \mathbb{F} \mathbb{T} \mathrm{GL}_{2}\left(\mathcal{O}_{K}\right) / Z_{1} \rrbracket / \mathfrak{m}_{K_{1}}$. Let

$$
\tilde{\Gamma}:=\mathbb{F} \llbracket \mathrm{GL}_{2}\left(\mathcal{O}_{K}\right) / Z_{1} \rrbracket / \mathfrak{m}_{K_{1}}^{2} . \quad \leftarrow \text { not a grapes alg. }
$$

Let $\operatorname{Proj}_{\Gamma} \sigma_{0}$, resp. $\operatorname{Proj}_{\tilde{\Gamma}} \sigma_{0}$ be a projective envelope of σ_{0} for「-representations, resp. $\bar{\Gamma}$-representations. over \mathbb{F} Have

$$
\operatorname{Proj}_{\tilde{\Gamma}} \sigma_{0} \rightarrow \operatorname{Proj}_{\Gamma} \sigma_{0} .
$$

(Lecture 8)

Need to show

$$
\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}_{\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)}\left(\operatorname{Proj}_{\tilde{\Gamma}} \sigma_{0}, \pi_{v}(\bar{r})\right) \stackrel{?}{=} 1
$$

Let M_{∞} (and R_{∞}) be a minimal patching functor for $\bar{\rho}$ (cf. Lecture 8), e.g. take

$$
M_{\infty}(-):=\operatorname{Hom}_{\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)}^{\text {cont }}\left(\mathbb{M}_{\infty},-{ }^{d}\right)^{d} \leftarrow \text { dual }
$$

for a minimal patched module \mathbb{M}_{∞}.
Recall that $\mathbb{M}_{\infty} / \mathfrak{m}_{\infty} \underline{Z}^{\text {max }} \cong \pi_{v}(\bar{r})^{\vee}$, so we have

$$
\begin{array}{r}
M_{\infty}(\Theta) / \mathfrak{m}_{\infty} \cong \operatorname{Hom}_{\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)}\left(\Theta, \pi_{v}(\bar{r})\right)^{\vee} \\
=\operatorname{dim} \mid
\end{array}
$$

Equiv. to show

Theorem 3

The R_{∞}-module $M_{\infty}\left(\operatorname{Proj}_{\tilde{\Gamma}} \sigma_{0}\right)$ is cyclic.

Recall gluing lemma 2 of Lecture 8 :
Given finite dim. $\mathbb{F} \llbracket \mathrm{GL}_{2}\left(\mathcal{O}_{K}\right) \rrbracket$-modules Θ_{1}, Θ_{2} which admit a common quotient Θ_{0}, form the fiber product

$$
t \text { exact } \quad \Theta_{1} \times \Theta_{0} \Theta_{2}=\left\{\left(x_{1}, x_{2}\right): x_{1} \equiv x_{2} \text { in } \Theta_{0}\right\}
$$

Apply $M_{\infty}(-)$ to get

$$
0 \rightarrow M_{\infty}\left(\Theta_{1} \times_{\Theta_{0}} \Theta_{2}\right) \rightarrow M_{\infty}\left(\Theta_{1}\right) \times M_{\infty}\left(\Theta_{2}\right) \rightarrow M_{\infty}\left(\Theta_{0}\right) \rightarrow 0 .
$$

Assume both $M_{\infty}\left(\Theta_{1}\right), M_{\infty}\left(\Theta_{2}\right)$ are cyclic R_{∞}-modules with annihilator I_{1}, I_{2} (hence so is $M_{\infty}\left(\Theta_{0}\right)$ with annihilator I_{0}), then

$$
M_{\infty}\left(\Theta_{1} \times_{\Theta_{0}} \Theta_{2}\right) \text { is cyclic } \Longleftrightarrow I_{1}+I_{2}=I_{0}
$$

Roughly, we glue $\operatorname{Proj}_{\Gamma} \sigma_{0}$ with an ordinary part of $\operatorname{Proj}_{\tilde{\Gamma}} \sigma_{0}$:

- $\Theta_{1}:=\operatorname{Proj}_{\Gamma} \sigma_{0}$.

Theorem (Le) The R_{∞}-module $M_{\infty}\left(\operatorname{Proj}_{\Gamma} \sigma_{0}\right)$ is cyclic.
$\stackrel{(1)}{\mid}_{\forall} \not{ }^{*}$

- $\Theta_{0}:=\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{\Gamma} \chi_{\substack{\sigma_{0} \\ \rightarrow \rightarrow \sigma_{0}}}\left(\right.$ a quotient of $\left.\Theta_{1}\right) . \quad \rightarrow \underbrace{M_{\infty}\left(\mathbb{B}_{0}\right) \text { couch } \tau}$

$$
\rightarrow G_{0}
$$

Fad (1). $\mathcal{J H}\left(\oplus_{0}\right) \cap W(\bar{p})=\left\{\sigma_{0}\right\}$

- $\Theta_{2}:=$ ordinary part of $\operatorname{Proj}_{\tilde{\Gamma}} \sigma_{0}$.

$$
\Rightarrow \quad M_{\infty}\left(\oplus_{0}\right)=M_{\infty}\left(\sigma_{0}\right)
$$

Fact. There exists a (unique) quotient Θ_{2} of $\operatorname{Proj}_{\Gamma} \sigma_{0}$ such that :

Frob:

$$
0 \rightarrow \sigma_{0}^{\oplus f} \rightarrow \Theta_{2} \rightarrow \Theta_{0} \rightarrow 0 .^{\text {not } \Gamma \text {.ext }}
$$

$$
E_{K}\left(\operatorname{H}_{0}^{\prime}, \sigma_{0}\right) \simeq E_{E_{I_{Z_{1}}}^{\prime}}^{\prime}\left(x_{\sigma_{0}}, \sigma_{0}\right)=\operatorname{dim} f .
$$

$\mathbb{H H}_{0}$:

[RE: is smaller than $\operatorname{Pop}_{\bar{T}}{ }_{\bar{T}} \sigma$
but $M_{\infty}\left(\operatorname{Paj}_{\Gamma}{ }^{6}\right)$ cyclic \mathbb{I}

$\oplus_{1} \times \oplus_{2}$
\boxplus_{0}

remind: I-rep:

Lemma
Let π be admissible \mathbb{F}-rep. of G. Assume

- $\operatorname{JH}\left(\Theta_{0}\right) \cap \operatorname{soc}_{\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)} \pi=\left\{\sigma_{0}\right\} \quad \leftarrow \pi=\pi(\bar{r}) \quad$ OK
- $\operatorname{Ord}_{B}(\pi)$ is semisimple. \leftarrow (5)

Then the projection $\Theta_{2} \rightarrow \sigma_{0}$ induces an isomorphism

$$
\operatorname{Hom}_{\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)}\left(\sigma_{0}, \pi\right) \stackrel{\leftrightarrows}{\leftrightarrows} \operatorname{Hom}_{\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)}\left(\Theta_{2}, \pi\right)
$$

$$
=\operatorname{dm} \mathrm{l}
$$

(b) β is infective.

$$
\begin{aligned}
& \operatorname{Hom}(60, \pi(\vec{r})=\operatorname{dim} 1 \\
& f=1:\left(\oplus_{2}:={\underset{\sim}{~}}_{\left(\oplus_{6}\right.}^{\beta} \quad \xrightarrow{\beta} \pi\right.
\end{aligned}
$$

Proof of $I_{1}+I_{2}=I_{0}$
Can work locally : replace R_{∞} with $R_{\bar{\rho}}$.

$$
\begin{aligned}
& =A_{n n}\left(M_{\infty}\left(M_{0}\right)\right)=\operatorname{Aun}\left(M_{\infty}\left(\sigma_{0}\right)\right) \\
& =\operatorname{Anr}\left(M_{\infty}\left(\operatorname{Prg} \Gamma_{0} \sigma_{0}\right)\right)
\end{aligned}
$$

- have an explicit description of I_{0} (Fontaine-Laffaille) and I_{1} (Le);
- the action of R_{∞} on $M_{\infty}\left(\Theta_{2}\right)$ factors through $R_{\bar{\rho}}^{\text {red }}$ (:=reducible deformation ring), ie. $I^{\text {red }} \subset I_{2}$.
\rightarrow parametristing reducible def of $\bar{\rho}$.

Lemma: π lac adm, sit. $\mathcal{J H}\left(\oplus_{0}\right) \cap$ see $_{\mathrm{GH}_{2}\left(O_{c}\right)^{\pi}}=\left\{\sigma_{0}\right\}$
then $\pi^{\text {ord }} \leftrightarrow \pi$ induces con $i 50 m$.

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{Hom}\left(\left(\Theta_{2}\right), \pi^{\text {ord }}\right) \simeq \operatorname{Hom}\left(\oplus_{2}, \pi\right) \\
G\left(2 O_{k}\right) .
\end{array}
\end{aligned}
$$

Proof of $I_{1}+I_{2}=I_{0}$
Can work locally : replace R_{∞} with $R_{\bar{\rho}}$.

- have an explicit description of I_{0} (Fontaine-Laffaille) and I_{1} (Le);
- the action of R_{∞} on $M_{\infty}\left(\Theta_{2}\right)$ factors through $R_{\bar{\rho}}^{\text {red }}$ (:=reducible deformation ring), ie. $I^{\text {red }} \subset I_{2}$.
- show $I^{\text {red }}+I_{2}=I_{0}$.

Example. $R_{\rho}^{\psi}=\theta\left[x_{i}, y_{i}, z_{i}\right]_{\mid \leqslant i \leqslant f} \leftarrow 3 f / \theta$

$$
\begin{array}{ll}
W(\bar{\rho})=\left\{\sigma_{0}\right\} & I_{0}=\left(\omega, y_{i}, z_{i}\right) \\
\bar{\rho} \cdot \max \text { non- } c_{p h i t} & I_{1}=\left(\omega, y_{i}, z_{i}\left(z_{i}-p\right)\right) \in \text { Kisin } \operatorname{dm} f / \theta \\
& I^{\text {red }}=\left(\infty, z_{i}\right) . \quad \text { aral }-d h R^{\text {red }}=2 f / \theta . \\
& I_{1}+I^{\text {red }}=I_{0} .
\end{array}
$$

(1) GK dimension of $\pi_{v}(\bar{r})$

(2) Generation by $D_{0}(\bar{\rho})$

(3) Finite length when $f=2$

The main result of this section is :

Theorem 4 (H.-Wang)

As a G-representation, $\pi_{v}(\bar{r})$ is generated by $D_{0}(\bar{\rho})$.

Corollary

We have $\operatorname{End}_{G}\left(\pi_{\nu}(\bar{r})\right)=\mathbb{F}$.
corresp to $\operatorname{End}_{G_{k}}(\bar{\rho})=\mathbb{F}$.
If:
$\operatorname{End}_{G}(\pi(F)) \longrightarrow \operatorname{Eud}_{\text {Diag. }}\left(\left(D_{1}(\bar{F}) \hookrightarrow D_{0}(\bar{P})\right)\right)$.
is infective.

$$
[B P]: \text { iadecomp }=\mathbb{F} \text { multi free. }
$$

Example/Motivation
Take $f=1$, so $W(\bar{\rho})=\left\{\sigma_{0}\right\}$
Take $f=1$, so $W(\bar{\rho})=\left\{\sigma_{0}\right\}, \pi_{v}(\bar{r}) \cong\left(\pi_{0}-\pi_{1}\right)$, with π_{i} PS. multi. free (σ_{0})

Let $\Omega \cong \operatorname{Inj}_{\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right) / Z_{1}} \sigma_{0}$ together with a smooth action of G and assume $\pi_{v}(\bar{r}) \hookrightarrow \Omega(c f .[B P])$. or. $\Omega=\tilde{H}_{m}^{0}$

Pas̄kūnas: if $\pi_{v}(\bar{r}) \subset \pi \subset \Omega$ with $\pi\left[\mathfrak{m}_{K_{1}}^{2}\right]$ multiplicity free, then

$$
\sum_{2: \operatorname{Ext}}^{2 \cdot \operatorname{dim}} \mathrm{E}(\pi(\bar{r}), \pi(\bar{r})) \quad \text { Fact: } \pi=\pi(\bar{r}) \text { iff } \pi \cap \xi=\pi(\bar{r}) \text {. }
$$

$$
\begin{aligned}
& \operatorname{Hom}\left(\sigma_{0}, \pi(\bar{r}) / D_{0}(\bar{p})\right) \\
= & \operatorname{Hom}\left(\sigma_{0}, \pi(\bar{r})\left[m_{k}^{2}\right] / D_{0}(\bar{p})\right) \\
= & 0!\quad n_{0} \sigma_{0}
\end{aligned}
$$

need $\pi n \varepsilon=\pi(\hat{r})$

$$
\text { If not, } \left.\left(\underset{D_{0}(\bar{p})}{ }\right)^{\sigma_{0}}\right) \underset{\longrightarrow \pi(\bar{r})\left[m_{1}^{2}\right] .}{\longrightarrow \pi}
$$

[condition $\left[\pi(\bar{r})\left[m_{K_{1}}^{2}\right]: \sigma_{0}\right]=1$

The proof of Theorem 4
The starting point is :
Lemma 5
The G-cosocle of $\pi_{v}(\bar{r})$ is an irreducible PS, say π_{f}.
Proof. $G K(\pi(\bar{r}))=f \quad \sim \pi(\bar{r})^{2}$ is ass. Self dual.
$\pi_{0} \leftrightarrow \pi(\bar{r})$ is code
$\longrightarrow \pi(\bar{r})$ has cosode. $E^{2 f}\left(\pi_{0}^{v}\right)^{v}$ (up to turst).

$$
\begin{aligned}
&{ }^{\prime \prime} f, \text { (kol(hoase) } \\
& \rightarrow P S \\
&=
\end{aligned}
$$

Criterion
Let $\tau \subset \pi_{v}(\bar{r}) \mid I$. If for some i, some $\chi: I \rightarrow \mathbb{F}^{\times}$, the composition

$$
\underbrace{\operatorname{Ext}_{I}^{\tau_{z}^{i}}(\chi, V) \rightarrow \operatorname{Ext}_{l}^{i}\left(\chi, \pi_{v}(\bar{r})\right) \xrightarrow{\gamma_{i}} \operatorname{Ext}_{l}^{i}\left(\chi, \pi_{f}\right)}_{0} \quad \Rightarrow r_{i} \circ \beta_{i}=0
$$

is non-zero, then $\pi_{v}(\bar{r})$ can be generated by τ as G-representation.

We will find some χ, i, τ such that "Criterion" applies. $0 \rightarrow V \rightarrow \pi(\vec{r}) \rightarrow \pi_{f}$, subrap $\langle G \cdot \tau\rangle \mathcal{C} \pi(\bar{r})$. inf $\langle G . \tau\rangle \leqslant V$. $\uparrow_{\text {radical of } \pi(\hat{r})}$.

How to choose χ, i and τ ?
Assume $W(\bar{\rho})=\left\{\sigma_{0}\right\}$ for simplicity. Know the following information:

- $\operatorname{Ext}^{i}\left(\chi, \pi_{v}(\bar{r})\right) \neq 0$ if and only if $\left.\chi \in \pi_{v}(\bar{r})\right)^{I_{1}}$ and

$$
\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{l}^{i}\left(\chi, \pi_{v}(\bar{r})\right)=\binom{2 f}{i}
$$

$$
\begin{aligned}
& \text { if } f=1 \text { : } \\
& x_{G_{b}}, x_{\sigma_{0}}^{s}
\end{aligned}
$$

This suggests to take : $\chi=\chi_{\sigma_{0}}$ (the ordinary character).
rengetly: injective resolution of $\bar{\pi}(\bar{r})$ using $M_{\infty} \cdot \%_{R_{\infty}}$ fol . filer is $\pi(\bar{r})^{v}$

$$
K_{0}\left(\underline{x}, \mu_{\infty}\right): \ldots \rightarrow M_{\infty}^{n} \rightarrow \mu_{\infty} \rightarrow m_{\infty} \rightarrow(\sqrt{r})^{v} \rightarrow 0
$$

\leadsto not minimal. (a_{∞} of S_{∞})

How to choose χ, i and τ ?
Assume $W(\bar{\rho})=\left\{\sigma_{0}\right\}$ for simplicity. Know the following information :

- $\operatorname{Ext}_{l}^{i}\left(\chi, \pi_{v}(\bar{r})\right) \neq 0$ if and only if $\left.\chi \in \pi_{v}(\bar{r})\right)^{1_{1}}$ and

$$
\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{/}^{i}\left(\chi, \pi_{v}(\bar{r})\right)=\binom{2 f}{i} .
$$

This suggests to take : $\chi=\chi_{\sigma_{0}}$ (the ordinary character).

- π_{f} has injective dimension $/ 2 f$, and

$$
\left.\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{l}^{i}(\otimes) \pi_{f}\right)=\left\{\begin{array}{cl}
0 & i<f \\
\binom{f}{2 f-i} & f \leq i \leq 2 f
\end{array}\right.
$$

This suggests to take $i=2 f . \quad$ if $i=2 f, i-\operatorname{dim}$.
cann's take $i=1$.

- The multiplicity-freeness of $\underline{\pi_{v}(\bar{r})\left[\mathfrak{m}_{l_{1}}^{3}\right] \text { suggests : if take }}$ $\tau=\pi_{v}(\bar{r})\left[\mathfrak{m}_{l_{1}}^{2}\right]$ then
$\hookrightarrow \pi(\bar{r})$

$$
\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{l}^{1}(\chi, \tau)=2 f
$$

and the map

$$
\text { (细) } \operatorname{Ext}_{l}^{1}(\chi, \tau) \rightarrow \operatorname{Ext}_{l}^{1}\left(\chi, \pi_{v}(\bar{r})\right)
$$

$$
\begin{gathered}
\gamma_{i} \circ \beta_{i} \neq 0 . \\
i=2 f \\
\gamma_{2 f} \circ \beta_{2 f} \neq 0 . \\
\text { input } \beta_{1} \text { is an Som. }
\end{gathered}
$$

is an isomorphism.

If
$\operatorname{Hon}_{I}(x, \pi(\bar{r}) / \tau)=0$

In summary, in the diagram of "Criterion"

$$
\operatorname{Ext}_{l}^{i}(\chi, \tau) \xrightarrow{\beta} \operatorname{Ext}_{l}^{i}\left(\chi, \pi_{v}(\bar{r})\right) \xrightarrow{\gamma_{i}} \operatorname{Ext}_{l}^{i}\left(\chi, \pi_{f}\right)
$$

take

- $\chi=\chi_{\sigma_{0}}$
- $i=2 f$
- $\tau=$ a variant of $\pi_{v}(\bar{r})\left[\mathfrak{m}_{l_{1}}^{2}\right]$.

Show

(1) $\gamma_{2 f}$ is an isomorphism (easier);
(2) $\beta_{2 f}$ is a surjection Actually, inductively show β_{i} is surjective for any $0 \leq i \leq 2 f$.

Step (2): β_{i} is surjective

> sur.

Bom.
To deduce
Key ingredient : $\pi_{\vee}(\bar{r})^{\vee} \mid$ I admits a Koszul complex projective resolution, as M_{∞} is flat over R_{∞} (which is regular) and $M_{\infty} / \mathfrak{m}_{\infty} \cong \pi_{v}(\bar{r})^{\vee}$.

Example. when $f=1, \pi_{v}(\bar{\rho})=\left(\pi_{0}-\pi_{1}\right)$, Paškūnas shows :

$$
\begin{gathered}
0 \rightarrow \Omega^{\vee} \stackrel{\left(-y_{v}, x\right)}{\rightarrow} \Omega^{\vee} \oplus \Omega^{\vee} \stackrel{\binom{x}{>}}{\substack{~}} \Omega^{\vee} \rightarrow \pi_{v}(\bar{r})^{\vee} \rightarrow 0 . \\
\operatorname{End}_{G}\left(\Omega^{\vee}\right) \simeq \mathbb{F} \times, y \Omega
\end{gathered}
$$

Consider the following situation : $(R, \mathfrak{m})=$ noetherian local ring, $\underline{x}:=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in \mathfrak{m}$. Assume

where

- $K_{\bullet}=K_{\bullet}(\underline{x}, R)=$ is Koszul complex, with $K_{i} \cong R^{(f(n)}$
- $F_{\bullet}=$ complex of free R-modules.

Lemma (Sarre)

Assume

$$
\rightarrow \text { our condition on } \beta \text {, }
$$

(a) x_{1}, \ldots, x_{n} are linearly independent $\bmod \mathfrak{m}^{2}$;
(b) $\widetilde{\beta}_{0}: K_{0} \rightarrow F_{0}$ is a direct summand.

Then $\widetilde{\beta}_{i}: K_{i} \rightarrow F_{i}$ is a direct summand for all $0 \leq i \leq n$.

In practice, can not take $R=R_{\infty}$ in Serve's lemma, as R_{∞} does not act on an infective resolution of τ.
To solve this, let $\lambda:=\left(\operatorname{Proj}_{1} \chi^{\vee}\right) / \mathfrak{m}_{l_{1}}^{3}$ so that

$$
\operatorname{End}_{l}(\lambda) \cong \mathbb{F}\left[x_{i}, y_{i} ; 0 \leq i \leq f-1\right] /\left(x_{i}, y_{i}\right)^{2}
$$

Choose minimal projective resolutions:

but R
with K_{\bullet} being Koszul, get morphisms $\operatorname{End}_{l}(\lambda)$-modules, and $\left(K_{\bullet}, \lambda\right)^{\vee} \rightarrow \operatorname{Hom}_{l}\left(Q_{\bullet}, \lambda\right)^{\vee}$ of
Hom_{R} injective.

- Serve's lemma applies with $R:=\operatorname{End}_{l}(\lambda)$. Actually get $\widetilde{\beta}_{i}$ are isomorphisms.
- $\mathbb{F} \otimes_{R} \operatorname{Hom}_{l}\left(Q_{\bullet}, \lambda\right)^{\vee}$ recovers $\frac{\operatorname{Hom}_{l}\left(Q_{\bullet}, \chi^{\vee}\right)^{\vee}}{k_{0}}$

(1) GK dimension of $\pi_{v}(\bar{r})$

(2) Generation by $D_{0}(\bar{\rho})$
(3) Finite length when $f=2$

Theorem 6 (H.-Wang)

If $\bar{\rho}$ is reducible non-split, then $\pi_{v}(\bar{r})$ has the form

with π_{0}, π_{f} principal series. If moreover $f=2$, then π^{\prime} is irreducible and supersingular.

Already know : the G-socle of $\pi_{v}(\bar{r})$ is π_{0} and G-cosocle is π_{f}.
Assume $f=2$. Need to show π^{\prime} is irreducible and supersingular.

Proof. $f=2$.
look of $\pi(r) / \pi_{0}$. adm. \Rightarrow always have on inured sub-rep. say π^{\prime}.

$$
\Rightarrow \operatorname{Exx}_{G}^{\prime}\left(\pi^{\prime}, \pi_{0}\right) \neq 0 .
$$

(1) claim π^{\prime} is S.S.

Fact $[B P]$. if π^{\prime} is non- s, s, and if $\pi^{\prime} \neq \pi_{0}$. then $E x t_{G}^{\prime}\left(\pi^{\prime}, \pi_{0}\right)=0$! only $\int_{\pi_{0}}^{\pi_{0}}$ but $\operatorname{ord}_{B}(\pi(\vec{r}))$ is semi-simple.
(2). Show. π^{\prime} is G-sole of $\pi(\vec{r}) / \pi_{0}$. determine $\operatorname{Soe}_{G h_{2}\left(O_{k}\right)}\left(\pi(\bar{r}) / \pi_{0}\right)$. Assume $\omega(\bar{\rho})=\left\{\sigma_{0}\right\}$
$D_{0}(\bar{\rho}):$

$$
\begin{align*}
& \text { node (60. } \rightarrow T_{T_{0}}^{G_{1}} \tag{array}\\
& 11 \\
& G_{\sim} \oplus \sigma_{1}^{[s]} ; \\
& \Rightarrow \pi^{\prime}:=\left\langle G \cdot\left(G_{1} \oplus G_{1}^{([s]}\right)\right\rangle \subseteq \pi(\tilde{r}) / \pi_{0} . \\
& \left\lvert\,\binom{\pi^{\prime}}{\frac{1}{\pi_{0}}} \longleftrightarrow \pi(\hat{r})\right. \text { set. } D_{0}(\bar{\rho}) / D_{0}(\hat{p}) n\left(\frac{\pi_{1}^{\prime}}{1_{0}}\right)=\sigma_{2}
\end{align*}
$$

Lemma
Let Q be an admissible quotient of $I\left(\sigma_{2}\right):=\mathrm{c}-\operatorname{Ind}_{\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right) Z}^{G} \sigma_{2}$. Assume the G-cosocle of Q is irreducible and isomorphic to

$$
\begin{aligned}
& \bar{\rho} \text { mon. Aphis } \\
& \text { - SS } \\
& \pi \quad \pi \pi_{2} \\
& \text { IN: } \quad M_{\infty} S R_{\infty}: \quad M_{\infty} \rho_{m_{\infty}}=\pi(r) r^{v} \\
& G K \cdot \operatorname{dim}\left(M_{\infty}\right)-\operatorname{krucl}-\operatorname{dim} R_{\infty}=f \\
& R_{\infty}=\text { regukir lng: } \\
& =\left(x_{1}, \ldots, x_{n}\right)=m_{\infty} \\
& \text { regular seqwenc: }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
G K \cdot d m\left(H_{n}\right) \\
=\text { regular un: }
\end{array} \\
& G K\left(M_{\infty}\left(x_{1}\right) \geqslant G K\left(M_{\infty}\right)-1\right. \\
& \begin{array}{l}
\text { with equality if } x_{1} \text { is regular. for } \\
G K\left(M_{\infty} /\left(X_{i}\right)\right) \geqslant f \quad
\end{array} \\
& \begin{array}{l}
I \prime \\
G K\left(\pi(\vec{r})^{\prime}\right)=\text { then }\left(x_{1} \ldots, x_{n}\right) \text { is reg. } \\
\text { segrence for } M_{\infty} .
\end{array}
\end{aligned}
$$

Thank you!

