<ロト < 同ト < 三ト < 三ト

Э

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Lecture 9 Finiteness results in the non-semisimple case

Yongquan Hu

Morningside Center of Mathematics

Essen Spring School April 30, 2021

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

æ

5900

2 Generation by $D_0(\bar{\rho})$

3 Finite length when f = 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

3

SQ Q

Notation. Keep (mostly) the notation in previous lectures.

- K = unramified extension over \mathbb{Q}_p of degree f;
- $\mathcal{O}_K = ext{integers}$ of K, $\mathbb{F}_q \cong \mathcal{O}_K / p$;
- $G = \operatorname{GL}_2(K)$, $Z = \operatorname{center}$;

•
$$B = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$
, $\overline{B} = \begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$, $T = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$;

- I =Iwahori, $I_1 =$ pro-p-Iwahori, $H := \begin{pmatrix} [\mathbb{F}_q^{\times}] & 0 \\ 0 & [\mathbb{F}_q^{\times}] \end{pmatrix} \cong I/I_1$;
- $\mathcal{K}_1 = \operatorname{Ker}(\operatorname{GL}_2(\mathcal{O}_{\mathcal{K}}) \to \operatorname{GL}_2(\mathbb{F}_q)), \ Z_1 = Z \cap \mathcal{K}_1;$
- $(E, \mathcal{O}, \mathbb{F})$: for coefficients of representations.

<ロト < 同ト < ヨト < ヨト -

3

SQ P

Assumptions

Throughout the lecture, $\bar{\rho}: G_{\mathcal{K}} \to \mathrm{GL}_2(\mathbb{F})$ will be reducible non-split

$$\bar{\rho} \cong \begin{pmatrix} \omega_f^{\sum_{i=0}^{f-1} p^i(r_i+1)} & * \\ 0 & 1 \end{pmatrix}$$

with $3 \le r_i \le p - 6$. Set

$$\sigma_0 := (r_0, r_1, \ldots, r_{f-1})$$

called "ordinary" Serre weight. From Lecture 3, $\sigma_0 \in W(\bar{\rho})$.

Let $\pi_v(\bar{r}) =$ admissible smooth \mathbb{F} -representation of G in mod p cohomology (cf. Lecture 1) with $\bar{r}|_{F_v} \cong \bar{\rho}$. Assume r = 1 (i.e. minimal case). Keep global technical conditions in Lecture 8.

Some useful facts Verget ugding. selv[7] <G.S>><G.S> (1) JH(Ind_I^{GL₂($\mathcal{O}_{\mathcal{K}}$)} χ_{σ_0}) \cap $W(\bar{\rho}) = \{\sigma_0\}.$ (2) let $\pi_0 := \langle G.\sigma_0 \rangle$, then π_0 is principal series and $\operatorname{soc}_G \pi_v(\overline{r}) = \pi_0$. (3) (Le) $\pi_{\nu}(\overline{r})^{\kappa_{1}} \cong D_{0}(\overline{\rho}).$ (4) If $\operatorname{Ext}^{1}_{\mathcal{K}}(\sigma, \pi_{\nu}(\overline{r})) \neq 0$ for some Serre weight σ , then $\sigma \in W(\overline{\rho})$. $T(\overline{v}) = \widetilde{H}_{m}^{*}[\overline{m}] \quad m \in T$
$$\begin{split} m &= (\chi_{1}, \ldots, \chi_{n}) \qquad (\chi_{i}) \\ 0 \rightarrow \tau_{i}(\hat{r}) \implies H_{m} \qquad (\chi_{i}) \\ \vdots \\ (\chi_{m}) \implies (H_{m}) \implies (h_{m}$$
< A 500

Some useful facts

(1) JH(Ind_I<sup>GL₂(
$$\mathcal{O}_{\mathcal{K}}$$
) χ_{σ_0}) \cap $W(\bar{\rho}) = \{\sigma_0\}.$</sup>

(2) let $\pi_0 := \langle G.\sigma_0 \rangle$, then π_0 is principal series and $\operatorname{soc}_G \pi_v(\overline{r}) = \pi_0$.

(3) (Le)
$$\pi_{\nu}(\overline{r})^{\kappa_{\mathbf{1}}} \cong D_0(\overline{\rho}).$$

(4) If $\operatorname{Ext}^{1}_{\mathcal{K}}(\sigma, \pi_{v}(\overline{r})) \neq 0$ for some Serre weight σ , then $\sigma \in W(\overline{\rho})$.

(i) (5) (H., Breuil-Ding) $\operatorname{Ord}_{\mathcal{B}}(\pi_{v}(\overline{r}))$ is semisimple (as T-rep.). $\operatorname{Ord}_{\mathcal{B}}: \operatorname{Rep}_{\mathcal{G}}^{\operatorname{Sn}} \longrightarrow \operatorname{Rep}_{\mathcal{T}}^{\operatorname{Sn}}$ (Emerton) $\operatorname{Hom}_{\mathcal{G}}(\operatorname{Ind}_{\overline{\mathcal{B}}}^{\operatorname{G}}\tau, \overline{\tau}) \cong \operatorname{Hom}_{\mathcal{G}}(\overline{\tau}, \operatorname{Ord}_{\mathcal{B}}\overline{\tau})$ $\operatorname{Ord}_{\mathcal{B}}(\operatorname{Ind}_{\overline{\mathcal{B}}}^{\operatorname{G}}\tau) \cong \tau, \Rightarrow \operatorname{Ord}_{\mathcal{B}}(s,s) = 0$ $\left(\begin{array}{c} \int \overline{\tau}_{i_{0}} \\ \overline{\tau}_{i_{0}} \end{array}\right) \xrightarrow{\tau} \overline{\tau}(\overline{r})$

Yongquan Hu Morningside Center of Mathematics

▲□▶ ▲□▶ ▲□▶ ▲□▶

3

SQ (~

Theorem 1 (H.-Wang)

The Gelfand-Kirillov dimension of $\pi_v(\bar{r})$ is f.

As in Lecture 6, can deduce that $\pi_v(\bar{r})^{\vee}$ is Cohen-Macaulay module of grade 2f (over $\Lambda := \mathbb{F}[[I_1/Z_1]]$), and essentially self-dual.

<ロ > < 同 > < 三 > < 三 > < □ > <

æ

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Theorem 1 (H.-Wang)

The Gelfand-Kirillov dimension of $\pi_v(\bar{r})$ is f.

As in Lecture 6, can deduce that $\pi_v(\overline{r})^{\vee}$ is Cohen-Macaulay module of grade 2f (over $\Lambda := \mathbb{F}[[I_1/Z_1]]$), and essentially self-dual.

Strategy of the proof : (leuture 8).

(1) Show $[\pi_{v}(\bar{r})[\mathfrak{m}_{K_{1}}^{2}]:\sigma_{0}] = 1$. (2) Show $[\pi_{v}(\bar{r})[\mathfrak{m}_{K_{1}}^{2}]:\sigma] = 1$ for any $\sigma \in W(\bar{\rho})$. (2) Show $[\pi_{v}(\bar{r})[\mathfrak{m}_{K_{1}}^{2}]:\sigma] = 1$ for any $\sigma \in W(\bar{\rho})$. (2) Show $[\pi_{v}(\bar{r})[\mathfrak{m}_{I_{1}}^{3}]:\chi] = 1$ for any $\chi \in \pi_{v}(\bar{r})^{I_{1}}$. (3) As in Lecture 6, deduce $\operatorname{GK}(\pi_{v}(\bar{r})) \leq f$ (need to use results of [BHHMS1]). $\leadsto \operatorname{gr}(\Lambda), \quad J = (\Im \mathfrak{s}\mathfrak{s}\mathfrak{s}, \mathfrak{s}\mathfrak{s}\mathfrak{s}\mathfrak{s}), \quad \operatorname{gr}(\pi(\mathfrak{F})^{\nu})$ is fulled by J.

(口) (同) (三) (三) (

Э

SQ Q

Steps (2), (2')

These steps are purely representation theoretic.

Proposition 2

Let $\bar{\rho}$ be as above, π be an admissible smooth \mathbb{F} -rep. of G satisfying : (a) $\pi^{K_1} \cong D_0(\bar{\rho})$; $\Rightarrow \mathbb{Soc}_{Gh(\mathbb{Q})}$ $\bar{\mathfrak{n}} = \bigoplus_{G \in W(\bar{\rho})}^{\oplus} G$ (b) if $\operatorname{Ext}^1_K(\sigma, \pi) \neq 0$ for some Serre weight σ , then $\sigma \in W(\bar{\rho})$; (c) there exists one $\underline{\sigma_0} \in W(\bar{\rho})$ such that $[\pi[\mathfrak{m}^2_{K_1}] : \sigma_0] = 1$. Then the following hold : (i) $[\pi[\mathfrak{m}^2_{K_1}] : \sigma] = 1$ for any $\sigma \in W(\bar{\rho})$; (2) (ii) $[\pi[\mathfrak{m}^3_h] : \chi] = 1$ for any $\chi \in \pi^{I_1}$. (2')

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

æ

5900

$$\pi: \pi^{I_{1}} \hookrightarrow \pi^{I_{1}} = \pi^{I_{1}} \bigoplus \mathcal{D}_{s} (\overline{p})$$
Proof. Recall : the diagram $(\underline{D}_{1}(\overline{\rho}) \hookrightarrow D_{0}(\overline{\rho}))$ is indecomposable by
Lecture 3.

$$Define \sum_{o} := \left\{ \mathcal{S} \in W(\overline{p}) : [\pi [m_{H_{1}}^{2}] : \mathcal{S}] = I \right\}$$

$$\sum_{i} := \left\{ \mathcal{R} \in \pi^{I_{1}} : [\pi [m_{H_{1}}^{3}] : \chi] = I \right\} \subseteq \pi^{I_{1}} \int \begin{pmatrix} 0 & I \\ \rho & 0 \end{pmatrix}$$

$$\mathcal{U}_{se} (a). (b) \text{ to show that}$$

$$if \chi \in D_{o, \sigma}(\overline{p})^{I_{1}}, \text{ then } \chi \in \Sigma_{i} \text{ iff } \mathcal{S} \in \underline{\Sigma}_{o}.$$

$$\Rightarrow \left(\bigoplus_{\chi \in \Sigma_{i}} \chi \longrightarrow \bigoplus_{c \in \Sigma_{i}} D_{o, c}(\overline{p}) \right)$$

$$sub_{i} duag. \int_{Q(\overline{p})} \int_{O(\overline{p})} direct \text{ summand}! \qquad \Rightarrow get \text{ the cohole diagram.} \Pi$$

Step (1) : Show
$$[\pi_v(\overline{r})[\mathfrak{m}_{K_1}^2]:\sigma_0]=1.$$

Let $\Gamma := \operatorname{GL}_2(\mathbb{F}_q)$ so that $\mathbb{F}[\Gamma] \cong \mathbb{F}[\![\operatorname{GL}_2(\mathcal{O}_K)/Z_1]\!]/\mathfrak{m}_{K_1}$. Let

 $\widetilde{\Gamma} := \mathbb{F}\llbracket \operatorname{GL}_2(\mathcal{O}_{\mathcal{K}})/Z_1 \rrbracket / \mathfrak{m}_{\mathcal{K}_1}^2. \quad \textit{t-nof a group alg.}$

Let $\operatorname{Proj}_{\Gamma} \sigma_0$, resp. $\operatorname{Proj}_{\widetilde{\Gamma}} \sigma_0$ be a projective envelope of σ_0 for <u> Γ -representations</u>, resp. $\widetilde{\Gamma}$ -representations. •ver \mathfrak{F} Have

$$\operatorname{Proj}_{\widetilde{\Gamma}}\sigma_0 \twoheadrightarrow \operatorname{Proj}_{\Gamma}\sigma_0.$$
 (Leetwre 8)

<ロ > < 同 > < 三 > < 三 > < □ > <

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Need to show

$$\dim_{\mathbb{F}} \operatorname{Hom}_{\operatorname{GL}_{2}(\mathcal{O}_{\mathcal{K}})} (\operatorname{Proj}_{\widetilde{\Gamma}} \sigma_{0}, \pi_{\nu}(\overline{r})) \stackrel{?}{=} 1.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Let M_{∞} (and R_{∞}) be a <u>minimal</u> patching functor for $\bar{\rho}$ (cf. Lecture 8), e.g. take

$$M_{\infty}(-) := \operatorname{Hom}_{\operatorname{GL}_{2}(\mathcal{O}_{\mathcal{K}})}^{\operatorname{cont}} (\mathbb{M}_{\infty}, -^{d})^{d}$$

for a minimal patched module \mathbb{M}_{∞} . \mathcal{M}_{∞} Here \mathcal{M}_{∞} . Recall that $\mathbb{M}_{\infty}/\mathfrak{m}_{\infty} \cong \pi_{\nu}(\overline{r})^{\vee}$, so we have

$$M_{\infty}(\Theta)/\mathfrak{m}_{\infty}\cong \operatorname{Hom}_{\operatorname{GL}_{2}(\mathcal{O}_{\mathcal{K}})}(\Theta,\pi_{v}(\overline{r}))^{ee}.$$
 \cong dum)

Equiv. to show

Theorem 3

The R_{∞} -module $M_{\infty}(\operatorname{Proj}_{\widetilde{\Gamma}}\sigma_0)$ is cyclic.

▲□▶ ▲□▶ ▲□▶ ▲□▶

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Recall gluing lemma 2 of Lecture 8 :

Given finite dim. $\mathbb{F}[[GL_2(\mathcal{O}_K)]]$ -modules Θ_1 , Θ_2 which admit a common quotient Θ_0 , form the fiber product

$$0 \to M_{\infty}(\Theta_1 \times_{\Theta_{\mathbf{0}}} \Theta_2) \to M_{\infty}(\Theta_1) \times M_{\infty}(\Theta_2) \to M_{\infty}(\Theta_0) \to 0.$$

Assume both $M_{\infty}(\Theta_1)$, $M_{\infty}(\Theta_2)$ are cyclic R_{∞} -modules with annihilator I_1 , I_2 (hence so is $M_{\infty}(\Theta_0)$ with annihilator I_0), then

$$M_{\infty}(\Theta_1 \times_{\Theta_0} \Theta_2)$$
 is cyclic $\iff I_1 + I_2 = I_0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶

э

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Roughly, we glue $\operatorname{Proj}_{\Gamma}\sigma_0$ with an ordinary part of $\operatorname{Proj}_{\widetilde{\Gamma}}\sigma_0$:

•
$$\Theta_1 := \operatorname{Proj}_{\Gamma} \sigma_0.$$

Theorem (Le) The R_{∞} -module $M_{\infty}(\operatorname{Proj}_{\Gamma}\sigma_{0})$ is cyclic. $(\mathbb{B}^{|_{\dot{\mathcal{M}}}})$ • $\Theta_0 := \operatorname{Ind}_{B(\mathbb{F}_q)}^{\Gamma} \chi_{\sigma_0}$ (a quotient of Θ_1). $\hookrightarrow \underbrace{\operatorname{Mod}(\mathbb{P})}_{\mathcal{B}(\mathbb{F}_q)}$ 390. Fact (1), JH (() NW () = {6} • $\Theta_2 :=$ ordinary part of $\operatorname{Proj}_{\tilde{r}} \sigma_0$. \Rightarrow $(N_{\infty}(\mathbb{G}_{n}) = M_{\infty}(\mathcal{G}_{n})$ **Fact.** There exists a (unique) quotient Θ_2 of $\operatorname{Proj}_{\widetilde{\Gamma}}\sigma_0$ such that : $0 \to \sigma_0^{\oplus f} \to \Theta_2 \to \Theta_0 \to 0. \xrightarrow{\text{not } \Gamma \cdot \text{ext}} f_{\circ} \xrightarrow{\text{(non-split)}} f_{\circ} \xrightarrow{\text{(non-split)}}$ Frob:

$$\underline{\text{Cyclicity of}} (\Theta_2)$$

Lemma

Let π be admissible \mathbb{F} -rep. of G. Assume

- $JH(\Theta_0) \cap \operatorname{soc}_{\operatorname{GL}_2(\mathcal{O}_K)} \pi = \{\sigma_0\} \in \pi = \pi(F) \text{ ok}$
- $\operatorname{Ord}_B(\pi)$ is semisimple. \not{E} (5)

Then the projection $\Theta_2 \twoheadrightarrow \sigma_0$ induces an isomorphism

$$\operatorname{Hom}_{\operatorname{GL}_{2}(\mathcal{O}_{K})}(\sigma_{0},\pi) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{GL}_{2}(\mathcal{O}_{K})}(\Theta_{2},\pi).$$

$$= \operatorname{dr} \mathfrak{m}$$

Proof of
$$I_1 + I_2 = I_0$$

Can work locally : replace R_{∞} with $R_{\overline{\rho}}$. $= A_{nn}(M_{\infty}(\mathbb{T}_{\rho})) = A_{nn}(M_{\infty}(\mathbb{T}_{\rho})) = A_{nn}(M_{\infty}(\mathbb{T}_{\rho})) = A_{nn}(M_{\infty}(\mathbb{T}_{\rho}))$ $= A_{nn}(M_{\infty}(\mathbb{T}_{\rho})) = A_{nn}(M_{\infty}(\mathbb{T}_{\rho})) = A_{nn}(M_{\infty}(\mathbb{T}_{\rho}))$

• the action of R_{∞} on $M_{\infty}(\Theta_2)$ factors through $R_{\bar{\rho}}^{\mathrm{red}}$ (:=reducible deformation ring), i.e. $I^{\mathrm{red}} \subset I_2$.

• show
$$l^{red} + l_{\mathbf{I}} = l_0$$
.
Lemma: π loc adm, st. $\exists H(\mathfrak{B}_0) \cap \mathfrak{Sec}_{\mathcal{A}_1(\mathfrak{Q}_0)} = \{\mathfrak{G}_0\}$
 $f then $\pi^{\operatorname{ord}} \hookrightarrow \pi$ induces an isom.
 $\operatorname{Hom}(\mathfrak{B}_2, \pi^{\operatorname{ord}}) \xrightarrow{\sim} \operatorname{Hom}(\mathfrak{B}_2, \pi^{\operatorname{ord}})$
 GhlOk .
 $\operatorname{Hom}(\mathfrak{B}_2, \pi^{\operatorname{ord}}) \xrightarrow{\sim} \operatorname{Hom}(\mathfrak{B}_2, \pi^{\operatorname{ord}})$
 $\operatorname{Hom}(\mathfrak{B}_2, \mathfrak{B}^{\operatorname{ord}}) \xrightarrow{\sim} \operatorname{Hom}(\mathfrak{B}_2, \pi^{\operatorname{ord}})$
 $\operatorname{Hom}(\mathfrak{B}_2, \mathfrak{B}^{\operatorname{ord}}) \xrightarrow{\sim} \operatorname{Hom}(\mathfrak{B}_2, \pi^{\operatorname{ord}})$
 $\operatorname{Hom}(\mathfrak{B}_2, \mathfrak{B}^{\operatorname{ord}}) \xrightarrow{\sim} \operatorname{Hom}(\mathfrak{B}_2, \mathfrak{B}^{\operatorname{ord}})$
 $\operatorname{Hom}(\mathfrak{B}_2, \mathfrak{B}^{\operatorname{ord}})$
 $\operatorname{Hom}(\mathfrak{B}^{\operatorname{ord}})$
 $\operatorname{Hom}(\mathfrak{B}^{\operatorname{$$

▲□▶ ▲□▶ ▲□▶ ▲□▶

Э

SQ (~

Proof of $I_1 + I_2 = I_0$

Can work locally : replace R_{∞} with $R_{\bar{\rho}}$.

- have an explicit description of I_0 (Fontaine-Laffaille) and I_1 (Le);
- the action of R_∞ on M_∞(Θ₂) factors through R^{red}_{ρ̄} (:=reducible deformation ring), i.e. I^{red} ⊂ I₂.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

æ

5900

3 Finite length when f = 2

<ロト < 同ト < 三ト < 三ト

æ

SQ (~

The main result of this section is :

Theorem 4 (H.-Wang)

As a *G*-representation, $\pi_v(\bar{r})$ is generated by $D_0(\bar{\rho})$.

Corollary

We have $\operatorname{End}_{G}(\pi_{v}(\overline{r})) = \mathbb{F}$.

.

・ロト ・(型ト ・(ヨト ・)

3

SQ (~

Example / Motivation

$$\frac{\text{Example/Notivation}}{\text{Take } f = 1, \text{ so } W(\bar{\rho}) = \{\sigma_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \text{ with } \pi_i \text{ PS.} \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \text{ with } \pi_i \text{ PS.} \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \text{ with } \pi_i \text{ PS.} \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \text{ with } \pi_i \text{ PS.} \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \text{ with } \pi_i \text{ PS.} \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \text{ with } \pi_i \text{ PS.} \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \text{ with } \pi_i \text{ PS.} \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \text{ with } \pi_i \text{ PS.} \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \pi_i \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \pi_i \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \pi_i \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \pi_i \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \pi_i \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \pi_i \text{ multive free } \{G_0\}, \pi_v(\bar{r}) \cong (\pi_0 - \pi_1), \pi_v$$

Let $\Omega \cong \operatorname{Inj}_{\operatorname{GL}_2(\mathcal{O}_K)/Z_1} \sigma_0$ together with a smooth action of G and assume $\pi_{\nu}(\overline{r}) \hookrightarrow \Omega$ (cf.[**BP**]). or $\mathfrak{Ar} \cong \mathfrak{H}_{\mathfrak{m}}^{\circ}$

Paskūnas : if $\pi_{\nu}(\overline{r}) \subset \pi \subset \Omega$ with $\pi[\mathfrak{m}_{K_1}^2]$ mulitiplicity free, then

Structure of
$$\Gamma$$
: $E = \begin{bmatrix} \pi = \pi_v(\bar{r}) \\ \overline{\pi}(\bar{r}) \oplus \overline{\pi}(\bar{F}) \end{bmatrix} \longrightarrow \int /\pi(\bar{r})$
 $E \longrightarrow Ext^1(\pi t\bar{r}), \pi(\bar{r}) \end{pmatrix} Fad: \pi = \pi(\bar{r}) \text{ if } \pi n \in \pi(\bar{r}),$
 $2^{''} dim$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ,

5900

$$\begin{array}{c} G_{0} \hookrightarrow \pi(\overline{r}) & P_{1}(\overline{r}) \\ Ext_{G}^{1}(\pi(\overline{r}), \pi(\overline{r})) \longrightarrow Ext_{G}^{1}(G_{0}, \pi(\overline{r})) & (G_{0}, \pi(\overline{r})) \\ G_{1} & (G_{0}, \pi(\overline{r})) \end{pmatrix} & (G_{0}, \pi(\overline{r})) \\ g_{2} & (G_{0}, \pi(\overline{r})) \\ g_{2} & (G_{0}, \pi(\overline{r})) \end{pmatrix} \\ g_{2} & (G_{0}, \pi(\overline{r})) \end{pmatrix} \\ = Hom (G_{0}, \pi(\overline{r})) (G_{0}(\overline{r})) \\ = Hom (G_{0}, \pi(\overline{r})) (G_{0}(\overline{r})) \\ g_{1} & (G_{0}, \pi(\overline{r})) (G_{0}(\overline{r})) \end{pmatrix} \\ = 0 \\ f_{1} & not \\ (G_{0}, \pi(\overline{r})) (G_{0}(\overline{r})) \end{pmatrix} \\ = 0 \\ f_{1} & (G_{0}, \pi(\overline{r})) (G_{0}(\overline{r})) \\ (G_{0}(\overline{r})) (G_{0}(\overline{r})) \end{pmatrix} \\ = 0 \\ f_{1} & (G_{0}, \pi(\overline{r})) (G_{0}(\overline{r})) \\ (G_{0}(\overline{r})) (G_{0}(\overline{r})) (G_{0}(\overline{r})) \\ (G_{0}(\overline{r})) (G_{0}(\overline{r})) (G_{0}(\overline{r})) (G_{0}(\overline{r})) (G_{0}(\overline{r})) \\ (G_{0}(\overline{r})) (G_{0}(\overline{r})) (G_{0}(\overline{r})) (G_{0}(\overline{r})) \\ (G_{0}(\overline{r})) (G_{0}(\overline{r})) (G_{0}(\overline{r})) (G_{0}(\overline{r})) \\ (G_{0}(\overline{r})) (G_{0}(\overline{r})) (G_{0}(\overline{r})) (G_{0}(\overline{r})) (G_{0}(\overline{r})) \\ (G_{0}(\overline{r})) (G_{0$$

<ロ > < 同 > < 三 > < 三 > < 三 > <

æ

SQ (~

The proof of Theorem 4

The starting point is :

Lemma 5

The G-cosocle of $\pi_v(\overline{r})$ is an irreducible PS, say π_f .

Proof.
$$(F(T_1(F)) = f \longrightarrow T_1(F)^{\vee} is ess. set f dual.$$

 $T_1 \longrightarrow T_1(F) is (ode)$
 $\longrightarrow T_1(F)$ has usede. $E^{f}(T_1 \circ)^{\vee}$ (up to furst).
 $T_1(F)$ has usede. $E^{f}(T_1 \circ)^{\vee}$ (up to furst).
 $T_1(F) \longrightarrow T_1(F)$ has proved for $F(T_1 \circ)^{\vee}$ (up to furst).
 $T_1(F) \longrightarrow T_1(F)$ has proved for $F(T_1 \circ)^{\vee}$ (up to furst).
 $T_1(F) \longrightarrow T_1(F)$ has proved for $F(T_1 \circ)^{\vee}$ (up to furst).
 $T_1(F) \longrightarrow T_1(F)$ has proved for $F(T_1 \circ)^{\vee}$ (up to furst).
 $T_1(F) \longrightarrow T_1(F)$ has proved for $F(T_1 \circ)^{\vee}$ (up to furst).
 $T_1(F) \longrightarrow T_1(F)$ has proved for $F(T_1 \circ)^{\vee}$ (up to furst).
 $T_1(F) \longrightarrow T_1(F)$ has proved for $F(T_1 \circ)^{\vee}$ (up to furst).

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

3

SQ Q

Criterion

Let $\tau \subset \pi_{\nu}(\overline{r})|_{I}$. If for some *i*, some $\chi : I \to \mathbb{F}^{\times}$, the composition

is non-zero, then $\pi_v(\overline{r})$ can be generated by τ as *G*-representation.

We will find some χ , i, τ such that "Criterion" applies. $0 \rightarrow V \rightarrow Ti(\overline{r}) \rightarrow Tf$, such that "Criterion" applies. $0 \rightarrow V \rightarrow Ti(\overline{r}) \rightarrow Tf$, such that "Criterion" applies. $f \rightarrow V \rightarrow Ti(\overline{r}) \rightarrow Tf$, such that "Criterion" applies. $f \rightarrow V \rightarrow Ti(\overline{r}) \rightarrow Tf$, such that "Criterion" applies. $f \rightarrow V \rightarrow Ti(\overline{r}) \rightarrow Tf$, such that "Criterion" applies. $f \rightarrow V \rightarrow Ti(\overline{r}) \rightarrow Tf$, such that "Criterion" applies.

æ

590

How to choose χ , *i* and τ ?

Assume $W(\bar{\rho}) = \{\sigma_0\}$ for simplicity. Know the following information :

•
$$\operatorname{Ext}_{I}^{i}(\chi, \pi_{v}(\overline{r})) \neq 0$$
 if and only if $\chi \in \pi_{v}(\overline{r}))^{I_{1}}$ and
 $\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{I}^{i}(\chi, \pi_{v}(\overline{r})) = \begin{pmatrix} 2f \\ i \end{pmatrix}$.
This suggests to take : $\chi = \chi_{\sigma_{0}}$ (the ordinary character).
Foughly: injective resolution of $\overline{t_{1}}(\overline{r})$ works $\operatorname{Mos} \cdot \int_{\mathcal{P}o}^{f_{1}} f_{v}$ for is $\overline{t}(\overline{r})^{v}$
 $\chi_{c_{0}} = (\chi_{v} \chi)$
 $\chi_{c_{0}} = (\chi_{v} \chi)$
 $\chi_{c_{0}} = (\chi_{v} \chi)$
 $\chi_{c_{0}} = \chi_{\sigma_{0}}$ (the ordinary character).
 $\operatorname{Mos} = (\chi_{v} \chi)$
 $\chi_{c_{0}} = (\chi_{v} \chi)$
 $\chi_{c_{0}} = (\chi_{v} \chi)$
 $\chi_{c_{0}} = \chi_{c_{0}}$
 $\chi_{c_{0}} = \chi_{c_{0}}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

 $\mathcal{A} \mathcal{A} \mathcal{A}$

How to choose χ , *i* and τ ?

Assume $W(\bar{\rho}) = \{\sigma_0\}$ for simplicity. Know the following information :

•
$$\operatorname{Ext}_{I}^{i}(\chi, \pi_{v}(\overline{r})) \neq 0$$
 if and only if $\chi \in \pi_{v}(\overline{r}))^{I_{1}}$ and
$$\dim_{\mathbb{F}} \operatorname{Ext}_{I}^{i}(\chi, \pi_{v}(\overline{r})) = \binom{2f}{i}.$$

This suggests to take : $\chi = \chi_{\sigma_0}$ (the ordinary character).

• π_f has injective dimension 2f, and $\dim_{\mathbb{F}} \operatorname{Ext}_I^i(\bigotimes, \pi_f) = \begin{cases} 0 & i < f \\ \binom{f}{2f-i} & f \leq i \leq 2f \end{cases}$

This suggests to take i = 2f. if i = 2f, i = dim. Cannif fake i = 1.

▲□▶ ▲ ■▶ ▲ ■▶

Э

SQ (~

• The multiplicity-freeness of $\pi_{\nu}(\overline{r})[\mathfrak{m}_{l_{1}}^{3}]$ suggests : if take $\tau = \pi_{\nu}(\overline{r})[\mathfrak{m}_{l_{1}}^{2}]$ then $\hookrightarrow \mathfrak{T}(\overline{r})$ $\dim_{\mathbb{F}} \operatorname{Ext}_{l}^{1}(\chi, \tau) = 2f$

<ロ > (同) (同) (三) (=)

3

SQ (?

In summary, in the diagram of "Criterion"

$$\operatorname{Ext}^{i}_{I}(\chi,\tau) \xrightarrow{\beta_{i}} \operatorname{Ext}^{i}_{I}(\chi,\pi_{v}(\overline{r})) \xrightarrow{\gamma_{i}} \operatorname{Ext}^{i}_{I}(\chi,\pi_{f})$$

take

- $\chi = \chi_{\sigma_0}$
- *i* = 2*f*
- $\tau = a \text{ variant of } \pi_v(\overline{r})[\mathfrak{m}_{I_1}^2].$

Show

- (1) γ_{2f} is an isomorphism (easier);
- (2) β_{2f} is a surjection $f_{\underline{or-any}} \oplus \underline{\leq t \leq 2f}$. Actually, inductively show β_i is surjective for any $0 \leq i \leq 2f$.

◆□ ▶ ◆骨 ▶ ◆ ■ ▶ →

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Step (2) : β_i is surjective

To deduce β_{2f} from that of β_0 , β_1 , need :

Key ingredient : $\pi_v(\overline{r})^{\vee}|_I$ admits a Koszul complex projective resolution, as M_{∞} is flat over R_{∞} (which is regular) and $M_{\infty}/\mathfrak{m}_{\infty} \cong \pi_v(\overline{r})^{\vee}$.

Example. when f = 1, $\pi_v(\bar{\rho}) = (\pi_0 - \pi_1)$, Paškūnas shows :

$$0 \to \Omega^{\vee} \stackrel{(-y,x)}{\to} \Omega^{\vee} \oplus \Omega^{\vee} \stackrel{\binom{x}{\vee}}{\to} \Omega^{\vee} \to \pi_{v}(\overline{r})^{\vee} \to 0.$$

End_G (IV) = FE x, y]

QQ

Consider the following situation : $(R, \mathfrak{m}) =$ noetherian local ring, $\underline{x} := (x_1, \ldots, x_n)$ with $x_i \in \mathfrak{m}$. Assume

where

•
$$K_{\bullet} = K_{\bullet}(\underline{x}, R) = \text{is Koszul complex, with } K_i \cong R^{\binom{n}{i}}$$

•
$$F_{\bullet} = \text{complex of free } R \text{-modules.}$$

Lemma (Serre)

Assume
(a)
$$x_1, \ldots, x_n$$
 are linearly independent mod m²;
(b) $\tilde{\beta}_0 : K_0 \to F_0$ is a direct summand.
Then $\tilde{\beta}_i : K_i \to F_i$ is a direct summand for all $0 \le i \le n$.
Yongquan Hu Morningside Center of Mathematics
Essen Spring School: Lecture 9

1

JQC

In practice, can not take $R = R_{\infty}$ in Serre's lemma, as R_{∞} does not act on an injective resolution of τ .

To solve this, let
$$\lambda := (\operatorname{Proj}_{I}\chi^{\vee})/\mathfrak{m}_{I_{1}}^{3}$$
 so that
 $\operatorname{End}_{I}(\lambda) \cong \mathbb{F}[x_{i}, y_{i}; 0 \leq i \leq f-1]/(x_{i}, y_{i})^{2}$.
Choose minimal projective resolutions :
 $Q_{\bullet} \twoheadrightarrow \tau^{\vee}, \quad \underbrace{K_{\bullet} \twoheadrightarrow \pi_{\nu}(\overline{r})^{\vee}}_{Q_{\bullet} \twoheadrightarrow \tau^{\vee}} \qquad \underbrace{\mathbb{T}[r]^{\vee}}_{\chi_{\bullet}} \operatorname{Hom}(-, \lambda)$
with K_{\bullet} being Koszul, get morphisms $\operatorname{Hom}_{I}(K_{\bullet}, \lambda)^{\vee} \to \operatorname{Hom}_{I}(Q_{\bullet}, \lambda)^{\vee}$ of
 $\operatorname{End}_{I}(\lambda)$ -modules, and
 $Q_{\bullet} \cong \mathbb{F}[x_{i}, y_{i}; 0 \leq i \leq f-1]/(x_{i}, y_{i})^{2}$.
 $Q_{\bullet} \twoheadrightarrow \tau^{\vee}, \quad \underbrace{K_{\bullet} \twoheadrightarrow \pi_{\nu}(\overline{r})^{\vee}}_{Q_{\bullet} \twoheadrightarrow \pi^{\vee}} \qquad \underbrace{\mathbb{T}[r]^{\vee}}_{\chi_{\bullet}} \operatorname{Hom}_{I}(Q_{\bullet}, \lambda)^{\vee} \text{ of}}_{R}$
 $\mathbb{F} \otimes_{R} \operatorname{Hom}_{I}(Q_{\bullet}, \lambda)^{\vee} \operatorname{recovers} \operatorname{Hom}_{I}(Q_{\bullet}, \chi^{\vee})^{\vee}}_{K_{\bullet}} \qquad (\mathfrak{p}_{I})^{\vee} \operatorname{Hom}_{I}(x_{i}, y_{i})^{\vee} \operatorname{Hom}_{I}(x_{i}, y_{i})^{\vee} \operatorname{Hom}_{I}(x_{i}, y_{i})^{\vee}$.
 $\mathbb{F} \otimes_{R} \operatorname{Hom}_{I}(Q_{\bullet}, \lambda)^{\vee} \operatorname{recovers} \operatorname{Hom}_{I}(Q_{\bullet}, \chi^{\vee})^{\vee}}_{K_{\bullet}} \qquad (\mathfrak{p}_{I})^{\vee} \operatorname{Hom}_{I}(x_{i}, y_{i})^{\vee} \operatorname{Hom}_{I}(x_{i})^{\vee} \operatorname{Hom}_{I}(x_{i}, y_{i})^{\vee} \operatorname{Hom}_{I}(x_{i}, y_{i})^{\vee} \operatorname{Hom}_{I}(x_{i})^{\vee} \operatorname{Hom}_{I}(x_{i})^$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

æ

5900

2 Generation by $D_0(\bar{\rho})$

▲□▶ ▲□▶ ▲□▶ ▲□▶

3

SQ P

Theorem 6 (H.-Wang)

If $\bar{\rho}$ is reducible non-split, then $\pi_v(\bar{r})$ has the form

sode
$$\pi_0 - \pi' - \pi_f$$
 cosoele.

with π_0, π_f principal series. If moreover f = 2, then π' is irreducible and supersingular.

Already know : the *G*-socle of $\pi_v(\overline{r})$ is π_0 and *G*-cosocle is π_f .

Assume f = 2. Need to show π' is irreducible and supersingular.

Proof.
$$f=2$$
.
Look of $\pi(r)/\pi_0$, $adm. \Rightarrow always have on (Hed sub-tep. Say π' .
 $\Rightarrow \operatorname{Ext}_{G}^{1}(\pi', \pi_0) \neq 0.$
() claim π' is S.S.
Fast [BP] \cdot if π' is non-S.S, and if $\pi' \neq \pi_0$. then $\operatorname{Ext}_{G}^{1}(\pi', \pi_0) = 0$!
only π_0 hat $\cdot \operatorname{Ord}_{B}(\pi(r))$ is $\operatorname{Senv}^{1} - \operatorname{Singh}^{1}$.
() $\cdot \operatorname{Show} \cdot \pi'$ is G -sode of $\pi(r)$ is $\operatorname{Senv}^{1} - \operatorname{Singh}^{1}$.
() $\cdot \operatorname{Show} \cdot \pi'$ is G -sode of $\pi(r)/\pi_0$.
determine $\operatorname{Soe}_{Gh(Op)}(\pi(r)/\pi_0)$.
Assume $\operatorname{W}(p^{(S)}) = \frac{f_{G_0}}{f_0}, \frac{f_1}{f_0}, \frac{f_2}{f_0}, \frac{f_1}{f_0}, \frac{f_1}{f_0}, \frac{f_2}{f_0}, \frac{f_1}{f_0}, \frac{f_1}{f_0}, \frac{f_1}{f_0}, \frac{f_1}{f_0}, \frac{f_1}{f_0}, \frac{f_2}{f_0}, \frac{f_1}{f_0}, \frac{f_2}{f_0}, \frac{f_1}{f_0}, \frac{f_2}{f_0}, \frac{f_1}{f_0}, \frac{f_1$$

Yongquan Hu Morningside Center of Mathematics

æ

SQ (~

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Lemma

Let Q be an admissible quotient of $I(\sigma_2) := c-Ind_{GL_2(\mathcal{O}_K)Z}^G \sigma_2$. Assume the G-cosocle of Q is irreducible and isomorphic to

$$\pi_{2} := I(\sigma_{2})/(I - \lambda)$$
for some $\lambda \in \mathbb{F}^{\times}$. Then
$$Q \cong I(\sigma_{2})/(T - \lambda)^{r}, \text{ some } n \ge 1.$$

$$Q \cong I(\sigma_{2})/(T - \lambda)^{r}, \text{ some } n \ge 1.$$

$$Preed \quad Q = Tr_{2}, \text{ if } n \ge 1.$$

$$Preed \quad Q = Tr_{2}, \text{ if } n \ge 1.$$

$$Tr_{1}(r) \text{ is generated by } Tr_{1}(r) = Tr_{2}, \text{ if } n \ge 1.$$

$$Tr_{1}(r) \text{ is generated by } Tr_{1}(r) = Tr_{2}, \text{ if } n \ge 1.$$

$$Tr_{1}(r) \text{ is generated by } Tr_{2}(r) = Tr_{2}, \text{ if } n \ge 1.$$

æ

5900

Thank you!