Recall Product topology

 X_{λ} topological spaces ($\lambda \in \Lambda$)

 $\prod_{\lambda \in \Lambda} X_{\lambda} = \{(x_{\lambda})_{\lambda \in \Lambda} : x_{\lambda} \in X_{\lambda}\}$

 $p_{\mu}: \prod_{\lambda \in \Lambda} X_{\lambda} \to X_{\mu}$ $x_{\mu}: (x_{\lambda})_{\lambda \in \Lambda} \to x_{\mu}$

Product topology on $\prod X_{\lambda}$ is the *coarsest* topology such that all the p_{μ} 's are continuous.

we saw the basis $\prod_{\lambda \in \Lambda} U_{\lambda}$ where $U_{\lambda} \subset X_{\lambda}$ open $\forall \lambda$ and $X_{\lambda} = U_{\lambda}$ for λ outside for some finite subset of Λ

 $Y \longrightarrow \prod_{\lambda \in \Lambda} X_{\lambda} \text{ continuous } \Leftrightarrow f_{\lambda} \text{ is continuous for all } \lambda$ $y \longmapsto (f_{\lambda}(y)).$

Box topology : Basis $\prod_{\lambda \in \Lambda} U_{\lambda}$, $U_{\lambda} \subset X_{\lambda}$ open $\forall \lambda$ * finer than product topology

§20, 21 Metric Topology

Recall Metric space: (X, d), X set, $d: X \times X \to \mathbb{R}_{\geq 0}$

(i) $d(x, y) = 0 \Leftrightarrow x = y$ (ii) d(x, y) = d(y, x)(iii) $d(x, z) \le d(x, y) + d(y, z) - triangular inequality$

Open ball (or ϵ -ball)

 $B_{\epsilon, d}(x) = \{y \in X : d(x, y) < \epsilon\}$ or just $B_{\epsilon}(x)$

<u>Definition</u> The *metric topology* is the topology on *X* generated by the basis $\{B_{\epsilon,d}(x) : \epsilon > 0, x \in X\}$

Check basis: (i) union in X : clear (ii) $x \in B_{\epsilon_1}(x_1) \cap B_{\epsilon_2}(x_2)$

 $B_r(x) \subset B_{\epsilon_1}(x_1) \subset B_{\epsilon_2}(x_2)$, provided $r \le \min(\epsilon_1 - d(x_1, x_2), \epsilon_2 - d(x_1, x_2))$. This follows by triangular inequality.

Theorem 23

Let (X, d) be metric space $U \subset X$ open $\Leftrightarrow \forall x \in U \exists \epsilon > 0$ such that $B_{\epsilon}(x) \subset U$

Proof: " \Leftarrow " trivial. " \Rightarrow " By definition, $\exists \epsilon > 0, y \in X$ such that $x \in B_{\epsilon}(y) \subset U$. But $B_r(x) \subset B_{\epsilon}(y)$ provided $r \le \epsilon - d(x, y)$. \Box

Examples

(1) $X = \mathbb{R}^n d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$ (Euclidean metric)

metric topology = standard topology

(2) X arbitrary set

 $d(x, y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$

metric topology = discrete topology

If |X| > 1, $\nexists d$: metric s.t. metric topology of (X, d) is the trivial topology.

Why?

Lemma 24

Any metric topology is T_2 .

Proof: If $x \neq y$, then $B_{\epsilon}(x)$, $B_{\epsilon}(y)$ disjoint nbds provided $\epsilon \leq \frac{1}{2} d(x, y)$.

<u>Definition</u> A topological space (X, τ) is *metrizable* if \exists metric *d* on *X* s.t. metric topology of (X, d) equals τ .

Other basic properties of the metric topology.

(1) X, Y metric spaces. $f: X \to Y$ in continuous for metric topology \Leftrightarrow continuous in $\epsilon - \delta$ sense. (as in lecture 1)

(2) If $Y \subset X$ subset of a metric space (X, d), then the two natural topologies on Y coincide.

- subspace topology in metric topology on *X*.
- metric topology of $(Y, d|_{Y \times Y})$

This justifies why $S^2 \setminus \{N\} \to \mathbb{R}^2$ continuous where $S^2 \setminus \{N\}$ has subspace topology in \mathbb{R}^3 .

$$(a, b, c) \mapsto \left(\frac{a}{1-c}, \frac{b}{1-c}\right)$$

(3) If (X_i, d_i) for $1 \le i \le n$ metric spaces, then the product topology on $\prod X_i$ is the metric topology of $(\prod X_i, d)$, where $d((x_i)_{i=1}^n, (x_i)_{i=1}^n) = \max(d_i(x_i, y_i))$.

: the product topology on \mathbb{R}^n is the metric topology of the metric $d_{\square}(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} \{|x_i - y_i|\}$

Now we can see in a nicer way that product topology = standard topology on \mathbb{R}^n .

Thereom 25

Suppose *d*, *d'* are metrics on a set *X* inducing metric topology τ , τ' . Then $\tau \subset \tau' \Leftrightarrow \forall x \in X, \forall \epsilon > 0 \exists \delta > 0$ such that $B_{\delta, d'}(x) \subset B_{\epsilon, d}(x)$.

Proof:

Let $U \subset X$ open in τ . We need U open in τ' . U open in $\tau \Rightarrow \exists \epsilon > 0$ such that $B_{\epsilon, d}(x) \subset U$. By assumption, $\exists \delta > 0$, such that $B_{\delta, d'}(x) \subset B_{\epsilon, d}(x)$. \Box

Examples

1) $X = \mathbb{R}^2$, d = Euclidean metric, $d_{\Box}((x_1, x_2), (y_1, y_2)) = \max(|x_1 - y_1|, |x_2 - y_2|)$

2) $X = \mathbb{R}^n$, $d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum (x_i - y_i)^2}$ (standard topology), $d_{\Box}(\mathbf{x}, \mathbf{y}) = \max \{|x_i - y_i|\}$ (product topology) We want to apply theorem 25 to see these are the same topology

 $d_{\Box}(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{y}) \le \sqrt{n} \ d_{\Box}(\mathbf{x}, \mathbf{y}) \Rightarrow B_{\epsilon/\sqrt{n}} \ d_{\Box} \subset B_{\epsilon, d} \subset B_{\epsilon, d}$

Theorem 26

Let (X, d) metric space then there exist a metric d' on X that induces the same topology as d. s.t. $d'(x, y) \le 1$. $\forall x, y$.

Examples

 $d'(x, y) = \min(1, d(x, y)) = \overline{d}(x, y)$ $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}$

Proof:

We need to show that d and \overline{d} induce the same topology. \overline{d} is a metric: clearly $0 \le \overline{d} \le 1$.

(i) $\overline{d}(x, y) = 0 \Rightarrow d(x, y) = 0 \Rightarrow x = y$

(ii) $\overline{d}(x, y) = \overline{d}(x, y)$

(iii) triangle inequality, (we want min(1, $d(x, z)) \le \min(1, d(x, y)) + \min(1, d(y, z)))$

This is true since if $d(x, y) \ge 1$, then LHS $\le 1 \le d(x, y) \le$ RHS, for $d(y, z) \ge 1$ is similarly done.

If d(x, y) < 1 and d(y, z) < 1. We need min $(1, d(x, z)) \le d(x, y) + d(y, z)$. True b/c LHS $\le d(x, z) \le$ RHS. Hence \overline{d} is metric. Now we will show that d, \overline{d} induce the same topology. This is true b/c $B_{\epsilon,\overline{d}}(x) = B_{\epsilon,d}(x), \forall \epsilon \le 1$ and by Thm 25. \Box

Infinite Products

 $(X_{\lambda}, d_{\lambda})$ metric spaces $(\lambda \in \Lambda)$. In general, $\prod_{\lambda \in \Lambda} X_{\lambda}$ not metrizable (counterexample in §21). But can at least define a natrual metric on it. $\overline{\rho}((x_{\lambda})_{\lambda \in \Lambda}, (y_{\lambda})_{\lambda \in \Lambda}) = \sup \{\overline{d}_{\lambda}(x_{\lambda}, y_{\lambda}) | \lambda \in \Lambda\}$: A real number in [0, 1] b/c $0 \le \overline{d}_{\lambda} \le 1$, $\forall \lambda$. "uniform metric"

Just consider the case $X_{\lambda} = \mathbb{R}$, $\forall \lambda \Rightarrow \prod X_{\lambda} = \mathbb{R}^{\Lambda}$, $\overline{d}_{\lambda}(x, y) = \min(1, |x - y|), \forall \lambda$. Check this is a metric (exercise).

Theorem 27

On \mathbb{R}^{Λ} , this metric topology of $\overline{\rho}$ (uniform topology) is coarser than the box topology and finer than the product topology.

Proof:

Compare with box topology: Fix U open in the uniform topology, pick $x \in U$. U is open $\Rightarrow \exists \epsilon > 0$ s.t. $B_{\epsilon, \overline{\rho}}(\mathbf{x}) \subset U$.

 $B_{\epsilon,\overline{\rho}}(\mathbf{x}) = \big\{ y \in \mathbb{R}^{\Lambda} : \sup \overline{d}(x_{\lambda}, y_{\lambda}) < \epsilon \big\}.$

If $\overline{d}(x_{\lambda}, y_{\lambda}) < \frac{\epsilon}{2} \forall \lambda \Rightarrow \sup \overline{d}(x_{\lambda}, y_{\lambda}) \le \frac{\epsilon}{2} < \epsilon \Leftrightarrow y \in \prod B_{\epsilon/2, \overline{d}}(x_{\lambda})$ (open set in box topology.) proof continued next lecture.