MAT 347
 Semidirect products October 29, 2019

Semidirect products

Recall that if if A, B are subsets of a group G, we write $A B=\{a b: a \in A, b \in B\} \subset G$. The first two problems are a review from Homework 5!

1. Suppose that H, K are subgroups of G. Suppose that $H \cap K=\{1\}$. Prove that every element of $H K$ can be written uniquely as $h k$ for $h \in H, k \in K$.
2. Suppose that H, K are normal subgroups of G and $H \cap K=\{1\}$. Explain how to multiply $h_{1} k_{1}$ with $h_{2} k_{2}$. Prove that $H K$ is isomorphic to $H \times K$.
3. Prove that $D_{4 n} \cong D_{2 n} \times \mathbb{Z} / 2 \mathbb{Z}$ if n is odd.
4. Suppose that N is normal in G, but K is not. (We will write N instead of H, to remember that N is normal.) Explain how to multiply $n_{1} k_{1}$ with $n_{2} k_{2}$, expressing your answer as $n k$ for some $n \in N, k \in K$.
5. Suppose now that N, K are two abstract groups (i.e. not embedded as subgroups of a third group). Suppose that we are given a homomorphism $\varphi: K \rightarrow \operatorname{Aut} N$, so for each element $k \in K$, we are given an automorphism $\varphi(k): N \rightarrow N$ of N. Explain how we can use this to define a new group structure on the set $N \times K$, motivated by your computation in Question 4. The set $N \times K$ with this group structure will be denoted $N \rtimes_{\varphi} K$ and is called the semidirect product of N and K with respect to φ.
6. Show that N, K are both (isomorphic to) subgroups of $N \rtimes_{\varphi} K$ and that N is a normal subgroup.
7. Show that $D_{2 n}$ is isomorphic to a semidirect product of $\mathbb{Z} / n \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z}$.
8. Let F be a field. Consider $N=F, K=F^{\times}$. Define a natural map $\varphi: K \rightarrow$ Aut N (not the trivial one with kernel K) and form the semidirect product $N \rtimes_{\varphi} K$. How can you think about this group?

Remark: we write $N \rtimes_{\varphi} K$ (as opposed to $K \rtimes_{\varphi} N$) to remember that $N \triangleleft G$. In other words, the triangle faces the same way.

Isometries

Definition: An isometry of the plane is a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $|f(x)-f(y)|=|x-y|$ (where $|\cdot|$ denotes the length of a vector). The set of isometries of the plane forms a group $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ under composition.

1. Show that any translation is an isometry.
2. Show that any orthogonal linear operator on \mathbb{R}^{2} is an isometry.
3. Show that any isometry is the composition of a translation and an orthogonal linear map. (You may use the following fact without proof: if f is an isometry such that $f(0)=0$, then f is an orthogonal linear map.)
4. What can you say about the subgroup of translations inside $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$?
5. Express $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ as a semidirect product.
