MAT 347 A proof of Sylow's Theorems October 22, 2019

Given a finite group G and a subgroup $H \leq G$, we say that H is a *p*-subgroup if $|H| = p^k$ for some k, and H is a Sylow *p*-subgroup if |H| is the highest power of p dividing G. The goal for today is to prove Sylow's Theorem:

Theorem Let G be a group of order $p^{\alpha}m$, where p is a prime not dividing m. Let n_p denote the number of Sylow p-subgroups of G.

- 1. G has a Sylow p-subgroup $(n_p > 0)$.
- 2. If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there exists $g \in G$ such that $Q \leq gPg^{-1}$. In particular, all Sylow p-subgroups are conjugate.
- 3. $n_p \equiv 1 \pmod{p}$, and $n_p = |G : N_G(P)| \mid m$ for any Sylow *p*-subgroup *P* of *G*.

Part 1

- 1. Prove that $\binom{p^{\alpha}m}{p^{\alpha}} \equiv m \pmod{p}$. *Hint:* What is $(1+x)^p$ when you reduce the cofficients modulo p? What about $(1+x)^{p^2} = ((1+x)^p)^p$? $(1+x)^{p^{\alpha}}$? And finally, $(1+x)^{p^{\alpha}m} = ((1+x)^{p^{\alpha}})^m$?
- Let S denote the collection of all subsets of G with cardinality p^α. G acts on S by left multiplication. Prove that there exists an orbit O of this action such that p ∤ |O|. *Hint:* What does the quantity in Question 1 count?
- 3. Given $X \in \mathcal{O}$, prove that $p^{\alpha} | |\operatorname{Stab}(X)|$. (Here, \mathcal{O} is as in Question 2.)
- 4. With X as above, let $x \in X$. What is the relationship between the sets $\operatorname{Stab}(X)x$ and X? Use this to prove $|\operatorname{Stab}(X)| \leq p^{\alpha}$, and conclude that $\operatorname{Stab}(X)$ is a Sylow *p*-subgroup.

Lemma

5. Let *H* be a *p*-group $(|H| = p^n$ for some *n*) acting on a set *T*, and let $Fix(H) = \{t \in T : \forall h \in H, h \cdot t = t\}$ denote the set of elements of *T* which are fixed by the action. Prove that $|Fix(H)| \equiv |T| \pmod{p}$.

Part 2

6. Let P be a Sylow p-subgroup, and Q any p-subgroup of G. Then Q acts on G/P (the set of left cosets) by left multiplication. Prove that there exists a coset of P which is fixed by this action.

Hint: Use the lemma.

7. Take $g \in G$ so that gP is fixed by the action of Q. Prove that $Q \leq gPg^{-1}$.

Part 3

8. Use the Second Sylow Theorem to prove that $n_p = |G : N_G(P)|$. Deduce that n_p divides m.

Hint: What group action does $N_G(P)$ have anything to do with?

- 9. Given a Sylow *p*-subgroup *P*, *P* acts on the set of all Sylow *p*-subgroups by conjugation. Show that there is a fixed point *P'*. For any fixed point *P'* deduce that $P \leq N_G(P')$ and $P' \triangleleft N_G(P')$.
- 10. Show that P' = P, and conclude that $n_p \equiv 1 \pmod{p}$. Hint: Apply the Second Sylow Theorem to $N_G(P')$ and remember the lemma.

Fun problem: Generalising your proof to Question 1, show that $\binom{n}{k} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \cdots$ (mod p), where $n = n_0 + pn_1 + \cdots$ and $k = k_0 + pk_1 + \cdots$ are the base p expansions of the integers n, k (meaning $n_i, k_i \in \{0, 1, \dots, p-1\}$). For example, $\binom{100}{50} \equiv \binom{2}{1} \binom{0}{0} \binom{2}{1} \equiv 4$ (mod 7).