MAT 347
 The symmetric and the alternating groups
 October 7, 2019

Recall some definitions:

- A permutation of n elements is an element of the group S_{n}.
- An m-cycle is a permutation that can be written as $\left(a_{1} a_{2} \cdots a_{m}\right)$.
- A transposition is a 2-cycle.
- The cycle type of a permutation is the set of lengths of the cycles in its decomposition as product of disjoint cycles. For example the cycle type of $(12345)(67)(89)$ in S_{11} is $(5,2,2,1,1)$.

1. (Products of transpositions)
(a) Write the permutation (123) as product of transpositions. This can be done in more than one way. Try to write (123) as product of N transpositions, for different values of N. Not all values of N are possible. Which ones are?
(b) Repeat the same question with the permutation (1 234).

Note: At this point, you can probably make a conjecture for which values of N are not possible, but most likely you won't be able to prove it. For that, we need to introduce some sophistication.

Building the alternating group

Let us fix a positive integer n. Let R be the set of polynomials with integer coefficients in the n variables $X_{1}, \ldots X_{n}$. We can define an action of S_{n} on R as follows:

$$
\sigma \cdot p\left(X_{1}, \ldots, X_{n}\right):=p\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

Make sure you understand what this notation means before continuing. Convince yourself that it is, indeed, an action. You know this action from HW 3 (it will also be relevant again in Galois Theory at the end of the course). We define the following polynomial:

$$
\Delta:=\prod_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right)
$$

For example, if $n=3$, then $\Delta=\left(X_{1}-X_{2}\right)\left(X_{1}-X_{3}\right)\left(X_{2}-X_{3}\right)$.
2. Prove that for every $\sigma \in S_{n}$ there exists a number $\varepsilon_{\sigma} \in\{1,-1\}$ such that $\sigma \cdot \Delta=\varepsilon_{\sigma} \Delta$.
3. Prove that the map $\varepsilon: S_{n} \rightarrow\{1,-1\}$ is a group homomorphism!

We say that a permutation σ is even when $\varepsilon_{\sigma}=1$ and it is odd when $\varepsilon_{\sigma}=-1$. When we mention the parity of a permutation, we are referring to whether it is odd or even. We define A_{n} to be the set of all even permutations.
4. Complete: "An m-cycle is an even permutation iff m is"
5. Go back to the conjecture you made in Question 1. Now you can prove it!
6. Prove that A_{n} is a normal subgroup of S_{n}.
7. What is $\left|A_{n}\right|$?

Hint: Use the first isomorphism theorem.

Conjugacy classes

8. In general, for any G, the conjugacy class of $g \in G$ is the orbit of g in the action of G on itself by conjugation. Find a description of the conjugacy classes of S_{n}.
Hint: Fix your favourite $\sigma \in S_{n}(\sigma \neq 1)$. Then for various $\tau \in S_{n}$ compute $\tau \sigma \tau^{-1}$. Can you find a formula for $\tau \sigma \tau^{-1}$? Can you describe the conjugacy class of σ ?
9. List all the conjugacy classes of S_{5} and the size of each class.

Hint: You know the sum of the sizes of all the conjugacy classes should be 120, so you can check your final answer.
10. Which of the conjugacy classes in Question 9 are in A_{5} ? Do their sizes add up to the right number?
11. Which of the following sets are generators of S_{n} ?
(a) The set of all cycles.
(b) The set of all transpositions.
(c) The set of all 3-cycles.
(d) The set $\{(12),(23),(34), \ldots,(n-1 n)\}$.
(e) The set $\{(12),(13),(14), \ldots,(1 n)\}$.

The platonic solids

12. Each one of the five platonic solids has a group of rotational symmetries that is isomorphic to either some S_{n} or some A_{n}. Find them all (with proof).
