MAT 347
 Computing Galois groups
 March 31, 2020

A quintic polynomial

Consider the polynomial $f(x)=x^{5}-6 x+3 \in \mathbb{Q}[x]$. We will show that the Galois group is S_{5} and thus by our theorem from class (Thm. 10.20 in the notes) the polynomial f is not solvable by radicals! Let $K \subset \mathbb{C}$ denote the splitting field and $G:=\operatorname{Gal}(K / \mathbb{Q})$.

1. Prove that $f(x)$ is irreducible and hence that $f(x)$ has 5 distinct roots in K.
2. Explain how we can think of G as a subgroup of S_{5}. (Hint: remember group actions.)
3. Let $\alpha \in K$ be any root of $f(x)$. Use the tower $\mathbb{Q} \subset \mathbb{Q}(\alpha) \subset K$ to deduce that $5 \mid[K: \mathbb{Q}]$.
4. Prove that G contains an element of order 5. (Hint: remember some group theory.)
5. Prove that G contains a 5 -cycle.
6. Prove (using calculus) that $f(x)$ has exactly three real roots. Deduce that G contains a transposition. (Hint: consider complex conjugation. . . why does it stabilize K ?)
7. Prove that $G \cong S_{5}$. (Hint: show using the previous two parts that G has to contain all transpositions.)

Optional: can you find any other quintic polynomials over \mathbb{Q} with Galois group S_{5} ?

Discriminants

Let $f(x) \in F[x]$ be a separable polynomial of degree n and let K be its splitting field. Let $\alpha_{1}, \ldots, \alpha_{n} \in K$ be the roots of $f(x)$. Our goal is to understand the Galois group G of $f(x)$ which is defined to be $G:=\operatorname{Gal}(K / F)$.
8. Let

$$
D:=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

be the discriminant of $f(x)$. Use the fundamental theorem of Galois theory to prove that $D \in F$. (Incidentally, why is $D \neq 0$?)
9. Prove that the Galois group of $f(x)$ is contained in A_{n} if and only if D is the square of an element of F. (Hint: consider the action of G on $D^{1 / 2} \in K$ and remember the definition of the sign of a permutation...)
10. Suppose that $f(x)=x^{2}+b x+c$ is a quadratic polynomial. Show that $D=b^{2}-4 c$. Explain what happens if D is a square of an element of F.
11. For any $f(x)$, can you write D in terms of the coefficients of $f(x)$? (This has to do with symmetric polynomials...; look up section 14.6 in the book if you get stuck.)
12. Let $f(x)$ be an irreducible cubic polynomial. Show that the Galois group is either S_{3} or A_{3}.
13. Suppose that $f(x) \in \mathbb{Q}[x]$ is an irreducible cubic polynomial with only one real root. Show that its Galois group is S_{3}.
14. Give an example of an irreducible cubic polynomial in $\mathbb{Q}[x]$ that has Galois group A_{3}.

