MAT 347
 Splitting fields and Normal extensions March 10, 2020

Suppose F is a field and $f(X) \in F[X]$ a nonzero polynomial.
Definition 1. We say that an extension K / F is a splitting field of $f(X)$ over F if $f(X)=$ $c\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right)$ and $K=F\left(\alpha_{1}, \cdots, \alpha_{n}\right)$.

1. Suppose that $\operatorname{deg}(f)=n$. Show that there exists a splitting field K of $f(X)$ over F and that moreover $[K: F] \leq n!$. (Hint: What happens when you adjoin just one root of f to F ? Then use induction on n.)

In class we will show:
Theorem ("Theorem B"). Let $\phi: F_{1} \rightarrow F_{2}$ be a field isomorphism. Let $\tilde{\phi}: F_{1}[X] \rightarrow F_{2}[X]$ be the ring isomorphism that ϕ induces over the rings of polynomials. Let $f_{1} \in F_{1}[X]$ and let $f_{2}(X):=\tilde{\phi}\left(f_{1}(X)\right)$. Let E_{i} be a splitting field of $f_{i}(X)$ over F_{i}.

Then there exist a field isomorphism $\sigma: E_{1} \rightarrow E_{2}$ such that $\left.\sigma\right|_{F_{1}}=\phi$.
2. Suppose that K_{1} and K_{2} are two splitting fields of $f(X)$ over F. Prove that there exists a field isomorphism $\varphi: K_{1} \rightarrow K_{2}$ such that $\varphi(\alpha)=\alpha$ for all $\alpha \in F$. In other words, splitting fields are unique up to isomorphism!
3. Let K / F be a finite field extension. Show that the following are equivalent:
(a) If $g(X) \in F[X]$ is an irreducible polynomial and it has a root in K, then $g(X)$ splits in K.
(b) For every $\alpha \in K$, the minimal polynomial of α over F splits in K.
(c) $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and the minimal polynomial of α_{j} over F splits in K for all $j=1, \ldots, n$.
(d) K is the splitting field of some (not necessarily irreducible) polynomial in $F[X]$.
(e) For any field $E \supseteq K$ and any F-homomorphism $\phi: K \rightarrow E, \phi(K) \subseteq K$.
(f) For any field $E \supseteq K$ and any F-homomorphism $\phi: K \rightarrow E, \phi(K)=K$.
(Note: an " F-homomorphism" is a homomorphism that fixes every element of F. Hint: the hard part is $(\mathrm{f}) \Rightarrow(\mathrm{a})$. The idea is that if $g(X)$ has roots $\alpha_{1} \in K$ and α_{2} in some bigger field, you first use Theorems A to construct an F-isomorphism $F\left(\alpha_{1}\right) \cong F\left(\alpha_{2}\right)$ and then try to extend it to a splitting field L using Theorem B. The field L you extend it to should be some splitting field over F that contains K and α_{2}. It may help to look ahead to Question 5...)

Definition 2. A field extension satisfying the equivalent conditions in the previous theorem is called a normal extension.

Notice that these characterizations have different "roles". In a given example, it will be easy for us to check that condition (c) or (d) are satisfied, and we will want to use that condition (a) or (b) are true. Conditions (e) and (f) are convenient as lemmas for theoretical proofs.

Definition 3. Let $F \subseteq K \subseteq N$ be fields. The finite extension N / F is called a normal closure of K / F if

- N / F is normal, and
- if M is a field, $K \subseteq M \subseteq N$, and M / F is normal, then $M=N$.

In other words, N / F is a minimal normal extension of F containing K.
4. Show that if $F \subseteq K \subseteq N$ and N / F is normal, then N contains a normal closure of K / F.
5. Assume that $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Show that a normal closure of K / F is the same thing as a splitting field of $f(X):=\prod_{j=1}^{n} m_{\alpha_{j}, F}(X)$ over K. In particular, normal closures exist and are unique up to isomorphism.
6. What are the normal closures of $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ and of $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}$?
7. Let K / F be a finite field extension and let N / F be its normal closure. Then there are fields $K_{1}, \ldots K_{r}$ for some $r \geq 1$ such that

- $F \subseteq K_{i} \subseteq N$ for all i,
- $N=K_{1} K_{2} \cdots K_{r}$ (i.e. N is the composite of K_{1}, \ldots, K_{r}),
- for each i there is an F-isomorphism between K_{i} and K.

This means that the normal closure of K / F is the composite of finitely many field extensions isomorphic to K / F.
(Hint: Write $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Let $f(X)$ be defined as in Question 5. Let β be a root of $m_{\alpha_{i}, F}(X)$. Use Theorems A and B to prove that there is some F automorphism ϕ of N such that $\phi\left(\alpha_{i}\right)=\beta$. Let $L_{\beta}:=\phi(K)$. Then N is the composite of the fields in the set $\left\{L_{\beta} \mid \beta\right.$ is a root of $\left.f(X)\right\}$.)
8. What are the fields K_{i} in the second example K / F of Question 6?

Bonus question: In the first problem, show that in fact $[K: F]$ divides n !. (Hint: use induction. First deal with the case where $f(x)$ is irreducible. Otherwise, $f(x)$ splits into two factors of smaller degrees $r, n-r \ldots$)

