MAT 347
 Factorization in polynomial rings
 January 20, 2020

Let us fix an integral domain R for this worksheet. We want to find out when $R[X]$ is a UFD. Our strategy is as follows. Let F be the field of fractions of R. We know that $F[X]$ is a Euclidean domain, hence a UFD. Let $f(X) \in R[X]$. We can factor $f(X)$ uniquely as a product of irreducibles in $F[X]$, but does this means we get a unique factorization in $R[X]$?

0 . Show that R is a UFD iff every non-zero non-unit in R is a product of prime elements.

1. Let $I \unlhd R$. Denote by $(I) \unlhd R[X]$ the ideal of $R[X]$ generated by the subset I. Notice that I consists of the polynomials in $R[X]$ all of whose coefficients are in I. Prove that

$$
R[X] /(I) \cong(R / I)[X]
$$

(Hint: remember the isomorphism theorems.)
2. Continue with the notation of Question 1. Prove that $I \unlhd R$ is a prime ideal iff $(I) \unlhd R[X]$ is a prime ideal.
Hint: Use the characterization of prime ideals in terms of the quotient they generate.
3. Let $p \in R$. Prove that p is prime in R iff p is prime in $R[X]$.

Hint: Use the characterization of prime element in terms of the ideal it generates.
4. Prove that if $R[X]$ is a UFD, then R is a UFD.

Hint: Remember Question 0.

For the rest of this worksheet, we will assume that R is a UFD.

Definitions. Let R be a UFD. Let $f(X) \in R[X]$ be non-zero. We define the content of $f(X)$, denoted C_{f}, as the GCD of all the coefficients of $f(X)$. We could also interpret C_{f} to be the "greatest" divisor of $f(X)$ among the elements in R. Notice that content is only defined up to associates. We say that f is primitive if its content is 1 . Notice that every non-zero polynomial can be written as the product of its content and a primitive polynomial, and that this decomposition is unique up to multiplication by units.
5. Prove that the product of two primitive polynomials is a primitive polynomial.

Hint: Assume that $f(X), g(X)$ are primitive and that $d=C_{f g}$. Let p be an irreducible factor of d in R. Use Question 3 .
6. Prove that $C_{f g}=C_{f} C_{g}$ for every non-zero $f(X), g(X) \in R[X]$.
7. Gauss' Lemma: Let $f(X) \in R[X]$. Prove that if $f(X)$ is reducible in $F[X]$, then it is reducible in $R[X]$.

More specifically, assume that

$$
f(X)=a(X) b(X)
$$

with $a(X), b(X) \in F[X], \operatorname{deg} a(X) \geq 1, \operatorname{deg} b(X) \geq 1$. Then show that we can find $\lambda \in F^{\times}$such that

$$
f(X)=A(X) B(X)
$$

with $A(X)=\lambda a(X) \in R[X]$ and $B(X)=\lambda^{-1} b(X) \in R[X]$.
Give an example that shows that it is not possible to conclude that $a(X), b(X) \in R[X]$. Hint: first find a non-zero $d \in R$ such that $d f(X)=a_{1}(X) b_{1}(X)$, where $a_{1}(X)$, $b_{1}(X)$ are in $R[X]$ and are scalar multiples of $a(X), b(X)$. Then try to get rid of $d \ldots$
8. Let $f(X) \in R[X]$ be primitive. Show that $f(X)$ is irreducible in $R[X]$ if and only if it is irreducible in $F[X]$.
9. Suppose $f(X), g(X) \in R[X]$ are primitive. Show that $f(X), g(X)$ are associates in $R[X]$ if and only if they are associates in $F[X]$.
10. Prove that $R[X]$ is a UFD. How can you describe the irreducible elements in terms of the irreducibles of R and $F[X]$?

