MAT 347
 Factorization in the Gaussian integers
 January 14, 2020

We know that $\mathbb{Z}[i]$ is a Euclidean domain (see homework), hence a PID, hence a UFD. Thus prime and irreducible mean the same thing in $\mathbb{Z}[i]$. We want to list all irreducibles in $\mathbb{Z}[i]$. In the process, we will solve some diophantine equations.

Given $\alpha=x+i y \in \mathbb{Z}[i]$, we define $\bar{\alpha}:=x-i y$ and $N(\alpha)=\alpha \bar{\alpha}=x^{2}+y^{2} \in \mathbb{Z}_{\geq 0}$. Note that the map $\alpha \mapsto \bar{\alpha}$ is a ring homomorphism. Therefore $N(\alpha \beta)=N(\alpha) N(\beta)$. (See Example 9 in Alfonso's notes.)

1 Setting up the problem

1. Let $\alpha \in \mathbb{Z}[i]$. Prove that α is a unit iff $N(\alpha)=1$.
2. Let $\alpha, \beta \in \mathbb{Z}[i]$. Prove that if $\alpha \mid \beta \in \mathbb{Z}[i]$ then $N(\alpha) \mid N(\beta)$ in \mathbb{Z}.
3. Let $\pi \in \mathbb{Z}[i]$. Prove that if $N(\pi)$ is irreducible in \mathbb{Z} then π is irreducible in $\mathbb{Z}[i]$.
4. Let $p \in \mathbb{Z}$ be a prime number (i.e., an irreducible/prime element that is positive). Prove that the following three conditions are equivalent:
(a) p is not irreducible in $\mathbb{Z}[i]$.
(b) There exists $\alpha \in \mathbb{Z}[i]$ such that $N(\alpha)=p$.
(c) The equation $x^{2}+y^{2}=p$ has integer solutions x, y.
5. Let $p \in \mathbb{Z}$ be a prime number. How many irreducibles in $\mathbb{Z}[i]$ of norm p can there be, up to associates? (There are three possible cases.)
6. Let $\pi \in \mathbb{Z}[i]$. Prove that if π is irreducible in $\mathbb{Z}[i]$ then there exists some prime number p such that $\pi \mid p$ in $\mathbb{Z}[i]$.
Hint: Show that the ideal $(\pi) \cap \mathbb{Z} \triangleleft \mathbb{Z}$ is prime and not equal to (0).
Alternative hint: without ideals, try to use a factorization of $N(\pi)$ inside $\mathbb{Z} \ldots$
The above results together show that, in order to find all irreducibles in $\mathbb{Z}[i]$, all we need to do is find how each prime number p factors in $\mathbb{Z}[i]$. Make sure you understand this before moving on.

2 The three cases

7. Let n be an integer. Assume that $n \equiv 3(\bmod 4)$. Show that the equation $x^{2}+y^{2}=n$ does not have any integer solutions.

Hint: Assume it does and reduce the equation mod 4.
8. Is 2 irreducible in $\mathbb{Z}[i]$?
9. Let p be an odd prime number in \mathbb{Z}. Prove that there exists $m \in \mathbb{Z}$ such that $p \mid m^{2}+1$ iff $p \equiv 1(\bmod 4)$.
Hint: Translate the condition $p \mid m^{2}+1$ into a condition in the group $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Remember what you know about that group.
10. Let $p \in \mathbb{Z}$ be a prime number such that $p \equiv 1(\bmod 4)$. Prove that p is not prime in $\mathbb{Z}[i]$.
Hint: $m^{2}+1=(m+i)(m-i)$.

3 Summary

11. Let $p \in \mathbb{Z}$ be a prime number. How many irreducibles with norm p are there in $\mathbb{Z}[i]$, up to associates? How many irreducibles with norm p^{2} are there in $\mathbb{Z}[i]$, up to associates?
Note: Your answer will depend on p.
12. Let $p \in \mathbb{Z}$ be a prime number. Does the equation $x^{2}+y^{2}=p$ have integer solutions (x, y) ? If so, how many?
Note: Your answer will depend on p.
13. Let n be a positive integer. Does the equation $x^{2}+y^{2}=n$ have integer solutions? If so, how many?
Note: Your answer will depend on n. Hint: use the existence and uniqueness of factorizations into irreducibles in the UFD $\mathbb{Z}[i]$ and that the norm N is multiplicative. If you get stuck, first try $n=2^{k}$ of 3^{k} or 5^{k}.
14. Find all integer solutions to the equation $x^{2}+y^{2}=585$.
