MAT 347
 Classification of finite abelian groups
 November 12, 2019

We want to prove two results:

1. Every finite abelian group is isomorphic to a direct product of cyclic groups.
2. Since different direct products of cylic groups are sometimes isomorphic, we want an easy way to obtain a list of all the abelian groups of order n up to isomorphism, without repetition.

In a way, think of Part 1 as an "existence" result, and Part 2 as a "uniqueness" result.
I use additive notation for abelian groups throughout this worksheet. I write Z_{a} for the cyclic group of order a.

Part 1

1. Prove that every finite abelian group G is isomorphic to the direct product of its Sylow subgroups. (Why does the proof not work for non-abelian groups?) Conclude that it is enough to prove Part 1 for abelian p-groups.
Hint: If P_{1}, \ldots, P_{k} are Sylow subgroups for the different primes dividing $|G|$, construct a homomorphism $P_{1} \times \cdots \times P_{k} \rightarrow G$ and show it is surjective... Or try an inductive argument.
2. Let G be a finite abelian p-group. Prove that G has a unique subgroup of order p if and only if G is cyclic.
Hint: For the difficult direction, consider the map $\psi: G \rightarrow G$ defined by $\psi(x)=p x$ for all $x \in G$ and use induction on $|G|$. Try to apply the induction hypothesis to $\operatorname{im}(\psi)$. It may help to recall Cauchy's Theorem.
3. Let G be a finite abelian p-group. Let A be a cyclic subgroup of G of maximal possible order (i.e., generated by an element of maximal order). Prove that A has a complement: this means that there exists another subgroup $B \leq G$ such that $A \cap B=0$ and $A+B=G$ (note that $A+B$ is the additive version of $A B!$).
Hint: Use induction on $|G|$. Deduce from Problem 2 that there exists a subgroup H of order p that is not contained in A. Consider the homomorphism $\pi: G \rightarrow G / H$ and show that $\pi(A)$ is a cyclic subgroup of maximal possible order of $G / H \ldots$
4. Use Problem 3 to prove Part 1.

Part 2

5. As a warm-up, complete and prove the following claim:

Let a, b be positive integers. Then $Z_{a} \times Z_{b} \cong Z_{a b}$ iff \ldots
6. Still as warm-up, show that $Z_{40} \times Z_{6} \cong Z_{24} \times Z_{10}$ and that neither of them is isomorphic to Z_{240}. (Can you find more ways to write this group as a direct product of two cyclic groups? What about as product of 3 or 4 or more cyclic groups?)
7. Solve Part 2. There are two standard ways to do it. Given a positive integer n we can obtain a list of all abelian groups of order $n \ldots$

- ... by writing each one as product of as many cyclic groups as possible, or
- ... by writing each one as product of as few cyclic groups as possible, in some canonical way.

Either way, you have to prove that every abelian group of order n is isomorphic to one on your list, and that no two different groups on your list are isomorphic to each other.
8. How many abelian groups of order $2^{2} \cdot 3^{5} \cdot 5^{2}$ are there up to isomorphism?

Challenge question

9. [Putnam 2009-A5] Is there a finite abelian group such that the product of the orders of all its elements is 2^{2009} ?
