MAT 347 Order September 10, 2019

Order

Let G be a group. Let $a \in G$. We want to compare the powers of a. In other words, when do we have $a^{n}=a^{m}$?

First, we define the order of a as the smallest positive integer n such that $a^{n}=1$, if there is such a thing. Otherwise we define the order of a to be infinity. We denote the order of a by $|a|$.

1. Let G be a group, let $a \in G$, and let $r=|a|$. Complete the following statements and prove them:
(a) $a^{n}=1 \Longleftrightarrow \ldots$ (something about n and r)
(b) $a^{n}=a^{m} \Longleftrightarrow \ldots$ (something about n, m, and r)
2. Find the order of every element in $\mathbb{Z} / 12 \mathbb{Z}$ (under addition) and $(\mathbb{Z} / 18 \mathbb{Z})^{\times}$(under multiplication).
Note: This questions is shorter than it seems.
3. Find an example of a group G that contains one element of order n for every positive integer n and which also contains an element of order infinity.

Order in symmetric groups

The cycle notation for symmetric groups is well-adapted to finding the order of elements.
4. What is the order of a k-cycle?
5. What is the order of the following elements of S_{6} ?
(a) $(12)(34)(56)$
(b) $(12)(345)$
(c) $(123)(456)$
6. Given a permutation expressed as a product of disjoint cycles, explain how you would compute its order.
7. What is the maximal order of an element in S_{7} ?

