MAT 1100, Algebra I, Fall 2019
 Homework 5, due on Friday December 6
 Florian Herzig

All rings in these problems are commutative (except in the very last problem).

1. Suppose R is a domain and M an R-module. Recall that $M_{\text {tor }}=\{x \in$ $M: r x=0$ for some $r \in R-\{0\}\}$, a submodule of M. We say that M is torsion if $M_{\text {tor }}=M$.
(a) Let $\operatorname{Ann}_{R}(M):=\{r \in R: r m=0 \forall m \in M\}$, the annihilator of M. Show that $\operatorname{Ann}_{R}(M)$ is an ideal of R.
(b) Suppose that I, J are ideals of R such that $R / I \cong R / J$ as R modules. Show that $I=J$. (Hint: consider annihilators.)
(c) Aside (for R any commutative ring): show that an R-module M is simple (i.e. it's nonzero and its only submodules are $\{0\}$ and M) if and only if M is isomorphic to R / I with I a maximal ideal of R.
(d) If M is a finitely generated torsion R-module show that $\operatorname{Ann}_{R}(M) \neq$ 0.
(e) Give an example of a domain R and a torsion R-module M such that $\operatorname{Ann}_{R}(M)=0$.
2. (a) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$. (Hint: construct maps in both directions.)
(b) Find $\mathbb{Q} \otimes_{\mathbb{Z}}(\mathbb{Q} / \mathbb{Z})$.
(c) Consider $V:=\mathbb{R}^{2} \otimes_{\mathbb{R}} \mathbb{R}^{2}$, and let e_{1}, e_{2} be the standard basis of \mathbb{R}^{2}. Show that $e_{1} \otimes e_{2}+e_{2} \otimes e_{1} \in V$ isn't a pure tensor, i.e. is not of the form $v \otimes w$ for some $v, w \in \mathbb{R}^{2}$.
3. Suppose R is a commutative ring, M an R-module, and $I, J \triangleleft R$ ideals.
(a) Show that $(R / I) \otimes_{R} M \cong M / I M$, where $I M$ is the submodule of M generated by the elements $r m(r \in I, m \in M)$. (Hint: construct maps in both directions.)
(b) Deduce that $(R / I) \otimes_{R}(R / J) \cong R /(I+J)$ as R-modules.
(c) Determine $\mathbb{Z} / m \otimes_{\mathbb{Z}} \mathbb{Z} / n$ as abelian group for $m, n \geq 1$.
(d) Let $f(x):=\left(x^{2}+1\right)^{5}\left(x^{4}-1\right), g(x):=(x-i)^{3}\left(x^{2}-1\right)^{2}$. Express the $\mathbb{C}[x]$-module $\mathbb{C}[x] /(f(x)) \otimes_{\mathbb{C}[x]} \mathbb{C}[x] /(g(x))$ in both canonical forms that we discussed in class.
(e) Now redo part (d) for the module $\mathbb{C}[x] /(f(x)) \oplus \mathbb{C}[x] /(g(x))$.
4. (a) Find all abelian groups of order $720=2^{4} \cdot 3^{2} \cdot 5$, up to isomorphism. How many are there?
(b) Determine all integers $n \geq 1$ with the property that any abelian group of order n is cyclic. (Hint: look at the way in which n factors into prime powers...)
5. (a) Suppose K is a field. For any monic irreducible polynomial $f(x) \in$ $K[x]$ of degree $d>0$ and any integer $e>0$ determine the possible $K[x]$-linear homomorphisms $K[x] /\left(f(x)^{e}\right) \rightarrow K[x] /\left(f(x)^{e}\right)$, and describe which of them are invertible. When $K=\mathbb{F}_{p}$, how many are there of each kind?
(b) Suppose that V is a finite-dimensional K-vector space and that S : $V \rightarrow V$ is a K-linear map. Recall that V_{S} denotes V considered as $K[x]$-module with scalar multiplication determined by $x v=S(v)$ (and same scalar multiplication of K as before). Show that the $K[x]$-linear homomorphisms $V_{S} \rightarrow V_{S}$ are precisely the K-linear maps $V \rightarrow V$ that commute with S.
(c) Determine the size of the centraliser and of the conjugacy class for the following matrices in $\mathrm{GL}_{3}\left(\mathbb{F}_{p}\right)$:

$$
\left(\begin{array}{ccc}
\alpha & 1 & \\
& \alpha & 1 \\
& & \alpha
\end{array}\right),\left(\begin{array}{lll}
\alpha & & \\
& \beta & \\
& & \gamma
\end{array}\right), C_{g(x)},
$$

where α, β, γ are pairwise distinct elements of \mathbb{F}_{p}^{\times}and $g(x) \in \mathbb{F}_{p}[x]$ is a monic irreducible polynomial of degree 3. (You may use that $\left|\mathrm{GL}_{3}\left(\mathbb{F}_{p}\right)\right|=\left(p^{3}-1\right)\left(p^{3}-p\right)\left(p^{3}-p^{2}\right)$. Hint: try to see how the previous parts help to determine centralisers...)
6. (Optional) If M, N, P are R-modules, construct a (nice) isomorphism $\theta_{M, N, P}: \operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right) \xrightarrow{\sim} \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$ of R-modules, where $\operatorname{Hom}_{R}(N, P)$ denotes the R-module of R-linear maps $N \rightarrow P$
(under pointwise operations). In fact, show that your isomorphism is "natural" in the sense that if $M \rightarrow M^{\prime}$ is an R-linear map you get a commutative square of R-modules with top row $\theta_{M^{\prime}, N, P}$ and bottom row $\theta_{M, N, P}$ (say explicitly what the vertical maps are, they should be the "obvious" ones). Similarly if $N \rightarrow N^{\prime}$ or $P \rightarrow P^{\prime}$.
7. (Optional and fun!) The goal is to construct an explicit non-zero ring R such that $R \cong R \oplus R$ as left R-modules. We saw in class that this is impossible when R is commutative.
Let K be a field and V be a countable-dimensional vector space with basis $v_{i}(i \geq 1)$. Let $R:=\operatorname{End}_{K}(V)$. Define $\phi, \psi \in R$ as follows: $\phi\left(v_{i}\right)=v_{i / 2}$ if i even and $\phi\left(v_{i}\right)=0$ if i odd; on the other hand, $\psi\left(v_{i}\right)=$ $v_{(i+1) / 2}$ if i odd and $\psi\left(v_{i}\right)=0$ if i even. Show that R is an internal direct sum $R=R \phi \oplus R \psi$. Finally show that $R \phi \cong R \cong R \psi$ as left R-modules.

