MAT 1100, Algebra I, Fall 2019 Homework 5, due on Friday December 6 Florian Herzig

All rings in these problems are commutative (except in the very last problem).

- 1. Suppose R is a domain and M an R-module. Recall that $M_{\text{tor}} = \{x \in M : rx = 0 \text{ for some } r \in R \{0\}\}$, a submodule of M. We say that M is torsion if $M_{\text{tor}} = M$.
 - (a) Let $\operatorname{Ann}_R(M) := \{ r \in R : rm = 0 \ \forall m \in M \}$, the annihilator of M. Show that $\operatorname{Ann}_R(M)$ is an ideal of R.
 - (b) Suppose that I, J are ideals of R such that $R/I \cong R/J$ as R-modules. Show that I = J. (Hint: consider annihilators.)
 - (c) Aside (for R any commutative ring): show that an R-module M is simple (i.e. it's nonzero and its only submodules are $\{0\}$ and M) if and only if M is isomorphic to R/I with I a maximal ideal of R.
 - (d) If M is a finitely generated torsion R-module show that $\operatorname{Ann}_R(M) \neq 0$.
 - (e) Give an example of a domain R and a torsion R-module M such that $\operatorname{Ann}_R(M)=0$.
- 2. (a) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$. (Hint: construct maps in both directions.)
 - (b) Find $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Q}/\mathbb{Z})$.
 - (c) Consider $V := \mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{R}^2$, and let e_1 , e_2 be the standard basis of \mathbb{R}^2 . Show that $e_1 \otimes e_2 + e_2 \otimes e_1 \in V$ isn't a pure tensor, i.e. is not of the form $v \otimes w$ for some $v, w \in \mathbb{R}^2$.
- 3. Suppose R is a commutative ring, M an R-module, and $I, J \triangleleft R$ ideals.
 - (a) Show that $(R/I) \otimes_R M \cong M/IM$, where IM is the submodule of M generated by the elements rm $(r \in I, m \in M)$. (Hint: construct maps in both directions.)
 - (b) Deduce that $(R/I) \otimes_R (R/J) \cong R/(I+J)$ as R-modules.

- (c) Determine $\mathbb{Z}/m \otimes_{\mathbb{Z}} \mathbb{Z}/n$ as abelian group for $m, n \geq 1$.
- (d) Let $f(x) := (x^2 + 1)^5(x^4 1)$, $g(x) := (x i)^3(x^2 1)^2$. Express the $\mathbb{C}[x]$ -module $\mathbb{C}[x]/(f(x)) \otimes_{\mathbb{C}[x]} \mathbb{C}[x]/(g(x))$ in both canonical forms that we discussed in class.
- (e) Now redo part (d) for the module $\mathbb{C}[x]/(f(x)) \oplus \mathbb{C}[x]/(g(x))$.
- 4. (a) Find all abelian groups of order $720 = 2^4 \cdot 3^2 \cdot 5$, up to isomorphism. How many are there?
 - (b) Determine all integers $n \ge 1$ with the property that any abelian group of order n is cyclic. (Hint: look at the way in which n factors into prime powers...)
- 5. (a) Suppose K is a field. For any monic irreducible polynomial $f(x) \in K[x]$ of degree d > 0 and any integer e > 0 determine the possible K[x]-linear homomorphisms $K[x]/(f(x)^e) \to K[x]/(f(x)^e)$, and describe which of them are invertible. When $K = \mathbb{F}_p$, how many are there of each kind?
 - (b) Suppose that V is a finite-dimensional K-vector space and that S: $V \to V$ is a K-linear map. Recall that V_S denotes V considered as K[x]-module with scalar multiplication determined by xv = S(v) (and same scalar multiplication of K as before). Show that the K[x]-linear homomorphisms $V_S \to V_S$ are precisely the K-linear maps $V \to V$ that commute with S.
 - (c) Determine the size of the centraliser and of the conjugacy class for the following matrices in $GL_3(\mathbb{F}_p)$:

$$\begin{pmatrix} \alpha & 1 \\ & \alpha & 1 \\ & & \alpha \end{pmatrix}, \begin{pmatrix} \alpha \\ & \beta \\ & & \gamma \end{pmatrix}, C_{g(x)},$$

where α , β , γ are pairwise distinct elements of \mathbb{F}_p^{\times} and $g(x) \in \mathbb{F}_p[x]$ is a monic irreducible polynomial of degree 3. (You may use that $|\operatorname{GL}_3(\mathbb{F}_p)| = (p^3 - 1)(p^3 - p)(p^3 - p^2)$. Hint: try to see how the previous parts help to determine centralisers...)

6. (Optional) If M, N, P are R-modules, construct a (nice) isomorphism $\theta_{M,N,P} : \operatorname{Hom}_R(M \otimes_R N, P) \xrightarrow{\sim} \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$ of R-modules, where $\operatorname{Hom}_R(N, P)$ denotes the R-module of R-linear maps $N \to P$

(under pointwise operations). In fact, show that your isomorphism is "natural" in the sense that if $M \to M'$ is an R-linear map you get a commutative square of R-modules with top row $\theta_{M',N,P}$ and bottom row $\theta_{M,N,P}$ (say explicitly what the vertical maps are, they should be the "obvious" ones). Similarly if $N \to N'$ or $P \to P'$.

7. (Optional and fun!) The goal is to construct an explicit non-zero ring R such that $R \cong R \oplus R$ as left R-modules. We saw in class that this is impossible when R is commutative.