MAT 1100, Algebra I, Fall 2019
 Homework 4, due on Friday November 19
 Florian Herzig

All rings in these problems are commutative.

1. (a) Suppose that $p=0$ in the ring R, where p is a prime number. Show that $\varphi: R \rightarrow R, x \mapsto x^{p}$ is a ring homomorphism.
(b) Suppose R is any ring. Show that if $x \in R$ is nilpotent (i.e., $x^{n}=0$ for some $n>0$), then $1+x \in R^{\times}$.
(c) Suppose that R is as in part (a). Show that if x is nilpotent, then $1+x$ is unipotent (i.e., $(1+x)^{n}=1$ for some $\left.n>0\right)$.
2. The goal of this exercise is to show that the intersection J of all prime ideals of R equals the set of all nilpotent elements of R.
(a) Show that if $x \in R$ is nilpotent, then x is contained in J.
(b) Suppose now that $x \in R$ isn't nilpotent. Let $X:=\left\{1, x, x^{2}, \ldots\right\}$. Use Zorn's lemma to show that there is an ideal P that is maximal among all ideals that are disjoint from X (i.e. $P \cap X=\varnothing$).
(c) Continuing with (b), show that P is a prime ideal. (Hint: if $a, b \notin P$ but $a b \in P$, consider the ideals $P+(a)$ and $P+(b) \ldots)$
(d) Deduce that J consists precisely of all nilpotent elements of R.
3. The ring $R=\mathbb{Z}[\sqrt{-2}]$ is a UFD (you can assume this as a fact). Consider the norm function $N: R \rightarrow \mathbb{Z}_{\geq 0}, z \mapsto|z|^{2}$ as in class.
(a) Determine the units R^{\times}.
(b) Factor the following elements into primes in the ring $R: 2,5,19$.
(c) Show that a prime number p is prime in R iff $x^{2}+2 y^{2}=p$ has no solutions with $x, y \in \mathbb{Z}$.
(d) Find the gcd of $-2+\sqrt{-2}$ and 3 in R.
4. Consider the ring $R=K\left[x^{2}, x^{3}\right]$, where K is any field. (This is the smallest subring of $K[x]$ containing x^{2}, x^{3}. Concretely it's given by all polynomials $\sum a_{i} x^{i}$ with $a_{1}=0$.)
(a) Show that x^{2}, x^{3} are both irreducible in R.
(b) Find two different factorisations of x^{6} into irreducibles, and deduce that neither of x^{2}, x^{3} are prime in R.
(c) Is R a UFD?
(d) Show that the ideal $\left(x^{2}, x^{3}\right)$ is not principal.
5. (a) Suppose that p is a prime and that $i \in \mathbb{C}$ satisfies $i^{2}=-1$. Use the first isomorphism theorem to write the rings $\mathbb{F}_{p}[x]$ and $\mathbb{Z}[i]$ as quotient rings of $\mathbb{Z}[x]$.
(b) Use part (a) and the third isomorphism theorem to show that $\mathbb{F}_{p}[x] /\left(x^{2}+1\right) \cong \mathbb{Z}[i] /(p)$. (Hint: express both rings as quotient rings of $\mathbb{Z}[x]$.)
(c) Find prime numbers p such that $\mathbb{F}_{p}[x] /\left(x^{2}+1\right)$ is a field (resp. contains a nonzero nilpotent element, resp. neither of two previous conditions hold).
(d) Suppose p is a prime number such that $\mathbb{F}_{p}[x] /\left(x^{2}+1\right)$ is a field. Show that the rings $\mathbb{F}_{p}[x] /\left(x^{2}+1\right)$ and $\mathbb{Z} / n \mathbb{Z}$ are not isomorphic, where $n:=\left|\mathbb{F}_{p}[x] /\left(x^{2}+1\right)\right|$.
6. (a) If $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ with $a_{n} a_{0} \neq 0$ has a root $\alpha \in \mathbb{Q}$, show that $\alpha=\frac{r}{s}$ with integers r, s such that $r \mid a_{0}$ and $s \mid a_{n}$. (Hint: use a version of Gauss' lemma to deduce that f has a linear factor in $\mathbb{Z}[x]$.)
(b) Show that $x^{4}+5 x^{3}+3 x^{2}-x-1$ is irreducible in $\mathbb{Q}[x]$. (Hint: use Gauss' lemma. To rule out quadratic factors, write it as a product of unknown quadratic polynomials in $\mathbb{Z}[x] \ldots$)
(c) Show that $x^{n}+y^{n}+1$ is irreducible in $\mathbb{C}[x, y]$ for any $n \geq 1$. (Hint: use Eisenstein's criterion with $R=\mathbb{C}[x]$.)
(d) Show that $x^{p}+y^{p}+1$ is reducible in $\mathbb{F}_{p}[x, y]$ for any prime p.
