MAT 1100, Algebra I, Fall 2019 Homework 3, due on Tuesday, October 29 Florian Herzig

- 1. (a) If |G| = pq with p < q both prime, show that G is solvable.
 - (b) If |G| = pqr with p < q < r all prime, show that G is solvable. (Hint: if G is simple, give a lower bound for n_p , n_q , n_r and hence for the number of elements of order p, q, r. Show that their sum is greater than |G|.)
- 2. Suppose that G is a finite solvable group. Let $M \triangleleft G$ be a minimal normal subgroup (i.e. $M \neq 1$, and if $N \triangleleft G$, $N \leq M$, then N = 1 or N = M). Show that M is abelian and that there exists a prime number p such that every non-identity element of M has order p. (In fact, we will see later that this implies $M \cong (\mathbb{Z}/p)^r$ for some r.)

(Hint: use characteristic subgroups of M to deduce first that M is abelian, then that M is a p-group, finally the claim.)

- 3. Suppose that H, K are subgroups of a group G. Let [H, K] denote the subgroup generated by all commutators $[h, k] = hkh^{-1}k^{-1}$ for $h \in H$, $k \in K$.
 - (a) Show that $[H, K] \lhd \langle H, K \rangle$, where the right-hand side denotes the subgroup generated by H and K. (Hint: try to express $h_0[h, k]h_0^{-1}$ in terms of commutators...)
 - (b) Show that [G, H]H is a normal subgroup of G.
 - (c) Show that [G, H]H is the smallest normal subgroup of G that contains H.
- 4. Suppose that $G = \langle x_1, \ldots, x_n | r_1, \ldots, r_m \rangle$ with m < n. The purpose of this exercise is to show that G is infinite. (Note that this can fail if m = n.)
 - (a) Show that it suffices to prove the existence of a *non-zero* homomorphism $G \to \mathbb{Q}$.
 - (b) As a warmup, use the universal property of $\langle S | R \rangle$ to construct a non-zero homomorphism $\langle x, y | x^{-1}y^2x^3y \rangle \to \mathbb{Q}$. In fact, find all possible such homomorphisms.

- (c) Now show that in general there is a non-zero homomorphism $G \to \mathbb{Q}$. It may help to use facts from linear algebra...
- 5. The goal of this exercise is to prove that

$$S_n \cong G_n := \langle s_1, \dots, s_{n-1} \mid (s_i s_j)^{m(i,j)} = 1 \rangle,$$

where $m(i, j) = \begin{cases} 1 & i = j \\ 3 & |i - j| = 1. \end{cases}$ Said in another way, $s_i^2 = 1$; s_i and $2 & |i - j| > 1 \end{cases}$

 s_j commute when |i - j| > 1; $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$.

- (a) Show that there is a surjective homomorphism $G_n \to S_n$.
- (b) Prove using induction that $|G_n| \leq n!$, using the following hints. Assume this is true for n. Let H be the subgroup of G_{n+1} generated by s_1, \ldots, s_{n-1} . Show by induction that $|H| \leq n!$.
- (c) Continuing, now start showing that $|G_{n+1}/H| \le n+1$: let $H_i := s_{i+1}s_{i+2}\ldots s_n H$ ($0 \le i \le n$). Show that it suffices to show that left multiplication by any s_i permutes the set $\{H_0, H_1, \ldots, H_n\}$.
- (d) Continuing, show that $s_i H_i = H_{i-1}$ and $s_i H_{i-1} = H_i$.
- (e) Continuing, show that $s_i H_j = H_j$ for j > i or j < i 1. (If you get stuck on the second case, try $s_n H_{n-2}$ first.)
- (f) Deduce that $S_n \cong G_n$.