MAT 1100, Algebra I, Fall 2019
 Homework 3, due on Tuesday, October 29
 Florian Herzig

1. (a) If $|G|=p q$ with $p<q$ both prime, show that G is solvable.
(b) If $|G|=p q r$ with $p<q<r$ all prime, show that G is solvable. (Hint: if G is simple, give a lower bound for n_{p}, n_{q}, n_{r} and hence for the number of elements of order p, q, r. Show that their sum is greater than $|G|$.)
2. Suppose that G is a finite solvable group. Let $M \triangleleft G$ be a minimal normal subgroup (i.e. $M \neq 1$, and if $N \triangleleft G, N \leq M$, then $N=1$ or $N=M$). Show that M is abelian and that there exists a prime number p such that every non-identity element of M has order p. (In fact, we will see later that this implies $M \cong(\mathbb{Z} / p)^{r}$ for some r.)
(Hint: use characteristic subgroups of M to deduce first that M is abelian, then that M is a p-group, finally the claim.)
3. Suppose that H, K are subgroups of a group G. Let $[H, K]$ denote the subgroup generated by all commutators $[h, k]=h k h^{-1} k^{-1}$ for $h \in H$, $k \in K$.
(a) Show that $[H, K] \triangleleft\langle H, K\rangle$, where the right-hand side denotes the subgroup generated by H and K. (Hint: try to express $h_{0}[h, k] h_{0}^{-1}$ in terms of commutators. . .)
(b) Show that $[G, H] H$ is a normal subgroup of G.
(c) Show that $[G, H] H$ is the smallest normal subgroup of G that contains H.
4. Suppose that $G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ with $m<n$. The purpose of this exercise is to show that G is infinite. (Note that this can fail if $m=n$.)
(a) Show that it suffices to prove the existence of a non-zero homomorphism $G \rightarrow \mathbb{Q}$.
(b) As a warmup, use the universal property of $\langle S \mid R\rangle$ to construct a non-zero homomorphism $\left\langle x, y \mid x^{-1} y^{2} x^{3} y\right\rangle \rightarrow \mathbb{Q}$. In fact, find all possible such homomorphisms.
(c) Now show that in general there is a non-zero homomorphism $G \rightarrow$ \mathbb{Q}. It may help to use facts from linear algebra...
5. The goal of this exercise is to prove that

$$
S_{n} \cong G_{n}:=\left\langle s_{1}, \ldots, s_{n-1} \mid\left(s_{i} s_{j}\right)^{m(i, j)}=1\right\rangle
$$

where $m(i, j)=\left\{\begin{array}{ll}1 & i=j \\ 3 & |i-j|=1 . \\ 2 & |i-j|>1\end{array}\right.$ Said in another way, $s_{i}^{2}=1 ; s_{i}$ and s_{j} commute when $|i-j|>1 ; s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$.
(a) Show that there is a surjective homomorphism $G_{n} \rightarrow S_{n}$.
(b) Prove using induction that $\left|G_{n}\right| \leq n$!, using the following hints. Assume this is true for n. Let H be the subgroup of G_{n+1} generated by s_{1}, \ldots, s_{n-1}. Show by induction that $|H| \leq n!$.
(c) Continuing, now start showing that $\left|G_{n+1} / H\right| \leq n+1$: let H_{i} := $s_{i+1} s_{i+2} \ldots s_{n} H(0 \leq i \leq n)$. Show that it suffices to show that left multiplication by any s_{i} permutes the set $\left\{H_{0}, H_{1}, \ldots, H_{n}\right\}$.
(d) Continuing, show that $s_{i} H_{i}=H_{i-1}$ and $s_{i} H_{i-1}=H_{i}$.
(e) Continuing, show that $s_{i} H_{j}=H_{j}$ for $j>i$ or $j<i-1$. (If you get stuck on the second case, try $s_{n} H_{n-2}$ first.)
(f) Deduce that $S_{n} \cong G_{n}$.

