MAT 1100, Algebra I, Fall 2019 Homework 2, due on Tuesday, October 15 Florian Herzig

- 1. A subgroup H of a group G is called characteristic (in G) if for all automorphisms φ of G one has $\varphi(H) = H$.
 - (a) Show that the centre Z(G) is characteristic in G.
 - (b) Prove that any characteristic subgroup of a group is normal.
 - (c) Give an example of a group and a normal subgroup that is not characteristic.
 - (d) Show that if $K \leq H \leq G$ and K is characteristic in H and H normal in G, then K is normal in G.
 - (e) Show that the relation of being a characteristic subgroup is transitive. What about the relation of being a normal subgroup? (Give a proof or counterexample.)
- 2. Suppose that G is a finite group
 - (a) If $N \triangleleft G$ and P a Sylow subgroup of N, prove that $G = N_G(P)N$.
 - (b) Suppose that every maximal subgroup of G is normal in G. Prove that every Sylow subgroup P of G is normal in G. Here, a maximal subgroup is a proper subgroup that is maximal among all proper subgroups. For example, any subgroup of prime index is maximal. (Hint: if P is not normal, its normaliser is contained in some maximal subgroup...)
- 3. Suppose that $N \triangleleft G$, so we say that $1 \rightarrow N \xrightarrow{i} G \xrightarrow{\pi} G/N \rightarrow 1$ is a short exact sequence.
 - (a) If we have a splitting (or section) $s : G/N \to G$, i.e. a homomorphism s such that $\pi \circ s = \mathrm{id}_{G/N}$, then $G = N \rtimes \mathrm{im}(s)$, an internal semidirect product, and $\mathrm{im}(s) \cong G/N$.
 - (b) If we have a splitting (or retraction) $r: G \to N$, i.e. a homomorphism r such that $r \circ i = \mathrm{id}_N$, then $G = N \times \ker(r)$, an internal direct product, and $\ker(r) \cong G/N$.

- (c) Use part (a) to exhibit $\operatorname{GL}_n(k)$ as a semidirect product of $\operatorname{SL}_n(k)$ and k^{\times} , where k is any field.
- 4. Suppose that X_1, X_2 are two *G*-sets (with *G*-actions denoted by \cdot_1 and \cdot_2 , respectively). We say that a map of *G*-sets is a function $f: X_1 \to X_2$ such that $f(g \cdot_1 x) = g \cdot_2 f(x)$ for all $g \in G, x \in X_1$. We say that f is an isomorphism of *G*-sets if f is moreover a bijection.
 - (a) Show that any transitive G-set is isomorphic to G/H (with G acting by left multiplication) for some subgroup $H \leq G$.
 - (b) Given $H_1, H_2 \leq G$ show that there exists a map of G-sets $f : G/H_1 \rightarrow G/H_2$ if and only if H_1 is contained in some conjugate of H_2 .
 - (c) Show that $G/H_1 \cong G/H_2$ as G-sets if and only if H_1 and H_2 are conjugate subgroups.
- 5. (a) Suppose that H and N are groups and that $\phi : H \to \operatorname{Aut} N$ is a homomorphism. For any $\sigma \in \operatorname{Aut}(H)$ exhibit an explicit isomorphism $N \rtimes_{\phi \circ \sigma} H \cong N \rtimes_{\phi} H$.
 - (b) If p < q are primes such that p divides q 1, prove that up to isomorphism there are precisely two groups of order pq (one abelian and one nonabelian). You may use that the group $(\mathbb{Z}/q)^{\times}$ is cyclic.
 - (c) Use a semidirect product to construct a nonabelian group of order 56 such that all its Sylow subgroups are cyclic.