Topology 34 (1995) 423-472
first posted August 1992, last updated January 2007
An introduction to Vassiliev invariants. Contains the definition, proofs that the various knot polynomials are Vassiliev invariants (appropriately parametrized and expanded), the basic constructions (of weight systems from Vassiliev invariants and from Lie algebras), a discussion of the Hopf algebra of chord diagrams, The Kontsevich integral proving that every weight system comes from an invariant, the diagrammatic PBW theorem and Chinese characters, the map into marked surfaces, an analysis of the space of weight systems coming from that map (exactly all classical algebras), and some more.
If you're a newcomer to the field and you're asking me, that's the paper to read!
The data and programs, however, are no longer the ones to use. Everything here is outdated, not user-friendly, not documented, not commented, and not guaranteed to work on your computer. I wouldn't recommend playing with these files unless you have lot's of time and a very good reason.
Contents:
OnVassilievFiles.tar.gz
  main.c
  #define M" to whatever you want.
Surf.C
  reduce.m
  Example: To compute the dimension of the image of F on the space of connected Chinese Characters of degree 5 having 2 external legs type:
    CC Surf.C -o Surf
    Surf > 5.2
    5
    2
    1000
    100
    math
    << reduce.m
    << 5.2
    red[l[5,2]];
  
Ar2.txt
  A2.txt
  Ar3.txt
  A3.txt
  Ar4.txt
  A4.txt
  Ar5.txt
  A5.txt
  Ar6.txt
  A6.txt
  Ar7.txt
  Ar8.txt
  Ar9.txt
  