
COURSE INTRODUCTION:
WHAT HAPPENS TO A QUANTUM PARTICLE ON A PENDULUM π

2
SECONDS AFTER IT IS TOSSED IN?

DROR BAR-NATAN

Follows a lecture given by the author in the “trivial notions” seminar in Harvard on April 29, 1989.

Abstract. This subject is the best one-hour introduction I know for the mathematical
techniques that appear in quantum mechanics — in one short lecture we start with a mean-
ingful question, visit Schrödinger’s equation, operators and exponentiation of operators,
Fourier analysis, path integrals, the least action principle, and Gaussian integration, and at
the end we land with a meaningful and interesting answer.
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1. The Question

Let the complex valued function ψ = ψ(t, x) be a solution of the Schrödinger equation

∂ψ

∂t
= −i

(
−1

2
∆x +

1

2
x2

)
ψ with ψ|t=0 = ψ0.

What is ψ|t=T=π
2
?

In fact, the major part of our discussion will work just as well for the general Schrödinger
equation,

∂ψ

∂t
= −iHψ, H = −1

2
∆x + V (x), ψ|t=0 = ψ0, arbitrary T,

where:

• ψ is the “wave function”, with |ψ(t, x)|2 representing the probability of finding our
particle at time t in position x.

• H is the “energy”, or the “Hamiltonian”.
• −1

2
∆x is the “kinetic energy”.

• V (x) is the “potential energy at x”.
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2. The Solution

The equation ∂ψ
∂t

= −iHψ with ψ|t=0 = ψ0 formally implies

ψ(T, x) =
(
e−iTHψ0

)
(x) =

(
ei

T
2

∆−iTV ψ0

)
(x).

By Lemma 3.1 with n = 1058 + 17 and setting xn = x we thus get:

ψ(T, x) =
(
ei

T
2n

∆e−i
T
n
V ei

T
2n

∆e−i
T
n
V . . . ei

T
2n

∆e−i
T
n
V ψ0

)
(xn).

Now using Lemmas 3.2 and 3.3 we find that this is: (c denotes the ever-changing universal
fixed numerical constant)

c

∫
dxn−1e

i
(xn−xn−1)2

2T/n e−i
T
N
V (xn−1) . . .

∫
dx1e

i
(x2−x1)2

2T/n e−i
T
N
V (x1)

∫
dx0e

i
(x1−x0)2

2T/n e−i
T
N
V (x0)ψ0(x0).

Repackaging, we get

ψ(T, x) = c

∫
dx0 . . . dxn−1 exp

(
i
T

2n

n∑

k=1

(
xk − xk−1

T/n

)2

− i
T

n

n−1∑

k=0

V (xk)

)
ψ0(x0).

Now comes the big novelty. keeping in mind the picture

0 T
n

2T
n

kT
n

T t

xk

x

x0

x1

x2

xn

and replacing Riemann sums by integrals, we can write

ψ(T, x) = c

∫
dx0

∫

Wx0xn

Dx exp

(
i

∫ T

0

dt

(
1

2
ẋ2(t)− V (x(t))

))
ψ0(x0),

where Wx0xn denotes the space of paths that begin at x0 and end at xn,

Wx0xn = {x : [0, T ] → R : x(0) = x0, x(T ) = xn} ,
and Dx is the formal “path integral measure”.

This is a good time to introduce the “action” L:

L(x) :=

∫ T

0

dt

(
1

2
ẋ2(t)− V (x(t))

)
.

With this notation,

ψ(T, x) = c

∫
dx0ψ0(x0)

∫

Wx0xn

DxeiL(x).
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Let xc denote the path on which L(x) attains its minimum value, write x = xc + xq with
xq ∈ W00, and get

ψ(T, x) = c

∫
dx0ψ0(x0)

∫

W00

DxqeiL(xc+xq).

In our particular case L is quadratic in x, and therefore L(xc + xq) = L(xc) + L(xq) (this
uses the fact that xc is an extremal of L, of course). Plugging this into what we already
have, we get:

ψ(T, x) = c

∫
dx0ψ0(x0)

∫

W00

DxqeiL(xc)+iL(xq) = c

∫
dx0ψ0(x0)e

iL(xc)

∫

W00

DxqeiL(xq).

Now this is excellent news, because the remaining path integral over W00 does not depend
on x0 or xn, and hence it is a constant! Allowing c to change its value from line to line, we
get

ψ(T, x) = c

∫
dx0ψ0(x0)e

iL(xc).

Lemma 3.4 now shows us that xc(t) = x0 cos t + xn sin t. An easy explicit computation
gives L(xc) = −x0xn, and we arrive at our final result:

ψ(
π

2
, x) = c

∫
dx0ψ0(x0)e

−ix0xn .

Notice that this is precisely the formula for the Fourier transform of ψ0! That is, the answer
to the question in the title of this document is “the particle gets Fourier transformed”,
whatever that may mean.

3. The Lemmas

Lemma 3.1. For any two matrices A and B,

eA+B = lim
n→∞

(
eA/neB/n

)n
.

Proof. (sketch) Using Taylor expansions, we see that e
A+B

n and eA/neB/n differ by terms at
most proportional to c/n2. Raising to the nth power, the two sides differ by at most O(1/n),
and thus

eA+B = lim
n→∞

(
e

A+B
n

)n
= lim

n→∞
(
eA/neB/n

)n
,

as required. ¤

Lemma 3.2. (
eitV ψ0

)
(x) = eitV (x)ψ0(x).

¤

Lemma 3.3. (
ei

t
2
∆ψ0

)
(x) = c

∫
dx′ei

(x−x′)2
2t ψ0(x

′).
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Proof. In fact, the left hand side of this equality is just a solution ψ(t, x) of Schrödinger’s
equation with V = 0:

∂ψ

∂t
=
i

2
∆xψ, ψ|t=0 = ψ0.

Taking the Fourier transform ψ̃(t, p) = 1√
2π

∫
e−ipxψ(t, x)dx, we get the equation

∂ψ̃

∂t
= −ip

2

2
ψ̃, ψ̃|t=0 = ψ̃0.

For a fixed p, this is a simple first order linear differential equation with respect to t, and
thus,

ψ̃(t, p) = e−i
tp2

2 ψ̃0(p).

Taking the inverse Fourier transform, which takes products to convolutions and Gaussians
to other Gaussians, we get what we wanted to prove. ¤

Lemma 3.4. With the notation of Section 2 and at the specific case of V (x) = 1
2
x2 and

T = π
2
, we have

xc(t) = x0 cos t+ xn sin t.

Proof. If xc is a critical point of L on Wx0xn , then for any xq ∈ W00 there should be no term
in L(xc + εxq) which is linear in ε. Now recall that

L(x) =

∫ T

0

dt

(
1

2
ẋ2(t)− V (x(t))

)
,

so using V (xc + εxq) ∼ V (xc) + εxqV
′(xc) we find that the linear term in ε in L(xc + εxq) is

∫ T

0

dt (ẋcẋq − V ′(xc)xq) .

Integrating by parts and using xq(0) = xq(T ) = 0, this becomes

∫ T

0

dt (−ẍc − V ′(xc))xq.

For this integral to vanish independently of xq, we must have −ẍc − V ′(xc) ≡ 0, or

ẍc = −V ′(xc).
(

This is the famous F = ma of Newton’s, and we
have just rediscovered the principle of least action!

)

In our particular case this boils down to the equation

ẍc = −xc, xc(0) = x0, xc(π/2) = xn,

whose unique solution is displayed in the statement of this lemma. ¤
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4. The Morals

• Schrödinger’s equation is related to some infinite dimensional “path integrals”.
• These path integrals can sometime be evaluated, with interesting and useful results.
• The Fourier transform fits within some 1-parameter family of unitary operators,

defined by Ut = e−itH for t other than π
2
. The same techniques lead to explicit

formulas for Ut for any t.
• We’d better work harder, to understand how all of this fits into some bigger coherent

picture.
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