COURSE INTRODUCTION:
 WHAT HAPPENS TO A QUANTUM PARTICLE ON A PENDULUM $\frac{\pi}{2}$ SECONDS AFTER IT IS TOSSED IN?

DROR BAR-NATAN

Follows a lecture given by the author in the "trivial notions" seminar in Harvard on April 29, 1989.

Abstract

This subject is the best one-hour introduction I know for the mathematical techniques that appear in quantum mechanics - in one short lecture we start with a meaningful question, visit Schrödinger's equation, operators and exponentiation of operators, Fourier analysis, path integrals, the least action principle, and Gaussian integration, and at the end we land with a meaningful and interesting answer.

Contents

1. The Question
 1

2. The Solution 2
3. The Lemmas 3
4. The Morals 5

1. The Question

Let the complex valued function $\psi=\psi(t, x)$ be a solution of the Schrödinger equation

$$
\frac{\partial \psi}{\partial t}=-i\left(-\frac{1}{2} \Delta_{x}+\frac{1}{2} x^{2}\right) \psi \quad \text { with }\left.\quad \psi\right|_{t=0}=\psi_{0} .
$$

What is $\left.\psi\right|_{t=T=\frac{\pi}{2}}$?
In fact, the major part of our discussion will work just as well for the general Schrödinger equation,

$$
\frac{\partial \psi}{\partial t}=-i H \psi, \quad H=-\frac{1}{2} \Delta_{x}+V(x),\left.\quad \psi\right|_{t=0}=\psi_{0}, \quad \operatorname{arbitrary} T
$$

where:

- ψ is the "wave function", with $|\psi(t, x)|^{2}$ representing the probability of finding our particle at time t in position x.
- H is the "energy", or the "Hamiltonian".
- $-\frac{1}{2} \Delta_{x}$ is the "kinetic energy".
- $V(x)$ is the "potential energy at x ".

Date: This edition: March 27, 1999; First edition: April 29, 1989.

2. The Solution

The equation $\frac{\partial \psi}{\partial t}=-i H \psi$ with $\left.\psi\right|_{t=0}=\psi_{0}$ formally implies

$$
\psi(T, x)=\left(e^{-i T H} \psi_{0}\right)(x)=\left(e^{i \frac{T}{2} \Delta-i T V} \psi_{0}\right)(x)
$$

By Lemma 3.1 with $n=10^{58}+17$ and setting $x_{n}=x$ we thus get:

$$
\psi(T, x)=\left(e^{i \frac{T}{2 n} \Delta} e^{-i \frac{T}{n} V} e^{i \frac{T}{2 n} \Delta} e^{-i \frac{T}{n} V} \ldots e^{i \frac{T}{2 n} \Delta} e^{-i \frac{T}{n} V} \psi_{0}\right)\left(x_{n}\right)
$$

Now using Lemmas 3.2 and 3.3 we find that this is: (c denotes the ever-changing universal fixed numerical constant)

$$
c \int d x_{n-1} e^{i \frac{\left(x_{n}-x_{n}-1\right)^{2}}{2 T / n}} e^{-i \frac{T}{N} V\left(x_{n-1}\right)} \cdots \int d x_{1} e^{i \frac{\left(x_{2}-x_{1}\right)^{2}}{T T / n}} e^{-i \frac{T}{N} V\left(x_{1}\right)} \int d x_{0} e^{i \frac{\left(x_{1}-x_{0}\right)^{2}}{2 T / n}} e^{-i \frac{T}{N} V\left(x_{0}\right)} \psi_{0}\left(x_{0}\right) .
$$

Repackaging, we get

$$
\psi(T, x)=c \int d x_{0} \ldots d x_{n-1} \exp \left(i \frac{T}{2 n} \sum_{k=1}^{n}\left(\frac{x_{k}-x_{k-1}}{T / n}\right)^{2}-i \frac{T}{n} \sum_{k=0}^{n-1} V\left(x_{k}\right)\right) \psi_{0}\left(x_{0}\right) .
$$

Now comes the big novelty. keeping in mind the picture

and replacing Riemann sums by integrals, we can write

$$
\psi(T, x)=c \int d x_{0} \int_{W_{x_{0} x_{n}}} \mathcal{D} x \exp \left(i \int_{0}^{T} d t\left(\frac{1}{2} \dot{x}^{2}(t)-V(x(t))\right)\right) \psi_{0}\left(x_{0}\right),
$$

where $W_{x_{0} x_{n}}$ denotes the space of paths that begin at x_{0} and end at x_{n},

$$
W_{x_{0} x_{n}}=\left\{x:[0, T] \rightarrow \mathbb{R}: x(0)=x_{0}, x(T)=x_{n}\right\}
$$

and $\mathcal{D} x$ is the formal "path integral measure".
This is a good time to introduce the "action" \mathcal{L} :

$$
\mathcal{L}(x):=\int_{0}^{T} d t\left(\frac{1}{2} \dot{x}^{2}(t)-V(x(t))\right) .
$$

With this notation,

$$
\psi(T, x)=c \int d x_{0} \psi_{0}\left(x_{0}\right) \int_{W_{x_{0} x_{n}}} \mathcal{D} x e^{i \mathcal{L}(x)}
$$

Let x_{c} denote the path on which $\mathcal{L}(x)$ attains its minimum value, write $x=x_{c}+x_{q}$ with $x_{q} \in W_{00}$, and get

$$
\psi(T, x)=c \int d x_{0} \psi_{0}\left(x_{0}\right) \int_{W_{00}} \mathcal{D} x_{q} e^{i \mathcal{L}\left(x_{c}+x_{q}\right)} .
$$

In our particular case \mathcal{L} is quadratic in x, and therefore $\mathcal{L}\left(x_{c}+x_{q}\right)=\mathcal{L}\left(x_{c}\right)+\mathcal{L}\left(x_{q}\right)$ (this uses the fact that x_{c} is an extremal of \mathcal{L}, of course). Plugging this into what we already have, we get:

$$
\psi(T, x)=c \int d x_{0} \psi_{0}\left(x_{0}\right) \int_{W_{00}} \mathcal{D} x_{q} e^{i \mathcal{L}\left(x_{c}\right)+i \mathcal{L}\left(x_{q}\right)}=c \int d x_{0} \psi_{0}\left(x_{0}\right) e^{i \mathcal{L}\left(x_{c}\right)} \int_{W_{00}} \mathcal{D} x_{q} e^{i \mathcal{L}\left(x_{q}\right)} .
$$

Now this is excellent news, because the remaining path integral over W_{00} does not depend on x_{0} or x_{n}, and hence it is a constant! Allowing c to change its value from line to line, we get

$$
\psi(T, x)=c \int d x_{0} \psi_{0}\left(x_{0}\right) e^{i \mathcal{L}\left(x_{c}\right)}
$$

Lemma 3.4 now shows us that $x_{c}(t)=x_{0} \cos t+x_{n} \sin t$. An easy explicit computation gives $\mathcal{L}\left(x_{c}\right)=-x_{0} x_{n}$, and we arrive at our final result:

$$
\psi\left(\frac{\pi}{2}, x\right)=c \int d x_{0} \psi_{0}\left(x_{0}\right) e^{-i x_{0} x_{n}}
$$

Notice that this is precisely the formula for the Fourier transform of ψ_{0} ! That is, the answer to the question in the title of this document is "the particle gets Fourier transformed", whatever that may mean.

3. The Lemmas

Lemma 3.1. For any two matrices A and B,

$$
e^{A+B}=\lim _{n \rightarrow \infty}\left(e^{A / n} e^{B / n}\right)^{n}
$$

Proof. (sketch) Using Taylor expansions, we see that $e^{\frac{A+B}{n}}$ and $e^{A / n} e^{B / n}$ differ by terms at most proportional to c / n^{2}. Raising to the nth power, the two sides differ by at most $O(1 / n)$, and thus

$$
e^{A+B}=\lim _{n \rightarrow \infty}\left(e^{\frac{A+B}{n}}\right)^{n}=\lim _{n \rightarrow \infty}\left(e^{A / n} e^{B / n}\right)^{n}
$$

as required.

Lemma 3.2.

$$
\left(e^{i t V} \psi_{0}\right)(x)=e^{i t V(x)} \psi_{0}(x)
$$

Lemma 3.3.

$$
\left(e^{i \frac{t}{2} \Delta} \psi_{0}\right)(x)=c \int_{3} d x^{\prime} e^{i \frac{\left(x-x^{\prime}\right)^{2}}{2 t}} \psi_{0}\left(x^{\prime}\right) .
$$

Proof. In fact, the left hand side of this equality is just a solution $\psi(t, x)$ of Schrödinger's equation with $V=0$:

$$
\frac{\partial \psi}{\partial t}=\frac{i}{2} \Delta_{x} \psi,\left.\quad \psi\right|_{t=0}=\psi_{0}
$$

Taking the Fourier transform $\tilde{\psi}(t, p)=\frac{1}{\sqrt{2 \pi}} \int e^{-i p x} \psi(t, x) d x$, we get the equation

$$
\frac{\partial \tilde{\psi}}{\partial t}=-i \frac{p^{2}}{2} \tilde{\psi},\left.\quad \tilde{\psi}\right|_{t=0}=\tilde{\psi}_{0}
$$

For a fixed p, this is a simple first order linear differential equation with respect to t, and thus,

$$
\tilde{\psi}(t, p)=e^{-i \frac{t p^{2}}{2}} \tilde{\psi}_{0}(p)
$$

Taking the inverse Fourier transform, which takes products to convolutions and Gaussians to other Gaussians, we get what we wanted to prove.

Lemma 3.4. With the notation of Section 2 and at the specific case of $V(x)=\frac{1}{2} x^{2}$ and $T=\frac{\pi}{2}$, we have

$$
x_{c}(t)=x_{0} \cos t+x_{n} \sin t
$$

Proof. If x_{c} is a critical point of \mathcal{L} on $W_{x_{0} x_{n}}$, then for any $x_{q} \in W_{00}$ there should be no term in $\mathcal{L}\left(x_{c}+\epsilon x_{q}\right)$ which is linear in ϵ. Now recall that

$$
\mathcal{L}(x)=\int_{0}^{T} d t\left(\frac{1}{2} \dot{x}^{2}(t)-V(x(t))\right)
$$

so using $V\left(x_{c}+\epsilon x_{q}\right) \sim V\left(x_{c}\right)+\epsilon x_{q} V^{\prime}\left(x_{c}\right)$ we find that the linear term in ϵ in $\mathcal{L}\left(x_{c}+\epsilon x_{q}\right)$ is

$$
\int_{0}^{T} d t\left(\dot{x}_{c} \dot{x}_{q}-V^{\prime}\left(x_{c}\right) x_{q}\right) .
$$

Integrating by parts and using $x_{q}(0)=x_{q}(T)=0$, this becomes

$$
\int_{0}^{T} d t\left(-\ddot{x}_{c}-V^{\prime}\left(x_{c}\right)\right) x_{q} .
$$

For this integral to vanish independently of x_{q}, we must have $-\ddot{x}_{c}-V^{\prime}\left(x_{c}\right) \equiv 0$, or

$$
\ddot{x}_{c}=-V^{\prime}\left(x_{c}\right) . \quad\binom{\text { This is the famous } F=m a \text { of Newton's, and we }}{\text { have just rediscovered the principle of least action! }}
$$

In our particular case this boils down to the equation

$$
\ddot{x}_{c}=-x_{c}, \quad x_{c}(0)=x_{0}, \quad x_{c}(\pi / 2)=x_{n}
$$

whose unique solution is displayed in the statement of this lemma.

4. The Morals

- Schrödinger's equation is related to some infinite dimensional "path integrals".
- These path integrals can sometime be evaluated, with interesting and useful results.
- The Fourier transform fits within some 1-parameter family of unitary operators, defined by $U_{t}=e^{-i t H}$ for t other than $\frac{\pi}{2}$. The same techniques lead to explicit formulas for U_{t} for any t.
- We'd better work harder, to understand how all of this fits into some bigger coherent picture.

Institute of Mathematics, The Hebrew University, Giv'at-Ram, Jerusalem 91904, Israel
E-mail address: drorbn@math.huji.ac.il

