Dror Bar-Natan: Classes: 2003-04: Math 1350F - Knot Theory:

The Final Exam

web version: http://www.math.toronto.edu/~drorbn/classes/0304/KnotTheory/Final/Final.html

Solve and submit your solution of two (just two!) of the following three questions by noon on Tuesday January 6, 2004. Remember — **Elegance counts!!!** If you can type your solution, that's better. If you can't, at least copy it again to a clean sheet of paper. Formulas without words explaining them will not be accepted!

- 1. Prove in detail:
 - (a) All torus knots, except for the obvious exceptions, are really knotted.
 - (b) All knotted torus knots are prime.
- 2. The "Dubrovnik Polynomial" D (a variant of the "Kauffman Polynomial" L) is an invariant of framed links valued in rational functions in the variables a and z, satisfying the following relations:

$$D(\bigcirc) = 1, \tag{1}$$

$$D(\smile) = aD(\smile), \tag{2}$$

$$D(\bigcirc) = a^{-1}D(\bigcirc), \tag{3}$$

$$D(\times) - D(\times) = z(D(\times) - D(\times)). \tag{4}$$

(a) Compute $D(\bigcirc^k)$ (where \bigcirc^k is the k-component unlink).

Hint. One instance of relation (4) relates the following four knots; three of them are the unknot with different framings:

- (b) Prove that the above conditions determine D on all knots and links.
- (c) Set $z = e^{x/4} e^{-x/4}$ and $a = \exp\left((N-1)\frac{x}{4}\right)$ and expand

$$D(K; z, a) = \sum_{m=0}^{\infty} D_m(K; N) x^m$$

(here K stands for an arbitrary knot or link). Prove that for any m the coefficient D_m is a type m invariant of links with values in polynomials in N.

- (d) Determine the weight system of D_m and show that it is the weight system arising from the Lie algebra so(N).
- 3. Claim: The integral operator given by the kernel

$$G_{ij}(x,y) = \frac{\epsilon_{ijk}}{4\pi} \frac{x^k - y^k}{|x - y|^3}$$

is an inverse of the differential operator $\star d$.

Explain what this claim means and prove it. This done, show that if $\gamma_{1,2}$ are disjoint space curves, then

$$\int dt_1 dt_2 \, G_{ij}(\gamma_1(t_1), \gamma_2(t_2)) \dot{\gamma}_1^i(t_1) \dot{\gamma}_2^j(t_2) = \int_{T^2} \Phi^{\star} \omega,$$

where $\Phi: T^2 \to S^2$ is the "direction of sight" map $\Phi(t_1, t_2) = \frac{\gamma_1(t_1) - \gamma_2(t_2)}{|\gamma_1(t_1) - \gamma_2(t_2)|}$ and where ω is the volume form of S^2 normalized so that the total volume of S^2 is 1.

Good Luck!!