Math 157 Exam 3
Monday, February 11, 2002

1. Evaluate the following integrals
(a) $\int \sec x \tan x d x$
(c) $\int \frac{d x}{x+1}$
(b) $\int_{0}^{\infty} e^{-x} d x$
(d) $\int \cos ^{2} x d x$
2. Each of the following expressions defines a function of x. Compute its derivative with respect to x, in the simplest possible form.
(a) $\frac{x}{1+e^{1 / x}}$
(c) $\int_{x}^{2 x} \frac{d t}{1+t^{2}}$
(b) $\int_{3}^{x}\left(5^{t}+t^{5}\right) d t$
(d) $\arcsin \frac{x-1}{x+1}$.
(In (a), evaluate the left and right derivatives separately at $x=0$.)
3. For each of the following functions, draw a careful graph, indicating whether the function is odd, even, or periodic, how it behaves at ∞, and where it has singularities.
(a) $x \arctan \frac{1}{x}$
(c) $e^{-1 / x}$
(b) $\log (\cos (x))$
(d) $\arcsin \left(\frac{1}{2} \sin x\right)$
4. In each of the following, f is a continuous function on $[0,1]$.
(a) Show that

$$
\int_{0}^{\pi} f(\sin x) \cos x d x=0
$$

(b) Characterize the set of f having the property that

$$
\int_{0}^{x} f(t) d t=\int_{x}^{1} f(t) d t \quad \text { for all } x \in[0,1]
$$

5. (a) Show that for any positive integer n and any $x>0$,

$$
n\left(1-\frac{1}{x^{1 / n}}\right) \leq \log x \leq n\left(x^{1 / n}-1\right)
$$

(Hint: Compare the functions $t^{-1}, t^{-1+(1 / n)}$, and $t^{-1-(1 / n)}$.
(b) By substituting $x=e^{y}$, show that

$$
\left(1+\frac{y}{n}\right)^{n} \leq e^{y} \leq\left(1-\frac{y}{n}\right)^{-n} \quad \text { for } y<n
$$

