Dror Bar-Natan: Classes: 2001-02: Fundamental Concepts in Algebraic Topology:

Last Class on Covering Spaces, April 25, 2002

Throughout this page X will be a connected, locally connected and semi-locally simply connected topological space, and all covering spaces will be connected. Let p: $(\tilde{X}, \tilde{x}_0) \to (X, x_0)$ be such a covering map with and let Hbe $p_*\pi_1(\tilde{X}, \tilde{x}_0) < \pi_1(X, x_0)$. As we have seen in class, \tilde{X} is homeomorphic to the space

 $M_H := \{ [\gamma : I \to X] : \gamma(0) = x_0 \} / [\gamma] \sim [\eta \gamma] \text{ for } [\eta] \in H$ of head-and-tail-preserving homotopy classes of snakes with tails at x_0 , modulo "reattaching the tails by elements of H", with the topology induced by "moving the head". It is nice to interpret some of the statements below from the perspective of \tilde{M}_H .

Furthermore, we found that the correspondence $H \leftrightarrow \tilde{X} = \tilde{X}_H$ is a bijective correspondence between subgroups of $\pi_1(X, x_0)$ and coverings of (X, x_0) . Let us learn some more about this correspondence:

Caravaggio's Medusa, circa 1598. According to legend, the shock from seeing Medusa the Gorgon (or her sisters Sthenno and Euryale) would turn anyone to stone.

Claim 1. If $p: (X, \tilde{x}_0) \to (X, x_0)$ is a covering with group $H < \pi_1(X, x_0)$ then the decks $p^{-1}(U)$ of \tilde{X} over a small enough $U \subset X$ are enumerated (not canonically) by the left cosets $H \setminus \pi_1(X)$ of H in $\pi_1(X)$.

Claim 2. If $H_1 < H_2 < \pi_1(X, x_0)$ then \tilde{X}_{H_1} is a covering of \tilde{X}_{H_2} .

Definition 3. An automorphism (aka "deck transformation") of a covering $p: \tilde{X} \to X$ is a (not necessarily basepoint-preserving) homeomorphism $\alpha : \tilde{X} \to \tilde{X}$ which covers $p: p \circ \alpha = \alpha$. Let $\operatorname{Aut}(\tilde{X})$ be the group (!) of all automorphisms of \tilde{X} .

Claim 4. If \tilde{X}_U denotes the universal cover of X, then there is a natural identification of $\pi_1(X, x_0)$, of $\operatorname{Aut}(\tilde{X}_U)$ and of $p^{-1}(x_0)$.

Claim 5. For all $H < \pi_1(X) = \operatorname{Aut}(\tilde{X}_U)$, the covering \tilde{X}_H is homeomorphic to the quotient space \tilde{X}_U/H .

Definition 6. A covering $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ is called *normal* if $\operatorname{Aut}(\tilde{X})$ acts transitively on $p^{-1}(x_0)$.

Claim 7. For $H < \pi_1(X)$, the covering \tilde{X}_H is normal iff the subgroup H is normal in $\pi_1(X)$.

Claim 8. For any $H < \pi_1(X)$ we have $\operatorname{Aut} \tilde{X}_H = N(H)/H$ where N(H) is the normalizer of H in $\pi_1(X)$, the group of all $\gamma \in \pi_1(X)$ for which $\gamma^{-1}H\gamma = H$. In particular, if H (equivalently \tilde{X}_H) is normal, then $\operatorname{Aut}(\tilde{X}_H) = \pi_1(X)/H$.

Definition 9. We say that a group action of a group G on a space X is a *covering action* if X can be covered with open sets $U \subset X$ for which for any given U the collection $\{g(U) : g \in G\}$ is a collection of disjoint sets.

Claim 10. If a group G acts via a covering action on a space X then the quotient map $p: X \to X/G$ is a covering map and G is the group of its automorphisms.