FUNDAMENTAL CONCEPTS IN DIFFERENTIAL GEOMETRY FALL 2000 EXERCISES HANDOUT # 8

1. Exercises for the Proper Course

1. Let

$$H^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n \ge 0\}.$$

Show that every diffeomorphism $f\colon H\to H$ maps the boundaries diffeomorphically. Deduce that the boundary of a manifold is indeed well defined and is a manifold in its own right.

2. Let M be a smooth manifold (without boundary) and let $g:M\to\mathbb{R}$ be a smooth function which has 0 as a regular value. Show that

$$X = g^{-1}((-\infty, 0])$$

is a smooth manifold whose boundary is $g^{-1}(0)$.

Conclude that the unit disk D^m is a smooth manifold whose boundary is S^{m-1} . Hint: the proof is nearly identical to the proof that $g^{-1}(0)$ is a smooth manifold given in class long ago.

- **3.** Let $f: X^m \to N^n$ be a smooth map where X has a boundary and N does not. Suppose that $y \in N$ is a regular value, both for f and for $f|_{\partial X}$. Show that $f^{-1}(y)$ is a smooth (m-n-manifold with boundary. Furthermore the boundary $\partial(f^{-1}(0))$ is precisely equal to the intersection $f^{-1}(y) \cap \partial X$.
- **4.** Let M be a compact manifold with boundary. Prove that there is no smooth map $f:M\to \partial M$ that leaves ∂M pointwise fixed.

Date: 19 Dec., 2000.

1