Dror Bar-Natan — Handout Portfolio

As of June 7, 2025 — see also http://drorbn.net/hp — paper copies are available from the author, at a muffin plus cappuccino each or the monetary equivalent (to offset printing costs). This document has 38 pages.

Warning. This is a reduced quality version with some content removed to control file size. My full handout portfolio, about 6 times longer, is at the URL above.

Theorem [BV3]. With $c = (s, i, j), c_0 =$ Questions, Conjectures, Expectations, Dreams. s=1

 (s_0, i_0, j_0) , and $c_1 = (s_1, i_1, j_1)$ denoting crossings, there is a quadratic $F_1(c) \in \mathbb{Q}(T_v)[g_{v\alpha\beta} : [i]$ i $\alpha, \beta \in \{i, j\}$, a cubic $F_2(c_0, c_1) \in \mathbb{Q}(T_{\nu})[g_{\nu\alpha\beta} : \alpha, \beta \in \mathbb{C}$ onjecture 2. On classical (non-virtual) knots, θ always has he- $\{i_0, j_0, i_1, j_1\}$, and a linear $F_3(\varphi, k)$ such that θ is a knot invariant: xagonal (D_6) symmetry.

$$\theta(D) \coloneqq \underbrace{\Delta_1 \Delta_2 \Delta_3}_{\text{normalization,}} \left(\sum_{c} F_1(c) + \sum_{c_0, c_1} F_2(c_0, c_1) + \sum_{k} F_3(\varphi_k, k) \right),$$

see later
$$D \overset{\text{e.g. } g_{2ii}g_{3jj}}_{\text{ind} j_1 \text{ ind} j_2 \text{ ind} j_1 \text{ ind}$$

This picture gave the invariant its name If these pictures remind you of Feynman diagrams, it's because they are Feynman diagrams [BN2].

Lemma 1. The traffic function $g_{\alpha\beta}$ is a "relative invariant":

Lemma 2. With $k^+ := k + 1$, the "g-rules" hold i^+ near a crossing c = (s, i, j):

 $g_{j\beta} = g_{j^+\beta} + \delta_{j\beta}$ $g_{i\beta} = T^s g_{i^+\beta} + (1 - T^s) g_{j^+\beta} + \delta_{i\beta}$ $g_{2n^+\beta} = \delta_{2n^+\beta}$ [BN1] D. Bar-Natan, Everything around $s_{i_{2,j}}$ is DoPeGDO. So what?, $g_{\alpha i^+} = T^s g_{\alpha i} + \delta_{\alpha i^+} \quad g_{\alpha j^+} = g_{\alpha j} + (1 - T^s) g_{\alpha i} + \delta_{\alpha j^+} \quad g_{\alpha,1} = \delta_{\alpha,1}$ **Corollary 1.** G is easily computable, for AG = I (= GA), with A the $(2n+1)\times(2n+1)$ identity matrix with additional contributions: $col i^+$ $col i^+$

$$c = (s, i, j) \mapsto \overrightarrow{\text{row } i} \quad \overrightarrow{-T^s} \quad \overrightarrow{T^s - 1}$$

For the trefoil example, we have:

$$A = \begin{pmatrix} 1 & -T & 0 & 0 & T - 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -T & 0 & 0 & T - 1 \\ 0 & 0 & 0 & 1 & -T & 0 & 0 \\ 0 & 0 & T - 1 & 0 & 1 & -T & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix},$$

$$G = \begin{pmatrix} 1 & T & 1 & T & 1 & T & 1 \\ 0 & 1 & \frac{1}{T^2 - T + 1} & \frac{T}{T^2 - T + 1}$$

We also set $\Delta_{\nu} := \Delta(T_{\nu})$ for $\nu = 1, 2, 3$.

Question 1. What's the relationship between Θ and the Garoufalidis-Kashaev invariants [GK, GL]?

Conjecture 3. θ is the ϵ^1 contribution to the "solvable approximation" of the sl_3 universal invariant, obtained by running the quantization machinery on the double $\mathcal{D}(\mathfrak{b}, b, \epsilon \delta)$, where \mathfrak{b} is the Borel subalgebra of sl_3 , b is the bracket of b, and δ the cobracket. See [BV2, BN1, Sch]

Conjecture 4. θ is equal to the "two-loop contribution to the Kontsevich Integral", as studied by Garoufalidis, Rozansky, Kricker, and in great detail by Ohtsuki [GR, Ro1, Ro2, Ro3, Kr, Oh].

Fact 5. θ has a perturbed Gaussian integral formula, with integration carried out over over a space 6*E*, consisting of 6 copies of the space of edges of a knot diagram D. See [BN2].

Conjecture 6. For any knot *K*, its genus g(K) is bounded by the T_1 -degree of θ : $2g(K) \ge \deg_{T_1} \theta(K)$.

Conjecture 7. $\theta(K)$ has another perturbed Gaussian integral formula, with integration carried out over over the space $6H_1$, consisting of 6 copies of $H_1(\Sigma)$, where Σ is a Seifert surface for K.

Expectation 8. There are many further invariants like θ , given by Green function formulas and/or Gaussian integration formulas. One or two of them may be stronger than θ and as computable.

Dream 9. These invariants can be explained by something less foreign than semisimple Lie algebras.

References

Dream 10. With Conjecture 7 in mind, θ will have something to say about rib-

bon knots.

- talk in Da Nang, May 2019. Handout and video at ωεβ/DPG.
- [BN2] —, Knot Invariants from Finite Dimensional Integration, talks in Beijing (July 2024, ωεβ/icbs24) and in Geneva (August 2024, ωεβ/ge24).
- [BV1] —, R. van der Veen, A Perturbed-Alexander Invariant, Quantum Topology 15 (2024) 449-472, ωεβ/ΑΡΑΙ.
- [BV2] —, —, Perturbed Gaussian Generating Functions for Universal Knot Invariants, arXiv: 2109.02057.
- [BV3] -, -, A Very Fast, Very Strong, Topologically Meaningful and Fun Knot Invariant, in preparation, draft at $\omega \epsilon \beta$ /Theta.
- rani, M. Obeidin, A. Ehrenberg, S. Bhattacharyya, D. Lei, and eliminary Report, lecture notes at ωεβ/DHOEBL. Also a data
- ev, Multivariable Knot Polynomials from Braided Hopf Algexiv:2311.11528.

he V2-polynomial of knots, arXiv:2409.03557.

op Expansion of the Kontsevich Integral, the Null-Move, and [/0003187.

ebra Representations of Braid Groups and Link Polynomials, 5-388

ne Kontsevich Integral and Rozansky's Rationality Conjecture,

- ang, Burau Representation and Random Walk on String Links. 289-302, arXiv:q-alg/9605023.
- Polynomial of Knots, Geom. Top. 11 (2007) 1357-1475.

Expansion of the Colored Jones Polynomial, Ph.D. thesis, U-Aug. 2013, ωεβ/Ov.

ution of the Trivial Flat Connection to the Jones Polynomial Manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv

trix, Burau Representation and the Melvin-Morton Expansion nial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.

RCC Invariant of Links and Rationality Conjecture, arXiv

Expansions of Quantum Group Invariants, Ph.D. thesis, Universiteit Leiden, September 2020, ωεβ/Scha.

Invariance under R3

This is Theta.nb of http://drorbn.net/v25/ap.

©Once[<< KnotTheory`; << Rot.m; << PolyPlot.m];</pre>

```
\bigcirc T<sub>3</sub> = T<sub>1</sub> T<sub>2</sub>;
\odot CF [\mathcal{E}_{2}] := Expand@Collect[\mathcal{E}, g, F] /. F \rightarrow Factor;
\bigcirc F<sub>1</sub>[{s_, i_, j_}] =
         CF [
            s (1/2 - g_{3ii} + T_2^s g_{1ii} g_{2ji} - g_{1ii} g_{2jj} -
                    (T_2^s - 1) g_{2ji} g_{3ii} + 2 g_{2jj} g_{3ii} - (1 - T_3^s) g_{2ji} g_{3ji} -
                   g_{2ii} g_{3jj} - T_2^s g_{2ji} g_{3jj} + g_{1ii} g_{3jj} +
                    ((T_1^s - 1) g_{1ji} (T_2^{2s} g_{2ji} - T_2^s g_{2jj} + T_2^s g_{3jj}) +
                           (T_3^{s} - 1) g_{3ii}
                              (1 - T_2^s g_{1ii} - (T_1^s - 1) (T_2^s + 1) g_{1ji} +
                                  (T_2^s - 2) g_{2ii} + g_{2ii}) / (T_2^s - 1) ];
© F<sub>2</sub>[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=
      CF\left[s1 \left(T_{1}^{s0}-1\right) \left(T_{2}^{s1}-1\right)^{-1} \left(T_{3}^{s1}-1\right) g_{1,j1,i0} g_{3,j0,i1}\right)\right]
            \left(\left(\mathsf{T}_{2}^{50}\mathsf{g}_{2,i1,i0}-\mathsf{g}_{2,i1,j0}\right)-\left(\mathsf{T}_{2}^{50}\mathsf{g}_{2,j1,i0}-\mathsf{g}_{2,j1,j0}\right)\right)\right]
\odot F_3[\varphi_{,k_{]}} = -\varphi / 2 + \varphi g_{3kk};
\odot \delta_{i}, j := If[i === j, 1, 0];
    \mathbf{g}_{\nu_{j\beta_{-}}} \Rightarrow \mathbf{g}_{\nu_{j}+\beta} + \delta_{j\beta},
         \mathbf{g}_{\gamma \ i\beta} \Rightarrow \mathbf{T}_{\gamma}^{s} \mathbf{g}_{\gamma i^{+}\beta} + (\mathbf{1} - \mathbf{T}_{\gamma}^{s}) \mathbf{g}_{\gamma j^{+}\beta} + \delta_{i\beta},
         \mathbf{g}_{\gamma \alpha i^{+}} \Rightarrow \mathbf{T}_{\gamma}^{s} \mathbf{g}_{\gamma \alpha i} + \delta_{\alpha i^{+}},
         \mathbf{g}_{\gamma \alpha j^{+}} \Rightarrow \mathbf{g}_{\gamma \alpha j} + (\mathbf{1} - \mathbf{T}_{\gamma}^{s}) \mathbf{g}_{\gamma \alpha i} + \delta_{\alpha j^{+}}
       }
③ DSum[Cs___] := Sum[F<sub>1</sub>[c], {c, {Cs}}] +
         Sum[F<sub>2</sub>[c0, c1], {c0, {Cs}}, {c1, {Cs}}]
    lhs = DSum[{1, j, k}, {1, i, k^+}, {1, i<sup>+</sup>, j<sup>+</sup>},
               {s, m, n}] //. gR_{1,j,k} \cup gR_{1,i,k^+} \cup gR_{1,i^+,j^+};
    rhs = DSum[{1, i, j}, {1, i<sup>+</sup>, k}, {1, j<sup>+</sup>, k<sup>+</sup>},
               {s, m, n}] //. gR_{1,i,j} \cup gR_{1,i^+,k} \cup gR_{1,j^+,k^+};
    Simplify[lhs == rhs]
□ True
```

The Main Program

```
D \ \textcircled{O} \ [K_] := Module \left[ \{Cs, \varphi, n, A, \Delta, G, ev, \theta\}, \\ \{Cs, \varphi\} = Rot[K]; n = Length[Cs]; \\ A = IdentityMatrix[2n+1]; \\ Cases \left[Cs, \{s_{,}, i_{,}, j_{}\} \Rightarrow \\ \left(A[[\{i, j\}, \{i+1, j+1\}]] + = \begin{pmatrix} -T^{s} T^{s} - 1 \\ \theta & -1 \end{pmatrix} \right) \right]; \\ \Delta = T^{(-Total[\varphi] - Total[Cs[[All,1]])/2} Det[A]; \\ G = Inverse[A]; \\ ev[\mathcal{E}_] := \\ Factor[\mathcal{E} / . g_{\nu_{,},\alpha_{,},\beta_{-}} \Rightarrow (G[[\alpha, \beta]] / . T \rightarrow T_{\nu})]; \\ \theta = ev[\sum_{k=1}^{n} F_{1}[Cs[[k]]]; \\ \theta + = ev[\sum_{k=1}^{n} F_{2}[Cs[[k1]], Cs[[k2]]]; \\ \theta + = ev[\sum_{k=1}^{2n} F_{3}[\varphi[[k]], k]]; \\ Factor@ \\ \{\Delta, (\Delta / . T \rightarrow T_{1}) (\Delta / . T \rightarrow T_{2}) (\Delta / . T \rightarrow T_{3}) \theta\} \right];
```

The Trefoil, Conway, and Kinoshita-Terasaka

(Note that the genus of the Conway knot appears to be bigger than the genus of Kinoshita-Terasaka)

Some Torus Knots

© GraphicsRow[ImageCompose[PolyPlot[@[TorusKnot@@#], ImageSize → 480], TubePlot[TorusKnot@@ #, ImageSize → 240], {Right, Bottom}, {Right, Bottom}] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}] □

Random knots from [DHOEBL], with 50-73 crossings:

(many more at $\omega \epsilon \beta / DK$)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/PhuQuoc-2506.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.

Implementation (see IType.nb of $\omega \epsilon \beta/ap$).

© Once[<< KnotTheory`; << Rot.m];</pre>

 Loading KnotTheory` version of October 29, 2024, 10:29:52.1301.
 Read more at http://katlas.org/wiki/KnotTheory.
 Loading Rot.m from http://drorbn.net/AP/Talks/Bonn-2505

to compute rotation numbers. $(\bigcirc CF[\omega_{-}, \delta_{-}E] := CF[\omega] \times CF /@\mathcal{E};$ $CF[\mathcal{E}_List] := CF /@\mathcal{E};$ $CF[\mathcal{E}_] := Module[{vs, ps, c},$ $vs = Cases[\mathcal{E}, (x | p | \xi | \pi | g)_{-}, \infty] \cup {\epsilon};$ $Total[CoefficientRules[Expand[\mathcal{E}], vs] /.$ $(ps_{-} \rightarrow c_{-}) :> Factor[c] (Times @@vs^{ps})]];$

Integration using Picard iteration. The core is in yellow and hacks are in pink.

$\textcircled{$\cong /: \mathbb{E}[A_] \times \mathbb{E}[B_] := \mathbb{E}[A + B]; }$

$$\odot$$
 \$ π = Identity; (* The Wisdom Projection *)

③ Unprotect [Integrate];

Module [{n, L0, Q,
$$\Delta$$
, G, Z0, Z, λ , DZ, DDZ,
FZ, a, b},
n = Length@vs; L0 = L /. $\epsilon \rightarrow 0$;
Q = Table [(- ∂_{vs} [a], vs [b] L0) /. Thread [$vs \rightarrow 0$] /.
(p | x) $\rightarrow 0$, {a, n}, {b, n}];
If[($\Delta = Det[Q]$) == 0, Return@"Degenerate Q!"];
Z = Z0 = CF@\$ π [L + vs.Q.vs/2]; G = Inverse[Q];
FixedPoint [(DZ = Table[$\partial_v Z$, {v, vs}];
DDZ = Table[$\partial_u DZ$, {u, vs}];
FZ = Sum[G[[a, b]] (DDZ[[a, b]] + DZ[[a]] × DZ[[b]]),
{a, n}, {b, n}]/2;
Z = CF[Z0 + $\int_0^{\lambda} π [FZ] d λ]) &, Z];
PowerExpand@Factor [$\omega \Delta^{-1/2}$] ×

 $\mathbb{E}\left[\mathsf{CF}\left[\frac{\mathsf{Z}}{\lambda} \rightarrow 1\right], \text{ Thread}\left[\frac{\mathsf{vs}}{\delta} \rightarrow 0\right]\right]$

Protect[Integrate];

$$\stackrel{(){\tiny \bigcirc}}{\longrightarrow} \int \mathbb{E}\left[-\mu x^{2}/2 + i \xi x\right] d\{x\}$$

$$\stackrel{\Box}{\longrightarrow} \frac{\mathbb{E}\left[-\frac{\xi^{2}}{2\mu}\right]}{\sqrt{\mu}}$$

$$\stackrel{(){\tiny \bigcirc}}{\longrightarrow} \mathbf{FofG} = \int \mathbb{E}\left[-\mu (x - a)^{2}/2 + i \xi x\right] d\{x\}$$

$$\stackrel{\Box}{\longrightarrow} \frac{\mathbb{E}\left[\frac{i (2a\mu + i\xi) \xi}{2\mu}\right]}{\sqrt{\mu}}$$

$$\stackrel{(){\tiny \bigcirc}}{\longrightarrow} \int \mathbf{FofG} \mathbb{E}\left[-i \xi x\right] d\{\xi\}$$

$$\stackrel{\Box}{\longrightarrow} \mathbb{E}\left[-\frac{1}{2} (a - x)^{2} \mu\right]$$
So a we've tested and each parally proves the Equipo

So we've tested and nearly proven the Fourier inversion formula!

$$= -\frac{1}{2} \{x_1, x_2\} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \{x_1, x_2\} + \{\xi_1, \xi_2\} \cdot \{x_1, x_2\};$$

$$\frac{\mathbb{E}[\mathbf{L}] \, \mathbb{I}[\mathbf{X}_1, \mathbf{X}_2]}{\mathbb{E}\left[\frac{c \, \varepsilon_1^2}{2 \, (-b^2 + a \, c)} + \frac{b \, \varepsilon_1 \, \varepsilon_2}{b^2 - a \, c} + \frac{a \, \varepsilon_2^2}{2 \, (-b^2 + a \, c)}\right]}{\sqrt{-b^2 + a \, c}}$$

 \odot {Z1 = $\int \mathbb{E}[L] d\{x_1\}$, Z12 == $\int Z1 d\{x_2\}$

 $\frac{\Box}{\left\{\frac{\mathbb{E}\left[-\frac{\left(-b^{2}+a\,c\right)\,x_{2}^{2}}{2\,a}-\frac{b\,x_{2}\,\xi_{1}}{a}+\frac{\xi_{1}^{2}}{2\,a}+x_{2}\,\xi_{2}\right]}{\Box}\right\}},\text{ True}\right\}}$

Guido Fubini

$$\overset{()}{=} \frac{\$\pi = \texttt{Normal} \left[\# + 0[\epsilon]^{13} \right] \$}{1} \underbrace{ \int \mathbb{E} \left[-\phi^2 / 2 + \epsilon \phi^3 / 6 \right] d \{\phi\} }{ \frac{12}{1} \mathbb{E} \left[\frac{5 \epsilon^2}{24} + \frac{5 \epsilon^4}{16} + \frac{1105 \epsilon^6}{1152} + \frac{565 \epsilon^8}{128} + \frac{82825 \epsilon^{10}}{3072} + \frac{19675 \epsilon^{12}}{96} \right] }$$
From https://oeis.org/A226260:
OE THE ON-LINE ENCYCLOPEDIA

founded in 1964 by N. J. A. Skane Staning: Inv The On Line Facebardie (Clearne Segment')

A226240 Neperators of mass formula for connected vacuum graphs on 2m modes for a ght? 5 field theory, 1, 8, 8, 1285, 848, 82628, 19878, 128261628, 86027828, 162688621878, 1226866126, 12368-0750288775, 15730217868775, 62267817868812886775, 1286807856078125, 1000578786842840751875, 12468-0750288775, 15730217868775, 62267817868828888775, 12868785661284138712784878 (arr path min herm here: to construct an end of the set of th

The Right-Handed Trefoil.

©K = Mirror@Knot[3, 1]; Features[K] \Box Features [7, C₄[-1] X_{1,5}[1] X_{3,7}[1] X_{6,2}[1]] $\bigcirc \mathcal{L}[\mathbf{X}_{i,j} \ [\mathbf{S}_{-}]] := \mathbf{T}^{s/2} \mathbb{E} [$ $x_i (p_{i+1} - p_i) + x_j (p_{j+1} - p_j) +$ $(T^{s} - 1) x_{i} (p_{i+1} - p_{j+1}) +$ $(\epsilon s / 2) \times$ $(\mathbf{x}_i (\mathbf{p}_i - \mathbf{p}_j) ((\mathbf{T}^s - \mathbf{1}) \mathbf{x}_i \mathbf{p}_j + \mathbf{2} (\mathbf{1} - \mathbf{x}_j \mathbf{p}_j)) - \mathbf{1})]$ $\mathcal{L}[\mathbf{C}_{i_{-}}[\varphi_{-}]] := \mathsf{T}^{\varphi/2} \mathbb{E}\Big[\mathsf{x}_{i} (\mathsf{p}_{i+1} - \mathsf{p}_{i}) + \epsilon \varphi \left(\frac{1}{2} - \mathsf{x}_{i} \mathsf{p}_{i}\right)\Big]$ $\mathcal{L}[K_] := CF[\mathcal{L} / @ Features[K][2]]$ vs[K] :=Join @@ Table [{ p_i, x_i }, { i, Features [K] [[1]] }] \bigcirc {vs[K], $\mathcal{L}[K]$ } $\Box \left\{ \{ p_1, x_1, p_2, x_2, p_3, x_3, p_4, x_4, p_5, x_5, p_6, x_6, p_7, x_7 \} \right\},$ $\frac{1}{2} \ (-1+T) \ \in \ p_1 \ p_5 \ x_1^2 + \frac{1}{2} \ (1-T) \ \in \ p_5^2 \ x_1^2 - p_2 \ x_2 + p_3 \ x_2 - p_3 \ x_3 + \frac{1}{2} \ (1-T) \ (-1+T) \ ($ Joseph Fourier $e p_3 x_3 + T p_4 x_3 - e p_7 x_3 + (1 - T) p_8 x_3 + \frac{1}{2} (-1 + T) e p_3 p_7 x_3^2 +$ $\frac{1}{2} \ (1-T) \ \in \ p_7^2 \ x_3^2 - p_4 \ x_4 + \in \ p_4 \ x_4 + p_5 \ x_4 - p_5 \ x_5 + p_6 \ x_5 \in p_1 \ p_5 \ x_1 \ x_5 \ + \ \in \ p_5^2 \ x_1 \ x_5 \ - \ \in \ p_2 \ x_6 \ + \ (1 \ - \ T) \ p_3 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_3 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_8 \ x_6 \ x_6 \ - \ p_8 \ x_6 \ - \ p_8 \ x_6 \ - \ p_8 \ x_6 \ x_6 \ - \ p_8 \ x_6 \ x_6 \ x_6 \ - \ x_6 \$ $\in \, p_6 \, \, x_6 \, + \, T \, \, p_7 \, \, x_6 \, + \, \in \, p_2^2 \, x_2 \, \, x_6 \, - \, \in \, p_2 \, \, p_6 \, \, x_2 \, \, x_6 \, + \, \frac{1}{2} \, \, (1 - T) \, \, \in \, p_2^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_2^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_2^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_2^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_2^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_2^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_2^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, (1 - T) \, \, e \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, p_3^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, x_6^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, x_6^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, x_6^2 \, \, x_6^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, x_6^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, x_6^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, x_6^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, x_6^2 \, \, x_6^2 \, + \, \frac{1}{2} \, \, x_6^2 \, \, x_6^$ $\frac{1}{2} \left((-1 + T) \in p_2 \ p_6 \ x_6^2 - p_7 \ x_7 + p_8 \ x_7 - \epsilon \ p_3 \ p_7 \ x_3 \ x_7 + \epsilon \ p_7^2 \ x_3 \ x_7 \right] \right\}$

$$\overset{\textcircled{\basel{eq:productive_states}}}{=} \frac{\basel{main_states} \mathsf{Normal} \left[\textit{$\texttt{$\texttt{$\texttt{$\texttt{$\texttt{#}$}$}$} + $\texttt{O}[$$e]$}$^2] & & & & & \\ \hline \\ - \frac{\basel{main_states} \mathsf{1} \ \mathbb{E} \left[- \frac{(-1+\mathsf{T})^2 \ (1+\mathsf{T}^2) \ e}{(1-\mathsf{T}+\mathsf{T}^2)^2} \right]}{1-\mathsf{T}+\mathsf{T}^2} \\ \end{array}$$

A faster program to compute ρ_1 , and more stories about it, are at [BV2].

Invariance Under Reidemeister 3, Take 2.

$$\hat{ }^{ () } lhs = \int (\mathcal{L} / @ (X_{i,j} [1] X_{i+1,k} [1] X_{j+1,k+1} [1])) d \{ x_i, x_j, x_k, p_{i+1}, p_{j+1}, p_{k+1}, x_{i+1}, x_{j+1}, x_{k+1} \}; rhs = \int (\mathcal{L} / @ (X_{j,k} [1] X_{i,k+1} [1] X_{i+1,j+1} [1])) d \{ x_i, x_j, x_k, x_{i+1}, p_{i+1}, p_{j+1}, p_{k+1}, x_{j+1}, x_{k+1} \}; lhs === rhs \Box True$$

© 1hs

□Degenerate Q!

Invariance Under Reidemeister 3, Take 3.

```
 \stackrel{()}{=} lhs = \int \left( \mathbb{E} \left[ i \pi_{i} p_{i} + i \pi_{j} p_{j} + i \pi_{k} p_{k} \right] \times \mathcal{L} / \mathbb{e} \left( X_{i,j} [1] X_{i+1,k} [1] X_{j+1,k+1} [1] \right) \right) \right) 
                 d \{ p_i, p_j, p_k, x_i, x_j, x_k, p_{i+1}, p_{j+1}, p_{k+1}, x_{i+1}, x_{j+1}, x_{k+1} \}; 
       rhs = \left( \mathbb{E} \left[ i \pi_{i} p_{i} + i \pi_{j} p_{j} + i \pi_{k} p_{k} \right] \times \mathcal{L} / @ \left( X_{j,k} [1] X_{i,k+1} [1] X_{i+1,j+1} [1] \right) \right) 
                 d \{ p_i, p_j, p_k, x_i, x_j, x_k, p_{i+1}, p_{j+1}, p_{k+1}, x_{i+1}, x_{j+1}, x_{k+1} \}; 
      1hs == rhs
```


 $\Box T^{3/2} \mathbb{E}$

🙂 **lhs**

$$\begin{aligned} &-\frac{3}{2} \stackrel{\circ}{\stackrel{\circ}{=}} + i T^2 p_{2+i} \pi_i - i (-1+T) T p_{2+j} \pi_i + i T^2 \in p_{2+j} \pi_i - i (-1+T) p_{2+k} \pi_i + \\ &i T \in p_{2+k} \pi_i - \frac{1}{2} (-1+T) T^3 \in p_{2+i} p_{2+j} \pi_i^2 + \frac{1}{2} (-1+T) T^3 \in p_{2+j}^2 \pi_i^2 - \\ &\frac{1}{2} (-1+T) T^2 \in p_{2+i} p_{2+k} \pi_i^2 + \frac{1}{2} (-1+T)^2 T \in p_{2+j} p_{2+k} \pi_i^2 + \\ &\frac{1}{2} (-1+T) T \in p_{2+k}^2 \pi_i^2 + i T p_{2+j} \pi_j - i T \in p_{2+j} \pi_j - i (-1+T) p_{2+k} \pi_j + \\ &\frac{i}{2} (-1+T) T \in p_{2+k} \pi_j + T^3 \in p_{2+i} p_{2+j} \pi_i \pi_j - T^3 \in p_{2+j}^2 \pi_i \pi_j - \\ &(-1+T) T^2 \in p_{2+k} \pi_j + T^3 \in p_{2+i} p_{2+j} \pi_i \pi_j - T^3 \in p_{2+j}^2 \pi_i \pi_j - \\ &(-1+T) T^2 \in p_{2+k} \pi_i \pi_j - \frac{1}{2} (-1+T) T \in p_{2+j} p_{2+k} \pi_i \pi_j + \\ &(-1+T) T \in p_{2+k}^2 \pi_i \pi_j - \frac{1}{2} (-1+T) T \in p_{2+j} p_{2+k} \pi_i^2 + \frac{1}{2} (-1+T) T \in p_{2+k}^2 \pi_j^2 + \\ &i p_{2+k} \pi_k - 2 i \in p_{2+k} \pi_k + T^2 \in p_{2+k} p_{2+k} \pi_i \pi_k - (-1+T) T \in p_{2+j} p_{2+k} \pi_i \pi_k - \\ &T \in p_{2+k}^2 \pi_i \pi_k + T \in p_{2+j} p_{2+k} \pi_j \pi_k - T \in p_{2+k}^2 \pi_j \pi_k \end{aligned}$$

Invariance under the other Reidemeister moves is proven in a similar way. See IType.nb at $\omega \epsilon \beta/ap$.

There's more! To get sl_2 invariants mod ϵ^3 , add the following to $L(X_{ii}^+)$, $L(X_{ii}^-)$, and $L(C_i^{\varphi})$, respectively (and see More.nb at ω - $\epsilon\beta/ap$ for the verifications):

 $\odot \epsilon^2 r_2[1, i, j]$

$$\frac{\square}{12} \stackrel{1}{\in} \stackrel{2}{\leftarrow} \left(-6 p_i x_i + 6 p_j x_i - 3 (-1 + 3 T) p_i p_j x_i^2 + 3 (-1 + 3 T) p_i p_j x_i^2 + 3 (-1 + 3 T) p_j^2 x_i^2 + 4 (-1 + T) p_i^2 p_j x_i^3 - 2 (-1 + T) (5 + T) p_i p_j^2 x_i^3 + 2 (-1 + T) (3 + T) p_j^3 x_i^3 + 18 p_i p_j x_i x_j - 18 p_j^2 x_i x_j - 6 p_i^2 p_j x_i^2 x_j + 6 (2 + T) p_i p_j^2 x_i^2 x_j - 6 (1 + T) p_j^3 x_i^2 x_j - 6 p_i p_j^2 x_i x_j^2 + 6 p_j^3 x_i x_j^2 \right)$$

 $\odot \epsilon^2 r_2[-1, i, j]$

$$\begin{array}{c} \hline \\ \hline \\ \hline \\ 12\,T^2 \end{array} \in ^2 \left(-6\,T^2\,p_i\,x_i+6\,T^2\,p_j\,x_i\,+ \\ & 3\,\left(-3+T\right)\,T\,p_i\,p_j\,x_i^2-3\,\left(-3+T\right)\,T\,p_j^2\,x_i^2-4\,\left(-1+T\right)\,T\,p_i^2\,p_j\,x_i^3\,+ \\ & 2\,\left(-1+T\right)\,\left(1+5\,T\right)\,p_i\,p_j^2\,x_i^3-2\,\left(-1+T\right)\,\left(1+3\,T\right)\,p_j^3\,x_i^3\,+ \\ & 18\,T^2\,p_i\,p_j\,x_i\,x_j-18\,T^2\,p_j^2\,x_i\,x_j-6\,T^2\,p_i^2\,p_j\,x_i^2\,x_j+6\,T\,(\,1+2\,T\,)\,p_i\,p_j^2\,x_i^2\,x_j\,- \\ & 6\,T\,\left(1+T\right)\,p_j^3\,x_i^2\,x_j-6\,T^2\,p_i\,p_j^2\,x_i\,x_j^2+6\,T^2\,p_j^3\,x_i\,x_j^2 \right) \end{array}$$

$\odot \epsilon^2 \gamma_2 [\varphi, i]$

;

 $\frac{\Box}{2} - \frac{1}{2} \in^2 \varphi^2 p_i x_i$

Even more! • The sl_2 formulas mod ϵ^4 are in the last page of the handout of [BN3].

- Using [GPV] we can show that every finite type invariant is I-Type.
- Probably, $\langle \text{Reshetikhin-Turaev} \rangle \subset \langle \text{I-Type} \rangle$ efficiently.
- Possibly, $\langle Rozansky Polynomials \rangle \subset \langle I-Type \rangle$ efficiently.
- Knot signatures are I-Type, at least mod 8.
- We already have some work on sl_3 , and it leads to the strongest genuinely-computable knot invariant presently known.

The $sl_3^{\ell\epsilon^2}$ Example [BV3]. Here we have two formal variables $T_1 \odot F_1[\{s_j, i_j\}] := CF[$ and T_2 , we set $T_3 := T_1 T_2$, we integrate over 6 variables for each edge: p_{1i} , p_{2i} , p_{3i} , x_{1i} , x_{2i} , and x_{3i} . \odot **T**₃ = **T**₁ **T**₂; *i* ⁺ := *i* + **1**; **\$**π = $(CF@Normal[#+0[e]^2]/.$ $\left\{\pi_{is_} \Rightarrow \mathbf{B}^{-1} \pi_{is}, \mathbf{x}_{is_} \Rightarrow \mathbf{B}^{-1} \mathbf{x}_{is}, \mathbf{p}_{is_} \Rightarrow \mathbf{B} \mathbf{p}_{is}\right\} / .$ $\in \mathbf{B}^{b_{-}}$ /: $b < 0 \rightarrow 0$ /. $\mathbf{B} \rightarrow 1$) &; \odot vs_i := Sequence [p_{1,i}, p_{2,i}, p_{3,i}, x_{1,i}, x_{2,i}, x_{3,i}]; $\mathcal{F}[is_{-}] := \mathbb{E}[Sum[\pi_{v,i} p_{v,i}, \{i, \{is\}\}, \{v, 3\}]];$ $\mathcal{L}[K] := CF[\mathcal{L}/@Features[K][2]];$ vs[K] := Union @@ Table[{vs_i}, {i, Features[K][1]}] The Lagrangian. $\textcircled{\baselineskip} \mathfrak{L}[X_{i_{_},j_{_}}[s_{_}]] := T_3^s \mathbb{E} \left[\mathsf{CF@Plus} \right[$ $\sum_{i=1}^{3} \left(\mathbf{x}_{vi} \left(\mathbf{p}_{vi^{*}} - \mathbf{p}_{vi} \right) + \mathbf{x}_{vj} \left(\mathbf{p}_{vj^{*}} - \mathbf{p}_{vj} \right) + \left(\mathbf{T}_{v}^{s} - \mathbf{1} \right) \mathbf{x}_{vi} \left(\mathbf{p}_{vi^{*}} - \mathbf{p}_{vj^{*}} \right) \right),$ $(T_1^s - 1) p_{3j} x_{1i} (T_2^s x_{2i} - x_{2j}),$ $\epsilon s (T_3^s - 1) p_{1i} (p_{2i} - p_{2i}) x_{3i} / (T_2^s - 1),$ $\epsilon s \left(1 / 2 + T_2^s p_{1i} p_{2j} x_{1i} x_{2i} - p_{1i} p_{2j} x_{1i} x_{2j} - p_{3i} x_{3i} - p_{3i} x_{3i} - p_{3i} x_{3i} \right)$ $(T_2^s - 1) p_{2j} p_{3i} x_{2i} x_{3i} + (T_3^s - 1) p_{2j} p_{3j} x_{2i} x_{3i} +$ $2 p_{2j} p_{3i} x_{2j} x_{3i} + p_{1i} p_{3j} x_{1i} x_{3j} - p_{2i} p_{3j} x_{2i} x_{3j} T_{2}^{s} p_{2j} p_{3j} x_{2i} x_{3j} +$ $((T_1^s - 1) p_{1j} x_{1i} (T_2^{2s} p_{2j} x_{2i} - T_2^s p_{2j} x_{2j} (T_{2}^{s} + 1) (T_{3}^{s} - 1) p_{3j} x_{3i} + T_{2}^{s} p_{3j} x_{3j} +$ $(T_3^{s} - 1) p_{3j} x_{3i} (1 - T_2^{s} p_{1i} x_{1i} + p_{2i} x_{2j} + (T_2^{s} - 2) p_{2j} x_{2j})) /$ $(T_2^s - 1))$ $\label{eq:linear_constraint} {}^{\textcircled{\sc black {\circlambda}}} \mathcal{L}[\mathsf{C}_{i_{-}}[\mathscr{P}_{-}]] := \mathsf{T}_{3}^{\mathscr{P}} \mathbb{E} \left[\sum_{\nu=1}^{3} \mathsf{x}_{\nu i} \; (\mathsf{p}_{\nu i^{+}} - \mathsf{p}_{\nu i}) + \epsilon \; \mathscr{P} \; (\mathsf{p}_{3i} \; \mathsf{x}_{3i} - 1 \, / \, 2) \right]$ **Reidemeister 3.** © Short $lhs = \int \mathcal{F}[i, j, k] \times \mathcal{L} /@ (X_{i,j}[1] X_{i^{+},k}[1] X_{j^{+},k^{+}}[1])$ $d\{vs_{i}, vs_{j}, vs_{k}, vs_{i^{+}}, vs_{j^{+}}, vs_{k^{+}}\}$ $\Box T_1^3 T_2^3$ $\mathbb{E}\left[\frac{3 \in}{2} + \mathsf{T}_{1}^{2} \, \mathsf{p}_{1,2+i} \, \pi_{1,i} - (-1 + \mathsf{T}_{1}) \, \mathsf{T}_{1} \, \mathsf{p}_{1,2+j} \, \pi_{1,i} + \ll 150 \right]$ ^(c) rhs = $\int \mathcal{F}[i, j, k] \times \mathcal{L} / @ (X_{j,k}[1] X_{i,k^{+}}[1] X_{i^{+},j^{+}}[1])$ $d\{vs_{i}, vs_{j}, vs_{k}, vs_{i^{+}}, vs_{j^{+}}, vs_{k^{+}}\};$ 1hs == rhs □ True The Trefoil. \odot K = Knot[3, 1]; $\int \mathcal{L}[K] dvs[K]$ \Box - ((i $T_1^2 T_2^2$ $\mathbb{E}\left[-\left(\left(\in \ \left(1-T_{1}+T_{1}^{2}-T_{2}-T_{1}^{3} \ T_{2}+T_{2}^{2}+T_{1}^{4} \ T_{2}^{2}-T_{1} \ T_{2}^{3}-\right.\right.\right.\right.$ $T_{1}^{4}T_{2}^{3} + T_{1}^{2}T_{2}^{4} - T_{1}^{3}T_{2}^{4} + T_{1}^{4}T_{2}^{4}$)) / ((1 - T₁ + T₁²) $(1 - T_2 + T_2^2)$ $(1 - T_1 T_2 + T_1^2 T_2^2))))))/$ $((1 - T_1 + T_1^2) (1 - T_2 + T_2^2) (1 - T_1 T_2 + T_1^2 T_2^2)))$

 $s (1/2 - g_{3ii} + T_2^s g_{1ii} g_{2ji} - g_{1ii} g_{2jj} - (T_2^s - 1) g_{2ji} g_{3ii} +$ $2 g_{2ii} g_{3ii} - (1 - T_3^{s}) g_{2ii} g_{3ii} - g_{2ii} g_{3ii} - T_2^{s} g_{2ii} g_{3ii} +$ **8**1ii **8**3ii + $((T_1^{s} - 1) g_{1ji} (T_2^{2s} g_{2ji} - T_2^{s} g_{2jj} + T_2^{s} g_{3jj}) +$ $(T_3^{s} - 1) g_{3ji} (1 - T_2^{s} g_{1ii} - (T_1^{s} - 1) (T_2^{s} + 1) g_{1ji} +$ $(T_2^s - 2) g_{2jj} + g_{2ij}) / (T_2^s - 1))$ © F₂[{s0_, i0_, j0_}, {s1_, i1_, j1_}] := $CF[s1(T_1^{s0} - 1)(T_2^{s1} - 1)^{-1}(T_3^{s1} - 1)g_{1,j1,j0}g_{3,j0,j1}$ $\left(\left(\mathsf{T}_{2}^{S0}\,\mathsf{g}_{2,\,i1,\,i0}-\mathsf{g}_{2,\,i1,\,j0}\right)-\left(\mathsf{T}_{2}^{S0}\,\mathsf{g}_{2,\,j1,\,i0}-\mathsf{g}_{2,\,j1,\,j0}\right)\right)\right]$ $\odot F_3[\varphi_{,k_{}}] = \varphi g_{3kk} - \varphi / 2;$ We call the invariant computed θ : $\bigcirc \Theta[K_] := \Theta[K] = Module \{X, \varphi, n, A, \Delta, G, ev, \Theta\},$ $\{X, \varphi\} = \operatorname{Rot}[K]; n = \operatorname{Length}[X];$ A = IdentityMatrix[2 n + 1]; Cases X, $\{s_{j}, i_{j}, j_{j}\}$ $\left(A [\{i, j\}, \{i+1, j+1\}] + = \begin{pmatrix} -T^{s} T^{s} - 1 \\ 0 & -1 \end{pmatrix} \right)];$ $\Delta = \mathbf{T}^{(-\text{Total}[\varphi] - \text{Total}[\times [All, 1]])/2} \text{Det}[A]$ G = Inverse[A]; $\mathsf{ev}[\mathcal{S}_{-}] := \mathsf{Factor}[\mathcal{S} / . \mathbf{g}_{\nu_{-},\alpha_{-},\beta_{-}} \Rightarrow (\mathsf{G}[\![\alpha, \beta]\!] / . \mathsf{T} \to \mathsf{T}_{\nu})];$ $\boldsymbol{\Theta} = ev \left[\sum_{k=1}^{n} \mathbf{F}_{1} [X[[k]]] \right];$ $\label{eq:rescaled_states} \varTheta += \operatorname{ev} \big[\sum_{k1=1}^n \sum_{k2=1}^n \mathsf{F}_2 [X[[k1]], X[[k2]]] \big];$ $\Theta += ev \left[\sum_{k=1}^{2n} F_3[\varphi[k]], k \right]$; Factor@{ Δ , (Δ /. $T \rightarrow T_1$) (Δ /. $T \rightarrow T_2$) (Δ /. $T \rightarrow T_3$) Θ } |; Some Knots.

$$\overline{\bigcirc} \text{ Expand [} \Theta [\text{Knot [} 3, 1]]]$$

$$\overline{=} \left\{ -1 + \frac{1}{T} + T, -\frac{1}{T_1^2} - T_1^2 - \frac{1}{T_2^2} - \frac{1}{T_1^2} T_2^2 + \frac{1}{T_1 T_2^2} + \frac{1}{T_1 T_2^2} + \frac{1}{T_1 T_2^2} + \frac{1}{T_1^2 T_2^2} + \frac$$

© GraphicsRow[PolyPlot[⊖[Knot[#]], Labeled → True] & /@ {"3_1", "K11n34", "K11n42"}]

K11n34 K11n42

So θ detects knot mutation and separates the Conway knot K11n34 from the Kinoshita-Terasaka knot K11n42!

PolyPlot[@[TorusKnot @@ #], ImageSize → 480], TubePlot[TorusKnot @@ #, ImageSize → 240], {Right, Bottom}, {Right, Bottom}] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

Unproven Fact. For any knot *K*, twice its genus g(K) bounds the T_1 degree of θ : deg_{T1} $\theta(K) \le 2g(K)$.

The 48-crossing Gompf-Scharlemann-Thompson GST_{48} knot [GST] is significant because it may be a counterexample to the slice-ribbon conjecture:

Gompf Scharlemann Thompson

 $\widehat{ \text{GST}}_{48} = \operatorname{EPD} \left[X_{14,1}, \overline{X}_{2,29}, X_{3,40}, X_{43,4}, \overline{X}_{26,5}, X_{6,95}, X_{96,7}, X_{13,8}, \overline{X}_{9,28}, X_{10,41}, X_{42,11}, \overline{X}_{27,12}, X_{30,15}, \overline{X}_{16,61}, \overline{X}_{17,72}, \overline{X}_{18,83}, X_{19,34}, \overline{X}_{89,20}, \overline{X}_{21,92}, \overline{X}_{79,22}, \overline{X}_{68,23}, \overline{X}_{57,24}, \overline{X}_{25,56}, X_{62,31}, X_{73,32}, X_{84,33}, \overline{X}_{50,35}, X_{36,81}, X_{37,70}, X_{38,59}, \overline{X}_{39,54}, X_{44,55}, X_{58,45}, X_{69,46}, X_{80,47}, X_{48,91}, X_{390,49}, X_{51,82}, X_{52,71}, X_{53,60}, \overline{X}_{63,74}, \overline{X}_{64,85}, \overline{X}_{76,65}, \overline{X}_{87,66}, \overline{X}_{67,94}, \overline{X}_{75,86}, \overline{X}_{88,77}, \overline{X}_{78,93} \right];$

AbsoluteTiming [PolyPlot [$\Theta_{48} = \Theta @ GST_{48}$, ImageSize \rightarrow Small]]

 $\bigcirc \{ \text{Exponent}[\Theta_{48}[1]], T], \text{Floor}[\text{Exponent}[\Theta_{48}[2]], T_2] / 2] \} \\ \square \{8, 10\}$

So Θ knows things about GST_{48} that Δ doesn't!

Ohtsuki Garoufalidis Rozansky Kricker Schaveling Kashaev **Prior Art.** θ is probably equal to the "2-loop polynomial" studied by Ohtsuki [Oh2] (at greater difficulty, with harder computations), continuing B-N, Garoufalidis, Rozansky, Kricker, and Schaveling [BNG, GR, R1, R2, R3, Kr, Sch]. θ is related, but probably not equivalent, to the invariant studied by Garoufalidis– Kashaev [GK].

Next, a random 300 crossing knot from [DHOEBL] (more at $\omega\epsilon\beta/DK$):

The Rolfsen Table of Knots.

Where is it coming from? The most honest answer is "we don't know" (and that's good!). The second most, "undetermined coefficients for an ansatz that made sense". The ansatz comes from the following principles / earlier work:

Morphisms have generating functions. Indeed, there is an isomorphism

$$G: \operatorname{Hom}(\mathbb{Q}[x_i], \mathbb{Q}[y_i]) \to \mathbb{Q}[y_i][\xi_i]$$

and by PBW, many relevant spaces are polynomial rings, though only as vector spaces.

Composition is integration. Indeed, if $f \in \text{Hom}(\mathbb{Q}[x_i], \mathbb{Q}[y_j])$ and $g \in \text{Hom}(\mathbb{Q}[y_j], \mathbb{Q}[z_k])$, then

$$\mathcal{G}(g \circ f) = \int e^{-y \cdot \eta} fg \, dy \, d\eta$$

Use universal invariants. These take values in a universal enveloping algebra (perhaps quantized), and thus they are expressible as long compositions of generating functions. See [La, Oh1].

"Solvable approximation" \rightarrow **perturbed Gaussians.** Let g be a semisimple Lie algebra, let h be its Cartan subalgebra, and let b^u and b^l be its upper and lower Borel subalgebras. Then b^u has a bracket β , and as the dual of b^l it also has a cobracket δ , and in fact, $g \oplus h \equiv \text{Double}(b^u, \beta, \delta)$. Let $g_{\epsilon}^+ \coloneqq \text{Double}(b^u, \beta, \epsilon\delta) \pmod{\epsilon^{d+1}}$ it is solvable for any *d*). Then by [BV3, BN1] (in the case of $g = sl_2$) all the interesting tensors of $\mathcal{U}(g_{\epsilon}^+)$ (quantized or not) are perturbed Gaussian with perturbation parameter ϵ with with understood bounds on the degrees of the perturbations.

- [BN1] D. Bar-Natan, *Everything around* sl_{2+}^{ϵ} *is DoPeGDO.* **References.** *So what?*, talk given in "Quantum Topology and Hyperbolic Geometry Conference", Da Nang, Vietnam, May 2019. Handout and video at $\omega\epsilon\beta$ /DPG.
- [BN2] D. Bar-Natan, *Algebraic Knot Theory*, talk given in Sydney, September 2019. Handout and video at $\omega\epsilon\beta/AKT$.
- [BN3] D. Bar-Natan, Cars, Interchanges, Traffic Counters, and some Pretty Darned Good Knot Invariants, talk given in "Using Quantum Invariants to do Interesting Topology", Oaxaca, Mexico, October 2022. Handout and video at ωεβ/Cars.
- [BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103–133.
- [BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, Proc. Amer. Math. Soc. 147 (2019) 377–397, arXiv:1708.04853.
- [BV2] D. Bar-Natan and R. van der Veen, A Perturbed-Alexander Invariant, Quantum Topology 15 (2024) 449–472, ωεβ/APAI.

[BV3] D. Bar-Natan and R. van der Veen, A Very Fast, Very Strong, Topologically Meaningful and Fun Knot Invariant, in preparation, draft at ωεβ/Theta.

- [BV3] D. Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Functions for Universal Knot Invariants, arXiv:2109.02057.
- [BG] J. Becerra Garrido, Universal Quantum Knot Invariants, Ph.D. thesis, University of Groningen, ωεβ/BG.
- [DHOEBL] N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattacharyya, D. Lei, and others, *Random Knots: A Preliminary Report*, lecture notes at $\omega\epsilon\beta$ /DHOEBL. Also a data file at $\omega\epsilon\beta$ /DD.
- [GK] S. Garoufalidis and R. Kashaev, Multivariable Knot Polynomials from Braided Hopf Algebras with Automorphisms, arXiv:2311.11528.
- [GR] S. Garoufalidis and L. Rozansky, The Loop Expansion of the Kontsevich Integral, the Null-Move, and S-Equivalence, arXiv:math.GT/0003187.
- [GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305–2347, arXiv:1103.1601.
- [GPV] M. Goussarov, M. Polyak, and O. Viro, *Finite type invariants of classical and virtual knots*, Topology **39** (2000) 1045–1068, arXiv: math.GT/9810073.
- [Kr] A. Kricker, The Lines of the Kontsevich Integral and Rozansky's Rationality Conjecture, arXiv:math/0005284.
- [La] R. J. Lawrence, Universal Link Invariants using Quantum Groups, Proc. XVII Int. Conf. on Diff. Geom. Methods in Theor. Phys., Chester, England, August 1988. World Scientific (1989) 55–63.
- [LV] D. López Neumann and R. van der Veen, Genus Bounds from Unrolled Quantum Groups at Roots of Unity, arXiv:2312.02070.
- [Oh1] T. Ohtsuki, *Quantum Invariants*, Series on Knots and Everything 29, World Scientific 2002.
- [Oh2] T. Ohtsuki, On the 2–Loop Polynomial of Knots, Geom. Topol. 11-3 (2007) 1357–1475.
- [Ov] A. Overbay, *Perturbative Expansion of the Colored Jones Polynomial*, Ph.D. thesis, University of North Carolina, August 2013, $\omega\epsilon\beta$ /Ov.
- [R1] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones Polynomial and Witten's Invariant of 3D Manifolds, I, Comm. Math. Phys. 175-2 (1996) 275–296, arXiv:hep-th/9401061.
- [R2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1–31, arXiv:q-alg/9604005.
- [R3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
- [Sch] S. Schaveling, *Expansions of Quantum Group Invariants*, Ph.D. thesis, Universiteit Leiden, September 2020, ωεβ/Scha.

Thanks for bearing with me!

Dror Bar-Natan: Talks: Pitzer-250308: Δ Saifart Draam	Dream. There is a similar perturbed Gaussian integral formu-
A Sellett Diealli Inanks for inviting me to Pitzer College!	In for θ , but with integration over $6H_1(\Sigma)$. The quadratic Q will
Abstract. Given a knot K with a Seifert surface Σ , I dream	be the same as in the Seifert-Alexander formula (but repeated 3
that the well-known Seifert linking form Q , a quadratic form on	times, for each I_{ν}). The perturbation P_{ϵ} will be given by low-
$H_1(\Sigma)$, has plenty docile local perturbations P_{ϵ} such that the for-	degree finite type invariants of curves on Σ (possibly also depen-
mal Gaussian integrals of $\exp(Q + P_{\epsilon})$ are invariants of K.	dent on the intersection points of such curves, or on other infor-
In my talk I will explain what the above means, why this dream	mation coming from Σ).
is oh so sweet, and why it is in fact closer to a plan than to a	Evidence. Experimentally (yet undeniably), deg θ is bounded by
delusion. Joint with Roland van der Veen.	the genus of Σ . How else could such a genus bound arise? Further
The Seifert-Alexander Formula, With	very strong evidence comes from the conjectural (yet undeniable)
$P \ O \in H_1(\Sigma)$	understanding of θ as the two-loop contribution to the Kontsevich
$(p, q) = T^{1/2} \mu(p^+, q) = T^{-1/2} \mu(p, q^+)$	integral [Oh] and/or as the "solvable approximation" of the uni-
Q(P,G) = I + lk(P,G) - I + lk(P,G)	versal <i>sl</i> ₃ invariant [BN1, BV2].
$\Delta(K) = \det(Q)$	Why so sweet? It will allow us to prove the aforementioned ge-
$dp dx \exp Q(p, x) \doteq \det(Q)^{-1}$	nus bound and likely, the hexagonal symmetry. Sweeter and dre-
$\int_{2H_1(\Sigma)} (1 - 1) \int_{2H_1(\Sigma)} (1 - 1) \int_{2$	amier, it may allow us to say something about ribbon knots!
(where \doteq means "ignoring silly factors").	
Perturbed Gaussian Integration. We say	
that $P_{\epsilon} \in \epsilon \mathbb{Q}[x_1, \dots, x_n][\epsilon]$ is <i>M</i> -docile (for	
some $M: \mathbb{N} \to \mathbb{N}$) if for every monomial m From Mexico City, tariffs exemp	
in P_{ϵ} we have deg _x , $(m) \leq M(\deg_{\epsilon}(m))$.	
Theorem (Feynman). If Q is a quadratic in x_1, \ldots, x_n and P_{ϵ} is	What's "local"? How will we compute? The Bedlewo Alexan-
docile, set $Z_{\epsilon} = \int_{\mathbb{T}^n} dx_1 \cdots x_n \exp(Q + P_{\epsilon})$. Then every coeffi-	der formula: Let F be the faces of a knot diagram. Make an $F \times F$
cient in the ϵ -expansion of Z_{ϵ} is computable in polynomial time	matrix A by adding for each crossing contributions
in <i>n</i> . in fact,	(-1 - 1 - 2 - 0) $(1 - 1 - 0 - 0)$
$(1/27 + (2^{-1})) = (2^{-1}) + $	\mathbf{x}^{k} 0 0 0 0 \mathbf{x}^{k} 0 0 0 0
$\Delta^{1/2} Z_{\epsilon} \doteq \left\langle \exp Q^{-1}(\partial_{x_i}), \exp P_{\epsilon} \right\rangle = \qquad \text{sum over all pairings}$	$l \xrightarrow{i} i \xrightarrow{j} 0 \xrightarrow{j} 1 \xrightarrow{-1} 0 = l \xrightarrow{j} 2 \xrightarrow{i} 1 \xrightarrow{0} 0$
	$\begin{bmatrix} v_i \\ v_i \end{bmatrix} \begin{bmatrix} v_i \\ 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} v_i \\ v_i \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$
$Q(T, 1)$ is like that With $c^2 = 0$	$(1 \ 0 \ 1 \ 0)$ $(1 \ 0 \ 1 \ 0)$
P_{ϵ} P_{ϵ} P_{ϵ}	at rows / columns (i, j, k, l) . Then $\Delta = \det \left((T^{1/2}A - T^{-1/2}A)/2 \right)$.
$ \qquad \qquad$	AND AN AND
$\sum_{p_4 x_4} \sum_{p_4 x_4} \sum_{z_4 = 1}^{\infty} \sum_{z$	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
$\begin{bmatrix} 8 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	MAN AND AND
where $\mathcal{L}(\mathbf{X}_{ij}^{c}) = \mathbb{C}^{-1}$,	(the Seifert algorithm by Emily Redelmeier)
$\mathcal{L}(X_{37}^{*}) = x_i(p_{i+1} - p_i) + x_j(p_{j+1} - p_j)$	Expect the like for θ ! Expect more like θ ! Topology first! Resist
$ \begin{array}{c} \left \begin{array}{c} \mathcal{L}_{2}^{s} \\ \mathcal{R}_{2}^{s} \\ \mathcal{R}_{3}^{s} \end{array} \right\rangle \mathcal{L}(C_{4}^{-1}) \\ + (T^{s} - 1) x_{i} (p_{i+1} - p_{j+1}) \end{array} $	the tyranny of quantum algebra!
$\mathbb{R}^{2}_{p_{7}x_{7}} \qquad \epsilon s \left((T^{s}-1)x_{i}p_{i}) \right)$	
$\mathcal{L}(X_{62}^+)_{6} = \begin{pmatrix} x_i(p_i - p_j) \\ +2(1 - r, p_i) \end{pmatrix} = 1$	
$\mathbb{R}^2_{p_6x_6} _{p_2} \qquad \qquad$	
$L(C_i^{\varphi}) = x_i(p_{i+1} - p_i) + \epsilon \varphi(1/2 - x_i p_i)$	0 0 0 0 to
$\theta(T_1, T_2)$ is likewise, with harder formulas	
$\mathbb{R}_{p_1x_1}^2$ and integration over $6F$	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	* * * # # # # # # # # # # # # # # # # #
Right. The 132-crossing torus knot $I_{22/7}$ (more at $\omega \epsilon \beta/1$ K).	2 2 2 7 7 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Below. Random knots from [DHOEBL], with 101-115 crossings	
(more at $\omega \epsilon \beta / DK$).	

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Pitzer-250308.

2025/03/11@09:36

ωεβ:=http://drorbn.net/ktc25

The Strongest Genuinely Computable Knot Invariant Since In 2024

The First International On-line Knot Theory Congress

February 1-5, 2025

Dror Bar-Natan

Abstract. "Genuinely computable" means we have computed it for random knots with over 300 crossings. "Strongest" means it separates prime knots with up to 15 crossings better than the less-computable HOMFLY-PT and Khovanov homology taken together. And hey, it's also meaningful and fun.

Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint with van der Veen.

These slides and the code within are online at $\omega \epsilon \beta := http://drorbn.net/ktc25$

(I wish all speakers were making their slides available before / for their talks).

- (I'll post the video there too)
- A paper-in-progress is at $\omega\epsilon\beta/Theta.$
- If you can, please turn your video on!

ωεβ:=http://drorbn.net/ktc25

Lou Kauffman at MSRI, March 1991

The Strongest Genuinely Computable Knot

Invariant Since In 2024

Strongest? Genuinely Computable?

Acknowledgement.

This work was supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

ωεβ:=http://drorbn.net/ktc25

ωεβ=http://drorbn.net/ktc25

Strongest.

Testing $\Theta = (\Delta, \theta)$ on prime knots up to mirrors and reversals, counting the number of distinct values (with deficits in parenthesis): (p1: [Ro1, Ro2, Ro3, Ov, BV1])

	knots	(<i>H</i> , <i>Kh</i>)	(Δ, ρ_1)	$\Theta = (\Delta, \theta)$	(Δ, θ, ρ_2)	all together
reign		2005-22	2022-24	2024	2025-	
$xing \leq 10$	249	248 (1)	249 (0)	249 (0)	249(0)	249 (0)
$xing \leq 11$	801	771 (30)	787 (14)	798 (3)	798 (3)	798 (3)
$xing \leq 12$	2,977	(214)	(95)	(19)	(10)	(10)
$xing \leq 13$	12,965	(1,771)	(959)	(194)	(169)	(169)
$xing \leq 14$	59,937	(10,788)	(6,253)	(1,118)	(982)	(981)
xing < 15	313,230	(70,245)	(42,914)	(6,758)	(6,341)	(6,337)

ωεβ:=http://drorbn.net/ktc25

Genuinely Computable. Here's Θ on a random 300 crossing knot (from [DHOEBL]). For almost every other knot invariant, that's science fiction. Gukov: Should take 300 years if Moore's law persists. Us: A few hours on a laptop, 0 GPUs.

Fun. There's so much more to see in 2D pictures than in 1D ones! Yet almost

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.

ωeβ:=http://drorbn.net/ktc25

Random knots (from [DHOEBL]) with 101-115 crossings:

The torus knots $TK_{13/2}$, $TK_{17/3}$, $TK_{13/5}$, and $TK_{7/6}$:

The Rolfsen Table:

The torus knot $TK_{22/7}$:

Meaningful.

 θ gives a genus bound (unproven yet with confidence). We hope (with reason) it says something about ribbon knots.

Convention.

ωεβ:=http://drorbn.net/ktc25

ωeβ:=http://drorbn.net/ktc25

ωεβ=http://drorbn.net/ktc25

T, T_1 , and T_2 are indeterminates and $T_3 := T_1T_2$.

ωεβ:=http://drorbn.net/ktc25

Preparation. Draw an *n*-crossing knot *K* as a diagram *D* as on the right: all crossings face up, and the edges are marked with a running index $k \in \{1, ..., 2n + 1\}$ and with rotation numbers φ_k .

Model *T* **Traffic Rules.** Cars always drive forward. When a car crosses over a sign-*s* bridge it goes through with (algebraic) probability $T^s \sim 1$, but falls off with probability $1 - T^s \sim 0$. At the very end, cars fall off and disappear. On various edges <u>traffic counters</u> are placed. See also [Jo, LTW].

ωεβ:=http://drorbn.net/ktc25

(the Δ_{ν} are normalizations discussed later)

Definition. The traffic function $G = (g_{\alpha\beta})$ (also, the Green function or the two-point function) is the reading of a traffic counter at β , if car traffic is injected at α (if $\alpha = \beta$, the counter is after the injection point). There are also model- T_{ν} traffic functions $G_{\nu} = (g_{\nu\alpha\beta})$ for $\nu = 1, 2, 3$. **Example.**

 $\theta(D) := \Delta_1 \Delta_2 \Delta_3 \left(\sum_c F_1(c) + \sum_{c_0, c_1} F_2(c_0, c_1) + \sum_k F_3(\varphi_k, k) \right).$

If these pictures remind you of Feynman diagrams, it's because they are Feynman

Given crossings
$$c = (s, i, j)$$
, $c_0 = (s_0, i_0, j_0)$, and $c_1 = (s_1, i_1, j_1)$, let

$$F_1(c) = s [1/2 - g_{3ii} + T_2^s g_{1ii}g_{2ji} - T_2^s g_{3ij}g_{2ji} - (T_2^s - 1)g_{3ii}g_{2ji}$$

$$\begin{aligned} +(T_3^{s}-1)g_{2ji}g_{3ji} - g_{1ii}g_{2jj} + 2g_{3ii}g_{2jj} + g_{1ii}g_{3jj} - g_{2ii}g_{3jj}] \\ &+ \frac{s}{T_2^{s}-1}\left[(T_1^{s}-1)T_2^{s}\left(g_{3jj}g_{1ji} - g_{2jj}g_{1ji} + T_2^{s}g_{1ji}g_{2ji}\right) \\ &+ (T_3^{s}-1)\left(g_{3ji} - T_2^{s}g_{1ii}g_{3ji} + g_{2ij}g_{3ji}\right) + (T_2^{s}-2)g_{2jj}g_{3ji}\right) \\ &- (T_1^{s}-1)(T_2^{s}+1)(T_3^{s}-1)g_{1ji}g_{3ji}\right] \\ F_2(c_0,c_1) = \frac{s_1(T_1^{s_0}-1)(T_3^{s_1}-1)g_{1j_1i_0}g_{3j_0i_1}}{T_2^{s_1}-1}\left(T_2^{s_0}g_{2j_1i_0} + g_{2j_1j_0} - T_2^{s_0}g_{2j_1i_0} - g_{2i_1j_0}\right) \\ F_3(\varphi_k,k) = \varphi_k(g_{3kk}-1/2) \end{aligned}$$

(Computers don't care!)

ωεβ:=http://drorbn.net/ktc25

Lemma 1.

The traffic function $g_{\alpha\beta}$ is a "relative invariant":

(There is some small print for R1 and R2 which change the numbering of the edges and sometimes collapse a pair of edges into one)

diagrams [BN2].

Main Theorem.

The following is a knot invariant:

ωεβ:=http://drorbn.net/ktc25

ωeβ:=http://drorbn.net/ktc25

ωεβ:=http://drorbn.net/ktc25

Proof.

With
$$k^+ := k + 1$$
, the "g-rules" hold near a crossing $c = (s, i, j)$:
 $g_{j\beta} = g_{j^+\beta} + \delta_{j\beta}$ $g_{i\beta} = T^s g_{i^+\beta} + (1 - T^s)g_{j^+\beta} + \delta_{i\beta}$ $g_{2n^+,\beta} = \delta_{2n^+,\beta}$
 $g_{\alpha i^+} = T^s g_{\alpha i} + \delta_{\alpha i^+}$ $g_{\alpha j^+} = g_{\alpha j} + (1 - T^s)g_{\alpha i} + \delta_{\alpha j^+}$ $g_{\alpha,1} = \delta_{\alpha,1}$

 $\omega\epsilon\beta{:=}http://drorbn.net/ktc25$

Corollary 1.

G is easily computable, for AG = I (= *GA*), with *A* the $(2n + 1) \times (2n + 1)$ identity matrix with additional contributions:

And so

Lemma 2.

G =	$ \left(\begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array}\right) $	T 1 0 0 0 0 0	$\begin{array}{c} 1 \\ \frac{1}{T^2 - T + 1} \\ \frac{1}{T^2 - T + 1} \\ \frac{1 - T}{T^2 - T + 1} \\ \frac{1 - T}{T^2 - T + 1} \\ 0 \\ 0 \end{array}$	$\begin{array}{c} T \\ \frac{T}{T^2 - T + 1} \\ \frac{T}{T^2 - T + 1} \\ \frac{1}{T^2 - T + 1} \\ - \frac{(T - 1)T}{T^2 - T + 1} \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 1 \\ \frac{T}{T^2 - T + 1} \\ \frac{T}{T^2 - T + 1} \\ \frac{1}{T^2 - T + 1} \\ \frac{1}{T^2 - T + 1} \\ 0 \\ 0 \end{array}$	$\begin{array}{c} T \\ T^2 \\ T^2 - T + 1 \\ T^2 \\ T^2 - T + 1 \\ 1 \\ 0 \end{array}$	1 1 1 1 1 1 1 1
-----	---	---------------------------------	--	---	--	---	--------------------------------------

ωεβ:=http://drorbn.net/ktc25

The Alexander polynomial Δ is given by

$$\Delta = T^{(-\varphi - w)/2} \det(A),$$

with

$$\varphi = \sum_{k} \varphi_k, \qquad w = \sum_{c} s.$$

We also set $\Delta_{\nu}:=\Delta(\mathcal{T}_{\nu})$ for $\nu=1,2,3$. This defines and explains the normalization factors in the Main Theorem.

Proving invariance is easy:

Corollary 2.

ωεβ:=http://drorbn.net/ktc25

Invariance under R3

This is Theta.nb of http://drorbn.net/ktc25/ap.

Once[<< KnotTheory`; << Rot.m; << PolyPlot.m];

Loading KnotTheory` version of October 29, 2024, 10:29:52.1301.

Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/ktc25/ap to compute rotation numbers. Loading PolyPlot.m from

http://drorbn.net/ktc25/ap to plot 2-variable polynomials.

 $\mathbf{T}_3 = \mathbf{T}_1 \mathbf{T}_2;$

 $CF[\mathcal{S}_] := Expand@Collect[\mathcal{S}, g_, F] / . F \rightarrow Factor;$

$$\begin{split} & \mathsf{F}_1[\{s_-, i_-, j_-\}] = \\ & \mathsf{CF}\Big[\\ & \mathsf{s} \left(1/2 - \mathsf{g}_{3ii} + \mathsf{T}_2^{\mathsf{s}} \mathsf{g}_{1ii} \, \mathsf{g}_{2ji} - \mathsf{g}_{1ii} \, \mathsf{g}_{2jj} - \left(\mathsf{T}_2^{\mathsf{s}} - 1\right) \, \mathsf{g}_{2ji} \, \mathsf{g}_{3ii} + 2 \, \mathsf{g}_{2jj} \, \mathsf{g}_{3ii} - \\ & \left(1 - \mathsf{T}_3^{\mathsf{s}}\right) \, \mathsf{g}_{2ji} \, \mathsf{g}_{3ji} - \mathsf{g}_{2ii} \, \mathsf{g}_{3jj} - \mathsf{T}_2^{\mathsf{s}} \, \mathsf{g}_{2ji} \, \mathsf{g}_{3jj} + \mathsf{g}_{1ii} \, \mathsf{g}_{3jj} + \\ & \left((\mathsf{T}_1^{\mathsf{s}} - 1) \, \mathsf{g}_{1ji} \left(\mathsf{T}_2^{\mathsf{s}} \, \mathsf{g}_{2ji} - \mathsf{T}_2^{\mathsf{s}} \, \mathsf{g}_{2jj} + \mathsf{T}_2^{\mathsf{s}} \, \mathsf{g}_{3jj}\right) + \\ & \left(\mathsf{T}_3^{\mathsf{s}} - 1\right) \, \mathsf{g}_{3ji} \left(1 - \mathsf{T}_2^{\mathsf{s}} \, \mathsf{g}_{1i} - \left(\mathsf{T}_1^{\mathsf{s}} - 1\right) \left(\mathsf{T}_2^{\mathsf{s}} + 1\right) \, \mathsf{g}_{1ji} + \left(\mathsf{T}_2^{\mathsf{s}} - 2\right) \, \mathsf{g}_{2jj} + \mathsf{g}_{2ij}\right)\right) / \\ & \left(\mathsf{T}_2^{\mathsf{s}} - 1\right) \Big]; \\ & \mathsf{F}_2[\{\mathsf{S}\theta_-, i\theta_-, j\theta_-\}, \{\mathsf{s}_1, i1_-, j1_-\}\}] := \\ & \mathsf{CF}\left[\mathsf{s}1 \left(\mathsf{T}_2^{\mathsf{s}\theta} - 1\right) \left(\mathsf{T}_2^{\mathsf{s}1} - 1\right) \, \mathsf{g}_{1,j1,i\theta} \, \mathsf{g}_{3,j\theta,i1} \\ & \left(\mathsf{T}_2^{\mathsf{s}\theta} \, \mathsf{g}_{2,i1,i\theta} - \mathsf{g}_{2,i1,j\theta}\right) - \left(\mathsf{T}_2^{\mathsf{s}\theta} \, \mathsf{g}_{2,j1,j\theta}, j\theta_{1,j1}\right)\Big)\right] \\ & \mathsf{F}_3[\varphi_-, k_-] = -\varphi/2 + \varphi \, \mathsf{g}_{3kk}; \end{split}$$

ωεβ:=http://drorbn.net/ktc25

ωeβ:=http://drorbn.net/ktc25

ωεβ:=http://drorbn.net/ktc25

$$\begin{split} \delta_{i_{-},j_{-}} &:= \mathsf{If}[i === j, 1, 0]; \\ \mathsf{gR}_{s_{-},i_{-},j_{-}} &:= \{ \\ & \mathsf{g}_{v_{-},j\beta_{-}} &:= \mathsf{g}_{v_{-},j\beta_{+}} \otimes \mathsf{g}_{v_{-},i\beta_{+}} \otimes \mathsf{T}_{v}^{\mathsf{s}} \mathsf{g}_{v_{1}^{\mathsf{s}},\beta_{+}} + \left(\mathbf{1} - \mathsf{T}_{v}^{\mathsf{s}}\right) \mathsf{g}_{v_{j}^{\mathsf{s}},\beta_{+}} + \delta_{i\beta}, \\ & \mathsf{g}_{v_{-},a_{-}^{\mathsf{s}}} &:= \mathsf{T}_{v}^{\mathsf{s}} \mathsf{g}_{vai} + \delta_{ai}^{\mathsf{s}}, \mathsf{g}_{v_{-},a_{-}^{\mathsf{s}}} &:= \mathsf{g}_{vaj} + \left(\mathbf{1} - \mathsf{T}_{v}^{\mathsf{s}}\right) \mathsf{g}_{vai} + \delta_{aj}^{\mathsf{s}} \\ & \} \end{split}$$

$$\begin{split} & \mathsf{DSum}[\mathit{Cs}_{__}] := \mathsf{Sum}[\mathit{F}_1[c], \{c, \{\mathit{Cs}\}\}] + \\ & \mathsf{Sum}[\mathit{F}_2[c0, c1], \{c0, \{\mathit{Cs}\}\}, \{c1, \{\mathit{Cs}\}\}] \\ & \mathsf{lhs} = \mathsf{DSum}[\{1, j, k\}, \{1, i, k^*\}, \{1, i^*, j^*\}, \{s, m, n\}] / /. \\ & \mathsf{gR}_{1,j,k} \cup \mathsf{gR}_{1,i,k^+} \cup \mathsf{gR}_{1,i^+,j^+}; \\ & \mathsf{rhs} = \mathsf{DSum}[\{1, i, j\}, \{1, i^*, k\}, \{1, j^*, k^*\}, \{s, m, n\}] / /. \\ & \mathsf{gR}_{1,i,j} \cup \mathsf{gR}_{1,i^+,k} \cup \mathsf{gR}_{1,j^+,k^+}; \\ & \mathsf{Simplify}[\mathsf{lhs} \coloneqq \mathsf{rhs}] \\ & \mathsf{True} \end{split}$$

ωεβ:=http://drorbn.net/ktc25

The Main Program

$$\begin{split} & \Theta[K_{-}] := \mathsf{Module} \left[\{\mathsf{Cs}, \varphi, \mathsf{n}, \mathsf{A}, \Delta, \mathsf{G}, \mathsf{ev}, \Theta \}, \\ & \{\mathsf{Cs}, \varphi \} = \mathsf{Rot}[\mathcal{K}]; \ \mathsf{n} = \mathsf{Length}[\mathsf{Cs}]; \\ & \mathsf{A} = \mathsf{IdentityMatrix}[2 \mathsf{n} + 1]; \\ & \mathsf{Cases} \left[\mathsf{Cs}, \{s_{-}, i_{-}, j_{-}\} \Rightarrow \left(\mathsf{A}[\![\{i, j\}\}, \{i + 1, j + 1\}]\!] + = \left(\begin{array}{c} -\mathsf{T}^{\mathsf{S}} \; \mathsf{T}^{\mathsf{s}} - 1 \\ \theta & -1 \end{array} \right) \right) \right]; \\ & \Delta = \mathsf{T}^{(-\mathsf{Total}[\varphi) - \mathsf{Total}[\mathsf{Cs}[\mathsf{A}1], 1]) / 2} \mathsf{Det}[\mathsf{A}]; \\ & \mathsf{G} = \mathsf{Inverse}[\mathsf{A}]; \\ & \mathsf{ev}[\mathcal{S}_{-}] := \mathsf{Factor}[\mathcal{S} / \cdot \mathfrak{g}_{\nu_{-}, \mathscr{A}_{-}} \Rightarrow (\mathsf{G}[\![\alpha, \beta]\!] / \cdot \mathsf{T} \to \mathsf{T}_{\mathcal{V}})]; \\ & \theta = \mathsf{ev}[\sum_{k=1}^{n} \mathsf{F}_{1}[\mathsf{Cs}[\![k]]]]; \\ & \theta + = \mathsf{ev}[\sum_{k=1}^{n} \mathsf{F}_{2}[\mathsf{Cs}[\![k1]\!], \mathsf{Cs}[\![k2]\!]]; \\ & \theta + = \mathsf{ev}[\sum_{k=1}^{n} \mathsf{F}_{3}[\varphi[\![k]\!], k]]; \\ & \mathsf{Factor} \circledast \{\Delta, (\Delta / \cdot \mathsf{T} \to \mathsf{T}_{1}) (\Delta / \cdot \mathsf{T} \to \mathsf{T}_{2}) (\Delta / \cdot \mathsf{T} \to \mathsf{T}_{3}) \Theta \}]; \end{split}$$

The Trefoil Knot

$$\begin{split} & \textbf{e}\left[\textbf{Knot[3, 1]} \right] // \textbf{Expand} \\ & \left[-1 + \frac{1}{T} + T, \ -\frac{1}{T_1^2} - T_1^2 - \frac{1}{T_2^2} - \frac{1}{T_1^2 T_2^2} + \frac{1}{T_1 T_2^2} + \frac{1}{T_1^2 T_2} + \frac{1}{T_2} + \frac{T_1}{T_2} + \frac{T_2}{T_1} + T_1^2 T_2 - T_2^2 + T_1 T_2^2 - T_1^2 T_2^2 \right] \\ & \textbf{PolyPlot[e}\left[\textbf{Knot[3, 1]}\right], \ \textbf{ImageSize} \rightarrow \textbf{Tiny} \end{split}$$

The Conway and Kinoshita-Terasaka Knots

ωεβ:=http://drorbn.net/ktc25

Conjecture 2.

Conjecture 4.

(Note that the genus of the Conway knot appears to be bigger than the genus of Kinoshita-Terasaka)

ωεβ:=http://drorbn.net/ktc25 εβ:=http://drorbn.net/ktc25 Question 1. What's the relationship between Θ and the Garoufalidis-Kashaev invariants [GK, GL]? Questions, Conjectures, Expectations, Dreams. ωεβ:=http://drorbn.net/ktc25 ωeβ:=http://drorbn.net/ktc25 **Conjecture 3.** θ is the ϵ^1 contribution to the "solvable approximation" of the sl_3 universal invariant, obtained by running the quantization machinery on the double On classical (non-virtual) knots, θ always has hexagonal (D_6) symmetry. $\mathcal{D}(\mathfrak{b}, b, \epsilon \delta)$, where \mathfrak{b} is the Borel subalgebra of sl_3 , b is the bracket of \mathfrak{b} , and δ the cobracket. See [BV2, BN1, Sch] ωeβ:=http://drorbn.net/ktc25 ωeβ:=http://drorbn.net/ktc25 **Fact 5.** θ has a perturbed Gaussian integral formula, with integration carried out over a space 6E, consisting of 6 copies of the space of edges of a knot diagram D.

 θ is equal to the "two-loop contribution to the Kontsevich Integral", as studied by Garoufalidis, Rozansky, Kricker, and in great detail by Ohtsuki [GR, Ro1, Ro2, Ro3, Kr, Oh].

See [BN2].

Conjecture 6. For any knot K, its genus g(K) is bounded by the T_1 -degree of θ : $2g(K) \ge \deg_{T_1} \theta(K).$

Conjecture 7. $\theta(K)$ has another perturbed Gaussian integral formula, with integration carried out over over the space $6H_1$, consisting of 6 copies of $H_1(\Sigma)$, where Σ is a Seifert surface for K.

ωεβ:=http://drorbn.net/ktc25

ωεβ:=http://drorbn.net/ktc25

Expectation 9.

Dream 11.

References.

Is there a direct quantum field theory derivation of θ ? Perhaps using the ϵ -expansion (at constant k!) of Chern-Simons-Witten theory with gauge group $\mathfrak{g}_{+}^{\epsilon} \coloneqq \mathcal{D}(\mathfrak{b}, b, \epsilon \delta)$ with some Seifert-surface-dependent gauge fixing?

There are many further invariants like θ , given by Green function formulas and/or Gaussian integration formulas. One or two of them may be stronger than θ and as computable.

Dream 10.

These invariants can be explained by something less foreign than semisimple Lie algebras.

heta will have something to say about ribbon knots.

ωεβ:=http://drorbn.net/ktc25

Thank You!

Math., 126 (1987) 335-388.

ωεβ:=http://drorbn.net/ktc25

ωεβ:=http://drorbn.net/ktc25

[BV1] —, R. van der Veen, <u>A Perturbed-Alexander Invariant</u>, Quantum Topology **15** (2024) 449–472, $\omega\epsilon\beta/APAI$.

[BV2] —, —, Perturbed Gaussian Generating Functions for Universal Knot Invariants, arXiv: 2109.02057.

 $\label{eq:constraint} \begin{array}{l} [DHOEBL] \mbox{ N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattacharyya, D. Lei, and others, Random Knots: A Preliminary Report, lecture notes at <math display="inline">\omega\epsilon\beta/DHOEBL.$ Also a data file at $\omega\epsilon\beta/DD. \end{array}$

[GK] S. Garoufalidis, R. Kashaev, <u>Multivariable Knot Polynomials from Braided Hopf Algebras</u> with Automorphisms, arXiv:2311.11528.

[GL] -, S. Y. Li, Patterns of the V2-polynomial of knots, arXiv:2409.03557.

[GR] —, L. Rozansky, <u>The Loop Expansion of the Kontsevich Integral</u>, the Null-Move, and <u>S-Equivalence</u>, arXiv:math.GT/0003187.

ωεβ:=http://drorbn.net/ktc25

[Kr] A. Kricker, <u>The Lines of the Kontsevich Integral and Rozansky's Rationality Conjecture</u>, arXiv:math/0005284.

[Jo] V. F. R. Jones, Hecke Algebra Representations of Braid Groups and Link Polynomials, Annals

[LTW] X-S. Lin, F. Tian, Z. Wang, <u>Burau Representation and Random Walk on String Links</u>, Pac. J. Math., **182-2** (1998) 289–302, arXiv:q-alg/9605023.

[Oh] T. Ohtsuki, On the 2-loop Polynomial of Knots, Geom. Top. 11 (2007) 1357-1475.

[Ov] A. Overbay, <u>Perturbative Expansion of the Colored Jones Polynomial</u>, Ph.D. thesis, University of North Carolina, Aug. 2013, ωεβ/Ov.

[Ro1] L. Rozansky, <u>A Contribution of the Trivial Flat Connection to the Jones Polynomial and</u> Witten's Invariant of <u>3D Manifolds</u>, <u>I</u>, Comm. Math. Phys. **175-2** (1996) 275–296, arXiv: hep-th/9401061.

[Ro2] —, <u>The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the</u> <u>Colored Jones Polynomial</u>, Adv. Math. **134-1** (1998) 1–31, arXiv:q-alg/9604005.

[Ro3] —, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv: math/0201139.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.

18

ωεβ:=http://drorbn.net/ktc25

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout: http://www.math.toronto.edu/~drorbn/Talks/USC-240205.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tokyo-230911/

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout: http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ottawa-2306/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/

These slides and all the code within are available at http://drorbn.net/cms21.

(I'll post the video there too)

Kashaev's Signature Conjecture

CMS Winter 2021 Meeting, December 4, 2021

Dror Bar-Natan with Sina Abbasi

Agenda. Show and tell with signatures.

Abstract. I will display side by side two nearly identical computer programs whose inputs are knots and whose outputs seem to always be the same. I'll then admit, very reluctantly, that I don't know how to prove that these outputs are always the same. One program I wrote mostly in Bedlewo, Poland, in the summer of 2003 and as of recently I understand why it computes the Levine-Tristram signature of a knot. The other is based on the 2018 preprint On Symmetric Matrices Associated with Oriented Link Diagrams by Rinat Kashaev (arXiv:1801.04632), where he conjectures that a certain simple algorithm also computes that same signature.

If you can, please turn your video on! (And mic, whenever needed).

Label everything!

16. 168 $PD[X[10, 1, 11, 2], X[2, 11, 3, 12], \ldots]$ { $X_{-}[-1, 11, 2, -10], X_{-}[-11, 3, 12, -2], \ldots$ }

€12 0⁴

Lets run our code line by line... PD[8₂] = PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[4, 13, 5, 14], X[14, 5, 15, 6], X[8, 16, 9, 15], X[16, 8, 1, 7], X[6,9,7,10]];

 $K = 8_2;$

http://drorbn.net/cms21

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/

http://drorbn.net/cms21

24

http://drorbn.net/cms21

http://drorbn.net/cms21

A = Table[0, Length@faces, Length@faces];
A // MatrixForm

0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	
	č	č	č	č	č	č	č	č	~	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0)	

x = XingsByArmpits[1]

 X_{-} [-1, 11, 2, -10]

 $\{8, 10, 2, 9\}$

faces

A[[is, is] += If[Head[x] === X,, (v u 1 u) (v u 1 u)

Do is = Position[faces, #] [1, 1] & /@ List@@x;

	u	1	u	1			u	1	u	1	1	
	1	u	v	u	2		1	u	v	u	1.	
	u	1	u	1.)		u	1	u	1)	
<pre>{x, XingsByArmpits}];</pre>												

http://drorbn.net/cms21

A[[is, is]] += If [Head[x] === X,,

// MatrixForm												
0	0	0	0	0	0	0	0	0	0	١		
0	- V	0	0	0	0	0	- 1	– u	– u			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	-1	0	0	0	0	0	$-\mathbf{V}$	– u	– u			
0	– u	0	0	0	0	0	– u	-1	-1			
0	– u	0	0	0	0	0	– u	-1	-1,			

http://drorbn.net/cms21

Recall, $is = \{8, 10, 2, 9\}$

http://drorbn.net/cms21

Do [is = Position [faces, #] [[1, 1]] & /@ List @@ x;

 $p_{-13,4,-13} \ p_{-11,2,-11} \ p_{-5,14,-5} \ p_{-3,12,-3} \ p_{8,16,8} \ p_{6,-15,-9,6}$

is = Position[faces, #] [[1, 1]] & /@ List @@ x

 $p_{9,-16,7,9} \; p_{10,-7,-1,10} \; p_{-10,-2,-12,-4,-14,-6,-10} \; p_{1,-8,15,5,13,3,11,1}$

A**[[is, is]** += If [Head[x] === X₊,

(u 1	1	u 1			(u 1	1	u ` 1	
1	u	v	u	,	-	1	u	v	u	ļ,
(u	1	u	1)			u	1	u	1,	/

{x, Rest@XingsByArmpits}]

A // MatrixForm -2v 0 - 1 - 1 0 0 0 0 – 2 u – 2 u 0 – 2 v 0 -1 0 0 0 -1 – 2 u – 2 u -1 0 – 2 v 0 0 -1 0 0 – 2 u – 2 u -1 -1 0 – 2 v 0 0 0 0 – 2 u – 2 u 0 0 0 0 2 1 2 u 1 0 2 u 0 0 -1 0 1 1 – 2 v 0 – 2 u 0 -1 0 0 0 0 2 2 u 0 -1+2v 0 -1 0 0 0 1 - 2v - 2u0 -1 0 1 -1 - 2 u - 2 u - 2 u - 2 u 0 - 2 u -1 – 2 u -6 - 5 -2u -2u -2u -2u 2u 0 2 0 -5 -5 + 2 v

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/

http://drorbn.net/cms21

http://drorbn.net/cms21

Kashaev for Mathematicians.

For a knot K and a complex unit ω set $u = \Re(\omega^{1/2})$, $v = \Re(\omega)$, make an $F \times F$ matrix A with contributions

and output $\frac{1}{2}(\sigma(A) - w(K))$.

http://drorbn.net/cms21

http://drorbn.net/cms21

Why are they equal?

I dunno, yet note that

- ▶ Kashaev is over the Reals, Bedlewo is over the Complex numbers.
- ▶ There's a factor of 2 between them, and a shift.

... so it's not merely a matrix manipulation.

Bedlewo for Mathematicians.

For a knot K and a complex unit ω set $t = 1 - \omega$, $r = 2\Re(t)$, make an $F \times F$ matrix A with contributions

(conjugate if going against the flow) and output $\sigma(A)$.

http://drorbn.net/cms21

Theorem. The Bedlewo program computes the Levine-Tristram signature of ${\cal K}$ at $\omega.$

(Easy) **Proof.** Levine and Tristram tell us to look at $\sigma((1 - \omega)L + (1 - \omega^*)L^T)$, where *L* is the linking matrix for a Seifert surface *S* for *K*: $L_{ij} = lk(\gamma_i, \gamma_i^+)$ where γ_i run over a basis of $H_1(S)$ and γ_i^+ is the pushout of γ_i . But signatures don't change if you run over and over-determined basis, and the faces make such and over-determined basis whose linking numbers are controlled by the crossings. The rest is details.

Art by Emily Redelmeier

http://drorbn.net/cms21

Thank You!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/

The PBW Principle Lots of algebras are isomorphic as vector spaces to polynomial algebras. So we want to understand arbitrary linear maps between polynomial algebras.

Convention. For a finite set A, let $z_A := \{z_i\}_{i \in A}$ and let $\zeta_A := \{ z_i^* = \zeta_i \}_{i \in A}.$ $(p, x)^* = (\pi, \xi)$ **The Generating Series** \mathcal{G} : Hom($\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]$) $\to \mathbb{Q}[\![\zeta_A, z_B]\!]$. **Claim.** $L \in \text{Hom}(\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]) \xrightarrow{\sim}_{G} \mathbb{Q}[z_B] \llbracket \zeta_A \rrbracket \ni \mathcal{L}$ via

$$\mathcal{G}(L) := \sum_{n \in \mathbb{N}^{d}} \frac{\zeta_{A}^{n}}{n!} L(z_{A}^{n}) = L\left(e^{\sum_{a \in A} \zeta_{a} z_{a}}\right) = \mathcal{L} = \operatorname{greek} \mathcal{L}_{\text{latin}}$$

 $\mathcal{G}^{-1}(\mathcal{L})(p) = \left(p |_{z_a \to \partial_{\zeta_a}} \mathcal{L} \right)_{\zeta_a = 0} \quad \text{for } p \in \mathbb{Q}[z_A].$ **Claim.** If $L \in \operatorname{Hom}(\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]), M \in \operatorname{Hom}(\mathbb{Q}[z_B] \to \mathbb{Q}[z_B])$ $\mathbb{Q}[z_C]$, then $\mathcal{G}(L/\!\!/M) = \left(\mathcal{G}(L)|_{z_b \to \partial_{\zeta_b}} \mathcal{G}(M)\right)_{\zeta_b=0}$.

Examples. • $\mathcal{G}(id: \mathbb{Q}[p, x] \to \mathbb{Q}[p, x]) = \mathbb{e}^{\pi p + \xi x}$ • Consider $R_{ij} \in (\mathfrak{h}_i \otimes \mathfrak{h}_j)[[t]] \cong \operatorname{Hom} (\mathbb{Q}[] \to \mathbb{Q}[p_i, x_i, p_j, x_j])[[t]].$ Then $\mathcal{G}(R_{ij}) = \mathbb{e}^{(\mathbb{e}^t - 1)(p_i - p_j)x_j} = \mathbb{e}^{(T-1)(p_i - p_j)x_j}$.

Heisenberg Algebras. Let $\mathfrak{h} = A\langle p, x \rangle/([p, x] = 1)$, let $\mathbb{O}_i: \mathbb{Q}[p_i, x_i] \to \mathfrak{h}_i$ is the "*p* before *x*" PBW normal ordering map and let hm_k^{ij} be the composition

 $\mathbb{Q}[p_i, x_i, p_j, x_j] \xrightarrow{\mathbb{O}_i \otimes \mathbb{O}_j} \mathfrak{h}_i \otimes \mathfrak{h}_j \xrightarrow{m_k^{ij}} \mathfrak{h}_k \xrightarrow{\mathbb{O}_k^{-1}} \mathbb{Q}[p_k, x_k].$ Then $\mathcal{G}(hm_{i_k}^{ij}) = e^{-\xi_i \pi_j + (\pi_i + \pi_j)p_k + (\xi_i + \xi_j)x_k}$.

Proof. Recall the "Weyl CCR" $e^{\xi x}e^{\pi p} = e^{-\xi\pi}e^{\pi p}e^{\xi x}$, and find

$$\begin{aligned} \mathcal{G}(hm_k^{i,j}) &= e^{\pi_i p_i + \xi_i x_i + \pi_j p_j + \xi_j x_j} / \! / \mathbb{O}_i \otimes \mathbb{O}_j / \! / m_k^{i,j} / \! / \mathbb{O}_k^{-1} \\ &= e^{\pi_i p_i} e^{\xi_i x_i} e^{\pi_j p_j} e^{\xi_j x_j} / \! / m_k^{i,j} / \! / \mathbb{O}_k^{-1} = e^{\pi_i p_k} e^{\xi_i x_k} e^{\pi_j p_k} e^{\xi_j x_k} / \! / \mathbb{O}_k^{-1} \\ &= e^{-\xi_i \pi_j} e^{(\pi_i + \pi_j) p_k} e^{(\xi_i + \xi_j) x_k} / \! / \mathbb{O}_k^{-1} = e^{-\xi_i \pi_j + (\pi_i + \pi_j) p_k + (\xi_i + \xi_j) x_k}. \end{aligned}$$

GDO := The category with objects finite sets and

$$\operatorname{pr}(A \to B) = \left\{ \mathcal{L} = \omega \mathbb{e}^{Q} \right\} \subset \mathbb{Q}[\![\zeta_A, z_B]\!],$$

where: • ω is a scalar. • Q is a "small" quadratic in $\zeta_A \cup z_B$. • Compositions: $\mathcal{L}/\!\!/\mathcal{M} \coloneqq \left(\mathcal{L}|_{z_i \to \partial_{\zeta_i}} \mathcal{M}\right)_{\zeta_i=0}$

Compositions. In mor(
$$A \rightarrow B$$
),

$$Q = \sum_{i \in A, j \in B} E_{ij}\zeta_i z_j + \frac{1}{2} \sum_{i,j \in A} F_{ij}\zeta_i \zeta_j + \frac{1}{2} \sum_{i,j \in B} G_{ij} z_i z_j,$$
R. Feynman

(remember, $e^x =$

and so

+
$$\frac{1}{2} \sum_{i,j \in B} G_{ij} z_i z_j$$
,
 $1 + x + xx/2 + xxx/6 + \dots$

$$A = \bigcup_{i=1}^{K} \bigcup_{i=1}^{K}$$

where • $E = E_1(I - F_2G_1)^{-1}E_2 • F = F_1 + E_1F_2(I - G_1F_2)^{-1}E_1^T$ • $G = G_2 + E_2^T G_1 (I - F_2 G_1)^{-1} E_2 \bullet \omega = \omega_1 \omega_2 \det(I - F_2 G_1)^{-1/2}$ **Proof of Claim in Example 2.** Let $\Phi_1 := e^{t(p_i - p_j)x_j}$ and $\Phi_2 := \mathbb{O}_{p_i x_i} \left(e^{(e^t - 1)(p_i - p_j)x_j} \right) =: \mathbb{O}(\Psi).$ We show that $\Phi_1 = \Phi_2$ in $(\mathfrak{h}_i \otimes \mathfrak{h}_j)[[t]]$ by showing that both solve the ODE $\partial_t \Phi = (p_i - p_j) x_j \Phi$ with $\Phi|_{t=0} = 1$. For Φ_1 this is trivial. $\Phi_2|_{t=0} = 1$ is trivial, and

$$\partial_t \Phi_2 = \mathbb{O}(\partial_t \Psi) = \mathbb{O}(e^t (p_i - p_j) x_j \Psi)$$

$$(p_i - p_j)x_j\Phi_2 = (p_i - p_j)x_j\mathbb{O}(\Psi) = (p_i - p_j)\mathbb{O}(x_j\Psi - \partial_{p_j}\Psi)$$
$$= \mathbb{O}\left((p_i - p_j)(x_j\Psi + (e^t - 1)x_j\Psi)\right) = \mathbb{O}(e^t(p_i - p_j)x_j\Psi) \quad \Box$$

Implementation.

CF = ExpandNumerator@*ExpandDenominator@*PowerExpand@*Factor;

 $\mathbb{E}_{A1_\rightarrow B1_}[\omega1_, Q1_] \mathbb{E}_{A2_\rightarrow B2_}[\omega2_, Q2_]^{:=} \mathbb{E}_{A1\bigcup A2\rightarrow B1\bigcup B2}[\omega1\ \omega2, Q1+Q2]$ $(\mathbb{E}_{A1 \rightarrow B1} [\omega_1, Q1] / / \mathbb{E}_{A2 \rightarrow B2} [\omega_2, Q2]) /; (B1^* === A2) :=$ Module {i, j, E1, F1, G1, E2, F2, G2, I, M = Table},

I = IdentityMatrix@Length@B1;

 $E1 = M[\partial_{i,j}Q1, \{i, A1\}, \{j, B1\}]; E2 = M[\partial_{i,j}Q2, \{i, A2\}, \{j, B2\}];$ $\texttt{F1} = \texttt{M}[\partial_{i,j}Q1, \{i, A1\}, \{j, A1\}]; \texttt{F2} = \texttt{M}[\partial_{i,j}Q2, \{i, A2\}, \{j, A2\}];$ $\texttt{G1} = \texttt{M}[\partial_{i,j}Q1, \{i, B1\}, \{j, B1\}]; \ \texttt{G2} = \texttt{M}[\partial_{i,j}Q2, \{i, B2\}, \{j, B2\}];$ $\mathbb{E}_{A1 \rightarrow B2} \left[\mathsf{CF} \left[\omega 1 \ \omega 2 \ \mathsf{Det} \left[\mathbb{I} - \mathsf{F2.G1} \right]^{1/2} \right], \ \mathsf{CF} @ \mathsf{Plus} \right] \right]$ If[A1 === {} V B2 === {}, 0, A1.E1.Inverse[I - F2.G1].E2.B2],

If
$$\begin{bmatrix} A1 === \{\}, 0, \frac{1}{2}A1. (F1 + E1.F2. Inverse [I - G1.F2].E1').A1 \end{bmatrix}$$
,

If $B2 === \{\}, 0, \frac{-}{2}B2. (G2 + E2.G1.Inverse[I - F2.G1].E2).B2 || ||$

 $A_ \setminus B_ := Complement[A, B];$ $(\mathbb{E}_{A1_\rightarrow B1_}[\omega1_, Q1_] // \mathbb{E}_{A2_\rightarrow B2_}[\omega2_, Q2_]) /; (B1^* = ! = A2) :=$ $\mathbb{E}_{A1\cup \left(A2\setminus B1^*\right) \rightarrow B1\cup A2^*} \left[\omega 1, Q1 + \mathsf{Sum}\left[\mathcal{E}^*\mathcal{E}, \left\{\mathcal{E}, A2\setminus B1^*\right\}\right]\right] //$ $\mathbb{E}_{B1^* \bigcup A2 \to B2 \bigcup (B1 \setminus A2^*)} [\omega^2, Q^2 + \operatorname{Sum} [z^* z, \{z, B1 \setminus A2^*\}]]$

 $\{\mathbf{p}^*, \mathbf{x}^*, \pi^*, \xi^*\} = \{\pi, \xi, \mathbf{p}, \mathbf{x}\}; (u_{i_-})^* := (u^*)_i;$ L_List* := #* & /@ L; $\mathbf{R}_{i_{-},j_{-}} := \mathbb{E}_{\{\} \rightarrow \left\{ p_{i}, \mathbf{x}_{i}, p_{j}, \mathbf{x}_{j} \right\}} \left[\mathsf{T}^{-1/2}, \ (\mathbf{1} - \mathsf{T}) \ p_{j} \ \mathbf{x}_{j} + (\mathsf{T} - \mathbf{1}) \ p_{i} \ \mathbf{x}_{j} \right];$

 $\overline{R}_{i_{-},j_{-}} := \mathbb{E}_{\{\} \rightarrow \{p_{i},x_{i},p_{j},x_{j}\}} \left[\mathsf{T}^{1/2}, (1-\mathsf{T}^{-1}) p_{j} x_{j} + (\mathsf{T}^{-1}-1) p_{i} x_{j} \right];$ $C_{i_{-}} := \mathbb{E}_{\{\} \to \{p_i, x_i\}} [T^{-1/2}, 0];$ $\overline{\mathsf{C}}_{i_{-}} := \mathbb{E}_{\{\} \rightarrow \{\mathsf{p}_{i},\mathsf{x}_{i}\}} [\mathsf{T}^{1/2}, 0];$

 $\mathsf{hm}_{i_{j_{j}} \to k_{j_{j}}} := \mathbb{E}_{\{\pi_{i}, \xi_{i}, \pi_{j}, \xi_{j}\} \to \{\mathsf{p}_{k}, \mathsf{x}_{k}\}} [\mathbf{1}, -\xi_{i} \pi_{j} + (\pi_{i} + \pi_{j}) \mathbf{p}_{k} + (\xi_{i} + \xi_{j}) \mathbf{x}_{k}]$

 $\mathbb{E}_{\{\} \rightarrow vs} [\omega i_{g}, Q_{h}]_{h} := Module[\{ps, xs, M\},$ ps = Cases[vs, p]; xs = Cases[vs, x]; M = Table[\u03c6i, 1 + Length@ps, 1 + Length@xs];

 $M[2;;, 2;;] = Table[CF[\partial_{i,j}Q], \{i, ps\}, \{j, xs\}];$ M[[2;;, 1]] = ps; M[[1, 2;;]] = xs; MatrixForm[M]_b]

Proof of Reidemeister 3.

 $(R_{1,2} R_{4,3} R_{5,6} / / hm_{1,4 \rightarrow 1} hm_{2,5 \rightarrow 2} hm_{3,6 \rightarrow 3}) ==$ $(R_{2,3} R_{1,6} R_{4,5} / / hm_{1,4\rightarrow 1} hm_{2,5\rightarrow 2} hm_{3,6\rightarrow 3})$ True

The "First Tangle".

Factor /@

 $\left(z = R_{1,6} \overline{C_3} \overline{R_{7,4}} \overline{R_{5,2}} / / hm_{1,3 \rightarrow 1} / / hm_{1,4 \rightarrow 1} / / hm_{1,5 \rightarrow 1} / / hm_{1,6 \rightarrow 1} / / hm_{2,7 \rightarrow 2}\right)$ $\mathbb{E}_{\left(\right) \to \left(p_{1}, p_{2}, x_{1}, x_{2}\right)} \left[\begin{array}{c} -1 + 2 T \\ T \end{array}, \begin{array}{c} (-1 + T) \quad (p_{1} - p_{2}) \quad (T \mid x_{1} - x_{2}) \\ -1 + 2 T \end{array} \right]$

$$\begin{array}{c} \textbf{Z}_h \\ \left(\begin{array}{c} \frac{-1+2\,T}{T} & \textbf{X}_1 & \textbf{X}_2 \\ \textbf{p}_1 & \frac{-T+T^2}{-1+2\,T} & \frac{1-T}{-1+2\,T} \\ \textbf{p}_2 & \frac{T-T^2}{-1+2\,T} & \frac{-1+T}{-1+2\,T} \end{array} \right)_h \end{array}$$

The knot 8₁₇**.**

 $z = \overline{R}_{12,1} \overline{R}_{27} \overline{R}_{83} \overline{R}_{4,11} R_{16,5} R_{6,13} R_{14,9} R_{10,15};$ Table[z = z // $hm_{1k \rightarrow 1}$, {k, 2, 16}] // Last $\mathbb{E}_{\{\} \to \{p_1, x_1\}} \left[\frac{1 - 4 T + 8 T^2 - 11 T^3 + 8 T^4 - 4}{T^5 + T^6} \right]$

Proof of Theorem 3, (3).

$$\left\{ \left(\begin{array}{c} \gamma \mathbf{1} = \mathbb{E}_{\left\{\right\} \to \left\{p_{1}, x_{1}, p_{2}, x_{2}, p_{3}, x_{3}\right\}} \left[\omega, \left\{p_{1}, p_{2}, p_{3}\right\} \cdot \begin{pmatrix} \alpha & \beta & \theta \\ \gamma & \delta & \epsilon \\ \phi & \psi & \Xi \end{pmatrix} \cdot \left\{x_{1}, x_{2}, x_{3}\right\} \right] \right\}_{h} \right\}$$

$$\left\{ \begin{pmatrix} \omega & x_{1} & x_{2} & x_{3} \\ p_{1} & \alpha & \beta & \Theta \end{pmatrix} \quad \begin{pmatrix} \omega + \gamma \omega & x_{0} & x_{3} \\ p_{0} & \frac{\alpha + \beta + \gamma + \beta + \gamma - \alpha - \delta}{p_{0}} & \frac{\epsilon - \alpha \epsilon + \theta + \gamma \Theta}{p_{0}} \\ \end{pmatrix} \right\}$$

$$\begin{cases} \left| \begin{array}{ccc} p_{1} & \alpha & \beta & \theta \\ p_{2} & \gamma & \delta & \epsilon \\ p_{3} & \phi & \psi & \Xi \end{array} \right|_{h}, \\ \end{cases}, \\ \begin{pmatrix} p_{0} & \frac{\alpha + \beta + \gamma + \beta + \alpha - \alpha}{1 + \gamma} & \frac{\beta - \alpha - \epsilon + \gamma + \beta}{1 + \gamma} \\ p_{3} & \frac{\phi - \delta \phi + \psi + \gamma \psi}{1 + \gamma} & \frac{2 + \gamma \Xi - \epsilon \phi}{1 + \gamma} \\ \end{pmatrix}_{h} \\ \hline \\ References. \\ \hline \\ References. \\ \hline \\ \end{array}$$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/

Dror Bar-Natan: Talks: Toronto-1912: ωεβ:=http://drorbn.net/to19/

Thanks for inviting me to the Topology session!

Abstract. Which is better, an emphasis on where things happen or on who are the participants? I can't tell; there are advantages and disadvantages either way. Yet much of quantum topology seems to be heavily and unfairly biased in favour of geography.

Geographers care for placement; for them, braids and tangles have ends at some distinguished points, hence they form categories whose objects are the placements of these

points. For them, the basic operation is a binary "stacking of tangles". They are lead to monoidal categories, braided monoidal categories, representation theory, and much or most of we call "quantum topology".

Identiters believe that strand identity persists even if one crosses or is being crossed. The key operation is a unary stitching operation

 m_c^{ab} , and one is lead to study meta-monoids, meta-Hopf-algebras, etc. See $\omega \epsilon \beta/\text{reg}$, $\omega \epsilon \beta/\text{kbh}$.

Geography:

$$GB := \langle \gamma_i \rangle \left| \begin{pmatrix} \gamma_i \gamma_k = \gamma_k \gamma_i \text{ when } |i-k| > 1 \\ \gamma_i \gamma_{i+1} \gamma_i = \gamma_{i+1} \gamma_i \gamma_{i+1} \end{pmatrix} = B.$$

Identity:

 $IB := \langle \sigma_{ij} \rangle \left| \begin{pmatrix} \sigma_{ij} \sigma_{kl} = \sigma_{kl} \sigma_{ij} \text{ when } |\{i, j, k, l\}| = 4\\ \sigma_{ij} \sigma_{ik} \sigma_{jk} = \sigma_{jk} \sigma_{ik} \sigma_{ij} \text{ when } |\{i, j, k\}| = 3 \end{pmatrix} = P \cdot B.$ Theorem. Let $S = \{\tau\}$ be the symmetric group. Then v B is both $P \cdot B \rtimes S \cong B * S \left| (\gamma_i \tau = \tau \gamma_j \text{ when } \tau i = j, \tau(i+1) = (j+1)) \right|$

(and so $P_{\mathcal{B}}$ is "bigger" then B, and hence quantum algebra doesn't see topology very well).

Proof. Going left, $\gamma_i \mapsto \sigma_{i,i+1}(i \ i + 1)$. Going right, if i < jmap $\sigma_{ij} \mapsto (j-1 \ j-2 \ \dots \ i)\gamma_{j-1}(i \ i+1 \ \dots \ j)$ and if i > j use $\sigma_{ij} \mapsto (j \ j+1 \ \dots \ i)\gamma_j(i \ i-1 \ \dots \ j+1)$.

$$vB$$
 views of σ_{ij} :

The Burau Representation of $P \cdot B_n$ acts on $\mathbb{R}^n := \mathbb{Z}[t^{\pm 1}]^n = \mathbb{R}\langle v_1, \dots, v_n \rangle$ by

 $B_{i_{2},j_{2}}[\xi_{2}] := \xi / V_{k_{1}} \Rightarrow V_{k} + \delta_{k,j} (t-1) (v_{j} - v_{i}) / / Expand$ $(bas3 = \{v_{1}, v_{2}, v_{3}\}) / / B_{1,2}$ $\{v_{1}, v_{1} - tv_{1} + tv_{2}, v_{3}\}$ $bas3 / / B_{1,2} / / B_{1,3} / / B_{2,3}$ $\{v_{1}, v_{1} - tv_{1} + tv_{2}, v_{1} - tv_{1} + tv_{2} - t^{2}v_{2} + t^{2}v_{3}\}$ $bas3 / / B_{2,3} / / B_{1,2} / / B_{1,2}$

$$\left\{ v_{1}, v_{1} - t v_{1} + t v_{2}, v_{1} - t v_{1} + t v_{2}, v_{1} - t v_{1} + t v_{2} - t^{2} v_{2} + t^{2} v_{3} \right\}$$

 S_n acts on \mathbb{R}^n by permuting the v_i so the Burau representation extends to vB_n and restricts to B_n . With this, γ_i maps $v_i \mapsto v_{i+1}$, $v_{i+1} \mapsto tv_i + (1-t)v_{i+1}$, and otherwise $v_k \mapsto v_k$.

Geography view:

$$\gamma_1 = \left| \left| \right| \quad \gamma_2 = \left| \left| \left| \right| \quad \gamma_3 = \left| \right| \right| \right| \quad \dots$$

so *x* is γ_2 .

Identity view:

3 At *x* strand 1 crosses strand 3, so *x* is σ_{13} .

$$\begin{array}{c|c} a^{\times}_{b}, b^{\times}_{a} \end{pmatrix} \rightarrow \begin{array}{c} a \\ b \end{array} \begin{vmatrix} 1 & 1 - T_{a}^{\pm 1} \\ 0 & T_{a}^{\pm 1} \end{matrix} \qquad \begin{array}{c} T_{1} \sqcup T_{2} \rightarrow S_{1} \\ S \end{vmatrix} \begin{vmatrix} A_{1} & 0 \\ 0 & A_{2} \end{vmatrix}$$

$$\begin{array}{c} \omega & a & b & S \\ \hline a & \alpha & \beta & \theta \\ b & \gamma & \delta & \epsilon \\ S & \phi & \psi & \Xi \end{matrix} \qquad \begin{array}{c} m_{c}^{ab} \\ \hline T_{a}, T_{b} \rightarrow T_{c} \end{matrix} \qquad \begin{array}{c} (1 - \beta)\omega & c \\ C \\ S & \phi + \frac{\alpha\psi}{1 - \beta} \end{array} \qquad \begin{array}{c} \epsilon + \frac{\partial\theta}{1 - \beta} \\ S & \phi + \frac{\omega\psi}{1 - \beta} \end{array}$$

The Gassner Representation of $P \mathcal{B}_n$ acts on $V = R^n := \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]^n = R\langle v_1, \dots, v_n \rangle$ by

 $\sigma_{ij}v_k = v_k + \delta_{kj}(t_i - 1)(v_j - v_i).$

 $\begin{aligned} G_{i_{j},j_{j}}[\varsigma_{-}] &:= \varsigma' \cdot \mathbf{v}_{k} \Rightarrow \mathbf{v}_{k} + \delta_{k,j} (\mathbf{t}_{i} - \mathbf{1}) (\mathbf{v}_{j} - \mathbf{v}_{i}) // \text{Expand} \\ \text{Gassner} \\ \text{(bas3 // G_{1,2} // G_{1,3} // G_{2,3})} &:= (\text{bas3 // G_{2,3} // G_{1,3} // G_{1,2})} \end{aligned}$

 $\int_{k} = \int_{i} \int_{j} \int_{k} f^{n}$ acts on R^{n} by permuting the v_{i} and the t_{i} , so the Gassner representation extends to vB_{n} and then restricts to B_{n} as a \mathbb{Z} -linear (better topology!) ∞ -dimensional representation. It then descends to PB_{n} as a finite-

rank *R*-linear representation, with lengthy non-local formulas. Geographers: Gassner is an obscure partial extension of Burau.

(captures quantum algebra!) Identiters: Burau is a trivial silly reduction of Gassner.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/

Dror Bar-Natan: Talks: Columbia-191125: With Roland van der Veen

nd Th

Thanks for allowing me in Columbia U! $\omega\epsilon\beta$:=http://drorbn.net/co19/ Slides w/ no handout/URL should be banned!

Abstract. I will explain how the computation of compositions of maps of a certain natural class, from one polynomial ring into another, naturally leads to a certain composition operation of quadratics and to Feynman diagrams. I will also explain, with very little detail, how this is used in the construction of some very well-behaved poly-time computable knot polynomials.

The PBW Principle Lots of algebras are isomorphic as vector spaces to polynomial algebras. So we want to understand arbitrary linear maps between polynomial algebras.

Gentle Agreement. Everything converges!

Convention. For a finite set *A*, let $z_A := \{z_i\}_{i \in A}$ and let $\underline{\zeta}_A := \{z_i^* = \zeta_i\}_{i \in A}$. $(y, b, a, x)^* = (\eta, \beta, \alpha, \xi)$ **The Generating Series** \mathcal{G} : Hom($\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]$) $\to \mathbb{Q}[[\zeta_A, z_B]]$. **Claim.** $L \in \text{Hom}(\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]) \xrightarrow{\sim}_{\mathcal{G}} \mathbb{Q}[z_B][[\zeta_A]] \ni \mathcal{L}$ via

$$\mathcal{G}(L) := \sum_{n \in \mathbb{N}^A} \frac{\zeta_A^n}{n!} L(z_A^n) = L\left(\mathbb{e}^{\sum_{a \in A} \zeta_a z_a}\right) = \mathcal{L} = \operatorname{greek} \mathcal{L}_{\text{latin}},$$

 $\mathcal{G}^{-1}(\mathcal{L})(p) = \left(p|_{z_a \to \partial_{\zeta_a}} \mathcal{L}\right)_{\zeta_a = 0} \quad \text{for } p \in \mathbb{Q}[z_A].$ Claim. If $L \in \text{Hom}(\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]), M \in \text{Hom}(\mathbb{Q}[z_B] \to \mathbb{Q}[z_C]), \text{ then } \mathcal{G}(L/\!\!/M) = \left(\mathcal{G}(L)|_{z_b \to \partial_{\zeta_b}} \mathcal{G}(M)\right)_{\zeta_c = 0}.$

Basic Examples. 1.
$$\mathcal{G}(id: \mathbb{Q}[y, a, x] \to \mathbb{Q}[y, a, x]) = \mathbb{e}^{\eta y + \alpha a + \xi x}$$
.

2. The standard commutative product m_k^{ij} of polynomials is given by $\mathbb{Q}[z]_i \otimes \mathbb{Q}[z]_j \xrightarrow{m_k^{ij}} \mathbb{Q}[z]_k$ $z_i, z_j \to z_k$. Hence $\mathcal{G}(m_k^{ij}) = \lim_{\substack{m_k^{ij} \\ m_k^{ij} (\mathbb{C}^{\zeta_i z_i + \zeta_j z_j}) = \mathbb{C}^{(\zeta_i + \zeta_j) z_k}} \mathbb{Q}[z_k]$

3. The standard co-commutative coproduct Δ^{i}_{jk} of polynomials is given by $z_i \rightarrow z_j + z_k$. Hence $\mathcal{G}(\Delta^{i}_{jk}) = \bigoplus^{i} \mathbb{Q}[z_i] \xrightarrow{\Delta^{i}_{jk}} \mathbb{Q}[z_j] \otimes \mathbb{Q}[z_k] = \prod_{j=1}^{i} \mathbb{Q}[z_j] \xrightarrow{\Delta^{i}_{jk}} \mathbb{Q$

Heisenberg Algebras. Let $\mathbb{H} = \langle x, y \rangle / [x, y] = \hbar$ (with \hbar a scalar), let $\mathbb{O}_i : \mathbb{Q}[x_i, y_i] \to \mathbb{H}_i$ is the "*x* before *y*" PBW ordering map and let hm_k^{ij} be the composition

 $\mathbb{Q}[x_i, y_i, x_j, y_j] \xrightarrow{\mathbb{O}_i \otimes \mathbb{O}_j} \mathbb{H}_i \otimes \mathbb{H}_j \xrightarrow{m_k^{ij}} \mathbb{H}_k \xrightarrow{\mathbb{O}_k^{-1}} \mathbb{Q}[x_k, y_k].$ Then $\mathcal{G}(hm_k^{ij}) = e^{\Lambda_h}$, where $\Lambda_h = -\hbar\eta_i\xi_j + (\xi_i + \xi_j)x_k + (\eta_i + \eta_j)y_k.$ **Proof 1.** Recall the "Weyl form of the CCR" $e^{\eta_y}e^{\xi_x} = e^{-\hbar\eta\xi}e^{\xi_x}e^{\eta_y}$, and compute

$$\begin{aligned} \mathcal{G}(hm_k^{ij}) &= e^{\xi_i x_i + \eta_i y_i + \xi_j x_j + \eta_j y_j} /\!\!/ \mathbb{O}_i \otimes \mathbb{O}_j /\!\!/ m_k^{ij} /\!\!/ \mathbb{O}_k^{-1} \\ &= e^{\xi_i x_i} e^{\eta_i y_i} e^{\xi_j x_j} e^{\eta_j y_j} /\!\!/ m_k^{ij} /\!\!/ \mathbb{O}_k^{-1} = e^{\xi_i x_k} e^{\eta_i y_k} e^{\xi_j x_k} e^{\eta_j y_k} /\!\!/ \mathbb{O}_k^{-1} \\ &= e^{-\hbar \eta_i \xi_j} e^{(\xi_i + \xi_j) x_k} e^{(\eta_i + \eta_j) y_k} /\!\!/ \mathbb{O}_k^{-1} = e^{\Lambda_h}. \end{aligned}$$

Proof 2. We compute in a faithful 3D representation ρ of \mathbb{H} :

$$\begin{cases} \hat{x} = \begin{pmatrix} \theta & 1 & \theta \\ \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix}, \ \hat{y} = \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \hbar \\ \theta & \theta & \theta \end{pmatrix}, \ \hat{c} = \begin{pmatrix} \theta & \theta & 1 \\ \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} \};$$

$$\{ \hat{x} \cdot \hat{y} - \hat{y} \cdot \hat{x} = \hbar \hat{c}, \ \hat{x} \cdot \hat{c} = \hat{c} \cdot \hat{x}, \ \hat{y} \cdot \hat{c} = \hat{c} \cdot \hat{y} \}$$

$$\{ \text{True, True, True} \}$$

$$A = -\hbar \eta_i \xi_j c_k + (\xi_i + \xi_j) \times_k + (\eta_i + \eta_j) y_k;$$

$$\text{Simplify@With} [\{ \mathbb{E} = \text{MatrixExp} \},$$

$$\mathbb{E} [\hat{x} \xi_i] \cdot \mathbb{E} [\hat{y} \eta_i] \cdot \mathbb{E} [\hat{x} \xi_j] \cdot \mathbb{E} [\hat{y} \eta_j] =$$

$$\mathbb{E} [\hat{x} \partial_{x_k} \Lambda] \cdot \mathbb{E} [\hat{y} \partial_{y_k} \Lambda] \cdot \mathbb{E} [\hat{c} \partial_{c_k} \Lambda]]$$

$$\text{True}$$

A Real DoPeGDO Example (DoPeGDO:=Docile Perturbed Gaussian Differential Operators). Let $sl_{2+}^{\epsilon} \coloneqq L\langle y, b, a, x \rangle$ subject to [a, x] = x, $[b, y] = -\epsilon y$, [a, b] = 0, [a, y] = -y, $[b, x] = \epsilon x$, and $[x, y] = \epsilon a + b$. So $t \coloneqq \epsilon a - b$ is central and if $\exists \epsilon^{-1}$, $sl_{2+}^{\epsilon} \cong sl_2 \oplus \langle t \rangle$. Let $CU \coloneqq \mathcal{U}(sl_{2+}^{\epsilon})$, and let cm_k^{ij} be the composition below, where $\mathbb{O}_i \colon \mathbb{Q}[y_i, b_i, a_i, x_i] \to CU_i$ be the PBW ordering map in the order *ybax*:

$$CU_{i} \otimes CU_{j} \xrightarrow{m_{k}^{j}} CU_{k}$$

$$\uparrow^{\bigcirc_{i,j}} \qquad \uparrow^{\bigcirc_{k}}$$

$$\mathbb{Q}[y_{i}, b_{i}, a_{i}, x_{i}, y_{j}, b_{j}, a_{j}, x_{j}] \xrightarrow{cm_{k}^{ij}} \mathbb{Q}[y_{k}, b_{k}, a_{k}, x_{k}]$$
Claim. Let
(all brawn ar

(all brawn and no brains)

$$\Lambda = \left(\eta_i + \frac{e^{-\alpha_i - \epsilon\beta_i}\eta_j}{1 + \epsilon\eta_j\xi_i}\right)y_k + \left(\beta_i + \beta_j + \frac{\log\left(1 + \epsilon\eta_j\xi_i\right)}{\epsilon}\right)b_k + \left(\alpha_i + \alpha_j + \log\left(1 + \epsilon\eta_j\xi_i\right)\right)a_k + \left(\frac{e^{-\alpha_j - \epsilon\beta_j}\xi_i}{1 + \epsilon\eta_j\xi_i} + \xi_j\right)x_k$$

Then $e^{\eta_i y_i + \beta_i b_i + \alpha_i a_i + \xi_i x_i + \eta_j y_j + \beta_j b_j + \alpha_j a_j + \xi_j x_j} / \mathbb{O}_{i,j} / cm_k^{ij} = e^{\Lambda} / \mathbb{O}_k$, and hence $\mathcal{G}(cm_i^{ij}) = e^{\Lambda}$.

and hence $\mathcal{G}(cm_k^{ij}) = \mathbb{C}^{\Lambda}$. **Proof.** We compute in a faithful 2D representation ρ of CU: $\left\{ \hat{y} = \begin{pmatrix} 0 & 0 \\ \epsilon & 0 \end{pmatrix}, \hat{b} = \begin{pmatrix} 0 & 0 \\ 0 & -\epsilon \end{pmatrix}, \hat{a} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \hat{x} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}; \quad (\mathfrak{W} \in \beta/\mathfrak{S} \mathbb{I} 2)$ $\left\{ \hat{a} \cdot \hat{x} - \hat{x} \cdot \hat{a} = \hat{x}, \quad \hat{a} \cdot \hat{y} - \hat{y} \cdot \hat{a} = -\hat{y}, \quad \hat{b} \cdot \hat{y} - \hat{y} \cdot \hat{b} = -\epsilon \hat{y}, \right\}$

$$\hat{b} \cdot \hat{x} - \hat{x} \cdot \hat{b} == \epsilon \hat{x}, \hat{x} \cdot \hat{y} - \hat{y} \cdot \hat{x} == \hat{b} + \epsilon \hat{a}$$

True, True, True, True, True}

$$\begin{array}{l} \text{implify@With} \left\{ \mathbb{E} = \text{MatrixExp} \right\}, \\ \mathbb{E} \left[\eta_{i} \, \hat{y} \right] \cdot \mathbb{E} \left[\beta_{i} \, \hat{b} \right] \cdot \mathbb{E} \left[\alpha_{i} \, \hat{a} \right] \cdot \mathbb{E} \left[\xi_{i} \, \hat{x} \right] \cdot \mathbb{E} \left[\eta_{j} \, \hat{y} \right] \cdot \mathbb{E} \left[\beta_{j} \, \hat{b} \right] , \\ \mathbb{E} \left[\alpha_{j} \, \hat{a} \right] \cdot \mathbb{E} \left[\xi_{j} \, \hat{x} \right] = \mathbb{E} \left[\hat{y} \, \partial_{y_{k}} \Lambda \right] \cdot \mathbb{E} \left[\hat{b} \, \partial_{b_{k}} \Lambda \right] \cdot \mathbb{E} \left[\hat{a} \, \partial_{a_{k}} \Lambda \right] , \\ \mathbb{E} \left[\alpha_{j} \, \alpha_{j}$$

True

```
Series[A, {€, 0, 2}]
```

$$\begin{array}{l} (\mathbf{a}_{\mathbf{k}} \ (\alpha_{\mathbf{i}} + \alpha_{\mathbf{j}}) + \mathbf{y}_{\mathbf{k}} \ (\eta_{\mathbf{i}} + \mathbf{e}^{-\alpha_{\mathbf{i}}} \eta_{\mathbf{j}}) + \\ \mathbf{b}_{\mathbf{k}} \ (\beta_{\mathbf{i}} + \beta_{\mathbf{j}} + \eta_{\mathbf{j}} \, \xi_{\mathbf{i}}) + \mathbf{x}_{\mathbf{k}} \ (\mathbf{e}^{-\alpha_{\mathbf{j}}} \, \xi_{\mathbf{i}} + \xi_{\mathbf{j}})) + \\ \left(\mathbf{a}_{\mathbf{k}} \ \eta_{\mathbf{j}} \, \xi_{\mathbf{i}} - \frac{1}{2} \ \mathbf{b}_{\mathbf{k}} \ \eta_{\mathbf{j}}^{2} \, \xi_{\mathbf{i}}^{2} - \mathbf{e}^{-\alpha_{\mathbf{i}}} \ \mathbf{y}_{\mathbf{k}} \ \eta_{\mathbf{j}} \ (\beta_{\mathbf{i}} + \eta_{\mathbf{j}} \, \xi_{\mathbf{i}}) - \\ \mathbf{e}^{-\alpha_{\mathbf{j}}} \mathbf{x}_{\mathbf{k}} \ \xi_{\mathbf{i}} \ (\beta_{\mathbf{j}} + \eta_{\mathbf{j}} \, \xi_{\mathbf{i}}) \right) \in + \\ \left(-\frac{1}{2} \ \mathbf{a}_{\mathbf{k}} \ \eta_{\mathbf{j}}^{2} \, \xi_{\mathbf{i}}^{2} + \frac{1}{3} \ \mathbf{b}_{\mathbf{k}} \ \eta_{\mathbf{j}}^{3} \, \xi_{\mathbf{i}}^{3} + \frac{1}{2} \ \mathbf{e}^{-\alpha_{\mathbf{i}}} \ \mathbf{y}_{\mathbf{k}} \ \eta_{\mathbf{j}} \ (\beta_{\mathbf{i}}^{2} + 2 \ \beta_{\mathbf{i}} \ \eta_{\mathbf{j}} \ \xi_{\mathbf{i}} + 2 \ \eta_{\mathbf{j}}^{2} \ \xi_{\mathbf{i}}^{2}) + \\ \frac{1}{2} \ \mathbf{e}^{-\alpha_{\mathbf{j}}} \ \mathbf{x}_{\mathbf{k}} \ \xi_{\mathbf{i}} \ (\beta_{\mathbf{j}}^{2} + 2 \ \beta_{\mathbf{j}} \ \eta_{\mathbf{j}} \ \xi_{\mathbf{i}} + 2 \ \eta_{\mathbf{j}}^{2} \ \xi_{\mathbf{i}}^{2}) \right) \ \mathbf{e}^{2} + \mathbf{O} \ [\mathbf{e} \]^{3} \end{array}$$

Note 1. If the lower half of the alphabet (a, b, α, β) is regarded as constants, then $\Lambda = C + Q + \sum_{k\geq 1} \epsilon^k P^{(k)}$ is a docile perturbed Gaussian relative to the upper half of the alphabet (x, y, ξ, η) : *C* is a scalar, *Q* is a quadratic, and deg $P^{(k)} \leq 2k + 2$.

Note 2. wt($x, y, \xi, \eta; a, b, \alpha, \beta; \epsilon$) = (1, 1, 1, 1; 2, 0, 0, 2; -2).

Quadratic Casimirs. If $t \in g \otimes g$ is the quadratic Casimir of a semi-simple Lie algebra g, then \mathbb{C}^t , regarded by PBW as an element of $S^{\otimes 2} = \text{Hom}(S(g)^{\otimes 0} \to S(g)^{\otimes 2})$, has a latin-latin dominant Gaussian factor. Likewise for *R*-matrices.

(Baby) **DoPeGDO** := The category with objects finite sets^{†1} and mor($A \rightarrow B$) = { $\mathcal{L} = \omega \exp(Q + P)$ } $\subset \mathbb{Q}[[\zeta_A, z_B, \epsilon]],$

where: • ω is a scalar.^{†2} • Q is a "small" ϵ -free quadratic in $\zeta_A \cup z_B$.^{†3} • P is a "docile perturbation": $P = \sum_{k \ge 1} \epsilon^k P^{(k)}$, where deg $P^{(k)} \le 2k + 2$.^{†4} • Compositions:^{†6} $\mathcal{L}/\!\!/\mathcal{M} := (\mathcal{L}|_{z_i \to \partial_{\zeta_i}} \mathcal{M})_{\zeta_i=0}$.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/

So What? If V is a representation, then $V^{\otimes n}$ explodes as a function of *n*, while in **DoPeGDO** up to a fixed power of ϵ , the ranks of mor($A \rightarrow B$) grow polynomially as a function of |A| and |B|.

Compositions. In $mor(A \rightarrow B)$, $Q = \sum_{i \in A, j \in B} E_{ij} \zeta_i z_j + \frac{1}{2} \sum_{i, j \in A} F_{ij} \zeta_i \zeta_j + \frac{1}{2} \sum_{i, j \in B} G_{ij} z_i z_j,$ and so (remember, $e^x = 1 + x + xx/2 + xxx/6 + ...)$ A ω_1 B ω_2 A ω CE E_2 E_1 A. Q_1 O_2 Q $E_1E_2 + E_1F_2G_1E_2$ G G $+E_1F_2G_1F_2G_1E_2$ $=\sum_{r=0}^{\infty} E_1 (F_2 G_1)^r E_2$ greek greek latin latin greek latin where • $E = E_1(I - F_2G_1)^{-1}E_2$. • $F = F_1 + E_1 F_2 (I - G_1 F_2)^{-1} E_1^T$. • $G = G_2 + E_2^T G_1 (I - F_2 G_1)^{-1} E_2.$ dat(I $E(\mathbf{C})^{-1}$

messy PDE or using "connected Feynman diagrams" (yet we're still in pure algebra!). Docility is preserved.

DoPeGDO Footnotes. Each variable has a "weight" $\in \{0, 1, 2\}$, and always wt z_i + wt ζ_i = 2.

of a

- †1. Really, "weight-graded finite sets" $A = A_0 \sqcup A_1 \sqcup A_2$.
- $\dagger 2$. Really, a power series in the weight-0 variables^{$\dagger 5$}.
- †3. The weight of Q must be 2, so it decomposes as Q = $Q_{20}+Q_{11}$. The coefficients of Q_{20} are rational numbers while the coefficients of Q_{11} may be weight-0 power series^{†5}.
- †4. Setting wt $\epsilon = -2$, the weight of P is ≤ 2 (so the powers of the weight-0 variables are not constrained)^{$\dagger 5$}.
- ^{†5}. In the knot-theoretic case, all weight-0 power series are rational functions of bounded degree in the exponentials of the weight-0 variables.
- †6. There's also an obvious product

$$\operatorname{mor}(A_1 \to B_1) \times \operatorname{mor}(A_2 \to B_2) \to \operatorname{mor}(A_1 \sqcup A_2 \to B_1 \sqcup B_2).$$

Full DoPeGDO. Compute compositions in two phases:

• A 1-1 phase over the ring of power series in the weight-0 variables, in which the weight-2 variables are spectators.

• A (slightly modified) 2-0 phase over \mathbb{Q} , in which the weight-1 variables are spectators.

Analog. Solve Ax = a, B(x)y = b

Questions. • Are there QFT precedents for "two-step Gaussian integration"?

• In QFT, one saves even more by considering "one-particleirreducible" diagrams and "effective actions". Does this mean anything here?

• Understanding Hom($\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]$) seems like a good cause. Can you find other applications for the technology here?

 $\mathcal{U}QU = \mathcal{U}_{\hbar}(sl_{2+}^{\epsilon}) = A\langle y, b, a, x \rangle \llbracket \hbar \rrbracket$ with $[a, x] = x, [b, y] = -\epsilon y, [a, b] = 0, \gamma$ $[a, y] = -y, [b, x] = \epsilon x$, and $xy - qyx = (1 - AB)/\hbar$, where $q = e^{\hbar \epsilon}$, $A = e^{-\hbar \epsilon a}$, and $B = e^{-\hbar b}$. Also $\Delta(y, b, a, x) = (y_1 + B_1 y_2, b_1 + b_2, a_1 + a_2, x_1 + A_1 x_2)$, $S(y, b, a, x) = (-B^{-1}y, -b, -a, -A^{-1}x)$, and $R = \sum \hbar^{j+k} y^k b^j \otimes a^j x^k / j! [k]_q!$.

Theorem. Everything of value regrading U = CU and/or its quantization U = QU is **DoPeGDO**:

also Cartan's θ , the Dequantizator, and more, and all of their compositions.

There are lots of poly-time-computable well-**Conclusion.** behaved near-Alexander knot invariants: • They extend to tangles with appropriate multiplicative behaviour. • They have cabling and strand reversal formulas. $\omega \epsilon \beta / akt$ The invariant for $sl_{2\perp}^{\epsilon}/(\epsilon^2 = 0)$ (prior art: $\omega \epsilon \beta / Ov$) attains 2,883 distinct values on the 2,978 prime knots with \leq 12 crossings. HOMFLY-PT and Khovanov homology together attain only 2,786 distinct values.

knot	n_k^t Alexander's ω^+ genus / ribbon	knot	n_k^t Alexander's ω^+ genu	us / ribbon	knot	n_k^t Alexander's ω^+	genus / ribbon
diag	$(\rho'_1)^+$ unknotting # / amphi?	diag	$(\rho_1')^+$ unknotting	# / amphi?	diag	$(\rho'_1)^+$ unkn	otting # / amphi?
	$(\rho'_2)^+$		$(\rho'_2)^+$			$(\rho'_2)^+$	
\bigcirc	0_1^a 1 0 / \checkmark		$3_1^a T - 1$	1 / 🗙	(Ω)	$4_1^a 3-T$	1 / 🗙
	0 0 / 🗸	1 St	Т	1 / 🗙	e e	0	1 / 🖌
	0	-	$3T^3 - 12T^2 + 26T - 38$		-	$T^4 - 3T^3 - 15T^2 + 74T -$	110
A	$5^a_1 T^2 - T + 1$ 2 / X	\bigcirc	5^{a}_{2} 2T-3	1 / 🗙	(\mathcal{D})	$6^a_1 5-2T$	1 / 🗸
8P	$2T^3+3T$ 2/X		5T - 4	1 / 🗶	62	T-4	1 / 🗙
5	$5T^7 - 20T^6 + 55T^5 - 120T^4 + 217T^3 - 338T^2 + 450T - 510$		$-10T^4 + 120T^3 - 487T^2 + 1054T - 1362$		_	$14T^4 - 16T^3 - 293T^2 + 10987$	T-1598
<i>b</i>	$6^a_2 - T^2 + 3T - 3$ 2 / X	<i>A</i>	6^a_3 T ² -3T+5	2/×	A.	7^a_1 $T^3 - T^2 + T - 1$	3 / 🗙
	$T^{3}-4T^{2}+4T-4$ 1 / X	W.	0	1 / 🖌	8-18 I	$3T^5 + 5T^3 + 6T$	3 / 🗙
$3T^8 - 2$	$21T^7 + 49T^6 + 15T^5 - 433T^4 + 1543T^3 - 3431T^2 + 5482T - 6410$	$4T^8 - 33$	$T^7 + 121T^6 - 203T^5 - 111T^4 + 1499T^3 - 4210T^2$	+71867-8510	$7T^{11}$ -	$-28T^{10} + 77T^9 - 168T^8 + 322T^7 - 560$	$T^6 + 891T^5 - 1310T^4 +$
						$1777T^3 - 2238T^2 + 2604T$	-2772

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/

Dror Bar-Natan: Talks: UCLA-191101 Everything around sl_{2+}^{ϵ} is **DoPeGDO**. So what?

Thanks for inviting me to UCLA! Continues Rozansky [Ro1,
 ωεβ:=http://drorbn.net/la19/
 Ro2, Ro3] and Overbay [Ov], joint with van der Veen [BV].

Abstract. I'll explain what "everything around" means: classical Knot theorists should rejoice because all this leads to very poand quantum m, Δ , S, tr, R, C, and θ , as well as P, Φ , J, D, and more, and all of their compositions. What **DoPeGDO** means: the category of Docile Perturbed Gaussian Differential Operators. And what sl_{2+}^{ϵ} means: a solvable approximation of the semisimple Lie algebra sl_2 .

ground for testing complicated equations and theories. **Conventions.** 1. For a set A, let $z_A := \{z_i\}_{i \in A}$ and let

werful and well-behaved poly-time-computable knot invariants.

Quantum algebraists should rejoice because it's a realistic play-

Melvin.

Morton.

- †2. Really, "weight-graded finite sets" $A = A_0 \sqcup A_1 \sqcup A_2$.
 - ^{\dagger}3. Really, a power series in the weight-0 variables^{\dagger 9}.
- Garoufalidis \dot{f}^4 . The weight of Q must be 2, so it decomposes as $Q = Q_{20} + Q_{11}$. The coefficients of Q_{20} are rational numbers while the coefficients of Q_{11} may be weight-0 power series^{†9}.
 - †5. Setting wt ϵ = −2, the weight of P is ≤ 2 (so the powers of the weight-0 variables are not constrained^{†9}).
 - [†]6. There's also an obvious product

 $\operatorname{mor}(A_1 \to B_1) \times \operatorname{mor}(A_2 \to B_2) \to \operatorname{mor}(A_1 \sqcup A_2 \to B_1 \sqcup B_2).$

- ^{†7}. That is, if the weight-0 variables are ignored. Otherwise more care is needed yet the conclusion remains.
- 8. Hom $(U^{\otimes \Sigma} \to U^{\otimes S}) \rightsquigarrow \operatorname{mor}(\{\eta_i, \beta_i, \tau_i, \alpha_i, \xi_i\}_{i \in \Sigma} \to \{y_i, b_i, t_i, a_i, x_i\}_{i \in S}),$ where wt(η_i, ξ_i, y_i, x_i) = 1 and wt($\beta_i, \tau_i, \alpha_i; b_i, t_i, a_i$) = (2, 2, 0; 0, 0, 2). †9. For tangle invariants the wt-0 power series are always rational functions in the exponentials of the wt-0 variables (for knots: just one variable), with degrees bounded linearly by the crossing number.

Let $J_d(K)$ be

the coloured Jones polynomial of K, in the d-dimensional

 $\frac{(q^{1/2}-q^{-1/2})J_d(K)}{q^{d/2}-q^{-d/2}}\bigg|_{q=e^{\hbar}} = \sum_{i,m>0} a_{jm}(K)d^j\hbar^m,$

"below diagonal" coefficients vanish, $a_{im}(K) = 1$

0 if j > m, and "on diagonal" coefficients

Theorem ([BG], conjectured [MM],

elucidated [Ro1]).

representation of sl_2 . Writing

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907, http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.

Do Not Turn Over Until Instructed

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/

Dror Bar-Natan: Talks: LesDiablerets-1708: The Dogma is Wrong

Follows Rozansky [Ro1, Ro2, Ro3] and Overbay [Ov], joint with van der Veen. Preliminary writeup [BV1], fuller writeup [BV2]. More at ωεβ/talks

Abstract. It has long been known that there are knot invariants Theorem ([BNG], conjectured [MM], eassociated to semi-simple Lie algebras, and there has long been lucidated [Ro1]). Let $J_d(K)$ be the coa dogma as for how to extract them: "quantize and use repre-loured Jones polynomial of K, in the d-dimensional representasentation theory". We present an alternative and better procedu- tion of sl_2 . Writing re: "centrally extend, approximate by solvable, and learn how to re-order exponentials in a universal enveloping algebra". While equivalent to the old invariants via a complicated process, our invariants are in practice stronger, faster to compute (poly-time vs. exp-time), and clearly carry topological information.

KiW 43 Abstract ($\omega \epsilon \beta / kiw$). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.

Experimental Analysis (ωεβ/Exp). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 crossings (mean times) and for all torus knots with up to 48 crossings:

Power. On the 250 knots with at most 10 crossings, the pair (ω, ρ_1) attains 250 distinct values, while (Khovanov, HOMFLY-PT) attains only 249 distinct values. To 11 crossings the numbers are (802, 788, 772) and to 12 they are (2978, 2883, 2786).

Genus. Up to 12 xings, always ρ_1 is symmetric under $t \leftrightarrow t^{-1}$. With ρ_1^+ denoting the positive-degree part of ρ_1 , always deg $\rho_1^+ \leq$ 2g - 1, where g is the 3-genus of K (equality for 2530 knots). This gives a lower bound on g in terms of ρ_1 (conjectural, but undoubtedly true). This bound is often weaker than the Alexander bound, yet for 10 of the 12-xing Alexander failures it does give the right answer. Ribbon Knots.

$$\frac{(q^{1/2} - q^{-1/2})J_d(K)}{q^{d/2} - q^{-d/2}} \bigg|_{q=e^h} = \sum_{j,m \ge 0} a_{jm}(K)d^j\hbar^m,$$

"below diagonal" coefficients vanish, $a_{jm}(K) = \bigcup_{m \ge 0} m$, and "on diagonal" coefficients
give the inverse of the Alexander polynomial:
 $\left(\sum_{m=0}^{\infty} a_{mm}(K)\hbar^m\right) \cdot \omega(K)(e^h) = 1.$
"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:
 $J_d(K)(q) = \frac{q^d - q^{-d}}{(q - q^{-1})\omega(K)(q^d)} \left(1 + \sum_{k=1}^{\infty} \frac{(q - 1)^k \rho_k(K)(q^d)}{\omega^{2k}(K)(q^d)}\right).$
 $C \bigoplus_{b_i = a_j} Ca_i \otimes b_i \in U \otimes U$ and $C \in U,$
form
 $Z = \sum_{i,j,k} Ca_i b_j a_k C^2 b_i a_j b_k C.$
The Vang-Baxter Technique. Given an algebra U (typically $\hat{\mathcal{U}}(g)$ or $\hat{\mathcal{U}}_q(g)$) and elements
 $R = \sum a_i \otimes b_i \in U \otimes U$ and $C \in U,$
form
 $Z = \sum_{i,j,k} Ca_i b_j a_k C^2 b_i a_j b_k C.$
The Loyal Opposition. For certain algebras, work in a homomorphic poly-dimensional
"space of formulas". $m_k^{ij} \subset \{\mathcal{F}_S\} = \{U^{\otimes S}\} \subset m_k^{ij}$
The (fake) moduli of Lie algebras on V, a quadratic variety in
 $(V^*)^{\otimes 2} \otimes V$ is on the right. We care
re about $sl_{17}^{k_7} := sl_{17}^{\epsilon_1}/(e^{k+1} = 0).$
Recomposing gl_n . Half is enough! $gl_n \oplus a_n = \mathcal{D}(\nabla, b, \delta)$:
 Mow define $gl_{\varepsilon}^{\varepsilon} := \mathcal{D}(\nabla, b, \epsilon\delta)$. Schematically, this is $[\nabla, \nabla] = \overline{\nabla}$.

٦ Melvin

Garoufalidis

Morton.

Happy Birthday Anton!

ωεβ:=http://drorbn.net/ld17/

 $[\square, \square] = \epsilon \square$, and $[\square, \square] = \square + \epsilon \square$. In detail, it is

$$\begin{bmatrix} x_{ij}, x_{kl} \end{bmatrix} = \delta_{jk} x_{il} - \delta_{li} x_{kj} \quad [y_{ij}, y_{kl}] = \epsilon \delta_{jk} y_{il} - \epsilon \delta_{li} y_{kj} \\ \begin{bmatrix} x_{ij}, y_{kl} \end{bmatrix} = \delta_{jk} (\epsilon \delta_{j < k} x_{il} + \delta_{il} (b_i + \epsilon a_i)/2 + \delta_{i>l} y_{il}) \\ -\delta_{li} (\epsilon \delta_{k < j} x_{kj} + \delta_{kj} (b_j + \epsilon a_j)/2 + \delta_{k>j} y_{kj}) \\ \begin{bmatrix} a_i, x_{jk} \end{bmatrix} = (\delta_{ij} - \delta_{ik}) x_{jk} \quad [b_i, x_{jk}] = \epsilon (\delta_{ij} - \delta_{ik}) x_{jk} \\ \begin{bmatrix} a_i, y_{jk} \end{bmatrix} = (\delta_{ij} - \delta_{ik}) y_{jk} \quad [b_i, y_{jk}] = \epsilon (\delta_{ij} - \delta_{ik}) y_{jk} \end{bmatrix}$$

The Main sl_2 Theorem. Let $\mathfrak{g}^{\epsilon} = \langle t, y, a, x \rangle / ([t, \cdot] = 0, [a, x] =$ x, [a, y] = -y, $[x, y] = t - 2\epsilon a$ and let $\mathfrak{g}_k = \mathfrak{g}^{\epsilon}/(\epsilon^{k+1} = 0)$. The \mathfrak{g}_k - $A^+ = -t^8 + 2t^7 - t^6 - 2t^4 + 5t^3 - 2t^2 - 7t + 13$ invariant of any S-component tangle K can be written in the form $Z(K) = \mathbb{O}\left(\omega e^{L+Q+P}: \bigotimes_{i \in S} y_i a_i x_i\right)$, where ω is a scalar (a rational function in the variables t_i and their exponentials $T_i := e^{t_i}$), where $L = \sum l_{ij} t_i a_j$ is a quadratic in t_i and a_j with integer coefficients l_{ij} , where $Q = \sum q_{ij}y_ix_j$ is a quadratic in the variables y_i and x_i with scalar coefficients q_{ij} , and where P is a polynomial in $\{\epsilon, y_i, a_i, x_i\}$ (with scalar coefficients) whose ϵ^d -term is of degree at most 2d + 2 in $\{y_i, \sqrt{a_i}, x_i\}$. Furthermore, after setting $t_i = t$ and $T_i = T$ for all *i*, the invariant Z(K) is poly-time computable.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1708/

and $\mathcal{U}(\mathfrak{g}) \coloneqq \langle \text{words in } \mathfrak{g} \rangle / (xy - yx = [x, y]).$ But sl_2 and sl_3 and similar algebras occur in physics (and in In a favourable gauge, one may hope that this mathematics) in many other places, beyond the Chern-Simonscomputation will localize near the crossings Witten theory. Do solvable approximations have further applicaand the bends, and all will depend on just two tions? quantities, **Recomposing** gl_n . Half is enough! $gl_n \oplus \mathfrak{a}_n = \mathcal{D}(\nabla, b, \delta)$: $R = \sum a_i \otimes b_i \in \mathcal{U} \otimes \mathcal{U} \quad \text{and} \quad C \in \mathcal{U}.$

there are sequences of solvable Lie algebras "converging" to any \mathbb{R}^3 and a metrized Lie algebra g, set $Z(\gamma) :=$

$$\begin{array}{c} & & \\ & &$$

given semi-simple Lie algebra (such as sl_2 or sl_3 or E8). Certain

computations are much easier in solvable Lie algebras; in particular, using solvable approximations we can compute in polynomial

time certain projections (originally discussed by Rozansky) of the

knot invariants arising from the Chern-Simons-Witten topological quantum field theory. This provides us with the first strong

knot invariants that are computable for truly large knots.

Now define $gl_n^{\epsilon} := \mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla] = \nabla$, riants" arise in this way. So for the trefoil, $[\square, \square] = \epsilon \square$, and $[\neg, \square] = \square + \epsilon \neg$. In detail, it is

 $Z = \sum_{i \to j} C a_i b_j a_k C^2 b_i a_j b_k C.$ $[e_{ij}, e_{kl}] = \delta_{jk} e_{il} - \delta_{li} e_{kj} \quad [f_{ij}, f_{kl}] = \epsilon \delta_{jk} f_{il} - \epsilon \delta_{li} f_{kj}$ $_{e_{ij}} \mid [e_{ij}, f_{kl}] = \delta_{jk} (\epsilon \delta_{j < k} e_{il} + \delta_{il} (h_i + \epsilon g_i)/2 + \delta_{i>l} f_{il})$ But Z lives in \mathcal{U} , a complicated space. How do you extract infor- $-\delta_{li}(\epsilon \delta_{k < j} e_{kj} + \delta_{kj}(h_j + \epsilon g_j)/2 + \delta_{k > j} f_{kj})$ mation out of it? $\begin{bmatrix} g_i, e_{jk} \end{bmatrix} = (\delta_{ij} - \delta_{ik})e_{jk} \\ \begin{bmatrix} g_i, f_{jk} \end{bmatrix} = (\delta_{ij} - \delta_{ik})f_{jk} \\ \begin{bmatrix} h_i, f_{jk} \end{bmatrix} = \epsilon(\delta_{ij} - \delta_{ik})f_{jk} \\ \begin{bmatrix} h_i, f_{jk} \end{bmatrix} = \epsilon(\delta_{ij} - \delta_{ik})f_{jk} \\ \begin{bmatrix} h_i, f_{jk} \end{bmatrix} = \epsilon(\delta_{ij} - \delta_{ik})f_{jk} \\ \begin{bmatrix} h_i, f_{jk} \end{bmatrix} = \epsilon(\delta_{ij} - \delta_{ik})f_{jk} \\ \begin{bmatrix} h_i, f_{jk} \end{bmatrix} = \epsilon(\delta_{ij} - \delta_{ik})f_{jk} \\ \end{bmatrix}$

Solvable Approximation. At $\epsilon = 1$ and modulo h = g, the above wisdom of Drinfel'd and Jimbo, $\rho(R) \in V^* \otimes V \otimes V$ and is just gl_n . By rescaling at $\epsilon \neq 0$, gl_n^{ϵ} is independent of ϵ . We $\rho(C) \in V^* \otimes V$ are computable, so Z is computable too. But in let gl_n^k be gl_n^{ϵ} regarded as an algebra over $\mathbb{Q}[\epsilon]/\epsilon^{k+1} = 0$. It is the exponential time! "k-smidgen solvable approximation" of gl_n! Ribbon=Slice?

Recall that g is "solvable" if iterated commutators in it ultimately vanish: $g_2 := [g, g], g_3 := [g_2, g_2], \dots, g_d = 0$. Equivalently, if it is a subalgebra of some large-size *¬* algebra.

Note. This whole process makes sense for arbitrary semi-simple Lie algebras.

Why are "solvable algebras" any good? Contrary to common beliefs, computations in semi-simple Lie algebras are just awful:

$$\mathbb{E}_{[1]}$$
 MatrixExp $\left[\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right]$ // FullSinplify // MatrixForm Enter

 $z = \log(e^x e^y)$, is bearable:

Chern-Simons-Witten theory is often "solved" using ideas from tangle T can be written in the form conformal field theory and using quantization of various moduli spaces. Does it make sense to use solvable approximation there too? Elsewhere in physics? Elsewhere in mathematics?

See Also. Talks at George Washington University [ωεβ/gwu], Indiana [$\omega \epsilon \beta$ /ind], and Les Diablerets [$\omega \epsilon \beta$ /ld], and a University is poly-time computable. of Toronto "Algebraic Knot Theory" class [ωεβ/akt].

Solution 2, Solvable Approximation. Work directly in $\hat{\mathcal{U}}(\mathfrak{g}_k)$, where $g_k = sl_2^k$ (or a similar algebra); everything is expressible using low-degree polynomials in a small number of variables, hence everything is poly-time computable!

Gompf, Scl lemann

111

Example 0. Take $g_0 = sl_2^0 = \mathbb{Q}\langle h, e, l, f \rangle$, with h central and Yet in solvable algebras, exponentiation is fine and even BCH, [f, l] = f, [e, l] = -e, [e, f] = h. In it, using normal orderings,

$$R = \mathbb{O}\left(\exp\left(hl + \frac{\mathbb{e}^{h} - 1}{h}ef\right) \mid e \otimes lf\right), \text{ and,}$$
$$\mathbb{O}\left(\mathbb{e}^{\delta ef} \mid fe\right) = \mathbb{O}\left(\nu\mathbb{e}^{\nu\delta ef} \mid ef\right) \text{ with } \nu = (1 + h\delta)^{-1}.$$

Example 1. Take $R = \mathbb{Q}[\epsilon]/(\epsilon^2 = 0)$ and $\mathfrak{g}_1 = \mathfrak{sl}_2^1 = R\langle h, e, l, f \rangle$, with h central and [f, l] = f, [e, l] = -e, $[e, f] = \tilde{h} - 2\epsilon l$. In it, $\mathbb{O}\left(\mathbb{e}^{\delta ef} \mid f e\right) = \mathbb{O}\left(\nu(1 + \epsilon \nu \delta \Lambda/2) \mathbb{e}^{\nu \delta ef} \mid elf\right), \text{ where } \Lambda \text{ is}$

 $4v^{3}\delta^{2}e^{2}f^{2} + 3v^{3}\delta^{3}he^{2}f^{2} + 8v^{2}\delta ef + 4v^{2}\delta^{2}hef + 4v\delta elf - 2v\delta h + 4l.$ Question. What else can you do with solvable approximation? Fact. Setting $h_i = h$ (for all *i*) and $t = e^h$, the g_1 invariant of any

$$Z_{\mathfrak{g}_1}(T) = \mathbb{O}\left(\omega^{-1} \mathbb{e}^{hL + \omega^{-1}Q} (1 + \epsilon \omega^{-4}P) \mid \bigotimes_i e_i l_i f_i\right),$$

where L is linear, Q quadratic, and P quartic in the $\{e_i, l_i, f_i\}$ with ω and all coefficients polynomials in t. Furthermore, everything

Video and more at http://www.math.toronto.edu/~drorbn/Talks/McGill-1702/

 $\int_{A\in\Omega^1(\mathbb{R}^3,\mathfrak{g})}\mathcal{D}A\,\,\mathrm{e}^{ik\,cs(A)}PExp_{\gamma}(A),$

 $PExp_{\gamma}(A) := \prod^{1} \exp(\gamma^* A) \in \mathcal{U} = \hat{\mathcal{U}}(\mathfrak{g}),$

where $cs(A) \coloneqq \frac{1}{4\pi} \int_{\mathbb{R}^3} tr \left(A dA + \frac{2}{3} A^3 \right)$ and

Dror Bar-Natan: Talks: McGill-1702: Joint with Roland van der Veen What else can you do with solvable approximations?