Dror Bar-Natan — Handout Portfolio

As of June 7, 2025 — see also http://drorbn.net/hp — paper copies are available from the author, at a muffin plus cappuccino each or the monetary equivalent (to offset printing costs). This document has 188 pages.

Theorem [BV3]. With $c = (s, i, j), c_0 =$ Questions, Conjectures, Expectations, Dreams. s=1

 (s_0, i_0, j_0) , and $c_1 = (s_1, i_1, j_1)$ denoting crossings, there is a quadratic $F_1(c) \in \mathbb{Q}(T_{\nu})[g_{\nu\alpha\beta} : [i]$ i $\alpha, \beta \in \{i, j\}$, a cubic $F_2(c_0, c_1) \in \mathbb{Q}(T_{\nu})[g_{\nu\alpha\beta} : \alpha, \beta \in \mathbb{C}$ onjecture 2. On classical (non-virtual) knots, θ always has he- $\{i_0, j_0, i_1, j_1\}$, and a linear $F_3(\varphi, k)$ such that θ is a knot invariant: xagonal (D_6) symmetry.

This picture gave the invariant its name If these pictures remind you of Feynman diagrams, it's because they are Feynman diagrams [BN2].

Lemma 1. The traffic function $g_{\alpha\beta}$ is a "relative invariant":

Lemma 2. With $k^+ := k + 1$, the "g-rules" hold i^+ near a crossing c = (s, i, j):

 $g_{j\beta} = g_{j^+\beta} + \delta_{j\beta}$ $g_{i\beta} = T^s g_{i^+\beta} + (1 - T^s) g_{j^+\beta} + \delta_{i\beta}$ $g_{2n^+\beta} = \delta_{2n^+\beta}$ [BN1] D. Bar-Natan, Everything around $s_{i_{2,j}}$ is DoPeGDO. So what?, $g_{\alpha i^+} = T^s g_{\alpha i} + \delta_{\alpha i^+} \quad g_{\alpha j^+} = g_{\alpha j} + (1 - T^s) g_{\alpha i} + \delta_{\alpha j^+} \quad g_{\alpha,1} = \delta_{\alpha,1}$ **Corollary 1.** G is easily computable, for AG = I (= GA), with A the $(2n+1)\times(2n+1)$ identity matrix with additional contributions:

$$c = (s, i, j) \mapsto \overrightarrow{\text{row } i} \quad \overrightarrow{-T^s} \quad \overrightarrow{T^s - 1}$$

For the trefoil example, we have:

We also set $\Delta_{\nu} := \Delta(T_{\nu})$ for $\nu = 1, 2, 3$.

Question 1. What's the relationship between Θ and the Garoufalidis-Kashaev invariants [GK, GL]?

Conjecture 3. θ is the ϵ^1 contribution to the "solvable approximation" of the sl_3 universal invariant, obtained by running the quantization machinery on the double $\mathcal{D}(\mathfrak{b}, b, \epsilon \delta)$, where \mathfrak{b} is the Borel subalgebra of sl_3 , b is the bracket of b, and δ the cobracket. See [BV2, BN1, Sch]

Conjecture 4. θ is equal to the "two-loop contribution to the Kontsevich Integral", as studied by Garoufalidis, Rozansky, Kricker, and in great detail by Ohtsuki [GR, Ro1, Ro2, Ro3, Kr, Oh].

Fact 5. θ has a perturbed Gaussian integral formula, with integration carried out over over a space 6E, consisting of 6 copies of the space of edges of a knot diagram D. See [BN2].

Conjecture 6. For any knot K, its genus g(K) is bounded by the T_1 -degree of θ : $2g(K) \ge \deg_{T_1} \theta(K)$.

Conjecture 7. $\theta(K)$ has another perturbed Gaussian integral formula, with integration carried out over over the space $6H_1$, consisting of 6 copies of $H_1(\Sigma)$, where Σ is a Seifert surface for K.

Expectation 8. There are many further invariants like θ , given by Green function formulas and/or Gaussian integration formulas. One or two of them may be stronger than θ and as computable.

Dream 9. These invariants can be explained by something less foreign than semisimple Lie algebras.

References

Dream 10. With Conjectu-

re 7 in mind, θ will have

something to say about rib-

- bon knots.
- talk in Da Nang, May 2019. Handout and video at ωεβ/DPG.
- [BN2] —, Knot Invariants from Finite Dimensional Integration, talks in Beijing (July 2024, ωεβ/icbs24) and in Geneva (August 2024, ωεβ/ge24).
- [BV1] —, R. van der Veen, A Perturbed-Alexander Invariant, Quantum Topology 15 (2024) 449-472, ωεβ/ΑΡΑΙ.
- BV21 --, -, Perturbed Gaussian Generating Functions for Universal Knot Invariants, arXiv: 2109.02057.
- [BV3] -, -, A Very Fast, Very Strong, Topologically Meaningful and Fun Knot Invariant, in preparation, draft at $\omega\epsilon\beta$ /Theta
- i, M. Obeidin, A. Ehrenberg, S. Bhattacharyya, D. Lei, and minary Report, lecture notes at ωεβ/DHOEBL. Also a data
- Multivariable Knot Polynomials from Braided Hopf Alge-2311.11528.

V2-polynomial of knots, arXiv:2409.03557.

Expansion of the Kontsevich Integral, the Null-Move, and 003187

a Representations of Braid Groups and Link Polynomials, 388

Kontsevich Integral and Rozansky's Rationality Conjecture,

- . Burau Representation and Random Walk on String Links. -302, arXiv:q-alg/9605023.
- olynomial of Knots, Geom. Top. 11 (2007) 1357-1475.

pansion of the Colored Jones Polynomial, Ph.D. thesis, Ug. 2013, ωεβ/Ov.

on of the Trivial Flat Connection to the Jones Polynomial anifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv

, Burau Representation and the Melvin-Morton Expansion l, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.

C Invariant of Links and Rationality Conjecture, arXiv

xpansions of Quantum Group Invariants, Ph.D. thesis, Universiteit Leiden, September 2020, ωεβ/Scha.

Invariance under R3

This is Theta.nb of http://drorbn.net/v25/ap.

©Once[<< KnotTheory`; << Rot.m; << PolyPlot.m];</pre>

```
\bigcirc T<sub>3</sub> = T<sub>1</sub> T<sub>2</sub>;
\odot CF [\mathcal{E}_{2}] := Expand@Collect[\mathcal{E}, g, F] /. F \rightarrow Factor;
\bigcirc F<sub>1</sub>[{s_, i_, j_}] =
         CF [
            s (1/2 - g_{3ii} + T_2^s g_{1ii} g_{2ji} - g_{1ii} g_{2jj} -
                    (T_2^s - 1) g_{2ji} g_{3ii} + 2 g_{2jj} g_{3ii} - (1 - T_3^s) g_{2ji} g_{3ji} -
                   g_{2ii} g_{3jj} - T_2^s g_{2ji} g_{3jj} + g_{1ii} g_{3jj} +
                    ((T_1^s - 1) g_{1ji} (T_2^{2s} g_{2ji} - T_2^s g_{2jj} + T_2^s g_{3jj}) +
                           (T_3^{s} - 1) g_{3ii}
                              (1 - T_2^s g_{1ii} - (T_1^s - 1) (T_2^s + 1) g_{1ji} +
                                  (T_2^s - 2) g_{2ii} + g_{2ii}) / (T_2^s - 1) ];
© F<sub>2</sub>[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=
      CF\left[s1 \left(T_{1}^{s0}-1\right) \left(T_{2}^{s1}-1\right)^{-1} \left(T_{3}^{s1}-1\right) g_{1,j1,i0} g_{3,j0,i1}\right)\right]
            \left(\left(\mathsf{T}_{2}^{50}\mathsf{g}_{2,i1,i0}-\mathsf{g}_{2,i1,j0}\right)-\left(\mathsf{T}_{2}^{50}\mathsf{g}_{2,j1,i0}-\mathsf{g}_{2,j1,j0}\right)\right)\right]
\odot F_3[\varphi_{,k_{]}} = -\varphi / 2 + \varphi g_{3kk};
\odot \delta_{i}, j := If[i === j, 1, 0];
    \mathbf{g}_{\nu_{j\beta_{-}}} \Rightarrow \mathbf{g}_{\nu_{j}+\beta} + \delta_{j\beta},
         \mathbf{g}_{\gamma \ i\beta} \Rightarrow \mathbf{T}_{\gamma}^{s} \mathbf{g}_{\gamma i^{+}\beta} + (\mathbf{1} - \mathbf{T}_{\gamma}^{s}) \mathbf{g}_{\gamma j^{+}\beta} + \delta_{i\beta},
         \mathbf{g}_{\gamma \alpha i^{+}} \Rightarrow \mathbf{T}_{\gamma}^{s} \mathbf{g}_{\gamma \alpha i} + \delta_{\alpha i^{+}},
         \mathbf{g}_{\gamma \alpha j^{+}} \Rightarrow \mathbf{g}_{\gamma \alpha j} + (\mathbf{1} - \mathbf{T}_{\gamma}^{s}) \mathbf{g}_{\gamma \alpha i} + \delta_{\alpha j^{+}}
       }
③ DSum[Cs___] := Sum[F<sub>1</sub>[c], {c, {Cs}}] +
         Sum[F<sub>2</sub>[c0, c1], {c0, {Cs}}, {c1, {Cs}}]
    lhs = DSum[{1, j, k}, {1, i, k^+}, {1, i<sup>+</sup>, j<sup>+</sup>},
               {s, m, n}] //. gR_{1,j,k} \cup gR_{1,i,k^+} \cup gR_{1,i^+,j^+};
    rhs = DSum[{1, i, j}, {1, i<sup>+</sup>, k}, {1, j<sup>+</sup>, k<sup>+</sup>},
               {s, m, n}] //. gR_{1,i,j} \cup gR_{1,i^+,k} \cup gR_{1,j^+,k^+};
    Simplify[lhs == rhs]
□ True
```

The Main Program

```
D \ \textcircled{O} \ \Theta[K_] := Module \left[ \{Cs, \varphi, n, A, \Delta, G, ev, \theta\}, \\ \{Cs, \varphi\} = Rot[K]; n = Length[Cs]; \\ A = IdentityMatrix[2n+1]; \\ Cases \left[Cs, \{s_{-}, i_{-}, j_{-}\} \Rightarrow \right. \\ \left(A[[\{i, j\}, \{i+1, j+1\}]] + \left( \begin{array}{c} -T^{s} T^{s} - 1 \\ \theta & -1 \end{array} \right) \right) \right]; \\ \Delta = T^{(-Total[\varphi] - Total[Cs[All, 1]])/2} Det[A]; \\ G = Inverse[A]; \\ ev[\mathcal{S}_{-}] := \\ Factor[\mathcal{S} / . g_{\nu_{-},\alpha_{-},\beta_{-}} \Rightarrow (G[[\alpha, \beta]] / . T \to T_{\nu})]; \\ \theta = ev\left[\sum_{k=1}^{n} F_{1}[Cs[[k]]]\right]; \\ \theta + = ev\left[\sum_{k=1}^{n} F_{2}[Cs[[k1]], Cs[[k2]]]\right]; \\ \theta + = ev\left[\sum_{k=1}^{2n} F_{3}[\varphi[[k]], k]\right]; \\ Factor @ \\ \{\Delta, (\Delta / . T \to T_{1}) (\Delta / . T \to T_{2}) (\Delta / . T \to T_{3}) \theta\}\right]; \end{cases}
```

The Trefoil, Conway, and Kinoshita-Terasaka

(Note that the genus of the Conway knot appears to be bigger than the genus of Kinoshita-Terasaka)

Some Torus Knots

```
③ GraphicsRow[ImageCompose[
        PolyPlot[⊖[TorusKnot@@ #], ImageSize → 480],
        TubePlot[TorusKnot@@ #, ImageSize → 240],
        {Right, Bottom}, {Right, Bottom}
    ] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}]
```


Random knots from [DHOEBL], with 50-73 crossings:

(many more at $\omega \epsilon \beta / DK$)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/PhuQuoc-2506.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.

Implementation (see IType.nb of $\omega \epsilon \beta/ap$).

© Once[<< KnotTheory`; << Rot.m];</pre>

 Loading KnotTheory` version of October 29, 2024, 10:29:52.1301.
 Read more at http://katlas.org/wiki/KnotTheory.
 Loading Rot.m from http://drorbn.net/AP/Talks/Bonn-2505

to compute rotation numbers. $\odot CF[\omega_{-} \delta_{-}E] := CF[\omega] \times CF / @ \delta;$ $CF[\delta_{-}List] := CF / @ \delta;$ $CF[\delta_{-}] := Module[\{vs, ps, c\},$ $vs = Cases[\delta, (x | p | \delta | \pi | g)_{-}, \infty] \cup \{\epsilon\};$ $Total[CoefficientRules[Expand[\delta], vs] /.$

$(ps \rightarrow c_{)} \Rightarrow Factor[c] (Times @@ vs^{ps})]];$

Integration using Picard iteration. The core is in yellow and hacks are in pink.

$$\odot$$
 \$ π = Identity; (* The Wisdom Projection *)

③ Unprotect [Integrate];

Module [{n, L0, Q,
$$\Delta$$
, G, Z0, Z, λ , DZ, DDZ,
FZ, a, b},
n = Length@vs; L0 = L/. $\epsilon \rightarrow 0$;
Q = Table [($-\partial_{vs}$ [[a], vs [[b]]L0) /. Thread [$vs \rightarrow 0$] /.
(p | \times) $\rightarrow 0$, {a, n}, {b, n}];
If [(Δ = Det[Q]) == 0, Return@"Degenerate Q!"];
Z = Z0 = CF@\$ π [L + vs.Q.vs/2]; G = Inverse[Q];
FixedPoint [(DZ = Table[$\partial_{v}Z$, {v, vs}];
DDZ = Table[$\partial_{u}DZ$, {u, vs}];
FZ = Sum[G[[a, b]] (DDZ[[a, b]] + DZ[[a]] \times DZ[[b]]);
{a, n}, {b, n}] / 2;
Z = CF[Z0 + \int_{0}^{λ} \$ π [FZ] d λ]) &, Z];
PowerExpand@Factor [$\omega \Delta^{-1/2}$] \times

 $\mathbb{E}\left[\mathsf{CF}\left[\frac{\mathsf{Z}}{\boldsymbol{1},\boldsymbol{\lambda}}\rightarrow\mathbf{1}^{\boldsymbol{1}}, \mathsf{Thread}\left[\boldsymbol{vs}\rightarrow\mathbf{0}\right]\right]\right];$

Protect[Integrate];

$$\stackrel{()}{=} \int \mathbb{E} \left[-\frac{\mu x^2}{2 + i \xi x} \right] d\{x\}$$

$$\stackrel{()}{=} \frac{\mathbb{E} \left[-\frac{\xi^2}{2\mu} \right]}{\sqrt{\mu}}$$

$$\stackrel{()}{=} \mathbf{FofG} = \int \mathbb{E} \left[-\mu (x - a)^2 / 2 + i \xi x \right] d\{x\}$$

$$\stackrel{()}{=} \frac{\mathbb{E} \left[\frac{i (2a\mu + i \xi) \xi}{2\mu} \right]}{\sqrt{\mu}}$$

$$\stackrel{()}{=} \int \mathbf{FofG} \mathbb{E} \left[-i \xi x \right] d\{\xi\}$$

$$\stackrel{()}{=} \mathbb{E} \left[-\frac{1}{2} (a - x)^2 \mu \right]$$

So we've tested and nearly proven the Fourier inversion formula!

$$= -\frac{1}{2} \{x_1, x_2\} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \{x_1, x_2\} + \{\xi_1, \xi_2\} \cdot \{x_1, x_2\};$$

$$\frac{\mathbb{C} \mathbf{Z} \mathbf{I} \mathbf{Z} = \int \mathbb{E} [\mathbf{L}] \, d\{\mathbf{x}_1, \mathbf{x}_2\}}{\mathbb{E} \left[\frac{c \, \xi_1^2}{2 \, (-b^2 + a \, c)} + \frac{b \, \xi_1 \, \xi_2}{b^2 - a \, c} + \frac{a \, \xi_2^2}{2 \, (-b^2 + a \, c)} \right]}{\sqrt{-b^2 + a \, c}}$$

$$\stackrel{\textcircled{\sc black {\rm C}}}{=} \left\{ \textbf{Z1} = \int \mathbb{E} \left[L \right] d \left\{ \textbf{x}_1 \right\}, \ \textbf{Z12} = \int \textbf{Z1} d \left\{ \textbf{x}_2 \right\} \right\} \\ \frac{\Box}{\left\{ \frac{\mathbb{E} \left[-\frac{\left(-b^2 + a \, c \right) \, \textbf{x}_2^2}{2 \, a} - \frac{b \, \textbf{x}_2 \, \xi_1}{a} + \frac{\xi_1^2}{2 \, a} + \textbf{x}_2 \, \xi_2 \right]}{\sqrt{a}}, \ \textbf{True} \right\}$$

$$\overset{\textcircled{\baselineskip}{\baselineskip} \overset{\textcircled{\baselineskip}{\baselineskip} {\baselineskip} \overset{\textcircled{\baselineskip}{\baselineskip} {\baselineskip} {\baselineskip} \overset{\textcircled{\baselineskip}{\baselineskip} {\baselineskip} {\b$$

From https://oeis.org/A226260:

founded in 1964 by N. J. A. Sloane
[
Greetings from <u>The On-Line Encyclopedia of Integer Sequences</u>] Search Hints

A226260 Numerators of mass formula for connected vacuum graphs on 2n nodes for a phi^3 field theory. 1, 5, 5, 1105, 565, 82825, 19675, 1282031525, 80727925, 1683480621875, 13209845125, 2239646759308375, 19739117098375, 6320791709083309375, 32468078556578125, 38562676768845045751875, 281365778406932973125, 2824650747089425586152484375, 776632157034116712734375 (list: graph: refs: listen: history: text: internal format)

The Right-Handed Trefoil.

©K = Mirror@Knot[3, 1]; Features[K] \Box Features [7, C₄[-1] X_{1,5}[1] X_{3,7}[1] X_{6,2}[1]] $\textcircled{:} \mathcal{L}[\mathbf{X}_{i,j} [\mathbf{S}_{-}]] := \mathbf{T}^{s/2} \mathbb{E} [$ $x_i (p_{i+1} - p_i) + x_j (p_{j+1} - p_j) +$ $(T^{s} - 1) x_{i} (p_{i+1} - p_{j+1}) +$ $(\epsilon s / 2) \times$ $\left(\mathbf{x}_{i} (\mathbf{p}_{i} - \mathbf{p}_{j}) \left(\left(\mathbf{T}^{s} - \mathbf{1}\right) \mathbf{x}_{i} \mathbf{p}_{j} + \mathbf{2} (\mathbf{1} - \mathbf{x}_{j} \mathbf{p}_{j}) \right) - \mathbf{1} \right) \right]$ $\mathcal{L}[\mathbf{C}_{i_{-}}[\varphi_{-}]] := \mathsf{T}^{\varphi/2} \mathbb{E}\Big[\mathsf{x}_{i} (\mathsf{p}_{i+1} - \mathsf{p}_{i}) + \epsilon \varphi \left(\frac{1}{2} - \mathsf{x}_{i} \mathsf{p}_{i}\right)\Big]$ $\mathcal{L}[K_] := CF[\mathcal{L} / @ Features[K][2]]$ vs[K] :=Join @@ Table [{ p_i, x_i }, { i, Features [K] [[1]] }] ② {vs[K], ⊥[K]} $\Box \Big\{ \{ p_1, x_1, p_2, x_2, p_3, x_3, p_4, x_4, p_5, x_5, p_6, x_6, p_7, x_7 \}, \Big\}$ $T \ {\mathbb E} \ \left| \ -2 \ {\mathbb E} \ -2 \ {\mathbb E} \ \right| \ -2 \ {\mathbb E} \ \left| \ {\mathbb P}_1 \ x_1 \ {\mathbb E} \ {\mathbb P}_1 \ x_1 \ {\mathbb E} \ {\mathbb P}_2 \ x_1 \ {\mathbb E} \ {\mathbb P}_5 \ x_1 \ {\mathbb E} \ \left| \ {\mathbb P}_6 \ x_1 \ {\mathbb E} \ {\mathbb E}$ $\frac{1}{2} \ (-1+T) \ \in \ p_1 \ p_5 \ x_1^2 + \frac{1}{2} \ (1-T) \ \in \ p_5^2 \ x_1^2 - p_2 \ x_2 + p_3 \ x_2 - p_3 \ x_3 + \frac{1}{2} \ (1-T) \ (1-T)$ Joseph Fourier $\in \, p_3 \, x_3 \, + \, T \, \, p_4 \, x_3 \, - \, \in \, p_7 \, \, x_3 \, + \, \, (1 - T) \, \, p_8 \, \, x_3 \, + \, \frac{1}{2} \, \, (-1 \, + \, T) \, \, \in \, p_3 \, \, p_7 \, \, x_3^2 \, + \,$ $\frac{1}{2} \ (1-T) \ \in \ p_7^2 \ x_3^2 - p_4 \ x_4 + \in \ p_4 \ x_4 + p_5 \ x_4 - p_5 \ x_5 + p_6 \ x_5 \in p_1 \ p_5 \ x_1 \ x_5 \ + \ \in \ p_5^2 \ x_1 \ x_5 \ - \ \in \ p_2 \ x_6 \ + \ (1 \ - \ T) \ p_3 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_3 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_6 \ x_6 \ + \ (1 \ - \ T) \ p_8 \ x_6 \ - \ p_8 \ x_6 \ x_6 \ - \ p_8 \ x_6 \ - \ p_8 \ x_6 \ - \ p_8 \ x_6 \ x_6 \ - \ p_8 \ x_6 \ x_6 \ x_6 \ - \ p_8 \ x_6 \$ $\in p_6 \ x_6 + T \ p_7 \ x_6 + \in p_2^2 \ x_2 \ x_6 - \in p_2 \ p_6 \ x_2 \ x_6 + \frac{1}{2} \ (1 - T) \ \in p_2^2 \ x_6^2 + \frac{1}{2} \ (1 - T) \ \in p_2^2 \ x_6^2 + \frac{1}{2} \ (1 - T) \$ $\frac{1}{2} \left((-1 + T) \in p_2 \ p_6 \ x_6^2 - p_7 \ x_7 + p_8 \ x_7 - \epsilon \ p_3 \ p_7 \ x_3 \ x_7 + \epsilon \ p_7^2 \ x_3 \ x_7 \right] \right\}$

$$\overset{\textcircled{\basel{eq:productive_states}}}{=} \frac{\basel{main_states} \mathsf{Normal} \left[\# + \mathsf{O}[\epsilon]^2 \right] \&; \ \int \mathcal{L}[\mathsf{K}] \, \mathrm{d} \, \mathsf{vs}[\mathsf{K}] \\ - \frac{\basel{main_states} \frac{\basel{main_states}}{(1-\mathsf{T}+\mathsf{T}^2)^2} \left[\frac{1}{1-\mathsf{T}+\mathsf{T}^2} \right]}{1-\mathsf{T}+\mathsf{T}^2}$$

A faster program to compute ρ_1 , and more stories about it, are at [BV2].

Invariance Under Reidemeister 3, Take 2.

$$\hat{ }^{ (\widehat{ }) } lhs = \int (\mathcal{L} / @ (X_{i,j} [1] X_{i+1,k} [1] X_{j+1,k+1} [1])) d \{ x_i, x_j, x_k, p_{i+1}, p_{j+1}, p_{k+1}, x_{i+1}, x_{j+1}, x_{k+1} \}; rhs = \int (\mathcal{L} / @ (X_{j,k} [1] X_{i,k+1} [1] X_{i+1,j+1} [1])) d \{ x_i, x_j, x_k, x_{i+1}, p_{i+1}, p_{j+1}, p_{k+1}, x_{j+1}, x_{k+1} \}; lhs === rhs \Box True$$

© 1hs

□Degenerate Q!

Invariance Under Reidemeister 3, Take 3.

```
 \stackrel{()}{=} lhs = \int \left( \mathbb{E} \left[ i \pi_{i} p_{i} + i \pi_{j} p_{j} + i \pi_{k} p_{k} \right] \times \mathcal{L} / \mathbb{e} \left( X_{i,j} [1] X_{i+1,k} [1] X_{j+1,k+1} [1] \right) \right) \right) 
                 d \{ p_i, p_j, p_k, x_i, x_j, x_k, p_{i+1}, p_{j+1}, p_{k+1}, x_{i+1}, x_{j+1}, x_{k+1} \}; 
       rhs = \left( \mathbb{E} \left[ i \pi_{i} p_{i} + i \pi_{j} p_{j} + i \pi_{k} p_{k} \right] \times \mathcal{L} / @ \left( X_{j,k} [1] X_{i,k+1} [1] X_{i+1,j+1} [1] \right) \right) 
                 d \{ p_i, p_j, p_k, x_i, x_j, x_k, p_{i+1}, p_{j+1}, p_{k+1}, x_{i+1}, x_{j+1}, x_{k+1} \}; 
      1hs == rhs
```


🙂 **lhs**

$$\begin{array}{c} \overset{1}{\overset{\circ}{\overset{\circ}{2}}} \\ - \frac{\overset{1}{\overset{\circ}{3}}}{\overset{\circ}{\frac{2}}} + i T^{2} p_{2+i} \pi_{i} - i (-1+T) T p_{2+j} \pi_{i} + i T^{2} \in p_{2+j} \pi_{i} - i (-1+T) p_{2+k} \pi_{i} + i T \in p_{2+k} \pi_{i} - \frac{1}{2} (-1+T) T^{3} \in p_{2+j}^{2} \pi_{i}^{2} + \frac{1}{2} (-1+T) T^{3} \in p_{2+j}^{2} \pi_{i}^{2} - \frac{1}{2} (-1+T) T^{2} \in p_{2+i} p_{2+k} \pi_{i}^{2} + \frac{1}{2} (-1+T) T^{2} \in p_{2+j} p_{2+k} \pi_{i}^{2} + \frac{1}{2} (-1+T) T \in p_{2+k} \pi_{i}^{2} + \frac{1}{2} (-1+T) T \in p_{2+k} \pi_{i}^{2} + \frac{1}{2} (-1+T) T \in p_{2+j} \pi_{j} - i (-1+T) p_{2+k} \pi_{j} + \frac{1}{2} (-1+T) T \in p_{2+k} \pi_{j} + T^{3} \in p_{2+i} p_{2+j} \pi_{i} \pi_{j} - \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} + T^{3} \otimes p_{2+i} p_{2+j} \pi_{i} \pi_{j} - T^{3} \otimes p_{2+j}^{2} \pi_{i} \pi_{j} - (-1+T) T^{2} \otimes p_{2+k} \pi_{i} \pi_{j} + (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} + (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} - \frac{1}{2} (-1+T) T \otimes p_{2+j} p_{2+k} \pi_{i} \pi_{j} + \frac{1}{2} (-1+T) T \otimes p_{2+k}^{2} \pi_{i} \pi_{j} - \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} - \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} + \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} - \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} - \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} + \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} - \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} - \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} - \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} + \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} - \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} + \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} - \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} + \frac{1}{2} (-1+T) T \otimes p_{2+k} \pi_{i} \pi_{j} + \frac{1}{2} \otimes p_{2+k} \pi_{i} \pi_{j} + \frac{1}{2} \otimes p_{2+k} \pi_{i} \pi_{j} - \frac{1}{2} \otimes p_{2+k} \pi_{i} \pi_{i} \pi_{k} - \frac{1}{2} \otimes p_{2+k} \pi_{i} \pi_{k} - \frac{1}{2} \otimes p_{2+k} \pi_{i} \pi_{k} + \frac{1}{2} \otimes p_{2+k} \pi_{i} \pi_{i} \pi_{k} - \frac{1}{2} \otimes p_{2+k} \pi_{i} \pi_{k$$

Invariance under the other Reidemeister moves is proven in a similar way. See IType.nb at $\omega \epsilon \beta/ap$.

There's more! To get sl_2 invariants mod ϵ^3 , add the following to $L(X_{ii}^+)$, $L(X_{ii}^-)$, and $L(C_i^{\varphi})$, respectively (and see More.nb at ω - $\epsilon\beta/ap$ for the verifications):

 $\odot \epsilon^2 r_2[1, i, j]$

$$\frac{\Box}{12} \stackrel{1}{\in} \stackrel{2}{\in} \left(-6 p_i x_i + 6 p_j x_i - 3 (-1 + 3 T) p_i p_j x_i^2 + 3 (-1 + 3 T) p_i^2 p_j x_i^3 - 2 (-1 + T) (5 + T) p_i p_j^2 x_i^3 + 2 (-1 + T) (3 + T) p_j^3 x_i^3 + 18 p_i p_j x_i x_j - 18 p_j^2 x_i x_j - 6 p_i^2 p_j x_i^2 x_j + 6 (2 + T) p_i p_j^2 x_i^2 x_j - 6 (1 + T) p_j^3 x_i^2 x_j - 6 p_i p_j^2 x_i x_j^2 + 6 p_j^3 x_i x_j^2 \right)$$

 $\odot \epsilon^2 r_2[-1, i, j]$

$$\begin{array}{c} \hline \\ \hline \\ \hline \\ 12\,T^2 \end{array} \in ^2 \left(-6\,T^2\,p_i\,x_i+6\,T^2\,p_j\,x_i\,+ \\ & 3\,\left(-3+T\right)\,T\,p_i\,p_j\,x_i^2-3\,\left(-3+T\right)\,T\,p_j^2\,x_i^2-4\,\left(-1+T\right)\,T\,p_i^2\,p_j\,x_i^3\,+ \\ & 2\,\left(-1+T\right)\,\left(1+5\,T\right)\,p_i\,p_j^2\,x_i^3-2\,\left(-1+T\right)\,\left(1+3\,T\right)\,p_j^3\,x_i^3\,+ \\ & 18\,T^2\,p_i\,p_j\,x_i\,x_j-18\,T^2\,p_j^2\,x_i\,x_j-6\,T^2\,p_i^2\,p_j\,x_i^2\,x_j+6\,T\,(\,1+2\,T\,)\,p_i\,p_j^2\,x_i^2\,x_j\,- \\ & 6\,T\,\left(1+T\right)\,p_j^3\,x_i^2\,x_j-6\,T^2\,p_i\,p_j^2\,x_i\,x_j^2+6\,T^2\,p_j^3\,x_i\,x_j^2 \right) \end{array}$$

$\odot \epsilon^2 \gamma_2 [\varphi, i]$

;

 $\frac{\Box}{2} - \frac{1}{2} \in^2 \varphi^2 p_i x_i$

Even more! • The sl_2 formulas mod ϵ^4 are in the last page of the handout of [BN3].

- Using [GPV] we can show that every finite type invariant is I-Type.
- Probably, $\langle \text{Reshetikhin-Turaev} \rangle \subset \langle \text{I-Type} \rangle$ efficiently.
- Possibly, $\langle Rozansky Polynomials \rangle \subset \langle I-Type \rangle$ efficiently.
- Knot signatures are I-Type, at least mod 8.
- We already have some work on sl_3 , and it leads to the strongest genuinely-computable knot invariant presently known.

The $sl_3^{\ell\epsilon^2}$ Example [BV3]. Here we have two formal variables $T_1 \odot F_1[\{s_j, i_j\}] := CF[$ and T_2 , we set $T_3 := T_1 T_2$, we integrate over 6 variables for each edge: p_{1i} , p_{2i} , p_{3i} , x_{1i} , x_{2i} , and x_{3i} . \odot **T**₃ = **T**₁ **T**₂; *i* ⁺ := *i* + **1**; **\$**π = $(CF@Normal[#+0[\epsilon]^2]/.$ $\left\{\pi_{is_} \Rightarrow \mathbf{B}^{-1} \pi_{is}, \mathbf{x}_{is_} \Rightarrow \mathbf{B}^{-1} \mathbf{x}_{is}, \mathbf{p}_{is_} \Rightarrow \mathbf{B} \mathbf{p}_{is}\right\} / .$ $\in \mathbf{B}^{b_{-}}$ /: $b < 0 \rightarrow 0$ /. $\mathbf{B} \rightarrow 1$) &; \odot vs_i := Sequence [p_{1,i}, p_{2,i}, p_{3,i}, x_{1,i}, x_{2,i}, x_{3,i}]; $\mathcal{F}[is_{-}] := \mathbb{E}[Sum[\pi_{v,i} p_{v,i}, \{i, \{is\}\}, \{v, 3\}]];$ $\mathcal{L}[K] := CF[\mathcal{L}/@Features[K][2]];$ vs[K] := Union @@ Table [{vs; }, {i, Features [K] [[1]] }] The Lagrangian. $\textcircled{\baselineskip} \mathfrak{L}[X_{i_{_},j_{_}}[s_{_}]] := T_3^s \mathbb{E} \left[\mathsf{CF@Plus} \right[$ $\sum_{i=1}^{3} \left(\mathbf{x}_{vi} \left(\mathbf{p}_{vi^{*}} - \mathbf{p}_{vi} \right) + \mathbf{x}_{vj} \left(\mathbf{p}_{vj^{*}} - \mathbf{p}_{vj} \right) + \left(\mathbf{T}_{v}^{s} - \mathbf{1} \right) \mathbf{x}_{vi} \left(\mathbf{p}_{vi^{*}} - \mathbf{p}_{vj^{*}} \right) \right),$ $(T_1^s - 1) p_{3j} x_{1i} (T_2^s x_{2i} - x_{2j}),$ $\epsilon s (T_3^s - 1) p_{1i} (p_{2i} - p_{2i}) x_{3i} / (T_2^s - 1),$ $\epsilon s \left(1 / 2 + T_2^s p_{1i} p_{2j} x_{1i} x_{2i} - p_{1i} p_{2j} x_{1i} x_{2j} - p_{3i} x_{3i} - p_{3i} x_{3i} \right)$ $(T_2^s - 1) p_{2j} p_{3i} x_{2i} x_{3i} + (T_3^s - 1) p_{2j} p_{3j} x_{2i} x_{3i} +$ $2 p_{2j} p_{3i} x_{2j} x_{3i} + p_{1i} p_{3j} x_{1i} x_{3j} - p_{2i} p_{3j} x_{2i} x_{3j} T_{2}^{s} p_{2j} p_{3j} x_{2i} x_{3j} +$ $((T_1^s - 1) p_{1j} x_{1i} (T_2^{2s} p_{2j} x_{2i} - T_2^s p_{2j} x_{2j} (T_{2}^{s} + 1) (T_{3}^{s} - 1) p_{3j} x_{3i} + T_{2}^{s} p_{3j} x_{3j} +$ $(T_3^{s} - 1) p_{3j} x_{3i} (1 - T_2^{s} p_{1i} x_{1i} + p_{2i} x_{2j} + (T_2^{s} - 2) p_{2j} x_{2j})) /$ $(T_2^s - 1))]]$ $\label{eq:linear_constraint} \bigcirc \mathcal{L}[\mathsf{C}_{i_{-}}[\mathscr{Y}_{-}]] := \mathsf{T}_{3}^{\mathscr{Y}} \mathbb{E} \left[\sum_{\nu=1}^{3} \mathsf{x}_{\nu i} \; (\mathsf{p}_{\nu i^{+}} - \mathsf{p}_{\nu i}) + \epsilon \; \mathscr{Y} \; (\mathsf{p}_{3i} \; \mathsf{x}_{3i} - 1 \, / \, 2) \right]$ **Reidemeister 3.** © Short $lhs = \int \mathcal{F}[i, j, k] \times \mathcal{L} /@ (X_{i,j}[1] X_{i^{+},k}[1] X_{j^{+},k^{+}}[1])$ $d\{vs_{i}, vs_{j}, vs_{k}, vs_{i^{+}}, vs_{j^{+}}, vs_{k^{+}}\}$ $\Box T_1^3 T_2^3$ $\mathbb{E}\left[\frac{3 \in}{2} + \mathsf{T}_{1}^{2} \, \mathsf{p}_{1,2+i} \, \pi_{1,i} - (-1 + \mathsf{T}_{1}) \, \mathsf{T}_{1} \, \mathsf{p}_{1,2+j} \, \pi_{1,i} + \ll 150 \right]$ ^(c) rhs = $\int \mathcal{F}[i, j, k] \times \mathcal{L} / @ (X_{j,k}[1] X_{i,k^{+}}[1] X_{i^{+},j^{+}}[1])$ $d\{vs_{i}, vs_{j}, vs_{k}, vs_{i^{+}}, vs_{j^{+}}, vs_{k^{+}}\};$ 1hs == rhs □ True The Trefoil. \odot K = Knot[3, 1]; $\int \mathcal{L}[K] dvs[K]$ \Box - ((i $T_1^2 T_2^2$ $\mathbb{E}\left[-\left(\left(\in \ \left(1-T_{1}+T_{1}^{2}-T_{2}-T_{1}^{3} \ T_{2}+T_{2}^{2}+T_{1}^{4} \ T_{2}^{2}-T_{1} \ T_{2}^{3} - \right. \right. \right. \right. \\$ $T_{1}^{4}T_{2}^{3} + T_{1}^{2}T_{2}^{4} - T_{1}^{3}T_{2}^{4} + T_{1}^{4}T_{2}^{4}$)) / ((1 - T₁ + T₁²) $(1 - T_2 + T_2^2)$ $(1 - T_1 T_2 + T_1^2 T_2^2))))))/$ $\left(\left(\mathbf{1} - T_1 + T_1^2 \right) \left(\mathbf{1} - T_2 + T_2^2 \right) \left(\mathbf{1} - T_1 T_2 + T_1^2 T_2^2 \right) \right) \right)$

 $s (1/2 - g_{3ii} + T_2^s g_{1ii} g_{2ji} - g_{1ii} g_{2jj} - (T_2^s - 1) g_{2ji} g_{3ii} +$ $2 g_{2ii} g_{3ii} - (1 - T_3^{s}) g_{2ii} g_{3ii} - g_{2ii} g_{3ii} - T_2^{s} g_{2ii} g_{3ii} +$ **8**1ii **8**3ii + $((T_1^{s} - 1) g_{1ji} (T_2^{2s} g_{2ji} - T_2^{s} g_{2jj} + T_2^{s} g_{3jj}) +$ $(T_3^{s} - 1) g_{3ji} (1 - T_2^{s} g_{1ii} - (T_1^{s} - 1) (T_2^{s} + 1) g_{1ji} +$ $(T_2^s - 2) g_{2jj} + g_{2ij}) / (T_2^s - 1))$ © F₂[{s0_, i0_, j0_}, {s1_, i1_, j1_}] := $CF[s1(T_1^{s0} - 1)(T_2^{s1} - 1)^{-1}(T_3^{s1} - 1)g_{1,j1,j0}g_{3,j0,j1}$ $\left(\left(\mathsf{T}_{2}^{S\theta} \mathsf{g}_{2,i1,i0} - \mathsf{g}_{2,i1,j0} \right) - \left(\mathsf{T}_{2}^{S\theta} \mathsf{g}_{2,j1,i0} - \mathsf{g}_{2,j1,j0} \right) \right) \right]$ $\odot F_3[\varphi_{,k_{}}] = \varphi g_{3kk} - \varphi / 2;$ We call the invariant computed θ : $\bigcirc \Theta[K_] := \Theta[K] = Module \{X, \varphi, n, A, \Delta, G, ev, \Theta\},$ $\{X, \varphi\} = \operatorname{Rot}[K]; n = \operatorname{Length}[X];$ A = IdentityMatrix[2 n + 1]; Cases X, $\{s_{j}, i_{j}, j_{j}\}$ $\left(A [\{i, j\}, \{i+1, j+1\}] + = \begin{pmatrix} -T^{s} T^{s} - 1 \\ 0 & -1 \end{pmatrix} \right)];$ $\Delta = \mathbf{T}^{(-\text{Total}[\varphi] - \text{Total}[X[All, 1]])/2} \text{ Det}[A]$ G = Inverse[A]; $\mathsf{ev}[\mathcal{S}_{-}] := \mathsf{Factor}[\mathcal{S} / . \mathbf{g}_{\nu_{-},\alpha_{-},\beta_{-}} \Rightarrow (\mathsf{G}[\![\alpha, \beta]\!] / . \mathsf{T} \to \mathsf{T}_{\nu})];$ $\boldsymbol{\Theta} = ev \left[\sum_{k=1}^{n} \mathbf{F}_{1} [X[[k]]] \right];$ $\label{eq:rescaled_states} \varTheta += \operatorname{ev} \big[\sum_{k1=1}^n \sum_{k2=1}^n \mathsf{F}_2 [X[[k1]], X[[k2]]] \big];$ $\Theta += ev \left[\sum_{k=1}^{2n} F_3[\varphi[k]], k \right]$; Factor@{ Δ , (Δ /. $T \rightarrow T_1$) (Δ /. $T \rightarrow T_2$) (Δ /. $T \rightarrow T_3$) Θ } |; Some Knots.

$$\widehat{ \text{ Spand } [\Theta [\text{Knot } [3, 1]]] }$$

$$\widehat{ \text{ -1}} \left\{ -1 + \frac{1}{T} + \text{T}, -\frac{1}{T_1^2} - \text{T}_1^2 - \frac{1}{T_2^2} - \frac{1}{T_1^2 T_2^2} + \frac{1}{T_1 T_2^2} + \frac{1}{T_1^2 T_2^2} + \frac{1}{T_1^2 T_2^2} + \frac{1}{T_1^2 T_2^2} + \frac{1}{T_1^2 T_2^2} + \frac{1}{T_2^2 T_2^2} + \frac{1}{T_2$$

☺ (* PolyPlot suppressed *)

© GraphicsRow[PolyPlot[⊖[Knot[#]], Labeled → True] & /@{"3_1", "K11n34", "K11n42"}]

K11n34 K11n42

So θ detects knot mutation and separates the Conway knot K11n34 from the Kinoshita-Terasaka knot K11n42!

PolyPlot[@[TorusKnot @@ #], ImageSize → 480], TubePlot[TorusKnot @@ #, ImageSize → 240], {Right, Bottom}, {Right, Bottom}] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

Unproven Fact. For any knot *K*, twice its genus g(K) bounds the T_1 degree of θ : deg_{T_1} $\theta(K) \le 2g(K)$.

The 48-crossing Gompf-Scharlemann-Thompson GST_{48} knot [GST] is significant because it may be a counterexample to the slice-ribbon conjecture:

Gompf Scharlemann Thompson

 $\bigcirc \text{GST}_{48} = \text{EPD} \begin{bmatrix} X_{14,1}, \overline{X}_{2,29}, X_{3,40}, X_{43,4}, \overline{X}_{26,5}, X_{6,95}, X_{96,7}, X_{13,8}, \overline{X}_{9,28}, \\ X_{10,41}, X_{42,11}, \overline{X}_{27,12}, X_{30,15}, \overline{X}_{16,61}, \overline{X}_{17,72}, \overline{X}_{18,83}, X_{19,34}, \overline{X}_{89,20}, \\ \overline{X}_{21,92}, \overline{X}_{79,22}, \overline{X}_{68,23}, \overline{X}_{57,24}, \overline{X}_{25,56}, X_{62,31}, X_{73,32}, X_{84,33}, \overline{X}_{50,35}, \\ X_{36,81}, X_{37,70}, X_{38,59}, \overline{X}_{39,54}, X_{44,55}, X_{58,45}, X_{69,46}, X_{80,47}, X_{48,91}, \\ X_{90,49}, X_{51,82}, X_{52,71}, X_{53,60}, \overline{X}_{63,74}, \overline{X}_{64,85}, \overline{X}_{76,65}, \overline{X}_{87,66}, \overline{X}_{67,94}, \\ \overline{X}_{75,86}, \overline{X}_{88,77}, \overline{X}_{78,93} \end{bmatrix};$

AbsoluteTiming[PolyPlot[$\Theta_{48} = \Theta @GST_{48}$, ImageSize \rightarrow Small]]

So Θ knows things about GST_{48} that Δ doesn't!

Ohtsuki Garoufalidis Rozansky Kricker Schaveling Kashaev **Prior Art.** θ is probably equal to the "2-loop polynomial" studied by Ohtsuki [Oh2] (at greater difficulty, with harder computations), continuing B-N, Garoufalidis, Rozansky, Kricker, and Schaveling [BNG, GR, R1, R2, R3, Kr, Sch]. θ is related, but probably not equivalent, to the invariant studied by Garoufalidis– Kashaev [GK].

Next, a random 300 crossing knot from [DHOEBL] (more at $\omega\epsilon\beta/DK$):

The Rolfsen Table of Knots.

Where is it coming from? The most honest answer is "we don't know" (and that's good!). The second most, "undetermined coefficients for an ansatz that made sense". The ansatz comes from the following principles / earlier work:

Morphisms have generating functions. Indeed, there is an isomorphism

$$G: \operatorname{Hom}(\mathbb{Q}[x_i], \mathbb{Q}[y_i]) \to \mathbb{Q}[y_i][\xi_i]$$

and by PBW, many relevant spaces are polynomial rings, though only as vector spaces.

Composition is integration. Indeed, if $f \in \text{Hom}(\mathbb{Q}[x_i], \mathbb{Q}[y_j])$ and $g \in \text{Hom}(\mathbb{Q}[y_j], \mathbb{Q}[z_k])$, then

$$\mathcal{G}(g \circ f) = \int e^{-y \cdot \eta} fg \, dy \, d\eta$$

Use universal invariants. These take values in a universal enveloping algebra (perhaps quantized), and thus they are expressible as long compositions of generating functions. See [La, Oh1].

"Solvable approximation" \rightarrow **perturbed Gaussians.** Let g be a semisimple Lie algebra, let h be its Cartan subalgebra, and let b^u and b^l be its upper and lower Borel subalgebras. Then b^u has a bracket β , and as the dual of b^l it also has a cobracket δ , and in fact, $g \oplus h \equiv \text{Double}(b^u, \beta, \delta)$. Let $g_{\epsilon}^+ \coloneqq \text{Double}(b^u, \beta, \epsilon\delta) \pmod{\epsilon^{d+1}}$ it is solvable for any *d*). Then by [BV3, BN1] (in the case of $g = sl_2$) all the interesting tensors of $\mathcal{U}(g_{\epsilon}^+)$ (quantized or not) are perturbed Gaussian with perturbation parameter ϵ with with understood bounds on the degrees of the perturbations.

- [BN1] D. Bar-Natan, *Everything around* sl_{2+}^{ϵ} *is DoPeGDO.* **References.** *So what?*, talk given in "Quantum Topology and Hyperbolic Geometry Conference", Da Nang, Vietnam, May 2019. Handout and video at $\omega\epsilon\beta$ /DPG.
- [BN2] D. Bar-Natan, *Algebraic Knot Theory*, talk given in Sydney, September 2019. Handout and video at $\omega\epsilon\beta/AKT$.
- [BN3] D. Bar-Natan, Cars, Interchanges, Traffic Counters, and some Pretty Darned Good Knot Invariants, talk given in "Using Quantum Invariants to do Interesting Topology", Oaxaca, Mexico, October 2022. Handout and video at ωεβ/Cars.
- [BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103–133.
- [BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, Proc. Amer. Math. Soc. 147 (2019) 377–397, arXiv:1708.04853.
- [BV2] D. Bar-Natan and R. van der Veen, A Perturbed-Alexander Invariant, Quantum Topology 15 (2024) 449–472, ωεβ/APAI.

[BV3] D. Bar-Natan and R. van der Veen, A Very Fast, Very Strong, Topologically Meaningful and Fun Knot Invariant, in preparation, draft at ωεβ/Theta.

- [BV3] D. Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Functions for Universal Knot Invariants, arXiv:2109.02057.
- [BG] J. Becerra Garrido, Universal Quantum Knot Invariants, Ph.D. thesis, University of Groningen, ωεβ/BG.
- [DHOEBL] N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattacharyya, D. Lei, and others, *Random Knots: A Preliminary Report*, lecture notes at $\omega\epsilon\beta$ /DHOEBL. Also a data file at $\omega\epsilon\beta$ /DD.
- [GK] S. Garoufalidis and R. Kashaev, Multivariable Knot Polynomials from Braided Hopf Algebras with Automorphisms, arXiv:2311.11528.
- [GR] S. Garoufalidis and L. Rozansky, The Loop Expansion of the Kontsevich Integral, the Null-Move, and S-Equivalence, arXiv:math.GT/0003187.
- [GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305–2347, arXiv:1103.1601.
- [GPV] M. Goussarov, M. Polyak, and O. Viro, *Finite type invariants of classical and virtual knots*, Topology **39** (2000) 1045–1068, arXiv: math.GT/9810073.
- [Kr] A. Kricker, The Lines of the Kontsevich Integral and Rozansky's Rationality Conjecture, arXiv:math/0005284.
- [La] R. J. Lawrence, Universal Link Invariants using Quantum Groups, Proc. XVII Int. Conf. on Diff. Geom. Methods in Theor. Phys., Chester, England, August 1988. World Scientific (1989) 55–63.
- [LV] D. López Neumann and R. van der Veen, Genus Bounds from Unrolled Quantum Groups at Roots of Unity, arXiv:2312.02070.
- [Oh1] T. Ohtsuki, *Quantum Invariants*, Series on Knots and Everything 29, World Scientific 2002.
- [Oh2] T. Ohtsuki, On the 2–Loop Polynomial of Knots, Geom. Topol. 11-3 (2007) 1357–1475.
- [Ov] A. Overbay, *Perturbative Expansion of the Colored Jones Polynomial*, Ph.D. thesis, University of North Carolina, August 2013, $\omega\epsilon\beta$ /Ov.
- [R1] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones Polynomial and Witten's Invariant of 3D Manifolds, I, Comm. Math. Phys. 175-2 (1996) 275–296, arXiv:hep-th/9401061.
- [R2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1–31, arXiv:q-alg/9604005.
- [R3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
- [Sch] S. Schaveling, *Expansions of Quantum Group Invariants*, Ph.D. thesis, Universiteit Leiden, September 2020, ωεβ/Scha.

Thanks for bearing with me!

A Seifert Dream Thanks for inviting me to Pitzer College	Dream. There is a similar perturbed Gaussian integral formula for θ but with integration over $6H_1(\Sigma)$. The quadratic Ω will
Abstract Civen a knot K with a Soifert surface Σ I dram	be the same as in the Seifert-Alexander formula (but repeated 3)
that the well-known Seifert linking form Ω a quadratic form on	times, for each T_{y}). The perturbation P_{ϵ} will be given by low-
$H_1(\Sigma)$ has plenty docile local perturbations P_2 such that the for-	degree finite type invariants of curves on Σ (possibly also depen-
mal Gaussian integrals of $exp(Q + P_z)$ are invariants of K	dent on the intersection points of such curves, or on other infor-
In my talk I will explain what the above means, why this dream	mation coming from Σ).
is oh so sweet, and why it is in fact closer to a plan than to a	Evidence. Experimentally (yet undeniably), deg θ is bounded by
delusion. Joint with Roland van der Veen.	the genus of Σ . How else could such a genus bound arise? Further
The Seifert-Alexander Formula, With	very strong evidence comes from the conjectural (yet undeniable)
$P, Q \in H_1(\Sigma),$	understanding of θ as the two-loop contribution to the Kontsevich
$O(P,G) = T^{1/2} lk(P^+,G) - T^{-1/2} lk(P,G^+)$	integral [Oh] and/or as the "solvable approximation" of the uni-
$\mathcal{L}(1,0) = 1 \text{in}(1,0) = 1 \text{in}(1,0)$ $\Lambda(K) = \det(Q)$	versal sl_3 invariant [BN1, BV2].
$\int dx (x) = dx (y)$	why so sweet? It will allow us to prove the aforementioned ge-
$dp dx \exp Q(p, x) \doteq \det(Q)^{-1}$	nus bound and likely, the nexagonal symmetry. Sweeter and dre-
(where \doteq means "ignoring silly factors").	anner, it may anow us to say something about ribbon knots!
Perturbed Gaussian Integration. We say	
that $P_{\epsilon} \in \epsilon \mathbb{Q}[x_1, \dots, x_n] [\epsilon]$ is <i>M</i> -docile (for	
some $M: \mathbb{N} \to \mathbb{N}$ if for every monomial m From Mexico City, tariffs exempt	
in P_{ϵ} we have $\deg_{x_1, \dots, x_n}(m) \leq M(\deg_{\epsilon}(m))$.	
Theorem (Feynman). If Q is a quadratic in x_1, \ldots, x_n and P_{ϵ} is	What's "local"? How will we compute? The Bedlewo Alexan-
docile, set $Z_{\epsilon} = \int_{\mathbb{R}^n} dx_1 \cdots x_n \exp(Q + P_{\epsilon})$. Then every coeffi-	der formula: Let F be the faces of a knot diagram. Make an $F \times F$
cient in the ϵ -expansion of Z_{ϵ} is computable in polynomial time	matrix A by adding for each crossing contributions
in <i>n</i> . in fact, (0^{-1}) (0^{-1})	$k = \begin{pmatrix} -1 & -1 & 2 & 0 \end{pmatrix} k = \begin{pmatrix} 1 & -1 & 0 & 0 \end{pmatrix}$
$\Delta^{1/2} Z_{\epsilon} \doteq \left\langle \exp Q^{-1}(\partial_{x_i}), \exp P_{\epsilon} \right\rangle = \sup_{sum over all pairings}$	$[\mathbf{k}, \mathbf{v}] \rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} [\mathbf{k}, \mathbf{v}] \rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$
	l / (j) = l / (j) -
	$(1 \ 0 \ -1 \ 0)$ $(1 \ 0 \ -1 \ 0)$
$\theta(T, 1)$ is like that! With $\epsilon^2 = 0$, P_{ϵ} P_{ϵ}	at rows / columns (<i>i</i> , <i>j</i> , <i>k</i> , <i>l</i>). Then $\Delta = \det' ((T^{1/2}A - T^{-1/2}A)/2)$.
$\bigwedge \qquad \mathbb{R}^2 \qquad \longrightarrow Z \doteq \oint \mathcal{L}(X_{15}^+) \mathcal{L}(X_{57}^+) \mathcal{L}(C_4^{-1})$	
$\int_{2E=\mathbb{R}_{p_{i}x_{i}}^{14}} \int_{2E=\mathbb{R}_{p_{i}x_{i}}^{14}} \int_{2$	
where $\mathcal{L}(X_{ij}^s) \doteq e^{\mathcal{L}(X_{ij}^s)}, \mathcal{L}(C_i^{\varphi}) \doteq e^{\mathcal{L}(C_i^{\varphi})},$	
$ \int \frac{1}{s} \int L(X_{ij}^s) = x_i(p_{i+1} - p_i) + x_j(p_{i+1} - p_i) $	Expect the like for θ ! Expect more like θ ! Topology first! Resist
$ \begin{array}{c} \mathcal{L}(X_{37}) \\ \mathbb{R}^2 \\ \stackrel{2}{\longrightarrow} \\ \mathcal{L}(C_4^{-1}) \end{array} \qquad $	the tyranny of quantum algebra!
$\mathbb{R}^{2}_{p_{3}x_{3}} \qquad \mathbb{R}^{2}_{p_{7}x_{7}} \qquad \mathbb{R}$	
$\mathcal{L}(X_{62}^+)_{6(-2)} + \frac{cs}{2} \left[x_i(p_i - p_j) \left(\frac{(1 - 1)x_i p_j}{2} - 1 \right) \right] - 1 \right]$	
$\mathbb{R}^2_{p_6x_6} \xrightarrow{\mathbb{P}^2} \mathbb{R}^2_{p_6x_6} \xrightarrow{\mathbb{P}^2} \xrightarrow{\mathbb{P}^2} \mathbb{R}^2_{p_6x_6} \xrightarrow{\mathbb{P}^2} \xrightarrow{\mathbb{P}$	
$\mathcal{L}(X_{i5}^{+}) = x_i(p_{i+1} - p_i) + \epsilon \varphi(1/2 - x_i p_i)$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\theta(T_1, T_2)$ is likewise, with harder formulas	0 0 0 0 00 00 00 00 00 00 00 00 00 00 0
and integration over $6E$.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Right. The 132-crossing torus knot $T_{22/7}$ (more at $\omega \epsilon \beta/TK$).	5 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
Below. Random knots from [DHOEBL], with 101-115 crossings	
(more at $\omega \epsilon \beta / DK$).	
	A CONTRACTOR OF CONT
	A B B B B B B B B B B B B B B B B B B B
	T T T T T T T T T T T T T T T T T T T
	2 2 2 5 5 6 6 6 6 6 6 6 76 76 76 76 76 7 6 7

The Strongest Genuinely Computable Knot Invariant Since In 2024

The First International On-line Knot Theory Congress

February 1-5, 2025

Dror Bar-Natan

Abstract. "Genuinely computable" means we have computed it for random knots with over 300 crossings. "Strongest" means it separates prime knots with up to 15 crossings better than the less-computable HOMFLY-PT and Khovanov homology taken together. And hey, it's also meaningful and fun. Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint with van der Veen.

These slides and the code within are online at $\omega\epsilon\beta$:=http://drorbn.net/ktc25

(I wish all speakers were making their slides available before / for their talks).

- (I'll post the video there too)
- A paper-in-progress is at $\omega\epsilon\beta/Theta.$
- If you can, please turn your video on!

ωεβ:=http://drorbn.net/ktc25

Lou Kauffman at MSRI, March 1991

The Strongest Genuinely Computable Knot

Invariant Since In 2024

Strongest? Genuinely Computable?

Genuinely Computable.

invariant, that's science fiction.

Us: A few hours on a laptop, 0 GPUs.

law persists.

Acknowledgement.

This work was supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

ωεβ:=http://drorbn.net/ktc25

ωeβ:=http://drorbn.net/ktc25

ωεβ=http://drorbn.net/ktc25

Strongest.

Testing $\Theta = (\Delta, \theta)$ on prime knots up to mirrors and reversals, counting the number of distinct values (with deficits in parenthesis): (p1: [Ro1, Ro2, Ro3, Ov, BV1])

		knots	(<i>H</i> , <i>Kh</i>)	(Δ, ρ_1)	$\Theta = (\Delta, \theta)$	(Δ, θ, ρ_2)	all together
reign			2005-22	2022-24	2024	2025-	
	$xing \leq 10$	249	248 (1)	249 (0)	249 (0)	249(0)	249 (0)
xing xing xing xing	$xing \leq 11$	801	771 (30)	787 (14)	798 (3)	798 (3)	798 (3)
	$xing \leq 12$	2,977	(214)	(95)	(19)	(10)	(10)
	$xing \leq 13$	12,965	(1,771)	(959)	(194)	(169)	(169)
	$xing \leq 14$	59,937	(10,788)	(6,253)	(1,118)	(982)	(981)
	$xing \le 15$	313,230	(70,245)	(42,914)	(6,758)	(6,341)	(6,337)

ωεβ:=http://drorbn.net/ktc25

Fun. There's so much more to see in 2D pictures than in 1D ones! Yet almost nothing of the patterns you see we know how to prove. We'll have fun with that over the next few years. Would you join?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.

ωeβ:=http://drorbn.net/ktc25

The Rolfsen Table:

The torus knots $TK_{13/2}$, $TK_{17/3}$, $TK_{13/5}$, and $TK_{7/6}$:

Meaningful.

 θ gives a genus bound (unproven yet with confidence). We hope (with reason) it says something about ribbon knots.

Convention.

The torus knot $TK_{22/7}$:

T, T_1 , and T_2 are indeterminates and $T_3 := T_1 T_2$.

ωεβ:=http://drorbn.net/ktc25

Preparation. Draw an *n*-crossing knot *K* as a diagram *D* as on the right: all crossings face up, and the edges are marked with a running index $k \in \{1, ..., 2n + 1\}$ and with rotation numbers φ_k .

Model *T* **Traffic Rules.** Cars always drive forward. When a car crosses over a sign-*s* bridge it goes through with (algebraic) probability $T^s \sim 1$, but falls off with probability $1 - T^s \sim 0$. At the very end, cars fall off and disappear. On various edges <u>traffic counters</u> are placed. See also [Jo, LTW].

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.

Definition. The traffic function $G = (g_{\alpha\beta})$ (also, the Green function or the two-point function) is the reading of a traffic counter at β , if car traffic is injected at α (if $\alpha = \beta$, the counter is after the injection point). There are also model- T_{ν} traffic functions $G_{\nu} = (g_{\nu\alpha\beta})$ for $\nu = 1, 2, 3$. **Example.**

Given crossings
$$c = (s, i, j)$$
, $c_0 = (s_0, i_0, j_0)$, and $c_1 = (s_1, i_1, j_1)$, let

$$F_1(c) = s [1/2 - g_{3ii} + T_2^s g_{1ii} g_{2ji} - T_2^s g_{3jj} g_{2ji} - (T_2^s - 1) g_{3ii} g_{2ji}$$

$$\begin{split} +(T_{3}^{s}-1)g_{2ji}g_{3ji}-g_{1ii}g_{2jj}+2g_{3ii}g_{2jj}+g_{1ii}g_{3jj}-g_{2ii}g_{3jj}]\\ +\frac{s}{T_{2}^{s}-1}\left[(T_{1}^{s}-1)T_{2}^{s}\left(g_{3jj}g_{1ji}-g_{2jj}g_{1ji}+T_{2}^{s}g_{1ji}g_{2ji}\right)\right.\\ &\left.+\left(T_{3}^{s}-1\right)\left(g_{3ji}-T_{2}^{s}g_{1ii}g_{3ji}+g_{2ij}g_{3ji}+\left(T_{2}^{s}-2\right)g_{2jj}g_{3ji}\right)\right.\\ &\left.-\left(T_{1}^{s}-1\right)\left(T_{2}^{s}+1\right)\left(T_{3}^{s}-1\right)g_{1ji}g_{3ji}\right]\right]\\ F_{2}(c_{0},c_{1})=\frac{s_{1}(T_{1}^{s_{0}}-1)(T_{2}^{s_{1}}-1)g_{1j_{1}i_{0}}g_{3j_{0}i_{1}}}{T_{2}^{s_{1}}-1}\left(T_{2}^{s_{0}}g_{2i_{1}i_{0}}+g_{2j_{1}j_{0}}-T_{2}^{s_{0}}g_{2j_{1}i_{0}}-g_{2i_{1}j_{0}}\right)\\ F_{3}(\varphi_{k},k)=\varphi_{k}(g_{3kk}-1/2) \end{split}$$

(Computers don't care!)

ωεβ:=http://drorbn.net/ktc25

Lemma 1.

The following is a knot invariant:

Main Theorem.

(the Δ_{ν} are normalizations discussed later)

If these pictures remind you of Feynman diagrams, it's because they are Feynman diagrams $[{\sf BN2}].$

Lemma 1.

The traffic function $g_{\alpha\beta}$ is a "relative invariant":

(There is some small print for R1 and R2 which change the numbering of the edges and sometimes collapse a pair of edges into one)

Proof.

ωεβ:=http://drorbn.net/ktc25

ωeβ:=http://drorbn.net/ktc25

Lemma 2.

ωεβ:=http://drorbn.net/ktc25

Corollary 1.

G is easily computable, for AG = I (= *GA*), with *A* the $(2n + 1) \times (2n + 1)$ identity matrix with additional contributions:

And so

<i>G</i> =	(1 0 0 0	T 1 0 0	$\begin{array}{c}1\\\frac{1}{T^2-T+1}\\\frac{1}{T^2-T+1}\\\frac{1-T}{T^2-T+1}\end{array}$		$\begin{array}{c}1\\\frac{T}{T^2-T+1}\\\frac{T}{T^2-T+1}\\\frac{1}{T^2-T+1}\end{array}$	$\begin{array}{c} T\\ \frac{T^2}{T^2-T+1}\\ \frac{T^2}{T^2-T+1}\\ \frac{T}{T^2-T+1} \end{array}$	1 1 1 1
G =	0 0	0 0	$\frac{1-T}{T^2-T+1}$ $\frac{1-T}{T^2-T+1}$	$rac{1}{T^2 - T + 1} - rac{(T - 1)T}{T^2 - T + 1}$	$\frac{\frac{1}{T^2 - T + 1}}{\frac{1}{T^2 - T + 1}}$	$\frac{\frac{T}{T^2 - T + 1}}{\frac{T}{T^2 - T + 1}}$	1 1
	0	0	0	0	0	1	1
	0	0	0	0	0	0	1

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.

ωεβ:=http://drorbn.net/ktc25

The Alexander polynomial Δ is given by

$$\Delta = T^{(-\varphi - w)/2} \det(A),$$

with

$$\varphi = \sum_{k} \varphi_k, \qquad w = \sum_{c} s.$$

We also set $\Delta_{\nu}:=\Delta(\mathcal{T}_{\nu})$ for $\nu=1,2,3.$ This defines and explains the normalization factors in the Main Theorem.

Proving invariance is easy:

Corollary 2.

ωεβ:=http://drorbn.net/ktc25

Invariance under R3

This is Theta.nb of http://drorbn.net/ktc25/ap.

Once[<< KnotTheory`; << Rot.m; << PolyPlot.m];

Loading KnotTheory` version of October 29, 2024, 10:29:52.1301.

Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/ktc25/ap to compute rotation numbers. Loading PolyPlot.m from

http://drorbn.net/ktc25/ap to plot 2-variable polynomials.

 $\mathbf{T}_3 = \mathbf{T}_1 \mathbf{T}_2;$

 $CF[\mathcal{S}_] := Expand@Collect[\mathcal{S}, g_, F] / . F \rightarrow Factor;$

$$\begin{split} & \mathsf{F}_1[\{s_-, i_-, j_-\}] = \\ & \mathsf{CF}\Big[\\ & \mathsf{s} \left(1/2 - \mathsf{g}_{3ii} + \mathsf{T}_2^{\mathsf{s}} \mathsf{g}_{1ii} \, \mathsf{g}_{2ji} - \mathsf{g}_{1ii} \, \mathsf{g}_{2jj} - (\mathsf{T}_2^{\mathsf{s}} - 1) \, \mathsf{g}_{2ji} \, \mathsf{g}_{3ii} + 2 \, \mathsf{g}_{2jj} \, \mathsf{g}_{3ii} - \\ & \left(1 - \mathsf{T}_3^{\mathsf{s}}\right) \, \mathsf{g}_{2ji} \, \mathsf{g}_{3ji} - \mathsf{g}_{2ii} \, \mathsf{g}_{3jj} - \mathsf{T}_2^{\mathsf{s}} \, \mathsf{g}_{2ji} \, \mathsf{g}_{3jj} + \mathsf{g}_{1ii} \, \mathsf{g}_{3jj} + \\ & \left((\mathsf{T}_1^{\mathsf{s}} - 1) \, \mathsf{g}_{1ji} \, (\mathsf{T}_2^{\mathsf{s}} \, \mathsf{g}_{2ji} - \mathsf{T}_2^{\mathsf{s}} \, \mathsf{g}_{2ji} \, \mathsf{s}_{3ji} \, \mathsf{g}_{3ji} \, \mathsf{g}_{1ii} \, \mathsf{g}_{3ji} + \\ & \left(\mathsf{T}_3^{\mathsf{s}} - 1\right) \, \mathsf{g}_{3ji} \, \left(1 - \mathsf{T}_2^{\mathsf{s}} \, \mathsf{g}_{1ii} - (\mathsf{T}_1^{\mathsf{s}} - 1) \, (\mathsf{T}_2^{\mathsf{s}} + 1) \, \mathsf{g}_{1ji} + (\mathsf{T}_2^{\mathsf{s}} - 2) \, \mathsf{g}_{2jj} + \mathsf{g}_{2ij}\right) \right) / \\ & \left(\mathsf{T}_2^{\mathsf{s}} - 1\right) \Big] ; \\ & \mathsf{F}_2[\{\mathsf{S}\theta_-, \, i\theta_-, \, j\theta_-\}, \, \{\mathsf{S}1_-, \, i \mathsf{I}_-, \, j \mathsf{I}_-\}\}] := \\ & \mathsf{CF}\left[\mathsf{S}1 \, \left(\mathsf{T}_2^{\mathsf{S}\theta} - 1\right) \, \left(\mathsf{T}_2^{\mathsf{S}1} - 1\right) \, \mathsf{G}_{1,ji,\theta} \, \mathsf{G}_{3,j\theta,ii} \\ & \left(\mathsf{T}_2^{\mathsf{S}\theta} \, \mathsf{G}_{2,ii,\theta} - \mathsf{G}_{2,ii,\theta}\right) - \left(\mathsf{T}_2^{\mathsf{S}\theta} \, \mathsf{G}_{2,ji,j\theta}, \mathsf{g}_{1,j\theta}\right) \right) \right] \\ & \mathsf{F}_3[\varphi_-, k_-] = -\varphi/2 + \varphi \, \mathsf{G}_{3kk}; \end{split}$$

ωεβ:=http://drorbn.net/ktc25

ωeβ:=http://drorbn.net/ktc25

ωεβ:=http://drorbn.net/ktc25

$$\begin{split} \delta_{i_{-},j_{-}} &:= \mathrm{If}[i===j, 1, 0]; \\ gR_{s_{-},i_{-},j_{-}} &:= \left\{ \\ g_{v_{-},j\beta_{-}} &\Rightarrow g_{v_{j}^{+}\beta} + \delta_{j\beta}, g_{v_{-}i\beta_{-}} \Rightarrow \mathsf{T}_{v}^{s} g_{v_{1}^{+}\beta} + \left(1 - \mathsf{T}_{v}^{s}\right) g_{v_{j}^{+}\beta} + \delta_{i\beta}, \\ g_{v_{-}\alpha_{-}i^{+}} &\Rightarrow \mathsf{T}_{v}^{s} g_{v\alpha i} + \delta_{\alpha i^{+}}, g_{v_{-}\alpha_{-}j^{+}} \Rightarrow g_{v\alpha j} + \left(1 - \mathsf{T}_{v}^{s}\right) g_{v\alpha i} + \delta_{\alpha j^{+}} \\ \right\} \end{split}$$

$$\begin{split} & \mathsf{DSum}[\mathit{Cs}_{__}] := \mathsf{Sum}[\mathit{F}_1[c], \{c, \{\mathit{Cs}\}\}] + \\ & \mathsf{Sum}[\mathit{F}_2[c0, c1], \{c0, \{\mathit{Cs}\}\}, \{c1, \{\mathit{Cs}\}\}] \\ & \mathsf{lhs} = \mathsf{DSum}[\{1, j, k\}, \{1, i, k^*\}, \{1, i^*, j^*\}, \{s, m, n\}] / /. \\ & \mathsf{gR}_{1,j,k} \cup \mathsf{gR}_{1,i,k^+} \cup \mathsf{gR}_{1,i^+,j^+}; \\ & \mathsf{rhs} = \mathsf{DSum}[\{1, i, j\}, \{1, i^*, k\}, \{1, j^*, k^*\}, \{s, m, n\}] / /. \\ & \mathsf{gR}_{1,i,j} \cup \mathsf{gR}_{1,i^+,k} \cup \mathsf{gR}_{1,j^+,k^+}; \\ & \mathsf{Simplify}[\mathsf{lhs} \coloneqq \mathsf{rhs}] \\ & \mathsf{True} \end{split}$$

 $\omega\epsilon\beta$:=http://drorbn.net/ktc25

The Main Program

$$\begin{split} & \Theta[K_{-}] := \mathsf{Module} \left[\{\mathsf{Cs}, \varphi, \mathsf{n}, \mathsf{A}, \mathsf{\Delta}, \mathsf{G}, \mathsf{ev}, \varTheta{\Theta} \}, \\ & \{\mathsf{Cs}, \varphi\} = \mathsf{Rot}[\mathcal{K}]; \ \mathsf{n} = \mathsf{Length}[\mathsf{Cs}]; \\ & \mathsf{A} = \mathsf{IdentityMatrix}[2 \mathsf{n} + 1]; \\ & \mathsf{Cases} \left[\mathsf{Cs}, \{s_{-}, i_{-}, j_{-}\} \Rightarrow \left(\mathsf{A}[\![\{i, j\}\}, \{i + 1, j + 1\}]\!] + = \left(\begin{array}{c} -\mathsf{T}^{\mathsf{s}} \ \mathsf{T}^{\mathsf{s}} - 1 \\ \varTheta{\Theta} & -1 \end{array} \right) \right) \right]; \\ & \Delta = \mathsf{T}^{(-\mathsf{Total}[\varphi) - \mathsf{Total}[\mathsf{Cs}[\mathsf{A}1], 1]) / 2} \mathsf{Det}[\mathsf{A}]; \\ & \mathsf{G} = \mathsf{Inverse}[\mathsf{A}]; \\ & \mathsf{ev}[\mathcal{S}_{-}] := \mathsf{Factor}[\mathcal{S} / \cdot \mathfrak{g}_{\nu_{-}, \mathscr{A}_{-}} \Rightarrow (\mathsf{G}[\![\alpha, \beta]\!] / \cdot \mathsf{T} \to \mathsf{T}_{\mathcal{V}})]; \\ & \varTheta = \mathsf{ev}[\sum_{k=1}^{n} \mathsf{F}_{1}[\mathsf{Cs}[\![k]]]; \\ & \varTheta + = \mathsf{ev}[\sum_{k=1}^{n} \mathsf{F}_{2}[\mathsf{Cs}[\![k]]]; \\ & \varTheta + = \mathsf{ev}[\sum_{k=1}^{n} \mathsf{F}_{3}[\varphi[\![k]\!], k]]; \\ & \digamma + = \mathsf{ev}[\sum_{k=1}^{2n} \mathsf{F}_{3}[\varphi[\![k]\!], k]]; \\ & \mathsf{Factor}_{\P}\{\Delta, (\Delta / \cdot \mathsf{T} \to \mathsf{T}_{1}) (\Delta / \cdot \mathsf{T} \to \mathsf{T}_{2}) (\Delta / \cdot \mathsf{T} \to \mathsf{T}_{3}) \varTheta{\Theta}\}]; \end{split}$$

The Trefoil Knot

e [Knot [3, 1]] // Expand $\left\{-1 + \frac{1}{T} + T, -\frac{1}{T_1^2} - T_1^2 - \frac{1}{T_2^2} - \frac{1}{T_1^2 T_2^2} + \frac{1}{T_1 T_2^2} + \frac{1}{T_1^2 T_2} + \frac{1}{T_2} + \frac{1}{$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.

The Conway and Kinoshita-Terasaka Knots

ωεβ:=http://drorbn.net/ktc25

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.

ωεβ:=http://drorbn.net/ktc25

ωεβ:=http://drorbn.net/ktc25

ωεβ:=http://drorbn.net/ktc25

Expectation 9.

Is there a direct quantum field theory derivation of θ ? Perhaps using the ϵ -expansion (at constant k!) of Chern-Simons-Witten theory with gauge group $\mathfrak{g}_{+}^{\epsilon} \coloneqq \mathcal{D}(\mathfrak{b}, b, \epsilon \delta)$ with some Seifert-surface-dependent gauge fixing?

There are many further invariants like θ , given by Green function formulas and/or Gaussian integration formulas. One or two of them may be stronger than θ and as computable.

Dream 10.

These invariants can be explained by something less foreign than semisimple Lie algebras.

heta will have something to say about ribbon knots.

ωεβ:=http://drorbn.net/ktc25

Thank You!

Math., 126 (1987) 335-388

References.

Dream 11.

[BV1] —, R. van der Veen, <u>A Perturbed-Alexander Invariant</u>, Quantum Topology 15 (2024) 449–472, $\omega\epsilon\beta/APAI$.

[BV2] --, --, Perturbed Gaussian Generating Functions for Universal Knot Invariants, arXiv: 2109.02057.

 $\label{eq:constraint} \begin{array}{l} [DHOEBL] \mbox{ N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattacharyya, D. Lei, and others, Random Knots: A Preliminary Report, lecture notes at <math display="inline">\omega\epsilon\beta/DHOEBL.$ Also a data file at $\omega\epsilon\beta/DD. \end{array}$

[GK] S. Garoufalidis, R. Kashaev, <u>Multivariable Knot Polynomials from Braided Hopf Algebras</u> with Automorphisms, arXiv:2311.11528.

[GL] -, S. Y. Li, Patterns of the V2-polynomial of knots, arXiv:2409.03557.

[GR] —, L. Rozansky, <u>The Loop Expansion of the Kontsevich Integral</u>, the Null-Move, and <u>S-Equivalence</u>, arXiv:math.GT/0003187.

ωεβ:=http://drorbn.net/ktc25

 $\label{eq:sch} \mbox{[Sch] S. Schaveling, Expansions of Quantum Group Invariants,} Ph.D. thesis, Universiteit Leiden, September 2020, $$\omega\epsilon\beta$/Scha.$}$

[Kr] A. Kricker, The Lines of the Kontsevich Integral and Rozansky's Rationality Conjecture, arXiv:math/0005284.

[Jo] V. F. R. Jones, Hecke Algebra Representations of Braid Groups and Link Polynomials, Annals

[LTW] X-S. Lin, F. Tian, Z. Wang, <u>Burau Representation and Random Walk on String Links</u>, Pac. J. Math., **182-2** (1998) 289–302, arXiv:q-alg/9605023.

[Oh] T. Ohtsuki, On the 2-loop Polynomial of Knots, Geom. Top. 11 (2007) 1357-1475.

[Ov] A. Overbay, <u>Perturbative Expansion of the Colored Jones Polynomial</u>, Ph.D. thesis, University of North Carolina, Aug. 2013, ωεβ/Ov.

[Ro1] L. Rozansky, <u>A Contribution of the Trivial Flat Connection to the Jones Polynomial and</u> Witten's Invariant of <u>3D Manifolds</u>, <u>I</u>, Comm. Math. Phys. **175-2** (1996) 275–296, arXiv: hep-th/9401061.

[Ro2] —, <u>The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the</u> <u>Colored Jones Polynomial</u>, Adv. Math. **134-1** (1998) 1–31, arXiv:q-alg/9604005.

[Ro3] —, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv: math/0201139.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.

18

ωεβ:=http://drorbn.net/ktc25

Implementation (sources: http://drorbn.net/icerm23/ ap). I like it most when the implementation matches the math perfectly. We failed here. Once[<< KnotTheory`]; Loading KnotTheory` version of February 2, 2020, 10:53:45.2097. Read more at http://katlas.org/wiki/KnotTheory. Utilities. The step function, algebraic numbers, canonical forms. θ[x_] /; NumericQ[x] := UnitStep[x] $\omega 2[v_][p_] := Module[{q = Expand[p], n, c},$ If[q === 0, 0, c = Coefficient[q, \u03c6, n = Exponent[q, \u03c6]]; $c v^{n} + \omega 2 [v] [q - c (\omega + \omega^{-1})^{n}]];$ sign[8_] := Module[{n, d, v, p, rs, e, k}, {n, d} = NumeratorDenominator[8]; {n, d} /= $\omega^{\text{Exponent}[n,\omega]/2+\text{Exponent}[n,\omega,\text{Min}]/2}$. $p = Factor \left[\omega 2 \left[v \right] @n \star \omega 2 \left[v \right] @d /. v \rightarrow 4 u^{2} - 2 \right];$ rs = Solve[p == 0, u, Reals]; If $[rs === \{\}$, Sign $[p / . u \rightarrow 0]$, rs = Union@(u /. rs); Sign[(-1)^{e=Exponent[p,u]} Coefficient[p, u, e]] + Sum[k = 0; While [(d = RootReduce $[\partial_{\{u, ++k\}} p / . u \rightarrow r]$) == 0]; If[EvenQ[k], 0, 2 Sign[d]] * θ[u - r], {**r**, **rs**}] SetAttributes[B, Orderless]; CF[b_B] := RotateLeft[#, First@Ordering[#] - 1] & /@ DeleteCases[b, {}] $\mathsf{CF}[\mathcal{S}_{]} := \mathsf{Module}[\{\gamma s = \mathsf{Union}@\mathsf{Cases}[\mathcal{S}, \gamma \mid \overline{\gamma}, \infty]\},$ Total[CoefficientRules[8, ys] /. $(ps \rightarrow c) \Rightarrow Factor[c] \times Times @@ \gamma s^{ps}$ **CF**[{}] = {}; **CF**[*C*_**List**] := Module[{ γ s = Union@Cases[C, $\gamma_{}$, ∞], γ }, CF /@ DeleteCases [0] [RowReduce[Table[∂_{γ} r, {r, C}, { γ , γ s}]]. γ s]] $(\mathcal{E}_{-})^{*} := \mathcal{E} / . \{ \overline{\gamma} \to \gamma, \gamma \to \overline{\gamma}, \omega \to \omega^{-1}, c_{-} Complex \Rightarrow c^{*} \};$ *r Rule*⁺ := {*r*, *r*^{*}} RulesOf $[\gamma_i + rest_.] := (\gamma_i \rightarrow -rest)^+;$ $CF[PQ[C, q]] := Module[\{nC = CF[C]\},$ PQ[nC, CF[q /. Union @@ RulesOf /@ nC]]] $\mathsf{CF}[\Sigma_{b_{-}}[\sigma_{,pq_{-}}]] := \Sigma_{\mathsf{CF}[b]}[\sigma,\mathsf{CF}[pq]]$

Pretty-Printing.

```
Format [\Sigma_{b_B}[\sigma_, PQ[\mathcal{C}, q_]]] := Module [\{\gamma s\},
      \gamma s = \gamma_{\#} \& /@ \text{ Join } @@ b;
      Column[{TraditionalForm@\sigma,
          TableForm[Join[
               Prepend[""] /@ Table [TraditionalForm [\partial_c r],
                   {r, C}, {c, ys}],
               {Prepend[""][
                   Join@@
                       (b /. \{l_{, m_{, r_{}}}; r_{}\} :=
                             {DisplayForm@RowBox[{"(", l}],
                               m, DisplayForm@RowBox[{r, ")"}]}) /.
                     i_Integer := \gamma_i ] \},
              MapThread [Prepend,
                 {Table[TraditionalForm[\partial_{r,c}q], {r, \gamma s^*},
                     \{c, \gamma s\}, \gamma s^*\}]
            ], TableAlignments → Center]
        }, Center]];
The Face-Centric Core.
\Sigma_{b1} [\sigma_1, PQ[C_1, q_1]] \oplus \Sigma_{b2} [\sigma_2, PQ[C_2, q_2]] ^{:=}
    \mathsf{CF}@\Sigma_{\mathsf{Join}[b1,b2]}[\sigma1 + \sigma2, \mathsf{PQ}[c1 \cup c2, q1 + q2]];
                                                                                        gi
                                                                    \overline{GT_i}
GT for Gap Touch:
GT<sub>i_,j_</sub>@Σ<sub>B[{li__,i_,ri__},{lj__,j_,rj__},bs__][σ_,</sub>
      PQ[C_, q_]] :=
  \mathsf{CF} \otimes_{\mathsf{B}[\{ri, li, j, rj, lj, i\}, bs]} [\sigma, \mathsf{PQ}[\mathcal{C} \bigcup \{\gamma_i - \gamma_j\}, q]]
   i i \uparrow i
                         cor·don 4 (kôr'dn)
                                                                                      \partial \Omega
                                                                        THEFREEDICTIONARY
                              1. A line of people, military posts, or ships stationed around
                              an area to enclose or guard it: a police cordon.
                              2. A rope, line, tape, or similar border stretched around an
                             area, usually by the police, indicating that access is
                             restricted
                                                    use \phi_p to kill its row and
                              \begin{cases} \exists p \, \phi_p \neq 0 \\ \text{column, drop a} \begin{pmatrix} 01 \\ 10 \end{pmatrix} \text{summand} \end{cases}
     \frac{0 \quad \phi \ C_{\text{rest}}}{\bar{\phi}^T \quad \lambda \quad \theta} \right) \rightarrow
                                \phi = 0, \lambda \neq 0 use \lambda to kill \theta, let s \neq sign(\lambda)
                                 \phi = 0, \lambda = 0 append \theta to C_{\text{rest}}.
Cordon_{i_{a}} @ \Sigma_{B[{li_{i_{a}}, i_{a}, ri_{a}}, bs_{a}]} [\sigma_{g_{a}} PQ[C_{g_{a}} q_{a}]] :=
  Module [ \{ \phi = \partial_{\gamma_i} C, \lambda = \partial_{\overline{\gamma}_i, \gamma_i} q, n\sigma = \sigma, nC, nq, p \},
    {p} = FirstPosition[(\# =!= 0) & /@\phi, True, {0}];
    {nC, nq} = Which[
        p > 0, {C, q} /. (\gamma_i \rightarrow -C \llbracket p \rrbracket / \phi \llbracket p \rrbracket)<sup>+</sup> /. (\gamma_i \rightarrow 0)<sup>+</sup>,
        \lambda = ! = 0, (n\sigma + = sign[\lambda];
           \left\{\mathcal{C}, q / \cdot \left(\gamma_i \rightarrow - \left(\partial_{\overline{\gamma}_i} q\right) / \lambda\right)^+ / \cdot \left(\gamma_i \rightarrow 0\right)^+\right\}\right),
```

```
CF@\Sigma_{B[Most@{ri,li},bs]}[n\sigma]
       \mathbf{PQ}[\mathbf{n}_{\mathcal{C}}, \mathbf{nq}] / \cdot \left( \gamma_{\mathsf{Last}_{@}\{ri, li\}} \rightarrow \gamma_{\mathsf{First}_{@}\{ri, li\}} \right)^{+} \right]
```

 $\lambda === 0, \left\{ \mathcal{C} \bigcup \left\{ \partial_{\overline{\gamma}_{i}} q \right\}, q / . (\gamma_{i} \rightarrow 0)^{+} \right\} \right];$

Strand Operations. c for contract, mc for magnetic contract:

$$\begin{split} & \mathsf{C}_{i_{,j}} = \mathsf{C}_{i_$$

The Crossings (and empty strands).

- - -

Kas@P_i, := CF@ $\Sigma_{B[\{i,j\}]}[0, PQ[\{\}, 0]];$ $TL@P_{i,j} := CF@\Sigma_{B[\{i,j\}]}[0, PQ[\{\}, 0]]$ Kas[x:X[i_,j_,k_,l_]]:= Kas@If[PositiveQ[x], $X_{-i,j,k,-l}$, $\overline{X}_{-j,k,l,-i}$]; $\mathsf{Kas}\left[\left(x:X\mid\overline{X}\right)_{fs_{-}}\right] := \mathsf{Module}\left[\left\{v=2\,u^2-\mathtt{1},\,p,\,\gamma s\,,\,m\right\},\right.$ $\gamma s = \gamma_{\#} \& /@ \{fs\}; p = (x === X);$ $m = If[p, \begin{pmatrix} v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1 \end{pmatrix}, - \begin{pmatrix} v & u & 1 & u \\ u & 1 & u & 1 \\ 1 & u & v & u \\ u & 1 & u & 1 \end{pmatrix}];$ CF@Σ_{B[{fs}]}[If[p, -1, 1], PQ[{}, γs*.m.γs]] $TL[x:X[i_, j_, k_, l_]] :=$ TL@If[PositiveQ[x], $X_{-i,j,k,-l}$, $\overline{X}_{-j,k,l,-i}$]; $\mathsf{TL}\left[\left(X:X\mid\overline{X}\right)_{fs}\right] := \mathsf{Module}\left[\{\mathsf{t}=\mathsf{1}-\omega,\,\mathsf{r},\,\mathsf{\gamma}\mathsf{s},\,\mathsf{m}\}\right],$ $r = t + t^*; \gamma s = \gamma_{\#} \& /@ \{fs\};$ m = If | x = = = X, $\left(\begin{array}{cccc} -r & -t & 2t & t^* \\ -t^* & 0 & t^* & 0 \\ 2t^* & t & -r & -t^* \\ + & 0 & -t & 0 \end{array} \right), \left(\begin{array}{cccc} r & -t & -2t^* & t^* \\ -t^* & 0 & t^* & 0 \\ -2t & t & r & -t^* \\ t & 0 & -t & 0 \end{array} \right) \right];$ $CF@\Sigma_{B[{fs}]}[0, PQ[{}, \gamma s^*.m.\gamma s]]$ **Evaluation on Tangles and Knots.**

```
Kas[K_] := Fold[mc[#1⊕ #2] &, Σ<sub>B[]</sub>[0, PQ[{}, 0]],
List @@ (Kas /@ PD@K)];
KasSig[K_] := Expand[Kas[K][1]/2]
TL[K_] :=
Fold[mc[#1⊕ #2] &, Σ<sub>B[]</sub>[0, PQ[{}, 0]],
List @@ (TL /@ PD@K)] /.
θ[c_ + u] /; Abs[c] ≥ 1 :→ θ[c];
TLSig[K_] := TL[K][1]
```

Reidemeister 3.

 $R3L = PD[X_{-2,5,4,-1}, X_{-3,7,6,-5}, X_{-6,9,8,-4}];$ $R3R = PD[X_{-3,5,4,-2}, X_{-4,6,8,-1}, X_{-4,6,8,-1}];$

3 4 = 12

{TL@R3L == TL@R3R, Kas@R3L == Kas@R3R}

{True, True}

X_{-5,7,9,-6}];

Kas@R3L

	$2 \ominus \left(u - \frac{1}{2}\right) - 2 \ominus \left(u + \frac{1}{2}\right) - 2$									
	(Y ₋₃	γ7	Ϋ́g	Ϋ́в	γ_{-1}	Υ ₋₂)				
-3	$\frac{2 u^2 (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	- 1 (2 u-1) (2 u+1)	- 2 u (2 u-1) (2 u+1)	- 1 (2u-1) (2u+1)	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$				
7	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	$\frac{2(2u^2-1)}{(2u-1)(2u+1)}$	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	- 1 (2 u-1) (2 u+1)	- 2 u (2 u-1) (2 u+1)	- 1 (2u-1) (2u+1)				
79	- 1 (2 u-1) (2 u+1)	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	$\frac{2 u^2 (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	- 1 (2u-1) (2u+1)	- 2 u (2 u-1) (2 u+1)				
78	- 2 u (2 u-1) (2 u+1)	- 1 (2 u-1) (2 u+1)	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	$\frac{2 u^2 (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	- 1 (2 <i>u</i> -1) (2 <i>u</i> +1)				
-1	- 1 (2 u-1) (2 u+1)	- 2 u (2 u-1) (2 u+1)	- 1 (2 u-1) (2 u+1)	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	$\frac{2(2u^2-1)}{(2u-1)(2u+1)}$	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$				
-2	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	- 1 (2 u-1) (2 u+1)	- 2 u (2 u-1) (2 u+1)	- <u>1</u> (2 <i>u</i> -1) (2 <i>u</i> +1)	$\frac{u (4 u^2 - 3)}{(2 u - 1) (2 u + 1)}$	$\begin{array}{c} 2 u^2 \left(4 u^2 - 3\right) \\ \hline (2 u - 1) (2 u + 1) \end{array}$				

$$\begin{array}{c} \text{Reidemeister 2.} \\ \text{TL@PD} \begin{bmatrix} X_{-2,4,3,-1}, \ \overline{X}_{-4,6,5,-3} \end{bmatrix} \\ & 0 \\ 1 & 0 & -1 & 0 \\ (\gamma_{-2} & \gamma_6 & \gamma_5 & \gamma_{-1}) \\ \overline{\gamma}_{-2} & 0 & 0 & 0 \\ \overline{\gamma}_6 & 0 & 0 & 0 \\ \overline{\gamma}_5 & 0 & 0 & 0 \\ \overline{\gamma}_{-1} & 0 & 0 & 0 \end{array}$$

 $\left\{ TL@PD[X_{-2,4,3,-1}, \overline{X}_{-4,6,5,-3}] = GT_{5,-2}@TL@PD[P_{-1,5}, P_{-2,6}], \\ Kas@PD[X_{-2,4,3,-1}, \overline{X}_{-4,6,5,-3}] = GT_{5,-2}@Kas@PD[P_{-1,5}, P_{-2,6}] \right\}$ {True, True}

Reidemeister 1.

{TL@PD[$X_{-3,3,2,-1}$] == TL@P_{-1,2}, Kas@PD[$X_{-3,3,2,-1}$] == Kas@P_{-1,2}}

 $\{\text{True, True}\}$

A Knot.

Plot[f, {u, -1, 1}]

	-2⊖(<i>u</i> -	$\left(\frac{\sqrt{3}}{2}\right) + 2\Theta$	$u + \frac{\sqrt{3}}{2} -$	1		
	$(\gamma_{-10}$	¥9	Y-1	γ ₁₂)		
¥-10	0	1 – ω	0	ω – 1		
$\overline{\gamma}_9$	$\frac{\omega - 1}{\omega}$	$\frac{2 \omega}{\omega^2 - \omega + 1}$	$-\frac{\omega-1}{\omega}$	$-\frac{2 \omega}{\omega^2 - \omega + 1}$		
$\overline{\gamma}_{-1}$	0	ω – 1	0	1 - ω		
γ_{12}	$-\frac{\omega-1}{\omega}$	$-\frac{2 \omega}{\omega^2 - \omega + 1}$	$\frac{\omega - 1}{\omega}$	$\frac{2 \omega}{\omega^2 - \omega + 1}$		
			-2 0	$\left(u-\frac{\sqrt{3}}{2}\right)+2\Theta$	$\left(u + \frac{\sqrt{3}}{2}\right) - 1$	
		(Y-10		¥9	Y-1	Y12)
$\overline{\gamma}_{-10}$	2 (<i>u</i> – 1	1) $(u + 1)$ (4 u² - 3)	0	$-2(u-1)(u+1)(4u^2-3)$	0
γ_9		0		$\frac{1}{2(4u^2-3)}$	0	$-\frac{1}{2(4u^2-3)}$
$\overline{\mathbb{V}}_{-1}$	-2 (<i>u</i> -	1) (<i>u</i> + 1)	(4 u² - 3)	0	$2(u-1)(u+1)(4u^2-3)$	0
γ_{12}		0		$-\frac{1}{2(4u^2-3)}$	0	$\frac{1}{2(4u^2-3)}$

Column@{TL[T2], Kas[T2]}

$$\begin{array}{c} X_{-11,4,12,-3}, X_{-12,10,13,-9}, \\ \overline{X}_{-13,7,14,-6}]; \\ B2 = PD[X_{-5,2,6,-1}, \overline{X}_{-9,3,10,-2}, I_{-5}]; \\ X_{-10,7,11,-6}, \overline{X}_{-12,4,13,-3}, X_{-13,8,14,-7}]; \end{array}$$

Column@{TL[B1], Kas[B1]}

					0					
	1		0	-1	0	<u>1</u> ω	0	$-\frac{1}{\omega}$	0	
	0		0	0	-1	1	0	- <u>1</u>	1	
	(Y-11		γ ₄	γ ₁₀	87	γ ₁₄	γ_{-1}	Y-5	$\gamma_{-8})$	
$\overline{\gamma}_{-11}$	0		0	0	0	0	0	0	0	
$\overline{\gamma}_4$	0		0	0	0	$\frac{\omega - 1}{\omega^2}$	0	$-\frac{\omega-1}{\omega^2}$	0	
710	0		0	0	0	$-\frac{\omega-1}{\omega}$	0	$\frac{\omega - 1}{\omega}$	0	
$\overline{\gamma}_7$	0		0	0	0	$\frac{(\omega-1)^2}{\omega^2}$	0	$-\frac{(\omega-1)^2}{\omega^2}$	0	
$\overline{\gamma}_{14}$	0	- ((u	$(-1) \omega)$	$\omega - 1$	$(\omega - 1)^2$	0	$-\frac{\omega-1}{\omega}$	$\frac{\omega - 1}{\omega}$	0	
$\overline{\gamma}_{-1}$	0		0	0	0	$\omega - 1$	0	$1 - \omega$	0	
$\overline{\gamma}_{-5}$	0	(ω	- 1) ω	$1 - \omega$	- (ω - 1) ²	$1 - \omega$	<u>ω-1</u> ω	(ω-1) ²	0	
¥-8	0		0	0	0	0	0	ø	0	
					0					
	1	0	-1	0		1	0	- 3	1	0
	$(\gamma_{-11}$	84	810	87		Y14	Y-1	γ.	5	γ_8)
8-11	0	0	0	0		0	0	0)	0
$\overline{\gamma}_4$	0	0	0	- 1		- u	0	u	1	1
810	0	0	0	- u	1	– 2 u ²	0	2 u ²	- 1	и
87	0	-1	- u	2 u ² – 3		- u	- 1	0)	1
814	0	- u	1 – 2 u ²	- U		-1	– u	-2(u-1)) (u + 1)	и
7-1	0	0	0	- 1		- u	0	u	1	1
8-5	0	u	2 u ² – 1	0	-2 (<i>u</i> -	1) (<i>u</i> + 1)	и	4 u ²	- 3	0
¥-8	0	1	и	1		и	1	0)	1 - 2 u ²

Column@{TL[B2], Kas[B2]}

	0											
	(γ ₋₁₂	¥4	Ύ8	Y1	14	¥11	¥-1	Υ-5	γ_{-9})			
$\overline{\gamma}_{-12}$	(u-1) ²	$\omega = 1$	$-2 (\omega - 1)$	2 (w	-1)2	$\frac{2(\omega-1)}{\omega^2}$	0	$-\frac{2(\omega-1)}{\omega^2}$	$-\frac{(\omega-1)(2\omega-3)}{\omega}$			
$\overline{\gamma}_4$		0	<u>u-1</u>	e		0	0	0	0			
$\overline{\gamma}_8$	2 (w-1)	1 - ω	(u-1) ²	- (u-1)	(2 - 3)	$-\frac{2(\omega-1)}{2}$	0	$\frac{2(\omega-1)}{2}$	2 (u-2) (u-1)			
Ÿ14	2 (w-1) ²	0	$-\frac{(\omega-1)}{\omega}\frac{(3\omega-2)}{\omega}$	<u>3 (w</u>	- <u>1)²</u>	$-\frac{(\omega-2)(\omega-1)}{\omega^2}$	0	$-\frac{2(\omega-1)}{\omega^2}$	$-\frac{2(\omega-2)(\omega-1)}{\omega}$			
$\overline{\gamma}_{11}$	-2 (ω - 1) ω	0	2 (ω - 1) ω	- ((ω - 1)	(2 ω - 1))	(w-1) ²		<u>2 (u-1)</u>	2 $(\omega - 1)^2$			
7-1	0	0	0	e		ω – 1	0	1 - ω	0			
$\overline{\gamma}_{-5}$	2 (ω - 1) ω	0	$-2(\omega - 1)\omega$	2 (ω -	 ω 	$-2 (\omega - 1)$	<u>w-1</u>	(w-1) ²	$-((\omega - 1)(2\omega - 1))$			
$\overline{\gamma}_{-9}$	$=\frac{(\omega-1)(3\omega-2)}{\omega}$	0	<u>2 (u-1) (2 u-1)</u> u	- 2 (w-1)	(2.u-1) u	$\frac{2(\omega-1)^2}{\omega^2}$	0	$-\frac{(\omega-2)(\omega-1)}{\omega^2}$	$\frac{3(\omega-1)^2}{\omega}$			
	$2 \Theta \left(u - \frac{\sqrt{3}}{2}\right) = 2 \Theta \left(u + \frac{\sqrt{3}}{2}\right)$											
	1	$\frac{1}{2u}$		0		1 2 u	-1	$-\frac{1}{2u}$	0	$\frac{1}{2u}$		
	(Y-12	¥4		Y8		¥14	¥11	¥-1	Υ-5	γ_9)		
\overline{Y}_{-12}	0	0		0		0	0	0	0	0		
$\overline{\gamma}_4$	0 - (2)	$\frac{u-1}{4u^2}$ $\frac{(2u+1)}{(4u^2-3)}$	<u>u²-1)</u> .	$\frac{2 u^2 - 1}{2 u}$	4 a2	1 (4 u ² -3)	0 -	$\frac{(2u{-}1)\ (2u{+}1)}{4u^2\ (4u^2{-}3)}$	$-\frac{1}{2 u (4 u^2 - 3)}$	$\frac{8 u^4 - 6 u^2 - 1}{4 u^2 (4 u^2 - 3)}$		
$\overline{\gamma}_{8}$	0	$-\frac{2u^2-1}{2u}$	-2 (<i>u</i>	-1) (<i>u</i> + 1)	2	<u>u²-1</u> 2 u	0	$-\frac{1}{2u}$	0	1 2 u		
$\overline{\gamma}_{14}$	0	$\frac{1}{4u^2\left(4u^2-3\right)}$		$\frac{2 u^2 - 1}{2 u}$	$\frac{(2u^2-1)}{4u^2}$	$\frac{16 u^4 - 16 u^2 + 1}{(4 u^2 - 3)}$	0	$-\frac{8 u^4 - 10 u^2 + 1}{4 u^2 (4 u^2 - 3)}$	$\frac{1}{2 u (4 u^2 - 3)}$	$\frac{1}{4 u^2 (4 u^2 - 3)}$		
γ_{11}	0	0		0		0	0	0	0	0		
$\overline{\gamma}_{-1}$	0 .	$=\frac{(2 u-1) (2 u+3)}{4 u^2 (4 u^2-3)}$	<u>n</u>	$-\frac{1}{2u}$	$-\frac{8 u^4}{4 u^2}$	$\frac{-18 u^2 + 1}{(4 u^2 - 3)}$	0	$\frac{8 u^4 - 18 u^2 - 1}{4 u^2 (4 u^2 - 3)}$	$\frac{8 u^4 - 18 u^2 + 1}{2 u (4 u^2 - 3)}$	$\frac{16 u^4 - 16 u^2 + 1}{4 u^2 (4 u^2 - 3)}$		
$\overline{\gamma}_{-5}$	0	$-\frac{1}{2 u (4 u^2 - 3)}$		0	2 # (1 4 u ² -3)	0	$\frac{8 u^4 - 18 u^2 + 1}{2 u \left(4 u^2 - 3\right)}$	$\frac{2 \ (u-1) \ (u+1) \ (2 \ u-1) \ (2 \ u+1)}{4 \ u^2 - 3}$	$\frac{8 u^4 - 6 u^2 - 1}{2 u (4 u^2 - 3)}$		
$\overline{\gamma}_{-9}$	0	$\frac{8u^4-6u^2-1}{4u^2\left(4u^2-3\right)}$		1 2 u	4 4 2	1 (4 u ² -3)	0	$\frac{16 u^4 - 16 u^2 + 1}{4 u^2 (4 u^2 - 3)}$	$\frac{8 u^4 - 6 u^2 - 1}{2 u (4 u^2 - 3)}$	$-\frac{32 u^6 - 64 u^4 + 38 u^2 + 3}{4 u^2 (4 u^2 - 3)}$		

$\begin{pmatrix} A & B \\ C & U \end{pmatrix} \xrightarrow{\det(A)} \begin{pmatrix} I & A^{-1}B \\ C & U \end{pmatrix} \xrightarrow{1} \begin{pmatrix} I & A^{-1}B \\ 0 & U & CA^{-1}B \end{pmatrix},$	Roughly, $det(A)$ is "det on ker",
$(C \ U)$ $(C \ U)$ $(O \ U - CA \ B)$	$-CA^{-1}B$ is "a pushforward of $\begin{pmatrix} A & B \\ C & U \end{pmatrix}$ "
so det $\begin{pmatrix} C & U \end{pmatrix}$ = det (A) det $(U - CA^{-1}B)$.	(what if $\nexists A^{-1}$?)

Questions. 1. Does this have a topological meaning? 2. Is there a version of the Kashaev Conjecture for tangles? 3. Find all solutions of R123 in our "algebra". 4. Braids and the Burau representation. 5. Recover the work in "Prior Art". 6. Are there any concordance properties? 7. What is the "SPQ group"? 8. The jumping points of signatures are the roots of the Alexander polynomial. Does this generalize to tangles? 9. Which of the three Cordon cases is the most common? 10. Are there interesting examples of tangles for which rels is non-trivial? 11. Is the pqpart determined by Γ -calculus? 12. Is the pq part determined by finite type invariants? 13. Does it work with closed components / links? 14. Strand-doubling formulas? 15. A multivariable version? 16. Mutation invariance? 17. Ribbon knots? 18. Are there "face-virtual knots"? 19. Does the pushforward story extend to ranks? To formal Gaussian measures? To super Gaussian measures?

References.

12

- [CC] D. Cimasoni, A. Conway, Colored Tangles and Signatures, Math. Proc. Camb. Phil. Soc. 164 (2018) 493–530, arXiv: 1507.07818.
- [Co] A. Conway, *The Levine-Tristram Signature: A Survey*, arXiv: 1903.04477.
- [GG] J-M. Gambaudo, É. Ghys, *Braids and Signatures*, Bull. Soc. Math. France 133-4 (2005) 541–579.
- [Ka] R. Kashaev, On Symmetric Matrices Associated with Oriented Link Diagrams, in Topology and Geometry, A Collection of Essays Dedicated to Vladimir G. Turaev, EMS Press 2021, arXiv:1801.04632.
- [Li] J. Liu, A Proof of the Kashaev Signature Conjecture, arXiv: 2311.01923.
- [Me] A. Merz, An Extension of a Theorem by Cimasoni and Conway, arXiv:2104.02993.

Acknowledgement. This work was partially supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

Some Rigor.

(Exercises hints and partial solutions at end)

Exercise 1. Show that if two SPQ's S_1 and S_2 on V satisfy $\sigma(S_1 + U) = \sigma(S_2 + U)$ for every quadratic U on V, then they have the same shifts and the same domains.

Exercise 2. Show that if two full quadratics Q_1 and Q_2 satisfy $\sigma(Q_1 + U) = \sigma(Q_2 + U)$ for every *U*, then $Q_1 = Q_2$.

Proof of Theorem 1'. Fix *W* and consider triples $(V, S, \phi: V \rightarrow W)$ where S = (s, D, Q) is an SPQ on *V*. Say that two triples are "push-equivalent", $(V_1, S_1, \phi_1) \sim (V_2, S_2, \phi_2)$ if for every quadratic *U* on *W*,

$$\sigma_{V_1}(S_1 + \phi_1^* U) = \sigma_{V_2}(S_2 + \phi_2^* U).$$

Given our (V, S, ϕ) , we need to show:

1. There is an SPQ S' on W such that $(V, S, \phi) \sim (W, S', I)$.

2. If $(W, S', I) \sim (W, S'', I)$ then S' = S''.

Property 2 is easy (Exercises 1, 2). Property 1 follows from the following three claims, each of which is easy.

Claim 1. If $v \in \ker \phi \cap D(S)$, and $\lambda := Q(v, v) \neq 0$, then $(V, S, \phi) \sim$

$$(V/\langle v \rangle, (s+\operatorname{sign}(\lambda), D(S)/\langle v \rangle, Q-\lambda^{-1}Q(-, v) \otimes Q(v, -)), \phi/\langle v \rangle).$$

So wlog $Q|_{\ker \phi} = 0$ (meaning, $Q|_{\ker \phi \otimes \ker \phi} = 0$).

Claim 2. If $Q|_{\ker\phi} = 0$ and $v \in \ker\phi \cap D(S)$, let $V' = \ker Q(v, -)$ and then $(V, S, \phi) \sim (V', S|_{V'}, \phi|_{V'})$ so wlog $Q|_{V \otimes \ker\phi + \ker\phi \otimes V} = 0$. Claim 3. If $Q|_{V \otimes \ker\phi + \ker\phi \otimes V} = 0$ then $S = \phi^*S'$ for some SPQ S' on im ϕ

and then $(V, S, \phi) \sim (W, S', I)$.

Now assume $V_0 \xrightarrow{\alpha} V_1 \xrightarrow{\beta} V_2$ and that *S* is an SPQ on V_0 . Then for every SPQ *U* on V_2 we have, using reciprocity three times, that $\sigma(\beta_*\alpha_*S + U) = \sigma(\alpha_*S + \beta^*U) = \sigma(S + \alpha^*\beta^*U) = \sigma(S + (\beta\alpha)^*U) =$ $\sigma((\beta\alpha)_*S + U)$. Hence $\beta_*\alpha_*S = (\beta\alpha)_*S$.

Definition. A commutative square as on the right is called *admissible* if $\gamma^*\beta_* = \nu_*\mu^*$.

Lemma 1. If V = W = Y = Z and $\beta = \gamma = \mu = \nu = I$, the $V \xrightarrow{\sim}_{\beta} Z$ square is admissible.

Lemma 2. The following are equivalent:

1. A square as above is admissible.

2. The *Pairing Condition* holds. Namely, if S_1 is an SPQ on V (write $S_1 \vdash V$) and $S_2 \vdash W$, then $\sigma(\mu^*S_1 + \nu^*S_2) = \sigma(\beta_*S_1 + \gamma_*S_2).$ 3. The square is mirror admissible: $\beta^*\gamma_* = \mu_*\nu^*$. $\begin{array}{c} Y \stackrel{\nu}{\to} W \dashv S_2 \\ S_1 \vdash V \stackrel{\nu}{\to} Z \\ Y \stackrel{\nu}{\to} W \end{array}$

3. The square is mirror admissible: $\beta^* \gamma_* = \mu_* \gamma^*$. **Proof.** Using Exercises 1 and 2 below, and then using reciprocity on both sides, we have $\forall S_1 \gamma^* \beta_* S_1 = v_* \mu^* S_1 \Leftrightarrow V \xrightarrow{\beta} Z$ $\forall S_1 \forall S_2 \sigma(\gamma^* \beta_* S_1 + S_2) = \sigma(v_* \mu^* S_1 + S_2) \Leftrightarrow \forall S_1 \forall S_2 \sigma(\beta_* S_1 + \gamma_* S_2) = \sigma(\mu^* S_1 + v^* S_2)$, and thus $1 \Leftrightarrow 2$. But the condition in 2 is symmetric under $\beta \leftrightarrow \gamma, \mu \leftrightarrow v$, so also $2 \Leftrightarrow 3$.

Lemma 3. If the first diagram below is admissible, then so is the se-

cond.
$$Y \xrightarrow{\nu} W \qquad Y \xrightarrow{\nu} W \qquad \square$$

 $\mu \psi \xrightarrow{\mathcal{I}} \psi \gamma \qquad \mu \psi \qquad \stackrel{\mathcal{I}}{\longrightarrow} Z \qquad \qquad \square$
 $V \xrightarrow{\beta} Z \qquad V \xrightarrow{\beta \oplus 0} Z \oplus F$

Lemma 4. A pushforward by an inclusion is the do nothing operation (though note that the pushforward via an inclusion of a fully defined quadratic retains its domain of definition, which now may become partial).

Lemma 5. For any linear $\phi: V \to W$, the diagram on the right is admissible, where ι denotes the inclusion maps. Proof. Follows easily from Lemma 4. \Box

Definition. If *S* is an SPQ with domain *D* and quadratic *Q*, the radical of *S* is the radical of *Q* considered as a fully-defined quadratic on *D*. Namely, rad $S := \{u \in D : \forall v \in D, Q(u, v) = 0\}.$

Lemma 6. Always, $\phi(\operatorname{rad} S) \subset \operatorname{rad} \phi_* S$.

Proof. Pick $w \in \phi(\operatorname{rad} S)$ and repeat the proof of Theorem 1' but now considering quadruples (V, S, ϕ, v) , where (V, S, ϕ) are as before and $v \in \operatorname{rad} S$ satisfies $\phi(v) = w$. Clearly our initial triple (V, S, ϕ) can be extended to such a quadruple, and it is easy to repeat the steps of the proof of Theorem 1' extending everything to such quadruples. \Box We have to acknowledge that our proof of Lemma 6 is ugly. We wish

we had a cleaner one. Exercise 3. Show that if two SPQ's S_1 and S_2 on $V \oplus A$ satisfy

 $A \subset \operatorname{rad} S_i$ and $\sigma(S_1 + \pi^*U) = \sigma(S_2 + \pi^*U)$ for every quadratic U on V, where $\pi: V \oplus A \to V$ is the projection, then $S_1 = S_2$.

Exercise 4. Show that if $\phi: V \to W$ is surjective and Q is a quadratic on W, then $\sigma(Q) = \sigma(\phi^*Q)$.

Exercise 5. Show that always, $\phi_* \phi^* S = S|_{im\phi}$.

Lemma 7. For any linear $\phi: V \to W$, the diagram on the right is admissible, where $\phi^+ := \phi \oplus I$ and α and β denote the projection maps. **Proof.** Let *S* be an SPQ on *V*. Clearly $C \subset V \oplus C \xrightarrow{\phi^+} W \oplus C$ $a \forall \qquad \forall \beta \\ V \longrightarrow W \oplus C$

 $\beta^* \phi_* S$. Also, $C \subset \operatorname{rad} \alpha^* S$ so by Lemma 6, $C = \phi^+(C) \subset \phi^+(\operatorname{rad} \alpha^* S) \subset \operatorname{rad} \phi_*^+ \alpha^* S$. Hence using Exercise 3, it is enough to show that $\sigma(\phi_*^+ \alpha^* S + \beta^* U) = \sigma(\beta^* \phi_* S + \beta^* U)$ for every *U* on *W*. Indeed, $\sigma(\phi_*^+ \alpha^* S + \beta^* U) \stackrel{(1)}{=} \sigma(\beta_* \phi_*^+ \alpha^* S + U) \stackrel{(2)}{=} \sigma(\phi_* \alpha_* \alpha^* S + U) \stackrel{(3)}{=} \sigma(\phi_* S + U) \stackrel{(4)}{=} \sigma(\beta^*(\phi_* S + U)) \stackrel{(5)}{=} \sigma(\beta^* \phi_* S + \beta^* U)$, using (1) reciprocity, (2) the commutativity of the diagram and the functoriality of pushing, (3) Exercise 5, (4) Exercise 4, and (5) the additivity of pullbacks.

Lemma 8. If the first diagram below is admissible, then so are the other

two.
$$Y \stackrel{\nu}{\to} W$$
 $Y \oplus E \stackrel{\nu \oplus 0}{\to} W$ $Y \stackrel{\nu \oplus 0}{\to} W \oplus F$
 $\mu \downarrow \stackrel{\mathcal{I}}{\to} Z$ $V \oplus E \stackrel{\mathcal{I}}{\to} Z$ $V \stackrel{\mu \downarrow}{\to} Z \oplus F$

Proof. In the diagram

with π marking projections and ι inclusions, the left square is admissible by Lemma 7, the middle square by assumption, and the right square by Lemma 5. Along with the functoriality of pushforwards this shows the admissibility of both the left and the right 1×2 subrectangles, and these are the diagrams we wanted.

Proof of Theorem 3. Decompose $Z = A \oplus E \oplus F \longrightarrow A \oplus C \oplus F$ $A \oplus B \oplus C \oplus D$, where $A = \operatorname{im} \beta \cap \operatorname{im} \gamma$, \forall $\operatorname{im} \beta = A \oplus B$, and $\operatorname{im} \gamma = A \oplus C$. Write $A \oplus B \oplus E \twoheadrightarrow A \oplus B \oplus C \oplus D$ $V \simeq A \oplus B \oplus E$ with $\beta = I$ on $A \oplus B$ yet $\beta = 0$ on E, and write $W \simeq A \oplus C \oplus F$ with $\gamma = I$ on $A \oplus C$ yet $\gamma = 0$ on F. Then $Y = V \oplus_Z W \simeq A \oplus E \oplus F$ and our square is as shown on the right, with all maps equal to I on like-named summands and equal to 0 on non-like-named summands. But this diagram is admissible: build it up using Lemma 1 for the A's, and then Lemma 8 for E and C, and then again Lemma 8 along with the mirror property of Lemma 2 for B and F, and then Lemma 3 for D.

To prove Theorem 4, given three¹ SPQ's S_1 , S_2 , and S_3 , we need to show that planar-multiplying them in two steps, first using a planar connection diagram D_I (I for Inner) to yield $S_6 = S(D_I)(S_2, S_3)$ and then using a second planar connection diagram D_O (O for Outer) to yield $S(D_O)(S_1, S_6)$, gives the same answer as multiplying them all at once using the composition planar connection diagram $D_B = D_O \circ_6 D_I$ (B for Big) to yield $S(D_B)(S_1, S_2, S_3)$.² An example should help:

¹Truly, we need the same for any number of input SPQ's that are divided into two groups, "multiply in the first step" and "multiply in the second step". But there's no added difficulty here, only an added notational complexity.

²Aren't we sassy? We picked "6" for the name of the product of "2" and "3".

In this example, if you ignore the dotted green line (marked "6"), you see the planar connection diagram D_B , which has three inputs (1,2,3) and a single output, the cycle 0. If you only look inside the green line, you see D_I , with inputs 2 and 3 and an output cycle 6. If you ignore the inside of 6 you see D_O , with inputs 1 and 6 and output cycle 0.

Let F_B (Big Faces) denote the vector space whose basis are the faces of D_B , let F_I (Inner Faces) be the space of faces of D_I , and let F_O (Outer Faces) be the space

of faces of D_O . Let G_1 , G_2 , G_3 , G_6 , and G_0 be the spaces of gaps (edges) along the cycles 1,2,3,6, and 0, respectively. Let $\psi := \psi_{D_B}$ and $\phi := \phi^{D_B}$ be the maps defining $S(D_B)$ and let $\gamma := \psi_{D_O}$ and $\delta := \phi^{D_O}$ be the maps defining $S(D_O)$. Further, let $\alpha := \psi_{D_I} : F_I \to G_2 \oplus G_3$ and $\beta := \phi^{D_I} : F_I \to G_6$ be the maps defining $S(D_I)$, and let $\alpha_+ := I \oplus \alpha$ and $\beta^+ := I \oplus \beta$ be the extensions of α and β by an identity on an extra factor of G_1 , so that $\beta_*^+ \alpha_+^* = I_{G_1} \oplus S(D_I)$. Let μ map any big face to the sum of G_1 gaps around it, plus the sum of the inner faces it contains. Let ν map any big face to the sum of the outer faces it contains. It is easy to see that the master diagram (MD) shown on the right, made of all of these spaces and maps, is commutative.

Claim. The bottom right square of (MD) is an equalizer square, namely $F_B \simeq EQ(\beta^+, \gamma)$. Hence $\nu_*\mu^* = \gamma^*\beta^+_*$. Proof. A big face (an element of F_B) is a sum of outer faces f_o and a

Proof. A big face (an element of F_B) is a sum of outer faces f_o and a sum of inner faces f_i , and it has a boundary g_1 on input cycle 1, such that the boundary of the outer pieces f_o is equal to the boundary of the inner pieces f_i plus g_1 . That matches perfectly with the definition of the equalizer: $EQ(\beta^+, \gamma) = \{(g_1, f_i, f_o): \beta^+(g_1, f_i) = \gamma(f_o)\} = \{(g_1, f_i, f_o): \gamma(f_o) = (g_1, \beta(f_i))\}.$

Proof of Theorem 4. With notation as above, with the example above (which is general enough), and with the claim above, and also using functoriality, we have $S(D_B) = \phi_* \psi^* = \delta_* v_* \mu^* \alpha_+^* = \delta_* \gamma^* \beta_*^+ \alpha_+^* = S(D_O) \circ (I_{G_1} \oplus S(D_I))$, as required.

Proof of Theorem 5. We need to verify the Reidemeister moves and that was done in the computational section, and the statement about the restriction to links, which is easy: simply assemble an *n*-crossing knot using an *n*-input planar connection diagram, and the formulas clearly match.

Further Homework.

Exercise 6. By taking U = 0 in the reciprocity statement, prove that always $\sigma(\phi_*S) = \sigma(S)$. But that seems wrong, if $\phi = 0$. What saves the day?

Exercise 7. By taking S = 0 in the reciprocity statement, frove that always $\sigma(\phi^*U) = \sigma(U)$. But wait, this is nonsense! What went wrong? Exercise 8. Given $\phi: V \to W$ and a subspace $D \subset V$, show that there is a unique subspace $\phi_*D \subset W$ such that for every quadratic Q on W, $\sigma(\phi^*Q|_D) = \sigma(Q|_{\phi_*D})$.

Exercise 9. When are diagrams as on the right equalizer diagrams? What then do we learn $\begin{array}{ccc} Y \Rightarrow 0 & Y \Rightarrow W \\ \psi & \psi & \psi \\ V \Rightarrow Z & V \Rightarrow 0 \end{array}$

Exercise	10. The	re are 11	types of	r irreduci	ible com	nutative	squares
$1 \ge 0$,	$0 \ge 1$,	$0 \ge 0$,	$0 \ge 0$,	$1 \ge 1$,	$0 \ge 1$,	$0 \ge 1$,	$0 \ge 0$
¥ ¥	¥ ¥	¥ ¥	¥ ¥	Ψ [⊥] Ψ	¥ 1¥	¥ 1¥	¥ , ¥
$0 \ge 0$	$0 \ge 0$	$1 \ge 0$	$0 \ge 1$	$0 \ge 0$	$0 \ge 1$	$0 \ge 1$	$1 \stackrel{1}{\Rightarrow} 1$
$0 \ge 1$,	$1 \ge 1, a$	und 1 >	1. Shov	v that pus	shing cor	nmutes v	vith pul-
¥ ,1¥	¥1 ¹ ¥	¥1,1	¥				
1 1 - 1	$1 \rightarrow 0$	1 1	1				

ling for all but four of them. Compare with the statement of Theorem 3. Exercise 11. Prove that a square is admissible iff it is an equalizer square, with an additional direct summand A added to the Y term, and with the maps μ and ν extended by 0 on A.

Exercise 12. Prove that the direct sum of two admissible squares is admissible. *Warning:* Harder than it seems! Not all quadratics on $V_1 \oplus V_2$ are direct sums of quadratics on V_1 and on V_2 .

Exercise 13. Given a quadratic Q on a space V, let π be the projection $V \rightarrow V/ \operatorname{rad}(Q)$ and show that $\pi_*Q = Q/\operatorname{rad}(Q)$, with the obvious definition for the latter.

Exercise 14. Show that for any partial quadratic Q on a space W there exists a space A and a fully-defined quadratic F on $W \oplus A$ such that $\pi_*F = Q$, where $\pi: W \oplus A \to W$ is the projection (these are not unique). Furthermore, if $\phi: V \to W$, then $\phi^*Q = \pi_*\phi^*_*F$, where $\phi_+ = \phi \oplus I: V \oplus A \to W \oplus A$ and π also denotes the projection $V \oplus A \to V$.

Solutions / Hints.

Hint for 1. On a vector in the domain of one but not the other, take an outrageous value for U, that will raise or lower the signature.

Hint for 2. WLOG, Q_1 is diagonal and $Q_1 = 0$.

Hint for 5. It's enough to test that against U with $\mathcal{D}(U) = \operatorname{im} \phi$.

Hint for 6. The "shift" part of 0_*S is $\sigma(S)$.

Hint for 7. ϕ_*S isn't 0, it's the *partial* quadratic "0 on im ϕ " (and indeed, $\sigma(\phi^*U) = \sigma(U)$ if ϕ is surjective).

Hint for 10. The exceptions are ${}^{01}_{00}$, ${}^{00}_{10}$, ${}^{01}_{11}$, and ${}^{11}_{10}$.

Hint for 12. Use Exercise 11.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tokyo-230911/

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout: http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.

Preliminaries

Fast!

This is Rho.nb of http://drorbn.net/oa22/ap.

Once[<< KnotTheory`; << Rot.m];

Loading KnotTheory` version of February 2, 2020, 10:53:45.2097. Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/la22/ap
 to compute rotation numbers.

The Program

```
\begin{aligned} & \mathsf{R}_{1}[s_{-}, i_{-}, j_{-}] := \\ & s \ (\mathsf{g}_{ji} \ (\mathsf{g}_{j^{+}, j} + \mathsf{g}_{j, j^{+}} - \mathsf{g}_{ij}) - \mathsf{g}_{ii} \ (\mathsf{g}_{j, j^{+}} - 1) - 1/2) \,; \\ & \mathsf{Z}[\mathcal{K}_{-}] := \mathsf{Module} \Big[ \{\mathsf{Cs}, \varphi, \mathsf{n}, \mathsf{A}, \mathsf{s}, \mathsf{i}, \mathsf{j}, \mathsf{k}, \Delta, \mathsf{G}, \rho 1\}, \\ & \{\mathsf{Cs}, \varphi\} = \mathsf{Rot}[\mathcal{K}] \,; \, \mathsf{n} = \mathsf{Length}[\mathsf{Cs}] \,; \\ & \mathsf{A} = \mathsf{IdentityMatrix}[2\,\mathsf{n} + 1] \,; \\ & \mathsf{Cases}\Big[\mathsf{Cs}, \{s_{-}, i_{-}, j_{-}\} \Rightarrow \\ & \left(\mathsf{A}[\![\{i, j\}, \{i + 1, j + 1\}]\!] + = \left(\begin{array}{c} -\mathsf{T}^{\mathsf{S}} \ \mathsf{T}^{\mathsf{S}} - 1 \\ \varrho & -1 \end{array}\right) \right) \Big] \,; \\ & \Delta = \mathsf{T}^{(-\mathsf{Total}[\varphi] - \mathsf{Total}[\mathsf{Cs}[\mathsf{All}, 1]])/2} \, \mathsf{Det}[\mathsf{A}] \,; \\ & \mathsf{G} = \mathsf{Inverse}[\mathsf{A}] \,; \\ & \rho 1 = \sum_{k=1}^{\mathsf{n}} \mathsf{R}_{1} @@\, \mathsf{Cs}[\![k]\!] - \sum_{k=1}^{2\mathsf{n}} \varphi[\![k]\!] (\mathsf{g}_{kk} - 1/2) \,; \\ & \mathsf{Factor}@ \\ & \left\{\Delta, \Delta^{2} \rho 1 \, / \cdot \alpha_{-}^{+} \Rightarrow \alpha + 1 \, / \cdot \mathsf{g}_{\alpha_{-},\beta_{-}} \Rightarrow \mathsf{G}[\![\alpha, \beta]\!] \right\} \Big] \,; \end{aligned}
```

The First Few Knots

31	$\frac{1-T+T^2}{T}$	$\frac{\left(-1+T\right)^{2}\left(1+T^{2}\right)}{T^{2}}$
41	$-\frac{1-3 T+T^2}{T}$	0
5 ₁	$\frac{1 - T + T^2 - T^3 + T^4}{T^2}$	$\frac{\left(\left(-1+T\right)^{2} \left(1+T^{2}\right) \left(2+T^{2}+2 \ T^{4}\right)}{T^{4}}$
5 ₂	<u>2-3 T+2 T²</u> T	$\frac{\left(-1\!+\!T\right)^2\left(5\!-\!4T\!+\!5T^2\right)}{T^2}$
61	$-\frac{(-2+T)(-1+2T)}{T}$	$\frac{(-1+T)^2 \left(1-4 T+T^2\right)}{T^2}$
6 ₂	$- \frac{1_{-3} T_{+3} T^2_{-3} T^3_{} + T^4}{T^2}$	$\frac{(-1+T)^2 \left(1-4 T+4 T^2-4 T^3+4 T^4-4 T^5+T^6\right)}{T^4}$
6 ₃	$\frac{1 - 3 T + 5 T^2 - 3 T^3 + T^4}{T^2}$	0

Timing@

 $Z \begin{bmatrix} GST48 = EPD \begin{bmatrix} X_{14,1}, \overline{X}_{2,29}, X_{3,40}, X_{43,4}, \overline{X}_{26,5}, X_{6,95}, \\ X_{96,7}, X_{13,8}, \overline{X}_{9,28}, X_{10,41}, X_{42,11}, \overline{X}_{27,12}, X_{30,15}, \\ \overline{X}_{16,61}, \overline{X}_{17,72}, \overline{X}_{18,83}, X_{19,34}, \overline{X}_{89,20}, \overline{X}_{21,92}, \\ \overline{X}_{79,22}, \overline{X}_{68,23}, \overline{X}_{57,24}, \overline{X}_{25,56}, X_{62,31}, X_{73,32}, \\ X_{84,33}, \overline{X}_{50,35}, X_{36,81}, X_{37,70}, X_{38,59}, \overline{X}_{39,54}, X_{44,55}, \\ X_{58,45}, X_{69,46}, X_{80,47}, X_{48,91}, X_{90,49}, X_{51,82}, X_{52,71}, \\ X_{53,60}, \overline{X}_{63,74}, \overline{X}_{64,85}, \overline{X}_{76,65}, \overline{X}_{87,66}, \overline{X}_{67,94}, \\ \overline{X}_{75,86}, \overline{X}_{88,77}, \overline{X}_{78,93} \end{bmatrix} \end{bmatrix}$

$$\left\{ 170.313, \left\{ -\frac{1}{T^8} \left(-1 + 2 T - T^2 - T^3 + 2 T^4 - T^5 + T^8 \right) \right. \\ \left. \left(-1 + T^3 - 2 T^4 + T^5 + T^6 - 2 T^7 + T^8 \right), \frac{1}{T^{16}} \right. \\ \left. \left(-1 + T \right)^2 \left(5 - 18 T + 33 T^2 - 32 T^3 + 2 T^4 + 42 T^5 - 62 T^6 - 8 T^7 + 166 T^8 - 242 T^9 + 108 T^{10} + 132 T^{11} - 226 T^{12} + 148 T^{13} - 11 T^{14} - 36 T^{15} - 11 T^{16} + 148 T^{17} - 226 T^{18} + 132 T^{19} + 108 T^{20} - 242 T^{21} + 166 T^{22} - 8 T^{23} - 62 T^{24} + 42 T^{25} + 2 T^{26} - 32 T^{27} + 33 T^{28} - 18 T^{29} + 5 T^{30} \right) \right\} \right\}$$

Strong!

```
{NumberOfKnots[{3, 12}],
Length@
Union@Table[Z[K], {K, AllKnots[{3, 12}]}],
Length@
Union@Table[{HOMFLYPT[K], Kh[K]},
{K, AllKnots[{3, 12}]}]
```

```
{2977, 2882, 2785}
```

So the pair (Δ, ρ_1) attains 2,882 distinct values on the 2,977 prime knots with up to 12 crossings (a deficit of 95), whereas the pair (HOMFLYPT, Khovanov Homology) attains only 2,785 distinct values on the same knots (a deficit of 192).

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout: http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.

Theorem. The Green function $g_{\alpha\beta}$ is the reading of a traffic counter at β , if car traffic is injected at α (if $\alpha = \beta$, the counter is *after* the injection point).

Example.

$$\sum_{p\geq 0}(1-T)^p = T^{-1} \qquad T^{-1} \qquad 0 \\ 1 \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad 1 \qquad G = \begin{pmatrix} 1 & T^{-1} & 1 \\ 0 & T^{-1} & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

α 🖚

Proof. Near a crossing *c* with sign *s*, incoming upper edge *i* and incoming lower edge *j*, both sides satisfy the *g*-rules:

 $g_{i\beta} = \delta_{i\beta} + T^s g_{i+1,\beta} + (1 - T^s) g_{j+1,\beta}, \quad g_{j\beta} = \delta_{j\beta} + g_{j+1,\beta},$ and always, $g_{\alpha,2n+1} = 1$: use common sense and AG = I (= GA). **Bonus.** Near *c*, both sides satisfy the further *g*-rules:

$$g_{\alpha i} = T^{-s}(g_{\alpha,i+1} - \delta_{\alpha,i+1}), \quad g_{\alpha j} = g_{\alpha,j+1} - (1 - T^s)g_{\alpha i} - \delta_{\alpha,j+1}.$$

Invariance of ρ_1 . We start with the hardest, Reidemeister 3:

 \Rightarrow Overall traffic patterns are unaffected by Reid3!

 $\Rightarrow \text{ Green's } g_{\alpha\beta} \text{ is unchanged by Reid3, provided the cars injection}$ (abstractly, g_{ϵ} acts on its Verma module site α and the traffic counters β are away.

⇒ Only the contribution from the R_1^{k} terms within the Reid3 move matters, and using g-rules the relevant $g_{\alpha\beta}$'s can be pushed outside of the Reid3 area:

 $\begin{aligned} \mathbf{gRules}_{s_{j},i_{j},j_{j}} &:= & |i \quad (j \quad)k \quad (i \quad)j \\ \left\{ \mathbf{g}_{i\beta_{j}} \Rightarrow \delta_{i\beta} + \mathbf{T}^{s} \mathbf{g}_{i^{+},\beta} + \left(\mathbf{1} - \mathbf{T}^{s} \right) \mathbf{g}_{j^{+},\beta}, \mathbf{g}_{j\beta_{j}} \Rightarrow \delta_{j\beta} + \mathbf{g}_{j^{+},\beta}, \end{aligned} \end{aligned}$

 $g_{\alpha_{,i}} \mapsto T^{-s} (g_{\alpha,i^{+}} - \delta_{\alpha,i^{+}}),$ $g_{\alpha_{,j}} \mapsto g_{\alpha,j^{+}} - (1 - T^{s}) g_{\alpha i} - \delta_{\alpha,j^{+}}$ $lhs = R_{1}[1, j, k] + R_{1}[1, i, k^{+}] + R_{1}[1, i^{+}, j^{+}] //.$

$$gRules_{1,j,k} \cup gRules_{1,i,k^+} \cup gRules_{1,i^+,j^+};$$

rhs = R₁[1, i, j] + R₁[1, i⁺, k] + R₁[1, j⁺, k⁺] //. gRules_{1,i,j} ∪ gRules_{1,i⁺,k} ∪ gRules_{1,j⁺,k⁺};

Simplify[lhs == rhs]

True

Next comes Reid1, where we use results from an earlier example: (e.g., [Sch]). So ρ_1 is not alone!

$$R_{1}[1, 2, 1] - 1 (g_{22} - 1/2) / . g_{\alpha_{-},\beta_{-}} \Rightarrow \begin{pmatrix} 1 & T^{-1} & 1 \\ 0 & T^{-1} & 1 \\ 0 & 0 & 1 \end{pmatrix} \llbracket \alpha, \beta \rrbracket$$

$$\frac{1}{T^{2}} - \frac{1}{T} - \frac{-1 + \frac{1}{T}}{T} = \bigcirc$$
Invariance under the other moves is proven similarly.

Wearing my Topology hat the formula for R_1 , and even the idea to look for R_1 , remain a complete mystery to me.

Wearing my Quantum Algebra hat, I spy a Heisenberg algebra $\mathbb{H} = A\langle p, x \rangle / ([p, x] = 1)$:

cars
$$\leftrightarrow p$$
 traffic counters $\leftrightarrow x$

Where did it come from? Consider $g_{\epsilon} := sl_{2+}^{\epsilon} := L\langle y, b, a, x \rangle$ with relations

$$[b, x] = \epsilon x, \quad [b, y] = -\epsilon y, \quad [b, a] = 0,$$

[a, x] = x, [a, y] = -y, $[x, y] = b + \epsilon a$.

At invertible ϵ , it is isomorphic to sl_2 plus a central factor, and it can be quantized à la Drinfel'd [Dr] much like sl_2 to get an algebra $QU = A\langle y, b, a, x \rangle$ subject to (with $q = e^{\hbar \epsilon}$):

$$[b, a] = 0, \quad [b, x] = \epsilon x, \quad [b, y] = -\epsilon y,$$
$$[a, x] = x, \quad [a, y] = -y, \quad xy - qyx = \frac{1 - e^{-\hbar(b + \epsilon a)}}{\hbar}.$$

 T^2 Now QU has an R-matrix solving Yang-Baxter (meaning Reid3),

$$R = \sum_{m,n\geq 0} \frac{y^n b^m \otimes (\hbar a)^m (\hbar x)^n}{m! [n]_q!}, \quad ([n]_q! \text{ is a "quantum factorial"})$$

and so it has an associated "universal quantum invariant" à la Lawrence and Ohtsuki [La, Oh1], $Z_{\epsilon}(K) \in QU$.

Now $QU \cong \mathcal{U}(\mathfrak{g}_{\epsilon})$ (only as algebras!) and $\mathcal{U}(\mathfrak{g}_{\epsilon})$ represents into \mathbb{H} via

$$y \rightarrow -tp - \epsilon \cdot xp^2$$
, $b \rightarrow t + \epsilon \cdot xp$, $a \rightarrow xp$, $x \rightarrow x$,
bstractly a acts on its Verma module

$$\mathcal{U}(\mathfrak{g}_{\epsilon})/(\mathcal{U}(\mathfrak{g}_{\epsilon})\langle y, a, b - \epsilon a - t \rangle) \cong \mathbb{Q}[x]$$

by differential operators, namely via \mathbb{H}), so *R* can be pushed to $\mathcal{R} \in \mathbb{H} \otimes \mathbb{H}$.

Everything still makes sense at $\epsilon = 0$ and can be expanded near $\epsilon = 0$ resulting with $\mathcal{R} = \mathcal{R}_0(1 + \epsilon \mathcal{R}_1 + \cdots)$, with $\mathcal{R}_0 = e^{t(xp \otimes 1 - x \otimes p)}$ and \mathcal{R}_1 a quartic polynomial in p and x. So p's and x's get created along K and need to be pushed around to a standard location ("normal ordering"). This is done using

$$(p \otimes 1)\mathcal{R}_0 = \mathcal{R}_0(T(p \otimes 1) + (1 - T)(1 \otimes p)),$$

(1 \otimes p)\mathcal{R}_0 = \mathcal{R}_0(1 \otimes p),

and when the dust settles, we get our formulas for ρ_1 . But QU is a quasi-triangular Hopf algebra, and hence ρ_1 is homomorphic. Read more at [BV1, BV2] and hear more at $\omega \epsilon \beta$ /SolvApp,

ωεβ/Dogma, ωεβ/DoPeGDO, ωεβ/FDA, ωεβ/AQDW.Also, we can (and know how to) look at higher powers of ϵ and we can (and more or less know how to) replace sl_2 by arbitrary semi-simple Lie algebra

These constructions are very similar to Rozansky-Overbay [Ro1, Ro2, Ro3, Ov] and hence to the "loop expansion" of the Kontsevich integral and the coloured Jones polynomial [Oh2].

If this all reads like **insanity** to you, it should (and you haven't seen half of it). Simple things should have simple explanations. Hence, **Homework.** Explain ρ_1 with no reference to quantum voodoo and find it a topology home (large enough to house generalizations!). Make explicit the homomorphic properties of ρ_1 . Use them to do topology!

P.S. As a friend of Δ , ρ_1 gives a genus bound, sometimes better than Δ 's. How much further does this friendship extend?

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout: http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.

A Small-Print Page on ρ_d , d > 1.

Definition. $\langle f(z_i), h(\zeta_i) \rangle_{\{z_i\}} \coloneqq f(\partial_{\zeta_i}) h \Big|_{\zeta_i=0}$, so $\langle p^2 x^2, e^{g\pi\xi} \rangle = 2g^2$. **Baby Theorem.** There exist (non unique) power series $r^{\pm}(p_1, p_2, x_1, x_2) = \sum_d \epsilon^d r_d^{\pm}(p_1, p_2, x_1, x_2) \in \mathbb{Q}[T^{\pm 1}, p_1, p_2, x_1, x_2][\![\epsilon]\!]$ with deg $r_d^{\pm} \leq 2d + 2$ ("docile") such that the power series $Z^b = \sum \rho_d^b \epsilon^d \coloneqq$

$$\left\langle \exp\left(\sum_{c} r^{s}(p_{i}, p_{j}, x_{i}, x_{j})\right), \exp\left(\sum_{\alpha, \beta} g_{\alpha\beta} \pi_{\alpha} \xi_{\beta}\right) \right\rangle_{\{p_{\alpha}, x_{\beta}\}}$$

is a bnot invariant. Beyond the once-and-for-all computation of $g_{\alpha\beta}$ (a matrix inversion), Z^b is computable in $O(n^d)$ operations in the ring $\mathbb{Q}[T^{\pm 1}]$.

(Bnots are knot diagrams modulo the braid-like Reidemeister moves, but not the cyclic ones).

Theorem. There also exist docile power series $\gamma^{\varphi}(\bar{p}, \bar{x}) = \sum_{d} \epsilon^{d} \gamma_{d}^{\varphi} \in \mathbb{Q}[T^{\pm 1}, \bar{p}, \bar{x}][\![\epsilon]\!]$ such that the power series $Z = \sum \rho_{d} \epsilon^{d} :=$

$$\left\langle \exp\left(\sum_{c} r^{s}(p_{i}, p_{j}, x_{i}, x_{j}) + \sum_{k} \gamma^{\varphi_{k}}(\bar{p}_{k}, \bar{x}_{k})\right), \\ \exp\left(\sum_{\alpha, \beta} g_{\alpha\beta}(\pi_{\alpha} + \bar{\pi}_{\alpha})(\xi_{\beta} + \bar{\xi}_{\beta}) + \sum_{\alpha} \pi_{\alpha} \bar{\xi}_{\alpha}\right)\right)_{\{p_{\alpha}, \bar{p}_{\alpha}, x_{\beta}, \bar{x}_{\beta}\}}$$

is a knot invariant, as easily computable as Z^b .

Implementation. Data, then program (with output using the Conway variable $z = \sqrt{T} - 1/\sqrt{T}$), and then a demo. See Rho.nb of $\omega \epsilon \beta/ap$.

```
\begin{split} & \mathbb{V} \oplus \gamma_{1, \varrho_{-}} \left[ k_{-} \right] = \varphi \left( 1 / 2 - \overline{p_{k}} \, \overline{x}_{k} \right); \ & \mathbb{V} \oplus \gamma_{2, \varrho_{-}} \left[ k_{-} \right] = -\varphi^{2} \, \overline{p_{k}} \, \overline{x}_{k} / 2; \\ & \mathbb{V} \oplus \gamma_{3, \varrho_{-}} \left[ k_{-} \right] := -\varphi^{3} \, \overline{p_{k}} \, \overline{x_{k}} / 6 \\ & \mathbb{V} \oplus r_{1, s_{-}} \left[ (i_{-}, j_{-}) \right] := \\ & s \left( -1 + 2 \, p_{i} \, x_{i} - 2 \, p_{j} \, x_{i} + \left( -1 + T^{5} \right) \, p_{i} \, p_{j} \, x_{i}^{2} + \left( 1 - T^{5} \right) \, p_{j}^{2} \, x_{i}^{2} - 2 \, p_{i} \, p_{j} \, x_{i} \, x_{j} + 2 \, p_{j}^{2} \, x_{i} \, x_{j} \right) / 2 \\ & \mathbb{V} \oplus r_{2,1} \left[ (i_{-}, j_{-}) \right] := \\ & \left( -6 \, p_{i} \, x_{i} + 6 \, p_{j} \, x_{i} - 3 \, (-1 + 3 \, T) \, p_{i} \, p_{j} \, x_{i}^{2} + 3 \, (-1 + 3 \, T) \, p_{j}^{2} \, x_{i}^{2} + 4 \, (-1 + T) \, p_{i}^{2} \, p_{j} \, x_{i}^{3} - 2 \, (-1 + T) \, (5 + T) \, p_{i} \, p_{j}^{2} \, x_{i}^{3} + 2 \, (-1 + T) \, (3 + T) \, p_{j}^{3} \, x_{i}^{3} + 18 \, p_{i} \, p_{j} \, x_{i} \, x_{j} - \\ & 18 \, p_{j}^{2} \, x_{i} \, x_{j} - 6 \, p_{i}^{2} \, p_{j} \, x_{i}^{2} \, x_{j} - 6 \, p_{i}^{2} \, p_{j}^{2} \, x_{i}^{2} \, x_{j}^{2} - 6 \, (1 + T) \, p_{j}^{3} \, x_{i}^{2} \, x_{j} - \\ & 6 \, p_{i} \, p_{j}^{2} \, x_{i} \, x_{j}^{2} + 6 \, p_{j}^{3} \, x_{i} \, x_{j}^{2} \right) / 12 \\ & \mathbb{V} \oplus r_{2,-1} \left[ (i_{-}, j_{-}) \right] := \\ & \left( -6 \, T^{2} \, p_{i} \, x_{i} + 6 \, T^{2} \, p_{j} \, x_{i}^{3} + 2 \, (-1 + T) \, (1 + 5 \, T) \, p_{i} \, p_{j}^{2} \, x_{i}^{2} - 2 \, (-1 + T) \, (1 + 3 \, T) \, p_{j}^{3} \, x_{i}^{3} + \\ & 18 \, T^{2} \, p_{i} \, p_{j} \, x_{i} \, x_{j} - 18 \, T^{2} \, p_{j}^{2} \, x_{i} \, x_{j} - 6 \, T^{2} \, p_{i}^{2} \, p_{i}^{2} \, x_{i}^{2} \, x_{j}^{2} + 6 \, T \, (1 + 2 \, T) \, p_{i} \, p_{j}^{2} \, x_{i}^{2} \, x_{j}^{2} \, - \\ & 4 \, (-1 + T) \, T \, p_{i}^{2} \, p_{j} \, x_{i} \, x_{j} - 18 \, T^{2} \, p_{j}^{2} \, x_{i}^{2} \, x_{j} - 6 \, T^{2} \, p_{i}^{2} \, p_{j}^{2} \, x_{i}^{2} \, x_{j}^{2} \, - 6 \, T \, (1 + 2 \, T) \, p_{i} \, p_{j}^{2} \, x_{i}^{2} \, x_{j}^{2} \, - \\ & 4 \, (-1 + T) \, T \, p_{i}^{2} \, p_{j}^{2} \, x_{i} \, x_{j}^{2} \, - 6 \, T^{2} \, p_{i}^{2} \, p_{i}^{2} \, x_{i}^{2} \, x_{j}^{2} \, - 6 \, T \, T \, T \, p_{i}^{2} \, p_{j}^{2} \, x_{i}^{2} \, x_{j}^{2} \, x_{j}^{2} \, x_{j}^{2} \, x_{j}^{2} \, x_{j}^{2} \,
```

```
Z2[GST48] (* takes a few minutes *)
```

 $\left\{1-4\;z^2-61\;z^4-207\;z^6-296\;z^8-210\;z^{10}-77\;z^{12}-14\;z^{14}-z^{16}\right\}$

6 T (1 + T) $\mathbf{p}_{j}^{3} \mathbf{x}_{i}^{2} \mathbf{x}_{j}$ - **6** T² $\mathbf{p}_{i} \mathbf{p}_{j}^{2} \mathbf{x}_{i} \mathbf{x}_{j}^{2}$ + **6** T² $\mathbf{p}_{j}^{3} \mathbf{x}_{i} \mathbf{x}_{j}^{2}$) / (12 T²)

```
 1 + \left( 38\ z^2 + 255\ z^4 + 1696\ z^6 + 16\ 281\ z^8 + 86\ 952\ z^{10} + 259\ 994\ z^{12} + 487\ 372\ z^{14} + 615\ 066\ z^{16} + 543\ 148\ z^{18} + 341\ 714\ z^{20} + 153\ 722\ z^{22} + 48\ 933\ z^{24} + 10\ 776\ z^{26} + 1554\ z^{28} + 132\ z^{30} + 5\ z^{32} \right) \\ \in + \left( 233\ z^{14} + 255\ z^{14} + 255\
```

 $\left(-8 - 484 z^2 + 9709 z^4 + 165 952 z^6 + 1590 491 z^8 + 16 256 508 z^{10} + 115 341 797 z^{12} + 432 685 748 z^{14} + 395 838 354 z^{16} - 4017 557 792 z^{18} - 23 300 064 167 z^{20} - 70 082 264 972 z^{22} - 142 572 271 191 z^{24} - 209 475 503 700 z^{26} - 221 616 295 209 z^{28} - 151 502 648 428 z^{30} - 23 700 199 243 z^{32} + 99 462 146 328 z^{34} + 164 920 463 074 z^{36} + 162 550 825 432 z^{38} + 119 164 552 296 z^{40} + 69 153 062 608 z^{42} + 32 547 596 611 z^{44} + 12 541 195 448 z^{46} + 3961 384 155 z^{48} + 1021 219 696 z^{50} + 212 773 106 z^{52} + 35 264 208 z^{54} + 4 537 548 z^{56} + 436 600 z^{58} + 29 536 z^{60} + 1252 z^{62} + 25 z^{64} \right) \in^2 \right\}$

TableForm[Table[Join[{K[[1]]_{K[[2]}}, Z₃[K]], {K, AllKnots[{3, 6}]}], TableAlignments → Center] (* takes a few minutes *)

31	$1 + z^2$	$1 + \left(2z^{2} + z^{4}\right) \\ \in + \left(2 - 4z^{2} + 3z^{4} + 4z^{6} + z^{8}\right) \\ \in^{2} + \left(-12 + 74z^{2} - 27z^{4} - 20z^{6} + 8z^{8} + 6z^{10} + z^{12}\right) \\ \in^{3}$
41	$1 - z^2$	$1 + \begin{pmatrix} -2 + 2 \mathbf{z}^4 \end{pmatrix} \mathbf{e}^2$
51	$1 + 3 z^2 + z^4$	$1 + \left(10\ 2^{2} + 21\ 2^{4} + 12\ 2^{6} + 2\ 2^{8}\right) \\ \in + \left(6 - 28\ z^{2} + 33\ z^{4} + 364\ z^{6} + 555\ z^{8} + 556\ z^{10} + 227\ z^{12} + 48\ z^{14} + 4\ z^{16}\right) \\ \in^{2} + \left(-60 + 970\ z^{2} + 645\ z^{4} - 3380\ z^{6} - 3280\ z^{8} + 7470\ z^{10} + 12\ 564\ z^{12} + 12\ 564\ z^{16} + 1109\ z^{10} + 144\ z^{12} + 8\ z^{14} + 2\ z^{16}\right) \\ \in^{2} + \left(-60 + 970\ z^{2} + 645\ z^{4} - 3380\ z^{6} - 3280\ z^{8} + 7470\ z^{10} + 12\ 564\ z^{14} + 12\ 564\ z^{16} + 1109\ z^{10} + 144\ z^{12} + 8\ z^{14} + 2\ z^{16}\right) \\ = \left(-60 + 970\ z^{2} + 645\ z^{4} - 3380\ z^{6} - 3280\ z^{8} + 7470\ z^{10} + 12\ 564\ z^{14} + 12\ 564\ z^{16} + 1109\ z^{10} + 144\ z^{12} + 8\ z^{14} + 2\ z^{16}\right) \\ = \left(-60 + 970\ z^{16} + 645\ z^{16} - 3280\ z^{16} + 12\ 564\ z^{16} + 12\ 564\ z^{16} + 1109\ z^{10} + 144\ z^{12} + 8\ z^{14} + 2\ z^{16}\right) \\ = \left(-60 + 970\ z^{16} + 645\ z^{16} + 380\ z^{16} + 12\ 564\ z^{16} + 12\ 564\ z^{16} + 1109\ z^{10} + 144\ z^{12} + 8\ z^{16}\right) \\ = \left(-60 + 970\ z^{16} + 12\ 564\ z^{16} + 12\ 566\ $
5 ₂	$1 + 2 z^2$	$1 + \left(6 \ 2^2 + 5 \ \mathbf{z}^4\right) \\ \in + \left(4 - 20 \ \mathbf{z}^2 + 43 \ \mathbf{z}^4 + 64 \ \mathbf{z}^6 + 26 \ \mathbf{z}^8\right) \\ \in^2 + \left(-36 + 498 \ \mathbf{z}^2 - 883 \ \mathbf{z}^4 + 100 \ \mathbf{z}^6 + 816 \ \mathbf{z}^8 + 556 \ \mathbf{z}^{10} + 146 \ \mathbf{z}^{12}\right) \\ \in^3 + 100 \ \mathbf{z}^{10} + 100 \ \mathbf{z}^{$
61	$1 - 2 z^2$	$1 + \left(-2 z^2 + z^4\right) \\ \in + \left(-4 + 4 z^2 + 25 z^4 - 8 z^6 + 2 z^8\right) \\ \in^2 + \left(12 + 154 z^2 - 223 z^4 - 608 z^6 + 100 z^8 - 52 z^{10} + 10 z^{12}\right) \\ \in^3 \left(-2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$
62	$1 - z^2 - z^4$	$1 + \left(-2 z^2 - 3 z^4 + 2 z^6 + z^8\right) \\ \in + \left(-2 - 4 z^2 + 29 z^4 + 28 z^6 + 42 z^8 - 8 z^{10} - 2 z^{12} + 4 z^{14} + z^{16}\right) \\ \in^2 + \left(12 + 166 z^2 + 155 z^4 - 194 z^6 - 2453 z^8 - 1622 z^{10} - 1967 z^{12} - 258 z^{14} + 49 z^{16} - 30 z^{18} + z^{20} + 6 z^{22} + z^{24}\right) \\ \in^3 + \left(-2 + 2 z^2 - 23 z^4 + 49 z^{16} - 30 z^{18} + z^{20} + 6 z^{22} + z^{24}\right) \\ = \left(-2 + 2 z^2 - 23 z^4 + 24 z^4 + z^4 + z^{16}\right) \\ = \left(-2 + 2 z^2 + 2 z^4 + z^4 + z^{16}\right) \\ = \left(-2 + 2 z^2 + 2 z^4 + z^4$
63	$1 + z^2 + z^4$	$1 + \left(2 + 8z^2 - 16z^6 - 24z^8 - 16z^{10} - 2z^{12}\right)\mathrm{e}^2$

V@r_{3,1}[*i*_, *j*_] :=

V@r_{3,-1}[*i_,j_*]:=

Zip_{}[δ_] := δ; **Zip**_{z_,zs_}[δ_] :=

gPair[fs_, w_] :=
 gPair[fs, w] =

g , Factor]

Z1 =

(Times @@ (V /@ fs))

 $4 p_i p_j^3 x_i x_j^3 + 4 p_j^4 x_i x_j^3 / 24$

 $(4 p_i x_i - 4 p_j x_i + 2 (5 + 7 T) p_i p_j x_i^2 - 2 (5 + 7 T) p_i^2 x_i^2 - 4 (-5 + 6 T) p_j^2 p_j x_i^3 +$

 $\begin{array}{l} (-1+T) \quad \left(4+13\ T+T^2\right) \ p_j^4 \ x_i^4 - 28 \ p_i \ p_j \ x_i \ x_j + 28 \ p_j^2 \ x_i \ x_j + 36 \ p_i^2 \ p_j \ x_i^2 \ x_j - \\ 12 \ (9+2\ T) \ p_i \ p_j^2 \ x_i^2 \ x_j + 24 \ (3+T) \ p_j^3 \ x_i^2 \ x_j - 4 \ p_i^3 \ p_j \ x_i^3 \ x_j + 28 \ T \ p_i^2 \ p_j^2 \ x_i^2 \ x_j - \\ \end{array}$

 $4 \left(-6 + 17 \ T + T^2\right) p_i \ p_j^3 \ x_i^3 \ x_j + 4 \ \left(-5 + 10 \ T + T^2\right) \ p_j^4 \ x_i^3 \ x_j + 24 \ p_i \ p_j^2 \ x_i \ x_j^2 - 10 \ T + T^2 \ x_j^2 \ x_j^2$

 $4 T \left(-2 - 11 T + 11 T^{2}\right) p_{j}^{3} x_{i}^{3} + 3 \left(-1 + T\right) T^{2} p_{i}^{3} p_{j} x_{i}^{4} - 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(-1 + T\right) T \left(3 + 4 T\right) p_{i}^{2} p_{j}^{2} x_{i}^{4} + 3 \left(-1 + T\right) T \left(-1 + T\right) T$

28 T³ p_i p_j x_i x_j - 28 T³ p_j² x_i x_j - 36 T³ p_i² p_j x_i² x_j + 12 T² (2 + 9 T) p_i p_j² x_i² x_j -

 $24 T^{3} p_{i} p_{j}^{2} x_{i} x_{j}^{2} + 24 T^{3} p_{j}^{3} x_{i} x_{j}^{2} + 24 T^{3} p_{i}^{2} p_{j}^{2} x_{i}^{2} x_{j}^{2} - 6 T^{2} (1 + 10 T) p_{i} p_{j}^{3} x_{i}^{2} x_{j}^{2} + 24 T^{3} p_{i}^{2} p_{j}^{2} x_{i}^{2} x_{j}^{2} - 6 T^{2} (1 + 10 T) p_{i} p_{j}^{3} x_{i}^{2} x_{j}^{2} + 24 T^{3} p_{i}^{2} p_{j}^{2} x_{i}^{2} x_{j}^{2} - 6 T^{2} (1 + 10 T) p_{i} p_{j}^{3} x_{i}^{2} x_{j}^{2} + 24 T^{3} p_{i}^{2} p_{j}^{2} x_{i}^{2} x_{j}^{2} - 6 T^{2} (1 + 10 T) p_{i} p_{j}^{3} x_{i}^{2} x_{j}^{2} + 24 T^{3} p_{i}^{2} p_{j}^{2} x_{i}^{2} x_{j}^{2} - 6 T^{2} (1 + 10 T) p_{i} p_{j}^{3} x_{i}^{2} x_{j}^{2} + 24 T^{3} p_{j}^{3} x_{i}^{2} x_{j}^{2} + 24 T^{3} p_{i}^{3} p_{j}^{2} x_{i}^{2} x_{j}^{2} + 24 T^{3} p_{i}^{3} x_{i}^{3} x_{j}^{3} + 24 T^{3} x_{i}^{3} x_{i}^{3} + 24 T^{3} x_{i}^{3} x_{i}^{3} + 24 T^{3} x_{i}^{3} x_{i}^{3} x_{i}^{3} + 24 T^{3} x_{i}^{3} x_{i}^{3} + 24 T^{3} x_{i}^{3} x_{i}^{3} + 24 T^{3} x_{i}^{3} x_{i}^{3} x_{i}^{3} + 24 T^{3} x_{i}^{3} + 24 T^{3} x_{i}^{3} + 24 T^{$

 $\operatorname{Exp}\left[\operatorname{Sum}\left[g_{\alpha,\beta}\left(\pi_{\alpha}+\overline{\pi}_{\alpha}\right)\left(\xi_{\beta}+\overline{\xi}_{\beta}\right),\left\{\alpha,w\right\},\left\{\beta,w\right\}\right]-\operatorname{Sum}\left[\overline{\xi}_{\alpha}\pi_{\alpha},\left\{\alpha,w\right\}\right]\right]\right],$

24 $p_j^3 x_i x_j^2 - 24 p_i^2 p_j^2 x_i^2 x_j^2 + 6$ (10 + T) $p_i p_j^3 x_i^2 x_j^2 - 6$ (6 + T) $p_j^4 x_i^2 x_j^2 - 6$

 $(-1 + T) (1 + 22 T + 13 T^{2}) p_{i} p_{j}^{3} x_{i}^{4} - (-1 + T) (1 + 13 T + 4 T^{2}) p_{j}^{4} x_{i}^{4} +$

 $(-4 T^{3} p_{i} x_{i} + 4 T^{3} p_{j} x_{i} - 2 T^{2} (7 + 5 T) p_{i} p_{j} x_{i}^{2} + 2 T^{2} (7 + 5 T) p_{j}^{2} x_{i}^{2} -$

4 T² (-6 + 5 T) $p_i^2 p_j x_i^3$ + 4 T (-2 - 17 T + 16 T²) $p_i p_j^2 x_i^3$ -

24 T² (1 + 3 T) $p_j^3 x_i^2 x_j + 4 T^3 p_i^3 p_j x_i^3 x_j - 28 T^2 p_i^2 p_j^2 x_i^3 x_j -$

 $\{\mathbf{p}^{*}, \mathbf{x}^{*}, \overline{\mathbf{p}}^{*}, \overline{\mathbf{x}}^{*}\} = \{\pi, \xi, \overline{\pi}, \overline{\xi}\}; (z_{-i_{-}})^{*} := (z^{*})_{i};$

 $\textbf{Collect} \big[\texttt{Zip}_{\texttt{JoineeTable}}[\{\texttt{p}_{\alpha}, \overline{\texttt{p}}_{\alpha}, \texttt{x}_{\alpha}, \overline{\texttt{x}}_{\alpha}\}, \{\alpha, \texttt{w}\} \big] \big[$

T2z[p_] := Module[{q = Expand[p], n, c},

 $c z^{2n} + T2z[q - c (T^{1/2} - T^{-1/2})^{2n}]];$

 $4 T \left(-1-17 T+6 T^{2}\right) p_{i} p_{j}^{3} x_{i}^{3} x_{j}+4 T \left(-1-10 T+5 T^{2}\right) p_{j}^{4} x_{i}^{3} x_{j}-$

 $6 T^{2} (1 + 6 T) p_{j}^{4} x_{i}^{2} x_{j}^{2} + 4 T^{3} p_{i} p_{j}^{3} x_{i} x_{j}^{3} - 4 T^{3} p_{j}^{4} x_{i} x_{j}^{3}) / (24 T^{3})$

 $\left(\operatorname{Collect}\left[\mathcal{S} //\operatorname{Zip}_{\{zs\}}, z\right] /. f_{-} \cdot z^{d_{-}} \Rightarrow \left(\operatorname{D}[f, \{z^{*}, d\}]\right)\right) /. z^{*} \rightarrow 0$

If[q === 0, 0, c = Coefficient[q, T, n = Exponent[q, T]];

 $Z_d [K_] := Module [{Cs, \varphi, n, A, s, i, j, k, \(\Lambda, G, d1, Z1, Z2, Z3 \},$

 $\{Cs, \varphi\} = \operatorname{Rot}[K]; n = \operatorname{Length}[Cs]; A = \operatorname{IdentityMatrix}[2n+1]; \\ \operatorname{Cases}\left[Cs, \{s_{-}, i_{-}, j_{-}\} \Rightarrow \left(A \llbracket\{i, j\}, \{i+1, j+1\}\rrbracket + = \begin{pmatrix} -T^{s} T^{s} - 1 \\ \theta & -1 \end{pmatrix}\right)\right];$

{Δ, G} = Factor@{T^{(-Total[φ]-Total[Cs[All,1]])/2} Det@A, Inverse@A};

 $\operatorname{Sum}\left[\epsilon^{d1} \gamma_{d1,\varphi[k]}[k], \{k, 2n\}, \{d1, d\} \right] / \gamma_{0}[_] \rightarrow 0];$

F[Join[fs, Table[f, p]], DeleteDuplicates@{es, is}];

Z2 = Expand[F[{}, {}] × Normal@Series[Z1, {e, 0, d}]] //.

F[fs_, {es___}] × (f: (r | γ)_{ps_}[is__])^{p_-} ↔

Z3 = Expand[Z2 /. F[fs_, es_] :→ Expand[gPair[

] /. $\mathbf{g}_{\alpha_{-},\beta_{-}} \Rightarrow G[es[\alpha]], es[\beta]]]$]; Collect[$\{\Delta, Z3 /. e^{p_{-}} \rightarrow p! \Delta^{2p} e^{p}\}, e, T2z]$];

 $\mathsf{Exp}[\mathsf{Total}[\mathsf{Cases}[\mathsf{Cs}, \{s_{-}, i_{-}, j_{-}\} \Rightarrow \mathsf{Sum}[\epsilon^{d1} \mathbf{r}_{d1,s}[i, j], \{d1, d\}]]] +$

 $\texttt{Replace[} fs, \texttt{Thread[} es \rightarrow \texttt{Range@Length@es], \{2\}], \texttt{Length@es}$

3 (-1 + T) (4 + 3 T) $p_i^2 p_j^2 x_i^4$ + (-1 + T) (13 + 22 T + T²) $p_i p_j^3 x_i^4$ -

 $4 \left(-16 + 17 T + 2 T^{2}\right) p_{i} p_{j}^{2} x_{i}^{3} - 4 \left(-11 + 11 T + 2 T^{2}\right) p_{j}^{3} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} - 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} + 3 \left(-1 + T\right) p_{i}^{3} p_{j} x_{i}^{4} + 2 T^{2} x_{i}^{3} +$

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout: http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ottawa-2306/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/

http://drorbn.net/cms21

These slides and all the code within are available at http://drorbn.net/cms21.

(I'll post the video there too)

Kashaev's Signature Conjecture

CMS Winter 2021 Meeting, December 4, 2021

Dror Bar-Natan with Sina Abbasi

Agenda. Show and tell with signatures.

Abstract. I will display side by side two nearly identical computer programs whose inputs are knots and whose outputs seem to always be the same. I'll then admit, very reluctantly, that I don't know how to prove that these outputs are always the same. One program I wrote mostly in Bedlewo, Poland, in the summer of 2003 and as of recently I understand why it computes the Levine-Tristram signature of a knot. The other is based on the 2018 preprint *On Symmetric Matrices Associated with Oriented Link Diagrams* by Rinat Kashaev (arXiv:1801.04632), where he conjectures that a certain simple algorithm also computes that same signature.

If you can, please turn your video on! (And mic, whenever needed).

Label everything!

http://drorbn.net/cms21

 $PD[X[10, 1, 11, 2], X[2, 11, 3, 12], \ldots] \quad \{X_{-}[-1, 11, 2, -10], X_{-}[-11, 3, 12, -2], \ldots\}$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/

http://drorbn.net/cms21

http://drorbn.net/cms21

A = Table[0, Length@faces, Length@faces];
A // MatrixForm

1	0	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0,	

x = XingsByArmpits[1]

 X_{-} [-1, 11, 2, -10]

 $\{8, 10, 2, 9\}$

faces

	u	1	u	1			u	1	u	1	h
	1	u	v	u	,	-	1	u	v	u	ŀ
	u	1	u	1.)		u	1	u	1,)
<pre>{x, XingsByArmpits};</pre>											

http://drorbn.net/cms21

A[[is, is]] += If [Head[x] === X,,

// Hati IXI OI III										
0	0	0	0	0	0	0	0	0	0	١
0	$-\mathbf{V}$	0	0	0	0	0	- 1	– u	– u	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	- 1	0	0	0	0	0	- V	– u	– u	
0	– u	0	0	0	0	0	– u	-1	- 1	
0	– u	0	0	0	0	0	– u	-1	-1)	

http://drorbn.net/cms21

http://drorbn.net/cms21

Recall, $\textit{is} = \{8, 10, 2, 9\}$

http://drorbn.net/cms21

Do [is = Position[faces, #] [1, 1] & /@ List@@x;

 $p_{-13,4,-13} \ p_{-11,2,-11} \ p_{-5,14,-5} \ p_{-3,12,-3} \ p_{8,16,8} \ p_{6,-15,-9,6}$

is = Position[faces, #] [1, 1] & /@ List @@ x

 $p_{9,-16,7,9} \; p_{10,-7,-1,10} \; p_{-10,-2,-12,-4,-14,-6,-10} \; p_{1,-8,15,5,13,3,11,1}$

A[[is, is]] += If [Head[x] === X₊,

(•	u	1	u			۲	u	1	u	
u 1	1 u	u v	1 u	,	-	u 1	1 u	u v	1 u],
u	1	u	1 /			u	1	u	1)	

{x, Rest@XingsByArmpits}]

ŀ	A // MatrixForm												
	– 2 v	0	- 1	- 1	0	0	0	0	– 2 u	– 2 u			
	0	– 2 v	0	- 1	0	0	0	- 1	– 2 u	– 2 u			
	- 1	0	– 2 v	0	0	-1	0	0	– 2 u	– 2 u			
	- 1	- 1	0	– 2 v	0	0	0	0	– 2 u	– 2 u			
	0	0	0	0	2	1	2 u	1	0	2 u			
	0	0	-1	0	1	1 – 2 v	0	-1	– 2 u	0			
	0	0	0	0	2 u	0	-1 + 2 v	0	-1	2			
	0	- 1	0	0	1	-1	0	1 – 2 v	– 2 u	0			
	– 2 u	– 2 u	– 2 u	– 2 u	0	– 2 u	- 1	– 2 u	- 6	- 5			
	– 2 u	– 2 u	– 2 u	– 2 u	2 u	0	2	0	- 5	-5+2v			

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/

http://drorbn.net/cms21

Kashaev for Mathematicians.

For a knot K and a complex unit ω set $u = \Re(\omega^{1/2})$, $v = \Re(\omega)$, make an $F \times F$ matrix A with contributions

and output $\frac{1}{2}(\sigma(A) - w(K))$.

http://drorbn.net/cms21

http://drorbn.net/cms21

Why are they equal?

I dunno, yet note that

- ▶ Kashaev is over the Reals, Bedlewo is over the Complex numbers.
- ▶ There's a factor of 2 between them, and a shift.

... so it's not merely a matrix manipulation.

Bedlewo for Mathematicians.

For a knot K and a complex unit ω set $t = 1 - \omega$, $r = 2\Re(t)$, make an $F \times F$ matrix A with contributions

(conjugate if going against the flow) and output $\sigma(A)$.

http://drorbn.net/cms21

Theorem. The Bedlewo program computes the Levine-Tristram signature of ${\cal K}$ at $\omega.$

(Easy) **Proof.** Levine and Tristram tell us to look at $\sigma((1-\omega)L + (1-\omega^*)L^T)$, where *L* is the linking matrix for a Seifert surface *S* for *K*: $L_{ij} = lk(\gamma_i, \gamma_i^+)$ where γ_i run over a basis of $H_1(S)$ and γ_i^+ is the pushout of γ_i . But signatures don't change if you run over and over-determined basis, and the faces make such and over-determined basis whose linking numbers are controlled by the crossings. The rest is details.

Art by Emily Redelmeier

http://drorbn.net/cms21

Thank You!

Warning. The second formula on page (-2) "**Conclusion**" is silly-wrong. A fix will be posted here soon: some of the numbers written in this handout are a bit off, yet the qualitative results remain exactly the same (namely, for finite type, 3D seems to beat 2D, with the same algorithms).

Yarn-Ball Knots

[K-OS] on October 21, 2021

Dror Bar-Natan with Itai Bar-Natan, Iva Halacheva, and Nancy Scherich

Agenda. A modest light conversation on how knots should be measured.

Abstract. Let there be scones! Our view of knot theory is biased in favour of pancakes.

Technically, if K is a 3D knot that fits in volume V (assuming fixed-width yarn), then its projection to 2D will have about $V^{4/3}$ crossings. You'd expect genuinely 3D quantities associated with K to be computable straight from a 3D presentation of K. Yet we can hardly ever circumvent this $V^{4/3} \gg V$ "projection fee". Exceptions include linking numbers (as we shall prove), the hyperbolic volume, and likely finite type invariants (as we shall discuss in detail). But knot polynomials and knot homologies seem to always pay the fee. Can we exempt them?

More at http://drorbn.net/kos21

Thanks for inviting me to speak at [K-OS]!

Most important: http://drorbn.net/kos21

See also arXiv:2108.10923.

If you can, please turn your video on! (And mic, whenever needed).

A recurring question in knot theory is "do we have a 3D understanding of our invariant?"

See Witten and the Jones polynomial.

See Khovanov homology.

I'll talk about my perspective on the matter...

We often think of knots as planar diagrams. 3-dimensionally, they are embedded in "pancakes".

Knot by Lisa Piccirillo, pancake by DBN

But real life knots are 3D!

A Yarn Ball

'Connector' by Alexandra Griess and Jorel Heid (Hamburg, Germany). Image from www.waterfrontbia.com/ice-breakers-2019-presented-by-ports/.

The difference matters when

- We make statements about "random knots".
- We figure out computational complexity.
- Let's try to make it quantitative...

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KOS-211021/

 $n = \operatorname{xing} \operatorname{number} \sim L^2 L^2 = L^4 = V^{4/3}$

(" \sim " means "equal up to constant terms and log terms")

Theorem 1. Let *lk* denote the linking number of a 2-component link. Then $C_{lk}(2D, n) \sim n$ while $C_{lk}(3D, V) \sim V$, so lk is C3D!

Proof. WLOG, we are looking at a link in a grid, which we project as on the right:

This isn't a rigorous definition! It is time- and naïveté-dependent! But there's room for less-stringent rigour in mathematics, and on a philosophical level, our definition means something.

Conversation Starter 1. A knot invariant ζ is said to be Computationally 3D, or

 $C_{\zeta}(3D, V) \ll C_{\zeta}(2D, V^{4/3}).$

Here's what it look like, in the case of a knot:

C3D. if

And here's a bigger knot.

This may look like a lot of information, but if V is big, it's less than the information in a planar diagram, and it is easily computable.

WLOG, in each F_k all over strands and all under strands are oriented in the same way and all green edges belong to one component and all red edges to the other.

So $2L^2$ times we have to solve the problem "given two sets R and G of integers in [0, L], how many pairs $\{(r, g) \in R \times G : r < g\}$ are there?". This takes time $\sim L$ (see below), so the overall computation takes time $\sim L^3.$

Below. Start with rb = cf = 0 ("reds before" and "cases found") and slide ∇ from left to right, incrementing rb by one each time you cross a \bullet and incrementing cfby *rb* each time you cross a •:

In general, with our limited tools, speedup arises because appropriately projected 3D knots have many uniform "red over green" regions:

Great Embarrassment 1. I don't know if any of the Alexander, Jones, HOMFLY-PT, and Kauffman polynomials is C3D. I don't know if any Reshetikhin-Turaev invariant is C3D. I don't know if any knot homology is C3D.

Or maybe it's a cause for optimism — there's still something very basic we don't know about (say) the Jones polynomial. Can we understand it well enough 3-dimensionally to compute it well? If not, why not?

Conversation Starter 2. Similarly, if η is a stingy quantity (a quantity we expect to be small for small knots), we will say that η has Savings in 3D, or "has S3D" if $M_{\eta}(3D, V) \ll M_{\eta}(2D, V^{4/3}).$

Example (R. van der Veen, D. Thurston, private communications). The hyperbolic volume has S3D.

Great Embarrassment 2. I don't know if the genus of a knot has S3D! In other words, even if a knot is given in a 3-dimensional, the best way I know to find a Seifert surface for it is to first project it to 2D, at a great cost.

Next we argue that most finite type invariants are probably C3D...

(What a weak statement!)

All pre-categorification knot polynomials are power series whose coefficients are finite type invariants. (This is sometimes helpful for the computation of finite type invariants, but rarely helpful for the computation of knot polynomials).

Theorem FT2D. If ζ is a finite type invariant of type *d* then $C_{\zeta}(2D, n)$ is at most $\sim n^{\lfloor 3d/4 \rfloor}$. With more effort, $C_{\zeta}(2D, n) \lesssim n^{(\frac{2}{3}+\epsilon)d}$

Note that there are some exceptional finite type invariants, e.g. high coefficients of the Alexander polynomial and other poly-time knot polynomials, which can be computed much faster!

Theorem FT3D. If ζ is a finite type invariant of type *d* then $C_{\zeta}(3D, V)$ is at most $\sim V^{6d/7+1/7}$. With more effort, $C_{\zeta}(2D, V) \lesssim V^{(\frac{4}{5}+\epsilon)d}$.

Tentative Conclusion. As $n^{3d/4} \sim (V^{4/3})^{3d/4} = V \gg V^{6d/7+1/7}$ $n^{2d/3} \sim (V^{4/3})^{2d/3} = V^{8d/9} \gg V^{4d/5}$ these theorems say "most finite type invariants are probably C3D; the ones in greater doubt are the lucky few that can be computed unusually quickly".

Gauss diagrams and sub-Gauss-diagrams:

Let $\varphi_d \colon \{\text{knot diagrams}\} \to \langle \text{Gauss diagrams} \rangle$ map every knot diagram to the sum of all the sub-diagrams of its Gauss diagram which have at most d arrows.

Under-Explained Theorem (Goussarov-Polyak-Viro). A knot invariant ζ is of type d iff there is a linear functional ω on (Gauss diagrams) such that $\zeta = \omega \circ \varphi_d$.

Proof of Theorem FT2D.

We need to count how many times a diagram such as the red appears within a bigger diagram, having n arrows. Clearly this can be done in time $\sim n^3$, and in general, in time ~ n^d.

With an appropriate look-up table, it can also be done in time $\sim n^2$ (in general, $\sim n^{d-1}$). That look-up table $(T^{p_1,p_2}_{q_1,q_2})$ is of size (and production cost) $\sim n^4$ if you are naive, and $\sim n^2$ if you are just a bit smarter. Indeed

$$T_{q_1,q_2}^{p_1,p_2} = T_{0,q_2}^{0,p_2} - T_{0,q_2}^{0,p_1} - T_{0,q_1}^{0,p_2} + T_{0,q_1}^{0,p_1},$$

and $(T_{0,q}^{0,p})$ is easy to compute.

With multiple uses of the same lookup table, what naively takes $\sim n^5$ can be reduced to $\sim n^3.$

In general within a big *d*-arrow diagram we need to find an as-large-as possible collection of arrows to delay. These must be non-adjacent to each other. As the adjacency graph for the arrows is at worst quadrivalent, we can always find $\lceil \frac{d}{4} \rceil$ non-adjacent arrows, and hence solve the counting problem in time $\sim n^{d-\lceil \frac{d}{4} \rceil} = n^{\lfloor 3d/4 \rfloor}$.

Theorem FT3D. If ζ is a finite type invariant of type *d* then $C_{\zeta}(3D, V)$ is at most

With more effort, $C_{\zeta}(2D, V) \lesssim V^{(rac{4}{5}+\epsilon)d}$.

Note that this counting argument works equally well if each of the d arrows is pulled from a different set!

It follows that we can compute φ_d in time $\sim n^{\lfloor 3d/4 \rfloor}.$

With bigger look-up tables that allow looking up "clusters" of G arrows, we can reduce this to $\sim n^{(\frac{2}{3}+\epsilon)d}.$

An image editing problem:

(Yarn ball and background coutesy of Heather Young)

The line/feather method:

On to

 $\sim V^{6d/7+1/7}$.

Accurate but takes forever.

In reality, you take a few shark bites and feather the rest \ldots

 \ldots and then there's an optimization problem to solve: when to stop biting and start feathering.

The rectangle/shark method:

Coarse but fast.

The structure of a crossing field.

There are about $\log_2 L$ "generations". There are 2^g bites in generation g, and the total number of crossings in them is $\sim L^2/2^g$. Let's go hunt!

Multi-feathers and multi-sharks.

For a type *d* invariant we need to count *d*-tuples of crossings, and each has its own "generation" g_i . So we have the "multi-generation"

$$\bar{g} = (g_1, \ldots, g_d)$$

Let $G := \sum_{i=1}^{n} g_i$ be the "overall generation". We will choose between a "multi-feather" method and a "multi-shark" method based on the size of G.

The effort to take a single multi-bite is tiny. Indeed, **Lemma** Given 2d finite sets $B_i = \{t_{i1}, t_{i2}, \ldots\} \subset [1..L^3]$ and a permutation $\pi \in S_{2n}$ the quantity

$$N = \left| \left\{ (b_i) \in \prod_{i=1}^{2d} B_i \colon \text{the } b_i \text{'s are ordered as } \pi \right\} \right|$$

can be computed in time $\sim \sum |B_i| \sim \max |B_i|$.

Proof. WLOG $\pi = \mathit{Id}$. For $\iota \in [1..2d]$ and $\beta \in \mathcal{B} \coloneqq \cup \mathcal{B}_i$ let

$$N_{\iota,\beta} = \left| \left\{ (b_i) \in \prod_{i=1}^{\iota} B_i \colon b_1 < b_2 < \ldots < b_\iota \leq \beta \right\} \right|.$$

We need to know $N_{2d,\max B}$; compute it inductively using $N_{\iota,\beta} = N_{\iota,\beta'} + N_{\iota-1,\beta'}$, where β' is the predecessor of β in B.

Conclusion. We wish to compute the contribution to φ_d coming from *d*-tuples of crossings of multi-generation \bar{g} .

► The multi-shark method does it in time

$$\sim$$
 (no. of bites) \cdot (time per bite) $= L^{2d}2^G \cdot \frac{L}{2^{\min \bar{g}}} < L^{2d+1}2^G$

(increases with G).

> The multi-feather method (project and use the 2D algorithm) does it in time

$$\sim (\text{no. of crossings})^{\lfloor \frac{3}{4}d \rfloor} = \left(\prod_{i=1}^{d} L^2 \frac{L^2}{2^{\mathcal{E}_i}}\right)^{\lfloor \frac{3}{4}d \rfloor} < \frac{L^{3d}}{(2^G)^{3/4}}$$

(decreases with G).

Of course, for any specific ${\cal G}$ we are free to choose whichever is better, shark or feather.

The two methods agree (and therefore are at their worst) if $2^G = L^{\frac{4}{7}(d-1)}$, and in that case, they both take time $\sim L^{\frac{18}{7}d+\frac{3}{7}} = V^{\frac{6}{7}d+\frac{1}{7}}$.

The same reasoning, with the $n^{(rac{2}{3}+\epsilon)d}$ feather, gives $V^{(rac{4}{5}+\epsilon)d}$

If time — a word about braids.

Thank You!

I Still Don't Understand the Alexander Polynomial

Dror Bar-Natan, http://drorbn.net/mo21

Moscow by Web, April 2021

Abstract. As an algebraic knot theorist, I still don't understand the Alexander polynomial. There are two conventions as for how to present tangle theory in algebra: one may name the strands of a tangle, or one may name their ends. The distinction might seem too minor to matter, yet it leads to a completely different view of the set of tangles as an algebraic structure. There are lovely formulas for the Alexander polynomial as viewed from either perspective, and they even agree where they meet. But the "strands" formulas know about strand doubling while the "ends" ones don't, and the "ends" formulas know about skein relations while the "strands" ones don't. There ought to be a common generalization, but I don't know what it is.

I use talks to self-motivate; so often I choose a topic and write an abstract when I know I can do it, yet when I haven't done it yet. This time it turns out my abstract was wrong — I'm still uncomfortable with the Alexander polynomial, but in slightly different ways than advertised two slides before.

My discomfort.

► I can compute the multivariable Alexander polynomial real fast:

But I can only prove "skein relations" real slow:

1. Virtual Skein Theory Heaven

Definition. A "Contraction Algebra" assigns a set $\mathcal{T}(\mathcal{X}, X)$ to any pair of finite

- sets $\mathcal{X} = \{\xi ...\}$ and $X = \{x, ...\}$ provided $|\mathcal{X}| = |X|$, and has operations • "Disjoint union" $\sqcup : \mathcal{T}(\mathcal{X}, X) \times \mathcal{T}(\mathcal{Y}, Y) \to \mathcal{T}(\mathcal{X} \sqcup \mathcal{Y}, X \sqcup Y)$, provided $\mathcal{X} \cap \mathcal{Y} = X \cap Y = \emptyset$.
- "Contractions" $c_{x,\xi} \colon \mathcal{T}(\mathcal{X}, X) \to \mathcal{T}(\mathcal{X} \setminus \xi, X \setminus x)$, provided $x \in X$ and $\xi \in \mathcal{X}$.
- ▶ Renaming operations σ_{η}^{ξ} : $\mathcal{T}(\mathcal{X} \sqcup \{\xi\}, X) \to \mathcal{T}(\mathcal{X} \sqcup \{\eta\}, X)$ and σ_{y}^{x} : $\mathcal{T}(\mathcal{X}, X \sqcup \{x\}) \to \mathcal{T}(\mathcal{X}, X \sqcup \{y\})$.

Subject to axioms that will be specified right after the two examples in the next three slides.

If *R* is a ring, a contraction algebra is said to be "*R*-linear" if all the $\mathcal{T}(\mathcal{X}, X)$'s are *R*-modules, if the disjoint union operations are *R*-bilinear, and if the contractions $c_{x,\xi}$ and the renamings σ ; are *R*-linear.

(Contraction algebras with some further "unit" properties are called "wheeled props" in [MMS, DHR])

Thanks for inviting me to Moscow! As most of you have never seen it, here's a picture of the lecture room:

If you can, please turn your video on! (And mic, whenever needed).

This talk is to a large extent an elucidation of the Ph.D. theses of my former students Jana Archibald and Iva Halacheva. See [Ar, Ha1, Ha2].

Also thanks to Roland van der Veen for comments.

A technicality. There's supposed to be fire alarm testing in my building today. Don't panic!

Example 1. Let $\mathcal{T}(\mathcal{X}, X)$ be the set of virtual tangles with incoming ends ("tails") labeled by \mathcal{X} and outgoing ends ("heads") labeled by X, with \sqcup and σ : the obvious disjoint union and end-renaming operations, and with $c_{x,\xi}$ the operation of attaching a head x to a tail ξ while introducing no new crossings. **Note 1.** \mathcal{T} can be made linear by allowing formal linear combinations. **Note 2.** \mathcal{T} is finitely presented, with generators the positive and negative crossings, and with relations the Reidemeister moves! (If you want, you can take this to be the definition of "virtual tangles").

Note 3. A contraction algebra morphism out of $\mathcal T$ is an invariant of virtual tangles (and hence of virtual knots and links) and would be an ideal tool to prove Skein Relations:

Example 2. Let V be a finite dimensional vector space and set $\mathcal{V}(\mathcal{X}, \mathbf{X}) := (V^*)^{\otimes \mathcal{X}} \otimes V^{\otimes X}$, with $\sqcup = \otimes$, with σ ; the operation of renaming a factor, and with $c_{x,\xi}$ the operation of contraction: the evaluation of tensor factor ξ (which is a V^*) on tensor factor x (which is a V).

Axioms. One axiom is primary and interesting,

- ► Contractions commute! Namely, $c_{x,\xi} / |c_{y,\eta} = c_{y,\eta} / |c_{x,\xi}$ (or in old-speak, $c_{y,\eta} \circ c_{x,\xi} = c_{x,\xi} \circ c_{y,\eta}$).
- And the rest are just what you'd expect:
- \blacktriangleright \Box is commutative and associative, and it commutes with $c_{,\cdot}$ and with $\sigma_{,\cdot}$ whenever that makes sense.
- $c_{,,}$ is "natural" relative to renaming: $c_{x,\xi} = \sigma_y^x / \sigma_\eta^\xi / c_{y,\eta}$.
- $\sigma_{\xi}^{\xi} = \sigma_{x}^{x} = Id, \ \sigma_{\eta}^{\xi} / \sigma_{\zeta}^{\eta} = \sigma_{\zeta}^{\xi}, \ \sigma_{y}^{x} / \sigma_{z}^{y} = \sigma_{z}^{x}$, and renaming operations commute where it makes sense.

Comments.

- We can relax $|\mathcal{X}| = |X|$ at no cost.
- We can lose the distinction between X and X and get "circuit algebras".
- ▶ There is a "coloured version", where $\mathcal{T}(\mathcal{X}, X)$ is replaced with $\mathcal{T}(\mathcal{X}, X, \lambda, I)$ where $\lambda : \mathcal{X} \to C$ and $I : X \to C$ are "colour functions" into some set C of "colours", and contractions $c_{x,\xi}$ are allowed only if x and ξ are of the same colour, $I(x) = \lambda(\xi)$. In the world of tangles, this is "coloured tangles".

2. Heaven is a Place on Earth

(A version of the main results of Archibald's thesis, [Ar]).

Let us work over the base ring $\mathcal{R} = \mathbb{Q}[\{T^{\pm 1/2} \colon T \in C\}]$. Set

$$\mathcal{A}(\mathcal{X}, X) \coloneqq \{ w \in \Lambda(\mathcal{X} \sqcup X) \colon \deg_{\mathcal{X}} w = \deg_{X} w \}$$

(so in particular the elements of $\mathcal{A}(\mathcal{X}, X)$ are all of even degree). The union operation is the wedge product, the renaming operations are changes of variables, and $c_{x,\xi}$ is defined as follows. Write $w \in \mathcal{A}(\mathcal{X}, X)$ as a sum of terms of the form uw' where $u \in \Lambda(\xi, x)$ and $w' \in \mathcal{A}(\mathcal{X} \setminus \xi, X \setminus x)$, and map u to 1 if it is 1 or $x\xi$ and to 0 is if is ξ or x:

$$1w' \mapsto w', \quad \xi w' \mapsto 0, \quad xw' \mapsto 0, \quad x\xi w' \mapsto w'.$$

Proposition. \mathcal{A} is a contraction algebra.

We construct a morphism of coloured contraction algebras $\mathcal{A} \colon \mathcal{T} \to \mathcal{A}$ by declaring

$$\begin{split} X_{ijkl}[S,T] &\mapsto T^{-1/2} \exp\left(\left(\xi_{l} \quad \xi_{i}\right) \begin{pmatrix} 1 & 1-T \\ 0 & T \end{pmatrix} \begin{pmatrix} x_{j} \\ x_{k} \end{pmatrix}\right) \\ \bar{X}_{ijkl}[S,T] &\mapsto T^{1/2} \exp\left(\left(\xi_{i} \quad \xi_{j}\right) \begin{pmatrix} T^{-1} & 0 \\ 1-T^{-1} & 1 \end{pmatrix} \begin{pmatrix} x_{k} \\ x_{l} \end{pmatrix}\right) \\ P_{ij}[T] &\mapsto \exp(\xi_{i}x_{j}) \end{split}$$

with

 $\begin{array}{c|cccc} k & j & k & j \\ \hline l & i & i & j & T \\ \hline l & i & i & j & T \\ \hline X_{ijkl}[S, T] & \overline{X}_{ijkl}[S, T] & P_{ij}[T] \end{array}$

(Note that the matrices appearing in these formulas are the Burau matrices).

Alternative Formulations.

- $c_{x,\xi}w = \iota_{\xi}\iota_{x}e^{x\xi}w$, where ι denotes interior multiplication.
- Using Fermionic integration, $c_{x,\xi}w = \int e^{x\xi} w \, d\xi dx.$
- ▶ $c_{x,\xi}$ represents composition in exterior algebras! With $X^* := \{x^* : x \in X\}$, we have that Hom $(\Lambda X, \Lambda Y) \cong \Lambda(X^* \sqcup Y)$ and the following square commutes:

Similarly, $\Lambda(\mathcal{X} \sqcup X) \cong (H^*)^{\otimes \mathcal{X}} \otimes H^{\otimes X}$ where H is a 2-dimensional "state space" and H^* is its dual. Under this identification, $c_{x,\xi}$ becomes the contraction of an H factor with an H^* factor.

Theorem.

If *D* is a classical link diagram with *k* components coloured T_1, \ldots, T_k whose first component is open and the rest are closed, if *MVA* is the multivariable Alexander polynomial of the closure of *D* (with these colours), and if ρ_j is the counterclockwise rotation number of the *j*th component of *D*, then

$$\mathcal{A}(D) = T_1^{-1/2}(T_1 - 1) \left(\prod_j T_j^{
ho_j/2}\right) \cdot MVA \cdot (1 + \xi_{\mathsf{in}} \wedge x_{\mathsf{out}})$$

(\mathcal{A} vanishes on closed links).

3. An Implementation of \mathcal{A}

If I didn't implement I wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Alpha.nb at http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are plain. We start with an implementation of elements ("Wedge") of exterior algebras, and of the wedge product ("WP"):

WP[Wedge[u___], Wedge[v___]] := Signature[{u, v}] * Wedge @@ Sort[{u, v}]; WP[0, _] = WP[_, 0] = 0; WP[A_, B_] := Expand[Distribute[A ** B] /. (a_. * u_Wedge) ** (b_. * v_Wedge) :> a b WP[u, v]]; WP[Wedge[_] + Wedge[a] - 2 b ^ a, Wedge[_] - 3 Wedge[b] + 7 c ^ d] Wedge[] + Wedge[a] - 3 Wedge[b] - a ^ b + 7 c ^ d + 7 a ^ c ^ d + 14 a ^ b ^ c ^ d We then define the exponentiation map in exterior algebras ("WExp") by summing the series and stopping the sum once the current term ("t") vanishes: WExp[A_] := Module[{s = Wedge[_], t = Wedge[_], k = 0}, While[t =! = 0, s += (t = Expand[WP[t, A] / (++k)])]; s] WExp[a \lambda b + c \lambda d + e \lambda f] Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda c \lambda d + e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f + a \lambda b \lambda c \lambda d \lambda e \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda b \lambda b \lambda f + a \lambda b \lambda b \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda c \lambda d + a \lambda b \lambda f + a \lambda b \lambda b \lambda f Wedge[] + a \lambda b + c \lambda d + e \lambda f + a \lambda b \lambda f + a \lamb

```
Contractions!

c_{x_{-},y_{-}}[w_{-}wedge] := Module[\{i, j\}, \\ \{i\} = FirstPosition[w, x, \{0\}]; \{j\} = FirstPosition[w, y, \{0\}]; \\ \begin{cases} & (i = 0) \land (j = 0) \\ (-1)^{i+j+if\{i>j,0,1\}} Delete[w, \{\{i\}, \{j\}\}] & (i > 0) \land (j > 0) \end{cases}
]; \\ c_{x_{-},y_{-}}[\mathcal{E}_{-}] := \mathcal{E} \land w_{-}wedge \Rightarrow c_{x,y}[w]
WExp[a \land b + 2 c \land d] \\ c_{a,c}eWExp[a \land b + 2 c \land d]
```

 $\begin{aligned} & \mathsf{C}_{d,c} @\mathsf{WEXP} \left[a \land b + 2 c \land d \right] \\ & \mathsf{Wedge} \left[\right] + a \land b + 2 c \land d + 2 a \land b \land c \land d \\ & -\mathsf{Wedge} \left[\right] - a \land b \end{aligned}$

 $\begin{aligned} &\mathcal{A}[\texttt{is},\texttt{os},\texttt{cs},\texttt{w}] \text{ is also a container for the values of the \mathcal{A}-invariant of a tangle. In it, is are the labels of the input strands, os are the labels of the output strands, cs is an assignment of colours (namely, variables) to all the ends <math display="inline">\{\xi_i\}_{i\in\texttt{is}}\sqcup\{x_j\}_{j\in\texttt{os}}$, and w is the "payload": an element of $\Lambda\left(\{\xi_i\}_{i\in\texttt{is}}\sqcup\{x_j\}_{j\in\texttt{os}}\right). \end{aligned}$

$$\{[\mathbf{X}_{i_{-},j_{-},k_{-},l_{-}}[S_{-},T_{-}]] := \Re\left[\{l,i\},\{j,k\},\langle|\xi_{i}\rightarrow S,\mathbf{x}_{j}\rightarrow T,\mathbf{x}_{k}\rightarrow S,\xi_{l}\rightarrow T|\rangle,\right]$$

Expand
$$\left[\mathcal{T}^{-1/2} \operatorname{WExp} \left[\operatorname{Expand} \left[\left\{ \xi_{l}, \xi_{i} \right\}, \left(\begin{array}{c} 1 & 1 - \mathcal{T} \\ \theta & \mathcal{T} \end{array} \right), \left\{ x_{j}, x_{k} \right\} \right] / \cdot \xi_{a_{-}} x_{b_{-}} \Rightarrow \xi_{a} \land x_{b} \right] \right] ;$$

Я[<mark>X_{1,2,3,4}[u,v</mark>]]

 $\begin{aligned} &\mathcal{A}\left[\left\{4,1\right\},\left\{2,3\right\},\left\langle\left[\xi_{1}\rightarrow u,x_{2}\rightarrow v,x_{3}\rightarrow u,\xi_{4}\rightarrow v\right]\right\rangle,\\ &\frac{\mathsf{Wedge}\left[\right]}{\sqrt{v}}-\frac{x_{2}\wedge\xi_{4}}{\sqrt{v}}-\sqrt{v}\;x_{3}\wedge\xi_{1}-\frac{x_{3}\wedge\xi_{4}}{\sqrt{v}}+\sqrt{v}\;x_{3}\wedge\xi_{4}+\sqrt{v}\;x_{2}\wedge x_{3}\wedge\xi_{1}\wedge\xi_{4}\right]\\ &\mathcal{F}\left[\left\{x_{i,j,k,-},t_{-}\right\}:=\mathcal{F}\left[\left\{x_{i,j,k,+}t\right]\in\tau_{i}\tau_{i}t_{i}\right]\right] \end{aligned}$

The negative crossing and the "point":

$$\begin{bmatrix} k & & j \\ j & T \\ i \\ \bar{R}_{ijkl}[S, T] & P_{ij}[T] \end{bmatrix}$$

 $\Re\left[\overline{\mathsf{X}}_{i_{-},j_{-},k_{-},l_{-}}\left[\mathsf{S}_{-},\mathsf{T}_{-}\right]\right] := \Re\left[\{i,j\},\{k,l\},\langle|\xi_{i}\rightarrow\mathsf{S},\xi_{j}\rightarrow\mathsf{T},\mathsf{x}_{k}\rightarrow\mathsf{S},\mathsf{x}_{l}\rightarrow\mathsf{T}|\rangle,\right]$

Expand
$$\left[T^{1/2} \text{ WExp} \left[\text{Expand} \left[\{ \xi_i, \xi_j \}, \begin{pmatrix} T^{-1} & 0 \\ 1 - T^{-1} & 1 \end{pmatrix}, \{ \mathbf{x}_k, \mathbf{x}_l \} \right] / \cdot \xi_{a_k} \mathbf{x}_{b_k} \Rightarrow \xi_a \wedge \mathbf{x}_b \right] \right] \right];$$

 $\frac{\sqrt{\mathtt{t_4}} \ \textbf{x_3} \wedge \boldsymbol{\xi_1}}{\sqrt{\mathtt{T}}} + \sqrt{\mathtt{T}} \ \sqrt{\mathtt{t_4}} \ \textbf{x_3} \wedge \boldsymbol{\xi_1} - \sqrt{\mathtt{T}} \ \sqrt{\mathtt{t_4}} \ \textbf{x_3} \wedge \boldsymbol{\xi_2} - \frac{\sqrt{\mathtt{t_4}} \ \textbf{x_4} \wedge \boldsymbol{\xi_1}}{\sqrt{\mathtt{T}}} - \frac{\sqrt{\mathtt{t_4}} \ \textbf{x_5} \wedge \boldsymbol{\xi_4}}{\sqrt{\mathtt{T}}} - \frac{\sqrt{\mathtt{t_4}} \ \textbf{x_5} \wedge \boldsymbol{\xi_4}}{\sqrt{\mathtt{T}}} - \frac{\sqrt{\mathtt{t_4}} \ \textbf{x_5} \wedge \boldsymbol{\xi_6}}{\sqrt{\mathtt{T}}} - \frac{\sqrt{\mathtt{t_6}} \ \textbf{x_6} - \boldsymbol{\xi_6}}{\sqrt{\mathtt{T}}} - \frac{\sqrt{\mathtt{t_6}} \ \textbf{x_6}}{\sqrt{\mathtt{T}}} - \frac{\sqrt{\mathtt{t_6}} \ \textbf{x_6}$

 $\frac{x_6 \wedge \xi_3}{\sqrt{T} \ \sqrt{\tau_4}} + \ll 40 \gg + \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_1 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} - \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} - \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_2 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_4 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_3 \wedge x_5 \wedge x_6 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_5 \wedge x_6 \wedge \xi_4 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_5 \wedge x_6 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_5 \wedge x_6 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_5 \wedge x_6 \wedge \xi_4}{\sqrt{\tau_4}} = \frac{\sqrt{T} \ x_6 \wedge \xi_4}{\sqrt{\tau_6}} = \frac{\sqrt{T} \ x_6 \wedge \xi_4}{\sqrt{\tau_6}} = \frac{\sqrt{T} \ x_6 \wedge \xi_6}{\sqrt{\tau_6}} = \frac{\sqrt{T} \ x_6$

 $\mathscr{R}[\overline{\mathbf{X}}_{i_{-},j_{-},k_{-},l_{-}}] := \mathscr{R}[\overline{\mathbf{X}}_{i,j,k,l}[\tau_{i},\tau_{j}]];$

Short $[\Re[X_{2,4,3,1}[S, T]] \times \Re[\overline{X}_{3,4,6,5}], 5]$

 $\Re \left[\{1, 2, 3, 4\}, \{3, 4, 5, 6\} \right]$

$$\begin{split} & \pi[\mathsf{P}_{i_{-},j_{-}}[\mathcal{T}_{-}]] := \pi[\{i\}, \{j\}, \langle | \varepsilon_i \to \mathcal{T}, \mathsf{x}_j \to \mathcal{T}| \rangle, \mathsf{WExp}[\varepsilon_i \land \mathsf{x}_j]]; \\ & \pi[\mathsf{P}_{i_{-},j_{-}}] := \pi[\mathsf{P}_{i_{+},j}[\tau_i]] \end{split}$$

The union operation on \mathcal{A} 's (implemented as "multiplication"): \mathfrak{A} /: \mathfrak{A} [is1_, os1_, cs1_, w1_] $\times \mathfrak{A}$ [is2_, os2_, cs2_, w2_] :=

𝖣[is1∪is2, os1∪os2, Join[cs1, cs2], WP[w1, w2]]

 $\frac{\mathbf{x}_4 \cdot \mathbf{x}_5 \cdot \mathbf{x}_6 \cdot \boldsymbol{\xi}_1 \cdot \boldsymbol{\xi}_3 \cdot \boldsymbol{\xi}_4}{\sqrt{T} \ \sqrt{\tau_4}} + \frac{\sqrt{T} \ \mathbf{x}_3 \cdot \mathbf{x}_4 \cdot \mathbf{x}_5 \cdot \mathbf{x}_6 \cdot \boldsymbol{\xi}_1 \cdot \boldsymbol{\xi}_2 \cdot \boldsymbol{\xi}_3 \cdot \boldsymbol{\xi}_4}{\sqrt{\tau_4}}$

The linear structure on A's: # /: a_×#[is_, os_, cs_, w_] := #[is, os, cs, Expand[a w]] # /: #[is1_, os1_, cs1_, w1_] + #[is2_, os2_, cs2_, w2_] /; (Sort@is1 == Sort@is2) ^ (Sort@os1 == Sort@os2) ^ (Sort@Normal@cs1 == Sort@Normal@cs2) := #[is1, os1, cs1, w1 + w2] Deciding if two A's are equal: # /: #[is1_, os1_, _, w1_] = #[is2_, os2_, _, w2_] := TrueQ[(Sort@is1 === Sort@is2) ^ (Sort@os1 === Sort@os2) ^ PowerExpand[w1 == w2]]

Contractions of \mathcal{A} -objects: $\begin{aligned} \mathbf{c}_{h_{-}t_{-}} & @\mathscr{R}[is_{-}, os_{-}, cs_{-}, w_{-}] := \mathscr{R}[\\ & \mathsf{DeleteCases}[is, t], \mathsf{DeleteCases}[os, h], \mathsf{KeyDrop}[cs, \{x_{h}, \xi_{t}\}], \mathbf{c}_{x_{h}, \xi_{t}}[w]\\ &] /. \mathsf{If}[\mathsf{MatchQ}[cs[\xi_{t}], \tau_{-}], cs[\xi_{t}] \rightarrow cs[x_{h}], cs[x_{h}] \rightarrow cs[\xi_{t}]]; \end{aligned}$ $\begin{aligned} \mathbf{c}_{4,4}[\mathscr{R}[X_{2,4,3,1}[S, T]] \times \mathscr{R}[\overline{X}_{3,4,6,5}]]\\ \mathscr{R}[\{1, 2, 3\}, \{3, 5, 6\}, \langle |\xi_{2} \rightarrow S, x_{3} \rightarrow S, \xi_{1} \rightarrow \mathsf{T}, \xi_{3} \rightarrow \tau_{3}, x_{6} \rightarrow \tau_{3}, x_{5} \rightarrow \mathsf{T}| \rangle, \end{aligned}$ $\begin{aligned} \mathsf{Wedge}[] - x_{3} \wedge \xi_{1} + \mathsf{T} x_{3} \wedge \xi_{1} - \mathsf{T} x_{3} \wedge \xi_{2} - x_{5} \wedge \xi_{1} - x_{6} \wedge \xi_{1} + \frac{x_{6} \wedge \xi_{1}}{\mathsf{T}} - \frac{x_{6} \wedge \xi_{3}}{\mathsf{T}} + \\ \begin{aligned} \mathsf{T} x_{3} \wedge x_{5} \wedge \xi_{1} \wedge \xi_{2} - x_{3} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2} + \mathsf{T} x_{3} \wedge x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{3} - \\ \end{aligned}$

4. Skein relations and evaluations for \mathcal{A}

Automatic and intelligent multiple contractions: с@я[is_, os_, cs_, w_] := Fold[<mark>с_{#2,#2}[#1]</mark> &, я[is, os, cs, w], is∩os] $\mathcal{R}[\{A_\mathcal{R}\}] := \mathbf{c}[A];$ $\Re[\{A1_\mathcal{A}, As_\mathcal{A}\}] := Module[\{A2\},$ A2 = First@MaximalBy[{As}, Length[A1[[1]] ∩ #[[2]] + Length[A1[[2]] ∩ #[[1]]] &]; $\Re = \{ \overline{X}_{4,1,6,3} [v, u], \overline{X}_{3,2,5,4} \}$ Я[Os_List] := Я[Я/@Os] $\mathcal{A}\Big[\ \{\textbf{1, 2}\} \text{, } \{\textbf{5, 6}\} \text{, } <| \ \xi_2 \rightarrow v \text{, } x_5 \rightarrow u \text{, } \xi_1 \rightarrow u \text{, } x_6 \rightarrow v | > \text{,}$ $c\left[\Re[X_{2,4,3,1}[S,T]] \times \Re[\overline{X}_{3,4,6,5}]\right]$
$$\begin{split} &\sqrt{u} \ \sqrt{v} \ \text{Wedge}\left[\right] - \frac{\sqrt{u} \ x_{5} \wedge \xi_{1}}{\sqrt{v}} + \frac{\sqrt{u} \ x_{5} \wedge \xi_{2}}{\sqrt{v}} - \sqrt{u} \ \sqrt{v} \ x_{5} \wedge \xi_{2} + \frac{\sqrt{v} \ x_{6} \wedge \xi_{1}}{\sqrt{u}} - \sqrt{u} \ \sqrt{v} \ x_{6} \wedge \xi_{1} \\ &\frac{\sqrt{v} \ x_{6} \wedge \xi_{2}}{\sqrt{u}} - \frac{\sqrt{u} \ x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2}}{\sqrt{v}} - \frac{\sqrt{v} \ x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2}}{\sqrt{u}} + \sqrt{u} \ \sqrt{v} \ x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2} \\ \end{split}$$
 $\mathcal{A}[\{1, 2\}, \{5, 6\}, \langle | \xi_2 \rightarrow S, \xi_1 \rightarrow T, x_6 \rightarrow S, x_5 \rightarrow T | \rangle,$ $Wedge\left[\;\right] - x_5 \wedge \xi_1 - x_6 \wedge \xi_2 - x_5 \wedge x_6 \wedge \xi_1 \wedge \xi_2 \,]$ $\Re = \left\{ \Re [X_{2,4,3,1}[S, T]], \Re [\overline{X}_{3,4,6,5}] \right\}$ $\mathcal{A}[\{1, 2\}, \{5, 6\}, \langle | \xi_2 \rightarrow \mathsf{S}, \xi_1 \rightarrow \mathsf{T}, x_6 \rightarrow \mathsf{S}, x_5 \rightarrow \mathsf{T} | \rangle,$ Wedge [] - $x_5 \land \xi_1 - x_6 \land \xi_2 - x_5 \land x_6 \land \xi_1 \land \xi_2$]

Reidemeister 1

Reidemeister 3

 $\mathcal{R} \oplus \{X_{2,4,3,1}[S, T], \overline{X}_{3,4,6,5}\} = \mathcal{R} \oplus \{P_{1,5}[T], P_{2,6}[S]\}$ True $\mathcal{R} \oplus \{\overline{X}_{2,4,3,1}[S, T], \overline{X}_{3,4,6,5}\} = \mathcal{R} \oplus \{P_{1,5}[T], P_{2,6}[S]\}$

Я@{X_{3,1,2,4}[S, T], X_{6,5,3,4}} ≡ **Я@**{P_{1,5}[T], P_{6,2}[S]} True

 $\begin{aligned} &\mathcal{R} \oplus \{X_{2,5,4,1}[\mathsf{T}_2,\mathsf{T}_1], X_{3,7,6,5}[\mathsf{T}_3,\mathsf{T}_1], X_{6,9,8,4}\} \equiv \\ &\mathcal{R} \oplus \{X_{3,5,4,2}[\mathsf{T}_3,\mathsf{T}_2], X_{4,6,8,1}[\mathsf{T}_3,\mathsf{T}_1], X_{5,7,9,6}\} \end{aligned}$ True

The Relation with the Multivariable Alexander Polynomial

$$\begin{array}{c} & & & \\ &$$

$$\begin{split} & \left\{ \mathscr{R} \in \{X_{3,3,2,1}\} \equiv \tau_1^{-1/2} \, \mathscr{R} \in \{\mathsf{P}_{1,2}\}, \ \mathscr{R} \in \{X_{1,2,3,3}\} \equiv \tau_1^{-1/2} \, \mathscr{R} \in \{\mathsf{P}_{1,2}\}, \\ & \mathscr{R} \in \{\overline{X}_{1,3,3,2}\} \equiv \tau_1^{-1/2} \, \mathscr{R} \in \{\mathsf{P}_{1,2}\}, \\ & \mathscr{R} \in \{\overline{X}_{3,1,2,3}\} \equiv \tau_1^{-1/2} \, \mathscr{R} \in \{\mathsf{P}_{1,2}\} \right\} \\ & \left\{ \mathsf{True}, \ \mathsf{True}, \ \mathsf{True}, \ \mathsf{True} \right\} \\ & (\mathsf{So we have an invariant, up to rotation numbers}). \end{split}$$

 $MVA = u^{-1/2} v^{-1/2} w^{-1/2} (u - 1) (v - 1) (w - 1);$

$$\begin{split} & \mathsf{A} = \left\{ \overline{X}_{1,12,2,13} [\,u,\,v\,], \, \overline{X}_{13,2,6,3}, \, X_{8,4,9,3}, \, X_{4,10,5,9}, \, X_{6,17,7,16} [\,v,\,w\,], \right. \\ & \left. X_{15,8,16,7}, \, \overline{X}_{14,10,15,11}, \, \overline{X}_{11,17,12,14} \right\} \, // \, \mathcal{A} \, // \, \text{Last} \, // \, \text{Factor} \\ & \left(-1 + u \right)^2 \, \left(-1 + v \right) \, \left(-1 + w \right) \, \left(\text{Wedge} \left[\, \right] - x_5 \wedge \xi_1 \right) \end{split}$$

 $\frac{u v}{A = u^{-1/2} (u - 1) u^{0} v^{-1/2} w^{1/2} MVA (Wedge[] - X_{5} \land \xi_{1})}$ True

The Conway Relation

(see [Co])

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = (T^{-1/2} - T^{1/2}) \frac{1}{1} \frac{1}{$$

 $\begin{aligned} & \Re @ \left\{ X_{2,3,4,1} [\mathsf{T},\mathsf{T}] \right\} \; - \; \Re @ \left\{ \overline{X}_{1,2,3,4} [\mathsf{T},\mathsf{T}] \right\} \equiv \left(\mathsf{T}^{-1/2} - \mathsf{T}^{1/2} \right) \; \Re @ \left\{ \mathsf{P}_{1,4} [\mathsf{T}], \; \mathsf{P}_{2,3} [\mathsf{T}] \right\} \end{aligned}$ True

 $\begin{aligned} &\mathcal{R} \in \{X_{2,7,5,1}, X_{3,4,6,7}\} \equiv \mathcal{R} \in \{X_{3,7,6,1}, X_{2,4,5,7}\} \\ &\text{True} \\ &\mathcal{R} \in \left\{\overline{X}_{1,2,7,5}, \overline{X}_{7,3,4,6}\right\} \equiv \mathcal{R} \in \left\{\overline{X}_{1,3,7,6}, \overline{X}_{7,2,4,5}\right\} \\ &\text{False} \end{aligned}$

Overcrossings Commute but Undercrossings don't

Conway's Second Set of Identities

(see [Co])

$$\begin{split} &\mathcal{R} \oplus \left\{ X_{2,4,3,1} \left[v, \, u \right] , \, X_{4,6,5,3} \right\} \, + \, \mathcal{R} \oplus \left\{ \overline{X}_{1,2,4,3} \left[u, \, v \right] , \, \overline{X}_{3,4,6,5} \right\} \equiv \\ & \left(u^{1/2} \, v^{1/2} + u^{-1/2} \, v^{-1/2} \right) \, \mathcal{R} \oplus \left\{ \mathsf{P}_{1,5} \left[u \right] \, , \, \mathsf{P}_{2,6} \left[v \right] \right\} \end{split}$$
 True

$$\begin{split} &\mathcal{R} \oplus \left\{ \overline{X}_{4,1,6,3}\left[v, u \right], \, \overline{X}_{3,2,5,4} \right\} + \mathcal{R} \oplus \left\{ X_{1,6,3,4}\left[u, v \right], \, X_{2,5,4,3} \right\} \equiv \\ & \left(u^{1/2} \, v^{-1/2} + u^{-1/2} \, v^{1/2} \right) \, \mathcal{R} \oplus \left\{ \mathsf{P}_{1,5}\left[u \right], \, \mathsf{P}_{2,6}\left[v \right] \right\} \end{split}$$
 True

Virtual versions (Archibald, [Ar])

$$\begin{array}{c} \bigwedge^{3} \bigwedge^{4} \bigwedge^{3} \bigwedge^{4} \\ & & \\ \end{array} + \\ & & \\ 1 \\ 2 \\ \end{array} = (\tau_{1}^{1/2} + \tau_{1}^{-1/2}) \\ & \\ 1 \\ 2 \\ \end{array} \begin{array}{c} \bigwedge^{3} \bigwedge^{4} \\ & \\ \end{array} \\ & & \\ 1 \\ 1 \\ \end{array} \begin{array}{c} \bigwedge^{3} 2 \\ & \\ \end{array} \\ & & \\ 1 \\ 1 \\ \end{array} \begin{array}{c} \bigwedge^{3} 2 \\ & \\ \end{array} \\ & & \\ \end{array} \\ & & \\ \end{array} = (\tau_{2}^{1/2} + \tau_{2}^{-1/2}) \\ & \\ \\ & \\ 1 \\ \end{array} \right) \begin{array}{c} \bigwedge^{3} 2 \\ & \\ \end{array} \\ & & \\ \end{array}$$

$$\begin{split} &\mathcal{R} @ \{ X_{2,3,4,1} \} + \mathcal{R} @ \{ \overline{X}_{2,1,4,3} \} \equiv \left(\tau_1^{1/2} + \tau_1^{-1/2} \right) \mathcal{R} @ \{ P_{1,3}, P_{2,4} \} \\ & \text{True} \\ & \mathcal{R} @ \{ \overline{X}_{1,2,3,4} \} + \mathcal{R} @ \{ X_{1,4,3,2} \} \equiv \left(\tau_2^{1/2} + \tau_2^{-1/2} \right) \mathcal{R} @ \{ P_{1,3}, P_{2,4} \} \\ & \text{True} \end{split}$$

 $\begin{aligned} &\mathcal{R} \oplus \left\{ X_{6,4,9,1}, \ \overline{X}_{4,5,7,8}, \ \overline{X}_{2,3,5,6} \right\} \ + \ \mathcal{R} \oplus \left\{ X_{2,4,5,1}, \ \overline{X}_{4,3,7,6}, \ X_{6,8,9,5} \right\} \equiv \\ &\mathcal{R} \oplus \left\{ \overline{X}_{1,6,4,9}, \ X_{5,7,8,4}, \ X_{3,5,6,2} \right\} \ + \ \mathcal{R} \oplus \left\{ \overline{X}_{1,2,4,5}, \ X_{3,7,6,4}, \ \overline{X}_{5,6,8,9} \right\} \end{aligned}$ True

Jun Murakami's Fifth Axiom

(see [Mu])

$$\Re \mathbb{P}\{X_{1,4,2,5}[\mathsf{T},\mathsf{S}], X_{4,3,5,2}\} \equiv \frac{\sqrt{\mathsf{S}}(1-\mathsf{T})}{\sqrt{\mathsf{T}}} \Re \mathbb{P}\{\mathsf{P}_{1,3}[\mathsf{T}]\}$$

True

Jun Murakami's Third Axiom

Virtual Version 1 (Archibald, [Ar])

$$\begin{split} &\mathcal{R}_{2112} = \mathcal{R} \oplus \{X_{3,8,7,2}, X_{7,10,9,1}, X_{10,11,4,9}, X_{8,6,5,11}\}; \\ &\mathcal{R}_{1221} = \mathcal{R} \oplus \{X_{2,8,7,1}, X_{3,10,9,8}, X_{10,6,11,9}, X_{11,5,4,7}\}; \\ &\mathcal{R}_{2111} = \mathcal{R} \oplus \{X_{2,8,7,1}, X_{8,6,9,7}, Y_{9,11,10,1}, X_{11,5,4,10}\}; \\ &\mathcal{R}_{1122} = \mathcal{R} \oplus \{X_{2,8,7,1}, X_{8,9,4,7}, X_{3,11,10,9}, X_{11,6,5,10}\}; \\ &\mathcal{R}_{111} = \mathcal{R} \oplus \{X_{2,8,7,1}, X_{8,9,4,7}, Y_{3,11,10,9}, X_{11,6,5,10}\}; \\ &\mathcal{R}_{11} = \mathcal{R} \oplus \{X_{2,8,7,1}, X_{8,9,4,7}, P_{3,6}\}; \quad \mathcal{R}_{22} = \mathcal{R} \oplus \{X_{3,8,7,2}, X_{8,6,5,7}, P_{1,4}\}; \\ &\mathcal{R}_{9} = \mathcal{R} \oplus \{P_{1,4}, P_{2,5}, P_{3,6}\}; \\ &\mathbf{g}_{+} [z_{-}] := z^{1/2} + z^{-1/2}; \quad \mathbf{g}_{-} [z_{-}] := z^{1/2} - z^{-1/2}; \\ &\mathbf{g}_{+} [z_{-}] := z^{1/2} + z^{-1/2}; \quad \mathbf{g}_{-} [z_{-}] := z^{1/2} - z^{-1/2}; \\ &\mathbf{g}_{-} [z_{2} z_{3} / z_{1}] \cdot \mathbf{g}_{+} [z_{3}] \cdot \mathcal{R}_{11} - \mathbf{g}_{+} [z_{1}] \cdot \mathbf{g}_{-} [z_{1} z_{-}] \cdot \mathbf{g}_{-} [z_{3}] \cdot \mathbf{g}_{22} = \mathbf{g}_{-} [z_{3}^{2} / z_{1}^{2}] \cdot \mathcal{R}_{9} \\ \\ &\mathbf{True} \end{split}$$

 $\int_{1}^{1} \int_{2}^{1} \int_{3}^{1}$ $\int_{1}^{1} \int_{2}^{1} \int_{3}^{1} \int_{1}^{1} \int_$

The Naik-Stanford Double Delta Move

Virtual Version 2 (Archibald, [Ar])

 $\begin{aligned} &\Re \oplus \left\{ \overline{X}_{20,1,10,13} \left[v, u \right], X_{3,14,19,13} \left[v, u \right], X_{14,11,15,21} \left[u, w \right], \overline{X}_{15,6,7,22} \left[u, w \right], \\ & X_{2,12,16,22} \left[u, w \right], \overline{X}_{16,5,17,21} \left[u, w \right], \overline{X}_{19,17,9,18} \left[v, u \right], X_{4,8,20,18} \left[v, u \right] \right\} \\ & \Re \oplus \left\{ X_{1,11,13,21} \left[u, w \right], \overline{X}_{13,6,14,22} \left[u, w \right], \overline{X}_{20,14,10,15} \left[v, u \right], X_{3,7,19,15} \left[v, u \right], \\ & \overline{X}_{19,2,9,16} \left[v, u \right], X_{4,17,20,16} \left[v, u \right], X_{17,12,18,22} \left[u, w \right], \overline{X}_{18,5,8,21} \left[u, w \right] \right\} \\ & \text{True} \end{aligned}$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/

$$\begin{split} &\mathcal{R} \oplus \left\{ X_{3,7,6,1}, \ \overline{X}_{7,2,4,5} \right\} + \mathcal{R} \oplus \left\{ X_{2,4,7,1}, \ X_{3,5,6,7} \right\} = \\ &\mathcal{R} \oplus \left\{ X_{3,7,6,2}, \ X_{7,4,5,1} \right\} + \mathcal{R} \oplus \left\{ \overline{X}_{1,2,7,5}, \ X_{3,4,6,7} \right\} \\ &\text{True} \end{split}$$

Virtual versions (Archibald, [Ar])

(see [NS])

$$\begin{split} & \mathcal{R} @ \left\{ X_{3,2,3,1} \left[S, T \right] \right\} \ \equiv \ \left(T^{-1/2} - T^{1/2} \right) \ \mathcal{R} @ \left\{ P_{1,2} \left[T \right] \right\} \\ & \text{True} \\ & \mathcal{R} @ \left\{ X_{1,3,2,3} \right\} \\ & \mathcal{R} \left[\left\{ 1 \right\}, \ \left\{ 2 \right\}, \ \left< | \, \xi_1 \to \tau_1, \, x_2 \to \tau_1 | \right>, \, \theta \right] \end{split}$$

Unfortunately, dim $\mathcal{A}(\mathcal{X}, X) = \dim \Lambda(\mathcal{X}, X) = 4^{|X|}$ is big. Fortunately, we have the following theorem, a version of one of the main results in Halacheva's thesis, [Ha1, Ha2]:

Theorem. Working in $\Lambda(\mathcal{X} \cup X)$, if $w = \omega e^{\lambda}$ is a balanced Gaussian (namely, a scalar ω times the exponential of a quadratic $\lambda = \sum_{\zeta \in \mathcal{X}, z \in X} \alpha_{\zeta, z} \zeta z$), then generically so is $c_{x,\xi} e^{\lambda}$.

Thus we have an almost-always-defined " Γ -calculus": a contraction algebra morphism $\mathcal{T}(\mathcal{X}, X) \to R \times (\mathcal{X} \otimes_{R/R} X)$ whose behaviour under contractions is

 $c_{x,\xi}(\omega,\lambda=\mu+\eta x+\xi y+\alpha\xi x)=((1-\alpha)\omega,\mu+\eta y/(1-\alpha)).$

(Γ is fully defined on pure tangles – tangles without closed components – and

(This is great news! The space of balanced quadratics is only $|\mathcal{X}||X|$ -dimensional!)

Proof. Recall that $c_{x,\xi}$: $(1, \xi, x, x\xi)w' \mapsto (1, 0, 0, 1)w'$, write $\lambda = \mu + \eta x + \xi y + \alpha \xi x$, and ponder $e^{\lambda} =$

$$\dots + \frac{1}{k!} \underbrace{(\mu + \eta x + \xi y + \alpha \xi x)(\mu + \eta x + \xi y + \alpha \xi x) \cdots (\mu + \eta x + \xi y + \alpha \xi x)}_{k \text{ factors}} + \dots$$

Then $c_{\mathrm{x},\xi}\mathrm{e}^\lambda$ has three contributions:

4

- \blacktriangleright e^{μ} , from the term proportional to 1 (namely, independent of ξ and x) in e^{λ}
- ► $-\alpha e^{\mu}$, from the term proportional to $x\xi$, where the x and the ξ come from the same factor above.
- ηye^μ, from the term proportional to xξ, where the x and the ξ come from different factors above.

So $c_{x,\xi} e^{\lambda} = e^{\mu} (1 - \alpha + \eta y) = (1 - \alpha) e^{\mu} (1 + \eta y/(1 - \alpha)) = (1 - \alpha) e^{\mu} e^{\eta y/(1 - \alpha)} = (1 - \alpha) e^{\mu + \eta y/(1 - \alpha)}$.

Γ-calculus.

given by

hence on long knots).

6. An Implementation of Γ .

If I didn't implement I wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Gamma.nb at http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are plain. We start with canonical forms for quadratics with rational function coefficients:

CCF[8_] := Factor[8];

 $\mathsf{CF}[\mathcal{S}_] := \mathsf{Module}[\{\mathsf{vs} = \mathsf{Union}@\mathsf{Cases}[\mathcal{S}, (\xi \mid \mathsf{x})_{}, \infty]\},$

Total[(CCF[#[[2]]] (Times @@ vs^{#[[1]})) & /@ CoefficientRules[&, vs]]];

Multiplying and comparing Γ objects: $\Gamma /: \Gamma[is1_, os1_, cs1_, \omega1_, \lambda1_] \times \Gamma[is2_, os2_, cs2_, \omega2_, \lambda2_] :=$ $\Gamma[is1 \cup is2, os1 \cup os2, Join[cs1, cs2], \omega1 \omega2, \lambda1 + \lambda2]$ $\Gamma /: \Gamma[is1_, os1_, _, \omega1_, \lambda1_] \equiv \Gamma[is2_, os2_, _, \omega2_, \lambda2_] :=$ $TrueQ[(Sort@is1 === Sort@is2) \land (Sort@os1 === Sort@os2) \land$ $Simplify[\omega1 = \omega2] \land CF@\lambda1 == CF@\lambda2]$ No rules for linear operations! Contractions: $c_{h_{-}t_{-}} \oplus \Gamma[is_{-}, os_{-}, cs_{-}, \omega_{-}, \lambda_{-}] := Module[\{\alpha, \eta, y, \mu\},$ $\alpha = \partial_{\xi_{1}, x_{h}}\lambda; \mu = \lambda / . \xi_{t} | x_{h} \rightarrow 0;$ $\eta = \partial_{x_{h}}\lambda / . \xi_{t} \rightarrow 0; y = \partial_{\xi_{t}}\lambda / . x_{h} \rightarrow 0;$ $\Gamma[$ $DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, {x_{h}, \xi_{t}}],$ $CCF[(1 - \alpha) \omega], CF[\mu + \eta y / (1 - \alpha)]$ $] /. If[MatchQ[cs[\xi_{t}], \tau_{-}], cs[\xi_{t}] \rightarrow cs[x_{h}], cs[x_{h}] \rightarrow cs[\xi_{t}]]];$ $cer[is_{-}, os_{-}, cs_{-}, \omega_{-}, \lambda_{-}] := Fold[c_{n2,n2}[#1] \&, \Gamma[is, os, cs, \omega, \lambda], is \cap os]$

The crossings and the point:
$$\begin{split} &\Gamma[X_{i_{-},j_{-},k_{-},l_{-}}[S_{-},T_{-}]] := \Gamma[\{l,i\}, \{j,k\}, \langle |\xi_{i} \rightarrow S, x_{j} \rightarrow T, x_{k} \rightarrow S, \xi_{i} \rightarrow T | \rangle, \\ &T^{-1/2}, CF[\{\xi_{l}, \xi_{i}\}, \left(\frac{1}{\theta} - T\right), \{x_{j}, x_{k}\}]]; \\ &\Gamma[\overline{X}_{i_{-},j_{-},k_{-},l_{-}}[S_{-}, T_{-}]] := \Gamma[\{i, j\}, \{k, l\}, \langle |\xi_{i} \rightarrow S, \xi_{j} \rightarrow T, x_{k} \rightarrow S, x_{l} \rightarrow T | \rangle, \\ &T^{1/2}, CF[\{\xi_{i}, \xi_{j}\}, \left(\frac{T^{-1}}{1} - \theta\right), \{x_{k}, x_{l}\}]]; \\ &\Gamma[X_{i_{-},j_{-},k_{-},l_{-}}] := \Gamma[X_{i,j,k,l}[\tau_{i}, \tau_{l}]]; \\ &\Gamma[X_{i_{-},j_{-},k_{-},l_{-}}] := \Gamma[X_{i,j,k,l}[\tau_{i}, \tau_{l}]]; \\ &\Gamma[\overline{X}_{i_{-},j_{-},k_{-},l_{-}}] := \Gamma[\overline{X}_{i,j,k,l}[\tau_{i}, \tau_{j}]]; \\ &\Gamma[P_{i_{-},j_{-}}[T_{-}]] := \Gamma[\{i\}, \{j\}, \langle |\xi_{i} \rightarrow T, x_{j} \rightarrow T | \rangle, \mathbf{1}, \xi_{i} x_{j}]; \\ &\Gamma[P_{i_{-},j_{-}}] := \Gamma[P_{i,j}[\tau_{l}]]; \end{split}$$

Automatic intelligent contractions:

```
Conversions \mathcal{A} \leftrightarrow \Gamma:
  r@A[is_, os_, cs_, w_] := Module[{i, j, w = Coefficient[w, Wedge[]]},
                   \label{eq:relation} \texttt{\Gamma}[\textit{is, os, cs, } \omega, \texttt{Sum}[\texttt{Cancel}[-\texttt{Coefficient}[\textit{w, x}_j \land \xi_i] \ \xi_i \ x_j \ / \ \omega],
                                   {i, is}, {j, os}]]
             ];
  Я@Г[is_, os_, cs_, ω_, λ_] :=
           \mathfrak{A}[is, os, cs, \mathsf{Expand}[\,\omega\,\mathsf{WExp}[\mathsf{Expand}[\,\lambda\,]\,\,/.\,\,\xi_a\_\,\mathsf{x}_b\_\,\leftrightarrow\,\xi_a\wedge\,\mathsf{x}_b]\,]\,];
  The conversions are inverses of each other:
  \gamma = \Gamma [ \{1, 2, 3\}, \{1, 2, 3\}, \{x_1 \rightarrow \tau_1, x_2 \rightarrow \tau_2, x_3 \rightarrow \tau_3, \xi_1 \rightarrow \tau_1, \xi_2 \rightarrow \tau_2, \xi_3 \rightarrow \tau_3 \},
                   \omega, a_{11} x_1 \xi_1 + a_{12} x_2 \xi_1 + a_{13} x_3 \xi_1 + a_{21} x_1 \xi_2 + a_{22} x_2 \xi_2 + a_{23} x_3 \xi_2 + a_{31} x_1 \xi_3 + a_{21} x_1 \xi_2 + a_{22} x_2 \xi_2 + a_{23} x_3 \xi_2 + a_{31} x_1 \xi_3 + a_{31} x_1 \xi_4 + a
                           a_{32} x_2 \xi_3 + a_{33} x_3 \xi_3];
 Г@Я@ү == ү
 True
  The conversions commute with contractions:
\Gamma@\mathbf{c}_{3,3}@\mathcal{A}@\gamma \equiv \mathbf{c}_{3,3}@\gamma
 True
```

Conway's Third Identity

Sorry, Γ has nothing to say about that...'

References

- J. Archibald, The Multivariable Alexander Polynomial on Tangles, University of Toronto Ph.D. thesis, 2010, http://drorbn.net/mo21/AT.
- J. H. Conway, An Enumeration of Knots and Links, and some of their Algebraic Properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), Pergamon, Oxford, 1970, 329–358.
- Z. Dancso, I. Halacheva, and M. Robertson, *Circuit Algebras are Wheeled Props*, J. Pure and Appl. Alg., to appear, arXiv:2009.09738.
- I. Halacheva, Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group, University of Toronto Ph.D. thesis, 2016, http://drorbn.net/mo21/HT.
- I. Halacheva, Alexander Type Invariants of Tangles, arXiv:1611.09280.

The Naik-Stanford Double Delta Move (again)

$$\begin{split} & \mathsf{Timing} \Big[\mathsf{r} \, & \{ \mathsf{X}_{6,10,28,24} \, [\mathsf{W}, \mathsf{V}] , \, \overline{\mathsf{X}}_{28,3,29,19} \, [\mathsf{W}, \mathsf{V}] , \, \overline{\mathsf{X}}_{26,20,27,19} \, [\mathsf{W}, \mathsf{V}] , \, \overline{\mathsf{X}}_{27,23,11,24} \, [\mathsf{W}, \mathsf{V}] , \\ & \mathsf{X}_{1,12,13,30} \, [\mathsf{u}, \mathsf{W}] , \, \overline{\mathsf{X}}_{13,5,14,25} \, [\mathsf{u}, \mathsf{W}] , \, \mathsf{X}_{17,26,18,25} \, [\mathsf{u}, \mathsf{W}] , \, \overline{\mathsf{X}}_{18,29,8,30} \, [\mathsf{u}, \mathsf{W}] , \\ & \mathsf{X}_{4,7,22,15} \, [\mathsf{V}, \mathsf{U}] , \, \overline{\mathsf{X}}_{22,2,23,16} \, [\mathsf{V}, \mathsf{U}] , \, \mathsf{X}_{20,17,21,16} \, [\mathsf{V}, \mathsf{U}] , \, \overline{\mathsf{X}}_{21,14,9,15} \, [\mathsf{V}, \mathsf{U}] \} \\ & = \, \mathsf{r} \, e \, \big\{ \mathsf{X}_{5,9,25,21} \, [\mathsf{W}, \mathsf{V}] , \, \overline{\mathsf{X}}_{25,4,26,22} \, [\mathsf{W}, \mathsf{V}] , \, \mathsf{X}_{29,23,30,22} \, [\mathsf{W}, \mathsf{V}] , \, \overline{\mathsf{X}}_{30,20,42,21} \, [\mathsf{W}, \mathsf{V}] , \\ & \mathsf{X}_{2,11,16,27} \, [\mathsf{U}, \mathsf{W}] , \, \overline{\mathsf{X}}_{16,6,17,28} \, [\mathsf{U}, \mathsf{W}] , \, \mathsf{X}_{14,29,15,28} \, [\mathsf{U}, \mathsf{W}] , \, \overline{\mathsf{X}}_{15,26,7,27} \, [\mathsf{U}, \mathsf{W}] , \\ & \mathsf{X}_{3,8,19,18} \, [\mathsf{V}, \mathsf{U}] , \, \overline{\mathsf{X}}_{19,1,20,13} \, [\mathsf{V}, \mathsf{U}] , \, \mathsf{X}_{23,14,24,13} \, [\mathsf{V}, \mathsf{U}] , \, \overline{\mathsf{X}}_{24,17,10,18} \, [\mathsf{V}, \mathsf{U}] \big\} \Big] \\ (0.703125, \, \mathsf{True}) \end{split}$$

What I still don't understand.

- ▶ What becomes of $c_{x,\xi}e^{\lambda}$ if we have to divide by 0 in order to write it again as an exponentiated quadratic? Does it still live within a very small subset of $\Lambda(X \sqcup X)$?
- How do cablings and strand reversals fit within A?
- Are there "classicality conditions" satisfied by the invariants of classical tangles (as opposed to virtual ones)?
- M. Markl, S. Merkulov, and S. Shadrin, Wheeled PROPs, Graph Complexes and the Master Equation, J. Pure and Appl. Alg. 213-4 (2009) 496–535, arXiv:math/0610683.
- J. Murakami, A State Model for the Multivariable Alexander Polynomial, Pacific J. Math. 157-1 (1993) 109–135.
- S. Naik and T. Stanford, A Move on Diagrams that Generates S-Equivalence of Knots, J. Knot Theory Ramifications 12-5 (2003) 717-724, arXiv: math/9911005.
- Wolfram Language & System Documentation Center, https://reference.wolfram.com/language/.

Thank You!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/

The PBW Principle Lots of algebras are isomorphic as vector spaces to polynomial algebras. So we want to understand arbitrary linear maps between polynomial algebras.

Convention. For a finite set A, let $z_A := \{z_i\}_{i \in A}$ and let $\zeta_A := \{ z_i^* = \zeta_i \}_{i \in A}.$ $(p, x)^* = (\pi, \xi)$ **The Generating Series** \mathcal{G} : Hom($\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]$) $\to \mathbb{Q}[\![\zeta_A, z_B]\!]$. **Claim.** $L \in \text{Hom}(\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]) \xrightarrow{\sim}_{G} \mathbb{Q}[z_B] \llbracket \zeta_A \rrbracket \ni \mathcal{L}$ via

$$\mathcal{G}(L) := \sum_{n \in \mathbb{N}^{d}} \frac{\zeta_{A}^{n}}{n!} L(z_{A}^{n}) = L\left(\mathbb{e}^{\sum_{a \in A} \zeta_{a} z_{a}}\right) = \mathcal{L} = \operatorname{greek} \mathcal{L}_{\text{latin}}$$

 $\mathcal{G}^{-1}(\mathcal{L})(p) = \left(p |_{z_a \to \partial_{\zeta_a}} \mathcal{L} \right)_{\zeta_a = 0} \quad \text{for } p \in \mathbb{Q}[z_A].$ **Claim.** If $L \in \operatorname{Hom}(\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]), M \in \operatorname{Hom}(\mathbb{Q}[z_B] \to \mathbb{Q}[z_B])$ $\mathbb{Q}[z_C]$, then $\mathcal{G}(L/\!\!/M) = \left(\mathcal{G}(L)|_{z_b \to \partial_{\zeta_b}} \mathcal{G}(M)\right)_{\zeta_b=0}$.

Examples. • $\mathcal{G}(id: \mathbb{Q}[p, x] \to \mathbb{Q}[p, x]) = \mathbb{e}^{\pi p + \xi x}$ • Consider $R_{ij} \in (\mathfrak{h}_i \otimes \mathfrak{h}_j)[[t]] \cong \operatorname{Hom} (\mathbb{Q}[] \to \mathbb{Q}[p_i, x_i, p_j, x_j])[[t]].$ Then $\mathcal{G}(R_{ij}) = \mathbb{e}^{(\mathbb{e}^t - 1)(p_i - p_j)x_j} = \mathbb{e}^{(T-1)(p_i - p_j)x_j}$.

Heisenberg Algebras. Let $\mathfrak{h} = A\langle p, x \rangle/([p, x] = 1)$, let $\mathbb{O}_i: \mathbb{Q}[p_i, x_i] \to \mathfrak{h}_i$ is the "*p* before *x*" PBW normal ordering map and let hm_k^{ij} be the composition

 $\mathbb{Q}[p_i, x_i, p_j, x_j] \xrightarrow{\mathbb{O}_i \otimes \mathbb{O}_j} \mathfrak{h}_i \otimes \mathfrak{h}_j \xrightarrow{m_k^{ij}} \mathfrak{h}_k \xrightarrow{\mathbb{O}_k^{-1}} \mathbb{Q}[p_k, x_k].$ Then $\mathcal{G}(hm_{i_k}^{ij}) = e^{-\xi_i \pi_j + (\pi_i + \pi_j)p_k + (\xi_i + \xi_j)x_k}$.

Proof. Recall the "Weyl CCR" $e^{\xi x}e^{\pi p} = e^{-\xi\pi}e^{\pi p}e^{\xi x}$, and find

$$\begin{aligned} \mathcal{G}(hm_k^{ij}) &= e^{\pi_i p_i + \xi_i x_i + \pi_j p_j + \xi_j x_j} /\!\!/ \mathbb{O}_i \otimes \mathbb{O}_j /\!\!/ m_k^{ij} /\!\!/ \mathbb{O}_k^{-1} \\ &= e^{\pi_i p_i} e^{\xi_i x_i} e^{\pi_j p_j} e^{\xi_j x_j} /\!\!/ m_k^{ij} /\!\!/ \mathbb{O}_k^{-1} = e^{\pi_i p_k} e^{\xi_i x_k} e^{\pi_j p_k} e^{\xi_j x_k} /\!\!/ \mathbb{O}_k^{-1} \\ &= e^{-\xi_i \pi_j} e^{(\pi_i + \pi_j) p_k} e^{(\xi_i + \xi_j) x_k} /\!\!/ \mathbb{O}_k^{-1} = e^{-\xi_i \pi_j + (\pi_i + \pi_j) p_k + (\xi_i + \xi_j) x_k}. \end{aligned}$$

GDO := The category with objects finite sets and

$$\operatorname{pr}(A \to B) = \left\{ \mathcal{L} = \omega \mathbb{e}^Q \right\} \subset \mathbb{Q}[\![\zeta_A, z_B]\!],$$

where: • ω is a scalar. • Q is a "small" quadratic in $\zeta_A \cup z_B$. • Compositions: $\mathcal{L}/\!\!/\mathcal{M} \coloneqq \left(\mathcal{L}|_{z_i \to \partial_{\zeta_i}} \mathcal{M}\right)_{\zeta_i=0}$

Compositions. In mor(
$$A \rightarrow B$$
),

$$Q = \sum_{i \in A, j \in B} E_{ij}\zeta_i z_j + \frac{1}{2} \sum_{i,j \in A} F_{ij}\zeta_i \zeta_j + \frac{1}{2} \sum_{i,j \in B} G_{ij} z_i z_j,$$
R. Feynman

(remember, $e^x = 1$

and so

$$A = \bigcup_{F_1 \in F_1} B = B = \bigcup_{F_2 \in F_2} C = A = \bigcup_{F \in G} C = \sum_{r=0}^{K} E_1 E_2 + E_1 F_2 G_1 E_2 + E_1 F_2 G_1 F_2 G_1 E_2 + \dots F = G = \sum_{r=0}^{\infty} E_1 (F_2 G_1)^r E_2$$
greek latin greek latin greek latin

where • $E = E_1(I - F_2G_1)^{-1}E_2 • F = F_1 + E_1F_2(I - G_1F_2)^{-1}E_1^T$ • $G = G_2 + E_2^T G_1 (I - F_2 G_1)^{-1} E_2 \bullet \omega = \omega_1 \omega_2 \det(I - F_2 G_1)^{-1/2}$ **Proof of Claim in Example 2.** Let $\Phi_1 := e^{t(p_i - p_j)x_j}$ and $\Phi_2 := \mathbb{O}_{p_i x_i} \left(\mathbb{e}^{(\mathbb{e}^t - 1)(p_i - p_j) x_j} \right) =: \mathbb{O}(\Psi).$ We show that $\Phi_1 = \Phi_2$ in $(\mathfrak{h}_i \otimes \mathfrak{h}_j)[[t]]$ by showing that both solve the ODE $\partial_t \Phi = (p_i - p_j) x_j \Phi$ with $\Phi|_{t=0} = 1$. For Φ_1 this is trivial. $\Phi_2|_{t=0} = 1$ is trivial, and

$$\partial_t \Phi_2 = \mathbb{O}(\partial_t \Psi) = \mathbb{O}(\mathbb{e}^t (p_i - p_j) x_j \Psi)$$

$$(p_i - p_j)x_j\Phi_2 = (p_i - p_j)x_j\mathbb{O}(\Psi) = (p_i - p_j)\mathbb{O}(x_j\Psi - \partial_{p_j}\Psi)$$
$$= \mathbb{O}\left((p_i - p_j)(x_j\Psi + (e^t - 1)x_j\Psi)\right) = \mathbb{O}(e^t(p_i - p_j)x_j\Psi) \quad \Box$$

Implementation.

CF = ExpandNumerator@*ExpandDenominator@*PowerExpand@*Factor;

 $\mathbb{E}_{A1_\rightarrow B1_}[\omega1_, Q1_] \mathbb{E}_{A2_\rightarrow B2_}[\omega2_, Q2_]^{:=} \mathbb{E}_{A1\bigcup A2\rightarrow B1\bigcup B2}[\omega1\ \omega2, Q1+Q2]$ $(\mathbb{E}_{A1 \rightarrow B1} [\omega_1] / \mathbb{E}_{A2 \rightarrow B2} [\omega_2] / \mathbb{E}_{A2} (B1^* == A2) :=$ Module {i, j, E1, F1, G1, E2, F2, G2, I, M = Table},

I = IdentityMatrix@Length@B1;

 $E1 = M[\partial_{i,j}Q1, \{i, A1\}, \{j, B1\}]; E2 = M[\partial_{i,j}Q2, \{i, A2\}, \{j, B2\}];$ $\texttt{F1} = \texttt{M}[\partial_{i,j}Q1, \{i, A1\}, \{j, A1\}]; \texttt{F2} = \texttt{M}[\partial_{i,j}Q2, \{i, A2\}, \{j, A2\}];$ $\texttt{G1}=\texttt{M[}\partial_{i,j}\textit{Q1}\textit{, \{i, B1\}}\textit{, \{j, B1\}}\textit{]; \texttt{G2}}=\texttt{M[}\partial_{i,j}\textit{Q2}\textit{, \{i, B2\}}\textit{, \{j, B2\}}\textit{];}$ $\mathbb{E}_{A1 \rightarrow B2} \left[\mathsf{CF} \left[\omega 1 \ \omega 2 \ \mathsf{Det} \left[\mathbb{I} - \mathsf{F2.G1} \right]^{1/2} \right], \ \mathsf{CF} @ \mathsf{Plus} \right] \right]$ If[A1 === {} V B2 === {}, 0, A1.E1.Inverse[I - F2.G1].E2.B2],

 $A_ \setminus B_ := Complement[A, B];$ $(\mathbb{E}_{A1_\rightarrow B1_}[\omega1_, Q1_] // \mathbb{E}_{A2_\rightarrow B2_}[\omega2_, Q2_]) /; (B1^* = ! = A2) :=$ $\mathbb{E}_{A1\bigcup (A2\setminus B1^*) \to B1\bigcup A2^*} [\omega 1, Q1 + \mathsf{Sum}[\mathcal{E}^*\mathcal{E}, \{\mathcal{E}, A2 \setminus B1^*\}]] //$ $\mathbb{E}_{B1^* \bigcup A2 \to B2 \bigcup (B1 \setminus A2^*)} [\omega^2, Q^2 + \mathsf{Sum}[z^* z, \{z, B1 \setminus A2^*\}]]$

$$\{p^*, x^*, \pi^*, \xi^*\} = \{\pi, \xi, p, x\}; (u_{-i_-})^* := (u^*)_i; \\ l_List^* := \#^* \& /@ l; \\ R_{i_-,j_-} := \mathbb{E}_{\{\}+\{p_i, x_i, p_j, x_j\}} [T^{-1/2}, (1 - T) p_j x_j + (T - 1) p_i x_j]; \\ \overline{D} = I_{-1} = \mathbb{E}_{\{\}} \{p_i, x_i, p_j, x_j\} [T^{-1/2}, (1 - T) p_j x_j + (T - 1) p_j x_j];$$

1) $\mathbf{p}_i \mathbf{x}_j$; $\mathbf{R}_{i_{j_{1}},j_{1}} := \mathbb{E}_{\{\} \to \{\mathbf{p}_{i},\mathbf{x}_{i},\mathbf{p}_{j},\mathbf{x}_{j}\}} [\mathsf{T}^{1/2}, (\mathbf{1} - \mathsf{T}^{-1}) \mathbf{p}_{j} \mathbf{x}_{j} + (\mathsf{T}^{-1}) \mathbf{p}_{j} \mathbf{x}_{j}]$ $\overline{\mathsf{C}}_{i_{-}} := \mathbb{E}_{\{\} \to \{\mathsf{p}_{i},\mathsf{x}_{i}\}} [\mathsf{T}^{1/2}, 0];$

 $\mathsf{hm}_{i_{j_{j_{k_{i}}}}} := \mathbb{E}_{\{\pi_{i}, \xi_{i}, \pi_{j}, \xi_{j}\} \rightarrow \{\mathsf{p}_{k}, \mathsf{x}_{k}\}} [\mathbf{1}, -\xi_{i} \pi_{j} + (\pi_{i} + \pi_{j}) \mathsf{p}_{k} + (\xi_{i} + \xi_{j}) \mathsf{x}_{k}]$

 $\mathbb{E}_{\{\} \rightarrow vs} [\omega i_{, Q_{h}}]_{h} := Module[\{ps, xs, M\},$ ps = Cases[vs, p]; xs = Cases[vs, x]; M = Table[\u03c6i, 1 + Length@ps, 1 + Length@xs];

 $M[2;;, 2;;] = Table[CF[\partial_{i,j}Q], \{i, ps\}, \{j, xs\}];$ M[[2;;, 1]] = ps; M[[1, 2;;]] = xs; MatrixForm[M]_b]

Proof of Reidemeister 3.

 $(R_{1,2} R_{4,3} R_{5,6} / / hm_{1,4 \rightarrow 1} hm_{2,5 \rightarrow 2} hm_{3,6 \rightarrow 3}) ==$ $(R_{2,3} R_{1,6} R_{4,5} / / hm_{1,4\rightarrow 1} hm_{2,5\rightarrow 2} hm_{3,6\rightarrow 3})$ True

The "First Tangle".

Factor /@

 $\left(z = R_{1,6} \overline{C_3} \overline{R_{7,4}} \overline{R_{5,2}} / / hm_{1,3 \rightarrow 1} / / hm_{1,4 \rightarrow 1} / / hm_{1,5 \rightarrow 1} / / hm_{1,6 \rightarrow 1} / / hm_{2,7 \rightarrow 2}\right)$ $\mathbb{E}_{() \to (p_1, p_2, x_1, x_2)} \Big[\frac{-1 + 2 T}{T}, \frac{(-1 + T) (p_1 - p_2) (T x_1 - x_2)}{T} \Big]$

$$\begin{array}{c} \textbf{Z}_h \\ \left(\begin{array}{c} \frac{-1+2\,T}{T} & \textbf{X}_1 & \textbf{X}_2 \\ p_1 & \frac{-T+T^2}{-1+2\,T} & \frac{1-T}{-1+2\,T} \\ p_2 & \frac{T-T^2}{-1+2\,T} & \frac{-1+T}{-1+2\,T} \end{array} \right)_h \end{array}$$

The knot 8₁₇**.**

 $z = \overline{R}_{12,1} \overline{R}_{27} \overline{R}_{83} \overline{R}_{4,11} R_{16,5} R_{6,13} R_{14,9} R_{10,15};$ Table[z = z // $hm_{1k \rightarrow 1}$, {k, 2, 16}] // Last $\mathbb{E}_{\{\} \to \{p_1, x_1\}} \left[\frac{1 - 4 T + 8 T^2 - 11 T^3 + 8 T^4 - 4}{T^5 + T^6} \right]$

Proof of Theorem 3, (3).

$$\left\{ \begin{pmatrix} \gamma \mathbf{1} = \mathbb{E}_{\{\} \to \{\mathsf{P1},\mathsf{x1},\mathsf{P2},\mathsf{x2},\mathsf{P3},\mathsf{x3}\}} \begin{bmatrix} \omega, \{\mathsf{P1}, \mathsf{P2}, \mathsf{P3}\}, \begin{pmatrix} \alpha & \beta & \theta \\ \gamma & \delta & \epsilon \\ \phi & \psi & \Xi \end{pmatrix}, \{\mathsf{x1}, \mathsf{x2}, \mathsf{x3}\} \end{bmatrix} \right\}_{\mathsf{h}},$$

$$\left\{ \begin{pmatrix} \omega & \mathsf{x1} & \mathsf{x2} & \mathsf{x3} \\ \mathsf{P1} & \alpha & \beta & \theta \end{pmatrix}, \begin{pmatrix} \omega + \gamma \omega & \mathsf{x0} & \mathsf{x3} \\ \mathsf{P0} & \frac{\alpha + \beta + \gamma + \beta + \gamma - \alpha - \delta}{p_{\theta}} & \frac{\epsilon - \alpha \epsilon + \theta + \gamma \theta}{p_{\theta}} \end{pmatrix} \right\}$$

$$\begin{cases} \begin{bmatrix} p_1 & \alpha & \beta & \theta \\ p_2 & \gamma & \delta & \epsilon \\ p_3 & \phi & \psi & \Xi \end{bmatrix}_h, \begin{bmatrix} p_0 & \frac{\alpha + \beta \gamma + \beta \gamma + \alpha - \alpha}{1 + \gamma} & \frac{\alpha - \alpha + \theta + \gamma + \theta}{1 + \gamma} \\ p_3 & \frac{\phi - \delta \phi + \psi + \gamma \psi}{1 + \gamma} & \frac{2 + \gamma \Xi - \epsilon \phi}{1 + \gamma} \end{bmatrix}_h \end{cases}$$
References.
On $\omega \epsilon \beta$ =http://drorbn.net/cat20

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/TrendsInLDT-2005//

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/

1

in Cambridge, UK. I wish to thank N. Bar-Natan, I. Halacheva, and P. Lee for comments and suggestions.

Published Bull. Amer. Math. Soc. 50 (2013) 685-690. TEX at http://drorbn.net/AcademicPensieve/2013-01/CDMReview/, copyleft at http://www.math.toronto.edu/~drorbn/Copyleft/. This review was written while I was a guest at the Newton Institute,

52

Dror Bar-Natan: Talks: Toronto-1912: Chord Diagrams, Knots, and Lie Algebras

Abstract. This will be a service talk on ancient material — I will briefly describe how the exact same type of *before, much better, within a book review. So here's that* chord diagrams (and relations between them) occur in a natural way in both knot theory and in the theory of Lie algebras.

While preparing for this talk I realized that I've done it review! It has been modified from its original version: it had been formatted to fit this page, parts were highlighted, and commentary had been added in green italics.

[Book] Introduction to Vassiliev Knot Invariants, by S. Chmutov, S. Duzhin, and J. Mostovoy, Cambridge University Press, Cambridge UK, 2012, xvi+504 pp., hardback, \$70.00, ISBN 978-1-10702-083-2.

Merely 30 36 years ago, if you had asked even the best informed mathematician about the relationship between knots and Lie algebras, she would have laughed, for there isn't and there can't be. Knots are flexible; Lie algebras are rigid. Knots are irregular; Lie algebras are symmetric. The list of knots is a lengthy mess; the collection of Lie algebras is well-organized. Knots are useful for sailors, scouts, and hangmen; Lie

A knot and a Lie algebra, a list of knots and a list of Lie algebras, and an unusual conference of the symmetric and the knotted.

algebras for navigators, engineers, and high energy physicists. Knots are blue collar; Lie algebras are white. They are as similar as worms and crystals: both well-studied, but hardly ever together.

Reshetikhin and Turaev [Jo, Wi, RT] and showed that if you really are the best informed, and you know your quantum field theory and conformal field theory and quantum groups, then you know that the two disjoint fields are in fact intricately related. This "quantum" approach remains the most powerful way to get computable knot invariants out of (certain) Lie algebras (and representations thereof). Yet shortly later, in the late 80s and early 90s, an alternative perspective arose, that of "finite-type" or "Vassiliev-Goussarov" invariants [Va1, Va2, Go1, Go2, BL, Ko1, Ko2, BN1], which made the surprising relationship between knots and Lie algebras appear simple and almost inevitable.

The reviewed [Book] is about that alternative perspective, the one reasonable sounding but not entirely trivial theorem that is crucially needed within it (the "Fundamental Theorem" or the "Kontsevich integral"), and the

2010 Mathematics Subject Classification. Primary 57M25.

Then in the 1980s came Jones, and Witten, and many threads that begin with that perspective. Let me start with a brief summary of the mathematics, and even before, an even briefer summary.

In briefest, a certain space A of chord diagrams is the dual to the dual of the space of knots, and at the same time, it is dual to Lie algebras.

The briefer summary is that in some combinatorial sense it is possible to "differentiate" knot invariants, and hence it makes sense to talk about "polynomials" on the space of knots — these are functions on the set of knots (namely, these are knot invariants) whose sufficiently high derivatives vanish. Such polynomials can be fairly conjectured to separate knots - elsewhere in math in lucky cases polynomials separate points, and in our case, specific computations are encouraging. Also, such polynomials are determined by their "coefficients", and each of these, by the one-side-easy "Fundamental Theorem", is a linear functional on some finite space of

Everywhere session / Winter 2019 CMS meeting! weβ:=http://drorbn.net/to19

graphs modulo relations. These same graphs turn out to parameterize formulas that make sense in a wide class of Lie algebras, and the said relations match exactly with the relations in the definition of a Lie algebra — antisymmetry and the Jacobi identity. Hence what is more or less dual to knots (invariants), is also, after passing to the coefficients, dual to certain graphs which are more or less dual to Lie algebras. QED, and on to the less brief summary¹.

Let V be an arbitrary invariant of oriented knots in oriented space with values in (say) \mathbb{Q} . Extend V to be an invariant of 1-singular knots, knots that have a single sin-

gularity that locally looks like a double point X, using the formula

(1)
$$V(\swarrow) = V(\swarrow) - V(\swarrow)$$

Further extend V to the set \mathcal{K}^m of *m*-singular knots (knots with *m* such double points) by repeatedly using (1).

Definition 1. We say that V is of type m (or "Vassiliev of type m") if its extension $V|_{\mathcal{K}^{m+1}}$ to (m + 1)-singular knots vanishes identically. We say that V is of finite type (or "Vassiliev") if it is of type m for some m.

Repeated differences are similar to repeated derivatives and hence it is fair to think of the definition of $V|_{\mathcal{K}^m}$ as repeated differentiation. With this in mind, the above definition imitates the definition of polynomials of degree *m*. Hence finite type invariants can be thought of as "polynomials" on the space of knots². It is known (see e.g. [Book]) that the class of finite type invariants is large and powerful. Yet the first question on finite type invariants remains unanswered:

Problem 2. Honest polynomials are dense in the space of functions. Are finite type invariants dense within the space of all knot invariants? Do they separate knots?

The top derivatives of a multi-variable polynomial form a system of constants that determine that polynomial up to polynomials of lower degree. Likewise the *m*th derivative³ $V^{(m)} = V|_{\mathcal{K}^m} = V\left(\bigwedge^m \bigvee^m\right)$ of a type *m* invariant *V* is a constant in the sense that it does not see the difference between overcrossings and undercrossings and so it is blind to 3D topology. Indeed

$V\left(\times \cdots \times \times \right) - V\left(\times \cdots \times \times \right) = V\left(\times \cdots \times \right) = 0.$

Also, clearly $V^{(m)}$ determines V up to invariants of lower type. Hence a primary tool in the study of finite

type invariants is the study of the "top derivative" $V^{(m)}$, also known as "the weight system of V".

Blind to 3D topology, $V^{(m)}$ only sees the combinatorics of the circle that parameterizes an *m*-singular knot.

On this circle there are *m* pairs of points that are pairwise identified in the image; standardly one indicates those by drawing a circle with *m* chords marked (an "*m*-chord diagram") as above. Let \mathcal{D}_m denote the space of all formal linear combinations with rational coefficients of *m*-chord diagrams. Thus $V^{(m)}$ is a linear functional on \mathcal{D}_m .

I leave it for the reader to figure out or read in [Book, pp. 88] how the following figure easily implies the "4T" relations of the "easy side" of the theorem that follows:

Theorem 3. (*The Fundamental Theorem, details in* [Book]).

ued type m invariant then $V^{(m)}$ satisfies the "4T" relations shown above, and hence it descends to a linear functional on $\mathcal{A}_m := \mathcal{D}_m/4T$. If in addition $V^{(m)} \equiv 0$, then V is of type m - 1.

• (Hard side, slightly misstated by avoiding "framings") For any linear functional W on \mathcal{A}_m there is a rational valued type m invariant V so that $V^{(m)} = W$.

Thus to a large extent the study of finite type invariants is reduced to the finite (though super-exponential in m) algebraic study of \mathcal{R}_m .

Much of the richness of finite type invariants stems from their relationship with Lie algebras. Theorem 4 below suggests this relationship on an abstract level and Theorem 5 makes that relationship concrete.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/

¹Partially self-plagiarized from [BN2].

²Keep this apart from invariants of knots whose values are polynomials, such as the Alexander or the Jones polynomial. A posteriori related, these are a priori entirely different.

³As common in the knot theory literature, in the formulas that follow a picture such as $\times \dots \times \times$ indicates "some knot having *m* double points and a further (right-handed) crossing". Furthermore, when two such pictures appear within the same formula, it is to be understood that the parts of the knots (or diagrams) involved *outside* of the displayed pictures are to be taken as the same.

Theorem 4. [BN1] The space \mathcal{A}_m is isomorphic to the space \mathcal{A}_m^t generated by "Jacobi diagrams in a circle" (chord diagrams that are also allowed to have oriented internal trivalent vertices) that have exactly 2m vertices, modulo the AS, STU and IHX relations. See the figure above.

The key to the proof of Theorem 4 is

the figure above, which shows that the 4T relation is a consequence of two STU relations. The rest is more or less an exercise in induction.

Thinking of internal trivalent vertices as graphical analogs of the Lie bracket, the *AS* relation becomes the anti-commutativity of the bracket, *STU* becomes the equation [x, y] = xy - yx and *IHX* becomes the Jacobi identity. This analogy is made concrete within the following construction, originally due to Penrose [Pe] and to Cvitanović [Cv]. Given a finite dimensional metrized Lie algebra g (e.g., any semi-simple Lie algebra) and a finite-dimensional representation $\rho : g \rightarrow \text{End}(V)$ of g, choose an orthonormal basis⁴ $\{X_a\}_{a=1}^{\dim W}$ of g and some basis $\{v_{\alpha}\}_{\alpha=1}^{\dim V}$ of V, let f_{abc} and $r_{a\beta}^{\gamma}$ be the "structure constants" defined by

$$f_{abc} := \langle [X_a, X_b], X_c \rangle$$
 and $\rho(X_a)(v_\beta) = \sum_{\gamma} r_{a\beta}^{\gamma} v_{\gamma}$.

Now given a Jacobi diagram *D* label its circle-arcs with Greek letters α , β , ..., and its chords with Latin letters *a*, *b*, ..., and map it to a sum as suggested by the following example:

Theorem 5. This construction is well defined, and the basic properties of Lie algebras imply that it respects the AS, STU, and IHX relations. Therefore it defines a linear functional $W_{\mathfrak{g},\rho} : \mathcal{A}_m \to \mathbb{Q}$, for any m.

The last assertion along with Theorem 3 show that associated with any g, ρ and *m* there is a weight system and

3

The above is of course merely a sketch of the beginning of a long story. You can read the details, and some of the rest, in [Book].

What I like about [Book]. Detailed, well thought out, and carefully written. Lots of pictures! Many excellent exercises! A complete discussion of "the algebra of chord diagrams". A nice discussion of the pairing of diagrams with Lie algebras, including examples aplenty. The discussion of the Kontsevich integral (meaning, the proof of the hard side of Theorem 3) is terrific — detailed and complete and full of pictures and examples, adding a great deal to the original sources. The subject of "associators" is huge and worthy of its own book(s); yet in as much as they are related to Vassiliev invariants, the discussion in [Book] is excellent. A great many further topics are touched — multiple ζ -values, the relationship of the Hopf link with the Duflo isomorphism, intersection graphs and other combinatorial aspects of chord diagrams, Rozansky's rationality conjecture, the Melvin-Morton conjecture, braids, *n*-equivalence, etc.

For all these, I'd certainly recommend [Book] to any newcomer to the subject of knot theory, starting with my own students.

However, some proofs other than that of Theorem 3 are repeated as they appear in original articles with only a superficial touch-up, or are omitted altogether, thus missing an opportunity to clarify some mysterious points. This includes Vogel's construction of a non-Lie-algebra weight system and the Goussarov-Polyak-Viro proof of the existence of "Gauss diagram formulas".

What I wish there was in the book, but there isn't. The relationship with Chern-Simons theory, Feynman diagrams, and configuration space integrals, culminating in an alternative (and more "3D") proof of the Fundamental Theorem. This is a major omission.

Why I hope there will be a continuation book, one day. There's much more to the story! There are finite type invariants of 3-manifolds, and of certain classes of 2-dimensional knots in \mathbb{R}^4 , and of "virtual knots", and they each have their lovely yet non-obvious theories, and these theories link with each other and with other branches of Lie theory, algebra, topology, and quantum field theory. Volume 2 is sorely needed.

References

[BN1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423–472.

hence a knot invariant. Thus knots are indeed linked with Lie algebras.

⁴This requirement can easily be relaxed.

- [BN2] D. Bar-Natan, *Finite Type Invariants*, in *Encyclopedia of Mathematical Physics*, (J.-P. Francoise, G. L. Naber and Tsou S. T., eds.) Elsevier, Oxford, 2006 (vol. 2 p. 340).
- [Book] The reviewed book.

My talk yesterday:

- [BL] J. S. Birman and X-S. Lin, *Knot polynomials and Vassiliev's invariants*, Invent. Math. **111** (1993) 225–270.
- [Cv] P. Cvitanović, Group Theory, Birdtracks, Lie's, and Exceptional Groups, Princeton University Press, Princeton 2008 and http://www.birdtracks.eu.
- [Go1] M. Goussarov, A new form of the Conway-Jones polynomial of oriented links, Zapiski nauch. sem. POMI 193 (1991) 4–9 (English translation in *Topology of manifolds and varieties* (O. Viro, editor), Amer. Math. Soc., Providence 1994, 167–172).
- [Go2] M. Goussarov, On n-equivalence of knots and invariants of finite degree, Zapiski nauch. sem. POMI 208 (1993) 152–173 (English translation in Topology of manifolds and varieties (O. Viro, editor), Amer. Math. Soc., Providence 1994, 173– 192).
- [Jo] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103–111.
- [Ko1] M. Kontsevich, Vassiliev's knot invariants, Adv. in Sov. Math., 16(2) (1993) 137–150.

- [Ko2] M. Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics II 97– 121, Birkhäuser Basel 1994.
- [Pe] R. Penrose, Applications of negative dimensional tensors, Combinatorial mathematics and its applications (D. J. A. Welsh, ed.), Academic Press, San-Diego 1971, 221– 244.
- [RT] N. Yu. Reshetikhin and V. G. Turaev, *Ribbon graphs and their invariants derived from quantum groups*, Commun. Math. Phys. **127** (1990) 1–26.
- [Va1] V. A. Vassiliev, Cohomology of knot spaces, in Theory of Singularities and its Applications (Providence) (V. I. Arnold, ed.), Amer. Math. Soc., Providence, 1990.
- [Va2] V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Trans. of Math. Mono. 98, Amer. Math. Soc., Providence, 1992.
- [Wi] E. Witten, *Quantum field theory and the Jones polynomial*, Commun. Math. Phys. **121** (1989) 351–399.

Dror Bar-Natan University of Toronto, Canada December 6, 2019 (first edition February 7, 2013)

More Dror: ωεβ/talks

Geography vs. Identity $\gamma_1 = X | |$ $\gamma_2 = | \times | \gamma_3 = | \times$ 遥 Thanks for inviting me to the Topology so x is γ_2 . Which is better, an emphasis on where things happe Identity view: or on who are the participants? I can't tell: there are advantages At x strand 1 crosses strand 3, so x is σ and disadvantages either way. Yet much of quantum topolog, seems to be heavily and unfairly biased in favour of geography. rd is set by the "T-calculus" Alex der formulas ($\omega \epsilon \beta$ /mac). An S-component tangle T ha Geographers care for placement; for them, braids and tangles have ends at some distin- $\Gamma(T) \in R_S \times M_{S \times S}(R_S) = \left\{ \frac{\omega | S |}{|S| | A|} \right\} \text{ with } R_S := \mathbb{Z}(\{T_a : a \in S\}).$ whose objects are the placements of these shinary "stacking of points. For them, the basic operation is a binary "stacking of $T_1 \sqcup T_2$ S_1 S_2 $\begin{array}{c|c} a & 1 \\ b & 0 \end{array}$ A₁ 0 T^{\pm} A. tangles". They are lead to monoidal categories, braided monoidal ategories, representation theory, and much or most of we call 'quantum topology". $\gamma + \frac{a\delta}{1-\beta} \quad \epsilon + \phi + \frac{a\psi}{1-\beta} \quad \Xi + \phi$ $T_a, T_b \rightarrow T_c$ $\frac{\epsilon}{\Xi}$ dentiters believe that strand ide-S ntity persists even if one crosses or is being crossed. The key opera-on of P_{M_n} acts on V ier Rep $:= \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]^n = R\langle v_1, \dots, v_n \rangle$ by tion is a unary stitching operation m_c^{ab} , and one is lead to study meta-monoids, meta-Hopf-algebras, $\sigma_{ii}v_k = v_k + \delta_{ki}(t_i - 1)(v_i - v_i)$ $j [\xi_{-}] := \xi / V_k \Rightarrow V_k + \delta_{k,j} (t_i - 1) (v_j)$ etc. See ωεβ/reg, ωεβ/kbh. - v() // Expan $(bas3 // G_{1,2} // G_{1,3} // G_{2,3}) = (bas3 // G_{2,3} // G_{1,3} // G_{1,2})$ k S_n acts on R^n by permuting the v_i and the t_i , so the Gassner representation extends to vB_n and then restricts to B_n as a \mathbb{Z} -linear co-dimensional representation. It then descends to PB_n as a finite-(better topology!) eography $\gamma_i \gamma_k = \gamma_k \gamma_i \text{ when } |i - k| > 1$ = B. rank *R*-linear representation, with lengthy non-local formulas. Geographers: Gassner is an obscure partial extension of Burau GB $\gamma_i\gamma_{i+1}\gamma_i=\gamma_{i+1}\gamma_i\gamma_{i+1}$: Burau is a trivial silly reduction of Gassner (captures quantum algebra! ntity $\left(\begin{array}{c} \sigma_{ij}\sigma_{kl} = \sigma_{kl}\sigma_{ij} \text{ when } |\{i, j, k, l\}| = 4 \\ \sigma_{ij}\sigma_{ik}\sigma_{jk} = \sigma_{jk}\sigma_{ik}\sigma_{ij} \text{ when } |\{i, j, k\}| = 3 \end{array} \right) = P_{i}B.$ The Turbo-Gassner Representation. With the s R and V, TG acts on $V \oplus (R^n \otimes V) \oplus (S^2V \otimes V)$ With the same $IB := \langle \sigma_{ij} \rangle \|$ $\begin{aligned} & \mathsf{R}(\mathbf{k}, \mathbf{v}_k, u_k, u_l) \mathbf{v}_k) \; \mathsf{by} \\ & \mathsf{TG}_{(-,j_{-}]}[\mathcal{L}_{-}] := \mathcal{L} \; \mathcal{L} \\ & \mathsf{v}_{h_{-}} \Rightarrow \mathsf{v}_h + \delta_{h,j} \; ((\mathsf{t}_i - 1) \; (\mathsf{v}_j - \mathsf{v}_i) + \mathsf{v}_{i,j} - \mathsf{v}_{i,i}) \; . \end{aligned}$ **Theorem.** Let $S = \{\tau\}$ be the symmetric group. Then vB is both $P_iB \rtimes S \cong B \ast S / (\gamma_i \tau = \tau \gamma_i \text{ when } \tau i = j, \tau(i+1) = (j+1))$ and so PAB is "bigger" then B, and hence quantum algebra does $\delta_{k,i} (\mathbf{u}_j - \mathbf{u}_i) \mathbf{u}_i \mathbf{w}_j,$ $_{,k_-} \Rightarrow \mathbf{v}_{l,k} + (\mathbf{t}_i - \mathbf{1})$ v't see topology very well). 'roof. Going left, $\gamma_i \mapsto \sigma_{i,i+1}(i \ i + 1)$. Going right, if i <map $\sigma_{ij} \mapsto (j - 1 - 2 \dots i)\gamma_{j-1}(i \ i + 1 \dots j)$ and if i > j us $\tau_{ij} \mapsto (j \ j + 1 \dots i)\gamma_j(i \ i - 1 \dots j + 1)$. $\left(\delta_{k,j}\left(\mathbf{v}_{l,j}-\mathbf{v}_{l,i}\right)+\left(\delta_{l,i}-\delta_{l,j}\mathbf{t}_{i}^{-1}\mathbf{t}_{j}\right)\right)$ $(u_k + \delta_{k,j} (t_i - 1) (u_j - u_i)) u_i w_j)$, $(u_k + \delta_{k,j}) (t_i - 1) (u_j - u_i),$ $w_k + (\delta_{k,j} - \delta_{k,i}) (t_i^{-1} - 1) w_j \} // Expand$ Adjoint-Gassn B views of σ_{ij} : {V1, V2, V3, V1.1, V1.2, V1.3, V2.1, V2.2, V2.3, V3.1 Burau Representat $P_{i}B_{in}$ acts on u₁² w₁, u₁² w₂, u₁² w₃ u₂² w₂ $\mathbb{Z}[t^{\pm 1}]^n = R\langle v_1, \dots, v_n \rangle$ by u₂²w₃, u₂ u₃w₁, $u_2 u_3 u_3 v_2 u_1 u_3 u_5 u_3 u_3^2 u_5^2 u_3^2 u_3^2 u_3^2 u_2 u_3 u_3,$ $<math>u_2 u_3 u_3 u_3^2 u_3 u_3^2 u_2 u_3^2 u_3^2 u_3^2;$ $u_2 (/ TG_{13}, 7 TG_{23}) = (bas 3 / / TG_{23} / / TG_{14},$ $Like Gassner, TG is also a representation of <math>PB_n$. $\sigma_{ij}v_k =$ $\delta_{kj}(t$ $-1)(v_{j}$ v_i) /: δι,j := If[i == j, 1, 0]; (G1,2) Werner at the chord diagrams even it belo My talk tomor More Dror: mgB/tall $v_1, v_1 - tv_1 + tv_2, v_3$ $\begin{bmatrix} b_{1,2} // B_{1,3} // B_{2,3} \\ v_1, v_1 - t v_1 + t v_2, v_1 - t v_1 + t v_2 - t^2 v_2 + t^2 v_3 \end{bmatrix}$ $\begin{array}{c} \textbf{as3} // \textbf{B}_{2,3} // \textbf{B}_{1,3} // \textbf{B}_{1,2} \\ \textbf{v}_1, \textbf{v}_1 - \textbf{t} \, \textbf{v}_1 + \textbf{t} \, \textbf{v}_2, \textbf{v}_1 - \textbf{t} \, \textbf{v}_1 + \textbf{t} \, \textbf{v}_2 - \textbf{t}^2 \, \textbf{v}_2 + \textbf{t}^2 \, \textbf{v}_3 \end{array} \right\}$ S_n acts on R^n by permuting the v_i so the Burat representation extends to vB_n and restricts to B_n ith this, γ_i maps $v_i \mapsto v_{i+1}, v_{i+1} \mapsto tv_i + (1-t)v_{i+1}$ and otherwise $v_k \mapsto v_k$.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/

Picture credits: Rope from "The Project Gutenberg eBook, Knots, Splices and Rope Work, by A. Hyatt Verrill", http://www.gutenberg.org/files/13510/13510-h/13510-h.htm. Plane from NASA, http://www.grc.nasa.gov/WWW/k-12/airplane/rotations.html.

Dror Bar-Natan: Talks: Toronto-1912: ωεβ:=http://drorbn.net/to19/

Thanks for inviting me to the Topology session!

Abstract. Which is better, an emphasis on where things happen or on who are the participants? I can't tell; there are advantages and disadvantages either way. Yet much of quantum topology seems to be heavily and unfairly biased in favour of geography.

Geographers care for placement; for them, braids and tangles have ends at some distinguished points, hence they form categories whose objects are the placements of these

points. For them, the basic operation is a binary "stacking of tangles". They are lead to monoidal categories, braided monoidal categories, representation theory, and much or most of we call "quantum topology".

Identiters believe that strand identity persists even if one crosses or is being crossed. The key operation is a unary stitching operation

 m_c^{ab} , and one is lead to study meta-monoids, meta-Hopf-algebras, etc. See $\omega\epsilon\beta/\text{reg}$, $\omega\epsilon\beta/\text{kbh}$.

Geography:

$$GB := \langle \gamma_i \rangle \left| \begin{pmatrix} \gamma_i \gamma_k = \gamma_k \gamma_i \text{ when } |i-k| > 1\\ \gamma_i \gamma_{i+1} \gamma_i = \gamma_{i+1} \gamma_i \gamma_{i+1} \end{pmatrix} = B$$

Identity:

δ /:

 $IB := \langle \sigma_{ij} \rangle \left| \begin{pmatrix} \sigma_{ij} \sigma_{kl} = \sigma_{kl} \sigma_{ij} \text{ when } |\{i, j, k, l\}| = 4\\ \sigma_{ij} \sigma_{ik} \sigma_{jk} = \sigma_{jk} \sigma_{ik} \sigma_{ij} \text{ when } |\{i, j, k\}| = 3 \end{pmatrix} = P_{i}B.$ Theorem. Let $S = \{\tau\}$ be the symmetric group. Then vB is both $P_{i}B \rtimes S \cong B * S \left| (\gamma_{i}\tau = \tau\gamma_{j} \text{ when } \tau i = j, \tau(i+1) = (j+1) \right)$

(and so $P_{\mathcal{B}}$ is "bigger" then B, and hence quantum algebra doesn't see topology very well).

Proof. Going left, $\gamma_i \mapsto \sigma_{i,i+1}(i \ i + 1)$. Going right, if i < jmap $\sigma_{ij} \mapsto (j-1 \ j-2 \ \dots \ i)\gamma_{j-1}(i \ i+1 \ \dots \ j)$ and if i > j use $\sigma_{ij} \mapsto (j \ j+1 \ \dots \ i)\gamma_j(i \ i-1 \ \dots \ j+1)$.

vB views of
$$\sigma_{ij}$$
:

The Burau Representation of PvB_n acts on $R^n := \mathbb{Z}[t^{\pm 1}]^n = R\langle v_1, \dots, v_n \rangle$ by

$$\sigma_{ij}v_k = v_k + \delta_{kj}(t-1)(v_j - v_i).$$

$$\delta_{i_\perp,j_\perp} := \texttt{If}[i = j, \textbf{1}, \textbf{0}]; \qquad \text{or}$$

$$\begin{aligned} &[\mathbf{s}_{1,j} [\mathbf{s}_{-}] := \mathbf{s}' \cdot \mathbf{v}_{k} \Rightarrow \mathbf{v}_{k} + \mathbf{\delta}_{k,j} (\mathbf{t} - \mathbf{1}) (\mathbf{v}_{j} - \mathbf{v}_{i}) // \mathbf{Ex} \\ &(\mathsf{bas3} = \{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\}) // \mathbf{B}_{1,2} \\ &[\mathbf{v}_{1}, \mathbf{v}_{1} - \mathbf{t} \mathbf{v}_{1} + \mathbf{t} \mathbf{v}_{2}, \mathbf{v}_{3}\} \\ &= \mathsf{bas3} // \mathbf{B}_{1,2} // \mathbf{B}_{1,3} // \mathbf{B}_{2,3} \end{aligned}$$

$$\{v_1, v_1 - t v_1 + t v_2, v_1 - t v_1 + t v_2 - t^2 v_2 + t^2 v_3 \}$$

bas3 // B_{2,3} // B_{1,3} // B_{1,2}
$$\{v_1, v_1 - t v_1 + t v_2, v_1 - t v_1 + t v_2 - t^2 v_2 + t^2 v_3 \}$$

 S_n acts on \mathbb{R}^n by permuting the v_i so the Burau representation extends to vB_n and restricts to B_n . With this, γ_i maps $v_i \mapsto v_{i+1}, v_{i+1} \mapsto tv_i + (1-t)v_{i+1}$, and otherwise $v_k \mapsto v_k$.

Geography view:

$$\gamma_1 = \left| \left| \right| \quad \gamma_2 = \left| \left| \left| \right| \quad \gamma_3 = \left| \right| \right| \right| \quad \dots$$

so *x* is γ_2 .

Identity view:

3 At *x* strand 1 crosses strand 3, so *x* is σ_{13} .

The Gold Standard is set by the " Γ -calculus" Alexander formulas ($\omega \epsilon \beta/mac$). An *S*-component tangle *T* has $\Gamma(T) \in R_0 \times M_0$, $g(R_0) = \int \omega |S|$ with $R_0 := \mathbb{Z}((T : a \in S))$:

 $\begin{array}{c|c} b \\ S \\ \hline \phi \\ \phi \\ \psi \\ \Xi \end{array} \xrightarrow{T_a, T_b \to T_c} \left(\begin{array}{c} S \\ S \\ \hline \phi \\ \phi \\ \frac{1-\beta}{1-\beta} \end{array} \xrightarrow{T_b} \xrightarrow{T_b} \left(\begin{array}{c} F_{\frac{1-\beta}{1-\beta}} \\ \phi \\ \frac{1-\beta}{1-\beta} \end{array} \xrightarrow{T_b} \right)$ $\begin{array}{c} The \ Gassner \ Representation \ of \ PB_n \ acts \ on \ V \\ R^n \\ \coloneqq \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]^n = R\langle v_1, \dots, v_n \rangle \ by \end{array}$

 $\sigma_{ii}v_k = v_k + \delta_{ki}(t_i - 1)(v_i - v_i).$

Betty Jane Gassner

 $\begin{array}{l} \mathsf{G}_{i_{-},j_{-}}[\,\mathcal{L}_{-}^{-}] := \mathcal{L}^{\prime} \cdot \mathsf{v}_{k_{-}} \Rightarrow \mathsf{v}_{k} + \delta_{k,j} (\mathsf{t}_{i} - 1) (\mathsf{v}_{j} - \mathsf{v}_{i}) // \mathsf{Expand} & \mathsf{Gassner} \\ (\mathsf{bas3} \, // \, \mathsf{G}_{1,2} \, // \, \mathsf{G}_{1,3} \, // \, \mathsf{G}_{2,3}) := (\mathsf{bas3} \, // \, \mathsf{G}_{2,3} \, // \, \mathsf{G}_{1,3} \, // \, \mathsf{G}_{1,2}) & \mathsf{deserves to} \\ \mathsf{be more} & \mathsf{famous} \end{array}$

 $\begin{array}{c} \overbrace{i} \\ \overbrace{j} \\ k \\ (better topology!) \\ (better topology!) \\ \overbrace{j} \\ (better topology!) \\ \overbrace{j} \\ (better topology!) \\ \overbrace{j} \\ \overbrace{j} \\ (better topology!) \\ \overbrace{j} \atop \overbrace{j} \\ \overbrace{j} \atop \overbrace{j} \\ \overbrace{j} \atop \overbrace{j} \\ \overbrace{j} \atop \atop \atop \atopi} \atop \overbrace{j} \atop \atop \atopi \atop \atop \atopj} \atop \atop \atop \atop \atop \atop \atop i$ \atop \atop \atop \atop i

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/

Dror Bar-Natan: Talks: Columbia-191125: With Roland van der Veen

Abstract. I will explain how the computation of compositions of maps of a certain natural class, from one polynomial ring into another, naturally leads to a certain composition operation of quadratics and to Feynman diagrams. I will also explain, with very little detail, how this is used in the construction of some very well-behaved poly-time computable knot polynomials.

The PBW Principle Lots of algebras are isomorphic as vector spaces to polynomial algebras. So we want to understand arbitrary linear maps between polynomial algebras.

Gentle Agreement. Everything converges!

Convention. For a finite set *A*, let $z_A := \{z_i\}_{i \in A}$ and let $\underline{\zeta}_A := \{z_i^* = \zeta_i\}_{i \in A}$. $(y, b, a, x)^* = (\eta, \beta, \alpha, \xi)$ **The Generating Series** \mathcal{G} : Hom($\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]$) $\to \mathbb{Q}[\zeta_A, z_B]$. **Claim.** $L \in \text{Hom}(\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]) \xrightarrow{\sim}{\mathcal{G}} \mathbb{Q}[z_B][\zeta_A] \ni \mathcal{L}$ via

$$\mathcal{G}(L) := \sum_{n \in \mathbb{N}^A} \frac{\zeta_A^n}{n!} L(z_A^n) = L\left(\mathbb{e}^{\sum_{a \in A} \zeta_a z_a}\right) = \mathcal{L} = \operatorname{greek} \mathcal{L}_{\text{latin}},$$

 $\mathcal{G}^{-1}(\mathcal{L})(p) = \left(p|_{z_a \to \partial_{\zeta_a}} \mathcal{L}\right)_{\zeta_a = 0} \quad \text{for } p \in \mathbb{Q}[z_A].$ Claim. If $L \in \text{Hom}(\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]), M \in \text{Hom}(\mathbb{Q}[z_B] \to \mathbb{Q}[z_C]), \text{ then } \mathcal{G}(L/\!\!/M) = \left(\mathcal{G}(L)|_{z_b \to \partial_{\zeta_b}} \mathcal{G}(M)\right)_{\zeta_b = 0}.$

Basic Examples. 1.
$$\mathcal{G}(id: \mathbb{Q}[y, a, x] \to \mathbb{Q}[y, a, x]) = e^{\eta y + \alpha a + \xi x}$$
.

3. The standard co-commutative coproduct Δ^{i}_{jk} of polynomials is given by $z_i \rightarrow z_j + z_k$. Hence $\mathcal{G}(\Delta^{i}_{jk}) = \left| \begin{array}{c} \mathbb{Q}[z]_i \stackrel{\Delta^{i}_{jk}}{\longrightarrow} \mathbb{Q}[z]_j \otimes \mathbb{Q}[z]_k \\ \| & \| \\ \mathbb{Q}[z_i] \stackrel{\Delta^{i}_{jk}}{\longrightarrow} \mathbb{Q}[z_j, z_k] \end{array} \right|$

Heisenberg Algebras. Let $\mathbb{H} = \langle x, y \rangle / [x, y] = \hbar$ (with \hbar a scalar), let $\mathbb{O}_i : \mathbb{Q}[x_i, y_i] \to \mathbb{H}_i$ is the "*x* before *y*" PBW ordering map and let hm_k^{ij} be the composition

 $\mathbb{Q}[x_i, y_i, x_j, y_j] \xrightarrow{\mathbb{O}_i \otimes \mathbb{O}_j} \mathbb{H}_i \otimes \mathbb{H}_j \xrightarrow{m_k^{ij}} \mathbb{H}_k \xrightarrow{\mathbb{O}_k^{-1}} \mathbb{Q}[x_k, y_k].$ Then $\mathcal{G}(hm_k^{ij}) = e^{\Lambda_h}$, where $\Lambda_h = -\hbar\eta_i\xi_j + (\xi_i + \xi_j)x_k + (\eta_i + \eta_j)y_k.$ **Proof 1.** Recall the "Weyl form of the CCR" $e^{\eta_y}e^{\xi_x} = e^{-\hbar\eta\xi}e^{\xi_x}e^{\eta_y}$, and compute

$$\begin{aligned} \mathcal{G}(hm_k^{ij}) &= e^{\xi_i x_i + \eta_i y_i + \xi_j x_j + \eta_j y_j} / \! / \mathbb{O}_i \otimes \mathbb{O}_j / \! / m_k^{ij} / \! / \mathbb{O}_k^{-1} \\ &= e^{\xi_i x_i} e^{\eta_i y_i} e^{\xi_j x_j} e^{\eta_j y_j} / \! / m_k^{ij} / \! / \mathbb{O}_k^{-1} = e^{\xi_i x_k} e^{\eta_i y_k} e^{\xi_j x_k} e^{\eta_j y_k} / \! / \mathbb{O}_k^{-1} \\ &= e^{-\hbar \eta_i \xi_j} e^{(\xi_i + \xi_j) x_k} e^{(\eta_i + \eta_j) y_k} / \! / \mathbb{O}_k^{-1} = e^{\Lambda_h}. \end{aligned}$$

Proof 2. We compute in a faithful 3D representation ρ of \mathbb{H} :

$$\begin{cases} \hat{\mathbf{x}} = \begin{pmatrix} \theta & 1 & \theta \\ \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix}, \ \hat{\mathbf{y}} = \begin{pmatrix} \theta & \theta & \theta \\ \theta & \theta & \bar{h} \\ \theta & \theta & \theta \end{pmatrix}, \ \hat{\mathbf{c}} = \begin{pmatrix} \theta & \theta & 1 \\ \theta & \theta & \theta \\ \theta & \theta & \theta \end{pmatrix} \};$$
($\mathbf{\omega} \in \beta/h\mathbf{m}$)
$$\{ \hat{\mathbf{x}} \cdot \hat{\mathbf{y}} - \hat{\mathbf{y}} \cdot \hat{\mathbf{x}} = \hbar \hat{\mathbf{c}}, \ \hat{\mathbf{x}} \cdot \hat{\mathbf{c}} = \hat{\mathbf{c}} \cdot \hat{\mathbf{x}}, \ \hat{\mathbf{y}} \cdot \hat{\mathbf{c}} = \hat{\mathbf{c}} \cdot \hat{\mathbf{y}} \}$$
(True, True, True)
$$\Lambda = -\hbar \eta_i \, \hat{\mathbf{c}}_j \, \mathbf{c}_k + (\hat{\mathbf{c}}_i + \hat{\mathbf{c}}_j) \, \mathbf{x}_k + (\eta_i + \eta_j) \, \mathbf{y}_k;$$
Simplify@With[{ $\mathbf{E} = MatrixExp$ },
$$\mathbb{E} [\hat{\mathbf{x}} \, \hat{\mathbf{c}}_i] \cdot \mathbb{E} [\hat{\mathbf{y}} \, \eta_i] \cdot \mathbb{E} [\hat{\mathbf{x}} \, \hat{\mathbf{c}}_j] \cdot \mathbb{E} [\hat{\mathbf{y}} \, \eta_j] =$$
$$\mathbb{E} [\hat{\mathbf{x}} \, \partial_{\mathbf{x}_k} \Lambda] \cdot \mathbb{E} [\hat{\mathbf{y}} \, \partial_{\mathbf{y}_k} \Lambda] \cdot \mathbb{E} [\hat{\mathbf{c}} \, \partial_{\mathbf{c}_k} \Lambda]]$$
True

Thanks for allowing me in Columbia U! $\omega\epsilon\beta:=http://drorbn.net/co19/$ Slides w/ no handout/URL should be banned!

A Real DoPeGDO Example (DoPeGDO:=Docile Perturbed Gaussian Differential Operators). Let $sl_{2+}^{\epsilon} := L\langle y, b, a, x \rangle$ subject to [a, x] = x, $[b, y] = -\epsilon y$, [a, b] = 0, [a, y] = -y, $[b, x] = \epsilon x$, and $[x, y] = \epsilon a + b$. So $t := \epsilon a - b$ is central and if $\exists \epsilon^{-1}$, $sl_{2+}^{\epsilon} \cong sl_2 \oplus \langle t \rangle$. Let $CU := \mathcal{U}(sl_{2+}^{\epsilon})$, and let cm_k^{ij} be the composition below, where $\mathbb{O}_i : \mathbb{Q}[y_i, b_i, a_i, x_i] \to CU_i$ be the PBW ordering map in the order *ybax*:

$$CU_{i} \otimes CU_{j} \xrightarrow{m_{k}^{j}} CU_{k}$$

$$\uparrow^{\bigcirc_{i,j}} \qquad \uparrow^{\bigcirc_{k}}$$

$$\mathbb{Q}[y_{i}, b_{i}, a_{i}, x_{i}, y_{j}, b_{j}, a_{j}, x_{j}] \xrightarrow{cm_{k}^{ij}} \mathbb{Q}[y_{k}, b_{k}, a_{k}, x_{k}]$$
Claim. Let
(all brawn ar

(all brawn and no brains)

$$\Lambda = \left(\eta_i + \frac{e^{-\alpha_i - \epsilon\beta_i}\eta_j}{1 + \epsilon\eta_j\xi_i}\right) y_k + \left(\beta_i + \beta_j + \frac{\log\left(1 + \epsilon\eta_j\xi_i\right)}{\epsilon}\right) b_k + \left(\alpha_i + \alpha_j + \log\left(1 + \epsilon\eta_j\xi_i\right)\right) a_k + \left(\frac{e^{-\alpha_j - \epsilon\beta_j}\xi_i}{1 + \epsilon\eta_j\xi_i} + \xi_j\right) x_k$$

Then $e^{\eta_i y_i + \beta_i b_i + \alpha_i a_i + \xi_i x_i + \eta_j y_j + \beta_j b_j + \alpha_j a_j + \xi_j x_j} / \mathbb{O}_{i,j} / cm_k^{ij} = e^{\Lambda} / \mathbb{O}_k$, and hence $\mathcal{G}(cm_k^{ij}) = e^{\Lambda}$.

Proof. We compute in a faithful 2D representation ρ of CU: $\{\hat{y} = \begin{pmatrix} 0 & 0 \\ \epsilon & 0 \end{pmatrix}, \hat{b} = \begin{pmatrix} 0 & 0 \\ 0 & -\epsilon \end{pmatrix}, \hat{a} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \hat{x} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\}; \quad (\omega \epsilon \beta/sl2)$ $\{\hat{a} \cdot \hat{x} - \hat{x} \cdot \hat{a} = \hat{x}, \hat{a} \cdot \hat{y} - \hat{y} \cdot \hat{a} = -\hat{y}, \hat{b} \cdot \hat{y} - \hat{y} \cdot \hat{b} = -\epsilon \hat{y},$

$$\hat{a} \cdot \hat{x} - \hat{x} \cdot \hat{a} == \hat{x}, \quad \hat{a} \cdot \hat{y} - \hat{y} \cdot \hat{a} == -\hat{y}, \quad \hat{b} \cdot \hat{y} - \hat{y} \cdot \hat{b} == -\epsilon \hat{y},$$

 $\hat{b} \cdot \hat{x} - \hat{x} \cdot \hat{b} == \epsilon \hat{x}, \quad \hat{x} \cdot \hat{y} - \hat{y} \cdot \hat{x} == \hat{b} + \epsilon \hat{a}$

{True, True, True, True, True}
Simplify@With[{E = MatrixExp},

$$\mathbb{E} \begin{bmatrix} \eta_{i} \hat{y} \end{bmatrix} \cdot \mathbb{E} \begin{bmatrix} \beta_{i} \hat{b} \end{bmatrix} \cdot \mathbb{E} \begin{bmatrix} \alpha_{i} \hat{a} \end{bmatrix} \cdot \mathbb{E} \begin{bmatrix} \xi_{i} \hat{x} \end{bmatrix} \cdot \mathbb{E} \begin{bmatrix} \eta_{j} \hat{y} \end{bmatrix} \cdot \mathbb{E} \begin{bmatrix} \beta_{j} \hat{b} \end{bmatrix} \cdot \mathbb{E} \begin{bmatrix} \alpha_{j} \hat{a} \end{bmatrix} \cdot \mathbb{E} \begin{bmatrix} \xi_{j} \hat{x} \end{bmatrix} = \mathbb{E} \begin{bmatrix} \hat{y} \partial_{y_{k}} \Lambda \end{bmatrix} \cdot \mathbb{E} \begin{bmatrix} \hat{b} \partial_{b_{k}} \Lambda \end{bmatrix} \cdot \mathbb{E} \begin{bmatrix} \hat{a} \partial_{a_{k}} \Lambda \end{bmatrix} \cdot \mathbb{E} \begin{bmatrix} \hat{x} \partial_{x_{k}} \Lambda \end{bmatrix}$$

True

Series [Λ , { ϵ , 0, 2}]

$$\begin{aligned} & \left(\beta_{i} + \beta_{j} + \gamma_{j} \xi_{i} \right) + y_{k} \left(\gamma_{i} + e^{-\alpha} \gamma_{j} \right) + \\ & \left(b_{k} \left(\beta_{i} + \beta_{j} + \gamma_{j} \xi_{i} \right) + x_{k} \left(e^{-\alpha_{j}} \xi_{i} + \xi_{j} \right) \right) + \\ & \left(a_{k} \eta_{j} \xi_{i} - \frac{1}{2} b_{k} \eta_{j}^{2} \xi_{i}^{2} - e^{-\alpha_{i}} y_{k} \eta_{j} \left(\beta_{i} + \eta_{j} \xi_{i} \right) - \\ & e^{-\alpha_{j}} x_{k} \xi_{i} \left(\beta_{j} + \eta_{j} \xi_{i} \right) \right) \epsilon + \\ & \left(-\frac{1}{2} a_{k} \eta_{j}^{2} \xi_{i}^{2} + \frac{1}{3} b_{k} \eta_{j}^{3} \xi_{i}^{3} + \frac{1}{2} e^{-\alpha_{i}} y_{k} \eta_{j} \left(\beta_{i}^{2} + 2\beta_{i} \eta_{j} \xi_{i} + 2\eta_{j}^{2} \xi_{i}^{2} \right) + \\ & \frac{1}{2} e^{-\alpha_{j}} x_{k} \xi_{i} \left(\beta_{j}^{2} + 2\beta_{j} \eta_{j} \xi_{i} + 2\eta_{j}^{2} \xi_{i}^{2} \right) \right) \epsilon^{2} + 0 [\epsilon]^{3} \end{aligned}$$

Note 1. If the lower half of the alphabet (a, b, α, β) is regarded as constants, then $\Lambda = C + Q + \sum_{k\geq 1} \epsilon^k P^{(k)}$ is a docile perturbed Gaussian relative to the upper half of the alphabet (x, y, ξ, η) : *C* is a scalar, *Q* is a quadratic, and deg $P^{(k)} \leq 2k + 2$.

Note 2. wt($x, y, \xi, \eta; a, b, \alpha, \beta; \epsilon$) = (1, 1, 1, 1; 2, 0, 0, 2; -2).

Quadratic Casimirs. If $t \in g \otimes g$ is the quadratic Casimir of a semi-simple Lie algebra g, then \mathbb{C}^t , regarded by PBW as an element of $S^{\otimes 2} = \text{Hom}(S(g)^{\otimes 0} \to S(g)^{\otimes 2})$, has a latin-latin dominant Gaussian factor. Likewise for *R*-matrices.

(Baby) **DoPeGDO** := The category with objects finite sets^{†1} and mor($A \rightarrow B$) = { $\mathcal{L} = \omega \exp(Q + P)$ } $\subset \mathbb{Q}[[\zeta_A, z_B, \epsilon]],$

where: • ω is a scalar.^{†2} • Q is a "small" ϵ -free quadratic in $\zeta_A \cup z_B$.^{†3} • P is a "docile perturbation": $P = \sum_{k \ge 1} \epsilon^k P^{(k)}$, where deg $P^{(k)} \le 2k + 2$.^{†4} • Compositions:^{†6} $\mathcal{L}/\!/\mathcal{M} := (\mathcal{L}|_{z_i \to \partial_{\zeta_i}} \mathcal{M})_{r_i=0}$.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/

So What? If V is a representation, then $V^{\otimes n}$ explodes as a function of *n*, while in **DoPeGDO** up to a fixed power of ϵ , the ranks of mor($A \rightarrow B$) grow polynomially as a function of |A| and |B|.

Compositions. In $mor(A \rightarrow B)$, $Q = \sum_{i \in A, j \in B} E_{ij} \zeta_i z_j + \frac{1}{2} \sum_{i, j \in A} F_{ij} \zeta_i \zeta_j + \frac{1}{2} \sum_{i, j \in B} G_{ij} z_i z_j,$ and so (remember, $e^x = 1 + x + xx/2 + xxx/6 + ...)$ A ω_1 B ω_2 A ω CE E_2 E_1 A. Q_1 O_2 Q $E_1E_2 + E_1F_2G_1E_2$ G G $+E_1F_2G_1F_2G_1E_2$ $=\sum_{r=0}^{\infty} E_1 (F_2 G_1)^r E_2$ greek greek latin latin greek latin where • $E = E_1(I - F_2G_1)^{-1}E_2$. • $F = F_1 + E_1 F_2 (I - G_1 F_2)^{-1} E_1^T$. • $G = G_2 + E_2^T G_1 (I - F_2 G_1)^{-1} E_2.$ dat(I $E(\mathbf{C})^{-1}$

messy PDE or using "connected Feynman diagrams" (yet we're still in pure algebra!). Docility is preserved.

DoPeGDO Footnotes. Each variable has a "weight" $\in \{0, 1, 2\}$, and always wt z_i + wt ζ_i = 2.

of a

- †1. Really, "weight-graded finite sets" $A = A_0 \sqcup A_1 \sqcup A_2$.
- $\dagger 2$. Really, a power series in the weight-0 variables^{$\dagger 5$}.
- †3. The weight of Q must be 2, so it decomposes as Q = $Q_{20}+Q_{11}$. The coefficients of Q_{20} are rational numbers while the coefficients of Q_{11} may be weight-0 power series^{†5}.
- †4. Setting wt $\epsilon = -2$, the weight of P is ≤ 2 (so the powers of the weight-0 variables are not constrained)^{$\dagger 5$}.
- ^{†5}. In the knot-theoretic case, all weight-0 power series are rational functions of bounded degree in the exponentials of the weight-0 variables.
- †6. There's also an obvious product

$$\operatorname{mor}(A_1 \to B_1) \times \operatorname{mor}(A_2 \to B_2) \to \operatorname{mor}(A_1 \sqcup A_2 \to B_1 \sqcup B_2).$$

Full DoPeGDO. Compute compositions in two phases:

• A 1-1 phase over the ring of power series in the weight-0 variables, in which the weight-2 variables are spectators.

• A (slightly modified) 2-0 phase over \mathbb{Q} , in which the weight-1 variables are spectators.

Analog. Solve Ax = a, B(x)y = b

Questions. • Are there QFT precedents for "two-step Gaussian integration"?

• In QFT, one saves even more by considering "one-particleirreducible" diagrams and "effective actions". Does this mean anything here?

• Understanding Hom($\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]$) seems like a good cause. Can you find other applications for the technology here?

 $\mathcal{U}QU = \mathcal{U}_{\hbar}(sl_{2+}^{\epsilon}) = A\langle y, b, a, x \rangle \llbracket \hbar \rrbracket$ with $[a, x] = x, [b, y] = -\epsilon y, [a, b] = 0, \gamma$ $[a, y] = -y, [b, x] = \epsilon x$, and $xy - qyx = (1 - AB)/\hbar$, where $q = e^{\hbar \epsilon}$, $A = e^{-\hbar \epsilon a}$, and $B = e^{-\hbar b}$. Also $\Delta(y, b, a, x) = (y_1 + B_1 y_2, b_1 + b_2, a_1 + a_2, x_1 + A_1 x_2)$, $S(y, b, a, x) = (-B^{-1}y, -b, -a, -A^{-1}x)$, and $R = \sum \hbar^{j+k} y^k b^j \otimes a^j x^k / j! [k]_q!$.

Theorem. Everything of value regrading U = CU and/or its quantization U = QU is **DoPeGDO**:

also Cartan's θ , the Dequantizator, and more, and all of their compositions.

There are lots of poly-time-computable well-**Conclusion.** behaved near-Alexander knot invariants: • They extend to tangles with appropriate multiplicative behaviour. • They have cabling and strand reversal formulas. $\omega \epsilon \beta / akt$ The invariant for $sl_{2\perp}^{\epsilon}/(\epsilon^2 = 0)$ (prior art: $\omega \epsilon \beta / Ov$) attains 2,883 distinct values on the 2,978 prime knots with \leq 12 crossings. HOMFLY-PT and Khovanov homology together attain only 2,786 distinct values.

knot	n_{l}^{t} Alexander's ω^{+} genus / ribbo	n knot	n_{t}^{t} Alexander's ω^{+}	genus / ribbon 1	knot	n_{t}^{t} Alexander's ω^{+}	genus / ribbon	
diag	$(\rho'_1)^+$ unknotting # / amph	diag?	$(\rho_1')^+$ un	knotting # / amphi?	diag	$(\rho_1')^+$ unk	notting # / amphi?	
	$(\rho'_2)^+$		$(\rho'_2)^+$			$(\rho'_2)^+$		
\bigcirc	0_1^a 1 0/0		$3_1^a T - 1$	1 / 🗶 🌘	\bigcirc	4^{a}_{1} 3-T	1 / X	
	0 / 0	/ Of	T	1 / 🗙	÷6Y	0	1 / 🖌	
	0	_	$3T^3 - 12T^2 + 26T$	-38		$T^4 - 3T^3 - 15T^2 + 74T$	-110	
A	$5^a_1 T^2 - T + 1$ 2/		5^{a}_{2} 2T-3	1/×	\mathcal{O}	$6^a_1 5-2T$	1 / 🗸	
SP.	$2\dot{T}^{3}+3T$ 2/	: XX	$5\overline{T}-4$	1 / 🗶 🤞	ÇZ –	T-4	1 / 🗙	
	$5T^7 - 20T^6 + 55T^5 - 120T^4 + 217T^3 - 338T^2 + 450T - 510$	-	$-10T^4 + 120T^3 - 487T^2 + 1000$	0547-1362	_	$14T^4 - 16T^3 - 293T^2 + 1098$	8T-1598	
Æ	$6^a_2 - T^2 + 3T - 3$ 2/		$\frac{6^a}{3}$ T ² -3T+5	2/×	d Co	7^a_1 $T^3 - T^2 + T - 1$	3 / 🗙	
8	$T^{\bar{3}} - 4T^2 + 4T - 4$ 1/		0	1 / 🖌	E S	$3T^5 + 5T^3 + 6T$	3 / 🗙	
3T ⁸ -	$21T^7 + 49T^6 + 15T^5 - 433T^4 + 1543T^3 - 3431T^2 + 5482T - 6410$	$4T^8 - 3$	$3T^7 + 121T^6 - 203T^5 - 111T^4 + 1499$	$0T^3 - 4210T^2 + 7186T - 8510$	$7T^{11} - 28T^{10} + 77T^9 - 168T^8 + 322T^7 - 560T^6 + 891T^5 - 1310T^4 + $			
						$1777T^3 - 2238T^2 + 2604T$	-2772	

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/

Proof of the Tangle Characterization of Ribbon Knots (tim gle has 27)strands, here n = 2 $\left| \frac{T}{T} \right| = \frac{1}{\tau} \left| \frac{T}{T} \right| = \frac{1}{\kappa} \left| \frac{T}{T} \right|$ **Theorem.** A knot K is ribbon iff there exists a tangle T whose au closure is the untangle and whose κ closure is *K*. **Proof.** The backward \leftarrow implication is easy: surger at top dog at bottom For the forward implication, follow the following 5 steps: SIGE Parameter 5100 7~90 Step I: In-situ cosmetics. At end: D is a tree of chord-and-arc polygons. N2 Step 2: Near-situ cosmetics. At end: D is tree-band-sum of n unknotted disks. Step 3: Slides. At end: D is a linear-band-sum of n unknotted disks. Step 4: Exposure! The green domain is contractible - so it can be shrank, moved at will (with the blue membrane following along), and expanded back again. At end: D has (n-1) exposed bridges which when turned, make D a union of n unknotted disks. Step 5: Pulling bottom handles avoiding the obstacles. At end: Theorem is proven.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/

Dror Bar-Natan: Talks: UCLA-191101 Everything around sl_{2+}^{ϵ} is **DoPeGDO**. So what?

Thanks for inviting me to UCLA! Continues Rozansky [Ro1,
 ωεβ:=http://drorbn.net/la19/
 Ro2, Ro3] and Overbay [Ov], joint with van der Veen [BV].

Abstract. I'll explain what "everything around" means: classical Knot theorists should rejoice because all this leads to very poand quantum m, Δ , S, tr, R, C, and θ , as well as P, Φ , J, \mathbb{D} , werful and well-behaved poly-time-computable knot invariants. and more, and all of their compositions. What **DoPeGDO** means: Quantum algebraists should rejoice because it's a realistic playthe category of Docile Perturbed Gaussian Differential Operators. ground for testing complicated equations and theories. And what sl_{2+}^{ϵ} means: a solvable approximation of the semi simple Lie algebra sl_2 .

Conventions. 1. For a set *A*, let
$$z_A := \{z_i\}_{i \in A}$$
 and let $\zeta_A := \{z_i^* = \zeta_i\}_{i \in A}$.^{†1} 2. Everything converges!

Less Abstract **DoPeGDO** := The category with objects finite sets^{$\dagger 2$} and mor($A \rightarrow B$): $\{\mathcal{F} = \omega \exp(Q + P)\} \subset \mathbb{Q}[[\zeta_A, z_B, \epsilon]]$ $\mathcal{D}_{\rightarrow}$ $S: U \rightarrow U$ Where: • ω is a scalar.^{†3} • Q is a "small" ϵ -free $m: U \otimes U \rightarrow U$ $\Delta: U \rightarrow U \otimes U$ quadratic in $\zeta_A \cup z_B$.^{†4} • *P* is a "docile perturba-**4D Metrized Lie Algebras** tion": $P = \sum_{k\geq 1} \epsilon^k P^{(k)}$, where deg $P^{(k)} \leq 2k + 2.^{\dagger 5}$ solvable • Compositions:^{†6} cup cap algebras $\mathcal{F}/\!\!/\mathcal{G} = \mathcal{G} \circ \mathcal{F} \coloneqq \left(\mathcal{G}|_{\zeta_i \to \partial_{z_i}} \mathcal{F}\right)_{z_i=0} = \left(\mathcal{F}|_{z_i \to \partial_{\zeta_i}} \mathcal{G}\right)_{z_i=0}$ sl_{2}^{ϵ} $\rightarrow U/wx = xw$ $R \in OU \otimes OU$ $C^{\pm 1} \in QU$ **Cool!** $(V^*)^{\otimes \Sigma} \otimes V^{\otimes S}$ explodes; the ranks of qua-Cartan's θ , the Abelian dratics and bounded-degree polynomials grow the Vassiliev algebra Dequantizator, slowly!^{†7} Representation theory is over-rated! and more.. algebras isomorphic Cool! How often do you see a computational toto $sl_{2+} \coloneqq sl_2 + 1D$ $\Phi \in CU^{\otimes}$ $J \in CU \otimes CU$ olbox so successful? **Our Algebras.** Let $sl_{2+}^{\epsilon} \coloneqq L\langle y, b, a, x \rangle$ subject to [a, x] = x, **Compositions (1).** In mor $(A \to B)$, $Q = \sum_{i \in A, j \in B} E_{ij} \zeta_i z_j + \frac{1}{2} \sum_{i, j \in A} F_{ij} \zeta_i \zeta_j + \frac{1}{2} \sum_{i, j \in B} G_{ij} z_i z_j$

 \mathcal{D} : Hom $(U^{\otimes \Sigma} \to U^{\otimes S}) \to \mathbb{Q}[\![\eta_{\Sigma}, \beta_{\Sigma}, \alpha_{\Sigma}, \xi_{\Sigma}, y_{S}, b_{S}, a_{S}, x_{S}]\!]$. The True PBW theorem for CU (always in the ybax order), or its quantum analog for QU, say that if U = CU or QU then $U^{\otimes S}$ is isomorphic as a vector space to $\mathbb{Q}[y_i, b_i, a_i, x_i]_{i \in S}$ [[\hbar]]; so it is enough to understand Hom($\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]$) for finite sets *A* and *B*. **Claim.** $F \in \text{Hom}(\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]) \xrightarrow{\sim}_{\mathcal{D}} \mathbb{Q}[z_B] \llbracket \zeta_A \rrbracket \ni \mathcal{F} \text{ via}$

$$\mathcal{D}(F) := \sum_{n \in \mathbb{N}^A} \frac{\zeta_A^n}{n!} F(z_A^n) = F\left(\mathbb{e}^{\sum_{a \in A} \zeta_a z_a}\right) = \mathcal{F}$$

$$\mathcal{D}^{-1}(\mathcal{F})(p) = \left(p|_{z_a \to \partial_{\zeta_a}} \mathcal{F}\right)_{\zeta_a = 0} \quad \text{for } p \in \mathbb{Q}[z_A].$$
Claim. Assuming convergence, if $F \in \text{Hom}(\mathbb{Q}[z_A] \to \mathbb{Q}[z_B]),$
 $G \in \text{Hom}(\mathbb{Q}[z_B] \to \mathbb{Q}[z_C]), \mathcal{F} = \mathcal{D}(F), \text{ and } \mathcal{G} = \mathcal{D}(G), \text{ then}$
 $\mathcal{D}(F/\!\!/G) = \left(\mathcal{F}|_{z_i \to \partial_{\zeta_i}} \mathcal{G}\right)_{\zeta_i = 0}.$

And so the title of the talk finally makes sense!

Example. $\mathcal{D}(id: U \to U) = e^{\eta y + \beta b + \alpha a + \xi x}$. **Example.** Let $c\Delta^i_{ik}$: $CU^{\otimes \{i\}} \rightarrow CU^{\otimes \{j,k\}}$ be the standard coproduct, given by $c\Delta_{ik}^i(y_i, b_i, a_i, x_i) = (y_j + y_k, b_j + b_k, a_j + a_k, x_j + a_k, x_$ x_k). Then

$$\mathcal{D}(c\Delta_{jk}^{i}) = c\Delta_{jk}^{i}(e^{\eta_{i}y_{i}+\beta_{i}b_{i}+\alpha_{i}a_{i}+\xi_{i}x_{i}})$$
$$= e^{\eta_{i}(y_{j}+y_{k})+\beta_{i}(b_{j}+b_{k})+\alpha_{i}(a_{j}+a_{k})+\xi_{i}(x_{j}+x_{k})}.$$

Example. The standard commutati- $\mathbb{Q}[z]_i \otimes \mathbb{Q}[z]_j \xrightarrow{m_k^{ij}} \mathbb{Q}[z]_k \\ \| \\ \mathbb{Q}[z_i, z_j] \xrightarrow{m_k^{ij}} \mathbb{Q}[z_k]$ ve product m_k^{ij} of polynomials is given by $z_i, z_j \rightarrow z_k$. Hence $\mathcal{D}(m_k^{ij}) =$ $m_k^{ij}(\mathbb{e}^{\zeta_i z_i + \zeta_j z_j}) = \mathbb{e}^{(\zeta_i + \zeta_j) z_k}.$

A real DoPeGDO Example. Let cm_k^{ij} : $CU_i \otimes CU_j \rightarrow CU_k$ be "classical multiplication" for sl_{2+}^{ϵ} , and let $\mathbb{O}_i \colon \mathbb{Q}[y_i, b_i, a_i, x_i] \to$ CU_i be the PBW ordering map.

$$\begin{array}{ccc} CU_i \otimes CU_j & \xrightarrow{cm_k^{i_j}} & CU_k \\ & & \uparrow \circ_{i,j} & & \uparrow \circ_k \\ \mathbb{Q}[y_i, b_i, a_i, x_i, y_j, b_j, a_j, x_j] & & \mathbb{Q}[y_k, b_k, a_k, x_k] \end{array}$$

Claim. Let

$$\Lambda = \left(\eta_i + \frac{e^{-\alpha_i - \epsilon\beta_i}\eta_j}{1 + \epsilon\eta_j\xi_i}\right)y_k + \left(\beta_i + \beta_j + \frac{\log\left(1 + \epsilon\eta_j\xi_i\right)}{\epsilon}\right)b_k + \left(\alpha_i + \alpha_j + \log\left(1 + \epsilon\eta_j\xi_i\right)\right)a_k + \left(\frac{e^{-\alpha_j - \epsilon\beta_j}\xi_i}{1 + \epsilon\eta_j\xi_i} + \xi_j\right)x_k$$

Then $e^{\eta_i y_i + \beta_i b_i + \alpha_i a_i + \xi_i x_i + \eta_j y_j + \beta_j b_j + \alpha_j a_j + \xi_j x_j} / \!\!/ \mathbb{O}_{i,j} / \!\!/ \mathbf{C}_{k,j}$ and hence $\mathcal{D}(cm_k^{ij}) = \mathbb{e}^{\Lambda}$ and cm_k^{ij} is DoPeGDO.

Proof. We compute in a faithful 2D representation $z \mapsto \hat{z}$ of *CU*: $(\omega \epsilon \beta/cm)$

$$\begin{aligned} &\mathsf{HL}[\mathscr{E}_{-}] := \mathsf{Style}[\mathscr{E}, \mathsf{Background} \to \mathsf{If}[\mathsf{TrueQ}@\mathscr{E}, \blacksquare, \blacksquare]];\\ &\left\{ \hat{y} = \begin{pmatrix} 0 & 0 \\ \epsilon & 0 \end{pmatrix}, \hat{b} = \begin{pmatrix} 0 & 0 \\ 0 & -\epsilon \end{pmatrix}, \hat{a} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \hat{x} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\};\\ &\mathsf{HL} /@\left\{ \hat{a}.\hat{x} - \hat{x}.\hat{a} = \hat{x}, \ \hat{a}.\hat{y} - \hat{y}.\hat{a} = -\hat{y}, \ \hat{b}.\hat{y} - \hat{y}.\hat{b} = -\epsilon \hat{y},\\ &\hat{b}.\hat{x} - \hat{x}.\hat{b} = \epsilon \hat{x}, \ \hat{x}.\hat{y} - \hat{y}.\hat{x} = \hat{b} + \epsilon \hat{a} \right\} \end{aligned}$$

{True, True, True, True, True}

HL@Simplify@With [{E = MatrixExp}, $\mathbb{E}\left[\eta_{i}\,\hat{\mathbf{y}}\right].\mathbb{E}\left[\beta_{i}\,\hat{\mathbf{b}}\right].\mathbb{E}\left[\alpha_{i}\,\hat{\mathbf{a}}\right].\mathbb{E}\left[\xi_{i}\,\hat{\mathbf{x}}\right].\mathbb{E}\left[\eta_{j}\,\hat{\mathbf{y}}\right].\mathbb{E}\left[\beta_{j}\,\hat{\mathbf{b}}\right].$ $\mathbb{E}\left[\alpha_{j} \, \hat{a}\right] \cdot \mathbb{E}\left[\xi_{j} \, \hat{x}\right] = \mathbb{E}\left[\hat{y} \, \partial_{y_{k}} \Lambda\right] \cdot \mathbb{E}\left[\hat{b} \, \partial_{b_{k}} \Lambda\right] \cdot \mathbb{E}\left[\hat{a} \, \partial_{a_{k}} \Lambda\right].$ $\mathbb{E}\left[\hat{\mathbf{X}} \partial_{\mathbf{x}_{\mathbf{k}}} \Lambda\right]$

$$\begin{aligned} & \mathsf{Series}\left[\mathbf{A}, \left\{\epsilon, \mathbf{0}, \mathbf{1}\right\}\right] \\ & (\mathbf{a}_{k} \ (\alpha_{i} + \alpha_{j}) + \mathbf{y}_{k} \ (\eta_{i} + \mathbf{e}^{-\alpha_{i}} \ \eta_{j}) + \\ & \mathbf{b}_{k} \ (\beta_{i} + \beta_{j} + \eta_{j} \ \xi_{i}) + \mathbf{x}_{k} \ (\mathbf{e}^{-\alpha_{j}} \ \xi_{i} + \xi_{j}) \) + \\ & \left(\mathbf{a}_{k} \ \eta_{j} \ \xi_{i} - \frac{1}{2} \ \mathbf{b}_{k} \ \eta_{j}^{2} \ \xi_{i}^{2} - \mathbf{e}^{-\alpha_{i}} \ \mathbf{y}_{k} \ \eta_{j} \ (\beta_{i} + \eta_{j} \ \xi_{i}) \ - \\ & \mathbf{e}^{-\alpha_{j}} \ \mathbf{x}_{k} \ \xi_{i} \ (\beta_{j} + \eta_{j} \ \xi_{i}) \ \right) \ \in + \mathbf{O}[\epsilon]^{2} \end{aligned}$$

(Shame, but this technique fails for QU).

Claim. In OU, R is DoPeGDO. **Proof.** Recall that with $q = e^{\hbar \epsilon}$, $R = \sum \bar{h^{j+k} y^k b^j \otimes a^j x^k / j! [k]_q!} = \mathbb{O}\left(\mathrm{e}^{\hbar b_1 a_2} \mathrm{e}_q^{\hbar y_1 x_2} \right).$

Now expand $e_q^{\hbar y_1 x_2}$ in powers of ϵ using:

Faddeev's Formula (In as much as we can tell, first appeared without proof in Faddeev [Fa], rediscovered and proven in Quesne [Qu], and again with easier proof, in Zagier [Za]). With $[n]_q \coloneqq \frac{q^{n-1}}{q-1}$, with $[n]_q! \coloneqq [1]_q[2]_q \cdots [n]_q$ and with $\mathbb{C}_q^x \coloneqq$ $\sum_{n\geq 0} \frac{x^n}{[n]_a!}$, we have

$$\log \mathbb{e}_q^x = \sum_{k \ge 1} \frac{(1-q)^k x^k}{k(1-q^k)} = x + \frac{(1-q)^2 x^2}{2(1-q^2)} + \dots$$

Proof. We have that $\mathbb{e}_q^x = \frac{\mathbb{e}_q^{q^x} - \mathbb{e}_q^x}{qx-x}$ ("the *q*-derivative of \mathbb{e}_q^x is itself"), and hence $\mathbb{e}_q^{qx} = (1 + (1 - q)x)\mathbb{e}_q^x$, and

$$\log e_q^{qx} = \log(1 + (1 - q)x) + \log e_q^x.$$

Writing $\log e_q^x = \sum_{k\geq 1} a_k x^k$ and comparing powers of x, we get $q^k a_k = -(1-q)^k/k + a_k$, or $a_k = \frac{(1-q)^k}{k(1-q^k)}$.

Compositions (2). Recall that with all indices *i* running in some set B,

$$\mathcal{F}/\!\!/\mathcal{G} = \left(\mathcal{F}|_{z_i \to \partial_{\zeta_i}}\mathcal{G}\right)_{\zeta_i=0} \stackrel{(1)}{=} \left. e^{\sum \partial_{z_i} \partial_{\zeta_i}} (\mathcal{F}\mathcal{G}) \right|_{z_i=\zeta_i=0}, \quad \stackrel{(1) \text{ Strictly speaking true only when }}{\underset{B \cap (A \cup C) = \emptyset}{\longrightarrow}}$$
so in general we wish to understand

$$[F:\mathcal{E}]_{P} := e^{\frac{1}{2}\sum_{i,j\in B}F_{ij}\partial_{z_{i}}\partial_{z_{j}}\mathcal{E}}$$
 and $\langle F:\mathcal{E}\rangle$

 $\forall \mathcal{E} \text{ and } \langle F \colon \mathcal{E} \rangle_B \coloneqq [F \colon \mathcal{E}]_B|_{z_B \to 0},$ where \mathcal{E} is a docile perturbed Gaussian. The following lemma allows us to restrict to the case where \mathcal{E} has no B-B quadratic part:

Lemma 1. With convergences left to the reader,

$$\left\langle F \colon \mathcal{E} \, \mathbb{e}^{\frac{1}{2} \sum_{i,j \in B} G_{ij} z_i z_j} \right\rangle_B = \det(1 - GF)^{-1/2} \left\langle F(1 - GF)^{-1} \colon \mathcal{E} \right\rangle_B.$$

The next lemma dispatches the case where \mathcal{E} has a *B*-linear part: **Lemma 2.** $\langle F : \mathcal{E} \oplus \hat{\Sigma}_{i \in B} y_i z_i \rangle_B = \oplus^{\frac{1}{2} \sum_{i,j \in B} F_{ij} y_i y_j} \langle F : \mathcal{E}|_{z_B \to z_B + F y_B} \rangle_B$. Finally, we deal with the docile perturbation case:

Lemma 3. With an extra variable λ , $Z_{\lambda} := \log[\lambda F : e^{P}]_{B}$ satisfies and is determined by the following PDE / IVP:

$$Z_{0} = P \text{ and } \partial_{\lambda} Z_{\lambda} = \frac{1}{2} \sum_{i,j \in B} F_{ij} \left(\partial_{z_{i}} \partial_{z_{j}} Z_{\lambda} + (\partial_{z_{i}} Z_{\lambda}) (\partial_{z_{j}} Z_{\lambda}) \right).$$

$$\overset{e^{F/2}}{\bigoplus} \overset{e^{G/2}}{\bigoplus} \overset{e^{F/2}}{\bigoplus} \overset{y}{\bigoplus} \overset{e^{AF/2}}{\bigoplus} \overset{e^{P}}{\bigoplus} \overset{e^{P}}{\bigoplus} Z_{\lambda} = \sum_{\substack{\text{connected} \\ \text{diagrams}}} \downarrow$$
Lemma 1 Lemma 2 Lemma 3

Complexity to ϵ^k , for an *n*-xing width w knot (by [LT], $w \in O(\sqrt{n})$, is $O(n^2 w^{2k+2} \log n) = O(n^{k+3} \log n)$ integer operations.

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907, http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.

(all brawn and no brains)

A Partial To Do List.

- Understand tr and links.
- Implement Φ , J. Determine the appropriate wt-0 ground ring.
- Implement the "dequantizators".
- Understand denominators and get rid of them.
- Implement zipping at the log-level.
- Clean the program and make it efficient.
- Run it for all small knots and links, at k = 3, 4.
- Understand the centre and figure out how to read the output.
- Is the "+" really necessary in sl_{2+}^{ϵ} ? Why?
- Extend to *sl*₃ and beyond.
- Describe a genus bound and a Seifert formula.
- Obtain "Gauss-Gassner formulas" ($\omega \epsilon \beta / NCSU$).
- Relate with the representation theory dogma, with Melvin-Morton-Rozansky and with Rozansky-Overbay.

- Understand the braid group representations that arise.
- Relate with finite-type (Vassiliev) invariants.
- Find a topological interpretation/foundation. The Garoufalidis Rozansky "loop expansion" [GR]?
- Figure out the action of the Cartan automorphism.
- Understand "the subspace of classical knots / tangles".
- Disprove the ribbon-slice conjecture!
- Figure out the action of the Weyl group.
- Use to study "Ševera quantization".
- Do everything at the "arrow diagram" level of finite-type invariants of (rotational) virtual tangles.
- Find "internal" proofs of consistency.
- What else can you do with the "solvable approximations"?
- And with the "Gaussian compositions" technology?

Warning. Some implementation details match earlier versions of the theory.

The Zipping Theorem. If *P* has a finite ζ -degree and \tilde{q} is the inverse matrix of 1 - q: $(\delta_j^i - q_j^i)\tilde{q}_k^j = \delta_k^i$, then $\langle P(z_i, \zeta^j) e^{c+\eta^j z_i + y_j \zeta^j + q_j^j z_i \zeta^j} \rangle$

$$= |\tilde{q}| e^{c+\eta^{i} \tilde{q}_{i}^{k} y_{k}} \left\langle P\left(\tilde{q}_{i}^{k}(z_{k}+y_{k}), \zeta^{j}+\eta^{i} \tilde{q}_{i}^{j}\right) \right\rangle.$$

The "Speedy" Engine

 $\omega\epsilon\beta/engine$

Internal Utilities

Canonical Form: CCF[8_] := **PP_{CCF}@ExpandDenominator@** $\label{eq:spandNumerator@PP_{Together}@Together[PP_{Exp}[$ Expand [\mathcal{E}] //. $e^{X_{-}} e^{Y_{-}} \Rightarrow e^{X+Y}$ /. $e^{X_{-}} \Rightarrow e^{\mathsf{CCF}[X]}$]; CF[8_List] := CF /@ 8; CF[sd_SeriesData] := MapAt[CF, sd, 3]; CF[8] := PP_{CF}@Module[{vs = Cases [\mathcal{S} , (y | b | t | a | x | η | β | τ | α | ξ)_, ∞] \bigcup {y, b, t, a, x, η , β , τ , α , ξ }, Total[CoefficientRules[Expand[8], vs] /. $(ps \rightarrow c_) \Rightarrow CCF[c] (Times @@vs^{ps})]$ 1; $CF[\mathcal{E}_{\mathbb{E}}] := CF / @ \mathcal{E};$ $\mathsf{CF}[\mathbb{E}_{sp__}[\mathcal{E}_{s__}]] := \mathsf{CF} / @ \mathbb{E}_{sp}[\mathcal{E}_{s}];$ The Kronecker δ: $K\delta /: K\delta_{i_{j_{1}}} := If[i === j, 1, 0];$ Equality, multiplication, and degree-adjustment of perturbed Gaussians; $\mathbb{E}[L, Q, P]$ stands for $e^{L+Q}P$: $E /: E[L1_, Q1_, P1_] = E[L2_, Q2_, P2_] :=$ CF[L1 == L2] ∧ CF[Q1 == Q2] ∧ CF[Normal[P1 - P2] == 0]; $E /: E[L1_, Q1_, P1_] \times E[L2_, Q2_, P2_] :=$ $\mathbb{E}[L1 + L2, Q1 + Q2, P1 * P2];$ $\mathbb{E}[L_{,Q_{,P_{}}}]_{\sharp k_{}} := \mathbb{E}[L, Q, \text{Series}[\text{Normal}@P, \{\epsilon, 0, \$k\}]];$

Zip and Bind

Variables and their duals:

 $\{t^*, b^*, y^*, a^*, x^*, z^*\} = \{\tau, \beta, \eta, \alpha, \xi, \xi\}; \\ \{\tau^*, \beta^*, \eta^*, \alpha^*, \xi^*, \xi^*\} = \{t, b, y, a, x, z\}; \\ (u_i)^* := (u^*)_i;$

Upper to lower and lower to Upper:

 $\begin{aligned} & \mathsf{U21} = \{\mathsf{B}_{i_-}^{p_-} : \Rightarrow \mathsf{e}^{-p\,\hbar\,\gamma\,\mathsf{b}_i}, \, \mathsf{B}_{-}^{p_-} : \Rightarrow \mathsf{e}^{-p\,\hbar\,\gamma}\mathsf{b}, \, \mathsf{T}_{i_-}^{p_-} : \Rightarrow \mathsf{e}^{p\,\hbar\,\tau}_i, \\ & \mathsf{T}^{p_-} : \Rightarrow \mathsf{e}^{p\,\hbar\,\tau}, \, \mathscr{R}_{i_-}^{p_-} : \Rightarrow \mathsf{e}^{p\,\gamma\,\alpha_i}, \, \mathscr{R}^{p_-} : \Rightarrow \mathsf{e}^{p\,\gamma\,\alpha}\}; \\ & \mathsf{12U} = \{\mathsf{e}^{c_-} \cdot \mathsf{b}_{i_-}^{+d_-} : \Rightarrow \mathsf{B}_{i_-}^{-c/(\,\hbar\,\gamma)} \; \mathsf{e}^d, \; \mathsf{e}^{c_-} \cdot \mathsf{b}_{+_-}^{+d_-} : \Rightarrow \mathsf{B}^{-c/(\,\hbar\,\gamma)} \; \mathsf{e}^d, \\ & \mathsf{e}^{c_-} \cdot \mathsf{t}_{i_-}^{+d_-} : \Rightarrow \mathsf{T}_{i_-}^{c/\hbar} \; \mathsf{e}^d, \; \mathsf{e}^{c_-} \cdot \mathsf{t}_{+_-}^{+d_-} : \Rightarrow \mathsf{T}^{c/\hbar} \; \mathsf{e}^d, \\ & \mathsf{e}^{c_-} \cdot \mathfrak{a}_{i_-}^{+d_-} : \Rightarrow \mathcal{R}_{i_-}^{c/\gamma} \; \mathsf{e}^d, \; \mathsf{e}^{c_-} \cdot \mathfrak{a}_{+_-}^{+d_-} : \Rightarrow \mathcal{R}^{c/\gamma} \; \mathsf{e}^d, \\ & \mathsf{e}^{\mathcal{E}} : \Rightarrow \mathsf{e}^{\mathsf{Expand} \otimes \mathcal{E}}\}; \end{aligned}$

Derivatives in the presence of exponentiated variables:

$$\begin{split} & \mathsf{D}_{\mathsf{b}}[f_{-}] := \partial_{\mathsf{b}}f - \hbar \lor \mathsf{B} \, \partial_{\mathsf{B}}f; \ & \mathsf{D}_{\mathsf{b}_{i_{-}}}[f_{-}] := \partial_{\mathsf{b}_{i}}f - \hbar \lor \mathsf{B}_{i} \, \partial_{\mathsf{B}_{i}}f; \\ & \mathsf{D}_{\mathsf{t}}[f_{-}] := \partial_{\mathsf{t}}f + \hbar \mathsf{T} \, \partial_{\mathsf{T}}f; \ & \mathsf{D}_{\mathsf{t}_{i_{-}}}[f_{-}] := \partial_{\mathsf{t}_{i}}f + \hbar \mathsf{T}_{i} \, \partial_{\mathsf{T}_{i}}f; \\ & \mathsf{D}_{\alpha}[f_{-}] := \partial_{\alpha}f + \lor \mathscr{R} \, \partial_{\mathscr{R}}f; \ & \mathsf{D}_{\alpha_{i_{-}}}[f_{-}] := \partial_{\alpha_{i}}f + \lor \mathscr{R}_{i} \, \partial_{\mathscr{R}_{i}}f; \\ & \mathsf{D}_{\mathsf{v}_{-}}[f_{-}] := \partial_{\mathsf{v}}f; \ & \mathsf{D}_{\{\mathsf{v}_{-},\mathsf{0}\}}[f_{-}] := f; \ & \mathsf{D}_{\{\}}[f_{-}] := f; \\ & \mathsf{D}_{\{\mathsf{v}_{-},\mathsf{n}_{-}Integer\}}[f_{-}] := \mathsf{D}_{\mathsf{v}}[\mathsf{D}_{\{\mathsf{v},\mathsf{n-1}\}}[f]]; \\ & \mathsf{D}_{\{\mathsf{L}_{\perp}\mathsf{ist},\mathsf{L}_{--}\}}[f_{-}] := \mathsf{D}_{\{\mathsf{L}s}\}[\mathsf{D}_{\mathsf{L}}[f]]; \end{split}$$

Finite Zips:

 $\begin{aligned} & \text{collect}[sd_SeriesData, \mathcal{L}_{-}] := \\ & \text{MapAt}[\text{collect}[\#, \mathcal{L}] \&, sd, 3]; \\ & \text{collect}[\mathcal{E}_{-}, \mathcal{L}_{-}] := & \text{PP}_{\text{collect}} @ \text{Collect}[\mathcal{E}, \mathcal{L}_{-}]; \\ & \text{Zip}_{\mathcal{L}S}_{-}[P_{S}_\text{List}] := & \text{Zip}_{\mathcal{L}S} / @ Ps; \\ & \text{Zip}_{\mathcal{L}S}_{-}[P_{-}] := & \text{PP}_{\text{Zip}}[\\ & \left(\text{collect}[P / / & \text{Zip}_{\mathcal{L}S}], \mathcal{L}_{-}] / \cdot f_{-} \cdot \mathcal{L}_{-}^{\mathcal{L}} :\Rightarrow \left(\mathsf{D}_{\{\mathcal{L}^{*},d\}}[f] \right) \right) / \cdot \\ & \quad \mathcal{L}^{*} \rightarrow 0 / \cdot \left(\left(\mathcal{L}^{*} / \cdot \{b \rightarrow B, t \rightarrow T, \alpha \rightarrow \Re\} \right) \rightarrow 1 \right) \end{aligned}$

QZip implements the "Q-level zips" on $\mathbb{E}(L, Q, P) = e^{L+Q} P(\epsilon)$. Such zips regard the *L* variables as scalars.

```
\begin{aligned} & \text{QZip}_{\mathcal{S}^{2}-List} @ \mathbb{E} \left[ L_{-}, Q_{-}, P_{-} \right] := \\ & \text{PP}_{\text{QZip}} @ \text{Module} \left[ \left\{ \zeta, z, zs, c, ys, \eta s, qt, zrule, \zeta rule, out \right\}, \\ & zs = \text{Table} \left[ \zeta^{*}, \left\{ \zeta, \zeta^{*} \right\} \right]; \\ & c = CF \left[ Q /. \text{ Alternatives } @ (\zeta^{*} \cup zs) \rightarrow 0 \right]; \\ & ys = CF @ \text{Table} \left[ \partial_{\zeta} \left( Q /. \text{ Alternatives } @ zs \rightarrow 0 \right), \\ & \left\{ \zeta, \zeta^{*} \right\} \right]; \\ & \eta s = CF @ \text{Table} \left[ \partial_{z} \left( Q /. \text{ Alternatives } @ \zeta^{*} s \rightarrow 0 \right), \left\{ z, zs \right\} \right]; \\ & qt = CF @ \text{Inverse} @ \text{Table} \left[ K \delta_{z, \zeta^{*}} - \partial_{z, \zeta} Q, \left\{ \zeta, \zeta^{*} \right\}, \left\{ z, zs \right\} \right]; \\ & zrule = \text{Thread} \left[ zs \rightarrow CF \left[ qt. \left( zs + ys \right) \right] \right]; \\ & \zeta rule = \text{Thread} \left[ \zeta^{*} s \rightarrow \zeta^{*} s + \eta s. qt \right]; \\ & CF / @ \mathbb{E} \left[ L, c + \eta s. qt. ys, \\ & \text{Det} \left[ qt \right] \text{Zip}_{\mathcal{C}^{*}} \left[ P /. \left( zrule \bigcup \zeta^{*} rule \right) \right] \right]; \end{aligned}
```

LZip implements the "*L*-level zips" on $\mathbb{E}(L, Q, P) = Pe^{L+Q}$. Such zips regard all of Pe^Q as a single" *P*". Here the *z*'s are *b* and α and the ζ 's are β and *a*.

```
\mathsf{LZip}_{\mathcal{S}^{\mathsf{S}}\ \text{List}}@\mathbb{E}\left[L_{,Q_{,P_{}}\right] :=
   PP_{LZip}@Module[{\zeta, z, zs, Zs, c, ys, \etas, lt, zrule,
        Zrule, grule, 01, EE0, E0},
       zs = Table[<sup>c</sup>, {<sup>c</sup>, <sup>c</sup>s}];
       Zs = zs /. {b \rightarrow B, t \rightarrow T, \alpha \rightarrow \Re};
       c = L / . Alternatives @@ (\zeta s \cup zs) \rightarrow 0 / .
          Alternatives @@ Zs \rightarrow 1;
       ys = Table [\partial_{\mathcal{C}}(L / . \text{ Alternatives } @@ zs \rightarrow 0), \{\zeta, \zeta S\}];
       \eta s = Table[\partial_z (L /. Alternatives @@ \zeta s \rightarrow 0), \{z, zs\}];
       lt = Inverse@Table[K\delta_{z,\zeta^*} - \partial_{z,\zeta}L, {\zeta, \zetas}, {z, zs}];
       zrule = Thread[zs \rightarrow lt.(zs + ys)];
       Zrule = Join[zrule,
          zrule/.
            r \text{ Rule} \Rightarrow ((U = r[[1]] / . \{b \rightarrow B, t \rightarrow T, \alpha \rightarrow \Re\}) \rightarrow
                   (U /. U21 /. r //. 12U))];
       grule = Thread[gs \rightarrow gs + \eta s.lt];
       Q1 = Q /. (Zrule \bigcup  grule);
       EEQ[ps___] :=
         EEQ[ps] =
          \mathbf{PP}_{\mathsf{EEQ}} \otimes \left( \mathsf{CF} \left[ e^{-Q1} \mathsf{D}_{\mathsf{Thread}} \left[ \{zs, \{ps\}\} \right] \right] e^{Q1} \right] / .
                {Alternatives @@ zs \rightarrow 0, Alternatives @@ Zs \rightarrow 1};
       CF@E[c + \etas.lt.ys,
           Q1 /. {Alternatives @@ zs \rightarrow 0, Alternatives @@ Zs \rightarrow 1},
          Det[lt]
             (Zip<sub>ζs</sub>[(EQ@@zs) (P/. (Zrule∪grule))] /.
                  Derivative[ps___][EQ][___] ⇒ EEQ[ps] /.
                 [EQ \rightarrow 1) ];
```

```
\begin{split} & B_{\{i}[L_{-}, R_{-}] := LR; \\ & B_{\{is_{-}\}}[L_{-}\mathbb{E}, R_{-}\mathbb{E}] := PP_{B}@Module[\{n\}, \\ & Times[ \\ & L /. Table[(v: b | B | t | T | a | x | y)_{i} \rightarrow V_{nei}, \\ & \{i, \{is\}\}], \\ & R /. Table[(v: \beta | \tau | \alpha | \mathcal{R} | \xi | \eta)_{i} \rightarrow V_{nei}, \{i, \{is\}\}] \\ & ] // LZip_{JoineeTable}[\{\beta_{nei}, \tau_{nei}, a_{nei}\}, \{i, \{is\}\}] // \\ & QZip_{JoineeTable}[\{\xi_{nei}, y_{nei}\}, \{i, \{is\}\}]]; \\ & B_{is_{--}}[L_{-}, R_{-}] := B_{\{is\}}[L, R]; \end{split}
```

E morphisms with domain and range.

$\mathsf{CF} \cong \mathsf{Module} [\{ \mathsf{L}, \Lambda 0 = \mathsf{Limit} [\Lambda, \epsilon \to 0] \},$

```
\mathbb{E}_{dr}\left[\mathsf{L}=\Lambda 0 \ /. \ (\eta \mid \mathsf{y} \mid \boldsymbol{\xi} \mid \mathsf{x}) \rightarrow \mathsf{0}, \ \Lambda 0 - \mathsf{L}, \ \mathsf{e}^{\Lambda - \Lambda 0}\right]_{\mathsf{str}} \ /. \ \mathsf{12U}\right]
```

Exponentials as needed.

Task. Define $\exp_{m,i,k}[P]$ to compute $e^{\mathbb{Q}(P)}$ to ϵ^k in the using the $m_{i,i \to i}$ multiplication, where P is an ϵ -dependent near-docile element, giving the answer in **E**-form. Methodology. If $P_0 := P_{\epsilon=0}$ and $e^{\lambda \mathbb{Q}(P)} = \mathbb{Q}(e^{\lambda P_0} F(\lambda))$, then $F(\lambda = 0) = 1$ and we have: $\mathbb{O}(e^{\lambda P_0}(P_0 F(\lambda) + \partial_{\lambda} F)) = \mathbb{O}(\partial_{\lambda} e^{\lambda P_0} F(\lambda)) =$ $\partial_{\lambda} \mathbb{O}(\boldsymbol{e}^{\lambda P_{0}} F(\lambda)) = \partial_{\lambda} \boldsymbol{e}^{\lambda \mathbb{O}(P)} = \boldsymbol{e}^{\lambda \mathbb{O}(P)} \mathbb{O}(P) = \mathbb{O}(\boldsymbol{e}^{\lambda P_{0}} F(\lambda)) \mathbb{O}(P)$ This is a linear ODE for *F*. Setting inductively $F_k = F_{k-1} + \epsilon^k \phi$ we find that $F_0 = 1$ and solve for φ . (* Bug: The first line is valid only if $\mathbb{O}(e^{P_0}) = e^{\mathbb{O}(P_0)}$. *) $Exp_{m,i} (P_] := Module [\{LQ = Normal@P / . \in \rightarrow 0\},$ \mathbb{E} [LQ /. (x | y)_i \rightarrow 0, LQ /. (b | a | t)_i \rightarrow 0, 1]]; $Exp_{m,i,k}$ [P_] := Block [{k = k}, Module [{P0, λ , φ , φ s, F, j, rhs, eqn, pows, at0, at λ }, $P0 = Normal@P / . \in \rightarrow 0;$ $F = Normal@Last@Exp_{m,i,k-1}[\lambda P];$ While[rhs = m_{i,j→i} $\mathbb{E}_{\{\} \to \{i\}} [\lambda \mathsf{P0} / . (\mathbf{x} | \mathbf{y})_i \to \mathbf{0}, \lambda \mathsf{P0} / . (\mathbf{b} | \mathbf{a} | \mathbf{t})_i \to \mathbf{0},$ $F]_k \operatorname{s\sigma}_{i \to j} @\mathbb{E}_{\{\} \to \{i\}} [0, 0, P]_k / / \operatorname{Last} / / \operatorname{Normal};$ eqn = CF [$(\partial_{\lambda}F)$ + P0 F - rhs]; eqn = ! = 0, (*do*) pows = First /@ CoefficientRules[eqn, {y_i, b_i, a_i, x_i}]; F += Sum $\left[\epsilon^{k} \varphi_{js} \left[\lambda \right] \right]$ Times @@ $\{\mathbf{y}_{i}, \mathbf{b}_{i}, \mathbf{a}_{i}, \mathbf{x}_{i}\}^{js}$, {js, pows}]; rhs = *m*i,j→i $\mathbb{E}_{\{\} \to \{i\}} [\lambda \mathsf{P0} / . (\mathbf{x} \mid \mathbf{y})_i \to \mathbf{0}, \lambda \mathsf{P0} / . (\mathbf{b} \mid \mathbf{a} \mid \mathbf{t})_i \to \mathbf{0},$ $\mathsf{F}_{k} \mathsf{s}_{\sigma_{i \to j} \otimes \mathbb{E}_{\{\} \to \{i\}} [0, 0, P]_{k}} / / \mathsf{Last} / / \mathsf{Normal};$ eqn = CF [$(\partial_{\lambda}F)$ + P0 F - rhs]; φ s = Table[$\varphi_{js}[\lambda]$, {js, pows}]; at0 = Table $[\varphi_{js}[0] = 0, \{js, pows\}];$ $at\lambda = (\# = 0) \& /@$ (pows /. CoefficientRules[eqn, {y_i, b_i, a_i, x_i}]); F = F /. DSolve [And @@ (at0 $\bigcup at\lambda$), φs , λ] [1] 5 $\mathbb{E}_{\{\} \to \{i\}} \left[\mathsf{P0} / \cdot (\mathbf{x} \mid \mathbf{y})_i \to \mathbf{0}, \mathsf{P0} / \cdot (\mathbf{b} \mid \mathbf{a} \mid \mathbf{t})_i \to \mathbf{0}, \right]$ $\mathsf{F} + \mathsf{O}[\boldsymbol{\epsilon}]^{k+1} / \boldsymbol{\cdot} \lambda \to \mathsf{1}]]]$

"Define" Code

Define[lhs = rhs, ...] defines the lhs to be rhs, except that rhs is computed only once for each value of \$k. Fancy Mathematica not for the faint of heart. Most readers should ignore.

SetAttributes [Define, HoldAll];

The Objects

ωεβ/objects

Symmetric Algebra Objects

sm_{i_,j_→k_} := $\mathbb{E}_{\{i,j\} \rightarrow \{k\}} \left[\mathbf{b}_k \left(\beta_i + \beta_j \right) + \mathbf{t}_k \left(\tau_i + \tau_j \right) + \mathbf{a}_k \left(\alpha_i + \alpha_j \right) + \mathbf{t}_k \left(\mathbf{t}_i + \mathbf{t}_j \right) \right]$ $\mathbf{y}_k (\eta_i + \eta_j) + \mathbf{x}_k (\xi_i + \xi_j)];$ S∆_{i →j}, k := $\mathbb{E}_{\{i\} \rightarrow \{j,k\}} \left[\beta_i \left(\mathbf{b}_j + \mathbf{b}_k \right) + \tau_i \left(\mathbf{t}_j + \mathbf{t}_k \right) + \alpha_i \left(\mathbf{a}_j + \mathbf{a}_k \right) + \alpha_i \left($ $\eta_i (y_j + y_k) + \xi_i (x_j + x_k)];$ $sS_{i_{\perp}} := \mathbb{E}_{\{i\} \to \{i\}} \left[-\beta_i \mathbf{b}_i - \tau_i \mathbf{t}_i - \alpha_i \mathbf{a}_i - \eta_i \mathbf{y}_i - \xi_i \mathbf{x}_i \right];$ $s\eta_i := \mathbb{E}_{\{i\} \to \{\}} [0];$ $\mathbf{s}\sigma_{i \rightarrow j} := \mathbb{E}_{\{i\} \rightarrow \{j\}} [\beta_i \mathbf{b}_j + \tau_i \mathbf{t}_j + \alpha_i \mathbf{a}_j + \eta_i \mathbf{y}_j + \xi_i \mathbf{x}_j];$ $\mathbf{S}\Upsilon_{i_{-} \rightarrow j_{-},k_{-},l_{-},m_{-}} := \mathbb{E}_{\{i\} \rightarrow \{j,k,l,m\}} \left[\beta_{i} \mathbf{b}_{k} + \tau_{i} \mathbf{t}_{k} + \alpha_{i} \mathbf{a}_{l} + \eta_{i} \mathbf{y}_{j} + \xi_{i} \mathbf{x}_{m}\right];$ The CU Definitions $\mathsf{C}\Lambda = \left(\eta_{i} + \frac{\mathbf{e}^{-\gamma \,\alpha_{i} - \epsilon \,\beta_{i}} \,\eta_{j}}{\mathbf{1} + \gamma \,\epsilon \,\eta_{i} \,\xi_{i}}\right) \mathsf{y}_{\mathsf{k}} + \left(\beta_{i} + \beta_{j} + \frac{\mathsf{Log}[\mathbf{1} + \gamma \,\epsilon \,\eta_{j} \,\xi_{i}]}{\epsilon}\right) \mathsf{b}_{\mathsf{k}} +$ $\left(\alpha_{i} + \alpha_{j} + \frac{\text{Log}[\mathbf{1} + \gamma \in \eta_{j} \xi_{i}]}{\gamma}\right) a_{k} + \left(\frac{e^{-\gamma \alpha_{j} - \epsilon \beta_{j}} \xi_{i}}{\mathbf{1} + \gamma \in \eta_{i} \xi_{i}} + \xi_{j}\right) x_{k};$ Define $[cm_{i,j \rightarrow k} = \mathbb{E}_{\{i,j\} \rightarrow \{k\}} [c\Lambda]]$ Define $[c\sigma_{i \rightarrow j} = s\sigma_{i,j} / . \tau_i \rightarrow 0, c\epsilon_i = s\epsilon_i, c\eta_i = s\eta_i,$ $C\Delta_{i \rightarrow j,k} = S\Delta_{i \rightarrow j,k}$ $CS_i = SS_i / SY_{i \rightarrow 1,2,3,4} / Cm_{4,3 \rightarrow i} / Cm_{i,2 \rightarrow i} / Cm_{i,1 \rightarrow i}];$ **Booting Up QU** Define $\left[a\sigma_{i \rightarrow j} = \mathbb{E}_{\{i\} \rightarrow \{j\}} \left[a_j \alpha_i + x_j \xi_i\right]\right]$ $b\sigma_{i \to j} = \mathbb{E}_{\{i\} \to \{j\}} [b_j \beta_i + y_j \eta_i]$ $Define\left[am_{i,j\rightarrow k} = \mathbb{E}_{\{i,j\}\rightarrow \{k\}}\left[\left(\alpha_{i} + \alpha_{j}\right)a_{k} + \left(\mathcal{R}_{j}^{-1}\xi_{i} + \xi_{j}\right)x_{k}\right]\right],$ $bm_{i,j \rightarrow k} = \mathbb{E}_{\{i,j\} \rightarrow \{k\}} \left[\left(\beta_i + \beta_j\right) b_k + \left(\eta_i + e^{-\epsilon \beta_i} \eta_j\right) y_k \right] \right]$ $Define\left[R_{i,j} = \mathbb{E}_{\{\} \to \{i,j\}}\left[\hbar a_{j} b_{i} + \sum_{k=1}^{\$k+1} \frac{(1 - e^{Y \in \hbar})^{k} (\hbar y_{i} x_{j})^{k}}{k (1 - e^{kY \in \hbar})}\right],$ $\overline{R}_{i,j} = CF@\mathbb{E}_{\{\} \to \{i,j\}} \left[-\hbar a_j b_i, -\hbar x_j y_i / B_i \right],$ 1 + If[= 0, 0, $(\overline{R}_{\{i,j\},k-1})_{k}[3] \left(\left((\overline{R}_{\{i,j\},0})_{k} R_{1,2} (\overline{R}_{\{3,4\},k-1})_{k}\right) // (bm_{i,1 \rightarrow i} am_{j,2 \rightarrow j}) // \right)$ $(bm_{i,3 \to i} am_{j,4 \to j}))[3]]],$ $P_{i,j} = \mathbb{E}_{\{i,j\} \to \{\}} \left[\beta_i \alpha_j / \hbar, \eta_i \xi_j / \hbar \right],$ 1 + If[= 0, 0, $(P_{\{i,j\}, k-1})_{k}[3] (R_{1,2} // ((P_{\{1,j\},0})_{k} (P_{\{i,2\},k-1})_{k}))[3]]$

 $\begin{aligned} & \mathsf{Define} \left[\mathsf{aS}_{i} = \left(\mathsf{a\sigma}_{i \to 2} \,\overline{\mathsf{R}}_{1,i} \right) \, / \, / \, \mathsf{P}_{1,2}, \\ & \overline{\mathsf{aS}}_{i} = \mathbb{E}_{\{i\} \to \{i\}} \left[-\mathsf{a}_{i} \,\alpha_{i}, -\mathsf{X}_{i} \,\mathcal{S}_{i} \,\xi_{i}, \\ & \mathsf{1} + \mathsf{If} \left[\mathsf{sk} = \mathsf{0}, \, \mathsf{0}, \, \left(\overline{\mathsf{aS}}_{\{i\}, \mathsf{sk}-1} \right) \mathsf{sk} \left[3 \right] - \\ & \left(\left(\overline{\mathsf{aS}}_{\{i\}, \mathsf{0}} \right) \mathsf{sk} \, / \, / \, \mathbf{aS}_{i} \, / \, \left(\overline{\mathsf{aS}}_{\{i\}, \mathsf{sk}-1} \right) \mathsf{sk} \right) \left[3 \right] \right] \right] \end{aligned}$

$$\begin{split} & \mathsf{Define}\left[\mathsf{bS}_{i} = \mathsf{b}\sigma_{i \to 1} \,\mathsf{R}_{i,2} \; // \; \mathsf{aS}_{2} \; // \; \mathsf{P}_{1,2}, \\ & \overline{\mathsf{bS}}_{i} = \mathsf{b}\sigma_{i \to 1} \,\mathsf{R}_{i,2} \; // \; \overline{\mathsf{aS}}_{2} \; // \; \mathsf{P}_{1,2}, \\ & \mathsf{a}\Delta_{i \to j,k} = \; (\mathsf{R}_{1,j} \,\mathsf{R}_{2,k}) \; // \; \mathsf{bm}_{1,2 \to 3} \; // \; \mathsf{P}_{3,i}, \\ & \mathsf{b}\Delta_{i \to j,k} = \; (\mathsf{R}_{j,1} \,\mathsf{R}_{k,2}) \; // \; \mathsf{am}_{1,2 \to 3} \; // \; \mathsf{P}_{i,3} \end{split}$$

The Drinfel'd double:

Define

 $\begin{aligned} &dm_{i,j \rightarrow k} = \\ & \left(\left(S\Upsilon_{i \rightarrow 4,4,1,1} // a \Delta_{1 \rightarrow 1,2} // a \Delta_{2 \rightarrow 2,3} // \overline{aS}_{3} \right) \\ & \left(S\Upsilon_{j \rightarrow -1,-1,-4,-4} // b \Delta_{-1 \rightarrow -1,-2} // b \Delta_{-2 \rightarrow -2,-3} \right) \right) // \\ & \left(P_{-1,3} P_{-3,1} a m_{2,-4 \rightarrow k} b m_{4,-2 \rightarrow k} \right) \end{aligned}$

$$\begin{split} & \text{Define} \left[d\sigma_{i \rightarrow j} = a\sigma_{i \rightarrow j} b\sigma_{i \rightarrow j}, \\ & d\varepsilon_i = s\varepsilon_i, \ d\eta_i = s\eta_i, \\ & dS_i = s\Upsilon_{i \rightarrow 1, 1, 2, 2} // \ \left(\overline{bS_1} \ aS_2\right) // \ dm_{2, 1 \rightarrow i}, \\ & \overline{dS_i} = s\Upsilon_{i \rightarrow 1, 1, 2, 2} // \ \left(bS_1 \ \overline{aS_2}\right) // \ dm_{2, 1 \rightarrow i}, \\ & d\Delta_{i \rightarrow j, k} = \ \left(b\Delta_{i \rightarrow 3, 1} \ a\Delta_{i \rightarrow 2, 4}\right) // \ \left(dm_{3, 4 \rightarrow k} \ dm_{1, 2 \rightarrow j}\right) \right] \end{split}$$

$$\begin{split} & \text{Define} \left[\mathsf{C}_{i} = \mathbb{E}_{\{\} \rightarrow \{i\}} \left[\theta, \theta, \mathsf{B}_{1}^{1/2} e^{-\hbar \varepsilon a_{i}/2} \right]_{\$k}, \\ & \overline{\mathsf{C}}_{i} = \mathbb{E}_{\{\} \rightarrow \{i\}} \left[\theta, \theta, \mathsf{B}_{i}^{-1/2} e^{\hbar \varepsilon a_{i}/2} \right]_{\$k}, \\ & \text{Kink}_{i} = \left(\mathsf{R}_{1,3} \overline{\mathsf{C}}_{2} \right) / / d\mathsf{m}_{1,2 \rightarrow 1} / / d\mathsf{m}_{1,3 \rightarrow i}, \\ & \overline{\mathsf{Kink}}_{i} = \left(\overline{\mathsf{R}}_{1,3} \mathsf{C}_{2} \right) / / d\mathsf{m}_{1,2 \rightarrow 1} / / d\mathsf{m}_{1,3 \rightarrow i} \right] \end{split}$$

Note. $t == \epsilon a - \gamma b$ and $b == -t/\gamma + \epsilon a/\gamma$.

Define $\begin{bmatrix} b2t_i = \mathbb{E}_{\{i\} \rightarrow \{i\}} [\alpha_i a_i + \beta_i (\epsilon a_i - t_i) / \gamma + \xi_i x_i + \eta_i y_i], \\ t2b_i = \mathbb{E}_{\{i\} \rightarrow \{i\}} [\alpha_i a_i + \tau_i (\epsilon a_i - \gamma b_i) + \xi_i x_i + \eta_i y_i] \end{bmatrix}$

The Knot Tensors

$$\begin{split} & \text{Define} \left[kR_{i,j} = R_{i,j} // (b2t_i \ b2t_j) \ /. \ t_{i|j} \to t, \\ & \overline{kR}_{i,j} = \overline{R}_{i,j} // (b2t_i \ b2t_j) \ /. \ \{t_{i|j} \to t, \ T_{i|j} \to T\}, \\ & km_{i,j \to k} = (t2b_i \ t2b_j) \ // \ dm_{i,j \to k} \ // \\ & b2t_k \ /. \ \{t_k \to t, \ T_k \to T, \ \tau_{i|j} \to 0\}, \\ & kC_i = C_i \ // \ b2t_i \ /. \ T_i \to T, \\ & \overline{kC}_i = \overline{C}_i \ // \ b2t_i \ /. \ T_i \to T, \\ & kKink_i = Kink_i \ // \ b2t_i \ /. \ \{t_i \to t, \ T_i \to T\}, \\ & \overline{kKink_i} = \overline{Kink_i} \ // \ b2t_i \ /. \ \{t_i \to t, \ T_i \to T\} \end{split}$$

Some of the Atoms.

ω ε β/atoms

With $\mathcal{A}_i \coloneqq e^{\alpha_i}$ and $B_i = e^{-b_i}$,

```
\begin{array}{l} \label{eq:pp_interm} \mathsf{PP}\_:= \mathsf{Identity}; \$ k = 1; & \hbar = \gamma = 1; \\ \mathsf{Column}[ & \\ (\# \rightarrow (\mathcal{E} = \mathsf{ToExpression}[\#]; & \\ & \mathsf{Normal@Simplify}[\mathcal{E}[1] + \mathcal{E}[2] + \mathsf{Log}@\mathcal{E}[3]])) \& /@ \\ & \{"dm_{i,j \rightarrow k}", "d\Delta_{i \rightarrow j,k}", "dS_i", "R_{i,j}", "P_{i,j}"\}] \end{array}
```

A Quantum Algebra Example.

 $\omega \epsilon \beta/qa$

Proto-Proposition^{†0} (with Jesse Frohlich and Roland van der Veen, near [Ma, Proposition 1.7.3]). Let H be a finite dimensional Hopf algebra and let $U = H^{*cop} \otimes H$ be its Drinfel'd double, with *R*-matrix $R \in H^* \otimes H \subset U \otimes U$. Write $R^{\dagger 1} = \sum \rho_a \otimes r_a$, and let $\langle \cdot | \cdot \rangle \colon H^* \otimes H \to \mathbb{F}$ be the duality pairing. Then the functional $\in U^*$ defined by

$$\int \phi \otimes x \coloneqq \sum \langle \phi \rho_a^{\dagger 2} \mid x r_a^{\dagger 3} \rangle$$

is a right^{†4} integral in U^* . (Meaning $\Delta_{ik}^i / \int_i = \int_i / \epsilon_k$ in $\operatorname{Hom}(U^{\otimes \{i\}} \to U^{\otimes \{k\}})).$

†0 A "proto-proposition" is something that will become a proposition once you figure out the correct statement. ± 1 Or did we want it to be R/S_1^2 ? Or R/S_2^2 ? †2 Or is it $\rho_a \phi$? †3 Or is it $r_a x$? †4 Or maybe "left"? inp = $\mathbb{E}_{\{\}\to\{1\}}$ [3 a₁ b₁, 5 x₁ y₁, 1] // dm_{i,1\toi}; Table[

HL@TrueQ[

```
(inp // (S\Upsilon_{i \rightarrow 1,1,2,2} RR) // BM // AM // P_{1,2}) d\varepsilon_j \equiv
       (inp // \Delta A // (SY_{i \rightarrow 1, 1, 2, 2} RR) // BM // AM // P_{1, 2})],
  \{\Delta \Delta, \{d \Delta_{i \rightarrow i, j}, d \Delta_{i \rightarrow j, i}\}\}, \{AM, \{dm_{2, 4 \rightarrow 2}, dm_{4, 2 \rightarrow 2}\}\},
  {BM, {dm_{1,3\rightarrow 1}, dm_{3,1\rightarrow 1}},
  {RR, {R_{3,4}, R_{3,4} // dS_3 // dS_3, R_{3,4} // dS_4 // dS_4}
  // MatrixForm
1
   False False False
                                        False False
                                                             True
  False False False
                                       False False False
   False False False
                                       False False False
  False False
                        True
                                       False False
                                                            False
```

A Knot Theory Example.

$$\begin{split} \mathbb{E}_{\left\{\right\} \to \left\{1\right\}} \left[\theta, \theta, \frac{B}{1-B+B^2} + \\ \frac{B\left(-B+2\,B^2+2\,B^4+a\,\left(-1+B-B^3+B^4\right)-2\,x\,y-B^3\,\left(3+2\,x\,y\right)\right)\,\varepsilon}{\left(1-B+B^2\right)^3} + \\ \frac{1}{2\,\left(1-B+B^2\right)^5} \\ B\left(4\,B^8+a^2\,\left(1-B+B^2\right)^2\,\left(1+B-6\,B^2+B^3+B^4\right)+6\,B^5\,x^2\,y^2+2x\,y\,\left(-2+3\,x\,y\right)-B^7\,\left(11+4\,x\,y\right)-2\,B^2\,\left(1+6\,x^2\,y^2\right)-2B^4\,\left(1-2\,x\,y+6\,x^2\,y^2\right)+B\,\left(1+8\,x\,y+6\,x^2\,y^2\right)+2B^6\,\left(6+8\,x\,y+6\,x^2\,y^2\right)+B\,\left(1+8\,x\,y+6\,x^2\,y^2\right)+2B^6\,\left(6+8\,x\,y+6\,x^2\,y^2\right)+B^3\,\left(4+4\,x\,y+30\,x^2\,y^2\right)+2B^6\,\left(1-B+B^2\right)\,\left(2\,B^6+2\,x\,y+8\,B^3\,\left(1+x\,y\right)-5\,B^2\,\left(1+2\,x\,y\right)-2B^5\,\left(1+2\,x\,y\right)-B^4\,\left(7+2\,x\,y\right)+B\,\left(2+4\,x\,y\right)\right)\right)\,\varepsilon^2+0\,[\varepsilon]^3 \end{split}$$

References.

- [BG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103-133.
- [BV] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, arXiv:1708.04853.
- [Fa] L. Faddeev, Modular Double of a Quantum Group, arXiv: math/9912078.
- [GR] S. Garoufalidis and L. Rozansky, The Loop Expansion of the Kontsevich Integral, the Null-Move, and S-Equivalence, arXiv:math.GT/0003187.
- [LT] R. J. Lipton and R. E. Tarjan, A Separator Theorem for Planar Graphs, SIAM J. Appl. Math. 36-2 (1979) 177-189.
- [Ma] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995.
- [MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
- [Ov] A. Overbay, Perturbative Expansion of the Colored Jones *Polynomial*, University of North Carolina PhD thesis, $\omega \epsilon \beta / Ov$.
- [Qu] C. Quesne, Jackson's q-Exponential as the Exponential of a Series, arXiv:math-ph/0305003.
- [Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv: hep-th/9401061.
- [Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:qalg/9604005.
- [Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
- [Za] D. Zagier, The Dilogarithm Function, in Cartier, Moussa, Julia, and Vanhove (eds) Frontiers in Number Theory, Physics, and Geometry II. Springer, Berlin, Heidelberg, and ωεβ/Za.

KiW 43 Abstract ($\omega\epsilon\beta/kiw$). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.

Khovanov plus HOMFLY-PT on knots with up to 12 crossings (not tested beyond). • The degrees are bounded by the genus! • ρ_1 vanishes for amphichiral knots. • Has a chance of detecting non-ribbonness ($\omega \epsilon \beta/akt$)!

Observations. • Separates the Rolfsen table; does better than non-ribbonness ($\omega\epsilon\beta/akt$)!

knot n_k^t Alexander's ω^+ genus / ribbon	knot n_k^t Alexander's ω^+ genus / ribbon	knot n_k^t Alexander's ω^+ genus / ribbon
diag $(\rho'_1)^+$ unknotting # / amphi?	diag $(\rho'_1)^+$ unknotting # / amphi?	diag $(\rho'_1)^+$ unknotting # / amphi?
$(\rho_{2}')^{+}$	$(\rho_{2}')^{+}$	$(\rho_2')^+$
0^a_1 1 $0/\checkmark$	$3_1^a T - 1$ 1/X	$4_1^a \ 3-T \ 1/X$
	T $1/\mathbf{X}$	
	$3T^3 - 12T^2 + 26T - 38$	$T^4 - 3T^3 - 15T^2 + 74T - 110$
5_1^a $T^2 - T + 1$ $2/X$	$5^{a}_{2} 2T-3$ 1/×	$6^a_1 5-2T$ $1/\checkmark$
$2T^{3}+3T$ 2/×	57-4 1/X	T - 4 1/×
$5T^7 - 20T^6 + 55T^5 - 120T^4 + 217T^3 - 338T^2 + 450T - 510$	$-10T^4 + 120T^3 - 487T^2 + 1054T - 1362$	$14T^4 - 16T^3 - 293T^2 + 1098T - 1598$
6_{2}° $-T^{2}+3T-3$ 2/X	6^a_2 $T^2 - 3T + 5$ $2/x$	7^{a}_{1} $T^{3}-T^{2}+T-1$ 3/X
$T^{\frac{2}{3}}-4T^{2}+4T-4$ 1/X		$3T^{5}+5T^{3}+6T$ 3/X
$3T^8 - 21T^7 + 40T^6 + 15T^5 - 423T^4 + 1543T^3 - 3431T^2 + 5482T - 6410$	$4T^8 - 33T^7 + 121T^6 - 203T^5 - 111T^4 + 1490T^3 - 4210T^2 + 7186T - 8510$	$7T^{11}_{-28T^{10}_{+},77T^{9}_{-},168T^{8}_{+},322T^{7}_{-},560T^{6}_{+},801T^{5}_{-},1310T^{4}_{+},177TT^{3}_{-}$
51 -211 +491 +151 -4551 +15451 -54511 +54621 -0410	41 -551 +1211 -2051 -1111 +14991 -42101 +71801-8510	71 - 201 + 771 - 1001 + 5221 - 5001 + 6711 - 15101 + 17711 - 202072 + 20047 - 2772
7^{a} $3T-5$ 1/X	7^{a} $2T^{2}-3T+3$ $2/x$	$7^{a} 4T - 7$ 1/X
14T - 16 1/X	$-9T^3 + 8T^2 - 16T + 12$ 2/X	32 - 24T 2/X
$7^{a} 2T^{2} - 4T + 5 27 / X$	$-187^{-4}2087^{-3}177^{-4}26667^{-6}0497^{-4}12837^{-1}7671^{-4}233561^{-2}5736}$	7^{a} $T^{2}-5T+9$ 2/X
0^{7}_{5} $16T^{2}_{1}$ 207 28 2/	T_{6}^{6} T^{1} T_{7}^{3} T_{7}^{2} T_{7}^{2} T_{7}^{2} T_{7}^{2}	γ_{7} 1 31 γ 2/ κ
<i>91</i> −10 <i>1</i> +29 <i>1</i> −28 2/ *		
$-18T^{\circ} + 264T^{\prime} - 1548T^{\circ} + 5680T^{\circ} - 15107T^{\circ} + 31152T^{\circ} - 51476T^{2} +$	$3T^{\circ} - 35T' + 128T^{\circ} + 105T^{\circ} - 2610T^{\circ} + 11225T^{\circ} - 28031T^{2} + 47186T - 55946$	$4T^{6} - 55T^{7} + 310T^{6} - 805T^{3} + 86T^{4} + 6349T^{3} - 22686T^{2} + 43610T - 53622$
69252T - 76414	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	\sim $^{\circ}$
$\delta_1 / - 3I$ $1/\kappa$	$\delta_2 = 1 + 31 - 31 + 3$ $3/8$	
Q 31 − 16 1 / ×	$21^{\circ}-81^{\circ}+101^{\circ}-121^{\circ}+131-12^{\circ}=2/*$	
$42T^4 + 215T^3 - 2542T^2 + 7562T - 10542$	$5T^{12} - 39T^{11} + 119T^{10} - 139T^9 - 249T^8 + 1660T^7 - 4959T^6 + 11131T^5 - 100000000000000000000000000000000000$	$224T^4 - 224T^3 - 3910T^2 + 14100T - 20364$
	$\frac{20813T^4 + 33595T^3 - 47521T^2 + 58988T - 63556}{208}$	
$8_4^a - 21^2 + 51 - 5$ 2/ ×	$8_5^{a} - 1^{3} + 31^{2} - 41 + 5$ 3/ ×	$8_6^a - 2I^2 + 6I - I$ $2/x$
$3T^{3}-8T^{2}+6T-4$ 2/×	$-2T^{3}+8T^{4}-13T^{3}+20T^{2}-22T+24$ 2/X	$5T^{3}-20T^{2}+28T-32$ 2/X
$54T^8 - 344T^7 + 865T^6 - 650T^5 - 2723T^4 + 12243T^3 - 28461T^2 + 45792T - 53540$	$5T^{12} - 39T^{11} + 128T^{10} - 182T^9 - 274T^8 + 2476T^7 - 8642T^6 + 21517T^5 - 274T^8 + 2476T^7 - 274T^8 + 274T^8 - 274T^8$	$38T^8 - 216T^7 + 112T^6 + 2880T^5 - 14787T^4 + 42444T^3 - 85415T^2 + $
	$42924T^4 + 71719T^3 - 102448T^2 + 126480T - 135628$	128406T – 146916
8^{a}_{7} $T^{3}-3T^{2}+5T-5$ $3/X$	$8^{a}_{8} 2T^{2}-6T+9$ 2/V	$8_9^a - T^3 + 3T^2 - 5T + 7$ 3/V
$-T^{3}+4T^{4}-10T^{3}+12T^{2}-13T+12$ 1/X	$-T^3 + 4T^2 - 12T + 16$ 2/X	
$8T^{12} - 75T^{11} + 343T^{10} - 979T^9 + 1821T^8 - 1782T^7 - 1623T^6 + 12083T^5 - 1782T^7 - 1787T^7 - 1787T^7$	$62T^8 - 504T^7 + 1736T^6 - 2408T^5 - 3717T^4 + 26492T^3 - 68493T^2 + $	$9T^{12} - 87T^{11} + 417T^{10} - 1305T^9 + 2858T^8 - 4134T^7 + 2114T^6 + 8285T^5 - 4134T^7 + 8145T^7 + 8145T^7 + 8175T^7 + 8$
$\frac{33001T^4 + 64599T^3 - 101194T^2 + 131404T - 143216}{33001T^4 + 64599T^3 - 101194T^2 + 131404T - 143216}$	1134187 - 133180	$31925T^4 + 69235T^3 - 112773T^2 + 148508T - 162396$
8_{10}^{a} $T^{3}-3T^{2}+6T-7$ 3/X	$8_{11}^a -2T^2 +7T -9$ 2/X	8_{12}^a $T^2 - 7T + 13$ 2/X
$-T^{5}+4T^{4}-11T^{3}+16T^{2}-21T+20$ 2/X	$5T^3 - 24T^2 + 39T - 44$ 1/×	0 2/
$8T^{12} - 75T^{11} + 362T^{10} - 1122T^9 + 2306T^8 - 2540T^7 - 2198T^6 + 18817T^5 - 2198T^6 + 2198$	$38T^8 - 264T^7 + 301T^6 + 3514T^5 - 21716T^4 + 68785T^3 - 146898T^2 + \\$	$4T^8 - 77T^7 + 583T^6 - 1991T^5 + 987T^4 + 17311T^3 - 71802T^2 + 147914T - 185846$
$54380T^4 + 110103T^3 - 175694T^2 + 230080T - 251346$	2278287 - 263172	
$8_{13}^{a} 2T^2 - 7T + 11$ 2/X	$8_{14}^{a} -2T^{2} + 8T - 11$ 2/X	8^{a}_{15} $3T^2 - 8T + 11$ $2/x$
$\sqrt{-T^3 + 4T^2 - 14T + 20}$ 1/X	$5T^3 - 28T^2 + 57T - 68$ 1/X	$21T^3 - 64T^2 + 120T - 140$ 2/X
$62T^8 - 592T^7 + 2351T^6 - 3918T^5 - 4235T^4 + 40079T^3 - 111533T^2 +$	$38T^8 - 312T^7 + 444T^6 + 5096T^5 - 34777T^4 + 116368T^3 - 255750T^2 + \\$	$-123T^8 + 2128T^7 - 15241T^6 + 66120T^5 - 199999T^4 + 451912T^3 - \\$
<u>1915007 - 227432</u>	4016327-465478	792414T ² +1101720T-1228222
$8_{16}^a T^3 - 4T^2 + 8T - 9$ 3/X	$8_{17}^a - T^3 + 4T^2 - 8T + 11$ 3/X	8^{a}_{18} $-T^{3}+5T^{2}-10T+13$ 3/X
$T^5 - 6T^4 + 17T^3 - 28T^2 + 35T - 36$ 2/X		0 2/
$8T^{12} - 100T^{11} + 598T^{10} - 2205T^9 + 5292T^8 - 7164T^7 - 2380T^6 + 43100T^5 - 5292T^8 - 7164T^7 - 2380T^6 + 43100T^5 - 5292T^8 - 7164T^7 - 2380T^6 + 43100T^5 - 5292T^8 - 7164T^7 - 5280T^6 + 5280T^6 - 7164T^7 - 5280T^6 + 5280T^6 - 7164T^7 - 5280T^6 - 7167T^7 - 7177T^7 - 7167T^7 - 7177T^7$	$9T^{12} - 116T^{11} + 722T^{10} - 2843T^9 + 7656T^8 - 13668T^7 + 11117T^6 + \\$	$9T^{12} - 145T^{11} + 1075T^{10} - 4842T^9 + 14504T^8 - 28560T^7 + 27957T^6 + $
$137314T^4 + 291750T^3 - 478742T^2 + 636488T - 698666$	$21968T^5 - 113086T^4 + 273778T^3 - 475622T^2 + 649064T - 717954$	$35195T^5 - 225204T^4 + 573797T^3 - 1021641T^2 + 1411484T - 1567262$
8_{19}^n $T^3 - T^2 + 1$ 3/X	8_{20}^n $T^2 - 2T + 3$ $2/\checkmark$	8_{21}^n $-T^2+4T-5$ $2/x$
$-3T^{5}-4T^{2}-3T$ 3/X	4 <i>T</i> -4 1 / X	$T^3 - 8T^2 + 16T - 20$ 1/X
$7T^{11} - 19T^{10} + 6T^9 + 48T^8 - 52T^7 - 91T^6 + 211T^5 + 16T^4 - 431T^3 + 289T^2 + 6T^4 - 47T^4 - 47$	$4T^8 - 22T^7 + 66T^6 - 124T^5 + 52T^4 + 478T^3 - 1652T^2 + 3014T - 3640$	$3T^8 - 28T^7 + 49T^6 + 352T^5 - 2489T^4 + 8164T^3 - 17530T^2 + 27092T - 31226$
536 <i>T</i> - 1060		

knot	n_k^t Alexander's ω^+	genus / ribbon	knot	n_k^t Alexander	r's ω^+	genus / ribbon				
diag	$(\hat{\rho}'_1)^+$	unknotting # / amphi?	diag	$(\hat{\rho}'_1)^+$	ur	nknotting # / amphi?				
	(¢	2') ⁺			$(\rho'_2)^+$					
R	$9^a_1 T^4 - T^3 + T^2 - T + 1$	4 / 🗙	A	9^a_2 4T-7		1 / 🗙				
58	$4T^7 + 7T^5 + 9T^3 + 10T$	4 / 🗙		30T - 40		1 / 🗶				
$9T^{15}-$	$36T^{14} + 99T^{13} - 216T^{12} + 414T^{11} - 720T^{10} + 11$	$170T^9 - 1800T^8 + 2630T^7 - 3662T^6 + 4853T^5 - 6142T^4 +$		$-728T^4 + 6088T^3 - 21946T^2 + 44788T - 56420$						
	7423 <i>T</i> ³ -85722	$T^2 + 9420T - 9780$								
(β)	$9^a_3 2T^3 - 3T^2 + 3T - 3$	3 / 🗙	Co	9^a_4 3T ² -5T+	-5	2 / 🗙				
	$-13T^5 + 12T^4 - 25T^3 + 20T^2 - 3$	2 <i>T</i> +24 3 / ×	GY .	$23T^3 - 28T^2 + 4$	46 <i>T</i> -44	2 / 🗶				
-267	$T^{12} + 296T^{11} - 1311T^{10} + 3838T^9 - 8867T^8 + 17$	$613T^7 - 31407T^6 + 51061T^5 - 76085T^4 + 104297T^3 -$		$-219T^8 + 1999T^7 - 838$	$89T^6 + 23799T^5 - 52835T^4 + 96723T^3 - 149121T^2 + 96723T^3 - 14912T^2 + 96723T^3 - 149177777777777777777777777777777777777$	+194698T-213338				
	$131779T^2 + 15$	52840 <i>T</i> – 160976								

The Real Thing. In the algebra QU_{ϵ} , over $\mathbb{Q}[[\hbar]]$ using the yaxt **Real Zipping** is a minor mess, and is done in two phases: order, $T = e^{\hbar t}$, $\overline{T} = T^{-1}$, $\mathcal{A} = e^{\alpha}$, and $\overline{\mathcal{A}} = \mathcal{A}^{-1}$, we have τa -phase ξy -phase $\tilde{R}_{ij} = e^{\hbar(y_i x_j - t_i a_j)} \left(1 + \epsilon \hbar \left(a_i a_j - \hbar^2 y_i^2 x_j^2 / 4 \right) + O(\epsilon^2) \right)$ ζ -like variables а ξ v *z*-like variables t α х in $\mathcal{S}(B_i, B_j)$, and in $\mathcal{S}(B_1^*, B_2^*, B)$ we have η Already at $\epsilon = 0$ we get the best known formulas for the Alexan- $\tilde{m} = e^{(\alpha_1 + \alpha_2)a + \eta_2 \xi_1 (1 - T)/\hbar + (\xi_1 \bar{\mathcal{A}}_2 + \xi_2)x + (\eta_1 + \eta_2 \bar{\mathcal{A}}_1)y} \left(1 + \epsilon \lambda + O(\epsilon^2)\right),$ der polynomial! where $\lambda = \frac{2a\eta_2\xi_1T + \eta_2^2\xi_1^2(3T^2 - 4T + 1)}{4\hbar - \eta_2\xi_1^2(3T - 1)x\bar{\mathcal{A}}_2/2}$ Generic Docility. A "docile perturbed Gaussian" in the variables $-\eta_2^2\xi_1(3T-1)y\bar{\mathcal{A}}_1/2+\eta_2\xi_1xy\hbar\bar{\mathcal{A}}_1\bar{\mathcal{A}}_2$ $(z_i)_{i \in S}$ over the ring *R* is an expression of the form Finally. $e^{q^{ij}z_i z_j} P = e^{q^{ij}z_i z_j} \left(\sum_{k>0} \epsilon^k P_k \right),$ $\tilde{\Delta} = e^{\tau(t_1+t_1)+\eta(y_1+T_1y_2)+\alpha(a_1+a_2)+\xi(x_1+x_2)} (1+O(\epsilon)) \in \mathcal{S}(B^*, B_1, B_2),$ and $\tilde{S} = e^{-\tau t - \alpha a - \eta \xi (1 - \bar{T}) \mathcal{A}/\hbar - \bar{T} \eta y \mathcal{A} - \xi x \mathcal{A}} (1 + O(\epsilon)) \in \mathcal{S}(B^*, B).$ where all coefficients are in R and where P is a "docile series": Zipping Issue. The $\deg P_k \leq 4k.$ Our Docility. In the case of QU_{ϵ} , all invariants and operations are bound lies half-zipped). of the form $e^{L+Q}P$, where **Zipping.** If $P(\zeta^j, z_i)$ is a polynomial, or whenever otherwi-*L* is a quadratic of the form $\sum l_{z\zeta} z\zeta$, where *z* runs over $\{t_i, \alpha_i\}_{i \in S}$ se convergent, set $\langle P(\zeta^j, z_i) \rangle_{(\zeta^j)} = P(\partial_{z_j}, z_i) \Big|_{z_i=0}$. (E.g., if P =and ζ over $\{\tau_i, a_i\}_{i \in S}$, with integer coefficients $l_{z\zeta}$. • Q is a quadratic of the form $\sum q_{z\zeta} z\zeta$, where z runs over $\sum a_{nm} \zeta^n z^m$ then $\langle P \rangle_{\zeta} = \sum a_{nm} \partial_z^n z^m \Big|_{z=0} = \sum n! a_{nn}$. $\{x_i, \eta_i\}_{i \in S}$ and ζ over $\{\xi_i, y_i\}_{i \in S}$, with coefficients $q_{z\zeta}$ in the ring **The Zipping / Contraction Theorem.** If $P = P(\zeta^{j}, z_{i})$ has a R_S of rational functions in $\{T_i, \mathcal{A}_i\}_{i \in S}$. finite ζ -degree and the y's and the q's are "small" then *P* is a docile power series in $\{y_i, a_i, x_i, \eta_i, \xi_i\}_{i \in S}$ with coefficients $\left\langle P \mathbb{e}^{c+\eta^{i} z_{i}+y_{j} \zeta^{j}+q_{j}^{i} z_{i} \zeta^{j}} \right\rangle_{(\zeta^{j})} = \det(\tilde{q}) \mathbb{e}^{c+\eta^{i} \tilde{q}_{i}^{k} y_{k}} \left\langle P \left| \begin{array}{c} \zeta^{j} \rightarrow \zeta^{j}+\eta^{i} \tilde{q}_{i}^{j} \\ z_{i} \rightarrow \tilde{q}_{i}^{k} (z_{k}+y_{k}) \end{array} \right\rangle_{(\zeta^{j})} \right\rangle$ in R_S , and where deg $(y_i, a_i, x_i, \eta_i, \xi_i) = (1, 2, 1, 1, 1)$. **Docilily Matters!** The rank of the space of docile series to ϵ^k is polynomial in the number of variables |S|. 11111 where \tilde{q} is the inverse matrix of 1 - q: $(\delta^i_i - q^i_i)\tilde{q}^j_k = \delta^i_k$. At $\epsilon^2 = 0$ we get the Rozansky-Overbay [Ro1, Ro2, Ro3, Ov] Exponential Reservoirs. The true Hilbert hotel is exp! Remove invariant, which is stronger than HOMFLY-PT polynomial and one x from an "exponential reservoir" of x's and you are left with Khovanov homology taken together! the same exponential reservoir: In general, get "higher diagonals in the Melvin-Morton- $\mathbb{e}^{x} = \left[\dots + \frac{xxxxx}{120} + \dots \right] \xrightarrow{\partial_{x}} \left[\dots + \frac{xxxxx}{120} + \dots \right] = (\mathbb{e}^{x})' = \mathbb{e}^{x},$ Rozansky expansion of the coloured Jones polynomial" [MM, BNG], but why spoil something good? and if you let each element choose left or right, you get twice the same reservoir: D [BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-References. ζ's Morton-Rozansky conjecture, Invent, Math. 125 (1996) 103-133. exp exp $e^x \xrightarrow{x \to x_l + x_r} e^{x_l + x_r} = e^{x_l} e^{x_r}$ [BV] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, arXiv:1708.04853. [Fa] L. Faddeev, Modular Double of a Quantum Group, arXiv:math/9912078. A Graphical Proof. Glue [GR] S. Garoufalidis and L. Rozansky, The Loop Exaposion of the Kontsevich q a top to bottom on the right, Integral, the Null-Move, and S-Equivalence, arXiv:math.GT/0003187. in all possible ways. Several "the q-[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. С Α scenarios occur: machine" Math. Phys. 169 (1995) 501-520. 1. Start at A, go through the q-machine $k \ge 0$ times, stop at B. [Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \epsilon \beta / Ov$. Get $\langle P(\zeta, \sum_{k\geq 0} q^k z) \rangle = \langle P(\zeta, \tilde{q}z) \rangle.$ Qu] C. Quesne, Jackson's q-Exponential as the Exponential of a Series, arXiv: 2. Loop through the *q*-machine and swallow your own tail. Get math-ph/0305003. Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones $\exp\left(\sum q^k/k\right) = \exp(-\log(1-q)) = \tilde{q}.$ 3. . . . polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. By the reservoir splitting principle, these scenarios contribute 175-2 (1996) 275-296, arXiv:hep-th/9401061. multiplicatively. □ [Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-Implementation. $(\mathbb{E}[Q, P] \text{ means } \mathbb{e}^Q P)$ $\omega \epsilon \beta / Zip$ 1 (1998) 1–31, arXiv:q-alg/9604005. **Zip**_{*S*S_List}@**E**[**Q**_, **P**_] := [Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Module[{ ζ , z, zs, c, ys, η s, qt, zrule, ζ rule}, Conjecture, arXiv:math/0201139. zs = Table[^c/₅, {^c/₅}]; [Za] D. Zagier, The Dilogarithm Function, in Cartier, Moussa, Julia, and Vac = Q / . Alternatives @@ ($\zeta s \cup zs$) $\rightarrow 0$; nhove (eds) Frontiers in Number Theory, Physics, and Geometry II. Springer, ys = Table $[\partial_{\zeta} (Q / . Alternatives @@ zs \rightarrow 0), \{\zeta, \zeta s\}];$ Berlin, Heidelberg, and $\omega \epsilon \beta / Za$. $\eta s = Table[\partial_z (Q / . Alternatives @@ \zeta s \rightarrow 0), \{z, zs\}];$ qt = Inverse@Table[$K\delta_{z,\zeta^*} - \partial_{z,\zeta}Q$, { ζ , ζ s}, {z, zs}]; $zrule = Thread[zs \rightarrow qt.(zs + ys)];$ $grule = Thread[gs \rightarrow gs + \eta s.qt];$ "God created the knots, all else in topology is the work of mortals.' Simplify /@ Leopold Kronecker (modified) www.katlas.org n \mathbb{E} [c + η s.qt.ys, Det[qt] Zip_{ζ s}[P /. (zrule \bigcup grule)]]];

The Algebras *H* and *H*^{*}. Let $q = e^{\hbar \epsilon \gamma}$ and set *H* = collect[*sd_SeriesData*, \mathcal{E}_{-}] := $\langle a, x \rangle / ([a, x] = \gamma x)$ with MapAt[collect[#, \mathcal{E}_{-}] &, *sd*, 3]

$$A = e^{-\hbar\epsilon a}, \quad xA = qAx, \quad S_H(a, A, x) = (-a, A^{-1}, -A^{-1}x),$$

 $\Delta_H(a, A, x) = (a_1 + a_2, A_1 A_2, x_1 + A_1 x_2)$

and dual $H^* = \langle b, y \rangle / ([b, y] = -\epsilon y)$ with

$$B = e^{-\hbar\gamma b}, \quad By = qyB, \quad S_{H^*}(b, B, y) = (-b, B^{-1}, -yB^{-1}),$$

$$\Delta_{H^*}(b, B, y) = (b_1 + b_2, B_1B_2, y_1B_2 + y_2).$$

Pairing by $(a, x)^* = (b, y) \iff \langle B, A \rangle = q)$ making $\langle y^l b^i, a^j x^k \rangle = \delta_{ij} \delta_{kl} j! [k]_q!$ so $R = \sum \frac{y^k b^j \otimes a^j x^k}{j! [k]_q!}$.

The Algebra *QU*. Using the Drinfel'd double procedure, $QU_{\gamma,\epsilon} := H^{*cop} \otimes H$ with $(\phi f)(\psi g) = \langle \psi_1 S^{-1} f_3 \rangle \langle \psi_3, f_1 \rangle (\phi \psi_2)(f_2 g)$ and $S(y, b, a, x) = (-B^{-1}y, -b, -a, -A^{-1}x),$

 $\Delta(y, b, a, x) = (y_1 + y_2 B_1, b_1 + b_2, a_1 + a_2, x_1 + A_1 x_2).$

Note also that $t := \epsilon a - \gamma b$ is central and can replace b, and set $QU = QU_{\epsilon} = QU_{1,\epsilon}.$ $U21 = \{B_{i_{-}}^{p^{-}} \rightarrow e^{-p\hbar\gamma b_{i}}, B_{i_{-}}^{p^{-}} \rightarrow e^{-p\hbar\gamma b}, T_{i_{-}}^{p^{-}} \rightarrow e^{p\hbar\tau i}, R_{i_{-}}^{p^{-}} \rightarrow e^{p\hbar\tau i}, R_{i_{-}}^{p^{-}} \rightarrow e^{p\gamma\alpha i}, R_{i_{-}}^$

The 2D Lie Algebra. One may show^{*} that if $[a, x] = \gamma x$ then $e^{\xi x}e^{\alpha a} = e^{\alpha a}e^{e^{-\gamma a}\xi x}$. Ergo with

$$SW_{ax}$$
 $S(a, x)$ $\underbrace{\bigcirc}_{\mathbb{O}_{xa}}^{\mathbb{O}_{ax}} \mathcal{U}(a, x)$

we have $\widetilde{SW}_{ax} = e^{\alpha a + e^{-\gamma \alpha} \xi x}$.

* Indeed $xa = (a - \gamma)x$ thus $xa^n = (a - \gamma)^n x$ thus $xe^{\alpha a} = e^{\alpha(a-\gamma)}x = e^{-\gamma\alpha}e^{\alpha a}x$ thus $x^n e^{\alpha a} = e^{\alpha a}(e^{-\gamma\alpha})^n x^n$ thus $e^{\xi x}e^{\alpha a} = e^{\alpha a}e^{e^{-\gamma\alpha}\xi x}$.

Faddeev's Formula (In as much as we can tell, first appeared without proof in Faddeev [Fa], rediscovered and proven in Quesne [Qu], and again with easier proof, in Zagier [Za]). With $[n]_q := \frac{q^n-1}{q-1}$, with $[n]_q! := [1]_q[2]_q \cdots [n]_q$ and with $\mathbb{e}_q^x := \sum_{n\geq 0} \frac{x^n}{|n|_q!}$, we have

$$\log \mathbb{P}_q^x = \sum_{k \ge 1} \frac{(1-q)^k x^k}{k(1-q^k)} = x + \frac{(1-q)^2 x^2}{2(1-q^2)} + \dots$$

Proof. We have that $e_q^x = \frac{e_q^{q^x} - e_q^x}{qx - x}$ ("the *q*-derivative of e_q^x is itself"), and hence $e_q^{qx} = (1 + (1 - q)x)e_q^x$, and

 $\log \mathbb{e}_q^{qx} = \log(1 + (1 - q)x) + \log \mathbb{e}_q^x.$

Writing $\log e_q^x = \sum_{k \ge 1} a_k x^k$ and comparing powers of x, we get $q^k a_k = -(1-q)^k/k + a_k$, or $a_k = \frac{(1-q)^k}{k(1-q^k)}$.

Utilities

 $\begin{aligned} \mathsf{CF}[sd_SeriesData] &:= \mathsf{MapAt}[\mathsf{CF}, sd, 3]; \\ \mathsf{CF}[s_] &:= \mathsf{ExpandDenominator}@\mathsf{ExpandNumerator}@\mathsf{Together}[\\ & \mathsf{Expand}[s] //. e^{x_-} e^{y_-} \Rightarrow e^{x+y} /. e^{x_-} \Rightarrow e^{\mathsf{CF}[x]}]; \\ \mathsf{K\delta} /: \mathsf{K\delta}_{i_,j_} &:= \mathsf{If}[i === j, 1, 0]; \\ & \mathsf{E} /: \mathsf{E}[L1_, q1_, P1_] \equiv \mathsf{E}[L2_, q2_, P2_] := \\ & \mathsf{CF}[L1 == L2] \land \mathsf{CF}[q1 == q2] \land \mathsf{CF}[\mathsf{Normal}[P1 - P2] == 0]; \\ & \mathsf{E} /: \mathsf{E}[L1_, q1_, P1_] \equiv \mathsf{E}[L2_, q2_, P2_] := \\ & \mathsf{E}[L1 + L2] \land \mathsf{CF}[q1 == q2] \land \mathsf{CF}[\mathsf{Normal}[P1 - P2] == 0]; \\ & \mathsf{E} /: \mathsf{E}[L1_, q1_, P1_] \equiv \mathsf{E}[L2_, q2_, P2_] := \\ & \mathsf{E}[L1 + L2, q1 + q2_, P1 + P2]; \\ & \mathsf{E}[L_, q_, P_]_{sk_} := \mathsf{E}[L, q, \mathsf{Series}[\mathsf{Normal}@P, \{e, 0, $k\}]]; \\ & \mathsf{Zip} \text{ and Bind} \\ & \{t^*, b^*, y^*, a^*, x^*, z^*\} = \{t, b, y, a, x, z\}; \\ & (u_{-i_})^* := (u^*)_i; \end{aligned}$

MapAt[collect[#, *ζ*] &, sd, 3]; collect[8_, \$_] := Collect[8, \$]; $Zip_{\{\}}[P_{-}] := P; Zip_{\{\mathcal{L}_{-},\mathcal{L}_{-}\}}[P_{-}] :=$ $\left(\operatorname{collect}\left[P / / \operatorname{Zip}_{\{\mathcal{S}^{5}\}}, \mathcal{S}\right] / \cdot f_{-} \cdot \mathcal{S}^{d_{-}} \Rightarrow \partial_{\{\mathcal{S}^{*}, d\}}f\right) / \cdot \mathcal{S}^{*} \to 0$ $QZip_{\zeta s \ List}@\mathbb{E}[L_, Q_, P_] :=$ zs = Table[^c, {^c, ^cs}]; $c = CF[Q / . Alternatives @@ (\zeta s \cup zs) \rightarrow 0];$ ys = CF@Table[∂_{ζ} (Q /. Alternatives @@ zs $\rightarrow 0$), { ζ , ζ s}]; $\eta s = CF@Table[\partial_z (Q /. Alternatives @@ \zeta s \rightarrow 0), \{z, zs\}];$ qt = CF@Inverse@Table[$K\delta_{z,\varsigma^*} - \partial_{z,\varsigma}Q$, { ζ , ζ s}, {z, zs}]; zrule = Thread [$zs \rightarrow CF[qt.(zs + ys)]$]; $grule = Thread[gs \rightarrow gs + \eta s.qt];$ **CF** /@ $\mathbb{E}[L, c + \eta s.qt.ys]$ Det[qt] Zip_{ζs}[P /. (zrule ∪ grule)]]]; $\mathsf{T}^{p_-} \to \mathsf{e}^{\mathsf{p}\,\check{\mathtt{h}}\,\mathsf{t}},\, \mathscr{R}^{p_-}_i \to \mathsf{e}^{\mathsf{p}\,\check{\mathtt{\gamma}}\,\alpha_{\dot{\mathtt{i}}}},\, \mathscr{R}^{p_-} \to \mathsf{e}^{\mathsf{p}\,\check{\mathtt{\gamma}}\,\alpha_{\dot{\mathtt{i}}}} \big\};$ $12U = \left\{ \mathbf{e}^{c_{-} \cdot \mathbf{b}_{i_{-}} + d_{-}} :\Rightarrow \mathbf{B}_{i}^{-c/(\hbar\gamma)} \mathbf{e}^{d}, \mathbf{e}^{c_{-} \cdot \mathbf{b} + d_{-}} :\Rightarrow \mathbf{B}^{-c/(\hbar\gamma)} \mathbf{e}^{d}, \right\}$ $\mathbf{e}^{c_- \cdot \mathbf{t}_{i_-} + d_- \cdot} \Rightarrow \mathbf{T}_i^{c/\hbar} \mathbf{e}^d, \mathbf{e}^{c_- \cdot \mathbf{t} + d_- \cdot} \Rightarrow \mathbf{T}^{c/\hbar} \mathbf{e}^d,$ $\mathbf{e}^{c_{-} \cdot \alpha_{i_{-}} + d_{-}} : \Rightarrow \mathcal{R}_{i}^{c/\gamma} \mathbf{e}^{d}, \mathbf{e}^{c_{-} \cdot \alpha + d_{-}} : \Rightarrow \mathcal{R}^{c/\gamma} \mathbf{e}^{d},$ $e^{\mathcal{E}_{-}} \Rightarrow e^{Expand \otimes \mathcal{E}}$; LZip_{ζs List}@E[L_, Q_, P_] := Module [{g, z, zs, c, ys, η s, lt, zrule, L1, L2, Q1, Q2}, zs = Table[^c/₅, {^c/₅}]; c = L / . Alternatives @@ ($\zeta s \cup zs$) $\rightarrow 0$; ys = Table $[\partial_{\zeta} (L / . Alternatives @@ zs \rightarrow 0), \{\zeta, \zeta s\}];$ $\eta s = Table[\partial_z (L / . Alternatives @@ \zeta s \rightarrow 0), \{z, zs\}];$ lt = Inverse@Table[$K\delta_{z,\xi^*} - \partial_{z,\xi}L$, { ξ , ξ s}, {z, zs}]; $zrule = Thread[zs \rightarrow lt.(zs + ys)];$ L2 = (L1 = c + η s.zs /. zrule) /. Alternatives @@ zs \rightarrow 0; Q2 = $(Q1 = Q / . U21 / . zrule) / . Alternatives @@ zs <math>\rightarrow 0$; **CF** /@ **E** [L2, Q2, Det [1t] e^{-L2-Q2} Zip_{SS}[e^{L1+Q1} (P /. U21 /. zrule)]] //. 12U]; $B_{\{\}}[L_{,R_{]}} := LR;$ $B_{\{is_\}}[L_E, R_E] := Module[\{n\}, Times[$ L /. Table[(v : b | B | t | T | a | x | y)_i \rightarrow V_{n@i}, {i, {is}}], $R /. Table[(v : \beta | \tau | \alpha | \mathcal{A} | \xi | \eta)_i \rightarrow V_{nei}, \{i, \{is\}\}]$] // LZip_{Join@@Table[{βn@i,τn@i,an@i},{i,{is}}] //} QZipJoin@@Table[{{ { { { { { { { { { { nei} } } } } } } } } }]; $B_{is}[L, R] := B_{\{is\}}[L, R];$ E morphisms with domain and range. $B_{is_List}[\mathbb{E}_{d1}\to r1_[L1], Q1_, P1_], \mathbb{E}_{d2}\to r2_[L2_, Q2_, P2_]] :=$ $\mathbb{E} (d1 \cup \mathsf{Complement}[d2, is]) \rightarrow (r2 \cup \mathsf{Complement}[r1, is]) @@$ **B**_{is} [**E** [*L*1, *Q*1, *P*1], **E** [*L*2, *Q*2, *P*2]]; $\mathbb{E}_{d1 \to r1} [L1_, Q1_, P1_] / / \mathbb{E}_{d2 \to r2} [L2_, Q2_, P2_] :=$ $\mathbf{B}_{r1\cap d2}$ [$\mathbb{E}_{d1 \to r1}$ [L1, Q1, P1], $\mathbb{E}_{d2 \to r2}$ [L2, Q2, P2]]; $\mathbb{E}_{d1_{\rightarrow}r1_{-}}[L1_{,Q1_{,P1_{-}}}P1_{-}] \equiv \mathbb{E}_{d2_{\rightarrow}r2_{-}}[L2_{,Q2_{,P2_{-}}}P2_{-}]^{+}:=$ $(d1 = d2) \land (r1 = r2) \land (\mathbb{E}[L1, Q1, P1] = \mathbb{E}[L2, Q2, P2]);$

 $\mathbb{E}_{d1_{\rightarrow}r1_{-}}[L1_{,Q1_{,P1_{-}}}P1_{-}] \mathbb{E}_{d2_{\rightarrow}r2_{-}}[L2_{,Q2_{,P2_{-}}}P2_{-}]^{:} = \\ \mathbb{E}_{(d1\cup d2)_{\rightarrow}(r1\cup r2)} @@ (\mathbb{E}_{[L1_{,Q1_{,P1}}}P1_{-}) \mathbb{E}_{[L2_{,Q2_{,P2}}}P2_{-}]);$

 $\mathbb{E}_{d_{\rightarrow}r_{-}}[L_{,Q_{,P_{}}}]_{\sharp k_{-}} := \mathbb{E}_{d \rightarrow r} @@ \mathbb{E}[L,Q,P]_{\sharp k};$

 $\mathbb{E}_{[\mathcal{S}_{_}]}[i_] := \{\mathcal{S}\}[[i]];$

"Define" code

SetAttributes[Define, HoldAll];
Define[def_, defs__] := (Define[def]; Define[defs];);

The Fundamental Tensors

Define $\begin{bmatrix} am_{i,j \rightarrow k} = \mathbb{E}_{\{i,j\} \rightarrow \{k\}} [(\alpha_i + \alpha_j) a_k, (e^{-\gamma \alpha_j} \xi_i + \xi_j) x_k, 1]_{\sharp k}, \\ bm_{i,j \rightarrow k} = \mathbb{E}_{\{i,j\} \rightarrow \{k\}} [(\beta_i + \beta_j) b_k, (\eta_i + \eta_j) y_k, e^{(e^{-\epsilon \beta_i} - 1) \eta_j y_k}]_{\sharp k} \end{bmatrix}$ Define $\begin{bmatrix} R_{i,j} = a \end{bmatrix}$

$$\begin{split} & \mathbb{E}_{\{i,j\}} \Big[\hbar a_{j} b_{i}, \hbar x_{j} y_{i}, e^{\left(\sum_{k=2}^{\{s,k+1\}} \frac{\left(1 - e^{\gamma \cdot \epsilon \cdot \hbar}\right)^{k} \left(\hbar y_{i} x_{j} \right)^{k}}{k \left(1 - e^{k \cdot \gamma \cdot \epsilon \cdot \hbar}\right)} \Big]_{sk} \Big] \\ & \text{Define} \Big[\overline{R}_{i,j} = \mathbb{E}_{\{i,j\}} \Big[-\hbar a_{j} b_{i}, -\hbar x_{j} y_{i} / B_{i}, \\ & 1 + \text{If} \Big[\$k = 0, 0, \left(\overline{R}_{\{i,j\}}, \$k-1 \right) \$k \Big] 3 \Big] - \\ & \left(\left(\left(\overline{R}_{\{i,j\}}, 0 \right) \$k R_{1,2} \left(\overline{R}_{(3,4)}, \$k-1 \right) \$k \right) / / \left(bm_{i,1 \to i} am_{j,2 \to j} \right) / / \\ & \left(bm_{i,3 \to i} am_{j,4 \to j} \right) \Big[3 \Big] \Big] \Big], \\ P_{i,j} = \mathbb{E}_{\{i,j\} \to \{i\}} \Big[\beta_{i} \alpha_{j} / \hbar, \eta_{i} \xi_{j} / \hbar, \\ & 1 + \text{If} \Big[\$k = 0, 0, \left(P_{\{i,j\}}, \$k-1 \right) \$k \Big] 3 \Big] - \\ & \left(R_{1,2} / / \left(\left(P_{\{1,j\}}, 0 \right) \$k \left(P_{\{i,2\}}, \$k-1 \right) \$k \Big) \right) \Big] 3 \Big] \Big] \Big] \\ & \text{Define} \Big[aS_{j} = \overline{R}_{i,j} \sim B_{i} \sim P_{i,j}, \\ & \overline{aS_{i}} = \mathbb{E}_{\{i\} \to \{i\}} \Big[-a_{i} \alpha_{i}, -x_{i} \mathscr{R}_{i} \xi_{i}, \\ & 1 + \text{If} \Big[\$k = 0, 0, \left(\overline{aS}_{\{i\}}, \$k-1 \right) \$k \Big] 3 \Big] - \\ & \left(\left(\overline{aS}_{\{i\}}, 0 \right) \$k \sim B_{i} \sim aS_{1} \sim B_{i} \sim (\overline{aS}_{\{i\}}, \$k-1) \$k \Big) \Big] 3 \Big] \Big] \Big] \\ & \text{Define} \Big[bS_{i} = R_{i,1} \sim B_{1} \sim aS_{1} \sim B_{1} \sim P_{i,1}, \\ & \overline{aS_{i}} = R_{i,1} \sim B_{1} \sim \overline{aS_{1}} \sim B_{1} \sim P_{i,1}, \\ & \overline{aS_{i}} = R_{i,1} \sim R_{1} \sim \overline{aS_{1}} \sim B_{1} \sim P_{i,1}, \\ & \overline{a\Delta_{i \to j,k}} = \left(R_{1,j} R_{2,k} \right) / / bm_{1,2 \to 3} / / P_{3,i}, \\ & b \Delta_{i \to j,k} = \left(R_{j,1} R_{k,2} \right) / / am_{1,2 \to 3} / / P_{i,3} \Big] \end{split}$$

Define[

 $dm_{i,j \rightarrow k} =$ $\left(\mathbb{E}_{\{i,j\}\to\{i,j\}}\left[\beta_{i} b_{i} + \alpha_{j} a_{j}, \eta_{i} y_{i} + \xi_{j} x_{j}, 1\right]\right)$ $\left(a\Delta_{i\rightarrow1,2} // a\Delta_{2\rightarrow2,3} // \overline{aS}_{3}\right) \left(b\Delta_{j\rightarrow-1,-2} // b\Delta_{-2\rightarrow-2,-3}\right) //$ $(P_{-1,3} P_{-3,1} am_{2,i \to k} bm_{i,-2 \to k}),$ $\mathsf{dS}_{\mathtt{i}} = \mathbb{E}_{\{\mathtt{i}\} \to \{\mathtt{1},\mathtt{2}\}} \left[\beta_{\mathtt{i}} \, \mathtt{b}_{\mathtt{1}} + \alpha_{\mathtt{i}} \, \mathtt{a}_{\mathtt{2}}, \, \eta_{\mathtt{i}} \, \mathtt{y}_{\mathtt{1}} + \xi_{\mathtt{i}} \, \mathtt{x}_{\mathtt{2}}, \, \mathtt{1} \right] \, / / \, \left(\overline{\mathsf{bS}}_{\mathtt{1}} \, \mathtt{aS}_{\mathtt{2}} \right) \, / / \,$ dm_{2,1→i}, $d\Delta_{i \rightarrow j,k} = (b\Delta_{i \rightarrow 3,1} a\Delta_{i \rightarrow 2,4}) // (dm_{3,4 \rightarrow k} dm_{1,2 \rightarrow j})]$ Define $[C_i = \mathbb{E}_{\{\} \to \{i\}} [0, 0, B_i^{1/2} e^{-\hbar \epsilon a_i/2}]_{sk},$ $\overline{C}_{i} = \mathbb{E}_{\{\} \to \{i\}} \left[0, 0, B_{i}^{-1/2} e^{\hbar \epsilon a_{i}/2} \right]_{\text{tr}},$ $Kink_{i} = (R_{1,3} \overline{C}_{2}) / / dm_{1,2 \rightarrow 1} / / dm_{1,3 \rightarrow i},$ $\overline{\text{Kink}_{i}} = \left(\overline{R}_{1,3} C_{2}\right) / / dm_{1,2 \rightarrow 1} / / dm_{1,3 \rightarrow i}$ **Define** $b2t_{i} = \mathbb{E}_{\left\{i\right\} \rightarrow \left\{i\right\}} \left[\alpha_{i} a_{i} - \beta_{i} t_{i} / \gamma, \xi_{i} x_{i} + \eta_{i} y_{i}, e^{\varepsilon \beta_{i} a_{i} / \gamma} \right]_{\$k},$ $t2b_{i} = \mathbb{E}_{\{i\} \rightarrow \{i\}} [\alpha_{i} a_{i} - \tau_{i} \gamma b_{i}, \xi_{i} x_{i} + \eta_{i} y_{i}, e^{\epsilon \tau_{i} a_{i}}]_{k}]$ Define $[kR_{i,j} = R_{i,j} / (b2t_i b2t_j) / . t_{i|j} \rightarrow t,$ $\overline{kR}_{i,j} = \overline{R}_{i,j} / / (b2t_i b2t_j) / \{t_{i|j} \rightarrow t, T_{i|j} \rightarrow T\},$ $km_{i,j \to k} = (t2b_i t2b_j) // dm_{i,j \to k} //$ **b2t**_k /. { $t_k \rightarrow t$, $T_k \rightarrow T$, $\tau_{i|j} \rightarrow 0$ }, $kC_i = C_i // b2t_i /. T_i \rightarrow T$, $\overline{kC_i} = \overline{C_i} // b2t_i /. T_i \rightarrow T$, kKink_i = Kink_i // b2t_i /. {t_i \rightarrow t, T_i \rightarrow T}, $\overline{kKink_i} = \overline{Kink_i} / b2t_i / \{t_i \rightarrow t, T_i \rightarrow T\}$

The Trefoil

 $k = 2; Z = kR_{1,5} kR_{6,2} kR_{3,7} k\overline{C_4} kKink_8 kKink_9 kKink_{10};$ Do[Z = Z~B_{1,r}~km_{1,r→1}, {r, 2, 10}]; Simplify /@Z /. v _1 \Rightarrow v

$$\begin{split} \mathbb{E}_{\{\} \to \{1\}} \left[\theta, \theta, \frac{\mathsf{T}}{1-\mathsf{T}+\mathsf{T}^2} + \frac{1}{\left(1-\mathsf{T}+\mathsf{T}^2\right)^3} \mathsf{T}\,\hbar\left(2\,\mathsf{a}\,\left(-1+\mathsf{T}-\mathsf{T}^3+\mathsf{T}^4\right) + \right. \\ & \left. \mathsf{T}\,\left(-1+2\,\mathsf{T}-3\,\mathsf{T}^2+2\,\mathsf{T}^3\right)\,\gamma-2\,\left(1+\mathsf{T}^3\right)\,x\,y\,\gamma\,\hbar\right)\,\varepsilon + \\ & \frac{1}{2\,\left(1-\mathsf{T}+\mathsf{T}^2\right)^5}\,\mathsf{T}\,\hbar^2\,\left(4\,\mathsf{a}^2\,\left(1-\mathsf{T}+\mathsf{T}^2\right)^2\,\left(1+\mathsf{T}-6\,\mathsf{T}^2+\mathsf{T}^3+\mathsf{T}^4\right) + \right. \\ & \left. 4\,\mathsf{a}\,\left(1-\mathsf{T}+\mathsf{T}^2\right)\,\gamma\,\left(\mathsf{T}\,\left(2-5\,\mathsf{T}+8\,\mathsf{T}^2-7\,\mathsf{T}^3-2\,\mathsf{T}^4+2\,\mathsf{T}^5\right) - \right. \\ & \left. 2\,\left(-1-2\,\mathsf{T}+5\,\mathsf{T}^2-4\,\mathsf{T}^3+\mathsf{T}^4+2\,\mathsf{T}^5\right)\,x\,y\,\hbar\right) + \\ & \gamma^2\,\left(\mathsf{T}\,\left(1-2\,\mathsf{T}+4\,\mathsf{T}^2-2\,\mathsf{T}^3+6\,\mathsf{T}^5-11\,\mathsf{T}^6+4\,\mathsf{T}^7\right) + \right. \\ & \left. 4\,\left(-1+2\,\mathsf{T}+\mathsf{T}^3+\mathsf{T}^4+2\,\mathsf{T}^6-\mathsf{T}^7\right)\,x\,y\,\hbar + \right. \\ & \left. 6\,\left(1-\mathsf{T}+\mathsf{T}^2\right)^2\,\left(1+3\,\mathsf{T}+\mathsf{T}^2\right)\,x^2\,y^2\,\hbar^2\right)\right)\,\varepsilon^2 + 0\,[\varepsilon\,]^3 \right] \end{split}$$

diagonam	n_k^t Alexander's	ω^+ genus / ri	bbon	diagnam	n_k^t A	lexander's ω^{\dagger}	+ genus	/ ribbon	diagram	n_k^t Al	lexander's	ω^+ ge	nus / ribbon
ulagrafii	Today's ρ_1^+	unknotting # / an	nphi?	ulagram	Today	$r's \rho_1^+ = u$	nknotting # /	amphi?	ulagram	Today'	s ρ_1^+	unknotting	g # / amphi?
\bigcirc	0_1^a 1	(0/ 🗸		3_1^a t	- 1		1 / X	\square	4^{a}_{1} 3.	- t		1 / X
	0	(0 / 🗸	1 OF	t			1 / 🗙		0			1 / 🖌
A	5_1^a $t^2 - t + 1$		2/×	$\overline{0}$	$\frac{5^{a}_{2}}{2}$ 2t	t - 3		1 / 🗙	(Ω)	6_1^a 5.	-2t		1 / 🖌
87	$2t^3 + 3t$		2/×		5t - 4			1 / 🗙		t - 4			1 / 🗙
Æ	$6^a_2 -t^2 + 3t - 3$		2/X	A	$6^a_3 t^2$	$t^2 - 3t + 5$		2/×	Å.	$7_1^a t^3$	$-t^2 + t - 1$	1	3 / 🗙
	$t^3 - 4t^2 + 4t - 4$		1/X		0			1 / 🖌	68	$3t^5 + 5$	$t^3 + 6t$		3 / 🗙
Ø	$7^a_2 3t-5$		1/X	3	7^a_3 21	$t^2 - 3t + 3$		2/×	∞	7^{a}_{4} 4t	- 7		1 / X
6 P	14t - 16		1/X		$-9t^{3} +$	$+8t^2 - 16t + 1$	12	2/×		32 - 24	4 <i>t</i>		2/×
	$7^a_5 2t^2 - 4t + 5$		2/X		7_6^a –	$t^2 + 5t - 7$		2/×		7^{a}_{7} t^{2}	-5t + 9		2 / 🗙
	$9t^3 - 16t^2 + 29t -$	- 28	2/×		$t^3 - 8t$	$t^2 + 19t - 20$		1 / 🗙	W)	8 - 3t			1 / 🗙
Ø	$\frac{8^a}{1}$ 7 – 3t		1/X	1 ch	$8_2^a -$	$-t^3 + 3t^2 - 3t - 3t$	+ 3	3 / 🗙	B	$\frac{8^a}{3}$ 9.	-4t		1 / 🗙
168 -	5t - 16		1/X		$2t^5 - 8$	$8t^4 + 10t^3 - 1$	$2t^2 + 13t - 1$	2 2/ X		0			2 / 🖌
	$\frac{8^a_4}{4}$ -2t ² + 5t - 5	5	2/X	(ch	8_5^a -	$-t^3 + 3t^2 - 4t - 4t$	+ 5	3 / 🗙	A	$8_6^a - 2$	$2t^2 + 6t - 7$	7	2 / 🗙
Ľ	$3t^3 - 8t^2 + 6t - 4$		2/×		$-2t^{5} +$	$+8t^4 - 13t^3 +$	$20t^2 - 22t +$	24 2 / 🗙		$5t^3 - 2$	$20t^2 + 28t -$	- 32	2/×
R	$\frac{8^a}{7}$ $t^3 - 3t^2 + 5t$	- 5	3/X		$\frac{8^{a}_{8}}{2}$	$t^2 - 6t + 9$		2/ 🗸		$8_9^a - t$	$t^3 + 3t^2 - 5$	t + 7	3 / 🗸
K K	$-t^5 + 4t^4 - 10t^3 +$	$+12t^2 - 13t + 12$	1/X		$-t^3 + 4$	$4t^2 - 12t + 16$	5	2/×		0			1 / 🖌
	$\frac{8^a_{10}}{t^3} + \frac{3^3 - 3t^2}{t^2} + 6t$	t – 7	3/X		8^{a}_{11} -	$-2t^2 + 7t - 9$		2/×	A	8^a_{12} t^2	$2^{2} - 7t + 13$		2 / 🗙
1628	$-t^5 + 4t^4 - 11t^3 +$	$+16t^2 - 21t + 20$	2/×		$5t^3 - 2$	$24t^2 + 39t - 4$	4	1 / 🗙	W	0			2 / 🖌
A	$\frac{8^a_{13}}{2t^2-7t+1}$	1	2/×	$\langle \Omega \rangle$	8^{a}_{14} -	$-2t^2 + 8t - 11$	l	2/×	\square	$\frac{8^a_{15}}{3}$	$t^2 - 8t + 1$	1	2/×
83	$-t^3 + 4t^2 - 14t +$	20	1/X	600	$5t^3 - 2$	$28t^2 + 57t - 6$	8	1 / 🗙		$21t^3 -$	$64t^2 + 120$	t - 140	2/×
A	$\frac{8^a_{16}}{t^3} + \frac{1}{4t^2} + 8t$	t – 9	3/X	A	8^{a}_{17} -	$-t^3 + 4t^2 - 8t$	+ 11	3 / 🗙		8^a_{18} –	$-t^3 + 5t^2 - $	10t + 13	3 / 🗙
	$t^5 - 6t^4 + 17t^3 - 2$	$28t^2 + 35t - 36$	2/×	P	0			1 / 🖌		0			2 / 🖌
	$\frac{8_{19}^n}{t^3} t^3 - t^2 + 1$		3/X	CA	$\frac{8_{20}^n}{t}$	$t^2 - 2t + 3$		2/ 🗸	(B)	8_{21}^n -	$-t^2 + 4t - 5$		2 / 🗙
WP .	$-3t^5 - 4t^2 - 3t$		3 / X	H H	4t - 4			1 / 🗙	P	$t^3 - 8t^2$	$^{2} + 16t - 2$	0	1 / 🗙

Do Not Turn Over Until Instructed

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/
The Taylor Remainder Formulas. Let f be a smooth function, let $P_{n,a}(x)$ be the *n*th order Taylor polynomial of f around a and evaluated at x, so with $a_k = f^{(k)}(a)/k!$,

$$P_{n,a}(x) \coloneqq \sum_{k=0}^{n} a_k (x-a)^k,$$

and let $R_{n,a}(x) := f(x) - P_{n,a}(x)$ be the "mistake" or "remainder term". Then

$$R_{n,a}(x) = \int_{a}^{x} dt \, \frac{f^{(n+1)}(t)}{n!} (x-t)^{n}, \tag{1}$$

Brook Taylor

or alternatively, for some t between a and x,

$$R_{n,a}(x) = \frac{f^{(n+1)}(t)}{(n+1)!} (x-a)^{n+1}.$$
 (2)

(In particular, the Taylor expansions of sin, cos, exp, and of several other lovely functions converges to these functions everywhe-R

re, no matter the odds.) • x **Proof of** (1) (for adults; I learned it from my son Itai). The R • x fundamental theorem of calcu x_1 lus says that if g(a) = 0 then R' $g(x) = \int_{a}^{x} dx_1 g(x_1)$. By design, x₂ $\dot{x_1}$ $R_{n,a}^{(k)}(a) = 0$ for $0 \le k \le n$. The- $R^{(n+1)}$ refore x

$$R_{n,a}(x) = \int_{a}^{x} dx_{1} R'_{n,a}(x_{1})$$

$$= \int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} R''_{n,a}(x_{2})$$

$$= \dots = \int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} \dots \int_{a}^{x_{n}} dx_{n} \int_{a}^{t} dt R^{(n+1)}_{n,a}(t)$$

$$= \int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} \dots \int_{a}^{x_{n}} dx_{n} \int_{a}^{t} dt f^{(n+1)}(t),$$
when $x > a$, and with similar logic when $x < a$,

w

$$= \int_{a \le t \le x_n \le \dots \le x_1 \le x} f^{(n+1)}(t) = \int_a^t dt \, f^{(n+1)}(t) \int_{t \le x_n \le \dots \le x_1 \le x} 1$$
$$= \int_a^t dt \frac{f^{(n+1)}(t)}{n!} \int_{(x_1,\dots,x_n) \in [t,x]^n} 1 = \int_a^x dt \, \frac{f^{(n+1)}(t)}{n!} (x-t)^n.$$

de-Fubini (obfuscation in the name of simplicity). Prematurely aborting the above chain of equalities, we find that for any $1 \le k \le n+1$,

$$R(x) = \int_{a}^{x} dt \, R^{(k)}(t) \frac{(x-t)^{k-1}}{(k-1)!}.$$

pace left blank for creative doodling

But these are easy to prove by induction using inte-Guido Fubini gration by parts, and there's no need to invoke Fubini.

Partial Derivatives Commute. Make Fubini Smile Again! If $f : \mathbb{R}^2 \to \mathbb{R}$ is C^2 near $a \in \mathbb{R}^2$, then $f_{12}(a) = f_{21}(a)$. **Proof.** Let $x \in \mathbb{R}^2$ be small, and let $R := [a_1, a_1 + x_1] \times [a_2, a_2 + x_2]$. $= \sum f =$ $\int f_{12}$ $f_{12}(a) \sim$ $\int f_{21}$ $\sim f_{21}(a)$ $f_{12}(a) \sim \frac{1}{|R|} \int_{R} f_{12} = \frac{1}{|R|} \int_{a_1}^{a_1+x_1} dt_1 \left(f_1(t_1, a_2 + x_2) - f_1(t_1, a_2) \right)$ $= \frac{1}{|R|} \left(\begin{array}{c} f(a_1+x_1,a_2+x_2)-f(a_1+x_1,a_2)\\ -f(a_1,a_2+x_2)+f(a_1,a_2) \end{array} \right).$ But the answer here is the same as in $f_{21}(a) \sim \frac{1}{|R|} \int_{R} f_{21} = \frac{1}{|R|} \int_{a_2}^{a_2 + x_2} dt_2 \left(f_2(a_1 + x_1, t_2) - f_2(a_1, t_2) \right)$ $= \frac{1}{|R|} \left(\begin{array}{c} f(a_1 + x_1, a_2 + x_2) - f(a_1, a_2 + x_2) \\ -f(a_1 + x_1, a_2) + f(a_1, a_2) \end{array} \right),$

and both of these approximations get better and better as $x \rightarrow 0$.

The Mean Value Theorem for Curves (MVT4C).
f
$$\gamma: [a, b] \rightarrow \mathbb{R}^2$$
 is a smooth curve, then there is
some $t_1 \in (a, b)$ for which $\gamma(b) - \gamma(a)$ and $\dot{\gamma}(t_1)$
we linearly dependent. If also $\gamma(a) = 0$, and
 $\gamma = \begin{pmatrix} \xi \\ \eta \end{pmatrix}$ and $\eta \neq 0 \neq \dot{\eta}$ on (a, b) , then
 $\frac{\xi(b)}{\eta(b)} = \frac{\dot{\xi}(t_1)}{\dot{\eta}(t_1)}$ (when lucky, $= \frac{\ddot{\xi}(t_2)}{\ddot{\eta}(t_2)} \dots$).
Proof of (2). Iterate the lucky MVT4C as follows:
 $\frac{R_{n,a}(x)}{(x-a)^{n+1}} = \frac{R'_{n,a}(t_1)}{(n+1)(t_1-a)^n} = \dots = \frac{R'_{n,a}(t_{n+1})}{(n+1)!} = \frac{f^{(n+1)}(t)}{(n+1)!}$.
T is Irrational following Ivan Niven, Bull.
Amer. Math. Soc. (1947) pp. 509:
Theorem: TT is irrational.
 $P(x) = Xn(a-t_x)^n$ For h quite large. Clearly
 $P(x)$ is posi correstored the Bod Consider the polynomial
 $P(x) = Nois Consider the polynomial
 $P(x) = Sposi correstored the Bod Consider the polynomial
 $P(x) = Sposi correstored the Bod Consider the polynomial
 $P(x) = Nois Consider the the Consider the polynomial
 $P(x) = Nois Consider the the Consider the polynomial
 $P(x) = Nois Consider the the Consider the polynomial
 $P(x) = Nois Consider the the Consider the polynomial
 $P(x) = Nois Consider the the Consider the theorem
 $Nois Consider the max an integer for charly
 $P(x)(0)$ is alway an integer, for p(T-x) = P(x)$
 $Nois Const is true for $P(x)(T)$ and for sink
 $Cos of O \ x T an all integers. Ergoo
 T is an integer for sink
 $Cos of O \ x T an all integers. Ergoo
 T is an integer for sink
 $Cos of O \ x T an all integers. Ergoo
 T is an integer for sink
 $Cos of O \ x T an all integers. Ergoo
 T is an integer for sink
 $Cos of O \ x T an all integers. Ergoo$$$$$$$$$$$$$$$$$$$$$$$

$$\begin{array}{c} C \\ b_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \\ c_$$

Hence Z, SW_{xy} , m, Δ , (and likewise S and θ) are morphisms in the *completion* of the monoidal category \mathcal{F} whose objects are finite sets B and whose morphisms are $\operatorname{mor}_{\mathcal{F}}(B, B') :=$ $\operatorname{Hom}_{\mathbb{Q}}(S(B) \to S(B')) = S(B^*, B')$ (by convention, $x^* = \xi$, $y^* = \eta$, etc.). Ergo we need to *consolidate* (at least parts of) said completion.

r Aside. "Consolidate" means "give a finite name to an infinite object, and figure out how to sufficiently manipulate such finite names". E.g., solving f'' = -f we encounter and set $\sum \frac{(-1)^k x^{2k}}{(2k)!} \rightarrow \cos x$, $\sum \frac{(-1)^k x^{2k+1}}{(2k+1)!} \rightarrow \sin x$, and then $\cos^2 x + \frac{1}{2}$. $\sin^2 x = 1$ and $\sin(x + y) = \sin x \cos y + \cos x \sin y$.

The Composition Law. If

$$\mathcal{S}(B_0) \xrightarrow{f} \mathcal{S}(B_1) \xrightarrow{g} \mathcal{S}(B_1) \xrightarrow{g} \mathcal{S}(B_2)$$

then ${}^t(f/\!\!/g) = {}^t(g \circ f) = \left(g|_{\zeta_{1j} \to \partial_{z_{1j}}} f\right)_{z_{1j}=0}$.

Examples.

1. The 1-variable identity map $I: S(z) \to S(z)$ is given by ${}^{t}I_{1} = \underline{e}^{\underline{z}\underline{\zeta}}$ and the *n*-variable one by ${}^{t}I_{n} = \underline{e}^{\underline{z}\underline{\zeta}+\dots+\underline{z}_{n}\underline{\zeta}_{n}}$.

- 2. The " $z_i \to z_j$ variable rename map $\sigma_i^i \colon \mathcal{S}(z_i) \to \mathcal{S}(z_j)$ becomes ${}^{t}\sigma_{i}^{i} = \mathbb{e}^{z_{j}\zeta_{i}}$, and it's easy to rename several variables simultaneously.
- 3. The "archetypal multiplication map $m_k^{ij}: S(z_i, z_j) \to S(z_k)$ " has ${}^{t}m = e^{z_k(\zeta_i + \zeta_j)}$.
- 4. The "archetypal coproduct $\Delta_{ik}^i: S(z_i) \to S(z_j, z_k)$ ", given by $z_i \to z_j + z_k$ or $\Delta z = z \otimes 1 + 1 \otimes z$, has ${}^t\Delta = e^{(z_j + z_k)\zeta_i}$.
- 5. *R*-matrices tend to have terms of the form $e_q^{\hbar y_1 x_2} \in \mathcal{U}_q \otimes \mathcal{U}_q$. The "baby *R*-matrix" is ${}^{t}R = {}_{\mathbb{C}}{}^{\hbar yx} \in \mathcal{S}(y, x)$.

Proposition. If $F: \mathcal{S}(B) \to \mathcal{S}(B')$ is linear and "continuous", then ${}^{t}F = \exp\left(\sum_{z_i \in B} \zeta_i z_i\right) /\!\!/ F.$

The Heisenberg Example. The "Weyl form of the canonical commutation relations" states that if [y, x] = t and t is central, then $e^{\xi x} e^{\eta y} = e^{\eta y} e^{\xi x} e^{-\eta \xi t}$. Thus with

$$SW_{xy} \underbrace{S(t, y, x)}_{\mathbb{O}_{yx}} \mathcal{U}(t, y, x)$$

we have ${}^{t}SW_{xy} = e^{\tau t + \eta y + \xi x - \eta \xi t}$.

The Zipping Issue (between unbound

and bound lies half-zipped).

Zipping. If $P(\zeta^j, z_i)$ is a polynomial, or whenever otherwise convergent, set

$$\left\langle P(\zeta^{j}, z_{i}) \right\rangle_{(\zeta^{j})} = \left. P\left(\partial_{z_{j}}, z_{i}\right) \right|_{z_{i}=0}$$

(E.g., if
$$P = \sum a_{nm} \zeta^n z^m$$
 then $\langle P \rangle_{\zeta} = \sum n! a_{nn}$).

The Zipping / Contraction Theorem. If P has a finite ζ -degree and the y's and the q's are "small" then

$$\left\langle P(z_i,\zeta^j) e^{\eta^i z_i + y_j \zeta^j} \right\rangle_{(\zeta^j)} = \left\langle P(z_i + y_i,\zeta^j) e^{\eta^i (z_i + y_i)} \right\rangle_{(\zeta^j)}$$

(proof: replace $y_i \rightarrow \hbar y_i$ and test at $\hbar = 0$ and at ∂_{\hbar}), and

$$\begin{split} \left\langle P(z_i, \zeta^j) e^{c+\eta^i z_i + y_j \zeta^j + q_j^i z_i \zeta^j} \right\rangle_{(\zeta^j)} \\ &= \det(\tilde{q}) \left\langle P(\tilde{q}_i^k(z_k + y_k), \zeta^j) e^{c+\eta^j \tilde{q}_i^k(z_k + y_k)} \right\rangle_{(\zeta^j)} \end{split}$$

where \tilde{q} is the inverse matrix of 1 - q: $(\delta_i^i - q_i^i)\tilde{q}_k^J = \delta_k^i$ (proof: replace $q_i^i \to \hbar q_i^i$ and test at $\hbar = 0$ and at ∂_{\hbar}).

```
Implementation.
                                                                            \omega \epsilon \beta / ZipBindDemo
\{z^*, x^*, y^*\} = \{\xi, \xi, \eta\}; \{\xi^*, \xi^*, \eta^*\} = \{z, x, y\};
(u_i)^* := (u^*)_i;
Zip<sub>()</sub> [P_] := P;
Zip<sub>{$_,$$__}</sub>[P_] :=
  \left(\operatorname{Expand}\left[P / / \operatorname{Zip}_{\{\mathcal{S}^{S}\}}\right] / \cdot f_{-} \cdot \mathcal{S}^{d_{-}} \Rightarrow \partial_{\{\mathcal{S}^{*},d\}}f\right) / \cdot \mathcal{S}^{*} \to 0
Zip_{\{\zeta\}}[(a \zeta^{6} + \zeta + 3) (z^{5} e^{z} + 7 z) + 99 b]
7 + 720 a + 99 b
\mathsf{Zip}_{\{\xi,\eta\}}\left[\xi^3 \eta^3 e^{ax+by+cxy}\right]
a^{3} b^{3} + 9 a^{2} b^{2} c + 18 a b c^{2} + 6 c^{3}
(* \mathbb{E}[Q,P] \text{ means } e^{Q}P *)
E /: Zip<sub>Ss_List</sub>@E[Q_, P_] :=
   Module [\{\mathcal{L}, z, zs, c, ys, \eta s, qt, zrule, Q1, Q2\},
     zs = Table[\zeta^*, \{\zeta, \zeta s\}];
     c = Q / . Alternatives @@ (\Im \cup zs) \rightarrow 0;
     ys = Table [\partial_{\zeta} (Q / . \text{ Alternatives } @Q zs \rightarrow 0), \{\zeta, \zeta s\}];
     \eta s = Table [\partial_z (Q /. Alternatives @@ \zeta s \rightarrow 0), \{z, zs\}];
     qt = Inverse@Table[K\delta_{z,\varsigma^*} - \partial_{z,\varsigma}Q, \{\zeta, \zeta_S\}, \{z, z_S\}];
     zrule = Thread[zs \rightarrow qt.(zs + ys)];
     Q1 = c + \etas.zs /. zrule;
     Q2 = Q1 /. Alternatives @@ zs \rightarrow 0;
     Simplify /@ \mathbb{E}[Q2, \text{Det}[qt] e^{-Q2} \operatorname{Zip}_{\mathcal{S}}[e^{Q1} (P /. zrule)]]];
```

$\mathsf{Eh} = \mathbb{E} \left[\mathsf{h} \sum_{i=1}^{3} \sum_{j=1}^{3} \mathsf{a}_{10\,i+j} \, \mathsf{x}_i \, \xi_j, \, \sum_{i=1}^{3} \mathsf{f}_i \, [\mathsf{x}_1, \, \mathsf{x}_2, \, \mathsf{x}_3] \, \xi_i \right];$

$E1 = Eh / . h \rightarrow 1$

```
\mathbb{E} \left[ a_{11} x_1 \xi_1 + a_{21} x_2 \xi_1 + a_{31} x_3 \xi_1 + a_{12} x_1 \xi_2 + \right]
    a_{22} x_2 \xi_2 + a_{32} x_3 \xi_2 + a_{13} x_1 \xi_3 + a_{23} x_2 \xi_3 + a_{33} x_3 \xi_3,
  \xi_1 f_1[x_1, x_2, x_3] + \xi_2 f_2[x_1, x_2, x_3] + \xi_3 f_3[x_1, x_2, x_3]]
```

Short [lhs = $Zip_{\{\xi_1,\xi_2\}}@E1$, 5]

$$\mathbb{E} \left[\begin{array}{c} ((a_{13} \ ((-1 + a_{22}) \ a_{31} - a_{21} \ a_{32}) \ + a_{12} \ (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + a_{21} \ a_{33}) \end{array} \right] + \left[\begin{array}{c} \mathbb{E} \left[(a_{13} \ ((-1 + a_{22}) \ a_{31} - a_{21} \ a_{32}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{21} \ a_{33}) \ + (-a_{23} \ a_{31} + a_{32} \ a_{31} \ a_{31} \ a_{31} \ a_{32} \ a_{31} \ a_{31} \ a_{31} \ a_{32} \ a_{31} \ a_{31}$$

$$(-1 + a_{11}) (a_{23} a_{32} - (-1 + a_{22}) a_{33}) x_3 \xi_3)$$

 $(-1 + a_{12} a_{21} - a_{11} (-1 + a_{22}) + a_{22}),$

 $<\!\!<\!\!17\!\!>\!\!> + a_{21} <\!\!<\!\!1\!\!>\!\!>$ $(-1 + a_{12} a_{21} - a_{11} (-1 + a_{22}) + a_{22})^2$

 $lhs = Zip_{\{\xi_1\}} @Zip_{\{\xi_2\}} @E1 = Zip_{\{\xi_2\}} @Zip_{\{\xi_1\}} @E1$

True Short[

lhs = Normal [Eh /. $\mathbb{E}[Q_{P_1}] \Rightarrow$ Series [$P \in Q_{P_1}$, {h, 0, 3}]] // $Zip_{\{\xi_1,\xi_2\}}, 5$ h a₁₃ ξ_3 f₁[0, 0, x₃] + 2 h² a₁₁ a₁₃ ξ_3 f₁[0, 0, x₃] + 3 $h^3 a_{11}^2 a_{13} \xi_3 f_1[0, 0, x_3] + 2 h^3 a_{12} a_{13} a_{21} \xi_3 f_1[0, 0, x_3] +$ $h^2 \; a_{13} \; a_{22} \; \xi_3 \; f_1 [\textit{0, 0, x}_3] \; + \; <\!\!<\!\!337 \!\!>\!\!> \; +$

$$\frac{1}{6}h^{3}a_{31}^{3}x_{3}^{3}f_{2}^{(3,1,0)}[0,0,x_{3}] + \frac{1}{6}h^{3}a_{31}^{3}x_{3}^{3}f_{1}^{(4,0,0)}[0,0,x_{3}]$$

Normal $\left[\operatorname{Zip}_{\{\xi_1,\xi_2\}} \otimes \operatorname{Eh} / \mathbb{E} \left[Q_{,P_{}} \right] \Rightarrow \operatorname{Series} \left[P \otimes^{Q}, \{h, 0, 3\} \right] \right];$ Simplify[lhs == rhs]

True

```
E /: E[Q1_, P1_] E[Q2_, P2_] := E[Q1 + Q2, P1 * P2];
Bind<sub>Ss List</sub>[L_E, R_E] := Module[{n, hideSs, hidezs},
      hide\zeta s = Table[\zeta s[i]] \rightarrow \zeta_{nei}, \{i, Length@\zeta s\}];
     \label{eq:linear} hidezs = Table[ \ensuremath{\mathcal{C}} s[\![i]\!]^* \rightarrow z_{nei}, \ensuremath{ \{i, Lengthe} \ensuremath{\mathcal{C}} s \} ];
     Zip<sub>ζ's/.hidegs</sub>[(L /. hidezs) (R /. hidegs)]];
Bind<sub>{\xi_2</sub> [\mathbb{E} [\xi (x_1 + x_2), 1], \mathbb{E} [\xi_2 (x_2 + x_3), 1]]
```

```
\mathbb{E}\left[\xi \left(x_{1} + x_{2} + x_{3}\right), 1\right]
Bind<sub>{\xi_2}</sub> [\mathbb{E} [(\xi_2 + \xi_3) X_2, 1], \mathbb{E} [(\xi_1 + \xi_2) X, 1]]
```

```
\mathbb{E}\left[\,\textbf{X}\,\left(\,\xi_{\textbf{1}}\,+\,\xi_{\textbf{2}}\,+\,\xi_{\textbf{3}}\,\right)\,\textbf{,}\,\textbf{1}\,\right]
```

The 2D Lie Algebra. Clever people know^{*} that if $[a, x] = \gamma x$ then $e^{\xi x}e^{\alpha a} = e^{\alpha a}e^{e^{-\gamma a}\xi x}$. Ergo with

$$SW_{ax} \underbrace{\bigcirc}_{\mathcal{S}(a, x)} \underbrace{\bigcirc}_{\mathbb{O}_{xa}}^{\mathbb{O}_{ax}} \mathcal{U}(a, x)$$

we have ${}^{t}SW_{ax} = \mathbb{e}^{\alpha a + \mathbb{e}^{-\gamma \alpha} \xi x}$.

* Indeed $xa = (a - \gamma)x$ thus $xa^n = (a - \gamma)^n x$ thus $xe^{\alpha a} = e^{\alpha(a-\gamma)}x = e^{-\gamma\alpha}e^{\alpha a}x$ thus $x^n e^{\alpha a} = e^{\alpha a} (e^{-\gamma \alpha})^n x^n$ thus $e^{\xi x} e^{\alpha a} = e^{\alpha a} e^{e^{-\gamma \alpha} \xi x}$.

The Real Thing. In $QU/(\epsilon^2 = 0)$ over $\mathbb{Q}[\hbar]$ using the yax order, $T = \mathbb{e}^{\hbar t}$, $\overline{T} = T^{-1}$, $\mathcal{A} = \mathbb{e}^{\gamma \alpha}$, and $\overline{\mathcal{A}} = \mathcal{A}^{-1}$, we have

 ${}^{t}R_{ij} = \mathbb{e}^{\hbar(y_i x_j - t_i a_j/\gamma)} \left(1 + \epsilon \hbar \left(a_i a_j/\gamma - \gamma \hbar^2 y_i^2 x_j^2/4 \right) \right)$

in $\mathcal{S}(B_i, B_j)$, and in $\mathcal{S}(B_1^*, B_2^*, B)$ we have

 ${}^{t}m = \mathbb{e}^{(\alpha_{1} + \alpha_{2})a + \eta_{2}\xi_{1}(1 - T)/\hbar + (\xi_{1}\bar{\mathcal{A}}_{2} + \xi_{2})x + (\eta_{1} + \eta_{2}\bar{\mathcal{A}}_{1})y} (1 + \epsilon\lambda_{m}),$

where $\lambda_m = 2a\eta_2\xi_1T + \frac{1}{4}\gamma\eta_2^2\xi_1^2(3T^2 - 4T + 1)/\hbar - \frac{1}{2}\gamma\eta_2\xi_1^2(3T - 1)x\bar{\mathcal{A}}_2$ $-\frac{1}{2}\gamma\eta_2^2\xi_1(3T-1)y\bar{\mathcal{A}}_1+\gamma\eta_2\xi_1xy\hbar\bar{\mathcal{A}}_1\bar{\mathcal{A}}_2$. Similar formulas delight us for ${}^{t}\Delta$ and ${}^{t}S$.

A generic morphism.

Implementation.

```
QZip<sub>$s_List,simp_</sub>@E[L_,Q_,P_] :=
   Module [{\zeta, z, zs, c, ys, \etas, qt, zrule, Q1, Q2},
     zs = Table[<sup>c</sup>/<sub>s</sub>*, {<sup>c</sup>/<sub>s</sub>, <sup>c</sup>/<sub>s</sub>s}];
     c = Q / . Alternatives @@ (\zeta s \cup zs) \rightarrow 0;
     ys = Table [\partial_{\zeta} (Q / . \text{ Alternatives } @ zs \rightarrow 0), \{\zeta, \zeta S\}];
     \eta s = Table [\partial_z (Q /. Alternatives @@ (s \rightarrow 0), {z, zs}];
     qt = Inverse@Table[K\delta_{z,\zeta^*} - \partial_{z,\zeta}Q, {\zeta, \zetas}, {z, zs}];
     zrule = Thread[zs \rightarrow qt.(zs + ys)];
     Q2 = (Q1 = c + \eta s.zs /. zrule) /. Alternatives @@ zs \rightarrow 0;
     simp /@ E[L, Q2, Det[qt] e<sup>-Q2</sup> Zip<sub>S5</sub>[e<sup>Q1</sup> (P /. zrule)]];
QZip ist := QZip ....;
```

LZip (s list.simp @E[L,Q,P] := Module [{g, z, zs, c, ys, η s, lt, zrule, L1, L2, Q1, Q2}, zs = Table[\$*, {\$, \$\$}]; c = L /. Alternatives @@ ($\zeta s \cup zs$) $\rightarrow 0$; ys = Table [∂_{ζ} (L /. Alternatives @@ zs $\rightarrow 0$), { ζ , ζ s}]; $\eta s = Table [\partial_z (L /. Alternatives @@ \zeta s \rightarrow 0), \{z, zs\}];$ lt = Inverse@Table[$K\delta_{z,\xi^*} - \partial_{z,\xi}L$, { ξ , ξ 5}, {z, z5}]; zrule = Thread[$zs \rightarrow lt.(zs + ys)$]; L2 = (L1 = c + η s.zs /. zrule) /. Alternatives @@ zs \rightarrow 0; Q2 = (Q1 = Q /. T2t /. zrule) /. Alternatives @@ zs \rightarrow 0; simp /@ \mathbb{E} [L2, Q2, Det[1t] e^{-L2-Q2} Zip₃[e^{L1+Q1} (P /. T2t /. zrule)]] //. t2T]; LZip_{gs List} := LZip_{gs,CF};

```
Bind{) [L_, R_] := L R;
Bind_{is_{l}}[L_E, R_E] := Module[\{n\},
      Times[
            L \ / \ . \ \mathsf{Table} \ [ \ (\nu : \mathsf{T} \ | \ \mathsf{t} \ | \ \mathsf{a} \ | \ \mathsf{x} \ | \ \mathsf{y})_{\mathtt{i}} \rightarrow \mathsf{v}_{\mathtt{n} \oplus \mathtt{i}}, \ \{\mathtt{i}, \ \{\mathtt{i}s\}\} ] \ ,
             R \ /. \ \mathsf{Table}[\ (\nu:\tau\mid \alpha\mid \xi\mid \eta)_{\mathtt{i}} \rightarrow \mathsf{v}_{\mathsf{n} \oplus \mathtt{i}}, \ \{\mathtt{i}, \ \{\mathtt{i}s\}\}]
           ] // LZipFlatten@Table[{\tau_{n@i}, a_{n@i}}, {i, {is}}] //
        QZip<sub>Flatten@Table[{{n@i,yn@i},{i,{is}}]</sub>];
BL List := BindL; Bis____ := Bind{is};
Bind[S E] := S;
Bind[Ls_, $$_List, R_] := Bind$$ [Bind[Ls], R];
```

A Partial To Do List.

- Complete all "docility" arguments by identifying a "contained" docile substructure.
- Understand denominators and get rid of them.
- See if much can be gained by including *P* in the exponential: Understand the braid group representations that arise. $\mathbb{e}^{L+Q}P \longrightarrow \mathbb{e}^{L+Q+P}?$
- Clean the program and make it efficient.
- Run it for all small knots and links, at k = 2, 3.
- Understand the centre and figure out how to read the output.
- Execute the Drinfel'd double procedule at \mathbb{E} -level (and thus get rid of DeclareAlgebra and all that is around it!).
- Extend to *sl*₃ and beyond.
- Do everything with Zip and Bind as the fundamentals, wi- What else can you do with the "solvable approximations"? thout ever referring back to (quantized) Lie algebras.

References.

- [BN1] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, ωεβ/KBH, arXiv:1308.1721.
- [BN2] D. Bar-Natan, Polynomial Time Knot Polynomial, research proposal for the 2017 Killam Fellowship, ωεβ/K17.
- [BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103-133.
- [BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
- [BV] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, Proc. Amer. Math. Soc., to appear, arXiv:1708.04853.
- [Fa] L. Faddeev, Modular Double of a Quantum Group, arXiv: math/9912078.
- [GR] S. Garoufalidis and L. Rozansky, The Loop Exapnsion of the Kontsevich Integral, the Null-Move, and S-Equivalence, arXiv:math.GT/0003187.
- [GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.

The Complete Implementation.

An even fuller implementation is at $\omega \epsilon \beta$ /FullImp.

Initialization / Utilities

\$p = 2; \$k = 1; \$U = QU; \$E := {\$k, \$p}; $\texttt{$trim:= \{ \tilde{n}^{p_-} / ; p > \$p \to 0, e^{k_-} / ; k > \$k \to 0 \};}$ $\mathbf{q}_{\hbar} = \mathbf{e}^{\mathbf{\gamma} \in \hbar};$ $\mathsf{T2t} = \left\{ \mathsf{T}_{i}^{p_{-}} \to \mathsf{e}^{\mathsf{p}\,\hbar\,\mathsf{t}_{i}}, \, \mathsf{T}^{p_{-}} \to \mathsf{e}^{\mathsf{p}\,\hbar\,\mathsf{t}} \right\};$ $t2T = \left\{ e^{c_{-} \cdot t_{i_{-}} + b_{-}} :\Rightarrow T_{i}^{c/\hbar} e^{b}, e^{c_{-} \cdot t + b_{-}} :\Rightarrow T^{c/\hbar} e^{b}, e^{\mathcal{S}_{-}} :\Rightarrow e^{Expand@\mathcal{S}} \right\};$ SetAttributes[SS, HoldAll]; SS[8_, op_] := Collect[Normal@Series[If[\$p > 0, 8, 8 /. T2t], {h, 0, \$p}], ħ, op]; SS[8_] := SS[8, Together]; Simp[&_, op_] := Collect[&, _CU | _QU, op]; Simp[&_] := Simp[&, SS[#, Expand] &]; $K\delta /: K\delta_{i,j} := If[i === j, 1, 0];$ $c_Integer_k \ Integer := c + 0[e]^{k+1};$

• Prove a genus bound and a Seifert formula.

- Obtain "Gauss-Gassner formulas" (ωεβ/NCSU).
- Relate with Melvin-Morton-Rozansky and with Rozansky-Overbay.
- Find a topological interpretation. The Garoufalidis-Rozansky "loop expansion" [GR]?
- Figure out the action of the Cartan automorphism.
- Disprove the ribbon-slice conjecture!
- Figure out the action of the Weyl group.
- Do everything at the "arrow diagram" level of finite-type invariants of (rotational) virtual tangles.
- And with the "Gaussian zip and bind" technology?
- [MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.
- [Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \epsilon \beta / Ov$.
- [Qu] C. Quesne, Jackson's q-Exponential as the Exponential of a Series, ar-Xiv:math-ph/0305003.
- [Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
- [Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.
- [Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
- [Vo] H. Vo, Alexander Invariants of Tangles via Expansions, University of Toronto Ph.D. thesis, in preparation.
- [Za] D. Zagier, The Dilogarithm Function, in Cartier, Moussa, Julia, and Vanhove (eds) Frontiers in Number Theory, Physics, and Geometry II. Springer, Berlin, Heidelberg, and $\omega \epsilon \beta/Za$.

```
CF[&_] := ExpandDenominator@
   ExpandNumerator@
    Together [Expand [S] //. e^{X_-} e^{Y_-} \Rightarrow e^{X+Y} /. e^{X_-} \Rightarrow e^{CF[X]}];
Unprotect[SeriesData];
SeriesData /: CF[sd_SeriesData] := MapAt[CF, sd, 3];
SeriesData /: Expand[sd_SeriesData] :=
  MapAt[Expand, sd, 3];
SeriesData /: Simplify[sd_SeriesData] :=
  MapAt[Simplify, sd, 3];
SeriesData /: Together[sd SeriesData] :=
  MapAt[Together, sd, 3];
SeriesData /: Collect[sd_SeriesData, specs__] :=
  MapAt[Collect[#, specs] &, sd, 3];
Protect[SeriesData];
DeclareAlgebra
```

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/

ωεβ/SL2Portfolio

```
Unprotect[NonCommutativeMultiply];
Attributes[NonCommutativeMultiply] = {};
(NCM = NonCommutativeMultiply) [x_] := x;
NCM[x_, y_, z_] := (x * * y) * * z;
0 ** _ = _ ** 0 = 0;
(x_Plus) ** y_ := (\# ** y) \& /@x;
x_** (y_PLus) := (x ** #) & /@y;
B[x_{,x_{]}} = 0; B[x_{,y_{]}} := x * * y - y * * x;
B[x_{,y_{,e_{]}} = B[x, y, e] = B[x, y];
DeclareAlgebra[U_Symbol, opts__Rule] :=
 Module[{gp, sr, g, cp, M, CE, k = 0,
    gs = Generators /. {opts},
   cs = Centrals /. {opts} /. Centrals \rightarrow {}},
   (\#_U = U@\#) \& /@gs;
  gp = Alternatives @@ gs; gp = gp | gp_; (* gens *)
  sr = Flatten@Table[{g \rightarrow ++k, g_{i_-} \rightarrow \{i, k\}}, {g, gs}];
  (* sorting \rightarrow *)
  cp = Alternatives @@ cs; (* cents *)
  SetAttributes[M, HoldRest]; M[0, _] = 0;
  M[a_, x_] := ax;
  CE[8_] := Collect[8, _U, Expand] /. $trim;
  U_{i_{-}}[\mathcal{S}_{-}] := \mathcal{S} / . \{t : \mathsf{cp} \Rightarrow t_{i}, u_{-}U \Rightarrow (\#_{i} \&) /@u\};
  B[U@(x_{i_{e}})_{i_{e}}, U@(y_{e})_{i_{e}}] := U_{i}@B[U@x, U@y];
  B[U@(x_{j_i}, U@(y_{j_i})] /; i = ! = j := 0;
  B[U@y_, U@x_] := CE[-B[U@x, U@y]];
  x_* * (c_. \mathbf{1}_U) := CE[cx]; (c_. \mathbf{1}_U) * * x_:= CE[cx];
   (a_. U[xx___, x_]) ** (b_. U[y_, yy__]) :=
   If[OrderedQ[{x, y} /. sr],
     CE@M[ab/. $trim, U[xx, x, y, yy]],
     U@xx **
       CE@M[ab /. $trim, U@y ** U@x + B[U@x, U@y, $E]] **
      U@yy];
  U@{c_. * (l : gp)<sup>n_</sup>, r___} /; FreeQ[c, gp] :=
   CE[cU@Table[l, {n}] **U@{r}];
  U@\{c_. *l: gp, r___\} := CE[cU[l] **U@\{r\}];
  U@{c_, r___} /; FreeQ[c, gp] := CE[cU@{r}];
  U = \{ l_P lus, r_{--} \} := CE[U = \{\#, r\} \& / e l];
  U@{l_, r_} := U@{Expand[l], r};
  U[\mathcal{E}_NonCommutativeMultiply] := U/@\mathcal{E};
  O<sub>U</sub>[specs___, poly_] := Module[{sp, null, vs, us},
     sp = Replace[{specs}, l_{list} \Rightarrow l_{null}, {1}];
     vs = Join@@ (First /@ sp);
     us = Join@@ (sp /. l_{s_-} \Rightarrow (l /. x_{i_-} \Rightarrow x_s));
     CE[Total[
          CoefficientRules [poly, vs] /. (p_{\rightarrow} c_{-}) \Rightarrow c U@(us^{p})
        ]] /. x_{null} \Rightarrow x];
  \mathbb{O}_U[specs___, \mathbb{E}[L_, Q_, P_]] :=
    O_U[specs, SS@Normal[Pe^{L+Q}]];
  \sigma_{rs} [c_* u_U] :=
    (c /. (t : cp)_{j_{-}} \Rightarrow t_{j/.\{rs\}}) U[List@@ (u /. v_{j_{-}} \Rightarrow v_{j/.\{rs\}})];
  m_{j_{\rightarrow k_{-}}}[c_{\cdot} * u_{-}U] :=
   CE[((c / . (t : cp)_j \rightarrow t_k) DeleteCases[u, \__{j|k}]) **
      U @@ Cases[u, w_{j} \Rightarrow w_{k}] ** U @@ Cases[u, _{k}]];
  U /: c_. * u_U * v_U := CE[cu * * v];
  S_i [c_. * u_U] :=
    CE[((c /. S<sub>i</sub>[U, Centrals]) DeleteCases[u, _i]) **
      U_i [\mathsf{NCM} @@ \mathsf{Reverse}@\mathsf{Cases}[u, x_i \Rightarrow \mathsf{S}@U@x]]];
  \Delta_{i \rightarrow j}, k [C_{*} + u_{U}] :=
    CE[((c / . \Delta_{i \rightarrow j,k}[U, Centrals]) DeleteCases[u, _i]) **
       (NCM @@ Cases[u, x_i \Rightarrow \sigma_{1 \rightarrow j, 2 \rightarrow k}@\Delta@U@x] /.
         \mathsf{NCM}[] \to U[])];
```

DeclareMorphism **DeclareMorphism** $[m_, U_ \rightarrow V_, ongs_List, oncs_List: {}] := ($ Replace [ongs, { $(g \rightarrow img_) \Rightarrow (m[U[g]] = img)$, $(g_{\Rightarrow} img_{}) \Rightarrow (m[U[g]] := img /. $trim) \}, \{1\}];$ $m[1_U] = 1_V;$ $m[U[g_i]] := V_i[m[U@g]];$ $m[U[vs_{]}] := NCM@@(m/@U/@{vs});$ $m[\mathcal{E}_{]} := \operatorname{Simp}[\mathcal{E} /. oncs /. u_U : \rightarrow m[u]] /. \$ Meta-Operations σ_{rs} [\mathcal{E}_{Plus}] := $\sigma_{rs} / @ \mathcal{E}_{s}$; $\mathbf{m}_{i \rightarrow j}$ = Identity; $\mathbf{m}_{i \rightarrow k}$ [0] = 0; $\mathbf{m}_{j \to k} [\mathcal{E}_{PLus}] := \operatorname{Simp}[\mathbf{m}_{j \to k} / @\mathcal{E}];$ $\mathsf{m}_{is__,i_,j_\to k_}[\mathscr{E}_] := \mathsf{m}_{j\to k} @\mathsf{m}_{is,i\to j} @\mathscr{E};$ $S_i [\mathcal{E}_Plus] := Simp[S_i / @\mathcal{E}];$ $\Delta_{is} \quad [\mathcal{E}_{Plus}] := \operatorname{Simp}[\Delta_{is} / @\mathcal{E}];$ Implementing $CU = \mathcal{U}(sl_2^{\gamma \epsilon})$ DeclareAlgebra[CU, Generators \rightarrow {y, a, x}, Centrals \rightarrow {t}]; $B[a_{cu}, y_{cu}] = -\gamma y_{cu}; B[x_{cu}, a_{cu}] = -\gamma x_{cu};$ $B[x_{CU}, y_{CU}] = 2 \in a_{CU} - t \mathbf{1}_{CU};$ $(S@y_{CU} = -y_{CU}; S@a_{CU} = -a_{CU}; S@x_{CU} = -x_{CU};)$ S_i [CU, Centrals] = { $t_i \rightarrow -t_i$ }; $\Delta @ \mathbf{y}_{CU} = CU@ \mathbf{y}_1 + CU@ \mathbf{y}_2; \quad \Delta @ \mathbf{a}_{CU} = CU@ \mathbf{a}_1 + CU@ \mathbf{a}_2;$ $\Delta @ \mathbf{x}_{CU} = CU @ \mathbf{x}_1 + CU @ \mathbf{x}_2;$ $\Delta_{i_{-} \rightarrow j_{-},k_{-}} [CU, Centrals] = \{t_{i} \rightarrow t_{j} + t_{k}\};$ Implementing $QU = \mathcal{U}_q(sl_2^{\gamma\epsilon})$ DeclareAlgebra[QU, Generators \rightarrow {y, a, x}, **Centrals** \rightarrow {t, T}]; $B[a_{QU}, y_{QU}] = -\gamma y_{QU}; B[x_{QU}, a_{QU}] = -\gamma QU@x;$ $B[x_{QU}, y_{QU}] := SS[q_{\hbar} - 1] QU@\{y, x\} +$ $\mathbb{O}_{QU}[\{a\}, SS[(1 - Te^{-2 \epsilon a\hbar})/\hbar]];$ $(S@y_{QU} := O_{QU}[{a, y}, SS[-T^{-1} e^{\hbar e a} y]]; S@a_{QU} = -a_{QU};$ $S@x_{QU} := O_{QU}[\{a, x\}, SS[-e^{\hbar \epsilon a} x]];)$ S_i [QU, Centrals] = { $t_i \rightarrow -t_i$, $T_i \rightarrow T_i^{-1}$ }; $\Delta @ y_{QU} := \mathbb{O}_{QU} \left[\{ y_1, a_1 \}_1, \{ y_2 \}_2, SS \left[y_1 + T_1 e^{-\hbar e a_1} y_2 \right] \right];$ $\Delta @a_{0U} = QU@a_1 + QU@a_2;$ $\Delta @x_{QU} := O_{QU} [\{a_1, x_1\}_1, \{x_2\}_2, SS [x_1 + e^{-\hbar e a_1} x_2]];$ $\Delta_{i_{-} \rightarrow j_{-}, k_{-}} [QU, Centrals] = \{t_{i} \rightarrow t_{j} + t_{k}, T_{i} \rightarrow T_{j} T_{k}\};$ The representation ρ $\rho@y_{CU} = \rho@y_{QU} = \begin{pmatrix} 0 & 0 \\ \epsilon & 0 \end{pmatrix}; \rho@a_{CU} = \rho@a_{QU} = \begin{pmatrix} \gamma & 0 \\ 0 & 0 \end{pmatrix};$ $\rho @ \mathsf{X}_{\mathsf{CU}} = \begin{pmatrix} 0 & \mathsf{Y} \\ 0 & 0 \end{pmatrix}; \ \rho @ \mathsf{X}_{\mathsf{QU}} = \begin{pmatrix} 0 & \left(\mathbf{1} - e^{-\mathsf{Y} \in \hbar} \right) / (\epsilon \hbar) \\ 0 & 0 \end{pmatrix};$ $\rho[e^{\mathcal{S}_{-}}] := MatrixExp[\rho[\mathcal{S}]];$ **ρ**[*S*_] := $(\mathcal{E}/.T2t/.t \rightarrow \gamma \epsilon/.$ $(U: \text{CU} | \text{QU}) [u_{__}] \Rightarrow \text{Fold} \begin{bmatrix} \text{Dot}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \rho / @U / @ \{u\} \end{bmatrix}$

tSW

Goal. In either U, compute $F = e^{-\eta y} e^{\xi x} e^{\eta y} e^{-\xi x}$. First compute $G = e^{\xi x} y e^{-\xi x}$, a finite sum. Now *F* satisfies the ODE $\partial_{n}F = \partial_{n}(e^{-\eta y}e^{\eta G}) = -yF + FG$ with initial conditions $F(\eta = 0) = 1$. So we set it up and solve:

```
SW<sub>xy</sub>[U_, kk_] :=
    SW_{xy}[U, kk] = Block[{$U = U, $k = kk, $p = kk},
        Module[{G, F, fs, f, bs, e, b, es},
           G = Simp[Table [\xi^k / k!, \{k, 0, \$k + 1\}].
                 NestList[Simp[B[x_{U}, #]] &, y_{U}, k + 1];
           fs = Flatten@Table[f<sub>1,i,j,k</sub>[\eta], {1, 0, $k}, {i, 0, 1},
                 {j,0, 1}, {k,0, 1}];
          \mathsf{F} = \mathsf{fs.}\left(\mathsf{bs} = \mathsf{fs} / . \mathsf{f}_{l_{-},i_{-},j_{-},k_{-}}[\eta] \Rightarrow \epsilon^{l} U @\{\mathbf{y}^{i}, \mathbf{a}^{j}, \mathbf{x}^{k}\}\right);
           es = Flatten[Table[Coefficient[e, b] == 0,
                 {e, {F - \mathbf{1}_U /. \eta \rightarrow 0, F ** G - \mathbf{y}_U ** F - \partial_\eta F}},
                  {b, bs}]];
          F = F / . DSolve[es, fs, \eta] [1];
          E[0.
               \xi \mathbf{x} + \eta \mathbf{y} + (U /. \{ \mathsf{CU} \rightarrow -\mathsf{t} \eta \xi, \mathsf{QU} \rightarrow \eta \xi (\mathsf{1} - \mathsf{T}) / \hbar \} ),
              F + O_{sk} / . \{e^- \rightarrow 1, U \rightarrow Times\}
            ] /. (v:\eta | \xi | t | T | y | a | x) \rightarrow v_1
        ]];
tSW<sub>xy_,i_,j_→k_</sub> :=
    SW_{xy}[$U, $k] /. {\xi_1 \rightarrow \xi_i, \eta_1 \rightarrow \eta_j, (v: t | T | y | a | x)<sub>1</sub> \rightarrow v_k};
\mathsf{tSW}_{\mathsf{x}\mathsf{a},i_{-},j_{-}\rightarrow k_{-}} := \mathbb{E}\left[\alpha_{j} \, \mathsf{a}_{k}, \, \mathsf{e}^{-\gamma \, \alpha_{j}} \, \xi_{i} \, \mathsf{x}_{k}, \, \mathsf{1}\right];
```

```
\mathsf{tSW}_{\mathsf{ay},i}, j \to k} := \mathbb{E} \left[ \alpha_i \, \mathsf{a}_k, \, \mathsf{e}^{-\gamma \, \alpha_i} \, \eta_j \, \mathsf{y}_k, \, \mathsf{1} \right];
```

Exponentials as needed.

Task. Define $\operatorname{Exp}_{U_i,k}[\xi, P]$ which computes $e^{\xi \mathbb{Q}(P)}$ to ϵ^k in the algebra U_i , where ξ is a scalar, X is x_i or y_i , and P is an ϵ -dependent neardocile element, giving the answer in E-form. Should satisfy $U \textcircled{} \mathsf{Exp}_{U:k}[\xi, P] == \mathbb{S}_{U}[e^{\xi x}, x \to \mathbb{O}(P)].$ Methodology. If $P_0 := P_{\epsilon=0}$ and $e^{\xi \mathbb{Q}(P)} = \mathbb{Q}(e^{\xi P_0} F(\xi))$, then $F(\xi = 0) = 1$ and we have: $\mathbb{O}(e^{\xi P_0}(P_0 F(\xi) + \partial_{\xi} F) = \mathbb{O}(\partial_{\xi} e^{\xi P_0} F(\xi)) =$ $\partial_{\xi} \mathbb{O}(\boldsymbol{e}^{\xi P_0} F(\xi)) = \partial_{\xi} \boldsymbol{e}^{\xi \mathbb{O}(P)} = \boldsymbol{e}^{\xi \mathbb{O}(P)} \mathbb{O}(P) = \mathbb{O}(\boldsymbol{e}^{\xi P_0} F(\xi)) \mathbb{O}(P)$ This is an ODE for *F*. Setting inductively $F_k = F_{k-1} + \epsilon^k \varphi$ we find that $F_0 = 1$ and solve for φ . (* Bug: The first line is valid only if $O(e^{P_0}) = e^{O(P_0)}$. *) (* Bug: ξ must be a symbol. *) $\mathsf{Exp}_{U_{i}}, \mathfrak{g}[\mathcal{E}, \mathcal{P}] := \mathsf{Module}[\{\mathsf{LQ} = \mathsf{Normal}@\mathcal{P} / . \in \to 0\},\$ $\mathbb{E}[\mathcal{E} LQ / . (x | y)_i \rightarrow 0, \mathcal{E} LQ / . (t | a)_i \rightarrow 0, 1]];$ $Exp_{U_i,k_}[\mathcal{E}, P_] := Block[\{\$U = U, \$k = k\},$ Module [{P0, φ , φ s, F, j, rhs, at0, at ξ }, $P0 = Normal@P / . \in \rightarrow 0;$ φ s = Flatten@Table[$\varphi_{j1,j2,j3}[\xi]$, {j2, 0, k}, $\{j1, 0, 2k+1-j2\}, \{j3, 0, 2k+1-j2-j1\}];$ $F = Normal@Last@Exp_{U_i,k-1}[\mathcal{E}, P] +$ $\epsilon^k \varphi s. (\varphi s /. \varphi_{js_{-}}[\varsigma] \Rightarrow Times @@ {y_i, a_i, x_i}^{{js}});$ rhs = Normal@ Last@ $\mathbf{m}_{i,j \rightarrow i} \left[\mathbb{E} \left[\mathcal{E} \mathsf{PO} / . (\mathbf{X} \mid \mathbf{y})_i \rightarrow \mathbf{0}, \mathcal{E} \mathsf{PO} / . (\mathbf{t} \mid \mathbf{a})_i \rightarrow \mathbf{0}, \mathsf{F} + \mathbf{0}_k \right] \right]$ $m_{i \to j} @ \mathbb{E} [0, 0, P + 0_k]];$ at0 = (# = 0) & /@Flatten@CoefficientList[F-1 /. $\mathcal{E} \rightarrow 0$, {y_i, a_i, x_i}]; $at\xi = (\# = 0) \& /@$ Flatten@CoefficientList[(∂_{ε} F) + P0 F - rhs, $\{y_i, a_i, x_i\}];$ $\mathbb{E} \left[\mathcal{E} \mathsf{PO} / . (\mathbf{x} \mid \mathbf{y})_i \rightarrow \mathbf{0}, \mathcal{E} \mathsf{PO} / . (\mathbf{t} \mid \mathbf{a})_i \rightarrow \mathbf{0}, \mathsf{F} + \mathbf{0}_k \right] / .$ DSolve [And @@ (at0 \bigcup at ξ), φ s, ξ] [[1]]

Zip and Bind

 $E /: E [L1_, Q1_, P1_] = E [L2_, Q2_, P2_] := CF [L1 == L2] \land CF [Q1 == Q2] \land CF [Normal [P1 - P2] == 0];$ $E /: E [L1_, Q1_, P1_] E [L2_, Q2_, P2_] := E [L1 + L2, Q1 + Q2, P1 + P2];$ $\{t^*, y^*, a^*, x^*, z^*\} = \{t, \eta, \alpha, \xi, \xi\};$ $\{t^*, \eta^*, \alpha^*, \xi^*, \xi^*\} = \{t, y, a, x, z\};$ $(u_{-i})^* := (u^*)_i;$ $Zip_{(j} [P_-] := P;$ $Zip_{(\zeta_-, \zeta_{2--})} [P_-] := V;$

(Expand [$P / / \operatorname{Zip}_{\{\mathcal{L}^{s}\}}$] /. f_{-} . $\mathcal{L}^{d_{-}} \Rightarrow \partial_{\{\mathcal{L}^{*},d\}}f$) /. $\mathcal{L}^{*} \to 0$ QZip implements the "Q-level zips" on $\mathbb{E}(L, Q, P) = Pe^{L+Q}$. Such zips regard the L variables as scalars.

```
\begin{aligned} & \mathsf{QZip}_{\mathcal{L}^{\mathsf{S}}_{2},List,simp} @ \mathbb{E} [L_{-}, Q_{-}, P_{-}] := \\ & \mathsf{Module} [ \{ \mathcal{G}, z, zs, c, ys, \eta s, qt, zrule, Q1, Q2 \}, \\ & zs = \mathsf{Table} [ \mathcal{G}^{*}, \{ \mathcal{G}, \mathcal{L}^{\mathsf{S}} \} ] ; \\ & c = Q /. \mathsf{Alternatives} @ (\mathcal{L}^{\mathsf{S}} \bigcup zs) \to 0; \\ & ys = \mathsf{Table} [ \partial_{\mathcal{L}} (Q /. \mathsf{Alternatives} @ zs \to 0), \{ \mathcal{G}, \mathcal{L}^{\mathsf{S}} \} ] ; \\ & \eta s = \mathsf{Table} [ \partial_{\mathcal{L}} (Q /. \mathsf{Alternatives} @ zs \to 0), \{ \mathcal{L}, zs \} ] ; \\ & \eta s = \mathsf{Table} [ \partial_{\mathcal{L}} (Q /. \mathsf{Alternatives} @ \mathcal{L}^{\mathsf{S}} s \to 0), \{ \mathcal{L}, zs \} ] ; \\ & \eta t = \mathsf{Inverse} @ \mathsf{Table} [ (\mathsf{K}_{\mathcal{D}_{\mathcal{L},\mathcal{S}^{\mathsf{C}}} - \partial_{\mathcal{L},\mathcal{S}} Q, \{ \mathcal{L}, \mathcal{L}^{\mathsf{S}} s \}, \{ z, zs \} ] ; \\ & \mathsf{trule} = \mathsf{Thread} [ zs \to qt. (zs + ys) ] ; \\ & \mathsf{Q2} = (\mathsf{Q1} = c + \eta s. zs /. zrule) /. \mathsf{Alternatives} @ zs \to 0; \\ & simp / @ \mathbb{E} [ L, \mathsf{Q2}, \mathsf{Det} [ qt ] e^{-\mathsf{Q2}} \mathsf{Zip}_{\mathcal{L}^{\mathsf{S}}} [ e^{\mathsf{Q1}} (P /. zrule) ] ] ] ; \\ & \mathsf{QZip}_{\mathcal{L}^{\mathsf{S}}} List := \mathsf{QZip}_{\mathcal{L}^{\mathsf{S}},\mathsf{CF}}; \end{aligned}
```

```
z_{1}p_{cs}_{list} = q_{2}p_{cs}, cF
```

LZip implements the "*L*-level zips" on $\mathbb{E}(L, Q, P) = Pe^{L+Q}$. Such zips regard all of Pe^Q as a single" *P*". Here the *z*'s are *t* and α and the ζ 's are *t* and *a*.

 $LZip_{SS \ List, simp} @\mathbb{E}[L_, Q_, P_] :=$ Module [{g, z, zs, c, ys, η s, lt, zrule, L1, L2, Q1, Q2}, $zs = Table[\zeta^*, \{\zeta, \zeta s\}];$ c = L / . Alternatives @@ ($C \le \bigcup zs$) $\rightarrow 0;$ ys = Table [∂_{ζ} (L /. Alternatives @@ zs \rightarrow 0), { ζ , ζ s}]; $\eta s = Table[\partial_z (L /. Alternatives @@ \zeta s \rightarrow 0), \{z, zs\}];$ lt = Inverse@Table[$K\delta_{z,\zeta^*} - \partial_{z,\zeta}L$, { ζ , ζ s}, {z, zs}]; $zrule = Thread[zs \rightarrow lt.(zs + ys)];$ L2 = (L1 = c + η s.zs /. zrule) /. Alternatives @@ zs \rightarrow 0; Q2 = $(Q1 = Q / . T2t / . zrule) / . Alternatives @@ zs <math>\rightarrow 0$; simp /@ E[L2, Q2, Det[lt] e^{-L2-Q2} Zip_{cs} [e^{L1+Q1} (P /. T2t /. zrule)]] //. t2T]; LZip_{\$\$ List} := LZip_{\$\$,CF}; **Bind**{; $[L_, R_] := LR;$ Bind_{is} $[L_E, R_E] := Module [\{n\},$ Times[L /. Table[$(v: T | t | a | x | y)_i \rightarrow v_{nei}, \{i, \{is\}\}$], R /. Table [($v : \tau \mid \alpha \mid \xi \mid \eta$)_i $\rightarrow V_{n@i}$, {i, {is}}]] // LZip_{Flatten@Table[{ $\tau_{n@i}, a_{n@i}$ }, {i, {is}}] //} QZipFlatten@Table[{{ { cn@i, yn@i}, {i, {is}}] }; BL_List := BindL; Bis___ := Bind[is]; Bind [$\mathcal{E}_{\mathbb{E}}$] := \mathcal{E} ; **Tensorial Representations**

 $\begin{aligned} & t\eta = t\mathbf{i} = \mathbb{E} \left[0, 0, 1 + 0_{sk} \right]; \\ & tm_{i_{-}, j_{-} \wedge k_{-}} := Module \left[\{tk\}, \\ & \mathbb{E} \left[\left(\tau_{i} + \tau_{j} \right) t_{k} + \alpha_{i} a_{k} + \alpha_{j} a_{k}, \eta_{i} y_{k} + \xi_{j} x_{k}, 1 \right] \\ & \left(tSW_{xy, i_{,} j_{-} tk} / \cdot \left\{ t_{tk} \rightarrow t_{k}, T_{tk} \rightarrow T_{k}, y_{tk} \rightarrow e^{-\gamma \alpha_{i}} y_{k}, \right. \\ & a_{tk} \rightarrow a_{k}, x_{tk} \rightarrow e^{-\gamma \alpha_{j}} x_{k} \} \right] \right]; \\ & m_{j_{-} \wedge k_{-}} \left[\mathcal{E}_{-} \mathbb{E} \right] := \mathcal{E} \sim B_{j,k} \sim tm_{j,k \rightarrow k}; \end{aligned}$

tm1,2→3

$$E \begin{bmatrix} a_{3} a_{1} + a_{3} a_{2} + t_{3} (t_{1} + t_{2}), \\ y_{3} \eta_{1} + e^{-\gamma a_{1}} y_{3} \eta_{2} + e^{-\gamma a_{2}} x_{3} \xi_{1} + \frac{(1 - T_{3}) \eta_{2} \xi_{1}}{h} + x_{3} \xi_{2}, \\ 1 + \frac{1}{4h} \eta_{2} \xi_{1} (8 h a_{3} T_{3} + 4 e^{-\gamma a_{1} - \gamma a_{2}} \gamma h^{2} x_{3} y_{3} + 2 e^{-\gamma a_{1}} \gamma h y_{3} \eta_{2} - 6 e^{-\gamma a_{1}} \gamma h T_{3} y_{3} \eta_{2} + 2 e^{-\gamma a_{2}} \gamma h x_{3} \xi_{1} - 6 e^{-\gamma a_{2}} \gamma h T_{3} x_{3} \xi_{1} + \gamma \eta_{2} \xi_{1} - 4 \gamma T_{3} \eta_{2} \xi_{1} + 3 \gamma T_{3}^{2} \eta_{2} \xi_{1} (e + 0) [e]^{2} \end{bmatrix}$$

$$S[U_{-}, kk_{-}] := S[U, kk] = Module[{0E}, \\0E = m_{3,2,1-1}(Exp_{0,1,sk}[\eta, S_{1}(QU[y_{1}]] / . QU \to Times]] \\Exp_{00,3,sk}[\xi, S_{2}(QU[a_{2}]] / . QU \to Times]] \\Exp_{00,3,sk}[\xi, S_{3}(QU[a_{3}]] / . QU \to Times]] \\Exp_{00,3,sk}[\xi, S_{3}(QU[x_{3}]] / . QU \to Times]] \\E = [-t_{1} t_{1} + t_{1} + 0E[11], 0E[21], 0E[31] / . \\(\eta + \eta_{1}, \alpha + \alpha_{1}, \xi + \xi_{1})]; \\ts_{1} : : : S[SU, Sk] / . ((v : t | \eta | \alpha | \xi_{1}) + v_{1}, \\(v : t | T | y | a | x_{1})_{1} \to v_{1}; \\ts_{1} : : : S[SU, sk] / . (v : \tau | \eta | \alpha | \xi_{1}) + v_{1}, \\(v : t | T | y | a | x_{1})_{1} \to v_{1}; \\ts_{1} = \frac{e^{\gamma a_{1}} h \eta_{1} \eta_{1} - e^{\gamma a_{1}} h T_{1} x_{1} \xi_{1} + e^{\gamma a_{1}} \eta_{1} \eta_{1} \xi_{1} + 8 e^{\gamma a_{1}} h a_{1} T_{1} \eta_{1} \xi_{1} + 4 e^{\gamma a_{1}} \eta h^{2} \eta_{1} \tau_{1}^{2} \xi_{1} - 2 e^{2\gamma a_{1}} \gamma h^{2} \tau_{1}^{2} \chi_{1}^{2} \eta_{1}^{2} \xi_{1}^{2} + 4 e^{\gamma a_{1}} h h^{2} \eta_{1} \eta_{1} \eta_{1} \xi_{1} + 2 e^{2\gamma a_{1}} \gamma h^{2} \tau_{1}^{2} \chi_{1}^{2} \xi_{1}^{2} + 6 e^{2\gamma a_{1}} \gamma h T_{1} \eta_{1} \xi_{1}^{2} - 2 e^{2\gamma a_{1}} \gamma h^{2} \tau_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \xi_{1}^{2} + 6 e^{2\gamma a_{1}} \gamma h T_{1} \eta_{1} \xi_{1}^{2} - 2 e^{2\gamma a_{1}} \gamma h^{2} \tau_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \xi_{1}^{2} + e^{2\gamma a_{1}} \gamma \eta_{1}^{2} \xi_{1}^{2} - 2 e^{2\gamma a_{1}} \gamma h^{2} \tau_{1}^{2} \chi_{1}^{2} \xi_{1}^{2} + 6 e^{2\gamma a_{1}} \gamma h^{2} \tau_{1}^{2} \chi_{1}^{2} \xi_{1}^{2} + 2 e^{2\gamma a_{1}} \gamma h^{2} \tau_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \eta_{1}^{2} \xi_{1}^{2} + 2 e^{2\gamma a_{1}} \gamma h^{2} \tau_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2} \chi_{1}^{2}$$

$$\mathbf{e}_{q_{k_{-}}[x_{-}]} := \mathbf{e}^{\left(\sum_{j=1}^{k+1} \frac{(1-q)^{j} x^{j}}{j (1-q^{j})}\right)}; \ \mathbf{e}_{q_{-}[x_{-}]} := \mathbf{e}_{q, k_{-}[x]}$$

$$\begin{split} & \mathbb{R}\left[\begin{array}{c} \mathbb{Q}\mathbb{U}, \, kk \right] = \mathbb{E} \left[-\frac{\hbar}{\mathbf{a}_{2}} \frac{\mathbf{t}_{1}}{\mathbf{y}}, \, \, \hbar\, \mathbf{x}_{2}\, \mathbf{y}_{1}, \\ & \quad \text{Series} \left[e^{\hbar\, y^{-1}\, \mathbf{t}_{1}\, \mathbf{a}_{2} - \hbar\, y_{1}\, \mathbf{x}_{2}} \\ & \left(e^{\hbar\, b_{1}\, \mathbf{a}_{2}}\, e_{\mathbf{q}_{h}, kk} \left[\, \hbar\, \mathbf{y}_{1}\, \mathbf{x}_{2} \right] \, / \, \, b_{1} \rightarrow \mathbf{y}^{-1} \, \left(\varepsilon\, \mathbf{a}_{1} - \mathbf{t}_{1} \right) \right), \\ & \left\{ \varepsilon, \, \theta, \, kk \right\} \right] \right] \, ; \\ & \quad \text{tr}_{i_{-}, j_{-}} \, := \\ & \quad \mathbb{R}\left[\left\{ \mathbb{U}, \, \left\{ \mathbb{K}\right\} \right] \, / \, \left\{ \left(\mathbb{V}: \mathbf{t} \mid \mathbf{T} \mid \mathbf{y} \mid \mathbf{a} \mid \mathbf{x} \right)_{1} \rightarrow \mathbf{v}_{i} \right\} \\ & \quad \left(\mathbb{V}: \mathbf{t} \mid \mathbf{T} \mid \mathbf{y} \mid \mathbf{a} \mid \mathbf{x} \right)_{2} \rightarrow \mathbf{v}_{j} \right\}; \\ & \quad \text{tr}_{i_{-}, j_{-}} \, := \, \overline{\mathrm{tr}}_{i, j} = \, \mathrm{tr}_{i, j} = \, \mathrm{tr}_{i, j} \sim \mathbf{b}_{j} \sim \mathrm{tS}_{j}; \\ & \quad \left\{ \mathbf{tR}_{1, 2}, \, \, \overline{\mathrm{tR}}_{1, 2} \right\} \\ & \left\{ \mathbb{E} \left[-\frac{\hbar\, \mathbf{a}_{2}\, \mathbf{t}_{1}}{\gamma}, \, \, \hbar\, \mathbf{x}_{2}\, \mathbf{y}_{1}, \, \mathbf{1} + \left(\frac{\hbar\, \mathbf{a}_{1}\, \mathbf{a}_{2}}{\gamma} - \frac{1}{4}\, \gamma\, \hbar^{3}\, \mathbf{x}_{2}^{2}\, \mathbf{y}_{1}^{2} \right) \, \varepsilon + \, 0 \, [\varepsilon\,]^{2} \right], \\ & \quad \mathbb{E} \left[\frac{\hbar\, \mathbf{a}_{2}\, \mathbf{t}_{1}}{\gamma}, \, \, -\frac{\hbar\, \mathbf{x}_{2}\, \mathbf{y}_{1}}{\mathsf{T}_{1}}, \, \mathbf{1} + \frac{1}{4\, \gamma\, \mathsf{T}_{1}^{2}} \\ & \quad \left(-4\, \hbar\, \mathbf{a}_{1}\, \mathbf{a}_{2}\, \mathsf{T}_{1}^{2} - 4\, \gamma\, \hbar^{2}\, \mathbf{a}_{1}\, \mathsf{T}_{1}\, \mathbf{x}_{2}\, \mathbf{y}_{1} - 4\, \gamma\, \hbar^{2}\, \mathbf{a}_{2}\, \mathsf{T}_{1}\, \mathbf{x}_{2}\, \mathbf{y}_{1} - 3\, \gamma^{2}\, \hbar^{3}\, \mathbf{x}_{2}^{2}\, \mathbf{y}_{1}^{2} \right) \\ & \quad \varepsilon + \, 0 \, [\varepsilon\,]^{2} \right] \right\} \end{split}$$

tC is the counterclockwise spinner; \overline{tC} is its inverse.

 $\begin{aligned} & \mathsf{tC}_{i_{-}} := \mathbb{E} \left[\theta, \theta, \mathsf{T}_{i}^{1/2} e^{-e \, \mathbf{a}_{i} \, \hbar} + \theta_{\mathbf{s}\mathbf{k}} \right]; \\ & \overline{\mathsf{tC}}_{i_{-}} := \mathbb{E} \left[\theta, \theta, \mathsf{T}_{i}^{-1/2} e^{e \, \mathbf{a}_{i} \, \hbar} + \theta_{\mathbf{s}\mathbf{k}} \right]; \\ & \mathsf{Block} \left[\left\{ \$k = 3 \right\}, \left\{ \mathsf{tC}_{1}, \, \overline{\mathsf{tC}}_{2} \right\} \right] \\ & \left\{ \mathbb{E} \left[\theta, \theta, \right. \\ & \sqrt{\mathsf{T}_{1}} - \hbar \, \mathbf{a}_{1} \, \sqrt{\mathsf{T}_{1}} \, \epsilon + \frac{1}{2} \, \hbar^{2} \, \mathbf{a}_{1}^{2} \, \sqrt{\mathsf{T}_{1}} \, \epsilon^{2} - \frac{1}{6} \left(\hbar^{3} \, \mathbf{a}_{1}^{3} \, \sqrt{\mathsf{T}_{1}} \right) \, \epsilon^{3} + 0 \left[\epsilon \right]^{4} \right], \\ & \mathbb{E} \left[\theta, \theta, \frac{1}{\sqrt{\mathsf{T}_{2}}} + \frac{\hbar \, \mathbf{a}_{2} \, \epsilon}{\sqrt{\mathsf{T}_{2}}} + \frac{\hbar^{2} \, \mathbf{a}_{2}^{2} \, \epsilon^{2}}{2 \, \sqrt{\mathsf{T}_{2}}} + \frac{\hbar^{3} \, \mathbf{a}_{2}^{3} \, \epsilon^{3}}{6 \, \sqrt{\mathsf{T}_{2}}} + 0 \left[\epsilon \right]^{4} \right] \right\} \\ & \mathsf{Kink} \left[\mathsf{QU}, \, kk \right] := \\ & \mathsf{Kink} \left[\mathsf{QU}, \, kk \right] = \\ & \mathsf{Block} \left[\left\{ \$k = kk \right\}, \left(\mathsf{tR}_{1,3} \, \overline{\mathsf{tC}}_{2} \right) - \mathsf{B}_{1,2} - \mathsf{tm}_{1,2 \rightarrow 1} - \mathsf{B}_{1,3} - \mathsf{tm}_{1,3 \rightarrow 1} \right]; \\ & \mathsf{Kink} \left[\mathsf{QU}, \, kk \right] := \\ & \mathsf{Kink} \left[\mathsf{QU}, \, kk \right] := \\ & \mathsf{Kink} \left[\mathsf{QU}, \, kk \right] = \\ & \mathsf{Block} \left[\left\{ \$k = kk \right\}, \left(\overline{\mathsf{tR}}_{1,3} \, \mathsf{tC}_{2} \right) - \mathsf{B}_{1,2} - \mathsf{tm}_{1,2 \rightarrow 1} - \mathsf{B}_{1,3} - \mathsf{tm}_{1,3 \rightarrow 1} \right]; \\ & \mathsf{tKink}_{i_{-}} := \mathsf{Kink} \left[\$\mathsf{QU}, \, \$k \right] = \\ & \mathsf{Block} \left[\left\{ \$k = kk \right\}, \left(\overline{\mathsf{tR}}_{1,3} \, \mathsf{tC}_{2} \right) - \mathsf{B}_{1,2} - \mathsf{tm}_{1,2 \rightarrow 1} - \mathsf{B}_{1,3} - \mathsf{tm}_{1,3 \rightarrow 1} \right]; \\ & \mathsf{tKink}_{i_{-}} := \mathsf{Kink} \left[\$\mathsf{QU}, \, \$k \right] = \\ & \mathsf{Block} \left[\left\{ \$k = kk \right\}, \left(\mathsf{tR}_{1,3} \, \mathsf{tC}_{2} \right) - \mathsf{B}_{1,2} - \mathsf{tm}_{1,2 \rightarrow 1} - \mathsf{B}_{1,3} - \mathsf{tm}_{1,3 \rightarrow 1} \right]; \\ & \mathsf{tKink}_{i_{-}} := \mathsf{Kink} \left[\$\mathsf{QU}, \, \$k \right] = \\ & \mathsf{Block} \left[\left\{ \$ = kk \right\}, \left(\mathsf{tR}_{1,3} \, \mathsf{tC}_{2} \right) - \mathsf{B}_{1,2} - \mathsf{tm}_{1,2 \rightarrow 1} - \mathsf{B}_{1,3} - \mathsf{tm}_{1,3 \rightarrow 1} \right]; \\ & \mathsf{tKink}_{i_{-}} := \mathsf{Kink} \left[\$\mathsf{QU}, \, \$k \right] = \\ & \mathsf{Rick} \left[\mathsf{Kink} \left[\$\mathsf{QU}, \, \$k \right] = \\ & \mathsf{Rick} \left[\mathsf{Kink} \left[\$\mathsf{QU}, \, \$k \right] \right] = \\ & \mathsf{Rick} \left[\mathsf{Rick} \left[\mathsf{Rick} \left[\$\mathsf{Rick} \right] \right] \right]$

Alternative Algorithms

```
\begin{split} \lambda_{\mathsf{alt},k_{-}}[\mathsf{CU}] &:= \mathsf{If}\Big[k = 0, \mathsf{1}, \mathsf{Module}\Big[\{\mathsf{eq}, \mathsf{d}, \mathsf{b}, \mathsf{c}, \mathsf{so}\}, \\ &:= \mathsf{eq} = \mathsf{\rho} \otimes \mathsf{e}^{\mathsf{f} \times \mathsf{cu}} \cdot \mathsf{\rho} \otimes \mathsf{e}^{\mathsf{n} \, \mathsf{y} \mathsf{cu}} = \mathsf{\rho} \otimes \mathsf{e}^{\mathsf{d} \, \mathsf{y} \mathsf{cu}} \cdot \mathsf{\rho} \otimes \mathsf{e}^{\mathsf{c}} \left( \mathsf{t}^{\mathsf{1} \mathsf{cu} - 2 \, \varepsilon \, \mathsf{a} \mathsf{cu}} \right) \cdot \mathsf{\rho} \otimes \mathsf{e}^{\mathsf{b} \, \mathsf{x} \mathsf{cu}}; \\ &\{\mathsf{so}\} = \mathsf{Solve}[\mathsf{Thread}[\mathsf{Flatten} / @ \, \mathsf{eq}], \{\mathsf{d}, \mathsf{b}, \mathsf{c}\}] \, /. \\ &\mathsf{C} \otimes \mathsf{e} \mathsf{1} \to \mathsf{0}; \\ &\mathsf{Series}\Big[ \mathsf{e}^{-\mathsf{n} \, y - \xi \, x + \eta \, \xi \, \mathsf{t} + c \, \mathsf{t} + d \, y - 2 \, \varepsilon \, c \, a + b \, x} \, /. \, \mathsf{so}, \, \{\varepsilon, \mathsf{0}, k\}\Big]\Big]\Big]; \end{split}
```

The Trefoil

R[OU, kk] :=

$$\begin{split} & \text{Block} \left[\{ \$k = 1 \}, \\ & \text{Z} = \texttt{tR}_{1,5} \texttt{tR}_{6,2} \texttt{tR}_{3,7} \overrightarrow{\texttt{tC}}_4 \overrightarrow{\texttt{tKink}_8} \overrightarrow{\texttt{tKink}_9} \overrightarrow{\texttt{tKink}_{10}}; \\ & \text{Do} \left[\text{Z} = \texttt{Z} \sim \texttt{B}_{1,k} \sim \texttt{tm}_{1,k \rightarrow 1}, \ \{\texttt{k}, \texttt{2}, \texttt{10}\} \right]; \ \texttt{Z} \right] \\ & \mathbb{E} \left[\varTheta{0, 0, \frac{\texttt{T}_1}{1 - \texttt{T}_1 + \texttt{T}_1^2} + \\ & \left(\left(-2\,\hbar\,\texttt{a}_1\,\texttt{T}_1 - \gamma\,\hbar\,\texttt{T}_1^2 + 2\,\hbar\,\texttt{a}_1\,\texttt{T}_1^2 + 2\,\gamma\,\hbar\,\texttt{T}_1^3 - 3\,\gamma\,\hbar\,\texttt{T}_1^4 - 2\,\hbar\,\texttt{a}_1\,\texttt{T}_1^4 + \\ & 2\,\gamma\,\hbar\,\texttt{T}_1^5 + 2\,\hbar\,\texttt{a}_1\,\texttt{T}_1^5 - 2\,\gamma\,\hbar^2\,\texttt{T}_1\,\texttt{x}_1\,\texttt{y}_1 - 2\,\gamma\,\hbar^2\,\texttt{T}_1^4\,\texttt{x}_1\,\texttt{y}_1 \right) \in \right) \big/ \\ & \left(\left(1 - 3\,\texttt{T}_1 + 6\,\texttt{T}_1^2 - 7\,\texttt{T}_1^3 + 6\,\texttt{T}_1^4 - 3\,\texttt{T}_1^5 + \texttt{T}_1^6 \right) + \texttt{O} \left[\in \right]^2 \right] \end{split}$$

diagram	n_k^t Alexander's ω^+	genus / ribbon	diagram	n_k^t Alexander's ω^+	genus / ribbon
diagram	Today's / Rozansky's ρ_1^+	unknotting number / amphicheiral	diagram	Today's / Rozansky's ρ_1^+	unknotting number / amphicheiral
	0_1^a 1	0 / 🗸	(n)	$3_1^a t - 1$	1 / 🗶
	0	0 / 🖌	1 P	t	1 / 🗙
\bigcirc	$4^a_1 3-t$	1 / 🗙	A	$5^a_1 t^2 - t + 1$	2 / 🗙
E E	0	1 / 🛩	l Of	$2t^3 + 3t$	2 / 🗙
\bigcirc	$5^a_2 2t-3$	1 / 🗙	\bigcirc	$\frac{6^a}{1}$ 5 – 2t	1 / 🖌
	5t - 4	1 / 🗙	K K K K K K K K K K K K K K K K K K K	t-4	1 / 🗙

Dror Bar-Natan: Talks: LesDiablerets-1708: The Dogma is Wrong

Follows Rozansky [Ro1, Ro2, Ro3] and Overbay [Ov], joint with van der Veen. Preliminary writeup [BV1], fuller writeup [BV2]. More at ωεβ/talks

Abstract. It has long been known that there are knot invariants Theorem ([BNG], conjectured [MM], eassociated to semi-simple Lie algebras, and there has long been lucidated [Ro1]). Let $J_d(K)$ be the coa dogma as for how to extract them: "quantize and use repre-loured Jones polynomial of K, in the d-dimensional representasentation theory". We present an alternative and better procedu- tion of sl_2 . Writing re: "centrally extend, approximate by solvable, and learn how to re-order exponentials in a universal enveloping algebra". While equivalent to the old invariants via a complicated process, our invariants are in practice stronger, faster to compute (poly-time vs. exp-time), and clearly carry topological information.

KiW 43 Abstract ($\omega \epsilon \beta / kiw$). Whether or not you like the formulas on this page, they describe the strongest truly computable knot invariant we know.

Experimental Analysis (ωεβ/Exp). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 crossings (mean times) and for all torus knots with up to 48 crossings:

Power. On the 250 knots with at most 10 crossings, the pair (ω, ρ_1) attains 250 distinct values, while (Khovanov, HOMFLY-PT) attains only 249 distinct values. To 11 crossings the numbers are (802, 788, 772) and to 12 they are (2978, 2883, 2786).

Genus. Up to 12 xings, always ρ_1 is symmetric under $t \leftrightarrow t^{-1}$. With ρ_1^+ denoting the positive-degree part of ρ_1 , always deg $\rho_1^+ \leq$ 2g - 1, where g is the 3-genus of K (equality for 2530 knots). This gives a lower bound on g in terms of ρ_1 (conjectural, but undoubtedly true). This bound is often weaker than the Alexander bound, yet for 10 of the 12-xing Alexander failures it does give the right answer. Ribbon Knots.

$$\frac{\langle q - q^{-d/2} - q^{-d/2} \rangle}{q^{d/2} - q^{-d/2}} \Big|_{q=e^{\hbar}} = \sum_{j,m\geq 0} a_{jm}(K)d^{j}\hbar^{m},$$

"below diagonal" coefficients vanish, $a_{jm}(K) = \int_{m}^{m} d^{m}$
("below diagonal" coefficients vanish, $a_{jm}(K) = \int_{m}^{m} d^{m}$
give the inverse of the Alexander polynomial:

$$\sum_{m=0}^{\infty} a_{mm}(K)\hbar^{m} \cdot \omega(K)(e^{\hbar}) = 1.$$

"Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]:

$$J_{d}(K)(q) = \frac{q^{d} - q^{-d}}{(q - q^{-1})\omega(K)(q^{d})} \left(1 + \sum_{k=1}^{\infty} \frac{(q - 1)^{k}\rho_{k}(K)(q^{d})}{\omega^{2k}(K)(q^{d})}\right).$$

The Yang-Baxter Technique. Given an algebra U (typically $\hat{\mathcal{U}}(g)$ or $\hat{\mathcal{U}}_{q}(g)$) and elements

$$R = \sum a_{i} \otimes b_{i} \in U \otimes U \text{ and } C \in U,$$

form

$$Z = \sum_{i,j,k} Ca_{i}b_{j}a_{k}C^{2}b_{i}a_{j}b_{k}C.$$

Problem. Extract information from Z.
The Dogma. Use representation theory. In
principle finite, but *slow*.
The Loyal Opposition. For certain algebras, work in a homomorphic
poly-dimensional
"space of formulas". $m_{k}^{ij} \longrightarrow \{\mathcal{F}_{S}\} = \{U^{\otimes S}\} \longrightarrow m_{k}^{ij}$
The (fake) moduli of Lie alge-
bras on V, a quadratic variety in
 $(V^{*})^{\otimes 2} \otimes V$ is on the right. We ca-
re about $sl_{17}^{k} := sl_{17}^{\epsilon}/(\epsilon^{k+1} = 0).$
Recomposing gl_{n} . Half is enough! $gl_{n} \oplus a_{n} = \mathcal{D}(\nabla, b, \delta)$:
Recomposing gl_{n} . Half is enough! $gl_{n} \oplus a_{n} = \mathcal{D}(\nabla, b, \delta)$:
Now define $gl_{n}^{k} := \mathcal{D}(\nabla, b, \epsilon\delta)$. Schematically, this is $[\nabla, \nabla] = \nabla$,
Now define $gl_{n}^{k} := \mathcal{D}(\nabla, b, \epsilon\delta)$. Schematically, this is $[\nabla, \nabla] = \nabla$,
 $[\nabla, \infty] = \epsilon \mathbb{A}, \text{ and } [\nabla, \infty] = \mathbb{A} + \epsilon \nabla$. In detail, it is

 $(a^{1/2} - a^{-1/2}) L_i(K)$

Happy Birthday Anton!

ωεβ:=http://drorbn.net/ld17/

٦Ð Melvin

Garoufalidis

Morton.

$$\begin{bmatrix} x_{ij}, x_{kl} \end{bmatrix} = \delta_{jk} x_{il} - \delta_{li} x_{kj} \quad [y_{ij}, y_{kl}] = \epsilon \delta_{jk} y_{il} - \epsilon \delta_{li} y_{kj} \\ \begin{bmatrix} x_{ij}, y_{kl} \end{bmatrix} = \delta_{jk} (\epsilon \delta_{j < k} x_{il} + \delta_{il} (b_i + \epsilon a_i)/2 + \delta_{i>l} y_{il}) \\ -\delta_{li} (\epsilon \delta_{k < j} x_{kj} + \delta_{kj} (b_j + \epsilon a_j)/2 + \delta_{k>j} y_{kj}) \\ \begin{bmatrix} a_i, x_{jk} \end{bmatrix} = (\delta_{ij} - \delta_{ik}) x_{jk} \quad [b_i, x_{jk}] = \epsilon (\delta_{ij} - \delta_{ik}) x_{jk} \\ \begin{bmatrix} a_i, y_{jk} \end{bmatrix} = (\delta_{ij} - \delta_{ik}) y_{jk} \quad [b_i, y_{jk}] = \epsilon (\delta_{ij} - \delta_{ik}) y_{jk} \end{bmatrix}$$

The Main sl_2 Theorem. Let $\mathfrak{g}^{\epsilon} = \langle t, y, a, x \rangle / ([t, \cdot] = 0, [a, x] =$ x, [a, y] = -y, $[x, y] = t - 2\epsilon a$ and let $\mathfrak{g}_k = \mathfrak{g}^{\epsilon}/(\epsilon^{k+1} = 0)$. The \mathfrak{g}_k - $A^+ = -t^8 + 2t^7 - t^6 - 2t^4 + 5t^3 - 2t^2 - 7t + 13$ invariant of any S-component tangle K can be written in the form $Z(K) = \mathbb{O}\left(\omega e^{L+Q+P}: \bigotimes_{i \in S} y_i a_i x_i\right)$, where ω is a scalar (a rational function in the variables t_i and their exponentials $T_i := e^{t_i}$, where $L = \sum l_{ij} t_i a_j$ is a quadratic in t_i and a_j with integer coefficients l_{ij} , where $Q = \sum q_{ij}y_ix_j$ is a quadratic in the variables y_i and x_i with scalar coefficients q_{ij} , and where P is a polynomial in $\{\epsilon, y_i, a_i, x_i\}$ (with scalar coefficients) whose ϵ^d -term is of degree at most 2d + 2 in $\{y_i, \sqrt{a_i}, x_i\}$. Furthermore, after setting $t_i = t$ and $T_i = T$ for all *i*, the invariant Z(K) is poly-time computable.

The PBW Problem. In $\mathcal{U}(\mathfrak{g}^{\epsilon})$, bring $Z = y^3 a^2 x^2 \cdot y^2 a^2 x$ to *yax*-order. In other words, find $g \in \mathbb{Z}[\epsilon, t, y, a, x]$ such that $Z = \mathbb{O}(f = y_1^3 y_2^2 a_1^2 a_2^2 x_1^2 x_2 : y_1 a_1 x_1 y_2 a_2 x_2) = \mathbb{O}(g : yax)$. Solution, Part 1. In $\hat{\mathcal{U}}(\mathfrak{g}^{\epsilon})$ we have

$$\begin{aligned} X_{\tau_1,\eta_1,\alpha_1,\xi_1,\tau_2,\eta_2,\alpha_2,\xi_2} &\coloneqq e^{\tau_1 t} e^{\eta_1 y} e^{\alpha_1 a} e^{\xi_1 x} e^{\tau_2 t} e^{\eta_2 y} e^{\alpha_2 a} e^{\xi_2 x} \\ &= e^{\tau t} e^{\eta y} e^{\alpha a} e^{\xi x} \eqqcolon Y_{\tau,\eta,\alpha,\xi}, \end{aligned}$$

where τ , η , α , ξ are ugly functions of τ_1 , η_i , α_i , ξ_i :

$$\tau = \tau_1 + \tau_2 - \frac{\log(1 - \epsilon \eta_2 \xi_1)}{\epsilon} = \tau_1 + \tau_2 + \eta_2 \xi_1 + \frac{\epsilon}{2} \eta_2^2 \xi_1^2 + \dots,$$

$$\eta = \eta_1 + \frac{e^{-\alpha_1} \eta_2}{(1 - \epsilon \eta_2 \xi_1)} = \eta_1 + e^{-\alpha_1} \eta_2 + \epsilon e^{-\alpha_1} \eta_2^2 \xi_1 + \dots,$$

$$\alpha = \alpha_1 + \alpha_2 + 2\log(1 - \epsilon \eta_2 \xi_1) = \alpha_1 + \alpha_2 - 2\epsilon \eta_2 \xi_1 + \dots,$$

$$\xi = \frac{e^{-\alpha_2} \xi_1}{(1 - \epsilon \eta_2 \xi_1)} + \xi_2 = e^{-\alpha_2} \xi_1 + \xi_2 + \epsilon e^{-\alpha_2} \eta_2 \xi_1^2 + \dots.$$

Note 1. This defines a mapping $\Phi \colon \mathbb{R}^8_{\tau_1,\eta_1,\alpha_1,\xi_1,\tau_2,\eta_2,\alpha_2,\xi_2} \to \mathbb{R}^4_{\tau,\eta,\alpha,\xi}$. Proof. g^{ϵ} has a 2D representation ρ :

$$\rho t = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \quad \rho y = \begin{pmatrix} 0 & 0 \\ -\epsilon & 0 \end{pmatrix};$$

$$\rho a = \begin{pmatrix} (1+1/\epsilon)/2 & 0 \\ 0 & -(1-1/\epsilon)/2 \end{pmatrix}; \quad \rho x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix};$$
Simplify@{\rho a.\rho x - \rho x.\rho a == \rho x, \rho a.\rho y - \rho y.\rho a == -\rho y,

$$\rho x \cdot \rho y - \rho y \cdot \rho x = \rho t - 2 \in \rho a \}$$

{True, True, True}

It is enough to verify the desired identity in ρ: ME = MatrixExp; Simplify[

$$\begin{split} \mathsf{ME}\left[\tau_{1}\,\rho t\right] \cdot \mathsf{ME}\left[\eta_{1}\,\rho y\right] \cdot \mathsf{ME}\left[\alpha_{1}\,\rho a\right] \cdot \mathsf{ME}\left[\xi_{1}\,\rho x\right] \cdot \mathsf{ME}\left[\tau_{2}\,\rho t\right] \cdot \\ & \mathsf{ME}\left[\eta_{2}\,\rho y\right] \cdot \mathsf{ME}\left[\alpha_{2}\,\rho a\right] \cdot \mathsf{ME}\left[\xi_{2}\,\rho x\right] == \\ & \mathsf{ME}\left[\tau_{0}\,\rho t\right] \cdot \mathsf{ME}\left[\eta_{0}\,\rho y\right] \cdot \mathsf{ME}\left[\alpha_{0}\,\rho a\right] \cdot \mathsf{ME}\left[\xi_{0}\,\rho x\right] \ / \cdot \\ & \left\{\tau_{0}\rightarrow -\frac{\log\left[1-e\,\eta_{2}\,\xi_{1}\right]}{e} + \tau_{1} + \tau_{2}, \ \eta_{0}\rightarrow \eta_{1} + \frac{e^{-\alpha_{1}}\,\eta_{2}}{1-e\,\eta_{2}\,\xi_{1}}, \\ & \alpha_{0}\rightarrow 2\log\left[1-e\,\eta_{2}\,\xi_{1}\right] + \alpha_{1} + \alpha_{2}, \ \xi_{0}\rightarrow \frac{e^{-\alpha_{2}}\,\xi_{1}}{1-e\,\eta_{2}\,\xi_{1}} + \xi_{2}\right\} \bigg] \end{split}$$

True

Solution, Part 2. But now, with $D_f = f(z \mapsto \partial_{\zeta}) = \partial_{\eta_1}^3 \partial_{\alpha_1}^2 \partial_{\xi_1}^2 \partial_{\eta_2}^2 \partial_{\alpha_2}^2 \partial_{\xi_2}^2$,

$$Z = D_f X_{\tau_1,\eta_1,\alpha_1,\xi_1,\tau_2,\eta_2,\alpha_2,\xi_2} \Big|_{y_{\mathcal{S}}=0} = D_f Y_{\tau,\eta,\alpha,\xi} \Big|_{y_{\mathcal{S}}=0}$$
$$= \mathbb{O} \left(D_f e^{\tau t} e^{\eta y} e^{\alpha a} e^{\xi x} \Big|_{y_{\mathcal{S}}=0} : yax \right) = \mathbb{O}(g : yax) :$$

 $\mathsf{Expand} \left[\partial_{\{\eta_1,3\}} \partial_{\{\alpha_1,2\}} \partial_{\{\xi_1,2\}} \partial_{\{\eta_2,2\}} \partial_{\{\alpha_2,2\}} \partial_{\{\xi_2,1\}} \mathsf{Exp} \right]$

$$\begin{pmatrix} -\frac{\log[1-\epsilon\eta_2\xi_1]}{\epsilon} + \tau_1 + \tau_2 \end{pmatrix} \mathbf{t} + \begin{pmatrix} \eta_1 + \frac{e^{-\alpha_1}\eta_2}{1-\epsilon\eta_2\xi_1} \end{pmatrix} \mathbf{y} + \\ (2\log[1-\epsilon\eta_2\xi_1] + \alpha_1 + \alpha_2) \mathbf{a} + \begin{pmatrix} \frac{e^{-\alpha_2}\xi_1}{1-\epsilon\eta_2\xi_1} + \xi_2 \end{pmatrix} \mathbf{x} \\ \end{pmatrix} / \cdot (\tau \mid \eta \mid \alpha \mid \xi)_{1\mid 2} \rightarrow \mathbf{0}$$

$$\begin{array}{l} 2\ a^{4}\ t^{2}\ x\ y^{3}\ +\ 4\ t\ x^{2}\ y^{4}\ -\ 16\ a\ t\ x^{2}\ y^{4}\ +\ 24\ a^{2}\ t\ x^{2}\ y^{4}\ -\ 16\ a^{3}\ t\ x^{2}\ y^{4}\ +\ 4\ a^{4}\ t\ x^{2}\ y^{4}\ +\ 16\ x^{3}\ y^{5}\ -\ 32\ a\ x^{3}\ y^{5}\ +\ 24\ a^{2}\ x^{3}\ y^{5}\ -\ 8\ a^{3}\ x^{3}\ y^{5}\ +\ a^{4}\ x^{3}\ y^{5}\ +\ 2\ a^{4}\ t\ x\ y^{3}\ \in\ -\ 8\ a^{5}\ t\ x\ y^{3}\ \in\ -\ 8\ a^{5}\ x\ y^{4}\ \in\ -\ 8\ a^{2}\ x^{2}\ y^{4}\ e^{-\ 8\ a^{2}\ x^{2}\ x^{2}\ y^{4}\ e^{-\ 8\ a^{2}\ x^{2}\ x^$$

Note 2. Replacing $f \rightarrow D_f$ (and likewise $g \rightarrow D_g$), we find that $D_g = \Phi_*D_f$. Note 3. The two great e-vils of mathematics are

non-commutativity and

non-linearity. We traded one for the other.

Note 4. We could have done similarly with $e^{\tau_1 t} e^{\eta_1 y} e^{\alpha_1 a} e^{\xi_1 x} = e^{\tau t + \eta y + \alpha a + \xi x}$, and with $S(e^{\tau_1 t} e^{\eta_1 y} e^{\alpha_1 a} e^{\xi_1 x})$, $\Delta(e^{\tau_1 t} e^{\eta_1 y} e^{\alpha_1 a} e^{\xi_1 x})$, $\prod_{i=1}^{5} e^{\tau_i t} e^{\eta_i y} e^{\alpha_i a} e^{\xi_i x}$.

Fact. $R_{12} \rightarrow \exp(\partial_{\tau_1}\partial_{\alpha_2} + \partial_{y_1}\partial_{x_2})(1 + \sum_{d \ge 1} \epsilon^d p_d)$, where the p_d are computable polynomials of a-priori bounded degrees.

Moral. We need to understand the pushforwards via maps like Φ of (formally ∞ -order) "differential operators at 0", that in themselves are perturbed Gaussians. This turns out to be the same problem as "0-dimensional QFT" (except no integration is ever needed), and if $\epsilon^{k+1} = 0$, it is explicitly soluble.

References.

- [BN] D. Bar-Natan, *Polynomial Time Knot Polynomial*, research proposal for the 2017 Killam Fellowship, ωεβ/K17.
- [BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103–133.
- [BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, arXiv:1708.04853.
- [BV2] D. Bar-Natan and R. van der Veen, Poly-Time Knot Polynomials Via Solvable Approximations, in preparation.
- [GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305–2347, arXiv:1103.1601.
- [MM] P. M. Melvin and H. R. Morton, *The coloured Jones function*, Commun. Math. Phys. **169** (1995) 501–520.
- [Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, ωεβ/Ov.
- [Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275–296, arXiv:hep-th/9401061.
- [Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1–31, arXiv:q-alg/9604005.
- [Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
- [Vo] H. Vo, University of Toronto Ph.D. thesis, in preparation.

dog·ma ◀ (dôg'mə, dŏg'-) n. pl. dog·mas or dog·ma·ta (-mə-tə)

The Free Dictionary, $\omega \epsilon \beta / TFD$

1. A doctrine or a corpus of doctrines relating to matters such as morality and faith, set forth in an authoritative manner by a religion.

2. A principle or statement of ideas, or a group of such principles or statements, especially when considered to be authoritative or accepted uncritically: "*Much* education consists in the instilling of unfounded dogmas in place of a spirit of inquiry" (Bertrand Russell).

diagram	n_k^t Alexander's ω^+	genus / ribbon	diagram	n_k^t Alexander's ω^+	genus / ribbon
ulagram	Today's / Rozansky's ρ_1^+	unknotting number / amphicheiral	ulagram	Today's / Rozansky's ρ_1^+	unknotting number / amphicheiral
\bigcirc	$0_1^a = 1$	0 / 🗸		$3_1^a t - 1$	1 / 🗙
	0	0 / 🗸	U	t	1 / 🗙
	4^{a}_{1} 3 – t	1 / 🗙	A	$5^a_1 t^2 - t + 1$	2 / 🗙
U Ø	0	1 / 🗸	6 df	$2t^3 + 3t$	2 / 🗙
\bigcirc	$5^a_2 2t-3$	1 / 🗙	\bigcirc	6_1^a 5 – 2t	1 / 🗸
68	5t - 4	1 / 🗙	63	t-4	1 / 🗙

Dror Bar-Natan: Talks: Toulouse-1705: The Dogma is Wrong Thanks for the invitation! weβ:=http://drorbn.net/Toulouse-1705/

The Dogma is Wrong ωεβ:=http://drorbn.net/Toulouse-1705/ Abstract. It has long been known that there are knot invariants Theorem ([BNG], conjectured [MM], e-Melvin Morton. associated to semi-simple Lie algebras, and there has long been lucidated [Ro1]). Let $J_d(K)$ be the co-Garoufalidis a dogma as for how to extract them: "quantize and use repre-loured Jones polynomial of K, in the d-dimensional representasentation theory". We present an alternative and better procedu- tion of sl_2 . Writing $\frac{(q^{1/2}-q^{-1/2})J_d(K)}{q^{d/2}-q^{-d/2}}\bigg|_{q=e^{\hbar}} = \sum_{j,m\geq 0} a_{jm}(K)d^j\hbar^m,$ re: "centrally extend, approximate by solvable, and learn how to re-order exponentials in a universal enveloping algebra". While equivalent to the old invariants via a complicated process, our i-"below diagonal" coefficients vanish, $a_{jm}(K) = \int n$ nvariants are in practice stronger, faster to compute (poly-time vs. 0 if j > m, and "on diagonal" coefficients exp-time), and clearly carry topological information. give the inverse of the Alexander polynomial: KiW 43 Abstract ($\omega \epsilon \beta / kiw$). Whether or not you like the formu- $\sum_{m=0}^{\infty} a_{mm}(K)\hbar^{m} \cdot \omega(K)(e^{\hbar}) = 1.$ Above diagonal" we have Rozansky's Theorem [Ro3, (1.2)]: las on this page, they describe the strongest truly computable knot invariant we know. $J_d(K)(q) = \frac{q^d - q^{-d}}{(q - q^{-1})\omega(K)(q^d)} \left(1 + \sum_{k=1}^{\infty} \frac{(q - 1)^k \rho_k(K)(q^d)}{\omega^{2k}(K)(q^d)} \right)$ Experimental Analysis ($\omega \epsilon \beta / Exp$). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 crossings (mean times) and for all torus knots with up to 48 crossings: The Yang-Baxter Technique. Given an algebra A (typically $\hat{\mathcal{U}}(\mathfrak{g})$ or $\hat{\mathcal{U}}_q(\mathfrak{g})$) and elements $R = \sum a_i \otimes b_i \in A \otimes A \quad \text{and} \quad C \in A,$ form $Z = \sum_{i,j,k} Ca_i b_j a_k C^2 b_i a_j b_k C.$ Problem. Extract information from Z. The Dogma. Use representation theory. In Power. On the 250 knots with at most 10 crossings, the pair Cprinciple finite, but slow. (ω, ρ_1) attains 250 distinct values, while (Khovanov, HOMFLY-PT) attains only 249 distinct values. To 11 crossings the numbers The Loyal Opposition. For certain algebras, work in a homomorphic poly-dimensional are (802, 788, 772) and to 12 they are (2978, 2883, 2786). $m_k^{ij} \longrightarrow \{\mathcal{F}_S\} \longrightarrow \mathbb{E}$ Genus. Up to 12 xings, always ρ_1 is symmetric under $t \leftrightarrow t^{-1}$. "space of formulas". With ρ_1^+ denoting the positive-degree part of ρ_1 , always deg $\rho_1^+ \leq$ The (fake) moduli of Lie alge-2g - 1, where g is the 3-genus of K (equality for 2530 knots). bras on V, a quadratic variety in This gives a lower bound on g in terms of ρ_1 (conjectural, but $(V^*)^{\otimes 2} \otimes V$ is on the right. We caundoubtedly true). This bound is often weaker than the Alexander re about $sl_{17}^k := sl_{17}^{\epsilon}/(\epsilon^{k+1} = 0)$. bound, yet for 10 of the 12-xing Alexander failures it does give Why are "solvable algebras" any good? Contrary to common Ribbon Knots. the right answer. beliefs, computations in semi-simple Lie algebras are just awful: example [BN] $\ln[1] = \text{MatrixExp}\left[\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right] // \text{FullSimplify } // \text{MatrixForm} \quad \boxed{Enter}$ Yet in solvable algebras, exponentiation is fine and even BCH, a ribbon singularity a clasp singularity $z = \log(e^x e^y)$, is bearable: Gompf, Schar- $\left[\begin{array}{c} T \\ T \end{array}\right] \leftarrow T \left[\begin{array}{c} T \\ T \end{array}\right]$ lemann, Tho-mpson [GST] $\ln[2] := \operatorname{MatrixExp}\left[\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right] // \operatorname{MatrixForm}$ $\begin{array}{ccc} U \in \mathcal{T}_n & 1 \in \\ & & & \\ \mathcal{T}_{2n} & \xrightarrow{\tau} & \mathcal{A}_{2n} \end{array}$ $In[3]:= MatrixExp\left[\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}\right].MatrixExp\left[\begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix}\right] //$ MatrixLog // PowerExpand // Simplify // ГĪŪ Enter MatrixForm ribbon $K \in \mathcal{T}_1$ $z(K) \in \mathcal{R} \subseteq \mathcal{A}_1$ **Recomposing** gl_n . Half is enough! $gl_n \oplus \mathfrak{a}_n = \mathcal{D}(\nabla, b, \delta)$: Vo]: Works \bigwedge with $\mathcal{R} := \kappa(\tau^{-1}(1))$ $b(\nabla) = b: \nabla \otimes \nabla \to \nabla$ $b(\mathbb{A}) \sim b: \mathbb{A} \to \nabla \otimes \nabla$ for Alexander! 嬺 $A^{+} = -t^{8} + 2t^{7} - t^{6} - 2t^{4} + 5t^{3} - 2t^{2} - 7t + 13$ $\rho_1^+ = 5t^{15} - 18t^{14} + 33t^{13} - 32t^{12} + 2t^{11} + 42t^{10} - 62t^9 - 8t^8 + 166t^7 - 242t^6 + 166t^7 - 246t^7 + 166t^7 - 246t^7 + 166t^7 + 166t^7 - 246t^7 + 166t^7 + 166t^7 + 166t$ Faster is better, leaner is meaner! $108t^5 + 132t^4 - 226t^3 + 148t^2 - 11t - 36$ Now define $gl_n^{\epsilon} := \mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla] = \nabla$, dog·ma 🍕 (dôg'mə, dŏg'-) The Free Dictionary, $\omega \epsilon \beta / TFD$ $[\triangle, \triangle] = \epsilon \triangle$, and $[\neg, \triangle] = \triangle + \epsilon \neg$. In detail, it is *n. pl.* dog⋅mas or dog⋅ma⋅ta (-mə-tə) $[e_{ij}, e_{kl}] = \delta_{jk} e_{il} - \delta_{li} e_{kj} \quad [f_{ij}, f_{kl}] = \epsilon \delta_{jk} f_{il} - \epsilon \delta_{li} f_{kj}$ 1. A doctrine or a corpus of doctrines relating to matters such as morality and $|[e_{ij}, f_{kl}] = \delta_{jk} (\epsilon \delta_{j < k} e_{il} + \delta_{il} (h_i + \epsilon g_i)/2 + \delta_{i>l} f_{il})$ faith, set forth in an authoritative manner by a religion. 2. A principle or statement of ideas, or a group of such principles or statements $-\delta_{li}(\epsilon\delta_{k< j}e_{kj} + \delta_{kj}(h_j + \epsilon g_j)/2 + \delta_{k> j}f_{kj})$ especially when considered to be authoritative or accepted uncritically: "Much f_{ji} $[g_i, e_{jk}] = (\delta_{ij} - \delta_{ik})e_{jk} \qquad [h_i, e_{jk}] = \epsilon(\delta_{ij} - \delta_{ik})e_{jk}$ $[g_i, f_{jk}] = (\delta_{ij} - \delta_{ik})f_{jk} \qquad [h_i, f_{jk}] = \epsilon(\delta_{ij} - \delta_{ik})f_{jk}$ education consists in the instilling of unfounded dogmas in place of a spirit of inquiry" (Bertrand Russell)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toulouse-1705/

The sl_2 Example. Let $\mathfrak{g}^{\epsilon} = \langle h, e, l, f \rangle / ([h, \cdot] = 0, [e, l] = -e, [f, l] = f, [e, f] = h - 2\epsilon l$ and let $\mathfrak{g}_k = \mathfrak{g}^{\epsilon} / (\epsilon^{k+1} = 0)$.

The Main g_k Theorem. The g_k -invariant of any *S*-component tangle *T* can be written in the form

$$Z(T) = \mathbb{O}\left(\omega e^{L+Q+P} \colon \bigotimes_{i \in S} e_i l_i f_i\right),$$

where ω is a scalar (meaning, a rational function in the variables h_i and their exponentials $t_i := e^{h_i}$), where $L = \sum a_{ij}h_i l_j$ is a balanced quadratic in the variables h_i and l_j with integer coefficients, where $Q = \sum b_{ij}e_if_j$ is a balanced quadratic in the variables e_i and f_j with scalar coefficients b_{ij} , and where P is a polynomial in $\{\epsilon, e_i, l_i, f_i\}$ (with scalar coefficients) whose ϵ^d -term is of degree at most 2d + 2 in $\{e_i, \sqrt{l_i}, f_i\}$. Furthermore, after setting $h_i = h$ and $t_i = t$ for all i, the invariant Z(T) is poly-time computable.

The Main g_k Lemma. The following "re-ordering relations" hold: $\mathbb{O}\left(e^{\gamma l+\beta e}: le\right) = \mathbb{O}\left(e^{\gamma l+e^{\gamma}\beta e}: el\right)$ (and similarly for $fl \to lf$), $\mathbb{O}\left(e^{\beta e+\alpha f+\delta ef}: fe\right) = \mathbb{O}\left(\nu e^{\nu(-\alpha\beta h+\beta e+\alpha f+\delta ef)+\lambda_k(\epsilon,e,l,f,\alpha,\beta,\delta)}: elf\right)$, with $\nu = (1 + h\delta)^{-1}$ and where $\lambda_k(\epsilon, e, l, f, \alpha, \beta, \delta)$ is some fixed polynomial of degree at most 2k + 2 in $\epsilon, e, \sqrt{l}, f, \alpha, \beta, \delta$, with scalar coefficients.

$$\begin{split} & \mathbb{E} \left[i_{-}, j_{-}, s_{-} \right] := \mathbb{E} \left[1, (-1)^{s} l_{j}, (-t)^{s} e_{i} f_{j}, \\ & t^{s} e_{i} l_{(1+s)} i_{-sj} f_{j} + (-1)^{s} l_{i} l_{j} + (-t^{2})^{s} e_{i}^{2} f_{j}^{2} / 4 \right]; \\ & \mathbb{E} \left[i_{-}, s_{-} \right] := \mathbb{E} \left[1, 0, 0, s l_{i} \right]; \\ & \mathbb{E} / : \mathbb{E} \left[1, L_{-}, Q_{-}, P_{-} \right] \mathbb{E} \left[1, L_{-}, Q_{-}, P_{-} \right] := \\ & \mathbb{E} \left[1, L_{+} L_{2}, Q_{+} Q_{-}, P_{+} P_{2} \right]; \end{aligned}$$

- z1 = (E[1, 11, 0] E[4, 2, -1] E[15, 5, 0] × Preparing the Trefoil E[6, 8, -1] E[9, 16, 0] E[12, 14, -1] × E[3, -1] E[7, +1] E[10, -1] E[13, +1])
- $\mathbb{E}\left[1, -l_{2} + l_{5} l_{8} + l_{11} l_{14} + l_{16}, -\frac{e_{4} f_{2}}{t} + e_{15} f_{5} \frac{e_{6} f_{8}}{t} + e_{1} f_{11} \frac{e_{12} f_{14}}{t} + e_{9} f_{16}, -\frac{e_{4}^{2} f_{2}^{2}}{4t^{2}} + \frac{1}{4} e_{15}^{2} f_{5}^{2} \frac{e_{6}^{2} f_{8}^{2}}{4t^{2}} + \frac{1}{4} e_{1}^{2} f_{11}^{2} \frac{e_{12}^{2} f_{14}^{2}}{4t^{2}} + \frac{1}{4} e_{9}^{2} f_{16}^{2} + e_{1} f_{11} l_{1} + \frac{e_{4} f_{2} l_{2}}{t} l_{3} l_{2} l_{4} + l_{7} + \frac{e_{6} f_{8} l_{8}}{t} l_{6} l_{8} + e_{9} f_{16} l_{9} l_{10} + l_{1} l_{11} + l_{13} + \frac{e_{12} f_{14} l_{14}}{t} l_{12} l_{14} + e_{15} f_{5} l_{15} + l_{5} l_{15} + l_{9} l_{16}\right]$

$$\begin{split} & \mathsf{S}_{1_{j_{-}}(x;e|f)_{i_{-}}+k_{-}}[\mathbb{E}[\omega_{-}, L_{-}, Q_{-}, P_{-}]] := \qquad le \text{ and } fl \text{ Sorts} \\ & \mathsf{With}[\{\lambda = \partial_{1_{j}}L, \alpha = \partial_{x_{i}}Q, q = e^{Y}\beta x_{k} + Y 1_{k}\}, \mathsf{CF}[\\ & \mathbb{E}[\omega, L/. 1_{j} \rightarrow 1_{k}, t^{\lambda}\alpha x_{k} + (Q/. x_{i} \rightarrow 0), \\ & e^{-q}\mathsf{DP}_{1_{j}\rightarrow\mathsf{D}_{Y},x_{i}\rightarrow\mathsf{D}_{\beta}}[P][e^{q}]/. \{\beta \rightarrow \alpha/\omega, \gamma \rightarrow \lambda \mathsf{Log}[t]\}]]]; \\ & \mathsf{A}[k_{-}] := ((t-1)(2(\alpha\beta + \delta\mu)^{2} - \alpha^{2}\beta^{2}) - 4e_{k}1_{k}f_{k}\delta^{2}\mu^{2} - \delta(1+\mu)(f_{k}^{2}\alpha^{2} + e_{k}^{2}\beta^{2}) - e_{k}^{2}f_{k}^{2}\delta^{3}(1+3\mu) - & \text{The Abyog} \\ & 2(\alpha\beta + 2\delta\mu + e_{k}f_{k}\delta^{2}(1+2\mu) + 21_{k}\delta\mu^{2})(f_{k}\alpha + e_{k}\beta) - 4(1_{k}\mu^{2} + e_{k}f_{k}\delta(1+\mu))(\alpha\beta + \delta\mu))(1+t)/4; \\ & \mathsf{S}_{f_{i_{-}}}e_{j_{-}\rightarrow k_{-}}[\mathbb{E}[\omega_{-}, L_{-}, Q_{-}, P_{-}]] := \qquad fe \text{ Sorts} \\ & \mathsf{With}[\{q = ((1-t)\alpha\beta + \beta e_{k} + \alpha f_{k} + \delta e_{k}f_{k})/\mu\}, \mathsf{CF}[\\ & \mathbb{E}[\mu\omega, L, \mu\omegaq + \mu(Q/. f_{i}|e_{j}\rightarrow 0), \\ & \mu^{4}e^{-q}\mathsf{DP}_{f_{i}\rightarrow\mathsf{D}_{a},e_{j}\rightarrow\mathsf{D}_{\beta}}[P][e^{q}] + \omega^{4}\Lambda[k]]/. \mu \rightarrow 1 + (t-1)\delta/. \\ & \{\alpha \rightarrow \omega^{-1}(\partial_{f_{i}}Q/.e_{j}\rightarrow 0), \beta \rightarrow \omega^{-1}(\partial_{e_{j}}Q/.f_{i}\rightarrow 0), \\ & \delta \rightarrow \omega^{-1}\partial_{f_{i},e_{j}}Q\}]]; \\ & \mathsf{m}_{i_{-},j_{-}\rightarrow k_{-}}[Z_{-}E] := \mathsf{Module}[\{x, z\}, \qquad \mathsf{Elf Merges} \\ & \mathsf{CF}[(Z//S_{f_{i}}e_{j\rightarrow x}//S_{1_{i}}e_{x\rightarrow x}//S_{f_{x}}1_{j\rightarrow x})/.z_{-i|j|x} \rightarrow z_{k}]] \\ & (\mathsf{Do}[\mathsf{z1} = \mathsf{z1}//\mathsf{m}_{1,k\rightarrow 1}, \{\mathsf{k}, \mathsf{2}, \mathsf{16}\}]; \mathsf{z1}) \qquad \mathsf{Rewriting the Trefoil} \\ & \nabla [1-t+t^{2}, 0, 0, (-1+t)(1-t+t^{2})^{2}(1-t+2t^{2})} \\ & (\mathsf{by merging 16 elves) \\ \end{array}$$

$$\begin{array}{l} \text{(Do [z1 = z1 // m_{1,k \rightarrow 1}, \{k, 2, 16\}]; z1)} \\ \mathbb{E}\left[\frac{1-t+t^2}{t}, 0, 0, \frac{(-1+t)(1-t+t^2)^2(1-t+2t^2)}{t^3} - \frac{2(1+t)(1-t+t^2)^3 l_1}{t^4} - \frac{2(-1+t)(1+t)(1-t+t^2)^3 l_1}{t^4} \right] \end{array}$$
 (by merging 16 elves)

$$\begin{array}{c} \text{Readout} \\ \rho_{1}[\mathbb{E}[\omega_{-}, _, P_{-}]] := CF\left[\frac{t\left((P / \cdot e_{-} \mid 1_{-} \mid f_{-} \rightarrow 0) - t \,\omega^{3}\left(\partial_{t} \,\omega\right)\right)}{(t - 1)^{2} \,\omega^{2}}\right] \\ \rho_{1}[\mathbf{z}\mathbf{1}] / / \text{ Expand} \\ \frac{1}{t} + t \end{array}$$

References.

ωεβ/Demo

- [BN] D. Bar-Natan, *Polynomial Time Knot Polynomial*, research proposal for the 2017 Killam Fellowship, ωεβ/K17.
- [BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103–133.
- [GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305–2347, arXiv:1103.1601.
- [MM] P. M. Melvin and H. R. Morton, *The coloured Jones function*, Commun. Math. Phys. **169** (1995) 501–520.
- [Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, ωεβ/Ov.
- [Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275–296, arXiv:hep-th/9401061.
- [Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1–31, arXiv:q-alg/9604005.
- [Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
- [Vo] H. Vo, University of Toronto Ph.D. thesis, in preparation.

diagram	n_k^t Alexander's ω^+ Today's / Rozansky's ρ_1^+	genus / ribbon unknotting number / amphicheiral	diagram	n_k^t Alexander's ω^+ Today's / Rozansky's ρ_1^+	genus / ribbon unknotting number / amphicheiral
\bigcirc	$\begin{array}{ccc} 0_1^a & 1 \\ 0 \end{array}$	0/ ✓ 0/ ✓	P	$\frac{3^a_1}{t} t-1$	1/× 1/×
\otimes	$\begin{array}{c} 4_1^a & 3-t \\ 0 \end{array}$	1 / ¥ 1 / ✔	Ø	$5^{a}_{1} t^{2} - t + 1$ 2t ³ + 3t	2 / X 2 / X

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toulouse-1705/

Dror Bar-Natan: Talks: McGill-1702: Joint with Roland van der Veen What else can you do with solvable approximations?

Abstract. Recently, Roland van der Veen and myself found that Chern-Simons-Witten. Given a knot $\gamma(t)$ in there are sequences of solvable Lie algebras "converging" to any \mathbb{R}^3 and a metrized Lie algebra g, set $Z(\gamma) :=$ given semi-simple Lie algebra (such as sl_2 or sl_3 or E8). Certain computations are much easier in solvable Lie algebras; in particular, using solvable approximations we can compute in polynomial time certain projections (originally discussed by Rozansky) of the knot invariants arising from the Chern-Simons-Witten topological quantum field theory. This provides us with the first strong knot invariants that are computable for truly large knots.

But sl_2 and sl_3 and similar algebras occur in physics (and in mathematics) in many other places, beyond the Chern-Simons-Witten theory. Do solvable approximations have further applications?

Recomposing gl_n . Half is enough! $gl_n \oplus \mathfrak{a}_n = \mathcal{D}(\nabla, b, \delta)$:

$$\begin{array}{c} & & & \\ &$$

Now define $g_{\ell_n}^{\ell_n} \coloneqq \mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla] = \nabla$, riants" arise in this way. So for the trefoil, $[\triangle, \triangle] = \epsilon \triangle$, and $[\neg, \triangle] = \triangle + \epsilon \neg$. In detail, it is

$$\int_{A \in \Omega^{1}(\mathbb{R}^{3}, g)} \mathcal{D}A e^{ik cs(A)} PExp_{\gamma}(A),$$
where $cs(A) := \frac{1}{4\pi} \int_{\mathbb{R}^{3}} tr\left(AdA + \frac{2}{3}A^{3}\right)$ and
$$PExp_{\gamma}(A) := \prod_{0}^{1} exp(\gamma^{*}A) \in \mathcal{U} = \hat{\mathcal{U}}(g),$$
and $\mathcal{U}(g) := \langle \text{words in } g \rangle / (xy - yx = [x, y])$

ſ

/]). In a favourable gauge, one may hope that this computation will localize near the crossings and the bends, and all will depend on just two quantities,

$$R = \sum_{i \in \mathcal{U}} a_i \otimes b_i \in \mathcal{U} \otimes \mathcal{U} \quad \text{and} \quad C \in \mathcal{U}.$$

This was never done formally, yet *R* and

can be "guessed" and all "quantum knot inva-

$$Z = \sum_{i,j,k} Ca_i b_j a_k C^2 b_i a_j b_k C.$$

Gompf, Sc

 $[e_{ij}, e_{kl}] = \delta_{jk} e_{il} - \delta_{li} e_{kj} \quad [f_{ij}, f_{kl}] = \epsilon \delta_{jk} f_{il} - \epsilon \delta_{li} f_{kj}$ $\left[e_{ij}, f_{kl}\right] = \delta_{jk} (\epsilon \delta_{j < k} e_{il} + \delta_{il} (h_i + \epsilon g_i)/2 + \delta_{i > l} f_{il})$ But Z lives in \mathcal{U} , a complicated space. How do you extract infor- $-\delta_{li}(\epsilon \delta_{k < j} e_{kj} + \delta_{kj}(h_j + \epsilon g_j)/2 + \delta_{k > j} f_{kj})$ mation out of it? $[g_i, e_{jk}] = (\delta_{ij} - \delta_{ik})e_{jk}$ $[h_i, e_{jk}] = \epsilon(\delta_{ij} - \delta_{ik})e_{jk}$ $[h_i, e_{jk}] = \epsilon(\delta_{ij} - \delta_{ik})e_{jk}$ Solution 1, Representation Theory. Choose a finite dimensional $[g_i, f_{jk}] = (\delta_{ij} - \delta_{ik})f_{jk}$ $[h_i, f_{jk}] = \epsilon(\delta_{ij} - \delta_{ik})f_{jk}$ representation ρ of \mathfrak{g} in some vector space V. By luck and the

Solvable Approximation. At $\epsilon = 1$ and modulo h = g, the above wisdom of Drinfel'd and Jimbo, $\rho(R) \in V^* \otimes V \otimes V$ and is just gl_n . By rescaling at $\epsilon \neq 0$, gl_n^{ϵ} is independent of ϵ . We $\rho(C) \in V^* \otimes V$ are computable, so Z is computable too. But in let gl_n^k be gl_n^{ϵ} regarded as an algebra over $\mathbb{Q}[\epsilon]/\epsilon^{k+1} = 0$. It is the exponential time! "k-smidgen solvable approximation" of gl_n! Ribbon=Slice?

Recall that g is "solvable" if iterated commutators in it ultimately vanish: $g_2 := [g, g], g_3 := [g_2, g_2], \dots, g_d = 0$. Equivalently, if it is a subalgebra of some large-size *¬* algebra.

Note. This whole process makes sense for arbitrary semi-simple Lie algebras.

Why are "solvable algebras" any good? Contrary to common beliefs, computations in semi-simple Lie algebras are just awful:

$$\ln[1]:= MatrixExp\left[\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right] // FullSimplify // MatrixForm Enter$$

 $z = \log(e^x e^y)$, is bearable: Out[2]//MatrixF

Chern-Simons-Witten theory is often "solved" using ideas from tangle T can be written in the form conformal field theory and using quantization of various moduli spaces. Does it make sense to use solvable approximation there too? Elsewhere in physics? Elsewhere in mathematics?

See Also. Talks at George Washington University [ωεβ/gwu], Indiana $[\omega \epsilon \beta/ind]$, and Les Diablerets $[\omega \epsilon \beta/ld]$, and a University is poly-time computable. of Toronto "Algebraic Knot Theory" class [ωεβ/akt].

111

С

Solution 2, Solvable Approximation. Work directly in $\hat{\mathcal{U}}(\mathfrak{g}_k)$, where $g_k = sl_2^k$ (or a similar algebra); everything is expressible using low-degree polynomials in a small number of variables, hence everything is poly-time computable!

Example 0. Take $g_0 = sl_2^0 = \mathbb{Q}\langle h, e, l, f \rangle$, with h central and Yet in solvable algebras, exponentiation is fine and even BCH, [f, l] = f, [e, l] = -e, [e, f] = h. In it, using normal orderings,

$$R = \mathbb{O}\left(\exp\left(hl + \frac{e^{h} - 1}{h}ef\right) \mid e \otimes lf\right), \text{ and,}$$
$$\mathbb{O}\left(e^{\delta ef} \mid fe\right) = \mathbb{O}\left(\nu e^{\nu \delta ef} \mid ef\right) \text{ with } \nu = (1 + h\delta)^{-1}.$$

Example 1. Take $R = \mathbb{Q}[\epsilon]/(\epsilon^2 = 0)$ and $\mathfrak{g}_1 = \mathfrak{sl}_2^1 = R\langle h, e, l, f \rangle$, with h central and [f, l] = f, [e, l] = -e, $[e, f] = \tilde{h} - 2\epsilon l$. In it, $\mathbb{O}\left(\mathbb{e}^{\delta ef} \mid f e\right) = \mathbb{O}\left(\nu(1 + \epsilon \nu \delta \Lambda/2) \mathbb{e}^{\nu \delta ef} \mid elf\right), \text{ where } \Lambda \text{ is}$

 $4v^{3}\delta^{2}e^{2}f^{2} + 3v^{3}\delta^{3}he^{2}f^{2} + 8v^{2}\delta ef + 4v^{2}\delta^{2}hef + 4v\delta elf - 2v\delta h + 4l.$ Question. What else can you do with solvable approximation? Fact. Setting $h_i = h$ (for all *i*) and $t = e^h$, the g_1 invariant of any

$$Z_{g_1}(T) = \mathbb{O}\left(\omega^{-1} \mathbb{e}^{hL + \omega^{-1}Q} (1 + \epsilon \omega^{-4}P) \mid \bigotimes_i e_i l_i f_i\right),$$

where L is linear, Q quadratic, and P quartic in the $\{e_i, l_i, f_i\}$ with ω and all coefficients polynomials in t. Furthermore, everything

Video and more at http://www.math.toronto.edu/~drorbn/Talks/McGill-1702/

 $R^{\pm 1}$

Dror Bar-Natan: Talks: GWU-1612: On Elves and Invariants

		1
CL		1
211	Design	N

↓ preparation

↓ rewrite rules

↓ readout

 $\langle elf \dots elf || \omega_0; L_0; Q_0; P_0 \rangle$

 $\langle elf \| \omega; -; -; P \rangle$

 $\rho_1(K) = \rho_1(\omega, P)$

Follows Rozansky [Ro1, Ro2, Ro3] and Overbay [Ov], joint with van der Veen.

 $\overset{\prime}{\delta} \rightarrow Q_{f_{\theta}}/\omega$

Abstract. Whether or not you like the formulas on this page, they Rule 5, fe Sorts. Provided k introduces no clashes, given describe the strongest truly computable knot invariant we know. $\langle \dots f_i e_j \dots || \omega; L; Q; P \rangle$, decompose $Q = Q_{fe} f_i e_j + Q_f f_i + Q_e e_j + Q_f f_i + Q_e e_j + Q_e e_j$

Three steps to the computation of
$$\rho_1$$
:
1. Preparation. Given *K*, results
 \downarrow prepresent the second se

 $\langle long word || simple formulas \rangle$. 2. Rewrite rules. Make the word simpler and the formulas more complicated, until the word "elf" is reached. 3. Readout. The invariant ρ_1 is read from the last formulas.

Preparation. Draw K using a 0-framed 0-rotation planar diagram D where all crossings are pointing up. Walk along D labeling features by 1, ..., *m* in order: over-passes, under-passes, and right-heading cups and caps (" \pm -cuaps"). If x is a xing, let i_x and j_x be the labels on its over/under strands, and let s_x be 0 if it right-handed and -1

otherwise. If c is a cuap, let i_c be its label and s_c be its sign. Set

$$(L; Q; P) = \sum_{x: (i,j,s)} (-)^{s} \left(l_{j}; t^{s} e_{i} f_{j}; (-t)^{s} e_{i} l_{(1+s)i-sj} f_{j} + l_{i} l_{j} + \frac{t^{2s} e_{i}^{2} f_{j}^{2}}{4} + \sum_{c: (i,s)} (0; 0; s \cdot l_{i}). \right)$$

This done, output $\langle e_1 l_1 f_1 e_2 l_2 f_2 \cdots e_m l_m f_m || 1; L; Q; P \rangle$.

In formulas, L is always Z-linear in $\{l_i\}$, Q is an R-linear combina- sings (mean times) and for all torus knots with up to 48 crossings: tion of $\{e_i f_i\}$ where $R := \mathbb{Q}[t^{\pm 1}]$, and P is an R-linear combination of $\{1, l_i, l_i l_j, e_i f_j, e_i l_j f_k, e_i e_j f_k f_l\}.$ (The key to computability!)

Rewrite Rules. Manipulate (word || formulas) expressions using the rewrite rules below, until you come to the form $\langle e_1 l_1 f_1 \| \omega; -; -; P \rangle$. Output (ω, P) .

Rule 1, Deletions. If a letter appears in word but not in formulas, you can delete it.

(for $v \in \{e, l, f\}$) while making the same changes in formulas (ω, ρ_1) attains 250 distinct values, while (Khovanov, HOMFLY-(provided k creates no naming clashes). E.g.,

 $\langle \dots e_i e_j \dots || Z \rangle \rightarrow \langle \dots e_k \dots || Z |_{e_i, e_j \rightarrow e_k} \rangle.$

Rule 3, le Sorts. Provided k introduces no clashes, given $\langle \dots l_j e_i \dots || \omega; L; Q; P \rangle$, decompose $L = \lambda l_j + L', Q = \alpha e_i + Q'$, write $P = P(e_i, l_j)$ (with messy coefficients), set $q = e^{\gamma}\beta e_k + \gamma l_k$, This gives a lower bound on g in terms of ρ_1 (conjectural, but and output

Rule 4, *fl* Sorts. Provided k introduces no clashes, given the right answer. $\langle \dots f_i l_j \dots || \omega; L; Q; P \rangle$, decompose $L = \lambda l_j + L'$, $Q = \alpha f_i + Q'$, Why Works? The Lie algebra \mathfrak{g}_1 (below) is a "solvable approxiwrite $P = P(f_i, l_j)$ (with messy coefficients), set $q = e^{\gamma}\beta f_k + \gamma l_k$, mation of sl_2 ". and output

$$\frac{\langle \dots l_k f_k \dots || \omega; L_{|l_j \to l_k}; t^{\prime} \alpha f_k + Q'; e^{-q} P(\partial_{\beta}, \partial_{\gamma}) e^{q}|_{\beta \to \alpha/\omega, \gamma \to \lambda \log t}}{\varphi}$$
Happy Birthday,
Scott!

Q' write
$$P = P(f_i, e_j)$$
 (with messy coefficients), set $\mu = 1 + (t-1)$
and $q = ((1-t)\alpha\beta + \beta e_k + \alpha f_k + \delta e_k f_k)/\mu$, and output
 $\left. \left. \left. \left. \left. \begin{array}{c} \mu \omega; L; \ \mu \omega q + \mu Q'; \\ \omega^4 \Delta_k + e^{-q} P(\partial_{\alpha}, \partial_{\beta})(e^q) \end{array} \right| \right|_{\alpha \to Q_{\ell}/\omega, \beta \to Q_{\ell}/\omega}$

where Λ_k is the $\Lambda \acute{o} \gamma o \varsigma$, "a principle of order and knowledge":

$$\Delta_{k} = \frac{t+1}{4} \left(-\delta(\mu+1) \left(\beta^{2} e_{k}^{2} + \alpha^{2} f_{k}^{2} \right) - \delta^{3}(3\mu+1) e_{k}^{2} f_{k}^{2} \right. \\ \left. - 2 \left(\beta e_{k} + \alpha f_{k} \right) \left(\alpha \beta + 2\delta \mu + \delta^{2}(2\mu+1) e_{k} f_{k} + 2\delta \mu^{2} l_{k} \right) \right. \\ \left. - 4 (\alpha \beta + \delta \mu) \left(\delta(\mu+1) e_{k} f_{k} + \mu^{2} l_{k} \right) - 4\delta^{2} \mu^{2} e_{k} f_{k} l_{k} \right. \\ \left. + (t-1) \left(2(\alpha \beta + \delta \mu)^{2} - \alpha^{2} \beta^{2} \right) \right)$$

 $\frac{+(i-1)\left(2(\alpha\beta+\delta\mu)^{2}-\alpha^{2}\beta^{2}\right)}{elf \text{ merges, } m_{k}^{ij}, \text{ are defined as compositions}}$

$$e_{i}l_{i}\overline{f_{i}e_{j}}l_{j}f_{j} \xrightarrow{S_{x}^{f_{i}e_{j}}} e_{i}\overline{l_{i}e_{x}}\overline{f_{x}l_{j}}f_{j} \xrightarrow{S_{x}^{l_{i}e_{x}}//S_{x}^{f_{x}l_{j}}} \overline{e_{i}e_{x}}\overline{l_{x}l_{x}}\overline{f_{x}f_{j}}$$

$$\xrightarrow{i,j,x \to k} e_{k}l_{k}j$$

Readout. Given $\langle elf || \omega; -; -; P \rangle$, output $\rho_1(K) \coloneqq \frac{t(P|_{e,l,f\to 0} - t\omega'\omega^3)}{(t-1)^2\omega^2}$

(ω is the Alexander polynomial, L and O are not interesting).

Experimental Analysis ($\omega \epsilon \beta / Exp$). Log-log plots of computation time (sec) vs. crossing number, for all knots with up to 12 cros-

Rule 2, Merges. In word, you can replace *adjacent* $v_i v_j$ with v_k Power. On the 250 knots with at most 10 crossings, the pair PT) attains only 249 distinct values. To 11 crossings the numbers are (802, 788, 772) and to 12 they are (2978, 2883, 2786).

Genus. Up to 12 xings, always ρ_1 is symmetric under $t \leftrightarrow t^{-1}$. With ρ_1^+ denoting the positive-degree part of ρ_1 , always deg $\rho_1^+ \leq$ 2g - 1, where g is the 3-genus of K (equallity for 2530 knots). undoubtedly true). This bound is often weaker than the Alexander $\langle \dots e_k l_k \dots || \omega; L|_{l_i \to l_k}; t^{\lambda} \alpha e_k + Q'; e^{-q} P(\partial_{\beta}, \partial_{\gamma}) e^{q}|_{\beta \to \alpha/\omega, \gamma \to \lambda \log t} \rangle$ bound, yet for 10 of the 12-xing Alexander failures it does give

Theorem. The map (as defined below)

 $\left. \left| \langle w \parallel \omega; L; Q; P \rangle \mapsto \mathbb{O} \left(\omega^{-1} \mathbb{e}^{L \log t + \omega^{-1} Q} (1 + \epsilon \omega^{-4} P) \colon w \right) \in \hat{\mathcal{U}}(\mathfrak{g}_1) \right| \right|$ is well defined modulo the sorting rules. It maps the initial preparation to a product of "*R*-matrices" and "cuap values" satisfying the usual moves for Morse knots (R3, etc.). (And hence the result is a "quantum invariant", except computed very differently; no representation theory!). www.katlas.org The Knet Atlas

Video and more at http://www.math.toronto.edu/~drorbn/Talks/GWU-1612/

1-Smidgen sl_2 Let g_1 be the 4-dimensional Lie algebra $g_1 = \langle h, e', l, f \rangle$ over the ring $R = \mathbb{Q}[\epsilon]/(\epsilon^2 = 0)$, with *h* central and with [f, l] = f, [e', l] = -e', and $[e', f] = h - 2\epsilon l$. Over \mathbb{Q} , g_1 is a solvable approximation of sl_2 : $g_1 \supset \langle h, e', f, \epsilon h, \epsilon e', \epsilon l, \epsilon f \rangle \supset \langle h, \epsilon h, \epsilon e', \epsilon l, \epsilon f \rangle \supset 0$. Pragmatics: declare deg $(h, e', l, f, \epsilon) = (1, 1, 0, 0, 1)$ and set $t := e^h$ and e := (t - 1)e'/h.

How did it arise? $sl_2 = b^+ \oplus b^-/b =: sl_2^+/b$, where $b^+ = \langle l, f \rangle / [f, l] = f$ is a Lie bialgebra with $\delta : b^+ \to b^+ \otimes b^+$ by $\delta : (l, f) \mapsto (0, l \wedge f)$. Going back, $sl_2^+ = \mathcal{D}(b^+) = (b^+)^* \oplus b^+ = \langle h', e', l, f \rangle / \cdots$. Idea. Replace $\delta \to \epsilon \delta$ over $\mathbb{Q}[\epsilon] / (\epsilon^{k+1} = 0)$. At k = 1, get [f, l] = f, $[f, h'] = -\epsilon f$, [l, e'] = e', $[h', e'] = -\epsilon e'$, [h', l] = 0, and $[e', f] = h' - \epsilon l$. Now note that $h' + \epsilon l$ is central, so switch to $h := h' + \epsilon l$. This is g_1 .

Ordering Symbols. $\mathbb{O}(poly | specs)$ plants the variables of *poly* in $\hat{S}(\oplus_i \mathfrak{g})$ along $\hat{\mathcal{U}}(\mathfrak{g})$ according to *specs*. E.g.,

$$\mathbb{O}\left(e_{1}e^{e_{3}}l_{1}^{3}l_{2}f_{3}^{9} \mid f_{3}l_{1}e_{1}e_{3}l_{2}\right) = f^{9}l^{3}ee^{e}l \in \hat{\mathcal{U}}(\mathfrak{g}).$$

This enables the description of elements of $\hat{\mathcal{U}}(g)$ using commutative polynomials / power series. In g_1 , no need to specify h / t. Algebras and Invariants. Given any unital algebra A (even better if A is Hopf; typically, $A \sim \hat{\mathcal{U}}(g)$), appropriate orange $R \in A \otimes A$, and appropriate cuaps $\in A$, get an $A^{\otimes S}$ -valued invariant of pure S-component tangles:

What we didn't say (more, including videos, in $\omega \epsilon \beta$ /Talks).

- ρ₁ is "line" in the coloured Jones polynomial; related to Melvin-Morton-Rozansky.
- ρ_1 extends to "rotational virtual tangles" and is a projection of the universal finite type invariant of such.
- ρ_1 seems to have a better chance than anything else we know to detect a counterexample to slice=ribbon.
- ρ₁ leads to many questions and a very long to-do list. Years of work, many papers ahead. Have fun!

$$\mathbb{E}[i_{j}, j_{j}, s_{j}] := \mathbb{E}[1, (-1)^{s} l_{j}, (-t)^{s} e_{i} f_{j},$$

$$\mathbb{P}reparation$$

$$\mathbb{t}^{s} e_{i} l_{(1+s) i-s j} f_{j} + (-1)^{s} l_{i} l_{j} + (-t^{2})^{s} e_{i}^{2} f_{j}^{2} / 4];$$

$$\mathbb{E}[i_{j}, s_{j}] := \mathbb{E}[1, 0, 0, s_{j}];$$

1-Smidgen sl_2 Let g_1 be the 4-dimensional Lie algebra $g_1 = z\mathbf{1} = (\mathbb{E}[\mathbf{1},\mathbf{11},\mathbf{0}]\mathbb{E}[\mathbf{4},\mathbf{2},-\mathbf{1}]\mathbb{E}[\mathbf{15},\mathbf{5},\mathbf{0}]$ Preparing the Trefoil $\langle h,e',l,f \rangle$ over the ring $R = \mathbb{Q}[\epsilon]/(\epsilon^2 = 0)$, with h central and with [f,l] = f, [e',l] = -e', and $[e',f] = h - 2\epsilon l$. Over \mathbb{Q} , $g_1 = [\mathbf{10}, -\mathbf{1}]\mathbb{E}[\mathbf{13}, +\mathbf{1}]$

$$\mathbb{E}\left[1, -l_{2} + l_{5} - l_{8} + l_{11} - l_{14} + l_{16}, -\frac{e_{4}f_{2}}{t} + e_{15}f_{5} - \frac{e_{6}f_{8}}{t} + e_{1}f_{11} - \frac{e_{12}f_{14}}{t} + e_{9}f_{16}, -\frac{e_{4}^{2}f_{2}^{2}}{4t^{2}} + \frac{1}{4}e_{15}^{2}f_{5}^{2} - \frac{e_{5}^{2}f_{8}^{2}}{4t^{2}} + \frac{1}{4}e_{1}^{2}f_{11}^{2} - \frac{e_{12}^{2}f_{14}^{2}}{4t^{2}} + \frac{1}{4}e_{9}^{2}f_{16}^{2} + e_{1}f_{11}l_{1} + \frac{e_{4}f_{2}l_{2}}{t} - l_{3} - l_{2}l_{4} + l_{7} + \frac{e_{6}f_{8}l_{8}}{t} - l_{6}l_{8} + e_{9}f_{16}l_{9} - l_{10} + l_{1}l_{11} + l_{13} + \frac{e_{12}f_{14}l_{14}}{t} - l_{12}l_{14} + e_{15}f_{5}l_{15} + l_{5}l_{15} + l_{9}l_{16}\right]$$

$$\begin{aligned} & \text{With}\Big[\{\lambda = \partial_{1_j}L, \alpha = \partial_{x_i}Q, q = \mathbf{e}^{\gamma}\beta x_k + \gamma \mathbf{1}_k\}, \text{CF}\Big[\\ & \mathbb{E}\left[\omega, L/, \mathbf{1}_j \rightarrow \mathbf{1}_k, \mathbf{t}^{\lambda}\alpha x_k + (Q/, x_i \rightarrow \mathbf{0}), \\ & \mathbf{e}^{-q} \text{DP}_{\mathbf{1}_j \rightarrow \mathbf{D}_{\gamma}, x_i \rightarrow \mathbf{D}_\beta}[P]\left[\mathbf{e}^{q}\right]/, \left\{\beta \rightarrow \alpha/\omega, \gamma \rightarrow \lambda \log[\mathsf{t}]\right\}\Big]\Big]; \end{aligned}$$

$$\Lambda[k_{-}] := \left((t-1) \left(2 \left(\alpha \beta + \delta \mu \right)^{2} - \alpha^{2} \beta^{2} \right) - 4 e_{k} l_{k} f_{k} \delta^{2} \mu^{2} - \delta \left(1 + \mu \right) \left(f_{k}^{2} \alpha^{2} + e_{k}^{2} \beta^{2} \right) - e_{k}^{2} f_{k}^{2} \delta^{3} \left(1 + 3 \mu \right) -$$

$$2 \left(\alpha \beta + 2 \delta \mu + e_{k} f_{k} \delta^{2} \left(1 + 2 \mu \right) + 2 l_{k} \delta \mu^{2} \right) \left(f_{k} \alpha + e_{k} \beta \right) -$$

$$4 \left(l_{k} \mu^{2} + e_{k} f_{k} \delta \left(1 + \mu \right) \right) \left(\alpha \beta + \delta \mu \right) \right) \left(1 + t \right) / 4;$$

$$\begin{split} & \mathsf{S}_{\mathsf{f}_i_\mathsf{e}_j\to k_}[\mathbb{E}\left[\omega_, L_, Q_, P_\right]\right] := & fe \text{ Sorts} \\ & \mathsf{With}\left[\{\mathsf{q}=((\mathsf{1}-\mathsf{t})\ \alpha\ \beta+\beta\ \mathsf{e}_k+\alpha\ \mathsf{f}_k+\delta\ \mathsf{e}_k\ \mathsf{f}_k\right)/\mu\}, \mathsf{CF}\right[\\ & \mathbb{E}\left[\mu\ \omega,\ L_,\ \mu\ \omega\ \mathsf{q}+\mu\ (Q\ /_\ \mathsf{f}_i\ |\ \mathsf{e}_j\to 0), \\ & \mu^4\ \mathsf{e}^{-\mathsf{q}}\ \mathsf{DP}_{\mathsf{f}_i\to\mathsf{D}_\alpha,\mathsf{e}_j\to\mathsf{D}_\beta}[P]\left[\mathsf{e}^{\mathsf{q}}\right]+\omega^4\ \Lambda[k]\right]/.\ \mu\to\mathsf{1}+(\mathsf{t}-\mathsf{1})\ \delta\ /. \\ & \left\{\alpha\to\omega^{-1}\left(\partial_{\mathsf{f}_i}Q\ /_\ \mathsf{e}_j\to 0\right),\ \beta\to\omega^{-1}\left(\partial_{\mathsf{e}_j}Q\ /_\ \mathsf{f}_i\to 0\right), \\ & \delta\to\omega^{-1}\ \partial_{\mathsf{f}_i,\mathsf{e}_j}Q\right\}\right]]; \\ & \mathsf{m}_{\mathsf{i}_,\mathsf{j}_\to\mathsf{A}_}[\mathbb{Z}_\mathbb{E}] := \mathsf{Module}\left[\{\mathsf{X},\mathsf{Z}\}, & \mathsf{Elf}\ \mathsf{Merges} \end{split}$$

$$\begin{array}{l} \mathsf{m}_{i_{j},j_{j}\rightarrow k_{-}}[Z_{-}\mathbb{E}] := \mathsf{Module}[\{\mathsf{x},\mathsf{z}\}, & \mathsf{Elf Merges} \\ \mathsf{CF}\left[\left(Z / / \mathsf{S}_{\mathsf{f}_{i}|\mathsf{e}_{j}\rightarrow \mathsf{x}} / / \mathsf{S}_{\mathsf{l}_{i}|\mathsf{e}_{\mathsf{x}}\rightarrow \mathsf{x}} / / \mathsf{S}_{\mathsf{f}_{\mathsf{x}}|\mathsf{l}_{j}\rightarrow \mathsf{x}}\right) / . z_{-i|j|\mathsf{x}} \rightarrow z_{k}\right] \right]$$

(Do [z1 = z1 //
$$m_{1,k\to1}$$
, {k, 2, 16}]; z1)
 $E\left[\frac{1-t+t^2}{t}, 0, 0, \frac{(-1+t)(1-t+t^2)^2(1-t+2t^2)}{t^3} - \frac{2(1+t)(1-t+t^2)^3 e_1 f_1}{t^4} - \frac{2(-1+t)(1+t)(1-t+t^2)^3 l_1}{t^4}\right]$
(by merging 16 elves)

$$\begin{array}{c} \text{Readout} \\ \rho_{1}[\mathbb{E}[\omega_{, -, -}, P_{-}]] := CF\left[\frac{t\left((P / \cdot e_{-} \mid 1_{-} \mid f_{-} \rightarrow 0) - t \omega^{3}\left(\partial_{t}\omega\right)\right)}{(t - 1)^{2} \omega^{2}}\right] \\ \rho_{1}[\texttt{z1}] / / \text{ Expand} \\ \frac{1}{t} + t \end{array}$$

References.

- [Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, ωεβ/Ov.
- [Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275–296, arXiv:hep-th/9401061.
- [Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1–31, arXiv:q-alg/9604005.
- [Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.

diagram	n_k^t Alexander's ω^+ Today's / Rozansky's ρ_1^+	genus / ribbon unknotting number / amphicheiral	diagram	n_k^t Alexander's ω^+ Today's / Rozansky's ρ_1^+	genus / ribbon unknotting number / amphicheiral
\bigcirc	$\begin{array}{ccc} 0_1^a & 1 \\ 0 \end{array}$	0 / 🛩 0 / 🛩	Ø	$\begin{array}{ll} 3_1^a & t-1 \\ t \end{array}$	1 / × 1 / ×
\otimes	$\begin{array}{c} 4_1^a & 3-t \\ 0 \end{array}$	1 / 🗶 1 / 🗸	\bigcirc	$5^{a}_{1} t^{2} - t + 1$ 2t ³ + 3t	2/ × 2/ ×

Video and more at http://www.math.toronto.edu/~drorbn/Talks/GWU-1612/

1-Smidgen sl_2 Let g_1 be the 4-dimensional Lie algebra $g_1 =$	The Big g_1 Lemma. Parts 1 and 6 are the same, yet
$\langle b, c, u, w \rangle$ over the ring $R = \mathbb{Q}[\epsilon]/(\epsilon^2 = 0)$, with b central and wi-	5. $\mathbb{O}\left(e^{\alpha w+\beta u+\delta uw} wu\right) = \mathbb{O}\left(v(1+\epsilon v\Lambda)e^{v(-b\alpha\beta+\alpha w+\beta u+\delta uw)} ucw\right)$
th $[w, c] = w, [c, u] = u$, and $[u, w] = b - 2\epsilon c$, with CYBE $r_{ij} =$	Here Λ is for $\Lambda \dot{o} \gamma o \varsigma$, "a principle of order and knowledge", a ba-
$(b_i - \epsilon c_i)c_j + u_i w_j$ in $\mathcal{U}(\mathfrak{g}_1)^{\otimes \{i,j\}}$. Over \mathbb{Q} , \mathfrak{g}_1 is a solvable approxi-	lanced quartic in α , β , u , c , and w :
mation of sl_2 : $\mathfrak{g}_1 \supset \langle b, u, w, \epsilon b, \epsilon c, \epsilon u, \epsilon w \rangle \supset \langle b, \epsilon b, \epsilon c, \epsilon u, \epsilon w \rangle \supset$	$\Lambda = -b\nu(\alpha^2\beta^2\nu^2 + 4\alpha\beta\delta\nu + 2\delta^2)/2 + \beta^2\delta\nu^3(b\delta + 2)u^2/2$
0. (note: $\deg(b, c, u, w, \epsilon) = (1, 0, 1, 0, 1)$)	$+ \delta^3 v^3 (3b\delta + 4) u^2 w^2 / 2 + \beta \delta^2 v^3 (2b\delta + 3) u^2 w$
0-Smidgen $sl_2 \odot$. Let g_0 be g_1 at $\epsilon = 0$, or $\mathbb{Q}(b, c, u, w)/([b, \cdot]) =$	$+ \alpha \delta^2 v^3 (2b\delta + 3) u w^2 + 2\delta v^2 (b\delta + 2) (\alpha \beta v + \delta) u w$
0, $[c, u] = u$, $[c, w] = -w$, $[u, w] = b$ with $r_{ii} = b_i c_i + u_i w_i$. It is	$+ \alpha^2 \delta y^3 (b\delta + 2) w^2 / 2 + 2 (\alpha \beta y + \delta) c + 2 \beta \delta y w c + 2 \delta^2 y w c w$
$b^* \times b$ where b is the 2D Lie algebra $\mathbb{Q}(c, w)$ and (b, u) is the dual	$+ a \delta v (b\delta + 2)w / 2 + 2(a \beta v + b)c + 2\beta v a c + 2\delta v a c w$
basis of (c, w) . For topology, it is more valuable than $\mathfrak{q}_1 / \mathfrak{sl}_2$, but	$+ 2\alpha o \nu c w + \beta \nu^{-} (\alpha \beta \nu + 2 o) u + \alpha \nu^{-} (\alpha \beta \nu + 2 o) w.$
topology already got by other means almost everything a_0 gives.	Proof. A lengthy computation. (Verification: $ωεβ/Big$)
How did these arise? $s_{l_{a}} = h^{+} \oplus h^{-}/h =: s_{l_{a}}^{l_{a}}/h$ where $h^{+} =$	Problem. We now need to normal-order perturbed Gaussians!
$(c w)/[w c] = w$ is a Lie bialgebra with $\delta: h^+ \rightarrow h^+ \otimes h^+$ by	Solution. Borrow some tactics from QFT:
$\delta: (c, w) \mapsto (0, c \land w)$ Going back $s^{l+} = \mathcal{O}(b^+) = (b^+)^* \oplus b^+ = b^+$	$\mathbb{O}(\epsilon P(c, u)e^{\gamma c + \beta u} uc) = \mathbb{O}(\epsilon P(\partial_{\gamma}, \partial_{\beta})e^{\gamma c + \beta u} uc) =$
$(b, w) \to (0, c \land w)$. Going back, $s_{i_2} = \mathcal{D}(b) = (b) \oplus (b) = (b \land w)$	and likewise $\mathbb{O}(\epsilon P(\partial_{\gamma},\partial_{\beta})e^{\gamma c+e^{-\gamma}\beta u} cu),$
$k = 0$ get α_0 At $k = 1$ get $[w, c] = w$ $[w, b'] = -\epsilon w [c, u] = u$	$\square \left(c \mathbf{P}(u, w) e^{\alpha w + \beta u + \delta u w} \right) = \square \left(c \mathbf{P}(\partial_{u} - \partial_{u}) e^{\nu (-b\alpha\beta + \alpha w + \beta u + \delta u w)} \right) = \square \left(c \mathbf{P}(\partial_{u} - \partial_{u}) e^{\nu (-b\alpha\beta + \alpha w + \beta u + \delta u w)} \right)$
$[b' \ u] = -\epsilon u \ [b' \ c] = 0$ and $[u \ w] = b' - \epsilon c$. Now note that	$\bigcirc (et(u, w)e \qquad wu) = \bigcirc (et(o_{\beta}, o_{\alpha})ve \qquad ucw)$
b' + cc is central so switch to $b' - b' + cc$. This is a	Finally, the values of the generators \langle , \rangle, n , and \underline{u} , are set by
\mathcal{O} received in the second	solving many equations, non-uniquely.
Ordering Symbols. \bigcirc (poly specs) plants the variables of poly in $S(\Phi, x)$ or second tensor conics of $\mathcal{A}(x)$ second in the second seco	Pragmatic Simplifications. Set $t := e^{b}$, work with $v := (t - 1)u/b$,
$S(\oplus_i g)$ on several tensor copies of $\mathcal{U}(g)$ according to specs. E.g.,	and set $\mathbb{E}(\omega, L, Q, P) \coloneqq \mathbb{O}\left(\omega^{-1}e^{L+Q/\omega}(1+\epsilon\omega^{-4}P): (i: v_ic_iw_i)\right).$
$\mathbb{O}\left(c_1^3 u_1 c_2 e^{u_3} w_3^9 x \colon w_3 c_1, \ y \colon u_1 u_3 c_2\right) = w^9 c^3 \otimes u e^u c \in \mathcal{U}(\mathfrak{g})_x \otimes \mathcal{U}(\mathfrak{g})_y$	Now $\omega \in R_S := \mathbb{Z}[t_i, t_i^{-1}]$ is Laurent, $L = \sum l_{ij} \log(t_i) c_j$ with $l_{ij} \in \mathbb{Z}[t_i, t_i^{-1}]$
This enables the description of elements of $\hat{\mathcal{U}}(\mathfrak{q})^{\otimes S}$ using com-	$\mathbb{Z}, Q = \sum q_{ij} v_i w_j$ with $q_{ij} \in R_S$, and P is a quartic polynomial
mutative polynomials / power series.	in v_i , c_j , w_k with coefficients in R_s . The operations are lightly
0 Smidgen Invariants $r = Id \in h^{-} \otimes h^{+}$ solves the CVBE	modified, and the $\Lambda \circ \gamma \circ \varsigma$ and the values of the generators become
$[r_{12}, r_{12}] + [r_{12}, r_{22}] + [r_{12}, r_{22}] = 0$ in $\mathcal{I}(\alpha_2)^{\otimes 3}$ and by luck	somewhat simpler, as in the implementation below.
$[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0$ in $\mathcal{U}(g_0)$ and, by luck,	Rough complexity esti-
$ + \mathbf{\mathcal{I}} = \mathbf{\mathcal{I}} + \mathbf{\mathcal{I}} = \mathbf{\mathcal{I}} = \mathbf{\mathcal{I}} = \mathbf{\mathcal{I}} = e^{\mathbf{\mathcal{I}}_{ij}} = e^{\mathbf{\mathcal{I}}_{ij} + u_i w_j} \in \mathcal{U}(g_{0,i} \oplus g_{0,j}) $	mate, after $t_k \rightarrow t$, n ; xing $n \sum_{k=1}^{4} w^{4-d} w^d n^2 - n^3 w^4 \in [n^5, n^7]$
i > j $i > j$ solves YB/R3.	number: w: width, maybe $\frac{n}{A} \sum_{d=0}^{M} \frac{w}{E} \frac{w}{F} \frac{n}{G} = n w \in [n, n]$
Lemma $R_{\cdots} = e^{b_i c_j + u_i w_j} = \mathbb{O}\left(\exp\left(b_i c_j + \frac{e^{b_i} - 1}{2}u_j w_j\right) i : u_j = i : c_j w_j\right)$	$\sim \sqrt{n}$. A: go over stitchings in order. B: multiplication ops per
$= \bigcirc \left(\exp \left(\bigcup_{i \in J} \left\{ \begin{array}{c} u_i \\ b_i \end{array}\right) \right i \cdot u_i, j \cdot \bigcup_{i \in J} \left\{ \begin{array}{c} u_i \\ b_i \end{array}\right) \right)$	$N^{u_i w_j}$. d: deg of u_i, w_i in P. E: #terms of deg d in P. F: ops per
Example. $Z(T_0) = = \sum_{m,n} \frac{v_i \cdot (c-1)}{m!n!} u^n \otimes c^m w^n.$	term. G: cost per polynomial multiplication op.
$O\left(\exp\left(b_{1}c_{1}+\frac{e^{b_{5}}-1}{2}u_{5}w_{1}+b_{2}c_{2}+\frac{e^{b_{2}}-1}{2}u_{2}w_{1}-b_{2}c_{3}+\frac{e^{-b_{3}}-1}{2}u_{2}w_{2}\right)\right)$	Experimental Analysis (ωεβ/Exp). Log-log plots of computation
$ = \left(\exp\left(\frac{b_5 c_1 + b_5}{b_5} + \frac{b_7 w_1 + b_2 c_4 + b_2}{b_2} + \frac{b_2 w_4 + b_3 c_5 + b_3}{b_3} + \frac{w_3 w_5}{b_3} \right) \right) $	time (sec) vs. crossing number, for all knots with up to 12 cros-
$x: c_1w_1u_2, y: u_3c_4w_4u_5c_6w_6 = \mathbb{O}\left(\zeta x: u_xc_xw_x, y: u_yc_yw_y\right)$	sings (mean times) and for all torus knots with up to 48 crossings:
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	50 - μ. τ _α . τ _α . τ _α .
Goal. Write ζ as a Gaussian: $\omega e^{2/2}$ where L bilinear in b_i and c_i	ر در ۲۵ م. ۲۵ م ۲۵ م. ۲۵ م ۲۵ م. ۲۵ م. ۲۰
with integer coefficients, Q a balanced quadratic in u_i and w_i with	(*************************************
coefficients in $K_S := \mathbb{Q}(b_i, e^{\omega_i})$, and $\omega \in K_S$.	(1.3.) (1.3.) (1.3.) (1.7.) (1.3.) (1
The Big g_0 Lemma. Under $[c, u] = u$, $[c, w] = -w$, and $[u, w] = b$:	(4.3) (11.3) (15.3) (15.4) (15
1a. $N^{cu} := \mathbb{O}(e^{\gamma c + \beta u} uc) = \mathbb{O}(e^{\gamma c + \rho u} cu)$ (means $e^{\beta u} e^{\gamma c} = e^{\gamma c} e^{e^{\gamma \beta u}}$	2
1b. $N^{wc} := \mathbb{O}(e^{\gamma c + aw} wc) = \mathbb{O}(e^{\gamma c + a^{-}aw} cw)$ in the $\{ax + b\}$ group)	4 6 8 10 12 5 10 20 50
2. $\mathbb{O}(e^{dw+pu} wu) = \mathbb{O}(e^{-bdp+dw+pu} uw)$ (the Weyl relations)	Conjecture (checked on the same collections). Given a knot K
3. $\mathbb{O}(e^{ouw} wu)e^{\beta u} = e^{\nu\beta u}\mathbb{O}(e^{ouw} wu)$, with $\nu = (1+b\delta)^{-1}$	with Alexander polynomial A, there is a polynomial ρ_1 such that
(a. expand and crunch. b. use $w = b\hat{x}$, $u = \partial_x$. c. use "scatter and glow".)	$P = A^2 \frac{(t-1)^3 \rho_1 + t^2 (2vw + (1-t)(1-2c))AA'}{2}$
4. $\mathbb{O}(e^{buw} wu) = \mathbb{O}(ve^{vbuw} uw)$ (same techniques)	(1-t)t
5. $N^{wu} := \mathbb{O}(e^{pu+uw+buw} wu) = \mathbb{O}(ve^{-bvup+vuw+vpu+vbuw} uw)$	Furthermore, A and ρ_1 are symmetric under $t \to t^{-1}$, so let A^+ and
6. $N_k^{(j)} := \mathbb{O}(\zeta c_i c_j) = \mathbb{O}(\zeta / (c_i, c_j \to c_k) c_k)$	ρ_1^+ be their "positive parts", so e.g., $\rho_1(t) = \rho_1^+(t) + \rho_1^+(t^{-1}) - \rho_1^+(0)$.
Sneaky. α may contain (other) u's, β may contain (other) w's.	Power. On the 250 knots with at most 10 crossings, the pair
Strand Stitching, m_k^{ij} , is defined as the composition	(A, ρ_1) attains 250 distinct values, while (Khovanov, HOMFLY-
$N_x^{w_i u_j}$ $N_x^{w_i u_j}$ $N_x^{c_i u_x} / N_x^{w_x c_j}$	PT) attains only 249 distinct values. To 11 crossings the numbers
$u_i c_i w_i u_j c_j w_j \longrightarrow u_i c_i u_x w_x c_j w_j \longrightarrow u_i u_x c_x c_x w_x w_j$	are (802, 788, 772) and to 12 they are (2978, 2883, 2786).
$\xrightarrow{\iota,j,x\to\kappa} u_k c_k w_k$	Genus. Up to 12 xings, always deg $\rho_1^+ \leq 2g - 1$, where g is
	the 3-genus of K (equallity for 2530 knots). This gives a lower
	bound on g in terms of ρ_1 (conjectural, but undoubtedly true).
On to 1-smidgen invariants, where much is the same	This bound is often weaker than the Alexander bound, yet for 10
	of the 12-xing Alexander failures it does give the right answer.

Demo Programs for 0-Co. ωεβ/Demo $\mathbf{R}_{\boldsymbol{\theta},i_{-},j_{-}}^{+} := \mathbb{E}\left[\mathbf{b}_{i} \mathbf{c}_{j} + \mathbf{b}_{i}^{-1} \left(\mathbf{e}^{\mathbf{b}_{i}} - \mathbf{1}\right) \mathbf{u}_{i} \mathbf{w}_{j}\right];$ The *R*-matrices $\mathbf{R}_{0,i_{-},j_{-}}^{-} := \mathbb{E} \left[-\mathbf{b}_{i} \, \mathbf{c}_{j} + \mathbf{b}_{i}^{-1} \left(\mathbf{e}^{-\mathbf{b}_{i}} - \mathbf{1} \right) \, \mathbf{u}_{i} \, \mathbf{w}_{j} \right];$ Utilities $CF[\omega]$. $\mathbb{E}[Q]$] := Simplify $[\omega]$ $\mathbb{E}[Simplify[Q]];$ $E /: E[Q1_] E[Q2_] := CF@E[Q1 + Q2];$ $\omega 1_. \mathbb{E}[Q1_] = \omega 2_. \mathbb{E}[Q2_] := Simplify[\omega 1 = \omega 2 \land Q1 = Q2];$ Normal Ordering Operators $\mathsf{N}_{(x:w|u)_{i}} \mathrel{c_{j} \to k_{\underline{}}} [\mathscr{U}_{\underline{}} \cdot \mathbb{E} [Q_{\underline{}}]] := \mathsf{CF} [$ $\omega \mathbb{E} \left[\mathbf{e}^{\mathbb{Y}} \alpha X_k + \mathbb{Y} \mathbf{C}_k + (Q / \mathbf{C}_j \mid X_i \to \mathbf{0}) \right] / \mathbf{C}_i \left\{ \mathbb{Y} \to \partial_{\mathbf{C}_j} Q, \alpha \to \partial_{x_i} Q \right\} \right];$ $\mathbf{N}_{\mathbf{w}_{i} \quad \mathbf{u}_{j} \rightarrow k_{-}} \left[\omega_{-} \cdot \mathbb{E} \left[Q_{-} \right] \right] := \mathsf{CF} \left[\right]$ $\mathbf{v} \ \boldsymbol{\omega} \ \mathbb{E} \left[-\mathbf{b}_k \ \mathbf{v} \ \boldsymbol{\alpha} \ \boldsymbol{\beta} + \mathbf{v} \ \boldsymbol{\beta} \ \mathbf{u}_k + \mathbf{v} \ \boldsymbol{\alpha} \ \mathbf{w}_k + \mathbf{v} \ \boldsymbol{\delta} \ \mathbf{u}_k \ \mathbf{w}_k \ + \ (Q \ / \ \mathbf{w}_i \ | \ \mathbf{u}_j \rightarrow \mathbf{0}) \right] \ / \ .$ $\mathbf{v} \rightarrow (\mathbf{1} + \mathbf{b}_k \, \delta)^{-1} / .$ $\left\{\alpha \to \partial_{\mathsf{w}_{i}}Q / . \mathbf{u}_{j} \to \mathbf{0}, \ \beta \to \partial_{\mathsf{u}_{j}}Q / . \mathbf{w}_{i} \to \mathbf{0}, \ \delta \to \partial_{\mathsf{w}_{i}}, \mathbf{u}_{i}Q\right\}\right];$ Stitching $\mathsf{CF}\left[\left(\mathbb{Z} // \mathsf{N}_{\mathsf{W}_{i} | \mathsf{u}_{j} \to \mathsf{X}} // \mathsf{N}_{\mathsf{c}_{i} | \mathsf{u}_{\mathsf{X}} \to \mathsf{X}} // \mathsf{N}_{\mathsf{W}_{\mathsf{X}} | \mathsf{c}_{j} \to \mathsf{X}}\right) /. \mathbb{Z}_{-i|j|_{\mathsf{X}}} \to \mathbb{Z}_{k}\right]\right]$

$$\begin{split} \textbf{T}_{\theta} &= \textbf{R}_{\theta,5,1}^{+} \textbf{R}_{\theta,2,4}^{+} \textbf{R}_{\theta,3,6}^{-} & \textbf{Some calculations for } \textbf{T}_{0} \\ & \mathbb{E} \left[b_{5} \, c_{1} + b_{2} \, c_{4} - b_{3} \, c_{6} + \frac{\left(-1 + e^{b_{5}}\right) \, u_{5} \, w_{1}}{b_{5}} + \frac{\left(-1 + e^{b_{2}}\right) \, u_{2} \, w_{4}}{b_{2}} + \frac{\left(-1 + e^{-b_{3}}\right) \, u_{3} \, w_{6}}{b_{3}} \right] \\ & \textbf{T}_{\theta} // \, \textbf{m}_{1,2 \rightarrow 1} \, // \, \textbf{m}_{3,4 \rightarrow 3} \, // \, \textbf{m}_{3,5 \rightarrow 3} \, // \, \textbf{m}_{3,6 \rightarrow 3} \end{split}$$

 $\begin{array}{c} \frac{1}{1-\left(-1+e^{b_1}\right)\left(-1+e^{b_3}\right)} \ \mathbb{E}\left[\begin{array}{c} b_3 \ c_1 + b_1 \ c_3 - b_3 \ c_3 + \\ \\ \frac{e^{b_3} \left(-1+e^{b_1}\right)\left(-1+e^{b_3}\right) u_1 w_1}{\left(-e^{b_1}-e^{b_3}+e^{b_1+b_3}\right) b_1} - \frac{e^{b_1} \left(-1+e^{b_3}\right) u_3 w_1}{\left(-1+\left(-1+e^{b_1}\right)\left(-1+e^{b_3}\right)\right) b_3} - \\ \\ \frac{e^{-b_3} \left(-1+e^{b_3}\right) u_3 w_3}{b_3} - \frac{e^{-b_3} \left(-1+e^{b_1}\right) \left(-e^{b_3} b_3 u_1+e^{b_1} \left(-1+e^{b_3}\right) b_1 u_3\right) w_3}{b_1 \left(b_3 - \left(-1+e^{b_1}\right) \left(-1+e^{b_3}\right) b_3\right)} - \end{array} \right]$

Verifying meta-associativity

 $\begin{aligned} & \textbf{Q0} = \mathbb{E} \left[\text{Sum} \left[f_{i} c_{i}, \{i, 3\} \right] + \text{Sum} \left[f_{i,j} u_{i} w_{j}, \{i, 3\}, \{j, 3\} \right] \right] \\ & \mathbb{E} \left[c_{1} f_{1} + c_{2} f_{2} + c_{3} f_{3} + u_{1} w_{1} f_{1,1} + u_{1} w_{2} f_{1,2} + u_{1} w_{3} f_{1,3} + u_{2} w_{1} f_{2,1} + u_{2} w_{2} f_{2,2} + u_{2} w_{3} f_{2,3} + u_{3} w_{1} f_{3,1} + u_{3} w_{2} f_{3,2} + u_{3} w_{3} f_{3,3} \right] \\ & (\textbf{Q0} / / \textbf{m}_{1,2 \rightarrow 1} / / \textbf{m}_{1,3 \rightarrow 1}) = (\textbf{Q0} / / \textbf{m}_{2,3 \rightarrow 2} / / \textbf{m}_{1,2 \rightarrow 1}) \\ & \text{True} \end{aligned}$

 $\begin{aligned} \textbf{t1} &= \textbf{R}_{\theta,1,2}^{*} \, \textbf{R}_{\theta,3,4}^{*} \, \textbf{R}_{\theta,5,6}^{*} \, / / \, \textbf{m}_{3,5 \rightarrow x} \, / / \, \textbf{m}_{1,6 \rightarrow y} \, / / \, \textbf{m}_{2,4 \rightarrow z} \end{aligned} \\ & \mathbb{E} \left[b_{x} \, c_{y} + b_{x} \, c_{z} + b_{y} \, c_{z} + \frac{e^{b_{x}} \left(-1 + e^{b_{y}} \right) u_{y} \, w_{z}}{b_{y}} + \frac{\left(-1 + e^{b_{x}} \right) u_{x} \left(w_{y} + w_{z} \right)}{b_{x}} \right] \end{aligned}$

 $\label{eq:t1} \begin{array}{l} \texttt{t1} \equiv (\mathsf{R}^{*}_{\theta,1,2} \: \mathsf{R}^{*}_{\theta,3,4} \: \mathsf{R}^{*}_{\theta,5,6} \: / / \: \mathsf{m}_{1,3 \rightarrow x} \: / / \: \mathsf{m}_{2,5 \rightarrow y} \: / / \: \mathsf{m}_{4,6 \rightarrow z}) \\ \\ \text{True} \end{array}$

 $\begin{aligned} z1 &= R_{\bar{0},12,1} R_{\bar{0},22,7} R_{\bar{0},8,3} R_{\bar{0},4,11} R_{\bar{0},16,5} R_{\bar{0},6,13} R_{\bar{0},14,9} R_{\bar{0},10,15}; \\ Do[z1 &= (z1 // m_{1,n\to1}) /. b_{-} \rightarrow b, \{n, 2, 16\}]; \\ \{CF@z1, KnotData[\{8, 17\}, "AlexanderPolynomial"][t]\} \end{aligned}$

$$\left\{-\frac{e^{3b}E[\theta]}{1-4e^{b}+8e^{2b}-11e^{3b}+8e^{4b}-4e^{5b}+e^{6b}}, 11-\frac{1}{t^3}+\frac{4}{t^2}-\frac{8}{t}-8t+4t^2-t^3\right\}$$

Demo Programs for 1-Co. $\omega\epsilon\beta/Demo$

$$\Lambda[k_{-}] := \left(\left(\mathbf{t}_{k} - \mathbf{1} \right) \left(2 \left(\alpha \beta + \delta \mu \right)^{2} - \alpha^{2} \beta^{2} \right) - 4 \mathbf{v}_{k} \mathbf{c}_{k} \mathbf{w}_{k} \delta^{2} \mu^{2} - \delta \left(\mathbf{1} + \mu \right) \left(\mathbf{w}_{k}^{2} \alpha^{2} + \mathbf{v}_{k}^{2} \beta^{2} \right) - \mathbf{v}_{k}^{2} \mathbf{w}_{k}^{2} \delta^{3} \left(\mathbf{1} + 3 \mu \right) - 2 \left(\alpha \beta + 2 \delta \mu + \mathbf{v}_{k} \mathbf{w}_{k} \delta^{2} \left(\mathbf{1} + 2 \mu \right) + 2 \mathbf{c}_{k} \delta \mu^{2} \right) \left(\mathbf{w}_{k} \alpha + \mathbf{v}_{k} \beta \right) - 4 \left(\mathbf{c}_{k} \mu^{2} + \mathbf{v}_{k} \mathbf{w}_{k} \delta \left(\mathbf{1} + \mu \right) \right) \left(\alpha \beta + \delta \mu \right) \right) \left(\mathbf{1} + \mathbf{t}_{k} \right) / 4;$$
 The Λόγοα

 $\begin{aligned} R_{i_{-},j_{-}}^{+} &:= \mathbb{E} \left[\mathbf{1}, \log \left[t_{i} \right] c_{j}, v_{i} w_{j}, v_{i} c_{i} w_{j} + c_{i} c_{j} + v_{i}^{2} w_{j}^{2} / 4 \right]; \\ R_{i_{-},j_{-}}^{-} &:= \mathbb{E} \left[\mathbf{1}, -\log \left[t_{i} \right] c_{j}, -t_{i}^{-1} v_{i} w_{j}, \\ t_{i}^{-1} v_{i} c_{j} w_{j} - c_{i} c_{j} - t_{i}^{-2} v_{i}^{2} w_{j}^{2} / 4 \right]; \\ \left(ur_{i_{-}} &:= \mathbb{E} \left[t_{i}^{-1/2}, \theta, \theta, c_{i} t_{i}^{-2} \right]; nr_{i_{-}} &:= \mathbb{E} \left[t_{i}^{-1/2}, \theta, \theta, -c_{i} t_{i}^{2} \right]; \end{aligned} \end{aligned}$

Differential Polynomials $\mathsf{DP}_{\mathsf{x}_{-}\to\mathsf{D}_{\alpha}}, \mathsf{y}_{-}\to\mathsf{D}_{\beta}} [P_{-}] [f_{-}] := (* \text{ means } \mathsf{P}[\partial_{\alpha},\partial_{\beta}] [f] *)$ Total[CoefficientRules[P, {x, y}] /. $(\{m_,n_\} \rightarrow c_) \Rightarrow c \, \mathsf{D} \, [f, \{\alpha,m\}, \{\beta,n\}] \,]$ $CF[\mathcal{S} \mathbb{E}] := Expand /@Together /@\mathcal{S};$ Utilities E /: E[ω1_, L1_, Q1_, P1_] E[ω2_, L2_, Q2_, P2_] := $\mathsf{CF}@\mathbb{E}\left[\omega 1 \ \omega 2, \ L1 + L2, \ \omega 2 \ Q1 + \omega 1 \ Q2, \ \omega 2^4 \ P1 + \omega 1^4 \ P2\right];$ Normal Ordering Operators $N_{c_{j}}(x:v|w)_{i} \rightarrow k_{e}[\mathbb{E}[\omega_{j}, L_{j}, Q_{j}, P_{j}]] := \mathsf{With}[\{q = e^{Y}\beta x_{k} + \gamma c_{k}\}, \mathsf{CF}[$ $\mathbb{E}\left[\omega, \, \gamma \, \mathbf{C}_k + \left(L \ / \ \mathbf{C}_j \rightarrow \mathbf{0}\right), \, \omega \, \mathbf{e}^{\gamma} \, \beta \, x_k + \left(Q \ / \ \mathbf{X}_i \rightarrow \mathbf{0}\right),\right.$ $e^{-q} \operatorname{DP}_{\mathbf{c}_{i} \to \mathbf{D}_{\chi}, \chi_{i} \to \mathbf{D}_{\beta}}[P] [e^{q}] / \cdot \{ \gamma \to \partial_{\mathbf{c}_{i}} L, \beta \to \omega^{-1} \partial_{\chi_{i}} Q \}]];$ With $\left[\{ q = ((1 - t_k) \alpha \beta + \beta v_k + \alpha w_k + \delta v_k w_k) / \mu \} \right]$, CF $\left[\left[\left[\left(q - t_k \right) \alpha \beta + \beta v_k + \alpha w_k + \delta v_k w_k \right] \right] \right] \right]$ $\mathbb{E}\left[\mu \,\omega, \, L, \, \mu \,\omega \, \mathbf{q} + \mu \, \left(Q \, / \, \mathbf{w}_i \mid \mathbf{v}_j \rightarrow \mathbf{0} \right) ,\right.$ $\mu^{4} \, \mathrm{e}^{-\mathrm{q}} \, \mathrm{DP}_{\mathsf{w}_{i} \to \mathsf{D}_{\alpha}, \mathsf{v}_{i} \to \mathsf{D}_{\beta}} \left[P \right] \left[\mathrm{e}^{\mathrm{q}} \right] \, + \, \omega^{4} \, \Lambda[k] \, \Big] \, / \, \cdot \, \mu \to \mathsf{1} + \, (\mathsf{t}_{k} - \mathsf{1}) \, \delta \, / \, \cdot \,$ $\left\{\alpha \to \omega^{-1} \left(\partial_{\mathsf{w}_{j}} Q / . \mathsf{v}_{j} \to 0\right), \beta \to \omega^{-1} \left(\partial_{\mathsf{v}_{j}} Q / . \mathsf{w}_{i} \to 0\right),\right.$ $\delta \rightarrow \omega^{-1} \partial_{\mathsf{w}_i, \mathsf{v}_i} Q \}]];$ Stitching

 $z2 = R_{1,11}^{+} R_{4,2}^{-} nr_3 R_{15,5}^{+} R_{6,8}^{-} ur_7 R_{9,16}^{+} nr_{10} R_{12,14}^{-} ur_{13};$ (Do[z2 = z2 // m_{1,k→1}, {k, 2, 16}]; z2 = z2 /. a_1 \Rightarrow a)

 $\mathbb{E}\left[-1 + \frac{1}{t} + t, 0, 0, \right]$ $16 + \frac{2c}{t^{4}} - \frac{1}{t^{3}} - \frac{6c}{t^{3}} + \frac{4}{t^{2}} + \frac{10c}{t^{2}} - \frac{10}{t} - \frac{8c}{t} - 18t + 8ct + 14t^{2} - 10ct^{2} - 7t^{3} + 6ct^{3} + 2t^{4} - 2ct^{4} + 2vw - \frac{2vw}{t^{4}} + \frac{4vw}{t^{3}} - \frac{6vw}{t^{2}} + \frac{2vw}{t} - 6tvw + 4t^{2}vw - 2t^{3}vw \right]$

Questions and To Do List. • Clean up and write up. • Implement well, compute for everything in sight. • Why are our quantities polynomials rather than just rational functions? • Bounds on their degrees? • Their integrality (\mathbb{Z}) properties? • Can everything be re-stated using integrals (\int)? • Find the 2-variable version (for knots). How complex is it? • What about links / closed components? • Fully digest the "expansion" theorem; include cuaps. • Explore the (non-)dependence on R. • Is there a canonical R? • What does "group like" mean? • Strand removal? Strand doubling? Strand reversal? • Say something about knot genus. • Find the EK/AT/KV "vertex". • Use as a playground to study associators/braidors. • Restate in topological language. • Study the associated (v-)braid representations. • Study mirror images and the $b^+ \leftrightarrow b^-$ involution. • Study ribbon knots. • Make precise the relationship with Γ -calculus and Alexander. • Relate to the coloured Jones polynomial. • Relate with "ordinary" q-algebra. • k-smidgen sl_n , etc. • Are there "solvable" CYBE algebras not arising from semi-simple algebras? • Categorify and appease the Gods.

References.

- [Al] J. W. Alexander, *Topological invariants of knots and link*, Trans. Amer. Math. Soc. **30** (1928) 275–306.
- [BN1] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, ωεβ/KBH, arXiv:1308.1721.
- [BN2] D. Bar-Natan, Polynomial Time Knot Polynomial, research proposal for the 2017 Killam Fellowship, ωεβ/K17.
- [BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103–133.
- [BNS] D. Bar-Natan and S. Selmani, *Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial*, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
- [En] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430âĂŞ-479, arXiv: math/0212325.
- [EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica 2 (1996) 1–41, arXiv:q-alg/9506005.

- [GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305–2347, arXiv:1103.1601.
- [Ha] A. Haviv, Towards a diagrammatic analogue of the Reshetikhin-Turaev link invariants, Hebrew University PhD thesis, Sep. 2002, arXiv: math.QA/0211031.
- [MM] P. M. Melvin and H. R. Morton, *The coloured Jones function*, Commun. Math. Phys. 169 (1995) 501–520.
- [Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, ωεβ/Ov.
- [Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275–296, arXiv:hep-th/9401061.
- [Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1–31, arXiv:q-alg/9604005.
- [Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
- [Se] P. Ševera, Quantization of Lie Bialgebras Revisited, Sel. Math., NS, to appear, arXiv:1401.6164.

diagram	n_k^t Alexander's A_+	genus / ribbon	diagram	n_k^t Alexander's A_+	genus / ribbon
ulagrafii	Today's / Rozansky's ρ_1^+ unknotting numbe	r / amphicheiral		Today's / Rozansky's ρ_1^+ unknotting num	mber / amphicheiral
	$\begin{array}{ccc} 0_1^a & 1 \\ 0 \end{array}$	0 / 🖌	P	$3_1^a t - 1$	1 / X 1 / X
		1/5		50 2 1	1/*
	4_1^{-} 5 - t 0	1 / 🗙 1 / 🖌	8P	5_1^{-} $t^{-} - t + 1$ $2t^3 + 3t$	2/×
Ô	5^{a}_{-} 2t - 3	1/×	Õ	6^{a}_{t} 5 – 2t	1/
	5t-4	1 / 🗙		t-4	1 / 🗙
	$6^a_2 -t^2 + 3t - 3$	2/×	A	$6^a_3 t^2 - 3t + 5$	2 / 🗙
	$t^3 - 4t^2 + 4t - 4$	1 / 🗙	<u> </u>	0	1 / 🖌
CS.	7^a_1 $t^3 - t^2 + t - 1$	3 / 🗙	(\mathcal{P})	$7^a_2 3t-5$	1 / 🗙
	$3t^5 + 5t^3 + 6t$	3 / 🗙		14t - 16	1 / 🗙
	$7^a_3 2t^2 - 3t + 3$	2/×		7^{a}_{4} 4t - 7	1 / 🗙
	$-9t^3 + 8t^2 - 16t + 12$	2/X		32 - 24t	2/×
	7_5^a $2t^2 - 4t + 5$	2/×		$7_6^a -t^2 + 5t - 7$	2/×
	$9t^2 - 16t^2 + 29t - 28$	2/*		$t^2 - 8t^2 + 19t - 20$	1 / 🗙
BHB	7_7^a $t^2 - 5t + 9$ 8 - 3t	2/×		$8_1^a - 7 - 3t$	1/×
	$\frac{3}{2}$	2/×		$S_t = 10$	1/×
	$8^{\circ}_{2} -t^{\circ} + 3t^{\circ} - 3t + 3$ $2t^{5} - 8t^{4} + 10t^{3} - 12t^{2} + 13t - 12$	3/× 2/×		$8_3 9 - 4t$	2/
	$\frac{8^a}{2t^2+5t-5}$	2/8	Å	$8^a - t^3 + 3t^2 - 4t + 5$	3/¥
	$3t^3 - 8t^2 + 6t - 4$	2/×		$-2t^5 + 8t^4 - 13t^3 + 20t^2 - 22t + 24$	2/×
Å	$\frac{8^{a}}{2}$ $-2t^{2}+6t-7$	2 / 🗙	Â	$8\frac{a}{2}$ $t^3 - 3t^2 + 5t - 5$	3 / 🗙
	$5t^3 - 20t^2 + 28t - 32$	2/×		$-t^5 + 4t^4 - 10t^3 + 12t^2 - 13t + 12$	1 / 🗙
A	$\frac{8^a}{8}$ $2t^2 - 6t + 9$	2/	Ð	$8^a_{9} - t^3 + 3t^2 - 5t + 7$	3 / 🗸
	$-t^3 + 4t^2 - 12t + 16$	2/X		0	1 / 🗸
	$\frac{8^a}{10}$ $t^3 - 3t^2 + 6t - 7$	3 / 🗙		$8^a_{11} -2t^2 + 7t - 9$	2 / 🗙
	$-t^3 + 4t^4 - 11t^3 + 16t^2 - 21t + 20$	2 / 🗙	<u> </u>	$5t^3 - 24t^2 + 39t - 44$	1 / 🗙
	8^a_{12} $t^2 - 7t + 13$	2/X	R	$8^a_{13} 2t^2 - 7t + 11$	2 / 🗙
	0	2 / 🖌		$-t^3 + 4t^2 - 14t + 20$	1 / 🗙
	$8^a_{14} -2t^2 + 8t - 11$	2/×	689	8^a_{15} $3t^2 - 8t + 11$	2 / 🗙
	$5t^3 - 28t^2 + 57t - 68$	1/×		$21t^3 - 64t^2 + 120t - 140$	2/×
	8_{16}^{a} $t^{3} - 4t^{2} + 8t - 9$	3/×	(AB)	$8^a_{17} -t^3 + 4t^2 - 8t + 11$	3/×
	$t^{2} = 0t^{2} + 1/t^{2} - 28t^{2} + 35t - 36$	2/×			1 / 🗸
	$8^a_{18} - t^3 + 5t^2 - 10t + 13$	3/×		8^{n}_{19} $t^{3} - t^{2} + 1$	3/×
\mid		2/		-5i - 4i - 5i	5/*
	8_{20}^{n} $t^2 - 2t + 3$	2/	(B)	$8_{21}^{"} -t^2 + 4t - 5$ $t^3 - 8t^2 + 16t - 20$	2/X
	ד – יד	1 / 🗖	∇	i = 0i = 10i = 20	1 / 🛪

Video at http://www.math.toronto.edu/~drorbn/Talks/RCI-110213/, more at http://www.math.toronto.edu/~drorbn/Talks/Niagara-1612/

Video at http://www.math.toronto.edu/~drorbn/Talks/RCI-110213/, more at http://www.math.toronto.edu/~drorbn/Talks/Niagara-1612/

Dror Bar-Natan: Talks: Greece-1607: weβ:=http://drorbn.net/Greece-1607/	$(bas // TG_{1,2} // TG_{1,3}) - (bas // TG_{1,3} // TG_{1,2}) \dots OC$
Work in Progress! I ne Brute and the Hidden Paradise	{0, -f[t ₁ , t ₂ , t ₃] u ₁ u ₂ w ₃ + f[t ₁ , t ₂ , t ₃] t ₁ u ₁ u ₂ w ₃ +
Local Algebra (with van der Veen) Much can be re-	f[t ₁ , t ₂ , t ₃] u ₁ u ₃ w ₃ - f[t ₁ , t ₂ , t ₃] t ₁ u ₁ u ₃ w ₃ ,
formulated as (non-standard) "quantum algebra" for the	$-f[t_1, t_2, t_3] u_1 u_2 w_2 + f[t_1, t_2, t_3] t_1 u_1 u_2 w_2 +$
4D Lie algebra $g = \langle b, c, u, w \rangle$ over $\mathbb{Q}[\epsilon]/(\epsilon^2 = 0)$, with	f[t1, t2, t3] u1 u3 w2 -
b central and $[w, c] = w$, $[c, u] = u$, and $[u, w] = b - 2\epsilon c$.	$f[t_1, t_2, t_3] t_1 u_1 u_3 w_2$, 0, 0, 0, 0, 0, 0}
The key: $a_{ij} = (b_i - \epsilon c_i)c_j + u_i w_j$ in $\mathcal{U}(\mathfrak{g})^{\otimes \{i,j\}}$. van der Veer	$n/(2n)^2 = 0; n/(2n)^2 = 0;$ Turbo-Burau (new!)
Some (new) representationss of the (y-)braid groups, $\omega \epsilon \beta/Rep$	$TB_{i,j} [\mathcal{E}_{j}] :=$
$B_{i,j}[\xi] := \xi / \cdot v_j \Rightarrow (1 - t) v_j + t v_j$ Burau (old	Expand[\mathcal{E} /. {
$Column \# \{lbs = \{w_{i}, w_{i}, w_{i}\} / \{B_{i} \circ / \{B_{i} \circ / \{B_{i} \circ \}\} \}$	$f_{\underline{i}} \cdot \mathbf{v}_k \Rightarrow \operatorname{Plus}[f \mathbf{v}_k / \cdot \mathbf{v}_j \rightarrow (1 - t - \eta[i]) \mathbf{v}_i + (t + \eta[i]) \mathbf{v}_j,$
$rbs = \{v_1, v_2, v_3\} / B_{1,2} / B_{1,3} / B_{2,3} / \dots USHING RC$	<pre>(t-1) (Coefficient[f, η[i]] - Coefficient[f, η[j]]) *</pre>
$= \{(1, 2, 3), (1, 2,$	$(\mathbf{u}_k / . \mathbf{u}_j \rightarrow (1 - t) \mathbf{u}_i + t \mathbf{u}_j) * \mathbf{u}_i \mathbf{w}_j,$
	$K\delta_{k,i} (f / . \eta \rightarrow 0) (u_j - u_i) u_i w_j],$
{ v_1 , (1-t) v_1 + t v_2 , (1-t) v_1 + t ((1-t) v_2 + t v_3)}	$\mathbf{u}_j \rightarrow (1 - \mathbf{t}) \ \mathbf{u}_i + \mathbf{t} \ \mathbf{u}_j,$
$\{v_1, (1-t) v_1 + t v_2,$	$\mathbf{w}_i \rightarrow \mathbf{w}_i + (1 - t^{-1}) \mathbf{w}_j, \ \mathbf{w}_j \rightarrow t^{-1} \mathbf{w}_j \}];$
$(1 - t) ((1 - t) v_1 + t v_2) + t ((1 - t) v_1 + t v_3) $	$ff = f_0 + f_1 \eta [1] + f_2 \eta [2] + f_3 \eta [3];$
{0, 0, 0}	bas = {ff v_1 , ff v_2 , ff v_3 , $u_1^2 w_1$, $u_1^2 w_2$, u_1 , u_2 , u_3 , w_1 , w_2 , w_3 };
$\mathbf{G}_{i_{j},j_{j}}[\mathcal{E}_{j}] := \mathcal{E} / . \mathbf{v}_{j} \Rightarrow (1 - \mathbf{t}_{i}) \mathbf{v}_{i} + \mathbf{t}_{i} \mathbf{v}_{j} \qquad \qquad$	$(bas // TB_{1,2} // TB_{1,3}) - (bas // TB_{1,3} // TB_{1,2}) \dots OC$
Overcrossings Commute (OC)	$(0, -f_0 u_1 u_2 w_3 + t f_0 u_1 u_2 w_3 + f_0 u_1 u_3 w_3 - t f_0 u_1 u_3 w_3)$
$Column@ \{ lhs = \{v_1, v_2, v_3\} // G_{1,2} // G_{1,3}, \}$	$-f_0 u_1 u_2 w_2 + t f_0 u_1 u_2 w_2 + f_0 u_1 u_3 w_2 - t f_0 u_1 u_3 w_2,$
Expand[lhs - ({ v_1 , v_2 , v_3 } // $G_{1,3}$ // $G_{1,2}$)]}	0, 0, 0, 0, 0, 0, 0, 0}
{v ₁ , (1 - t ₁) v ₁ + t ₁ v ₂ , (1 - t ₁) v ₁ + t ₁ v ₃ }	Flower Surgery The-
{0, 0, 0}	orem. A knot is rib-
Undercrossings Commute (UC)	bon iff it is the re-
$Column@ \{lhs = \{v_1, v_2, v_3\} // G_{1,3} // G_{2,3},$	sult of <i>n</i> -petal flower
rhs = { v_1 , v_2 , v_3 } // $G_{2,3}$ // $G_{1,3}$,	surgery (from thin pe-
lhs - rhs // Expand}	tals to wide petals) on
{ v_1 , v_2 , (1 - t_1) v_1 + t_1 ((1 - t_2) v_2 + t_2 v_3)}	an <i>n</i> -componenet un-
$\{v_1, v_2, (1-t_2) v_2 + t_2 ((1-t_1) v_1 + t_1 v_3)\}$	link, for some <i>n</i> .
$\{0, 0, v_1 - c_1 v_1 - c_2 v_1 + c_1 c_2 v_1 - v_2 + c_1 v_2 + c_2 v_2 - c_1 c_2 v_2\}$	References.
Gassner Plus (new?)	[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Inva-
$GF_{i_j,j_j}[\varsigma_j] := Expand[\varsigma_j], \{u_j := (1 - c_j) u_j + c_j u_j,$	riant, BF Theory, and an Ultimate Alexander Invariant, web/KBH, arXiv: 1308 1721
$r_{i} \cdot \mathbf{v}_{j} \Rightarrow r (1 - t_{i}) \cdot \mathbf{v}_{i} + r \cdot t_{i} \cdot \mathbf{v}_{j} + (t_{i} - 1) (t_{i} \cdot \mathbf{o}_{t_{i}} r - t_{j} \cdot \mathbf{o}_{t_{j}} r) \cdot \mathbf{u}_{i} + $	[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Obie-
$[t_i u_i];$	<i>cts I, II, IV</i> , ωεβ/WKO1, ωεβ/WKO2, ωεβ/WKO4, arXiv:1405.1956, arXiv:
$bas = \{f[t_1, t_2, t_3] v_1, f[t_1, t_2, t_3] v_2, f[t_1, t_2, t_3] v_3, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1405.1955, arXiv:1511.05624.
u_1, u_2, u_3 ;	[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky
Short[lhs = bas // $GP_{1,2}$ // $GP_{1,3}$ // $GP_{2,3}$, 2] R3 (left) conjecture, Invent. Math. 125 (1996) 103–133.
{f[t ₁ , t ₂ , t ₃] v ₁ , f[t ₁ , t ₂ , t ₃] t ₁ u ₁ + f[t ₁ , t ₂ , t ₃] v ₁ -	[BIN5] D. Bar-Ivalan and S. Selmani, <i>Meta-Monolas, Meta-Bicrossea Products,</i> and the Alexander Polynomial L of Knot Theory and its Ramifications 22-10
$f[t_1, t_2, t_3] t_1 v_1 + \ll 6 \gg + t_1^2 u_1 f^{(1,0,0)} [t_1, t_2, t_3],$	(2013), arXiv:1302.5689.
$\ll 1 \gg + \ll 19 \gg + \ll 1 \gg$, $\ll 1 \gg$, $u_1 - t_1 u_1 + t_1 u_2$,	[En] B. Enriquez, A Cohomological Construction of Quantization Functors of
$u_1 - t_1 u_1 + t_1 u_2 - t_1 t_2 u_2 + t_1 t_2 u_3$	<i>Lie Bialgebras</i> , Adv. in Math. 197-2 (2005) 430-479, arXiv:math/0212325.
$(bas // GP_{2,3} // GP_{1,3} // GP_{1,2}) - lhs \dots R3$ (rest	[EK] P. Etingof and D. Kazhdan, <i>Quantization of Lie Bialgebras, I</i> , Selecta
{0, 0, 0, 0, 0, 0}	Mathematica 2 (1996) 1–41, arXiv:q-alg/9506005.
$(bas // GP_{1,2} // GP_{1,3}) - (bas // GP_{1,3} // GP_{1,2})$	of classical and virtual knots. Topology 39 (2000) 1045–1068. arXiv:
{0, 0, 0, 0, 0, 0}	math.GT/9810073.
Question Does Gassner Plus factor through Gassner?	[Ha] A. Haviv, Towards a diagrammatic analogue of the Reshetikhin-
Question. Does Gassner i fus factor unough Gassner.	Turaev link invariants, Hebrew University PhD thesis, Sep. 2002, arXiv:
$K\delta_{i_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_$	math.QA/0211031.
$\mathbf{TG}_{i_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_$	[MM] P. M. Melvin and H. K. Morton, <i>The coloured Jones Junction</i> , Commun. Math. Phys. 169 (1995) 501–520
$f_{} : \mathbf{v}_{\underline{k}} \Rightarrow \operatorname{Plus} \left[f \mathbf{v}_{\underline{k}} / : \mathbf{v}_{j} \rightarrow (1 - t_{i}) \mathbf{v}_{i} + t_{i} \mathbf{v}_{j} \right],$	[PV] M. Polyak and O. Viro, <i>Gauss Diagram Formulas for Vassiliev Invariants</i> ,
$(1 - \mathbf{t}_i^{-1}) \left(\mathbf{t}_i \partial_{\mathbf{t}_i} f - \mathbf{t}_j \partial_{\mathbf{t}_i} f \right) *$	Inter. Math. Res. Notices 11 (1994) 445–453.
$(\mathbf{u}_k / . \mathbf{u}_j \rightarrow (1 - \mathbf{t}_i) \mathbf{u}_i + \mathbf{t}_i \mathbf{u}_j) \ast \mathbf{u}_i \mathbf{w}_j,$	[Ro] L. Rozansky, A contribution of the trivial flat connection to the Jones
$K\delta_{k,i}f(\mathbf{u}_j-\mathbf{u}_i)\mathbf{u}_i\mathbf{w}_j],$	polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys.
$u_i \rightarrow (1 - t_i) u_i + t_i u_i,$	175-2 (1996) 275-296, arXiv:hep-th/9401061.
$\mathbf{w}_{i} \rightarrow \mathbf{w}_{i} + (1 - \mathbf{t}_{i}^{-1}) \mathbf{w}_{i}, \ \mathbf{w}_{i} \rightarrow \mathbf{t}_{i}^{-1} \mathbf{w}_{i} \}];$	appear arXiv:1401.6164
bas = { $f[t_1, t_2, t_3] v_1, f[t_1, t_2, t_3] v_2, f[t_1, t_2, t_3] v_3,$	
u ₁ , u ₂ , u ₃ , w ₁ , w ₂ , w ₃ };	"God created the knots, all else in topology is the work of mortals"
Satisfies R3	Lagradd Kranachar (madic - t)
	Leopoid Kronecker (modified) WWW.Katlas.org

Dror Bar-Natan: Talks: NCSU-1604: Work in Progress!

weβ=http://drorbn.net/NCSU-1604/ The (Burau-)Gassner Invariant. Gauss-Gassner Invariants, What?

Abstract. In a "degree d Gauss diagram formula" one produces a number by summing over all possibilities of paying very close attention to d crossings in some n-crossing knot diagram while observing the rest of the diagram only very loosely, minding only its skeleton. The result is always poly-time computable as only $\binom{n}{d}$ states need to be considered. An under-explained paper by Goussarov, Polyak, and Viro [GPV] shows that every type d knot Theorem 1. \exists ! an invariant z: {pure framed S-component invariant has a formula of this kind. Yet only finitely many integer tangles} $\rightarrow \Gamma(S) := M_{S \times S}(R_S)$, where $R_S = \mathbb{Z}((T_a)_{a \in S})$ is invariants can be computed in this manner within any specific the ring of rational functions in S variables, intertwining polynomial time bound.

I suggest to do the same as [GPV], except replacing "the skeleton" with "the Gassner invariant", which is still poly-time. One poly-time invariant that arises in this way is the Alexander polynomial (in itself it is infinitely many numerical invariants) and I believe (and have evidence to support my belief) that there are more.

The QUILT Target. QUick Invariants of Large Tangles, for little

where k is fixed and $F(y, \gamma)$ is a function of a list of arrows y and a square matrix γ of side $|y| + 1 \le k + 1$.

$$\begin{pmatrix} S_1 \\ S_1 \\ A_1 \end{pmatrix}, \begin{array}{c} S_2 \\ S_2 \\ A_2 \end{pmatrix} \xrightarrow{\sqcup} \begin{array}{c} S_1 \\ S_1 \\ S_2 \\ A_1 \\ S_2 \\ A_1 \\ O \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} a \\ B_2 \\ C \\ S_2 \\ A_1 \\ A_1 \\ A_1 \\ A_1 \\ A_1 \\ A_1 \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} Gassner \\ Gassner \\ S_2 \\ C \\ S \\ \phi \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \end{array}$$

$$\begin{array}{c} \begin{array}{c} c \\ S \\ C \\ S \\ \phi \\ A_2 \end{array}$$

$$\begin{array}{c} \end{array}$$

See also [LD, KLW, CT, BNS].

Theorem 2. With
$$k = 1$$
 and F_A defined by

$$F_A(\stackrel{s}{\longrightarrow}, \gamma) = \left. s \frac{\gamma_{22}\gamma_{33} - \gamma_{23}\gamma_{32}}{\gamma_{33} + \gamma_{13}\gamma_{32} - \gamma_{12}\gamma_{33}} \right|_{T_a \to T},$$

$$F_A(\stackrel{s}{\longleftarrow}, \gamma) = \left. s \frac{\gamma_{13}\gamma_{32} - \gamma_{12}\gamma_{33}}{\gamma_{32} - \gamma_{23}\gamma_{32} + \gamma_{22}\gamma_{33}} \right|_{T_a \to T},$$

 $GG_{1,F_4}(K)$ is a regular isotopy invariant. Unfortunately, for every knot K, $GG_{1,F_A}(K) - T\frac{d}{dT}\log A(K)(T) \in \mathbb{Z}$, where A(K) is the Alexander polynomial of K.

Expectation. Higher Gauss-Gassner invariants exist. (though right now I can reach for them only wearing my exoskeleton)

Garoufalidis .. and they are the "higher diagonals" in the MMR expansion of

Jones, Melvin,

the coloured Jones polynomial J_{λ} . Theorem ([BNG], conjectured [MM], elucidated [Ro]). Let $J_d(K)$ be the coloured Jones polynomial of K, in the ddimensional representation of *sl*(2). Writing

$$\frac{(q^{1/2}-q^{-1/2})J_d(K)}{q^{d/2}-q^{-d/2}}\bigg|_{q=e^{\hbar}} = \sum_{j,m\geq 0} a_{jm}(K)d^{j}\hbar^m,$$

diagonal" "below coefficients vanish, $a_{im}(K) = 0$ if j > m, and "on diagonal" coefficients give the inverse of the Alexander polynomial: $\left(\sum_{m=0}^{\infty} a_{mm}(K)\hbar^{m}\right) \cdot A(K)(e^{\hbar}) = 1.$

Help Needed.

Warning. Conventions on this page change randomly from line to line.

 $Z^{w/2}$. The GGA story is about $Z^{w/2}$: $\mathcal{K} \to \mathcal{R}^{w/2}$, defined on arrows *a* by $\pm a \mapsto \exp(\pm a)$:

Where the target space $\mathcal{A}^{w/2}$ is the space of unsigned arrow diagrams modulo

 $(Z^{w/2}$ is a reduction of the much-studied Z^w [BND, BN]).

The Euler Trick. How best do non-commutative algebra with exponentials? Logarithms are from hell as $e^f e^g = e^{\operatorname{bch}(f,g)}$, but Euler's from heaven: Let *E* be the derivation $Ef := (\deg f)f (= xf', \operatorname{in} \mathbb{Q}[[x]])$ and let $\tilde{E}Z := Z^{-1}EZ (= x(\log Z)' \operatorname{in same})$. If deg x = 1 then $\tilde{E}e^x = x$ and if $F = e^f$ and $G = e^g$, then $\tilde{E}(FG)$ is $(FG)^{-1}((EF)G + F(EG)) = G^{-1}(\tilde{E}F)G + \tilde{E}G = e^{-\operatorname{ad} g}(\tilde{E}F) + \tilde{E}G$.

(10) ((21)0+1(20)) = 0 (21)0+20 = 0 (21)+1

Scatter and Glow. Apply \tilde{E} to Z(K). EZ is shown:

Tail scattering. The algebra $\mathbb{Q}[[b_i]]\langle a_{ij}\rangle$ modulo $[a_{ij}, a_{kl}] = 0$ (loc), $[a_{ij}, a_{ik}] =$ 0 (TC), and $[a_{ik}, a_{jk}] = -[a_{ij}, a_{jk}] =$ $b_j a_{ik} - b_i a_{jk}$ (CH and \overrightarrow{AT}), acts on V = $\mathbb{Q}[[b_i]]\langle x_i = a_{i\infty}\rangle$ by $[a_{ij}, x_i] = 0$, $[a_{ij}, x_j] =$ $a_{12}a_{13}a_{42}a_{12}$ $b_i x_j - b_j x_i$. Hence $e^{\operatorname{ad} a_{ij}} x_i = x_i$, $e^{\operatorname{ad} a_{ij}} x_j =$ $e^{b_i} x_j + \frac{b_j}{b_i}(1 - e^{b_i})x_i$. Renaming $\overline{x}_i = x_i/b_i$, $T_i = e^{b_i}$, get $[e^{\operatorname{ad} a_{ij}}]_{\overline{x}_i, \overline{x}_j} = \begin{pmatrix} 1 & 1 - T_i \\ 0 & T_i \end{pmatrix}$. Alternatively, $y_i \begin{pmatrix} y_j \\ x_i \\ x_j \end{pmatrix} = \overline{y}_i = \overline{x}_i$ $\overline{y}_i = (1 - T_i)\overline{x}_i + T_i\overline{x}_j$

Linear Control Theory.

If
$$\begin{pmatrix} y \\ y_n \end{pmatrix} = \begin{pmatrix} \Xi & \phi \\ \theta & \alpha \end{pmatrix} \begin{pmatrix} x \\ x_n \end{pmatrix}$$
, and we further
impose $x_n = y_n$, then $y = Bx$ where $M \longrightarrow M = B$
 $B = \Xi + \frac{\phi \theta}{1 - \alpha}$. This fully explains
the Gassner formulas and the GGA formula!

All that remains now is to replace TC by something more interesting: with $\epsilon^2 = 0$,

$$a_{ij}, a_{ik}] = \epsilon (c_j a_{ik} - c_k a_{ij}).$$

Many further changes are also necessary, and the algebra is a lot more complicated and revolves around "quantization of Lie bialgebras" [EK, En]. But the spirit is right.

References.

- [BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, ωεβ/KBH, arXiv:1308.1721.
- [BND] D. Bar-Natan and Z. Dancso, *Finite Type Invariants of W-Knotted Objects I, II, IV,* $\omega\epsilon\beta$ /WKO1, $\omega\epsilon\beta$ /WKO2, $\omega\epsilon\beta$ /WKO4, arXiv:1405.1956, arXiv:1405.1955, arXiv:1511.05624.
- [BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103– 133.
- [BNS] D. Bar-Natan and S. Selmani, *Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications* 22-10 (2013), arXiv:1302.5689.
- [CT] D. Cimasoni and V. Turaev, A Lagrangian Representation of Tangles, Topology 44 (2005) 747–767, arXiv:math.GT/0406269.
- [En] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430-479, arXiv:math/0212325.
- [EK] P. Etingof and D. Kazhdan, *Quantization of Lie Bialgebras*, *I*, Selecta Mathematica 2 (1996) 1–41, arXiv:q-alg/9506005.
- [GST] R. E. Gompf, M. Scharlemann, and A. Thompson, *Fibered Knots and Potential Counterexamples to the Property* 2R and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305–2347, arXiv:1103.1601.
- [GPV] M. Goussarov, M. Polyak, and O. Viro, *Finite type i-nvariants of classical and virtual knots*, Topology **39** (2000) 1045–1068, arXiv:math.GT/9810073.
- [KLW] P. Kirk, C. Livingston, and Z. Wang, *The Gassner Representation for String Links*, Comm. Cont. Math. 3 (2001) 87–136, arXiv:math/9806035.
- [LD] J. Y. Le Dimet, Enlacements d'Intervalles et Représentation de Gassner, Comment. Math. Helv. 67 (1992) 306–315.
- [MM] P. M. Melvin and H. R. Morton, *The coloured Jones function*, Commun. Math. Phys. 169 (1995) 501–520.
- [PV] M. Polyak and O. Viro, Gauss Diagram Formulas for Vassiliev Invariants, Inter. Math. Res. Notices 11 (1994) 445–453.
- [Ro] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275–296, arXiv:hep-th/9401061.

Dror Bar-Natan: Talks: NCSU-1604: Gauss-Gassner-Alexander Demo

<< KnotTheory

Loading KnotTheory` version of September 6, 2014, 13:37:37.2841. Read more at http://katlas.org/wiki/KnotTheory.

Gauss Diagram Utilities $GD[g_GD] := g;$ $\operatorname{GD}\left[L_{-}\right] := \operatorname{GD} @\operatorname{PD}\left[L\right] /.$ $X[i_{j}, j_{k}, k_{j}] \Rightarrow If[PositiveQ@X[i, j, k, 1]],$ **Ap**_{1,i}, **Am**_{j,i}]; $Draw[g_GD] := Module[\{n = Max@Cases[g, _Integer, \infty]\},\$ Graphics[{ Line[{ $\{0, 0\}, \{n+1, 0\}\}$], List@@g /. $(ah_)_{i_j} \Rightarrow \{$ Arrow[BezierCurve[$\{\{i, 0\}, \{i+j, Abs[j-i]\}/2,$ {j, 0}}]], $Text[ah /. {Ap \rightarrow "+", Am \rightarrow "-"}, {i, 0.3}]$ Table[Text[i, {i, -0.5}], {i, n}]]]

Some Gauss Diagrams Draw /@ GD /@ AllKnots@{3, 5} KnotTheory::loading: Loading precomputed data in PD4Knots'.

Some Gauss Diagrams, 2 GD /@ AllKnots@{3, 5} {GD[Am_{4,1}, Am_{6,3}, Am_{2,5}], GD[Ap_{1,4}, Ap_{5,8}, Am_{3,6}, Am_{7,2}],

```
GD[Am<sub>6,1</sub>, Am<sub>8,3</sub>, Am<sub>10,5</sub>, Am<sub>2,7</sub>, Am<sub>4,9</sub>],
GD[Am<sub>4,1</sub>, Am<sub>8,3</sub>, Am<sub>10,5</sub>, Am<sub>6,9</sub>, Am<sub>2,7</sub>]}
```

```
CF[g GD] := Sort[
   g /. Thread[Sort@Cases[g, _Integer, \infty] \rightarrow
       Range[2 Length[g]]];
PV[F_{GD}, g_{GD}] / ; Length[F] > Length[g] := 0;
PV[F GD, g GD] /; Length[F] < Length[g] := Sum[</pre>
   PV[F, y], \{y, Subsets[g, \{Length[F]\}]\};
PV[F_{GD}, g_{GD}] /; Length[F] == Length[g] := If[
   CF[F] == CF[g / . Ap | Am \rightarrow A], (-1)^{Count[g, Am_{--}]}, 0];
V_2[g_] := V_2[g] = PV[GD[A_{3,1}, A_{2,4}], GD[g]];
```

```
Format[Knot[n_, k_]] := n_k;
Table [K \rightarrow V_2[K], \{K, AllKnots@\{3, 7\}\}]
```

```
\{3_1 \rightarrow 1, 4_1 \rightarrow -1, 5_1 \rightarrow 3, 5_2 \rightarrow 2, 6_1 \rightarrow -2, 6_2 \rightarrow -1, 6_3 \rightarrow 1,
 7_1 \rightarrow 6, 7_2 \rightarrow 3, 7_3 \rightarrow 5, 7_4 \rightarrow 4, 7_5 \rightarrow 4, 7_6 \rightarrow 1, 7_7 \rightarrow -1
```

```
PV[F1_+F2_, g_] := PV[F1, g] + PV[F2, g];
                                                                                        V_3 Definition
PV[c_*F_GD, g_] := c PV[F, g];
\rho_k[g_] := g/. i_Integer \Rightarrow Mod[i-k, 2 Length@g, 1];
\mathbf{F}_{3} = \sum_{k=1}^{2} \left( 3 \rho_{k} @ \operatorname{GD} \left[ \mathbf{A}_{1,5}, \mathbf{A}_{4,2}, \mathbf{A}_{6,3} \right] + 2 \rho_{k} @ \operatorname{GD} \left[ \mathbf{A}_{1,4}, \mathbf{A}_{5,2}, \mathbf{A}_{3,6} \right] \right);
V_3[K_] := V_3[K] = PV[F_3, GD@K] / 6;
```

Loading KnotTheory ' Table $[K \rightarrow V_3[K], \{K, AllKnots@\{3, 7\}\}]$ Computing V_3

 $\{3_1 \rightarrow -1, 4_1 \rightarrow 0, 5_1 \rightarrow -5, 5_2 \rightarrow -3, 6_1 \rightarrow 1, 6_2 \rightarrow 1, 6_3 \rightarrow 0,$ $7_1 \rightarrow -14$, $7_2 \rightarrow -6$, $7_3 \rightarrow 11$, $7_4 \rightarrow 8$, $7_5 \rightarrow -8$, $7_6 \rightarrow -2$, $7_7 \rightarrow -1$ }

Histogram3D[Willerton's Fish Table [{ V_2 [K], V_3 [K] }, {K, AllKnots@{3, 10}}], $\{1\}$

 $\mathsf{G}[\lambda_{_}]_{a_{_},b_{_}} := \partial_{\mathtt{t}_{a},\mathtt{h}_{b}}\lambda;$ Gassner Utilities $G /: Factor[G[\lambda_]] :=$

G[Collect[\lambda, h , Collect[\#, t , Factor] &]]; Format@ γ_G := Module[{S = Union@Cases[γ , (h | t)_a :> a, ∞]}, Table [$\gamma_{a,b}$, {a, S}, {b, S}] // MatrixForm];

 $G /: G[\lambda 1_] G[\lambda 2_] := G[\lambda 1 + \lambda 2];$ The Gassner Program $V_2 \text{ Definition } \mathbf{m}_{a_{,b} \to c_{-}}[\mathbf{G}[\lambda_{-}]] := \text{Module} \Big[\{ \alpha, \beta, \gamma, \delta, \Theta, \epsilon, \phi, \psi, \Xi, \mu \}, \Big]$ $\begin{pmatrix} \alpha & \beta & \Theta \\ \gamma & \delta & \epsilon \\ \phi & \psi & \Xi \end{pmatrix} = \begin{pmatrix} \partial_{t_a, h_a} \lambda & \partial_{t_a, h_b} \lambda & \partial_{t_a} \lambda \\ \partial_{t_b, h_a} \lambda & \partial_{t_b, h_b} \lambda & \partial_{t_b} \lambda \\ \partial_{h_a} \lambda & \partial_{h_b} \lambda & \lambda \end{pmatrix} / . (t \mid h)_{a \mid b} \rightarrow 0;$ $\mu = \mathbf{1} - \beta;$ $\mathbf{G}\left[\mathbf{Tr}\left[\left(\begin{array}{c} \mathbf{t}_{c} \\ \mathbf{1} \end{array}\right)^{\mathsf{T}} \cdot \left(\begin{array}{c} \gamma + \alpha \, \delta \, / \, \mu & \epsilon + \delta \, \Theta \, / \, \mu \\ \phi + \alpha \, \psi \, / \, \mu & \Xi + \psi \, \Theta \, / \, \mu \end{array}\right) \cdot \left(\begin{array}{c} \mathbf{h}_{c} \\ \mathbf{1} \end{array}\right)\right]\right] \ / \cdot \ \mathbf{T}_{a \mid b} \rightarrow \mathbf{T}_{c} \ / / a \mid b \rightarrow \mathbf{T}_{c} \ / a \mid b \rightarrow \mathbf{T}_{c} \ / / a \mid b \rightarrow \mathbf{T}_{c} \ / a$ Factor ; $\mathbf{Rp}_{a_{_},b_{_}} := \mathbf{G} \left[\mathbf{Tr} \left[\left(\begin{array}{c} \mathbf{t}_{a} \\ \mathbf{t}_{b} \end{array} \right)^{\mathsf{T}} \cdot \left(\begin{array}{c} \mathbf{1} & \mathbf{1} - \mathbf{T}_{a} \\ \mathbf{0} & \mathbf{T}_{a} \end{array} \right) \cdot \left(\begin{array}{c} \mathbf{h}_{a} \\ \mathbf{h}_{b} \end{array} \right) \right] \right];$ $\operatorname{Rm}_{a_{,b_{-}}} := \operatorname{Rp}_{a,b} / . T_a \rightarrow 1 / T_a;$

> The Gauss-Gassner-Program $GG[g_GD, k_, F_, BB_] :=$ Module [{n = 2 Length@g + Length@BB, y, cuts, rr, $\gamma 0$, γ }, $\gamma 0 = G[t_{n+1} h_{n+1}]$ Times @@ $q / . \{Ap \rightarrow Rp, Am \rightarrow Rm\};$ $\gamma 0 = G[Sum[\beta_{a,b} t_a h_b, \{a, BB\}, \{b, BB\}]];$ Sum [$\gamma = \gamma 0$; cuts = Cases[y, _Integer, ∞] $\bigcup \{n + 1\};$ rr = Thread[cuts → Range[Length@cuts]]; Do[If[!MemberQ[cuts, j], $\gamma = \gamma / / m_{j,j+1 \rightarrow j+1}$], {j, n}]; $F[y /. rr, \gamma /. (v_a \Rightarrow v_{a/.rr}],$ (*over*) {y, Subsets[List@@g, k]}]; $GG[g_GD, k_, F_] := GG[g, k, F, {}];$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/NCSU-1604/

Computing V_2

 $\{3_1 \rightarrow -1, 4_1 \rightarrow 1, 5_1 \rightarrow -2, 5_2 \rightarrow -2, 6_1 \rightarrow 0, 6_2 \rightarrow 0, 6_3 \rightarrow 0,$ $7_1 \rightarrow -3$, $7_2 \rightarrow -3$, $7_3 \rightarrow 4$, $7_4 \rightarrow 4$, $7_5 \rightarrow -3$, $7_6 \rightarrow -1$, $7_7 \rightarrow 2$ }

0

$\texttt{GG[GD@Knot[4, 1], \{1, 2\}, F] /. F[y_List, \gamma_G] \Rightarrow F[\texttt{Column@y, }]}$ Example: Degree 2 Gauss-Gassner for 41 $-\frac{-1+T_2-T_1}{T_2} \frac{T_2+T_3-T_1}{T_3} \frac{T_3-T_2}{T_3} \frac{T_3+T_1}{T_2} \frac{T_2}{T_3} \frac{(-1+T_1)}{T_2} \frac{(1-T_2+T_1)}{T_2} \frac{(-1+T_3)}{T_2} \frac{(-1+T_1)}{T_2} \frac{(-1+T_1)}{T_2} \frac{(-1+T_1)}{T_2} \frac{(-1+T_2)}{T_2} \frac{(-1+T_1)}{T_2} \frac{(-1+T_2)}{T_2} \frac{$ т1 т3 - (-1+T₂) (-1+T₃)] + F Am1,2 , $-\frac{T_1 T_3}{T_2 (-1+T_3)}$ $\begin{array}{c} \hline & & \\ & &$ T_2 Τz $\begin{bmatrix} \frac{1}{T_2} & \frac{-1+T_1}{-T_1-T_2+T_1T_2} & -\frac{(-1+T_1)(-1+T_2)^2}{T_2(-T_1-T_2+T_1T_2)} \\ \frac{-1+T_2}{T_2} & \frac{1-2T_2T_1-T_2+T_1T_2}{-T_1-T_2+T_1T_2} & -\frac{(-1+T_2)(-1+T_1+T_2-T_1T_2-T_1T_2-T_2+T_1T_2)}{T_2(-T_1-T_2+T_1T_2)} \\ 0 & 0 & \pi. \end{bmatrix} \Big] + F \Big[\begin{array}{c} Ap_{1,2} \\ , \end{array} \Big]$ $\left. \left. F \left[\begin{array}{c} Ap_{1,2} \ , \ \left(\begin{array}{c} -\frac{1-2 \ T_1 - T_2 + T_1 \ T_2}{-1 + T_1 + T_2} & \frac{(-1+T_1)^2 \ (-1+T_2)}{-1 + T_1 + T_2} & 0 \\ \frac{T_1 \ (-1+T_2)}{-1 - T_1 + T_2} & -\frac{T_1 \ (1-T_1 - Z \ T_2 + T_1 \ T_2)}{-1 - T_1 + T_2 - T_2} & 0 \end{array} \right] \right] + \right.$ $-1 + T_1 + T_2$ $-1 + T_1 + T_7$ $\left(\begin{array}{c} \frac{1}{T_4} & 0 \end{array}\right)$ $0 - \frac{(-1+T_1)(-1+T_2)}{-} 0$ 0 0 (1 T₄ T2 $\left(1 \frac{(-1+T_1)(1-2T_2-T_3+T_2T_3)}{-(-1+T_1)(-1+T_2)}\right)$ $\frac{T_1}{T_4}$ 0 $\frac{T_1(-1+T_2)}{T_2}$ $\begin{array}{ccc} \frac{T_1 \ (-1+T_2)}{T_2} & 0 & - \frac{(-1+T_2) \ (-1+T_3)}{T_2} \\ \frac{T_1}{T_2} & 0 & - \frac{-1+T_3}{T_2} \end{array}$ 0 1 $\frac{-1+T_2+T_3}{-1+T_2+T_3} = \frac{T_1 (1-2 T_2-T_3+T_2 T_3)}{-1+T_2-T_3+T_2 T_3}$ $\frac{1+T_1(-1+T_2)}{-1+T_2+T_3}$ $\frac{T_1(-1+T_2)}{-1+T_2+T_3}$ 0 0 $\frac{T_1(-1+T_2)}{T_2}$ $\frac{T_1}{T_2}$ $\left] + F \left[\begin{array}{c} Am_{2,3} \\ Am_{4,1} \end{array} \right],$ T2 ______ $\left] + F \left[\begin{array}{c} Ap_{1,2} \\ Ap_{3,4} \end{array} \right] + \left[\begin{array}{c} 0 & -\frac{T_4}{T_4} \\ 0 & -\frac{(-1+T_3)(-1+T_4)}{T_4} \end{array} \right] \right]$ 0 F Ap_{1,2}, 0 0 0 -1+T2+T3 T₂ T_2 $\frac{T_2 (-1+T_3)}{-1+T_2+T_3}$ $\frac{T_3}{-1+T_2+T_3}$ $\begin{array}{cccc} \frac{-1+T_4}{T_4} & 0 & -\frac{(-1+T_1)(-1+T_4)}{T_4} & 1 & 0 \\ 0 & 0 & 0 & 0 & T_3 \end{array}$ 0 $T_3(-1+T_4)$ T3 T2 0 0 0 1 10 0 Ο 0 $\begin{pmatrix} 1 & 0 & 1 - T_1 & 0 & 0 \\ 0 & -\frac{-1 + T_4 - T_2 T_4 + T_5 - T_4 T_5 - T_4 T_5 - T_4 T_5}{T_2 T_5 - T_4 T_5 - T_4 T_5} & 0 & \frac{-1 + T_2}{T_2} & -\frac{(-1 + T_2) (-1 + T_4)}{T_2} \\ 0 & 0 & T_1 & 0 & 0 \\ & & - \cdot \cdot \cdot \cdot \cdot T_{-1} & 0 & \frac{1}{T_2} & -\frac{-1 + T_4}{T_2} \end{pmatrix}$ Τz $\left] + F \left[\begin{array}{c} Ap_{1,3} \\ Am_{4,2} \end{array} \right] + \left[\begin{array}{c} 0 \\ 0 \\ -1+T_4 \end{array} \right] \right]$ $F\begin{bmatrix}Ap_{1,3}\\Am_{2,4}\end{bmatrix}$ $-\frac{T_1(-1+T_3)(-1+T_4)}{\pi}$ + $T_1(-1+T_3)$ T_1 $-\frac{-1+T_4}{T_2}$ T₃ <u>1</u> T₃ $\frac{1}{T_2}$ $\frac{{}^{T_2 T_5}}{{}^{T_4 (-1+T_5)}}{{}^{T_5}}$ $0 \frac{-1+T_{4}}{2}$ $-\frac{-1+T_4}{2}$ 0 T_4 0 0 0 т₄ 0 тз T_4 0 0 0 $-\frac{-1+T_1}{-1}$ $\frac{-1+T_1}{2}$ 0 0 $-\frac{-1+T_{1}}{2}$ - $(-1+T_1)$ $(-1+T_2)$ $\begin{pmatrix} \frac{1}{T_3} \end{pmatrix}$ 0 0 TA т1 Тз T2 T3 $-\frac{(-1+T_2)(-1+T_4)}{(-1+T_4)} - \frac{-1+T_1+T_2-T_1}{T_2+T_4} - \frac{T_2}{T_4} + \frac{T_1}{T_2} - \frac{T_4}{T_4} - \frac{T_4}{T$ Tı 0 1 - T₂ 0 $\frac{T_1(-1+T_2)}{T_1(-1+T_2)}$ $\begin{vmatrix} -\mathbf{1}_{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{vmatrix} + \mathbf{F} \begin{bmatrix} \mathbf{A}\mathbf{p}_{2,4} \\ \mathbf{A}\mathbf{m}_{3,1} \end{vmatrix}$ 0 1 - T₂ 0 т₄ т₄ 0 0 $F\left[{\begin{array}{*{20}c} Ap_{2,4} \\ Am_{1,3} \end{array} , } \right.$ Т2 1 $\frac{-1+T_3}{-} - \frac{(-1+T_1)(-1+T_3)}{-} - \frac{-1+T_1+T_2-T_1T_2-T_1T_3-T_2T_3+T_1T_2T_3}{-} 0 0$ T1 T₃ 0 0 T₃ T₂ T₃ 0 $T_2 (-1+T_4)$ $- \frac{(-1+T_1) T_2 (-1+T_4)}{(-1+T_4)}$ 0 T₂ 0 T₂ 0 T₄ т₄ О 0

Video and more at http://www.math.toronto.edu/~drorbn/Talks/NCSU-1604/

1

0

0

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Leiden-1601/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-1511/

Dror Bar-Natan: Talks: Cornell-150925: $\omega := http://drorbn.net/C15$

Abstract. Much as we can understand 3-dimensional objects by staring at their pictures and x-ray images and slices in 2dimensions, so can we understand 4-dimensional objects by staring at their pictures and x-ray images and slices in 3dimensions, capitalizing on the fact that we understand 3dimensions pretty well. So we will spend some time staring at and understanding various 2-dimensional views of a 3dimensional elephant, and then even more simply, various 2dimensional views of some 3-dimensional knots. This achieved, we'll take the leap and visualize some 4-dimensional knots by their various traces in 3-dimensional space, and if we'll still have time, we'll prove that these knots are really knotted.

Warmup: Flatlanders View an Elephant.

Knots / 4D Knots. Formally, "a differentiable embedding of S^2 in \mathbb{R}^4 modulo differentiable deformations of such".

A 4D knot by Carter and Saito ω/CS

"broken surface diagram"

such 3-colourings that *K* has. **Example.** $\lambda(\bigcirc) = 3$ while $\lambda(\oslash) = 9$; so $\bigcirc \neq \oslash$.

Riddle. Is $\lambda(K)$ always a power of 3?

Proof sketch. It is enough to show that for each Reidemeister move, there is an end-colours-preserving bijection between the colourings of the two sides. E.g.:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cornell-150925/. Similar talks at .../CUMC-1307/, .../CUMC-1307/

Knots in Three and Four Dimensions, 2

A Stronger Invariant. There is an assignment of groups to knots / 2-knots as follows. Put an arrow "under" every un-broken curve / surface in a broken curve / surface diagram and label it with the name of a group generator. Then mod out by relations as below.

Facts. The resulting "Fundamental group" $\pi_1(K)$ of a knot / 2knot *K* is a very strong but not very computable invariant of *K*. Though it has computable projections; e.g., for any finite *G*, count the homomorphisms from $\pi_1(K)$ to *G*.

Exercise. Show that $|\operatorname{Hom}(\pi_1(K) \to S_3)| = \lambda(K) + 3$.

Satoh's Conjecture. (Satoh, Virtual Knot Presentations of

 \longrightarrow "simple long knotted 2D tube in 4D"

Ribbon Torus-Knots, J. Knot Theory and its Ramifications **9** (2000) 531–542). Two long wknot diagrams represent via the map δ the same simple long 2D knotted tube in 4D iff they differ

by a sequence of R-moves as above and the "w-moves" VR1–

Some knot theory books.

- Colin C. Adams, *The Knot Book, an Elementary Introduction to the Mathematical Theory of Knots,* American Mathematical Society, 2004.
- Meike Akveld and Andrew Jobbings, *Knots Unravelled, from Strings to Mathematics*, Arbelos 2011.

• J. Scott Carter and Masahico Saito, *Knotted Surfaces and Their Diagrams*, American Mathematical Society, 1997.

• Peter Cromwell, *Knots and Links*, Cambridge University Press, 2004.

• W.B. Raymond Lickorish, An Introduction to Knot Theory, Springer 1997.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cornell-150925/. Similar talks at .../CUMC-1307/, .../CUMC-1307/

(Compare [BNS, BN]) A The Abstract Context injections) \rightarrow (sets) (think "M(S) is quantum G^S ", for G a group)

along with natural operations $*: M(S_1) \times M(S_2) \rightarrow M(S_1 \sqcup S_2)$ whenever $S_1 \cap S_2 = \emptyset$ and $m_c^{ab} \colon M(S) \to M((S \setminus \{a, b\}) \sqcup \{c\})$ whenever $a \neq b \in S$ and $c \notin S \setminus \{a, b\}$, such that

meta-associativity:
$$m_a^{ab}/\!/m_a^{ac} = m_b^{bc}/\!/m_a^{ab}$$

meta-locality: $m_c^{ab}/\!/m_f^{de} = m_f^{de}/\!/m_c^{ab}$

and, with $\epsilon_b = M(S \hookrightarrow S \sqcup \{b\})$,

neta-unit:
$$\epsilon_b / m_a^{ab} = Id = \epsilon_b / m_a^{ba}$$
.

Claim. Pure virtual tangles *P*/*T* form a meta-monoid.

Theorem. $S \mapsto \Gamma_0(S)$ is a meta-monoid and $z_0 \colon P \mathcal{T} \to \Gamma_0$ is a morphism of meta-monoids.

Strong Conviction. There exists an extension of Γ_0 to a bigger meta-monoid $\Gamma_{01}(S) = \Gamma_0(S) \times \Gamma_1(S)$, along with an extension of z_0 to $z_{01}: P V T \to \Gamma_{01}$, with

$$\Gamma_1(S) = V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus S^2(V)^{\otimes 2} \qquad (\text{with } V \coloneqq R_S \langle S \rangle).$$

Furthermore, upon reducing to a single variable everything is polynomial size and polynomial time.

Furthermore, Γ_{01} is given using a "meta-2-cocycle ρ_c^{ab} over Γ_0 ": In addition to $m_c^{ab} \rightarrow m_{0c}^{ab}$, there are R_S -linear m_{1c}^{ab} : $\Gamma_1(S \sqcup$ $\{a, b\}$) $\rightarrow \Gamma_1(S \sqcup \{c\})$, a meta-right-action $\alpha^{ab} \colon \Gamma_1(S) \times \Gamma_0(S) \rightarrow$ $\Gamma_1(S)$ R_S -linear in the first variable, and a first order differential operator (over R_S) ρ_c^{ab} : $\Gamma_0(S \sqcup \{a, b\}) \to \Gamma_1(S \sqcup \{c\})$ such that

$$(\zeta_0,\zeta_1)/\!\!/m_c^{ab} = \left(\zeta_0/\!\!/m_{0c}^{ab},(\zeta_1,\zeta_0)/\!\!/\alpha^{ab}/\!\!/m_{1c}^{ab} + \zeta_0/\!\!/\rho_c^{ab}\right)$$

What's done? The braid part, with still-ugly formulas.

What's missing? A lot of concept- and detail-sensitive work towards m_{1c}^{ab} , α^{ab} , and ρ_c^{ab} . The "ribbon element".

a ribbon singularity

a clasp singularity A bit about ribbon knots. A "ribbon knot" is a knot that can be

 $S^3 = \partial B^4$ which is the boundary of a non-singular disk in B^4 . Every ribbon knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon.

Fox-Milnor. The Alexander polynomial of a ribbon knot is always of the form A(t) = f(t)f(1/t). (also for slice)

PolyPoly Extras

Monday, August 24, 2015 3:10 AM

Dror Bar-Natan, Les Diablerets, August 2015 http://drorbn.net/LD

+ (Also IHX) (Jacobi) Proposition The $1 - \mathbf{v} = \mathbf{v}$ element Rij given below solves the YR PAV(X=0)=Jacobi equation PAN = PAV/100 Ø[6:] $R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$ $PA^{\mathcal{W}}(1_{s})/(\mathcal{V} = \mathcal{V} - \mathcal{V}) = \widehat{R}_{s} \oplus \mathcal{M}_{sxs}(\widehat{R}_{s})$ in A/20/2D: $R_{jk} = \ell^{j-k} \ell^{\beta}, with$ and the rest is (hard) calculations, which had to a simple rational function result. $p = -p_2(b_i)$ $PA^{\vee}(1, -0) =$ 1-(0 $+ \frac{p_2(h_i)}{h_i} \xrightarrow{c \to c}$ $+ \frac{\phi_1(b_3)\phi_2(b_k)}{b_k\phi_1(b_k)} \Big|_{J} \left(\sum_{k=1}^{k} \right)^{k}$ So with bi= Cj:= (f:= $-\frac{\varphi_2(bj)}{L^2}$ (PA/2,Co)/2D C $-\frac{p_{l}(b_{j})p_{2}(b_{k})}{b_{j}b_{k}\phi_{l}(b_{k})}\int^{\lambda}$ $\hat{R}_{s} \oplus M_{s \star s}(\hat{R}_{s}) \oplus \hat{R}_{s} \oplus \hat{F} \oplus \hat{F} \hat{R}_{s} \oplus \hat{F} \hat{R}_{s} \oplus \hat{F} \oplus \hat{R}_{s} \oplus \hat{F} \oplus \hat{F} \oplus$ $= V_{s} + V_{s}^{\otimes 2} + V_{s} + V_{s}^{\otimes 2} + V_{s}^{\otimes 3} + (S^{2}(V_{s}))^{\otimes 2}$ Where \$1(x)=e-1 [The product law is awful, but experience and $p_2(x) = (x+2)e^{-x} - 2+x$ shows that things simplify ----Stitching is chearly possible, but I still don't have explicit formulas.

2015-08 Page 1

Loading, initializing variables, setting default degree to 6.

(The Mathematica packages FreeLie ' and AwCalculus ' are at ωεβ/WKO4).
path = "C:/drorbn/AcademicPensieve/";
SetDirectory[path <> "2015-08/LesDiablerets-1508"];
Get[path <> "Projects/WKO4/FreeLie.m"];
Get[path <> "Projects/WKO4/AwCalculus.m"];
x = Lw@ "x"; y = Lw@ "y"; u = Lw@ "u";

\$SeriesShowDegree = 6;

FreeLie` implements / extends

{*, +, **, \$SeriesShowDegree, ⟨⟩, ∫, ≡, ad, Ad, adSeries, AllCyclicWords, AllLyndonWords, AllWords, Arbitrator, ASeries, AW, b, BCH, BooleanSequence, BracketForm, BS, CC, Crop, cw, CW, CWS, CWSeries, D, Deg, DegreeScale, DerivationSeries, div, DK, DKS, DKSeries, EulerE, Exp, Inverse, j, J, JA, LieDerivation, LieMorphism, LieSeries, LS, LW, LyndonFactorization, Morphism, New, RandomCWSeries, Randomizer, RandomLieSeries, RC, SeriesSolve, Support, t, tb, TopBracketForm, tr, UndeterminedCoefficients, αMap, Γ, L, Λ, σ, h, --, -}.

FreeLie` is in the public domain. Dror Bar-Natan is committed to support it within reason until July 15, 2022. This is version 150814.

AwCalculus` implements / extends

{*, **, =, dA, dc, deg, dm, dS, d Λ , d η , d σ , El, Es, hA, hm, hS, h Λ , h η , h σ , RandomElSeries, RandomEsSeries, tA, tha, tm, tS, t Λ , t η , t σ , Γ , Λ }.

AwCalculus` is in the public domain. Dror Bar-Natan is committed to support it within reason until July 15, 2022. This is version 150814.

BCH[x, y] (* Can raise degree to 22 *)

 $\{ F = LS[\{x, y\}, Fs], G = LS[\{x, y\}, Gs]\}; Fs["y"] = 1/2; \\ SeriesSolve \Big[\{F, G\},$

$$\begin{split} \hbar^{-1} \left(\text{LS}[\mathbf{x} + \mathbf{y}] - \text{BCH}[\mathbf{y}, \mathbf{x}] &\equiv \mathbf{F} - \mathbf{G} - \text{Ad}[-\mathbf{x}][\mathbf{F}] + \text{Ad}[\mathbf{y}][\mathbf{G}] \right) \\ \text{div}_{\mathbf{x}}[\mathbf{F}] + \text{div}_{\mathbf{y}}[\mathbf{G}] &\equiv \\ \frac{1}{2} \text{tr}_{\mathbf{u}} \left[\text{adSeries} \left[\frac{\text{ad}}{e^{\text{ad}_{-1}}}, \mathbf{x} \right] [\mathbf{u}] + \text{adSeries} \left[\frac{\text{ad}}{e^{\text{ad}_{-1}}}, \mathbf{y} \right] [\mathbf{u}] - \\ \text{adSeries} \left[\frac{\text{ad}}{e^{\text{ad}_{-1}}}, \text{ BCH}[\mathbf{x}, \mathbf{y}] \right] [\mathbf{u}] \right] \right]; \end{split}$$

 $\{F\,,\,G\}$ (* Can raise degree to 13 *)

$\{b[F, G], tr_x[F]\}$

$$\left\{ LS \left[0, 0, -\frac{1}{24} \overline{xyy}, -\frac{1}{48} \overline{xyy} y, \frac{1}{720} \overline{xx\overline{xyy}} - \frac{1}{240} \overline{x\overline{xyy}} y - \frac{1}{240} \overline{x\overline{xyy}} - \frac{1}{240} \overline{x\overline{xy}} - \frac{1}{240} \overline{x\overline{$$

(Also implemented: ∂_{λ} and derivations in general, tb, $e^{\partial_{\lambda}}$ and morphisms in general, div, j, Drinfel'd-Kohno, etc.)

The [BND] "vertex" equations.

Meaningless calculations.

$$\begin{array}{c|c} & & & \\ & & & \\ x & y & z & x \\ x & y & z \\ x & y & z \\ x & y & x \\ y & x & y \\ x & y & x \\ y & y \\ x & y & y \\ x & y$$

 $\alpha = \operatorname{LS}[\{\mathbf{x}, \mathbf{y}\}, \alpha \mathbf{s}]; \beta = \operatorname{LS}[\{\mathbf{x}, \mathbf{y}\}, \beta \mathbf{s}];$

 $\gamma = CWS[{x, y}, \gamma s];$

 $\mathbf{V} = \mathbf{Es} \left[\left\langle \mathbf{x} \rightarrow \alpha, \ \mathbf{y} \rightarrow \beta \right\rangle, \ \mathbf{y} \right];$

 $\kappa = CWS[\{x\}, \kappa s]; Cap = Es[\langle x \rightarrow LS[0] \rangle, \kappa];$

 $\texttt{Rs}[\texttt{a}_,\texttt{b}_\texttt{]} := \texttt{Es}[\langle\texttt{a} \rightarrow \texttt{LS}[\texttt{0}], \texttt{b} \rightarrow \texttt{LS}[\texttt{LW@a}]\rangle, \texttt{CWS}[\texttt{0}]];$

 $\label{eq:R4Eqn} = V \star \star (Rs[x, z] // d\Delta[x, x, y]) \equiv Rs[y, z] \star \star Rs[x, z] \star \star V;$ UnitarityEqn =

 $(V \star \star (V // dA) \equiv Es[\langle x \rightarrow LS[0], y \rightarrow LS[0] \rangle, CWS[0]]);$

CapEqn = $((V ** (Cap // d\Delta[x, x, y]) // dc[x] // dc[y]) \equiv (Cap (Cap // d\sigma[x, y]) // dc[x] // dc[y]));$

βs["x"] = 1/2; βs["y"] = 0;

SeriesSolve[$\{\alpha, \beta, \gamma, \kappa\}$,

 $(\hbar^{-1} \operatorname{R4Eqn}) \bigwedge \operatorname{UnitarityEqn} \bigwedge \operatorname{CapEqn}];$

```
{V, κ}
```

SeriesSolve::ArbitrarilySetting : In degree 1 arbitrarily setting { $\kappa_s[x] \rightarrow 0$ }. SeriesSolve::ArbitrarilySetting : In degree 3 arbitrarily setting { $\alpha_s[x, y, y] \rightarrow 0$ }. SeriesSolve::ArbitrarilySetting : In degree 5 arbitrarily setting { $\alpha_s[x, x, x, y, y] \rightarrow 0$ }. General::stop :

Further output of SeriesSolve::ArbitrarilySetting will be suppressed during this calculation. >>

$$\left\{ Es \left[\left\langle \overline{\mathbf{x}} \rightarrow LS \left[0, -\frac{\overline{\mathbf{x}}\overline{\mathbf{y}}}{24}, 0, \frac{7}{2} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{y}}}{5760} - \frac{7}{2} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{y}} \right] + \frac{\overline{\mathbf{x}}\overline{\mathbf{y}} \overline{\mathbf{y}}}{967680} + \frac{31}{2} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{y}} \overline{\mathbf{y}}}{967680} + \frac{31}{2} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{y}} \overline{\mathbf{y}}}{967680} + \frac{31}{2} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{y}} \overline{\mathbf{y}}}{967680} - \frac{31}{25} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{y}} \overline{\mathbf{y}} \overline{\mathbf{y}}}{725760} - \frac{31}{25} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{y}} \overline{\mathbf{y}}}{645120} + \frac{13}{2} \overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{y}} \overline{\mathbf{y}} \overline{\mathbf{y}} + \frac{101}{1851520} + \frac{527}{5806080} - \frac{\overline{\mathbf{x}} \overline{\mathbf{x}} \overline{\mathbf{y}} \overline{\mathbf{y}} \overline{\mathbf{y}} \overline{\mathbf{y}}}{645120} + \frac{1}{241920} \right\} \right\}$$

From V to F to KV following [AT].

$$\begin{split} \log F &= \Lambda[V] [[1]] // d\sigma[\{x, y\} \rightarrow \{y, x\}]; \\ \log F // EulerE // adSeries \left[\frac{e^{ad}-1}{ad}, \log F, tb\right] \end{split}$$

$$\begin{split} &\left\langle \overline{\mathbf{x}} \rightarrow \mathrm{LS} \left[\frac{\overline{\mathbf{y}}}{2}, \frac{\overline{\mathbf{x}}\overline{\mathbf{y}}}{6}, \frac{1}{24} \overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}}, -\frac{1}{180} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}} + \frac{1}{80} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{360} \overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}}\overline{\mathbf{y}}, \right. \\ &\left. -\frac{1}{720} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{240} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{240} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{120} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}^{'}\overline{\mathbf{x}}\overline{\mathbf{y}} - \frac{1}{1240} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{120} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}^{'}\overline{\mathbf{x}}\overline{\mathbf{y}} + \frac{1}{120} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}^{'}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{1240} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{120} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{120} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{120} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{180} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} \right], \\ &\left. \overline{\mathbf{y}} \rightarrow \mathrm{LS} \left[0, \frac{\overline{\mathbf{x}}\overline{\mathbf{y}}}{12}, \frac{1}{24} \overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}}, -\frac{1}{360} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}^{'} + \frac{1}{120} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{180} \overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} \right], \\ &\left. -\frac{1}{720} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{240} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{240} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{240} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{240} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} \right], \\ &\left. -\frac{1}{120} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{240} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{240} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} \right], \\ &\left. -\frac{1}{\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{240} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}} \right], \\ &\left. -\frac{1}{120} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{y}} + \frac{1}{120} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}\overline{\mathbf{x}} \right], \\ &\left. -\frac{1}{\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}} \right], \\ &\left. -\frac{1}{\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}} \right], \\ &\left. -\frac{1}{\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}}} \right], \\ &\left. -\frac{1}{20} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{y}} \right], \\ &\left. -\frac{1}{20} \overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}} \right], \\ &\left. -\frac{1}{\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}\overline{\mathbf{x}}} \right], \\ &\left. -\frac{1}{\overline{\mathbf{x}}\overline{\mathbf{x}}$$

 $\Phi s[2, 1] = \Phi s[3, 1] = \Phi s[3, 2] = 0;$ Solving for an associator Φ . $\Phi s[3, 1, 2] = 1/24; \Phi = DKS[3, \Phi s];$

SeriesSolve $[\Phi,$

- $\begin{array}{l} \left(\Phi^{\sigma[3,2,1]} \equiv -\Phi \right) \\ \left(\Phi^{\star \star} \Phi^{\sigma[1,23,4]} \star^{\star} \Phi^{\sigma[2,3,4]} \equiv \Phi^{\sigma[12,3,4]} \star^{\star} \Phi^{\sigma[1,2,34]} \right) \right]; \end{array}$
- Φ (* Can raise degree to 10 *)

 $\label{eq:solve::ArbitrarilySetting: In degree 3 arbitrarily setting {Φ(3, 1, 1, 2] \rightarrow 0}$. SeriesSolve::ArbitrarilySetting : In degree 5 arbitrarily setting {Φ(3, 1, 1, 1, 1, 2] \rightarrow 0}$. }$

$$DKS \left[0, \frac{1}{24} \overline{t_{13} t_{23}}, 0, -\frac{7 \overline{t_{13} t_{23} t_{23} t_{23}}}{5760} + \frac{7 \overline{t_{13} t_{13} t_{23} t_{23}}}{5760} - \frac{\overline{t_{13} t_{13} t_{13} t_{23} t_{23}}}{1440} \right]$$

$$0, \frac{31 \overline{t_{13} t_{23} t_{23} t_{23} t_{23} t_{23}}}{967680} - \frac{157 \overline{t_{13} t_{13} t_{23} t_{23} t_{23} t_{13} t_{23}}}{1935360} - \frac{31 \overline{t_{13} t_{23} t_{23} t_{23} t_{23} t_{23} t_{23} t_{23} t_{23} t_{23}}}{387072} + \frac{31 \overline{t_{13} t_{13} t_{23} t_$$

The "buckle" Z_B , from Φ . R = DKS[t[1, 2] / 2]; $Z_B = (-\Phi)^{\sigma[13,2,4]} ** \Phi^{\sigma[1,3,2]} ** R^{\sigma[2,3]} ** (-\Phi)^{\sigma[1,2,3]} ** \Phi^{\sigma[12,3,4]};$

$$Z_B @ \{4\}$$

$$DKS\left[\frac{\overline{t_{23}}}{2}, -\frac{1}{12}\overline{t_{13}t_{23}} - \frac{1}{24}\overline{t_{14}t_{24}} + \frac{1}{24}\overline{t_{14}t_{34}} + \frac{1}{12}\overline{t_{24}t_{34}}, \\ 0, \overline{\frac{t_{13}t_{23}t_{23}t_{23}}{5760}} + \frac{7\overline{t_{14}t_{24}t_{24}t_{24}}{5760} + \frac{t_{14}t_{34}t_{24}t_{24}}{1920} - \frac{1}{1920} \\ \overline{\frac{t_{14}t_{34}t_{34}t_{24}}{1920}} - \frac{7\overline{t_{14}t_{34}t_{34}t_{34}}{5760} - \frac{t_{24}t_{34}t_{34}t_{34}}{1920} + \frac{t_{14}t_{24}t_{34}t_{24}}{1920} + \frac{t_{14}t_{34}t_{24}t_{24}}{1920} + \frac{1}{1920}\overline{t_{13}t_{13}t_{23}} + \frac{t_{14}t_{34}t_{24}t_{34}}{1920} + \frac{t_{14}t_{34}t_{24}t_{34}}{1920} - \frac{t_{14}t_{34}t_{24}t_{24}}{1920} + \frac{1}{720}\overline{t_{13}t_{13}t_{23}} + \frac{1}{720}\overline{t_{13}t_{13}t_{23}} + \frac{1}{720}\overline{t_{13}t_{13}t_{23}} + \frac{1}{5760}\overline{t_{14}t_{14}t_{14}t_{24}} - \frac{1}{5760}\overline{t_{14}t_{14}t_{24}t_{34}} + \frac{t_{14}t_{14}t_{14}t_{24}}{1440} - \frac{t_{14}t_{14}t_{14}t_{14}t_{34}}{1440} - \frac{1}{960}\overline{t_{14}t_{14}t_{24}t_{34}} + \frac{t_{14}t_{14}t_{24}t_{34}}{5760}, \ldots\right]$$

V from Z_B , following [AET, BND].

$$\left\langle 1 \rightarrow \mathrm{LS} \left[0, -\frac{12}{24}, 0, \frac{71112}{5760} - \frac{71122}{5760} + \frac{1222}{1440} \right], 0, \\ -\frac{31111112}{967680} + \frac{31111122}{483840} - \frac{83111222}{967680} - \frac{3111212}{725760} - \frac{31111212}{645120} + \frac{1111212}{645120} + \frac{1111222}{1415222} \right] \\ \frac{13112222}{241920} + \frac{101121222}{1451520} + \frac{527112212}{5806080} - \frac{122222}{60480}, \dots \right], \\ 2 \rightarrow \mathrm{LS} \left[\frac{1}{2}, -\frac{12}{12}, 0, \frac{1112}{5760} - \frac{1}{720} 1 122 + \frac{1}{720} 122 2, \\ -\frac{111122}{7680} + \frac{11122}{3840} - \frac{11212}{6912}, \\ -\frac{111112}{645120} + \frac{23111122}{6912} - \frac{13111222}{6912}, \\ -\frac{111122}{645120} + \frac{2311112}{483840} - \frac{13111222}{161280} - \frac{112222}{22680} - \frac{41111212}{580608} + \frac{112222}{580608} + \frac{112222}{580608} + \frac{1122222}{580608} + \frac{112$$

The Borromean tangle.

 $\begin{aligned} &Rs[a_{, b_{]}} := Es[\langle a \to LS[0], b \to LS[LW@a] \rangle, CWS[0]]; \\ &iRs[a_{, b_{]}} := Es[\langle a \to LS[0], b \to -LS[LW@a] \rangle, CWS[0]]; \\ & \mathcal{J} = iRs[r, 6] Rs[2, 4] iRs[g, 9] Rs[5, 7] iRs[b, 3] Rs[8, 1]; \end{aligned}$

Do[\$ = \$ // dm[r, k, r], {k, 1, 3}];
Do[\$ = \$ // dm[g, k, g], {k, 4, 6}];
Do[\$ = \$ // dm[b, k, b], {k, 7, 9}];
{\$[1]_r@{5}, \$[2]@{5}} // Print

References.

- [AT] A. Alekseev and C. Torossian, *The Kashiwara-Vergne conjecture and Drinfeld's associators*, Annals of Mathematics **175** (2012) 415–463, arXiv:0802.4300.
- [AET] A. Alekseev, B. Enriquez, and C. Torossian, Drinfeld's associators, braid groups and an explicit solution of the Kashiwara-Vergne equations, Publications Mathématiques de L'IHÉS, 112-1 (2010) 143–189, arXiv:0903.4067
- [BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I-IV, ωεβ/WKO1, ωεβ/WKO2, ωεβ/WKO3, ωεβ/WKO4, and arXiv:1405.1956, arXiv:1405.1955, arXiv: not.yet×2.

Warning. Fidgety!

http://www.math.toronto.edu/~drorbn/Talks/CMU-1504/ Dror Bar-Natan: Talks: CMU-1504:

Abstract. The commutator of two elements *x* and *y* in a group *G* is $xyx^{-1}y^{-1}$. That is, *x* followed by *y* followed by the inverse of *x* followed by the inverse of *y*. In my talk I will tell you how commutators are related to the following four riddles:

- 1. Can you send a secure message to a person you have never communicated with before (neither privately nor publicly), using a messenger you do not trust?
- 2. Can you hang a picture on a string on the wall using *n* nails, so that if you remove any one of them, the picture will fall?
- 3. Can you draw an *n*-component link (a knot made of *n* nonintersecting circles) so that if you remove any one of those *n* components, the remaining (n - 1) will fall apart?
- 4. Can you solve the quintic in radicals? Is there a formula for the zeros of a degree 5 polynomial in terms of its coefficients, using only the operations on a scientific calculator?

Definition. The commutator of two elements *x* and *y* in a group *G* is $[x, y] := xyx^{-1}y^{-1}$.

Example 1. In S_3 , $[(12), (23)] = (12)(23)(12)^{-1}(23)^{-1} = (123)$ and in general in $S_{\geq 3}$,

$$[(ij), (jk)] = (ijk).$$

Example 2. In $S_{\geq 4}$,

$$[(ijk), (jkl)] = (ijk)(jkl)(ijk)^{-1}(jkl)^{-1} = (il)(jk).$$

Example 3. In $S_{\geq 5}$,

$$[(ijk), (klm)] = (ijk)(klm)(ijk)^{-1}(klm)^{-1} = (jkm).$$

Example 4. So, in fact, in S_5 , (123) = [(412), (253)] = [[(341), (152)], [(125), (543)]] = [[[(234), (451)], [(315), (542)]], [[(312), (245)], [(154), (423)]]] = [[[[(123), (354)], [(245), (531)]], [[(231), (145)], [(154), (432)]]], [[[(431), (152)], [(124), (435)]], [[(215), (534)], [(142), (253)]]]].

Solving the Quadratic, $ax^2 + bx + c = 0$: $\delta = \sqrt{\Delta}$; $\Delta = b^2 - 4ac$; $r = \frac{\delta - b}{2a}$.

Solving the Cubic, $ax^3 + bx^2 + cx + d = 0$: $\Delta = 27a^2d^2 - 18abcd + 4ac^3 + 4b^3d - b^2c^2$; $\delta = \sqrt{\Delta}$; $\Gamma = 27a^2d - 9abc + 3\sqrt{3}a\delta + 2b^3$; $\gamma = \sqrt[3]{\frac{\Gamma}{2}}$; $r = -\frac{\frac{b^2-3ac}{\gamma}+b+\gamma}{3a}$.

Solving the Quartic, $ax^4 + bx^3 + cx^2 + dx + e = 0$: $\Delta_0 = 12ae - 3bd + c^2$; $\Delta_1 = -72ace + 27ad^2 + 27b^2e - 9bcd + 2c^3$; $\Delta_2 = \frac{1}{27} \left(\Delta_1^2 - 4\Delta_0^3 \right)$; $u = \frac{8ac - 3b^2}{8a^2}$; $v = \frac{8a^2d - 4abc + b^3}{8a^3}$; $\delta_2 = \sqrt{\Delta_2}$; $Q = \frac{1}{2} \left(3\sqrt{3}\delta_2 + \Delta_1 \right)$; $q = \sqrt[3]{Q}$; $S = \frac{\frac{\Delta_0}{q} + q}{12a} - \frac{u}{6}$; $s = \sqrt{S}$; $\Gamma = -\frac{v}{s} - 4S - 2u$; $\gamma = \sqrt{\Gamma}$; $r = -\frac{b}{4a} + \frac{\gamma}{2} + s$.

Theorem. The is no general formula, using only the basic arithmetic operations and taking roots, for the solution of the quintic equation $ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$.

Key Point. The "persistent root" of a closed path (path lift, in topological language) may not be closed, yet the persistent root of a commutators of closed paths is always closed.

Proof. Suppose there was a formula, and consider the corresponding "composition of machines" picture:

$$\begin{bmatrix} \lambda_{1} & & & \\ \lambda_{2} & & \\ \lambda_{3} & \lambda_{4} \\ & \lambda_{5} & \lambda_{4} \end{bmatrix} \xrightarrow{C} \begin{bmatrix} a & e & & \\ & c & \\ & & \\ b & f \\ & &$$

Now if $\gamma_1^{(1)}, \gamma_2^{(1)}, \dots, \gamma_{16}^{(1)}$, are paths in X_0 that induce permutations of the roots and we set $\gamma_1^{(2)} \coloneqq [\gamma_1^{(1)}, \gamma_2^{(1)}], \gamma_2^{(2)} \coloneqq [\gamma_3^{(1)}, \gamma_4^{(1)}], \dots, \gamma_8^{(2)} \coloneqq [\gamma_{15}^{(2)}, \gamma_{16}^{(1)}], \gamma_1^{(3)} \coloneqq [\gamma_1^{(2)}, \gamma_2^{(2)}], \dots, \gamma_4^{(3)} \coloneqq [\gamma_7^{(2)}, \gamma_8^{(2)}], \gamma_1^{(4)} \coloneqq [\gamma_1^{(3)}, \gamma_2^{(3)}], \gamma_2^{(4)} \coloneqq [\gamma_3^{(3)}, \gamma_4^{(3)}], \text{ and finally } \gamma^{(5)} \coloneqq [\gamma_1^{(4)}, \gamma_2^{(4)}] \text{ (all of those, commutators of "long paths"; I don't know the word "homotopy"), then <math>\gamma^{(5)} / / C / / R_1 / ... / R_4$ is a closed path. Indeed,

- In X_0 , none of the paths is necessarily closed.
- After *C*, all of the paths are closed.
- After P_1 , all of the paths are still closed.
- After R_1 , the $\gamma^{(1)}$'s may open up, but the $\gamma^{(2)}$'s remain closed.

• At the end, after R_4 , $\gamma^{(4)}$'s may open up, but $\gamma^{(5)}$ remains closed.

But if the paths are chosen as in Example 4, $\gamma^{(5)} / / C / / P_1 / / R_1 / \cdots / / R_4$ is not a closed path.

References. V.I. Arnold, 1960s, hard to locate.

V.B. Alekseev, Abel's Theorem in Problems and Solutions, Based on the Lecture of Professor V.I. Arnold, Kluwer 2004. A. Khovanskii, Topological Galois Theory, Solvability and Unsolvability of Equations in Finite Terms, Springer 2014. B. Katz, Short Proof of Abel's Theorem that 5th Degree Polynomial Equations Cannot be Solved, YouTube video, http://youtu.be/RhpVSV6iCko.

Commutators

Video, links, and more @ Dror Bar-Natan: Talks: Georgetown-1503: ωεβ=http://www.math.toronto.edu/~drorbn/Talks/Georgetown-1503

Abstract. It is insufficiently well known that the good old Taylor expansion has a completely algebraic characterization, which generalizes to arbitrary groups (and even far beyond). Thus one may ask: Does the braid group have a Taylor expansion? (Yes, using iterated integrals and/or associators). Do braids on a torus

("elliptic braids") have Taylor expansions? (Yes, Brook Taylor

using more sophisticated iterated integrals / associators). Do vir- C_n , with z_i its *i*th coorditual braids have Taylor expansions? (No, yet for nearby objects nate, the iterated integral the deep answer is Probably Yes). Do groups of flying rings (braid formula on the right defigroups one dimension up) have Taylor expansions? (Yes, easily, nes a Taylor expansion for PB_n . Comments. • I don't know a combinatoyet the link to TQFT is yet to be fully explored).

Disclaimer. I'm asked to talk in a meeting on "iterated integrals", rial/algebraic proof that PB_n has a Taylor exand that's my best. Many of you may think it all trivial. Sorry. **Expansions for Groups.** Let G be a group, $\mathcal{K} = \mathbb{Q}G$ _ $\{\sum a_i g_i : a_i \in \mathbb{Q}, g_i \in G\}$ its group-ring, $\mathcal{I} = \{\sum a_i g_i : \sum a_i = 0\}$ its augmentation ideal. Let **P.S.** $(\mathcal{K}/\mathcal{I}^{m+1})^*$ is Vassiliev / finite- PB_n .

 $\mathcal{A} = \operatorname{gr} \mathcal{K} := \bigoplus_{m \ge 0} I^m / I^{m+1}.$ type / polynomial invariants. Note that \mathcal{A} inherits a product from G. **Definition.** A linear $Z: \mathcal{K} \to \mathcal{A}$ is an "expansion" if for any $\gamma \in I^m$, $Z(\gamma) =$ $(0,\ldots,0,\gamma/\mathcal{I}^{m+1},\ast,\ldots),$ a "multiplicative expansion" if in addition it preserves

the product, and a "Taylor expansion" if $G \to G \times G$.

Example. Let $\mathcal{K} = C^{\infty}(\mathbb{R}^n)$ and $I = \{f : f(0) = 0\}$. Then $Z(\sigma_{ik}\sigma_{ik}\sigma_{ij})$. $I^m = \{f: f \text{ vanishes like } |x|^m\}$ so I^m/I^{m+1} degree m homoge- Comments. • Extends to PwT and generalizes the Aleneous polynomials and $\mathcal{A} = \{\text{power series}\}$. The Taylor series is xander polynomial, and even to PwTT and interprets the the unique Taylor expansion!

lizes effortlessly to arbitrary algebraic structures.

$$C_n^1 = \left\{ \begin{array}{c} \bullet & \bullet & \bullet \\ 1 & \bullet & n \end{array} \right\} \quad \left[\begin{array}{c} \sigma_{ij} \\ \bullet & i \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & i \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet \\ \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet \\ \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \\ \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet & \bullet \end{array} \right] \quad \left[\begin{array}{c} \bullet &$$

Elliptic Braids. $PB_n^1 := \pi_1(C_n^1)$ is generated by σ_{ij} , X_i , Y_j , with PB_n relations and $(X_i, X_j) = 1 = (Y_i, Y_j), (X_i, Y_j) = \sigma_{ij}^{-1}$ $(X_i X_j, \sigma_{ij}) = 1 = (Y_i Y_j, \sigma_{ij})$, and $\prod X_i$ and $\prod Y_j$ are central. [Bez] implies $\mathcal{A}(PB_n^1) = \langle x_i, y_j \rangle / ([x_i, x_j] = [y_i, y_j] = [x_i + x_j, [x_i, y_j]] =$ $[y_i + y_j, [x_i, y_j]] = [x_i, \sum y_j] = [y_j, \sum x_i] = 0, \ [x_i, y_j] = [x_j, y_i],$ and [CEE] construct a Taylor expansion using sophisticated iterated integrals. [En2] relates this to *Elliptic Associators*.

Virtual Braids. P_{VB_n} is given by the "braids for dummies" presentation:

$$\langle \sigma_{ij} | \sigma_{ij} \sigma_{ik} \sigma_{jk} = \sigma_{jk} \sigma_{ik} \sigma_{ij}, \ \sigma_{ij} \sigma_{kl} = \sigma_{kl} \sigma_{ij} \rangle$$

(every quantum invariant extends to $P \mathcal{B}_n$!).
By [Lee], $\mathcal{A}(P \mathcal{B}_n)$ is

 $[a_{ij} | [a_{ij}, a_{ik}] + [a_{ij}, a_{jk}] + [a_{ik}, a_{jk}] = 0 = [a_{ij}, a_{kl}]$ Theorem [Lee]. While quadratic, $P_{\nu}B_n$ does not have a Taylor expansion.

Comment. By the tough theory of quantization of solutions of the classical Young-Baxter equation [EK, Peter Lee En1], PT_n does have a Taylor expansion. But PT_n is not a group.

When does a group have a Taylor expansion?

Pure Braids. Take $G = PB_n = \pi_1(C_n = \mathbb{C}^n \setminus \text{diags})$. It is generated by the love-behind-the-bars braids σ_{ii} , modulo "Reidemeister moves". I is generated by $\{\sigma_{ij} - 1\}$ and \mathcal{A} by $\{t_{ij}\}$, the clas-

pansion. • Generic "partial expansion" do not

extend! • This is the seed for the Drinfel'd

theory of associators! • Confession: I don't

know a clean derivation of a presentation of

ses of the $\sigma_{ij} - 1$ in $\mathcal{A}_1 = \mathcal{I}/\mathcal{I}^2$. Reidemeister becomes $[t_{ij} + t_{ik}, t_{jk}] = 0$ and $[t_{ij}, t_{kl}] = 0$.

Theorem. For $\gamma: [0, 1] \rightarrow$

 $Z(\gamma) =$

 $0 < t_1 < ... < t_m < 1$ $1 \le i_1 < j_1, i_2 < j_2, \dots, i_m < j_m \le n$

 $m \ge 0$

 $d \log(z_{i_{\alpha}})$

Knizhnik Zamolodchikov Kohno Drinfel'd Kontsevich

Flying Rings. $PwB_n = PvB_n/(\sigma_{ij}\sigma_{ik} = \sigma_{ik}\sigma_{ij})$ is π_1 (flying rings in \mathbb{R}^3). $\mathcal{A}(PwB_n) = \mathcal{A}(PvB_n)/[a_{ij}, a_{ik}] = 0$, and Z it also preserves the co-product, induced from the diagonal map is as easy as it gets: $Z(\sigma_{ij}) = e^{a_{ij}}$ [BP, BND]. Indeed, $Z(\sigma_{ij}\sigma_{ik}\sigma_{ik}) = e^{a_{ij}}e^{a_{ik}}e^{a_{jk}} = e^{a_{ij}+a_{ik}}e^{a_{jk}} = e^{a_{ij}+a_{ik}+a_{jk}}$

Kashiwara-Vergne problem [BND]. • I don't know an Comment. Unlike lower central series constructions, this genera- iterated-integral derivation, or any TQFT derivation, though BF theory probably comes close [CR].

Paper in Progress: ωεβ/ExQu

Dancso

- [BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted *Objects I: Braids, Knots and the Alexander Polynomial,* ωεβ/WKO1, arXiv:1405.1956; and II: Tangles and the Kashiwara-Vergne Problem, ωεβ/WKO2, arXiv:1405.1955.
- [BP] B. Berceanu and S. Papadima, Universal Representations of Braid and Braid-Permutation Groups, J. of Knot Theory and its Ramifications 18-7 (2009) 973-983, arXiv:0708.0634.
- [Bez] R. Bezrukavnikov, Koszul DG-Algebras Arising from Configuration Spaces, Geom. Func. Anal. 4-2 (1994) 119-135.
- CEE] D. Calaque, B. Enriquez, and P. Etingof, Universal KZB Equations I: The Elliptic Case, Prog. in Math. 269 (2009) 165-266, arXiv:math/0702670.
- [CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037.

[En1] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430-479, arXiv:math/0212325.

En2] B. Enriquez, Elliptic Associators, Selecta Mathematica 20 (2014) 491-584, arXiv:1003.1012.

[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica 2 (1996) 1–41, arXiv:q-alg/9506005.

[Lee] P. Lee, The Pure Virtual Braid Group Is Quadratic, Selecta Mathematica 19-2 (2013) 461-508, arXiv:1110.2356.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Georgetown-1503/

k

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamilton-1412/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamilton-1412/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/

open space for your doodles

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/

Dessert: Hilbert's 13th Problem, in Full Colour

Dror Bar-Natan, Toronto November 2014. More at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411

Abstract. To break a week of deep thinking with a nice colourful light dessert, we will present the Kolmogorov-Arnold solution of Hilbert's 13th problem with lots of computer-generated rainbowpainted 3D pictures.

In short, Hilbert asked if a certain specific function of three variables can be written as a multiple (yet finite) composition of continuous functions of just two variables. Kolmogorov and Arnold showed him silly (ok, it took about 60 years, so it was a bit tricky) by showing that **any** continuous function f of any finite number of variables is a finite composition of continuous functions of a single variable and several instances of the binary function "+" (addition). For f(x,y) = xy, this may be $xy = \exp(\log x + \log y)$. For Fix an irrational $\lambda > 0$, say $\lambda = (\sqrt{5} - 1)/2$. All $f(x, y, z) = x^y/z$, this may be $\exp(\exp(\log y + \log \log x) + (-\log z))$. functions are continuous. What might it be for (say) the real part of the Riemann zeta function?

math was known since around 1957.

Arnold (by Moser)

Theorem. There exist five $\phi_i : [0,1] \rightarrow [0,1]$ $(1 \leq$ The only original material in this talk will be the pictures; the $i \leq 5$ so that for every $f: [0,1] \times [0,1] \to \mathbb{R}$ there exists a $g: [0, 1+\lambda] \to \mathbb{R}$ so that

$$f(x,y) = \sum_{i=1}^{5} g(\phi_i(x) + \lambda \phi_i(y))$$

for every $x, y \in [0, 1]$.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/

© | Dror Bar-Natan: Talks: Treehouse-1410: The 17 Tiling Patterns: Gotta catch 'em all!

The

Symmetries

THINGS

Treehouse Talks, Friday October 17, 2014, Beeton Auditorium, Toronto Reference Library, 789 Yonge Street, 6:30PM

Abstract. My goal is to get you hooked, captured and unreleased until you find all 17 in real life, around you.

We all know know that the plane can be filled in different periodic manners: floor tiles are often square but sometimes hexagonal, bricks are often laid in an interlaced pattern, fabrics often carry interesting patterns. A little less known is that there are precisely 17 symmetry patterns for tiling the plane; not one more, not one less. It is even less known how easy these 17 are to identify in the patterns around you, how fun it is, how common some are, and how rare some others seem to be.

Gotta catch 'em all!

Theorem. There are precisely 17 patterns with which to tile the Video, handout, links at drorbn.net/Treehouse plane, no more, no less. They are all made of combinations of The Basic Features. Gotta the 10 basic features, 2, 3, 4, 6, 2, 3, 4, 6, M, and G, as follows: crystallo crystallo -graphic catch Dror's Conway's Dror's Conway's -graphic 3 em 22222222 p2 33 3*3 p31m $\mathbf{222}$ 2*22all 333 333 p3cmm 22M 22^{*} 442442 p4pmg rotation-reflection rotation only ** $\mathbf{M}\mathbf{M}$ $\mathbf{632}$ 632 p6 \mathbf{pm} house 2222 *2222 \mathbf{MG} *0 pmm \mathbf{cm} GG *333 p3m100 pg *442 **22G** 220 442 p4m pgg 632 *632 p6mØ 0 p1 free glide-reflection free mirror-reflection 4^{*2} 42 p4g ◎ Dror Bar-Natan, October 2014

Reading.

 $\frac{4}{5}, \frac{5}{6}, \text{ etc.}?$

and that's it.

Springer-Verlag, 1987.

An excellent book on the

Answer. $2 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = \frac{3}{4} + \frac{3}{4} + \frac{1}{2} = \frac{5}{6} + \frac{2}{3} + \frac{1}{2}$

subject is The Symmetries of Things

by J. H. Conway, H. Burgiel, and

Another nice text is Classical Tessellations

and Three-Manifolds by J. M. Montesinos,

Question. In what ways can you make \$2

change, using coins denominated $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$,

C. Goodman-Strauss, CRC Press, 2008.

Tilings worksheet. Classify the following pictures according to the following possibilities: **2222**=2222, **333**=333, **442**=442, **632**=632, **222**=2222, **333**=*333, **442**=*442, **632**=632, **222**=2*22, **333**=*333, **442**=*442, **632**=*632, **42**=4*2, **33**=3*3, **222**=2*22, **22M**=22*, **MM**=**, **MG**=*o, **GG**=oo, **22G**=22o, and Ø=0 (the pictures come in {context, pattern} pairs).

				Ang/bas 5			
		Agalviales		Againars	Agartrane	Againtario	
AgaKhan-7	AgaKhan-7_	Alhambra	Alhambra_	AnteaterCage	AnteaterCage_	ArchStreetFence	ArchStreetFence_
The set of the s							
Artificial	Artificial_	AshbyTiles	AshbyTiles_	BathroomTiles	BathroomTiles_	BedCoverAndMitzie	BedCoverAndMitzie_
					A Contraction		
BethElQuilt	BethElQuilt_	BethElSidewalk	BethElSidewalk_	BethlehemRoadTiles	BethlehemRoadTiles_	BicycleReflector	BicycleReflector_

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Treehouse-1410/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/ClassroomAdventures-1408/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Oberwolfach-1405/

Definition. l_{xu} is the linking number of hoop x with balloon u. For $x \in H$, $\sigma_x := \prod_{u \in T} T_u^{l_{xu}} \in R = R_T = \mathbb{Z}((T_a)_{a \in T})$, the ring of rational functions in T variables.

Theorem 2 [BNS]. \exists ! an invariant β : $w\mathcal{K}^{bh}(H;T) \rightarrow R \times M_{T \times H}(R)$, intertwining

$$\begin{aligned}
\mathbf{1.} \left(\begin{array}{c|c} \omega_1 & H_1 \\ \hline T_1 & A_1 \end{array}, \begin{array}{c|c} \omega_2 & H_2 \\ \hline T_2 & A_2 \end{array} \right) & \stackrel{\sqcup}{\longrightarrow} \begin{array}{c|c} \omega_1 \omega_2 & H_1 & H_2 \\ \hline T_1 & A_1 & 0 \\ \hline T_2 & 0 & A_2 \end{aligned} \\
\end{aligned}$$

$$\begin{aligned}
\mathbf{2.} & \frac{\omega}{u} \begin{array}{c} H \\ w & \alpha \end{array} & \stackrel{tm_w^{uv}}{\longrightarrow} \left(\begin{array}{c} \omega & H \\ \hline w & \alpha + \beta \\ T & \Xi \end{array} \right)_{T_u, T_v \to T_w} \\
\end{aligned}$$

$$\begin{aligned}
\mathbf{3.} & \frac{\omega}{T} \begin{array}{c} x & y & H \\ \hline T & \alpha & \beta & \Xi \end{array} & \stackrel{hm_z^{yv}}{\longrightarrow} \begin{array}{c} \omega & z & H \\ \hline T & \alpha + \sigma_x \beta & \Xi \end{array}, \\
\end{aligned}$$

$$\begin{aligned}
\mathbf{4.} & \frac{\omega}{u} \begin{array}{c} \alpha & H \\ \alpha & \theta \end{array} & \stackrel{tha^{uv}}{\longrightarrow} \begin{array}{c} \frac{\psi}{v + \beta} \\ \frac{\psi}{r} & \alpha + \beta \end{array} & \stackrel{hm_z^{yv}}{\longrightarrow} \begin{array}{c} \omega & z & H \\ \hline T & \alpha + \sigma_x \beta & \Xi \end{array}, \\
\end{aligned}$$

$$\begin{aligned}
\mathbf{4.} & \frac{\omega}{u} \begin{array}{c} x & H \\ \alpha & \theta \end{array} & \stackrel{tha^{uv}}{\longrightarrow} \begin{array}{c} \frac{\psi}{v + \alpha} & \frac{y}{r} \\ \frac{\psi}{r} & \frac{\varphi}{r} & \frac{\varphi}{r} \\ \frac{\psi}{r} & \frac{\varphi}{r} & \frac{\varphi}{r} \end{array} & \stackrel{hm_z^{yv}}{\longrightarrow} \begin{array}{c} \frac{\psi}{r} & \frac{z}{r} \\ \frac{\varphi}{r} & \frac{\varphi}{r} \\ \frac{\psi}{r} & \frac{z}{r} \\ \frac{\psi}{r} & \frac{\varphi}{r} \end{array} & \stackrel{hm_z^{uv}}{\longrightarrow} \begin{array}{c} \frac{\psi}{r} & \frac{z}{r} \\ \frac{\psi}{r} & \frac{\varphi}{r} \\ \frac{\psi}{r} & \frac{z}{r} \\ \frac{\psi}{r} \\ \frac{\psi}{r} \\ \frac{\varphi}{r} \end{array} & \stackrel{hm_z^{uv}}{\longrightarrow} \begin{array}{c} \frac{\varphi}{r} \\ \frac{\varphi}{r} \end{array} & \stackrel{hm_z^{uv}}{\longrightarrow} \begin{array}{c} \frac{\varphi}{r} \\ \frac{\varphi}{$$

References.

- [BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, ωεβ/KBH, arXiv:1308.1721.
- [BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I-II, ωεβ/WKO1, ωεβ/WKO2, arXiv:1405.1956, arXiv:1405.1955.
- [BNS] D. Bar-Natan and S. Selmani, *Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial*, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.
- [CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513–537, arXiv:math-ph/0210037.
- [CT] D. Cimasoni and V. Turaev, *A Lagrangian Representation of Tangles*, Topology **44** (2005) 747–767, arXiv:math.GT/0406269.
- [KLW] P. Kirk, C. Livingston, and Z. Wang, The Gassner Representation for String Links, Comm. Cont. Math. 3 (2001) 87–136, arXiv:math/9806035.
- [LD] J. Y. Le Dimet, Enlacements d'Intervalles et Représentation de Gassner, Comment. Math. Helv. 67 (1992) 306–315.

and hoops. $\zeta := \log Z$ takes values in $FL(T)^H \times CW(T)$. is computable! ζ of the Borromean tangle, to degree 5: + cyclic colour permutations, Proposition [BN]. Modulo all relations that universally hold for the 2D non-Abelian Lie algebra and after some changes-ofvariable, ζ reduces to β and the [u, v]= $C_u v$ $C_{v}u$ KBH operations on ζ reduce to the formulas in Theorem 2. A Big Question. Does it all extend to arbitrary 2-knots (not necessarily "simple")? To arbitrary codimension-2 knots? **BF Following [CR].** $A \in \Omega^1(M = \mathbb{R}^4, \mathfrak{g}), B \in \Omega^2(M, \mathfrak{g}^*),$ $S(A,B) := \int_{M} \langle B, F_A \rangle.$ Ross With $\kappa: (S = \mathbb{R}^2) \to M, \beta \in \Omega^0(S, \mathfrak{g}), \alpha \in \Omega^1(S, \mathfrak{g}^*)$, set $O(A, B, \kappa) \coloneqq \int \mathcal{D}\beta \mathcal{D}\alpha \exp\left(\frac{i}{\hbar} \int_{\alpha} \langle \beta, d_{\kappa^* A} \alpha + \kappa^* B \rangle\right).$ The BF Feynman Rules. For an edge e, let Φ_e be its direction, in S^3 or S^1 . Let ω_3 and ω_1 be volume forms on S^3 and S_1 . Then Cattaneo $Z_{BF} = \sum_{\text{diagrams}} \frac{[D]}{|\text{Aut}(D)|} \int_{\mathbb{R}^2} \cdots \int_{\mathbb{R}^2} \int_{\mathbb{R}^4}$ $\Phi^*_{\rho}\omega_3$ $\Phi_e^*\omega_1$ S-vertices M-vertices (modulo some STU- and IHX-like relations). degree = #(rattles)

Issues. • Signs don't quite work out, and BF seems to reproduce only "half" of the wheels invariant.

 There are many more configuration space integrals than BF Feynman diagrams and than just trees and wheels.

• I don't know how to define "finite type" for arbitrary 2-knots.

www.katlas.org The Knet Atla

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Oberwolfach-1405/

http://drorbn.net/index.php?title=AKT-14 The Fourier Transform. Dror Bar-Natan: Classes: 1314: AKT-14: Gaussian Integration, Determinants, Feynman Diagrams $(F\colon V\to\mathbb{C})\Rightarrow (\tilde{f}\colon V^*\to\mathbb{C})$ via $\tilde{F}(\varphi) \coloneqq \int_{V} f(v)e^{-i\langle \varphi, v \rangle} dv$. Some facts: **Gaussian Integration.** (λ_{ii}) is a symmetric positive definite matrix and (λ^{ij}) is its inverse, and (λ_{ijk}) are the coefficients of some cubic form. Denote by $(x^i)_{i=1}^n$ the coordinates of • $\tilde{f}(0) = \int_{V} f(v) dv.$ \mathbb{R}^n , let $(t_i)_{i=1}^n$ be a set of "dual" variables, and let ∂^i denote $\frac{\partial}{\partial t_i}$. Also let $C := \frac{(2\pi)^{n/2}}{\det(\lambda_{ij})}$. Then • $\frac{\partial}{\partial \varphi_i} \tilde{f} \sim \tilde{v^i f}.$ $\int_{\mathbb{R}^n} e^{-\frac{1}{2}\lambda_{ij}x^ix^j + \frac{\epsilon}{6}\lambda_{ijk}x^ix^jx^k} = \sum_{m\geq 0} \frac{\epsilon^m}{6^m m!} \int_{\mathbb{R}^n} (\lambda_{ijk}x^ix^jx^k)^m e^{-\frac{1}{2}\lambda_{ij}x^ix^j}$ • $(\widetilde{e^{Q/2}}) \sim e^{Q^{-1}/2}$, where Q is quadratic, Feynman $Q(v) = \langle Lv, v \rangle$ for $L: V \rightarrow V^*$, and $=\sum_{m\geq 0} \frac{C\epsilon^m}{6^m m!} (\lambda_{ijk} \partial^i \partial^j \partial^k)^m e^{\frac{1}{2}\lambda^{\alpha\beta} t_\alpha t_\beta} \bigg|_{t_\alpha = 0} = \sum_{\substack{m,l\geq 0\\3m-2l}} \frac{C\epsilon^m}{6^m m! 2^l l!} \left(\lambda_{ijk} \partial^i \partial^j \partial^k\right)^m \left(\lambda^{\alpha\beta} t_\alpha t_\beta\right)^l$ $Q^{-1}(\varphi) := \langle \varphi, L^{-1}\varphi \rangle$. (This is the key point in the proof of the Fourier inversion formula!) Examples |Aut(D)| = 12 $|\operatorname{Aut}(D)| = 8$ Perturbing Determinants. If Q and P are matrices and Q is invertible, $|Q|^{-1}|Q + \epsilon P| = |I + \epsilon Q^{-1}P|$ $= \sum_{\substack{m,l \ge 0 \\ 3m=2l}} \frac{C\epsilon^m}{6^m m! 2^l l!} \sum_{\substack{m \text{-vertex fully marked} \\ \text{Feynman diagrams } D}} \mathcal{E}(D)$ $=\sum_{k=1}^{k}\epsilon^{k}\mathrm{tr}\left(\bigwedge^{k}Q^{-1}P\right)$ $=\sum_{k>0,\dots,\infty}\frac{\epsilon^{k}(-)^{\sigma}}{k!}\operatorname{tr}\left(\sigma(Q^{-1}P)^{\otimes k}\right)$ $= C \sum_{\substack{\text{unmarked Feynman}} \\ \text{discussion}} \frac{\epsilon^{m(D)} \mathcal{E}(D)}{|\text{Aut}(D)|}.$ Claim. The number of pairings that produce a given unmarked Feynman diagram D is $\frac{6^m m! 2^l l!}{|Aut(D)|}$ $= \sum_{k \ge 0, \sigma \in S_{\nu}} \frac{(-\epsilon)^k (-)^{\# \text{cycles}}}{k!} \int_{0}^{p} \int_{0}^{p}$ **Proof of the Claim.** The group $G_{m,l} := [(S_3)^m \rtimes S_m] \times [(S_2)^l \rtimes S_l]$ acts on the set of 0-1 pairings, the action is transitive on the set of pairings P that produce a given D, and the stabilizer of any given P is Aut(D). **Determinants.** Now suppose Q and P_i $(1 \le i \le n)$ are $d \times d$ The Berezin Integral (physics / math language, formatrices and Q is invertible. Then mulas from Wikipedia:Grassmann integral). The Berezin Integral is linear on functions of anti- $|Q|^{-1}I_{\epsilon,\lambda_{ij},\lambda_{ijk},Q,P_i} = |Q|^{-1} \int_{\mathbb{R}^n} e^{-\frac{1}{2}\lambda_{ij}x^ix^{j} + \frac{\epsilon}{6}\lambda_{ijk}x^ix^{j}x^k} \det(Q + \epsilon x^i P_i)$ commuting variables, and satisfies $\int \theta d\theta = 1$, and $\int 1d\theta = 0$, so that $\int \frac{\partial f(\theta)}{\partial \theta} d\theta = 0$. $= \sum_{\substack{m,k>0,\sigma\in S_k}} \frac{C\epsilon^{m+k}(-)^{\sigma}}{6^m m!k!} \int (\lambda_{ijk} x^i x^j x^k)^m \operatorname{tr}\left(\sigma(x^i Q^{-1} P_i)^{\otimes k}\right) e^{-\frac{1}{2}\lambda_{ij} x^i x^j}$ Berezin Let V be a vector space, $\theta \in V$, $d\theta \in V^*$ s.t. $\langle d\theta, \theta \rangle = 1$. Then $f \mapsto$ $\int f d\theta$ is the interior multiplication map $\bigwedge V \to \bigwedge V$: $\int f d\theta \coloneqq$ $i_{d\theta}(f) \left(=\frac{\partial f}{\partial \theta}\right).$ Multiple integration via "Fubini": $\int f_1(\theta_1) \cdots f_n(\theta_n) d\theta_1 \dots d\theta_n \coloneqq$ $\left(\int f_1 d\theta_1\right)\cdots\left(\int f_n d\theta_n\right)$. $\int f d\theta_1\ldots d\theta_n \coloneqq f // i_{d\theta_1} // \cdots // i_{d\theta_n}$. Change of variables. If $\theta_i = \theta_i(\xi_j)$, both θ_i and ξ_j are odd, and $J_{ij} \coloneqq \partial \theta_i / \partial \xi_j$, then $\int f(\theta_i)d\theta = \int f(\theta_i(\xi_j)) \det(J_{ij})^{-1} d\xi.$ $= \sum C \epsilon^{m+k} (-)^k (-)^l \mathcal{E}$ Given vector spaces V_{θ_i} and W_{ξ_j} , $d\theta = \bigwedge d\theta_i \in \bigwedge^{\text{top}}(V^*)$, $d\xi = \bigwedge d\xi_i \in \bigwedge^{\text{top}}(W^*)$, and $T: V \to \bigwedge^{\text{odd}}(W)$. Then T induces a map where *l* is the number of purple ("Fermion") loops. $T_*: \land V \to \land W$ and then **Ghosts.** Or else, introduce "ghosts" \bar{c}_a and c^b , write $I_{\epsilon,\lambda_{ij},\lambda_{ijk},Q,P_i} = \int dx \int e^{-\frac{1}{2}\lambda_{ij}x^ix^j + \frac{\epsilon}{6}\lambda_{ijk}x^ix^jx^k + \tilde{c}_a(Q_b^a + \epsilon x^iP_{ib}^a)c^b}$ \bigcirc $\int f d\theta = \int (T_* f) \det \left(\frac{\partial (T\theta_i)}{\partial \xi_i}\right)^{-1} d\xi.$ Gaussian integration. For an even matrix A and odd vectors θ , η , \bar{c} and cand use "ordinary" perturbation theory. $\int e^{\theta^T A \eta} d\theta d\eta = \det(A), \qquad \int e^{\theta^T A \eta + \theta^T J + K^T \eta} d\theta d\eta = \det(A) e^{-K^T A^{-1} J}$

Video and more at http://drorbn.net/?title=AKT-14 (Feb 28 and March 21 classes)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Vienna-1402/

Dror Bar-Natan: Academic Pensieve: 2014-04: BF2C: http://drorbn.net/AcademicPensieve/2014-04/BF2C

Theorem 1 (with Cattaneo, Dalvit (credit, no blame)). In the ribbon case, e^{ζ} can be computed as follows:

Theorem 2. Using Gauss diagrams to represent knots and T- about the \lor -invariant? component pure tangles, the above formulas define an invariant (the "true" triple linkin $CW(FL(T)) \rightarrow CW(T)$, "cyclic words in T".

• Agrees with BN-Dancso [BND] and with [BN2]. • In-practice computable! • Vanishes on braids. • Extends to w. • Contains Gnots. In 3D, a generic immersion of S^1 is an Alexander. • The "missing factor" in Levine's factorization [Le] embedding, a knot. In 4D, a generic immersion (the rest of [Le] also fits, hence contains the MVA). • Related to of a surface has finitely-many double points (a extends Farber's [Fa]? • Should be summed and categorified.

References

- [Ar] V. I. Arnold, Topological Invariants of Plane Curves and Caustics, Uni- invariants for 2-knots? versity Lecture Series 5, American Mathematical Society 1994.
- [BN1] D. Bar-Natan, Bracelets and the Goussarov filtration of the space of knots, Invariants of knots and 3-manifolds (Kyoto 2001), Geometry and Bubble-wrap-finite-type. Topology Monographs 4 1–12, arXiv:math.GT/0111267.
- [BN2] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Inhttp://www.math.toronto.edu/~drorbn/papers/KBH/, variant, arXiv:1308.1721.
- [BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects: From Alexander to Kashiwara and Vergne, http://www.math.toronto.edu/~drorbn/papers/WKO/.
- [CKS] J. S. Carter, S. Kamada, and M. Saito, *Diagrammatic Computations for* Quandles and Cocycle Knot Invariants, Contemp. Math. 318 (2003) 51-74.
- [CS] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs 55, American Mathematical Society, Providence 1998.

[Da] E. Dalvit, http://science.unitn.it/~dalvit/.

- [CR] A. S. Cattaneo and C. A. Rossi, Wilson Surfaces and Higher Dimensional Knot Invariants, Commun. in Math. Phys. 256-3 (2005) 513-537, arXiv:math-ph/0210037.
- [Fa] M. Farber, Noncommutative Rational Functions and Boundary Links, Math. Ann. 293 (1992) 543-568.
- [Le] J. Levine, A Factorization of the Conway Polynomial, Comment. Math. Plane curves. Shouldn't we understand integral / finite Helv. 74 (1999) 27–53, arXiv:q-alg/9711007.
- [Ro] D. Roseman, Reidemeister-Type Moves for Surfaces in Four-Dimensional Space, Knot Theory, Banach Center Publications 42 (1998) 347–380.
- [Wa] T. Watanabe, Configuration Space Integrals for Long n-Knots, the Alexander Polynomial and Knot Space Cohomology, Alg. and Geom. Top. 7 (2007) 47-92, arXiv:math/0609742.

Continuing Joost Slingerland... http://youtu.be/YCA0VIExVhge http://youtu.be/mHyTOcfF99o

A Partial Reduction of BF Theory to Combinatorics, 2

Sketch of Proof. In 4D axial gauge, only "drop down" red propagators, hence in the ribbon case, no *M*-trivalent vertices. *S* integrals are ± 1 iff "ground pieces" run on nested curves as below, and exponentials arise when several propagators compete for the same double curve. And then the combinatorics is obvious...

Musings Chern-Simons. When the domain of BF is restricted to ribbon knots, and the target of Chern-Simons is restricted to trees and wheels, they agree. Why?

is this all? What ing number)

gnot?). Perhaps we should be studying these?

Finite type. What are finite-type What would be "chord diagrams"?

There's an alternative definition of finite type in 3D, due to Goussarov (see [BN1]). The obvious parallel in 4D involves "bubble wraps". Is it any good?

Shielded tangles. In 3D, one can't zoom in and compute "the Chern-Simons invariant of a tangle". Yet there are well-defined invariants of "shielded tangles", and rules for their compositions. What would the 4D analog be?

Will the relationship with the Kashiwara-Vergne problem [BND] necessarily arise here?

type invariants of plane curves, in the style of Arnold's J^+ , J^- , and St [Ar], a bit better? Arnold

What happens to a quantum particle on a pendulum at $T = \frac{\pi}{2}$?

Abstract. This subject is the best one-hour introduction I know for the mathematical techniques that appear in quantum mechanics — in one short lecture we start with a meaningful question, visit Schrödinger's equation, operators and exponentiation of operators, Fourier analysis, path integrals, the least action principle, and Gaussian integration, and at the end we land with a meaningful and interesting answer.

Based a lecture given by the author in the "trivial notions" seminar in Harvard on April 29, 1989. This edition, January 10, 2014.

1. The Question

Let the complex valued function $\psi = \psi(t, x)$ be a solution of the Schrödinger equation

$$\frac{\partial \psi}{\partial t} = -i\left(-\frac{1}{2}\Delta_x + \frac{1}{2}x^2\right)\psi$$
 with $\psi|_{t=0} = \psi_0.$

What is $\psi|_{t=T=\frac{\pi}{2}}$?

In fact, the major part of our discussion will work just as well for the general Schrödinger equation,

$$\frac{\partial \psi}{\partial t} = -iH\psi, \qquad H = -\frac{1}{2}\Delta_x + V(x)$$
$$\psi|_{t=0} = \psi_0, \qquad \text{arbitrary } T,$$

where,

- ψ is the "wave function", with $|\psi(t, x)|^2$ representing the probability of finding our particle at time t in position x.
- *H* is the "energy", or the "Hamiltonian".
- $-\frac{1}{2}\Delta_x$ is the "kinetic energy".
- V(x) is the "potential energy at x".

2. The Solution

The equation $\frac{\partial \psi}{\partial t} = -iH\psi$ with $\psi|_{t=0} = \psi_0$ formally implies

$$\psi(T,x) = \left(e^{-iTH}\psi_0\right)(x) = \left(e^{i\frac{T}{2}\Delta - iTV}\psi_0\right)(x).$$

By Lemma 3.1 with $n = 10^{58} + 17$ and setting $x_n = x$ we find that $\psi(T, x)$ is

$$\left(e^{i\frac{T}{2n}\Delta}e^{-i\frac{T}{n}V}e^{i\frac{T}{2n}\Delta}e^{-i\frac{T}{n}V}\dots e^{i\frac{T}{2n}\Delta}e^{-i\frac{T}{n}V}\psi_0\right)(x_n)$$

Now using Lemmas 3.2 and 3.3 we find that this is: (c denotes the ever-changing universal fixed numerical constant)

$$c \int dx_{n-1} e^{i \frac{(x_n - x_{n-1})^2}{2T/n}} e^{-i \frac{T}{N} V(x_{n-1})} \dots$$
$$\int dx_1 e^{i \frac{(x_2 - x_1)^2}{2T/n}} e^{-i \frac{T}{N} V(x_1)}$$
$$\int dx_0 e^{i \frac{(x_1 - x_0)^2}{2T/n}} e^{-i \frac{T}{N} V(x_0)} \psi_0(x_0)$$

Repackaging, we get

$$c \int dx_0 \dots dx_{n-1} \\ \exp\left(i\frac{T}{2n}\sum_{k=1}^n \left(\frac{x_k - x_{k-1}}{T/n}\right)^2 - i\frac{T}{n}\sum_{k=0}^{n-1} V(x_k)\right) \\ \psi_0(x_0).$$

Now comes the novelty. keeping in mind the picture x_{h}

and replacing Riemann sums by integrals, we can write

$$\psi(T,x) = c \int dx_0 \int_{W_{x_0x_n}} \mathcal{D}x$$
$$\exp\left(i \int_0^T dt \left(\frac{1}{2}\dot{x}^2(t) - V(x(t))\right)\right) \psi_0(x_0),$$

where $W_{x_0x_n}$ denotes the space of paths that begin at x_0 and end at x_n ,

$$W_{x_0x_n} = \{x : [0,T] \to \mathbb{R} : x(0) = x_0, x(T) = x_n\},\$$

and $\mathcal{D}x$ is the formal "path integral measure". This is a good time to introduce the "action" \mathcal{L} :

$$\mathcal{L}(x) := \int_0^T dt \left(\frac{1}{2} \dot{x}^2(t) - V(x(t)) \right).$$

With this notation,

$$\psi(T,x) = c \int dx_0 \psi_0(x_0) \int_{W_{x_0} x_n} \mathcal{D}x e^{i\mathcal{L}(x)}.$$

Video and more at http://drorbn.net/?title=AKT-14 (Jan 10 and Jan 17 classes)

Let x_c denote the path on which $\mathcal{L}(x)$ attains its Lemma 3.3. minimum value, write $x = x_c + x_q$ with $x_q \in W_{00}$, and get

$$\psi(T,x) = c \int dx_0 \psi_0(x_0) \int_{W_{00}} \mathcal{D}x_q e^{i\mathcal{L}(x_c + x_q)}.$$

In our particular case \mathcal{L} is quadratic in x, and therefore $\mathcal{L}(x_c + x_q) = \mathcal{L}(x_c) + \mathcal{L}(x_q)$ (this uses the fact that x_c is an extremal of \mathcal{L} , of course). Plugging this into what we already have, we get

$$\psi(T,x) = c \int dx_0 \psi_0(x_0) \int_{W_{00}} \mathcal{D}x_q e^{i\mathcal{L}(x_c) + i\mathcal{L}(x_q)}$$
$$= c \int dx_0 \psi_0(x_0) e^{i\mathcal{L}(x_c)} \int_{W_{00}} \mathcal{D}x_q e^{i\mathcal{L}(x_q)}.$$

Now this is excellent news, because the remaining path integral over W_{00} does not depend on x_0 or x_n , and hence it is a constant! Allowing c to change its value from line to line, we get

$$\psi(T,x) = c \int dx_0 \psi_0(x_0) e^{i\mathcal{L}(x_c)}$$

Lemma 3.4 now shows us that $x_c(t) = x_0 \cos t +$ $x_n \sin t$. An easy explicit computation gives $\mathcal{L}(x_c) =$ $-x_0x_n$, and we arrive at our final result,

$$\psi(\frac{\pi}{2}, x) = c \int dx_0 \psi_0(x_0) e^{-ix_0 x_n}.$$

Notice that this is precisely the formula for the Fourier transform of ψ_0 ! That is, the answer to the question in the title of this document is "the particle gets Fourier transformed", whatever that may mean.

3. The Lemmas

Lemma 3.1. For any two matrices A and B,

$$e^{A+B} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^n.$$

Proof. (sketch) Using Taylor expansions, we see that $e^{\frac{A+B}{n}}$ and $e^{A/n}e^{B/n}$ differ by terms at most proportional to c/n^2 . Raising to the *n*th power, the two sides differ by at most O(1/n), and thus

$$e^{A+B} = \lim_{n \to \infty} \left(e^{\frac{A+B}{n}} \right)^n = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^n,$$

as required.

Lemma 3.2.

$$\left(e^{itV}\psi_0\right)(x) = e^{itV(x)}\psi_0(x)$$

$$\left(e^{i\frac{t}{2}\Delta}\psi_0\right)(x) = c\int dx' e^{i\frac{(x-x')^2}{2t}}\psi_0(x')$$

Proof. In fact, the left hand side of this equality is just a solution $\psi(t, x)$ of Schrödinger's equation with V = 0:

$$\frac{\partial \psi}{\partial t} = \frac{i}{2} \Delta_x \psi, \qquad \psi|_{t=0} = \psi_0.$$

Taking the Fourier transform $\psi(t,p)$ _ $\frac{1}{\sqrt{2\pi}}\int e^{-ipx}\psi(t,x)dx$, we get the equation

$$\frac{\partial \tilde{\psi}}{\partial t} = -i \frac{p^2}{2} \tilde{\psi}, \qquad \tilde{\psi}|_{t=0} = \tilde{\psi}_0.$$

For a fixed p, this is a simple first order linear differential equation with respect to t, and thus,

$$\tilde{\psi}(t,p) = e^{-i\frac{tp^2}{2}}\tilde{\psi}_0(p)$$

Taking the inverse Fourier transform, which takes products to convolutions and Gaussians to other Gaussians, we get what we wanted to prove.

Lemma 3.4. With the notation of Section 2 and at the specific case of $V(x) = \frac{1}{2}x^2$ and $T = \frac{\pi}{2}$, we have

$$x_c(t) = x_0 \cos t + x_n \sin t.$$

Proof. If x_c is a critical point of \mathcal{L} on $W_{x_0x_n}$, then for any $x_q \in W_{00}$ there should be no term in $\mathcal{L}(x_c + \epsilon x_q)$ which is linear in ϵ . Now recall that

$$\mathcal{L}(x) = \int_0^T dt \left(\frac{1}{2}\dot{x}^2(t) - V(x(t))\right),$$

so using $V(x_c + \epsilon x_q) \sim V(x_c) + \epsilon x_q V'(x_c)$ we find that the linear term in ϵ in $\mathcal{L}(x_c + \epsilon x_q)$ is

$$\int_0^T dt \left(\dot{x}_c \dot{x}_q - V'(x_c) x_q \right)$$

Integrating by parts and using $x_q(0) = x_q(T) = 0$, this becomes

$$\int_0^T dt \left(-\ddot{x}_c - V'(x_c) \right) x_q.$$

For this integral to vanish independently of x_a , we must have $-\ddot{x}_c - V'(x_c) \equiv 0$, or

$$= -V'(x_c).$$
 (This is the famous $F = ma'$
of Newton's, and we have just
rediscovered the principle of
least action!

In our particular case this boils down to the equation

$$\ddot{x}_c = -x_c, \qquad x_c(0) = x_0, \qquad x_c(\pi/2) = x_n,$$

whose unique solution is displayed in the statement \Box of this lemma.

Video and more at http://drorbn.net/?title=AKT-14 (Jan 10 and Jan 17 classes)

 \ddot{x}_c

More at http://www.math.toronto.edu/~drorbn/Talks/HUJI-140101/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Geneva-130917/, .../Toronto-1303/ and at .../Chicago-1303/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Geneva-130917/, .../Toronto-1303/ and at .../Chicago-1303/

Meta–Groups, Meta–Bicrossed–Products, and the Alexander Polynomial, 1

Dror Bar-Natan at Sheffield, February 2013.

http://www.math.toronto.edu/~drorbn/Talks/Sheffield

Abstract. I will define "meta-groups" and explain how one specific Hard to categorify. meta-group, which in itself is a "meta-bicrossed-product", gives rise Idea. Given a group G and two "YB" to an "ultimate Alexander invariant" of tangles, that contains the pairs $R^{\pm} = (g_o^{\pm}, g_u^{\pm}) \in G^2$, map them Alexander polynomial (multivariable, if you wish), has extremely to xings and "multiply along", so that good composition properties, is evaluated in a topologically meaningful way, and is least-wasteful in a computational sense. If you

believe in categorification, that's a wonderful playground. This work is closely related to work by Le Dimet (Com-

ment. Math. Helv. 67 (1992) 306–315), Kirk, Livingston and Wang (arXiv:math/9806035) and Cimasoni and Turaev (arXiv:math.GT/0406269)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/, see also .../Sheffield-130206/ and .../Regina-1206/

• Quick to compute, but computation departs from topology

• Extends to tangles, but at an exponential cost.

This Fails! R2 implies that $g_o^{\pm}g_o^{\mp} = e = g_u^{\pm}g_u^{\mp}$ and then R3 implies that g_o^+ and g_u^+ commute, so the result is a simple counting invariant.

A Group Computer. Given G, can store group elements and perform operations on them:

Also has S_x for inversion, e_x for unit insertion, d_x for register deletion, Δ_{xy}^z for element cloning, ρ_y^x for renamings, and $(D_1, D_2) \mapsto$ $D_1 \cup D_2$ for merging, and many obvious composition axioms relating those. $P = \{x : g_1, y : g_2\} \Rightarrow P = \{d_y P\} \cup \{d_x P\}$

A Meta-Group. Is a similar "computer", only its internal structure is unknown to us. Namely it is a collection of sets $\{G_{\gamma}\}$ indexed by all finite sets γ , and a collection of operations m_z^{xy} , S_x , e_x , d_x , Δ_{xy}^z (sometimes), ρ_y^x , and \cup , satisfying the exact same *linear* properties.

Example 0. The non-meta example, $G_{\gamma} := G^{\gamma}$.

Example 1. $G_{\gamma} := M_{\gamma \times \gamma}(\mathbb{Z})$, with simultaneous row and column operations, and "block diagonal" merges. Here if $P = \begin{pmatrix} x : a & b \\ y : c & d \end{pmatrix} \text{ then } d_y P = (x : a) \text{ and } d_x P = (y : d) \text{ so}$ $\{d_yP\} \cup \{d_xP\} = \begin{pmatrix} x : a & 0\\ y : & 0 & d \end{pmatrix} \neq P$. So this G is truly meta.

Meta–Groups, Meta–Bicrossed–Products, and the Alexander Polynomial, 2

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/, see also .../Sheffield-130206/ and .../Regina-1206/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cambridge-1301/, see also http://www.math.toronto.edu/~drorbn/Talks/Mathcamp-0907/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Oxford-130121/ and at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/

Balloons and Hoops and their Universal Finite-7	Гуре Invariant, 2
The Meta-Cocycle J. Set $J_u(\lambda) := J(1)$ where	The β quotient, 2. Let $R = \mathbb{Q}[\![\{c_u\}_{u \in T}]\!]$ and $L_{\beta} := R \otimes T$
$J(0) = 0, \qquad \lambda_s = \lambda \not /\!\!/ CC_u^{s\lambda},$	with central R and with $[u, v] = c_u v - c_v u$ for $u, v \in T$. Then $FL \to L_\beta$ and $CW \to R$. Under this,
$\frac{dJ(s)}{ds} = (J(s) /\!\!/ \operatorname{der}(u \mapsto [\lambda_s, u])) + \operatorname{div}_u \lambda_s,$	$\mu \to (\bar{\lambda}; \omega) \text{with } \bar{\lambda} = \sum \lambda_{ux} ux, \lambda_{ux}, \omega \in R,$
and where $\operatorname{div}_u \lambda := \operatorname{tr}(u\sigma_u(\lambda)), \ \sigma_u(v) := \delta_{uv}, \ \sigma_u([\lambda_1, \lambda_2]) :=$	$x \in H, u \in T$
$\iota(\lambda_1)\sigma_u(\lambda_2) - \iota(\lambda_2)\sigma_u(\lambda_1) \text{ and } \iota \text{ is the inclusion } FL \hookrightarrow FA:$ u v u v u v	$\operatorname{bch}(u,v) \to \frac{c_u + c_v}{e^{c_u + c_v} - 1} \left(\frac{e^{-u} - 1}{c_u} u + e^{c_u} \frac{e^{-v} - 1}{c_v} v \right),$
	if $\lambda = \sum \lambda_v v$ then with $c_{\lambda} := \sum \lambda_v c_v$,
$\bigvee_{\lambda} \xrightarrow{-} \bigvee_{\lambda} + \bigvee_{\lambda}$	$u /\!\!/ CC_u^{\lambda} = \left(1 + c_u \lambda_u \frac{e^{c_{\lambda}} - 1}{c_{\lambda}}\right)^{-1} \left(e^{c_{\lambda}} u - c_u \frac{e^{c_{\lambda}} - 1}{c_{\lambda}} \sum_{v \neq u} \lambda_v v\right),$
Claim. $CC_u^{\operatorname{bch}(\lambda_1,\lambda_2)} = CC_u^{\lambda_1} /\!\!/ CC_u^{\lambda_2/\!/CC_u^{\lambda_1}}$ and	$\operatorname{div}_u \lambda = c_u \lambda_u$, and the ODE for J integrates to
$J_u(\operatorname{bch}(\lambda_1,\lambda_2)) = J_u(\lambda_1) / CC_u^{\lambda_2//CC_u^{\lambda_1}} + J_u(\lambda_2 / CC_u^{\lambda_1}),$	$J_u(\lambda) = \log\left(1 + \frac{e^{c_\lambda} - 1}{c_\lambda}c_u\lambda_u\right),$
and hence tm , hm , and tha form a meta-group-action.	so ζ is formula-computable to all orders! Can we simplify?
Why ODEs? Q. Find f s.t. $f(x+y) = f(x)f(y)$.	$\frac{1}{2} \frac{1}{2} \frac{1}$
A. $\frac{dj(s)}{ds} = \frac{d}{d\epsilon}f(s+\epsilon) = \frac{d}{d\epsilon}f(s)f(\epsilon) = f(s)C.$	place $\lambda_{ux} \to \alpha_{ux} := c_1 \lambda_{ux} \frac{e^{c_x} - 1}{2}$ and $\omega \to \log \omega$, use $t_u = e^{c_u}$.
Now solve this ODE using Picard's theorem or Alekseev Torossian	and write α_{ux} as a matrix. Get " β calculus".
The Invariant (Set $\zeta(a^{\pm}) = (\pm u_{\pi}; 0)$ This at least defines	\mathcal{C} Coloulus Let $\mathcal{C}(H,T)$ be
an invariant of $u/v/w$ -tangles, and if the topologists will de-	β Calculus. Let $\beta(H, I)$ be
liver a "Reidemeister" theorem, it is well defined on \mathcal{K}^{bh} .	$\frac{\omega}{u} \frac{x}{\alpha w} \frac{g}{\omega} \frac{\omega}{w}$ and the α_{ux} 's are
x = (1 + 1)	$\left\{ \begin{array}{c} u \\ v \\ u \\ a_{ux} \\ \alpha_{uy} \\ \alpha_{uy} \\ \alpha_{uy} \\ \vdots \\ u \\ u$
$ \zeta: u \bigotimes_{x} \longmapsto \left(x : + \right ^{a} ; 0 \right) u \bigotimes \longmapsto \left(x : - \right ^{a} ; 0 \right) $	$\begin{array}{c} \vdots \\ \vdots $
Theorem. ζ is (the log of) a universal finite type invariant (a	$\omega_1 \mid H_1 \omega_2 \mid H_2$
homomorphic expansion) of w-tangles.	$\begin{array}{c c} \omega & \cdots \\ \hline \end{array} & \omega & \cdots \\ \hline \hline$
Tensorial Interpretation. Let \mathfrak{g} be a finite dimensional Lie	$tm_w^{uv}: \ \ u \ \ \beta \ \ \mapsto \ \ w \ \ \alpha + \beta \ , \qquad 1 \ \ \mu_1 \ \ \omega_1 \omega_2 \ \ H_1 \ \ H_2 \ ,$
algebra (any!). Then there's $\tau : FL(T) \to \operatorname{Fun}(\oplus_T \mathfrak{g} \to \mathfrak{g})$	$\begin{array}{cccc} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $
and $\tau : CW(T) \to \operatorname{Fun}(\oplus_T \mathfrak{g})$. Together, $\tau : M(T, H) \to$	$T_2 = 0 \alpha_2$
$\operatorname{Fun}(\oplus_T \mathfrak{g} \to \oplus_H \mathfrak{g})$, and hence	$\omega x y \cdots \omega z \cdots$
$e^{\tau}: M(T,H) \to \operatorname{Fun}(\oplus_T \mathfrak{g} \to \mathcal{U}^{\otimes H}(\mathfrak{g})).$	$hm_z^{xy}: \underbrace{\vdots}_{\alpha \beta \gamma} \mapsto \underbrace{\vdots}_{\alpha + \beta + \langle \alpha \rangle \beta \gamma},$
ζ and BF Theory. Let A denote a g-connection	
on S ⁴ with curvature F_A , and B a \mathfrak{g}^+ -valued 2-	$\frac{\omega x \cdots}{\omega x} \frac{\omega \epsilon x \cdots}{\omega \epsilon x} \frac{\omega \epsilon}{\omega \epsilon x}$
form on S. For a noop γ_x , let $\operatorname{Hol}_{\gamma_x}(A) \in \mathcal{U}(\mathfrak{g})$ be the holonomy of A along γ_x . For a hall γ_x let	$tha^{ux}: u \mid \alpha \beta \mapsto u \alpha(1 + \langle \gamma \rangle / \epsilon) \beta(1 + \langle \gamma \rangle / \epsilon) ,$
$\mathcal{O}_{\alpha}(B) \in \mathfrak{a}^*$ be the integral of B (transported via	$\vdots \mid \gamma \delta \vdots \gamma/\epsilon \delta - \gamma eta/\epsilon$
$A \text{ to } \infty$) on γ_u .	where $\epsilon := 1 + \alpha$, $\langle \alpha \rangle := \sum_{v} \alpha_{v}$, and $\langle \gamma \rangle := \sum_{v \neq u} \gamma_{v}$, and let
Loose Conjecture. For $\gamma \in \mathcal{K}(T, H)$,	$R_{ux}^+ := \frac{1}{x} \frac{x}{x}$ $R_{ux}^- := \frac{1}{x} \frac{x}{x}$
$\int \mathcal{D}A\mathcal{D}Be^{\int B \wedge F_A} \prod e^{\mathcal{O}_{\gamma_u}(B))} \bigotimes \operatorname{hol}_{\gamma_x}(A) = e^{\tau}(\zeta(\gamma)).$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\int u x$ That is f is a complete evaluation of the BF TOFT	Why bother? (1) An ultimate Alexander
Issues. How exactly is B transported via A to ∞ ? How does	invariant: Manifestly polynomial (time and
the ribbon condition arise? Or if it doesn't, could it be that	size) extension of the (multivariable) Alexan-
ζ can be generalized??	der polynomial to tangles. Every step of the
The β quotient, 1. • Arises when \mathfrak{q} is the 2D non-Abelian	computation is the computation of the in-
Lie algebra.	variant of some topological thing (no fishy
• Arises when reducing by relations satisfied by the weight	Gaussian elimination!). If there should be an Alexander in-
system of the Alexander polynomial.	See also we be an angeorary caregorification, it is this one. See also we be given we be supported by M
"God created the knots, all else in topology is the work of mortals "	Why bother? (2) Related to A-T, K-V, and E-K, should
Leopold Kronecker (modified) www.katlas.org	have vast generalization beyond w-knots and the Alexander
Paper in progress: $\omega \epsilon \beta / kbh$	polynomial. See also $\omega \epsilon \beta$ /wko, $\omega \epsilon \beta$ /caen, $\omega \epsilon \beta$ /swiss.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Oxford-130121/ and at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/

by successive approximations presents no problems. For this we introduce the following modification $GRT(k)$ of the group $GT(k)$. We denote by $GRT_1(k)$ the set of all $g \in Fr_k(A, B)$ such that	$g(B, A) = g(A, B)^{-1}$, (5.12)	g(C, A)g(B, C)g(A, B) = 1 for $A + B + C = 0$, (5.13)	$A + g(A, B)^{-1}Bg(A, B) + g(A, C)^{-1}Cg(A, C) = 0 $ (5.14) for $A + B + C = 0$,	$g(X^{12}, X^{23} + X^{24})g(X^{13} + X^{23}, X^{34})$ = $g(X^{23}, X^{34})g(X^{12} + X^{13}, X^{24} + X^{34})g(X^{12}, X^{23}),$ (5.15)	where the X^{ij} satisfy (5.1). GRT ₁ (k) is a group with the operation	$(g_1 \circ g_2)(A, B) = g_1(g_2(A, B)Ag_2(A, B)^{-1}, B) \cdot g_2(A, B). $ (5.16)	On $\operatorname{GRT}_1(k)$ there is an action of k^* , given by $\widetilde{g}(A, B) = g(c^{-1}A, c^{-1}B)$, $c \in k^*$. The semidirect product of k^* and $\operatorname{GRT}_1(k)$ we denote by $\operatorname{GRT}(k)$. The Lie algebra $\operatorname{art}_1(k)$ of the group $\operatorname{GRT}_1(k)$ consists of the series $w \in \operatorname{Fr}_1(A, B, B)$	uch that	$\psi(B, A) = -\psi(A, B), \qquad (3.17)$ $\psi(C, A) + \psi(B, C) + \psi(A, B) = 0 \text{for } A + B + C = 0, \qquad (5.18)$ $[B, \psi(A, B)] + [C, \psi(A, C)] = 0 \text{for } A + B + C = 0, \qquad (5.19)$	$\psi(X^{12}, X^{23} + X^{24}) + \psi(X^{13} + X^{24}), X^{34}$ $\psi(X^{12}, X^{23} + y^{24}) + \psi(X^{13} + X^{24}), X^{34}$	$= \psi(X^{-1}, X^{-1}) + \psi(X^{-1} + X^{-1}, X^{-1} + X^{-1}) + \psi(X^{-1}, X^{-1}), (5.20)$	where the X ⁻ satisfy (5.1). A commutator (,) in grt ₁ (K) is of the form $\langle \psi_1, \psi_2, \psi_3 \rangle = [\psi_1, \psi_3] + D_w(\psi_1) - D_w(\psi_2),$ (5.21)	where $[\psi_1, \psi_2]$ is the commutator in $f_k(A, B)$ and D_{ψ} is the derivation of $f_{1k}(A, B)$ given by $D_{\psi}(A) = [\psi, A]$, $D_{\psi}(B) = 0$. The algebra $grt_1(k)$ is	PROPOSITION 5.1. The action of $GT(k)$ on $M(k)$ is free and transitive.	PROOF. If $(\mu, \varphi) \in M(k)$ and $(\overline{\mu}, \overline{\varphi}) \in M(k)$, then there is exactly one f such that $\overline{\varphi}(A, B) = f(\varphi(A, B)e^A\varphi(A, B)^{-1}, e^B) \cdot \varphi(A, B)$. We need to show that $(2, f) \in \overline{GT}(k)$ where $2 = \overline{\pi}/\mu$. We now $(4, 10)$. Let \overline{G} be the	semidirect product of S_n and $\exp \alpha_n^k$. Consider the homomorphism $B_n \to G_n$ that takes σ_i into	$\varphi(X^{1i}+\dots+X^{i-1,i}, X^{i,i+1})^{-1}\sigma^{i,i+1}e^{\mu X^{i,i+1}/2}\varphi(X^{1i}+\dots+X^{i-1,i}, X^{i,i+1}),$	where $\sigma^{ij} \in S_n$ transposes <i>i</i> and <i>j</i> . It induces a homomorphism $K_n \to \exp \mathfrak{a}_n^k$, and therefore a homomorphism $\alpha_n : K_n(k) \to \exp \mathfrak{a}_n^k$, where $K_n(k)$ is the <i>k</i> - pro-unipotent completion of K_n . It is easily shown that the left- and right-hand	sides of (4.10) have the same images in exp a_{k}^{4} . It remains to prove that a_{n} is an isomorphism. The algebra Lie $K_{n}(k)$ is topologically generated by the elements ξ_{ij} , $1 \le i < j \le n$, with defining relations obtained from (4.7)–(4.9) by substituting $x = exp \xi_{i}$. The principal parts of these relations are the same as	in (5.1), while $(\alpha_n, (\xi_{ij}) = \mu X^{ij} + \{\text{lower terms}\}$, where $(\alpha_n)^*$. Lie $K_n(k) \to a_n^k$	is induced by the homomorphism α_n . Therefore α_n is an isomorphism, i.e., (4.10) is proved. (4.3) is obvious. To prove (4.4), we can interpret it in terms of K_3 and argue as in the proof of (4.10), or, what is equivalent, make the substitution	$X_{1} = e^{A}, X_{2} = e^{-A/2} \varphi(B, A) e^{B} \varphi(B, A)^{-1} e^{A/2}, \qquad (5.4)$ $X_{3} = \varphi(C, A) e^{C} \varphi(C, A)^{-1},$	where $A + B + C = 0$.	From Drinfel'd's On quasitriangular Quasi-Hopf algebras and a group closely	connected with Gal(Q/Q), Leningrad Math. J. 2 (1991) 829-860.
Braids and the Grothendieck–Teichmuller Group Braids: Braids and the Grothendieck–Teichmuller Group Dror Bar-Natan, the Newton Institute, January 2013, http://www.math.toronto.edu/~drothn/Talks/Newton-1301/ I \subset $\mathbb{Q}PB_n$ the augmentation ideal;	Abstract. The "Grothendieck-Teichmuller Group" (GT) appears as a "depth $B^{(m)} = \mathbb{Q}^{P} B_n / I^{(m)}$ (Interedi); $B = 0$	certificate" in many recent works — "we do A to B, apply the result to C, and $\mu\mu\nu$ " (more cur). Include D D' = and something more than $\mu\mu\mu$ D' (m) and then $\mu\nu$ $\hat{B} = \hat{C}$ when $\hat{C} = 0$	Bet sometime reference to G , in my talk I will explain how GT arose first, in Drinfel'd's work on asso- $\langle t^{ij} = t^{ji}: [t^{ij}, t^{kl}] = [t^{ij}, t^{ik} + t^{jk}] = 0\rangle$, so difference and how it can be used to chain that "around homody downed consistent $B^{(m)}$ and \hat{R} are immeriate $O^{(m)}$ and	extends, and now it can be used to show that "every bounded-uegree associated by and b are portorphic to ∇^{-1} and extends", that "rational associators exist", and that "the pentagon implies the \hat{C} , but not canonically. Me not know that hexagon".	In a nutshell: the filtered tower of braid groups (with bells and whistles at- analyzed.	tached) is isomorphic to its associated graded, but the isomorphism is neither	examined in the set of isomorphisms between two isomorphic objects $a_1 = 1$ $b_i = b_i$ $b_i = b_i$ b_i b_i ways has two groups acting simply transitively on it — the group of automor-	phisms of the first object acting on the right, and the group of automorphisms	but the second object actual on the tett. In the case of associators, that its $t^{13}t^{13}t^{12}t^{23} \leftrightarrow$ group is what Drinfel'd calls the Grothendieck-Teichmuller group GT , and the second aroun isomorphic but not canonically to the first and denoted CBT	is the one several recent works seem to refer to. Almost everything I will talk about is in my old paper "On Associators and $_{AT}$. $f \uparrow \uparrow$	the Grothendieck-Teichmuller Group I", also at arXiv:q-alg/9606021.	$e^{\epsilon(t^{14}+t^{24})}$ Main Theorem. The projection $ASSO^{(m)} \rightarrow ASSO^{(m)} \rightarrow ASSO^{(m-1)}$	$(d_4\Gamma)^{4123} (d_2\Gamma)^{4123} (d_2\Gamma)^{4123} (d_3\Gamma)^{1243} (d_4\Gamma)^{1243} $	$(o^{4123})^{-1}$ $(o^{4123})^{-1}$ $(o^{4123})^{-1}$ $(o^{414}+t^{24}+t^{34})$ $e^{et^{24}}$ $(o^{61})^{-1}$ $(o^{61})^{-1}$ $(o^{61})^{-1}$ $(o^{61})^{-1}$	$(a_{1}\Gamma)^{4123} \bullet (a_{1}\Gamma)^{4123} \bullet (a_{2}\Gamma)^{1243} \bullet (a_{2}\Gamma)^{$	$e^{e(k^{14}+k^{24}+k^{34})}$ $e^{e(k^{14}+k^{24}+k^{34})}$ $e^{e(k^{14}+k^{24}+k^{34})}$ $e^{e(k^{14}+k^{24}+k^{34})}$ $e^{e(k^{14}+k^{24}+k^{34})}$			$e^{e^{t}14} \log e^{e^{t}14} \log e^{e^{t}14} \log e^{e^{t}24} \log e^{e^{t}2} \log e^{e^{t}2$		$0: \qquad 1 = d_4 \Gamma d_5 \Gamma (d_5 \Gamma)^{-1} (d_5 \Gamma)^$	$(d_4 O_{e})^{1243} = \tilde{d}_3 O_{e} (d_0 \Gamma)^{1423} f \qquad \qquad$	$(d_3\Gamma)^{1428}$ $d_3C_1^{-1}: 1-d_3\psi = (product around shaded area).$	$\begin{pmatrix} (d_1\Gamma)^{1428} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	* See arXiv:math/0702128 by Fu- rusho and arXiv:math/1010.0754 $(a_2\Gamma)^{1423}$ $(a_2\Gamma)^{1423}$ by B-N and Dancso.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/

The Most Important Missing infrastructure Project in Knot Theory Move 213 An "infrastructure project" is hard (and sometimes non-glorious) work that's done now and pays of "later. An example, and the most important one within knot theory, is the tabulation of knots up to 10 rossings. I think it precesses Rolfsen, yet the impact was and is production of the Rolfsen table was hard and non-glorious. Yet is impact was and is production of the Rolfsen table was hard and non-glorious. Yet is impact was and is production of the Rolfsen table was hard and non-glorious. Yet is impact was and is preduction of the Rolfsen table was hard and non-glorious. Yet is impact was and is preduction of the Rolfsen table was hard and non-glorious. Yet is impact was and is preduction of the Rolfsen table was hard and non-glorious. A second example is the Hoste-Thistlethwalte tabulation of knots with up to 17 crossings. Be chaps nor fun to do as the real hard work was delegated to a machine yet hard it certainly was: a proof is in the fact that notody so far had tried to replicate their work, not even to a smaller crossing number. Yet again, it is hard to versettime the value of that project in many ways the Rolfsen table is "not yet generet", and many phenomena that appear to be rare when looking at the Rolfsen table is "not yet generet", and many phenomena that appear to be rare when looking at the Rolfsen table is "not yet generet", and many phenomena that appear to be rare when looking at the Rolfsen table is "not yet generet" and many phenomena that appear to be rare when looking at the Rolfsen table is "not yet generet" to the Rolfsen table appendix to the theory of lessers is more abain of move they are put together than shout the approject. In the dubt and to come shouts commeted any appear for the first the when to dubt, in knot theory, is the ranget was that make up knots and the laper-use was the was the mate the through different this that make up knots and the preductions, and thus most increasing numbers at transcen		
An "infrastructure project" is hard (and sometimes non-glorious) work that's done now and pays of flater. An example, and the most important one within knot theory, is the tabulation of knots up to 10 crossings. I think it precedes Rolfsen, yet the result is often called "the Rolfsen Table of Knots", as it is famously printed as an appendix to the famous book by Rolfsen. There is no doubt the production of the Rolfsen table was hard and non-glorious. Yet it is impact was and is tremendous. Every new thought in Knot theory is stead agains the Rolfsen table, and it is hard to find a paper in knot theory that doesn't refer to the Rolfsen table in one way or another. A second example is the Hosten-Thitsitherwhoite tabulation of Knots will up to 12 crossing. Arefore mean only appear for the first time whole to the Rolfsen table, and it is hard to prof is in the for Hosten-Thitsitherwhoite tabulation of Knots will up to 12 crossing. Arefore mean only appear for the first time whole to king at higher crossing number. But as like to say, knots are the wrong object to studying cakes and parties as they core out of the bakery- we say want to make them our own, but the theory of deserts is more about the ingredients and how they are put together than about the end product. Studying knots on their own is the parallel of studying cakes and parties as they core out of the bakery- we say want to make them our own, but the theory of deserts is more about the ingredients and how they are put together than about the end product. Studying knots on their own is the parallel of studying cakes and parties as they core out of the bakery - we say to make them our own, but the thory of deserts is more about the ingredients and how they are put together than about the end products in they the reflects through the fact that knots are on finitely generated in any sense (hence they must be made of some more basic ingredients that make up Inots and tabulation of tangles to as high a crossing number as practical. This w	The Most Important Missing Infrastructure Project in Knot Theory	
 An "infrastructure project" is hard (and sometimes non-glorious) work that's done now and pays of later. An example, and the most important one within knot theory, is the tabulation of knots up to 10 crossings. Think it proceeds holfson, yet the results of softson Table of Knots in Table or Shotson. Yet is impact was and is tremendous. Every new thought in knot theory is tested against the Roffsen table, and us had non-glorious. Yet is impact was and is tremendous. Every new thought in knot theory is tested against the Roffsen table, and is had to find a paper in knot theory that description of the Roffsen table. Now any or another many or another the routs is offsen table in one way or another. A second example is the Hoste-Thistlethwalte tabulation of knots with up to 17 crossings. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly was: a proof is in the fact that nodoly so fah dd tred to replicate their work, not even to mave the holfsen table become the rule when the view is expanded. Likewise, other phenomean only appear for the farst three when looking at the Roffsen table become the rule when the view is expanded. Likewise, other phenomean only appear for the farst three more basic ingredients. And how they are put obgether than about the ond products. In algebra, when view of the bakery - we sure want to make them our own, but the theory of desserts is more about the the products. In algebra and that permit a richer algebraic structure. These are braids (which are already well-studied and that permits of how they are put together than about the ond products. In algebra, when viewed from within the algebra of knots are reascendend, in you was and that permits a tabulate) and even more so taing regredients that make up knots and the tabulate) and well was and they are marked well-studied and relevant. The overall mark they regreate the algebra is threader to farea tabulation of whot the regreades relevants and state the of	January-23-12	
 An "Infrastructure project" is hard [and sometimes non-glorious] work that's done now and pays of flater. An example, and the most important one within knot theory, is the tabulation of knots up to 10 crossings. Think it precedes kolfsen, yet the result is often called "the kolfsen Table of Knots", as it is famously pointed as an appendix to theory is tested against the Rolfsen table, and it is hard to find a paper in knot theory that deasn't refer to the Rolfsen table in one way or another. A second example is the Hoste-Thislethwalte tabulation of knots with up to 17 crossings. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly was: a proof is in the fact that hoody is far had tried to replicate their work, not even to a smaller crossing number. Yet again, it is hard to overselinate the value of that project: in many ways the Rolfsen table is cond the rule when the view is expanded. Likewise, other are when looking at the Rolfsen table become the rule when the view is expanded. Likewise, other are when looking at the Rolfsen table become the rule when the view is expanded. Likewise, other are when looking at higher crossing numbers. But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some are very few operations defined on lanots (connected suns and stellite operations being the particle and us most therma or won, but the theory of deserts is more about the disperiods. In any sense (theorem they must be made of some mee basic ingriedings), and though the fact that konts are not finitely generated in any sense (theorem they must be made of some more basic ingriedings), and though the fact that conducts. In algebra, when viewed from within the algebra of knots and operations on knots (see [Actric cfAl). Thus in my mind the most important missing infrastructure project in knot theory is the fact balar toreal were informer of such a tabulation, if done right, will be	10:12 AM	
 An example, and the most important one within knot theory, is the isbubition of knots (up to 0) creatings. It hink it precedes holdsen, yet has result is often called "the foldsen table of finds", as the fold of the product of finds of the product of the pr	An "inference unclosed" is have (and constitutes non-playing) work that's done now and now	
 of Hater. An example, and the most important one within knot theory, is the tabulation of knots up to 10 crossings. It hink it precedes Rolfsen, yet the result is often called "the Rolfsen Table of Knots", at its farmously printed as an appendix to the farmous book By Rolfsen. There is no doubt the production of the Kolfsen table was hots that do not genome was and its its farmously printed as an appendix to the farmous book By Rolfsen. There is no doubt the production of the Kolfsen table was hots. Pertite Hingdeet was and its its farmously printed as an appendix to the farmous book By Rolfsen. There is no doubt the production of the Kolfsen table in one table, and hot genome way or another. A second example is the Hosten-Thickerhwatie tabulation of knots with up to 12 crossing. Perhaps more fun to do as the real hand work was delegated to an anchine, yet hard it certainly was: a proof is in the fact that hoodwick was delegated to an anchine. Yet hard its certainly was: a proof is in the fact that hoodwick was delegated to an anchine. Yet hard its certainly was: a proof is in the Act that nobody so far had tried to replicate their work, not even to a smaller crossing number. But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKC" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of deserts is more about the impredicts. In algebra distance, then were table and cardinal theory and statilite operations being the main exceptions), and thom were throm more basic ingredicatily, and through the fact that nosts centratice of was the table. The right alpoints for tuby in the fact that knots are not finitely generated in any sense (finite they musch made distance more basic ingredicatily, and through the fact that real centrations being the main exceptions), and thom	An infrastructure project is hard (and sometimes non-gionous) work that's done now and pays	
An example, and the most important one within knot theory, is the tabulation of knots up to 10 crossings. I think it precedes Rolfsen, yet the result is often called "the Rolfsen Table of Knots", at is farmously printed as an appendix to the farmous book by Rolfsen. There is no doubt the result is often called "the Rolfsen Table of Knots", at it is functionally appendix theory is tested agains the Rolfsen table, and it is hard to find a paper in knot theory is tested agains the Rolfsen table, and it is hard to find a paper in knot theory is tested agains the Rolfsen table, and it is hard to make the agains the Rolfsen table, and it is hard to make the rolfsen table in one way or another. A second example is the Hoste-Thistlethwaite tabulation of knots with up to 12 crossings. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly was: a proof is in the fact that nobody so far had tried to replicate their work, not even to a smaller crossing numbers. But as 11 like to say, knots are the sweng opplied to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKQ" paper: But as 11 like to say, hours are the wrong opplied to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKQ" paper: But as 11 like to say, hours on their own is the parallel of studying cakes and parties as they come about the ingredients and how they are put together than about the end products. In algebraic, when viewed from within the algebra of knots and operations on knots (sonnected sums and asticilite operations being the main exceptions), and thus most interesting properties of knots are transmediated and tabulated) and even more so tangles and tangled graphs. Are in my mind the words to alway the barged to a single consisting numbers as transformed to the offer algebraic when viewed from within the algebra of knots are now single chores and soutes in the rest term double and souta babe and thard work was a deperation of knots the paralled of th	off later.	-//\\ (()) \\ //
An example, and the most important one within knot theory, is the tabulation of knots up to 10 crossings. It hink it production of the Roisen table (with Knots) ⁺ , as it is famoush pointed as an appendix to the famous book by Kolfsen. There is no doubt the production of the Roisen table was head and non-glorona. Vet its impact was and is its hard to no exavor another. A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly was a porof is in the fact that nobody of an had tried to replicate their work, not even work notes and the Roisen table is "not yet generic", and many phenomena that appear to be are when looking at the Holfsen table book of a had tried to replicate their work, not even work notes and the most imported.", and many phenomena that appear to be are when looking at the Holfsen table book them out own, but the theory. Let me quote (with some variation) my own (with Dancso) "WiKQ" paper: But as 1 like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WiKQ" paper: But as 1 like to say, knots are the wrong object to study in knot theory of deserts is more about the ingredients and how they are put together than about the end products. In algebraic know we may to make them our own, but the theory of deserts is more about the ingredients and how they are put together than about the end products. In algebraic know meet from within the algebraic knows are notes that are now ignored for the fact that knows are not first or using infrastructure. These are braids (which are already well-studied and tabulated) and even more to tanging infrastructure project in knows the (see [AKT] cCAD). Thus in my midi the most important missing infrastructure project in knows to knost (see [AKT] cCAD). And we write work index that the degreads are now still missing. The existence of sunch a tabulation, if one might, will be cros		
 crossings: I think it precedes Rolfsen, yet the result is often called "the Rolfsen Table of Knots", as an appendix to the famous book by Rolfsen. There is no doubt the production of the Rolfsen table was had and non glorous. Yet Its impact was and is treemed non-us. Yever, new thought in knot theory is tested against the Rolfsen table, and it is hard to find a paper in knot theory that doesn't refer to the Rolfsen table in one way or another. A second example is the Hoste -Thistlethwaite tabulation of knots with up to 12 rocsings. Perhaps more fun to do as the real hard work was delegated to a machine, yet had it creatinity was: a proof is in the fact that nobody so far had tried to replicate their work, not even to a smaller crossing number. Yet again, it is hard to overestimate the value of that project in many ways the Rolfsen table become the rule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers. But as 1 like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKG" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out ot the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and thow they are put together than about the end products. In algebraic, when viewed from within the algebra of knots and operations on knots (see [Attra end that permit a richer algebraic structure. These are braids (which are already well-studied) and the most interesting proparties of knots are transcendental, or non-algebraic structure. These are braids (which are already well-studied) and even more os tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tert orgony will well and a "down side"? Should'n we also exalted the infrequence of such at abulation, if done right, will be compara	An example, and the most important one within knot theory, is the tabulation of knots up to 10	
 It is famoush printed as an appendix to the famous book by Roffsen. There is no doubt the production of the Roffsen table was hard and non-glorous. Yet its impact was and is the remendous. Every new thought in knot theory is tested against the Roffsen table, and it is hard to find a paper in knot theory that doesn't refer to the Roffsen table in one way or another. A second example is the Hoste-Thistlethwaite tabulation of knots with up to 12 cossings. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly was a proof is in the fact that hoods of a rhad tried to replicate their work, not even to a smaller crossing number. Yet again, it is hard to overestimate the value of that project: in many mays the Roffsen table become the rule when the view is expanded. Likewise, other phenomena nany appear for the first time when looking at high crossing numbers. But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKQ" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and thow they are put together than about the end products. In algebraic, and many shense them ence back ingredients, and thorough the fact that theory are thus the ingredients and that permit a richer algebraic structure. These are braids (which are already well-studied and the permits) and the most inpertant missing infrastructure project in knot theory is the aread relevant. The variated balance of the hadred structure, these are now sill model to be and every with a structure to the sare and scale many sense that are now incored for the lack of society, will be comparable to the influence of such at abulation of the global so and many thereme are now sill moref for the lack of society, will be comparable to the influenc	crossings. I think it precedes Rolfsen, yet the result is often called "the Rolfsen Table of Knots", as	
 production of the Roffsen table was hard and non-glorous. Yet its impact was and is production of the Roffsen table, and its hard to find a paper in knot theory is tested against the Roffsen table, and its hard to find a paper in knot theory that doesn't refer to the Roffsen table, and its hard to a schereal hard work was delegated to a machine, yet hard it tectralnly wass: a proof is in the date this hard to oversein table become the view is expanded. Likewise, on the renal hard work was delegated to a machine, yet hard it tectralnly wass: a proof is in the fact that nobody so far had tried to replicate their work, not even to a smaller crossing number. Yet again it is hard to overseintate the value of that project is many ways the Roffsen table become the ule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers. But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKG" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the noglexit, knot theory this reflects through the fact that knots are not finicely generated in any sense (nence they must be made of some more bask ingredients), and thus most interesting propretites of knots are transcendental, or non-algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are norsell, which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus my mind the most important missing infrastructure project in knot theory is the transcendental, or non-set to balaution, if done right, will be comparable to the influence of the Roffsen tabulation, if don	it is famously printed as an appendix to the famous book by Rolfsen. There is no doubt the	
 tremendous. Every new thought in knot theory is tested against the Rolfsen table, and it is hard to find a paper in knot theory that doesn't refer to the Rolfsen table in one way or another. A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly was: a proof is in the fact that nobdy so far had tried to replicate their work, not even to a smaller crossing number. Yet again, it is hard to oversimate the vulue of that project: in many ways the Rolfsen table is "not yet generc", and many phenomena that appear to be rare when looking at the Rolfsen table is "not yet generc". And many phenomena that appear to be rare when looking at the Rolfsen table be come the rule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers. But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKO" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients, and how they are put together than about the an algebraic. Knot theory this reflects through the fact that knots are on thintely generated in any sense (fince they must be made of some more basic ingredients), and through the fact that there are very five operations defined on knots (connected sums and satelife operations being the main exceptions), and thus most interesting properties of knots and operations houts (see [ACT CGA]). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and enermentation for which the grounds are now still messing. The exitence of	production of the Bolfsen table was hard and non-glorious. Yet its impact was and is	
 Letterindude. Levely have thought in knot theory is desided against the Rollsen table in one way or another. A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certains in a second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certains in the Rollsen table is "not yet generic", and many phenomena ther work, note are when looking at the Rollsen table is "not yet generic", and many phenomena that appear to be are when looking at the Rollsen table become the rule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers. But as 1 like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKO" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the higherdionts being the fact that those are not finitely generated in any sense (nence they must be made of some more basic ingredients), and through the fact that there are very few operations defined on knots (connected sums and astellite operations being the main exceptions), and thus most interesting properties of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [Attric GFA]). Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to a shigh a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now sult must be more sequatores on stangles and tangled graphs? May mind the most important mis	transmission of the horizon table was hard than the ported against the Balfon table, and it is hard	(KnotPlot image)
 to find a paper in knot theory that doesn't refer to the kolsen table in one way of another. A second example is the Hoste-Thistlethwaite tabulation of knots with up to 12 crossing. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly was: a proof is in the fact that nobodys of ar had tried to replicate their work, not even to a simpler crossing number. Yet again, it is hard to oversetimate the value of that project: in many ways the Rolfsen table is "not yet generic", and many phenomena that appear to be rare when looking at the Rolfsen table become ther vule when here wise is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers. But as like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKO" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the hakery- we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic knot theory this fact that knots are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that there are very few operations defined on knots (connected sums and abeliet operations being the main exceptions), and thus most interesting properties of knots are transcendental, or nonalgebraic, when viewed from within the algebra is structure. These are paradial. This will enable age are tamount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation, if done right, will be comparable to the influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen tabulate the algebra is of should. The one space of an sub era structure. These existence of the Rolfsen tabulates the should is contage operation	tremendous. Every new thought in knot theory is tested against the konsen table, and it is nard	9_42 is Alexander Stoimenow's favourite
A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings. Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certains was the Roffsen table of a tabulated to replicate their work, not even to a smaller crossing number. Yet again, it is hard to overestimate the value of that project: in many mays the Roffsen table become the rule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers. But as 1 like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKQ" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery- we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic knot theory this reflex through the fact that knots are not finitely generated in any sense (nence they must be made of some more basic ingredients), and through the fact that there are very few operations defined on knots (connected sums and astellite operations being the main exceptions), and thus most interesting properties of knots are transcendentail, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [Attice fail). Thus in my mind the most important missing infrastructure project in knot theory is the tabulated) and even more so tangles and tangled graphs. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and "down side"? Are the strands oriented? Do we mode out by some symmetries or figure out the action is down side"? Are the strands oriented? Do we mode out by some symmetries on figure out the action of some symmetries? Shouldn't we also ensumerate the adjest? Anall? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mode out algoes for should in and weelow; jutapo	to find a paper in knot theory that doesn't refer to the Rolfsen table in one way or another.	
A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings. Perhaps more fun to do as the real hand work was delegated to a machine, yet hand it certainly was: a proof is in the fact that nobody so far had tried to replicate their work, not even to a smaller crossing number. Yet again, it's hand to oversettimate the value of that project is many ways the Roffsen table is "not yet generic", and many phenomena that appear to be rare when looking at the Roffsen table become the rule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers. But as 1 like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKQ" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery-we sure want to make them our own, but the theory of desserts is more about the langredients and how they are put together than about the end products. In algebraic knot theory this reflects through the fact that knots are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that there are very few operations defined on knots (comnected sums and abcellite operations being the main exceptions), and thus must interesting properties of knots are transcendental, or non- algebraic, when viewed from within the algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as parctical. This will enable agreat amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation will demend that divid A half? Do they near an yeiged and a "down side?" And the tansensing latter of various tangle operations first and		
 Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly was: a proof is in the fact that nobodys of arh adt ride to replicate their work, not even to a smaller crossing number. Yet again, it is hard to overestimate the value of that project: in many mays the Rolfsen table become the rule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers. But as 1 like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "<u>WKO</u>" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic knot theory this reflects through the fact that throts are rost singles and how they are put together than about thost are transcendental, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT CFA]). Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation, if done right, will be comparable to the influence of med males to as high a crossing number as run suitage? Are they embedded in a dist? A ball? Do they have an "us olde" and a "dom synametries? Shouldn't we also calculate the affect of various tangle operations to the action of some synametries? Shouldn't we also calculate the affect of various tangle operations to the action of some synametries? Shouldn't we also calculate the affect of various tangle operations to the action of some synametries? Shouldn't we also calculate the more general thage? Tangled graph? In my mind it would	A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings.	
 was: a proof is in the fact that nobody so far had tried to replicate their work, not even to a smaller crossing number. Yet again, it is hard to overestimate the value of that project in many ways the Roffsen table is "not yet generic", and many phenomena that appear to be rare when looking at the Roffsen table become the rule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers. But as 1 like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKQ" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic knot theory this reflects through the fact that hores are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that there are yen'fev operations defined on knots (connected sums and satellite operations being the main exceptions), and thus most interesting properties of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT_GT_GT_A)]. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation will greatly impact the direction of knot theory as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alive and relevant. The ownsymmetries? Shouldn't we also calculate the affect divarious tangle operations so figure out the action of some symmetries? Shouldn't we also calculate the more general things from which the grounds are now summetries? Shouldn't we also calculate the more general things for mage the? To alget graphs? In my mind it would be better to leave these questions to the tabulator. Anything is be	Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly	
 smaller crossing number. Yet again, it is hard to overestimate the value of that project in many ways the Rofisen table become the rule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers. But as 1 like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKG" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic, knot theory this reflects through the fact that three for the ack of the new for woreartions defined on knots (concented sums and satellite operations being the main exceptions), and thus most interesting properties of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT] CFA]). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of trangles to as high a crossing number as practical. This will enable a great mount of the sting of the lak of scope, will suddenly become alive and relevant. The overall indigence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Axide. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands aniented? Do we mad out by some symmetries of figure out the action of scone symmetries? Shouldn't we also calculate the affect of various tangle operations is better dona ding with the enumeration tself, and so it should.<	was: a proof is in the fact that nobody so far had tried to replicate their work, not even to a	
 ways the Rolfsen table is "not yet generic", and many phenomena that appear to be rare when looking at the Rolfsen table become the rule when looking at higher crossing numbers. But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKG" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic knots are there inscendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT] C_G.A). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are broids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen tables. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the more special ones can be silved merides. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the more special cones and is silved. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	smaller crossing number. Yet again, it is hard to overestimate the value of that project: in many	
 looking at the Rolfsen table become the rule when the view is expanded. Likewise, other phenomena only appear for the first time when looking at higher crossing numbers. But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancs) "WKQ" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic, knot theory this reflects through the fact that knots are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that theors are very few operations defined on knots (connected sums and satellite operations being that the theory every few operations defined on knots (connected sums and satellite operations being that the theory every few operations defined on knots (connected sums and satellite operations being that the theory every few operations defined on knots (connected sums and satellite operations being that the theory every few operations defined on knots (connected sums and satellite operations being that the trans every few operations defined on knots (connected sums and satellite operations being that the rule algebraic, when viewed from within the algebra of knots and operations on knots (see [Attra cEA)]. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great is usual that are now ignored for the lack of scope, will usualden iy docome alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen tabulation would be batter to leave these questions to the tabul	ways the Bolfsen table is "not yet generic" and many phenomena that appear to be rare when	$\langle \rangle$
 blocking at the Kohisen table become obscume to be write with the very is expanded. The write (with some variation) my own (with Dancso) "WKQ" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic knot theory this reflects through the fact that knots are not finitely generated in any sense (nence they must be made of some more basic ingredients), and throug hus the fact that knots are not finitely generated in any sense (nence they must be made of some more basic ingredients), and thous must be made of some more basic ingredients), and thous must interesting properties of knots are transcendental, or non algebraic, when viewed from within the algebra of knots are transcendental, or non algebraic, when viewed from within the algebra of knots are transcendental, or non algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside: What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mode out by some symmetries or figure ou the action of some symmetries? Shouldh't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind twould be better to leave these questions to the tabulator. Anything is better than onting, yet graduators would the thor graduate and that would be easy to implement within the ingreadent situe? Shouldh'	have the Police table to be seen the rule when the view is expanded Likewise other	
 prenomena only appear for the first time when looking at higher crossing numbers. But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancs) "WKQ" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic, when viewed protections that knots are not finitely generated in any sense (nence they must be made of some more basic ingredients), and through the fact that there are very few operations defined on knots (connected sums and satellite operations being the main exceptions), and thus most interesting properties of knots and operations being the more basic ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are nore sill missing. The existence of such a tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside: What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or flagred rolution some symmetries? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In wy mind the out out bablet the more general things from which the more special ones can be side? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or flagre edue to main symetr	looking at the Konsen table become the fuel when the view is expanded. Likewise, other	
But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with som variation) my own (with Dancso) "WKQ" paper: Finite of the bakery we sure want to make them our own, but the theory of deserts is more about the ingredients and how they are put together than about the end products. In algebraic knot theory this reflects through the fact that knots are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that would be absery refew operations defined on knots (connected sums and satellite operations being the main exceptions), and thus most interesting properties of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT_CFA]). The right tobjects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to a singh a crossing number as practical. This will enable a great and user all influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Shouldn't we also calculate the affect or various tangle operation fiscural doubling is detertion, junctapping and cable be that their programs already contain all that would be easy to implement within their frameworks. Counting less is easy and can be left to the end user. Determining symmetries is better donalding with the enumeration itself, and so it shoud. Aside. What are tangles? Are they embedded in a disk? A bal	phenomena only appear for the first time when looking at higher crossing numbers.	
 but as tinke to say, knots are the wrong object to study in knot theory. Let me quote (with some variation) my own (with Dancso) "WKO" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic knot theory this reflects through the fact that knots are not finitely generated in algebraic, when viewed from within the algebra of knots and operations being the operations being the operations denies and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangle graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of fangles to as high a crossing number as practical. This will enable a great amount of festing and experimentation for which the grounds are now still missing. The existence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A bal? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also enumerate virtual tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulater. Anything is better than nothing, yt good tabulators would try to tabulate the first to the end user. Determining symmetries is better donal albulators of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 		K11n150
 variation) my own (with Dancso) "WKO" paper: Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the hear every few operations defined on knots (connected sums and satellite operations being the main exceptions), and through the fact that knots are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alve and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we med out by some symmetries of figure out the action of some symmetries. The kurdent dubling and oriented? Do we med out by some symmetries or figure out the action of some symmetries. Subdition we also calculate the affect to the end user. Determining symmetries is better donalong with the enumerat	But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some	
 Studying knots on their own is the parallel of studying cakes and pastries as they come out of the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic knot theory this reflects through the fact that knots are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that there are very few operations defined on knots (connected sums and satellite operations being the main exceptions), and thus most interesting properties of knots and operations on knots (see [AKT CFA]). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tagets to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the after of various tangle operations (strand doubling and deletion, juxtapositions, str.)? Shouldn't we also enumerate virtual tangles? Tangled graphs? In my mind it would be thetre to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would be that their programs already contain all that would be easy to implement within the firameworks. Counting legs is easy and can be left to the end use. Determining symmetries is better done along with the enumeration itself	variation) my own (with Dancso) " <u>WKO</u> " paper:	(Knotscape image)
 Studying knots on their own is the parallel of studying cakes and pastries as they come out of the baker, we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic knot theory this reflects through the fact that knots are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that there are very few operations defined on knots (connected sums and satellite operations being the main exceptions), and thus most interesting properties of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT_CFA]). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braising. The aiready well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a dix? A ball? Do they have an "up side" and a "down side"? Are the strands or interast to the abulater. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sterd oreal their programs already contain all that would be easy to implement within the rimeworks. Counting less is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and		ardens and a star
 the bakery - we sure want to make them our own, but the theory of desserts is more about the ingredients and how they are put together than about the end products. In algebraic lance they must be made of some more basic ingredients), and through the fact that there are very few operations defined on knots (connected sums and satellite operations being the main exceptions), and thus most interesting properties of knots are transcendental, or nonalgebraic, when viewed from within the algebra of knots and operations on knots (see [AKI: CFA]). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great a moutin of testing and experimentation for which the grounds are now sill enable as the ack of score, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also enumerate virtual tangles? wrangles? This file the affect of various tangle operations (strand doubling and deletion, justapositions, etc.)? Shouldn't we also enumerate virtual tangles? The tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	Studying knots on their own is the parallel of studying cakes and pastries as they come out of	of the state of the state
 the ingredients and how they are put together than about the end products. In algebraic knot theory this reflects through the fact that knots are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that ther are very few operations defined on knots (connected sums and satellite operations being the main exceptions), and thus most interesting properties of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT CFA]). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the their programs already contail all that would be east or induced would see with the induced of soce practical. This is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved reletively easily, and would see that their programs already. Contail that would be east or induced and would see that their programs already. Contail the action of some symmetries is better done along with the enumeration itself, and so it should. <l< td=""><td>the bakery - we sure want to make them our own, but the theory of desserts is more about</td><td>Faith I Faith a Sal</td></l<>	the bakery - we sure want to make them our own, but the theory of desserts is more about	Faith I Faith a Sal
 knot theory this reflects through the fact that knots are not finitely generated in any sense (hence they must be made of some more basic ingredients), and through the fact that there are very few operations defined on knots (connected sums and satellite operations being the main exceptions), and thus most interesting properties of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots are transcendental, or non-algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tasgles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now silored for the lack of scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are the yembedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also enumerate virtual tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would ry to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contanial that would be easy to implement within their frameworks. Counting legis is easy and can be left to the	the ingredients and how they are put together than about the end products. In algebraic	
 The cited y must be made of some more basic ligredients; and through the fact that there are very few operations defined on knots (connected sums and satellite operations being the main exceptions), and thus most interesting properties of knots are transcendental, or nonalgebraic, when viewed from within the algebra of knots and operations on knots (see [AKT_CFA]). The right objects for study in knot theory are thus the ingredients that make up knots and that permit aricher algebraic structure. These are braids (which are already well-studied and that permit aricher algebraic structure. These are braids (which are already well-studied and that permit aricher algebraic structure. These are braids (which are already well-studied and that permit aricher algebraic to a studie of the studied and that permit aricher algebraic to a studie of the studied of the tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside: What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also enumerate virtual tangles? Vangleg? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would ry to tabulate the more general things from which the more special ones can be siev	knot theory this reflects through the fact that knots are not finitely generated in any sense	Cemetery
 The right objects for study in knot theory are thus the ingredients), and through the fact that there main exceptions), and thus most interesting properties of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT_CFA]). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside: What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also calculate the affect of various tangle operation all that would be easy to tabulators would try to tabulate there ore general things from which the more general they graphs? In my mind it would be better to leave these questions to the tabulation. Anything is better than nothing, yet good tabulators would try to tabulate there ore general things from which the more general they graphs? In my mind it w	Kilot theory this reflects through the fact that kilots are not initially generated in any sense	
 are very few operations defined on knots (connected sums and satellife operations being the main exceptions), and thus most interesting properties of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT_CFA]). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of largles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod us tangle operations (strand doubing and deletion, juxtaposition, sec.)? Shouldn't we also enumerate virtual tangles? using from which the more special ones can be sieved good tabulators would cry to tabulate the more general things from which the more special ones can be sieved enabled with and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	(nence they must be made of some more basic ingredients), and through the fact that there	1.0
 main exceptions), and thus most interesting properties of knots are transcendental, or non-algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT-CFA]). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will mable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation for dight, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better donalong with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	are very few operations defined on knots (connected sums and satellite operations being the	sin the
 algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT-CFA]). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are braids (which are already well-studied and that permit a richer algebraic structure. These are now still missing. The existence of such a tabulatein of the direction of knot theory, as many tange theories and issues that are now ignored for the lack of Scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriente? Do wendout by some symmetries or figure out the action of some symmetries? Shouldn't we also enumerate virtual tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would ry to tabulate the more general things from which the more special ones can be siderd relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even bet	main exceptions), and thus most interesting properties of knots are transcendental, or non -	60
 CFAI). The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also calculate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	algebraic, when viewed from within the algebra of knots and operations on knots (see [AKT-	
 The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a dist? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to abulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	CFA]).	Wanker F
 The right objects for study in knot theory are thus the ingredients that make up knots and that permit a richer algebraic structure. These are braids (which are already well-studied and tabulated) and even more so tangles and tangled graphs. Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also calculate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 		- V WANGER ET
 The fight objection study and the fight objection of the algorithm of the algorith	The right objects for study in knot theory are thus the ingredients that make up knots and	T SECTOR
 Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside: What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs anizedy contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	that permit a risker algebraic structure. These are braids (which are already well-studied and) So Statement and a state of the
 Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount of tangles to as high a crossing number as practical. This will enable a great amount at tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries of gue out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet	tabulated) and even more so tangles and tangled graphs	P. LE MARTER & CARVEL 9
 Thus in my mind the most important missing infrastructure project in knot theory is the tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sleved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 		The interchange of I-95 and I-695
 tabulation of tangles to as high a crossing number as practical. This will enable a great amount of testing and experimentation for which the grounds are now still missing. The existence of such a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	Thus in my mind the most important missing infrastructure project in knot theory is the	northeast of Baltimore. (more)
 distingt and experimentation for which the grounds are now still missing. The existence of such a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	tabulation of tangles to as high a crossing number as practical. This will enable a great amount	
 a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues that are now ignored for the lack of scope, will sudenly become alive and relevant. The overall influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	of testing and experimentation for which the grounds are now still missing. The existence of such	
 Influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	a tabulation will great the direction of lost theory as many tangle theories and issues	
that are now ignored for the lack of scope, will suddenly become alive and relevant. The overallinfluence of such a tabulation, if done right, will be comparable to the influence of the Rolfsentable.Aside: What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"?Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries?Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs?In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sleved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should.An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access.Overall this would be a major project, well worthy of your time.	a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues	
 influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall	From [AKT-CFA]
table. Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time.	Influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen	■ #### Man
Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. Ntto://katlas.org/	table.	- E
Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. The Knet Atlas Overall this would be a major project, well worthy of your time. http://katlas.org/		142
Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time.	Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"?	¥ () 3 1
 Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. 	Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries?	
etc.)? Shouldn't we also enumerate virtual tangles? W-tangles? Tangled graphs? In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. From [FastKh] An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. The kcrot files Overall this would be a major project, well worthy of your time. http://katlas.org/	Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions,	5 (), Obje
In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time.	etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs?	6 Preview Image Scar
In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet good tabulators would try to tabulate the more general things from which the more special ones can be sieved relatively easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time.		8 Dest
good tabulators would try to tabulate the more general things from which the more special ones can be sleved From [FastKh] relatively easily, and would see that their programs already contain all that would be easy to implement within From [FastKh] their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. http://katlas.org/	In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet	- La
Interarvery easily, and would see that their programs already contain all that would be easy to implement within their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. http://katlas.org/	good tabulators would try to tabulate the more general things from which the more special ones can be sieved	From [FastKh]
Inter frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done along with the enumeration itself, and so it should. An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. http://katlas.org/	relatively easily, and would see that their programs already contain all that would be easy to implement within	
An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time.	their trameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done	
An even better tabulation should come with a modern front-end - a set of programs for basic manipulations of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time.	along with the enumeration itself, and so it should.	
An even better tabulation should come with a modern front-end - a set of programs for basic Image: Comparison of tangles, and a web-based "tangle atlas" for an even easier access. Main pulations of tangles, and a web-based "tangle atlas" for an even easier access. Image: Comparison of tangles, and a web-based "tangle atlas" for an even easier access. Overall this would be a major project, well worthy of your time. Image: Comparison of tangles, and a web-based "tangle atlas" for an even easier access.		
manipulations of tangles, and a web-based "tangle atlas" for an even easier access. The Kret Atlas Overall this would be a major project, well worthy of your time. Inverse Can Edit http://katlas.org/ http://katlas.org/	An even better tabulation should come with a modern front-end - a set of programs for basic	ciliae Contraction
Overall this would be a major project, well worthy of your time.	manipulations of tangles, and a web-based "tangle atlas" for an even easier access.	
Overall this would be a major project, well worthy of your time. <u>http://katlas.org/</u>		I D& KROU /Itlas
	Overall this would be a major project, well worthy of your time.	http://katlas.org/

2012-01 Page 1

Source at http://drorbn.net/AcademicPensieve/2012-01/#NotebookPages
Dror Bar-Natan: Academic Pensieve: 2011-11#Other Files:

A Bit on Maxwell's Equations

Prerequisites.

- Poincaré's Lemma, which says that on \mathbb{R}^n , every closed form is exact. That is, if $d\omega = 0$, then there exists η with $d\eta = \omega$.
- Integration by parts: $\int \omega \wedge d\eta = -(-1)^{\deg \omega} \int (d\omega) \wedge \eta$ on domains that have no boundary.
- The Hodge star operator \star which satisfies $\omega \wedge \star \eta = \langle \omega, \eta \rangle dx_1 \cdots dx_n$ whenever ω and η are of the same degree.
- The simplesest least action principle: the extremes of $q \mapsto \int_a^b \left(\frac{1}{2}m\dot{q}^2(t) V(q(t))\right) dt$ occur when $m\ddot{q} = -V'(q(t))$. That is, when F = ma.

Table 18-1 Classical Physics

The Feynman Lectures on Physics vol. II, page 18-2

The Action Principle. The Vector Field is a compactly supported 1-form A on \mathbb{R}^4 which extremizes the action

$$S_J(A) := \int_{\mathbb{R}^4} \frac{1}{2} ||dA||^2 dt dx dy dz + J \wedge A$$

where the 3-form J is the *charge-current*.

The Euler-Lagrange Equations in this case are $d \star dA = J$, meaning that there's no hope for a solution unless dJ = 0, and that we might as well (think Poincaré's Lemma!) change variables to F := dA. We thus get

$$dJ = 0$$
 $dF = 0$ $d \star F = J$

These are the Maxwell equations! Indeed, writing $F = (E_x dxdt + E_y dydt + E_z dzdt) + (B_x dydz + B_y dzdx + B_z dxdy)$ and $J = \rho dx dy dz - j_x dy dz dt - j_y dz dx dt - j_z dx dy dt$, we find:

$dJ = 0 \Longrightarrow$	$\frac{\partial \rho}{\partial t} + \operatorname{div} j = 0$	"conservation of charge"		
$dF=0 \Longrightarrow$	$\operatorname{div} B = 0$	"no magnetic monopoles"		
	$\operatorname{curl} E = -\frac{\partial B}{\partial t}$	that's how generators work!		
$d*F=J\Longrightarrow$	$\operatorname{div} E = -\rho$	"electrostatics"		
	$\operatorname{curl} B = -\frac{\partial E}{\partial t} + j$	that's how electromagnets work!		

Exercise. Use the Lorentz metric to fix the sign errors.

Exercise. Use pullbacks along Lorentz transformations to figure out how E and B (and j and ρ) appear to moving observers. **Exercise.** With $ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$ use $S = mc \int_{e_1}^{e^2} (ds + eA)$ to derive Feynman's "law of motion" and "force law".

November 30, 2011; http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2011-11#OtherFiles

Sources at http://drorbn.net/AcademicPensieve/2011-11/#OtherFiles

The Pure Virtual Braid Group is Quadratic ¹	Dror Bar–Natan and Peter Lee in Oregon, August 2011 http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/
Let K be a unital algebra over a field \mathbb{E} with char $\mathbb{E} = 0$ and	Why Care? foots & refs on PDF version, page 3
Let K be a unital algebra over a field r with that $\mathbf{r} = 0$, and let $L \subset K$ be an "augmentation ideal", so $K/L \xrightarrow{\sim}{\sim} \mathbb{F}$	• In abstract generality, gr K is a simplified version of K and
Let $I \subset K$ be an augmentation ideal; so $K/I = \epsilon$	if it is quadratic it is as simple as it may be without being
Definition. Say that K is quadratic if its associated graded $W = V = \int_{-\infty}^{\infty} \frac{\ln (\ln t)}{\ln t} dt$	silly. • In some concrete (somewhat generalized) knot theo-
gr $K = \bigoplus_{p=0}^{p=0} I^p / I^{p+1}$ is a quadratic algebra. Alternatively,	retic cases, A is a space of "universal Lie algebraic formulas"
let $A = q(K) = \langle V = I/I^2 \rangle / \langle R_2 = \ker(\overline{\mu}_2 : V \otimes V \rightarrow I^2/I^2) \rangle$	and the "primary approach" for proving (strong) quadratic-
I^{2}/I^{3}) be the "quadratic approximation" to K (q is a lovely	ity, constructing an appropriate homomorphism $Z: K \to \hat{A}$
functor). Then K is quadratic iff the obvious $\mu: A \to \operatorname{gr} K$	becomes wonderful mathematics:
is an isomorphism. If G is a group, we say it is quadratic if	u-Knots and
Its group ring is, with its augmentation ideal.	K Braids v-Knots w-Knots
The Overall Strategy. Consider the "singularity tower" of (K, I) (here "i" means \mathcal{Q}_{i} and u is (always) multiplication):	Metrized Lie Finite dimensional Lie
(K, I) (here : means \otimes_K and μ is (always) multiplication).	A algebras [BN1] Lie bialgebras [Hav] algebras [BN3] Etingof Kozhdon Kozhdon Kozhiwana Vorgno
$T:p+1$ μ_{p+1} $T:p$ μ_p $T:p-1$ V	Associators quantization Alekseev-Torossian
$ \cdots \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I}$	Z [Dri, BND] [EK, BN2] [KV, AT]
We care as $\operatorname{im}(\mu^p = \mu_1 \circ \cdots \circ \mu_p) = I^p$, so $I^p/I^{p+1} =$	2 Injectivity A (and sided infinite) accurates
$\operatorname{im} \mu^p / \operatorname{im} \mu^{p+1}$. Hence we ask:	2-injectivity. A (one-sided infinite) sequence
• What's $I^{:p}/\mu(I^{:p+1})$? • How injective is this tower?	
Lemma $L^{:p}/\mu(I^{:p+1}) \sim (I/I^2)^{\otimes p} = V^{\otimes p}$ set $\pi: L^{:p} \to V^{\otimes p}$	$\dots \longrightarrow K_{p+1} \longrightarrow K_p \longrightarrow \dots \longrightarrow K_0 = K$
Flow Chart (Any) $p = (1/1) = r$, set $n = 1/7$	is "injective" if for all $p > 0$, ker $\delta_p = 0$. It is "2-injective" if
Flow Chart. Any $ \frac{\text{Prop}}{(K,I)} \xrightarrow{\text{Prop}} (2\text{-local}) \xrightarrow{\text{Prop}} 2$ (Quadratic)	its "1-reduction"
	K_{n+1} $\overline{\delta}_{p+1}$ K_n $\overline{\delta}_p$ K_{n-1}
Thm S (Hutchings')	$\cdots \longrightarrow \frac{1}{\ker \delta_{p+1}} \xrightarrow{\cdots} \frac{1}{\ker \delta_p} \xrightarrow{\cdots} \frac{1}{\ker \delta_{p-1}} \longrightarrow \cdots$
$(K = PvB_n)$ $\xrightarrow{\text{Imm}}$ $\xrightarrow{\text{by Peter}}$ $(Criterion)$ \longrightarrow 2-injective	is injective: i.e. if for all p , $\ker(\delta_n \circ \delta_{n+1}) = \ker \delta_{n+1}$. A pair
Proposition 1. The sequence	(K, I) is "2-injective" if its singularity tower is 2-injective.
$\mathfrak{m} \to \mathfrak{m}^{p-1}(\mathbf{r}; i-1, \mathfrak{m} \to \mathbf{r}; p-i-1) \partial \to \mathbf{r}; p \to \mu_p \to \mathbf{r}; p-1$	Proposition 2 If (KI) is 2-local and 2-injective it is
$\mathcal{H}_p := \bigoplus_{j=1}^r (I^j : \mathcal{H}_2 : I^r) \longrightarrow I^r \longrightarrow I^r$	quadratic.
is exact, where $\mathfrak{R}_2 := \ker \mu : I^{:2} \to I$; so (K, I) is "2-local".	Proof. Staring at the 1-reduced sequence
The Free Case. If J is an augmentation ideal in $K = F =$	$\xrightarrow{I^{:p+1}} \xrightarrow{\mu_{p+1}} \xrightarrow{I^{:p}} \xrightarrow{\mu_p} \cdots \longrightarrow K.$ get $\xrightarrow{I^p} \xrightarrow{I^p} \cdots$
$\langle x_i \rangle$, define $\psi: F \to F$ by $x_i \mapsto x_i + \epsilon(x_i)$. Then $J_0 := \psi(J)$	$\frac{\ker \mu_{p+1}}{I^{:p}/\ker \mu_{p}} \xrightarrow{I^{:p}} \mathbf{D}_{ret} \stackrel{I^{:p}}{I^{:p}} = (I/I^{2}) \otimes n = 0$
is $\{w \in F : \deg w > 0\}$. For J_0 it is easy to check that $\Re_2 =$	$\frac{\mu(I^{:p+1}/\ker\mu_{p+1})}{\mu(I^{:p+1}/\ker\mu_{p})} \stackrel{\text{out}}{\longrightarrow} \frac{\mu(I^{:p+1})+\ker\mu_{p}}{\mu(I^{:p+1})} \stackrel{\text{out}}{\longrightarrow} \frac{\mu(I^{:p+1})}{\mu(I^{:p+1})} \stackrel{\text{out}}{\longrightarrow} \frac{\mu(I^{:p+1}$
$\Re_p = 0$, and hence the same is true for every J.	the above is $(I/I^2)^{\otimes p} / \sum_{i=1}^{\infty} (I^{i,j-1}:\mathfrak{R}_2:I^{i,p-j-1})$. But that's
The General Case. If $K = F/\langle M \rangle$ (where M is a vector space	the degree p piece of $q(K)$.
of "moves") and $I \subset K$, then $I = J/\langle M \rangle$ where $J \subset F$. Then $U^n = \frac{U^n}{2} \sqrt{\sum_{i=1}^{n-1} \langle M \rangle} U^{n-i}$ and end have	The X Lemma (inspired by [Hut]).
$J^{P} = J^{P} / \sum J^{J} : \langle M \rangle : J^{P} J$ and we have	$A_0 \xrightarrow{\alpha_0} \beta_0 \swarrow C_0$ if $\beta_0 \swarrow \beta_0$
$J^{:p} \xrightarrow{\mu_F} J^{:p-1}$	Hut Hut
π_{-1}	$\alpha_1 \nearrow B \searrow \beta_1$ $\exists r = 0$
$I^{:p} = J^{:p} / \sum J^{:} : \langle M \rangle : J^{:} \xrightarrow{\mu} I^{:p-1} = J^{:p-1} / \sum J^{:} : \langle M \rangle : J^{:}$	If the above diagram is Convey (\simeq) event then its two
$\operatorname{So}^{2} \operatorname{ker}(\mu) = \pi_{n} \left(\mu_{n}^{-1} (\operatorname{ker} \pi_{n-1}) \right) = \pi_{n} \left(\sum \mu_{n}^{-1} \left(J^{\cdot} : \langle M \rangle : J^{\cdot} \right) \right) =$	diagonals have the same "2-injectivity defect". That is
$\sum \pi \left(I: \mu^{-1}(M) : I:\right) - \sum I: \mathfrak{R}_{0} : I: -: \sum^{p-1} \mathfrak{R}_{0}$	if $A_2 \rightarrow B \rightarrow C_2$ and $A_1 \rightarrow B \rightarrow C_1$ are exact there
$\sum n_p (J \cdot \mu_F \setminus M / J) = \sum I \cdot J (J \cdot I - \sum_{j=1}^{j} J p_j).$	$\ker(\beta_1 \circ \alpha_0)/\ker(\alpha_0 \simeq \ker(\beta_0 \circ \alpha_1)/\ker(\alpha_1)$
\mathfrak{R}_2 is simpler than may seem! It's $J^{:2} \xrightarrow{\mu_F} J \supset M$	$\frac{\operatorname{ker}(\beta_1 \circ \alpha_0)}{\operatorname{ker}(\beta_1 \circ \alpha_0)} \xrightarrow{\sim} \operatorname{ker}(\beta_1 \circ \alpha_0)$
an "augmentation bimodule" $(I\mathcal{R}_2 = \pi_1)$	PTOOL ker α_0 α_0 Ket β_1 + int α_0
$0 = \Re_2 I \text{ thus } xr = \epsilon(x)r = r\epsilon(x) = rx \qquad $	$= \ker \beta_0 \cap \operatorname{im} \alpha_1 \xleftarrow{\sim} \frac{\ker(\beta_0 \circ \alpha_1)}{\ker \alpha_1}$
for $x \in K$ and $r \in \mathcal{H}_2$, and hence $I^{:2} \xrightarrow{r} I = J/\langle M \rangle$ $\mathfrak{B}_{r} = \pi_r(\mu^{-1}M)$	The Hutchings Criterion [Hut]. \mathfrak{B}
$5v_2 - v_2(\mu_F M)$.	The singularity tower of (K, I) is $\mathcal{A}_p \longrightarrow \partial^{\mu_p} \mathcal{A}_p$
\mathfrak{R}_p is simpler than may seem! In $\mathfrak{R}_{p,j} = I^{j-1} : \mathfrak{R}_2 : I^{p-j-1}$	2-injective iff on the right, $\ker(\pi \circ)$
the <i>I</i> factors may be replaced by $V = I/I^2$. Hence	∂) = ker(∂). That is, iff every μ_{p+1}
$\mathfrak{R} \sim \bigoplus^{p-1} V^{\oplus j-1} \odot = (^{-1}M) \odot V^{\otimes p-j-1}$	"diagrammatic syzygy" is also a $I^{:p+1}$
$\mathfrak{m}_p \simeq \bigoplus_{i=1}^{N} V^{-i} \otimes \pi_2(\mu_F M) \otimes V^{-i}$	"topological syzygy".
Claim $\pi(\mathfrak{R}_{-1}) = R_{-1}$ is namely	Conclusion. We need to know that (K, I) is
Channel for an equation of the set of the 	"syzygy complete" — that every diagrammatic syzygy
$\pi\left(I^{:j-1}:\mathfrak{R}_2:I^{:p-j-1}\right)=V^{\otimes j-1}\otimes R_2\otimes V^{\otimes p-j-1}.$	is also a topological syzygy, that $\ker(\pi \circ \partial) = \ker(\partial)$.

More at http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/

More at http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/

Footnotes

- 1. Following a homonymous paper and thesis by Peter Lee [Lee]. All serious work here is his and was extremely patiently explained by him to DBN. Page design by the latter.
- 2. The proof presented here is broken. Specifically, at the very end of the proof of the "general case" of Proposition 1 the sum that makes up ker π_{p-1} is interchaged with μ_F^{-1} . This is invalid; in general it is not true that $T^{-1}(U+V) = T^{-1}(U) + T^{-1}(V)$, when T is a linear transformation and U and V are subspaces of its target space. We thank Alexander Polishchuk for noting this gap. A handwritten non-detailed fix can be found at http://katlas.math.toronto.edu/drorbn/AcademicPensieve/Projects/Quadraticity/, especially under "Oregon Handout Post Mortem". A fuller fix will be made available at a later time.

References

- [AT] A. Alekseev and C. Torossian, *The Kashiwara-Vergne conjecture and Drinfeld's associators*, arXiv:0802.4300.
- [BN1] D. Bar-Natan, On the Vassiliev knot invariants, Topology **34** (1995) 423–472.
- [BN2] D. Bar-Natan, Facts and Dreams About v-Knots and Etingof-Kazhdan, talk presented the Swiss Knots 2011 conference. Video more at and at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/.
- [BN3] D. Bar-Natan, Finite Type Invariants of W-Knotted Objects: From Alexander to Kashiwara and Vergne, paper and related files at http://www.math.toronto.edu/~drorbn/papers/WKO/.
- [BND] D. Bar-Natan, and Z. Dancso, Homomorphic Expansions for Knotted Trivalent Graphs, arXiv:1103.1896.
- [BEER] L. Bartholdi, B. Enriquez, P. Etingof, and E. Rains, Groups and Lie algebras corresponding to the Yang-Baxter equations, Journal of Algebra 305-2 (2006) 742-764, arXiv:math.RA/0509661.
- [Dri] V. G. Drinfel'd, Quasi-Hopf Algebras, Leningrad Math. J. 1 (1990) 1419–1457 and On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected with Gal(Q/Q), Leningrad Math. J. 2 (1991) 829– 860.
- [EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New Series 2 (1996) 1–41, arXiv:q-alg/9506005, and Quantization of Lie Bialgebras, II, Selecta Mathematica, New Series 4 (1998) 213–231, arXiv:q-alg/9701038.
- [GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants of classical and virtual knots, Topology 39 (2000) 1045–1068, arXiv:math.GT/9810073.
- [Hav] A. Haviv, Towards a diagrammatic analogue of the Reshetikhin-Turaev link invariants, Hebrew University PhD thesis, September 2002, arXiv:math.QA/0211031.
- [Hut] M. Hutchings, Integration of singular braid invariants and graph cohomology, Transactions of the AMS 350 (1998) 1791–1809.
- [KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions, Invent. Math. 47 (1978) 249–272.
- [Kau] L. H. Kauffman, Virtual Knot Theory, European J. Comb. 20 (1999) 663–690, arXiv:math.GT/9811028.
- [KL] L. H. Kauffman and S. Lambropoulou, Virtual Braids, Fundamenta Mathematicae 184 (2005) 159–186, arXiv:math.GT/0407349.
- [Koh] T. Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier 37 (1987) 139–160.
- [Lee] P. Lee, *The Pure Virtual Braid Group is Quadratic*, in preparation. See links at http://www.math.toronto.edu/drorbn/Talks/Oregon-1108/.

More at http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/

Lecture 2 Handout

More on Chern-Simons Theory and Feynman Diagrams

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107

AFter AI A/VK, and setting K = 1/K:	In Chirn-simons, w/ F(A) = d*A = d; A', get
$Z(Y) = \int \mathcal{D}_{A} t_{R} hol_{Y}(A) \ell_{TT}^{i} \int t_{A} (A^{A} dA + \frac{2k}{3} A^{A} MA)$ $A \in \mathcal{N}(k^{3} q) \qquad $	$\mathcal{L}_{tat} = \frac{k}{4\pi} \int \frac{t}{4\pi} \left(\frac{A^{1}}{A^{2}} + \frac{2}{3} \frac{A^{4}A^{A}}{A^{A}} + \frac{\partial}{\partial i} \frac{A^{i}}{A^{i}} + \frac{\partial}{\partial i} \frac{A^{i}}{A^{i}} + \frac{\partial}{\partial i} \frac{A^{i}}{A^{i}} \right) $
where $t = hol_1(A) = t = t (1+t) (4s A(ts))$	So we have
Trouble J^{*} is $+k^{2} \left(A/\dot{y}(c) \right) A/\dot{y}(c) +$	* A bosonic quadratic term involving (A).
not invotible of siss	* A Fermionic quadratic term involving E, C.
Gauge Invariance: CS(A) is invariant under	* A cubic interaction of 3 A's.
$A \mapsto A + \delta A, \delta A = -(JC + \delta [A, C]), C \in \mathcal{N}^{\circ}(\mathcal{W}, g)$	* Funny A and X "habramy" vertices along X
Back to the drawing beard	
Suppose LISC) on IR' is invariant under a	After much crunching:
k-dimensional broup G w/ Lie algebra g=< y,	$Z(\mathbf{X}) = \tilde{Z} \mathbf{X}^m \sum \mathcal{Z} \mathcal{Z}(\mathbf{D}) = \left(\mathcal{Z}^m \mathcal{Z}^m \right)$
is a section of the c-action.	m=0 Fignman diags D
~ 100 ~ 100 ~ 100	where E(D) is constructed as follows:
$G \rightarrow K' \xrightarrow{-} K' \xrightarrow{-} F_{=0}$	$\begin{array}{c} y_{\alpha} & y_{\beta} \\ x & y_{\beta} \end{array} \longrightarrow E_{ijk} t^{\alpha \beta} \frac{I(x-y)^{k}}{2(x-y)^{3}} \qquad i \alpha \\ \end{array}$
	$\begin{array}{c} a \\ x \\ x \\ \end{array} \xrightarrow{b} \\ y \\ \end{array} \xrightarrow{f^{ab}} \\ \hline \\$
Thin Gerlins	Lis Rap Y'(S)
$\left(dx e^{i\lambda} \propto \left(dx e^{i\lambda} N E(x)\right) + \left(\frac{2F^{\alpha}}{2}\right)(x)\right)$	1 1 2TT 123
$[R^{1}] \qquad [R^{2}] \qquad \qquad$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{$
~ (dx (dø lik + F(x)· Ø)) + (2Fa) (x) (theory For	By a bit of a miracle this bails due t
IR" IS! OLI [ag. /) 22	a consiguration space integral, which in itsift
I + (- K - (-) + I (-) - (-) + (-)	can be reduced to a pre-image count.
$\int det \left(J_0 + h J_1(J_c) \right) = \int det \left(J_0 \right) \sum_{m} h^{-1} T_{r} \left(\Lambda^{-1} J_0^{-1} \right) \cdot \left(\Lambda^{-1} J_1(J_c) \right)$	But I run out of steam for tonight
Berezin Fermionic Variables: d'Ed ^K C l ^{iE} ~ det(J) Anti-commuting	
So Z~ JJX JJ\$ JJK EJJKC l'Ltot where R° 1KK	Banco de Occidente Credencial
	B Caixa Geral de Depositos
"God created the knots, all else in topology is the work of mortals." Leopold Kronecker (modified) www.katlas.org	Banks like knots.

2011-07 Page 1

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/

Lecture 3 Handout

The Basics of Finite-Type Invariants of Knots

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107

2011-07 Page 1

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/

²⁰¹¹⁻⁰⁷ Page 1 Video and more at http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/

Footnotes

- 1. I probably mean "a functor from some fixed "structure multi-category" to the multi-category of sets, extended to formal linear combinations".
- 2. A Leibniz algebra is a Lie algebra minus the anti-symmetry of the bracket; I have previously erroneously asserted that here $\mathcal{A}(K)$ is Lie; however see the comment by Conant attached to this talk's video page.
- 3. See my paper [BN1] and my talk/handout/video [BN3].
- 4. See [BN5] and my talk/handout/video [BN4].
- 5. Not so old and not quite written up. Yet see [BN2].

References

- [AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv:0802.4300.
- [AET] A. Alekseev, B. Enriquez, and C. Torossian, Drinfeld associators, Braid groups and explicit solutions of the KashiwaraVergne equations, Pub. Math. de L'IHES 112-1 (2010) 143–189, arXiv:arXiv:0903.4067.
- [BEER] L. Bartholdi, B. Enriquez, P. Etingof, and E. Rains, Groups and Lie algebras corresponding to the YangBaxter equations, Jornal of Algebra **305-2** (2006) 742-764, arXiv:math.RA/0509661.
- [BN1] D. Bar-Natan, On Associators and the Grothendieck-Teichmüller Group I, Selecta Mathematica, New Series 4 (1998) 183–212.
- [BN2] D. Bar-Natan, Algebraic Knot Theory A Call for Action, web document, 2006, http://www.math.toronto.edu/~drorbn/papers/AKT-CFA.html.
- [BN3] D. Bar-Natan, Braids and the Grothendieck-Teichmüller Group, talk given in Toronto on January 10, 2011, http://www.math.toronto.edu/~drorbn/Talks/Toronto-110110/.
- [BN4] D. Bar-Natan, From the ax + b Lie Algebra to the Alexander Polynomial and Beyond, talk given in Chicago on September 11, 2010, http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/.
- [BN5] D. Bar-Natan, *Finite Type Invariants of w-Knotted Objects: From Alexander to Kashiwara and Vergne*, in preparation, online at http://www.math.toronto.edu/~drorbn/papers/WKO/.
- [Dr1,2] V. G. Drinfel'd, Quasi-Hopf Algebras, Leningrad Math. J. 1 (1990) 1419–1457 and On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected with Gal(Q/Q), Leningrad Math. J. 2 (1991) 829–860.
- [EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New Series 2 (1996) 1–41, arXiv:q-alg/9506005.
- [Ha] A. Haviv, *Towards a diagrammatic analogue of the Reshetikhin-Turaev link invariants*, Hebrew University PhD thesis, September 2002, arXiv:math.QA/0211031.
- [KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions, Invent. Math. 47 (1978) 249–272.
- [Lee] P. Lee, The Pure Virtual Braid Group is Quadratic, in preparation.
- [Po] M. Polyak, On the Algebra of Arrow Diagrams, Let. Math. Phys. 51 (2000) 275–291.
- [Th] D. P. Thurston, The Algebra of Knotted Trivalent Graphs and Turaev's Shadow World, Geometry & Topology Monographs 4 (2002) 337-362, arXiv:math.GT/0311458.

Plan

- 1. (8 minutes) The Peter Lee setup for (K, I), "all interesting graded equations arise in this way".
- 2. (3 minutes) Example: the pure braid group (mention PvB, too).
- 3. (3 minutes) Generalized algebraic structures.
- 4. (1 minute) Example: quandles.
- 5. (4 minutes) Example: parenthesized braids and horizontal associators.
- 6. (6 minutes) Example: KTGs and non-horizontal associators. ("Bracket rise" arises here).
- 7. (8 minutes) Example: wKO's and the Kashiwara-Vergne equations.
- 8. (12 minutes) vKO's, bi-algebras, E-K, what would it mean to find an expansion, why I care (stronger invariant, more interesting quotients).
- 9. (5 minutes) wKO's, uKO's, and Alekseev-Enriquez-Torossian.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tennessee-1103/ and at http://www.math.toronto.edu/~drorbn/Talks/Caen-1206/#Colloquium

Cosmic Coincidences and Several Other Stories, 2 Dror Bar–Natan at the University of Tennessee March 4, 2011, http://www.math.toronto.edu/~drorbn/Talks/Tennessee-1103/							
"Low Algebra" and universal formulae in Lie algebras. $ \begin{array}{c} x \\ y \\ x \\ $			Chern-Simons-Witten theory and Feynman diagrams. $\int_{\mathfrak{g}\text{-connections}} \mathcal{D}A hol_K(A) \exp\left[\frac{ik}{4\pi} \int_{\mathbb{R}^3} \operatorname{tr}\left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)\right] \qquad \qquad$				
$\begin{array}{c} \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	$,X_c\rangle$ $X_a v_\beta =$	$\sum_{\alpha} r^{\beta}_{a\gamma} v_{\gamma}$	$\longrightarrow \sum_{\substack{D: \text{ Feynr}\\\text{diagram}}}$	$W_{\mathfrak{g}}(L)$ man	$\mathcal{D}(\mathcal{I}) \sum_{D: \text{ Feyr}} \mathcal{E}(D) \longrightarrow \sum_{\substack{D: \text{ Feyr} \\ \text{diagray}}} \mathcal{I}(D)$	$\sum_{\substack{n \text{man} \\ am}} D \sum \mathcal{E}(D)$	Feynman
and then $\gamma \beta$		1	Definition.	V is finite ty sufficiently 1	pe (Vassiliev, Goussarov) i arge alternations as on the r	f it vanishes on ight	
$ \qquad \qquad$			Theorem. All knot polynomials (Conway, Jones, etc.) are of finite type.				
α $W_{\alpha, B, \circ, Z}$ is often interesting:			Conjecture. (Taylor's theorem) Finite type invariants separate knots.				
$\mathfrak{g} = sl(2)$ \longrightarrow The Jones polynomial			Theorem. $Z(K)$ is a universal finite type invariant! Vassiliev (sketch: to dance in many parties, you need many feet).				
$\mathfrak{g} = sl(N)$ \longrightarrow The HOMFLYPT polynomial Przytycki			4		2	3	Goussarov
$\mathfrak{g} = so(N) \longrightarrow$ The Kauffman polynomial			The Miller Institute knot				
 Knots are the wrong objects to study in knot theory! They are not finitely generated and they carry no interesting operations. 			Algebraic Knot Theory				
Knotted Trivalent Graphs			$\overrightarrow{\text{Theorem (~, "High Algebra"). A homomorphic}} = \overrightarrow{\text{Theorem (~, "High Algebra"). A homomorphic}} \overrightarrow{\text{Drinfel'd}}$				
\rightarrow The u \rightarrow v \rightarrow w & p	• Stories	explained sk	tetched could	explain c	ould explain, gaps remain	more gaps then explains	mystery Craph
Topology	Combinatorics	Low Algebra	High A	lgebra	Conf. Space Integrals	Theory	Homology
The <u>u</u> sual Knotted Objects (KOs) in 3D — braids, knots, in links, tangles, knotted graphs, etc.	Chord diagrams and Jacobi diagrams, modulo $4T, STU, IHX$, etc.	Finite dimensional metrized Lie algebras, representations, and associated spaces.	The Drinfe of associat	el'd theory ors.	Today's work. Not beautifully written, and some detour-forcing cracks remain.	Perturbative Chern-Simons- Witten theory.	The "original" graph homology.
V Virtual KOs — A Y "algebraic", "not Y Knot drawn on a surface, Y Mod stabilization. S	Arrow diagrams and v-Jacobi diagrams, modulo 6 <i>T</i> and various "directed" <i>STU</i> s and <i>IHX</i> s, etc.	Finite dimensional Lie bi-algebras, representations, and associated spaces.	Likely, qua groups and Etingof-Ka theory of quantizatio bi-algebras	antum 1 the azhdan on of Lie s.	No clue.	No clue.	No clue.
V Ribbon 2D KOs in I × 4D; "flying rings". V Like v, but also v with "overcrossings v commute". i	Like v, but also with "tails commute". Only "two in one out" internal vertices.	Finite dimensional co-commutative Lie bi-algebras ($\mathfrak{g} \ltimes \mathfrak{g}^*$) representations, and associated spaces.	The Kashi Vergne-Ale , Torossian convolution groups / a	wara- ekseev- theory of ns on Lie lgebras.	No clue.	Probably related to 4D BF theory.	Studied.
p-Objects	"Acrobat towers" with 2-in many-out vertices.	Poisson structures.	Deformatic quantizatic poisson ma	on on of anifolds.	Configuration space integrals are key, but they don't reduce to counting.	Work of Cattaneo.	Studied. Hyperbolic geometry ?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tennessee-1103/ and at http://www.math.toronto.edu/~drorbn/Talks/Caen-1206/#Colloquium

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Goettingen-1004/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Goettingen-1004/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/

Dror Bar-Natan: Talks: Trieste-0905: Day 3

More at http://www.math.toronto.edu/~drorbn/Talks/Trieste-0905/

More at http://www.math.toronto.edu/~drorbn/Talks/KSU-090407/

10 Minutes on Homology

Dror Bar-Natan, Bogota, February 23 2009 http://www.math.toronto.edu/~drorbn/Talks/Bogota-0902/ and http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2009-02/

our Failure to construct all solutions of a given equation: $\mathbb{R}_{0}^{l} \xrightarrow{d} \mathbb{R}_{x,y}^{2} \xrightarrow{d} \mathbb{R}_{n}^{l}$ OH (as o) (y)HVX2+y2 20 1 = cosnst V-21, W-22) Z im d, clardz => dzod, =0 H(w) := kw dz im dEuler Characteristic Theorom IF averything is Finite, Then $\Sigma \in II^r \dim \mathcal{U} = \Sigma (-1)^r \dim H^r$ $=: \mathcal{X}(\mathcal{A})$ Proof (more or less) equivalent" [and they have equal. (r+)

Definition A complex is a long chain of "parametrization Problems": $\mathcal{N}=\left(\longrightarrow\mathcal{N}^{r-1}\mathcal{J}^{$ s.t. d2=0 or im(d)cker(d) Homology: Hr(M):= ker dr. The "parametrization Failure" at step V. [I don't understand why "bing" complexes are so common () Marphisms and Hamstopy $\xrightarrow{\text{Morphisms:}} \Omega_0^{r-1} \xrightarrow{d^{r-1}} \Omega_0^r \xrightarrow{d^r} \Omega_0^{r+1} \longrightarrow \cdots$ F^{r-1} F^r F^{r+1} $\cdots \longrightarrow \Omega_1^{r-1} \xrightarrow{d^{r-1}} \Omega_1^r \xrightarrow{d^r} \Omega_1^{r+1} \longrightarrow$ Homotopies: $\Omega_0^{r-1} \xrightarrow{d^{r-1}} \Omega_0^r \xrightarrow{d^r} \Omega_0^{r+1}$ $F^{r-1} \bigvee_{q} G^{r-1} \xrightarrow{h^r} F^r \bigvee_{q} G^r \xrightarrow{h^{r+1}} F^{r+1} \bigvee_{q} G^{r+1}$ $\Omega_1^{r-1} \xrightarrow{d^{r-1}} \Omega_1^r \xrightarrow{d^r} \Omega_1^{r+1}$ $F^{r} - G^{r} = h^{r+1}d^{r} + d^{r-1}h^{r}$ If There are No EN, Sit. Fog~Is, and gof~Irz, Then "No & r, are homotopy"

ho molo 9

More at http://www.math.toronto.edu/~drorbn/Talks/Bogota-0902/

More at http://www.math.toronto.edu/~drorbn/Talks/Copenhagen-081009/

More at http://www.math.toronto.edu/~drorbn/Talks/Copenhagen-081009/

Our Goal. Prove all these relations uniformly, at maximal confidence and minimal brain utilization.

 \Rightarrow We need an "Alexander Invariant" for arbitrary tangles, easy to define and compute and well-behaved under tangle compositions; better, "virtual tangles".

Circuit Algebras	J Q A J-K
* Have "circuits" with "ends",	
* Can be wired arbitrarily.	
* May have "relations" – de–Morgan, etc.	
Example $V\mathcal{T} = CA \langle \times, \times \rangle / R23 = PA$	$\langle \times, \times, \times \rangle / R23, VR123, MR3$

¹ Reminders from linear algebra. If X is a (finite) set,

 $\Lambda^k(X) := \langle k \text{-tuples in } X, \text{ modulo anti-symmetry} \rangle$

 $\Lambda^{\text{top}}(X) := \langle |X| \text{-tuples in } X, \text{ modulo anti-symmetry} \rangle$

 $\Lambda^{1/2}(X) := \langle (|X|/2) \text{-tuples in } X, \text{ modulo anti-symmetry} \rangle.$

If $Y \subset X^m$, the "interior multiplication" $i_Y : \Lambda^k(X) \to \Lambda^{k-m}(X)$ is anti-symmetric in Y.

Definition. An "Alexander half density with input strands X^{in} and output strands X^{out} " is an element of

$$\operatorname{AHD}(X^{\operatorname{in}}, X^{\operatorname{out}}) := \Lambda^{\operatorname{top}}(X^{\operatorname{out}}) \otimes \Lambda^{1/2}(X^{\operatorname{in}} \cup X^{\operatorname{out}})$$

Often we extend the coefficients to some polynomial ring without warning.

Definition. If $\alpha_i \otimes p_i \in AHD(X_i^{\text{in}}, X_i^{\text{out}} \text{ (for } i = 1, 2), \text{ and } G = (X_1^{\text{in}} \cup X_2^{\text{in}}) \cap (X_1^{\text{out}} \cup X_2^{\text{out}}) \text{ is the set of "gluable legs", the "gluing" in <math>AHD(X_1^{\text{in}} \cup X_2^{\text{in}} - G, X_1^{\text{out}} \cup X_2^{\text{out}} - G)$ is

$i_G(\alpha_1 \wedge \alpha_2) \otimes i_G(p_1 \wedge p_2).$

Claim. This makes AHD a circuit algebra.

Definition. The "Penultimate Alexander Invariant" is defined using

$$pA: \overset{k \quad j}{\underset{l \quad i}{\times}} \mapsto (j \land k) \otimes \begin{pmatrix} l \land i + (t_i - 1)l \land j - t_l l \land k \\ +i \land j + t_l j \land k \end{pmatrix}$$
$$pA: \overset{l \quad k}{\underset{i \quad j}{\times}} \mapsto (k \land l) \otimes \begin{pmatrix} t_j i \land j - t_j i \land l + j \land k \\ +(t_i - 1)j \land l + k \land l \end{pmatrix}$$

Why Works?

Every "rook arrangement" in the above picture must have exactly l rooks in the yellow zone and l rooks in the purple zone. So for T_1 we only care about the minors in which exactly l of the 2l middle columns are dropped, and the rest is signs...

Weaknesses. Exponential, no understanding of cablings, no obvious "meaning". The ultimate Alexander invariant should address all that...

Challenge. Can you categorify this?

More at http://www.math.toronto.edu/~drorbn/Talks/Sandbjerg-0810/

```
Dror Bar-Natan: Talks: Sandbjerg-0810: The Penultimate Alexander Invariant:
We Mean Business
```

```
(* WP: Wedge Product *)
 2 WSort[expr_] := Expand[expr /. w_W :> Signature[w]*Sort[w]];
 3 \text{ WP[0, ]} = \text{WP[, 0]} = 0;
 4 WP[a_, b_] := WSort[Distribute[a ** b] /.
 5
           (c1_. * w1_W) ** (c2_. * w2_W) :> c1 c2 Join[w1, w2]];
 6
 7
                 (* IM: Interior Multiplication *)
 8 IM[{}, expr_] := expr;
 9 IM[i_, w_W] := If[FreeQ[w, i], 0,
10
           -(-1)^Position[w, i][[1,1]]*DeleteCases[w, i] ];
11 IM[{is___, i_}, w_W] := IM[{is}, IM[i, w]];
12 IM[is_List, expr_] := expr /. w_W :> IM[is, w]
13
14
                 (* pA on Crossings *)
15 pA[Xp[i_,j_,k_,1_]] := AHD[(t[i]==t[k])(t[j]==t[1]), {i,1}, W[j,k],
           W[1,i] + (t[i]-1)W[1,j] - t[1]W[1,k] + W[i,j] + t[1]W[j,k]];
16
17 pA[Xm[i_,j_,k_,1_]] := AHD[(t[i]==t[k])(t[j]==t[1]), {i,j}, W[k,1],
          t[j]W[i,j] - t[j]W[i,1] + W[j,k] + (t[i]-1)W[j,1] + W[k,1] ]
18
19
20
                 (* Variable Equivalences *)
21 ReductionRules[Times[]] = {};
22 ReductionRules[Equal[a_, b__]] := (# -> a)& /@ {b};
23 ReductionRules[eqs_Times] := Join @@ (ReductionRules /@ List@@eqs)
24
25
                 (* AHD: Alexander Half Densities *)
26 AHD[eqs_, is_, -os_, p_] := AHD[eqs, is, os, Expand[-p]];
27 AHD /: Reduce[AHD[eqs_, is_, os_, p_]] :=
28 AHD[eqs, Sort[is], WSort[os], WSort[p /. ReductionRules[eqs]]];
29 AHD /: AHD[eqs1_,is1_,os1_,p1_] AHD[eqs2_,is2_,os2_,p2_] := Module[
30
        {glued = Intersection[Union[is1, is2], List@@Union[os1, os2]]},
31
       Reduce[AHD[
32
           eqs1*eqs2 //. eq1_Equal*eq2_Equal /;
33
              Intersection[List@@eq1, List@@eq2] =!= {} :> Union[eq1, eq2],
           Complement[Union[is1, is2], glued],
34
35
           IM[glued, WP[os1, os2]],
36
          IM[glued, WP[p1, p2]]
37 ]] ]
38
39
                 (* pA on Circuit Diagrams *)
40 pA[cd_CircuitDiagram, eqs___] := pA[cd, {}, AHD[Times[eqs], {}, W[], W[]]];
41 pA[cd_CircuitDiagram, done_, ahd_AHD] := Module[
42
        {pos = First[Ordering[Length[Complement[List @@ #, done]] & /@ cd]]};
43
       pA[Delete[cd, pos], Union[done, List @@ cd[[pos]]], ahd*pA[cd[[pos]]]]
44 1:
45 pA[CircuitDiagram[], _, ahd_AHD] := ahd
                                                                                                       pA[Cir
                           35
 \ln[10] = Timing[res4 = pA[#, (t[1] = t[6]) (t[11] = t[16]) (t[21] = t[26])] & @ {
          CircuitDiagram [
                                                                                                 outist= True
          http://www.setup.exp[11, 3, 12, 2], ½p[3, 30, 4, 29], ½m[4, 21, 5, 22],
½p[6, 23, 7, 22], ½m[7, 28, 8, 29], ½m[12, 8, 13, 9], ½p[18, 10, 19, 9],
½m[27, 13, 28, 14], ½p[23, 15, 24, 14], ½m[24, 16, 25, 17], ½p[26, 18, 27, 17]
                                                                                                References
          CircuitDiagram
                                                                                                [Ar]
           \begin{array}{l} & \chi_{p}[1, 28, 2, 27], \ \chi_{m}[2, 23, 3, 24], \ \chi_{m}[17, 3, 18, 4], \ \chi_{p}[13, 5, 14, 4], \\ & \chi_{m}[14, 6, 15, 7], \ \chi_{p}[16, 8, 17, 7], \ \chi_{p}[6, 25, 9, 24], \ \chi_{m}[9, 26, 10, 27], \\ & \chi_{m}[29, 11, 30, 12], \ \chi_{p}[24, 13, 22, 12], \ \chi_{m}[22, 18, 23, 19], \ \chi_{p}[28, 20, 29, 19] \\ \end{array} 
        11
       A very large output was generated. Here is a sample of it:
        \begin{array}{l} (9.86, \ (\texttt{AHD}[(t[1] = t[2] = t[3] = t[4] = t[5] = t[6] = t[7] = t[8] = t[9] = t[10]) \\ (t[11] = t[12] = t[13] = t[14] = t[15] = t[16] = t[17] = t[18] = t[19] = t[20]) \\ (t[21] = t[22] = t[23] = t[24] = t[25] = t[26] = t[27] = t[28] = t[29] = t[30]), \end{array} 
Out[10]
          \begin{split} & \{1, \, 6, \, 11, \, 16, \, 21, \, 26\}, \, \ll 1 \gg, \\ & -t [1]^2 \, t [11]^2 \, t [21]^2 \, \mathbb{W}[1, \, 5, \, 6, \, 11, \, 15, \, 21] + \ll 2574 \gg], \, \ll 1 \gg \} \rbrace \end{split}
                                                                                                [NS]
       Show Less Show More Show Full Output Set Size Limit...
hill:= Equal @@ (Last /@ res4)
                                                                                                [Va]
             (The program also prints "False" )
when appropriate, and computes Alexander polynomials) ]
More at http://www.math.toronto.edu/~drorbn/Sandbjerg-0810/pA.nb
Out[11]= True
```

Comments online 2. W[i1,i2,...] represents $i_1 \wedge i_2 \wedge \ldots$ To sort it we **Sort** its arguments and multiply by the Signature of the permutation used. 3. The wedge product of 0 with anything is 0. 4-5. The wedge product of two things involves applying the Distributeive law, Joining all pairs of W's, and WSorting the result. 8. Inner multiplying by an empty list of indices does nothing. 9-10. Inner multiplying a single index yields 0 if that index is not pressent, otherwise it's a sign and the index is deleted. 11-12. Aftwrwards it's simple recursion. 15-18. For the crossings Xp and Xm it is straightforward to determine the incoming strands, the outgoing ones, and the variable equivalences. The associated half-densities are just as in the formulas. 21-23. The technicalities of imposing variable equivalences are annoying. 26. That's all we need from the definition of a tensor product. 27-28. Straightforward simplifications. 29. The (circuit algebra) product of two Alexander Half Densities: 30. The glued strands are the intersection of the ins and the outs. 32-**33.** Merging the variable equivalences is tricky but natural. **34-35.** Removing the glued strands from the ins and outs. 36 The Key Point. The wedge product of the half-densities, inner with the glued strands. 40-45. A quick implementation of a "thin scanning" algorithm for multiple products. The key line is 42, where we select the next crossing we multiply in to be the crossing with the fewest "loose strands". Overcrossings Commut

Hence

Theorem. {ribbon knots} ~ { $u\gamma: \gamma \in \mathcal{O}(\infty)$, $d\gamma = \bigcirc \bigcirc$ }. a h Hence an expansion for KTG may tell us about ribbon knots, knots of genus 5, boundary links, etc.

a homomorphic expansion is solving finitely many equations with finitely many unknowns, in some graded spaces.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MSRI-0808/

A Very Non-Planar Very Planar Algebra lold work with Dynn Thusky Dror Bar-Natan: Talks: Fields-0709: Definition. A planar algebra has Light entertainment Theorem. There exists a skeletal (very) planar algebra of "shielded tangles" with: spaces / operations indexed 64 with obvious compatabilition between ops. (nd and brown are always "knottable) Examples. 1. My Favourite - tangles: and with $(\bigcirc, \bigcirc, \bigcirc)$ makes Reidemeister's Theorem into gens/rels: well $P_{\tau} = \langle \bigotimes_{i} \bigotimes \rangle$ (1) defined 2. "Skeletons": Def. A skeldal and planar algebra is "fibred" overs $S = P_{T} / \otimes = \bigotimes = 1 \bigotimes P_{T}$ 4. Tensor: choose H, 3. TL: RNd VSe approprite contractions All make FXAMO Gense 11 out Not Very plana Proof. key point: on the kind of stellions is and trues are norther the (so knothedness moved around]) well defined. Facts, I. There is no planar - algebra-structure deeper connections 1. Slides/blume/ Some pro -respecting universal Finite type invariant powerpoint are evil ? ordinary * Can you always sync with YT, STU, 1 tongles (AS, IHX the speaker l * Don't you want to bet 2. But there is one for shielded tangles p JZ: (shielded) tangles back at pictures long good rels. 2. Hundouts are cool Everything's always 3. This Z provides a Reidemeister context for the kontserich integral in Front of you, 4. A consin of Z is equivalent to the Drinfeld theory Un when you go associators. The Knot Atlas A similar story will be told for "virtual knots" God created the knots. Visit! all else in topology is the and will provide a topological interpretation of a work of mortals katlas.org Leopold Kronecker "Universal Quantum group". See ... / Talks/Hanoi-0708 Edit! (modified) http://www.math.toronto.edu/~drorbn/Talks/Fields-0709/

More at http://www.math.toronto.edu/~drorbn/Talks/Fields-0709/

More at http://www.math.toronto.edu/~drorbn/Talks/Hanoi-0708/

More at http://www.math.toronto.edu/~drorbn/Talks/Kyoto-0705/

Math 1352 Algebraic Knot Theory - The Knizhnik-Zamokodchikov Connertion Theorem. The following is an invariant of braids in REXIZ (Fixed undpoints) in $A(\eta_n) := \langle t^{ij} : |\kappa_i \neq j \le n \rangle / [t^{ij} = t^{ij}] = 0$ $[t^{ij}, t^{ik} + t^{ik}] = 0$ 2:-2: Z(B)=Z(ZTTi)m/ tis.stm p=({z;z;}))/4T Formal Connecting = "Chord diagrams for brails". & Curvature. graded unital. Proof 2. Let T: Is XII -> M, D: Is XM -> MM; By Stokes', Let NEN(M, A) with deg R=1. Y: [0,]=I -> M induces $\int \Phi_{i}^{*} \mathcal{N}^{m} - \int \Phi_{i}^{*} \mathcal{N}^{m} = \int d\Phi_{i}^{*} \mathcal{N}^{m} - \int \Phi_{i}^{*} \mathcal{N}^{m} = :\mathcal{A}_{m} - \mathcal{B}_{m}$ $\varphi: \Delta^m = \{ost_1 s \dots st_m s \} \rightarrow M^m$ Now Set holy (M) = Pexp Syr = \$\$ \$ m Am=Z(-1)K+1 STITA MARANA where MM:=TT, MA ATT MA per endpoints // and $B_{m} = \int \mathcal{D}^{*} \mathcal{N}^{m} \pm \left(\overline{\mathcal{D}}^{*} \mathcal{N}^{m} + \sum_{k=1}^{m-1} (-1)^{k} \right) \right) \left(\overline{\mathcal{D}}^{*} \mathcal{N}^{m} + \sum_{k=1}^{m-1} (-1)^{k} \right) \left(\overline{\mathcal{D}}^{*} \mathcal{N}^{m} + \sum_{k=1}^{m-1} (-1)^{k} \right) \right) \left(\overline{\mathcal{D}}^{*} \mathcal{N}^{m} + \sum_{k=1}^{m-1} (-1)^{k} \right) \left(\overline{\mathcal{D}}^{*} \mathcal{N}^{m} + \sum_{k=1}^{m-1} (-1)^{k} \right) \right) \left(\overline{\mathcal{D}}^{*} \mathcal{N}^{m} + \sum_{k=1}^{m-1} (-1)^{k} \right) \left(\overline{\mathcal{D}}^{*} \mathcal{N}^{m} + \sum_{$ Theorems. If Fu:= dr+M12=0, then holy (12) is invariant under end-point preserving homotopies of Y. $= \sum_{k=1}^{n-1} \int TT_1^* \mathcal{L}^n \dots TT_k^* (\mathcal{M}\mathcal{M})^n \dots \mathcal{M} TT_{n-1}^* \mathcal{N}$ The KZ connection. and now ZAm=ZBm by telescopic summation & Fr=0. M= C' diagonts?, A=A(1), Win = dzi-dzi = dlog(zi-zi) Proof of 1 zi-zi locally Circula take in and $N = \sum_{i \leq j} t^{ij} W_{ij}$ where simply take in Compute Fo= dutan: dN=0. dwij=0 so theorem 2, Y= the braid MM= Z tiste wij NWH = A+B+C where and A=C=O NS [tistel]=O if [[isko]]=2 or 4 and M= the kZ B= Z [txp, tp)] Wy Nys + Cyclic perms Note: by yT, Etro, tp) = yup = W Connection. = Z Yorpy (Wap Wort cycporns) = 0 = 0 by Arnolds identif Dror Bor-Noton, Feb 13, 2007

More at http://drorbn.net/index.php?title=07-1352/Class_Notes_for_February_13 and at http://www.math.toronto.edu/~drorbn/Talks/Aarhus-1305/ (day 2)

More at http://www.math.toronto.edu/~drorbn/Talks/UIUC-050311/

More at http://www.math.toronto.edu/~drorbn/Talks/UIUC-050311/

From Stonehenge to Witten Skipping all the Details

Oporto Meeting on Geometry, Topology and Physics, July 2004

⁵⁰ Dror Bar–Natan, University of Toronto It is well known that when the Sun rises on midsummer's morning Recall that the latter

It is well known that when the Sun rises on midsummer's morning over the "Heel Stone" at Stonehenge, its first rays shine right through the open arms of the horseshoe arrangement. Thus astrological lineups, one of the pillars of modern thought, are much older than the famed Gaussian linking number of two knots. Recall that the latter is itself an astrological construct: one of the standard ways to compute the Gaussian linking number is to place the two knots in space and then count (with signs) the number of shade points cast on one of the knots by the other knot, with the only lighting coming from some fixed distant star.

More at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/

More at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/

More at http://www.math.toronto.edu/~drorbn/Talks/UQAM-051001/

4Tu AND THE "TRUE" SKEIN KHOVANOV HOMOLOGY

DROR BAR-NATAN

What is it good for?

(1) Cutting necks:

(2) Recovers the good old Khovanov theory,

$$\mathcal{F}(\Xi) = \epsilon : \left\{ 1 \mapsto v_{+} \qquad \qquad \mathcal{F}(\overline{\mathbb{C}}) = \eta : \left\{ \begin{array}{l} v_{+} \mapsto 0 \\ v_{-} \mapsto 1 \end{array} \right. \\ \mathcal{F}(\Xi) = \Delta : \left\{ \begin{array}{l} v_{+} \mapsto v_{+} \otimes v_{-} + v_{-} \otimes v_{+} \\ v_{-} \mapsto v_{-} \otimes v_{-} \end{array} \right. \qquad \qquad \mathcal{F}(\odot) = m : \left\{ \begin{array}{l} v_{+} \otimes v_{-} \mapsto v_{-} & v_{+} \otimes v_{+} \mapsto v_{+} \\ v_{-} \otimes v_{+} \mapsto v_{-} & v_{-} \otimes v_{-} \end{array} \right. \\ \mathcal{F}(\Box) = \Delta : \left\{ \begin{array}{l} v_{+} \mapsto v_{+} \otimes v_{-} + v_{-} \otimes v_{+} \\ v_{-} \mapsto v_{-} \otimes v_{-} \end{array} \right. \qquad \qquad \mathcal{F}(\odot) = m : \left\{ \begin{array}{l} v_{+} \mapsto v_{-} & v_{+} \otimes v_{+} \mapsto v_{+} \\ v_{-} \otimes v_{+} \mapsto v_{-} & v_{-} \otimes v_{-} \end{array} \right. \\ \mathcal{F}(\Box) = \Delta : \left\{ \begin{array}{l} v_{+} \mapsto v_{+} \otimes v_{-} + v_{-} \otimes v_{+} \\ v_{-} \mapsto v_{-} \otimes v_{-} \end{array} \right. \qquad \qquad \qquad \mathcal{F}(\Box) = \eta : \left\{ \begin{array}{l} v_{+} \mapsto 0 \\ v_{-} \mapsto v_{-} & v_{-} \otimes v_{+} \end{array} \right. \\ \mathcal{F}(\Box) = \eta : \left\{ \begin{array}{l} v_{+} \mapsto v_{-} \otimes v_{-} & v_{+} \otimes v_{+} & v_{+} & v_{+} \otimes v_{+} & v_{+} & v_{+} \otimes v_{+} & v_{+} \otimes v_{+} & v_{+} \otimes v_{+} & v_{+} \otimes v_{+} & v_{+} & v_{+} \otimes v_{+} & v_{+} & v_{+} \otimes v_{+} & v_{+} \otimes v_{+} & v_{+} \otimes v_{+} & v_{+} &$$

- (3) Trivially extends to tangles.
- (4) Well suited to prove invariance for cobordisms.
- (5) Recovers Lee's theory,

$$\Delta: \begin{cases} v_+ \mapsto v_+ \otimes v_- + v_- \otimes v_+ \\ v_- \mapsto v_- \otimes v_- + v_+ \otimes v_+ \end{cases} \qquad m: \begin{cases} v_+ \otimes v_- \mapsto v_- & v_+ \otimes v_+ \mapsto v_+ \\ v_- \otimes v_+ \mapsto v_- & v_- \otimes v_- \mapsto v_+ \end{cases}$$

(6) Leads to a new theory (over $\mathbb{Z}/2$ and with deg h = -2),

$$\Delta: \begin{cases} v_+ \mapsto v_+ \otimes v_- + v_- \otimes v_+ + hv_+ \otimes v_+ \\ v_- \mapsto v_- \otimes v_- \end{cases} \qquad m: \begin{cases} v_+ \otimes v_- \mapsto v_- & v_+ \otimes v_+ \mapsto v_+ \\ v_- \otimes v_+ \mapsto v_- & v_- \otimes v_- \mapsto hv_- \end{cases}$$

- (7) Trivially extends to knots on surfaces.
- (8) Non-trivially recovers Khovanov's c,

$$\begin{split} \epsilon : & \left\{ 1 \mapsto v_{+} & \eta : \begin{cases} v_{+} \mapsto 0 \\ v_{-} \mapsto -c \end{cases} \\ \Delta : & \left\{ v_{+} \mapsto v_{+} \otimes v_{-} + v_{-} \otimes v_{+} + cv_{-} \otimes v_{-} \\ v_{-} \mapsto v_{-} \otimes v_{-} \end{matrix} \right. & m : \begin{cases} v_{+} \otimes v_{-} \mapsto v_{-} & v_{+} \otimes v_{+} \mapsto v_{+} \\ v_{-} \otimes v_{+} \mapsto v_{-} & v_{-} \otimes v_{-} \mapsto 0. \end{cases} \end{split}$$

(Added June 29, 2004: what appeared to work didn't quite. The recovery of Khovanov's c remains open).

"God created the knots, all else in topology is the work of man."

Leopold Kronecker (modified)

URL: http://www.math.toronto.edu/~drorbn/papers/Cobordism (and see the ''GWU'' handout)

Date: May 30, 2004.

1

More at http://www.math.toronto.edu/~drorbn/Talks/GWU-050213/

A Quick Reference Guide to Khovanov's Categorification of the Jones Polynomial Dror Bar-Natan, June 12, 2002

The Kauffman Bracket: $\langle \emptyset \rangle = 1$; $\langle \bigcirc L \rangle = (q+q^{-1})\langle L \rangle$; $\langle \times \rangle = \langle \underset{0-\text{smoothing}}{\sim} \rangle - q \langle \underset{1-\text{smoothing}}{\rangle} \rangle$. The Jones Polynomial: $\hat{J}(L) = (-1)^{n-}q^{n+-2n-}\langle L \rangle$, where (n_+, n_-) count (\times, \times) crossings. Khovanov's construction: $\llbracket L \rrbracket$ — a chain complex of graded \mathbb{Z} -modules;

$$(V_{-} \otimes v_{+} \mapsto v_{-} \quad v_{-} \otimes v_{-} \mapsto 0 \quad \text{Optimization a frobenius}$$

$$(V_{-} \otimes v_{+} \mapsto v_{-} \quad v_{-} \otimes v_{-} \mapsto 0 \quad \text{Optimization a frobenius}$$

$$(V_{-} \otimes v_{+} \mapsto v_{-} \otimes v_{-} + v_{-} \otimes v_{+} \quad \text{Optimization a frobenius}$$

Example:

$$\overrightarrow{q} \quad q^{-2} + 1 + q^2 - q^6 \quad \xrightarrow{(-1)^{n} - q^{n_+ - 2n_-}}_{\text{(with } (n_+, n_-) = (3, 0))} \quad q + q^3 + q^5 - q^9$$

Theorem 1. The graded Euler characteristic of C(L) is $\hat{J}(L)$. **Theorem 2.** The homology $\mathcal{H}(L)$ is a link invariant and thus so is $Kh_{\mathbb{F}}(L) := \sum_{r} t^{r} q \dim \mathcal{H}_{\mathbb{F}}^{r}(\mathcal{C}(L))$ over any field \mathbb{F} . **Theorem 3.** $\mathcal{H}(\mathcal{C}(L))$ is strictly stronger than $\hat{J}(L)$: $\mathcal{H}(\mathcal{C}(\bar{5}_1)) \neq \mathcal{H}(\mathcal{C}(10_{132}))$ whereas $\hat{J}(\bar{5}_1) = \hat{J}(10_{132})$. **Conjecture 1.** $Kh_{\mathbb{Q}}(L) = q^{s-1} \left(1 + q^2 + (1 + tq^4)Kh'\right)$ and $Kh_{\mathbb{F}_2}(L) = q^{s-1}(1 + q^2)\left(1 + (1 + tq^2)Kh'\right)$ for even s = s(L) and non-negative-coefficients laurent polynomial Kh' = Kh'(L).

Conjecture 2. For alternating knots s is the signature and Kh' depends only on tq^2 . References. Khovanov's arXiv:math.QA/9908171 and arXiv:math.QA/0103190 and DBN's http://www.ma.huji.ac.il/~drorbn/papers/Categorification/.

More at http://www.math.toronto.edu/~drorbn/Talks/UWO-040213/

More at http://www.math.toronto.edu/~drorbn/Talks/UWO-040213/