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The Strongest Genuinely Computable Knot Invariant in 2024
Dror Bar-Natan: Talks: PhuQuoc-2506:

Genuinely Computable. Here’s Θ
on a random 300 crossing knot (from
[DHOEBL]). For almost every other
invariant, that’s science fiction.
Fun. There’s so much more to see in
2D pictures than in 1D ones! Yet al-
most nothing of the patterns you see
we know how to prove. We’ll have
fun with that over the next few years.
Would you join?
Meaningful. θ gives a genus bound (unproven yet with confi-
dence). We hope (with reason) it says something about ribbon
knots.
Conventions. T , T1, and T2 are indeterminates and T3 B T1T2.
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Thanks for inviting me to Vietnam!

Abstract. “Genuinely computable” means we have co-
mputed it for random knots with over 300 crossings.
“Strongest” means it separates prime knots with up to
15 crossings better than the less-computable HOMFLY-
PT and Khovanov homology taken together. And hey,
it’s also meaningful and fun.
Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint w-
ith van der Veen.
Acknowledgement. This work was supported by NSERC grants RGPIN-2018-
04350 and RGPIN-2025-06718 and by the Chu Family Foundation (NYC).
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Strongest. Testing Θ = (∆, θ) on prime knots up to mirrors and
reversals, counting the number of distinct values (with deficits in
parenthesis): (ρ1: [Ro1, Ro2, Ro3, Ov, BV1])

knots (H,Kh) (∆, ρ1) Θ = (∆, θ) together
reign 2005-22 2022-24 2024-

xing ≤ 10 249 248 (1) 249 (0) 249 (0) 249 (0)
xing ≤ 11 801 771 (30) 787 (14) 798 (3) 798 (3)
xing ≤ 12 2,977 (214) (95) (19) (18)
xing ≤ 13 12,965 (1,771) (959) (194) (185)
xing ≤ 14 59,937 (10,788) (6,253) (1,118) (1,062)
xing ≤ 15 313,230 (70,245) (42,914) (6,758) (6,555)

Preparation. Draw an n-crossing knot K as a
diagram D as on the right: all crossings face up,
and the edges are marked with a running index
k ∈ {1, . . . , 2n + 1} and with rotation numbers φk.
Model T Traffic Rules. Cars always drive fo-
rward. When a car crosses over a sign-s brid-
ge it goes through with (algebraic) probability

T s ∼ 1, but falls off with probability
1 − T s ∼ 0. At the very end, cars
fall off and disappear. On various ed-
ges traffic counters are placed. See
also [Jo, LTW].

Definition. The traffic function G = (gαβ) (also,
the Green function or the two-point function) is
the reading of a traffic counter at β, if car traffic
is injected at α (if α = β, the counter is after the injection point).
There are also model-Tν traffic functions Gν = (gναβ) for ν =
1, 2, 3. Example.

Don’t Look.

F1(c)= s
[
1/2 − g3ii + T s

2g1iig2 ji − T s
2g3 j jg2 ji − (T s

2−1)g3iig2 ji

+(T s
3−1)g2 jig3 ji − g1iig2 j j + 2g3iig2 j j + g1iig3 j j − g2iig3 j j

]

+
s

T s
2−1

[
(T s

1−1)T s
2

(
g3 j jg1 ji − g2 j jg1 ji + T s

2g1 jig2 ji

)

+ (T s
3−1)

(
g3 ji − T s

2g1iig3 ji + g2i jg3 ji + (T s
2−2)g2 j jg3 ji

)

−(T s
1−1)(T s

2+1)(T s
3−1)g1 jig3 ji

]

F2(c0, c1)=
s1(T s0

1 −1)(T s1
3 −1)g1 j1i0g3 j0i1

T s1
2 −1

(
T s0

2 g2i1i0 + g2 j1 j0 − T s0
2 g2 j1i0 − g2i1 j0

)

F3(φ, k) = φ(−1/2 + g3kk)

2025/06/04@23:23

Video and more at http://www.math.toronto.edu/~drorbn/Talks/PhuQuoc-2506.
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Questions, Conjectures, Expectations, Dreams.
Question 1. What’s the relationship between Θ and the
Garoufalidis-Kashaev invariants [GK, GL]?
Conjecture 2. On classical (non-virtual) knots, θ always has he-
xagonal (D6) symmetry.
Conjecture 3. θ is the ϵ1 contribution to the “solvable appro-
ximation” of the sl3 universal invariant, obtained by running the
quantization machinery on the double D(b, b, ϵδ), where b is the
Borel subalgebra of sl3, b is the bracket of b, and δ the cobracket.
See [BV2, BN1, Sch]
Conjecture 4. θ is equal to the “two-loop contribution to the Kon-
tsevich Integral”, as studied by Garoufalidis, Rozansky, Kricker,
and in great detail by Ohtsuki [GR, Ro1, Ro2, Ro3, Kr, Oh].
Fact 5. θ has a perturbed Gaussian integral formula, with inte-
gration carried out over over a space 6E, consisting of 6 copies of
the space of edges of a knot diagram D. See [BN2].
Conjecture 6. For any knot K, its genus g(K) is bounded by the
T1-degree of θ: 2g(K) ≥ degT1

θ(K).
Conjecture 7. θ(K) has another perturbed Gaussian integral for-
mula, with integration carried out over over the space 6H1, con-
sisting of 6 copies of H1(Σ), where Σ is a Seifert surface for K.
Expectation 8. There are many further invariants like θ, given by
Green function formulas and/or Gaussian integration formulas.
One or two of them may be stronger than θ and as computable.
Dream 9. These invariants can be explained by
something less foreign than semisimple Lie alge-
bras.

Dream 10. With Conjectu-
re 7 in mind, θ will have
something to say about rib-
bon knots.

Theorem [BV3]. With c = (s, i, j), c0 =

(s0, i0, j0), and c1 = (s1, i1, j1) denoting cros-
sings, there is a quadratic F1(c) ∈ Q(Tν)[gναβ :
α, β ∈ {i, j}], a cubic F2(c0, c1) ∈ Q(Tν)[gναβ : α, β ∈
{i0, j0, i1, j1}], and a linear F3(φ, k) such that θ is a knot invariant:

θ(D) B ∆1∆2∆3︸  ︷︷  ︸
normalization,

see later


∑

c

F1(c) +
∑

c0,c1

F2(c0, c1) +
∑

k

F3(φk, k)

 ,

If these pictures remind you of Feynman diagrams, it’s because
they are Feynman diagrams [BN2].

j i

s=−1

D D

s=1

i j

i 21

Lemma 1. The traffic function gαβ is a “relative invariant”:

j k

α

β

D

Proof.

Lemma 2. With k+ B k + 1, the “g-rules” hold
near a crossing c = (s, i, j):
g jβ = g j+β + δ jβ giβ = T sgi+β + (1−T s)g j+β + δiβ g2n+,β = δ2n+,β

gαi+ = T sgαi + δαi+ gα j+ = gα j + (1 − T s)gαi + δα j+ gα,1 = δα,1
Corollary 1. G is easily computable, for AG = I (= GA), with A
the (2n+1)×(2n+1) identity matrix with additional contributions:

c = (s, i, j) 7→
A col i+ col j+

row i −T s T s − 1
row j 0 −1

For the trefoil example, we have:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1



,

G =



1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 − (T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1



φ

2

1
j0 i1

D

i0 j1

Note. The Alexander polynomial ∆ is given by
∆ = T (−φ−w)/2 det(A), with φ =

∑
k φk, w =

∑
c s.

We also set ∆ν B ∆(Tν) for ν = 1, 2, 3.

This picture gave the invariant its name

e.g. g3 j0i1 g1 j1i0 g2i1i03e.g. g2iig3 j j e.g. g3kk

Video and more at http://www.math.toronto.edu/~drorbn/Talks/PhuQuoc-2506.
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Corollary 2. Proving invariance is easy:
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Invariance under R3
This is Theta.nb of http://drorbn.net/v25/ap.

,Once[<< KnotTheory`; << Rot.m; << PolyPlot.m];

,T3 = T1 T2;

,CF[ℰ_] := Expand@Collect[ℰ , g__, F] /. F  Factor;

,F1[{s_, i_, j_}] =

CF

s 1/ 2 - g3ii + T2
s g1ii g2ji - g1ii g2jj -

T2
s
- 1 g2ji g3ii + 2 g2jj g3ii - 1 - T3

s
 g2ji g3ji -

g2ii g3jj - T2
s g2ji g3jj + g1ii g3jj +

T1
s
- 1 g1ji T2

2 s g2ji - T2
s g2jj + T2

s g3jj +

T3
s
- 1 g3ji

1 - T2
s g1ii - T1

s
- 1 T2

s
+ 1 g1ji +

T2
s
- 2 g2jj + g2ij T2

s
- 1;

,F2[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CFs1 T1
s0

- 1 T2
s1

- 1-1
T3

s1
- 1 g1,j1,i0 g3,j0,i1

 T2
s0 g2,i1,i0 - g2,i1,j0 - T2

s0 g2,j1,i0 - g2,j1,j0

,F3[φ_, k_] = -φ/ 2 + φ g3kk;

,δi_,j_ := If[i === j, 1, 0];

gRs_,i_,j_ := 

gν_jβ_  gν j+β + δjβ,

gν_iβ_  Tν
s gνi+β + 1 - Tν

s
 gν j+β + δiβ,

gν_α_i+  Tν
s gναi + δαi+,

gν_α_j+  gνα j + 1 - Tν
s
 gναi + δα j+



,DSum[Cs___] := Sum[F1[c], {c, {Cs}}] +

Sum[F2[c0, c1], {c0, {Cs}}, {c1, {Cs}}]

lhs = DSum[{1, j, k}, {1, i, k+}, {1, i+, j+},

{s, m, n}] //. gR1,j,k ⋃ gR1,i,k+ ⋃ gR1,i+,j+;

rhs = DSum[{1, i, j}, {1, i+, k}, {1, j+, k+},

{s, m, n}] //. gR1,i,j ⋃ gR1,i+,k ⋃ gR1,j+,k+;

Simplify[lhs  rhs]

§True

The Main Program 
,Θ[K_] := Module{Cs, φ, n, A, Δ, G, ev, θ},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_} 

A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];

G = Inverse[A];

ev[ℰ_] :=

Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];

θ = ev
k=1

n
F1[Cs〚k〛];

θ += ev
k1=1

n


k2=1

n
F2[Cs〚k1〛, Cs〚k2〛];

θ += ev
k=1

2 n
F3[φ〚k〛, k];

Factor@

{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) θ};

The Trefoil, Conway, and Kinoshita-Terasaka

,Θ[Knot[3, 1]] // Expand

§
-1 +

1

T
+ T, -

1

T1
2
- T1

2
-

1

T2
2
-

1

T1
2 T2

2
+

1

T1 T2
2
+

1

T1
2 T2

+
T1

T2
+
T2

T1
+ T1

2 T2 - T2
2
+ T1 T2

2
- T1

2 T2
2


,GraphicsRow[PolyPlot[Θ[Knot[#]]] & /@

{"3_1", "K11n34", "K11n42"}]

§

(Note that the genus of the Conway knot appears to
be bigger than the genus of Kinoshita-Terasaka)

Some Torus Knots 
,GraphicsRow[ImageCompose[

PolyPlot[Θ[TorusKnot @@ #], ImageSize  480],

TubePlot[TorusKnot @@ # , ImageSize  240],

{Right, Bottom}, {Right, Bottom}

] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

§

Video and more at http://www.math.toronto.edu/~drorbn/Talks/PhuQuoc-2506.
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The 132-crossing torus knot T22/7: (many more at ωεβ/TK)

Random knots from [DHOEBL], with 50-73 crossings: (many more at ωεβ/DK)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/PhuQuoc-2506.
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Abstract. For the purpose of today, an “I-Type Knot
Invariant” is a knot invariant computed from a knot
diagram by integrating the exponential of a pertur-
bed Gaussian Lagrangian which is a sum over the
features of that diagram (crossings, edges, faces) of
locally defined quantities, over a product of finite di-
mensional spaces associated to those same features.
Q. Are there any such things? A. Yes.
Q. Are they any good? A. They are the strongest we know per

CPU cycle, and are excellent in other ways too.
Q. Didn’t Witten do that back in 1988 with path integrals?
A. No. His constructions are infinite dimensional

and far from rigorous.
Q. But integrals belong in analysis!
A. Ours only use squeaky-clean algebra.

Knot Invariants from Zero-Dimensional QFT
Dror Bar-Natan: Talks: Bonn-2505:

2025/06/03@00:35

L(X+15)

L(X+37)

4

5

R2
p4 x4

R2
p1 x1

R2
p2 x2

R2
p3 x3

R2
p5 x5

R2
p6 x6

R2
p7 x7

φ
4
=
−1

Z = G
∫

R14
pi xi measure on R is (2π)−1/2·standard

L(X+15)L(X+62)L(X+37)L(C−1
4 )

The sl/ϵ
2

2 Example. With T an indeterminate and with ϵ2 = 0:

where L(Xs
i j) = T s/2

e
L(Xs

i j) and L(Cφ
i ) =

Tφ/2
e

L(Cφ
i ), and

L(Xs
i j) = xi(pi+1 − pi) + x j(p j+1 − p j)

+(T s − 1)xi(pi+1 − p j+1)

+
ϵs
2

(
xi(pi − p j)

(
(T s − 1)xi p j

+2(1 − x j p j)

)
− 1

)

L(Cφ
i ) = xi(pi+1 − pi) + ϵφ(1/2 − xi pi)

So Z = T G

∫
e

L(&)dp1 . . . dp7dx1 . . . dx7, where L(&) =∑7

i=1
xi(pi+1−pi) + (T−1)(x1(p2 − p6)+x6(p7 − p3)+x3(p4 − p8))

+
ϵ

2



x1(p1 − p5) ((T − 1)x1 p5 + 2(1 − x5 p5)) − 1
+x6(p6 − p2) ((T − 1)x6 p2 + 2(1 − x2 p2)) − 1
+x3(p3 − p7) ((T − 1)x3 p7 + 2(1 − x7 p7)) − 1

+2x4 p4 − 1


,

and so Z = (T − 1 + T−1)−1 exp
(
ϵ · (T−2+T−1)(T+T−1)

(T−1+T−1)2

)
=

∆−1 exp
(
ϵ · (T−2+T−1)ρ1

∆2

)
. Here ∆ is the Alexander polynomial and

ρ1 is the Rozansky-Overbay polynomial
[R1, R2, R3, Ov, BV1, BV2].

L(X+62)

L(C−1
4 )

Theorem. Z is a knot invariant.

(Alternative) Gaussian Integration.

Goal. Compute
∫

Rn
dx exp

(
−1

2
ai jxix j + V(x)

)
.

(if convergent)

Solution. SetZλ(x) B λ−n/2
∫

Rn
dy exp

(
− 1

2λ
ai jyiy j + V(x + y)

)
.

Then Z1(0) is what we want, Z0(x) = (det A)−1/2 exp V(x), and
with gi j the inverse matrix of ai j and noting that under the dy

integral ∂y = 0,
1
2

gi j∂xi∂x jZλ(x)

=
λ−n/2

2

∫

Rn
dy gi j(∂xi−∂yi)(∂x j−∂y j) exp

(
− 1

2λ
ai jyiy j + V(x + y)

)

=
λ−n/2

2λ2

∫

Rn
dy

(
gi jaii′a j j′yi′y j′ − λgi ja ji

)
exp

(
− 1

2λ
ai jyiy j + V(x + y)

)

=
λ−n/2

2λ2

∫

Rn
dy

(
ai jyiy j − λn

)
exp

(
− 1

2λ
ai jyiy j + V(x + y)

)

= ∂λZλ(x).

Hence (*) ∂λZλ(x) =
1
2

gi j∂xi∂x jZλ(x),

and therefore Zλ(x) = (det A)−1/2 exp
(
λ

2
gi j∂xi∂x j

)
exp V(x).

We’ve just witnessed the birth of “Feynman Diagrams”.
Even better. With Zλ B log(

√
det AZλ), by a simple

substitution into (*), we get the “Synthesis Equation”:

Z0 = V, ∂λZλ =
1
2

∑n

i, j=1
gi j

(
∂xi,x jZλ + (∂xiZλ)(∂x jZλ)

)
C F(Zλ),

an ODE (in λ) whose solution is pure algebra.

Strong. The pair (∆, ρ1) attains 270,316 distinct values on the
313,230 prime knots with up to 15 crossings (a deficit of 42,914),
whereas the pair (H =HOMFLYPT polynomial, Kh =Khovanov
Homology) attains only 242,985 distinct values on the same knots
(a deficit of 70,245). The pair (∆, θ), discussed later, has a deficit
of only 6,758, and the triple (∆, θ, ρ2), of only 6,341.
Yet better than (H,Kh) and other Reshetikhin-Turaev-Witten i-
nvariants and knot homologies, ∆, ρ1, ρ2 and θ can be computed
in polynomial time (and hence, even for very large knots).
So ugly as the formulas may be (and θ’s formulas are uglier),
these invariants are possibly the best we have!

Picard Iteration (used to prove the existence and u-
niqueness of solutions of ODEs). To solve ∂λ fλ =
F( fλ) with a given f0, start with f0, iterate f 7→
f0 +

∫ λ

0 F( fλ)dλ, and seek a fixed point. In our cases,
it is always reached after finitely many iterations!
Definition. G

∫
: The result of this process, ignoring the converge-

nce of the actual integral.

Acknowledgement. This work was supported by NSERC grants
RGPIN-2018-04350 and RGPIN-2025-06718 and by the Chu Fa-
mily Foundation (NYC).

Dreams. Given a knot K with a Seifert surfa-
ce Σ, we dream that there is a 0D Lagrangian
LΣ : 6H1(Σ;R) → R whose coefficients are (low
degree) finite type invariants of graphs represe-
nting multiple homology classes, such that

Z = G
∫

6H1(Σ;R)

exp (LΣ)

is the invariant θ presented below. We dream the formulas are
simple and natural, and that they have a universal generalization.
Sweet. Even sweeter:
May say something about
ribbon knots!

ωεβBhttp://drorbn.net/bo25 Happy birthday, dear Stavros!

Proof. Use Fubini.

ChatGPT image, ωεβ/chat

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.
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Implementation (see IType.nb of ωεβ/ap).

,Once[<< KnotTheory`; << Rot.m];

§Loading KnotTheory` version

of October 29, 2024, 10:29:52.1301.

Read more at http://katlas.org/wiki/KnotTheory.

§Loading Rot.m from http://drorbn.net/AP/Talks/Bonn-2505

to compute rotation numbers.

,CF[ω_. ℰ_] := CF[ω]× CF /@ ℰ ;

CF[ℰ_List] := CF /@ ℰ ;

CF[ℰ_] := Module{vs, ps, c},

vs = Casesℰ , (x p ξ π g)__, ∞ ⋃ {ϵ};

TotalCoefficientRules[Expand[ℰ], vs] /.

(ps_  c_)  Factor[c] Times @@ vsps ;

Integration using Picard iteration. The core is in yellow and
hacks are in pink.

, /: [A_]×[B_] := [A + B];

,$π = Identity; (* The Wisdom Projection *)

,Unprotect[Integrate];

 ω_. [L_] (vs_List) :=

Module{n, L0, Q, Δ, G, Z0, Z, λ, DZ, DDZ,

FZ, a, b},

n = Length@vs; L0 = L /. ϵ  0;

Q = Table(-∂vs〚a〛,vs〚b〛L0) /. Thread[vs  0] /.

(p x)__  0, {a, n}, {b, n};

If[(Δ = Det[Q])  0, Return@"Degenerate Q!"];

Z = Z0 = CF@$π[L + vs.Q.vs/ 2]; G = Inverse[Q];

FixedPointDZ = Table[∂v Z, {v, vs}];

DDZ = Table[∂u DZ, {u, vs}];

FZ = Sum[G〚a, b〛 (DDZ〚a, b〛 + DZ〚a〛× DZ〚b〛),

{a, n}, {b, n}]/ 2;

Z = CFZ0 + 
0

λ

$π[FZ] λ &, Z;

PowerExpand@Factorω Δ
-1/2

×

[CF[Z /. λ  1 /. Thread[vs  0]]];

Protect[Integrate];

Joseph Fourier

,
 - μ x2  2 +  ξ x {x}

§ -
ξ2

2 μ


μ

,FofG =  - μ (x - a)2  2 +  ξ x {x}

§ 
 (2 a μ+ ξ) ξ

2 μ


μ

,
 FofG [- ξ x] {ξ}

§
-

1

2
(a - x)2 μ

So we’ve tested and nearly proven the Fourier inversion formula!

,L = -
1

2
{x1, x2}.

a b

b c
.{x1, x2} + {ξ1, ξ2}.{x1, x2};

Guido Fubini

,Z12 =  [L] {x1, x2}

§ 
c ξ1

2

2 -b2+a c
+

b ξ1 ξ2

b2-a c
+

a ξ2
2

2 -b2+a c


-b2 + a c

,Z1 =  [L] {x1}, Z12   Z1 {x2}

§



-
-b2+a c x2

2

2 a
-

b x2 ξ1

a
+

ξ1
2

2 a
+ x2 ξ2

a
, True

,$π = Normal# + O[ϵ]13 &;  -ϕ
2
 2 + ϵ ϕ

3
 6 {ϕ}

§


5 ϵ2

24
+
5 ϵ4

16
+
1105 ϵ6

1152
+
565 ϵ8

128
+
82 825 ϵ10

3072
+
19 675 ϵ12

96


From https://oeis.org/A226260:

The Right-Handed Trefoil.
,K = Mirror@Knot[3, 1]; Features[K]

§Features[7, C4[-1] X1,5[1] X3,7[1] X6,2[1]]

,ℒ[Xi_,j_[s_]] := Ts/2 

xi (pi+1 - pi) + xj (pj+1 - pj) +

Ts - 1 xi (pi+1 - pj+1) +

(ϵ s/ 2)×

xi (pi - pj) Ts - 1 xi pj + 2 (1 - xj pj) - 1

ℒ[Ci_[φ_]] := Tφ/2 xi (pi+1 - pi) + ϵ φ
1

2
- xi pi 

ℒ[K_] := CF[ℒ /@ Features[K]〚2〛]

vs[K_] :=

Join @@ Table[{pi, xi}, {i, Features[K]〚1〛}]

,{vs[K], ℒ[K]}

§{p1, x1, p2, x2, p3, x3, p4, x4, p5, x5, p6, x6, p7, x7},

T -2 ϵ - p1 x1 + ϵ p1 x1 + T p2 x1 - ϵ p5 x1 + (1 - T) p6 x1 +

1

2
(-1 + T) ϵ p1 p5 x1

2
+
1

2
(1 - T) ϵ p5

2 x1
2
- p2 x2 + p3 x2 - p3 x3 +

ϵ p3 x3 + T p4 x3 - ϵ p7 x3 + (1 - T) p8 x3 +
1

2
(-1 + T) ϵ p3 p7 x3

2
+

1

2
(1 - T) ϵ p7

2 x3
2
- p4 x4 + ϵ p4 x4 + p5 x4 - p5 x5 + p6 x5 -

ϵ p1 p5 x1 x5 + ϵ p5
2 x1 x5 - ϵ p2 x6 + (1 - T) p3 x6 - p6 x6 +

ϵ p6 x6 + T p7 x6 + ϵ p2
2 x2 x6 - ϵ p2 p6 x2 x6 +

1

2
(1 - T) ϵ p2

2 x6
2
+

1

2
(-1 + T) ϵ p2 p6 x6

2
- p7 x7 + p8 x7 - ϵ p3 p7 x3 x7 + ϵ p7

2 x3 x7

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.

7

http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505


,$π = Normal# + O[ϵ]2 &;  ℒ[K]  vs[K]

§

-

 T -
(-1+T)2 1+T2 ϵ

1-T+T22


1 - T + T2

A faster program to compute ρ1, and more stories about it, are
at [BV2].

Invariance Under Reidemeister 3.

Reidemeister

top variables

middle variables

bottom variables

k++ j++ i++

i j k

i+
j+

k+

k++ j++ i++

i j k

i+
j+

k+

,lhs =  (ℒ /@ (Xi,j[1] Xi+1,k[1] Xj+1,k+1[1]))

{pi+1, pj+1, pk+1, xi+1, xj+1, xk+1};

rhs =  (ℒ /@ (Xj,k[1] Xi,k+1[1] Xi+1,j+1[1]))

{xi+1, pi+1, pj+1, pk+1, xj+1, xk+1};

lhs === rhs

§False

Invariance Under Reidemeister 3, Take 2.

,lhs =  (ℒ /@ (Xi,j[1] Xi+1,k[1] Xj+1,k+1[1]))

{xi, xj, xk, pi+1, pj+1, pk+1, xi+1, xj+1, xk+1};

rhs =  (ℒ /@ (Xj,k[1] Xi,k+1[1] Xi+1,j+1[1]))

{xi, xj, xk, xi+1, pi+1, pj+1, pk+1, xj+1, xk+1};

lhs === rhs

§True

,lhs

§Degenerate Q!

Invariance Under Reidemeister 3, Take 3.

,lhs =  ([ πi pi +  πj pj +  πk pk]×ℒ /@ (Xi,j[1] Xi+1,k[1] Xj+1,k+1[1]))

{pi, pj, pk, xi, xj, xk, pi+1, pj+1, pk+1, xi+1, xj+1, xk+1};

rhs =  ([ πi pi +  πj pj +  πk pk]×ℒ /@ (Xj,k[1] Xi,k+1[1] Xi+1,j+1[1]))

{pi, pj, pk, xi, xj, xk, pi+1, pj+1, pk+1, xi+1, xj+1, xk+1};

lhs  rhs

§True

,lhs

§T3/2 

-
3 ϵ

2
+  T2 p2+i πi -  (-1 + T) T p2+j πi +  T2 ϵ p2+j πi -  (-1 + T) p2+k πi +

 T ϵ p2+k πi -
1

2
(-1 + T) T3 ϵ p2+i p2+j πi

2
+
1

2
(-1 + T) T3 ϵ p2+j

2
πi
2
-

1

2
(-1 + T) T2 ϵ p2+i p2+k πi

2
+
1

2
(-1 + T)2 T ϵ p2+j p2+k πi

2
+

1

2
(-1 + T) T ϵ p2+k

2
πi
2
+  T p2+j πj -  T ϵ p2+j πj -  (-1 + T) p2+k πj +

 (-1 + 2 T) ϵ p2+k πj + T3 ϵ p2+i p2+j πi πj - T3 ϵ p2+j
2

πi πj -

(-1 + T) T2 ϵ p2+i p2+k πi πj + (-1 + T)2 T ϵ p2+j p2+k πi πj +

(-1 + T) T ϵ p2+k
2

πi πj -
1

2
(-1 + T) T ϵ p2+j p2+k πj

2
+
1

2
(-1 + T) T ϵ p2+k

2
πj
2
+

 p2+k πk - 2  ϵ p2+k πk + T2 ϵ p2+i p2+k πi πk - (-1 + T) T ϵ p2+j p2+k πi πk -

T ϵ p2+k
2

πi πk + T ϵ p2+j p2+k πj πk - T ϵ p2+k
2

πj πk

Invariance under the other Reidemeister moves is proven in a si-
milar way. See IType.nb at ωεβ/ap.

There’s more! To get sl2 invariants mod ϵ3, add the following
to L(X+i j), L(X−i j), and L(Cφ

i ), respectively (and see More.nb at ω-
εβ/ap for the verifications):

,ϵ
2 r2[1, i, j]

§ 1

12
ϵ
2
-6 pi xi + 6 pj xi - 3 (-1 + 3 T) pi pj xi

2
+

3 (-1 + 3 T) pj
2 xi

2
+ 4 (-1 + T) pi

2 pj xi
3
- 2 (-1 + T) (5 + T) pi pj

2 xi
3
+

2 (-1 + T) (3 + T) pj
3 xi

3
+ 18 pi pj xi xj - 18 pj

2 xi xj - 6 pi
2 pj xi

2 xj +

6 (2 + T) pi pj
2 xi

2 xj - 6 (1 + T) pj
3 xi

2 xj - 6 pi pj
2 xi xj

2
+ 6 pj

3 xi xj
2


,ϵ
2 r2[-1, i, j]

§ 1

12 T2
ϵ
2
-6 T2 pi xi + 6 T2 pj xi +

3 (-3 + T) T pi pj xi
2
- 3 (-3 + T) T pj

2 xi
2
- 4 (-1 + T) T pi

2 pj xi
3
+

2 (-1 + T) (1 + 5 T) pi pj
2 xi

3
- 2 (-1 + T) (1 + 3 T) pj

3 xi
3
+

18 T2 pi pj xi xj - 18 T2 pj
2 xi xj - 6 T2 pi

2 pj xi
2 xj + 6 T (1 + 2 T) pi pj

2 xi
2 xj -

6 T (1 + T) pj
3 xi

2 xj - 6 T2 pi pj
2 xi xj

2
+ 6 T2 pj

3 xi xj
2


,ϵ
2
γ2[φ, i]

§
-
1

2
ϵ
2
φ
2 pi xi

Even more! • The sl2 formulas mod ϵ4 are in the last page of the
handout of [BN3].

• Using [GPV] we can show that every finite type invariant is
I-Type.

• Probably, ⟨Reshetikhin-Turaev⟩ ⊂ ⟨I-Type⟩ efficiently.

• Possibly, ⟨Rozansky Polynomials⟩ ⊂ ⟨I-Type⟩ efficiently.

• Knot signatures are I-Type, at least mod 8.

•We already have some work on sl3, and it leads to the strongest
genuinely-computable knot invariant presently known.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.
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The sl/ϵ
2

3 Example [BV3]. Here we have two formal variables T1
and T2, we set T3 B T1T2, we integrate over 6 variables for each
edge: p1i, p2i, p3i, x1i, x2i, and x3i.

,T3 = T1 T2; i_+ := i + 1;

$π =

CF@Normal# + O[ϵ]2 /.

πis__  B-1 πis, xis__  B-1 xis, pis__  B pis /.

ϵ Bb_ /; b < 0  0 /. B  1 &;

,vsi_ := Sequence[p1,i, p2,i, p3,i, x1,i, x2,i, x3,i];

ℱ[is__] := [Sum[πν,i pν,i, {i, {is}}, {ν, 3}]];

ℒ[K_] := CF[ℒ /@ Features[K]〚2〛];

vs[K_] :=

Union @@ Table[{vsi}, {i, Features[K]〚1〛}]
The Lagrangian.

,ℒ[Xi_,j_[s_]] := T3
s
CF@Plus


ν=1

3
xνi (pνi+ - pνi) + xνj (pνj+ - pνj) + Tν

s
- 1 xνi (pνi+ - pνj+),

T1
s
- 1 p3j x1i T2

s x2i - x2j,

ϵ s T3
s
- 1 p1j (p2i - p2j) x3i  T2

s
- 1,

ϵ s 1/ 2 + T2
s p1i p2j x1i x2i - p1i p2j x1i x2j - p3i x3i -

T2
s
- 1 p2j p3i x2i x3i + T3

s
- 1 p2j p3j x2i x3i +

2 p2j p3i x2j x3i + p1i p3j x1i x3j - p2i p3j x2i x3j -

T2
s p2j p3j x2i x3j +

T1
s
- 1 p1j x1i T2

2 s p2j x2i - T2
s p2j x2j -

T2
s
+ 1 T3

s
- 1 p3j x3i + T2

s p3j x3j +

T3
s
- 1 p3j x3i 1 - T2

s p1i x1i + p2i x2j + T2
s
- 2 p2j x2j

T2
s
- 1

,ℒ[Ci_[φ_]] := T3
φ


ν=1

3
xνi (pνi+ - pνi) + ϵ φ (p3i x3i - 1/ 2)

Reidemeister 3.
,Short

lhs =  ℱ[i, j, k]×ℒ /@ (Xi,j[1] Xi+,k[1] Xj+,k+[1])

{vsi, vsj, vsk, vsi+, vsj+, vsk+}

§T1
3 T2

3


3 ϵ

2
+ T1

2 p1,2+i π1,i - (-1 + T1) T1 p1,2+j π1,i +150

,rhs =  ℱ[i, j, k]×ℒ /@ (Xj,k[1] Xi,k+[1] Xi+,j+[1])

{vsi, vsj, vsk, vsi+, vsj+, vsk+};

lhs  rhs

§True

The Trefoil.
,K = Knot[3, 1];  ℒ[K]  vs[K]

§- T1
2 T2

2

-ϵ 1 - T1 + T1
2
- T2 - T1

3 T2 + T2
2
+ T1

4 T2
2
- T1 T2

3
-

T1
4 T2

3
+ T1

2 T2
4
- T1

3 T2
4
+ T1

4 T2
4
1 - T1 + T1

2


1 - T2 + T2
2
 1 - T1 T2 + T1

2 T2
2


1 - T1 + T1
2
 1 - T2 + T2

2
 1 - T1 T2 + T1

2 T2
2


A faster program, in which the Feynman diagrams
are “pre-computed” (see theta.nb at ωεβ/ap):

,F1[{s_, i_, j_}] := CF

s 1/ 2 - g3ii + T2
s g1ii g2ji - g1ii g2jj - T2

s
- 1 g2ji g3ii +

2 g2jj g3ii - 1 - T3
s
 g2ji g3ji - g2ii g3jj - T2

s g2ji g3jj +

g1ii g3jj +

T1
s
- 1 g1ji T2

2 s g2ji - T2
s g2jj + T2

s g3jj +

T3
s
- 1 g3ji 1 - T2

s g1ii - T1
s
- 1 T2

s
+ 1 g1ji +

T2
s
- 2 g2jj + g2ij T2

s
- 1

,F2[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CFs1 T1
s0

- 1 T2
s1

- 1-1
T3

s1
- 1 g1,j1,i0 g3,j0,i1

 T2
s0 g2,i1,i0 - g2,i1,j0 - T2

s0 g2,j1,i0 - g2,j1,j0

,F3[φ_, k_] = φ g3kk - φ/ 2;

We call the invariant computed θ:

,Θ[K_] := Θ[K] = Module{X, φ, n, A, Δ, G, ev, θ},

{X, φ} = Rot[K]; n = Length[X];

A = IdentityMatrix[2 n + 1];

CasesX, {s_, i_, j_} 

A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[X〚All,1〛])/2 Det[A];

G = Inverse[A];

ev[ℰ_] := Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];

θ = ev
k=1

n
F1[X〚k〛];

θ += ev
k1=1

n


k2=1

n
F2[X〚k1〛, X〚k2〛];

θ += ev
k=1

2 n
F3[φ〚k〛, k];

Factor@{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) θ}

;

Some Knots.
,Expand[Θ[Knot[3, 1]]]

§
-1 +

1

T
+ T, -

1

T1
2
- T1

2
-

1

T2
2
-

1

T1
2 T2

2
+

1

T1 T2
2
+

1

T1
2 T2

+
T1

T2
+
T2

T1
+ T1

2 T2 - T2
2
+ T1 T2

2
- T1

2 T2
2


,(* PolyPlot suppressed *)

K11n34 K11n42

,GraphicsRow[PolyPlot[Θ[Knot[#]],

Labeled  True] &

/@ {"3_1", "K11n34", "K11n42"}]
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Conway Kinoshita Terasaka

So θ detects knot mutation and se-
parates the Conway knot K11n34
from the Kinoshita-Terasaka knot
K11n42!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.

9

http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505


,GraphicsRow[ImageCompose[

PolyPlot[Θ[TorusKnot @@ #], ImageSize  480],

TubePlot[TorusKnot @@ # , ImageSize  240],

{Right, Bottom}, {Right, Bottom}

] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

§

The torus knot T22/7:

Next, a random 300 crossing knot from [DHOEBL] (more
at ωεβ/DK):

Unproven Fact. For any knot K, twice its genus g(K) bounds the
T1 degree of θ: degT1

θ(K) ≤ 2g(K).

Gompf Scharlemann Thompson

The 48-crossing Gompf-
Scharlemann-Thompson GST48
knot [GST] is significant because
it may be a counterexample to the
slice-ribbon conjecture:
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,GST48 = EPDX14,1, X2,29, X3,40, X43,4, X26,5, X6,95, X96,7, X13,8, X9,28,

X10,41, X42,11, X27,12, X30,15, X16,61, X17,72, X18,83, X19,34, X89,20,

X21,92, X79,22, X68,23, X57,24, X25,56, X62,31, X73,32, X84,33, X50,35,

X36,81, X37,70, X38,59, X39,54, X44,55, X58,45, X69,46, X80,47, X48,91,

X90,49, X51,82, X52,71, X53,60, X63,74, X64,85, X76,65, X87,66, X67,94,

X75,86, X88,77, X78,93;

AbsoluteTiming[PolyPlot[Θ48 = Θ@GST48, ImageSize  Small]]

§

17.1103, 

,{Exponent[Θ48〚1〛, T], Floor[Exponent[Θ48〚2〛, T2] / 2]}

§{8, 10}

So Θ knows things about GST48 that ∆ doesn’t!

Ohtsuki Garoufalidis Rozansky Kricker Schaveling Kashaev

Prior Art. θ is probably equal to the “2-loop polynomial” stu-
died by Ohtsuki [Oh2] (at greater difficulty, with harder compu-
tations), continuing B-N, Garoufalidis, Rozansky, Kricker, and
Schaveling [BNG, GR, R1, R2, R3, Kr, Sch]. θ is related, but
probably not equivalent, to the invariant studied by Garoufalidis–
Kashaev [GK].

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.

10

http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505


The Rolfsen Table of Knots.

Where is it coming from? The most honest answer is “we don’t
know” (and that’s good!). The second most, “undetermined co-
efficients for an ansatz that made sense”. The ansatz comes from
the following principles / earlier work:
Morphisms have generating functions. Indeed, there is an iso-
morphism

G : Hom(Q[xi],Q[y j])→ Q[y j]⟦ξi⟧,

and by PBW, many relevant spaces are polynomial rings, though
only as vector spaces.
Composition is integration. Indeed, if f ∈ Hom(Q[xi],Q[y j])
and g ∈ Hom(Q[y j],Q[zk]), then

G(g ◦ f ) =
∫

e
−y·η f g dy dη

Use universal invariants. These take values in a universal enve-
loping algebra (perhaps quantized), and thus they are expressible
as long compositions of generating functions. See [La, Oh1].
“Solvable approximation” { perturbed Gaussians. Let g be
a semisimple Lie algebra, let h be its Cartan subalgebra, and let
bu and bl be its upper and lower Borel subalgebras. Then bu has
a bracket β, and as the dual of bl it also has a cobracket δ, and in
fact, g ⊕ h ≡ Double(bu, β, δ). Let g+ϵ B Double(bu, β, ϵδ) (mod
ϵd+1 it is solvable for any d). Then by [BV3, BN1] (in the case
of g = sl2) all the interesting tensors ofU(g+ϵ ) (quantized or not)
are perturbed Gaussian with perturbation parameter ϵ with with
understood bounds on the degrees of the perturbations.

[BN1] D. Bar-Natan, Everything around slϵ2+ is DoPeGDO. References.
So what?, talk given in “Quantum Topology and Hyperbolic Geometry Con-
ference”, Da Nang, Vietnam, May 2019. Handout and video at ωεβ/DPG.

[BN2] D. Bar-Natan, Algebraic Knot Theory, talk given in Sydney, September
2019. Handout and video at ωεβ/AKT.

[BN3] D. Bar-Natan, Cars, Interchanges, Traffic Counters, and some Pretty
Darned Good Knot Invariants, talk given in “Using Quantum Invariants to
do Interesting Topology”, Oaxaca, Mexico, October 2022. Handout and vi-
deo at ωεβ/Cars.

[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky
conjecture, Invent. Math. 125 (1996) 103–133.

[BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial,
Proc. Amer. Math. Soc. 147 (2019) 377–397, arXiv:1708.04853.

[BV2] D. Bar-Natan and R. van der Veen, A Perturbed-Alexander Invariant,
Quantum Topology 15 (2024) 449–472, ωεβ/APAI.

[BV3] D. Bar-Natan and R. van der Veen, A Very Fast, Very Strong, Topologi-
cally Meaningful and Fun Knot Invariant, in preparation, draft at ωεβ/Theta.

[BV3] D. Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Fu-
nctions for Universal Knot Invariants, arXiv:2109.02057.

[BG] J. Becerra Garrido, Universal Quantum Knot Invariants, Ph.D. thesis,
University of Groningen, ωεβ/BG.

[DHOEBL] N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattachary-
ya, D. Lei, and others, Random Knots: A Preliminary Report, lecture notes
at ωεβ/DHOEBL. Also a data file at ωεβ/DD.

[GK] S. Garoufalidis and R. Kashaev, Multivariable Knot Polynomials from
Braided Hopf Algebras with Automorphisms, arXiv:2311.11528.

[GR] S. Garoufalidis and L. Rozansky, The Loop Expansion of the Kontsevich
Integral, the Null-Move, and S -Equivalence, arXiv:math.GT/0003187.

[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and
Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectu-
res, Geom. and Top. 14 (2010) 2305–2347, arXiv:1103.1601.

[GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants
of classical and virtual knots, Topology 39 (2000) 1045–1068, arXiv:

math.GT/9810073.
[Kr] A. Kricker, The Lines of the Kontsevich Integral and Rozansky’s Rationa-

lity Conjecture, arXiv:math/0005284.
[La] R. J. Lawrence, Universal Link Invariants using Quantum Groups, Proc.

XVII Int. Conf. on Diff. Geom. Methods in Theor. Phys., Chester, England,
August 1988. World Scientific (1989) 55–63.

[LV] D. López Neumann and R. van der Veen, Genus Bounds from Unrolled
Quantum Groups at Roots of Unity, arXiv:2312.02070.

[Oh1] T. Ohtsuki, Quantum Invariants, Series on Knots and Everything 29,
World Scientific 2002.

[Oh2] T. Ohtsuki, On the 2–Loop Polynomial of Knots, Geom. Topol. 11-3
(2007) 1357–1475.

[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial,
Ph.D. thesis, University of North Carolina, August 2013, ωεβ/Ov.

[R1] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones
Polynomial and Witten’s Invariant of 3D Manifolds, I, Comm. Math. Phys.
175-2 (1996) 275–296, arXiv:hep-th/9401061.

[R2] L. Rozansky, The Universal R-Matrix, Burau Representation and the
Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math.
134-1 (1998) 1–31, arXiv:q-alg/9604005.

[R3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality
Conjecture, arXiv:math/0201139.

[Sch] S. Schaveling, Expansions of Quantum Group Invariants, Ph.D. thesis,

Universiteit Leiden, September 2020, ωεβ/Scha.

Thanks for bearing with me!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.
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A Seifert Dream
Dror Bar-Natan: Talks: Pitzer-250308:

Z � G
∫

2E=R14
pi xi

L(X+15)L(X+62)L(X+37)L(C−1
4 )

L(X+15)

L(X+37)

4

5

R2
p4 x4

R2
p1 x1

R2
p2 x2

R2
p3 x3

R2
p5 x5

R2
p6 x6

R2
p7 x7

φ
4
=
−1

L(X+62)

L(C−1
4 )

Pϵ Pϵ

sum over all pairings
Q−1 Q−1 Q−1

Abstract. Given a knot K with a Seifert surface Σ, I dream
that the well-known Seifert linking form Q, a quadratic form on
H1(Σ), has plenty docile local perturbations Pϵ such that the for-
mal Gaussian integrals of exp(Q + Pϵ) are invariants of K.
In my talk I will explain what the above means, why this dream
is oh so sweet, and why it is in fact closer to a plan than to a
delusion. Joint with Roland van der Veen.

2025/03/11@09:36

The Seifert-Alexander Formula. With
P,Q ∈ H1(Σ),
Q(P,G) = T 1/2lk(P+,G) − T−1/2lk(P,G+)

∆(K) = det(Q)∫

2H1(Σ)
dp dx exp Q(p, x) � det(Q)−1

(where � means “ignoring silly factors”).

Dream. There is a similar perturbed Gaussian integral formu-
la for θ, but with integration over 6H1(Σ). The quadratic Q will
be the same as in the Seifert-Alexander formula (but repeated 3
times, for each Tν). The perturbation Pϵ will be given by low-
degree finite type invariants of curves on Σ (possibly also depen-
dent on the intersection points of such curves, or on other infor-
mation coming from Σ).
Evidence. Experimentally (yet undeniably), deg θ is bounded by
the genus of Σ. How else could such a genus bound arise? Further
very strong evidence comes from the conjectural (yet undeniable)
understanding of θ as the two-loop contribution to the Kontsevich
integral [Oh] and/or as the “solvable approximation” of the uni-
versal sl3 invariant [BN1, BV2].
Why so sweet? It will allow us to prove the aforementioned ge-
nus bound and likely, the hexagonal symmetry. Sweeter and dre-
amier, it may allow us to say something about ribbon knots!

ωεβBhttp://drorbn.net/pi25
Thanks for inviting me to Pitzer College!

Right. The 132-crossing torus knot T22/7 (more at ωεβ/TK).
Below. Random knots from [DHOEBL], with 101-115 crossings
(more at ωεβ/DK).

What’s “local”? How will we compute? The Będlewo Alexan-
der formula: Let F be the faces of a knot diagram. Make an F×F
matrix A by adding for each crossing contributions

k

l! j
i

→



−1 −1 2 0
0 0 0 0
0 1 −1 0
1 0 −1 0



k

l! j
i

→



1 −1 0 0
0 0 0 0
−2 1 1 0
1 0 −1 0



at rows / columns (i, j, k, l). Then ∆ = det′
(
(T 1/2A − T−1/2A)/2

)
.

→ → →
(the Seifert algorithm by Emily Redelmeier)

Expect the like for θ! Expect more like θ! Topology first! Resist
the tyranny of quantum algebra!

where L(Xs
i j) � e

L(Xs
i j), L(Cφ

i ) � eL(Cφ
i ),

L(Xs
i j) = xi(pi+1 − pi) + x j(p j+1 − p j)

+(T s − 1)xi(pi+1 − p j+1)

+
ϵs
2

(
xi(pi − p j)

(
(T s − 1)xi p j

+2(1 − x j p j)

)
− 1

)

L(Cφ
i ) = xi(pi+1 − pi) + ϵφ(1/2 − xi pi)

θ(T1,T2) is likewise, with harder formulas

and integration over 6E.

From Mexico City, tariffs exempt

Perturbed Gaussian Integration. We say
that Pϵ ∈ ϵQ[x1, . . . xn]⟦ϵ⟧ is M-docile (for
some M : N → N) if for every monomial m
in Pϵ we have degx1,...,xn

(m) ≤ M(degϵ(m)).
Theorem (Feynman). If Q is a quadratic in x1, . . . , xn and Pϵ is
docile, set Zϵ =

∫
Rn dx1 · · · xn exp (Q + Pϵ). Then every coeffi-

cient in the ϵ-expansion of Zϵ is computable in polynomial time
in n. in fact,

∆1/2Zϵ �
〈
exp Q−1(∂xi), exp Pϵ

〉
=

θ(T, 1) is like that! With ϵ2 = 0,

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Pitzer-250308.
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ωεβ:=http://drorbn.net/ktc25

The Strongest Genuinely Computable Knot
Invariant Since In 2024

The First International On-line Knot Theory Congress
February 1-5, 2025

Dror Bar-Natan

Abstract. “Genuinely computable” means we have computed it for random knots
with over 300 crossings. “Strongest” means it separates prime knots with up to 15
crossings better than the less-computable HOMFLY-PT and Khovanov homology
taken together. And hey, it’s also meaningful and fun.
Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint with van der Veen.

ωεβ:=http://drorbn.net/ktc25

These slides and the code within are online at ωεβ:=http://drorbn.net/ktc25

(I wish all speakers were making their slides available before / for their talks).

(I’ll post the video there too)

A paper-in-progress is at ωεβ/Theta.

If you can, please turn your video on!

ωεβ:=http://drorbn.net/ktc25

Happy birthday, dear Lou!

Lou Kauffman at MSRI, March 1991

ωεβ:=http://drorbn.net/ktc25

Acknowledgement.

This work was supported by NSERC grant RGPIN-2018-04350 and by the Chu
Family Foundation (NYC).

ωεβ:=http://drorbn.net/ktc25

The Strongest Genuinely Computable Knot
Invariant Since In 2024

Strongest? Genuinely Computable?

ωεβ:=http://drorbn.net/ktc25

Strongest.

Testing Θ = (∆, θ) on prime knots up to mirrors and reversals, counting the
number of distinct values (with deficits in parenthesis): (ρ1: [Ro1, Ro2, Ro3, Ov, BV1])

knots (H,Kh) (∆, ρ1) Θ = (∆, θ) (∆, θ, ρ2) all together

reign 2005-22 2022-24 2024 2025-

xing ≤ 10 249 248 (1) 249 (0) 249 (0) 249(0) 249 (0)

xing ≤ 11 801 771 (30) 787 (14) 798 (3) 798 (3) 798 (3)

xing ≤ 12 2,977 (214) (95) (19) (10) (10)

xing ≤ 13 12,965 (1,771) (959) (194) (169) (169)

xing ≤ 14 59,937 (10,788) (6,253) (1,118) (982) (981)

xing ≤ 15 313,230 (70,245) (42,914) (6,758) (6,341) (6,337)

ωεβ:=http://drorbn.net/ktc25

Genuinely Computable. Here’s Θ
on a random 300 crossing knot (from
[DHOEBL]). For almost every other knot
invariant, that’s science fiction.
Gukov: Should take 300 years if Moore’s
law persists.
Us: A few hours on a laptop, 0 GPUs.

ωεβ:=http://drorbn.net/ktc25

Fun. There’s so much more to see in
2D pictures than in 1D ones! Yet almost
nothing of the patterns you see we know
how to prove. We’ll have fun with that
over the next few years. Would you join?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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ωεβ:=http://drorbn.net/ktc25

Random knots (from [DHOEBL]) with 101–115 crossings:

ωεβ:=http://drorbn.net/ktc25

The Rolfsen Table:

ωεβ:=http://drorbn.net/ktc25

The torus knots TK13/2, TK17/3, TK13/5, and TK7/6:

ωεβ:=http://drorbn.net/ktc25

The torus knot TK22/7:

ωεβ:=http://drorbn.net/ktc25

Meaningful.

θ gives a genus bound (unproven yet with confidence). We hope (with reason) it
says something about ribbon knots.

ωεβ:=http://drorbn.net/ktc25

Convention.

T , T1, and T2 are indeterminates and T3 := T1T2.

ωεβ:=http://drorbn.net/ktc25

Preparation. Draw an n-crossing knot K
as a diagram D as on the right: all cros-
sings face up, and the edges are marked
with a running index k ∈ {1, . . . , 2n + 1}
and with rotation numbers φk .

0

00

0 0

0

7

3 6

5 2

1

φ
4
=
−
1

4

ωεβ:=http://drorbn.net/ktc25

Dall-E
image credits:

diamondtraffic.com
image credits: p = 1− T s

Model T Traffic Rules. Cars always drive forward. When a car crosses over a
sign-s bridge it goes through with (algebraic) probability T s ∼ 1, but falls off with
probability 1− T s ∼ 0. At the very end, cars fall off and disappear. On various
edges traffic counters are placed. See also [Jo, LTW].

1−T T 1−T−1T−11 0 0 1

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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α

β

Definition. The traffic function G = (gαβ) (also, the Green function or the
two-point function) is the reading of a traffic counter at β, if car traffic is injected
at α (if α = β, the counter is after the injection point). There are also model-Tν
traffic functions Gν = (gναβ) for ν = 1, 2, 3.
Example.

∑
p≥0(1−T )p = T−1

1 1

0

0 1

T−1

0 1 G =



1 T−1 1
0 T−1 1
0 0 1




ωεβ:=http://drorbn.net/ktc25

Given crossings c = (s, i , j), c0 = (s0, i0, j0), and c1 = (s1, i1, j1), let

F1(c) = s [1/2− g3ii + T s
2g1iig2ji − T s

2g3jjg2ji − (T s
2 − 1)g3iig2ji

+(T s
3 − 1)g2jig3ji − g1iig2jj + 2g3iig2jj + g1iig3jj − g2iig3jj ]

+
s

T s
2 − 1

[(T s
1 − 1)T s

2 (g3jjg1ji − g2jjg1ji + T s
2g1jig2ji )

+ (T s
3 − 1) (g3ji − T s

2g1iig3ji + g2ijg3ji + (T s
2 − 2)g2jjg3ji )

− (T s
1 − 1)(T s

2 + 1)(T s
3 − 1)g1jig3ji ]

F2(c0, c1) =
s1(T

s0
1 − 1)(T s1

3 − 1)g1j1i0g3j0i1
T s1
2 − 1

(T s0
2 g2i1i0 + g2j1j0 − T s0

2 g2j1i0 − g2i1j0)

F3(φk , k) = φk(g3kk − 1/2)

(Computers don’t care!)

ωεβ:=http://drorbn.net/ktc25

Main Theorem.

The following is a knot invariant: (the ∆ν are normalizations discussed later)

θ(D) := ∆1∆2∆3

(∑

c

F1(c) +
∑

c0,c1

F2(c0, c1) +
∑

k

F3(φk , k)

)
.

D

i 21 j

D

k

φ1
j0 i1i0 j1

3

2

D

If these pictures remind you of Feynman diagrams, it’s because they are Feynman
diagrams [BN2].

ωεβ:=http://drorbn.net/ktc25

Lemma 1.

The traffic function gαβ is a “relative invariant”:

R1

R2

R3

α

β

D

(There is some small print for R1 and R2 which change the numbering of the edges and sometimes

collapse a pair of edges into one)

ωεβ:=http://drorbn.net/ktc25

Proof.

(1−T )2+T (1−T ) (1−T )T

T (1−T )

1−T
T

T 2T (1−T )

T

T 2

=

1−T

ωεβ:=http://drorbn.net/ktc25

Lemma 2.

With k+ := k + 1, the “g -rules” hold near a crossing c = (s, i , j): i j

j+ i+

gjβ = gj+β + δjβ giβ = T sgi+β + (1− T s)gj+β + δiβ g2n+,β = δ2n+,β

gαi+ = T sgαi + δαi+ gαj+ = gαj + (1− T s)gαi + δαj+ gα,1 = δα,1

1−T T 1−T−1T−11 0 0 1

ωεβ:=http://drorbn.net/ktc25

Corollary 1.

G is easily computable, for AG = I (= GA), with A the (2n + 1)× (2n + 1)
identity matrix with additional contributions:

c = (s, i , j) 7→
A col i+ col j+

row i −T s T s − 1
row j 0 −1

For the trefoil example, we have:

A =




1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1




0

00

0 0

0

7

3 6

5 2

1

φ
4
=
−
1

4

ωεβ:=http://drorbn.net/ktc25

And so,

G =




1 T 1 T 1 T 1

0 1 1
T 2−T+1

T
T 2−T+1

T
T 2−T+1

T 2

T 2−T+1
1

0 0 1
T 2−T+1

T
T 2−T+1

T
T 2−T+1

T 2

T 2−T+1
1

0 0 1−T
T 2−T+1

1
T 2−T+1

1
T 2−T+1

T
T 2−T+1

1

0 0 1−T
T 2−T+1

− (T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1

1

0 0 0 0 0 1 1
0 0 0 0 0 0 1




Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Note.

The Alexander polynomial ∆ is given by

∆ = T (−φ−w)/2 det(A),

with
φ =

∑

k

φk , w =
∑

c

s.

We also set ∆ν := ∆(Tν) for ν = 1, 2, 3. This defines and explains the
normalization factors in the Main Theorem.

ωεβ:=http://drorbn.net/ktc25

Corollary 2.

Proving invariance is easy:

?
=

D D

i j k

j+
k+

i+

k++ j++ i++

m n

s

m n

s

i j k

k+

i+

j+

k++ j++ i++

ωεβ:=http://drorbn.net/ktc25

Invariance under R3
This is Theta.nb of http://drorbn.net/ktc25/ap.
Once[<< KnotTheory`; << Rot.m; << PolyPlot.m];

Loading KnotTheory` version of October 29, 2024, 10:29:52.1301.

Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/ktc25/ap to compute rotation numbers.

Loading PolyPlot.m from

http://drorbn.net/ktc25/ap to plot 2-variable polynomials.

T3 = T1 T2;

CF[ℰ_] := Expand@Collect[ℰ , g__, F] /. F  Factor;

ωεβ:=http://drorbn.net/ktc25

F1[{s_, i_, j_}] =

CF

s 1/ 2 - g3ii + T2
s g1ii g2ji - g1ii g2jj - T2

s
- 1 g2ji g3ii + 2 g2jj g3ii -

1 - T3
s
 g2ji g3ji - g2ii g3jj - T2

s g2ji g3jj + g1ii g3jj +

T1
s
- 1 g1ji T2

2 s g2ji - T2
s g2jj + T2

s g3jj +

T3
s
- 1 g3ji 1 - T2

s g1ii - T1
s
- 1 T2

s
+ 1 g1ji + T2

s
- 2 g2jj + g2ij

T2
s
- 1;

F2[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CFs1 T1
s0

- 1 T2
s1

- 1-1
T3

s1
- 1 g1,j1,i0 g3,j0,i1

 T2
s0 g2,i1,i0 - g2,i1,j0 - T2

s0 g2,j1,i0 - g2,j1,j0

F3[φ_, k_] = -φ/ 2 + φ g3kk;

ωεβ:=http://drorbn.net/ktc25

δi_,j_ := If[i === j, 1, 0];

gRs_,i_,j_ := 

gν_jβ_  gν j+β + δjβ, gν_iβ_  Tν
s gνi+β + 1 - Tν

s
 gν j+β + δiβ,

gν_α_i+  Tν
s gναi + δαi+, gν_α_j+  gνα j + 1 - Tν

s
 gναi + δα j+



ωεβ:=http://drorbn.net/ktc25

?
=

D D

i j k

j+
k+

i+

k++ j++ i++

m n

s

m n

s

i j k

k+

i+

j+

k++ j++ i++

DSum[Cs___] := Sum[F1[c], {c, {Cs}}] +

Sum[F2[c0, c1], {c0, {Cs}}, {c1, {Cs}}]

lhs = DSum[{1, j, k}, {1, i, k+}, {1, i+, j+}, {s, m, n}] //.

gR1,j,k ⋃ gR1,i,k+ ⋃ gR1,i+,j+;

rhs = DSum[{1, i, j}, {1, i+, k}, {1, j+, k+}, {s, m, n}] //.

gR1,i,j ⋃ gR1,i+,k ⋃ gR1,j+,k+;

Simplify[lhs  rhs]

True

ωεβ:=http://drorbn.net/ktc25

The Main Program 
Θ[K_] := Module{Cs, φ, n, A, Δ, G, ev, θ},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];

G = Inverse[A];

ev[ℰ_] := Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];

θ = ev
k=1

n
F1[Cs〚k〛];

θ += ev
k1=1

n


k2=1

n
F2[Cs〚k1〛, Cs〚k2〛];

θ += ev
k=1

2 n
F3[φ〚k〛, k];

Factor@{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) θ};

ωεβ:=http://drorbn.net/ktc25

The Trefoil Knot 
Θ[Knot[3, 1]] // Expand

-1 +
1

T
+ T, -

1

T1
2
- T1

2
-

1

T2
2
-

1

T1
2 T2

2
+

1

T1 T2
2
+

1

T1
2 T2

+
T1

T2
+
T2

T1
+ T1

2 T2 - T2
2
+ T1 T2

2
- T1

2 T2
2


PolyPlot[Θ[Knot[3, 1]], ImageSize  Tiny]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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The Conway and Kinoshita-Terasaka Knots

GraphicsRow[PolyPlot[Θ[Knot[#]], ImageSize  Tiny] & /@

{"K11n34", "K11n42"}]

(Note that the genus of the Conway knot appears to be bigger than the genus of
Kinoshita-Terasaka)

ωεβ:=http://drorbn.net/ktc25

The Torus Knots TK13/2, TK17/3, TK13,5, and TK7,6
GraphicsRow[ImageCompose[

PolyPlot[Θ[TorusKnot @@ #], ImageSize  480],

TubePlot[TorusKnot @@ # , ImageSize  240],

{Right, Bottom}, {Right, Bottom}

] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

ωεβ:=http://drorbn.net/ktc25

Questions, Conjectures, Expectations, Dreams.

ωεβ:=http://drorbn.net/ktc25

Question 1.

What’s the relationship between Θ and the Garoufalidis-Kashaev invariants
[GK, GL]?

ωεβ:=http://drorbn.net/ktc25

Conjecture 2.

On classical (non-virtual) knots, θ always has hexagonal (D6) symmetry.

ωεβ:=http://drorbn.net/ktc25

Conjecture 3.

θ is the ϵ1 contribution to the “solvable approximation” of the sl3 universal
invariant, obtained by running the quantization machinery on the double
D(b, b, ϵδ), where b is the Borel subalgebra of sl3, b is the bracket of b, and δ the
cobracket. See [BV2, BN1, Sch]

ωεβ:=http://drorbn.net/ktc25

Conjecture 4.

θ is equal to the “two-loop contribution to the Kontsevich Integral”, as studied by
Garoufalidis, Rozansky, Kricker, and in great detail by Ohtsuki
[GR, Ro1, Ro2, Ro3, Kr, Oh].

ωεβ:=http://drorbn.net/ktc25

Fact 5. θ has a perturbed Gaussian integral formula, with integration carried out
over a space 6E , consisting of 6 copies of the space of edges of a knot diagram D.
See [BN2].

Conjecture 6. For any knot K , its genus g(K ) is bounded by the T1-degree of θ:
2g(K ) ≥ degT1

θ(K ).

Conjecture 7. θ(K ) has another perturbed Gaussian integral formula, with
integration carried out over over the space 6H1, consisting of 6 copies of H1(Σ),
where Σ is a Seifert surface for K .

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Question 8.

Is there a direct quantum field theory derivation of θ? Perhaps using the
ϵ-expansion (at constant k!) of Chern-Simons-Witten theory with gauge group
gϵ+ := D(b, b, ϵδ) with some Seifert-surface-dependent gauge fixing?

ωεβ:=http://drorbn.net/ktc25

Expectation 9.

There are many further invariants like θ, given by Green function formulas and/or
Gaussian integration formulas. One or two of them may be stronger than θ and as
computable.

ωεβ:=http://drorbn.net/ktc25

Dream 10.

These invariants can be explained by something less foreign than semisimple Lie
algebras.

ωεβ:=http://drorbn.net/ktc25

Dream 11.

θ will have something to say about ribbon knots.

ωεβ:=http://drorbn.net/ktc25

Thank You!

ωεβ:=http://drorbn.net/ktc25
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√
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n

1
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. . .σ+

σ−
→ σ =
σ+−σ−+s
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w

wwww

w

w

U

W

W

V

face

face

gap

Exactly what we want, if the Zombian is the signature!
V: The full space of faces.
W: The boundary, made of gaps.
Q: The known parts.
U: The part yet unknown.
σV(Q + ϕ∗(U)): The overall Zombian.
σ(Q|ker ϕ): An internal bit. U + ϕ∗Q: A boundary bit.
And so our ZPUC is the pair S = (σ(Q|ker ϕ), ϕ∗Q).

Abstract. Following a general discussion of the co-
mputation of zombians of unfinished columbaria (with
examples), I will tell you about my recent joint work
w/ Jessica Liu on what we feel is the “textbook” exten-
sion of knot signatures to tangles, which for unknown
reasons, is not in any of the textbooks that we know.

Jacobian, Hamiltonian, ZombianColumbaria in an East Sydney Cemetery

Prior Art on signatures for tangles / braids. Gambaudo
and Ghys [GG], Cimasoni and Conway [CC], Conway [Co],
Merz [Me]. All define signatures of tangles / braids by first clo-
sing them to links and then work hard to derive composition pro-
perties.
Why Tangles? • Faster!
• Conceptually clearer proofs of invariance

(and of skein relations).
• Often fun and consequential:
◦ The Jones Polynomial{ The Temperley-Lieb Algebra.
◦ Khovanov Homology{ “Unfinished complexes”, complexes

in a category.
◦ The Kontsevich Integral
{ Associators.

◦ HFK{ OMG, type D,
type A,A∞, . . .

Columbarium near Assen

Computing Zombians of Unfinished Columbaria.
• Must be no slower than for finished ones.
• Future zombies must be able to complete the

computation.
• Future zombies must not even know the size

of the task that today’s zombies were facing.
• We must be able to extend to ZPUCs, Zombie

Processed Unfinished Columbaria!
Example / Exercise. Compute the determinant
of a 1, 000 × 1, 000 matrix in which 50 entries
are not yet given.
Homework / Research Projects. • What with ZPUCs? • Use
this to get an Alexander tangle invariant.

K
no

t-t
ea

se

Reminders. {links}⇒ {matrices / quadratic forms} signature−−−−−−→
σ

Z:

→ →

A = ĀT→

http://drorbn.net/usc24Shifted Partial Quadratics, their Pushforwards, and Signature Invariants for Tangles
Dror Bar-Natan: Talks: USC-240205: Thanks for allowing me at USC!

Kashaev’s Conjecture [Ka]
Liu’s Theorem [Li].

→

Kashaev

A +=



v u 1 u
u 1 u 1
1 u v u
u 1 u 1



i
j
k
ls −= 1

A −=



v u 1 u
u 1 u 1
1 u v u
u 1 u 1



i
j
k
ls += 1

Tristram-Levine

A +=



−r −t 2t t̄
−t̄ 0 t̄ 0
2t̄ t −r −t̄
t 0 −t 0



i
j
k
ls = 0

A +=



r −t −2t̄ t̄
−t̄ 0 t̄ 0
−2t t r −t̄

t 0 −t 0



i
j
k
ls = 0

X−i, j,k,−l

X̄−i, j,k,−l

(TL) (Kas)
With |ω| = 1, t = 1 − ω, r = t + t̄, v = Re(ω), and u = Re(ω1/2):

For links, σKas = 2σTL.

A Shifted Partial Quadratic (SPQ) on V is a pair S = (s ∈
Z,Q a PQ on V). addition also adds the shifts, pullbacks keep the
shifts, yet ϕ∗S B (s + σker ϕ(Q|ker ϕ), ϕ∗Q) and σ(S ) B s + σ(Q).
Theorem 1’ (Reciprocity). Given ϕ : V → W, for SPQs S on
V and U on W we have σV(S + ϕ∗U) = σW(U + ϕ∗S ) (and this
characterizes ϕ∗S ). Note. ψ∗ is additive but ϕ∗ is not.
Theorem 2. ψ∗ and ϕ∗ are functorial.
Theorem 3. “The pullback of a pushforward scene is
a pushforward scene”: If, on the right, β and δ are ar-
bitrary, Y = EQ(β, γ) = V ⊕Z W = {(v,w) : βv = γw} and µ and ν
are the obvious projections, then γ∗β∗ = ν∗µ∗.

Gist of the Proof.

U

A B

B̄T

row/col
ops

σ(Q|ker ϕ)
simul.

C̄T F = F̄T

C

. . . and the quadratic F C ϕ∗Q is well-defined only on D B ker C.

U + F

0

±1
0

0

0

0 C̄T

C

0

0

. . .±1

W
V

W

W

A Partial Quadratic (PQ) on V is a quadratic Q defined only on
a subspace DQ ⊂ V . We add PQs with DQ1+Q2 B DQ1 ∩ DQ2 .
Given a linear ψ : V → W and a PQ Q on W, there is an obvious
pullback ψ∗Q, a PQ on V .
Theorem 1. Given a linear ϕ : V → W and a PQ Q on V , there is
a unique pushforward PQ ϕ∗Q on W such that for every PQ U on
W, σV(Q + ϕ∗U) = σker ϕ(Q|ker ϕ) + σW(U + ϕ∗Q).
(If you must, D(ϕ∗Q) = ϕ(annQ(D(Q) ∩ ker ϕ)) and (ϕ∗Q)(w) = Q(v),
where v is s.t. ϕ(v) = w and Q(v, rad Q|ker ϕ) = 0).

Y ν //
µ ��

W
γ��

V
β
//

>>

Z

Definition. S
 · · ·

g2

g3 g1

 B
{SPQ S
on ⟨gi⟩

}
.

Theorem 4. {S(cyclic sets)} is a
planar algebra, with compositions
S(D)((S i)) B ϕD

∗ (ψ∗D(
⊕

i S i)), where
ψD : ⟨ fi⟩ → ⟨gαi⟩ maps every face of D
to the sum of the input gaps adjacent to
it and ϕD : ⟨ fi⟩ → ⟨gi⟩ maps every face to the sum of the output
gaps adjacent to it. So for our D, ψD : f1 7→ g34, f2 7→ g31+g14+g24+g33,
f3 7→ g32, f4 7→ g11, f5 7→ g13+g21, f6 7→ g23, f7 7→ g12+g22 and ϕD :
f1 7→ g1, f2 7→ g2+g6, f3 7→ 0, f4 7→ g3, f5 7→ 0, f6 7→ g5, f7 7→ g4 .
Theorem 5. TL and Kas, defined on
X and X̄ as before, extend to planar
algebra morphisms {tangles} → {S}.
Restricted to links, TL = σTL and Kas = σKas.

f1

f2
f4

f5

f6

f7 f3

Connection Diagram

D

1

2

3

g12
g13

g14

g22 g24

g21

g11

g31

g23

g33

g2g3
g4

g5 g6

g1g34g32
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Implementation (sources: http://drorbn.net/icerm23/
ap). I like it most when the implementation matches the math
perfectly. We failed here.

Once[<< KnotTheory`];

Loading KnotTheory` version

of February 2, 2020, 10:53:45.2097.

Read more at http://katlas.org/wiki/KnotTheory.

Utilities. The step function, algebraic numbers, canonical forms.

θ[x_] /; NumericQ[x] := UnitStep[x]

ω2[v_][p_] := Module{q = Expand[p], n, c},

Ifq === 0, 0,

c = Coefficient[q, ω, n = Exponent[q, ω]];

c vn + ω2[v]q - c ω + ω
-1

n
;

sign[ℰ_] := Module{n, d, v, p, rs, e, k},

{n, d} = NumeratorDenominator[ℰ];

{n, d} /= ω
Exponent[n,ω]/2+Exponent[n,ω,Min]/2;

p = Factorω2[v]@n*ω2[v]@d /. v  4 u2 - 2;

rs = Solve[p  0, u, Reals];

Ifrs === {}, Sign[p /. u  0],

rs = Union@(u /. rs);

Sign(-1)e=Exponent[p,u] Coefficient[p, u, e] + Sum[

k = 0;

While[(d = RootReduce[∂{u,++k}p /. u  r])  0];

If[EvenQ[k], 0, 2 Sign[d]]*θ[u - r],

{r, rs}]





SetAttributes[B, Orderless];

CF[b_B] := RotateLeft[# , First@Ordering[#] - 1] & /@

DeleteCases[b, {}]

CF[ℰ_] := Module{γs = Union@Cases[ℰ , γ_ γ_, ∞]},

TotalCoefficientRules[ℰ , γs] /.

(ps_  c_)  Factor[c]×Times @@ γsps 

CF[{}] = {};

CF[_List] :=

Module[{γs = Union@Cases[ , γ_, ∞], γ},

CF /@ DeleteCases[0][

RowReduce[Table[∂γr, {r, }, {γ, γs}]].γs] ]

(ℰ_)* := ℰ /. γ  γ, γ  γ, ω  ω
-1, c_Complex  c;

r_Rule+ := {r, r*}

RulesOf[γi_ + rest_.] := (γi  -rest)+;

CF[PQ[_, q_]] := Module[{n = CF[]},

PQ[n, CF[q /. Union @@ RulesOf /@ n]] ]

CF[Σb_[σ_, pq_]] := ΣCF[b][σ , CF[pq]]

Pretty-Printing.
Format[Σb_B[σ_, PQ[_, q_]]] := Module[{γs},

γs = γ# & /@ Join @@ b;

Column[{TraditionalForm@σ ,

TableForm[Join[

Prepend[""] /@ Table[TraditionalForm[∂cr],

{r, }, {c, γs}],

{Prepend[""][

Join @@

(b /. {l_, m___, r_} 

{DisplayForm@RowBox[{"(", l}],

m, DisplayForm@RowBox[{r, ")"}]}) /.

i_Integer  γi ]},

MapThread[Prepend,

{Table[TraditionalForm[∂r,cq], {r, γs*},

{c, γs}], γs*}]

], TableAlignments  Center]

}, Center] ];

The Face-Centric Core.
Σb1_[σ1_, PQ[1_, q1_]]⊕Σb2_[σ2_, PQ[2_, q2_]] ^:=

CF@ΣJoin[b1,b2][σ1 + σ2, PQ[1 ⋃ 2, q1 + q2]];

GT for Gap Touch:
gi g j

gi

g jGTi j

GTi_,j_@ΣB[{li___,i_,ri___},{lj___,j_,rj___},bs___][σ_,

PQ[_, q_]] :=

CF@ΣB[{ri,li,j,rj,lj,i},bs][σ , PQ[ ⋃ {γi - γj}, q]]

ij

j
i

s
i


0 ϕCrest

ϕ̄T λ θ

C̄T
rest θ̄

T Arest

→



∃p ϕp , 0
use ϕp to kill its row and

column, drop a
(
01
10

)
summand

ϕ=0, λ,0 use λ to kill θ, let s += sign(λ)

ϕ=0, λ=0 append θ to Crest.

Cordoni_@ΣB[{li___,i_,ri___},bs___][σ_, PQ[_, q_]] :=

Moduleϕ = ∂γi
 , λ = ∂γi,γi

q, nσ = σ , n, nq, p,

{p} = FirstPosition[(# =!= 0) & /@ ϕ, True, {0}];

{n, nq} = Which

p > 0, { , q} /. (γi  -〚p〛/ϕ〚p〛)+
/. (γi  0)+,

λ =!= 0, nσ += sign[λ];

 , q /. γi  -∂γi
q λ

+
/. (γi  0)+

,

λ === 0,  ⋃ ∂γi
q, q /. (γi  0)+

;

CF@ΣB[Most@{ri,li},bs][nσ,

PQ[n, nq] /. (γLast@{ri,li}  γFirst@{ri,li})
+
] 

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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Strand Operations. c for contract, mc for magnetic contract:

ci_,j_@t : ΣB[{li___,i_,ri___},{___,j_,___},___][__] :=

t // GTj,First@{ri,li} // Cordonj

ci_,j_@t : ΣB[{___,i_,j_,___},___][__] := Cordonj@t

ci_,j_@t : ΣB[{j_,___,i_},___][__] := Cordonj@t

ci_,j_@t : ΣB[{___,j_,i_,___},___][__] := Cordoni@t

ci_,j_@t : ΣB[{i_,___,j_},___][__] := Cordoni@t

mc[ℰ_] := ℰ //.

t : ΣB[{___,i_,___},{___,j_,___},___][__]

ΣB[{___,i_,j_,___},___][__] ΣB[{j_,___,i_},___][__] /;

i + j  0  ci,j@t

The Crossings (and empty strands).

Kas@Pi_,j_ := CF@ΣB[{i,j}][0, PQ[{}, 0]];

TL@Pi_,j_ := CF@ΣB[{i,j}][0, PQ[{}, 0]]

Kas[x : X[i_, j_, k_, l_]] :=

Kas@IfPositiveQ[x], X-i,j,k,-l, X-j,k,l,-i;

Kasx : X X
fs__

 := Modulev = 2 u2 - 1, p, γs, m,

γs = γ# & /@ {fs}; p = (x === X);

m = Ifp,

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

, -

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

;

CF@ΣB[{fs}][If[p, -1, 1], PQ[{}, γs*.m.γs]]

TL[x : X[i_, j_, k_, l_]] :=

TL@IfPositiveQ[x], X-i,j,k,-l, X-j,k,l,-i;

TLx : X X
fs__

 := Module{t = 1 - ω, r, γs, m},

r = t + t*; γs = γ# & /@ {fs};

m = Ifx === X,

-r -t 2 t t*

-t* 0 t* 0

2 t* t -r -t*

t 0 -t 0

,

r -t -2 t* t*

-t* 0 t* 0

-2 t t r -t*

t 0 -t 0

;

CF@ΣB[{fs}][0, PQ[{}, γs*.m.γs]]

Evaluation on Tangles and Knots.
Kas[K_] := Fold[mc[#1⊕#2] &, ΣB[][0, PQ[{}, 0]],

List @@ (Kas /@ PD@K)];

KasSig[K_] := Expand[Kas[K]〚1〛/2]

TL[K_] :=

Fold[mc[#1⊕#2] &, ΣB[][0, PQ[{}, 0]],

List @@ (TL /@ PD@K)] /.

θ[c_ + u] /; Abs[c] ≥ 1  θ[c];

TLSig[K_] := TL[K]〚1〛

=

1 2 3

5
4

6

98
7

1 2 3

4
5

6

798Reidemeister 3.
R3L = PD[X-2,5,4,-1, X-3,7,6,-5,

X-6,9,8,-4];

R3R = PD[X-3,5,4,-2, X-4,6,8,-1,

X-5,7,9,-6];

{TL@R3L  TL@R3R, Kas@R3L  Kas@R3R}

{True, True}

Kas@R3L

2 θu -
1

2
 - 2 θu +

1

2
 - 2

(γ-3 γ7 γ9 γ8 γ-1 γ-2)

γ-3
2 u2 4 u2-3

(2 u-1) (2 u+1)

u 4 u2-3

(2 u-1) (2 u+1)
-

1

(2 u-1) (2 u+1)
-

2 u

(2 u-1) (2 u+1)
-

1

(2 u-1) (2 u+1)

u 4 u2-3

(2 u-1) (2 u+1)

γ7
u 4 u2-3

(2 u-1) (2 u+1)

2 2 u2-1

(2 u-1) (2 u+1)

u 4 u2-3

(2 u-1) (2 u+1)
-

1

(2 u-1) (2 u+1)
-

2 u

(2 u-1) (2 u+1)
-

1

(2 u-1) (2 u+1)

γ9 -
1

(2 u-1) (2 u+1)

u 4 u2-3

(2 u-1) (2 u+1)

2 u2 4 u2-3

(2 u-1) (2 u+1)

u 4 u2-3

(2 u-1) (2 u+1)
-

1

(2 u-1) (2 u+1)
-

2 u

(2 u-1) (2 u+1)

γ8 -
2 u

(2 u-1) (2 u+1)
-

1

(2 u-1) (2 u+1)

u 4 u2-3

(2 u-1) (2 u+1)

2 u2 4 u2-3

(2 u-1) (2 u+1)

u 4 u2-3

(2 u-1) (2 u+1)
-

1

(2 u-1) (2 u+1)

γ-1 -
1

(2 u-1) (2 u+1)
-

2 u

(2 u-1) (2 u+1)
-

1

(2 u-1) (2 u+1)

u 4 u2-3

(2 u-1) (2 u+1)

2 2 u2-1

(2 u-1) (2 u+1)

u 4 u2-3

(2 u-1) (2 u+1)

γ-2
u 4 u2-3

(2 u-1) (2 u+1)
-

1

(2 u-1) (2 u+1)
-

2 u

(2 u-1) (2 u+1)
-

1

(2 u-1) (2 u+1)

u 4 u2-3

(2 u-1) (2 u+1)

2 u2 4 u2-3

(2 u-1) (2 u+1)

=

1 2

3 4

5 6

1 2

5 6Reidemeister 2.
TL@PDX-2,4,3,-1, X-4,6,5,-3

0

1 0 -1 0
(γ-2 γ6 γ5 γ-1)

γ-2 0 0 0 0
γ6 0 0 0 0
γ5 0 0 0 0
γ-1 0 0 0 0

TL@PDX-2,4,3,-1, X-4,6,5,-3  GT5,-2@TL@PD[P-1,5, P-2,6],

Kas@PDX-2,4,3,-1, X-4,6,5,-3  GT5,-2@Kas@PD[P-1,5, P-2,6]

{True, True}

1
3

2

1

2
=

Reidemeister 1.
{TL@PD[X-3,3,2,-1]  TL@P-1,2,

Kas@PD[X-3,3,2,-1]  Kas@P-1,2}

{True, True}

A Knot.
f = TLSig[Knot[8, 5]]

2 θ-
3

2
+ u - 2 θ

3

2
+ u -

2 θu - -0.630…  + 2 θu - 0.630… 

Plot[f, {u, -1, 1}] -1.0 -0.5 0.5 1.0

-4

-3

-2

-1

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9
10

11

12

Conway Kinoshita Terasaka

The Conway-Kinoshita-
Terasaka Tangles.
T1 = PDX-6,2,7,-1, X-2,8,3,-7,

X-8,4,9,-3, X-11,6,12,-5,

X-4,11,5,-10;

T2 = PDX-6,2,7,-1, X-2,8,3,-7,

X-8,4,9,-3, X-12,6,13,-5,

X-4,12,5,-11, X-10,15,11,-14, X-15,10,16,-9;

Column@{TL[T1], Kas[T1]}

-2 θu -
3

2
 + 2 θu +

3

2
 - 1

(γ-10 γ9 γ-1 γ12)

γ-10 0 1 - ω 0 ω - 1

γ9
ω-1

ω

2 ω

ω2-ω+1
-

ω-1

ω
-

2 ω

ω2-ω+1

γ-1 0 ω - 1 0 1 - ω

γ12 -
ω-1

ω
-

2 ω

ω2-ω+1

ω-1

ω

2 ω

ω2-ω+1

-2 θu -
3

2
 + 2 θu +

3

2
 - 1

(γ-10 γ9 γ-1 γ12)

γ-10 2 (u - 1) (u + 1) 4 u2 - 3 0 -2 (u - 1) (u + 1) 4 u2 - 3 0

γ9 0
1

2 4 u2-3 0 -
1

2 4 u2-3

γ-1 -2 (u - 1) (u + 1) 4 u2 - 3 0 2 (u - 1) (u + 1) 4 u2 - 3 0

γ12 0 -
1

2 4 u2-3 0
1

2 4 u2-3

Column@{TL[T2], Kas[T2]}
0

(γ-14 γ16 γ-1 γ13)

γ-14 0 1 - ω 0 ω - 1

γ16
ω-1

ω
-

2 (ω-1)2 ω

ω4-3 ω3+5 ω2-3 ω+1
-

ω-1

ω

2 (ω-1)2 ω

ω4-3 ω3+5 ω2-3 ω+1

γ-1 0 ω - 1 0 1 - ω

γ13 -
ω-1

ω

2 (ω-1)2 ω

ω4-3 ω3+5 ω2-3 ω+1

ω-1

ω
-

2 (ω-1)2 ω

ω4-3 ω3+5 ω2-3 ω+1

1

(γ-14 γ16 γ-1 γ13)

γ-14
1

2
-16 u4 + 28 u2 - 13 0

1

2
16 u4 - 28 u2 + 13 0

γ16 0 -
2 (u-1) (u+1)

16 u4-28 u2+13
0

2 (u-1) (u+1)

16 u4-28 u2+13

γ-1
1

2
16 u4 - 28 u2 + 13 0

1

2
-16 u4 + 28 u2 - 13 0

γ13 0
2 (u-1) (u+1)

16 u4-28 u2+13
0 -

2 (u-1) (u+1)

16 u4-28 u2+13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

5

6

7

8

9

10

11

12

13

14

4

Examples with non-trivial co-
dimension.
B1 = PDX-5,2,6,-1, X-8,3,9,-2,

X-11,4,12,-3, X-12,10,13,-9,

X-13,7,14,-6;

B2 = PDX-5,2,6,-1, X-9,3,10,-2,

X-10,7,11,-6, X-12,4,13,-3, X-13,8,14,-7;

Column@{TL[B1], Kas[B1]}
0

1 0 -1 0
1

ω
0 -

1

ω
0

0 0 0 -1
1

ω
0 -

1

ω
1

(γ-11 γ4 γ10 γ7 γ14 γ-1 γ-5 γ-8)

γ-11 0 0 0 0 0 0 0 0

γ4 0 0 0 0
ω-1

ω2
0 -

ω-1

ω2
0

γ10 0 0 0 0 -
ω-1

ω
0

ω-1

ω
0

γ7 0 0 0 0
(ω-1)2

ω2
0 -

(ω-1)2

ω2
0

γ14 0 -((ω - 1) ω) ω - 1 (ω - 1)2 0 -
ω-1

ω

ω-1

ω
0

γ-1 0 0 0 0 ω - 1 0 1 - ω 0

γ-5 0 (ω - 1) ω 1 - ω -(ω - 1)2 1 - ω
ω-1

ω

(ω-1)2

ω
0

γ-8 0 0 0 0 0 0 0 0

0

1 0 -1 0 1 0 -1 0
(γ-11 γ4 γ10 γ7 γ14 γ-1 γ-5 γ-8)

γ-11 0 0 0 0 0 0 0 0
γ4 0 0 0 -1 -u 0 u 1
γ10 0 0 0 -u 1 - 2 u2 0 2 u2 - 1 u

γ7 0 -1 -u 2 u2 - 3 -u -1 0 1
γ14 0 -u 1 - 2 u2 -u -1 -u -2 (u - 1) (u + 1) u

γ-1 0 0 0 -1 -u 0 u 1
γ-5 0 u 2 u2 - 1 0 -2 (u - 1) (u + 1) u 4 u2 - 3 0
γ-8 0 1 u 1 u 1 0 1 - 2 u2

Column@{TL[B2], Kas[B2]}
0

(γ-12 γ4 γ8 γ14 γ11 γ-1 γ-5 γ-9)

γ-12
(ω-1)2

ω
ω - 1 -2 (ω - 1) 2 (ω-1)2

ω

2 (ω-1)

ω2
0 -

2 (ω-1)

ω2
-

(ω-1) (2 ω-3)

ω

γ4 -
ω-1

ω
0

ω-1

ω
0 0 0 0 0

γ8
2 (ω-1)

ω
1 - ω

(ω-1)2

ω

-
(ω-1) (2 ω-3)

ω
-

2 (ω-1)

ω2
0

2 (ω-1)

ω2
2 (ω-2) (ω-1)

ω

γ14
2 (ω-1)2

ω
0 -

(ω-1) (3 ω-2)

ω

3 (ω-1)2

ω

-
(ω-2) (ω-1)

ω2
0 -

2 (ω-1)

ω2
-

2 (ω-2) (ω-1)

ω

γ11 -2 (ω - 1) ω 0 2 (ω - 1) ω -((ω - 1) (2 ω - 1)) (ω-1)2

ω

-
ω-1

ω

2 (ω-1)

ω
2 (ω - 1)2

γ-1 0 0 0 0 ω - 1 0 1 - ω 0

γ-5 2 (ω - 1) ω 0 -2 (ω - 1) ω 2 (ω - 1) ω -2 (ω - 1)
ω-1

ω

(ω-1)2

ω
-((ω - 1) (2 ω - 1))

γ-9 -
(ω-1) (3 ω-2)

ω
0

2 (ω-1) (2 ω-1)

ω
-

2 (ω-1) (2 ω-1)

ω

2 (ω-1)2

ω2
0 -

(ω-2) (ω-1)

ω2
3 (ω-1)2

ω

2 θu -
3

2
 - 2 θu +

3

2


1
1

2 u
0 -

1

2 u
-1 -

1

2 u
0

1

2 u

(γ-12 γ4 γ8 γ14 γ11 γ-1 γ-5 γ-9)

γ-12 0 0 0 0 0 0 0 0

γ4 0 -
(2 u-1) (2 u+1) 2 u2-1

4 u2 4 u2-3
-

2 u2-1

2 u

1

4 u2 4 u2-3 0 -
(2 u-1) (2 u+1)

4 u2 4 u2-3
-

1

2 u 4 u2-3

8 u4-6 u2-1

4 u2 4 u2-3

γ8 0 -
2 u2-1

2 u
-2 (u - 1) (u + 1) 2 u2-1

2 u
0 -

1

2 u
0

1

2 u

γ14 0
1

4 u2 4 u2-3
2 u2-1

2 u

2 u2-1 16 u4-16 u2+1

4 u2 4 u2-3
0 -

8 u4-10 u2+1

4 u2 4 u2-3

1

2 u 4 u2-3

1

4 u2 4 u2-3

γ11 0 0 0 0 0 0 0 0

γ-1 0 -
(2 u-1) (2 u+1)

4 u2 4 u2-3
-

1

2 u
-

8 u4-10 u2+1

4 u2 4 u2-3
0

8 u4-10 u2-1

4 u2 4 u2-3

8 u4-10 u2+1

2 u 4 u2-3

16 u4-16 u2+1

4 u2 4 u2-3

γ-5 0 -
1

2 u 4 u2-3 0
1

2 u 4 u2-3 0
8 u4-10 u2+1

2 u 4 u2-3

2 (u-1) (u+1) (2 u-1) (2 u+1)

4 u2-3

8 u4-6 u2-1

2 u 4 u2-3

γ-9 0
8 u4-6 u2-1

4 u2 4 u2-3

1

2 u

1

4 u2 4 u2-3 0
16 u4-16 u2+1

4 u2 4 u2-3

8 u4-6 u2-1

2 u 4 u2-3
-

32 u6-64 u4+30 u2+1

4 u2 4 u2-3

(
A B
C U

)
det(A)−−−−−→

(
I A−1B
C U

)
1−−−−−→

(
I A−1B
0 U −CA−1B

)
,

so det
(
A B
C U

)
= det(A) det(U −CA−1B).

Roughly, det(A) is “det on ker”,

−CA−1B is “a pushforward of
(
A B
C U

)
”.

(what if ∄A−1?)

Questions. 1. Does this have a topological meaning? 2. Is the-
re a version of the Kashaev Conjecture for tangles? 3. Find all
solutions of R123 in our “algebra”. 4. Braids and the Burau re-
presentation. 5. Recover the work in “Prior Art”. 6. Are there
any concordance properties? 7. What is the “SPQ group”? 8. The
jumping points of signatures are the roots of the Alexander poly-
nomial. Does this generalize to tangles? 9. Which of the three
Cordon cases is the most common? 10. Are there interesting e-
xamples of tangles for which rels is non-trivial? 11. Is the pq
part determined by Γ-calculus? 12. Is the pq part determined by
finite type invariants? 13. Does it work with closed components
/ links? 14. Strand-doubling formulas? 15. A multivariable ver-
sion? 16. Mutation invariance? 17. Ribbon knots? 18. Are there
“face-virtual knots”? 19. Does the pushforward story extend to
ranks? To formal Gaussian measures? To super Gaussian measu-
res?
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Some Rigor. (Exercises hints and partial solutions at end)
Exercise 1. Show that if two SPQ’s S 1 and S 2 on V satisfy σ(S 1+U) =
σ(S 2 + U) for every quadratic U on V , then they have the same shifts
and the same domains.
Exercise 2. Show that if two full quadratics Q1 and Q2 satisfy σ(Q1 +

U) = σ(Q2 + U) for every U, then Q1 = Q2.
Proof of Theorem 1’. Fix W and consider triples (V, S , ϕ : V → W)
where S = (s,D,Q) is an SPQ on V . Say that two triples are “push-
equivalent”, (V1, S 1, ϕ1) ∼ (V2, S 2, ϕ2) if for every quadratic U on W,

σV1 (S 1 + ϕ
∗
1U) = σV2 (S 2 + ϕ

∗
2U).

Given our (V, S , ϕ), we need to show:
1. There is an SPQ S ′ on W such that (V, S , ϕ) ∼ (W, S ′, I).
2. If (W, S ′, I) ∼ (W, S ′′, I) then S ′ = S ′′.
Property 2 is easy (Exercises 1, 2). Property 1 follows from the follow-
ing three claims, each of which is easy.
Claim 1. If v ∈ ker ϕ ∩ D(S ), and λ B Q(v, v) , 0, then (V, S , ϕ) ∼

(
V/⟨v⟩,

(
s+sign(λ),D(S )/⟨v⟩,Q−λ−1Q(−, v) ⊗ Q(v,−)

)
, ϕ/⟨v⟩

)
.

So wlog Q|ker ϕ = 0 (meaning, Q|ker ϕ⊗ker ϕ = 0). □
Claim 2. If Q|ker ϕ = 0 and v ∈ ker ϕ ∩ D(S ), let V ′ = ker Q(v,−) and
then (V, S , ϕ) ∼ (V ′, S |V ′ , ϕ|V ′ ) so wlog Q|V⊗ker ϕ+ker ϕ⊗V = 0. □
Claim 3. If Q|V⊗ker ϕ+ker ϕ⊗V = 0 then S = ϕ∗S ′ for some SPQ S ′ on im ϕ
and then (V, S , ϕ) ∼ (W, S ′, I). □ □
Proof of Theorem 2. The functoriality of pullbacks needs no proof.

Now assume V0
α−→ V1

β−→ V2 and that S is an SPQ on V0. Then
for every SPQ U on V2 we have, using reciprocity three times, that
σ(β∗α∗S + U) = σ(α∗S + β∗U) = σ(S + α∗β∗U) = σ(S + (βα)∗U) =
σ((βα)∗S + U). Hence β∗α∗S = (βα)∗S . □

Y ν //
µ ��

W
γ��

V
β
//

>>

Z

Definition. A commutative square as on the right is called
admissible if γ∗β∗ = ν∗µ∗.
Lemma 1. If V = W = Y = Z and β = γ = µ = ν = I, the
square is admissible. □
Lemma 2. The following are equivalent:
1. A square as above is admissible.

Y ν //
µ ��

W
γ��
⊣ S 2

S 1 ⊢ V
β
// Z

2. The Pairing Condition holds. Namely, if S 1 is
an SPQ on V (write S 1 ⊢ V) and S 2 ⊢ W, then
σ(µ∗S 1 + ν

∗S 2) = σ(β∗S 1 + γ∗S 2).
Y ν //
µ ��

W
γ��~~

V
β
// Z

3. The square is mirror admissible: β∗γ∗ = µ∗ν∗.
Proof. Using Exercises 1 and 2 below, and then using re-
ciprocity on both sides, we have ∀S 1 γ

∗β∗S 1 = ν∗µ∗S 1 ⇔
∀S 1∀S 2 σ(γ∗β∗S 1+S 2) = σ(ν∗µ∗S 1+S 2)⇔ ∀S 1∀S 2 σ(β∗S 1+γ∗S 2) =
σ(µ∗S 1 + ν

∗S 2), and thus 1 ⇔ 2. But the condition in 2 is symmetric
under β↔ γ, µ↔ ν, so also 2⇔ 3. □
Lemma 3. If the first diagram below is admissible, then so is the se-
cond. Y ν //

µ ��
W
γ��

V
β
//

>>

Z

Y ν //
µ ��

W
γ⊕0��

V
β⊕0
//

88

Z ⊕ F

□

Lemma 4. A pushforward by an inclusion is the do nothing operation
(though note that the pushforward via an inclusion of a fully defined
quadratic retains its domain of definition, which now may become par-
tial). □

V ι //
ϕ ��

V ⊕C
ϕ⊕I��

W
ι
//

77

W ⊕C

Lemma 5. For any linear ϕ : V → W, the diagram
on the right is admissible, where ι denotes the inclu-
sion maps.
Proof. Follows easily from Lemma 4. □
Definition. If S is an SPQ with domain D and quadratic Q, the radical
of S is the radical of Q considered as a fully-defined quadratic on D.
Namely, rad S B {u ∈ D : ∀v ∈ D, Q(u, v) = 0}.

Lemma 6. Always, ϕ(rad S ) ⊂ rad ϕ∗S .
Proof. Pick w ∈ ϕ(rad S ) and repeat the proof of Theorem 1’ but no-
w considering quadruples (V, S , ϕ, v), where (V, S , ϕ) are as before and
v ∈ rad S satisfies ϕ(v) = w. Clearly our initial triple (V, S , ϕ) can be
extended to such a quadruple, and it is easy to repeat the steps of the
proof of Theorem 1’ extending everything to such quadruples. □
We have to acknowledge that our proof of Lemma 6 is ugly. We wish
we had a cleaner one.
Exercise 3. Show that if two SPQ’s S 1 and S 2 on V ⊕ A satisfy
A ⊂ rad S i and σ(S 1 + π

∗U) = σ(S 2 + π
∗U) for every quadratic U

on V , where π : V ⊕ A→ V is the projection, then S 1 = S 2.
Exercise 4. Show that if ϕ : V → W is surjective and Q is a quadratic
on W, then σ(Q) = σ(ϕ∗Q).
Exercise 5. Show that always, ϕ∗ϕ∗S = S |im ϕ.

V ⊕C
ϕ+ //

α ��
W ⊕C

β��
V

ϕ
//

66

W

Lemma 7. For any linear ϕ : V → W, the dia-
gram on the right is admissible, where ϕ+ B ϕ⊕ I
and α and β denote the projection maps.
Proof. Let S be an SPQ on V . Clearly C ⊂
β∗ϕ∗S . Also, C ⊂ radα∗S so by Lemma 6, C = ϕ+(C) ⊂ ϕ+(radα∗S ) ⊂
rad ϕ+∗α

∗S . Hence using Exercise 3, it is enough to show thatσ(ϕ+∗α
∗S+

β∗U) = σ(β∗ϕ∗S + β∗U) for every U on W. Indeed, σ(ϕ+∗α
∗S + β∗U)

(1)
=

σ(β∗ϕ+∗α
∗S +U)

(2)
= σ(ϕ∗α∗α∗S +U)

(3)
= σ(ϕ∗S +U)

(4)
= σ(β∗(ϕ∗S +U))

(5)
=

σ(β∗ϕ∗S +β∗U), using (1) reciprocity, (2) the commutativity of the dia-
gram and the functoriality of pushing, (3) Exercise 5, (4) Exercise 4,
and (5) the additivity of pullbacks. □
Lemma 8. If the first diagram below is admissible, then so are the other

two. Y ν //
µ ��

W
γ��

V
β
//

>>

Z

Y ⊕ E ν⊕0 //
µ⊕I ��

W
γ��

V ⊕ E
β⊕0
//

88

Z

Y ν⊕0 //
µ ��

W ⊕ F
γ⊕I��

V
β⊕0
//

88

Z ⊕ F

Proof. In the diagram

Y ⊕ E π //
µ⊕I ��

Y ν //
µ ��

W
γ��

ι // W ⊕ F
γ⊕I��

V ⊕ E
π
//

88

V
β
//

::

Z
ι
//

88

Z ⊕ F,

with π marking projections and ι inclusions, the left square is admissi-
ble by Lemma 7, the middle square by assumption, and the right square
by Lemma 5. Along with the functoriality of pushforwards this shows
the admissibility of both the left and the right 1 × 2 subrectangles, and
these are the diagrams we wanted. □

A ⊕ E ⊕ F //

��
A ⊕C ⊕ F

��
A ⊕ B ⊕ E //

44

A ⊕ B ⊕C ⊕ D

Proof of Theorem 3. Decompose Z =
A⊕B⊕C⊕D, where A = im β∩ im γ,
im β = A⊕B, and im γ = A⊕C. Write
V ≃ A⊕B⊕E with β = I on A⊕B yet β = 0 on E, and write W ≃ A⊕C⊕F
with γ = I on A ⊕ C yet γ = 0 on F. Then Y = V ⊕Z W ≃ A ⊕ E ⊕ F
and our square is as shown on the right, with all maps equal to I on
like-named summands and equal to 0 on non-like-named summands.
But this diagram is admissible: build it up using Lemma 1 for the A’s,
and then Lemma 8 for E and C, and then again Lemma 8 along with
the mirror property of Lemma 2 for B and F, and then Lemma 3 for D.

□
To prove Theorem 4, given three1 SPQ’s S 1, S 2, and S 3, we need to
show that planar-multiplying them in two steps, first using a planar con-
nection diagram DI (I for Inner) to yield S 6 = S(DI)(S 2, S 3) and then
using a second planar connection diagram DO (O for Outer) to yield
S(DO)(S 1, S 6), gives the same answer as multiplying them all at once
using the composition planar connection diagram DB = DO ◦6 DI (B for
Big) to yield S(DB)(S 1, S 2, S 3).2 An example should help:

1Truly, we need the same for any number of input SPQ’s that are divided into two groups, “multiply in the first step” and “multiply in the second step”. But
there’s no added difficulty here, only an added notational complexity.

2Aren’t we sassy? We picked “6” for the name of the product of “2” and “3”.

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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1 2 3

6

0

In this example, if you ignore the dotted green line (marked “6”), you
see the planar connection diagram DB, which has three inputs (1,2,3)
and a single output, the cycle 0. If you only look inside the green line,
you see DI , with inputs 2 and 3 and an output cycle 6. If you ignore the
inside of 6 you see DO, with inputs 1 and 6 and output cycle 0.

(MD) G0

FB
ν //

µ��

ϕ
77

ψ

vv

FO

δ
OO

γ��
G1 ⊕G2 ⊕G3 G1 ⊕ FIα+

oo
β+
// G1 ⊕G6

Let FB (Big Faces) denote
the vector space whose ba-
sis are the faces of DB, let
FI (Inner Faces) be the spa-
ce of faces of DI , and let FO

(Outer Faces) be the space
of faces of DO. Let G1, G2, G3, G6, and G0 be the spaces of gaps (ed-
ges) along the cycles 1,2,3,6, and 0, respectively. Let ψ B ψDB and
ϕ B ϕDB be the maps defining S(DB) and let γ B ψDO and δ B ϕDO

be the maps defining S(DO). Further, let α B ψDI : FI → G2 ⊕G3 and
β B ϕDI : FI → G6 be the maps defining S(DI), and let α+ B I ⊕ α and
β+ B I⊕β be the extensions of α and β by an identity on an extra factor
of G1, so that β+∗α

∗
+ = IG1 ⊕S(DI). Let µ map any big face to the sum of

G1 gaps around it, plus the sum of the inner faces it contains. Let ν map
any big face to the sum of the outer faces it contains. It is easy to see
that the master diagram (MD) shown on the right, made of all of these
spaces and maps, is commutative.

FB
ν //

µ��
FO

γ��
G1 ⊕ FI

β+
// G1 ⊕G6

Claim. The bottom right square of (MD) is an
equalizer square, namely FB ≃ EQ(β+, γ). He-
nce ν∗µ∗ = γ∗β+∗ .
Proof. A big face (an element of FB) is a sum of outer faces fo and a
sum of inner faces fi, and it has a boundary g1 on input cycle 1, su-
ch that the boundary of the outer pieces fo is equal to the boundary
of the inner pieces fi plus g1. That matches perfectly with the defini-
tion of the equalizer: EQ(β+, γ) = {(g1, fi, fo) : β+(g1, fi) = γ( fo)} =
{(g1, fi, fo) : γ( fo) = (g1, β( fi))}. □
Proof of Theorem 4. With notation as above, with the example abo-
ve (which is general enough), and with the claim above, and also u-
sing functoriality, we have S(DB) = ϕ∗ψ∗ = δ∗ν∗µ∗α∗+ = δ∗γ∗β+∗α

∗
+ =

S(DO) ◦ (IG1 ⊕ S(DI)), as required. □
Proof of Theorem 5. We need to verify the Reidemeister moves and
that was done in the computational section, and the statement about the
restriction to links, which is easy: simply assemble an n-crossing knot
using an n-input planar connection diagram, and the formulas clearly
match. □

Further Homework.
Exercise 6. By taking U = 0 in the reciprocity statement, prove that
always σ(ϕ∗S ) = σ(S ). But that seems wrong, if ϕ = 0. What saves the
day?
Exercise 7. By taking S = 0 in the reciprocity statement, frove that
always σ(ϕ∗U) = σ(U). But wait, this is nonsense! What went wrong?
Exercise 8. Given ϕ : V → W and a subspace D ⊂ V , show that there
is a unique subspace ϕ∗D ⊂ W such that for every quadratic Q on W,
σ(ϕ∗Q|D) = σ(Q|ϕ∗D).

Y //
��

0
��

V // Z

Y //
��

W
��

V // 0

Exercise 9. When are diagrams as on the ri-
ght equalizer diagrams? What then do we learn
from Theorem 3?

Exercise 10. There are 11 types or irreducible commutative squares:
1 //
��

0
��

0 // 0

, 0 //
��

1
��

0 // 0

, 0 //
��

0
��

1 // 0

, 0 //
��

0
��

0 // 1

, 1
1
//

��
1
��

0 // 0

, 0 //
��

1
1 ��

0 // 1

, 0 //
��

1
1 ��

0 // 1

, 0 //
��

0
��

1 1 // 1

,

0 //
��

1
1 ��

1 1 // 1

, 1
1
//

1��
1
��

1 // 0

, and 1
1
//

1��
1

1 ��
1 1 // 1

. Show that pushing commutes with pul-

ling for all but four of them. Compare with the statement of Theorem 3.
Exercise 11. Prove that a square is admissible iff it is an equalizer squa-
re, with an additional direct summand A added to the Y term, and with
the maps µ and ν extended by 0 on A.
Exercise 12. Prove that the direct sum of two admissible squares is a-
dmissible. Warning: Harder than it seems! Not all quadratics on V1⊕V2
are direct sums of quadratics on V1 and on V2.
Exercise 13. Given a quadratic Q on a space V , let π be the projection
V → V/ rad(Q) and show that π∗Q = Q/ rad(Q), with the obvious defi-
nition for the latter.
Exercise 14. Show that for any partial quadratic Q on a space W the-
re exists a space A and a fully-defined quadratic F on W ⊕ A such
that π∗F = Q, where π : W ⊕ A → W is the projection (these are
not unique). Furthermore, if ϕ : V → W, then ϕ∗Q = π∗ϕ∗+F, whe-
re ϕ+ = ϕ ⊕ I : V ⊕ A → W ⊕ A and π also denotes the projection
V ⊕ A→ V .
Solutions / Hints.

Hintfor1.Onavectorinthedomainofonebutnottheother,takean
outrageousvalueforU,thatwillraiseorlowerthesignature.
Hintfor2.WLOG,Q1isdiagonalandQ1=0.
Hintfor5.It’senoughtotestthatagainstUwithD(U)=imϕ.
Hintfor6.The“shift”partof0∗Sisσ(S).
Hintfor7.ϕ∗Sisn’t0,it’sthepartialquadratic“0onimϕ”(and
indeed,σ(ϕ∗U)=σ(U)ifϕissurjective).

Hintfor10.Theexceptionsare01
00,00

10,01
11,and11

10.
Hintfor12.UseExercise11.

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
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Rooting the BKT for FTI
Dror Bar-Natan: Talks: Tokyo-230911:
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Goussarov-Polyak-Viro

D1 D2 D4 D5 D6D3D0 D7

Knot: Piccirillo
n crossingsLength L length l

Question ([BBHS], ωεβ/
Fields). For computations,
planar projections are better
than braids (as likely l ∼ n3/2).
But are yarn balls better than
planar projections (here likely n ∼ L4/3)?

Abstract. Following joint work with Itai Bar-Natan, Iva Halache-
va, and Nancy Scherich, I will show that the Best Known Time
(BKT) to compute a typical Finite Type Invariant (FTI) of type d
on a typical knot with n crossings is roughly equal to nd/2, which
is roughly the square root of what I believe was the standard be-
lief before, namely about nd.

Thanks for inviting me to UTokyo!
ωεβBhttp://drorbn.net/tok2309

Acknowledgement. This work was partially supported by NSERC
grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

My Primary Interest. Strong, fast, homomorphic knot and tan-
gle invariants. ωεβ/Nara, ωεβ/Kyoto, ωεβ/Tokyo

Conventions. • n B {1, 2, . . . , n}. • For complexity estimates we
ignore constant and logarithmic terms: n3 ∼ 2023d!(log n)dn3.

A Key Preliminary. Let Q ⊂
nl be an enumerated subset, with
1 ≪ q = |Q| ≪ nl. In time ∼ q
we can set up a lookup table of
size ∼ q so that we will be able
to compute |Q ∩ R| in time ∼ 1,
for any rectangle R ⊂ nl.
Fails. • Count after R is prese-
nted. • Make a lookup table of
|Q ∩ R| counts for all R’s. R

Unfail. Make a restricted loo-
kup table of the form{

R
dyadic

→ |Q ∩ R|
>0

}
.

• Make the table by running
through x ∈ Q, and for each
one increment by 1 only the
entries for dyadic R ∋ x (or
create such an entry, if it di-
dn’t exist already). This takes
q · (log2 n)l ∼ q ops.
• Entries for empty dyadic R’s are not needed and not created.
• Using standard sorting techniques, access takes log2 q ∼ 1 ops.
• A general R is a union of at most (2 log2 n)l ∼ 1 dyadic ones,

so counting |Q ∩ R| takes ∼ 1 ops.
Generalization. Without changing the conclusion, replace
counts |Q∩R| with summations

∑
R θ, where θ : nl → V is suppor-

ted on a sparse Q, takes values in a vector space V with dim V ∼ 1,
and in some basis, all of its coefficients are “easy”.

Here’s |G| = n = 100

G
K

Definitions. Let G B Q⟨Gauss Diagrams⟩, with Gd / G≤d the
diagrams with exactly / at most d arrows. Let φd : G → Gd be
φd : G 7→

∑

D⊂G, |D|=d

D =
∑

D∈(G
d)

D, and let φ≤d =
∑

e≤d φe.

Naively, it takes
(

n
d

)
∼ nd

ops to compute φd.
2023/09/11@06:00

The [GPV] Theorem. A knot invariant is fi-
nite type of type d iff it is of the form ω ◦ φ≤d

for some ω ∈ G∗≤d.
• ⇐ is easy;⇒ is hard and IMHO not well understood.
• φ≤d is not an invariants and not every ω gives an invariant!
• The theory of finite type invariants is very rich. Many knot

invariants factor through finite type invariants, and it is possible
that they separate knots.
• We need a fast algorithm to compute φ≤d!
Our Main Theorem. On an n-arrow Gauss diagram, φd can be
computed in time ∼ n⌈d/2⌉.
Proof. With d = p + l (p for “put”, l for “lookup”), pick p arrows
and look up in how many ways the remaining l can be placed in
between the legs of the first p:

φ3

To reconstruct D = P#λL from P and L we need a non-decreasing
“placement function” λ : 2l→ 2p + 1.

φd(G) =
∑

D∈(G
d)

D =
(
d
p

)−1 ∑

P∈(G
p)

∑

non-decreasing
λ : 2l→2p+1

∑

L∈(G
l )

Li∈(Pλ(i)−1 ,Pλ(i))

P#λL

Define θG : 2n2l → Gl by

(L1, . . . , L2l) 7→


L if (L1, . . . , L2l) are the ends of some L ⊂ G
0 otherwise

and now φd(G) =
(
d
p

)−1 ∑

P∈(G
p)

∑

non-decreasing
λ : 2l→2p+1

P#λ


∑

∏
i(Pλ(i)−1,Pλ(i))

θG



can be computed in time ∼ np + nl. Now take p = ⌈d/2⌉. □

[BBHS] D. Bar-Natan, I. Bar-Natan, I. Halacheva, and N. Scherich, Yarn Ball Knots and
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(signs suppressed):

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tokyo-230911/
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Cars, Interchanges, Traffic Counters, and some Pretty Darned Good Knot Invariants
University of Toronto: Dror Bar-Natan: Talks: Nara-2308:

i+1 j+1j+1 i+1

(n = 3)
T

δ
U

We seek strong, fast, homomorphic knot and tangle invariants.
Strong. Having a small “kernel”.
Fast. Computable even for large knots (best: poly time).

d1

Why care for “Homomorphic”? Theorem. A knot K is ribbon
iff there exists a 2n-component tangle T with skeleton as below
such that τ(T ) = K and where δ(T ) = U is the untangle:

Homomorphic. Extends to tan-
gles and behaves under tangle
operations; especially gluings
and doublings:

K

τ

Hear more at ωεβ/AKT.
Acknowledgement. This work was supported by NSERC grant
RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

ωεβBhttp://drorbn.net/na23Thanks for inviting me to Nara!

Abstract. Reporting on joint w-
ork with Roland van der Veen, I’ll
tell you some stories about ρ1, an
easy to define, strong, fast to compute, homomorphic,
and well-connected knot invariant. ρ1 was first studied by Ro-
zansky and Overbay [Ro1, Ro2, Ro3, Ov] and Ohtsuki [Oh2],
it has far-reaching generalizations, it is elementary and domina-
ted by the coloured Jones polynomial, and I wish I understood it.
Common misconception. Dominated, elementary⇒ lesser.

Formulas. Draw an n-crossing knot K as on the ri-
ght: all crossings face up, and the edges are marked
with a running index k ∈ {1, . . . , 2n + 1} and with
rotation numbers φk. Let A be the (2n+1)× (2n+1)
matrix constructed by starting with the identity ma-
trix I, and adding a 2 × 2 block for each crossing:

ij

s = −1

Let G = (gαβ) = A−1. For the trefoil example, it is:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1



,

G =



1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 − (T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1



Note. The Alexander polynomial ∆ is given by

∆ = T (−φ−w)/2 det(A), with φ =
∑

k

φk, w=
∑

c

s.

Classical Topologists: This is boring. Yawn.

A col i+1 col j+1
row i −T s T s − 1
row j 0 −1

c :

i j

s = +1

φ
4
=
−1

Formulas, continued. Finally, set

R1(c) B s
(
g ji

(
g j+1, j + g j, j+1 − gi j

)
− gii

(
g j, j+1 − 1

)
− 1/2

)

ρ1 B ∆2


∑

c

R1(c) −
∑

k

φk (gkk − 1/2)

 .

In our example ρ1 = −T 2 + 2T − 2 + 2T−1 − T−2.
Theorem. ρ1 is a knot invariant. Proof: later.
Classical Topologists: Whiskey Tango Foxtrot?

Cars, Interchanges, and Traffic
Counters. Cars always drive forw-
ard. When a car crosses over a bridge
it goes through with (algebraic) pro-
bability T s ∼ 1, but falls off with probability 1 − T s ∼ 0∗. At the
very end, cars fall off and disappear. See also [Jo, LTW].

More at ωεβ/APAI

4

“The Green Function”

Jones:
Formulas stay;
interpretations change with time.

∗ In algebra x ∼ 0 if for every y in the ideal generated by x, 1 − y is invertible.

1−T T 1 0 0 T−11 1−T−1

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout:
http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.
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Preliminaries
This is Rho.nb of http://drorbn.net/oa22/ap.
Once[<< KnotTheory`; << Rot.m];

Loading KnotTheory` version

of February 2, 2020, 10:53:45.2097.

Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/la22/ap

to compute rotation numbers.

The Program
R1[s_, i_, j_] :=

s (gji (gj+,j + gj,j+ - gij) - gii (gj,j+ - 1) - 1/2);

Z[K_] := Module{Cs, φ, n, A, s, i, j, k, Δ, G, ρ1},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_} 

A〚{i, j}, {i + 1, j + 1}〛 +=
-Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];

G = Inverse[A];

ρ1 = 
k=1

n
R1 @@ Cs〚k〛 - 

k=1

2 n
φ〚k〛 (gkk - 1/2);

Factor@

Δ, Δ
2
ρ1 /. α_+

 α + 1 /. gα_,β_  G〚α, β〛;

The First Few Knots
TableFormTableJoinK〚1〛K〚2〛, Z[K],

{K, AllKnots[{3, 6}]}, TableAlignments  Center

31
1-T+T2

T

(-1+T)2 1+T2

T2

41 -
1-3 T+T2

T
0

51
1-T+T2-T3+T4

T2

(-1+T)2 1+T2 2+T2+2 T4

T4

52
2-3 T+2 T2

T

(-1+T)2 5-4 T+5 T2

T2

61 -
(-2+T) (-1+2 T)

T

(-1+T)2 1-4 T+T2

T2

62 -
1-3 T+3 T2-3 T3+T4

T2

(-1+T)2 1-4 T+4 T2-4 T3+4 T4-4 T5+T6

T4

63
1-3 T+5 T2-3 T3+T4

T2
0

p = 1 − T s

Fast!

02

03

05 06

07

08 01

09

10

13

14

1619

20

21

22 25
12

26

28

15

30

31

32

33

34

35

36

39

40

42

44454849

50

51 54

55 04 11

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89 90 91

92

93

94

95

96

1718

23 24 27

29

37 38

41

434647

52 53

Timing@

ZGST48 = EPDX14,1, X2,29, X3,40, X43,4, X26,5, X6,95,

X96,7, X13,8, X9,28, X10,41, X42,11, X27,12, X30,15,

X16,61, X17,72, X18,83, X19,34, X89,20, X21,92,

X79,22, X68,23, X57,24, X25,56, X62,31, X73,32,

X84,33, X50,35, X36,81, X37,70, X38,59, X39,54, X44,55,

X58,45, X69,46, X80,47, X48,91, X90,49, X51,82, X52,71,

X53,60, X63,74, X64,85, X76,65, X87,66, X67,94,

X75,86, X88,77, X78,93

170.313, -
1

T8
-1 + 2 T - T2 - T3 + 2 T4 - T5 + T8

-1 + T3 - 2 T4 + T5 + T6 - 2 T7 + T8,
1

T16

(-1 + T)2 5 - 18 T + 33 T2 - 32 T3 + 2 T4 + 42 T5 - 62 T6 -

8 T7 + 166 T8 - 242 T9 + 108 T10 + 132 T11 - 226 T12 +

148 T13 - 11 T14 - 36 T15 - 11 T16 + 148 T17 - 226 T18 +

132 T19 + 108 T20 - 242 T21 + 166 T22 - 8 T23 - 62 T24 +

42 T25 + 2 T26 - 32 T27 + 33 T28 - 18 T29 + 5 T30

Strong!
{NumberOfKnots[{3, 12}],

Length@

Union@Table[Z[K], {K, AllKnots[{3, 12}]}],

Length@

Union@Table[{HOMFLYPT[K], Kh[K]},

{K, AllKnots[{3, 12}]}]}

{2977, 2882, 2785}

So the pair (∆, ρ1) attains 2,882 distinct values on the 2,977 prime
knots with up to 12 crossings (a deficit of 95), whereas the pair
(HOMFLYPT, Khovanov Homology) attains only 2,785 distinct
values on the same knots (a deficit of 192).

Hoste Ocneanu Millett Freyd Lickorish Yetter Przytycki Traczyk Khovanov

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout:
http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.
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If this all reads like insanity to you, it should (and you haven’t
seen half of it). Simple things should have simple explanations.
Hence, Homework. Explain ρ1 with no reference to quantum
voodoo and find it a topology home (large enough to house ge-
neralizations!). Make explicit the homomorphic properties of ρ1.
Use them to do topology!
P.S. As a friend of ∆, ρ1 gives a genus bound, sometimes better
than ∆’s. How much further does this friendship extend?

T−1

0 1

0

0 1 G =


1 T−1 1
0 T−1 1
0 0 1



∑
p≥0(1−T )p = T−1

1 1

i j

↔

Theorem. The Green function gαβ is the
reading of a traffic counter at β, if car traffic
is injected at α (if α = β, the counter is after
the injection point).
Example.

Proof. Near a crossing c with sign s, incoming upper
edge i and incoming lower edge j, both sides satisfy the
g-rules:

giβ = δiβ + T sgi+1,β + (1 − T s)g j+1,β, g jβ = δ jβ + g j+1,β,

and always, gα,2n+1 = 1: use common sense and AG = I (= GA).
Bonus. Near c, both sides satisfy the further g-rules:

gαi = T−s(gα,i+1 − δα,i+1), gα j = gα, j+1 − (1 − T s)gαi − δα, j+1.

α

β

Wearing my Quantum Algebra hat, I spy a Heisenberg
algebra H = A⟨p, x⟩/([p, x] = 1):

cars↔ p traffic counters↔ x
Where did it come from? Consider gϵ B slϵ2+ B L⟨y, b, a, x⟩
with relations

[b, x] = ϵx, [b, y] = −ϵy, [b, a] = 0,
[a, x] = x, [a, y] = −y, [x, y] = b + ϵa.

At invertible ϵ, it is isomorphic to sl2 plus a central factor, and
it can be quantized à la Drinfel’d [Dr] much like sl2 to get an
algebra QU = A⟨y, b, a, x⟩ subject to (with q = eℏϵ):

[b, a] = 0, [b, x] = ϵx, [b, y] = −ϵy,
[a, x] = x, [a, y] = −y, xy − qyx =

1 − e−ℏ(b+ϵa)

ℏ
.

Now QU has an R-matrix solving Yang-Baxter (meaning Reid3),

R =
∑

m,n≥0

ynbm ⊗ (ℏa)m(ℏx)n

m![n]q!
, ([n]q! is a “quantum factorial”)

and so it has an associated “universal quantum invariant” à la
Lawrence and Ohtsuki [La, Oh1], Zϵ(K) ∈ QU.
Now QU � U(gϵ) (only as algebras!) and U(gϵ) represents into
H via

y→ −tp − ϵ · xp2, b→ t + ϵ · xp, a→ xp, x→ x,
(abstractly, gϵ acts on its Verma module

U(gϵ)/(U(gϵ)⟨y, a, b − ϵa − t⟩) � Q[x]
by differential operators, namely via H), so R can be pushed to
R ∈ H ⊗ H.
Everything still makes sense at ϵ = 0 and can be expanded near
ϵ = 0 resulting with R = R0(1+ ϵR1+ · · · ), with R0 = e

t(xp⊗1−x⊗p)

and R1 a quartic polynomial in p and x. So p’s and x’s get crea-
ted along K and need to be pushed around to a standard location
(“normal ordering”). This is done using

(p ⊗ 1)R0 = R0(T (p ⊗ 1) + (1 − T )(1 ⊗ p)),
(1 ⊗ p)R0 = R0(1 ⊗ p),

and when the dust settles, we get our formulas for ρ1. But QU
is a quasi-triangular Hopf algebra, and hence ρ1 is homomorph-
ic. Read more at [BV1, BV2] and hear more at ωεβ/SolvApp,
ωεβ/Dogma, ωεβ/DoPeGDO, ωεβ/FDA, ωεβ/AQDW.
Also, we can (and know how to) look at higher po-
wers of ϵ and we can (and more or less know how
to) replace sl2 by arbitrary semi-simple Lie algebra
(e.g., [Sch]). So ρ1 is not alone!
These constructions are very similar to Rozansky-Overbay [Ro1,
Ro2, Ro3, Ov] and hence to the “loop expansion” of the Kontse-
vich integral and the coloured Jones polynomial [Oh2].

(1−T )2+T (1−T ) (1−T )T

T (1−T )
1−T

T

T 2T (1−T )

T

T 2

=

1−T

Invariance of ρ1. We start with the hardest, Reidemeister 3:

⇒ Overall traffic patterns are unaffected by Reid3!
⇒Green’s gαβ is unchanged by Reid3, provided the cars injection
site α and the traffic counters β are away.
⇒ Only the contribution from the R1
terms within the Reid3 move matters, and
using g-rules the relevant gαβ’s can be pu-
shed outside of the Reid3 area:
δi_,j_ := If[i === j, 1, 0];

gRuless_,i_,j_ :=

giβ_  δiβ + Ts gi+,β + 1 - Ts gj+,β, gjβ_  δjβ + gj+,β,

gα_,i  T-s (gα,i+ - δα,i+),

gα_j  gα,j+ - 1 - Ts gαi - δα,j+

lhs = R1[1, j, k] + R1[1, i, k+] + R1[1, i+, j+] //.

gRules1,j,k ⋃ gRules1,i,k+ ⋃ gRules1,i+,j+;

rhs = R1[1, i, j] + R1[1, i+, k] + R1[1, j+, k+] //.

gRules1,i,j ⋃ gRules1,i+,k ⋃ gRules1,j+,k+;

Simplify[lhs  rhs]

True

Next comes Reid1, where we use results from an earlier example:

R1[1, 2, 1] - 1 (g22 - 1/2) /. gα_,β_ 

1 T-1 1

0 T-1 1

0 0 1

〚α, β〛

1

T2
-
1

T
-

-1 +
1

T

T

Invariance under the other moves is proven similarly.

Wearing my Topology hat the formula for R1, and
even the idea to look for R1, remain a complete my-
stery to me.

12

3
φ2=1

i j k i j k

k+

i+

j+ j+
k+

i+

k++ j++ i++ k++ j++ i++

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout:
http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.
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A Small-Print Page on ρd, d > 1.
Definition. ⟨ f (zi), h(ζi)⟩{zi} B f (∂ζi)h

∣∣∣
ζi=0, so ⟨p2x2, egπξ⟩ = 2g2.

Baby Theorem. There exist (non unique) pow-
er series r±(p1, p2, x1, x2) =

∑
d ϵ

dr±d (p1, p2, x1, x2) ∈
Q[T±1, p1, p2, x1, x2]⟦ϵ⟧ with deg r±d ≤ 2d + 2 (“docile”) such
that the power series Zb =

∑
ρb

dϵ
d B

〈
exp


∑

c

rs(pi, p j, xi, x j)

 , exp


∑

α,β

gαβπαξβ



〉

{pα,xβ}
is a bnot invariant. Beyond the once-and-for-all computation of
gαβ (a matrix inversion), Zb is computable in O(nd) operations in
the ring Q[T±1].
(Bnots are knot diagrams modulo the braid-like Reidemeister mo-
ves, but not the cyclic ones).
Theorem. There also exist docile power series γφ(p̄, x̄) =∑

d ϵ
dγ

φ
d ∈ Q[T±1, p̄, x̄]⟦ϵ⟧ such that the power series Z =∑

ρdϵ
d B

〈
exp


∑

c

rs(pi, p j, xi, x j) +
∑

k

γφk ( p̄k, x̄k)

 ,

exp


∑

α,β

gαβ(πα + π̄α)(ξβ + ξ̄β) +
∑

α

παξ̄α



〉

{pα,p̄α,xβ,x̄β}
is a knot invariant, as easily computable as Zb.
Implementation. Data, then program (with output using the
Conway variable z =

√
T −1/

√
T ), and then a demo. See Rho.nb

of ωεβ/ap.
V@γ1,φ_[k_] = φ (1/2 - pk xk); V@γ2,φ_[k_] = -φ

2 pk xk /2;

V@γ3,φ_[k_] := -φ 3 pk xk /6

V@r1,s_[i_, j_] :=

s -1 + 2 pi xi - 2 pj xi + -1 + Ts pi pj xi
2
+ 1 - Ts pj

2 xi
2
- 2 pi pj xi xj + 2 pj

2 xi xj 2

V@r2,1[i_, j_] :=

-6 pi xi + 6 pj xi - 3 (-1 + 3 T) pi pj xi
2
+ 3 (-1 + 3 T) pj

2 xi
2
+ 4 (-1 + T) pi

2 pj xi
3
-

2 (-1 + T) (5 + T) pi pj
2 xi

3
+ 2 (-1 + T) (3 + T) pj

3 xi
3
+ 18 pi pj xi xj -

18 pj
2 xi xj - 6 pi

2 pj xi
2 xj + 6 (2 + T) pi pj

2 xi
2 xj - 6 (1 + T) pj

3 xi
2 xj -

6 pi pj
2 xi xj

2
+ 6 pj

3 xi xj
2
 12

V@r2,-1[i_, j_] :=

-6 T2 pi xi + 6 T2 pj xi + 3 (-3 + T) T pi pj xi
2
- 3 (-3 + T) T pj

2 xi
2
-

4 (-1 + T) T pi
2 pj xi

3
+ 2 (-1 + T) (1 + 5 T) pi pj

2 xi
3
- 2 (-1 + T) (1 + 3 T) pj

3 xi
3
+

18 T2 pi pj xi xj - 18 T2 pj
2 xi xj - 6 T2 pi

2 pj xi
2 xj + 6 T (1 + 2 T) pi pj

2 xi
2 xj -

6 T (1 + T) pj
3 xi

2 xj - 6 T2 pi pj
2 xi xj

2
+ 6 T2 pj

3 xi xj
2
 12 T2

V@r3,1[i_, j_] :=

4 pi xi - 4 pj xi + 2 (5 + 7 T) pi pj xi
2
- 2 (5 + 7 T) pj

2 xi
2
- 4 (-5 + 6 T) pi

2 pj xi
3
+

4 -16 + 17 T + 2 T2 pi pj
2 xi

3
- 4 -11 + 11 T + 2 T2 pj

3 xi
3
+ 3 (-1 + T) pi

3 pj xi
4
-

3 (-1 + T) (4 + 3 T) pi
2 pj

2 xi
4
+ (-1 + T) 13 + 22 T + T2 pi pj

3 xi
4
-

(-1 + T) 4 + 13 T + T2 pj
4 xi

4
- 28 pi pj xi xj + 28 pj

2 xi xj + 36 pi
2 pj xi

2 xj -

12 (9 + 2 T) pi pj
2 xi

2 xj + 24 (3 + T) pj
3 xi

2 xj - 4 pi
3 pj xi

3 xj + 28 T pi
2 pj

2 xi
3 xj -

4 -6 + 17 T + T2 pi pj
3 xi

3 xj + 4 -5 + 10 T + T2 pj
4 xi

3 xj + 24 pi pj
2 xi xj

2
-

24 pj
3 xi xj

2
- 24 pi

2 pj
2 xi

2 xj
2
+ 6 (10 + T) pi pj

3 xi
2 xj

2
- 6 (6 + T) pj

4 xi
2 xj

2
-

4 pi pj
3 xi xj

3
+ 4 pj

4 xi xj
3
 24

V@r3,-1[i_, j_] :=

-4 T3 pi xi + 4 T3 pj xi - 2 T2 (7 + 5 T) pi pj xi
2
+ 2 T2 (7 + 5 T) pj

2 xi
2
-

4 T2 (-6 + 5 T) pi
2 pj xi

3
+ 4 T -2 - 17 T + 16 T2 pi pj

2 xi
3
-

4 T -2 - 11 T + 11 T2 pj
3 xi

3
+ 3 (-1 + T) T2 pi

3 pj xi
4
- 3 (-1 + T) T (3 + 4 T) pi

2 pj
2 xi

4
+

(-1 + T) 1 + 22 T + 13 T2 pi pj
3 xi

4
- (-1 + T) 1 + 13 T + 4 T2 pj

4 xi
4
+

28 T3 pi pj xi xj - 28 T3 pj
2 xi xj - 36 T3 pi

2 pj xi
2 xj + 12 T2 (2 + 9 T) pi pj

2 xi
2 xj -

24 T2 (1 + 3 T) pj
3 xi

2 xj + 4 T3 pi
3 pj xi

3 xj - 28 T2 pi
2 pj

2 xi
3 xj -

4 T -1 - 17 T + 6 T2 pi pj
3 xi

3 xj + 4 T -1 - 10 T + 5 T2 pj
4 xi

3 xj -

24 T3 pi pj
2 xi xj

2
+ 24 T3 pj

3 xi xj
2
+ 24 T3 pi

2 pj
2 xi

2 xj
2
- 6 T2 (1 + 10 T) pi pj

3 xi
2 xj

2
+

6 T2 (1 + 6 T) pj
4 xi

2 xj
2
+ 4 T3 pi pj

3 xi xj
3
- 4 T3 pj

4 xi xj
3
 24 T3

{p*, x*, p*, x*} = π, ξ, π, ξ; z_i__
* := (z*)i;

Zip{}[ℰ_] := ℰ ;

Zip{z_,zs___}[ℰ_] :=

Collectℰ // Zip{zs}, z /. f_. zd_.  (D[f, {z*, d}]) /. z*  0

gPair[fs_, w_] :=

gPair[fs, w] =

CollectZipJoin@@Tablepα,pα,xα,xα,{α,w}

(Times @@ (V /@ fs))

ExpSumgα,β (πα + πα) ξβ + ξβ, {α, w}, {β, w} - Sumξα πα, {α, w},

g__, Factor

T2z[p_] := Module{q = Expand[p], n, c},

Ifq === 0, 0, c = Coefficient[q, T, n = Exponent[q, T]];

c z2 n + T2zq - c T1/2 - T-1/22 n;

Zd_[K_] := Module{Cs, φ, n, A, s, i, j, k, Δ, G, d1, Z1, Z2, Z3},

{Cs, φ} = Rot[K]; n = Length[Cs]; A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 +=
-Ts Ts - 1

0 -1
;

{Δ, G} = Factor@T(-Total[φ]-Total[Cs〚All,1〛])/2 Det@A, Inverse@A;

Z1 =

ExpTotalCasesCs, {s_, i_, j_}  Sumϵd1 rd1,s[i, j], {d1, d} +

Sumϵd1 γd1,φ〚k〛[k], {k, 2 n}, {d1, d} /. γ_,0[_]  0;

Z2 = Expand[F[{}, {}]×Normal@Series[Z1, {ϵ, 0, d}]] //.

F[fs_, {es___}]×f : (r γ)ps__[is__]
p_.



F[Join[fs, Table[f, p]], DeleteDuplicates@{es, is}];

Z3 = Expand[Z2 /. F[fs_, es_]  Expand[gPair[

Replace[fs, Thread[es  Range@Length@es], {2}], Length@es

] /. gα_,β_  G〚es〚α〛, es〚β〛〛] ];

CollectΔ, Z3 /. ϵ
p_.

 p! Δ
2 p

ϵ
p
, ϵ, T2z ;

Z2[GST48] (* takes a few minutes *)

1 - 4 z2 - 61 z4 - 207 z6 - 296 z8 - 210 z10 - 77 z12 - 14 z14 - z16,

1 + 38 z2 + 255 z4 + 1696 z6 + 16 281 z8 + 86 952 z10 + 259 994 z12 + 487 372 z14 + 615 066 z16 + 543 148 z18 + 341 714 z20 +

153 722 z22 + 48 983 z24 + 10 776 z26 + 1554 z28 + 132 z30 + 5 z32 ϵ +

-8 - 484 z2 + 9709 z4 + 165 952 z6 + 1 590 491 z8 + 16 256 508 z10 + 115 341 797 z12 + 432 685 748 z14 + 395 838 354 z16 - 4 017 557 792 z18 - 23 300 064 167 z20 -

70 082 264 972 z22 - 142 572 271 191 z24 - 209 475 503 700 z26 - 221 616 295 209 z28 - 151 502 648 428 z30 - 23 700 199 243 z32 +

99 462 146 328 z34 + 164 920 463 074 z36 + 162 550 825 432 z38 + 119 164 552 296 z40 + 69 153 062 608 z42 + 32 547 596 611 z44 + 12 541 195 448 z46 +

3 961 384 155 z48 + 1 021 219 696 z50 + 212 773 106 z52 + 35 264 208 z54 + 4 537 548 z56 + 436 600 z58 + 29 536 z60 + 1252 z62 + 25 z64 ϵ
2


TableFormTableJoinK〚1〛K〚2〛, Z3[K], {K, AllKnots[{3, 6}]}, TableAlignments  Center (* takes a few minutes *)

31 1 + z2 1 + 2 z2 + z4 ϵ + 2 - 4 z2 + 3 z4 + 4 z6 + z8 ϵ2 + -12 + 74 z2 - 27 z4 - 20 z6 + 8 z8 + 6 z10 + z12 ϵ3

41 1 - z2 1 + -2 + 2 z4 ϵ2

51 1 + 3 z2 + z4 1 + 10 z2 + 21 z4 + 12 z6 + 2 z8 ϵ + 6 - 28 z2 + 33 z4 + 364 z6 + 655 z8 + 536 z10 + 227 z12 + 48 z14 + 4 z16 ϵ2 + -60 + 970 z2 + 645 z4 - 3380 z6 - 3280 z8 + 7470 z10 + 19 475 z12 + 20 536 z14 + 12 564 z16 + 4774 z18 + 1109 z20 + 144 z22 + 8 z24 ϵ3

52 1 + 2 z2 1 + 6 z2 + 5 z4 ϵ + 4 - 20 z2 + 43 z4 + 64 z6 + 26 z8 ϵ2 + -36 + 498 z2 - 883 z4 + 100 z6 + 816 z8 + 556 z10 + 146 z12 ϵ3

61 1 - 2 z2 1 + -2 z2 + z4 ϵ + -4 + 4 z2 + 25 z4 - 8 z6 + 2 z8 ϵ2 + 12 + 154 z2 - 223 z4 - 608 z6 + 100 z8 - 52 z10 + 10 z12 ϵ3

62 1 - z2 - z4 1 + -2 z2 - 3 z4 + 2 z6 + z8 ϵ + -2 - 4 z2 + 29 z4 + 28 z6 + 42 z8 - 8 z10 - 2 z12 + 4 z14 + z16 ϵ2 + 12 + 166 z2 + 155 z4 - 194 z6 - 2453 z8 - 1622 z10 - 1967 z12 - 258 z14 + 49 z16 - 30 z18 + z20 + 6 z22 + z24 ϵ3

63 1 + z2 + z4 1 + 2 + 8 z2 - 16 z6 - 24 z8 - 16 z10 - 2 z12 ϵ2

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout:
http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.
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Jessica Liu

Image: Freepik.com

Zombies: Freepik.com

Image by macrovector on Freepik.com

“Nautical Knots”

Computing the Zombian of an Unfinished Columbarium
Dror Bar-Natan: Talks: Ottawa-2306:

n/2

2n/2 + 2n/2 + 2
√

n ≪ 2n

n/2√
n

T T =

Apology. It’s a 20 minutes talk. Necessarily, it will be superficial.
Abstract. The zombies need to compute a quantity, the zombian,
that pertains to some structure — say, a columbarium. But un-
fortunately (for them), a part of that structure will only be known
in the future. What can they compute today with the parts they
already have to hasten tomorrow’s computation?
That’s a common quest, and I will illustrate it with a few exa-
mples from knot theory and with two examples about matrices —
determinants and signatures. I will also mention two of my dre-
ams (perhaps delusions): that one day I will be able to reproduce,
and extend, the Rolfsen table of knots using code of the highest
level of beauty.

ωεβBhttp://drorbn.net/ott23Thanks for inviting me to Ottawa!
Confession. It’s about 50% of what I do.

Jacobian, Hamiltonian, ZombianColumbaria in an East Sydney Cemetery

Columbarium near Assen

Computing Zombians of Unfinished Columbaria.
• Future zombies must be able to complete the

computation.
• Must be no slower than for finished ones.
• Future zombies must not even know the size

of the task that today’s zombies were facing.
• We must be able to extend to ZPUCs, Zombie

Processed Unfinished Columbaria!
Exercise 1. Compute the sum of 1,000 num-
bers, the last 50 of which are still unknown.
Exercise 2. Compute the determinant of a
1, 000 × 1, 000 matrix in which 50 entries are not yet given.
Example 3. Same, for signatures of matrices / quadratic forms.
A quadratic form on a v.s. V over C is a quadratic Q : V → C,
or a sesquilinear Hermitian ⟨·, ·⟩ on V × V (so ⟨x, y⟩ = ⟨y, x⟩ and
Q(y) = ⟨y, y⟩), or given a basis ηi of V∗, a matrix A = (ai j) with
A = ĀT and Q =

∑
ai jη̄iη j. The signature σ of Q is σ+ − σ−,

where for some P, P̄T AP = diag(1, σ+· · ·, 1,−1, σ−· · ·,−1, 0, . . .).

A Partial Quadratic (PQ) on V is a quadratic Q defined only on
a subspace DQ ⊂ V . We add PQs with DQ1+Q2 B DQ1 ∩ DQ2 .
Given a linear ψ : V → W and a PQ Q on W, there is an obvious
pullback ψ∗Q, a PQ on V .
Theorem 1 (with Jessica Liu). Given a linear ϕ : V →
W and a PQ Q on V , there is a unique pushforward PQ
ϕ∗Q on W such that for every PQ U on W,

σV(Q + ϕ∗U) = σker ϕ(Q|ker ϕ) + σW(U + ϕ∗Q).
Gist of the Proof.

U

A B

B̄T

row/col
ops

σ(Q|ker ϕ)
simul.

C̄T F = F̄T

C

. . . and the quadratic F C ϕ∗Q is well-defined only on D B ker C.
(more at ωεβ/icerm.)

U + F

0

±1
0

0

0

0 C̄T

C

0

0

. . .±1

W
V

W

W

Knots and Tangles.

Why Tangles? • As common as knots!
• Faster computations!
• Conceptually clearer proofs of invariance

(and of skein relations).
• Often fun and consequential:
◦ The Alexander polynomial{ Zombian = det.
◦ Knot signatures{ Pushforwards of quadratic forms.
◦ The Jones Polynomial{ The Temperley-Lieb Algebra.
◦ Khovanov Homology{ “Unfinished complexes”, complexes

in a category.
◦ The Kontsevich Integral{ Drinfel’d Associators. · · ·

Acknowledgement. This work was partially supported by
NSERC grant RGPIN-2018-04350 and by the Chu Family Foun-
dation (NYC). (

A B
C U

)
det(A)−−−−−−→

(
I A−1B
C U

)
1−−−−−−→

(
I A−1B
0 U −CA−1B

)
,

so det
(
A B
C U

)
= det(A) det(U −CA−1B).

Roughly, det(A) is “det on ker”,

−CA−1B is “a pushforward of
(
A B
C U

)
”.

(what if ∄A−1?)

One more story is left to tell, of knot tabulation.
Two slides from R. Jason Parsley’s ωεβ/history:

Knot Tables

Brief History of (Prime) Knot Tabulation

Gauss knew and thought about knots – 1833 integral formula
for linking number. Before him, Vandermonde (1771) wrote a
seminal paper on topology & discussed knots.

Atomic model [Kelvin, late 1800’s]
Atoms are knotted vortices in the ether.

This theory, albeit vastly incorrect, led to the first serious work
in knot theory.

Tait (1876), a colleague of Kelvin – knots to 7 crossings
Kirkman (1885, British) – knot projections
Little (1885, Nebraska) – knots to 10 crossings
by 1900, Tait, Kirkman, Little had produced all ≤ 10
crossing knots and all 11 crossing alternating knots

J. Parsley Knot Tabulation

Knot Tables

Brief History of Knot Tabulation III

1 Conway (1964)
Knots to 11 crossings, links to 10 crossings; errors.

2 Rolfsen (1976) Knots to 10 crossings. 1 error.
3 Caudron (1978) – knots to 11 crossings correctly.
4 Doll/Hoste (1991) Oriented links to 10 crossings.
5 Cerf (1998) Oriented alt. links to 10 crossings.
6 Hoste/Thistlethwaite/Weeks (1998)

1,701,936 knots to 16 crossings; determined chirality
7 Flint/Rankin (2007)

98,517,495,461 alternating links to 23 crossings.

All of these are for prime knots only!!!

J. Parsley Knot Tabulation

There’s also Burton’s tabulation to 19 crossings ωεβ/Burton, and Khesin’s K250, arXiv:1705.10319.

Embarrassment 1 (personal). I don’t know how to reproduce
the Rolfsen table of knots! Many others can, yet I still take it on
faith, contradicting one of the tenets of our practice, “thou shalt
not use what thou canst not prove”.
It’s harder than it seems! Producing all knot diagrams is a mess,
identifying all available Reidemeister moves is a mess, and you
sometimes have to go up in crossing number before you can go
down again.
Embarrassment 2 (communal). There isn’t anywhere a tabu-
lation of tangles! When you want to test your new discoveries,
where do you go?
Dream. Conquer both embarrassments at once. Reproduce the
Rolfsen table, and extend it to tangles, using code of the highest
level of beauty. The algorithm should be so clear and simple that
anyone should be able to easily implement it in an afternoon wi-
thout messing with any technicalities.

=

The dreaded slide moves, which go
up in crossing number, are parame-
trized by tangles!

We don’t even need to lo-
ok at all knot diagrams!

R-moves
are tangle
equalities!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ottawa-2306/
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Other Passions. With Roland van der Veen, I use “so-
lvable approximation” and “Perturbed Gaussian Differe-
ntial Operators” to unveil simple, strong, fast to compu-
te, and topologically meaningful knot invariants near the
Alexander polynomial. (⊂ polymath!)

?

Theorem ([BG], conjectured [MM],
elucidated [Ro1]). Let Jd(K) be
the coloured Jones polynomial of K, in the d-dimensional
representation of sl2. Writing

(q1/2 − q−1/2)Jd(K)
qd/2 − q−d/2

∣∣∣∣∣∣
q=e~

=
∑

j,m≥0

a jm(K)d j~m,

“below diagonal” coefficients vanish, a jm(K) =

0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:(∑∞

m=0 amm(K)~m
)
· ω(K)(e~) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

Jd(K)(q) =
qd − q−d

(q − q−1)ω(K)(qd)

1 +

∞∑

k=1

(q − 1)kρk(K)(qd)
ω2k(K)(qd)

 .

Melvin,
Morton,
Garoufalidis

Abstract. I’ll explain what “everything around” means: classical
and quantum m, ∆, S , tr, R, C, and θ, as well as P, Φ, J, D,
and more, and all of their compositions. What DoPeGDO means:
the category of Docile Perturbed Gaussian Differential Operators.
And what slε2+

means: a solvable approximation of the semi-
simple Lie algebra sl2.

Knot theorists should rejoice because all this leads to very po-
werful and well-behaved poly-time-computable knot invariants.
Quantum algebraists should rejoice because it’s a realistic play-
ground for testing complicated equations and theories.

Cartan’s θ,
the

Dequantizator,
and more. . .

Conventions. 1. For a set A, let zA B {zi}i∈A and let
ζA B {z∗i = ζi}i∈A.†1 2. Everything converges!

DoPeGDO B The category with objects finite
sets†2 and mor(A→ B):{F = ω exp(Q + P)

} ⊂ Q~ζA, zB�
Where: • ω is a scalar.†3 • Q is a “small” qua-
dratic in ζA ∪ zB.†4 • P is a “docile perturba-
tion”: P =

∑
k≥1 ε

kP(k), where deg P(k) ≤ 2k+2.†5

• Compositions:†6

F�G = G◦F B
(
G|ζi→∂zi

F
)

zi=0
=

(
F |zi→∂ζiG

)
ζi=0

.

Cool! (V∗)⊗Σ ⊗ V⊗S explodes; the ranks of qua-
dratics and bounded-degree polynomials grow
slowly!†7

Representation theory is over-rated!

DoPeGDO Footnotes. †1. Each variable has a “weight”∈ {0, 1, 2}, and
always wt zi + wt ζi = 2.

†2. Really, “weight-graded finite sets” A = A0 t A1 t A2.
†3. Really, a power series in the weight-0 variables†9.
†4. The weight of Q must be 2, so it decomposes as Q = Q20 + Q11. The

coefficients of Q20 are rational numbers while the coefficients of Q11
may be weight-0 power series†9.

†5. Setting wt ε = −2, the weight of P is ≤ 2 (so the powers of the
weight-0 variables are not constrained†9).

†6. There’s also an obvious product
mor(A1 → B1) ×mor(A2 → B2)→ mor(A1 t A2 → B1 t B2).

†7. That is, if the weight-0 variables are ignored. Otherwise more care
is needed yet the conclusion remains.

†8. Hom(U⊗Σ → U⊗S ) { mor({ηi, βi, τi, αi, ξi}i∈Σ → {yi, bi, ti, ai, xi}i∈S ),
where wt(ηi, ξi, yi, xi) = 1 and wt(βi, τi, αi; bi, ti, ai) =

(2, 2, 0; 0, 0, 2).
†9. For tangle invariants the weight-0 power series are always rational

functions in the exponentials of the weight-0 variables (for knots:
just one variable).

Our Algebras. Let slε2+
B L〈y, b, a, x〉 subject to [a, x] = x,

[b, y] = −εy, [a, b] = 0, [a, y] = −y, [b, x] = εx, and [x, y] =

εa + b. So t B εa − b is central and if ∃ε−1, slε2+
/〈t〉 � sl2.

U is either CU = Û(slε2+
) or QU = U~(slε2+

) = A〈y, b, a, x〉 with
[a, x] = x, [b, y] = −εy, [a, b] = 0, [a, y] = −y, [b, x] = εx, and
xy − qyx = (1 − AB)/~, where q = e

~ε , A = e
−~εa, and B = e

−~b.
Set also T = A−1B = e

~t.
The Quantum Leap. Also decree that in QU,

∆(y, b, a, x) = (y1 + B1y2, b1 + b2, a1 + a2, x1 + A1x2),
S (y, b, a, x) = (−B−1y,−b,−a,−A−1x),

and R =
∑
~ j+kykb j ⊗ a jxk/ j![k]q!.

Compositions (1).

Where • ω = ω1ω2 det(I − F2G1)−1.
• E = E1(I − F2G1)−1E2.
• F = F1 + E1F2(I −G1F2)−1ET

1 .
• G = G2 + ET

2 G1(I − F2G1)−1E2.
• P is computed using “connected Feyn-
man diagrams” or as the solution of a messy
PDE (yet we’re still in algebra!).

Mid-Talk Debts. •What is this good for in quantum algebra?
• In knot theory?
• How does the “inclusion” D : Hom(U⊗Σ → U⊗S ) {

DoPeGDO work?
• Proofs that everything around slε2+

really is DoPeGDO.
• Relations with prior art.
• The rest of the “compositions” story.

Less Abstract

D

Thanks for inviting me to Da Nang!
ωεβBhttp://drorbn.net/v19/

More at ωεβ/talks

Dror Bar-Natan: Talks: DaNang-1905:

Everything around slε2+
is DoPeGDO. So what?
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Continues Rozansky [Ro1,
Ro2, Ro3] and Overbay [Ov],
joint with van der Veen [BV].

m : U ⊗ U→U

tr : U→U/wx=xw

Φ∈CU⊗3

∆ : U→U ⊗ U

R∈QU ⊗ QU

J∈CU ⊗CU

S : U→U

C∈QU

ca mũ

†8

4D Metrized Lie Algebras

In mor(A→B), Q=
∑

i∈A, j∈B
Ei jζiz j+

1
2

∑
i, j∈A

Fi jζiζ j+
1
2

∑
i, j∈B

Gi jziz j

composition � One abstraction level
up from tangles!

{tangles} →
{ }

with compositions:

A B

E1

F1 G1

P1

ω1 B C

E2

F2 G2

P2

ω2 A C

E

F G

P

ω

greek latin

Q1 Q2 Q

us

algebras isomorphic
to sl2 + 1D

the Abelian
algebra

solvable
algebras

Vassiliev

slε2+

Lin WangJones Tian

Gompf−Scharlemann−

Thompson

Piccirillo

Wirtinger

Blanchfield

van der OverbayRozansky
Veen

p = 1 − T s
diamondtraffic.com
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Cars, Interchanges, Traffic Counters, and a Pretty Darned Good Knot Invariant
Dror Bar-Natan: Talks: Geneva-2206:

i+1 j+1j+1 i+1

1−T T 1 0 0 T−11 1−T−1

ωεβ/J

(n = 3)
T

δ
U

We seek strong, fast, homomorphic knot and tangle invariants.
Strong. Having a small “kernel”.
Fast. Computable even for large knots (best: poly time).

d1

Why care for “Homomorphic”? Theorem. A knot K is ribbon
iff there exists a 2n-component tangle T with skeleton as below
such that τ(T ) = K and where δ(T ) = U is the untangle:

Homomorphic. Extends to tan-
gles and behaves under tangle
operations; especially gluings
and doublings:

K

τ

Hear more at ωεβ/AKT.

ωεβBhttp://drorbn.net/j22/Thanks for inviting me to Geneva!

Abstract. Reporting on joint work with
Roland van der Veen, I’ll tell you some
stories about ρ1, an easy to define, strong,
fast to compute, homomorphic, and well-
connected knot invariant. ρ1 was first studied by Rozansky and
Overbay [Ro1, Ro2, Ro3, Ov], it has far-reaching generalizations,
it is dominated by the coloured Jones polynomial, and I wish I un-
derstood it. Common misconception. “Dominated”; “lesser”.

Jones:
Formulas stay;
interpretations change with time.

Formulas. Draw an n-crossing knot K as on the ri-
ght: all crossings face up, and the edges are marked
with a running index k ∈ {1, . . . , 2n + 1} and with
rotation numbers ϕk. Let A be the (2n+1)× (2n+1)
matrix constructed by starting with the identity ma-
trix I, and adding a 2 × 2 block for each crossing:

ij

s = −1

Let G = (gαβ) = A−1. For the trefoil example, it is:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1



,

G =



1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 − (T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1



.

Note. The Alexander polynomial ∆ is given by

∆ = T (−ϕ−w)/2 det(A), with ϕ =
∑

k

ϕk, w=
∑

c

s.

Classical Topologists: This is boring. Yawn.

A col i+1 col j+1
row i −T s T s − 1
row j 0 −1

c :

i j

s = +1

4

ϕ
4

=
−1

∗ In algebra x ∼ 0 if for every y in the ideal generated by x, 1 − y is invertible.

Formulas, continued. Finally, set

R1(c) B s
(
g ji

(
g j+1, j + g j, j+1 − gi j

)
− gii

(
g j, j+1 − 1

)
− 1/2

)

ρ1 B ∆2


∑

c

R1(c) −
∑

k

ϕk (gkk − 1/2)

 .

In our example ρ1 = −T 2 + 2T − 2 + 2T−1 − T−2.
Theorem. ρ1 is a knot invariant. Proof: later.
Classical Topologists: Whiskey Tango Foxtrot?

Cars, Interchanges, and Traffic
Counters. Cars always drive forw-
ard. When a car crosses over a bridge
it goes through with (algebraic) pro-
bability T s ∼ 1, but falls off with probability 1 − T s ∼ 0∗. See
also [Jo, LTW].

Accompanies ωεβ/APAI

“The Green Function”

Jessica, Nancy, Tamara, Zsuzsi, & Dror in PDS4

van der Veen

Le, Murakami

Dancso Hogan Liu Scherich

Tangles in a Pole Dance Studio: A Reading of Massuyeau, Alekseev, and Naef
Dror Bar-Natan: Talks: LesDiablerets-2208:

Example 2. With γ1, γ2 ∈ π (or π̄) and with
λ0, λ1 as on the right, we get the “double bra-
cket” η2 : π ⊗ π→ π ⊗ π (or π̄ ⊗ π̄→ π̄ ⊗ π̄).
Example 3. With γ ∈ π̄ and
λ0(γ) its ascending realization
as a bottom tangle and λ1(γ) its
descending realization as a bottom tangle, we get
η3 : π̄→ π̄⊗ |π̄|. Closing the first component and
anti-symmetrizing, this is the Turaev cobracket. descendingascending

ascending descending

Example 4 [Ma]. With γ ∈ π̄ and λ0(γ) its
ascending outer double and λ1(γ) its ascen-
ding inner double we get η4 : π̄ → π̄ ⊗ π̄. A-
fter some massaging, it too becomes the Tu-
raev cobracket.

Nancy

Thanks for inviting me to Les Diablerets! ωεβBhttp://drorbn.net/ld22/

ωεβ/g22

Preliminary Definitions. Fix p ∈ N and F = Q/C.
Let Dp B D2\(p pts), and let the Pole Dance Studio
be PDSp B Dp × I. PDS3

Abstract. I will report on joint work
with Zsuzsanna Dancso, Tamara
Hogan, Jessica Liu, and Nancy Sche-
rich. Little of what we do is original,
and much of it is simply a reading of Massuyeau [Ma] and Alek-
seev and Naef [AN1].
We study the pole-strand and
strand-strand double filtration on
the space of tangles in a pole
dance studio (a punctured disk
cross an interval), the correspon-
ding homomorphic expansions,
and a strand-only HOMFLY-PT
relation. When the strands are transparent or nearly transparent
to each other we recover and perhaps simplify substantial parts
of the work of the aforementioned authors on expansions for the
Goldman-Turaev Lie bi-algebra. =⇒ Expansions W : FG⟨Xi⟩ → FA⟨xi⟩:

Magnus: Xi 7→ 1 + xi, X−1
i 7→ 1 − xi + x2

i − . . .
Exponential: X±1

i 7→ e
±xi

ωεβ/v19

Definitions. Let π B FG⟨X1, . . . , Xp⟩ be the free group (of defor-
mation classes of based curves in Dp), π̄ be the framed free group
(deformation classes of based immersed curves), |π| and |π̄| deno-
te F-linear combinations of cyclic words (|xiw| = |wxi|, unbased
curves), A B FA⟨x1, . . . , xp⟩ be the free associative algebra, and
let |A| B A/(xiw = wxi) denote cyclic algebra words.

Theorem 1 (Goldman, Turaev, Massuyeau, Alekseev, Kawazu-
mi, Kuno, Naef). |π̄| and |A| are Lie bialgebras, and there is a
“homomorphic expansion” W : |π̄| → |A|: a morphism of Lie bial-
gebras with W(|Xi|) = 1 + |xi| + . . ..
Further Definitions. • K = K0 = K0

0 = K(S ) B
F⟨framed tangles in PDSp⟩.

• K s
t B(the image via  → ! −" of tangles in PDSp

that have t double points, of which s are strand-strand).
E.g.,

• K /s B K/K s. Most important, K /1(⃝) = |π̄|, and there is
P : K(⃝)→ |π̄|.

• A B∏Kt/Kt+1, As B
∏K s

t /K s
t+1 ⊂ A, A/s B A/As.

K2
5 (⃝) = /.  → ! −"

Key 1. W : |π̄| → |A| is Z/1
H : K /1

H (⃝)→ A/1
H (⃝).

Key 2 (Schematic). Suppose λ0, λ1 : |π̄| → K(⃝) are two ways
of lifting plane curves into knots in PDSp (namely, P ◦ λi = I).
Then for γ ∈ |π̄|, Lemma 1. “Division by ℏ” is well-defined.

η(γ) B (λ0(γ) − λ1(γ))/ℏ ∈ K /1
H (⃝⃝) = |π̄| ⊗ |π̄|

and we get an operation η on plane curves. If Kontsevich likes λ0
and λ1 (namely if there are λa

i with Z/2(λi(γ)) = λa
i (W(γ))), then

η will have a compatible algebraic companion ηa:
ηa(α) B (λa

0(α) − λa
1(α))/ℏ ∈ A/1

H (⃝⃝) = |A| ⊗ |A|.
For indeed, in A/2

H we have ℏW(η(γ)) = ℏZ(η(γ)) = Z(λ0(γ)) −
Z(λ1(γ)) = λa

0(W(γ)) − λa
1(W(γ)) = ℏηa(W(γ)).

Fact 1. The Kontsevich Integral is an “expansion” Z : K → A,
compatible with several noteworthy structures.
Fact 2 (Le-Murakami, [LM1]). Z satisfies the strand-strand
HOMFLY-PT relations: It descends to ZH : KH → AH , where

KH B K
/(
! −" = (eℏ/2 − e−ℏ/2) ·a

)

AH B A /( = ℏ or = ℏ )
and deg ℏ = (1, 1).
Proof of Fact 2. Z(!) − Z(") = P ·

(
e
\/2 − e−\/2

)

= P ·
(
e
ℏP/2 − e−ℏP/2

)
=

(
e
ℏ/2 − e−ℏ/2

)
a. □ The rest is essentially Exercises: 1. Lemma 1? 2. A?

3. Fact 2? 4. A/1? Especially, A/1(⃝) � |A|! 5. Explain
why Kontsevich likes our λ’s. 6. Figure out ηa

i , i = 1, . . . , 4.

Example 1. With γ1, γ2 ∈
|π| (or |π̄|) set λ0(γ1, γ2) =
γ̃1 · γ̃2 and λ1(γ1, γ2) = γ̃2 ·
γ̃1 where γ̃i are arbitrary lifts of γi. Then η1 is the Gol-
dman bracket! Note that here λ0 and λ1 are not well-
defined, yet η1 is.

−
D·Z

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/
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Kashiwara Vergne

−|xyyxyx|

+ . . .

= |xyxyxy|

+ . . .

+ . . .

+ . . .

λ0(γ) = = λ1(γ) = =

+ . . . = xxx ⊗ |yx| − xxyx ⊗ |y| + . . .

−= + . . . = −

= −

=

= ℏ−1( − ) = ℏ−1 + . . . = ℏ−1

4
3

2
1

sss sss

sspssp
+

1. Is there more than Examples 1–4?
2. Derive the bialgebra axioms from this perspective.
3. What more do we get if we don’t mod out by HOMFLY-PT?
4. What more do we get if we allow more than one strand-strand

interaction?
5. In this language, recover Kashiwara-

Vergne [AKKN1, AKKN2].
6. How is all this related to w-knots?
7. Do the same with associators. Use that to derive formulas for

solutions of Kashiwara-Vergne.
8. What’s the relationship with the Habiro-Massuyeau invariants

of links in handlebodies [HM] (different filtration!).
9. Pole dance on other surfaces!

10. Explore the action of the mapping class group.

Homework

Acknowledgement. This work was partially supported by NSERC
grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).
I also wish to thanks A. Alekseev, F. Naef, and M. Ren for listening to
an earlier version and catching some bugs, and Dhanya S. for the dance
studio photos. And of course, thanks for listening!
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Kontsevich in a Pole Dance Studio. (w/o poles? See [Ko, BN])

Z =



∞∑

m=0

1
(2πi)m

∑∫

t1<...<tm
P={(zi,z′i )}

(−1)#P↓DP

m∧

i=1

dzi − dz′i
zi − z′i



∼

∈ A

z2
z′2z1,4

3

4

2

1

t2

Rt

Cz

P

Comments on the Kontsevich Integral.
1. In the tangle case, the endpoints are fixed at top and bottom.
2. The (· · · )∼ means “a correction is needed near the caps and the

cups” (for the framed version, see [LM2, Da]).
3. There are never pp chords, and no 4Tpps and 4Tppp relations.
4. Z is an “expansion”.
5. Z respects the ss filtration and so descends to Z/s : K /s → A/s.

graded by the number of chords
filtered by the number of ss chords

= 0

+ = 04Tsss:

4Tpss:

Unignoring the Complications. We need λ0 and λ1 such that:
1. λ1(γ) is obtained from λ0(γ) by flipping all self-intersections

from ascending to descending.
2. Up to conjugation, λ1(γ) is obtained from λ0(γ) by a global

flip.
3. Z(λi(γ)) is computable from W(γ) and Z/1(λi(γ)) = W(γ).

Knitting needles

Yarn

View from above:

Comments onA. InA/1 legs on poles commute,
soA/1(⃝) = |A|!
InA/2

H we have:

= x y

|xxyxyyx|

Example 1a. ηa
1(|xyxy|, |xyx|) =

Example 3a. Ignoring complications, ηa
3(xxyxyx) =

Proof of Lemma 1. We partially prove Theorem 2 instead:
Theorem 2. gr•KH � F⟦ℏ⟧ ⊗ (K /1)0.
Proof mod ℏ2. The map ← is obvious. To go →, map KH →
F⟦ℏ⟧ ⊗K /1 using ! 7→ P + ℏ2a and " 7→ P − ℏ2a and apply the
functor gr•.

−= ℏ
( )

ℏ−1 ℏ−1

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/
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http://drorbn.net/cms21

Kashaev’s Signature Conjecture
CMS Winter 2021 Meeting, December 4, 2021

Dror Bar-Natan with Sina Abbasi

Agenda. Show and tell with signatures.

Abstract. I will display side by side two nearly identical computer programs whose
inputs are knots and whose outputs seem to always be the same. I’ll then admit,
very reluctantly, that I don’t know how to prove that these outputs are always the
same. One program I wrote mostly in Bedlewo, Poland, in the summer of 2003 and
as of recently I understand why it computes the Levine-Tristram signature of a
knot. The other is based on the 2018 preprint On Symmetric Matrices Associated
with Oriented Link Diagrams by Rinat Kashaev (arXiv:1801.04632), where he
conjectures that a certain simple algorithm also computes that same signature.

If you can, please turn your video on! (And mic, whenever needed).

http://drorbn.net/cms21

These slides and all the code within are available at http://drorbn.net/cms21.

(I’ll post the video there too)

http://drorbn.net/cms21

Bed[K_, ω_] :=

Module{t, r, XingsByArmpits, bends, faces, p, A, is},

t = 1 - ω; r = t + t;

XingsByArmpits =

List @@ PD[K] /. x : X[i_, j_, k_, l_] 

If[PositiveQ[x], X+[-i, j, k, -l], X-[-j, k, l, -i]];

bends = Times @@ XingsByArmpits /.

_[X][a_, b_, c_, d_]  pa,-d pb,-a pc,-b pd,-c;

faces = bends //. px__,y_ py_,z__  px,y,z;

A = Table[0, Length@faces, Length@faces];

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

-r -t 2 t t

-t 0 t 0

2 t t -r -t

t 0 -t 0

,

r -t -2 t t

-t 0 t 0

-2 t t r -t

t 0 -t 0

,

{x, XingsByArmpits};

MatrixSignature[A] ;

Kas[K_, ω_] :=

Module{u, v, XingsByArmpits, bends, faces, p, A, is},

u = Reω 1/2
; v = Re[ω];

XingsByArmpits =

List @@ PD[K] /. x : X[i_, j_, k_, l_] 

If[PositiveQ[x], X+[-i, j, k, -l], X-[-j, k, l, -i]];

bends = Times @@ XingsByArmpits /.

_[X][a_, b_, c_, d_]  pa,-d pb,-a pc,-b pd,-c;

faces = bends //. px__,y_ py_,z__  px,y,z;

A = Table[0, Length@faces, Length@faces];

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

, -

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

,

{x, XingsByArmpits};

(MatrixSignature[A] - Writhe[K])/2 ;

http://drorbn.net/cms21

Why am I showing you code ?

▶ I love code — it’s fun!

▶ Believe it or not, it is more expressive than math-talk (though I’ll do the
math-talk as well, to confirm with prevailing norms).

▶ It is directly verifiable. Once it is up and running, you’ll never ask yourself “did
he misplace a sign somewhere”?

http://drorbn.net/cms21

Bed[K_, ω_] :=

Module{t, r, XingsByArmpits, bends, faces, p, A, is},

t = 1 - ω; r = t + t;

XingsByArmpits =

List @@ PD[K] /. x : X[i_, j_, k_, l_] 

If[PositiveQ[x], X+[-i, j, k, -l], X-[-j, k, l, -i]];

bends = Times @@ XingsByArmpits /.

_[X][a_, b_, c_, d_]  pa,-d pb,-a pc,-b pd,-c;

faces = bends //. px__,y_ py_,z__  px,y,z;

A = Table[0, Length@faces, Length@faces];

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

-r -t 2 t t

-t 0 t 0

2 t t -r -t

t 0 -t 0

,

r -t -2 t t

-t 0 t 0

-2 t t r -t

t 0 -t 0

,

{x, XingsByArmpits};

MatrixSignature[A] ;

Kas[K_, ω_] :=

Module{u, v, XingsByArmpits, bends, faces, p, A, is},

u = Reω 1/2
; v = Re[ω];

XingsByArmpits =

List @@ PD[K] /. x : X[i_, j_, k_, l_] 

If[PositiveQ[x], X+[-i, j, k, -l], X-[-j, k, l, -i]];

bends = Times @@ XingsByArmpits /.

_[X][a_, b_, c_, d_]  pa,-d pb,-a pc,-b pd,-c;

faces = bends //. px__,y_ py_,z__  px,y,z;

A = Table[0, Length@faces, Length@faces];

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

, -

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

,

{x, XingsByArmpits};

(MatrixSignature[A] - Writhe[K])/2 ;

http://drorbn.net/cms21

Verification.

Once[<< KnotTheory`]

Loading KnotTheory` version of February 2, 2020, 10:53:45.2097.

Read more at http://katlas.org/wiki/KnotTheory.

MatrixSignature[A_] :=

TotalSignSelectEigenvalues[A], Abs[#] > 10-12 &;

Writhe[K_] := Sum[If[PositiveQ[x], 1, -1], {x, List @@ PD@K}];

Sumω = 
 RandomReal[{0,2 π}]; Bed[K, ω]  Kas[K, ω], {10},

{K, AllKnots[{3, 10}]}

KnotTheory: Loading precomputed data in PD4Knots`.

2490 True

http://drorbn.net/cms21

Label everything!

1

2

3

45

6

7

8

9

10

11
12

13

14

15

16

PD[X [10, 1, 11, 2],X [2, 11, 3, 12], . . .]

1-1

2
-2

3

-3

-4

5

-5

6

-6

7
-7

-8

9
-9

10
-10

11

-11

-12

13

-13

15
-15

14

-16

168

124

-14

1-8

5

13

3

2

-11

12-13

-5

14

6

-15 9

7

-7

-1

8

-2

-12

-4

-16

16

-6

4 -3

15 -14 -10 11

10-9
edgeside

armpit

a bend
p−6,−10

{X−[−1, 11, 2,−10],X−[−11, 3, 12,−2], . . .}

http://drorbn.net/cms21

Lets run our code line by line. . .

PD[82] = PD[X[10, 1, 11, 2],

X[2, 11, 3, 12], X[12, 3, 13, 4],

X[4, 13, 5, 14], X[14, 5, 15, 6],

X[8, 16, 9, 15], X[16, 8, 1, 7],

X[6, 9, 7, 10]];

K = 82;
1

2

3

45

6

7

8

9

10

11
12

13

14

15

16

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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XingsByArmpits =

List @@ PD[K] /.

x : X[i_, j_, k_, l_] 

If[PositiveQ[x], X+[-i, j, k, -l],

X-[-j, k, l, -i]]

{X-[-1, 11, 2, -10], X-[-11, 3, 12, -2],

X-[-3, 13, 4, -12], X-[-13, 5, 14, -4],

X-[-5, 15, 6, -14], X+[-8, 16, 9, -15],

X+[-16, 8, 1, -7], X-[-9, 7, 10, -6]}

1-1

2
-2

3

-3

-4

5

-5

6

-6

7
-7

-8

9
-9

10
-10

11

-11

-12

13

-13

15
-15

14

-16

168

124

-14

1-8

5

13

3

2

-11

12-13

-5

14

6

-15 9

7

-7

-1

8

-2

-12

-4

-16

16

-6

4 -3

15 -14 -10 11

10-9
edgeside

armpit

a bend
p−6,−10

http://drorbn.net/cms21

bends = Times @@ XingsByArmpits /.

_[X][a_, b_, c_, d_] 

pa,-d pb,-a pc,-b pd,-c

p-16,7 p-15,-9 p-14,-6 p-13,4 p-12,-4 p-11,2

p-10,-2 p-9,6 p-8,15 p-7,-1 p-6,-10 p-5,14

p-4,-14 p-3,12 p-2,-12 p-1,10 p1,-8 p2,-11

p3,11 p4,-13 p5,13 p6,-15 p7,9 p8,16 p9,-16

p10,-7 p11,1 p12,-3 p13,3 p14,-5 p15,5 p16,8

faces = bends //. px__,y_ py_,z__  px,y,z

p-13,4,-13 p-11,2,-11 p-5,14,-5 p-3,12,-3

p8,16,8 p6,-15,-9,6 p9,-16,7,9 p10,-7,-1,10

p-10,-2,-12,-4,-14,-6,-10 p1,-8,15,5,13,3,11,1

1-1

2
-2

3

-3

-4

5

-5

6

-6

7
-7

-8

9
-9

10
-10

11

-11

-12

13

-13

15
-15

14

-16

168

124

-14

1-8

5

13

3

2

-11

12-13

-5

14

6

-15 9

7

-7

-1

8

-2

-12

-4

-16

16

-6

4 -3

15 -14 -10 11

10-9
edgeside

armpit

a bend
p−6,−10
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A = Table[0, Length@faces, Length@faces];

A // MatrixForm

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

http://drorbn.net/cms21

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

, -

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

,

{x, XingsByArmpits};

http://drorbn.net/cms21

x = XingsByArmpits〚1〛

X-[-1, 11, 2, -10]

faces

p-13,4,-13 p-11,2,-11 p-5,14,-5 p-3,12,-3 p8,16,8 p6,-15,-9,6

p9,-16,7,9 p10,-7,-1,10 p-10,-2,-12,-4,-14,-6,-10 p1,-8,15,5,13,3,11,1

is = Position[faces, #]〚1, 1〛 & /@ List @@ x

{8, 10, 2, 9}

http://drorbn.net/cms21

A〚is, is〛 += IfHead[x] === X+,

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

, -

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

;

A // MatrixForm

0 0 0 0 0 0 0 0 0 0

0 -v 0 0 0 0 0 -1 -u -u

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 -v -u -u

0 -u 0 0 0 0 0 -u -1 -1

0 -u 0 0 0 0 0 -u -1 -1

Recall, is = {8, 10, 2, 9}

http://drorbn.net/cms21

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

, -

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

,

{x, Rest@XingsByArmpits}

http://drorbn.net/cms21

A // MatrixForm

-2 v 0 -1 -1 0 0 0 0 -2 u -2 u

0 -2 v 0 -1 0 0 0 -1 -2 u -2 u

-1 0 -2 v 0 0 -1 0 0 -2 u -2 u

-1 -1 0 -2 v 0 0 0 0 -2 u -2 u

0 0 0 0 2 1 2 u 1 0 2 u

0 0 -1 0 1 1 - 2 v 0 -1 -2 u 0

0 0 0 0 2 u 0 -1 + 2 v 0 -1 2

0 -1 0 0 1 -1 0 1 - 2 v -2 u 0

-2 u -2 u -2 u -2 u 0 -2 u -1 -2 u -6 -5

-2 u -2 u -2 u -2 u 2 u 0 2 0 -5 -5 + 2 v

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/

34

http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/


http://drorbn.net/cms21

Plotω = 
 t; u = Reω1/2; v = Re[ω];

(MatrixSignature[A] - Writhe[K])/2,

{t, 0, 2 π}

1 2 3 4 5 6

1

2

3

4

http://drorbn.net/cms21

PlotBedKnot[8, 2], 
 t

, {t, 0, 2 π}

1 2 3 4 5 6

1

2

3

4

http://drorbn.net/cms21

Kashaev for Mathematicians.
For a knot K and a complex unit ω set u = ℜ(ω1/2), v = ℜ(ω), make an F × F
matrix A with contributions

v

1

v

1

u

1

u

u

1

u

−v

−1

−v

−1
−u

−1

−u

−u
−1

−u

and output 1
2(σ(A)− w(K )).

http://drorbn.net/cms21

Bedlewo for Mathematicians.
For a knot K and a complex unit ω set t = 1− ω, r = 2ℜ(t), make an F × F
matrix A with contributions

−r

−t

0

t∗

2t

0

−r
−t∗

0

t∗

r

−t∗

0

t∗

r

−t

−2t∗
0

t∗

0

(conjugate if going against the flow) and output σ(A).

http://drorbn.net/cms21

Why are they equal?

I dunno, yet note that

▶ Kashaev is over the Reals, Bedlewo is over the Complex numbers.

▶ There’s a factor of 2 between them, and a shift.

. . . so it’s not merely a matrix manipulation.

http://drorbn.net/cms21

Theorem. The Bedlewo program com-
putes the Levine-Tristram signature of K
at ω.

(Easy) Proof. Levine and Tristram tell
us to look at σ((1− ω)L+ (1− ω∗)LT ),
where L is the linking matrix for a Seifert
surface S for K : Lij = lk(γi , γ

+
i ) where

γi run over a basis of H1(S) and γ+i
is the pushout of γi . But signatures
don’t change if you run over and over-
determined basis, and the faces make
such and over-determined basis whose
linking numbers are controlled by the
crossings. The rest is details. Art by Emily Redelmeier

http://drorbn.net/cms21

Thank You!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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Warning. The second formula on page (−2) “Conclusion” is
silly-wrong. A fix will be posted here soon: some of the numbers
written in this handout are a bit off, yet the qualitative results remain
exactly the same (namely, for finite type, 3D seems to beat 2D, with
the same algorithms).

Yarn-Ball Knots
[K-OS] on October 21, 2021

Dror Bar-Natan with Itai Bar-Natan, Iva Halacheva, and Nancy Scherich

Agenda. A modest light conversation on how knots should be measured.

Abstract. Let there be scones! Our view of knot theory is biased in favour of
pancakes.
Technically, if K is a 3D knot that fits in volume V (assuming fixed-width yarn),
then its projection to 2D will have about V 4/3 crossings. You’d expect genuinely
3D quantities associated with K to be computable straight from a 3D presentation
of K . Yet we can hardly ever circumvent this V 4/3 ≫ V “projection fee”.
Exceptions include linking numbers (as we shall prove), the hyperbolic volume, and
likely finite type invariants (as we shall discuss in detail). But knot polynomials and
knot homologies seem to always pay the fee. Can we exempt them?

More at http://drorbn.net/kos21

Thanks for inviting me to speak at [K-OS]!

Most important: http://drorbn.net/kos21

See also arXiv:2108.10923.

If you can, please turn your video on! (And mic, whenever needed).

A recurring question in knot theory is “do we have a 3D understanding of our
invariant?”

▶ See Witten and the Jones polynomial.

▶ See Khovanov homology.

I’ll talk about my perspective on the matter. . .

We often think of knots as planar dia-
grams. 3-dimensionally, they are embed-
ded in “pancakes”. Knot by Lisa Piccirillo, pancake by DBN

But real life knots are 3D! A Yarn Ball

‘Connector’ by Alexandra Griess and Jorel Heid (Hamburg, Germany). Image from
www.waterfrontbia.com/ice-breakers-2019-presented-by-ports/.

The difference matters when

▶ We make statements about “random knots”.

▶ We figure out computational complexity.

Let’s try to make it quantitative. . .

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KOS-211021/
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V ∼ L3

n = xing number ∼ L2L2 = L4 = V 4/3

(“∼” means “equal up to constant terms
and log terms”)

1

1

L

L layers, L2 xings

Conversation Starter 1. A knot invariant ζ is said to be Computationally 3D, or
C3D, if

Cζ(3D,V )≪ Cζ(2D,V
4/3).

This isn’t a rigorous definition! It is time- and näıveté-dependent! But there’s
room for less-stringent rigour in mathematics, and on a philosophical level, our
definition means something.

Theorem 1. Let lk denote the linking number of a 2-component link. Then
Clk(2D, n) ∼ n while Clk(3D,V ) ∼ V , so lk is C3D!
Proof. WLOG, we are looking at a link in a grid, which we project as on the right:

\red /green –blue

Here’s what it look like, in the case of a knot:

And here’s a bigger knot.

This may look like a lot of in-
formation, but if V is big, it’s
less than the information in a pla-
nar diagram, and it is easily com-
putable.

There are 2L2 triangular “cross-
ings fields” Fk in such a projec-
tion.

WLOG, in each Fk all over
strands and all under strands are
oriented in the same way and all
green edges belong to one com-
ponent and all red edges to the
other.

F1

F2

F4

F32

F3

So 2L2 times we have to solve the problem “given two sets R and G of integers in
[0, L], how many pairs {(r , g) ∈ R × G : r < g} are there?”. This takes time ∼ L
(see below), so the overall computation takes time ∼ L3.

Below. Start with rb = cf = 0 (“reds before” and “cases found”) and slide ▽ from
left to right, incrementing rb by one each time you cross a • and incrementing cf
by rb each time you cross a •:

In general, with our limited tools,
speedup arises because appropri-
ately projected 3D knots have
many uniform “red over green”
regions:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KOS-211021/
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Great Embarrassment 1. I don’t know if any of the Alexander, Jones,
HOMFLY-PT, and Kauffman polynomials is C3D. I don’t know if any
Reshetikhin-Turaev invariant is C3D. I don’t know if any knot homology is C3D.

Or maybe it’s a cause for optimism — there’s still something very basic we don’t
know about (say) the Jones polynomial. Can we understand it well enough
3-dimensionally to compute it well? If not, why not?

Conversation Starter 2. Similarly, if η is a stingy quantity (a quantity we expect
to be small for small knots), we will say that η has Savings in 3D, or “has S3D” if
Mη(3D,V )≪ Mη(2D,V

4/3).

Example (R. van der Veen, D. Thurston, private communications). The hyperbolic
volume has S3D.

Great Embarrassment 2. I don’t know if the genus of a knot has S3D! In other
words, even if a knot is given in a 3-dimensional, the best way I know to find a
Seifert surface for it is to first project it to 2D, at a great cost.

Next we argue that most finite type invariants are probably C3D. . .

(What a weak statement!)

All pre-categorification knot polynomials are power series whose coefficients are
finite type invariants. (This is sometimes helpful for the computation of finite type
invariants, but rarely helpful for the computation of knot polynomials).

Theorem FT2D. If ζ is a finite type invariant of type d then Cζ(2D, n) is at most

∼ n⌊3d/4⌋. With more effort, Cζ(2D, n) ≲ n(
2
3
+ϵ)d .

Note that there are some exceptional finite type invariants, e.g. high coefficients of
the Alexander polynomial and other poly-time knot polynomials, which can be
computed much faster!

Theorem FT3D. If ζ is a finite type invariant of type d then Cζ(3D,V ) is at most

∼ V 6d/7+1/7. With more effort, Cζ(2D,V ) ≲ V ( 4
5
+ϵ)d .

Tentative Conclusion. As
n3d/4 ∼ (V 4/3)3d/4 = V ≫ V 6d/7+1/7 n2d/3 ∼ (V 4/3)2d/3 = V 8d/9 ≫ V 4d/5

these theorems say “most finite type invariants are probably C3D; the ones in
greater doubt are the lucky few that can be computed unusually quickly”.

Gauss diagrams and sub-Gauss-diagrams:

1

2

3

4

5

6

7

8

+

−

+

−

1 2 3 4 5 6 7 8

−

+

Let φd : {knot diagrams} → ⟨Gauss diagrams⟩ map every knot diagram to the sum
of all the sub-diagrams of its Gauss diagram which have at most d arrows.

Under-Explained Theorem (Goussarov-Polyak-Viro). A knot invariant ζ is of type
d iff there is a linear functional ω on ⟨Gauss diagrams⟩ such that ζ = ω ◦ φd .

Theorem FT2D. If ζ is a finite type invariant of type d then Cζ(2D, n) is at most

∼ n⌊3d/4⌋. With more effort, Cζ(2D, n) ≲ n(
2
3
+ϵ)d .

Proof of Theorem FT2D.

We need to count how many times a diagram such as the red appears within a
bigger diagram, having n arrows. Clearly this can be done in time ∼ n3, and in
general, in time ∼ nd .

With an appropriate look-up table, it can also be done in time ∼ n2 (in general,
∼ nd−1). That look-up table (T p1,p2

q1,q2 ) is of size (and production cost) ∼ n4 if you
are naive, and ∼ n2 if you are just a bit smarter. Indeed

T p1,p2
q1,q2 = T 0,p2

0,q2
− T 0,p1

0,q2
− T 0,p2

0,q1
+ T 0,p1

0,q1
,

and (T 0,p
0,q ) is easy to compute.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KOS-211021/
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With multiple uses of the same lookup table, what naively takes ∼ n5 can be
reduced to ∼ n3.

In general within a big d-arrow diagram we need to find an as-large-as possible
collection of arrows to delay. These must be non-adjacent to each other. As the
adjacency graph for the arrows is at worst quadrivalent, we can always find ⌈d4 ⌉
non-adjacent arrows, and hence solve the counting problem in time

∼ nd−⌈ d
4
⌉ = n⌊3d/4⌋.

Note that this counting argument works equally well if each of the d arrows is
pulled from a different set!

It follows that we can compute φd in time ∼ n⌊3d/4⌋.
□

With bigger look-up tables that allow looking up “clusters” of G arrows, we can

reduce this to ∼ n(
2
3
+ϵ)d .

□

On to

Theorem FT3D. If ζ is a finite type invariant of type d then Cζ(3D,V ) is at most

∼ V 6d/7+1/7. With more effort, Cζ(2D,V ) ≲ V ( 4
5
+ϵ)d .

An image editing problem:

(Yarn ball and background coutesy of Heather Young)

The line/feather method:

Accurate but takes forever.

The rectangle/shark method:

Coarse but fast.

In reality, you take a few shark bites and feather the rest . . .

. . . and then there’s an optimization problem to solve: when to stop biting and
start feathering.

The structure of a crossing field.

Granpa Shark 

Baby Shark

Mommy Shark

2

g = 0

g = 1
2 2

g = 1

2

There are about log2 L “generations”. There are 2g bites in generation g , and the
total number of crossings in them is ∼ L2/2g . Let’s go hunt!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KOS-211021/
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Multi-feathers and multi-sharks.

For a type d invariant we need to count d-
tuples of crossings, and each has its own
“generation” gi . So we have the “multi-
generation”

ḡ = (g1, . . . , gd).

Let G :=
∑

gi be the “overall gen-
eration”. We will choose between a
“multi-feather” method and a “multi-
shark” method based on the size of G .

g1
g2

g3

g4

The effort to take a single multi-bite is tiny. Indeed,

Lemma Given 2d finite sets Bi = {ti1, ti2, . . .} ⊂ [1..L3] and a
permutation π ∈ S2n the quantity

N =

∣∣∣∣∣

{
(bi ) ∈

2d∏

i=1

Bi : the bi ’s are ordered as π

}∣∣∣∣∣

can be computed in time ∼∑ |Bi | ∼ max |Bi |.
Proof. WLOG π = Id . For ι ∈ [1..2d ] and β ∈ B := ∪Bi let

Nι,β =

∣∣∣∣∣

{
(bi ) ∈

ι∏

i=1

Bi : b1 < b2 < . . . < bι ≤ β
}∣∣∣∣∣ .

We need to know N2d ,maxB ; compute it inductively using Nι,β =
Nι,β′ + Nι−1,β′ , where β′ is the predecessor of β in B. □

t41 t43t42

t31

t32

t33

t61 t62

t51

t52

t21 t23t22 t24

t11

t12

t13

t14

Conclusion. We wish to compute the contribution to φd coming from d-tuples of
crossings of multi-generation ḡ .

▶ The multi-shark method does it in time

∼ (no. of bites) · (time per bite) = L2d2G · L

2min ḡ
< L2d+12G

(increases with G ).

▶ The multi-feather method (project and use the 2D algorithm) does it in time

∼ (no. of crossings)⌊
3
4
d⌋ =

(
d∏

i=1

L2
L2

2gi

)⌊ 3
4
d⌋

<
L3d

(2G )3/4

(decreases with G ).

Of course, for any specific G we are free to choose whichever is better, shark or
feather.

The two methods agree (and therefore are at their worst) if 2G = L
4
7
(d−1), and in

that case, they both take time ∼ L
18
7
d+ 3

7 = V
6
7
d+ 1

7 .

The same reasoning, with the n(
2
3
+ϵ)d feather, gives V ( 4

5
+ϵ)d .

□

If time — a word about braids.

Thank You!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KOS-211021/
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I Still Don’t Understand the Alexander Polynomial

Dror Bar-Natan, http://drorbn.net/mo21

Moscow by Web, April 2021

Abstract. As an algebraic knot theorist, I still don’t understand the Alexander
polynomial. There are two conventions as for how to present tangle theory in
algebra: one may name the strands of a tangle, or one may name their ends. The
distinction might seem too minor to matter, yet it leads to a completely different
view of the set of tangles as an algebraic structure. There are lovely formulas for
the Alexander polynomial as viewed from either perspective, and they even agree
where they meet. But the “strands” formulas know about strand doubling while
the “ends” ones don’t, and the “ends” formulas know about skein relations while
the “strands” ones don’t. There ought to be a common generalization, but I don’t
know what it is.

Thanks for inviting me to Moscow! As most of you have never seen it, here’s a
picture of the lecture room:

If you can, please turn your video on! (And mic, whenever needed).

I use talks to self-motivate; so often I choose a topic and write an abstract when I
know I can do it, yet when I haven’t done it yet. This time it turns out my abstract
was wrong — I’m still uncomfortable with the Alexander polynomial, but in slightly
different ways than advertised two slides before.
My discomfort.
▶ I can compute the multivariable Alexander polynomial real fast:

−→ (uvw)−1/2(u − 1)(v − 1)(w − 1).

▶ But I can only prove “skein relations” real slow:

+ +=

This talk is to a large extent an elucidation of the Ph.D. theses of my former
students Jana Archibald and Iva Halacheva. See [Ar, Ha1, Ha2].

Also thanks to Roland van der Veen for comments.

A technicality. There’s supposed to be fire alarm testing in my building today.
Don’t panic!

1. Virtual Skein Theory Heaven

Definition. A “Contraction Algebra” assigns a set T (X ,X ) to any pair of finite
sets X = {ξ . . .} and X = {x , . . .} provided |X | = |X |, and has operations

▶ “Disjoint union” ⊔ : T (X ,X )× T (Y,Y )→ T (X ⊔ Y,X ⊔ Y ), provided
X ∩ Y = X ∩ Y = ∅.

▶ “Contractions” cx ,ξ : T (X ,X )→ T (X \ ξ,X \ x), provided x ∈ X and ξ ∈ X .
▶ Renaming operations σξη : T (X ⊔ {ξ},X )→ T (X ⊔ {η},X ) and
σxy : T (X ,X ⊔ {x})→ T (X ,X ⊔ {y}).

Subject to axioms that will be specified right after the two examples in the next
three slides.
If R is a ring, a contraction algebra is said to be “R-linear” if all the T (X ,X )’s are
R-modules, if the disjoint union operations are R-bilinear, and if the contractions
cx ,ξ and the renamings σ·· are R-linear.
(Contraction algebras with some further “unit” properties are called “wheeled
props” in [MMS, DHR])

x2

ξ3

x3

x4

ξ1

ξ2

ξ4

x2

ξ3

x3

ξ1

ξ4

x1
x1

cx4,ξ2

Example 1. Let T (X ,X ) be the set of virtual tangles with incoming ends (“tails”)
labeled by X and outgoing ends (“heads”) labeled by X , with ⊔ and σ·· the obvious
disjoint union and end-renaming operations, and with cx ,ξ the operation of
attaching a head x to a tail ξ while introducing no new crossings.
Note 1. T can be made linear by allowing formal linear combinations.
Note 2. T is finitely presented, with generators the positive and negative
crossings, and with relations the Reidemeister moves! (If you want, you can take
this to be the definition of “virtual tangles”).

Note 3. A contraction algebra morphism out of T is an invariant of virtual tangles
(and hence of virtual knots and links) and would be an ideal tool to prove Skein
Relations:

+ +=
1

2 3

1

2 3

1

2 3

1

2 3

4

56

4

56 56 56

4 4

Example 2. Let V be a finite dimensional vector space and set
V(X ,X ) := (V ∗)⊗X ⊗ V⊗X , with ⊔ = ⊗, with σ·· the operation of renaming a
factor, and with cx ,ξ the operation of contraction: the evaluation of tensor factor ξ
(which is a V ∗) on tensor factor x (which is a V ).

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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Axioms. One axiom is primary and interesting,

▶ Contractions commute! Namely, cx ,ξ�cy ,η = cy ,η�cx ,ξ (or in old-speak,
cy ,η ◦ cx ,ξ = cx ,ξ ◦ cy ,η).

And the rest are just what you’d expect:

▶ ⊔ is commutative and associative, and it commutes with c·,· and with σ··
whenever that makes sense.

▶ c·,· is “natural” relative to renaming: cx ,ξ = σxy�σξη�cy ,η.
▶ σξξ = σxx = Id , σξη�σηζ = σξζ , σ

x
y�σyz = σxz , and renaming operations commute

where it makes sense.

Comments.

▶ We can relax |X | = |X | at no cost.

▶ We can lose the distinction between X and X and get “circuit algebras”.

▶ There is a “coloured version”, where T (X ,X ) is replaced with T (X ,X , λ, l)
where λ : X → C and l : X → C are “colour functions” into some set C of
“colours”, and contractions cx ,ξ are allowed only if x and ξ are of the same
colour, l(x) = λ(ξ). In the world of tangles, this is “coloured tangles”.

2. Heaven is a Place on Earth

(A version of the main results of Archibald’s thesis, [Ar]).

Let us work over the base ring R = Q[{T±1/2 : T ∈ C}]. Set

A(X ,X ) := {w ∈ Λ(X ⊔ X ) : degX w = degX w}

(so in particular the elements of A(X ,X ) are all of even degree). The union
operation is the wedge product, the renaming operations are changes of variables,
and cx ,ξ is defined as follows. Write w ∈ A(X ,X ) as a sum of terms of the form
uw ′ where u ∈ Λ(ξ, x) and w ′ ∈ A(X \ ξ,X \ x), and map u to 1 if it is 1 or xξ
and to 0 is if is ξ or x :

1w ′ 7→ w ′, ξw ′ 7→ 0, xw ′ 7→ 0, xξw ′ 7→ w ′.

Proposition. A is a contraction algebra.

Alternative Formulations.

▶ cx ,ξw = ιξιxexξw , where ι· denotes interior multiplication.

▶ Using Fermionic integration, cx ,ξw =

∫
exξw dξdx .

▶ cx ,ξ represents composition in exterior algebras! With X ∗ := {x∗ : x ∈ X}, we
have that Hom(ΛX ,ΛY ) ∼= Λ(X ∗ ⊔ Y ) and the following square commutes:

Hom(ΛX ,ΛY )⊗ Hom(ΛY ,ΛZ )
� //

OO

��

Hom(ΛX ,ΛZ )
OO

��
Λ(X ∗ ⊔ Y ⊔ Y ∗ ⊔ Z )

∏
y∈Y cy,y∗ // Λ(X ∗,Z )

▶ Similarly, Λ(X ⊔ X ) ∼= (H∗)⊗X ⊗ H⊗X where H is a 2-dimensional “state
space” and H∗ is its dual. Under this identification, cx ,ξ becomes the
contraction of an H factor with an H∗ factor.

We construct a morphism of coloured contraction algebras A : T → A by declaring

Xijkl [S ,T ] 7→ T−1/2 exp

((
ξl ξi

)(1 1− T
0 T

)(
xj
xk

))

X̄ijkl [S ,T ] 7→ T 1/2 exp

((
ξi ξj

)( T−1 0
1− T−1 1

)(
xk
xl

))

Pij [T ] 7→ exp(ξixj)

with

ST S T Tl i

jk

i j

kl

i

j

Xijkl [S ,T ] X̄ijkl [S ,T ] Pij [T ]

(Note that the matrices appearing in these formulas are the Burau matrices).

Theorem.

If D is a classical link diagram with k components coloured T1, . . . ,Tk whose first
component is open and the rest are closed, if MVA is the multivariable Alexander
polynomial of the closure of D (with these colours), and if ρj is the
counterclockwise rotation number of the jth component of D, then

A(D) = T
−1/2
1 (T1 − 1)


∏

j

T
ρj/2
j


 ·MVA · (1 + ξin ∧ xout).

(A vanishes on closed links).

3. An Implementation of A
If I didn’t implement I wouldn’t believe myself.

Written in Mathematica [Wo], available as the notebook Alpha.nb at
http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are
plain. We start with an implementation of elements (“Wedge”) of exterior algebras,
and of the wedge product (“WP”):

WP[Wedge[u___], Wedge[v___]] := Signature[{u, v}]*Wedge @@ Sort[{u, v}];

WP[0, _] = WP[_, 0] = 0;

WP[A_, B_] :=

Expand[Distribute[A ** B] /.

(a_. * u_Wedge) ** (b_. * v_Wedge)  a b WP[u, v]];

WP[Wedge[ ] + Wedge[a] - 2 b⋀a, Wedge[ ] - 3 Wedge[b] + 7 c⋀d]

Wedge[] + Wedge[a] - 3 Wedge[b] - a⋀b + 7 c⋀d + 7 a⋀c⋀d + 14 a⋀b⋀c⋀d

We then define the exponentiation map in exterior algebras (“WExp”) by summing
the series and stopping the sum once the current term (“t”) vanishes:

WExp[A_] := Module[{s = Wedge[ ], t = Wedge[ ], k = 0},

While[t =!= 0, s += (t = Expand[WP[t, A]/(++k)])]; s]

WExp[a⋀b + c⋀d + e⋀f]

Wedge[] + a⋀b + c⋀d + e⋀f + a⋀b⋀c⋀d + a⋀b⋀e⋀f + c⋀d⋀e⋀f + a⋀b⋀c⋀d⋀e⋀f

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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Contractions!

cx_,y_[w_Wedge] := Module{i, j},

{i} = FirstPosition[w, x, {0}]; {j} = FirstPosition[w, y, {0}];

w (i  0) ∧ (j  0)

(-1)i+j+If[i>j,0,1] Delete[w, {{i}, {j}}] (i > 0) ∧ (j > 0)

;

cx_,y_[ℰ_] := ℰ /. w_Wedge  cx,y[w]

WExp[a⋀b + 2 c⋀d]

cd,c@WExp[a⋀b + 2 c⋀d]

Wedge[] + a⋀b + 2 c⋀d + 2 a⋀b⋀c⋀d

-Wedge[] - a⋀b

STl i

jk

Xijkl [S ,T ]

A[is,os,cs,w] is also a container for the values of the A-invariant
of a tangle. In it, is are the labels of the input strands, os are the
labels of the output strands, cs is an assignment of colours (namely,
variables) to all the ends {ξi}i∈is ⊔ {xj}j∈os, and w is the “payload”:
an element of Λ ({ξi}i∈is ⊔ {xj}j∈os).
[Xi_,j_,k_,l_[S_, T_]] := {l, i}, {j, k}, ξi  S, xj  T, xk  S, ξl  T,

ExpandT-1/2 WExpExpand{ξl, ξi}.
1 1 - T

0 T
.{xj, xk} /. ξa_ xb_  ξa ⋀xb;

[X1,2,3,4[u, v]]

{4, 1}, {2, 3}, ξ1  u, x2  v, x3  u, ξ4  v,

Wedge[]

v
-
x2 ⋀ξ4

v
- v x3 ⋀ξ1 -

x3 ⋀ξ4

v
+ v x3 ⋀ξ4 + v x2 ⋀x3 ⋀ξ1 ⋀ξ4

[Xi_,j_,k_,l_] := [Xi,j,k,l[τi, τl]]

The negative crossing and the “point”:

S T Ti j

kl

i

j

X̄ijkl [S ,T ] Pij [T ]

Xi_,j_,k_,l_[S_, T_] := {i, j}, {k, l}, ξi  S, ξj  T, xk  S, xl  T,

ExpandT1/2 WExpExpand{ξi, ξj}.
T-1 0

1 - T-1 1
.{xk, xl} /. ξa_ xb_  ξa ⋀xb;

[Xi_,j_,k_,l_] := Xi,j,k,l[τi, τj];

[Pi_,j_[T_]] := [{i}, {j}, ξi  T, xj  T, WExp[ξi ⋀xj]];

[Pi_,j_] := [Pi,j[τi]]

The linear structure on A’s:
 /: α_×[is_, os_, cs_, w_] := [is, os, cs, Expand[α w]]

 /: [is1_, os1_, cs1_, w1_] + [is2_, os2_, cs2_, w2_] /;

(Sort@is1  Sort@is2) ∧ (Sort@os1  Sort@os2) ∧

(Sort@Normal@cs1  Sort@Normal@cs2) := [is1, os1, cs1, w1 + w2]

Deciding if two A’s are equal:

 /: [is1_, os1_, _, w1_] ≡ [is2_, os2_, _, w2_] :=

TrueQ[(Sort@is1 === Sort@is2) ∧ (Sort@os1 === Sort@os2) ∧

PowerExpand[w1  w2]]

1 2

3 4

65

S T
The union operation on A’s (implemented as “multiplication”):

 /: [is1_, os1_, cs1_, w1_]×[is2_, os2_, cs2_, w2_] :=

[is1 ⋃ is2, os1 ⋃ os2, Join[cs1, cs2], WP[w1, w2]]

Short[X2,4,3,1[S, T]]×[X3,4,6,5], 5

{1, 2, 3, 4}, {3, 4, 5, 6},

ξ2  S, x4  T, x3  S, ξ1  T, ξ3  τ3, ξ4  τ4, x6  τ3, x5  τ4,
τ4 Wedge[]

T
-

τ4 x3 ⋀ξ1

T
+ T τ4 x3 ⋀ξ1 - T τ4 x3 ⋀ξ2 -

τ4 x4 ⋀ξ1

T
-

τ4 x5 ⋀ξ4

T
-

x6 ⋀ξ3

T τ4

+40 +
T x3 ⋀x5 ⋀x6 ⋀ξ1 ⋀ξ3 ⋀ξ4

τ4

-
T x3 ⋀x5 ⋀x6 ⋀ξ2 ⋀ξ3 ⋀ξ4

τ4

-

x4 ⋀x5 ⋀x6 ⋀ξ1 ⋀ξ3 ⋀ξ4

T τ4

+
T x3 ⋀x4 ⋀x5 ⋀x6 ⋀ξ1 ⋀ξ2 ⋀ξ3 ⋀ξ4

τ4



Contractions of A-objects:
ch_,t_@[is_, os_, cs_, w_] := 

DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, {xh, ξt}], cxh,ξt[w]

 /. If[MatchQ[cs[ξt], τ_], cs[ξt]  cs[xh], cs[xh]  cs[ξt]];

c4,4[X2,4,3,1[S, T]]×[X3,4,6,5]

{1, 2, 3}, {3, 5, 6}, ξ2  S, x3  S, ξ1  T, ξ3  τ3, x6  τ3, x5  T,

Wedge[] - x3 ⋀ξ1 + T x3 ⋀ξ1 - T x3 ⋀ξ2 - x5 ⋀ξ1 - x6 ⋀ξ1 +
x6 ⋀ξ1

T
-
x6 ⋀ξ3

T
+

T x3 ⋀x5 ⋀ξ1 ⋀ξ2 - x3 ⋀x6 ⋀ξ1 ⋀ξ2 + T x3 ⋀x6 ⋀ξ1 ⋀ξ2 + x3 ⋀x6 ⋀ξ1 ⋀ξ3 -

x3 ⋀x6 ⋀ξ1 ⋀ξ3

T
- x3 ⋀x6 ⋀ξ2 ⋀ξ3 -

x5 ⋀x6 ⋀ξ1 ⋀ξ3

T
- x3 ⋀x5 ⋀x6 ⋀ξ1 ⋀ξ2 ⋀ξ3

Automatic and intelligent multiple contractions:

c@[is_, os_, cs_, w_] := Fold[c#2,#2[#1] &, [is, os, cs, w], is ⋂ os]

[{A_}] := c[A];

[{A1_ , As__}] := Module[{A2},

A2 = First@MaximalBy[{As}, Length[A1〚1〛 ⋂ #〚2〛] + Length[A1〚2〛 ⋂ #〚1〛] &];

[Join[{c[A1 A2]}, DeleteCases[{As}, A2]]] ]

[s_List] := [ /@ s]

c[X2,4,3,1[S, T]]×[X3,4,6,5]

[{1, 2}, {5, 6}, ξ2  S, ξ1  T, x6  S, x5  T,

Wedge[] - x5 ⋀ξ1 - x6 ⋀ξ2 - x5 ⋀x6 ⋀ξ1 ⋀ξ2]

@[X2,4,3,1[S, T]], [X3,4,6,5]

[{1, 2}, {5, 6}, ξ2  S, ξ1  T, x6  S, x5  T,

Wedge[] - x5 ⋀ξ1 - x6 ⋀ξ2 - x5 ⋀x6 ⋀ξ1 ⋀ξ2]

4. Skein relations and evaluations for A

5

34

1

2

6
u

v

@X4,1,6,3[v, u], X3,2,5,4

{1, 2}, {5, 6}, ξ2  v, x5  u, ξ1  u, x6  v,

u v Wedge[] -
u x5 ⋀ξ1

v
+

u x5 ⋀ξ2

v
- u v x5 ⋀ξ2 +

v x6 ⋀ξ1

u
- u v x6 ⋀ξ1 -

v x6 ⋀ξ2

u
-

u x5 ⋀x6 ⋀ξ1 ⋀ξ2

v
-

v x5 ⋀x6 ⋀ξ1 ⋀ξ2

u
+ u v x5 ⋀x6 ⋀ξ1 ⋀ξ2
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Reidemeister 2

=

1 2

3 4

65 5 6

1 2

=

1 2

3 4

65 5 6

1 2

T STSS T T S

@X2,4,3,1[S, T], X3,4,6,5 ≡ @{P1,5[T], P2,6[S]}

True

@X3,1,2,4[S, T], X6,5,3,4 ≡ @{P1,5[T], P6,2[S]}

True

Reidemeister 3

=

1 2 3

4
5

6

7
8 9

1 2 3

4

5
6

798

T1 T2 T3 T1 T2 T3

@{X2,5,4,1[T2, T1], X3,7,6,5[T3, T1], X6,9,8,4} ≡

@{X3,5,4,2[T3, T2], X4,6,8,1[T3, T1], X5,7,9,6}

True

Reidemeister 1

1

2

1

2

3
1

2

1

2

3
1

2

1

2

3
1

2

1

2

3
= τ

−1/2
1 = τ

1/2
1 = τ

−1/2
1 = τ

1/2
1

@{X3,3,2,1} ≡ τ1
-1/2

@{P1,2}, @{X1,2,3,3} ≡ τ1
1/2

@{P1,2},

@{X1,3,3,2} ≡ τ1
-1/2

@{P1,2}, @{X3,1,2,3} ≡ τ1
1/2

@{P1,2}

{True, True, True, True}

(So we have an invariant, up to rotation numbers).

The Relation with the Multivariable Alexander Polynomial

1 2 3 4 5

6
7

8

9

10
11

12

13

14

15

16

17

u

v

w

MVA = u-1/2 v-1/2 w-1/2 (u - 1) (v - 1) (w - 1);

A = X1,12,2,13[u, v], X13,2,6,3, X8,4,9,3, X4,10,5,9, X6,17,7,16[v, w],

X15,8,16,7, X14,10,15,11, X11,17,12,14 //  // Last // Factor

(-1 + u)2 (-1 + v) (-1 + w) (Wedge[] - x5 ⋀ξ1)

u v

A  u-1/2 (u - 1) u0 v-1/2 w1/2 MVA (Wedge[ ] - x5 ⋀ξ1)

True

Overcrossings Commute but Undercrossings don’t

= ̸=
1

2 3

4

56

7

1

2 3

4

56
7

1

2 3

56

4

7

1

2 3

56

4

7

@{X2,7,5,1, X3,4,6,7} ≡ @{X3,7,6,1, X2,4,5,7}

True

@X1,2,7,5, X7,3,4,6 ≡ @X1,3,7,6, X7,2,4,5

False

The Conway Relation (see [Co])

1

4 3

2

4

1 2

3

1

4

2

3

− = (T−1/2 − T 1/2)
T T T T T T

@{X2,3,4,1[T, T]} - @X1,2,3,4[T, T] ≡ T-1/2 - T1/2 @{P1,4[T], P2,3[T]}

True

Conway’s Second Set of Identities (see [Co])

+ += ((uv)1/2 + (uv)−1/2) = ((u/v)1/2 + (u/v)−1/2)

5 56

3 4 3 4

1 2 1 2

6

1 2

5 6 5 5

6

34 34

1

2

1

2

6

5 2

1 6
u v u v u v u

v

u

v

u

v

@{X2,4,3,1[v, u], X4,6,5,3} + @X1,2,4,3[u, v], X3,4,6,5 ≡

u1/2 v1/2 + u-1/2 v-1/2 @{P1,5[u], P2,6[v]}

True

@X4,1,6,3[v, u], X3,2,5,4 + @{X1,6,3,4[u, v], X2,5,4,3} ≡

u1/2 v-1/2 + u-1/2 v1/2 @{P1,5[u], P2,6[v]}

True

Virtual versions (Archibald, [Ar])

+ = (τ
1/2
2 + τ

−1/2
2 )+ = (τ

1/2
1 + τ

−1/2
1 )

1 2

3 4 2

1

3

41

2

1

23

4

3

41 2 1 2

3 4 3 4

@{X2,3,4,1} + @{X2,1,4,3} ≡ τ1
1/2

+ τ1
-1/2

 @{P1,3, P2,4}

True

@{X1,2,3,4} + @{X1,4,3,2} ≡ τ2
1/2

+ τ2
-1/2

 @{P1,3, P2,4}

True

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/

44

http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/


Conway’s Third Identity (see [Co])
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@X6,4,9,1, X4,5,7,8, X2,3,5,6 + @X2,4,5,1, X4,3,7,6, X6,8,9,5 ≡

@X1,6,4,9, X5,7,8,4, X3,5,6,2 + @X1,2,4,5, X3,7,6,4, X5,6,8,9

True

Virtual version (Archibald, [Ar])

+ +=
1

2 3

1

2 3

1

2 3

1

2 3

4

56

4

56 56 56

4 4

7

7

7

7

@X3,7,6,1, X7,2,4,5 + @{X2,4,7,1, X3,5,6,7} ≡

@{X3,7,6,2, X7,4,5,1} + @X1,2,7,5, X3,4,6,7

True

Jun Murakami’s Fifth Axiom (see [Mu])

=
√
S(1−T )√

T

1

2

3

45

1

3

T

T

S

@{X1,4,2,5[T, S], X4,3,5,2} ≡
S (1 - T)

T
@{P1,3[T]}

True

Virtual versions (Archibald, [Ar])

= 0= (T−1/2 − T 1/2)

1

2

1

3

2

1

3

2

T

T

S

T

S

@{X3,2,3,1[S, T]} ≡ T-1/2 - T1/2 @{P1,2[T]}

True

@{X1,3,2,3}

[{1}, {2}, ξ1  τ1, x2  τ1, 0]

Jun Murakami’s Third Axiom (see [Mu])

12212112 2211 1122 11 22 ∅
1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3
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1 2 3

4 5 6
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89
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7 8

9

10 11

7 8 7 8

2112 = @{X3,8,7,2, X7,10,9,1, X10,11,4,9, X8,6,5,11};

1221 = @{X2,8,7,1, X3,10,9,8, X10,6,11,9, X11,5,4,7};

2211 = @{X3,8,7,2, X8,6,9,7, X9,11,10,1, X11,5,4,10};

1122 = @{X2,8,7,1, X8,9,4,7, X3,11,10,9, X11,6,5,10};

11 = @{X2,8,7,1, X8,5,4,7, P3,6}; 22 = @{X3,8,7,2, X8,6,5,7, P1,4};

∅ = @{P1,4, P2,5, P3,6};

g+[z_] := z1/2 + z-1/2; g-[z_] := z1/2 - z-1/2;

g+[τ1] g-[τ2] 2112 - g-[τ2] g+[τ3] 1221 - g-[τ3 /τ1] (2211 + 1122) +

g-[τ2 τ3 /τ1] g+[τ3] 11 - g+[τ1] g-[τ1 τ2 /τ3] 22 ≡ g-τ3
2
 τ1

2
 ∅

True

The Naik-Stanford Double Delta Move (see [NS])
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Timing@X6,10,28,24[w, v], X28,3,29,19[w, v], X26,20,27,19[w, v], X27,23,11,24[w, v],

X1,12,13,30[u, w], X13,5,14,25[u, w], X17,26,18,25[u, w], X18,29,8,30[u, w],

X4,7,22,15[v, u], X22,2,23,16[v, u], X20,17,21,16[v, u], X21,14,9,15[v, u] ≡

@X5,9,25,21[w, v], X25,4,26,22[w, v], X29,23,30,22[w, v], X30,20,12,21[w, v],

X2,11,16,27[u, w], X16,6,17,28[u, w], X14,29,15,28[u, w], X15,26,7,27[u, w],

X3,8,19,18[v, u], X19,1,20,13[v, u], X23,14,24,13[v, u], X24,17,10,18[v, u]

{190.422, True}

Virtual Version 1 (Archibald, [Ar])
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@X1,8,11,3[u, v], X11,2,12,7[u, v], X12,10,13,4[u, w], X13,5,6,9[u, w] ≡

@X1,10,11,4[u, w], X11,5,12,9[u, w], X12,8,13,3[u, v], X13,2,6,7[u, v]

True

Virtual Version 2 (Archibald, [Ar])
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@X20,1,10,13[v, u], X3,14,19,13[v, u], X14,11,15,21[u, w], X15,6,7,22[u, w],

X2,12,16,22[u, w], X16,5,17,21[u, w], X19,17,9,18[v, u], X4,8,20,18[v, u] ≡

@X1,11,13,21[u, w], X13,6,14,22[u, w], X20,14,10,15[v, u], X3,7,19,15[v, u],

X19,2,9,16[v, u], X4,17,20,16[v, u], X17,12,18,22[u, w], X18,5,8,21[u, w]

True
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5. Some Problems in Heaven

Unfortunately, dimA(X ,X ) = dimΛ(X ,X ) = 4|X | is big. Fortunately, we have the
following theorem, a version of one of the main results in Halacheva’s
thesis, [Ha1, Ha2]:
Theorem. Working in Λ(X ∪ X ), if w = ωeλ is a balanced Gaussian (namely, a
scalar ω times the exponential of a quadratic λ =

∑
ζ∈X ,z∈X αζ,zζz), then

generically so is cx ,ξeλ.
(This is great news! The space of balanced quadratics is only |X ||X |-dimensional!)

Proof. Recall that cx ,ξ : (1, ξ, x , xξ)w
′ 7→ (1, 0, 0, 1)w ′, write

λ = µ+ ηx + ξy + αξx , and ponder eλ =

. . .+
1

k!
(µ+ ηx + ξy + αξx)(µ+ ηx + ξy + αξx) · · · (µ+ ηx + ξy + αξx)︸ ︷︷ ︸

k factors

+ . . . .

Then cx ,ξeλ has three contributions:

▶ eµ, from the term proportional to 1 (namely, independent of ξ and x) in eλ

▶ −αeµ, from the term proportional to xξ, where the x and the ξ come from the
same factor above.

▶ ηyeµ, from the term proportional to xξ, where the x and the ξ come from
different factors above.

So cx ,ξeλ = eµ(1− α+ ηy) = (1− α)eµ(1 + ηy/(1− α)) = (1− α)eµeηy/(1−α) =
(1− α)eµ+ηy/(1−α).

□

Γ-calculus.

Thus we have an almost-always-defined “Γ-calculus”: a contraction algebra
morphism T (X ,X )→ R × (X ⊗R/R X ) whose behaviour under contractions is
given by

cx ,ξ(ω, λ = µ+ ηx + ξy + αξx) = ((1− α)ω, µ+ ηy/(1− α)).

(Γ is fully defined on pure tangles – tangles without closed components – and
hence on long knots).

6. An Implementation of Γ.

If I didn’t implement I wouldn’t believe myself.

Written in Mathematica [Wo], available as the notebook Gamma.nb at
http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are
plain. We start with canonical forms for quadratics with rational function
coefficients:
CCF[ℰ_] := Factor[ℰ];

CF[ℰ_] := Modulevs = Union@Casesℰ , (ξ x)_, ∞,

TotalCCF[#〚2〛] Times @@ vs#〚1〛
 & /@ CoefficientRules[ℰ , vs];

Multiplying and comparing Γ objects:

Γ /: Γ[is1_, os1_, cs1_, ω1_, λ1_]×Γ[is2_, os2_, cs2_, ω2_, λ2_] :=

Γ[is1 ⋃ is2, os1 ⋃ os2, Join[cs1, cs2], ω1 ω2, λ1 + λ2]

Γ /: Γ[is1_, os1_, _, ω1_, λ1_] ≡ Γ[is2_, os2_, _, ω2_, λ2_] :=

TrueQ[(Sort@is1 === Sort@is2) ∧ (Sort@os1 === Sort@os2) ∧

Simplify[ω1  ω2] ∧ CF@λ1  CF@λ2]

No rules for linear operations!

Contractions:
ch_,t_@Γ[is_, os_, cs_, ω_, λ_] := Module{α, η, y, μ},

α = ∂ξt,xh
λ ; μ = λ /. ξt xh  0;

η = ∂xh
λ /. ξt  0; y = ∂ξt

λ /. xh  0;

Γ[

DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, {xh, ξt}],

CCF[(1 - α) ω], CF[μ + η y/(1 - α)]

] /. If[MatchQ[cs[ξt], τ_], cs[ξt]  cs[xh], cs[xh]  cs[ξt]];

c@Γ[is_, os_, cs_, ω_, λ_] := Fold[c#2,#2[#1] &, Γ[is, os, cs, ω, λ ], is ⋂ os]

The crossings and the point:

Γ[Xi_,j_,k_,l_[S_, T_]] := Γ{l, i}, {j, k}, ξi  S, xj  T, xk  S, ξl  T,

T-1/2, CF{ξl, ξi}.
1 1 - T

0 T
.{xj, xk};

ΓXi_,j_,k_,l_[S_, T_] := Γ{i, j}, {k, l}, ξi  S, ξj  T, xk  S, xl  T,

T1/2, CF{ξi, ξj}.
T-1 0

1 - T-1 1
.{xk, xl};

Γ[Xi_,j_,k_,l_] := Γ[Xi,j,k,l[τi, τl]];

Γ[Xi_,j_,k_,l_] := ΓXi,j,k,l[τi, τj];

Γ[Pi_,j_[T_]] := Γ[{i}, {j}, ξi  T, xj  T, 1, ξi xj];

Γ[Pi_,j_] := Γ[Pi,j[τi]];

Automatic intelligent contractions:

Γ[{γ_Γ}] := c[γ];

Γ[{γ1_Γ, γs__Γ}] := Module[{γ2},

γ2 = First@MaximalBy[{γs}, Length[γ1〚1〛 ⋂ #〚2〛] + Length[γ1〚2〛 ⋂ #〚1〛] &];

Γ[Join[{c[γ1 γ2]}, DeleteCases[{γs}, γ2]]] ]

Γ[s_List] := Γ[Γ /@ s]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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Conversions A ↔ Γ:
Γ@[is_, os_, cs_, w_] := Module[{i, j, ω = Coefficient[w, Wedge[ ]]},

Γ[is, os, cs, ω, Sum[Cancel[-Coefficient[w, xj ⋀ξi] ξi xj /ω],

{i, is}, {j, os}]]

];

@Γ[is_, os_, cs_, ω_, λ_] :=

[is, os, cs, Expand[ω WExp[Expand[λ ] /. ξa_ xb_  ξa ⋀xb]]];

The conversions are inverses of each other:
γ = Γ[{1, 2, 3}, {1, 2, 3}, {x1  τ1, x2  τ2, x3  τ3, ξ1  τ1, ξ2  τ2, ξ3  τ3},

ω, a11 x1 ξ1 + a12 x2 ξ1 + a13 x3 ξ1 + a21 x1 ξ2 + a22 x2 ξ2 + a23 x3 ξ2 + a31 x1 ξ3 +

a32 x2 ξ3 + a33 x3 ξ3];

Γ@@γ  γ

True

The conversions commute with contractions:
Γ@c3,3@@γ ≡ c3,3@γ

True

The Naik-Stanford Double Delta Move (again)
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TimingΓ@X6,10,28,24[w, v], X28,3,29,19[w, v], X26,20,27,19[w, v], X27,23,11,24[w, v],

X1,12,13,30[u, w], X13,5,14,25[u, w], X17,26,18,25[u, w], X18,29,8,30[u, w],

X4,7,22,15[v, u], X22,2,23,16[v, u], X20,17,21,16[v, u], X21,14,9,15[v, u] ≡

Γ@X5,9,25,21[w, v], X25,4,26,22[w, v], X29,23,30,22[w, v], X30,20,12,21[w, v],

X2,11,16,27[u, w], X16,6,17,28[u, w], X14,29,15,28[u, w], X15,26,7,27[u, w],

X3,8,19,18[v, u], X19,1,20,13[v, u], X23,14,24,13[v, u], X24,17,10,18[v, u]

{0.703125, True}

Conway’s Third Identity
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Sorry, Γ has nothing to say about that...’

What I still don’t understand.

▶ What becomes of cx ,ξeλ if we have to divide by 0 in order to write it again as
an exponentiated quadratic? Does it still live within a very small subset of
Λ(X ⊔ X )?

▶ How do cablings and strand reversals fit within A?
▶ Are there “classicality conditions” satisfied by the invariants of classical

tangles (as opposed to virtual ones)?
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1 2

K

Ù On a chat window here I saw a
comment “Alexander is the quantum
gl(1|1) invariant”. I have an opinion
about this, and I’d like to share it. First,
some stories.

I left the wonderful subject of
Categorification nearly 15 years ago.
It got crowded, lots of very smart people
had things to say, and I feared I will have
nothing to add. Also, clearly the next
step was to categorify all other “quantum
invariants”. Except it was not clear what
“categorify” means. Worse, I felt that
I (perhaps “we all”) didn’t understand
“quantum invariants” well enough to try
to categorify them, whatever that might
mean.

I still feel that way! I learned a lot since
2006, yet I’m still not comfortable with
quantum algebra, quantum groups, and
quantum invariants. I still don’t feel that
I know what God had in mind when She
created this topic.

Yet I’m not here to rant about my
philosophical quandaries, but only about
things that I learned about the Alexander
polynomial after 2006.

Yes, the Alexander polynomial fits
within the Dogma, “one invariant for
every Lie algebra and representation”
(it’s gl(1|1), I hear). But it’s better to
think of it as a quantum invariant arising
by other means, outside the Dogma.

Alexander comes from (or in)
practically any non-Abelian Lie algebra.
Foremost from the not-even-semi-
simple 2D “ax + b” algebra. You get
a polynomially-sized extension to tangles
using some lovely formulas (can you
categorify them?). It generalizes to
higher dimensions and it has an organized
family of siblings. (There are some
questions too, beyond categorification).

I note the spectacular existing
categorification of Alexander by Ozsváth
and Szabó. The theorems are proven and
a lot they say, the programs run and fast
they run. Yet if that’s where the story
ends, She has abandoned us. Or at least
abandoned me: a simpleton will never be
able to catch up.

If you care only about categorification,
the take-home from my talk will be a
challenge: Categorify what I believe is
the best Alexander invariant for tangles.

The Yang-Baxter Technique. Given an algebra U (typically some
Û(g) or Ûq(g)) and suitable elements R, C,

R=
∑

ai ⊗ bi ∈ U ⊗ U with R−1 =
∑

āi ⊗ b̄i and C,C−1 ∈ U,

form Z(K) =
∑

i, j,k

aiC−1b̄kā jbi ⊗ b̄ jāk.

Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.
Example 1. Let a B L〈a, x〉/([a, x] = x), b B a? = 〈b, y〉, and
g B b o a = b ⊕ a with [a, x] = x, [a, y] = −y, [b, ·] = 0, and
[x, y] = b and with deg(y, b, a, x) = (1, 1, 0, 0). Let U = Û(g) and

R B e
b⊗a+y⊗x ∈ U ⊗ U or better Ri j B e

bia j+yi x j ∈ Ui ⊗ U j, and Ci = e
−bi/2.

Theorem 1. With “scalars”Bpower series in {bi} which are rational functions in {bi} and
{Bi B e

bi},

Z(K) = Oybax

(
ω−1

e
li jbia j+qi jyi x j(1+εP1 + ε2P2 + . . .)

)

Example 2. Let h B A〈p, x〉/([p, x] = 1) be
the Heisenberg algebra, with Ci = e

t/2 and
Ri j = e

t/2
e

t(pi−p j)x j . I just told you the whole Alexander
story! Everything else is details.

Claim. Ri j = Opx

(
e

(et−1)(pi−p j)x j
)
.

Theorem 3. Full evaluation via

(
!i j, "j i

)
→

1 xi x j

pi 0 T±1 − 1
p j 0 1 − T±1

(1)�

K1 t K2 →
ω1ω2 X1 X2

P1 A1 0
P2 0 A2

(2)�

ω xi x j · · ·
pi α β θ
p j γ δ ε
... φ ψ Ξ

hmi j
k−→ (3)

(1 + γ)ω xk · · ·
pk 1 + β − (1−α)(1−δ)

1+γ
θ +

(1−α)ε
1+γ

... ψ +
(1−δ)φ

1+γ
Ξ − φε

1+γ

“Γ-calculus” relates via A↔ I−AT and has
slightly simpler formulas: ω→ (1 − β)ω,

α β θ
γ δ ε
φ ψ Ξ

→

γ + αδ

1−β ε + δθ
1−β

φ +
αψ
1−β Ξ +

ψθ
1−β



(v-)Tangles.

Why Should You Categorify This? The
simplest and fastest Alexander for tangles,
easily generalizes to the multi-variable
case, generalizes to v-tangles and w-
tangles, generalizes to other Lie algebras.
In fact, it’s in almost any Lie algebra,
and you don’t even need to know what
is gl(1|1)! But you’ll have to deal with
denominators and/or divisions!

Packaging. Write Opx

(
ω−1

e
qi j pi x j

)
as

Ep1,...,x1,...[ω,Q]↔
ω x1 x2 · · ·
p1 q11 q12 · · ·
p2 q21 q22 · · ·
...

...
...

. . .

The “First Tangle”. Z(K) =

E12

[
2T−1

T , (T−1)(p1−p2)(T x1−x2)
2T−1

]

=

2−T−1 x1 x2

p1
T (T−1)
2T−1

1−T
2T−1

p2
T (1−T )
2T−1

T−1
2T−1

Theorem 2. Z(K) = Opx

(
ω−1

e
qi j pi x j

)
where

ω and the qi j are rational functions in T = e
t.

In fact ω and ωqi j are Laurent polynomials
(categorify us!). When K is a long knot, ω
is the Alexander polynomial.

Note. Example 1! Example 2 via g ↪→ h(t)
via (y, b, a, x) 7→ (−tp, t, px, x).

ωεβBhttp://drorbn.net/cat20/

Thanks for inviting me to speak in my basement!
The Alexander Polynomial is a Quantum Invariant in a Different Way
Dror Bar-Natan: Talks: LearningSeminarOnCategorification-2006:

a tangle w/o
closed components

the “i over j”
linking numbers

“normal ordering”
at ybax order

QL

,
t

K1K2K1 K2

have a hidden parameter ε!

a docile perturbation for other
Lie algebras; semisimple algebras

“stitching”

i j

K
mi j

k

k

K

categorify us!
scalars

van der Veen
With Roland

(integers)

the Alexander poly ∆(T )
a scalar; if K is a long knot,

categorify me!

Continues
Lev Rozansky

Generated by {!,"}!

There’s also strand doubling and reversal. . .

Gentle’s Agreement.
Everything converges!

1 2

K

C−1

ai bi
ā j

b̄ j

āk b̄k

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/
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The PBW Principle Lots of algebras are isomorphic as vector
spaces to polynomial algebras. So we want to understand arbi-
trary linear maps between polynomial algebras.
Convention. For a finite set A, let zA B {zi}i∈A and let
ζA B {z∗i = ζi}i∈A. (p, x)∗ = (π, ξ)
The Generating Series G : Hom(Q[zA]→Q[zB])→ Q~ζA, zB�.
Claim. L ∈ Hom(Q[zA]→ Q[zB]) ∼−→

G
Q[zB]~ζA� 3 L via

G(L) B
∑

n∈NA

ζn
A

n!
L(zn

A) = L
(
e

∑
a∈A ζaza

)
= L = Lgreek latin,

G−1(L)(p) =
(

p|za→∂ζa L
)
ζa=0

for p ∈ Q[zA].
Claim. If L ∈ Hom(Q[zA] → Q[zB]), M ∈ Hom(Q[zB] →
Q[zC]), then G(L�M) =

(
G(L)|zb→∂ζbG(M)

)
ζb=0

.

Examples. • G(id : Q[p, x]→ Q[p, x]) = e
πp+ξx.

• Consider Ri j ∈ (hi ⊗ h j)~t� � Hom
(
Q[]→ Q[pi, xi, p j, x j]

)
~t�.

Then G(Ri j) = e
(et−1)(pi−p j)x j = e

(T−1)(pi−p j)x j .

Heisenberg Algebras. Let h = A〈p, x〉/([p, x] = 1), let
Oi : Q[pi, xi]→ hi is the “p before x” PBW normal ordering map
and let hmi j

k be the composition

Q[pi, xi, p j, x j]
Oi⊗O j−−−−−→ hi ⊗ h j

mi j
k−−−−−→ hk

O−1
k−−−−−→ Q[pk, xk].

Then G(hmi j
k ) = e

−ξiπ j+(πi+π j)pk+(ξi+ξ j)xk .
Proof. Recall the “Weyl CCR” eξx

e
πp = e

−ξπ
e
πp
e
ξx, and find

G(hmi j
k ) = e

πi pi+ξi xi+π j p j+ξ j x j�Oi ⊗ O j�mi j
k �O−1

k

= e
πi pi

e
ξi xi

e
π j p j

e
ξ j x j�mi j

k �O−1
k = e

πi pk
e
ξi xk

e
π j pk

e
ξ j xk�O−1

k

= e
−ξiπ j

e
(πi+π j)pk

e
(ξi+ξ j)xk�O−1

k = e
−ξiπ j+(πi+π j)pk+(ξi+ξ j)xk .

GDO B The category with objects finite sets and
mor(A→ B) =

{
L = ωeQ

}
⊂ Q~ζA, zB�,

where: • ω is a scalar. • Q is a “small” quadratic in ζA ∪ zB.
• Compositions: L�M B

(
L|zi→∂ζiM

)
ζi=0

.

R. Feynman

Compositions. In mor(A→B),

Q =
∑

i∈A, j∈B

Ei jζiz j +
1
2

∑

i, j∈A

Fi jζiζ j +
1
2

∑

i, j∈B

Gi jziz j,

and so (remember, ex = 1 + x + xx/2 + xxx/6 + . . .)
CA

E

ω

Q

greek latin

F G

BA ω1

Q1

greek latin

E1

� =

CB

E2

ω2

Q2

greek latin

F1 G1 F2 G2

E1E2 + E1F2G1E2

+E1F2G1F2G1E2

+ . . .

=
∞∑

r=0
E1(F2G1)rE2

where • E = E1(I−F2G1)−1E2 • F = F1 + E1F2(I −G1F2)−1ET
1

• G = G2 + ET
2 G1(I − F2G1)−1E2 • ω = ω1ω2 det(I − F2G1)−1/2

Proof of Claim in Example 2. Let Φ1 B e
t(pi−p j)x j and

Φ2 B Op j x j

(
e

(et−1)(pi−p j)x j
)
C O(Ψ). We show that Φ1 = Φ2 in

(hi⊗h j)~t� by showing that both solve the ODE ∂tΦ = (pi−p j)x jΦ

with Φ|t=0 = 1. For Φ1 this is trivial. Φ2|t=0 = 1 is trivial, and
∂tΦ2 = O(∂tΨ) = O(et(pi − p j)x jΨ)

(pi−p j)x jΦ2 = (pi−p j)x jO(Ψ) = (pi−p j)O(x jΨ − ∂p jΨ)

= O
(
(pi−p j)(x jΨ + (et − 1)x jΨ)

)
= O(et(pi−p j)x jΨ) �

Implementation. Without, don’t trust!

CF = ExpandNumerator@*ExpandDenominator@*PowerExpand@*Factor;

A1_→B1_[ω1_, Q1_] A2_→B2_[ω2_, Q2_] ^:= A1⋃A2→B1⋃B2[ω1 ω2, Q1 + Q2]

(A1_→B1_[ω1_, Q1_] // A2_→B2_[ω2_, Q2_]) /; (B1* === A2) :=

Module{i, j, E1, F1, G1, E2, F2, G2, I, M = Table},

I = IdentityMatrix@Length@B1;

E1 = M[∂i,jQ1, {i, A1}, {j, B1}]; E2 = M[∂i,jQ2, {i, A2}, {j, B2}];

F1 = M[∂i,jQ1, {i, A1}, {j, A1}]; F2 = M[∂i,jQ2, {i, A2}, {j, A2}];

G1 = M[∂i,jQ1, {i, B1}, {j, B1}]; G2 = M[∂i,jQ2, {i, B2}, {j, B2}];

A1→B2CFω1 ω2 Det[I - F2.G1]1/2, CF@Plus

If[A1 === {} ∨ B2 === {}, 0, A1.E1.Inverse[I - F2.G1].E2.B2],

IfA1 === {}, 0,
1

2
A1.F1 + E1.F2.Inverse[I - G1.F2].E1.A1,

IfB2 === {}, 0,
1

2
B2.G2 + E2.G1.Inverse[I - F2.G1].E2.B2

A_∖B_ := Complement[A, B];

(A1_→B1_[ω1_, Q1_] // A2_→B2_[ω2_, Q2_]) /; (B1* =!= A2) :=

A1⋃A2B1*→B1⋃A2*[ω1, Q1 + Sum[ζ* ζ, {ζ, A2∖B1*}]] //

B1*⋃A2→B2⋃B1A2*[ω2, Q2 + Sum[z* z, {z, B1∖A2*}]]

{p*, x*, π*, ξ*} = {π, ξ, p, x}; (u_i_)
* := (u*)i;

l_List* := #* & /@ l;

Ri_,j_ := {}→pi,xi,pj,xj
T-1/2, (1 - T) pj xj + (T - 1) pi xj;

Ri_,j_ := {}→pi,xi,pj,xj
T1/2, 1 - T-1 pj xj + T-1 - 1 pi xj;

Ci_ := {}→{pi,xi}
T-1/2, 0;

Ci_ := {}→{pi,xi}
T1/2, 0;

hmi_,j_→k_ := πi,ξi,πj,ξj→{pk,xk}
[1, -ξi πj + (πi + πj) pk + (ξi + ξj) xk]

{}→vs_[ωi_, Q_] := Module[{ps, xs, M},

ps = Cases[vs, p_]; xs = Cases[vs, x_];

M = Table[ωi, 1 + Length@ps, 1 + Length@xs];

M〚2 ;;, 2 ;;〛 = Table[CF[∂i,jQ], {i, ps}, {j, xs}];

M〚2 ;;, 1〛 = ps; M〚1, 2 ;;〛 = xs;

MatrixForm[M]]

=

1 2

3 1

2 3

65

4

4 5
6

Proof of Reidemeister 3.
(R1,2 R4,3 R5,6 // hm1,4→1 hm2,5→2 hm3,6→3) ==

(R2,3 R1,6 R4,5 // hm1,4→1 hm2,5→2 hm3,6→3)

True �
The “First Tangle”.
Factor /@

z = R1,6 C3 R7,4 R5,2 // hm1,3→1 // hm1,4→1 // hm1,5→1 // hm1,6→1 // hm2,7→2

{}→{p1,p2,x1,x2}
-1 + 2 T

T
,

(-1 + T) (p1 - p2) (T x1 - x2)

-1 + 2 T


1
2

3
4
56

7
z

-1+2 T

T
x1 x2

p1
-T+T2

-1+2 T

1-T

-1+2 T

p2
T-T2

-1+2 T

-1+T

-1+2 T 

4

16

1
12

2
7

3
8 11

56
13

9
15

10
14

The knot 817.
z = R12,1 R27 R83 R4,11 R16,5 R6,13 R14,9 R10,15;

Table[z = z // hm1k→1, {k, 2, 16}] // Last

{}→{p1,x1}
1 - 4 T + 8 T2 - 11 T3 + 8 T4 - 4 T5 + T6

T3
, 0

Proof of Theorem 3, (3).

 γ1 = {}→{p1,x1,p2,x2,p3,x3}ω, {p1, p2, p3}.
α β θ
γ δ ϵ
ϕ ψ Ξ

.{x1, x2, x3}



,

(γ1 // hm1,2→0)



ω x1 x2 x3
p1 α β θ
p2 γ δ ϵ
p3 ϕ ψ Ξ 

,

ω + γ ω x0 x3
p0

α+β+γ+β γ+δ-α δ

1+γ

ϵ-α ϵ+θ+γ θ

1+γ

p3
ϕ-δ ϕ+ψ+γ ψ

1+γ

Ξ+γ Ξ-ϵ ϕ

1+γ 



�
References. On ωεβ=http://drorbn.net/cat20
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/TrendsInLDT-2005//
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Dror Bar-Natan: Talks: Toronto-1912:
Chord Diagrams, Knots, and Lie Algebras

Thanks for inviting me to the Chord Diagrams
Everywhere session / Winter 2019 CMS meeting!
ωεβBhttp://drorbn.net/to19

Abstract. This will be a service talk on ancient mate-
rial — I will briefly describe how the exact same type of
chord diagrams (and relations between them) occur in a
natural way in both knot theory and in the theory of Lie
algebras.

While preparing for this talk I realized that I’ve done it
before, much better, within a book review. So here’s that
review! It has been modified from its original version:
it had been formatted to fit this page, parts were high-
lighted, and commentary had been added in green italics.

0

i

−i

0

1

2
Y=

[X,Y]=Z
[Y,Z]=X
[Z,X]=Y

An

Bn

Cn

Dn

A knot and a Lie algebra, a list of knots and a list of Lie
algebras, and an unusual conference of the symmetric and
the knotted.

[Book] Introduction to Vassiliev
Knot Invariants, by S. Chmutov, S.
Duzhin, and J. Mostovoy, Cambridge
University Press, Cambridge UK,
2012, xvi+504 pp., hardback, $70.00,
ISBN 978-1-10702-083-2.

Merely��30 36 years ago, if you had
asked even the best informed math-
ematician about the relationship be-
tween knots and Lie algebras, she
would have laughed, for there isn’t
and there can’t be. Knots are flexi-
ble; Lie algebras are rigid. Knots are
irregular; Lie algebras are symmet-
ric. The list of knots is a lengthy
mess; the collection of Lie algebras
is well-organized. Knots are useful
for sailors, scouts, and hangmen; Lie
algebras for navigators, engineers, and high energy physicists. Knots are blue collar; Lie algebras are white. They
are as similar as worms and crystals: both well-studied, but hardly ever together.

Then in the 1980s came Jones, and Witten, and
Reshetikhin and Turaev [Jo, Wi, RT] and showed that
if you really are the best informed, and you know
your quantum field theory and conformal field theory
and quantum groups, then you know that the two dis-
joint fields are in fact intricately related. This “quan-
tum” approach remains the most powerful way to get
computable knot invariants out of (certain) Lie algebras
(and representations thereof). Yet shortly later, in the
late 80s and early 90s, an alternative perspective arose,
that of “finite-type” or “Vassiliev-Goussarov” invariants
[Va1, Va2, Go1, Go2, BL, Ko1, Ko2, BN1], which made
the surprising relationship between knots and Lie alge-
bras appear simple and almost inevitable.

The reviewed [Book] is about that alternative perspec-
tive, the one reasonable sounding but not entirely trivial
theorem that is crucially needed within it (the “Funda-
mental Theorem” or the “Kontsevich integral”), and the

many threads that begin with that perspective. Let me
start with a brief summary of the mathematics, and even
before, an even briefer summary.

In briefest, a certain spaceA of chord diagrams is the
dual to the dual of the space of knots, and at the same
time, it is dual to Lie algebras.

The briefer summary is that in some combinatorial
sense it is possible to “differentiate” knot invariants, and
hence it makes sense to talk about “polynomials” on
the space of knots — these are functions on the set of
knots (namely, these are knot invariants) whose suffi-
ciently high derivatives vanish. Such polynomials can
be fairly conjectured to separate knots — elsewhere in
math in lucky cases polynomials separate points, and in
our case, specific computations are encouraging. Also,
such polynomials are determined by their “coefficients”,
and each of these, by the one-side-easy “Fundamental
Theorem”, is a linear functional on some finite space of

2010 Mathematics Subject Classification. Primary 57M25.
Published Bull. Amer. Math. Soc. 50 (2013) 685–690. TEX at http://drorbn.net/AcademicPensieve/2013-01/CDMReview/,

copyleft at http://www.math.toronto.edu/~drorbn/Copyleft/. This review was written while I was a guest at the Newton Institute,
in Cambridge, UK. I wish to thank N. Bar-Natan, I. Halacheva, and P. Lee for comments and suggestions.
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2

graphs modulo relations. These same graphs turn out to
parameterize formulas that make sense in a wide class of
Lie algebras, and the said relations match exactly with
the relations in the definition of a Lie algebra — anti-
symmetry and the Jacobi identity. Hence what is more
or less dual to knots (invariants), is also, after passing to
the coefficients, dual to certain graphs which are more or
less dual to Lie algebras. QED, and on to the less brief
summary1.

Let V be an arbitrary invariant of oriented knots in ori-
ented space with values in (say) Q. Extend V to be an
invariant of 1-singular knots, knots that have a single sin-

gularity that locally looks like a double point , using
the formula

(1) V( ) = V(!) − V(").

Further extend V to the setKm of m-singular knots (knots
with m such double points) by repeatedly using (1).
Definition 1. We say that V is of type m (or “Vassiliev of
type m”) if its extension V |Km+1 to (m + 1)-singular knots
vanishes identically. We say that V is of finite type (or
“Vassiliev”) if it is of type m for some m.

Repeated differences are similar to repeated derivatives
and hence it is fair to think of the definition of V |Km as
repeated differentiation. With this in mind, the above
definition imitates the definition of polynomials of de-
gree m. Hence finite type invariants can be thought of
as “polynomials” on the space of knots2. It is known
(see e.g. [Book]) that the class of finite type invariants
is large and powerful. Yet the first question on finite type
invariants remains unanswered:
Problem 2. Honest polynomials are dense in the space
of functions. Are finite type invariants dense within the
space of all knot invariants? Do they separate knots?

The top derivatives of a multi-variable polynomial
form a system of constants that determine that polyno-
mial up to polynomials of lower degree. Likewise the

mth derivative3 V (m) = V |Km = V
(
 

m· · · 
)

of a type m
invariant V is a constant in the sense that it does not see
the difference between overcrossings and undercrossings
and so it is blind to 3D topology. Indeed

V
(
 

m· · · !
)
−V

(
 

m· · · "
)

= V
(
 

m+1· · · 
)

= 0.

Also, clearly V (m) determines V up to invariants of
lower type. Hence a primary tool in the study of finite

type invariants is the study of the “top derivative” V (m),
also known as “the weight system of V”.

4 3

2
1

2

4

3

1

Blind to 3D topol-
ogy, V (m) only sees the
combinatorics of the
circle that parameter-
izes an m-singular knot.
On this circle there are m pairs of points that are pairwise
identified in the image; standardly one indicates those by
drawing a circle with m chords marked (an “m-chord di-
agram”) as above. Let Dm denote the space of all formal
linear combinations with rational coefficients of m-chord
diagrams. Thus V (m) is a linear functional onDm.

I leave it for the reader to figure out or read in [Book,
pp. 88] how the following figure easily implies the “4T”
relations of the “easy side” of the theorem that follows:

0= =

Theorem 3. (The Fundamental Theorem, details in
[Book]).
• (Easy side)

If V is a
rational val-
ued type m invariant then V (m) satisfies the “4T” rela-
tions shown above, and hence it descends to a linear
functional on Am := Dm/4T. If in addition V (m) ≡ 0,
then V is of type m − 1.
• (Hard side, slightly misstated by avoiding “fram-

ings”) For any linear functional W on Am there is a
rational valued type m invariant V so that V (m) = W.

Thus to a large extent the study of finite type invariants
is reduced to the finite (though super-exponential in m)
algebraic study ofAm.

Much of the richness of finite type invariants stems
from their relationship with Lie algebras. Theorem 4
below suggests this relationship on an abstract level and
Theorem 5 makes that relationship concrete.

1Partially self-plagiarized from [BN2].
2Keep this apart from invariants of knots whose values are polynomials, such as the Alexander or the Jones polynomial. A posteriori

related, these are a priori entirely different.
3As common in the knot theory literature, in the formulas that follow a picture such as  m· · · ! indicates “some knot having m double

points and a further (right-handed) crossing”. Furthermore, when two such pictures appear within the same formula, it is to be understood
that the parts of the knots (or diagrams) involved outside of the displayed pictures are to be taken as the same.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/
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3

A Jacobi diagram in a circle

AS:

STU:

IHX:

+

-=

= -

=0

Theorem 4. [BN1] The space Am is isomorphic to the
space At

m generated by “Jacobi diagrams in a circle”
(chord diagrams that are also allowed to have oriented
internal trivalent vertices) that have exactly 2m vertices,
modulo the AS , S TU and IHX relations. See the figure
above.

The key to
the proof of
Theorem 4 is
the figure above, which shows that the 4T relation is a
consequence of two S TU relations. The rest is more or
less an exercise in induction.

Thinking of internal trivalent vertices as graphical
analogs of the Lie bracket, the AS relation becomes the
anti-commutativity of the bracket, S TU becomes the
equation [x, y] = xy − yx and IHX becomes the Jacobi
identity. This analogy is made concrete within the fol-
lowing construction, originally due to Penrose [Pe] and
to Cvitanović [Cv]. Given a finite dimensional metrized
Lie algebra g (e.g., any semi-simple Lie algebra) and
a finite-dimensional representation ρ : g→ End(V) of g,
choose an orthonormal basis4 {Xa}dim g

a=1 of g and some basis
{vα}dim V

α=1 of V , let fabc and rγaβ be the “structure constants”
defined by

fabc := 〈[Xa, Xb], Xc〉 and ρ(Xa)(vβ) =
∑

γ

rγaβvγ.

Now given a Jacobi diagram D label its circle-arcs with
Greek letters α, β, . . . , and its chords with Latin letters a,
b, . . . , and map it to a sum as suggested by the following
example:

α

c

a

b

γ β −→
∑

a,b,c,α,β,γ

fabcrβaγr
γ
bαrαcβ

(
internal vertices go to f ’s,
circle-vertices to r’s

)

Theorem 5. This construction is well defined, and the
basic properties of Lie algebras imply that it respects the
AS , S TU, and IHX relations. Therefore it defines a lin-
ear functional Wg,ρ : Am → Q, for any m.

The last assertion along with Theorem 3 show that as-
sociated with any g, ρ and m there is a weight system and

hence a knot invariant. Thus knots are indeed linked with
Lie algebras.

The above is of course merely a sketch of the beginning
of a long story. You can read the details, and some of the
rest, in [Book].

What I like about [Book]. Detailed, well thought out,
and carefully written. Lots of pictures! Many excel-
lent exercises! A complete discussion of “the algebra
of chord diagrams”. A nice discussion of the pairing of
diagrams with Lie algebras, including examples aplenty.
The discussion of the Kontsevich integral (meaning, the
proof of the hard side of Theorem 3) is terrific — detailed
and complete and full of pictures and examples, adding
a great deal to the original sources. The subject of “as-
sociators” is huge and worthy of its own book(s); yet in
as much as they are related to Vassiliev invariants, the
discussion in [Book] is excellent. A great many further
topics are touched — multiple ζ-values, the relationship
of the Hopf link with the Duflo isomorphism, intersec-
tion graphs and other combinatorial aspects of chord di-
agrams, Rozansky’s rationality conjecture, the Melvin-
Morton conjecture, braids, n-equivalence, etc.

For all these, I’d certainly recommend [Book] to any
newcomer to the subject of knot theory, starting with my
own students.

However, some proofs other than that of Theorem 3 are
repeated as they appear in original articles with only a su-
perficial touch-up, or are omitted altogether, thus missing
an opportunity to clarify some mysterious points. This in-
cludes Vogel’s construction of a non-Lie-algebra weight
system and the Goussarov-Polyak-Viro proof of the exis-
tence of “Gauss diagram formulas”.
What I wish there was in the book, but there isn’t.
The relationship with Chern-Simons theory, Feynman di-
agrams, and configuration space integrals, culminating in
an alternative (and more “3D”) proof of the Fundamental
Theorem. This is a major omission.
Why I hope there will be a continuation book, one
day. There’s much more to the story! There are finite
type invariants of 3-manifolds, and of certain classes of 2-
dimensional knots in R4, and of “virtual knots”, and they
each have their lovely yet non-obvious theories, and these
theories link with each other and with other branches of
Lie theory, algebra, topology, and quantum field theory.
Volume 2 is sorely needed.
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My talk yesterday: More Dror: ωεβ/talks

The Burau Representation of PvBn acts on Rn B
Z[t±1]n = R〈v1, . . . , vn〉 by

σi jvk = vk + δk j(t − 1)(v j − vi).
δ /: δi_,j_ := If[i ⩵ j, 1, 0];

Bi_,j_[ξ_] := ξ /. vk_ ⧴ vk + δk,j (t - 1) (vj - vi) // Expand

(bas3 = {v1, v2, v3}) // B1,2

{v1, v1 - t v1 + t v2, v3}

bas3 // B1,2 // B1,3 // B2,3
v1, v1 - t v1 + t v2, v1 - t v1 + t v2 - t2 v2 + t2 v3

bas3 // B2,3 // B1,3 // B1,2
v1, v1 - t v1 + t v2, v1 - t v1 + t v2 - t2 v2 + t2 v3

S n acts on Rn by permuting the vi so the Burau
representation extends to vBn and restricts to Bn.
With this, γi maps vi 7→ vi+1, vi+1 7→ tvi+(1−t)vi+1,
and otherwise vk 7→ vk.

· · · · · · · · ·

j i

· · · · · · · · ·

ji

The Turbo-Gassner Representation. With the same
R and V , TG acts on V ⊕ (Rn ⊗ V) ⊕ (S2V ⊗ V∗) =

R〈vk, vlk, uiu jwk〉 by
TGi_,j_[ξ_] := ξ /. 

vk_ ⧴ vk + δk,j ((ti - 1) (vj - vi) + vi,j - vi,i) +

δk,i (uj - ui) ui wj,

vl_,k_ ⧴ vl,k + (ti - 1)×

δk,j (vl,j - vl,i) + δl,i - δl,j ti
-1 tj

(uk + δk,j (ti - 1) (uj - ui)) ui wj,

uk_ ⧴ uk + δk,j (ti - 1) (uj - ui),

wk_ ⧴ wk + (δk,j - δk,i) ti
-1

- 1 wj // Expand

bas3 = v1, v2, v3, v1,1, v1,2, v1,3, v2,1, v2,2, v2,3, v3,1,

v3,2, v3,3, u1
2 w1, u1

2 w2, u1
2 w3, u1 u2 w1, u1 u2 w2, u1 u2 w3,

u1 u3 w1, u1 u3 w2, u1 u3 w3, u2
2 w1, u2

2 w2, u2
2 w3, u2 u3 w1,

u2 u3 w2, u2 u3 w3, u3
2 w1, u3

2 w2, u3
2 w3;

(bas3 // TG1,2 // TG1,3 // TG2,3) ⩵ (bas3 // TG2,3 // TG1,3 // TG1,2)

True Like Gassner, TG is also a representation of PBn.
I have no idea where it belongs!

Abstract. Which is better, an emphasis on where things happen
or on who are the participants? I can’t tell; there are advantages
and disadvantages either way. Yet much of quantum topology
seems to be heavily and unfairly biased in favour of geography.
Geographers care for placement; for them,
braids and tangles have ends at some distin-
guished points, hence they form categories
whose objects are the placements of these
points. For them, the basic operation is a binary “stacking of
tangles”. They are lead to monoidal categories, braided monoidal
categories, representation theory, and much or most of we call
“quantum topology”.
Identiters believe that strand ide-
ntity persists even if one crosses or
is being crossed. The key opera-
tion is a unary stitching operation
mab

c , and one is lead to study meta-monoids, meta-Hopf-algebras,
etc. See ωεβ/reg, ωεβ/kbh.

Geography: (better topology!)

GB B 〈γi〉
/(
γiγk = γkγi when |i − k| > 1

γiγi+1γi = γi+1γiγi+1

)
= B.

Identity: (captures quantum algebra!)

IB B 〈σi j〉
/(

σi jσkl = σklσi j when |{i, j, k, l}| = 4
σi jσikσ jk = σ jkσikσi j when |{i, j, k}| = 3

)
= PvB.

Theorem. Let S = {τ} be the symmetric group. Then vB is both

PvB o S � B ∗ S
/(
γiτ = τγ j when τi = j, τ(i + 1) = ( j + 1)

)

(and so PvB is “bigger” then B, and hence quantum algebra does-
n’t see topology very well).
Proof. Going left, γi 7→ σi,i+1(i i + 1). Going right, if i < j
map σi j 7→ ( j−1 j−2 . . . i)γ j−1(i i+1 . . . j) and if i > j use
σi j 7→ ( j j+1 . . . i)γ j(i i−1 . . . j+1).

ωεβ/code

vB views of σi j:

The Gold Standard is set by the “Γ-calculus” Alexan-
der formulas (ωεβ/mac). An S -component tangle T has

Γ(T ) ∈ RS × MS×S (RS ) =

{
ω S
S A

}
with RS B Z({Ta : a ∈ S }):

(
!a b, "b a

)
→

1 a b
a 1 1 − T±1

a
b 0 T±1

a

T1 t T2 →
ω1ω2 S 1 S 2

S 1 A1 0
S 2 0 A2

ω a b S
a α β θ
b γ δ ε
S φ ψ Ξ

mab
c−−−−−−−−−−−−→

Ta,Tb → Tc



(1 − β)ω c S
c γ + αδ

1−β ε + δθ
1−β

S φ +
αψ
1−β Ξ +

ψθ
1−β



The Gassner Representation of PvBn acts on V =

Rn B Z[t±1
1 , . . . , t±1

n ]n = R〈v1, . . . , vn〉 by
σi jvk = vk + δk j(ti − 1)(v j − vi).

Gi_,j_[ξ_] := ξ /. vk_ ⧴ vk + δk,j (ti - 1) (vj - vi) // Expand

(bas3 // G1,2 // G1,3 // G2,3) ⩵ (bas3 // G2,3 // G1,3 // G1,2)

True

S n acts on Rn by permuting the vi and the ti, so the Gassner re-
presentation extends to vBn and then restricts to Bn as a Z-linear
∞-dimensional representation. It then descends to PBn as a finite-
rank R-linear representation, with lengthy non-local formulas.
Geographers: Gassner is an obscure partial extension of Burau.
Identiters: Burau is a trivial silly reduction of Gassner.

T

S

T

S

a b

T

Werner
Burau

= =

i j k l i j k l i j k i j k

γ1 = γ2 = γ3 = . . .

2 31

x

Betty Jane
Gassner

deserves to
be more
famous

Adjoint-Gassner

Gassner motifs

With Roland
van der Veen

Dror Bar-Natan: Talks: Toronto-1912:

Geography vs. Identity
Thanks for inviting me to the Topology session!

ωεβBhttp://drorbn.net/to19/

c

T

mab
c

Braids.

My talk tomorrow, at the chord diagrams everywhere session:

Geography view:

so x is γ2.

Identity view:
At x strand 1 crosses strand 3, so x is σ13.

More Dror: ωεβ/talks

?

1

Picture credits: Rope from “The Project Gutenberg eBook, Knots, Splices and Rope Work, by A. Hyatt Verrill”, http://www.
gutenberg.org/files/13510/13510-h/13510-h.htm. Plane from NASA, http://www.grc.nasa.gov/WWW/k-12/airplane/
rotations.html.
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The Burau Representation of PvBn acts on Rn B
Z[t±1]n = R〈v1, . . . , vn〉 by

σi jvk = vk + δk j(t − 1)(v j − vi).
δ /: δi_,j_ := If[i ⩵ j, 1, 0];

Bi_,j_[ξ_] := ξ /. vk_ ⧴ vk + δk,j (t - 1) (vj - vi) // Expand

(bas3 = {v1, v2, v3}) // B1,2

{v1, v1 - t v1 + t v2, v3}

bas3 // B1,2 // B1,3 // B2,3
v1, v1 - t v1 + t v2, v1 - t v1 + t v2 - t2 v2 + t2 v3

bas3 // B2,3 // B1,3 // B1,2
v1, v1 - t v1 + t v2, v1 - t v1 + t v2 - t2 v2 + t2 v3

S n acts on Rn by permuting the vi so the Burau
representation extends to vBn and restricts to Bn.
With this, γi maps vi 7→ vi+1, vi+1 7→ tvi+(1−t)vi+1,
and otherwise vk 7→ vk.

· · · · · · · · ·

j i

· · · · · · · · ·

ji

The Turbo-Gassner Representation. With the same
R and V , TG acts on V ⊕ (Rn ⊗ V) ⊕ (S2V ⊗ V∗) =

R〈vk, vlk, uiu jwk〉 by
TGi_,j_[ξ_] := ξ /. 

vk_ ⧴ vk + δk,j ((ti - 1) (vj - vi) + vi,j - vi,i) +

δk,i (uj - ui) ui wj,

vl_,k_ ⧴ vl,k + (ti - 1)×

δk,j (vl,j - vl,i) + δl,i - δl,j ti
-1 tj

(uk + δk,j (ti - 1) (uj - ui)) ui wj,

uk_ ⧴ uk + δk,j (ti - 1) (uj - ui),

wk_ ⧴ wk + (δk,j - δk,i) ti
-1

- 1 wj // Expand

bas3 = v1, v2, v3, v1,1, v1,2, v1,3, v2,1, v2,2, v2,3, v3,1,

v3,2, v3,3, u1
2 w1, u1

2 w2, u1
2 w3, u1 u2 w1, u1 u2 w2, u1 u2 w3,

u1 u3 w1, u1 u3 w2, u1 u3 w3, u2
2 w1, u2

2 w2, u2
2 w3, u2 u3 w1,

u2 u3 w2, u2 u3 w3, u3
2 w1, u3

2 w2, u3
2 w3;

(bas3 // TG1,2 // TG1,3 // TG2,3) ⩵ (bas3 // TG2,3 // TG1,3 // TG1,2)

True Like Gassner, TG is also a representation of PBn.
I have no idea where it belongs!

Abstract. Which is better, an emphasis on where things happen
or on who are the participants? I can’t tell; there are advantages
and disadvantages either way. Yet much of quantum topology
seems to be heavily and unfairly biased in favour of geography.
Geographers care for placement; for them,
braids and tangles have ends at some distin-
guished points, hence they form categories
whose objects are the placements of these
points. For them, the basic operation is a binary “stacking of
tangles”. They are lead to monoidal categories, braided monoidal
categories, representation theory, and much or most of we call
“quantum topology”.
Identiters believe that strand ide-
ntity persists even if one crosses or
is being crossed. The key opera-
tion is a unary stitching operation
mab

c , and one is lead to study meta-monoids, meta-Hopf-algebras,
etc. See ωεβ/reg, ωεβ/kbh.

Geography: (better topology!)

GB B 〈γi〉
/(
γiγk = γkγi when |i − k| > 1

γiγi+1γi = γi+1γiγi+1

)
= B.

Identity: (captures quantum algebra!)

IB B 〈σi j〉
/(

σi jσkl = σklσi j when |{i, j, k, l}| = 4
σi jσikσ jk = σ jkσikσi j when |{i, j, k}| = 3

)
= PvB.

Theorem. Let S = {τ} be the symmetric group. Then vB is both

PvB o S � B ∗ S
/(
γiτ = τγ j when τi = j, τ(i + 1) = ( j + 1)

)

(and so PvB is “bigger” then B, and hence quantum algebra does-
n’t see topology very well).
Proof. Going left, γi 7→ σi,i+1(i i + 1). Going right, if i < j
map σi j 7→ ( j−1 j−2 . . . i)γ j−1(i i+1 . . . j) and if i > j use
σi j 7→ ( j j+1 . . . i)γ j(i i−1 . . . j+1).

ωεβ/code

vB views of σi j:

The Gold Standard is set by the “Γ-calculus” Alexan-
der formulas (ωεβ/mac). An S -component tangle T has

Γ(T ) ∈ RS × MS×S (RS ) =

{
ω S
S A

}
with RS B Z({Ta : a ∈ S }):

(
!a b, "b a

)
→

1 a b
a 1 1 − T±1

a
b 0 T±1

a

T1 t T2 →
ω1ω2 S 1 S 2

S 1 A1 0
S 2 0 A2

ω a b S
a α β θ
b γ δ ε
S φ ψ Ξ

mab
c−−−−−−−−−−−−→

Ta,Tb → Tc



(1 − β)ω c S
c γ + αδ

1−β ε + δθ
1−β

S φ +
αψ
1−β Ξ +

ψθ
1−β



The Gassner Representation of PvBn acts on V =

Rn B Z[t±1
1 , . . . , t±1

n ]n = R〈v1, . . . , vn〉 by
σi jvk = vk + δk j(ti − 1)(v j − vi).

Gi_,j_[ξ_] := ξ /. vk_ ⧴ vk + δk,j (ti - 1) (vj - vi) // Expand

(bas3 // G1,2 // G1,3 // G2,3) ⩵ (bas3 // G2,3 // G1,3 // G1,2)

True

S n acts on Rn by permuting the vi and the ti, so the Gassner re-
presentation extends to vBn and then restricts to Bn as a Z-linear
∞-dimensional representation. It then descends to PBn as a finite-
rank R-linear representation, with lengthy non-local formulas.
Geographers: Gassner is an obscure partial extension of Burau.
Identiters: Burau is a trivial silly reduction of Gassner.

T

S

T

S

a b

T

Werner
Burau

= =

i j k l i j k l i j k i j k

γ1 = γ2 = γ3 = . . .

2 31

x

Betty Jane
Gassner

deserves to
be more
famous

Adjoint-Gassner

Gassner motifs

With Roland
van der Veen

Dror Bar-Natan: Talks: Toronto-1912:

Geography vs. Identity
Thanks for inviting me to the Topology session!

ωεβBhttp://drorbn.net/to19/

c

T

mab
c

Braids.

My talk tomorrow, at the chord diagrams everywhere session:

Geography view:

so x is γ2.

Identity view:
At x strand 1 crosses strand 3, so x is σ13.

More Dror: ωεβ/talks

?

1
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Dror Bar-Natan: Talks: Columbia-191125:

Some Feynman Diagrams in Pure Algebra
With Roland
van der Veen

Thanks for allowing me in Columbia U!
ωεβBhttp://drorbn.net/co19/

Slides w/ no handout/URL should be banned!

Abstract. I will explain how the computation of compositions
of maps of a certain natural class, from one polynomial ring into
another, naturally leads to a certain composition operation of
quadratics and to Feynman diagrams. I will also explain, with
very little detail, how this is used in the construction of some
very well-behaved poly-time computable knot polynomials.
The PBW Principle Lots of algebras are isomorphic as vector
spaces to polynomial algebras. So we want to understand arbi-
trary linear maps between polynomial algebras.
Gentle Agreement. Everything converges!
Convention. For a finite set A, let zA B {zi}i∈A and let
ζA B {z∗i = ζi}i∈A. (y, b, a, x)∗ = (η, β, α, ξ)
The Generating Series G : Hom(Q[zA]→Q[zB])→ Q~ζA, zB�.
Claim. L ∈ Hom(Q[zA]→ Q[zB]) ∼−→

G
Q[zB]~ζA� 3 L via

G(L) B
∑

n∈NA

ζn
A

n!
L(zn

A) = L
(
e

∑
a∈A ζaza

)
= L = Lgreek latin,

G−1(L)(p) =
(

p|za→∂ζa L
)
ζa=0

for p ∈ Q[zA].
Claim. If L ∈ Hom(Q[zA] → Q[zB]), M ∈ Hom(Q[zB] →
Q[zC]), then G(L�M) =

(
G(L)|zb→∂ζbG(M)

)
ζb=0

.

Basic Examples. 1. G(id : Q[y, a, x]→ Q[y, a, x]) = e
ηy+αa+ξx.

Q[z]i ⊗ Q[z] j
mi j

k // Q[z]k

Q[zi, z j]
mi j

k // Q[zk]

2. The standard commutative prod-
uct mi j

k of polynomials is given by
zi, z j → zk. Hence G(mi j

k ) =

mi j
k (eζizi+ζ jz j) = e

(ζi+ζ j)zk .

Q[z]i
∆i

jk // Q[z] j ⊗ Q[z]k

Q[zi]
∆i

jk // Q[z j, zk]

3. The standard co-commutative co-
product ∆i

jk of polynomials is given
by zi → z j + zk. Hence G(∆i

jk) =

∆i
jk(eζizi) = e

ζi(z j+zk).

Heisenberg Algebras. Let H = 〈x, y〉/[x, y] = ~ (with ~ a
scalar), let Oi : Q[xi, yi] → Hi is the “x before y” PBW order-
ing map and let hmi j

k be the composition

Q[xi, yi, x j, y j]
Oi⊗O j−−−−−→ Hi ⊗ H j

mi j
k−−−−−→ Hk

O−1
k−−−−−→ Q[xk, yk].

ThenG(hmi j
k ) = e

Λ~ , where Λ~ = −~ηiξ j+(ξi+ξ j)xk +(ηi+η j)yk.
Proof 1. Recall the “Weyl form of the CCR” e

ηy
e
ξx =

e
−~ηξ

e
ξx
e
ηy, and compute

G(hmi j
k ) = e

ξi xi+ηiyi+ξ j x j+η jy j�Oi ⊗ O j�mi j
k �O−1

k

= e
ξi xi

e
ηiyi

e
ξ j x j

e
η jy j�mi j

k �O−1
k = e

ξi xk
e
ηiyk

e
ξ j xk

e
η jyk�O−1

k

= e
−~ηiξ j

e
(ξi+ξ j)xk

e
(ηi+η j)yk�O−1

k = e
Λ~ .

Proof 2. We compute in a faithful 3D representation ρ of H:
(ωεβ/hm)

x

=

0 1 0
0 0 0
0 0 0

, y

=

0 0 0
0 0 ℏ

0 0 0
, c

=

0 0 1
0 0 0
0 0 0

;

x

.y

- y

.x

⩵ ℏ c


, x


.c

⩵ c


.x

, y

.c

⩵ c


.y



{True, True, True}

Λ = -ℏ ηi ξj ck + (ξi + ξj) xk + (ηi + ηj) yk;

Simplify@With{ = MatrixExp},

x

ξi.y


ηi.x


ξj.y


ηj ⩵

x

∂xkΛ.y


∂ykΛ.c


∂ckΛ

True

A Real DoPeGDO Example (DoPeGDOBDocile Perturbed
Gaussian Differential Operators). Let slε2+

B L〈y, b, a, x〉 sub-
ject to [a, x] = x, [b, y] = −εy, [a, b] = 0, [a, y] = −y, [b, x] = εx,
and [x, y] = εa + b. So t B εa − b is central and if ∃ε−1,
slε2+

� sl2 ⊕ 〈t〉. Let CU B U(slε2+
), and let cmi j

k be the com-
position below, where Oi : Q[yi, bi, ai, xi] → CUi be the PBW
ordering map in the order ybax:

CUi ⊗CU j
mi j

k //CUk

Q[yi, bi, ai, xi, y j, b j, a j, x j]
cmi j

k //
Oi, j

OO

Q[yk, bk, ak, xk]
Ok

OO

Claim. Let (all brawn and no brains)

Λ =

(
ηi +

e−αi−εβiη j

1 + εη jξi

)
yk +

βi + β j +
log

(
1 + εη jξi

)

ε

 bk+

(
αi + α j + log

(
1 + εη jξi

))
ak +

(
e−α j−εβ jξi

1 + εη jξi
+ ξ j

)
xk

Then e
ηiyi+βibi+αiai+ξi xi+η jy j+β jb j+α ja j+ξ j x j�Oi, j�cmi j

k = e
Λ�Ok,

and hence G(cmi j
k ) = e

Λ.
Proof. We compute in a faithful 2D representation ρ of CU:

(ωεβ/sl2)
y

= 

0 0
ϵ 0

, b

= 

0 0
0 -ϵ

, a

= 

1 0
0 0

, x

= 

0 1
0 0

;

a

.x

- x

.a

⩵ x


, a


.y

- y

.a

⩵ -y


, b

.y

- y

.b

⩵ -ϵ y


,

b

.x

- x

.b

⩵ ϵ x


, x

.y

- y

.x

⩵ b


+ ϵ a




{True, True, True, True, True}

Simplify@With{ = MatrixExp},

ηi y

.βi b


.αi a


.ξi x


.ηj y


.βj b


.

αj a

.ξj x


 ⩵ y


∂ykΛ.b


∂bkΛ.a


∂akΛ.

x

∂xkΛ

True

Series[Λ, {ϵ, 0, 2}]

(ak (αi + αj) + yk (ηi + ⅇ
-αi ηj) +

bk (βi + βj + ηj ξi) + xk (ⅇ
-αj ξi + ξj)) +

ak ηj ξi -
1

2
bk ηj

2
ξi
2
- ⅇ

-αi yk ηj (βi + ηj ξi) -

ⅇ
-αj xk ξi (βj + ηj ξi) ϵ +

-
1

2
ak ηj

2
ξi
2
+
1

3
bk ηj

3
ξi
3
+
1

2
ⅇ
-αi yk ηj βi

2
+ 2 βi ηj ξi + 2 ηj

2
ξi
2
 +

1

2
ⅇ
-αj xk ξi βj

2
+ 2 βj ηj ξi + 2 ηj

2
ξi
2
 ϵ

2
+ O[ϵ]3

Note 1. If the lower half of the alphabet (a, b, α, β) is regarded
as constants, then Λ = C + Q +

∑
k≥1 ε

kP(k) is a docile perturbed
Gaussian relative to the upper half of the alphabet (x, y, ξ, η): C
is a scalar, Q is a quadratic, and deg P(k) ≤ 2k + 2.
Note 2. wt(x, y, ξ, η; a, b, α, β; ε) = (1, 1, 1, 1; 2, 0, 0, 2;−2).

Quadratic Casimirs. If t ∈ g ⊗ g is the quadratic Casimir of a
semi-simple Lie algebra g, then e

t, regarded by PBW as an ele-
ment of S⊗2 = Hom

(
S(g)⊗0 → S(g)⊗2

)
, has a latin-latin domi-

nant Gaussian factor. Likewise for R-matrices.

(Baby) DoPeGDO B The category with objects finite sets†1 and
mor(A→ B) =

{L = ω exp(Q + P)
} ⊂ Q~ζA, zB, ε�,

where: • ω is a scalar.†2 • Q is a “small” ε-free quadratic in
ζA ∪ zB.†3 • P is a “docile perturbation”: P =

∑
k≥1 ε

kP(k), where
deg P(k) ≤ 2k+2.†4 • Compositions:†6 L�M B

(
L|zi→∂ζiM

)
ζi=0

.

1Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/
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So What? If V is a representation, then V⊗n explodes as a func-
tion of n, while in DoPeGDO up to a fixed power of ε, the ranks
of mor(A→ B) grow polynomially as a function of |A| and |B|.
Compositions. In mor(A→B),

Q =
∑

i∈A, j∈B

Ei jζiz j +
1
2

∑

i, j∈A

Fi jζiζ j +
1
2

∑

i, j∈B

Gi jziz j,

and so (remember, ex = 1 + x + xx/2 + xxx/6 + . . .)
B C

E2

F2 G2

P2

ω2

Q2

A B

E1

F1 G1

P1

ω1

Q1

composition

greek latin greek latin greek latin

A C

E

F G

P

ω

Q E1E2 + E1F2G1E2

+E1F2G1F2G1E2

+ . . .

=
∞∑

r=0
E1(F2G1)rE2

1

1

2

2

2

where • E = E1(I − F2G1)−1E2.
• F = F1 + E1F2(I −G1F2)−1ET

1 .
• G = G2 + ET

2 G1(I − F2G1)−1E2.
• ω = ω1ω2 det(I − F2G1)−1.
• P is computed as the solution of a
messy PDE or using “connected Feyn-
man diagrams” (yet we’re still in pure
algebra!). Docility is preserved.

DoPeGDO Footnotes. Each variable has a “weight”∈ {0, 1, 2},
and always wt zi + wt ζi = 2.
†1. Really, “weight-graded finite sets” A = A0 t A1 t A2.
†2. Really, a power series in the weight-0 variables†5.
†3. The weight of Q must be 2, so it decomposes as Q =

Q20+Q11. The coefficients of Q20 are rational numbers while
the coefficients of Q11 may be weight-0 power series†5.

†4. Setting wt ε = −2, the weight of P is ≤ 2 (so the powers of
the weight-0 variables are not constrained)†5.

†5. In the knot-theoretic case, all weight-0 power series are ra-
tional functions of bounded degree in the exponentials of the
weight-0 variables.

†6. There’s also an obvious product
mor(A1 → B1)×mor(A2 → B2)→ mor(A1tA2 → B1tB2).

0
0
0
0

0

0
0
0

0
0

0

0

0
0
0

2

2

2

2

2

2

2

Analog. Solve
Ax = a, B(x)y = b

Full DoPeGDO. Compute com-
positions in two phases:
• A 1-1 phase over the ring of
power series in the weight-0 vari-
ables, in which the weight-2 vari-
ables are spectators.
• A (slightly modified) 2-0 phase
over Q, in which the weight-1
variables are spectators.

Questions. • Are there QFT precedents for “two-step Gaussian
integration”?
• In QFT, one saves even more by considering “one-particle-
irreducible” diagrams and “effective actions”. Does this mean
anything here?
• Understanding Hom(Q[zA]→ Q[zB]) seems like a good cause.
Can you find other applications for the technology here?


QU = U~(slε2+
) = A〈y, b, a, x〉~~� with [a, x] = x, [b, y] = −εy, [a, b] = 0,

[a, y] = −y, [b, x] = εx, and xy−qyx = (1−AB)/~, where q = e
~ε , A = e

−~εa,
and B = e

−~b. Also ∆(y, b, a, x) = (y1 + B1y2, b1 + b2, a1 + a2, x1 + A1 x2),
S (y, b, a, x) = (−B−1y,−b,−a,−A−1 x), and R =

∑
~ j+kykb j ⊗ a j xk/ j![k]q!.



Theorem. Everything of value regrading U = CU and/or its
quantization U = QU is DoPeGDO:

?

m : U ⊗ U→U ∆ : U→U ⊗ UC±1∈QU

cup cap

R∈QU ⊗ QU

S : U→U tr : U→U/wx=xw Φ∈CU⊗3 J∈CU ⊗CU

also Cartan’s θ, the Dequantizator, and more, and all of their
compositions.

4D Metrized Lie Algebras

us
the Abelian
algebra

solvable
algebras

Vassiliev

slε2+

algebras isomorphic
to sl2+ B sl2 + 1D

Solvable Approximation. In
sln, half is enough! Indeed
sln ⊕ an−1 = D(^, b, δ). Now
define slεn+ B D(^, b, εδ).
Schematically, this is [^,^] = ^,
[_,_] = ε_, and [^,_] =

_+ ε^. The same process works
for all semi-simple Lie algebras,
and at εk+1 = 0 always yields a
solvable Lie algebra.

b, δ

b(^) = b : ^ ⊗^→ ^

b(_) { δ : ^→ ^ ⊗^⊕ {{

Conclusion. There are lots of poly-time-computable well-
behaved near-Alexander knot invariants: • They extend to tan-
gles with appropriate multiplicative behaviour. • They have ca-
bling and strand reversal formulas. ωεβ/akt
The invariant for slε2+

/(ε2 = 0) (prior art: ωεβ/Ov) attains
2,883 distinct values on the 2,978 prime knots with ≤ 12 cross-
ings. HOMFLY-PT and Khovanov homology together attain
only 2,786 distinct values.

knot
diag

nt
k Alexander’s ω+ genus / ribbon

(ρ′1)+ unknotting # / amphi?
(ρ′2)+

knot
diag

nt
k Alexander’s ω+ genus / ribbon

(ρ′1)+ unknotting # / amphi?
(ρ′2)+

knot
diag

nt
k Alexander’s ω+ genus / ribbon

(ρ′1)+ unknotting # / amphi?
(ρ′2)+

0a
1 1 0 / 4

0 0 / 4

0

3a
1 T−1 1 / 8

T 1 / 8

3T 3−12T 2 +26T−38

4a
1 3−T 1 / 8

0 1 / 4

T 4−3T 3−15T 2 +74T−110
5a

1 T 2−T +1 2 / 8

2T 3+3T 2 / 8

5T 7−20T 6 +55T 5−120T 4 +217T 3−338T 2 +450T−510

5a
2 2T−3 1 / 8

5T−4 1 / 8

−10T 4 +120T 3−487T 2 +1054T−1362

6a
1 5−2T 1 / 4

T−4 1 / 8

14T 4−16T 3−293T 2 +1098T−1598
6a

2 −T 2+3T−3 2 / 8

T 3−4T 2+4T−4 1 / 8

3T 8−21T 7 +49T 6 +15T 5−433T 4 +1543T 3−3431T 2 +5482T−6410

6a
3 T 2−3T +5 2 / 8

0 1 / 4

4T 8−33T 7 +121T 6−203T 5−111T 4 +1499T 3−4210T 2 +7186T−8510

7a
1 T 3−T 2+T−1 3 / 8

3T 5+5T 3+6T 3 / 8

7T 11−28T 10 +77T 9−168T 8 +322T 7−560T 6 +891T 5−1310T 4 +

1777T 3−2238T 2 +2604T−2772

2Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/
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Abstract. This will be a very “light” talk: I will explain why
about 13 years ago, in order to have a say on some problems in
knot theory, I’ve set out to find tangle invariants with some nice
compositional properties. In other talks in Sydney (ωεβ/talks) I
have explained / will explain how such invariants were found -
though they are yet to be explored and utilized.

Strand Doubling and Reversal.
ω a S
a α θ
S φ Ξ

q∆a
bc−−−−−−→

µBTa−1
νBα−σa

Ta 7→TbTc



ω b c S
b (σa − αTa − νTc)/µ (Tb − 1)Tcν/µ (Tb − 1)Tcθ/µ
c (Tc − 1)ν/µ (α − σaTa − νTc)/µ (Tc − 1)θ/µ
S φ φ Ξ



dS a

yTa→T−1
a


αω/σa a S

a 1/α θ/α
S −φ/α (αΞ − φθ)/α



Where σ assigns to every a ∈ S a Laurent mono-
mial σa in {tb}b∈S subject to σ

(
!a b, "b a

)
= (a →

1, b → t±1
a ), σ(T1 t T2) = σ(T1) t σ(T2), and

σ�mab
c = (σ \ {a, b}) ∪ (c→ σaσb)|ta,tb→tc .

(v-)Tangles.

(meta-associativity:
mab

x �mxc
y = mbc

x �max
y )

(tangles are generated
by ! and ")

Genus. Every knot is the boundary of an orie-
ntable “Seifert Surface” (ωεβ/SS), and the least
of their genera is the “genus” of the knot.
Claim. The knots of genus ≤ 2 are precisely the
images of 4-component tangles via

A Bit about Ribbon Knots. A “ribbon knot” is a knot that can be
presented as the boundary of a disk that has “ribbon singularities”,
but no “clasp singularities”. A “slice knot” is a knot in S 3 = ∂B4

which is the boundary of a non-singular disk in B4. Every ribbon
knots is clearly slice, yet,
Conjecture. Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is always
of the form A(t) = f (t) f (1/t). (also for slice)

ωεβ/AlexDemo

Runs.Meta-Associativity

R3

Implementation key idea:
(ω, A = (αab))↔
(ω, λ =

∑
αabtahb)

Vo’s Thesis [Vo]. A proof of the Fox-Milnor theorem for
ribbon knots using this technology (and more).

Fact. Γ is better viewed as an invariant of
a certain class of 2D knotted objects in R4

[BND, BN].
Fact. Γ is the “0-loop” part of an inva-
riant that generalizes to “n-loops” (1D tangles
only, see further talks and future publications
with van der Veen).
Speculation. Stepping stones to categorifica-
tion?

Theorem. K is ribbon iff it is κT for a tangle T for which τT is
the untangle U.

Gompf, Schar-
lemann, Tho-
mpson [GST]

The Gold Standard is set by the “Γ-calculus” Alexan-
der formulas [BNS, BN]. An S -component tangle T has

Γ(T ) ∈ RS × MS×S (RS ) =

{
ω S
S A

}
with RS B Z({Ta : a ∈ S }):

(
!a b, "b a

)
→

1 a b
a 1 1 − T±1

a
b 0 T±1

a

T1 t T2 →
ω1ω2 S 1 S 2

S 1 A1 0
S 2 0 A2

ω a b S
a α β θ
b γ δ ε
S φ ψ Ξ

mab
c−−−−−−−−−−−−→

Ta,Tb → Tc



(1 − β)ω c S
c γ + αδ

1−β ε + δθ
1−β

S φ +
αψ
1−β Ξ +

ψθ
1−β



For long knots, ω is Alexander, and that’s the fastest
Alexander algorithm I know! Dunfield: 1000-crossing fast.

A2n

1 ∈ An

with R B
κ(τ−1(1))T2n

U ∈ Tn

z(K) ∈ R ⊆ A1ribbon K ∈ T1 Ask me about geography vs. identity!

Strand
doubling:

,

Strand
reversal:

T

a clasp singularity

TT T
U K

Dror Bar-Natan: Talks: Macquarie-191016:

Algebraic Knot Theory
ωεβBhttp://drorbn.net/mac19/

“stitching”

t
T1T2T1 T2

a b

T
mab

c

c

T

a
c
b a a∆a

bc S a

Robert Engman’s
“The Loop”

1
3

4
2

T

T

a ribbon singularity

example

. . . divide and conquer!

+ + + +

−−− −

M. Polyak & T. Ohtsuki
@ Heian Shrine, Kyoto

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org

τ κ

Faster is better, leaner is meaner!

z

κ

τ

κ

τ

817

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/
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Theorem. A knot K is ribbon iff there exists a tangle T whose 𝜏 closure is the untangle and whose 
κ closure is K.

Proof. The backward ⟸ implication is easy:

For the forward implication, follow the following 5 steps:

Step 5: Pulling bottom handles
avoiding the obstacles.
At end: Theorem is proven.

Step I: In-situ cosmetics.
At end: D is a tree of chord-and-arc polygons.

Step 2: Near-situ cosmetics.
At end: D is tree-band-sum of n unknotted disks.

Step 3: Slides.
At end: D is a linear-band-sum of n unknotted disks.

Step 4: Exposure!
The green domain is contractible - so it can be shrank,
moved at will (with the blue membrane following along),
and expanded back again.
At end: D has (n-1) exposed bridges which when turned,
make D a union of n unknotted disks.

Proof of the Tangle Characterization of Ribbon Knots

      

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/
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?

Theorem ([BG], conjectured [MM],
elucidated [Ro1]). Let Jd(K) be
the coloured Jones polynomial of K, in the d-dimensional
representation of sl2. Writing

(q1/2 − q−1/2)Jd(K)
qd/2 − q−d/2

∣∣∣∣∣∣
q=e~

=
∑

j,m≥0

a jm(K)d j~m,

“below diagonal” coefficients vanish, a jm(K) =

0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:(∑∞

m=0 amm(K)~m
)
· ω(K)(e~) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

Jd(K)(q) =
qd − q−d

(q − q−1)ω(K)(qd)

1 +

∞∑

k=1

(q − 1)kρk(K)(qd)
ω2k(K)(qd)

 .

Melvin,
Morton,
Garoufalidis

Abstract. I’ll explain what “everything around” means: classical
and quantum m, ∆, S , tr, R, C, and θ, as well as P, Φ, J, D,
and more, and all of their compositions. What DoPeGDO means:
the category of Docile Perturbed Gaussian Differential Operators.
And what slε2+

means: a solvable approximation of the semi-
simple Lie algebra sl2.

Knot theorists should rejoice because all this leads to very po-
werful and well-behaved poly-time-computable knot invariants.
Quantum algebraists should rejoice because it’s a realistic play-
ground for testing complicated equations and theories.

Cartan’s θ,
the

Dequantizator,
and more. . .

Conventions. 1. For a set A, let zA B {zi}i∈A and let
ζA B {z∗i = ζi}i∈A.†1 2. Everything converges!

DoPeGDO B The category with objects finite
sets†2 and mor(A→ B):{F = ω exp(Q + P)

} ⊂ Q~ζA, zB, ε�
Where: • ω is a scalar.†3 • Q is a “small” ε-free
quadratic in ζA ∪ zB.†4 • P is a “docile perturba-
tion”: P =

∑
k≥1 ε

kP(k), where deg P(k) ≤ 2k+2.†5

• Compositions:†6

F�G = G◦F B
(
G|ζi→∂zi

F
)

zi=0
=

(
F |zi→∂ζiG

)
ζi=0

.

Cool! (V∗)⊗Σ ⊗ V⊗S explodes; the ranks of qua-
dratics and bounded-degree polynomials grow
slowly!†7 Representation theory is over-rated!
Cool! How often do you see a computational to-
olbox so successful?

DoPeGDO Footnotes. †1. Each variable has a “weight”∈ {0, 1, 2}, and
always wt zi + wt ζi = 2.

†2. Really, “weight-graded finite sets” A = A0 t A1 t A2.
†3. Really, a power series in the weight-0 variables†9.
†4. The weight of Q must be 2, so it decomposes as Q = Q20 + Q11. The

coefficients of Q20 are rational numbers while the coefficients of Q11
may be weight-0 power series†9.

†5. Setting wt ε = −2, the weight of P is ≤ 2 (so the powers of the
weight-0 variables are not constrained†9).

†6. There’s also an obvious product
mor(A1 → B1) ×mor(A2 → B2)→ mor(A1 t A2 → B1 t B2).

†7. That is, if the weight-0 variables are ignored. Otherwise more care
is needed yet the conclusion remains.

†8. Hom(U⊗Σ → U⊗S ) { mor({ηi, βi, τi,αi, ξi}i∈Σ → {yi, bi, ti,ai, xi}i∈S ),
where wt(ηi, ξi, yi, xi) = 1 and wt(βi, τi,αi; bi, ti, ai) = (2, 2, 0; 0, 0, 2).

†9. For tangle invariants the wt-0 power series are always rational fu-
nctions in the exponentials of the wt-0 variables (for knots: just one
variable), with degrees bounded linearly by the crossing number.

Our Algebras. Let slε2+
B L〈y, b, a, x〉 subject to [a, x] = x,

[b, y] = −εy, [a, b] = 0, [a, y] = −y, [b, x] = εx, and [x, y] =

εa + b. So t B εa − b is central and if ∃ε−1, slε2+
/〈t〉 � sl2. ωεβ/oa

U is either CU = U(slε2+
)~~� or QU = U~(slε2+

) =

A〈y, b, a, x〉~~� with [a, x] = x, [b, y] = −εy, [a, b] = 0, [a, y] =

−y, [b, x] = εx, and xy − qyx = (1 − AB)/~, where q = e
~ε ,

A = e
−~εa, and B = e

−~b. Set also T = A−1B = e
~t.

The Quantum Leap. Also decree that in QU,
∆(y, b, a, x) = (y1 + B1y2, b1 + b2, a1 + a2, x1 + A1x2),

S (y, b, a, x) = (−B−1y,−b,−a,−A−1x),
and R =

∑
~ j+kykb j ⊗ a jxk/ j![k]q!.

Compositions (1).

Where • E = E1(I − F2G1)−1E2.
• F = F1 + E1F2(I −G1F2)−1ET

1 .
• G = G2 + ET

2 G1(I − F2G1)−1E2.
• ω = ω1ω2 det(I − F2G1)−1.
• P is computed using “connected Feyn-
man diagrams” or as the solution of a messy
PDE (yet we’re still in algebra!).

Mid-Talk Debts. •What is this good for in quantum algebra?
• In knot theory?
• How does the “inclusion” D : Hom(U⊗Σ → U⊗S ) {

DoPeGDO work?
• Proofs that everything around slε2+

really is DoPeGDO.
• Relations with prior art.
• The rest of the “compositions” story.

Less Abstract

D

Thanks for inviting me to UCLA!
ωεβBhttp://drorbn.net/la19/

More at ωεβ/talks

Dror Bar-Natan: Talks: UCLA-191101:

Everything around slε2+
is DoPeGDO. So what?
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Continues Rozansky [Ro1,
Ro2, Ro3] and Overbay [Ov],
joint with van der Veen [BV].

m : U ⊗ U→U

tr : U→U/wx=xw

Φ∈CU⊗3

∆ : U→U ⊗ U

R∈QU ⊗ QU

J∈CU ⊗CU

S : U→U

C±1∈QU

cup cap

†8

4D Metrized Lie Algebras

In mor(A→B), Q=
∑

i∈A, j∈B
Ei jζiz j+

1
2

∑
i, j∈A

Fi jζiζ j+
1
2

∑
i, j∈B

Gi jziz j

composition � One abstraction level
up from tangles!

{tangles} →
{ }

with compositions:

A B

E1

F1 G1

P1

ω1 B C

E2

F2 G2

P2

ω2 A C

E

F G

P

ω

greek latin

Q1 Q2 Q

us
the Abelian
algebra

solvable
algebras

Vassiliev

slε2+

algebras isomorphic
to sl2+ B sl2 + 1D

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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D : Hom(U⊗Σ → U⊗S ) → Q~ηΣ, βΣ, αΣ, ξΣ, yS , bS , aS , xS �. The
PBW theorem for CU (always in the ybax order), or its quantum
analog for QU, say that if U = CU or QU then U⊗S is isomor-
phic as a vector space to Q[yi, bi, ai, xi]i∈S ~~�; so it is enough to
understand Hom(Q[zA]→ Q[zB]) for finite sets A and B.
Claim. F ∈ Hom(Q[zA]→ Q[zB]) ∼−→

D
Q[zB]~ζA� 3 F via

D(F) B
∑

n∈NA

ζn
A

n!
F(zn

A) = F
(
e

∑
a∈A ζaza

)
= F ,

D−1(F )(p) =
(

p|za→∂ζa F
)
ζa=0

for p ∈ Q[zA].
Claim. Assuming convergence, if F ∈ Hom(Q[zA] → Q[zB]),
G ∈ Hom(Q[zB]→ Q[zC]), F = D(F), and G = D(G), then

D(F�G) =
(
F |zi→∂ζiG

)
ζi=0

.

And so the title of the talk finally makes sense!

Example. D(id : U → U) = e
ηy+βb+αa+ξx.

Example. Let c∆i
jk : CU⊗{i} → CU⊗{ j,k} be the standard co-

product, given by c∆i
jk(yi, bi, ai, xi) = (y j +yk, b j +bk, a j +ak, x j +

xk). Then

D(c∆i
jk) = c∆i

jk(eηiyi+βibi+αiai+ξi xi)

= e
ηi(y j+yk)+βi(b j+bk)+αi(a j+ak)+ξi(x j+xk).

Q[z]i ⊗ Q[z] j
mi j

k // Q[z]k

Q[zi, z j]
mi j

k // Q[zk]

Example. The standard commutati-
ve product mi j

k of polynomials is gi-
ven by zi, z j → zk. Hence D(mi j

k ) =

mi j
k (eζizi+ζ jz j) = e

(ζi+ζ j)zk .

A real DoPeGDO Example. Let cmi j
k : CUi ⊗ CU j → CUk be

“classical multiplication” for slε2+
, and let Oi : Q[yi, bi, ai, xi] →

CUi be the PBW ordering map.

CUi ⊗CU j
cmi j

k // CUk

Q[yi, bi, ai, xi, y j, b j, a j, x j]
Oi, j

OO

Q[yk, bk, ak, xk]
Ok

OO

Claim. Let (all brawn and no brains)

Λ =

(
ηi +

e−αi−εβiη j

1 + εη jξi

)
yk +

βi + β j +
log

(
1 + εη jξi

)

ε

 bk+

(
αi + α j + log

(
1 + εη jξi

))
ak +

(
e−α j−εβ jξi

1 + εη jξi
+ ξ j

)
xk

Then e
ηiyi+βibi+αiai+ξi xi+η jy j+β jb j+α ja j+ξ j x j�Oi, j�cmi j

k = e
Λ�Ok, and

henceD(cmi j
k ) = e

Λ and cmi j
k is DoPeGDO.

Proof. We compute in a faithful 2D representation z 7→ ẑ of CU:
(ωεβ/cm)

HL[ℰ_] := Style[ℰ, Background → If[TrueQ@ℰ, , ]];

y

= 

0 0
ϵ 0

, b

= 

0 0
0 -ϵ

, a

= 

1 0
0 0

, x

= 

0 1
0 0

;

HL /@ a

.x

- x

.a

⩵ x


, a


.y

- y

.a

⩵ -y


, b

.y

- y

.b

⩵ -ϵ y


,

b

.x

- x

.b

⩵ ϵ x


, x

.y

- y

.x

⩵ b


+ ϵ a




{True, True, True, True, True}

HL@Simplify@With{ = MatrixExp},

ηi y

.βi b


.αi a


.ξi x


.ηj y


.βj b


.

αj a

.ξj x


 ⩵ y


∂ykΛ.b


∂bkΛ.a


∂akΛ.

x

∂xkΛ

True

Series[Λ, {ϵ, 0, 1}]

(ak (αi + αj) + yk (ηi + ⅇ
-αi ηj) +

bk (βi + βj + ηj ξi) + xk (ⅇ
-αj ξi + ξj)) +

ak ηj ξi -
1

2
bk ηj

2
ξi
2
- ⅇ

-αi yk ηj (βi + ηj ξi) -

ⅇ
-αj xk ξi (βj + ηj ξi) ϵ + O[ϵ]2

(Shame, but this technique fails for QU).

Claim. In QU, R is DoPeGDO.
Proof. Recall that with q = e

~ε ,
R =

∑
~ j+kykb j ⊗ a jxk/ j![k]q! = O

(
e
~b1a2

e
~y1 x2
q

)
.

Now expand e
~y1 x2
q in powers of ε using:

Faddeev’s Formula (In as much as we can tell, first appea-
red without proof in Faddeev [Fa], rediscovered and proven
in Quesne [Qu], and again with easier proof, in Zagier [Za]).
With [n]q B

qn−1
q−1 , with [n]q! B [1]q[2]q · · · [n]q and with e

x
q B

∑
n≥0

xn

[n]q! , we have

log ex
q =

∑

k≥1

(1 − q)kxk

k(1 − qk)
= x +

(1 − q)2x2

2(1 − q2)
+ . . . .

Proof. We have that ex
q =

e
qx
q −ex

q
qx−x (“the q-derivative of e

x
q is

itself”), and hence eqx
q = (1 + (1 − q)x)ex

q, and
log eqx

q = log(1 + (1 − q)x) + log ex
q.

Writing log ex
q =

∑
k≥1 akxk and comparing powers of x, we get

qkak = −(1 − q)k/k + ak, or ak =
(1−q)k

k(1−qk) . �

Compositions (2). Recall that with all indices i running in some
set B,

F�G =
(
F |zi→∂ζiG

)
ζi=0

(1)
= e

∑
∂zi∂ζi (FG)

∣∣∣
zi=ζi=0 ,

(1) Strictly speaking,
true only when
B ∩ (A ∪C) = ∅.

so in general we wish to understand

[F : E]B B e

1
2
∑

i, j∈B Fi j∂zi∂z jE and 〈F : E〉B B [F : E]B|zB→0 ,

where E is a docile perturbed Gaussian. The following lemma
allows us to restrict to the case where E has no B-B quadratic
part:
Lemma 1. With convergences left to the reader,〈

F : E e 1
2
∑

i, j∈B Gi jziz j

〉

B
= det(1 −GF)−1/2

〈
F(1 −GF)−1 : E

〉
B
.

The next lemma dispatches the case where E has a B-linear part:
Lemma 2.

〈
F : E e

∑
i∈B yizi

〉
B

= e

1
2
∑

i, j∈B Fi jyiy j
〈
F : E|zB→zB+FyB

〉
B
.

Finally, we deal with the docile perturbation case:
Lemma 3. With an extra variable λ, Zλ B log[λF : eP]B satisfies
and is determined by the following PDE / IVP:

Z0 = P and ∂λZλ =
1
2

∑

i, j∈B

Fi j
(
∂zi∂z jZλ + (∂ziZλ)(∂z jZλ)

)
.

connected

diagrams

Zλ =

e
P

∑part-glue
log

y
y
y

E
Lemma 2

e
λF/2

e
F/2

e
G/2

E
Lemma 1

e
F/2

Lemma 3

Complexity to εk, for an n-xing width w knot (by [LT],
w ∈ O(

√
n)), is O(n2w2k+2 log n) = O(nk+3 log n) integer opera-

tions.

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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A Partial To Do List.
• Understand tr and links.
• Implement Φ, J. Determine the appropriate wt-0 ground ring.
• Implement the “dequantizators”.
• Understand denominators and get rid of them.
• Implement zipping at the log-level.
• Clean the program and make it efficient.
• Run it for all small knots and links, at k = 3, 4.
• Understand the centre and figure out how to read the output.
• Is the “+” really necessary in slε2+

? Why?
• Extend to sl3 and beyond.
• Describe a genus bound and a Seifert formula.
• Obtain “Gauss-Gassner formulas” (ωεβ/NCSU).
• Relate with the representation theory dogma, with Melvin-

Morton-Rozansky and with Rozansky-Overbay.

• Understand the braid group representations that arise.
• Relate with finite-type (Vassiliev) invariants.
• Find a topological interpretation/foundation. The Garoufalidis

- Rozansky “loop expansion” [GR]?
• Figure out the action of the Cartan automorphism.
• Understand “the subspace of classical knots / tangles”.
• Disprove the ribbon-slice conjecture!
• Figure out the action of the Weyl group.
• Use to study “Ševera quantization”.
• Do everything at the “arrow diagram” level of finite-type inva-

riants of (rotational) virtual tangles.
• Find “internal” proofs of consistency.
• What else can you do with the “solvable approximations”?
• And with the “Gaussian compositions” technology?

Warning. Some implementation details match earlier versions of
the theory.

P

exp

exp

y y y
η η η

q

exp

q q

ζ’s

z’s

The Zipping Theorem. If P has a
finite ζ-degree and q̃ is the inverse
matrix of 1 − q: (δi

j − qi
j)q̃

j
k = δi

k,
then〈

P(zi, ζ
j)ec+ηizi+y jζ

j+qi
jziζ

j
〉

= |q̃|ec+ηiq̃k
i yk

〈
P

(
q̃k

i (zk + yk), ζ j + ηiq̃ j
i

)〉
.

ωεβ/engineThe “Speedy” Engine
Internal Utilities
Canonical Form:
CCF[ℰ_] :=

PPCCF@ExpandDenominator@

ExpandNumerator@PPTogether@TogetherPPExp

Expand[ℰ] //. ⅇ
x_

ⅇ
y_

⧴ ⅇ
x+y

/. ⅇ
x_

⧴ ⅇ
CCF[x]

;

CF[ℰ_List] := CF /@ ℰ;

CF[sd_SeriesData] := MapAt[CF, sd, 3];

CF[ℰ_] := PPCF@Module[

{vs = Cases[ℰ, (y b t a x η β τ α ξ)_, ∞] ⋃

{y, b, t, a, x, η, β, τ, α, ξ}},

Total[CoefficientRules[Expand[ℰ], vs] /.

(ps_ → c_) ⧴ CCF[c] (Times @@ vsps)]

];

CF[ℰ_] := CF /@ ℰ;

CF[sp___[ℰs___]] := CF /@ sp[ℰs];

The Kronecker δ:
Kδ /: Kδi_,j_ := If[i === j, 1, 0];

Equality, multiplication, and degree-adjustment of 
perturbed Gaussians; [L, Q, P] stands for ⅇL+Q P:
 /: [L1_, Q1_, P1_] ≡ [L2_, Q2_, P2_] :=

CF[L1 ⩵ L2] ∧ CF[Q1 ⩵ Q2] ∧ CF[Normal[P1 - P2] ⩵ 0];

 /: [L1_, Q1_, P1_]×[L2_, Q2_, P2_] :=

[L1 + L2, Q1 + Q2, P1*P2];

[L_, Q_, P_]$k_ := [L, Q, Series[Normal@P, {ϵ, 0, $k}]];

Zip and Bind
Variables and their duals:

{t*, b*, y*, a*, x*, z*} = {τ, β, η, α, ξ, ζ};

{τ
*, β

*, η
*, α

*, ξ
*, ζ

*
} = {t, b, y, a, x, z};

(u_i_)
* := (u

*
)i;

Upper to lower and lower to Upper:

U2l = Bi_
p_.

⧴ ⅇ
-p ℏ γ bi, Bp_. ⧴ ⅇ

-p ℏ γ b, Ti_
p_.

⧴ ⅇ
p ℏ ti,

Tp_. ⧴ ⅇ
p ℏ t, i_

p_.
⧴ ⅇ

p γ αi, 
p_.

⧴ ⅇ
p γ α

;

l2U = ⅇ
c_. bi_+d_. ⧴ Bi

-c/(ℏ γ)
ⅇ
d, ⅇ

c_. b+d_.
⧴ B-c/(ℏ γ)

ⅇ
d,

ⅇ
c_. ti_+d_. ⧴ Ti

c/ℏ
ⅇ
d, ⅇ

c_. t+d_.
⧴ Tc/ℏ ⅇd,

ⅇ
c_. αi_+d_. ⧴ i

c/γ
ⅇ
d, ⅇ

c_. α+d_.
⧴ 

c/γ
ⅇ
d,

ⅇ
ℰ_

⧴ ⅇ
Expand@ℰ

;

Derivatives in the presence of exponentiated variables:

Db[f_] := ∂bf - ℏ γ B ∂Bf; Dbi_[f_] := ∂bi f - ℏ γ Bi ∂Bi f;

Dt[f_] := ∂tf + ℏ T ∂Tf; Dti_[f_] := ∂ti f + ℏ Ti ∂Ti f;

Dα[f_] := ∂αf + γ  ∂f; Dαi_[f_] := ∂αi
f + γ i ∂i

f;

Dv_[f_] := ∂vf; D{v_,0}[f_] := f; D{}[f_] := f;

Dv_,n_Integer[f_] := Dv[D{v,n-1}[f]];

Dl_List,ls___[f_] := Dls[Dl[f]];

Finite Zips:

collect[sd_SeriesData, ζ_] :=

MapAt[collect[#, ζ] &, sd, 3];

collect[ℰ_, ζ_] := PPCollect@Collect[ℰ, ζ];

Zip{}[P_] := P;

Zipζs_[Ps_List] := Zipζs /@ Ps;

Zip{ζ_,ζs___}[P_] := PPZip

collect[P // Zip{ζs}, ζ] /. f_. ζd_.
⧴ Dζ*,d[f] /.

ζ*
→ 0 /. ((ζ*

/. {b → B, t → T, α → }) → 1)

QZip implements the “Q-level zips” on (L, Q, P) = ⅇL+Q P(ϵ). 
Such zips regard the L variables as scalars.

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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QZipζs_List@[L_, Q_, P_] :=

PPQZip@Module[{ζ, z, zs, c, ys, ηs, qt, zrule, ζrule, out},

zs = Table[ζ*, {ζ, ζs}];

c = CF[Q /. Alternatives @@ (ζs ⋃ zs) → 0];

ys = CF@Table[∂ζ(Q /. Alternatives @@ zs → 0),

{ζ, ζs}];

ηs = CF@Table[∂z(Q /. Alternatives @@ ζs → 0), {z, zs}];

qt = CF@Inverse@Table[Kδz,ζ* - ∂z,ζQ, {ζ, ζs}, {z, zs}];

zrule = Thread[zs → CF[qt.(zs + ys)]];

ζrule = Thread[ζs → ζs + ηs.qt];

CF /@ [L, c + ηs.qt.ys,

Det[qt] Zipζs[P /. (zrule ⋃ ζrule)]] ];

LZip implements the “L-level zips” on (L, Q, P) = PⅇL+Q. Such zips 
regard all of PⅇQ as a single”P”. Here the z’s are b and α and the 
ζ’s are β and a.

LZipζs_List@[L_, Q_, P_] :=

PPLZip@Module{ζ, z, zs, Zs, c, ys, ηs, lt, zrule,

Zrule, ζrule, Q1, EEQ, EQ},

zs = Table[ζ*, {ζ, ζs}];

Zs = zs /. {b → B, t → T, α → };

c = L /. Alternatives @@ (ζs ⋃ zs) → 0 /.

Alternatives @@ Zs → 1;

ys = Table[∂ζ(L /. Alternatives @@ zs → 0), {ζ, ζs}];

ηs = Table[∂z(L /. Alternatives @@ ζs → 0), {z, zs}];

lt = Inverse@Table[Kδz,ζ* - ∂z,ζL, {ζ, ζs}, {z, zs}];

zrule = Thread[zs → lt.(zs + ys)];

Zrule = Join[zrule,

zrule /.

r_Rule ⧴ ((U = r〚1〛 /. {b → B, t → T, α → }) →

(U /. U2l /. r //. l2U))];

ζrule = Thread[ζs → ζs + ηs.lt];

Q1 = Q /. (Zrule ⋃ ζrule);

EEQ[ps___] :=

EEQ[ps] =

PP"EEQ"@CFⅇ
-Q1 DThread[{zs,{ps}}]ⅇ

Q1
 /.

{Alternatives @@ zs → 0, Alternatives @@ Zs → 1};

CF@[c + ηs.lt.ys,

Q1 /. {Alternatives @@ zs → 0, Alternatives @@ Zs → 1},

Det[lt]

(Zipζs[(EQ @@ zs) (P /. (Zrule ⋃ ζrule))] /.

Derivative[ps___][EQ][___] ⧴ EEQ[ps] /.

_EQ → 1) ] ;

B{}[L_, R_] := L R;

Bis__[L_, R_] := PPB@Module{n},

Times[

L /. Table[(v : b B t T a x y)i → vn@i,

{i, {is}}],

R /. Table[(v : β τ α  ξ η)i → vn@i, {i, {is}}]

] // LZipJoin@@Table{βn@i,τn@i,an@i},i,is //

QZipJoin@@Table{ξn@i,yn@i},i,is ;

Bis___[L_, R_] := Bis[L, R];

 morphisms with domain and range.

Bis_List[d1_→r1_[L1_, Q1_, P1_], d2_→r2_[L2_, Q2_, P2_]] :=

d1⋃Complementd2,is→r2⋃Complementr1,is @@

Bis[[L1, Q1, P1], [L2, Q2, P2]];

d1_→r1_[L1_, Q1_, P1_] // d2_→r2_[L2_, Q2_, P2_] :=

Br1⋂d2[d1→r1[L1, Q1, P1], d2→r2[L2, Q2, P2]];

d1_→r1_[L1_, Q1_, P1_] ≡ d2_→r2_[L2_, Q2_, P2_] ^:=

(d1 ⩵ d2) ∧ (r1 ⩵ r2) ∧ ([L1, Q1, P1] ≡ [L2, Q2, P2]);

d1_→r1_[L1_, Q1_, P1_] d2_→r2_[L2_, Q2_, P2_] ^:=

d1⋃d2→r1⋃r2 @@ ([L1, Q1, P1]×[L2, Q2, P2]);

dr_[L_, Q_, P_]$k_ := dr @@ [L, Q, P]$k;

_[ℰ___][i_] := {ℰ}〚i〛;

[Λ]
dr_[Λ_] :=

CF@Module{L, Λ0 = Limit[Λ, ϵ → 0]},

drL = Λ0 /. (η y ξ x)_ → 0, Λ0 - L, ⅇ
Λ-Λ0


$k

/. l2U

Exponentials as needed.
Task. Define  Expm,i,k[P] to compute ⅇ (P) to ϵk in the using the mi,i→i 
multiplication, where P is an ϵ-dependent near-docile element, 
giving the answer in -form.
Methodology. If P0 := Pϵ=0 and ⅇλ (P) = ⅇλP0 F(λ), then 

F(λ = 0) = 1 and we have:
ⅇλP0(P0 F(λ)+∂λF) = ∂λⅇ

λP0 F(λ) =

∂λⅇ
λP0 F(λ) = ∂λⅇ

λ (P) = ⅇλ (P)  (P) = ⅇλP0 F(λ)  (P)

.

This is a linear ODE for F. Setting inductively Fk = Fk-1 +ϵ
kφ we find 

that F0 = 1 and solve for φ.
(* Bug: The first line is valid only if ⅇP0⩵ⅇ(P0). *)

Expm_,i_,0[P_] := Module[{LQ = Normal@P /. ϵ → 0},

[LQ /. (x y)i → 0, LQ /. (b a t)i → 0, 1] ];

Expm_,i_,k_[P_] := Block{$k = k},

Module{P0, λ, φ, φs, F, j, rhs, eqn, pows, at0, atλ},

P0 = Normal@P /. ϵ → 0;

F = Normal@Last@Expm,i,k-1[λ P];

While

rhs =

mi,j→i

{}→i[λ P0 /. (x y)i → 0, λ P0 /. (b a t)i → 0,

F]k sσi→j@{}→i[0, 0, P]k // Last // Normal;

eqn = CF[(∂λF) + P0 F - rhs];

eqn =!= 0, (*do*)

pows = First /@ CoefficientRules[eqn, {yi, bi, ai, xi}];

F += Sumϵk φjs[λ] Times @@ {yi, bi, ai, xi}
js,

{js, pows};

rhs =

mi,j→i

{}→i[λ P0 /. (x y)i → 0, λ P0 /. (b a t)i → 0,

F]k sσi→j@{}→i[0, 0, P]k // Last // Normal;

eqn = CF[(∂λF) + P0 F - rhs];

φs = Table[φjs[λ], {js, pows}];

at0 = Table[φjs[0] ⩵ 0, {js, pows}];

atλ = (# ⩵ 0) & /@

(pows /. CoefficientRules[eqn, {yi, bi, ai, xi}]);

F = F /. DSolve[And @@ (at0 ⋃ atλ), φs, λ]〚1〛

;

{}→iP0 /. (x y)i → 0, P0 /. (b a t)i → 0,

F + O[ϵ]k+1 /. λ → 1 

“Define” Code

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
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Define[lhs = rhs, ...] defines the lhs to be rhs, except that rhs is 
computed only once for each value of $k. Fancy Mathematica not 
for the faint of heart. Most readers should ignore.
SetAttributes[Define, HoldAll];

Define[def_, defs__] := (Define[def]; Define[defs];);

Define[op_is__ = ℰ_] :=

Module{SD, ii, jj, kk, isp, nis, nisp, sis},

Block{i, j, k},

ReleaseHoldHold

SD[opnisp,$k_Integer, PPBoot@Block[{i, j, k}, opisp,$k = ℰ;

opnis,$k]];

SDopisp, opis,$k; SDopsis__, opsis;

 /. {SD → SetDelayed,

isp → {is} /. {i → i_, j → j_, k → k_},

nis → {is} /. {i → ii, j → jj, k → kk},

nisp → {is} /. {i → ii_, j → jj_, k → kk_}

} 

ωεβ/objectsThe Objects
Symmetric Algebra Objects
smi_,j_→k_ :=

i,j→k[bk (βi + βj) + tk (τi + τj) + ak (αi + αj) +

yk (ηi + ηj) + xk (ξi + ξj)];

sΔi_→j_,k_ :=

i→j,k[βi (bj + bk) + τi (tj + tk) + αi (aj + ak) +

ηi (yj + yk) + ξi (xj + xk)];

sSi_ := i→i[-βi bi - τi ti - αi ai - ηi yi - ξi xi];

sϵi_ := {}→i[0];

sηi_ := i→{}[0];

sσi_→j_ := i→j[βi bj + τi tj + αi aj + ηi yj + ξi xj];

sΥi_→j_,k_,l_,m_ := i→j,k,l,m[βi bk + τi tk + αi al + ηi yj + ξi xm];

The CU Definitions
cΛ = ηi +

ⅇ-γ αi-ϵ βi ηj

1 + γ ϵ ηj ξi
yk + βi + βj +

Log[1 + γ ϵ ηj ξi]

ϵ
bk +

αi + αj +
Log[1 + γ ϵ ηj ξi]

γ
ak +

ⅇ
-γ αj-ϵ βj ξi

1 + γ ϵ ηj ξi
+ ξj xk;

Definecmi,j→k = i,j→k[cΛ]

Define[cσi→j = sσi,j /. τi → 0, cϵi = sϵi, cηi = sηi,

cΔi→j,k = sΔi→j,k,

cSi = sSi // sΥi→1,2,3,4 // cm4,3→i // cmi,2→i // cmi,1→i];

Booting Up QU
Defineaσi→j = i→j[aj αi + xj ξi],

bσi→j = i→j[bj βi + yj ηi]

Defineami,j→k = i,j→k(αi + αj) ak + j
-1

ξi + ξj xk,

bmi,j→k = i,j→k(βi + βj) bk + ηi + ⅇ
- ϵ βi ηj yk

DefineRi,j = {}→i,jℏ aj bi + 

k=1

$k+1 1 - ⅇγ ϵ ℏ
k
(ℏ yi xj)

k

k 1 - ⅇk γ ϵ ℏ
,

Ri,j = CF@{}→i,j-ℏ aj bi, -ℏ xj yi /Bi,

1 + If$k ⩵ 0, 0, (Ri,j,$k-1)$k[3] -

(Ri,j,0)$k R1,2 (R{3,4},$k-1)$k // (bmi,1→i amj,2→j) //

(bmi,3→i amj,4→j)[3],

Pi,j = i,j→{}βi αj /ℏ, ηi ξj /ℏ,

1 + If$k ⩵ 0, 0, Pi,j,$k-1$k[3] -

R1,2 // P1,j,0$k Pi,2,$k-1$k[3]

DefineaSi = aσi→2 R1,i // P1,2,

aSi = i→i-ai αi, -xi i ξi,

1 + If$k ⩵ 0, 0, (aSi,$k-1)$k[3] -

(aSi,0)$k // aSi // (aSi,$k-1)$k[3]

DefinebSi = bσi→1 Ri,2 // aS2 // P1,2,

bSi = bσi→1 Ri,2 // aS2 // P1,2,

aΔi→j,k = (R1,j R2,k) // bm1,2→3 // P3,i,

bΔi→j,k = (Rj,1 Rk,2) // am1,2→3 // Pi,3

The Drinfel’d double:                

Define

dmi,j→k =

sΥi→4,4,1,1 // aΔ1→1,2 // aΔ2→2,3 // aS3

(sΥj→-1,-1,-4,-4 // bΔ-1→-1,-2 // bΔ-2→-2,-3) //

(P-1,3 P-3,1 am2,-4→k bm4,-2→k)

Definedσi→j = aσi→j bσi→j,

dϵi = sϵi, dηi = sηi,

dSi = sΥi→1,1,2,2 // bS1 aS2 // dm2,1→i,

dSi = sΥi→1,1,2,2 // bS1 aS2 // dm2,1→i,

dΔi→j,k = (bΔi→3,1 aΔi→2,4) // (dm3,4→k dm1,2→j)

DefineCi = {}→i0, 0, Bi
1/2

ⅇ
-ℏ ϵ ai/2

$k
,

Ci = {}→i0, 0, Bi
-1/2

ⅇ
ℏ ϵ ai/2

$k
,

Kinki = R1,3 C2 // dm1,2→1 // dm1,3→i,

Kinki = R1,3 C2 // dm1,2→1 // dm1,3→i

Note. t⩵ϵa-γb andb⩵ -t /γ+ϵa /γ.

Defineb2ti = i→i[αi ai + βi (ϵ ai - ti)/γ + ξi xi + ηi yi],

t2bi = i→i[αi ai + τi (ϵ ai - γ bi) + ξi xi + ηi yi]

The Knot Tensors

DefinekRi,j = Ri,j // (b2ti b2tj) /. ti j → t,

kRi,j = Ri,j // (b2ti b2tj) /. {ti j → t, Ti j → T},

kmi,j→k = (t2bi t2bj) // dmi,j→k //

b2tk /. {tk → t, Tk → T, τi j → 0},

kCi = Ci // b2ti /. Ti → T,

kCi = Ci // b2ti /. Ti → T,

kKinki = Kinki // b2ti /. {ti → t, Ti → T},

kKinki = Kinki // b2ti /. {ti → t, Ti → T}

Some of the Atoms. ωεβ/atoms

WithAi B e
αi and Bi = e

−bi ,

PP_ := Identity; $k = 1; ℏ = γ = 1;

Column[

(# → (ℰ = ToExpression[#];

Normal@Simplify[ℰ〚1〛 + ℰ〚2〛 + Log@ℰ〚3〛])) & /@

{"dmi,j→k", "dΔi→j,k", "dSi", "Ri,j", "Pi,j"}]

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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dmi,j→k → ak (αi + αj) + bk (βi + βj) + yk ηi +
yk ηj

i
+

xk ξi
j

+ ηj ξi -

Bk ηj ξi +
1

4 i j
ϵ 2 yk ηj (2 xk ξi + j (-2 βi + (1 - 3 Bk) ηj ξi)) +

i ξi xk (-4 βj + 2 (1 - 3 Bk) ηj ξi) +

j ηj 4 ak Bk + 1 - 4 Bk + 3 Bk
2 ηj ξi + xk ξj

dΔi→j,k → aj αi + ak αi + bj βi + bk βi + yj ηi + Bj yk ηi +

xj ξi + xk ξi +
1

2
ϵ Bj yj yk ηi

2 + xk ξi (-2 aj + xj ξi)

dSi → -ai αi - bi βi -
i (yi ηi+(-ηi+Bi (xi+ηi)) ξi)

Bi
-

1

4 Bi
2 ϵ i i ηi

2 2 yi
2 - 6 yi ξi + 3 ξi

2 + Bi
2 ξi 4 ai xi + 2 xi

2 i ξi +

2 xi (2 βi + i ηi ξi) + ηi (-4 + 4 βi + i ηi ξi) +

2 Bi ηi (yi (-2 + 2 βi + 2 xi i ξi + i ηi ξi) -

ξi (-2 + 2 ai + 2 βi + 3 xi i ξi + 2 i ηi ξi))

Ri,j → aj bi + xj yi -
1

4
ϵ xj

2 yi
2

Pi,j → αj βi + ηi ξj +
1

4
ϵ ηi

2 ξj
2

A Quantum Algebra Example. ωεβ/qa
Proto-Proposition†0 (with Jesse Frohlich and Roland van der Ve-
en, near [Ma, Proposition 1.7.3]). Let H be a finite dimensional
Hopf algebra and let U = H∗cop ⊗H be its Drinfel’d double, with
R-matrix R ∈ H∗ ⊗ H ⊂ U ⊗ U. Write R†1 =

∑
ρa ⊗ ra, and let

〈· | ·〉 : H∗ ⊗ H → F be the duality pairing. Then the functional∫
∈ U∗ defined by∫

φ ⊗ x B
∑
〈φρ†2a | xr†3a 〉

is a right†4 integral in U∗. (Meaning ∆i
jk�

∫
j =

∫
i�εk in

Hom(U⊗{i} → U⊗{k})).
†0 A “proto-proposition” is something that will become a proposition once you

figure out the correct statement. †1 Or did we want it to be R�S 2
1? Or R�S 2

2?

†2 Or is it ρaφ? †3 Or is it ra x? †4 Or maybe “left”?
inp = {}→{1}[3 a1 b1, 5 x1 y1, 1] // dmi,1→i;

Table[

HL@TrueQ[

(inp // (sΥi→1,1,2,2 RR) // BM // AM // P1,2 ) dϵj ≡

(inp // ΔΔ // (sΥi→1,1,2,2 RR) // BM // AM // P1,2)],

{ΔΔ, {dΔi→i,j, dΔi→j,i}}, {AM, {dm2,4→2, dm4,2→2}},

{BM, {dm1,3→1, dm3,1→1}},

{RR, {R3,4, R3,4 // dS3 // dS3, R3,4 // dS4 // dS4}}

] // MatrixForm


False False False
False False False

 
False False True
False False False




False False False
False False True

 
False False False
False False False



A Knot Theory Example. ωεβ/kt

$k = 2;

Simplify

R1,5 R6,2 R3,7 C4 Kink8 Kink9 Kink10 // dm1,2→1 // dm1,3→1 //

dm1,4→1 // dm1,5→1 // dm1,6→1 // dm1,7→1 // dm1,8→1 //

dm1,9→1 // dm1,10→1 /. v_1 ⧴ v

{}→{1}0, 0,
B

1 - B + B2
+

B -B + 2 B2 + 2 B4 + a -1 + B - B3 + B4 - 2 x y - B3 (3 + 2 x y) ϵ

1 - B + B23
+

1

2 1 - B + B25

B 4 B8 + a2 1 - B + B22 1 + B - 6 B2 + B3 + B4 + 6 B5 x2 y2 +

2 x y (-2 + 3 x y) - B7 (11 + 4 x y) - 2 B2 1 + 6 x2 y2 -

2 B4 1 - 2 x y + 6 x2 y2 + B 1 + 8 x y + 6 x2 y2 +

B6 6 + 8 x y + 6 x2 y2 + B3 4 + 4 x y + 30 x2 y2 +

2 a 1 - B + B2 2 B6 + 2 x y + 8 B3 (1 + x y) - 5 B2 (1 + 2 x y) -

2 B5 (1 + 2 x y) - B4 (7 + 2 x y) + B (2 + 4 x y) ϵ
2
+ O[ϵ]3
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KiW 43 Abstract (ωεβ/kiw). Whether or not you like the for-
mulas on this page, they describe the strongest truly computable
knot invariant we know.
Observations. • Separates the Rolfsen table; does better than

Khovanov plus HOMFLY-PT on knots with up to 12 crossings
(not tested beyond). • The degrees are bounded by the genus!
• ρ1 vanishes for amphichiral knots. • Has a chance of detecting
non-ribbonness (ωεβ/akt)!

knot
diag

nt
k Alexander’s ω+ genus / ribbon

(ρ′1)+ unknotting # / amphi?
(ρ′2)+

knot
diag

nt
k Alexander’s ω+ genus / ribbon

(ρ′1)+ unknotting # / amphi?
(ρ′2)+

knot
diag

nt
k Alexander’s ω+ genus / ribbon

(ρ′1)+ unknotting # / amphi?
(ρ′2)+

0a
1 1 0 / 4

0 0 / 4

0

3a
1 T−1 1 / 8

T 1 / 8

3T 3−12T 2 +26T−38

4a
1 3−T 1 / 8

0 1 / 4

T 4−3T 3−15T 2 +74T−110
5a

1 T 2−T +1 2 / 8

2T 3+3T 2 / 8

5T 7−20T 6 +55T 5−120T 4 +217T 3−338T 2 +450T−510

5a
2 2T−3 1 / 8

5T−4 1 / 8

−10T 4 +120T 3−487T 2 +1054T−1362

6a
1 5−2T 1 / 4

T−4 1 / 8

14T 4−16T 3−293T 2 +1098T−1598
6a

2 −T 2+3T−3 2 / 8

T 3−4T 2+4T−4 1 / 8

3T 8−21T 7 +49T 6 +15T 5−433T 4 +1543T 3−3431T 2 +5482T−6410

6a
3 T 2−3T +5 2 / 8

0 1 / 4

4T 8−33T 7 +121T 6−203T 5−111T 4 +1499T 3−4210T 2 +7186T−8510

7a
1 T 3−T 2+T−1 3 / 8

3T 5+5T 3+6T 3 / 8

7T 11−28T 10+77T 9−168T 8+322T 7−560T 6+891T 5−1310T 4+1777T 3−
2238T 2 +2604T−2772

7a
2 3T−5 1 / 8

14T−16 1 / 8

−129T 4 +1177T 3−4421T 2 +9226T−11718

7a
3 2T 2−3T +3 2 / 8

−9T 3+8T 2−16T +12 2 / 8

−18T 8+208T 7−917T 6+2666T 5−6049T 4+11283T 3−17671T 2+23356T−25736

7a
4 4T−7 1 / 8

32−24T 2 / 8

−352T 4 +3616T 3−14378T 2 +30700T−39188
7a

5 2T 2−4T +5 2 / 8

9T 3−16T 2+29T−28 2 / 8

−18T 8 +264T 7−1548T 6 +5680T 5−15107T 4 +31152T 3−51476T 2 +

69252T−76414

7a
6 −T 2+5T−7 2 / 8

T 3−8T 2+19T−20 1 / 8

3T 8−35T 7+128T 6+105T 5−2610T 4+11225T 3−28031T 2+47186T−55946

7a
7 T 2−5T +9 2 / 8

8−3T 1 / 8

4T 8−55T 7 +310T 6−805T 5 +86T 4 +6349T 3−22686T 2 +43610T−53622

8a
1 7−3T 1 / 8

5T−16 1 / 8

42T 4 +215T 3−2542T 2 +7562T−10542

8a
2 −T 3+3T 2−3T +3 3 / 8

2T 5−8T 4+10T 3−12T 2+13T−12 2 / 8

5T 12−39T 11 +119T 10−139T 9−249T 8 +1660T 7−4959T 6 +11131T 5−
20813T 4 +33595T 3−47521T 2 +58988T−63556

8a
3 9−4T 1 / 8

0 2 / 4

224T 4−224T 3−3910T 2 +14100T−20364

8a
4 −2T 2+5T−5 2 / 8

3T 3−8T 2+6T−4 2 / 8

54T 8−344T 7+865T 6−650T 5−2723T 4+12243T 3−28461T 2+45792T−53540

8a
5 −T 3+3T 2−4T +5 3 / 8

−2T 5+8T 4−13T 3+20T 2−22T +24 2 / 8

5T 12−39T 11 +128T 10−182T 9−274T 8 +2476T 7−8642T 6 +21517T 5−
42924T 4 +71719T 3−102448T 2 +126480T−135628

8a
6 −2T 2 +6T−7 2 / 8

5T 3−20T 2+28T−32 2 / 8

38T 8−216T 7 +112T 6 +2880T 5−14787T 4 +42444T 3−85415T 2 +

128406T−146916
8a

7 T 3−3T 2+5T−5 3 / 8

−T 5+4T 4−10T 3+12T 2−13T +12 1 / 8

8T 12−75T 11 +343T 10−979T 9 +1821T 8−1782T 7−1623T 6 +12083T 5−
33001T 4 +64599T 3−101194T 2 +131404T−143216

8a
8 2T 2−6T +9 2 / 4

−T 3+4T 2−12T +16 2 / 8

62T 8−504T 7 +1736T 6−2408T 5−3717T 4 +26492T 3−68493T 2 +

113418T−133180

8a
9 −T 3+3T 2−5T +7 3 / 4

0 1 / 4

9T 12−87T 11 +417T 10−1305T 9 +2858T 8−4134T 7 +2114T 6 +8285T 5−
31925T 4 +69235T 3−112773T 2 +148508T−162396

8a
10 T 3−3T 2+6T−7 3 / 8

−T 5 +4T 4−11T 3+16T 2−21T +20 2 / 8

8T 12−75T 11 +362T 10−1122T 9 +2306T 8−2540T 7−2198T 6 +18817T 5−
54380T 4 +110103T 3−175694T 2 +230080T−251346

8a
11 −2T 2+7T−9 2 / 8

5T 3−24T 2+39T−44 1 / 8

38T 8−264T 7 +301T 6 +3514T 5−21716T 4 +68785T 3−146898T 2 +

227828T−263172

8a
12 T 2−7T +13 2 / 8

0 2 / 4

4T 8−77T 7+583T 6−1991T 5+987T 4+17311T 3−71802T 2+147914T−185846

8a
13 2T 2−7T +11 2 / 8

−T 3 +4T 2−14T +20 1 / 8

62T 8−592T 7 +2351T 6−3918T 5−4235T 4 +40079T 3−111533T 2 +

191500T−227432

8a
14 −2T 2+8T−11 2 / 8

5T 3−28T 2+57T−68 1 / 8

38T 8−312T 7 +444T 6 +5096T 5−34777T 4 +116368T 3−255750T 2 +

401632T−465478

8a
15 3T 2−8T +11 2 / 8

21T 3−64T 2+120T−140 2 / 8

−123T 8 +2128T 7−15241T 6 +66120T 5−199999T 4 +451912T 3−
792414T 2 +1101720T−1228222

8a
16 T 3−4T 2+8T−9 3 / 8

T 5−6T 4+17T 3−28T 2+35T−36 2 / 8

8T 12−100T 11+598T 10−2205T 9+5292T 8−7164T 7−2380T 6+43100T 5−
137314T 4 +291750T 3−478742T 2 +636488T−698666

8a
17 −T 3+4T 2−8T +11 3 / 8

0 1 / 4

9T 12−116T 11 +722T 10−2843T 9 +7656T 8−13668T 7 +11117T 6 +

21968T 5−113086T 4 +273778T 3−475622T 2 +649064T−717954

8a
18 −T 3+5T 2−10T +13 3 / 8

0 2 / 4

9T 12−145T 11 +1075T 10−4842T 9 +14504T 8−28560T 7 +27957T 6 +

35195T 5−225204T 4 +573797T 3−1021641T 2 +1411484T−1567262
8n

19 T 3−T 2+1 3 / 8

−3T 5−4T 2−3T 3 / 8

7T 11−19T 10+6T 9+48T 8−52T 7−91T 6+211T 5+16T 4−431T 3+289T 2+

536T−1060

8n
20 T 2−2T +3 2 / 4

4T−4 1 / 8

4T 8−22T 7 +66T 6−124T 5 +52T 4 +478T 3−1652T 2 +3014T−3640

8n
21 −T 2+4T−5 2 / 8

T 3−8T 2+16T−20 1 / 8

3T 8−28T 7 +49T 6 +352T 5−2489T 4 +8164T 3−17530T 2 +27092T−31226

knot
diag

nt
k Alexander’s ω+ genus / ribbon

(ρ′1)+ unknotting # / amphi?
(ρ′2)+

knot
diag

nt
k Alexander’s ω+ genus / ribbon

(ρ′1)+ unknotting # / amphi?
(ρ′2)+

9a
1 T 4−T 3+T 2−T +1 4 / 8

4T 7+7T 5+9T 3+10T 4 / 8

9T 15−36T 14 +99T 13−216T 12 +414T 11−720T 10 +1170T 9−1800T 8 +2630T 7−3662T 6 +4853T 5−6142T 4 +

7423T 3−8572T 2 +9420T−9780

9a
2 4T−7 1 / 8

30T−40 1 / 8

−728T 4 +6088T 3−21946T 2 +44788T−56420

9a
3 2T 3−3T 2+3T−3 3 / 8

−13T 5+12T 4−25T 3+20T 2−32T +24 3 / 8

−26T 12 +296T 11−1311T 10 +3838T 9−8867T 8 +17613T 7−31407T 6 +51061T 5−76085T 4 +104297T 3−
131779T 2 +152840T−160976

9a
4 3T 2−5T +5 2 / 8

23T 3−28T 2+46T−44 2 / 8

−219T 8 +1999T 7−8389T 6 +23799T 5−52835T 4 +96723T 3−149121T 2 +194698T−213338

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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Knotted Candies ωεβ/kc

z′2

z′1

z′1 ζ′1
ζ′1
ζ′2

PBW Bases. The U’s we care about always have “Poincaré-
Birkhoff-Witt” bases; there is some finite set B = {y, x, . . . } of
“generators” and isomorphisms Oy,x,... : Ŝ(B) → U defined by
“ordering monomials” to some fixed y, x, . . . order. The quantum
group portfolio now becomes a “symmetric algebra” portfolio, or
a “power series” portfolio.
Operations are Objects.
? B∗ B {z∗i = ζi : zi ∈ B},

〈zm
i , ζ

n
i 〉 = δmnn!,〈∏

zmi
i ,

∏
ζni

i

〉
=

∏
δminini!,

in general, for f ∈ S(zi) and g ∈ S(ζi),
〈 f , g〉 = f (∂ζi)g

∣∣∣
ζi=0 = g(∂zi) f

∣∣∣
zi=0 .

The Composition Law. If

S(B)
f−−−−−−→

f̃∈Q~ζi,z′j�
S(B′)

g−−−−−−−→
g̃∈Q~ζ′j,z′′k �

S(B′′)

then (̃ f�g) = ˜(g ◦ f ) =

(
g̃|ζ′j→∂z′j

f̃
)

z′j=0
=

(
f̃
∣∣∣
z′j→∂ζ′j

g̃
)

ζ′j=0
:

Solvable Approximation. In gln, half is enough! Indeed gln ⊕
an = D(^, b, δ):

Now define glεn B D(^, b, εδ). Schematically, this is [^,^] = ^,
[_,_] = ε_, and [^,_] = _ + ε^. The same process works for
all semi-simple Lie algebras, and at εk+1 = 0 always yields a
solvable Lie algebra.
CU and QU. Starting from sl2, get CUε = 〈y, a, x, t〉/([t,−] =

0, [a, y] = −y, [a, x] = x, [x, y] = 2εa − t). Quantize using
standard tools (I’m sorry) and get QUε = 〈y, a, x, t〉/([t,−] =

0, [a, y] = −y, [a, x] = x, xy − e~εyx = (1 − Te−2~εa)/~).

The (fake) moduli of Lie alge-
bras on V , a quadratic variety in
(V∗)⊗2⊗V is on the right. We ca-
re about slk17 B slε17/(ε

k+1 = 0).

Abstract. A major part of “quantum topology” is the defini-
tion and computation of various knot invariants by carrying out
computations in quantum groups. Traditionally these computa-
tions are carried out “in a representation”, but this is very slow:
one has to use tensor powers of these representations, and the
dimensions of powers grow exponentially fast.
In my talk, I will describe a direct method for carrying out such
computations without having to choose a representation and ex-
plain why in many ways the results are better and faster. The two
key points we use are a technique for composing infinite-order
“perturbed Gaussian” differential operators, and the little-known
fact that every semi-simple Lie algebra can be approximated by
solvable Lie algebras, where computations are easier.
KiW 43 Abstract (ωεβ/kiw). Whether or not you like the formu-
las on this page, they describe the strongest truly computable knot
invariant we know. (experimental analysis @ωεβ/kiw)

The Yang-Baxter Technique. Given an al-
gebra U (typically Û(g) or Ûq(g)) and ele-
ments

R =
∑

ai ⊗ bi ∈ U ⊗ U and C ∈ U,

form Z =
∑

i, j,k

Caib jakC2bia jbkC.

Problem. Extract information from Z.
The Dogma. Use representation theory. In
principle finite, but slow.

A Knot Theory Portfolio.
• Has operations t, mi j

k , ∆i
jk, S i.

• All tangloids are generated by
R±1 and C±1 (so “easy” to pro-
duce invariants).

• Makes some knot properties
(“genus”, “ribbon”) become
“definable”.

A “Quantum Group” Portfolio consists of a vector space U
along with maps (and some axioms. . . )

Q = Û⊗∅
Ci // Û⊗{i}

S i

�� ∆i
jk

,,
Û⊗{ j,k}

m jk
i

ll Q = Û⊗∅
R jkoo

Ŝ (∅) Ci //

O()

OO

Ŝ (Bi)

S i

CC

∆i
jk --

Oyi xi ...

OO

Ŝ
(
B j, Bk

)

m jk
i

ll

Oy j x j ...⊗yk xk ...

OO

Ŝ (∅)R jkoo

O()

OO

Examples1. The 1-variable identity map I : S(z)→ S(z) is
given by Ĩ1 = e

zζ and the n-variable one by Ĩn = e
z1ζ1+···+znζn :

2. The “archetypal multiplication map mi j
k : S(zi, z j) → S(zk)”

has m̃ = e
zk(ζi+ζ j).

3. The “archetypal coproduct ∆i
jk : S(zi) → S(z j, zk)”, given by

zi → z j + zk or ∆z = z ⊗ 1 + 1 ⊗ z, has ∆̃ = e
(z j+zk)ζi .

4. R-matrices tend to have terms of the form e
~y1 x2
q ∈ Uq ⊗ Uq.

The “baby R-matrix” is R̃ = e
~yx ∈ S(y, x).

5. The “Weyl form of the canonical commutation relations” sta-
tes that if [y, x] = tI then e

ξx
e
ηy = e

ηy
e
ξx
e
−ηξt. So with

S(y, x)
Oxy --

Oyx

11SWxy
:: U(y, x) we have S̃Wxy = e

ηy+ξx−ηξt.Our Way. For certain algebras,
work in a homomorphic poly-
dimensional “space of formulas”.

�

ωεβBhttp://drorbn.net/o19/

Thanks for inviting me to Ohio!

+ + +1
2

1
6 · · ·+=Ĩ1

f g f g
∑

=

S (B)∗ ⊗ S (B′)

f ∈ HomQ(S (B)→ S (B′))

S (B∗) ⊗ S (B′)

S (B∗ t B′)

f̃ ∈ Q[ζi, z′i]

=
=

=
=

?

b, δ

b(^) = b : ^ ⊗^→ ^

b(_){ δ : ^→ ^ ⊗^⊕ {{

slε17

0

sl+17

sl017
E9 F5

Computation without Representation
Dror Bar-Natan: Talks: Ohio-1901: Follows Rozansky [Ro1, Ro2, Ro3] and

Overbay [Ov], joint with van der Veen.
More at [BV] and at ωεβ/talks.

t → ⊗

t → ·

Tangloids and Operations

strand

cuap C±1
i

doubling

stitching

reversal S i∆i
jk

mi j
k

mi j
k

stitching

crossing R±1
i j

cuap C±1
i

ak

bi

C
ai

C

b j a j

bk

C C

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ohio-1901

68

http://www.math.toronto.edu/~drorbn/Talks/Ohio-1901


[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-
Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103–133.

[BV] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial,
arXiv:1708.04853.

[Fa] L. Faddeev, Modular Double of a Quantum Group, arXiv:math/9912078.
[GR] S. Garoufalidis and L. Rozansky, The Loop Exapnsion of the Kontsevich

Integral, the Null-Move, and S -Equivalence, arXiv:math.GT/0003187.
[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun.

Math. Phys. 169 (1995) 501–520.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial,

University of North Carolina PhD thesis, ωεβ/Ov.
[Qu] C. Quesne, Jackson’s q-Exponential as the Exponential of a Series, arXiv:

math-ph/0305003.
[Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones

polynomial and Witten’s invariant of 3d manifolds, I, Comm. Math. Phys.
175-2 (1996) 275–296, arXiv:hep-th/9401061.

[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the
Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-
1 (1998) 1–31, arXiv:q-alg/9604005.

[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality
Conjecture, arXiv:math/0201139.

[Za] D. Zagier, The Dilogarithm Function, in Cartier, Moussa, Julia, and Va-
nhove (eds) Frontiers in Number Theory, Physics, and Geometry II. Springer,
Berlin, Heidelberg, and ωεβ/Za.

References.

The Zipping Issue.
(between unbound and
bound lies half-zipped).
Zipping. If P(ζ j, zi) is a polynomial, or whenever otherwi-
se convergent, set

〈
P(ζ j, zi)

〉
(ζ j)

= P
(
∂z j , zi

)∣∣∣∣
zi=0

. (E.g., if P =
∑

anmζ
nzm then 〈P〉ζ =

∑
anm ∂n

z zm
∣∣∣
z=0 =

∑
n!ann).

The Zipping / Contraction Theorem. If P = P(ζ j, zi) has a
finite ζ-degree and the y’s and the q’s are “small” then

〈
Pec+ηizi+y jζ

j+qi
jziζ

j〉
(ζ j)

= det(q̃)ec+ηiq̃k
i yk

〈
P

/
ζ j→ζ j+ηiq̃ j

i

zi→q̃k
i (zk+yk)

〉

(ζ j)

where q̃ is the inverse matrix of 1 − q: (δi
j − qi

j)q̃
j
k = δi

k.

Exponential Reservoirs. The true Hilbert hotel is exp! Remove
one x from an “exponential reservoir” of x’s and you are left with
the same exponential reservoir:

e
x =

[
. . . +

xxxxx
120

+ . . .
]

∂x−→
[
. . . +

xAxxxx
120

+ . . .

]
= (ex)′ = e

x,

and if you let each element choose left or right, you get twice the
same reservoir:

e
x x→xl+xr−−−−−−→ e

xl+xr = e
xl
e

xr .

A Graphical Proof. Glue
top to bottom on the right,
in all possible ways. Several
scenarios occur:
1. Start at A, go through the q-machine k ≥ 0 times, stop at B.

Get
〈
P

(
ζ,

∑
k≥0 qkz

)〉
= 〈P (ζ, q̃z)〉.

2. Loop through the q-machine and swallow your own tail. Get
exp

(∑
qk/k

)
= exp(− log(1 − q)) = q̃. 3. . . .

By the reservoir splitting principle, these scenarios contribute
multiplicatively. �
Implementation. (E[Q, P] means eQP) ωεβ/Zip

Zipζs_List@[Q_, P_] :=

Module[{ζ, z, zs, c, ys, ηs, qt, zrule, ζrule},

zs = Table[ζ*, {ζ, ζs}];

c = Q /. Alternatives @@ (ζs ⋃ zs) → 0;

ys = Table[∂ζ(Q /. Alternatives @@ zs → 0), {ζ, ζs}];

ηs = Table[∂z(Q /. Alternatives @@ ζs → 0), {z, zs}];

qt = Inverse@Table[Kδz,ζ* - ∂z,ζQ, {ζ, ζs}, {z, zs}];

zrule = Thread[zs → qt.(zs + ys)];

ζrule = Thread[ζs → ζs + ηs.qt];

Simplify /@

[c + ηs.qt.ys, Det[qt] Zipζs[P /. (zrule ⋃ ζrule)]] ];

Real Zipping is a minor mess, and is done in two phases:
τa-phase ξy-phase

ζ-like variables τ a ξ y
z-like variables t α x η

Already at ε = 0 we get the best known formulas for the Alexan-
der polynomial!
Generic Docility. A “docile perturbed Gaussian” in the variables
(zi)i∈S over the ring R is an expression of the form

e
qi jziz j P = e

qi jziz j


∑

k≥0

εkPk

 ,

where all coefficients are in R and where P is a “docile series”:
deg Pk ≤ 4k.
Our Docility. In the case of QUε , all invariants and operations are
of the form e

L+QP, where
• L is a quadratic of the form

∑
lzζzζ, where z runs over {ti, αi}i∈S

and ζ over {τi, ai}i∈S , with integer coefficients lzζ .
• Q is a quadratic of the form

∑
qzζzζ, where z runs over

{xi, ηi}i∈S and ζ over {ξi, yi}i∈S , with coefficients qzζ in the ring
RS of rational functions in {Ti,Ai}i∈S .

• P is a docile power series in {yi, ai, xi, ηi, ξi}i∈S with coefficients
in RS , and where deg(yi, ai, xi, ηi, ξi) = (1, 2, 1, 1, 1).

Docililty Matters! The rank of the space of docile series to εk is
polynomial in the number of variables |S |. !!!!!
• At ε2 = 0 we get the Rozansky-Overbay [Ro1, Ro2, Ro3, Ov]

invariant, which is stronger than HOMFLY-PT polynomial and
Khovanov homology taken together!

• In general, get “higher diagonals in the Melvin-Morton-
Rozansky expansion of the coloured Jones polynomial” [MM,
BNG], but why spoil something good?

The Real Thing. In the algebra QUε , over Q~~� using the yaxt
order, T = e

~t, T̄ = T−1,A = e
α, and Ā = A−1, we have

R̃i j = e
~(yi x j−tia j)

(
1 + ε~

(
aia j − ~2y2

i x2
j/4

)
+ O(ε2)

)

in S(Bi, B j), and in S(B∗1, B
∗
2, B) we have

m̃ = e
(α1+α2)a+η2ξ1(1−T )/~+(ξ1Ā2+ξ2)x+(η1+η2Ā1)y

(
1 + ελ + O(ε2)

)
,

where λ = 2aη2ξ1T + η2
2ξ

2
1

(
3T 2 − 4T + 1

)
/4~ − η2ξ

2
1(3T − 1)xĀ2/2

−η2
2ξ1(3T − 1)yĀ1/2+η2ξ1 xy~Ā1Ā2.

Finally,
∆̃ = e

τ(t1+t1)+η(y1+T1y2)+α(a1+a2)+ξ(x1+x2) (1 + O(ε)) ∈ S(B∗, B1, B2),
and S̃ = e

−τt−αa−ηξ(1−T̄ )A/~−T̄ηyA−ξxA (1 + O(ε)) ∈ S(B∗, B).

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org

P

exp

exp

y y y
η η η

A C

B D

q

exp

q q

ζ’s

z’s
“the q-

machine”

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ohio-1901
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The Algebras H and H∗. Let q = e
~εγ and set H =

〈a, x〉/([a, x] = γx) with
A = e

−~εa, xA = qAx, SH(a, A, x) = (−a, A−1,−A−1x),
∆H(a, A, x) = (a1 + a2, A1A2, x1 + A1x2)

and dual H∗ = 〈b, y〉/([b, y] = −εy) with
B = e

−~γb, By = qyB, SH∗(b, B, y) = (−b, B−1,−yB−1),
∆H∗(b, B, y) = (b1 + b2, B1B2, y1B2 + y2).

Pairing by (a, x)∗ = (b, y) (⇒ 〈B, A〉 = q) making 〈ylbi, a jxk〉 =

δi jδkl j![k]q! so R =
∑ ykb j⊗a j xk

j![k]q! .
The Algebra QU. Using the Drinfel’d double procedure,
QUγ,ε B H∗cop⊗H with (φ f )(ψg) = 〈ψ1S −1 f3〉〈ψ3, f1〉(φψ2)( f2g)
and S (y, b, a, x) = (−B−1y,−b,−a,−A−1x),

∆(y, b, a, x) = (y1 + y2B1, b1 + b2, a1 + a2, x1 + A1x2).
Note also that t B εa − γb is central and can replace b, and set
QU = QUε = QU1,ε .
The 2D Lie Algebra. One may show∗ that if [a, x] = γx then
e
ξx
e
αa = e

αa
e
e
−γαξx. Ergo with

S(a, x)
Oax --

Oxa

11SWax :: U(a, x)

we have S̃Wax = e
αa+e−γαξx.

∗ Indeed xa = (a − γ)x thus xan = (a − γ)n x thus xeαa = e
α(a−γ) x = e

−γα
e
αa x

thus xn
e
αa = e

αa(e−γα)n xn thus eξx
e
αa = e

αa
e
e
−γαξx.

Faddeev’s Formula (In as much as we can tell, first appe-
ared without proof in Faddeev [Fa], rediscovered and proven
in Quesne [Qu], and again with easier proof, in Zagier [Za]).
With [n]q B

qn−1
q−1 , with [n]q! B [1]q[2]q · · · [n]q and with e

x
q B∑

n≥0
xn

[n]q! , we have

log ex
q =

∑

k≥1

(1 − q)kxk

k(1 − qk)
= x +

(1 − q)2x2

2(1 − q2)
+ . . . .

Proof. We have that ex
q =

e
qx
q −ex

q
qx−x (“the q-derivative of ex

q is itself”),
and hence eqx

q = (1 + (1 − q)x)ex
q, and

log eqx
q = log(1 + (1 − q)x) + log ex

q.

Writing log ex
q =

∑
k≥1 akxk and comparing powers of x, we get

qkak = −(1 − q)k/k + ak, or ak =
(1−q)k

k(1−qk) . �
A Full Implementation. ωεβ/Full
Utilities
CF[sd_SeriesData] := MapAt[CF, sd, 3];

CF[ℰ_] := ExpandDenominator@ExpandNumerator@Together

Expand[ℰ] //. ⅇ
x_

ⅇ
y_

⧴ ⅇ
x+y

/. ⅇ
x_

⧴ ⅇ
CF[x]

;

Kδ /: Kδi_,j_ := If[i === j, 1, 0];

 /: [L1_, Q1_, P1_] ≡ [L2_, Q2_, P2_] :=

CF[L1 ⩵ L2] ∧ CF[Q1 ⩵ Q2] ∧ CF[Normal[P1 - P2] ⩵ 0];

 /: [L1_, Q1_, P1_] [L2_, Q2_, P2_] :=

[L1 + L2, Q1 + Q2, P1*P2];

[L_, Q_, P_]$k_ := [L, Q, Series[Normal@P, {ϵ, 0, $k}]];

Zip and Bind
{t*, b*, y*, a*, x*, z*} = {τ, β, η, α, ξ, ζ};

{τ
*, β

*, η
*, α

*, ξ
*, ζ

*
} = {t, b, y, a, x, z};

(u_i_)
* := (u

*
)i;

collect[sd_SeriesData, ζ_] :=

MapAt[collect[#, ζ] &, sd, 3];

collect[ℰ_, ζ_] := Collect[ℰ, ζ];

Zip{}[P_] := P; Zip{ζ_,ζs___}[P_] :=

collect[P // Zip{ζs}, ζ] /. f_. ζd_.
⧴ ∂ζ*,df /. ζ*

→ 0

QZipζs_List@[L_, Q_, P_] :=

Module[{ζ, z, zs, c, ys, ηs, qt, zrule, ζrule},

zs = Table[ζ*, {ζ, ζs}];

c = CF[Q /. Alternatives @@ (ζs ⋃ zs) → 0];

ys = CF@Table[∂ζ(Q /. Alternatives @@ zs → 0), {ζ, ζs}];

ηs = CF@Table[∂z(Q /. Alternatives @@ ζs → 0), {z, zs}];

qt = CF@Inverse@Table[Kδz,ζ* - ∂z,ζQ, {ζ, ζs}, {z, zs}];

zrule = Thread[zs → CF[qt.(zs + ys)]];

ζrule = Thread[ζs → ζs + ηs.qt];

CF /@ [L, c + ηs.qt.ys,

Det[qt] Zipζs[P /. (zrule ⋃ ζrule)]] ];

U2l = Bi_
p_.

→ ⅇ
-p ℏ γ bi, Bp_. → ⅇ

-p ℏ γ b, Ti_
p_.

→ ⅇ
p ℏ ti,

Tp_. → ⅇ
p ℏ t, i_

p_.
→ ⅇ

p γ αi, 
p_.

→ ⅇ
p γ α

;

l2U = ⅇ
c_. bi_+d_. ⧴ Bi

-c/(ℏ γ)
ⅇ
d, ⅇ

c_. b+d_.
⧴ B-c/(ℏ γ)

ⅇ
d,

ⅇ
c_. ti_+d_. ⧴ Ti

c/ℏ
ⅇ
d, ⅇ

c_. t+d_.
⧴ Tc/ℏ ⅇd,

ⅇ
c_. αi_+d_. ⧴ i

c/γ
ⅇ
d, ⅇ

c_. α+d_.
⧴ 

c/γ
ⅇ
d,

ⅇ
ℰ_

⧴ ⅇ
Expand@ℰ

;

LZipζs_List@[L_, Q_, P_] :=

Module{ζ, z, zs, c, ys, ηs, lt, zrule, L1, L2, Q1, Q2},

zs = Table[ζ*, {ζ, ζs}];

c = L /. Alternatives @@ (ζs ⋃ zs) → 0;

ys = Table[∂ζ(L /. Alternatives @@ zs → 0), {ζ, ζs}];

ηs = Table[∂z(L /. Alternatives @@ ζs → 0), {z, zs}];

lt = Inverse@Table[Kδz,ζ* - ∂z,ζL, {ζ, ζs}, {z, zs}];

zrule = Thread[zs → lt.(zs + ys)];

L2 = (L1 = c + ηs.zs /. zrule) /. Alternatives @@ zs → 0;

Q2 = (Q1 = Q /. U2l /. zrule) /. Alternatives @@ zs → 0;

CF /@ L2, Q2, Det[lt] ⅇ
-L2-Q2

Zipζsⅇ
L1+Q1

(P /. U2l /. zrule) //. l2U ;

B{}[L_, R_] := L R;

Bis__[L_, R_] := Module{n}, Times[

L /. Table[(v : b B t T a x y)i → vn@i, {i, {is}}],

R /. Table[(v : β τ α  ξ η)i → vn@i, {i, {is}}]

] // LZipJoin@@Table{βn@i,τn@i,an@i},i,is //

QZipJoin@@Table{ξn@i,yn@i},i,is ;

Bis___[L_, R_] := Bis[L, R];

 morphisms with domain and range.
Bis_List[d1_→r1_[L1_, Q1_, P1_], d2_→r2_[L2_, Q2_, P2_]] :=

d1⋃Complementd2,is→r2⋃Complementr1,is @@

Bis[[L1, Q1, P1], [L2, Q2, P2]];

d1_→r1_[L1_, Q1_, P1_] // d2_→r2_[L2_, Q2_, P2_] :=

Br1⋂d2[d1→r1[L1, Q1, P1], d2→r2[L2, Q2, P2]];

d1_→r1_[L1_, Q1_, P1_] ≡ d2_→r2_[L2_, Q2_, P2_] ^:=

(d1 ⩵ d2) ∧ (r1 ⩵ r2) ∧ ([L1, Q1, P1] ≡ [L2, Q2, P2]);

d1_→r1_[L1_, Q1_, P1_] d2_→r2_[L2_, Q2_, P2_] ^:=

d1⋃d2→r1⋃r2 @@ ([L1, Q1, P1] [L2, Q2, P2]);

d_→r_[L_, Q_, P_]$k_ := d→r @@ [L, Q, P]$k;

_[ℰ___][i_] := {ℰ}〚i〛;

“Define” code
SetAttributes[Define, HoldAll];

Define[def_, defs__] := (Define[def]; Define[defs];);

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ohio-1901
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Define[op_is__ = ℰ_] :=

Module{SD, ii, jj, kk, isp, nis, nisp, sis},

Block{i, j, k},

ReleaseHoldHold

SD[opnisp,$k_Integer, Block[{i, j, k}, opisp,$k = ℰ;

opnis,$k]];

SDopisp, opis,$k; SDopsis__, opsis;

 /. {SD → SetDelayed,

isp → {is} /. {i → i_, j → j_, k → k_},

nis → {is} /. {i → ii, j → jj, k → kk},

nisp → {is} /. {i → ii_, j → jj_, k → kk_}

} 

The Fundamental Tensors
Defineami,j→k = i,j→k[(αi + αj) ak, (ⅇ

-γ αj ξi + ξj) xk, 1]$k,

bmi,j→k = i,j→k(βi + βj) bk, (ηi + ηj) yk, ⅇ
ⅇ

- ϵ βi-1 ηj yk
$k


DefineRi,j =

{}→i,jℏ aj bi, ℏ xj yi, ⅇ^ 

k=2

$k+1 1 - ⅇγ ϵ ℏ
k
(ℏ yi xj)

k

k 1 - ⅇk γ ϵ ℏ

$k


DefineRi,j = {}→i,j-ℏ aj bi, -ℏ xj yi /Bi,

1 + If$k ⩵ 0, 0, (Ri,j,$k-1)$k[3] -

(Ri,j,0)$k R1,2 (R{3,4},$k-1)$k // (bmi,1→i amj,2→j) //

(bmi,3→i amj,4→j)[3],

Pi,j = i,j→{}βi αj /ℏ, ηi ξj /ℏ,

1 + If$k ⩵ 0, 0, Pi,j,$k-1$k[3] -

R1,2 // P1,j,0$k Pi,2,$k-1$k[3]

DefineaSj = Ri,j~Bi~Pi,j,

aSi = i→i-ai αi, -xi i ξi,

1 + If$k ⩵ 0, 0, (aSi,$k-1)$k[3] -

(aSi,0)$k~Bi~aSi~Bi~(aSi,$k-1)$k[3]

DefinebSi = Ri,1~B1~aS1~B1~Pi,1,

bSi = Ri,1~B1~aS1~B1~Pi,1,

aΔi→j,k = (R1,j R2,k) // bm1,2→3 // P3,i,

bΔi→j,k = (Rj,1 Rk,2) // am1,2→3 // Pi,3

Define

dmi,j→k =

i,j→i,j[βi bi + αj aj, ηi yi + ξj xj, 1]

aΔi→1,2 // aΔ2→2,3 // aS3 (bΔj→-1,-2 // bΔ-2→-2,-3) //

(P-1,3 P-3,1 am2,j→k bmi,-2→k),

dSi = i→{1,2}[βi b1 + αi a2, ηi y1 + ξi x2, 1] // bS1 aS2 //

dm2,1→i,

dΔi→j,k = (bΔi→3,1 aΔi→2,4) // (dm3,4→k dm1,2→j)

DefineCi = {}→i0, 0, Bi
1/2

ⅇ
-ℏ ϵ ai/2

$k
,

Ci = {}→i0, 0, Bi
-1/2

ⅇ
ℏ ϵ ai/2

$k
,

Kinki = R1,3 C2 // dm1,2→1 // dm1,3→i,

Kinki = R1,3 C2 // dm1,2→1 // dm1,3→i

Define

b2ti = i→iαi ai - βi ti /γ, ξi xi + ηi yi, ⅇ
ϵ βi ai/γ

$k
,

t2bi = i→i[αi ai - τi γ bi, ξi xi + ηi yi, ⅇ
ϵ τi ai]$k

DefinekRi,j = Ri,j // (b2ti b2tj) /. ti j → t,

kRi,j = Ri,j // (b2ti b2tj) /. {ti j → t, Ti j → T},

kmi,j→k = (t2bi t2bj) // dmi,j→k //

b2tk /. {tk → t, Tk → T, τi j → 0},

kCi = Ci // b2ti /. Ti → T, kCi = Ci // b2ti /. Ti → T,

kKinki = Kinki // b2ti /. {ti → t, Ti → T},

kKinki = Kinki // b2ti /. {ti → t, Ti → T}

The Trefoil
$k = 2; Z = kR1,5 kR6,2 kR3,7 kC4 kKink8 kKink9 kKink10;

Do[Z = Z~B1,r~km1,r→1, {r, 2, 10}];

Simplify /@ Z /. v_1 ⧴ v

{}→{1}0, 0,
T

1 - T + T2
+

1

1 - T + T23
T ℏ 2 a -1 + T - T3 + T4 +

T -1 + 2 T - 3 T2 + 2 T3 γ - 2 1 + T3 x y γ ℏ ϵ +

1

2 1 - T + T25
T ℏ

2
4 a2 1 - T + T22 1 + T - 6 T2 + T3 + T4 +

4 a 1 - T + T2 γ T 2 - 5 T + 8 T2 - 7 T3 - 2 T4 + 2 T5 -

2 -1 - 2 T + 5 T2 - 4 T3 + T4 + 2 T5 x y ℏ +

γ
2
T 1 - 2 T + 4 T2 - 2 T3 + 6 T5 - 11 T6 + 4 T7 +

4 -1 + 2 T + T3 + T4 + 2 T6 - T7 x y ℏ +

6 1 - T + T22 1 + 3 T + T2 x2 y2 ℏ2 ϵ
2
+ O[ϵ]3

diagram
nt

k Alexander’s ω+ genus / ribbon
Today’s ρ+

1 unknotting # / amphi? diagram
nt

k Alexander’s ω+ genus / ribbon
Today’s ρ+

1 unknotting # / amphi? diagram
nt

k Alexander’s ω+ genus / ribbon
Today’s ρ+

1 unknotting # / amphi?
0a

1 1 0 / 4

0 0 / 4

3a
1 t − 1 1 / 8

t 1 / 8

4a
1 3 − t 1 / 8

0 1 / 4

5a
1 t2 − t + 1 2 / 8

2t3 + 3t 2 / 8

5a
2 2t − 3 1 / 8

5t − 4 1 / 8

6a
1 5 − 2t 1 / 4

t − 4 1 / 8

6a
2 −t2 + 3t − 3 2 / 8

t3 − 4t2 + 4t − 4 1 / 8

6a
3 t2 − 3t + 5 2 / 8

0 1 / 4

7a
1 t3 − t2 + t − 1 3 / 8

3t5 + 5t3 + 6t 3 / 8

7a
2 3t − 5 1 / 8

14t − 16 1 / 8

7a
3 2t2 − 3t + 3 2 / 8

−9t3 + 8t2 − 16t + 12 2 / 8

7a
4 4t − 7 1 / 8

32 − 24t 2 / 8

7a
5 2t2 − 4t + 5 2 / 8

9t3 − 16t2 + 29t − 28 2 / 8

7a
6 −t2 + 5t − 7 2 / 8

t3 − 8t2 + 19t − 20 1 / 8

7a
7 t2 − 5t + 9 2 / 8

8 − 3t 1 / 8

8a
1 7 − 3t 1 / 8

5t − 16 1 / 8

8a
2 −t3 + 3t2 − 3t + 3 3 / 8

2t5 − 8t4 + 10t3 − 12t2 + 13t − 12 2 / 8

8a
3 9 − 4t 1 / 8

0 2 / 4

8a
4 −2t2 + 5t − 5 2 / 8

3t3 − 8t2 + 6t − 4 2 / 8

8a
5 −t3 + 3t2 − 4t + 5 3 / 8

−2t5 + 8t4 − 13t3 + 20t2 − 22t + 24 2 / 8

8a
6 −2t2 + 6t − 7 2 / 8

5t3 − 20t2 + 28t − 32 2 / 8

8a
7 t3 − 3t2 + 5t − 5 3 / 8

−t5 + 4t4 − 10t3 + 12t2 − 13t + 12 1 / 8

8a
8 2t2 − 6t + 9 2 / 4

−t3 + 4t2 − 12t + 16 2 / 8

8a
9 −t3 + 3t2 − 5t + 7 3 / 4

0 1 / 4

8a
10 t3 − 3t2 + 6t − 7 3 / 8

−t5 + 4t4 − 11t3 + 16t2 − 21t + 20 2 / 8

8a
11 −2t2 + 7t − 9 2 / 8

5t3 − 24t2 + 39t − 44 1 / 8

8a
12 t2 − 7t + 13 2 / 8

0 2 / 4

8a
13 2t2 − 7t + 11 2 / 8

−t3 + 4t2 − 14t + 20 1 / 8

8a
14 −2t2 + 8t − 11 2 / 8

5t3 − 28t2 + 57t − 68 1 / 8

8a
15 3t2 − 8t + 11 2 / 8

21t3 − 64t2 + 120t − 140 2 / 8

8a
16 t3 − 4t2 + 8t − 9 3 / 8

t5 − 6t4 + 17t3 − 28t2 + 35t − 36 2 / 8

8a
17 −t3 + 4t2 − 8t + 11 3 / 8

0 1 / 4

8a
18 −t3 + 5t2 − 10t + 13 3 / 8

0 2 / 4

8n
19 t3 − t2 + 1 3 / 8

−3t5 − 4t2 − 3t 3 / 8

8n
20 t2 − 2t + 3 2 / 4

4t − 4 1 / 8

8n
21 −t2 + 4t − 5 2 / 8

t3 − 8t2 + 16t − 20 1 / 8

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ohio-1901
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Do Not Turn Over Until Instructed

Do Not Turn Over Until Instructed

Abstract. Whatever it may be, it should say something useful
and exciting and it should not be *about* rigour, yet it should
*demand* rigour. You can’t guess. You probably think it the
dreariest. You are wrong.
Contents s
Prologue

1 Basic Properties of Numbers 3
2 Numbers of Various Sorts 21

Foundations
3 Functions 39
4 Graphs 56
5 Limits 90
6 Continuous Functions 113
7 Three Hard Theorems 120
8 Least Upper Bounds 142

Derivatives and Integrals
9 Derivatives 147

10 Differentiation 166
11 Significance of the Derivative 185
12 Inverse Functions 227
13 Integrals 250
14 The Fundamental Theorem of Calculus 282
15 The Trigonometric Functions 300
∗16 π is Irrational 321
∗17 Planetary Motion 327
18 The Logarithm and Exponential Functions 336
19 Integration in Elementary Terms 359

Infinite Sequences and Infinite Series
20 Approximation by Polynomial Functions 405

6 Continuous Functions.

7 Three Hard Theorems.

14 The Fundamental Theorem of Calculus.

∗16 π is Irrational.

20 Approximation by Polynomial Functions.
For example for f (x) = sin(x)
at a = 0, f (k) = sin, cos, − sin,
− cos, sin, . . . , so

ak =


(−1)(k−1)/2

k! k odd
0 k even

11 Significance of the Derivative.

Some sizes (in multiples of the diameter of
a Hydrogen atom:

A red blood cell 1.56 × 105

The CN Tower 1.11 × 1013

The rings of Saturn 5.6 × 1018

The Milky Way galaxy 1.89 × 1031

The observable universe 1.76 × 1037

Several excerpts here are from
Spivak’s “Calculus” s. I believe
they fall under “fair use”.

Handout, video, links at ωεβBhttp://drorbn.net/maa18/

Thanks for inviting me to the fall 2018 MAA Seaway Section meeting!
My Favourite First-Year Analysis Theorem
Dror Bar-Natan: Talks: MAASeaway-1810:

s

s

s

s

s

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/
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The Mean Value Theorem for Curves (MVT4C).
If γ : [a, b] → R2 is a smooth curve, then there is
some t1 ∈ (a, b) for which γ(b) − γ(a) and γ̇(t1)
are linearly dependent. If also γ(a) = 0, and

γ =

(
ξ
η

)
and η , 0 , η̇ on (a, b), then

ξ(b)
η(b)

=
ξ̇(t1)
η̇(t1)

(
when lucky, =

ξ̈(t2)
η̈(t2)

. . .

)
.

de l’Hôpital

Partial Derivatives Commute. Make Fubini Smile Again!
If f : R2 → R is C2 near a ∈ R2, then f12(a) = f21(a).
Proof. Let x ∈ R2 be small, and let R B [a1, a1 +x1]×[a2, a2 +x2].

f12(a) ∼ 1
|R|

∫

R
f12 =

1
|R|

∫ a1+x1

a1

dt1 ( f1(t1, a2 + x2) − f1(t1, a2))

=
1
|R|

(
f (a1 + x1, a2 + x2) − f (a1 + x1, a2)
− f (a1, a2 + x2) + f (a1, a2)

)
.

But the answer here is the same as in

f21(a) ∼ 1
|R|

∫

R
f21 =

1
|R|

∫ a2+x2

a2

dt2 ( f2(a1 + x1, t2) − f2(a1, t2))

=
1
|R|

(
f (a1 + x1, a2 + x2) − f (a1, a2 + x2)
− f (a1 + x1, a2) + f (a1, a2)

)
,

and both of these approximations get better and better as x → 0.
�

The Taylor Remainder Formulas. Let f be a
smooth function, let Pn,a(x) be the nth order Tay-
lor polynomial of f around a and evaluated at x,
so with ak = f (k)(a)/k!,

Pn,a(x) B
n∑

k=0

ak(x − a)k,

and let Rn,a(x) B f (x) − Pn,a(x) be the “mistake”
or “remainder term”. Then

Rn,a(x) =

∫ x

a
dt

f (n+1)(t)
n!

(x − t)n, (1)

or alternatively, for some t between a and x,

Rn,a(x) =
f (n+1)(t)
(n + 1)!

(x − a)n+1. (2)

(In particular, the Taylor expansions of sin, cos, exp, and of seve-
ral other lovely functions converges to these functions everywhe-
re, no matter the odds.)
Proof of (1) (for adults; I lear-
ned it from my son Itai). The
fundamental theorem of calcu-
lus says that if g(a) = 0 then
g(x) =

∫ x
a dx1g(x1). By design,

R(k)
n,a(a) = 0 for 0 ≤ k ≤ n. The-

refore

Rn,a(x) =

∫ x

a
dx1R′n,a(x1)

=

∫ x

a
dx1

∫ x1

a
dx2R′′n,a(x2)

= . . . =

∫ x

a
dx1

∫ x1

a
dx2 . . .

∫ xn

a
dxn

∫ t

a
dt R(n+1)

n,a (t)

=

∫ x

a
dx1

∫ x1

a
dx2 . . .

∫ xn

a
dxn

∫ t

a
dt f (n+1)(t),

when x > a, and with similar logic when x < a,

=

∫

a≤t≤xn≤...≤x1≤x

f (n+1)(t) =

∫ t

a
dt f (n+1)(t)

∫

t≤xn≤...≤x1≤x

1

=

∫ t

a
dt

f (n+1)(t)
n!

∫

(x1,...,xn)∈[t,x]n

1 =

∫ x

a
dt

f (n+1)(t)
n!

(x − t)n.

�
de-Fubini (obfuscation in the name of simplicity).
Prematurely aborting the above chain of equalities,
we find that for any 1 ≤ k ≤ n + 1,

R(x) =

∫ x

a
dt R(k)(t)

(x − t)k−1

(k − 1)!
.

But these are easy to prove by induction using inte-
gration by parts, and there’s no need to invoke Fubini.

Brook Taylor

Guido Fubini

J.H. Lambert
π is Irrational following Ivan Niven, Bull.
Amer. Math. Soc. (1947) pp. 509:

Proof of (2). Iterate the lucky MVT4C as follows:

Rn,a(x)
(x − a)n+1 =

R′n,a(t1)
(n + 1)(t1 − a)n = . . . =

R(n+1)
n,a (tn+1)
(n + 1)!

=
f (n+1)(t)
(n + 1)!

.

�

space left blank for creative doodling

γ(a)

γ(b)

v

∼ f21(a)= =
∑

f

+

−+

− ∫
f21

∫
f12f12(a) ∼

R
a x

a x

a x

R′

x1

x1x2

R′′

=

=

a xx1x2t xn

R(n+1)

(x − t)n/n!f (n+1)(t)

= . . . =

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/
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A2n

1 ∈ An

with R B
κ(τ−1(1))T2n

U ∈ Tn

z(K) ∈ R ⊆ A1ribbon K ∈ T1

Gompf, Schar-
lemann, Tho-
mpson [GST]

The Gold Standard is set by the “Γ-calculus” Alexander
formulas [BNS, BN1]. An S -component tangle T has

Γ(T ) ∈ RS × MS×S (RS ) =

{
ω S
S A

}
with RS B Z({ta : a ∈ S }):

(
!a b, "b a

)
→

1 a b
a 1 1 − t±1

a
b 0 t±1

a

T1 t T2 →
ω1ω2 S 1 S 2

S 1 A1 0
S 2 0 A2

ω a b S
a α β θ
b γ δ ε
S φ ψ Ξ

mab
c−−−−−−−−−→

ta, tb → tc



(1 − β)ω c S
c γ + αδ

1−β ε + δθ
1−β

S φ +
αψ
1−β Ξ +

ψθ
1−β



(Roland: “add to A the product of column b and row a, divide by (1 − Aab),
delete column b and row a”.)

For long knots, ω is Alexander, and that’s the fastest
Alexander algorithm I know! Dunfield: 1000-crossing fast.

ω a S
a α θ
S φ Ξ

q∆a
bc−−−−−−→

µBTa−1
νBα−σa

Ta 7→TbTc



ω b c S
b (σa − αTa − νTc)/µ (Tb − 1)Tcν/µ (Tb − 1)Tcθ/µ
c (Tc − 1)ν/µ (α − σaTa − νTc)/µ (Tc − 1)θ/µ
S φ φ Ξ



dS a

yTa→T−1
a


αω/σa a S

a 1/α θ/α
S −φ/α (αΞ − φθ)/α



Where σ assigns to every a ∈ S a Laurent mono-
mial σa in {tb}b∈S subject to σ

(
!a b, "b a

)
= (a →

1, b → t±1
a ), σ(T1 t T2) = σ(T1) t σ(T2), and

σ�mab
c = (σ \ {a, b}) ∪ (c→ σaσb)|ta,tb→tc .

A Bit about Ribbon Knots. A “ribbon knot” is a knot that can be
presented as the boundary of a disk that has “ribbon singularities”,
but no “clasp singularities”. A “slice knot” is a knot in S 3 = ∂B4

which is the boundary of a non-singular disk in B4. Every ribbon
knots is clearly slice, yet,
Conjecture. Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is always
of the form A(t) = f (t) f (1/t). (also for slice)

(v-)Tangles.

(meta-associativity:
mab

x �mxc
y = mbc

x �max
y )

(tangles are generated
by ! and ")

Genus. Every knot is the boundary of an orie-
ntable “Seifert Surface” (ωεβ/SS), and the least
of their genera is the “genus” of the knot.
Claim. The knots of genus ≤ 2 are precisely the
images of 4-component tangles via

R, s ∈ {QU⊗S }

⊗,mi j
k ,∆

i
jk ,S i,θ

��
AD, SD // {CU⊗S }

⊗,mi j
k ,∆

i
jk ,S i,θ

��

The quantum sl2 Portfolio
includes a classical universal
enveloping algebra CU, its
quantization QU, their tensor
powers CU⊗S and QU⊗S with the “tensor operations” ⊗, their
products mi j

k , coproducts ∆i
jk and antipodes S i, their Cartan auto-

mophisms Cθ : CU → CU and Qθ : QU → QU, the “dequanti-
zators” AD : QU → CU and SD : QU → CU, and most impor-
tantly, the R-matrix R and the Drinfel’d element s. All this in any
PBW basis, and change of basis maps are included.

Our Main Theorem (loosely stated). Everything that matters in
the quantum sl2 portfolio can be continuously expressed in terms
of docile perturbed Gaussians using solvable approximations. ©
Our Main Points.
• What’s the “quantum sl2 portfolio”?
• What in it “matters” and why? (the most important question)

• What’s “solvable approximation”? What’s “continuously”?
• What are “docile perturbed Gaussians”?
• Why do they matter? (2nd most important)

• How proven? (docile)

• How implemented? (sacred; the work of unsung heroes)

• Some context and background.
• What’s next?

ωεβ/AlexDemo

Runs.Meta-Associativity

R3

Implementation key idea:
(ω, A = (αab))↔
(ω, λ =

∑
αabtahb)

Vo’s Thesis [Vo]. A proof of the Fox-Milnor theorem for
ribbon knots using this technology (and more).

Brute
W

arning
With Roland van der Veen

ωεβBhttp://drorbn.net/mm18/ W
.I.

P.
W

ar
ni

ng

z

κ

τ

κ

τ

TT Tτ κ

Faster is better, leaner is meaner!

+ + + +

−−− −

Strand
doubling:

,

Strand
reversal:

T

a clasp singularity

[BN2]

a ribbon singularity

example

“stitching”

t
T1T2T1 T2

a b

T
mab

c

c

T

a
c
b a a∆a

bc S a

Robert Engman’s
“The Loop”

1
3

4
2

T

T

Dror Bar-Natan: Talks: Matemale-1804:

Solvable Approximations of the Quantum sl2 Portfolio
See also [BV]

. . . divide and conquer!

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org 817

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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The Yang-Baxter Technique. Given an al-
gebra U (typically Û(g) or Ûq(g)) and ele-
ments

R =
∑

ai ⊗ bi ∈ U ⊗ U and C ∈ U,

form Z =
∑

i, j,k

Caib jakC2bia jbkC.

Problem. Extract information from Z.
The Dogma. Use representation theory. In
principle finite, but slow.

The (fake) moduli of Lie alge-
bras on V , a quadratic variety in
(V∗)⊗2⊗V is on the right. We ca-
re about slk17 B slε17/(ε

k+1 = 0).

Recomposing gln. Half is enough! gln ⊕ an = D(^, b, δ):

Now define glεn B D(^, b, εδ). Schematically, this is [^,^] = ^,
[_,_] = ε_, and [^,_] = _ + ε^. In detail, it is

[ei j, ekl]=δ jkeil − δliek j [ fi j, fkl]=εδ jk fil − εδli fk j

[ei j, fkl]=δ jk(εδ j<keil + δil(hi + εgi)/2 + δi>l fil)
−δli(εδk< jek j + δk j(h j + εg j)/2 + δk> j fk j)

[gi, e jk]= (δi j − δik)e jk [hi, e jk]=ε(δi j − δik)e jk

[gi, f jk]= (δi j − δik) f jk [hi, f jk]=ε(δi j − δik) f jk

Solvable Approximation (2). At ε = 1 and modulo h = g, the
above is just gln. By rescaling at ε , 0, glεn is independent of ε.
We let glkn be glεn regarded as an algebra over Q[ε]/εk+1 = 0. It is
the “k-smidgen solvable approximation” of gln!
Recall that g is “solvable” if iterated commutators in it ultimately
vanish: g2 B [g, g], g3 B [g2, g2], . . . , gd = 0. Equivalently, if it
is a subalgebra of some large-size ^ algebra.
Note. This whole process makes sense for arbitrary semi-simple
Lie algebras.

Definition. A “docile perturbed
Gaussian” in the variables (zi)i∈S over
the ring R is an expression of the
form

e
qi jziz j P = e

qi jziz j


∑

k≥0

εkPk

 ,

where all coefficients are in R and where P is a “docile series”:
deg Pk ≤ 4k.
Docililty Matters! The rank of the space of docile series to εk is
polynomial in the number of variables |S |.
Theorem ([BNG], conjectured [MM],
elucidated [Ro1]). Let Jd(K) be the co-
loured Jones polynomial of K, in the d-dimensional representa-
tion of sl2. Writing

(q1/2 − q−1/2)Jd(K)
qd/2 − q−d/2

∣∣∣∣∣∣
q=e~

=
∑

j,m≥0

a jm(K)d j~m,

“below diagonal” coefficients vanish, a jm(K) =

0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:(∑∞

m=0 amm(K)~m
)
· ω(K)(e~) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

Jd(K)(q) =
qd − q−d

(q − q−1)ω(K)(qd)

1 +

∞∑

k=1

(q − 1)kρk(K)(qd)
ω2k(K)(qd)

 .

Prior art. Some amazing computations by
Rozansky and Overbay in [Ro2, Ro3] and
in [Ov].

Melvin,
Morton,
Garoufalidis

Rozansky,
Overbay

Faddeev’s Formula (In as much as we
can tell, first appeared w/o proof in Fad-
deev [Fa], rediscovered and proven in
Quesne [Qu], and again with easier proof,
in Zagier [Za]). With [n]q B

qn−1
q−1 , with [n]q! B [1]q[2]q · · · [n]q

and with e
x
q B

∑
n≥0

xn

[n]q! , we have

log ex
q =

∑

k≥1

(1 − q)k xk

k(1 − qk)
= x +

(1 − q)2x2

2(1 − q2)
+ . . . .

Proof. We have that ex
q =

e
qx
q −ex

q

qx−x (“the q-derivative of ex
q is itself”),

and hence eqx
q = (1 + (1 − q)x)ex

q, and

log eqx
q = log(1 + (1 − q)x) + log ex

q.

Writing log ex
q =

∑
k≥1 ak xk and comparing powers of x, we get

qkak = −(1 − q)k/k + ak, or ak =
(1−q)k

k(1−qk) . �

ZagierFaddeev Quesne

Solvable Approximation. A quantized universal enveloping al-
gebra (aka “quantum group”) is an∞-dimensional inverse limit.

0

sl+17

sl017
E9 F5

b, δ

b(^) = b : ^ ⊗^→ ^

b(_){ δ : ^→ ^ ⊗^⊕ {{

i j

i

j

ei j

f ji

hi

g j

m

—
ne

w
stu

ff
—

—
ale

xa
nd

er
−1 —

0
j

slε17

too hard “finite-type”“solvable approximation”
(a parameter is hidden)

untrimmed halfway-
trimmed trimmed

fully-
almost

ak

bi

C
ai

C

b j a j

bk

C C

GDO-Categories. Given g with basis B = {x, y, . . .}, consider
the following diagram:

Q = Û(q)
(⊕

0 g
) Z // Û(q) (g)

∆ .. Û(q)
(⊕

2 g
)

m
mm

Ŝ (∅) Z //

OO

Ŝ (B)
∆ --

O(xy... : ·)
JJ

O(yx... : ·)
TT

SWxy

[[ Ŝ (B1, B2)
m

ll

O(y1 x1...⊗y2 x2... : ·)
OO

Hence Z, SWxy, m, ∆, (and likewise S and θ) are morphisms
in the completion of the monoidal category F whose obje-
cts are finite sets B and whose morphisms are morF (B, B′) B
HomQ (S(B)→ S(B′)) = S (B∗, B′) (by convention, x∗ = ξ,
y∗ = η, etc.). Ergo we need to consolidate (at least parts of)
said completion.

Aside. “Consolidate” means “give a finite name to an infini-
te object, and figure out how to sufficiently manipulate such
finite names”. E.g., solving f ′′ = − f we encounter and set∑ (−1)k x2k

(2k)! { cos x,
∑ (−1)k x2k+1

(2k+1)! { sin x, and then cos2 x +

sin2 x = 1 and sin(x + y) = sin x cos y + cos x sin y.
The Composition Law. If

S(B0)
f−−−−−−−−−−→

ft ∈Q~ζ0i,z1 j�
S(B1)

g−−−−−−−−−−→
gt ∈Q~ζ1 j,z2k�

S(B2)

then ( f�g)t = (g ◦ f )t =

(
g|ζ1 j→∂z1 j

f
)

z1 j=0
.

Examples.
1. The 1-variable identity map I : S(z) → S(z) is given by

It 1 = e
zζ and the n-variable one by It n = e

z1ζ1+···+znζn .

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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2. The “zi → z j variable rename map σi
j : S(zi) → S(z j) be-

comes σt i
j = e

z jζi , and it’s easy to rename several variables
simultaneously.

3. The “archetypal multiplication map mi j
k : S(zi, z j) → S(zk)”

has mt = e
zk(ζi+ζ j).

4. The “archetypal coproduct ∆i
jk : S(zi)→ S(z j, zk)”, given by

zi → z j + zk or ∆z = z ⊗ 1 + 1 ⊗ z, has ∆t = e
(z j+zk)ζi .

5. R-matrices tend to have terms of the form e
~y1 x2
q ∈ Uq ⊗Uq.

The “baby R-matrix” is Rt = e
~yx ∈ S(y, x).

Proposition. If F : S(B) → S(B′) is linear and “continuous”,
then Ft = exp

(∑
zi∈B ζizi

)
�F.

The Heisenberg Example. The “Weyl form of the canonical
commutation relations” states that if [y, x] = t and t is central,
then e

ξx
e
ηy = e

ηy
e
ξx
e
−ηξt. Thus with

S(t, y, x)
Oxy --

Oyx

11SWxy
:: U(t, y, x)

we have SWt
xy = e

τt+ηy+ξx−ηξt.
The Zipping Issue (be-
tween unbound and
bound lies half-zipped).
Zipping. If P(ζ j, zi) is a polynomial, or whenever otherwise
convergent, set 〈

P(ζ j, zi)
〉

(ζ j)
= P

(
∂z j , zi

)∣∣∣∣
zi=0

.

(E.g., if P =
∑

anmζ
nzm then 〈P〉ζ =

∑
n!ann).

The Zipping /Contraction Theorem. If P has a finite ζ-degree
and the y’s and the q’s are “small” then〈

P(zi, ζ
j)eη

izi+y jζ
j〉

(ζ j)
=

〈
P(zi + yi, ζ

j)eη
i(zi+yi)

〉
(ζ j)

,

(proof: replace y j → ~y j and test at ~ = 0 and at ∂~), and
〈
P(zi, ζ

j)ec+ηizi+y jζ
j+qi

jziζ
j
〉

(ζ j)

= det(q̃)
〈
P(q̃k

i (zk + yk), ζ j)ec+ηiq̃k
i (zk+yk)

〉
(ζ j)

where q̃ is the inverse matrix of 1 − q: (δi
j − qi

j)q̃
j
k = δi

k (proof:
replace qi

j → ~qi
j and test at ~ = 0 and at ∂~).

Implementation. ωεβ/ZipBindDemo
Kδ /: Kδi_,j_ := If[i === j, 1, 0];

{z*, x*, y*} = {ζ, ξ, η}; {ζ
*, ξ

*, η
*
} = {z, x, y};

(u_i_)
* := (u*)i;

Zip{}[P_] := P;

Zip{ζ_,ζs___}[P_] :=

Expand[P // Zip{ζs}] /. f_. ζd_.
⧴ ∂ζ*,df /. ζ*

→ 0

Zip{ζ}a ζ
6
+ ζ + 3 z5 ⅇz + 7 z + 99 b

7 + 720 a + 99 b

Zip{ξ,η}ξ
3
η
3
ⅇ
a x + b y+ c x y



a3 b3 + 9 a2 b2 c + 18 a b c2 + 6 c3

(* [Q,P] means ⅇQP *)

 /: Zipζs_List@[Q_, P_] :=

Module{ζ, z, zs, c, ys, ηs, qt, zrule, Q1, Q2},

zs = Table[ζ*, {ζ, ζs}];

c = Q /. Alternatives @@ (ζs ⋃ zs) → 0;

ys = Table[∂ζ(Q /. Alternatives @@ zs → 0), {ζ, ζs}];

ηs = Table[∂z(Q /. Alternatives @@ ζs → 0), {z, zs}];

qt = Inverse@Table[Kδz,ζ* - ∂z,ζQ, {ζ, ζs}, {z, zs}];

zrule = Thread[zs → qt.(zs + ys)];

Q1 = c + ηs.zs /. zrule;

Q2 = Q1 /. Alternatives @@ zs → 0;

Simplify /@ Q2, Det[qt] ⅇ
-Q2 Zipζsⅇ

Q1
(P /. zrule) ;

Eh = h 

i=1

3



j=1

3

a10 i+j xi ξj, 

i=1

3

fi[x1, x2, x3] ξi;

E1 = Eh /. h → 1

[a11 x1 ξ1 + a21 x2 ξ1 + a31 x3 ξ1 + a12 x1 ξ2 +

a22 x2 ξ2 + a32 x3 ξ2 + a13 x1 ξ3 + a23 x2 ξ3 + a33 x3 ξ3,

ξ1 f1[x1, x2, x3] + ξ2 f2[x1, x2, x3] + ξ3 f3[x1, x2, x3]]

Short[lhs = Zip{ξ1,ξ2}@E1, 5]

((a13 ((-1 + a22) a31 - a21 a32) + a12 (-a23 a31 + a21 a33) +

(-1 + a11) (a23 a32 - (-1 + a22) a33)) x3 ξ3)/

(-1 + a12 a21 - a11 (-1 + a22) + a22),

17 + a21 1

(-1 + a12 a21 - a11 (-1 + a22) + a22)
2


lhs == Zip{ξ1}@Zip{ξ2}@E1 == Zip{ξ2}@Zip{ξ1}@E1

True

Short

lhs = NormalEh /. [Q_, P_] ⧴ SeriesP ⅇ
Q, {h, 0, 3} //

Zip{ξ1,ξ2}, 5

h a13 ξ3 f1[0, 0, x3] + 2 h2 a11 a13 ξ3 f1[0, 0, x3] +

3 h3 a11
2 a13 ξ3 f1[0, 0, x3] + 2 h3 a12 a13 a21 ξ3 f1[0, 0, x3] +

h2 a13 a22 ξ3 f1[0, 0, x3] +337 +

1

6
h3 a31

3 x3
3
ξ3 f3

(3,0,0)
[0, 0, x3] +

1

2
h3 a31

2 a32 x3
3 f1

(3,1,0)
[0, 0, x3] +

1

6
h3 a31

3 x3
3 f2

(3,1,0)
[0, 0, x3] +

1

6
h3 a31

3 x3
3 f1

(4,0,0)
[0, 0, x3]

rhs =

NormalZip{ξ1,ξ2}@Eh /. [Q_, P_] ⧴ SeriesP ⅇ
Q, {h, 0, 3};

Simplify[lhs == rhs]

True

 /: [Q1_, P1_] [Q2_, P2_] := [Q1 + Q2, P1*P2];

Bindζs_List[L_, R_] := Module[{n, hideζs, hidezs},

hideζs = Table[ζs〚i〛 → ζn@i, {i, Length@ζs}];

hidezs = Table[ζs〚i〛*
→ zn@i, {i, Length@ζs}];

Zipζs/.hideζs[(L /. hidezs) (R /. hideζs)] ];

Bind{ξ2}[[ξ (x1 + x2), 1], [ξ2 (x2 + x3), 1]]

[ξ (x1 + x2 + x3), 1]

Bind{ξ2}[[(ξ2 + ξ3) x2, 1], [(ξ1 + ξ2) x, 1]]

[x (ξ1 + ξ2 + ξ3), 1]

The 2D Lie Algebra. Clever people know∗ that if [a, x] = γx
then e

ξx
e
αa = e

αa
e
e
−γαξx. Ergo with

S(a, x)
Oax --

Oxa

11SWax :: U(a, x)

we have SWt
ax = e

αa+e−γαξx.
∗ Indeed xa = (a − γ)x thus xan = (a − γ)n x thus xeαa = e

α(a−γ) x = e
−γα

e
αa x

thus xn
e
αa = e

αa(e−γα)n xn thus eξx
e
αa = e

αa
e
e
−γαξx.

The Real Thing. In QU/(ε2 = 0) over Q~~� using the yax
order, T = e

~t, T̄ = T−1,A = e
γα, and Ā = A−1, we have

Rt i j = e
~(yi x j−tia j/γ)

(
1 + ε~

(
aia j/γ − γ~2y2

i x2
j/4

))

in S(Bi, B j), and in S(B∗1, B
∗
2, B) we have

mt =e(α1+α2)a+η2ξ1(1−T )/~+(ξ1Ā2+ξ2)x+(η1+η2Ā1)y (1+ελm),
where λm = 2aη2ξ1T + 1

4γη
2
2ξ

2
1

(
3T 2−4T +1

)
/~− 1

2γη2ξ
2
1(3T−1)xĀ2

− 1
2γη

2
2ξ1(3T−1)yĀ1+γη2ξ1 xy~Ā1Ā2. Similar formulas delight us

for ∆t and St .
A generic morphism.

t at

τ

a

α

t

α

ξ ξ

ax x

t

t

α

α
α

t

x x

ξ

x

ξ ξ

Q: P:L:
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Implementation. ωεβ/SL2Portfolio

QZipζs_List,simp_@[L_, Q_, P_] :=

Module{ζ, z, zs, c, ys, ηs, qt, zrule, Q1, Q2},

zs = Table[ζ*, {ζ, ζs}];

c = Q /. Alternatives @@ (ζs ⋃ zs) → 0;

ys = Table[∂ζ(Q /. Alternatives @@ zs → 0), {ζ, ζs}];

ηs = Table[∂z(Q /. Alternatives @@ ζs → 0), {z, zs}];

qt = Inverse@Table[Kδz,ζ* - ∂z,ζQ, {ζ, ζs}, {z, zs}];

zrule = Thread[zs → qt.(zs + ys)];

Q2 = (Q1 = c + ηs.zs /. zrule) /. Alternatives @@ zs → 0;

simp /@ L, Q2, Det[qt] ⅇ
-Q2 Zipζsⅇ

Q1
(P /. zrule) ;

QZipζs_List := QZipζs,CF;

LZipζs_List,simp_@[L_, Q_, P_] :=

Module{ζ, z, zs, c, ys, ηs, lt, zrule, L1, L2, Q1, Q2},

zs = Table[ζ*, {ζ, ζs}];

c = L /. Alternatives @@ (ζs ⋃ zs) → 0;

ys = Table[∂ζ(L /. Alternatives @@ zs → 0), {ζ, ζs}];

ηs = Table[∂z(L /. Alternatives @@ ζs → 0), {z, zs}];

lt = Inverse@Table[Kδz,ζ* - ∂z,ζL, {ζ, ζs}, {z, zs}];

zrule = Thread[zs → lt.(zs + ys)];

L2 = (L1 = c + ηs.zs /. zrule) /. Alternatives @@ zs → 0;

Q2 = (Q1 = Q /. T2t /. zrule) /. Alternatives @@ zs → 0;

simp /@

L2, Q2, Det[lt] ⅇ
-L2-Q2

Zipζsⅇ
L1+Q1

(P /. T2t /. zrule) //. t2T ;

LZipζs_List := LZipζs,CF;

Bind{}[L_, R_] := L R;

Bindis__[L_, R_] := Module{n},

Times[

L /. Table[(v : T t a x y)i → vn@i, {i, {is}}],

R /. Table[(v : τ α ξ η)i → vn@i, {i, {is}}]

] // LZipFlatten@Table{τn@i,an@i},i,is //

QZipFlatten@Table{ξn@i,yn@i},i,is ;

Bl_List := Bindl; Bis___ := Bindis;

Bind[ℰ_] := ℰ;

Bind[Ls__, ζs_List, R_] := Bindζs[Bind[Ls], R];

A Partial To Do List.
• Complete all “docility” arguments by identifying a “contai-

ned” docile substructure.
• Understand denominators and get rid of them.
• See if much can be gained by including P in the exponential:
e

L+QP{ e
L+Q+P?

• Clean the program and make it efficient.
• Run it for all small knots and links, at k = 2, 3.
• Understand the centre and figure out how to read the output.
• Execute the Drinfel’d double procedule at E-level (and thus

get rid of DeclareAlgebra and all that is around it!).
• Extend to sl3 and beyond.
• Do everything with Zip and Bind as the fundamentals, wi-

thout ever referring back to (quantized) Lie algebras.

• Prove a genus bound and a Seifert formula.
• Obtain “Gauss-Gassner formulas” (ωεβ/NCSU).
• Relate with Melvin-Morton-Rozansky and with Rozansky-

Overbay.
• Understand the braid group representations that arise.
• Find a topological interpretation. The Garoufalidis-Rozansky

“loop expansion” [GR]?
• Figure out the action of the Cartan automorphism.
• Disprove the ribbon-slice conjecture!
• Figure out the action of the Weyl group.
• Do everything at the “arrow diagram” level of finite-type i-

nvariants of (rotational) virtual tangles.
• What else can you do with the “solvable approximations”?
• And with the “Gaussian zip and bind” technology?
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The Complete Implementation. ωεβ/SL2Portfolio
An even fuller implementation is at ωεβ/FullImp.
Initialization / Utilities
$p = 2; $k = 1; $U = QU; $E := {$k, $p};

$trim := ℏ
p_.

/; p > $p → 0, ϵ
k_.

/; k > $k → 0;

qℏ = ⅇ
γ ϵ ℏ;

T2t = Ti_
p_.

→ ⅇ
p ℏ ti, Tp_. → ⅇ

p ℏ t
;

t2T = ⅇ
c_. ti_+b_. ⧴ Ti

c/ℏ
ⅇ
b, ⅇ

c_. t+b_.
⧴ Tc/ℏ ⅇb, ⅇ

ℰ_
⧴ ⅇ

Expand@ℰ
;

SetAttributes[SS, HoldAll];

SS[ℰ_, op_] := Collect[

Normal@Series[If[$p > 0, ℰ, ℰ /. T2t], {ℏ, 0, $p}],

ℏ, op];

SS[ℰ_] := SS[ℰ, Together];

Simp[ℰ_, op_] := Collect[ℰ, _CU _QU, op];

Simp[ℰ_] := Simp[ℰ, SS[#, Expand] &];

Kδ /: Kδi_,j_ := If[i === j, 1, 0];

c_Integerk_Integer := c + O[ϵ]k+1;

CF[ℰ_] := ExpandDenominator@

ExpandNumerator@

TogetherExpand[ℰ] //. ⅇ
x_

ⅇ
y_

⧴ ⅇ
x+y

/. ⅇ
x_

⧴ ⅇ
CF[x]

;

Unprotect[SeriesData];

SeriesData /: CF[sd_SeriesData] := MapAt[CF, sd, 3];

SeriesData /: Expand[sd_SeriesData] :=

MapAt[Expand, sd, 3];

SeriesData /: Simplify[sd_SeriesData] :=

MapAt[Simplify, sd, 3];

SeriesData /: Together[sd_SeriesData] :=

MapAt[Together, sd, 3];

SeriesData /: Collect[sd_SeriesData, specs__] :=

MapAt[Collect[#, specs] &, sd, 3];

Protect[SeriesData];

DeclareAlgebra
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77

http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/


Unprotect[NonCommutativeMultiply];

Attributes[NonCommutativeMultiply] = {};

(NCM = NonCommutativeMultiply)[x_] := x;

NCM[x_, y_, z__] := (x ** y) ** z;

0 ** _ = _ ** 0 = 0;

(x_Plus) ** y_ := (# ** y) & /@ x;

x_ ** (y_Plus) := (x ** #) & /@ y;

B[x_, x_] = 0; B[x_, y_] := x ** y - y ** x;

B[x_, y_, e_] := B[x, y, e] = B[x, y];

DeclareAlgebra[U_Symbol, opts__Rule] :=

Module{gp, sr, g, cp, M, CE, k = 0,

gs = Generators /. {opts},

cs = Centrals /. {opts} /. Centrals → {} },

(#U = U@#) & /@ gs;

gp = Alternatives @@ gs; gp = gp gp_; (* gens *)

sr = Flatten@Table[{g → ++k, gi_ → {i, k}}, {g, gs}];

(* sorting → *)

cp = Alternatives @@ cs; (* cents *)

SetAttributes[M, HoldRest]; M[0, _] = 0;

M[a_, x_] := a x;

CE[ℰ_] := Collect[ℰ, _U, Expand] /. $trim;

Ui_[ℰ_] := ℰ /. {t : cp ⧴ ti, u_U ⧴ (#i &) /@ u};

Ui_[NCM[]] = U@{} = 1U = U[];

B[U@(x_)i_, U@(y_)i_] := Ui@B[U@x, U@y];

B[U@(x_)i_, U@(y_)j_] /; i =!= j := 0;

B[U@y_, U@x_] := CE[-B[U@x, U@y]];

x_ ** (c_. 1U) := CE[c x]; (c_. 1U) ** x_ := CE[c x];

(a_. U[xx___, x_]) ** (b_. U[y_, yy___]) :=

If[OrderedQ[{x, y} /. sr],

CE@M[a b /. $trim, U[xx, x, y, yy]],

U@xx **

CE@M[a b /. $trim, U@y ** U@x + B[U@x, U@y, $E]] **

U@yy ];

U@{c_.*(l : gp)n_, r___} /; FreeQ[c, gp] :=

CE[c U@Table[l, {n}] ** U@{r}];

U@{c_.*l : gp, r___} := CE[c U[l] ** U@{r}];

U@{c_, r___} /; FreeQ[c, gp] := CE[c U@{r}];

U@{l_Plus, r___} := CE[U@{#, r} & /@ l];

U@{l_, r___} := U@{Expand[l], r};

U[ℰ_NonCommutativeMultiply] := U /@ ℰ;

U[specs___, poly_] := Module[{sp, null, vs, us},

sp = Replace[{specs}, l_List ⧴ lnull, {1}];

vs = Join @@ (First /@ sp);

us = Join @@ (sp /. l_s_ ⧴ (l /. x_i_ ⧴ xs));

CE[Total[

CoefficientRules[poly, vs] /. (p_ → c_) ⧴ c U@(usp)

]] /. x_null ⧴ x];

U[specs___, [L_, Q_, P_]] :=

Uspecs, SS@NormalP ⅇ
L+Q

;

σrs___[c_.*u_U] :=

(c /. (t : cp)j_ ⧴ tj/.{rs}) U[List @@ (u /. v_j_ ⧴ vj/.{rs})];

mj_→k_[c_.*u_U] :=

CE[((c /. (t : cp)j → tk) DeleteCases[u, _j k]) **

U @@ Cases[u, w_j ⧴ wk] ** U @@ Cases[u, _k]];

U /: c_.*u_U*v_U := CE[c u ** v];

Si_[c_.*u_U] :=

CE[((c /. Si[U, Centrals]) DeleteCases[u, _i]) **

Ui[NCM @@ Reverse@Cases[u, x_i ⧴ S@U@x]]];

Δi_→j_,k_[c_.*u_U] :=

CE[((c /. Δi→j,k[U, Centrals]) DeleteCases[u, _i]) **

(NCM @@ Cases[u, x_i ⧴ σ1→j,2→k@Δ@U@x] /.

NCM[] → U[])]; 

DeclareMorphism
DeclareMorphism[m_, U_ → V_, ongs_List, oncs_List: {}] := (

Replace[ongs, {(g_ → img_) ⧴ (m[U[g]] = img),

(g_ ⧴ img_) ⧴ (m[U[g]] := img /. $trim)}, {1}];

m[1U] = 1V;

m[U[g_i_]] := Vi[m[U@g]];

m[U[vs__]] := NCM @@ (m /@ U /@ {vs});

m[ℰ_] := Simp[ℰ /. oncs /. u_U ⧴ m[u]] /. $trim; )

Meta-Operations
σrs___[ℰ_Plus] := σrs /@ ℰ;

mj_→j_ = Identity; mj_→k_[0] = 0;

mj_→k_[ℰ_Plus] := Simp[mj→k /@ ℰ];

mis___,i_,j_→k_[ℰ_] := mj→k@mis,i→j@ℰ;

Si_[ℰ_Plus] := Simp[Si /@ ℰ];

Δis___[ℰ_Plus] := Simp[Δis /@ ℰ];

Implementing CU =sl2
γϵ

DeclareAlgebra[CU, Generators → {y, a, x}, Centrals → {t}];

B[aCU, yCU] = -γ yCU; B[xCU, aCU] = -γ xCU;

B[xCU, yCU] = 2 ϵ aCU - t 1CU;

(S@yCU = -yCU; S@aCU = -aCU; S@xCU = -xCU;)

Si_[CU, Centrals] = {ti → -ti};

Δ@yCU = CU@y1 + CU@y2; Δ@aCU = CU@a1 + CU@a2;

Δ@xCU = CU@x1 + CU@x2;

Δi_→j_,k_[CU, Centrals] = {ti → tj + tk};

Implementing QU =qsl2
γϵ

DeclareAlgebra[QU, Generators → {y, a, x},

Centrals → {t, T}];

B[aQU, yQU] = -γ yQU; B[xQU, aQU] = -γ QU@x;

B[xQU, yQU] := SS[qℏ - 1] QU@{y, x} +

QU{a}, SS1 - T ⅇ
-2 ϵ a ℏ

ℏ;

S@yQU := QU{a, y}, SS-T-1 ⅇℏ ϵ a y; S@aQU = -aQU;

S@xQU := QU{a, x}, SS-ⅇℏ ϵ a x;

Si_[QU, Centrals] = ti → -ti, Ti → Ti
-1
;

Δ@yQU := QU{y1, a1}1, {y2}2, SSy1 + T1 ⅇ
-ℏ ϵ a1 y2;

Δ@aQU = QU@a1 + QU@a2;

Δ@xQU := QU{a1, x1}1, {x2}2, SSx1 + ⅇ
-ℏ ϵ a1 x2;

Δi_→j_,k_[QU, Centrals] = {ti → tj + tk, Ti → Tj Tk};

The representation ρ
ρ@yCU = ρ@yQU = 

0 0
ϵ 0

; ρ@aCU = ρ@aQU = 
γ 0
0 0

;

ρ@xCU = 
0 γ

0 0
; ρ@xQU =

0 1 - ⅇ-γ ϵ ℏ(ϵ ℏ)

0 0
;

ρⅇ
ℰ_
 := MatrixExp[ρ[ℰ]];

ρ[ℰ_] :=

ℰ /. T2t /. t → γ ϵ /.

(U : CU QU)[u___] ⧴ FoldDot, 
1 0
0 1

, ρ /@ U /@ {u}

tSW
Goal. In either U, compute F = ⅇ-ηy ⅇξx ⅇηy ⅇ-ξx. First compute 
G = ⅇξx yⅇ-ξx, a finite sum. Now F satisfies the ODE 
∂ηF = ∂ηⅇ

-ηy ⅇηG = -yF+FG with initial conditions F(η = 0) = 1. So 

we set it up and solve:
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SWxy[U_, kk_] :=

SWxy[U, kk] = Block{$U = U, $k = kk, $p = kk},

Module{G, F, fs, f, bs, e, b, es},

G = SimpTableξk  k!, {k, 0, $k + 1}.

NestList[Simp[B[xU , # ]] &, yU, $k + 1];

fs = Flatten@Table[fl,i,j,k[η], {l, 0, $k}, {i, 0, l},

{j, 0, l}, {k, 0, l}];

F = fs.bs = fs /. fl_,i_,j_,k_[η] ⧴ ϵ
l U@yi, aj, xk;

es = Flatten[Table[Coefficient[e, b] ⩵ 0,

{e, {F - 1U /. η → 0, F ** G - yU ** F - ∂ηF}},

{b, bs}]];

F = F /. DSolve[es, fs, η]〚1〛;

[0,

ξ x + η y + (U /. {CU → -t η ξ, QU → η ξ (1 - T)/ℏ}),

F + 0$k /. {ⅇ
_
→ 1, U → Times}

] /. (v : η ξ t T y a x) → v1

;

tSWxy_,i_,j_→k_ :=

SWxy[$U, $k] /. {ξ1 → ξi, η1 → ηj, (v : t T y a x)1 → vk};

tSWxa,i_,j_→k_ := [αj ak, ⅇ
-γ αj ξi xk, 1];

tSWay,i_,j_→k_ := [αi ak, ⅇ
-γ αi ηj yk, 1];

Exponentials as needed.
Task. Define  ExpUi,k[ξ, P] which computes ⅇξ (P) to ϵk in the algebra 

Ui, where ξ is a scalar, X is xi or yi, and P is an ϵ-dependent near-
docile element, giving the answer in -form. Should satisfy 
U@ExpUi,k[ξ, P] == Uⅇ

ξ x, x→ (P).

Methodology. If P0 := Pϵ=0 and ⅇξ (P) = ⅇξP0 F(ξ), then F(ξ = 0) = 1 

and we have:
ⅇξP0(P0 F(ξ)+∂ξF) = ∂ξⅇ

ξP0 F(ξ) =

∂ξⅇ
ξP0 F(ξ) = ∂ξⅇ

ξ (P) = ⅇξ (P)  (P) = ⅇξP0 F(ξ)  (P)

.

This is an ODE for F. Setting inductively Fk = Fk-1 +ϵ
kφ we find that 

F0 = 1 and solve for φ.
(* Bug: The first line is valid only if ⅇP0⩵ⅇ(P0). *)

(* Bug: ξ must be a symbol. *)

ExpU_i_,0[ξ_, P_] := Module[{LQ = Normal@P /. ϵ → 0},

[ξ LQ /. (x y)i → 0, ξ LQ /. (t a)i → 0, 1] ];

ExpU_i_,k_[ξ_, P_] := Block{$U = U, $k = k},

Module{P0, φ, φs, F, j, rhs, at0, atξ},

P0 = Normal@P /. ϵ → 0;

φs = Flatten@Table[φj1,j2,j3[ξ], {j2, 0, k},

{j1, 0, 2 k + 1 - j2}, {j3, 0, 2 k + 1 - j2 - j1}];

F = Normal@Last@ExpUi,k-1[ξ , P] +

ϵ
k
φs.φs /. φjs__[ξ] ⧴ Times @@ {yi, ai, xi}

js
;

rhs =

Normal@

Last@

mi,j→i[[ξ P0 /. (x y)i → 0, ξ P0 /. (t a)i → 0, F + 0k]

mi→j@[0, 0, P + 0k]];

at0 = (# ⩵ 0) & /@

Flatten@CoefficientList[F - 1 /. ξ → 0, {yi, ai, xi}];

atξ = (# ⩵ 0) & /@

Flatten@CoefficientList[(∂ξ F) + P0 F - rhs,

{yi, ai, xi}];

[ξ P0 /. (x y)i → 0, ξ P0 /. (t a)i → 0, F + 0k] /.

DSolve[And @@ (at0 ⋃ atξ), φs, ξ]〚1〛 

Zip and Bind

 /: [L1_, Q1_, P1_] ≡ [L2_, Q2_, P2_] :=

CF[L1 ⩵ L2] ∧ CF[Q1 ⩵ Q2] ∧ CF[Normal[P1 - P2] ⩵ 0];

 /: [L1_, Q1_, P1_] [L2_, Q2_, P2_] :=

[L1 + L2, Q1 + Q2, P1*P2];

{t*, y*, a*, x*, z*} = {τ, η, α, ξ, ζ};

{τ
*, η

*, α
*, ξ

*, ζ
*
} = {t, y, a, x, z};

(u_i_)
* := (u

*
)i;

Zip{}[P_] := P;

Zip{ζ_,ζs___}[P_] :=

Expand[P // Zip{ζs}] /. f_. ζd_.
⧴ ∂ζ*,df /. ζ*

→ 0

QZip implements the “Q-level zips” on (L, Q, P) = PⅇL+Q. Such 
zips regard the L variables as scalars.
QZipζs_List,simp_@[L_, Q_, P_] :=

Module{ζ, z, zs, c, ys, ηs, qt, zrule, Q1, Q2},

zs = Table[ζ*, {ζ, ζs}];

c = Q /. Alternatives @@ (ζs ⋃ zs) → 0;

ys = Table[∂ζ(Q /. Alternatives @@ zs → 0), {ζ, ζs}];

ηs = Table[∂z(Q /. Alternatives @@ ζs → 0), {z, zs}];

qt = Inverse@Table[Kδz,ζ* - ∂z,ζQ, {ζ, ζs}, {z, zs}];

zrule = Thread[zs → qt.(zs + ys)];

Q2 = (Q1 = c + ηs.zs /. zrule) /. Alternatives @@ zs → 0;

simp /@ L, Q2, Det[qt] ⅇ
-Q2 Zipζsⅇ

Q1
(P /. zrule) ;

QZipζs_List := QZipζs,CF;

LZip implements the “L-level zips” on (L, Q, P) = PⅇL+Q. Such zips 
regard all of PⅇQ as a single”P”. Here the z’s are t and α and the ζ’s 
are τ and a.
LZipζs_List,simp_@[L_, Q_, P_] :=

Module{ζ, z, zs, c, ys, ηs, lt, zrule, L1, L2, Q1, Q2},

zs = Table[ζ*, {ζ, ζs}];

c = L /. Alternatives @@ (ζs ⋃ zs) → 0;

ys = Table[∂ζ(L /. Alternatives @@ zs → 0), {ζ, ζs}];

ηs = Table[∂z(L /. Alternatives @@ ζs → 0), {z, zs}];

lt = Inverse@Table[Kδz,ζ* - ∂z,ζL, {ζ, ζs}, {z, zs}];

zrule = Thread[zs → lt.(zs + ys)];

L2 = (L1 = c + ηs.zs /. zrule) /. Alternatives @@ zs → 0;

Q2 = (Q1 = Q /. T2t /. zrule) /. Alternatives @@ zs → 0;

simp /@

L2, Q2, Det[lt] ⅇ
-L2-Q2

Zipζsⅇ
L1+Q1

(P /. T2t /. zrule) //. t2T ;

LZipζs_List := LZipζs,CF;

Bind{}[L_, R_] := L R;

Bindis__[L_, R_] := Module{n},

Times[

L /. Table[(v : T t a x y)i → vn@i, {i, {is}}],

R /. Table[(v : τ α ξ η)i → vn@i, {i, {is}}]

] // LZipFlatten@Table{τn@i,an@i},i,is //

QZipFlatten@Table{ξn@i,yn@i},i,is ;

Bl_List := Bindl; Bis___ := Bindis;

Bind[ℰ_] := ℰ;

Bind[Ls__, ζs_List, R_] := Bindζs[Bind[Ls], R];

Tensorial Representations
tη = t = [0, 0, 1 + 0$k];

tmi_,j_→k_ := Module[{tk},

[(τi + τj) tk + αi ak + αj ak, ηi yk + ξj xk, 1]

(tSWxy,i,j→tk /. {ttk → tk, Ttk → Tk, ytk → ⅇ
-γ αi yk,

atk → ak, xtk → ⅇ
-γ αj xk})];

mj_→k_[ℰ_] := ℰ ~Bj,k~tmj,k→k;

tm1,2→3

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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a3 α1 + a3 α2 + t3 (τ1 + τ2),

y3 η1 + ⅇ
-γ α1 y3 η2 + ⅇ

-γ α2 x3 ξ1 +
(1 - T3) η2 ξ1

ℏ
+ x3 ξ2,

1 +
1

4 ℏ
η2 ξ1 8 ℏ a3 T3 + 4 ⅇ

-γ α1-γ α2 γ ℏ
2 x3 y3 + 2 ⅇ

-γ α1 γ ℏ y3 η2 -

6 ⅇ
-γ α1 γ ℏ T3 y3 η2 + 2 ⅇ

-γ α2 γ ℏ x3 ξ1 - 6 ⅇ
-γ α2 γ ℏ T3 x3 ξ1 +

γ η2 ξ1 - 4 γ T3 η2 ξ1 + 3 γ T3
2
η2 ξ1 ϵ + O[ϵ]2

S[U_, kk_] := S[U, kk] = Module[{OE},

OE = m3,2,1→1[ExpQU1,$k[η, S1[QU[y1]] /. QU → Times]

ExpQU2,$k[α, S2[QU[a2]] /. QU → Times]

ExpQU3,$k[ξ, S3[QU[x3]] /. QU → Times]];

[-t1 τ1 + OE〚1〛, OE〚2〛, OE〚3〛] /.

{η → η1, α → α1, ξ → ξ1}];

tSi_ := S[$U, $k] /. {(v : τ η α ξ)1 → vi,

(v : t T y a x)1 → vi};

tS1

-a1 α1 - t1 τ1,

-ⅇγ α1 ℏ y1 η1 - ⅇγ α1 ℏ T1 x1 ξ1 + ⅇγ α1 η1 ξ1 - ⅇγ α1 T1 η1 ξ1

ℏ T1
, 1 +

1

4 ℏ T1
2
4 ⅇ

γ α1 γ ℏ
2 T1 y1 η1 - 4 ⅇ

γ α1 ℏ
2 a1 T1 y1 η1 - 2 ⅇ

2 γ α1 γ ℏ
2 y1

2
η1
2
-

4 ⅇ
γ α1 ℏ

2 a1 T1
2 x1 ξ1 - 4 ⅇ

γ α1 γ ℏ T1 η1 ξ1 + 8 ⅇ
γ α1 ℏ a1 T1 η1 ξ1 +

4 ⅇ
γ α1 γ ℏ T1

2
η1 ξ1 - 4 ⅇ

2 γ α1 γ ℏ
2 T1 x1 y1 η1 ξ1 + 6 ⅇ

2 γ α1 γ

ℏ y1 η1
2
ξ1 - 2 ⅇ

2 γ α1 γ ℏ T1 y1 η1
2
ξ1 - 2 ⅇ

2 γ α1 γ ℏ
2 T1

2 x1
2
ξ1
2
+

6 ⅇ
2 γ α1 γ ℏ T1 x1 η1 ξ1

2
- 2 ⅇ

2 γ α1 γ ℏ T1
2 x1 η1 ξ1

2
- 3 ⅇ

2 γ α1 γ η1
2
ξ1
2
+

4 ⅇ
2 γ α1 γ T1 η1

2
ξ1
2
- ⅇ

2 γ α1 γ T1
2
η1
2
ξ1
2
 ϵ + O[ϵ]2

Δ[U_, kk_] := Δ[U, kk] = Module[{OE},

OE = Block[{$k = kk, $p = kk + 1},

m1,3,5→1@

m2,4,6→2@Times[ (* Warning:

wrong unless $p≥$k+1! *)

ReplacePart[1 → 0]@

ExpQU1,$k[η, Δ1→1,2[QU[y1]] /. QU → Times],

ReplacePart[2 → 0]@

ExpQU3,$k[α, Δ3→3,4[QU[a3]] /. QU → Times],

ReplacePart[1 → 0]@

ExpQU5,$k[ξ, Δ5→5,6[QU[x5]] /. QU → Times]

] /. {η → η1, α → α1, ξ → ξ1}];

[τ1 (t1 + t2) + α1 (a1 + a2), OE〚2〛, OE〚3〛]];

tΔi_→j_,k_ :=

Δ[$U, $k] /. {(v : τ η α ξ)1 → vi,

(v : t T y a x)1 → vj, (v : t T y a x)2 → vk};

tΔ1→1,2

(a1 + a2) α1 + (t1 + t2) τ1, y1 η1 + T1 y2 η1 + x1 ξ1 + x2 ξ1,

1 +
1

2
-2 ℏ a1 T1 y2 η1 + γ ℏ T1 y1 y2 η1

2
- 2 ℏ a1 x2 ξ1 + γ ℏ x1 x2 ξ1

2
 ϵ +

O[ϵ]2

The Faddeev-Quesne formula:

ⅇq_,k_[x_] := ⅇ^ 

j=1

k+1
(1 - q)j xj

j 1 - qj
; ⅇq_[x_] := ⅇq,$k[x]

R[QU, kk_] :=

R[QU, kk] = -
ℏ a2 t1

γ
, ℏ x2 y1,

Seriesⅇℏ γ-1 t1 a2-ℏ y1 x2

ⅇ
ℏ b1 a2 ⅇqℏ,kk[ℏ y1 x2] /. b1 → γ

-1
(ϵ a1 - t1),

{ϵ, 0, kk} ;

tRi_,j_ :=

R[$U, $k] /. {(v : t T y a x)1 → vi,

(v : t T y a x)2 → vj};

tRi_,j_ := tRi,j = tRi,j~Bj~tSj;

tR1,2, tR1,2

-
ℏ a2 t1

γ
, ℏ x2 y1, 1 + 

ℏ a1 a2

γ
-
1

4
γ ℏ

3 x2
2 y1

2
 ϵ + O[ϵ]2,


ℏ a2 t1

γ
, -

ℏ x2 y1

T1
, 1 +

1

4 γ T1
2

-4 ℏ a1 a2 T1
2
- 4 γ ℏ

2 a1 T1 x2 y1 - 4 γ ℏ
2 a2 T1 x2 y1 - 3 γ

2
ℏ
3 x2

2 y1
2


ϵ + O[ϵ]2

tC is the counterclockwise spinner; tC is its inverse.
tCi_ := 0, 0, Ti

1/2
ⅇ
-ϵ ai ℏ

+ 0$k;

tCi_ := 0, 0, Ti
-1/2

ⅇ
ϵ ai ℏ

+ 0$k;

Block{$k = 3}, tC1, tC2

0, 0,

T1 - ℏ a1 T1 ϵ +
1

2
ℏ
2 a1

2 T1 ϵ
2
-
1

6
ℏ

3 a1
3 T1  ϵ

3
+ O[ϵ]4,

0, 0,
1

T2
+
ℏ a2 ϵ

T2
+
ℏ2 a2

2 ϵ2

2 T2
+
ℏ3 a2

3 ϵ3

6 T2
+ O[ϵ]4

Kink[QU, kk_] :=

Kink[QU, kk] =

Block{$k = kk}, tR1,3 tC2~B1,2~tm1,2→1~B1,3~tm1,3→1;

tKinki_ := Kink[$U, $k] /. {(v : t T y a x)1 → vi};

Kink[QU, kk_] :=

Kink[QU, kk] =

Block{$k = kk}, tR1,3 tC2~B1,2~tm1,2→1~B1,3~tm1,3→1;

tKinki_ := Kink[$U, $k] /. {(v : t T y a x)1 → vi}

Alternative Algorithms
λalt,k_[CU] := Ifk ⩵ 0, 1, Module{eq, d, b, c, so},

eq = ρ@ⅇ
ξ xCU.ρ@ⅇη yCU ⩵ ρ@ⅇ

d yCU.ρ@ⅇc t 1CU - 2 ϵ aCU.ρ@ⅇb xCU;

{so} = Solve[Thread[Flatten /@ eq], {d, b, c}] /.

C@1 → 0;

Seriesⅇ-η y-ξ x+η ξ t+c t + d y - 2 ϵ c a + b x
/. so, {ϵ, 0, k};

The Trefoil
Block{$k = 1},

Z = tR1,5 tR6,2 tR3,7 tC4 tKink8 tKink9 tKink10;

Do[Z = Z~B1,k~tm1,k→1, {k, 2, 10}]; Z

0, 0,
T1

1 - T1 + T1
2
+

-2 ℏ a1 T1 - γ ℏ T1
2
+ 2 ℏ a1 T1

2
+ 2 γ ℏ T1

3
- 3 γ ℏ T1

4
- 2 ℏ a1 T1

4
+

2 γ ℏ T1
5
+ 2 ℏ a1 T1

5
- 2 γ ℏ

2 T1 x1 y1 - 2 γ ℏ
2 T1

4 x1 y1 ϵ

1 - 3 T1 + 6 T1
2
- 7 T1

3
+ 6 T1

4
- 3 T1

5
+ T1

6
 + O[ϵ]2

diagram
nt

k Alexander’s ω+ genus / ribbon
Today’s / Rozansky’s ρ+

1 unknotting number / amphicheiral diagram
nt

k Alexander’s ω+ genus / ribbon
Today’s / Rozansky’s ρ+

1 unknotting number / amphicheiral
0a

1 1 0 / 4

0 0 / 4

3a
1 t − 1 1 / 8

t 1 / 8

4a
1 3 − t 1 / 8

0 1 / 4

5a
1 t2 − t + 1 2 / 8

2t3 + 3t 2 / 8

5a
2 2t − 3 1 / 8

5t − 4 1 / 8

6a
1 5 − 2t 1 / 4

t − 4 1 / 8

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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Experimental Analysis (ωεβ/Exp). Log-log plots of computation
time (sec) vs. crossing number, for all knots with up to 12 cros-
sings (mean times) and for all torus knots with up to 48 crossings:

Power. On the 250 knots with at most 10 crossings, the pair
(ω, ρ1) attains 250 distinct values, while (Khovanov, HOMFLY-
PT) attains only 249 distinct values. To 11 crossings the numbers
are (802, 788, 772) and to 12 they are (2978, 2883, 2786).
Genus. Up to 12 xings, always ρ1 is symmetric under t ↔ t−1.
With ρ+

1 denoting the positive-degree part of ρ1, always deg ρ+
1 ≤

2g − 1, where g is the 3-genus of K (equality for 2530 knots).
This gives a lower bound on g in terms of ρ1 (conjectural, but
undoubtedly true). This bound is often weaker than the Alexander
bound, yet for 10 of the 12-xing Alexander failures it does give
the right answer.

{U⊗S }{FS }
The (fake) moduli of Lie alge-
bras on V , a quadratic variety in
(V∗)⊗2⊗V is on the right. We ca-
re about slk17 B slε17/(ε

k+1 = 0).

Abstract. It has long been known that there are knot invariants
associated to semi-simple Lie algebras, and there has long been
a dogma as for how to extract them: “quantize and use repre-
sentation theory”. We present an alternative and better procedu-
re: “centrally extend, approximate by solvable, and learn how to
re-order exponentials in a universal enveloping algebra”. While
equivalent to the old invariants via a complicated process, our i-
nvariants are in practice stronger, faster to compute (poly-time vs.
exp-time), and clearly carry topological information.
KiW 43 Abstract (ωεβ/kiw). Whether or not you like the formu-
las on this page, they describe the strongest truly computable knot
invariant we know.

Ribbon Knots.

Gompf, Schar-
lemann, Tho-
mpson [GST]

A2n

1 ∈ An

T2n

U ∈ Tn

z(K) ∈ R ⊆ A1ribbon K ∈ T1

with R B κ(τ−1(1))
A+ = −t8 + 2t7 − t6 − 2t4 + 5t3 − 2t2 − 7t + 13

ρ+
1 = 5t15 − 18t14 + 33t13 − 32t12 + 2t11 + 42t10 − 62t9 − 8t8 + 166t7 − 242t6+

108t5 + 132t4 − 226t3 + 148t2 − 11t − 36

[Vo]: Works
for Alexander!

Theorem ([BNG], conjectured [MM], e-
lucidated [Ro1]). Let Jd(K) be the co-
loured Jones polynomial of K, in the d-dimensional representa-
tion of sl2. Writing

(q1/2 − q−1/2)Jd(K)
qd/2 − q−d/2

∣∣∣∣∣∣
q=e~

=
∑

j,m≥0

a jm(K)d j~m,

“below diagonal” coefficients vanish, a jm(K) =

0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:(∑∞

m=0 amm(K)~m
)
· ω(K)(e~) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

Jd(K)(q) =
qd − q−d

(q − q−1)ω(K)(qd)

1 +

∞∑

k=1

(q − 1)kρk(K)(qd)
ω2k(K)(qd)

 .

Melvin,
Morton,
Garoufalidis

The Yang-Baxter Technique. Given an alge-
bra U (typically Û(g) or Ûq(g)) and elements

R =
∑

ai ⊗ bi ∈ U ⊗ U and C ∈ U,
form

Z =
∑

i, j,k

Caib jakC2bia jbkC.

Problem. Extract information from Z.
The Dogma. Use representation theory. In
principle finite, but slow.

The Loyal Opposition. For certain algebras, work in a homomor-
phic poly-dimensional
“space of formulas”.

Recomposing gln. Half is enough! gln ⊕ an = D(^, b, δ):

Now define glεn B D(^, b, εδ). Schematically, this is [^,^] = ^,
[_,_] = ε_, and [^,_] = _ + ε^. In detail, it is

[xi j, xkl]=δ jk xil − δlixk j [yi j, ykl]=εδ jkyil − εδliyk j

[xi j, ykl]=δ jk(εδ j<k xil + δil(bi + εai)/2 + δi>lyil)
−δli(εδk< jxk j + δk j(b j + εa j)/2 + δk> jyk j)

[ai, x jk]= (δi j − δik)x jk [bi, x jk]=ε(δi j − δik)x jk

[ai, y jk]= (δi j − δik)y jk [bi, y jk]=ε(δi j − δik)y jk

The Main sl2 Theorem. Let gε = 〈t, y, a, x〉/([t, ·] = 0, [a, x] =

x, [a, y] = −y, [x, y] = t−2εa) and let gk = gε/(εk+1 = 0). The gk-
invariant of any S -component tangle K can be written in the form
Z(K) = O

(
ωeL+Q+P :

⊗
i∈S yiaixi

)
, where ω is a scalar (a ratio-

nal function in the variables ti and their exponentials Ti B e
ti),

where L =
∑

li jtia j is a quadratic in ti and a j with integer coef-
ficients li j, where Q =

∑
qi jyix j is a quadratic in the variables yi

and x j with scalar coefficients qi j, and where P is a polynomial in
{ε, yi, ai, xi} (with scalar coefficients) whose εd-term is of degree
at most 2d + 2 in {yi,

√
ai, xi}. Furthermore, after setting ti = t and

Ti = T for all i, the invariant Z(K) is poly-time computable.

Ordering Symbols. O (poly | specs) plants the variables of poly in
S(⊕ig) on several tensor copies ofU(g) according to specs. E.g.,

O
(
a3

1y1a2ey3 x9
3 | x3a1 ⊗ y1y3a2

)
= x9a3 ⊗ yeya ∈ U(g) ⊗U(g)

This enables the description of elements of Û(g)⊗S using com-
mutative polynomials / power series.
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Follows Rozansky [Ro1, Ro2, Ro3] and Overbay [Ov],
joint with van der Veen. Preliminary writeup [BV1],
fuller writeup [BV2]. More at ωεβ/talks.
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The PBW Problem. In U(gε), bring Z = y3a2x2 · y2a2x to
yax-order. In other words, find g ∈ Z[ε, t, y, a, x] such that
Z = O( f = y3

1y2
2a2

1a2
2x2

1x2 : y1a1x1y2a2x2) = O(g : yax).
Solution, Part 1. In Û(gε) we have

Xτ1,η1,α1,ξ1,τ2,η2,α2,ξ2 B e
τ1t
e
η1y
e
α1a

e
ξ1 x
e
τ2t
e
η2y
e
α2a

e
ξ2 x

= e
τt
e
ηy
e
αa
e
ξx C Yτ,η,α,ξ,

where τ, η, α, ξ are ugly functions of τ1, ηi, αi, ξi:

τ =τ1 + τ2 − log(1 − εη2ξ1)
ε

= τ1 + τ2 + η2ξ1 +
ε

2
η2

2ξ
2
1 + . . . ,

η =η1 +
e
−α1η2

(1 − εη2ξ1)
= η1 + e

−α1η2 + εe−α1η2
2ξ1 + . . . ,

α =α1 + α2 + 2 log(1 − εη2ξ1) = α1 + α2 − 2εη2ξ1 + . . . ,

ξ =
e
−α2ξ1

(1 − εη2ξ1)
+ ξ2 = e

−α2ξ1 + ξ2 + εe−α2η2ξ
2
1 + . . . .

Note 1. This defines a mapping Φ : R8
τ1,η1,α1,ξ1,τ2,η2,α2,ξ2

→ R4
τ,η,α,ξ.

Proof. gε has a 2D representation ρ:
ρt = 

1 0
0 1

; ρy = 
0 0
-ϵ 0

;

ρa = 
(1 + 1/ϵ)/2 0

0 -(1 - 1/ϵ)/2
; ρx = 

0 1
0 0

;

Simplify@{ρa.ρx - ρx.ρa ⩵ ρx, ρa.ρy - ρy.ρa ⩵ -ρy,

ρx.ρy - ρy.ρx ⩵ ρt - 2 ϵ ρa}

{True, True, True}

It is enough to verify the desired identity in ρ:
ME = MatrixExp;

Simplify

ME[τ1 ρt].ME[η1 ρy].ME[α1 ρa].ME[ξ1 ρx].ME[τ2 ρt].

ME[η2 ρy].ME[α2 ρa].ME[ξ2 ρx] ⩵

ME[τ0 ρt].ME[η0 ρy].ME[α0 ρa].ME[ξ0 ρx] /.

τ0 → -
Log[1-ϵ η2 ξ1]

ϵ
+ τ1 + τ2, η0 → η1 +

ⅇ-α1 η2
1-ϵ η2 ξ1

,

α0 → 2 Log[1 - ϵ η2 ξ1] + α1 + α2, ξ0 →
ⅇ-α2 ξ1
1-ϵ η2 ξ1

+ ξ2

True

Solution, Part 2. But now, with D f = f (z 7→ ∂ζ) =

∂3
η1
∂2
α1
∂2
ξ1
∂2
η2
∂2
α2
∂ξ2 ,

Z = D f Xτ1,η1,α1,ξ1,τ2,η2,α2,ξ2

∣∣∣
vs=0 = D f Yτ,η,α,ξ

∣∣∣
vs=0

= O
(
D fe

τt
e
ηy
e
αa
e
ξx
∣∣∣
vs=0 : yax

)
= O(g : yax) :

Expand∂{η1,3}∂{α1,2}∂{ξ1,2}∂{η2,2}∂{α2,2}∂{ξ2,1}Exp

-
Log[1-ϵ η2 ξ1]

ϵ
+ τ1 + τ2 t + η1 +

ⅇ-α1 η2
1-ϵ η2 ξ1

 y +

(2 Log[1 - ϵ η2 ξ1] + α1 + α2) a + 
ⅇ-α2 ξ1
1-ϵ η2 ξ1

+ ξ2 x

 /. (τ η α ξ)1 2 → 0

2 a4 t2 x y3 + 4 t x2 y4 - 16 a t x2 y4 + 24 a2 t x2 y4 - 16 a3 t x2 y4 +

4 a4 t x2 y4 + 16 x3 y5 - 32 a x3 y5 + 24 a2 x3 y5 - 8 a3 x3 y5 + a4 x3 y5 +

2 a4 t x y3 ϵ - 8 a5 t x y3 ϵ + 8 x2 y4 ϵ - 40 a x2 y4 ϵ + 80 a2 x2 y4 ϵ -

80 a3 x2 y4 ϵ + 40 a4 x2 y4 ϵ - 8 a5 x2 y4 ϵ - 4 a5 x y3 ϵ2 + 8 a6 x y3 ϵ2

(τ1, η1, α1, ξ1,
τ2, η2, α2, ξ2)

(τ, η, α, ξ) W

V

Φ

X

Y

D f

Dg

Û(gε)

Z

exponentials

Note 2. Replacing f →
D f (and likewise g →
Dg), we find that Dg =

Φ∗D f .
Note 3. The two great e-
vils of mathematics are
non-commutativity and
non-linearity. We traded one for the other.
Note 4. We could have done similarly with e

τ1t
e
η1y
e
α1a

e
ξ1 x =

e
τt+ηy+αa+ξx, and with S (eτ1t

e
η1y
e
α1a

e
ξ1 x), ∆(eτ1t

e
η1y
e
α1a

e
ξ1 x),∏5

i=1 e
τit
e
ηiy
e
αia
e
ξi x.

Fact. R12 → exp
(
∂τ1∂α2 + ∂y1∂x2

)
(1 +

∑
d≥1 ε

d pd), where the pd

are computable polynomials of a-priori bounded degrees.
Moral. We need to understand the pushforwards via maps like Φ

of (formally ∞-order) “differential operators at 0”, that in them-
selves are perturbed Gaussians. This turns out to be the same
problem as “0-dimensional QFT” (except no integration is ever
needed), and if εk+1 = 0, it is explicitly soluble.
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Enter

Enter

Experimental Analysis (ωεβ/Exp). Log-log plots of computation
time (sec) vs. crossing number, for all knots with up to 12 cros-
sings (mean times) and for all torus knots with up to 48 crossings:

Power. On the 250 knots with at most 10 crossings, the pair
(ω, ρ1) attains 250 distinct values, while (Khovanov, HOMFLY-
PT) attains only 249 distinct values. To 11 crossings the numbers
are (802, 788, 772) and to 12 they are (2978, 2883, 2786).
Genus. Up to 12 xings, always ρ1 is symmetric under t ↔ t−1.
With ρ+

1 denoting the positive-degree part of ρ1, always deg ρ+
1 ≤

2g − 1, where g is the 3-genus of K (equality for 2530 knots).
This gives a lower bound on g in terms of ρ1 (conjectural, but
undoubtedly true). This bound is often weaker than the Alexander
bound, yet for 10 of the 12-xing Alexander failures it does give
the right answer.

Recomposing gln. Half is enough! gln ⊕ an = D(^, b, δ):

Now define glεn B D(^, b, εδ). Schematically, this is [^,^] = ^,
[_,_] = ε_, and [^,_] = _ + ε^. In detail, it is

[ei j, ekl]=δ jkeil − δliek j [ fi j, fkl]=εδ jk fil − εδli fk j

[ei j, fkl]=δ jk(εδ j<keil + δil(hi + εgi)/2 + δi>l fil)
−δli(εδk< jek j + δk j(h j + εg j)/2 + δk> j fk j)

[gi, e jk]= (δi j − δik)e jk [hi, e jk]=ε(δi j − δik)e jk

[gi, f jk]= (δi j − δik) f jk [hi, f jk]=ε(δi j − δik) f jk

The (fake) moduli of Lie alge-
bras on V , a quadratic variety in
(V∗)⊗2⊗V is on the right. We ca-
re about slk17 B slε17/(ε

k+1 = 0).

{A⊗S }{FS }

Abstract. It has long been known that there are knot invariants
associated to semi-simple Lie algebras, and there has long been
a dogma as for how to extract them: “quantize and use repre-
sentation theory”. We present an alternative and better procedu-
re: “centrally extend, approximate by solvable, and learn how to
re-order exponentials in a universal enveloping algebra”. While
equivalent to the old invariants via a complicated process, our i-
nvariants are in practice stronger, faster to compute (poly-time vs.
exp-time), and clearly carry topological information.
KiW 43 Abstract (ωεβ/kiw). Whether or not you like the formu-
las on this page, they describe the strongest truly computable knot
invariant we know.

Ribbon Knots.

Gompf, Schar-
lemann, Tho-
mpson [GST]

A2n

1 ∈ An

T2n

U ∈ Tn

z(K) ∈ R ⊆ A1ribbon K ∈ T1

with R B κ(τ−1(1))
A+ = −t8 + 2t7 − t6 − 2t4 + 5t3 − 2t2 − 7t + 13

ρ+
1 = 5t15 − 18t14 + 33t13 − 32t12 + 2t11 + 42t10 − 62t9 − 8t8 + 166t7 − 242t6+

108t5 + 132t4 − 226t3 + 148t2 − 11t − 36

[Vo]: Works
for Alexander!

Theorem ([BNG], conjectured [MM], e-
lucidated [Ro1]). Let Jd(K) be the co-
loured Jones polynomial of K, in the d-dimensional representa-
tion of sl2. Writing

(q1/2 − q−1/2)Jd(K)
qd/2 − q−d/2

∣∣∣∣∣∣
q=e~

=
∑

j,m≥0

a jm(K)d j~m,

“below diagonal” coefficients vanish, a jm(K) =

0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:(∑∞

m=0 amm(K)~m
)
· ω(K)(e~) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

Jd(K)(q) =
qd − q−d

(q − q−1)ω(K)(qd)

1 +

∞∑

k=1

(q − 1)kρk(K)(qd)
ω2k(K)(qd)

 .

Melvin,
Morton,
Garoufalidis

The Yang-Baxter Technique. Given an alge-
bra A (typically Û(g) or Ûq(g)) and elements

R =
∑

ai ⊗ bi ∈ A ⊗ A and C ∈ A,
form

Z =
∑

i, j,k

Caib jakC2bia jbkC.

Problem. Extract information from Z.
The Dogma. Use representation theory. In
principle finite, but slow.

Why are “solvable algebras” any good? Contrary to common
beliefs, computations in semi-simple Lie algebras are just awful:

Yet in solvable algebras, exponentiation is fine and even BCH,
z = log(ex

e
y), is bearable:

The Loyal Opposition. For certain algebras, work in a homomor-
phic poly-dimensional
“space of formulas”.
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[Ov], joint with van der Veen. More at ωεβ/talks.
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The sl2 Example. Let gε = 〈h, e, l, f 〉/([h, ·] = 0, [e, l] =

−e, [ f , l] = f , [e, f ] = h − 2εl) and let gk = gε/(εk+1 = 0).
The Main gk Theorem. The gk-invariant of any S -component tan-
gle T can be written in the form

Z(T ) = O

ωeL+Q+P :
⊗

i∈S
eili fi

 ,

where ω is a scalar (meaning, a rational function in the variables
hi and their exponentials ti B e

hi), where L =
∑

ai jhil j is a bala-
nced quadratic in the variables hi and l j with integer coefficients,
where Q =

∑
bi jei f j is a balanced quadratic in the variables ei

and f j with scalar coefficients bi j, and where P is a polynomial in
{ε, ei, li, fi} (with scalar coefficients) whose εd-term is of degree
at most 2d + 2 in {ei,

√
li, fi}. Furthermore, after setting hi = h

and ti = t for all i, the invariant Z(T ) is poly-time computable.
The Main gk Lemma. The following “re-ordering relations” hold:
O

(
e
γl+βe : le

)
= O

(
e
γl+eγβe : el

)
(and similarly for f l→ l f ),

O
(
e
βe+α f +δe f : f e

)
= O

(
νeν(−αβh+βe+α f +δe f )+λk(ε,e,l, f ,α,β,δ) : el f

)
,

with ν = (1 + hδ)−1 and where λk(ε, e, l, f , α, β, δ) is some fixed
polynomial of degree at most 2k + 2 in ε, e,

√
l, f , α, β, δ, with

scalar coefficients.
Demo Programs. ωεβ/Demo
CF[ℰ_] := Module[{vars = Union@Cases[ℰ, e_ l_ f_, ∞]},

If[vars === {}, Factor[ℰ],

Total[CoefficientRules[ℰ, vars] /.

(p_ → c_) ⧴ Factor[c] Times @@ (varsp)] ]];

CF[ℰ_] := CF /@ ℰ;

Formatting

Preparation[i_, j_, s_] := 1, (-1)s lj, (-t)s ei fj,

ts ei l(1+s) i-s j fj + (-1)s li lj + -t2s ei
2 fj

2
 4;

[i_, s_] := [1, 0, 0, s li];

 /: [1, L1_, Q1_, P1_] [1, L2_, Q2_, P2_] :=

[1, L1 + L2, Q1 + Q2, P1 + P2];

Preparing the Trefoil

1

2

3

4

5

67

8

9
10

11

1213

14

15

16

z1 = ([1, 11, 0] [4, 2, -1] [15, 5, 0] ×

[6, 8, -1] [9, 16, 0] [12, 14, -1] ×

[3, -1] [7, +1] [10, -1] [13, +1])

1, -l2 + l5 - l8 + l11 - l14 + l16,

-
e4 f2
t

+ e15 f5 -
e6 f8
t

+ e1 f11 -
e12 f14

t
+ e9 f16,

-
e4
2 f2

2

4 t2
+

1

4
e15
2 f5

2 -
e6
2 f8

2

4 t2
+

1

4
e1
2 f11

2 -
e12
2 f14

2

4 t2
+

1

4
e9
2 f16

2 + e1 f11 l1 +

e4 f2 l2
t

- l3 - l2 l4 + l7 +
e6 f8 l8

t
- l6 l8 + e9 f16 l9 - l10 +

l1 l11 + l13 +
e12 f14 l14

t
- l12 l14 + e15 f5 l15 + l5 l15 + l9 l16

Differential Polynomials
(Implementing P(∂α, ∂β)( f ))

DPx_→Dα_,y_→Dβ_[P_][f_] :=

Total[CoefficientRules[P, {x, y}] /.

({m_, n_} → c_) ⧴ c D[f, {α, m}, {β, n}]]

le and fl SortsSlj_ x:e fi_→k_
[[ω_, L_, Q_, P_]] :=

Withλ = ∂lj L, α = ∂xi Q, q = ⅇ
γ
β xk + γ lk, CF

ω, L /. lj → lk, tλ α xk + (Q /. xi → 0),

ⅇ
-q DPlj→Dγ,xi→Dβ[P][ⅇ

q
] /. {β → α/ω, γ → λ Log[t]} ;

Λ[k_] := (t - 1) 2 (α β + δ μ)
2
- α

2
β
2
 - 4 ek lk fk δ

2
μ
2
-

δ (1 + μ) fk
2
α
2
+ ek

2
β
2
 - ek

2 fk
2
δ
3
(1 + 3 μ) -

2 α β + 2 δ μ + ek fk δ
2
(1 + 2 μ) + 2 lk δ μ

2
 (fk α + ek β) -

4 lk μ
2
+ ek fk δ (1 + μ) (α β + δ μ) (1 + t)/4;

The Λόγος

fe SortsSfi_ ej_→k_
[[ω_, L_, Q_, P_]] :=

With{q = ((1 - t) α β + β ek + α fk + δ ek fk)/μ}, CF

μ ω, L, μ ω q + μ (Q /. fi ej → 0),

μ
4
ⅇ
-q DPfi→Dα,ej→Dβ[P][ⅇ

q
] + ω

4
Λ[k] /. μ → 1 + (t - 1) δ /.

α → ω
-1

∂fi Q /. ej → 0, β → ω
-1

∂ej Q /. fi → 0,

δ → ω
-1

∂fi,ej Q;

Elf Mergesmi_,j_→k_[Z_] := Module{x, z},

CFZ // Sfi ej→x
// Sli ex→x // Sfx lj→x

 /. z_i j x → zk

Rewriting the Trefoil
(by merging 16 elves)

(Do[z1 = z1 // m1,k→1, {k, 2, 16}]; z1)


1-t+t2

t
, 0, 0,

(-1+t) 1-t+t22 1-t+2 t2

t3
-

2 (1+t) 1-t+t23 e1 f1

t4
-

2 (-1+t) (1+t) 1-t+t23 l1

t4


Readout
ρ1[[ω_, _, _, P_]] := CF

t (P /. e_ l_ f_ → 0) - t ω3 (∂tω)

(t - 1)2 ω2


ρ1(31)ρ1[z1] // Expand
1

t
+ t
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Today’s / Rozansky’s ρ+
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0a

1 1 0 / 4

0 0 / 4
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1 t − 1 1 / 8
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1 3 − t 1 / 8
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1 t2 − t + 1 2 / 8

2t3 + 3t 2 / 8
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Enter

Enter

Gompf, Schar-
lemann, Tho-
mpson

But Z lives inU, a complicated space. How do you extract infor-
mation out of it?
Solution 1, Representation Theory. Choose a finite dimensional
representation ρ of g in some vector space V . By luck and the
wisdom of Drinfel’d and Jimbo, ρ(R) ∈ V∗ ⊗ V∗ ⊗ V ⊗ V and
ρ(C) ∈ V∗ ⊗ V are computable, so Z is computable too. But in
exponential time!

Solution 2, Solvable Approximation. Work directly in Û(gk), w-
here gk = slk2 (or a similar algebra); everything is expressible
using low-degree polynomials in a small number of variables, h-
ence everything is poly-time computable!

Example 0. Take g0 = sl02 = Q〈h, e, l, f 〉, with h central and
[ f , l] = f , [e, l] = −e, [e, f ] = h. In it, using normal orderings,

R = O

(
exp

(
hl +

e
h − 1
h

e f
)
| e ⊗ lf

)
, and,

O
(
e
δe f | fe

)
= O

(
νeνδef | ef

)
with ν = (1 + hδ)−1.

Example 1. Take R = Q[ε]/(ε2 = 0) and g1 = sl12 = R〈h, e, l, f 〉,
with h central and [ f , l] = f , [e, l] = −e, [e, f ] = h − 2εl. In it,
O

(
e
δe f | fe

)
= O

(
ν(1 + ενδΛ/2)eνδef | elf

)
, where Λ is

4ν3δ2e2 f 2 +3ν3δ3he2 f 2 +8ν2δe f +4ν2δ2he f +4νδel f −2νδh+4l.
Fact. Setting hi = h (for all i) and t = e

h, the g1 invariant of any
tangle T can be written in the form

Zg1(T ) = O

(
ω−1

e
hL+ω−1Q(1 + εω−4P) |

⊗

i
eili fi

)
,

where L is linear, Q quadratic, and P quartic in the {ei, li, fi} with
ω and all coefficients polynomials in t. Furthermore, everything
is poly-time computable.

Abstract. Recently, Roland van der Veen and myself found that
there are sequences of solvable Lie algebras “converging” to any
given semi-simple Lie algebra (such as sl2 or sl3 or E8). Certain
computations are much easier in solvable Lie algebras; in particu-
lar, using solvable approximations we can compute in polynomial
time certain projections (originally discussed by Rozansky) of the
knot invariants arising from the Chern-Simons-Witten topologi-
cal quantum field theory. This provides us with the first strong
knot invariants that are computable for truly large knots.
But sl2 and sl3 and similar algebras occur in physics (and in
mathematics) in many other places, beyond the Chern-Simons-
Witten theory. Do solvable approximations have further applica-
tions?
Recomposing gln. Half is enough! gln ⊕ an = D(^, b, δ):

Now define glεn B D(^, b, εδ). Schematically, this is [^,^] = ^,
[_,_] = ε_, and [^,_] = _ + ε^. In detail, it is

[ei j, ekl]=δ jkeil − δliek j [ fi j, fkl]=εδ jk fil − εδli fk j

[ei j, fkl]=δ jk(εδ j<keil + δil(hi + εgi)/2 + δi>l fil)
−δli(εδk< jek j + δk j(h j + εg j)/2 + δk> j fk j)

[gi, e jk]= (δi j − δik)e jk [hi, e jk]=ε(δi j − δik)e jk

[gi, f jk]= (δi j − δik) f jk [hi, f jk]=ε(δi j − δik) f jk

Solvable Approximation. At ε = 1 and modulo h = g, the above
is just gln. By rescaling at ε , 0, glεn is independent of ε. We
let glkn be glεn regarded as an algebra over Q[ε]/εk+1 = 0. It is the
“k-smidgen solvable approximation” of gln!
Recall that g is “solvable” if iterated commutators in it ultimately
vanish: g2 B [g, g], g3 B [g2, g2], . . . , gd = 0. Equivalently, if it
is a subalgebra of some large-size ^ algebra.
Note. This whole process makes sense for arbitrary semi-simple
Lie algebras.

Chern-Simons-Witten. Given a knot γ(t) in
R3 and a metrized Lie algebra g, set Z(γ) B∫

A∈Ω1(R3,g)
DA e

ik cs(A)PExpγ(A),

where cs(A) B 1
4π

∫
R3 tr

(
AdA + 2

3 A3
)

and

PExpγ(A) B
1∏

0

exp(γ∗A) ∈ U = Û(g),

and U(g) B 〈words in g〉/(xy − yx = [x, y]).
In a favourable gauge, one may hope that this
computation will localize near the crossings
and the bends, and all will depend on just two
quantities,

R =
∑

ai ⊗ bi ∈ U ⊗U and C ∈ U.
This was never done formally, yet R and C
can be “guessed” and all “quantum knot inva-
riants” arise in this way. So for the trefoil,

Z =
∑

i, j,k

Caib jakC2bia jbkC.

Why are “solvable algebras” any good? Contrary to common
beliefs, computations in semi-simple Lie algebras are just awful:

Yet in solvable algebras, exponentiation is fine and even BCH,
z = log(ex

e
y), is bearable:

Question. What else can you do with solvable approximation?
Chern-Simons-Witten theory is often “solved” using ideas from
conformal field theory and using quantization of various moduli
spaces. Does it make sense to use solvable approximation there
too? Elsewhere in physics? Elsewhere in mathematics?
See Also. Talks at George Washington University [ωεβ/gwu],
Indiana [ωεβ/ind], and Les Diablerets [ωεβ/ld], and a University
of Toronto “Algebraic Knot Theory” class [ωεβ/akt].

C±1

γ

R±1

R±1

R±1

Joint with Roland van der Veen

b, δ

b(^) = b : ^ ⊗^→ ^

b(_){ δ : ^→ ^ ⊗^⊕ {{

i j

i

j

ei j

f ji

hi

g j

ωεβBhttp://drorbn.net/McGill-1702/Dror Bar-Natan: Talks: McGill-1702:

What else can you do with solvable approximations? Thanks for the invitation!

C±1 C±1

C±1

ak

bi

C
ai

C

b j a j

bk

C C

Ribbon=Slice?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/McGill-1702/
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Abstract. Whether or not you like the formulas on this page, they
describe the strongest truly computable knot invariant we know.

Three steps to the computation of ρ1:
1. Preparation. Given K, results
〈long word ‖ simple formulas〉.

2. Rewrite rules. Make the word sim-
pler and the formulas more complica-
ted, until the word “elf ” is reached.
3. Readout. The invariant ρ1 is read
from the last formulas.
Preparation. Draw K using a 0-framed 0-rotation
planar diagram D where all crossings are poin-
ting up. Walk along D labeling features by
1, . . . ,m in order: over-passes, under-passes, and
right-heading cups and caps (“±-cuaps”). If x is
a xing, let ix and jx be the labels on its over/under
strands, and let sx be 0 if it right-handed and −1
otherwise. If c is a cuap, let ic be its label and sc be its sign. Set

(L; Q; P) =
∑

x : (i, j,s)

(−)s

l j; tsei f j; (−t)seil(1+s)i−s j f j + lil j +
t2se2

i f 2
j

4



+
∑

c : (i,s)

(0; 0; s · li) .

This done, output 〈e1l1 f1e2l2 f2 · · · emlm fm ‖ 1; L; Q; P〉.

readout

rewrite rules

preparation

Rule 5, fe Sorts. Provided k introduces no clashes, given
〈. . . fie j . . . ‖ω; L; Q; P〉, decompose Q = Q f e fie j + Q f fi + Qee j +

Q′ write P = P( fi, e j) (with messy coefficients), set µ = 1+(t−1)δ
and q = ((1 − t)αβ + βek + α fk + δek fk)/µ, and output〈

. . . ek fk . . .

∥∥∥∥∥∥
µω; L; µωq + µQ′;

ω4Λk + e
−qP(∂α, ∂β)(eq)

〉∣∣∣∣∣∣ α→Q f /ω, β→Qe/ω,
δ→Q f e/ω

,

where Λk is the Λόγος, “a principle of order and knowledge”:

Λk =
t + 1

4

(
− δ(µ + 1)

(
β2e2

k + α2 f 2
k

)
− δ3(3µ + 1)e2

k f 2
k

− 2 (βek + α fk)
(
αβ + 2δµ + δ2(2µ + 1)ek fk + 2δµ2lk

)

− 4(αβ + δµ)
(
δ(µ + 1)ek fk + µ2lk

)
− 4δ2µ2ek fklk

+ (t − 1)
(
2(αβ + δµ)2 − α2β2

) )
.

Readout. Given 〈elf ‖ω;−;−; P〉, output

ρ1(K) B
t(P|e,l, f→0 − tω′ω3)

(t − 1)2ω2 .

(ω is the Alexander polynomial, L and Q are not interesting).

elf merges, mi j
k , are defined as compositions

eili fie j l j f j
S

fie j
x−−−→ ei liex fxl j f j

S liex
x �S

fxl j
x−−−−−−−→ eiex lxlx fx f j

i, j,x→k−−−−−→ eklk fk

In formulas, L is always Z-linear in {li}, Q is an R-linear combina-
tion of {ei f j} where R B Q[t±1], and P is an R-linear combination
of {1, li, lil j, ei f j, eil j fk, eie j fk fl}. (The key to computability!)

Rewrite Rules. Manipulate 〈word ‖ formulas〉 expressions u-
sing the rewrite rules below, until you come to the form
〈e1l1 f1 ‖ω;−;−; P〉. Output (ω, P).
Rule 1, Deletions. If a letter appears in word but not in formulas,
you can delete it.
Rule 2, Merges. In word, you can replace adjacent viv j with vk

(for v ∈ {e, l, f }) while making the same changes in formulas
(provided k creates no naming clashes). E.g.,

〈. . . eie j . . . ‖Z〉 → 〈. . . ek . . . ‖Z|ei,e j→ek〉.
Rule 3, le Sorts. Provided k introduces no clashes, given
〈. . . l jei . . . ‖ω; L; Q; P〉, decompose L = λl j + L′, Q = αei + Q′,
write P = P(ei, l j) (with messy coefficients), set q = e

γβek + γlk,
and output〈
. . . eklk . . . ‖ω; L|l j→lk ; tλαek + Q′; e−qP(∂β, ∂γ)eq|β→α/ω, γ→λ log t

〉
.

Rule 4, fl Sorts. Provided k introduces no clashes, given
〈. . . fil j . . . ‖ω; L; Q; P〉, decompose L = λl j + L′, Q = α fi + Q′,
write P = P( fi, l j) (with messy coefficients), set q = e

γβ fk + γlk,
and output〈
. . . lk fk . . . ‖ω; L|l j→lk ; tλα fk + Q′; e−qP(∂β, ∂γ)eq|β→α/ω, γ→λ log t

〉
.

Experimental Analysis (ωεβ/Exp). Log-log plots of computation
time (sec) vs. crossing number, for all knots with up to 12 cros-
sings (mean times) and for all torus knots with up to 48 crossings:

Power. On the 250 knots with at most 10 crossings, the pair
(ω, ρ1) attains 250 distinct values, while (Khovanov, HOMFLY-
PT) attains only 249 distinct values. To 11 crossings the numbers
are (802, 788, 772) and to 12 they are (2978, 2883, 2786).
Genus. Up to 12 xings, always ρ1 is symmetric under t ↔ t−1.
With ρ+

1 denoting the positive-degree part of ρ1, always deg ρ+
1 ≤

2g − 1, where g is the 3-genus of K (equallity for 2530 knots).
This gives a lower bound on g in terms of ρ1 (conjectural, but
undoubtedly true). This bound is often weaker than the Alexander
bound, yet for 10 of the 12-xing Alexander failures it does give
the right answer.

Why Works? The Lie algebra g1 (below) is a “solvable approxi-
mation of sl2”.
Theorem. The map (as defined below)

〈w ‖ω; L; Q; P〉 7→ O
(
ω−1

e
L log t+ω−1Q(1 + εω−4P) : w

)
∈ Û(g1)

is well defined modulo the sorting rules. It maps the initial prepa-
ration to a product of “R-matrices” and “cuap values” satisfying
the usual moves for Morse knots (R3, etc.). (And hence the result
is a “quantum invariant”, except computed very differently; no
representation theory!).

↓

↓

↓

Scott!
Happy Birthday,

Follows Rozansky [Ro1, Ro2, Ro3] and
Overbay [Ov], joint with van der Veen.

ωεβBhttp://drorbn.net/GWU-1612/Dror Bar-Natan: Talks: GWU-1612:

Work in Progress! Fluid! Help Needed!On Elves and Invariants

〈elf . . . elf ‖ω0; L0; Q0; P0〉

〈elf ‖ω;−;−; P〉

ρ1(K) = ρ1(ω, P)

Knot K

4 6 8 10 12

2

5

10

20

50

{3, 2}

{5, 2}

{7, 2}

{4, 3}

{9, 2}

{5, 3} {11, 2}

{13, 2}

{7, 3}

{5, 4}

{15, 2}

{8, 3}
{17, 2}

{19, 2}

{10, 3}

{7, 4}

{21, 2}

{11, 3}

{23, 2}

{6, 5}

{25, 2}

{13, 3}

{9, 4}

{27, 2}

{7, 5}

{14, 3}{29, 2}
{31, 2}

{8, 5}

{16, 3}{11, 4}

{33, 2}
{17, 3}

{7, 6}

{35, 2}

{9, 5}

{37, 2}

{19, 3}
{13, 4}

{39, 2}

{20, 3}

{41, 2}
{43, 2}

{11, 5}{22, 3}

{15, 4}

{45, 2}

{23, 3}
{47, 2}

{8, 7}

{12, 5}

5 10 20 50

10

100

1000

104

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org
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1-Smidgen sl2 Let g1 be the 4-dimensional Lie algebra g1 =

〈h, e′, l, f 〉 over the ring R = Q[ε]/(ε2 = 0), with h central and
with [ f , l] = f , [e′, l] = −e′, and [e′, f ] = h − 2εl. Over Q, g1
is a solvable approximation of sl2: g1 ⊃ 〈h, e′, f , εh, εe′, εl, ε f 〉 ⊃
〈h, εh, εe′, εl, ε f 〉 ⊃ 0. Pragmatics: declare deg(h, e′, l, f , ε) =

(1, 1, 0, 0, 1) and set t B e
h and e B (t − 1)e′/h.

How did it arise? sl2 = b+ ⊕ b−/h C sl+2 /h, where b+ =

〈l, f 〉/[ f , l] = f is a Lie bialgebra with δ : b+ → b+ ⊗ b+ by
δ : (l, f ) 7→ (0, l ∧ f ). Going back, sl+2 = D(b+) = (b+)∗ ⊕ b+ =

〈h′, e′, l, f 〉/ · · · . Idea. Replace δ → εδ over Q[ε]/(εk+1 = 0). At
k = 1, get [ f , l] = f , [ f , h′] = −ε f , [l, e′] = e′, [h′, e′] = −εe′,
[h′, l] = 0, and [e′, f ] = h′ − εl. Now note that h′ + εl is central,
so switch to h B h′ + εl. This is g1.
Ordering Symbols. O (poly | specs) plants the variables of poly in
Ŝ(⊕ig) along Û(g) according to specs. E.g.,

O
(
e1e

e3 l31l2 f 9
3 | f3l1e1e3l2

)
= f 9l3eeel ∈ Û(g).

This enables the description of elements of Û(g) using commu-
tative polynomials / power series. In g1, no need to specify h / t.
Algebras and Invariants. Given any unital algebra A (even better
if A is Hopf; typically, A ∼ Û(g)), appropriate orange R ∈ A ⊗ A,
and appropriate cuaps ∈ A, get an A⊗S -valued invariant of pure
S -component tangles:

Z =
∑

T0 y x y x y

with
:e
:l
: f
:h

x

−
+

+

−
2

4+

6

3

6

5

4

31

2

5
+

1

What we didn’t say (more, including videos, in ωεβ/Talks).
• ρ1 is “line” in the coloured Jones polynomial; related to

Melvin-Morton-Rozansky.
• ρ1 extends to “rotational virtual tangles” and is a projection of

the universal finite type invariant of such.
• ρ1 seems to have a better chance than anything else we know

to detect a counterexample to slice=ribbon.
• ρ1 leads to many questions and a very long to-do list. Years of

work, many papers ahead. Have fun!
Demo Programs. ωεβ/Demo
CF[ℰ_] := Module[{vars = Union@Cases[ℰ, e_ l_ f_, ∞]},

If[vars === {}, Factor[ℰ],

Total[CoefficientRules[ℰ, vars] /.

(p_ → c_) ⧴ Factor[c] Times @@ (varsp)] ]];

CF[ℰ_] := CF /@ ℰ;

Formatting
(prints differ /)

Preparation[i_, j_, s_] := 1, (-1)s lj, (-t)s ei fj,

ts ei l(1+s) i-s j fj + (-1)s li lj + -t2s ei
2 fj

2
 4;

[i_, s_] := [1, 0, 0, s li];

 /: [1, L1_, Q1_, P1_] [1, L2_, Q2_, P2_] :=

[1, L1 + L2, Q1 + Q2, P1 + P2];

Preparing the Trefoilz1 = ([1, 11, 0] [4, 2, -1] [15, 5, 0]

[6, 8, -1] [9, 16, 0] [12, 14, -1] [3, -1] [7, +1]

[10, -1] [13, +1])

1, -l2 + l5 - l8 + l11 - l14 + l16,

-
e4 f2
t

+ e15 f5 -
e6 f8
t

+ e1 f11 -
e12 f14

t
+ e9 f16,

-
e4
2 f2

2

4 t2
+ 1

4
e15
2 f5

2 -
e6
2 f8

2

4 t2
+ 1

4
e1
2 f11

2 -
e12
2 f14

2

4 t2
+ 1

4
e9
2 f16

2 + e1 f11 l1 +

e4 f2 l2
t

- l3 - l2 l4 + l7 +
e6 f8 l8

t
- l6 l8 + e9 f16 l9 - l10 +

l1 l11 + l13 +
e12 f14 l14

t
- l12 l14 + e15 f5 l15 + l5 l15 + l9 l16

Differential Polynomials
(Implementing P(∂α, ∂β)( f ))

DPx_→Dα_,y_→Dβ_[P_][f_] :=

Total[CoefficientRules[P, {x, y}] /.

({m_, n_} → c_) ⧴ c D[f, {α, m}, {β, n}]]

le and fl SortsSlj_ x:e fi_→k_
[[ω_, L_, Q_, P_]] :=

Withλ = ∂lj L, α = ∂xi Q, q = ⅇ
γ
β xk + γ lk, CF

ω, L /. lj → lk, tλ α xk + (Q /. xi → 0),

ⅇ
-q DPlj→Dγ,xi→Dβ[P][ⅇ

q
] /. {β → α/ω, γ → λ Log[t]} ;

Λ[k_] := (t - 1) 2 (α β + δ μ)
2
- α

2
β
2
 - 4 ek lk fk δ

2
μ
2
-

δ (1 + μ) fk
2
α
2
+ ek

2
β
2
 - ek

2 fk
2
δ
3
(1 + 3 μ) -

2 α β + 2 δ μ + ek fk δ
2
(1 + 2 μ) + 2 lk δ μ

2
 (fk α + ek β) -

4 lk μ
2
+ ek fk δ (1 + μ) (α β + δ μ) (1 + t)/4;

The Λόγος

fe SortsSfi_ ej_→k_
[[ω_, L_, Q_, P_]] :=

With{q = ((1 - t) α β + β ek + α fk + δ ek fk)/μ}, CF

μ ω, L, μ ω q + μ (Q /. fi ej → 0),

μ
4
ⅇ
-q DPfi→Dα,ej→Dβ[P][ⅇ

q
] + ω

4
Λ[k] /. μ → 1 + (t - 1) δ /.

α → ω
-1

∂fi Q /. ej → 0, β → ω
-1

∂ej Q /. fi → 0,

δ → ω
-1

∂fi,ej Q;

Elf Mergesmi_,j_→k_[Z_] := Module{x, z},

CFZ // Sfi ej→x
// Sli ex→x // Sfx lj→x

 /. z_i j x → zk

Rewriting the Trefoil
(by merging 16 elves)

(Do[z1 = z1 // m1,k→1, {k, 2, 16}]; z1)

 1-t+t2

t
, 0, 0,

(-1+t) 1-t+t22 1-t+2 t2

t3
-

2 (1+t) 1-t+t23 e1 f1

t4
-

2 (-1+t) (1+t) 1-t+t23 l1

t4


Readout
ρ1[[ω_, _, _, P_]] := CF

t (P /. e_ l_ f_ → 0) - t ω3 (∂tω)

(t - 1)2 ω2


ρ1(31)ρ1[z1] // Expand
1
t
+ t
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diagram
nt

k Alexander’s ω+ genus / ribbon
Today’s / Rozansky’s ρ+

1 unknotting number / amphicheiral diagram
nt

k Alexander’s ω+ genus / ribbon
Today’s / Rozansky’s ρ+

1 unknotting number / amphicheiral
0a

1 1 0 / 4

0 0 / 4

3a
1 t − 1 1 / 8

t 1 / 8

4a
1 3 − t 1 / 8

0 1 / 4

5a
1 t2 − t + 1 2 / 8

2t3 + 3t 2 / 8
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Overbay

The Gold Standard is set by the “Γ-calculus” Alexander
formulas [BNS, BN1]. An S -component tangle T has

Γ(T ) ∈ RS × MS×S (RS ) =

{
ω S
S A

}
with RS B Z({ta : a ∈ S }):

(
!a b, "b a

)
→

1 a b
a 1 1 − t±1

a
b 0 t±1

a

T1 t T2 →
ω1ω2 S 1 S 2

S 1 A1 0
S 2 0 A2

ω a b S
a α β θ
b γ δ ε
S φ ψ Ξ

mab
c−−−−−−−−−→

ta, tb → tc



(1 − β)ω c S
c γ + αδ

1−β ε + δθ
1−β

S φ +
αψ
1−β Ξ +

ψθ
1−β



(Roland: “add to A the product of column b and row a, divide by (1 − Aab),
delete column b and row a”.)

For long knots, ω is Alexander, and that’s the fastest A-
lexander algorithm I know! Dunfield: 1000-crossing fast.

(There are also formulas for strand doubling and strand reversal).

A bit about ribbon knots. A “ribbon knot” is a knot that can be
presented as the boundary of a disk that has “ribbon singulari-
ties”, but no “clasp singularities”. A “slice knot” is a knot in
S 3 = ∂B4 which is the boundary of a non-singular disk in B4.
Every ribbon knots is clearly slice, yet,
Conjecture. Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is alw-
ays of the form A(t) = f (t) f (1/t). (also for slice)

(meta-associativity:
mab

x �mxc
y = mbc

x �max
y )

(tangles are generated
by ! and ")

Abstract. Rozansky [Ro2] and Overbay [Ov] described a
spectacular knot polynomial that failed to attract the at-
tention it deserved as the first poly-time-computable knot
polynomial since Alexander’s [Al, 1928] and (in my opi-
nion) as the second most likely knot polynomial (after
Alexander’s) to carry topological information. With Ro-
land van der Veen, I will explain how to compute the Ro-
zansky polynomial using some new commutator-calculus
techniques and a Lie algebra g1 which is at the same time
solvable and an approximation of the simple Lie algebra sl2.

Rozansky

Theorem ([BNG], conjectured [MM], e-
lucidated [Ro1]). Let Jd(K) be the co-
loured Jones polynomial of K, in the d-dimensional representa-
tion of sl2. Writing

(q1/2 − q−1/2)Jd(K)
qd/2 − q−d/2

∣∣∣∣∣∣
q=e~

=
∑

j,m≥0

a jm(K)d j~m,

“below diagonal” coefficients vanish, a jm(K) =

0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:(∑∞

m=0 amm(K)~m
)
· A(K)(e~) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

Jd(K)(q) =
qd − q−d

(q − q−1)A(K)(qd)

1 +

∞∑

k=1

(q − 1)kRk(K)(qd)
A2k(K)(qd)

 .

Melvin,
Morton,
Garoufalidis

Gompf,
Scharlemann,
Thompson
[GST]

A2n

1 ∈ An

with R B
κ(τ−1(1))T2n

U ∈ Tn

z(K) ∈ R ⊆ A1ribbon K ∈ T1

A+ = −t8 + 2t7 − t6 − 2t4 + 5t3 − 2t2 − 7t + 13
ρ+

1 = 5t15 − 18t14 + 33t13 − 32t12 + 2t11 + 42t10 − 62t9 − 8t8 + 166t7 − 242t6+

108t5 + 132t4 − 226t3 + 148t2 − 11t − 36

Algebras and Invariants. Given any unital algebra A (even better
if A is Hopf; typically, A ∼ Û(g)), appropriate orange R ∈ A ⊗ A,
and appropriate cuaps ∈ A, get an A⊗S -valued invariant of pure
S -component tangles:

Z =
∑

T0 y x y x y

with
:c
:u
:w
:b

Theorem [EK, Ha, En, Se]. There is a “homomorphic expansion”

Z :
{S -component
(v/b-)tangles

}
→ Av

S B

Etingof Kazhdan Haviv Enriquez Ševera

AS:
+ = 0

= −
IHX:1 2 n

. . .

STU:
= −

Why “spectacular”? Foremost reason: OBVIOUSLY. Cf. proving
(incomputable A)=(incomputable B), or categorifying (incomputable C).
Also, will bound genus and may disprove {ribbon} = {slice}.

Good News. In theory, enough to know R, the cuaps, and stitch-
ing/multiplication mi j

k : Ai ⊗ A j → Ak.
Problem. Extract information out of Z.
Textbook Solution. Use representation theory . . . works, slowly.
Today’s Solution (with van der Veen). For some speci-
fic g’s, work in a space of “formulas of a specific type”
for elements of Û(g)⊗S :{

ordered perturbed
Gaussian formulas

}
→ Û(g)⊗S

x

(v-)Tangles.

Genus.

TT T

m

—
ne

w
stu

ff
—

—
ale

xa
nd

er
−1 —

0
j

a clasp singularity

[BN2]

a ribbon singularity

example

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org

,

T
1

3
4

2

a b

T
mab

c

c

T

ωεβBhttp://drorbn.net/MIT-1612/Dror Bar-Natan: Talks: MIT-1612: (thanks for accepting my invitation!)

Work in Progress! Fluid! Help Needed!A Poly-Time Knot Polynomial Via Solvable Approximation

τ κ

z

κ

τ

κ

τ

Faster is better, leaner is meaner!

van der Veen

−
+

+

−
2

4+

6

3

6

5

4

31

2

5
+

1

t
T1T2T1 T2

This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at . . . /Indiana-1611/,
. . . /LesDiablerets-1608/
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Goal. Write ζ as a Gaussian: ωeL+Q where L bilinear in bi and ci

with integer coefficients, Q a balanced quadratic in ui and wi with
coefficients in RS B Q(bi, ebi), and ω ∈ RS .
The Big g0 Lemma. Under [c, u] = u, [c,w] = −w, and [u,w] = b:
1a. Ncu B O(eγc+βu|uc) →= O(eγc+eγβu|cu) (means eβueγc = eγceeγβu

1b. Nwc B O(eγc+αw|wc) →= O(eγc+eγαw|cw) . . . in the {ax + b} group)
2. O(eαw+βu|wu) = O(e−bαβ+αw+βu|uw) (the Weyl relations)
3. O(eδuw|wu)eβu = eνβuO(eδuw|wu), with ν = (1 + bδ)−1

(a. expand and crunch. b. use w = bx̂, u = ∂x. c. use “scatter and glow”.)
4. O(eδuw|wu) = O(νeνδuw|uw) (same techniques)
5. Nwu B O(eβu+αw+δuw|wu) →= O(νe−bναβ+ναw+νβu+νδuw|uw)
6. Ncic j

k B O(ζ |cic j)
→
= O(ζ/(ci, c j → ck)|ck)

Sneaky. α may contain (other) u’s, β may contain (other) w’s.

Experimental Analysis (ωεβ/Exp). Log-log plots of computation
time (sec) vs. crossing number, for all knots with up to 12 cros-
sings (mean times) and for all torus knots with up to 48 crossings:

Conjecture (checked on the same collections). Given a knot K
with Alexander polynomial A, there is a polynomial ρ1 such that

P = A2 (t − 1)3ρ1 + t2(2vw + (1 − t)(1 − 2c))AA′

(1 − t)t
.

Furthermore, A and ρ1 are symmetric under t → t−1, so let A+ and
ρ+

1 be their “positive parts”, so e.g., ρ1(t) = ρ+
1 (t)+ρ+

1 (t−1)−ρ+
1 (0).

Power. On the 250 knots with at most 10 crossings, the pair
(A, ρ1) attains 250 distinct values, while (Khovanov, HOMFLY-
PT) attains only 249 distinct values. To 11 crossings the numbers
are (802, 788, 772) and to 12 they are (2978, 2883, 2786).
Genus. Up to 12 xings, always deg ρ+

1 ≤ 2g − 1, where g is
the 3-genus of K (equallity for 2530 knots). This gives a lower
bound on g in terms of ρ1 (conjectural, but undoubtedly true).
This bound is often weaker than the Alexander bound, yet for 10
of the 12-xing Alexander failures it does give the right answer.

n
A

B∑4

d=0
w4−d

E
wd

F
n2

G
= n3w4 ∈ [n5, n7]

Rough complexity esti-
mate, after tk → t. n: xing
number; w: width, maybe
∼ √n. A: go over stitchings in order. B: multiplication ops per
Nuiw j . d: deg of ui,w j in P. E: #terms of deg d in P. F: ops per
term. G: cost per polynomial multiplication op.

The Big g1 Lemma. Parts 1 and 6 are the same, yet
5. O

(
eαw+βu+δuw|wu

)
= O

(
ν(1 + ενΛ)eν(−bαβ+αw+βu+δuw)|ucw

)

Here Λ is for Λόγος, “a principle of order and knowledge”, a ba-
lanced quartic in α, β, u, c, and w:

Λ = − bν(α2β2ν2 + 4αβδν + 2δ2)/2 + β2δν3(bδ + 2)u2/2
+ δ3ν3(3bδ + 4)u2w2/2 + βδ2ν3(2bδ + 3)u2w
+ αδ2ν3(2bδ + 3)uw2 + 2δν2(bδ + 2)(αβν + δ)uw
+ α2δν3(bδ + 2)w2/2 + 2(αβν + δ)c + 2βδνuc + 2δ2νucw
+ 2αδνcw + βν2(αβν + 2δ)u + αν2(αβν + 2δ)w.

Proof. A lengthy computation. (Verification: ωεβ/Big)
Problem. We now need to normal-order perturbed Gaussians!
Solution. Borrow some tactics from QFT:
O(εP(c, u)eγc+βu|uc) = O(εP(∂γ, ∂β)eγc+βu|uc) =

O(εP(∂γ, ∂β)eγc+e−γβu|cu),and likewise
O

(
εP(u,w)eαw+βu+δuw|wu

)
=O

(
εP(∂β, ∂α)νeν(−bαβ+αw+βu+δuw)|ucw

)

Finally, the values of the generators !, ", −→n , and u−→, are set by
solving many equations, non-uniquely.

“ucw form”

1-Smidgen sl2 Let g1 be the 4-dimensional Lie algebra g1 =

〈b, c, u,w〉 over the ring R = Q[ε]/(ε2 = 0), with b central and wi-
th [w, c] = w, [c, u] = u, and [u,w] = b − 2εc, with CYBE ri j =

(bi − εci)c j + uiw j inU(g1)⊗{i, j}. Over Q, g1 is a solvable approxi-
mation of sl2: g1 ⊃ 〈b, u,w, εb, εc, εu, εw〉 ⊃ 〈b, εb, εc, εu, εw〉 ⊃
0. (note: deg(b, c, u,w, ε) = (1, 0, 1, 0, 1))

0-Smidgen sl2 ,. Let g0 be g1 at ε = 0, or Q〈b, c, u,w〉/([b, ·] =

0, [c, u] = u, [c,w] = −w, [u,w] = b with ri j = bic j + uiw j. It is
b∗ o b where b is the 2D Lie algebra Q〈c,w〉 and (b, u) is the dual
basis of (c,w). For topology, it is more valuable than g1 / sl2, but
topology already got by other means almost everything g0 gives.
How did these arise? sl2 = b+ ⊕ b−/h C sl+2 /h, where b+ =

〈c,w〉/[w, c] = w is a Lie bialgebra with δ : b+ → b+ ⊗ b+ by
δ : (c,w) 7→ (0, c ∧ w). Going back, sl+2 = D(b+) = (b+)∗ ⊕ b+ =

〈b, u, c,w〉/ · · · . Idea. Replace δ → εδ over Q[ε]/(εk+1 = 0). At
k = 0, get g0. At k = 1, get [w, c] = w, [w, b′] = −εw, [c, u] = u,
[b′, u] = −εu, [b′, c] = 0, and [u,w] = b′ − εc. Now note that
b′ + εc is central, so switch to b B b′ + εc. This is g1.
Ordering Symbols. O (poly | specs) plants the variables of poly in
S(⊕ig) on several tensor copies ofU(g) according to specs. E.g.,

O
(
c3

1u1c2eu3w9
3|x : w3c1, y : u1u3c2

)
=w9c3⊗ueuc ∈ U(g)x⊗U(g)y

This enables the description of elements of Û(g)⊗S using com-
mutative polynomials / power series.
0-Smidgen Invariants. r = Id ∈ b− ⊗ b+ solves the CYBE
[r12, r13] + [r12, r23] + [r13, r23] = 0 inU(g0)⊗3 and, by luck,

i j i j

= Ri j = eri j = ebic j+uiw j ∈ U(g0,i ⊕ g0, j)
solves YB/R3.

Lemma. Ri j =ebic j+uiw j =O
(
exp

(
bic j + ebi−1

bi
uiw j

)
|i : ui, j : c jw j

)

Example. Z(T0) = =
∑

m,n
bm−n

i (ebi−1)n

m!n! un ⊗ cmwn.

O
(

exp
(
b5c1+ eb5−1

b5
u5w1+b2c4+ eb2−1

b2
u2w4−b3c6+ e−b3−1

b3
u3w6

)
|

x : c1w1u2, y : u3c4w4u5c6w6

)
= O

(
ζ |x : uxcxwx, y : uycywy

)

Strand Stitching, mi j
k , is defined as the composition

uici wiu j c jw j
N

wiu j
x−−−−→ ui ciux wxc j w j

Nciux
x �N

wxc j
x−−−−−−−−→ uiux cxcx wxw j

i, j,x→k−−−−−→ ukckwk

On to 1-smidgen invariants, where much is the same. . .

Pragmatic Simplifications. Set t B eb, work with v B (t − 1)u/b,
and set E(ω, L,Q, P) B O

(
ω−1eL+Q/ω(1 + εω−4P) : (i : viciwi)

)
.

Now ω ∈ RS B Z[ti, t−1
i ] is Laurent, L =

∑
li j log(ti)c j with li j ∈

Z, Q =
∑

qi jviw j with qi j ∈ RS , and P is a quartic polynomial
in vi, c j, wk with coefficients in RS . The operations are lightly
modified, and the Λόγος and the values of the generators become
somewhat simpler, as in the implementation below.
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Demo Programs for 0-Co. ωεβ/Demo

The R-matricesR0,i_,j_
+ := bi cj + bi

-1
ⅇ

bi - 1 ui wj;

R0,i_,j_
- := -bi cj + bi

-1
ⅇ

-bi - 1 ui wj;

UtilitiesCF[ω_. [Q_]] := Simplify[ω] [Simplify[Q]];

 /: [Q1_] [Q2_] := CF@[Q1 + Q2];

ω1_. [Q1_] ≡ ω2_. [Q2_] := Simplify[ω1 ⩵ ω2 ∧ Q1 ⩵ Q2];

Normal Ordering OperatorsN(x:w u)i_ cj_→k_
[ω_. [Q_]] := CF

ω [ⅇ
γ
α xk + γ ck + (Q /. cj xi → 0)] /. γ → ∂cj Q, α → ∂xi Q;

Nwi_ uj_→k_
[ω_. [Q_]] := CF

ν ω [-bk ν α β + ν β uk + ν α wk + ν δ uk wk + (Q /. wi uj → 0)] /.

ν → (1 + bk δ)
-1

/.

α → ∂wi Q /. uj → 0, β → ∂uj Q /. wi → 0, δ → ∂wi,uj Q;

Stitchingmi_,j_→k_[Z_] := Module{x, z},

CFZ // Nwi uj→x
// Nci ux→x // Nwx cj→x

 /. z_i j x → zk

Some calculations for T0T0 = R0,5,1
+ R0,2,4

+ R0,3,6
-

b5 c1 + b2 c4 - b3 c6 +
-1+ⅇb5 u5 w1

b5
+

-1+ⅇb2 u2 w4

b2
+

-1+ⅇ-b3 u3 w6

b3


T0 // m1,2→1 // m3,4→3 // m3,5→3 // m3,6→3

1

1--1+ⅇb1 -1+ⅇb3
b3 c1 + b1 c3 - b3 c3 +

ⅇb3 -1+ⅇb1 -1+ⅇb3 u1 w1

-ⅇb1-ⅇb3+ⅇb1+b3 b1
-

ⅇb1 -1+ⅇb3 u3 w1

-1+-1+ⅇb1 -1+ⅇb3 b3
-

ⅇ-b3 -1+ⅇb3 u3 w3

b3
-

ⅇ-b3 -1+ⅇb1 -ⅇb3 b3 u1+ⅇ
b1 -1+ⅇb3 b1 u3 w3

b1 b3--1+ⅇ
b1 -1+ⅇb3 b3



Verifying meta-associativity
Q0 = [Sum[fi ci, {i, 3}] + Sum[fi,j ui wj, {i, 3}, {j, 3}]]

[c1 f1 + c2 f2 + c3 f3 + u1 w1 f1,1 + u1 w2 f1,2 + u1 w3 f1,3 + u2 w1 f2,1 +

u2 w2 f2,2 + u2 w3 f2,3 + u3 w1 f3,1 + u3 w2 f3,2 + u3 w3 f3,3]

(Q0 // m1,2→1 // m1,3→1) ≡ (Q0 // m2,3→2 // m1,2→1)

True

Testing R3t1 = R0,1,2
+ R0,3,4

+ R0,5,6
+ // m3,5→x // m1,6→y // m2,4→z

bx cy + bx cz + by cz +
ⅇbx -1+ⅇby uy wz

by
+

-1+ⅇbx ux wy+wz

bx


t1 ≡ (R0,1,2
+ R0,3,4

+ R0,5,6
+ // m1,3→x // m2,5→y // m4,6→z)

True

817

1

12

2
7

3

8

4
11

5

16
10

1514

9

6
13

− − − −

++++

z1 = R0,12,1
- R0,2,7

- R0,8,3
- R0,4,11

- R0,16,5
+ R0,6,13

+ R0,14,9
+ R0,10,15

+ ;

Do[z1 = (z1 // m1,n→1) /. b_ → b, {n, 2, 16}];

{CF@z1, KnotData[{8, 17}, "AlexanderPolynomial"][t]}

- ⅇ3 b [0]

1-4 ⅇb+8 ⅇ2 b-11 ⅇ3 b+8 ⅇ4 b-4 ⅇ5 b+ⅇ6 b
, 11 - 1

t3
+ 4

t2
- 8

t
- 8 t + 4 t2 - t3

Demo Programs for 1-Co. ωεβ/Demo

Λ[k_] := (tk - 1) 2 (α β + δ μ)
2
- α

2
β
2
 - 4 vk ck wk δ

2
μ
2
-

δ (1 + μ) wk
2
α
2
+ vk

2
β
2
 - vk

2 wk
2
δ
3
(1 + 3 μ) -

2 α β + 2 δ μ + vk wk δ
2
(1 + 2 μ) + 2 ck δ μ

2
 (wk α + vk β) -

4 ck μ
2
+ vk wk δ (1 + μ) (α β + δ μ) (1 + tk)/4; The Λόγος

Ri_,j_
+ := 1, Log[ti] cj, vi wj, vi ci wj + ci cj + vi

2 wj
2
 4;

Ri_,j_
- := 1, -Log[ti] cj, -ti

-1 vi wj,

ti
-1 vi cj wj - ci cj - ti

-2 vi
2 wj

2
 4;

uri_ := ti
-1/2, 0, 0, ci ti

-2
; nri_ := ti

1/2, 0, 0, -ci ti
2
;

The Generators

Differential Polynomials
DPx_→Dα_,y_→Dβ_[P_][f_] := (* means P[∂α,∂β][f] *)

Total[CoefficientRules[P, {x, y}] /.

({m_, n_} → c_) ⧴ c D[f, {α, m}, {β, n}]]

UtilitiesCF[ℰ_] := Expand /@ Together /@ ℰ;

 /: [ω1_, L1_, Q1_, P1_] [ω2_, L2_, Q2_, P2_] :=

CF@ω1 ω2, L1 + L2, ω2 Q1 + ω1 Q2, ω24 P1 + ω14 P2;

Normal Ordering Operators
Ncj_ (x:v w)i_→k_

[[ω_, L_, Q_, P_]] := With{q = ⅇ
γ
β xk + γ ck}, CF

ω, γ ck + (L /. cj → 0), ω ⅇ
γ
β xk + (Q /. xi → 0),

ⅇ
-q DPcj→Dγ,xi→Dβ[P][ⅇ

q
] /. γ → ∂cj L, β → ω

-1
∂xi Q;

Nwi_ vj_→k_
[[ω_, L_, Q_, P_]] :=

With{q = ((1 - tk) α β + β vk + α wk + δ vk wk)/μ}, CF

μ ω, L, μ ω q + μ (Q /. wi vj → 0),

μ
4
ⅇ
-q DPwi→Dα,vj→Dβ[P][ⅇ

q
] + ω

4
Λ[k] /. μ → 1 + (tk - 1) δ /.

α → ω
-1

∂wi Q /. vj → 0, β → ω
-1

∂vj Q /. wi → 0,

δ → ω
-1

∂wi,vj Q;

Stitchingmi_,j_→k_[Z_] := Module{x, z},

CFZ // Nwi vj→x
// Nci vx→x // Nwx cj→x

 /. z_i j x → zk

Trefoil
The 0-Framed

1
2

3
4

5

67
8

9
10

11

1213
14

15

16

z2 = R1,11
+ R4,2

- nr3 R15,5
+ R6,8

- ur7 R9,16
+ nr10 R12,14

- ur13;

(Do[z2 = z2 // m1,k→1, {k, 2, 16}];

z2 = z2 /. a_1 ⧴ a)

-1 + 1
t
+ t, 0, 0,

16 + 2 c
t4

- 1
t3

- 6 c
t3

+ 4
t2

+ 10 c
t2

- 10
t
- 8 c

t
- 18 t + 8 c t +

14 t2 - 10 c t2 - 7 t3 + 6 c t3 + 2 t4 - 2 c t4 + 2 v w -

2 v w
t4

+ 4 v w
t3

- 6 v w
t2

+ 2 v w
t

- 6 t v w + 4 t2 v w - 2 t3 v w

Questions and To Do List. • Clean up and write up. • Implement
well, compute for everything in sight. • Why are our quanti-
ties polynomials rather than just rational functions? • Bounds on
their degrees? • Their integrality (Z) properties? • Can everyth-
ing be re-stated using integrals (

∫
)? • Find the 2-variable version

(for knots). How complex is it? • What about links / closed
components? • Fully digest the “expansion” theorem; include
cuaps. • Explore the (non-)dependence on R. • Is there a canoni-
cal R? •What does “group like” mean? • Strand removal? Strand
doubling? Strand reversal? • Say something about knot genus.
• Find the EK/AT/KV “vertex”. • Use as a playground to study
associators/braidors. • Restate in topological language. • Study
the associated (v-)braid representations. • Study mirror images
and the b+ ↔ b− involution. • Study ribbon knots. •Make preci-
se the relationship with Γ-calculus and Alexander. • Relate to the
coloured Jones polynomial. • Relate with “ordinary” q-algebra.
• k-smidgen sln, etc. • Are there “solvable” CYBE algebras not
arising from semi-simple algebras? • Categorify and appease the
Gods.

This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at . . . /Indiana-1611/,
. . . /LesDiablerets-1608/
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diagram
nt

k Alexander’s A+ genus / ribbon
Today’s / Rozansky’s ρ+

1 unknotting number / amphicheiral diagram
nt

k Alexander’s A+ genus / ribbon
Today’s / Rozansky’s ρ+

1 unknotting number / amphicheiral

0a
1 1 0 / 4

0 0 / 4

3a
1 t − 1 1 / 8

t 1 / 8

4a
1 3 − t 1 / 8

0 1 / 4

5a
1 t2 − t + 1 2 / 8

2t3 + 3t 2 / 8

5a
2 2t − 3 1 / 8

5t − 4 1 / 8

6a
1 5 − 2t 1 / 4

t − 4 1 / 8

6a
2 −t2 + 3t − 3 2 / 8

t3 − 4t2 + 4t − 4 1 / 8

6a
3 t2 − 3t + 5 2 / 8

0 1 / 4

7a
1 t3 − t2 + t − 1 3 / 8

3t5 + 5t3 + 6t 3 / 8

7a
2 3t − 5 1 / 8

14t − 16 1 / 8

7a
3 2t2 − 3t + 3 2 / 8

−9t3 + 8t2 − 16t + 12 2 / 8

7a
4 4t − 7 1 / 8

32 − 24t 2 / 8

7a
5 2t2 − 4t + 5 2 / 8

9t3 − 16t2 + 29t − 28 2 / 8

7a
6 −t2 + 5t − 7 2 / 8

t3 − 8t2 + 19t − 20 1 / 8

7a
7 t2 − 5t + 9 2 / 8

8 − 3t 1 / 8

8a
1 7 − 3t 1 / 8

5t − 16 1 / 8

8a
2 −t3 + 3t2 − 3t + 3 3 / 8

2t5 − 8t4 + 10t3 − 12t2 + 13t − 12 2 / 8

8a
3 9 − 4t 1 / 8

0 2 / 4

8a
4 −2t2 + 5t − 5 2 / 8

3t3 − 8t2 + 6t − 4 2 / 8

8a
5 −t3 + 3t2 − 4t + 5 3 / 8

−2t5 + 8t4 − 13t3 + 20t2 − 22t + 24 2 / 8

8a
6 −2t2 + 6t − 7 2 / 8

5t3 − 20t2 + 28t − 32 2 / 8

8a
7 t3 − 3t2 + 5t − 5 3 / 8

−t5 + 4t4 − 10t3 + 12t2 − 13t + 12 1 / 8

8a
8 2t2 − 6t + 9 2 / 4

−t3 + 4t2 − 12t + 16 2 / 8

8a
9 −t3 + 3t2 − 5t + 7 3 / 4

0 1 / 4

8a
10 t3 − 3t2 + 6t − 7 3 / 8

−t5 + 4t4 − 11t3 + 16t2 − 21t + 20 2 / 8

8a
11 −2t2 + 7t − 9 2 / 8

5t3 − 24t2 + 39t − 44 1 / 8

8a
12 t2 − 7t + 13 2 / 8

0 2 / 4

8a
13 2t2 − 7t + 11 2 / 8

−t3 + 4t2 − 14t + 20 1 / 8

8a
14 −2t2 + 8t − 11 2 / 8

5t3 − 28t2 + 57t − 68 1 / 8

8a
15 3t2 − 8t + 11 2 / 8

21t3 − 64t2 + 120t − 140 2 / 8

8a
16 t3 − 4t2 + 8t − 9 3 / 8

t5 − 6t4 + 17t3 − 28t2 + 35t − 36 2 / 8

8a
17 −t3 + 4t2 − 8t + 11 3 / 8

0 1 / 4

8a
18 −t3 + 5t2 − 10t + 13 3 / 8

0 2 / 4

8n
19 t3 − t2 + 1 3 / 8

−3t5 − 4t2 − 3t 3 / 8

8n
20 t2 − 2t + 3 2 / 4

4t − 4 1 / 8

8n
21 −t2 + 4t − 5 2 / 8

t3 − 8t2 + 16t − 20 1 / 8
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80
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SPEED

60

LIMIT

SPEED

100

Al Gore in Futurama, circa 3000AD

December 2016
The Hardest Math I’ve Ever Really Used, 1 Dror Bar−Natan at the CMS Niagara Falls Meeting

http://drorbn.net/n16

LIMIT

SPEED

20

...or an

environmentalist.

Abstract. What’s the hardest math I’ve ever used in real
life? Me, myself, directly - not by using a cellphone or a
GPS device that somebody else designed? And in “real
life” — not while studying or teaching mathematics?
I use addition and subtraction daily, adding up bills or cal-
culating change. I use percentages often, though mostly it
is just “add 15 percents”. I seldom use multiplication and
division: when I buy in bulk, or when I need to know how
many tiles I need to replace my kitchen floor. I’ve used pow-
ers twice in my life, doing calculations related to mortgages.
I’ve used a tiny bit of geometry and algebra for a tiny bit of
non-math-related computer graphics I’ve played with. And
for a long time, that was all. In my talk I will tell you how
recently a math topic discovered only in the 1800s made a
brief and modest appearance in my non-mathematical life.
There are many books devoted to that topic and a lot of
active research. Yet for all I know, nobody ever needed the
actual formulas for such a simple reason before.
Hence we’ll talk about the motion of movie cameras, and
the fastest way to go from A to B subject to driving speed
limits that depend on the locale, and the “happy segway
principle” which is a the heart of the least action principle
which in itself is at the heart of all of modern physics, and
finally, about that funny discovery of Janos Bolyai’s and
Nikolai Ivanovich Lobachevsky’s, that the famed axiom of
parallels of the ancient Greeks need not actually be true.

...or an art historian...

I could be a mathematician ...

Goal. Find the least-blur path to
go from Mona’s left eye to Mona’s
right eye in fixed time. Alterna-
tively, fix your blur-tolerance, and
find the fastest path to do the same.
For fixed blur, our camera moves at
a speed proportional to its distance
from the image plane:

left eye right eye

The Mona Plane

How go
fastest?

http://drorbn.net/n16

Video at http://www.math.toronto.edu/~drorbn/Talks/RCI-110213/, more at
http://www.math.toronto.edu/~drorbn/Talks/Niagara-1612/
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The Hardest Math I’ve Ever Really Used, 2

100

112
131
167
252
576

103
112

103

Flatlanders airline route map

0√
10√
20√
30√
40√
50

The Happy Segway
Principle

A Segway is happy iff
both its wheels are

happy unhappy

Happy
Segways

Unhappy
Segway

Picture credits. Mona: Leonrado; Al Gore: Futurama; Map 1: en.wikipedia.org/wiki/Greenhouse gas;
Smokestacks: gbuapcd.org/complaint.htm; Penguin: brentpabst.com/bp/2007/12/15/BrentGoesPenguin.

aspx; Map 2: flightpedia.org; Segway: co2calculator.wordpress.com/2008/10; Lobachevsky: en.

wikipedia.org/wiki/Nikolai Lobachevsky; Eschers: www.josleys.com/show gallery.php?galid=325;

Two parallels

through

one point

B

O?

A

θ

θ

si
n
θ

The Brachistochrone

Bernoulli on Newton. “I recognize the lion by his paw”.

=
1
2
mv2

mgh

The Least Action Principle. Everywhere in physics,
a system goes from A to B along the path of least
action.
With small print for quantum mechanics.

p3.y = p2.y + b*x3p;

x = p1.x-p2.x; y = p1.y-p2.y;

d1 = p1.d; d2 = p2.d;

norm = sqrt(x*x + y*y);

a = x/norm; b = y/norm;

x1p = a*x + b*y;

x0 = (x1p + (d1*d1-d2*d2)/x1p)/2;

r = sqrt((x1p-x0)*(x1p-x0)+d1*d1);

x1pp = (x1p-x0)/r; x2pp = -x0/r;

theta1 = acos(x1pp);

theta2 = acos(x2pp);

t1 = log(tan(theta1/2));

t2 = log(tan(theta2/2));

t3 = t1 + s*(t2-t1);

theta3 = 2*atan(exp(t3));

x3pp = cos(theta3);

d3pp = sin(theta3);

x3p = x0 + r*x3pp;

p3.d = r*d3pp;

p3.x = p2.x + a*x3p;

Ops used. +,
−, ×, ÷, √ ,
cos, sin, tan,
arccos, arctan,
log, exp.

c ∼ 300, 000

c ∼ 250, 000

Fermat’s Principle

Happy camera-carrying Segways above the Mona Plane

y 0.9y

r

0.9r

The Mona Plane

The Bolyai-Lobachevsky Plane

Further Fun Facts. • In small scale, πH → πE . In large scale, πH →∞.
• The sum of the angles of a triangle is always less than π. In fact,
sum+area= π, so the largest possible area of a triangle is π. • If your
friend walks away, she’ll drop out of sight before you know it. • There
are so many places just a stone throw away! But you’d better remember
your way back well!

The Actual Code

θ′(t) = sin θ(t)

⇓

θ = 2arctan et

ParametrizationFinding the Centre
Some further ba-
sic geometry also
occurs:

Video at http://www.math.toronto.edu/~drorbn/Talks/RCI-110213/, more at
http://www.math.toronto.edu/~drorbn/Talks/Niagara-1612/
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Main Point. P2,2 is poly-size, so how hard can it be? Indeed, as a
module over Q~bi�, P2,2 is at most

Claim. R jk = ea jk eρ jk is a solution of the Yang-Baxter / R3 equa-
tion R12R13R23 = R23R13R12 in expP2,2, with ρ jk B

ψ(b j)

−ck +
cka jk

b j
− δa jka jk

b2
j

 +
φ(b j)ψ(bk)

bkφ(bk)

(
ckakk −

δa jkakk

b j

)
,

and with φ(x) B e−x − 1 = −x + x2/2 − . . . , and ψ(x) B
((x + 2)e−x − 2 + x) /(2x) = x2/12 − x3/24 + . . . . (This already
gives some new (v-)braid group representations, as below).

(van der Veen, Schaveling)
Vo, Halacheva, Dalvit, Ens, Lee

Abstract. There is expected to be a hidden paradise of poly-time
computable knot polynomials lying just beyond the Alexander
polynomial. I will describe my brute attempts to gain entry.

vd, f (K) =
∑

Y⊂X(K), |Y |=d

f (Y)Why “expected”? Gauss diagram
formulas [PV, GPV] show that
finite-type invariants are all poly-time, and tempt to conjecture
that there are no others. But Alexander shows it nonsense:

d 2 3 4 5 6 7 8 · · ·
known invts∗ in O(nd) 1 1 ∞ 3 4 8 11 · · ·

This is an unreasonable picture! ∗Fresh, numerical, no cheating.
So there ought to be further poly-time invariants.
Also. • The line above the Alexander line in the Melvin-
Morton [MM, Ro] expansion of the coloured Jones polyno-
mial. • The 2-loop contribution to the Kontsevich integral.
Why “paradise”? Foremost answer: OBVIOUSLY. Cf. pro-
ving (incomputable A)=(incomputable B), or categorifying (incomputable C).

ωεβ/K17:
(extend to
tangles,
perhaps detect
non-slice
ribbon knots)

Moral. Need
“stitching”:

1
3

4
2

T

Figure 1. A tangle.

Second Answer. The second answer has to do with “Algebraic Knot Theory”, so let me start with that. Somewhat
informally, a “tangle” is a piece of a knot, or a “knot with endpoints” (an example is on the right). Knots can
be assembled by stitching together the strands of several tangles, or the different strands of a single tangle. Some
interesting classes of knots can be defined algebraically using tangles and these stitching operations. Here is the most
interesting example:
Definition 1. A “ribbon knot” is a knot K that can be presented as the boundary of a disk D which is allowed to have
“ribbon singularities” but not “clasp singularities”. See Figure 2.

Figure 2. A ribbon singularity, a
clasp singularity, and an example of
a ribbon knot.

τ κT T T

gives Tn T2n
τoo κ // T1

Definition 2. Let T2n denote the set of all tangles T with 2n compo-
nents that connect 2n points along a “top end” with 2n points along
a “bottom end” inducing the identity permutation of ends (an exam-
ple is the tangle in Figure 1). Given T ∈ T2n, let τ(T ) be the result
of stitching its components at the top in pairs as on the right — it is
an n-component tangle all of whose ends are at the bottom, and we
(somewhat loosely) denote the set of all such by Tn, so τ : T2n → Tn. Likewise let κ(T ) be the result of stitching T both at the top and at the
bottom, also as on the right. So κ(T ) is a 1-component tangle, which is the same as a knot, and κ : T2n → T1.
Theorem 1 (I have not seen this theorem in the literature, yet it is not difficult to prove). The set of ribbon knots is the set of all knots K that
can be written as K = κ(T ) for some tangle T for which τ(T ) is the untangled (crossingless) tangle U:

{ribbon knots} = {κ(T ) : T ∈ T2n and τ(T ) = U ∈ Tn} .

Tn

Z
��

T2n
τoo κ //

Z
��

T1

Z
��

An A2n
τAoo κA // A1

(1)
Now suppose we have an invariant Z : Tk → Ak of tangles, which takes values in some spaces Ak.

Suppose also we have operations τA : A2n → An and κA : A2n → A1 such that the diagram on the right is
commutative. Then

Z({ribbon knots}) ⊆ RA B {κA(ζ) : ζ ∈ A2n and τA(ζ) = 1A ∈ An} ⊂ A1, (2)

where 1A B Z(U) ∈ An. If the target spaces Ak are algebraic (polynomials, matrices, matrices of polynomials, etc.) and the operations τA and
κA are algebraic maps between them (at this stage, meaning just “have simple algebraic formulas”), then RA is an algebraically defined set.
Hence we potentially have an algebraic way to detect non-ribbon knots: if Z(K) < RA, then K is not ribbon.

As it turns out, it is valuable to detect non-ribbon knots. Indeed the Slice-Ribbon Conjecture
(Fox, 1960s) asserts that every slice knot (a knot in S 3 that can be presented as the boundary of a
disk embedded in B4) is ribbon. Gompf, Scharlemann, and Thompson [GST] describe a family of
slice knots which they conjecture are not ribbon (the simplest of those is on the right). With the
algebraic technology described above it may be possible to show that the [GST] knots are indeed
non-ribbon, thus disproving the Slice-Ribbon Conjecture.

What would it take?

C1. An invariant Z which makes sense on tangles and for which diagram (1) commutes.
C2. Z cannot be a simple extension of the Alexander polynomial to tangles, for by Fox-Milnor [FM] the Alexander polynomial does not

detect non-ribbon slice knots.
C3. Z cannot be computable from finitely many finite type invariants, for this would contradict the results of Ng [Ng].1

C4. Z must be computable on at least the simplest [GST] knot, which has 48 crossings.
C5. It is better if in some meaningful sense the size of the spaces Ak grows slowly in k. Indeed in (2), if A2n is much bigger than An and A1

then at least generically RA will be the full set A1 and our condition will be empty.

No invariant that I know now meets these criteria. Alexander and Vassiliev fail C2 and C3, respectively. Almost all quantum invariants
and knot homologies pass C1-C3, but fail C4. Jones, HOMFLY-PT and Khovanov potentially pass C4, yet fail C5. We must come up with
something new.

[FM] R. H. Fox and J. W. Milnor, Singularities of 2-Spheres in 4-Space and Cobordism of Knots, Osaka J. Math. 3 (1966) 257–267.
[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon

Conjectures, Geom. and Top. 14 (2010) 2305–2347, arXiv:1103.1601.
[Ng] K. Y. Ng, Groups of ribbon knots, Topology 37 (1998) 441–458, arXiv:q-alg/9502017 (with an addendum at arXiv:math.GT/0310074)

1A slight subtlety arises: There is no taking limits here, and C3 does not preclude the possibility that Z is computable from infinitely many finite type invariants. The
Fox-Milnor condition on the Alexander polynomial of ribbon knots, for example, is expressible in terms of the full Alexander polynomial, yet not in terms of any finite
type reduction thereof. Unfortunately by C2 it cannot be used here.

Why “brute”? Cause it’s the only thing I know, for
now. There may be better ways in, and it’s fair to
hope that sooner or later they will be found.

The Gold Standard is set by the formulas [BNS, BN]
for Alexander. An S -component tangle T has Γ(T ) ∈
RS ×MS×S (RS ) =

{
ω S
S A

}
with RS B Z({ta : a ∈ S }):

(
!a b, "b a

)
→

1 a b
a 1 1 − t±1

a
b 0 t±1

a

T1 t T2 →
ω1ω2 S 1 S 2

S 1 A1 0
S 2 0 A2

ω a b S
a α β θ
b γ δ ε
S φ ψ Ξ

mab
c−−−−−−−−−→

ta, tb → tc



(1 − β)ω c S
c γ + αδ

1−β ε + δθ
1−β

S φ +
αψ
1−β Ξ +

ψθ
1−β



Theorem [EK, Ha, En, Se]. There is a “homomorphic expansion”

Z :
{S -component
(v/b-)tangles

}
→ Av

S B

Etingof Kazhdan Haviv Enriquez Ševera bracket /

vertices:
cobracket

AS:
+ = 0

= −
IHX:1 2 n

. . .

STU:
= −

(it is enough to know Z on! and have disjoint union and stitching
formulas) . . . exponential and too hard!
Idea. Look for “ideal” quotients of Av

S that have poly-sized de-
scriptions; . . . specifically, limit the co-brackets.

1-co and 2-co, aka TC and
TC2, on the right. The pri-
mitives that remain are:

The 2D relations come from the relation with 2D
Lie bialgebras:

We letA2,2 beAv modulo 2-co and 2D, and z2,2 be the projection
of log Z to P2,2 B πPv, where Pv are the primitives ofAv.
Main Claim. z2,2 is poly-time computable.

For long knots, ω is Alexander, and that’s the
fastest Alexander algorithm I know!

Dunfield: 1000-crossing fast.

Problem. How do we multiply in exp(P2,2)? How do we stitch?
BCH is a theoretical dream. Instead, use “scatter and glow” and
“feedback loops”:

The Euler trick:
With E f B (deg f ) f get Eex = xex

and E(exeyez) =

xexeyez + exyeyez + exeyzez.

Rozansky

Jones

Help Needed! Disorganized videos of talks
in a private seminar are at ωεβ/PP.

=

= =

c

T

a b

T

mab
c

0= =
1-co 2-co

δ =

, , , , , ,1 δ δ δ

i

j j

i

j l j

i i k

j l

β
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. . . manageable but still exponential!

bi =

1 δai j c j δai j clai j δai jakl

Feedback loopCherenkov radiation

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Greece-1607/
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. . . OC(bas // TG1,2 // TG1,3) - (bas // TG1,3 // TG1,2)

{0, -f[t1, t2, t3] u1 u2 w3 + f[t1, t2, t3] t1 u1 u2 w3 +

f[t1, t2, t3] u1 u3 w3 - f[t1, t2, t3] t1 u1 u3 w3,

-f[t1, t2, t3] u1 u2 w2 + f[t1, t2, t3] t1 u1 u2 w2 +

f[t1, t2, t3] u1 u3 w2 -

f[t1, t2, t3] t1 u1 u3 w2, 0, 0, 0, 0, 0, 0}

Turbo-Burau (new!)η /: η[i_]2 = 0; η /: η[i_] η[j_] = 0;

TBi_,j_[ξ_] :=

Expand[ξ /. {

f_. vk_ ⧴ Plus[f vk /. vj → (1 - t - η[i]) vi + (t + η[i]) vj,

(t - 1) (Coefficient[f, η[i]] - Coefficient[f, η[j]])*

(uk /. uj → (1 - t) ui + t uj)*ui wj,

Kδk,i (f /. _η → 0) (uj - ui) ui wj],

uj → (1 - t) ui + t uj,

wi → wi + (1 - t-1) wj, wj → t-1 wj}];

ff = f0 + f1 η[1] + f2 η[2] + f3 η[3];

bas = {ff v1, ff v2, ff v3, u1
2 w1, u1

2 w2, u1, u2, u3, w1, w2, w3};

. . . OC(bas // TB1,2 // TB1,3) - (bas // TB1,3 // TB1,2)

{0, -f0 u1 u2 w3 + t f0 u1 u2 w3 + f0 u1 u3 w3 - t f0 u1 u3 w3,

-f0 u1 u2 w2 + t f0 u1 u2 w2 + f0 u1 u3 w2 - t f0 u1 u3 w2,

0, 0, 0, 0, 0, 0, 0, 0}

Some (new) representationss of the (v-)braid groups. ωεβ/Reps
Burau (old)Bi_,j_[ξ_] := ξ /. vj ⧴ (1 - t) vi + t vj

. . . testing R3Column@{lhs = {v1, v2, v3} // B1,2 // B1,3 // B2,3,

rhs = {v1, v2, v3} // B2,3 // B1,3 // B1,2 ,

lhs - rhs // Expand}

{v1, (1 - t) v1 + t v2, (1 - t) v1 + t ((1 - t) v2 + t v3)}

{v1, (1 - t) v1 + t v2,

(1 - t) ((1 - t) v1 + t v2) + t ((1 - t) v1 + t v3)}
{0, 0, 0}

Gassner (old)Gi_,j_[ξ_] := ξ /. vj ⧴ (1 - ti) vi + ti vj

. . . Overcrossings Commute (OC):
Column@{lhs = {v1, v2, v3} // G1,2 // G1,3,

Expand[lhs - ({v1, v2, v3} // G1,3 // G1,2)]}

{v1, (1 - t1) v1 + t1 v2, (1 - t1) v1 + t1 v3}
{0, 0, 0}

. . . Undercrossings Commute (UC):
Column@{lhs = {v1, v2, v3} // G1,3 // G2,3,

rhs = {v1, v2, v3} // G2,3 // G1,3 ,

lhs - rhs // Expand}

{v1, v2, (1 - t1) v1 + t1 ((1 - t2) v2 + t2 v3)}
{v1, v2, (1 - t2) v2 + t2 ((1 - t1) v1 + t1 v3)}
{0, 0, v1 - t1 v1 - t2 v1 + t1 t2 v1 - v2 + t1 v2 + t2 v2 - t1 t2 v2}

Gassner Plus (new?)
GPi_,j_[ξ_] := Expandξ /. uj ⧴ (1 - ti) ui + ti uj,

f_. vj ⧴ f (1 - ti) vi + f ti vj + (ti - 1) ti ∂ti f - tj ∂tj f ui +

f ti ui ;

bas = {f[t1, t2, t3] v1, f[t1, t2, t3] v2, f[t1, t2, t3] v3,

u1, u2, u3};

. . . R3 (left)Short[lhs = bas // GP1,2 // GP1,3 // GP2,3, 2]

{f[t1, t2, t3] v1, f[t1, t2, t3] t1 u1 + f[t1, t2, t3] v1 -

f[t1, t2, t3] t1 v1 +6 + t12 u1 f(1,0,0)[t1, t2, t3],

1 +19 +1, 1, u1 - t1 u1 + t1 u2,

u1 - t1 u1 + t1 u2 - t1 t2 u2 + t1 t2 u3}

. . . R3 (rest)(bas // GP2,3 // GP1,3 // GP1,2) - lhs

{0, 0, 0, 0, 0, 0}

. . . OC(bas // GP1,2 // GP1,3) - (bas // GP1,3 // GP1,2)

{0, 0, 0, 0, 0, 0}

Question. Does Gassner Plus factor through Gassner?

Turbo-Gassner (new!)Kδi_,j_ := KroneckerDelta[i, j];

TGi_,j_[ξ_] := Expandξ /. 

f_. vk_ ⧴ Plusf vk /. vj → (1 - ti) vi + ti vj,

(1 - ti
-1) ti ∂ti f - tj ∂tj f*

(uk /. uj → (1 - ti) ui + ti uj)*ui wj,

Kδk,i f (uj - ui) ui wj,

uj → (1 - ti) ui + ti uj,

wi → wi + (1 - ti
-1) wj, wj → ti

-1 wj;

bas = {f[t1, t2, t3] v1, f[t1, t2, t3] v2, f[t1, t2, t3] v3,

u1, u2, u3, w1, w2, w3};

Satisfies R3. . .

Local Algebra (with van der Veen) Much can be re-
formulated as (non-standard) “quantum algebra” for the
4D Lie algebra g = 〈b, c, u,w〉 over Q[ε]/(ε2 = 0), with
b central and [w, c] = w, [c, u] = u, and [u,w] = b−2εc.
The key: ai j = (bi − εci)c j + uiw j inU(g)⊗{i, j}.
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Flower Surgery The-
orem. A knot is rib-
bon iff it is the re-
sult of n-petal flower
surgery (from thin pe-
tals to wide petals) on
an n-componenet un-
link, for some n.

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org
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van der Veen

Colin, you happy?
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Help Needed!

(just QUILK, today)

A2n

z(K) ∈ A1

1 ∈ An

T2n

ribbon K ∈ T1

U ∈ Tn

Gauss

Burau

Gassner

Theorem 1. ∃! an invariant z : {pure framed S -component
tangles} → Γ(S ) ≔ MS×S (RS ), where RS = Z((Ta)a∈S ) is
the ring of rational functions in S variables, intertwining
(

S 1

S 1 A1
,

S 2

S 2 A2

) ⊔−−−−−→
S 1 S 2

S 1 A1 0
S 2 0 A2

,

a b S
a α β θ
b γ δ ǫ
S φ ψ Ξ

mab
c−−−−−−−−−−−−→

Ta,Tb → Tc
µ ≔ 1 − β


c S

c γ + αδ/µ ǫ + δθ/µ
S φ + αψ/µ Ξ + ψθ/µ

,

and satisfying
(
|a; !a b, "b a

) z−→


a
a 1 ;

a b
a 1 1 − T±1

a
b 0 T±1

a

.

See also [LD, KLW, CT, BNS].

Expectation. Higher Gauss-Gassner invariants exist . . .
(though right now I can reach for them only wearing my exoskeleton)

Jones, Melvin,
Morton, Rozansky,
Garoufalidis

. . . and they are the “higher diagonals” in the MMR expansion of
the coloured Jones polynomial Jλ.
Theorem ([BNG], conjectured [MM], elucidated [Ro]). Let
Jd(K) be the coloured Jones polynomial of K, in the d-
dimensional representation of sl(2). Writing

(q1/2 − q−1/2)Jd(K)
qd/2 − q−d/2

∣∣∣∣∣∣
q=e~
=

∑

j,m≥0

a jm(K)d j~m,

m

—
ne

w
stu
ff

—

—
ale

xa
nd

er
−1 —

0
j

“below diagonal” coefficients vanish,
a jm(K) = 0 if j > m, and “on diagonal”
coefficients give the inverse of the Alexander
polynomial:

(∑∞
m=0 amm(K)~m

)
·A(K)(e~) = 1.

Theorem 2. With k = 1 and FA defined by

FA(
s−→, γ) = s

γ22γ33 − γ23γ32

γ33 + γ13γ32 − γ12γ33

∣∣∣∣∣
Ta→T

,

FA(
s←−, γ) = s

γ13γ32 − γ12γ33

γ32 − γ23γ32 + γ22γ33

∣∣∣∣∣
Ta→T

,

GG1,FA (K) is a regular isotopy invariant. Unfortunately, for every
knot K, GG1,FA (K) − T d

dT log A(K)(T ) ∈ Z, where A(K) is the
Alexander polynomial of K.

Abstract. In a “degree d Gauss diagram formula” one produces
a number by summing over all possibilities of paying very close
attention to d crossings in some n-crossing knot diagram while
observing the rest of the diagram only very loosely, minding only
its skeleton. The result is always poly-time computable as only(

n
d

)
states need to be considered. An under-explained paper by

Goussarov, Polyak, and Viro [GPV] shows that every type d knot
invariant has a formula of this kind. Yet only finitely many integer
invariants can be computed in this manner within any specific
polynomial time bound.
I suggest to do the same as [GPV], except replacing “the skele-
ton” with “the Gassner invariant”, which is still poly-time. One
poly-time invariant that arises in this way is the Alexander poly-
nomial (in itself it is infinitely many numerical invariants) and I
believe (and have evidence to support my belief) that there are
more.
The QUILT Target. QUick Invariants of Large Tangles, for little
had been found since Alexander (and if they’re there, how can we
not know all about them?), and for {ribbon} , {slice}:

Gompf,
Scharlemann,
Thompson
[GST]

Gauss Diagrams.

The (Burau-)Gassner Invariant.

Gauss Diagram Formulas [PV, GPV]. If g is
a Gauss diagram and F an unsigned Gauss
diagram, 〈F, g〉PV ≔

∑

y⊆g

(−1)yδ(F, ȳ):

Under-Explaind The-
orem [GPV]. Every
finite type invariant
arises in this way.

Gauss-Gassner Invariants. Want mo-
re? Increase your environmental aw-
areness! Instead of nearly-forgetting
yc, compute its Burau/Gassner inva-
riant (note that yc is a tangle in a Swiss cheese; more easily, a
virtual tangle):

GGk,F(g) =
∑

y⊆g, |y|≤k

F̄ (y, z(yc)) =
∑

y⊆g, |y|≤k

F (y, z(g cut near y)) ,

where k is fixed and F(y, γ) is a function of a list of arrows y and
a square matrix γ of side |y| + 1 ≤ k + 1.

TT T

κ

τ

κ

τ z

1

2
3

4
5

6

7
8

3 +2 + rotations

−
+

T
1

3
4

2

a b

T
mab

c

c

T

,
⊔

T1T2T1 T2

I’m slow and feeble-minded.

ωεβ≔http://drorbn.net/NCSU-1604/

Gauss-Gassner Invariants, What?
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τ κ

Faster is better, leaner is meaner!

Goussarov-Polyak-Viro

F2 =

F3 =

⇒ 〈F2,K〉 = v2(K)

⇒ 〈F3,K〉 = 6v3(K)

+

−
+

−

1 2 3 4 5 6 7 8

−
++

−

Video and more at http://www.math.toronto.edu/~drorbn/Talks/NCSU-1604/
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Dror Bar-Natan: Talks: NCSU-1604: Gauss-Gassner Invariants, Wherefore? ωεβ≔http://drorbn.net/NCSU-1604/
Slides w/ no URL should be banned!

Warning. Conventions on this page change randomly from line to
line.

Zw/2. The GGA story is about Zw/2 : K → Aw/2, defined on
arrows a by ±a 7→ exp(±a):

−
−→

∑

k,l,m≥0

(+)k(−)l(+)m

k!l!m!
k l m

Where the target space Aw/2 is the space of unsigned arrow dia-
grams modulo

b bCH:TC:
= 0 = −

= 0+

and
−→
4T:

(Zw/2 is a reduction of the much-studied Zw [BND, BN]).

The Euler Trick. How best do non-commutative algebra with ex-
ponentials? Logarithms are from hell as e f eg = ebch( f ,g), but Eu-
ler’s from heaven: Let E be the derivation E f ≔ (deg f ) f (= x f ′,
in Q~x�) and let ẼZ ≔ Z−1EZ (= x(log Z)′ in same). If deg x = 1
then Ẽex = x and if F = e f and G = eg, then Ẽ(FG) is
(FG)−1((EF)G+F(EG)) = G−1(ẼF)G+ ẼG = e− ad g(ẼF)+ ẼG.

Scatter and Glow. Apply Ẽ to Z(K). EZ is shown:

− − −
− +

1 2 3 4
a12a13a42a12

x3

Tail scattering. The algebra Q~bi�〈ai j〉
modulo [ai j, akl] = 0 (loc), [ai j, aik] =
0 (TC), and [aik, a jk] = −[ai j, a jk] =

b jaik − bia jk (CH and
−→
4T), acts on V =

Q~bi�〈xi = ai∞〉 by [ai j, xi] = 0, [ai j, x j] =
bix j − b jxi. Hence ead ai j xi = xi, ead ai j x j =

ebi x j +
b j
bi

(1 − ebi )xi. Renaming x̄i = xi/bi, Ti = ebi , get

[ead ai j ]x̄i ,x̄ j =

(
1 1 − Ti
0 Ti

)
. Alternatively,

y j
yi

x j
xi

ȳi = x̄i

ȳ j = (1 − Ti)x̄i + Ti x̄ j

Linear Control Theory.

M M = B
If

(
y
yn

)
=

(
Ξ φ

θ α

) (
x
xn

)
, and we further

impose xn = yn, then y = Bx where

B = Ξ +
φθ

1 − α . This fully explains
the Gassner formulas and the GGA formula!

All that remains now is to replace TC by something more intere-
sting: with ǫ2 = 0,

[ai j, aik] = ǫ(c jaik − ckai j).
Many further changes are also necessary, and the algebra is a lot
more complicated and revolves around “quantization of Lie bial-
gebras” [EK, En]. But the spirit is right.
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source notebook: ωεβ/GGAD.

Loading KnotTheory‘<< KnotTheory`

Loading KnotTheory` version

of September 6, 2014, 13:37:37.2841.

Read more at http://katlas.org/wiki/KnotTheory.

Gauss Diagram UtilitiesGD[g_GD] := g;

GD[L_] := GD @@ PD[L] /.

X[i_, j_, k_, l_] ⧴ If[PositiveQ@X[i, j, k, l],

Apl,i, Amj,i];

Draw[g_GD] := Module[{n = Max@Cases[g, _Integer, ∞]},

Graphics[{

Line[{{0, 0}, {n + 1, 0}}],

List @@ g /. (ah_)i_,j_ ⧴ {

Arrow[BezierCurve[{{i, 0}, {i + j, Abs[j - i]}/2,

{j, 0}}]],

Text[ah /. {Ap → "+", Am → "-"}, {i, 0.3}]},

Table[Text[i, {i, -0.5}], {i, n}]}]]

Some Gauss DiagramsDraw /@ GD /@ AllKnots@{3, 5}

KnotTheory::loading : Loading precomputed data in PD4Knots`.


- --

1 2 3 4 5 6

,
+ +- -

1 2 3 4 5 6 7 8

,

- - -- -
1 2 3 4 5 6 7 8 9 10

,
- - ---

1 2 3 4 5 6 7 8 9 10



Some Gauss Diagrams, 2GD /@ AllKnots@{3, 5}

{GD[Am4,1, Am6,3, Am2,5], GD[Ap1,4, Ap5,8, Am3,6, Am7,2],

GD[Am6,1, Am8,3, Am10,5, Am2,7, Am4,9],

GD[Am4,1, Am8,3, Am10,5, Am6,9, Am2,7]}

V2 DefinitionCF[g_GD] := Sort[

g /. Thread[Sort@Cases[g, _Integer, ∞] →

Range[2 Length[g]]]];

PV[F_GD, g_GD] /; Length[F] > Length[g] := 0;

PV[F_GD, g_GD] /; Length[F] < Length[g] := Sum[

PV[F, y], {y, Subsets[g, {Length[F]}]}];

PV[F_GD, g_GD] /; Length[F] == Length[g] := If

CF[F] === CF[g /. Ap Am → A], (-1)Countg, Am__, 0;

V2[g_] := V2[g] = PV[GD[A3,1, A2,4], GD[g]];

Computing V2Format[Knot[n_, k_]] := nk;

Table[K → V2[K], {K, AllKnots@{3, 7}}]

{31 → 1, 41 → -1, 51 → 3, 52 → 2, 61 → -2, 62 → -1, 63 → 1,

71 → 6, 72 → 3, 73 → 5, 74 → 4, 75 → 4, 76 → 1, 77 → -1}

V3 DefinitionPV[F1_ + F2_, g_] := PV[F1, g] + PV[F2, g];

PV[c_*F_GD, g_] := c PV[F, g];

ρk_[g_] := g /. i_Integer ⧴ Mod[i - k, 2 Length@g, 1];

F3 = 

k=0

5

(3 ρk @GD[A1,5, A4,2, A6,3] + 2 ρk @GD[A1,4, A5,2, A3,6]);

V3[K_] := V3[K] = PV[F3, GD@K]/6;

Computing V3Table[K → V3[K], {K, AllKnots@{3, 7}}]

{31 → -1, 41 → 0, 51 → -5, 52 → -3, 61 → 1, 62 → 1, 63 → 0,

71 → -14, 72 → -6, 73 → 11, 74 → 8, 75 → -8, 76 → -2, 77 → -1}

Willerton’s FishHistogram3D[

Table[{V2[K], V3[K]}, {K, AllKnots@{3, 10}}],

{1}]

Gassner UtilitiesG[λ_]a_,b_ := ∂ta,hb λ;

G /: Factor[G[λ_]] :=

G[Collect[λ, h_, Collect[#, t_, Factor] &]];

Format@γ_G := Module[{S = Union@Cases[γ, (h t)a_ ⧴ a, ∞]},

Table[γa,b, {a, S}, {b, S}] // MatrixForm] ;

The Gassner ProgramG /: G[λ1_] G[λ2_] := G[λ1 + λ2];

ma_,b_→c_[G[λ_]] := Module{α, β, γ, δ, θ, ϵ, ϕ, ψ, Ξ, μ},

α β θ

γ δ ϵ

ϕ ψ Ξ

=

∂ta,ha λ ∂ta,hb λ ∂ta λ

∂tb,ha λ ∂tb,hb λ ∂tb λ

∂ha λ ∂hb λ λ

/. (t h)a b → 0;

μ = 1 - β;

GTr tc
1

. γ + α δ/μ ϵ + δ θ/μ

ϕ + α ψ/μ Ξ + ψ θ/μ
. hc

1
 /. Ta b → Tc //

Factor;

Rpa_,b_ := GTr ta
tb

. 1 1 - Ta
0 Ta

. ha
hb

;

Rma_,b_ := Rpa,b /. Ta → 1/Ta;

The Gauss-Gassner-ProgramGG[g_GD, k_, F_, BB_] :=

Module[{n = 2 Length@g + Length@BB, y, cuts, rr, γ0, γ},

γ0 = G[tn+1 hn+1] Times @@ g /. {Ap → Rp, Am → Rm};

γ0 *= G[Sum[βa,b ta hb, {a, BB}, {b, BB}]];

Sum[ γ = γ0;

cuts = Cases[y, _Integer, ∞] ⋃ {n + 1};

rr = Thread[cuts → Range[Length@cuts]];

Do[If[! MemberQ[cuts, j], γ = γ // mj,j+1→j+1], {j, n}];

F[y /. rr, γ /. (v_)a_ ⧴ va/.rr],

(*over*) {y, Subsets[List @@ g, k]}]];

GG[g_GD, k_, F_] := GG[g, k, F, {}];

Video and more at http://www.math.toronto.edu/~drorbn/Talks/NCSU-1604/
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Example: 41
GG[GD@Knot[4, 1], {1}, F]

F{Am1,2},

-
-1+T2-T1 T2+T3-T1 T3-T2 T3+T1 T2 T3

T1 T3

(-1+T1) (1-T2+T1 T2) (-1+T3)
T1 T3

-
(-1+T1) (-1+T2)

T1

-
(-1+T2) (-1+T3)

T1 T3

-1+T1+T2-T1 T2+T3-T2 T3+T1 T2 T3
T1 T3

-
-1+T2
T1

T2 (-1+T3)
T3

-
(-1+T1) T2 (-1+T3)

T3
T2

 +

F{Am2,1},

1
T2

-1+T1
-T1-T2+T1 T2

-
(-1+T1) (-1+T2)2

T2 (-T1-T2+T1 T2)

-1+T2
T2

1-2 T1-T2+T1 T2
-T1-T2+T1 T2

-
(-1+T2) -1+T1+T2-2 T1 T2-T2

2+T1 T2
2

T2 (-T1-T2+T1 T2)

0 0 T2

 +

F{Ap1,2},

-
1-2 T1-T2+T1 T2

-1+T1+T2

(-1+T1)2 (-1+T2)
-1+T1+T2

0

T1 (-1+T2)
-1+T1+T2

-
T1 (1-T1-2 T2+T1 T2)

-1+T1+T2
0

0 0 1

 + F{Ap1,2},

1 (-1+T1) (1-2 T2-T3+T2 T3)
-1+T2+T3

-
(-1+T1) (-1+T2)

-1+T2+T3

0 -
T1 (1-2 T2-T3+T2 T3)

-1+T2+T3

T1 (-1+T2)
-1+T2+T3

0 T2 (-1+T3)
-1+T2+T3

T3
-1+T2+T3



The Alexander FunctionalFA[{x_}, γ_] := Simplify

Switch[x, Ap__, 1, Am__, -1]*

Switchx, _1,2,
γ2,2 γ3,3 - γ2,3 γ3,2

γ3,3 + γ1,3 γ3,2 - γ1,2 γ3,3
,

_2,1,
γ1,3 γ3,2 - γ1,2 γ3,3

γ3,2 - γ2,3 γ3,2 + γ2,2 γ3,3
 /. T_ → T;

GGA[K_, bb___] := GG[GD@K, {1}, FA, bb];

Example: 41Simplify@With[{K = Knot[4, 1]},

{GGA[K], Alexander[K][T], T ∂T Log[Alexander[K][T]]}]


T (-3+2 T)
1-3 T+T2

, 3 -
1
T
- T, -1+T2

1-3 T+T2


Testing for up to 7 crossingsTable[

K → Simplify[GGA[K] - T ∂T Log[Alexander[K][T]]],

{K, AllKnots@{3, 7}}]

{31 → -1, 41 → 1, 51 → -2, 52 → -2, 61 → 0, 62 → 0, 63 → 0,

71 → -3, 72 → -3, 73 → 4, 74 → 4, 75 → -3, 76 → -1, 77 → 2}

InvarianceDraw /@ {R3L = GD[Ap2,5, Ap3,8, Ap6,9],

R3R = GD[Ap5,8, Ap2,9, Ap3,6]}


+ + +

1 2 3 4 5 6 7 8 9

,

++ +

1 2 3 4 5 6 7 8 9



Simplify[

GGA[R3L, {1, 4, 7, 10}] == GGA[R3R, {1, 4, 7, 10}] /.

β10,b_ ⧴ 1 - β1,b - β4,b - β7,b]

True

Example: Degree 2 Gauss-Gassner for 41GG[GD@Knot[4, 1], {1, 2}, F] /. F[y_List, γ_G] ⧴ F[Column@y, γ]

F Am1,2 ,

-
-1+T2-T1 T2+T3-T1 T3-T2 T3+T1 T2 T3

T1 T3

(-1+T1) (1-T2+T1 T2) (-1+T3)
T1 T3

-
(-1+T1) (-1+T2)

T1

-
(-1+T2) (-1+T3)

T1 T3

-1+T1+T2-T1 T2+T3-T2 T3+T1 T2 T3
T1 T3

-
-1+T2
T1

T2 (-1+T3)
T3

-
(-1+T1) T2 (-1+T3)

T3
T2

 +

F Am2,1 ,

1
T2

-1+T1
-T1-T2+T1 T2

-
(-1+T1) (-1+T2)2

T2 (-T1-T2+T1 T2)

-1+T2
T2

1-2 T1-T2+T1 T2
-T1-T2+T1 T2

-
(-1+T2) -1+T1+T2-2 T1 T2-T2

2+T1 T2
2

T2 (-T1-T2+T1 T2)

0 0 T2

 + F Ap1,2 ,

-
1-2 T1-T2+T1 T2

-1+T1+T2

(-1+T1)2 (-1+T2)
-1+T1+T2

0

T1 (-1+T2)
-1+T1+T2

-
T1 (1-T1-2 T2+T1 T2)

-1+T1+T2
0

0 0 1

 +

F Ap1,2 ,

1 (-1+T1) (1-2 T2-T3+T2 T3)
-1+T2+T3

-
(-1+T1) (-1+T2)

-1+T2+T3

0 -
T1 (1-2 T2-T3+T2 T3)

-1+T2+T3

T1 (-1+T2)
-1+T2+T3

0 T2 (-1+T3)
-1+T2+T3

T3
-1+T2+T3

 + F
Am2,3
Am4,1

,

1
T4

0 -
-1+T1
T4

0 0

0 1 T1 (-1+T2)
T2

0 -
(-1+T2) (-1+T3)

T2

0 0 T1
T2

0 -
-1+T3
T2

-1+T4
T4

0 -
(-1+T1) (-1+T4)

T4
1 0

0 0 0 0 T3

 + F
Ap1,2
Ap3,4

,

1 -
-1+T1
T4

0 -
(-1+T1) (-1+T2)

T2
0

0 T1
T4

0 T1 (-1+T2)
T2

0

0 -
(-1+T3) (-1+T4)

T4
1 -

-1+T3
T2

0

0 T3 (-1+T4)
T4

0 T3
T2

0

0 0 0 0 1

 +

F
Ap1,3
Am2,4

,

1 0 1 - T1 0 0

0 -
-1+T4-T2 T4+T5-T2 T5-T4 T5+T2 T4 T5

T2 T5
0 -1+T2

T2
-

(-1+T2) (-1+T4)
T2

0 0 T1 0 0

0 -
(-1+T4) (-1+T5)

T2 T5
0 1

T2
-

-1+T4
T2

0 T4 (-1+T5)
T5

0 0 T4

 + F
Ap1,3
Am4,2

,

1 0 1 - T1 -
(-1+T1) (-1+T3)

T3

(-1+T1) (-1+T3) (-1+T4)
T3

0 1
T4

0 0 0

0 0 T1
T1 (-1+T3)

T3
-

T1 (-1+T3) (-1+T4)
T3

0 -1+T4
T4

0 1
T3

-
-1+T4
T3

0 0 0 0 T4

 +

F
Ap2,4
Am1,3

,

1
T4

-
-1+T1
T4

-1+T1
T1

0 0

-
(-1+T2) (-1+T4)

T4

-1+T1+T2-T1 T2+T4-T2 T4+T1 T2 T4
T4

0 1 - T2 0

0 0 1
T1

0 0

T2 (-1+T4)
T4

-
(-1+T1) T2 (-1+T4)

T4
0 T2 0

0 0 0 0 1

 + F
Ap2,4
Am3,1

,

1
T3

-
-1+T1
T3

-
(-1+T1) (-1+T2)

T2 T3
0 0

0 T1
T1 (-1+T2)

T2
1 - T2 0

-1+T3
T3

-
(-1+T1) (-1+T3)

T3
-

-1+T1+T2-T1 T2-T1 T3-T2 T3+T1 T2 T3
T2 T3

0 0

0 0 0 T2 0
0 0 0 0 1



Video and more at http://www.math.toronto.edu/~drorbn/Talks/NCSU-1604/
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yet not

UC:
asOC:
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Unzip along an annulus Unzip along a disk

Meinrenken

Kashiwara

Torossian

Satoh
ω/Dal
Dalvit

Alekseev

Vergne

gives the “Wen”?
What band, inflated,

Riddle.

wK :=PA

Dancso, ω/ZD

A 4D knot by Carter and Saito ω/CS

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org

=
R2

=
VR1

=
M

=
R3

=
VR2

CP CP

= ==
OC

no!

→ = =→

Colour Correct
Rotate

Adjoin

Colour Correct
Rotate

Adjoin

Abstract. I will describe the general “expansions” machine
whose inputs are topics in topology (and more) and whose
outputs are problems in algebra. There are many inputs
the machine can take, and many outputs it produces, but I
will concentrate on just one input/output pair. When fed
with a certain class of knotted 2-dimensional objects in 4-
dimensional space, it outputs the Kashiwara-Vergne Prob-
lem (1978 ω/KV, solved Alekseev-Meinrenken 2006 ω/AM,
elucidated Alekseev-Torossian 2008-2012 ω/AT), a problem
about convolutions on Lie groups and Lie algebras.

The Kashiwara-Vergne Problem and Topology
Dror Bar-Natan: Talks: Leiden-1601:

The Kashiwara-Vergne Conjecture. There exist
two series F and G in the completed free Lie
algebra FL in generators x and y so that

x+y−log eyex = (1−e− ad x)F+(ead y−1)G in FL

and so that with z = log exey,

tr(ad x)∂xF + tr(ad y)∂yG in cyclic words

=
1

2
tr

(
ad x

ead x − 1
+

ad y

ead y − 1
− ad z

ead z − 1
− 1

)

Implies the loosely-stated convolutions state-
ment: Convolutions of invariant functions on a
Lie group agree with convolutions of invariant
functions on its Lie algebra.

4D Knots.

=

=→ →=

ω/vX

The Generators

→ →

ω/X“the crossing”

“v-xing”

“cup”

+

The Machine. Let G be a group, K = QG = {∑ aigi : ai ∈
Q, gi ∈ G} its group-ring, I = {∑ aigi :

∑
ai = 0} ⊂ K its

augmentation ideal. Let

A = gr K :=
⊕̂

m≥0
Im/Im+1.

Note that A inherits a product from G.
Definition. A linear Z : K → A is an “expansion” if for any
γ ∈ Im, Z(γ) = (0, . . . , 0, γ/Im+1, ∗, . . .), and a “homomor-
phic expansion” if in addition it preserves the product.
Example. Let K = C∞(Rn) and I = {f : f(0) = 0}. Then
Im = {f : f vanishes like |x|m} so Im/Im+1 is degree m ho-
mogeneous polynomials and A = {power series}. The Taylor
series is a homomorphic expansion!

ω/F

→

=
R4

all
types

=
UC

=

The Double Inflation Procedure.
−∞ +∞ +∞−∞

wKO.

“the +
vertex”

“Planar
Algebra”:
The objects
are “tiles” that can be composed in
arbitrary planar ways to make bigger
tiles.

Theorem (with Zsuzsanna Dancso, ω/WKO).
There is a bijection between the set of homomor-
phic expansions for wK and the set of solutions
of the Kashiwara-Vergne problem. This is the tip
of a major iceberg!

In the finitely presented case, finding Z amounts to solving
a system of equations in a graded space.

P.S. (K/Im+1)∗ is Vassiliev
/ finite-type / polynomial in-
variants.

Just for fun. K =

K/K1 K/K2 K/K3 K/K4

An expansion Z is a choice of a
“progressive scan” algorithm.

← ← ← ←

· · ·

K1/K2 K3/K4 K4/K5 K5/K6 · · ·⊕ ⊕ ⊕ ⊕ ⊕K/K1

Q3

K2/K3⊕

=

ker(K/K4→K/K3)

=

=

(
The set of all 2D
projections of re-
ality (= Q3R2)

)

Handout, video, and links at ω/

ω :=http://www.math.toronto.edu/~drorbn/Talks/Leiden-1601

VR3

=

The Machine general-
izes to arbitrary alge-
braic structures!

Why uK

xx♣♣♣
♣♣♣

♣♣♣
♣

��

Z: the Kontsevich

integral
// Au

��

%%▲▲
▲▲▲

▲▲▲
▲ kerg and more!

uu❧❧❧❧
❧❧❧

❧❧❧
❧❧

vK

&&◆◆
◆◆◆

◆◆◆
◆◆

Z: hard work

Etingof-Kazhdan
// Av

yyrrr
rrr

rrr

))❘❘❘
❘❘❘

❘❘❘
❘❘❘ (given g)

care? wK Z: today’s

work
// Aw Around Rep(g)

· · ·
(Wikimedia Commons image, ω/WM)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Leiden-1601/
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why not?

Virtual Knots.Virtual knots are the algebraic structure underlying
the Reidemeister presentation of ordinary knots, without the to-
pology. Locally they are knot diagrams modulo the Reidemeister
relations; globally, who cares? So,

vT = CA
〈!," : R1,R2,R3

〉
CA = “Circuit Algebra”

References.

[BN] D. Bar-Natan,Balloons and Hoops and their Universal Fi-
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[Ma] V. O. Manturov,On Invariants of Virtual Links, Acta Ap-
plicandae Mathematica72-3 (2002) 295–309.

Abstract.The subject will be very close to Manturov’s represen-
tation ofvBn into Aut(FGn+1) — I’ll describe how I think about it
in terms of a very simple minded mapЖ from n-component v-
tangles to (n+ 1)-component w-tangles. It is possible that you all
know this already. Possibly my talk will be very short — it will
be as long as it is necessary to describeЖ and say a few more
words, and if this is little, so be it.

All you need isЖ . . . •What is
its domain?•What is its target?
•Why should one care?

Flying Pogsfor v21 and for 817:

No! Note that also (with PA=“Planar Algebra”)

vT = PA
〈!,",P : R1,R2,R3,VR1,VR2,VR3,M

〉
,

but I have a prejudice, or a deeply held belief, thatthis is morally
wrong!

Prejudices should always be re-evaluated!

My moment of reckoning.Manturov’sVG(K): [Ma, BGHNW]!z w

x y
→ z = xyx−1

w = x "w z

y x
→ z = x−1yx

w = x Pz w

x y
→ z = q−1yq

w = qxq−1

Manturov’sµ : vBn → Aut(F(x1, . . . , xn, q)): [Ma, BGHNW]

σi = !i 7→
{

xi 7→ xixi+1x−1
i

xi+1 7→ xi
τi = Pi 7→

{
xi 7→ qxi+1q−1

xi+1 7→ q−1xiq
.

Easy resolution.Settingyi ≔ qixiq−i, we find thatµ is equivalent
to !i 7→

{
yi 7→ yiq−1yi+1qy−1

i

yi+1 7→ qyiq−1
Pi 7→

{
yi 7→ yi+1

yi+1 7→ yi
,

and to me, virtual braids are anyways always pure. So really,

σi j 7→
{

yi 7→ qyiq−1

y j 7→ y−1
i q−1y jqyi

.

But why does it exist? Especially, whereforevBn → wBn+1?
w-Tangles.wT ≔ vT/OC where “Overcrossings Commute” is:

π1 is defined onwT ; Artin’s representationφ is defined onwBn.

Back to Ж . The “crossing the crossings” map
Ж : vT n → wT n+1 is defined by the picture belo-
w. Equally well, it isЖ : vBn → wBn+1. Better, it is
Ж : vT n → (nv + 1w)T orЖ : vBn → (nv + 1w)B.
Claims.
1. Ж is well defined.
2. On u-links,Ж “factors”.
3. Ж does not respectOC.
4. Ж recovers Manturov’sVG andµ: VG(K) = π1(Ж (K)), µ =

Ж ◦ φ = φ�Ж .
Even better,Ж pulls backany invariant of 2-component w-knots
to an invariant of virtual knots. in particular, there is a wheel-
valued “non-commutative” invariantω as in [BN] and DBN:
Talks: Hamilton-1412(next page).
Likely, the various “2-variable Alexander polynomials” for vir-
tual knots arise in this way.

Proof of 1.

Everything slides out!
Proof of 2. The net “red
flow” into every face is 0,
so the red arrows can be
paired. They form cycles
that can hover off the pi-
cture.
No proof of 3.Well, there
simply is no proof thatOC
is respected, and it’s easy
to come up with counter-
examples.

Proof of 4. A simple verification, except my conventions are
off. . .

v + 1wv

x y
yx

x y
yx

Kauffman

Manturov Boden

Crossing the CrossingsDror Bar-Natan: Talks: MoscowByWeb-1511:

Video and more atωεβ≔http://drorbn.net/mbw

Ж :

or better,= =

q

q

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-1511/
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=
R1

=
R3 =

R2

↔ ↔ ↔

Scharein’s relaxation

ω/U

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org

Carter, Banach, Saito

ω/X1

ω/F

ω/X

ω/vX

Dror Bar-Natan: Talks: Cornell-150925:
ω :=http://drorbn.net/C15

A 4D knot by Carter and Saito ω/CS

Some Movies

Knots in Three and Four Dimensions

3-Colourings. Colour the arcs of a bro-
ken arc diagram in RGB so that every
crossing is either mono-chromatic or tri-
chromatic. Let λ(K) be the number of
such 3-colourings that K has.
Example. λ(O) = 3 while λ(.) = 9; so O , ..
Riddle. Is λ(K) always a power of 3?
Proof sketch. It is enough to show that for each Reidemeister
move, there is an end-colours-preserving bijection between the
colourings of the two sides. E.g.:

good badgood

Reidemeister’s Theorem. (a) Every knot has a
“broken curve diagram”, made only of curves and
“crossings” like /. (b) Two knot diagrams repre-
sent the same 3D knot iff they differ by a sequence
of “Reidemester moves”:

Kurt Reidemeister

Thistlethwaite’s unknot Haken’s unknot

Some Unknots

Topology is locally analysis and globally algebra

“broken surface diagram”

Abstract. Much as we can understand 3-dimensional objects
by staring at their pictures and x-ray images and slices in 2-
dimensions, so can we understand 4-dimensional objects by
staring at their pictures and x-ray images and slices in 3-
dimensions, capitalizing on the fact that we understand 3-
dimensions pretty well. So we will spend some time star-
ing at and understanding various 2-dimensional views of a 3-
dimensional elephant, and then even more simply, various 2-
dimensional views of some 3-dimensional knots. This achieved,
we’ll take the leap and visualize some 4-dimensional knots by
their various traces in 3-dimensional space, and if we’ll still have
time, we’ll prove that these knots are really knotted.

2-Knots / 4D Knots.

coords from ω/Jeff2207ω/g ω/r ω/b

Warmup: Flatlanders View an Elephant.

Knots.

ω/M2

“broken curve diagram”

with Ester Dalvit ω/Dal

Formally, “a differentiable embedding of S 1 in R3

modulo differentiable deformations of such”.

Formally, “a differentiable embedding of S 2 in R4

modulo differentiable deformations of such”.

ω/CS

A further 2-knot.

↔

↔

ω/Bub2

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cornell-150925/. Similar talks at
.../CUMC-1307/, .../CUMC-1307/
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Ro7

Ro1

Ro2

Ro3

Ro4

Ro6Ro5

=
VR1 =

VR2

=
VR3

=
D

=
OC

x

y
z

z
zx = yzor

D. Roseman

+∞−∞

“long w-knot diagram”

“simple long knotted 2D tube in 4D”

ω/wM

Dror Bar-Natan: Talks: Cornell-150925:
ω :=http://drorbn.net/C15 Knots in Three and Four Dimensions, 2

A Stronger Invariant. There is an assigment of groups to knots /
2-knots as follows. Put an arrow “under” every un-broken curve
/ surface in a broken curve / surface diagram and label it with the
name of a group generator. Then mod out by relations as below.

Some knot theory books.
• Colin C. Adams, The Knot Book, an Elementary Introduction
to the Mathematical Theory of Knots, American Mathematical
Society, 2004.
•Meike Akveld and Andrew Jobbings, Knots Unravelled, from
Strings to Mathematics, Arbelos 2011.
• J. Scott Carter and Masahico Saito, Knotted Surfaces and
Their Diagrams, American Mathematical Society, 1997.
• Peter Cromwell, Knots and Links, Cambridge University
Press, 2004.
• W.B. Raymond Lickorish, An Introduction to Knot Theory,
Springer 1997.

Facts. The resulting “Fundamental group” π1(K) of a knot / 2-
knot K is a very strong but not very computable invariant of
K. Though it has computable projections; e.g., for any finite G,
count the homomorphisms from π1(K) to G.
Exercise. Show that |Hom(π1(K)→ S 3)| = λ(K) + 3.

Theorem. Every 2-knot can be represented by a “broken surface
diagram” made of the following basic ingredients,

3-Colourings in 4D

. . . and any two representations of the same knot differ by a se-
quence of the following “Roseman moves”:

A Knot

Table

more!
There are many

ω/KT

δ :

Shin Satoh

+∞−∞

Satoh’s Conjecture. (Satoh,
Virtual Knot Presentations of
Ribbon Torus-Knots, J. Knot Theory and its
Ramifications 9 (2000) 531–542). Two long w-
knot diagrams represent via the map δ the same
simple long 2D knotted tube in 4D iff they differ
by a sequence of R-moves as above and the “w-moves” VR1–
VR3, D and OC listed below:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cornell-150925/. Similar talks at
.../CUMC-1307/, .../CUMC-1307/
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Theorem 1. ∃! an invariant z0 : {pure framedS-component
tangles} → Γ0(S) ≔ R× MS×S(R), whereR= RS = Z((Ta)a∈S) is
the ring of rational functions inS variables, intertwining
(
ω1 S1

S1 A1
,
ω2 S2

S2 A2

) ⊔−−−−−→
ω1ω2 S1 S2

S1 A1 0
S2 0 A2

,

ω a b S
a α β θ
b γ δ ǫ
S φ ψ Ξ

mab
c−−−−−−−−−−−−→

Ta,Tb→ Tc
µ ≔ 1− β


µω c S
c γ + αδ/µ ǫ + δθ/µ
S φ + αψ/µ Ξ + ψθ/µ

,

and satisfying
(
|a; !a b, "b a

) z0−→


1 a
a 1

;
1 a b
a 1 1− T±1

a
b 0 T±1

a

.

Halacheva

=MM
=CA

Abstrant.The value of things is inversely correlated with their
computational complexity. “Real time” machines, such as our
brains, only run linear time algorithms, and there’s still alot we

don’t know. Anything we learn about things doable in linear time is truly va-
luable. Polynomial time we can in-practice run, even if we have to wait; these
things are still valuable. Exponential time we can play with, but just a little, and
exponential things must be beautiful or philosophically compelling to deserve
attention. Values further diminish and the aesthetic-or-philosophical bar fur-
ther rises as we go further slower, or un-computable, or ZFC-style intrinsically
infinite, or large-cardinalish, or beyond.
I will explain some things I know about polynomial time knot polynomials and
explain where there’s more, within reach.

Implementationkey idea:
(ω,A = (αab))↔
(ω, λ =

∑
αabtahb)

(meta-associativity:mab
a �mac

a = mbc
b �mab

a )
Why Tangles?
• Finitely presented.
• Divide and conquer proofs and computations.
• “Algebraic Knot Theory”: IfK is ribbon,

z(K) ∈ {cl2(ζ) : cl1(ζ) = 1}.
(Genus and crossing number
are also definable properties).

In Addition• The matrix part is just a stitching
formula for Burau/Gassner [LD, KLW, CT].
• K 7→ ω is Alexander, mod units.
• L 7→ (ω,A) 7→ ωdet′(A − I )/(1 − T′) is the
MVA, mod units.
• The fastest Alexander algorithm I know.
• There are also formulas for strand deletion,
reversal, and doubling.
• Every step along the computation is the invariant of something.
• Extends to and more naturally defined on v/w-tangles.
• Fits in one column, including propaganda & implementation.

T2n

U ∈ Tn

K ∈ T1

(v-)Tangles.

ωεβ/Demo

Runs.Meta-Associativity

Closed Components.The Halacheva trace trc satisfiesmab
c � trc =

mba
c � trc and computes the MVA for all links in the atlas, but its

domain is not understood:
ω c S
c α θ
S ψ Ξ

trc−−−−−−−−−−→
µ ≔ 1− α

µω S
S Ξ + ψθ/µ

Weaknesses.• mab
c and trc are non-linear.• The productωA is

always Laurent, but my current proof takes induction with expo-
nentially many conditions.• I still don’t understand trc, “unita-
rity”, the algebra for ribbon knots.

1 2

LetI ≔ 〈/−G〉. ThenAv ≔
∏

In/In+1 =“universalU(Dg)⊗S”=

Likely Theorem. [EK, En] There exists a homomorphic expan-
sion (universal finite type invariant)Z : vT→Av. (issues suppressed)

Too hard!Let’s look for “meta-monoid” quotients.

vT ≔PA

R3

T

T

flying
pogs

=−

= 0

,

+ + + +

−−− −

Polynomial Time Knot Polynomials, A

a b
mab

c

c

T T

Dror Bar-Natan: Talks: LesDiablerets-1508:

Faster is better, leaner is meaner!

1
2 3

4

cl1: trivial

T

cl2: ribbon

cl1

cl2

ωεβ≔http://www.math.toronto.edu/ d̃rorbn/Talks/LesDiablerets-1508/
Work in Progress on

. . . divide and conquer!

cl1: trivial
cl2: ribbon

example

T

Where does it come from?
v-Tangles.

R2

= =
R3

VR3

=

R2

VR1

=

M

=

VR2

=

= =
R3

Fine print: No sources no sinks, AS vertices, internally acyclic, deg= (#vertices)/2.

=−

=− + (Also IHX)

The w Quotient

Aw � U(FL(S)S ⋉ CW(S))

⊔
T1T2T1 T2

M. Polyak & T. Ohtsuki
@ Heian Shrine, Kyoto

A blackboard aside on genus?

817

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/

104

http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/


(Eppstein)

V. Jones

Help Needed!

Λ Λ Λ Λ

Λ

Λ

Λ

b

c

c

b

A bit about ribbon knots.A “ribbon knot” is a knot that can be
presented as the boundary of a disk that has “ribbon singulari-
ties”, but no “clasp singularities”. A “slice knot” is a knotin
S3 = ∂B4 which is the boundary of a non-singular disk inB4.
Every ribbon knots is clearly slice, yet,
Conjecture.Some slice knots are not ribbon.
Fox-Milnor. The Alexander polynomial of a ribbon knot is alw-
ays of the formA(t) = f (t) f (1/t). (also for slice)

Theorem 2[BND]. ∃! a homomorphic expansion, aka a ho-
momorphic universal finite type invariantZw of pure w-tangles.
zw ≔ logZw takes values inFL(S)S × CW(S).

Definition. (Compare [BNS, BN]) A
meta-monoid is a functorM : (finite sets,
injections)→(sets) (think “M(S) is quantumGS”, for G a group)
along with natural operations∗ : M(S1) × M(S2) → M(S1 ⊔ S2)
wheneverS1 ∩ S2 = ∅ andmab

c : M(S) → M((S\ {a,b}) ⊔ {c})
whenevera , b ∈ S andc < S\{a,b}, such that

meta-associativity: mab
a �mac

a = mbc
b �mab

a

meta-locality: mab
c �mde

f = mde
f �mab

c
and, withǫb = M(S ֒→ S ⊔ {b}),

meta-unit: ǫb�mab
a = Id = ǫb�mba

a .

Claim. Pure virtual tanglesPvT form a meta-monoid.
Theorem.S 7→ Γ0(S) is a meta-monoid andz0 : PvT → Γ0 is a
morphism of meta-monoids.
Strong Conviction.There exists an extension ofΓ0 to a bigger
meta-monoidΓ01(S) = Γ0(S)× Γ1(S), along with an extension of
z0 to z01: PvT→ Γ01, with

Γ1(S) = V ⊕ V⊗2 ⊕ V⊗3 ⊕ S2(V)⊗2 (with V ≔ RS〈S〉).
Furthermore,upon reducing to a single variable everything is
polynomial size and polynomial time.
Furthermore,Γ01 is given using a “meta-2-cocycleρab

c overΓ0”:
In addition to mab

c → mab
0c, there areRS-linear mab

1c : Γ1(S ⊔
{a,b}) → Γ1(S ⊔ {c}), a meta-right-actionαab : Γ1(S) × Γ0(S) →
Γ1(S) RS-linear in the first variable, and a first order differential
operator (overRS) ρab

c : Γ0(S ⊔ {a,b})→ Γ1(S ⊔ {c}) such that

(ζ0, ζ1)�mab
c =

(
ζ0�mab

0c, (ζ1, ζ0)�αab�mab
1c + ζ0�ρab

c

)

What’s done?The braid part, with still-ugly formulas.
What’s missing?A lot of concept- and detail-sensitive work tow-
ardsmab

1c, α
ab, andρab

c . The “ribbon element”.

The Abstract Context

b b

b c

Nice, but too hard!(I have a fancy free-Lie calculator!) (ωεβ/FLD)

“swinging” still too hard!
Contains the Jones and

Alexander polynomials,
. . . yet

Everything should work, and everything is being worked!
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Likely related to [ADO]The OneCo Quotient.

a ribbon singularity

example

a clasp singularity

Dror Bar-Natan: Talks: LesDiablerets-1508:
ωεβ≔http://www.math.toronto.edu/ d̃rorbn/Talks/LesDiablerets-1508/ Polynomial Time Knot Polynomials, B

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org

z is computable.zof the Borromean tangle, to degree 5 [BN]:

for trees

+ cyclic colour
permutations,

Proposition[BN]. Modulo all re-
lations that universally hold for
the 2D non-Abelian Lie alge-
bra and after some changes-of-
variable,zw reduces toz0.
Back to v – the 2D “Jones Quotient”.

Work in Progress on

I’m slow and feeble-minded.
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Dror Bar-Natan: Talks: LesDiablerets-1508: FreeLie‘ Demo ωεβBwww.math.toronto.edu/∼drorbn/Talks/LesDiablerets-1508/
see especially ωεβ/FLD, ωεβ/WKO4, and ωεβ/PP.

Loading, initializing variables, setting default degree to 6.
(The Mathematica packages FreeLie‘ and AwCalculus‘ are at ωεβ/WKO4).
path = "C:/drorbn/AcademicPensieve/";

SetDirectory[path <> "2015-08/LesDiablerets-1508"];

Get[path <> "Projects/WKO4/FreeLie.m"];

Get[path <> "Projects/WKO4/AwCalculus.m"];

x = LW@"x"; y = LW@"y"; u = LW@"u";

$SeriesShowDegree = 6;

FreeLie` implements / extends

*, +, **, $SeriesShowDegree, 〈〉, ∫, ≡, ad, Ad, adSeries, AllCyclicWords,

AllLyndonWords, AllWords, Arbitrator, ASeries, AW, b, BCH, BooleanSequence,

BracketForm, BS, CC, Crop, cw, CW, CWS, CWSeries, D, Deg, DegreeScale,

DerivationSeries, div, DK, DKS, DKSeries, EulerE, Exp, Inverse, j, J, JA,

LieDerivation, LieMorphism, LieSeries, LS, LW, LyndonFactorization, Morphism,

New, RandomCWSeries, Randomizer, RandomLieSeries, RC, SeriesSolve, Support, t,

tb, TopBracketForm, tr, UndeterminedCoefficients, αMap, Γ, ι, Λ, σ, ℏ, ⎴, ︵.

FreeLie` is in the public domain. Dror Bar-Natan is committed to

support it within reason until July 15, 2022. This is version 150814.

AwCalculus` implements / extends

{*, **, ≡, dA, dc, deg, dm, dS, dΔ, dη, dσ, El, Es, hA, hm, hS, hΔ, hη,

hσ, RandomElSeries, RandomEsSeries, tA, tha, tm, tS, tΔ, tη, tσ, Γ, Λ}.

AwCalculus` is in the public domain. Dror Bar-Natan is committed to

support it within reason until July 15, 2022. This is version 150814.

BCH[x, y] (* Can raise degree to 22 *)

LSx⎴ + y⎴, xy
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, ...

KV Direct.
{F = LS[{x, y}, Fs], G = LS[{x, y}, Gs]}; Fs["y"] = 1/2;

SeriesSolve{F, G},

ℏ-1 (LS[x + y] - BCH[y, x] ≡ F - G - Ad[-x][F] + Ad[y][G])

divx[F] + divy[G] ≡

1
2
truadSeries

ad
ⅇad-1

, x[u] + adSeries ad
ⅇad-1

, y[u] -

adSeries ad
ⅇad-1

, BCH[x, y][u];

{F, G} (* Can raise degree to 13 *)
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Meaningless calculations.

{b[F, G], trx[F]}
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CWS- y︵

6
, yy

24
, xxy

180
+

xyy

80
-

yyy

360
, -

xxyy

180
+

xyxy

240
-

xyyy

240
-

yyyy

1440
,

-
xxxxy
5040

+
xxxyy
6720

-
xxyxy
1120

+
2 xxyyy
945

-
xyxyy
336

+
xyyyy
6720

+
yyyyy
10080

,
xxxxyy
3360

-
xxxyxy
1344

-
xxxyyy
2240

+
xxyxxy
2016

+
13 xxyxyy
10 080

+
xxyyxy
1680

-

xxyyyy
3780

-
xyxyxy
840

+
xyxyyy
5040

+
xyyxyy
2240

+
xyyyyy
6720

+
yyyyyy
60 480

, ...

(Also implemented: ∂λ and derivations in general, tb, e∂λ and
morphisms in general, div, j, Drinfel’d-Kohno, etc.)

The [BND] “vertex” equations.

; ;

α = LS[{x, y}, αs]; β = LS[{x, y}, βs];

γ = CWS[{x, y}, γs];

V = Es[〈x → α, y → β〉, γ];

κ = CWS[{x}, κs]; Cap = Es[〈x → LS[0]〉, κ];

Rs[a_, b_] := Es[〈a → LS[0], b → LS[LW@a]〉, CWS[0]];

R4Eqn = V ** (Rs[x, z] // dΔ[x, x, y]) ≡ Rs[y, z] ** Rs[x, z] ** V ;

UnitarityEqn =

(V ** (V // dA) ≡ Es[〈x → LS[0], y → LS[0]〉, CWS[0]]);

CapEqn = ((V ** (Cap // dΔ[x, x, y]) // dc[x] // dc[y]) ≡

(Cap (Cap // dσ[x, y]) // dc[x] // dc[y]));

βs["x"] = 1/2; βs["y"] = 0;

SeriesSolve[{α, β, γ, κ},

(ℏ-1 R4Eqn)  UnitarityEqn  CapEqn];

{V, κ}

SeriesSolve::ArbitrarilySetting : In degree 1 arbitrarily setting {κs[x] → 0}.

SeriesSolve::ArbitrarilySetting : In degree 3 arbitrarily setting {αs[x, y, y] → 0}.

SeriesSolve::ArbitrarilySetting : In degree 5 arbitrarily setting {αs[x, x, x, y, y] → 0}.

General::stop :
Further output of SeriesSolve::ArbitrarilySetting will be suppressed during this calculation. 

Esx⎴ → LS0, -
xy

24
, 0, 7 x x xy

5760
-

7 x x y y


5760
+

x y y


y
1440

, 0,

-
31 xx x x xy

967680
+

31 x xx x y y


483840
-

83 x x xy y


y
967680

-
31 x x y x y y



725760
-

31 x x xy
xy

645120
+

13 x x y y


y y
241920

+
101 x y xy y


y

1 451520
+

527 x xy y


xy

5806080
-

xy y


y y y
60480

, ...,

y⎴ → LS x⎴

2
, -

x y

12
, 0, x x xy

5760
-

1
720

x x y y


+
1

720
x y y


y, -
xx x xy

7680
+

xx x y y


3840
-

x xy
xy

6912
, -

xxx x xy

645120
+

23 x x x xy y


483 840
-

13 xx x y y


y
161 280

-
x xy xy y



22680
-

41 x x x y
xy

580608
+

x xy y


y y
15 120

+
x y xy y


y

12096
+

71 x x y y


xy

483 840
-

x y y


y y y
30240

, ...,

CWS0, -
xy

48
, 0, xxxy

2880
+

xxyy

2880
+

xyxy

5760
+

xyyy

2880
, 0,

-
xxxxxy
120960

-
xxxxyy
120 960

-
xxxyxy
120960

-
xxxyyy
120 960

-
xxyxxy
241 920

-
xxyxyy
120 960

-

xxyyxy
120 960

-
xxyyyy
120960

-
xyxyxy
362 880

-
xyxyyy
120960

-
xyyxyy
241920

-
xyyyyy
120960

, ...,

CWS0, -
xx

96
, 0, xxxx

11520
, 0, -

xxxxxx
725760

, ...

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/
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From V to F to KV following [AT].
logF = Λ[V]〚1〛 // dσ[{x, y} → {y, x}];

logF // EulerE // adSeries ⅇad-1
ad

, logF, tb

x⎴ → LS y⎴

2
, xy

6
, 1

24
x y y


, -
1

180
x x x y

+
1
80

x x y y


+
1

360
x y y


y,

-
1

720
x x x y y


+

1
240

x x y y


y +
1

240
x y xy y


+

1
720

x x y
xy

-

xy y


y y
1440

, xxx x xy

5040
-

xx x xy y


1344
+

13 xx xy y


y
15120

+
1

840
x x y xy y


+

x x xy
xy

3360
+

x xy y


y y
6720

+
xy xy y


y

1260
+

x xy y


xy

1680
-

xy y


y y y
10 080

, ...,

y⎴ → LS0, xy

12
, 1

24
x y y


, -
1

360
x x x y

+
1

120
x x y y


+
1

180
x y y


y,

-
1

720
x x x y y


+

1
240

x x y y


y +
1

240
x y xy y


+

1
720

x x y
xy

-

xy y


y y
1440

, xxx x xy

10080
-

xx x xy y


2016
+

xx x y y


y
1890

+
x xy xy y



1120
+

x x x y
xy

5040
+

x xy y


y y
2520

+
1

840
x y xy y


y +

x xy y


x y

1260
-

xy y


y y y
5040

, ...

Solving for an associator Φ.Φs[2, 1] = Φs[3, 1] = Φs[3, 2] = 0;

Φs[3, 1, 2] = 1/24; Φ = DKS[3, Φs];

SeriesSolve[Φ,

(Φσ[3,2,1] ≡ -Φ)

(Φ ** Φσ[1,23,4] ** Φσ[2,3,4] ≡ Φσ[12,3,4] ** Φσ[1,2,34])];

Φ (* Can raise degree to 10 *)

SeriesSolve::ArbitrarilySetting : In degree 3 arbitrarily setting {Φs[3, 1, 1, 2] → 0}.

SeriesSolve::ArbitrarilySetting : In degree 5 arbitrarily setting {Φs[3, 1, 1, 1, 1, 2] → 0}.

DKS0, 1
24

t13 t23, 0, -
7 t13 t23 t23 t23

5760
+

7 t13 t13 t23 t23
5760

-
t13 t13 t13 t23

1440
,

0, 31 t13 t23 t23 t23 t23 t23
967 680

-
157 t13 t13 t23 t23 t13 t23

1 935 360
-

31 t13 t23 t13 t23 t23 t23
387 072

-
31 t13 t13 t23 t23 t23 t23

483 840
+

11 t13 t13 t13 t23 t13 t23
290 304

+
31 t13 t13 t23 t13 t23 t23

725 760
+

83 t13 t13 t13 t23 t23 t23
967 680

-

13 t13 t13 t13 t13 t23 t23
241 920

+
t13 t13 t13 t13 t13 t23

60 480
, ...

The “buckle” ZB, from Φ.
R = DKS[t[1, 2]/2];

ZB = (-Φ)σ[13,2,4] ** Φσ[1,3,2] ** Rσ[2,3] ** (-Φ)σ[1,2,3] **

Φσ[12,3,4];

ZB @{4}

DKS t23


2
, -

1
12

t13 t23 - 1
24

t14 t24 + 1
24

t14 t34 + 1
12

t24 t34,

0, t13 t23 t23 t23
5760

+
7 t14 t24 t24 t24

5760
+

t14 t34 t24 t24
1920

-

t14 t34 t34 t24
1920

-
7 t14 t34 t34 t34

5760
-

t24 t34 t34 t34
5760

+
t14 t24 t34 t24

1920
+

t14 t24 t14 t34
1920

-
t14 t34 t24 t34

1920
-

1
720

t13 t13 t23 t23 +

1
720

t13 t13 t13 t23 -
7 t14 t14 t24 t24

5760
+

7 t14 t14 t34 t34
5760

-

t14 t24 t34 t34
5760

+
t14 t14 t14 t24

1440
-

t14 t14 t14 t34
1440

-
1

960
t14 t14 t24 t34 +

t14 t24 t24 t34
5760

-
1

960
t24 t24 t34 t34 -

t24 t24 t24 t34
5760

, ...

V from ZB, following [AET, BND].
(El[ZB // αMap[1, 2, 3, 4], CWS[0]] // Γ // tη1 // tη3 //

hη2 // hη4 // hσ[{3} → {2}] // tσ[{2, 4} → {1, 2}])〚

1〛

1 → LS0, -
12


24
, 0, 7 1 1 12



5760
-

7 1 1 2


2


5760
+

12


2


2
1440

, 0,

-
31 111 1 12



967680
+

31 1 1 1 12


2


483840
-

83 1 1 12


2


2
967 680

-
31 1 1 2


1 2


2


725760
-

31 1 1 12


12


645 120
+

13 1 1 2


2


2 2
241920

+
101 1 2


12


2


2
1 451520

+
527 1 12


2


12


5806080
-

12


2


2 2 2
60480

, ...,

2 → LS 1
⎴

2
, -

12


12
, 0, 1 1 12



5760
-

1
720

1 1 2


2


+
1

720
1 2


2


2,

-
11 1 12



7680
+

11 1 2


2


3840
-

1 12


12


6912
,

-
111 1 12



645120
+

23 111 12


2


483840
-

13 1 1 12


2


2
161280

-
1 12


12


2


22680
-

41 1 1 12


1 2


580608
+

1 12


2


2 2
15120

+
12


12


2


2
12096

+
71 1 1 2


2


12


483 840
-

12


2


2 2 2
30 240

, ...

The Borromean tangle.
Rs[a_, b_] := Es[〈a → LS[0], b → LS[LW@a]〉, CWS[0]];

iRs[a_, b_] := Es[〈a → LS[0], b → -LS[LW@a]〉, CWS[0]];

ζ = iRs[r, 6] Rs[2, 4] iRs[g, 9] Rs[5, 7] iRs[b, 3] Rs[8, 1];

Do[ζ = ζ // dm[r, k, r], {k, 1, 3}];

Do[ζ = ζ // dm[g, k, g], {k, 4, 6}];

Do[ζ = ζ // dm[b, k, b], {k, 7, 9}];

{ζ〚1〛r @{5}, ζ〚2〛@{5}} // Print

;

LS0, bg


, 1
2
b b g


+ b gr
+

1
2
b g


g


,

1
6
b b b g


+

1
2
b b g r

+
1
2
b g g r

+
1
4
b b g


g


+
1
2
b g r r


+
1
6
b g


g


g,

1
24

b b b b g


+
1
6
b b b g r

+
1
4
b b g g r

+
1
12

b b b g


g


+

1
4
b b g r r


+

1
6
b g g g r

+
1
4
b g g r r


- b b gr

g +

1
12

b b g


g


g - 2 b br


g


g +
1
6
b g r r


r +
1
2
b g


b g r
-

bg


br


g


-
1
12

b b g


bg


-
1
2
b g r

g r
+

1
24

b g


g


g g, ...,

CWS0, 0, 2 bgr


, bbgr


- bgbr


+ bggr


- bgrg


+ bgrr


- brgr


, bbbgr
3

-

bbgbr
2

+
bbggr

2
+

bbgrg
2

+
bbgrr

2
+

bbrbg
2

-
3 bbrgr

2
+

bgbrr
2

-
3 bggbr

2
+

bgggr
3

-

bggrg
2

+
bggrr

2
+

bgrgg
2

-
3 bgrrg

2
+

bgrrr
3

+
brggr

2
-

brgrr
2

+
brrgr

2
, ...
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(signs)

chopsticks
vertical
Σ

* * * count
with
signs

D. Thurston

E. Witten

C.F. Gauss

lk( ) =

K=D=

number
linking
Gaussian
The

The generating function of all cosmic coincidences:

Cosmic Coincidences

,

Dror Bar-Natan: Talks: Louvain-1506:

Day 3: Chern-Simons, Gaussian Integration, Feynman Diagrams

Gaussian Integration.(λi j ) is a symmetic positive definite matrix and (λi j ) is its inverse,
and (λi jk ) are the coefficients of some cubic form. Denote by (xi)n

i=1 the coordinates of

Rn, let (ti)n
i=1 be a set of “dual” variables, and let∂i denote ∂∂ti . Also letC ≔ (2π)n/2

det(λi j )
. Then

∫

Rn

e−
1
2λi j xi xj+ ǫ6λi jk xi xj xk

=
∑

m≥0

ǫm

6mm!

∫

Rn

(λi jk xi x j xk)me−
1
2λi j xi xj

=
∑

m≥0

Cǫm

6mm!
(λi jk∂

i∂ j∂k)me
1
2λ
αβtαtβ

∣∣∣∣∣∣∣
tα=0

=
∑

m,l≥0
3m=2l

Cǫm

6mm!2l l!

(
λi jk∂

i∂ j∂k
)m (
λαβtαtβ

)l

=
∑

m,l≥0
3m=2l

Cǫm

6mm!2l l!



. . . sum over all pairings . . .

λαlβl

tαl tβl

λα3β3

tα3 tβ3

λim jmkm

∂im ∂ jm ∂km

λα2β2

tα2 tβ2

λi2 j2k2

∂i2 ∂ j2 ∂k2

λα1β1

tα1 tβ1

λi1 j1k1

∂i1 ∂ j1 ∂k1

· · ·

· · ·



=
∑

m,l≥0
3m=2l

Cǫm

6mm!2l l!

∑

m-vertex fully marked
Feynman diagramsD

E(D)

i2

k2

i1

k1

i1
j1
k1 k2j1 j2 j2

i2

etc.

λi1 j1k1λi2 j2k2λ
i1i2λ j1 j2λk1k2 λi1 j1k1λi2 j2k2λ

i1 j1λk1k2λi2 j2

E E

β1

β2

α3

α2

β3

α1

α2β2

α1

β1α3

β3

= C
∑

unmarked Feynman
diagramsD

ǫm(D)E(D)
|Aut(D)| . Claim. The number of pairings that produce a

given unmarked Feynman diagramD is 6mm!2l l!
|Aut(D)| .

Proof of the Claim. The groupGm,l ≔ [(S3)m ⋊ Sm] × [(S2)l ⋊ Sl ] acts on the set of
pairings, the action is transitive on the set of pairingsP that produce a givenD, and the
stabilizer of any givenP is Aut(D). �

Feynman

Examples.

|Aut(D)| = 12 |Aut(D)| = 8

The Fourier Transform.
(F : V → C)⇒ ( f̃ : V∗ → C)

via F̃(ϕ) ≔
∫

V
f (v)e−i〈ϕ,v〉dv. Some facts:

• f̃ (0) =
∫

V
f (v)dv.

• ∂
∂ϕi

f̃ ∼ ṽi f .

• (̃eQ/2) ∼ eQ−1/2, whereQ is quadratic,
Q(v) = 〈Lv, v〉 for L : V → V∗, and
Q−1(ϕ) ≔ 〈ϕ, L−1ϕ〉. (This is the key
point in the proof of the Fourier inversion
formula!)

Monsters left to Slay.
• Convergence.
• Proof of invariance.
• The framing anomaly.
• Universallity.
• d−1 doesn’t really exist, Faddeev-
Popov, determinants, ghosts, Berezin in-
tegration.
• Assembly.

Recall.K = {knots},A ≔ grA = D/rels=

SeekZ : K → Â such that ifK is n-singular,Z(K) = Dk + . . .

K Z: high algebra−−−−−−−−−−−−−−−−→
solving finitely many
equations in finitely many
unknowns

A ≔ grK
given a “Lie”

algebrag−−−−−−−−−−−−−→
low algebra: pic-
tures represent for-
mulas

“U(g)”

〈D,K〉- :=
(The signed Stonehenge
pairing ofD andK

)
:

= -

References. Witten’s Quantum field theory and the Jones
polynomial, Axelrod-Singer’s Chern-Simons perturbation the-
ory I-II , D. Thurston’s arXiv:math.QA/9901110, Polyak’s
arXiv:math.GT/0406251, and my videotaped 2014 classω/AKT.

Z(K) := lim
N→∞

∑

3-valentD

〈D,K〉-D

2cc!
(
N
e

) ∈ A

Claim. It all comes from the Chern-Simons-Witten theory,
∫

A∈Ω1(R3,g)
DA trRholγ(A) exp


ik
4π

∫

R3

tr

(
A∧ dA+

2
3

A∧ A∧ A

) ,

whereΩ1(R3, g) is the space of allg-valued 1-forms onR3 (really,
connections),k is some large constant,R is some representation ofg
and trR is trace inR, andholγ(A) is the holonomy ofA alongγ.

ω ≔http:drorbn.net/Louvain-1506

Theorem.Given a parametrized knotγ in R3, up to renormal-
izing the “framing anomaly”,

Z(γ) =
∑

D∈D

C(D)D
|Aut(D)|

∫

CD(R3,γ)

∧

e∈E(D)

φ∗eω ∈ A

is an expansion. HereD is the set of all “Feynman diagrams”,
E(D) is the set of internal edges (and chords) ofD, CD(R3, γ)
is the configuration space of placements ofD on/aroundγ,
φ : CD(R3, γ) → (S2)E(D) is the “direction of the edges” map,
andω is a volume form onS2.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506/
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3 421

Goal: Z:{knots}−>{chord diagrams}/4T so that

Extend to Knotted Trivalent Graphs (KTG’s):

Using operations, KTG is generated by ribbon twists
and the tetrahedron :

blueprint

computed

blue:

red:

isotopiesunzipisotopy

forgetunzips

plant

agents

connect

them

connect

or

Easy, powerful operations:

or

forget unzip

miles

away

Need a new
relation: ++ =0

Modulo the relation(s):

=

=

(+more)

Proof.

1

2

3

1

2

3

4

4

4

The Miller Institute knot

3

2
1

4 3
2

1

Knotted Trivalent Graphs, Tetrahedra and Associators

Ribbon Knots and Algebraic Knot Theory.

31 2 4

ud

= (Φ ⊗ 1)(1⊗ ∆ ⊗ 1)(Φ)(1⊗ Φ) ∈ A(↑4)

Dror Bar-Natan: Talks: Louvain-1506:

ω :=http://www.math.toronto.edu/˜drorbn/Talks/Louvain-1506 Handout, video, and links atω/

Claim. With Φ ≔ Z(,), the above relation becomes equiv-
alent to the Drinfel’d’s pentagon of the theory of quasi Hopf
algebras.

≔ Φ ∈ A(↑3)

= (∆ ⊗ 1⊗ 1)(Φ)(1⊗ 1⊗ ∆)(Φ) ∈ A(↑4)

R ∼ {uγ : γ ∈ K(�), dγ = U2}

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506/
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yet not
UC:

Vertices

singular

smooth

R4
asOC:

Z.

R3.

The Finite Type Story.

Penrose Cvitanovic

Abstract. We will repeat the 3D story of the previous 3 talks
one dimension up, in 4D. Surprisingly, there’s more room in 4D,
and things get easier, at least when we restrict our attention to
"w-knots", or to "simply-knotted 2-knots". But even then there
are intricacies, and we try to go beyond simply-knotted, we are
completely confused.

wK :=PA

and
−−−→
IHX

−−−−→
S TU,

−−→
AS,

relations

(2 in 1 out vertices)

−∞

+∞

= =

UC
OC

=
CP CP

= =

no!

All???
Is this

TC
= =⇒

ϕi ϕ j xn xm ϕn ϕl

= =

AlekseevKashiwara

Vergne Torossian

Too easy so far!Yet once you add “foam vertices”, it gets related to the
Kashiwara-Vergne problem [KV] as told by Alekseev-Torossian [AT]:

Dror Bar-Natan: Talks: Louvain-1506:
ω :=http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506 Expansions Day 5: Back to 4D

=

=→ →=

ω/vX

The Generators

→ →

ω/X“the crossing”

“v-xing”

The Double Inflation Procedureδ.

→δ
“cap”

w-Knots.

VR3

=

−∞

+∞

R2

VR1

=

M

=

VR2

=

= =
R3

A Big Open Problem.δ maps w-knots onto simple 2-knots. To
what extent is it a bijection? What other relations are required? In
other words,find a simple description of simple 2-knots. Kaw-
auchi [Ka] may already know the answer.

A 4D knot by Carter and Saito [CS]

“broken surface diagram”

Simple 2-Knots.

Recall.

K
Topology

Z: high algebra−−−−−−−−−−−−−−−−−−−→
solving finitely many equations
in finitely many unknowns

A ≔ grK
Combinatorics

given a “Lie”
algebrag−−−−−−−−−−−−−→

low algebra:pictures
represent formulas

“U(g)”

The Bracket-Rise Theorem.Aw is isomorphic to

= − = −−−−−→
S TU1:

−−−−→
S TU2:

= −−−−→
IHX:= −0−−−−→

S TU3 =TC:

Corollaries.(1) Only wheels and isolated arrows persist:

Aw(↑n) �U(FL(n)n
tb ⋉ CW(n)) and ζ ≔ logZ ∈ FL(n)n × CW(n)

has completely explicit formulas using naturalFL/CWoperations [BN].
(2) Related to f.d. Lie algebras!

Z

21 4 3

TC
−→
4T TC

e−a

ea e−a ea

Low Algebra. With (xi) and (ϕ j) dual bases ofg and g∗ and with
[xi , x j] =

∑
bk

i j xk, we haveAw →U via

i j

k

lmn

bm
klbk

ji

dimg∑

i, j,k,l,m,n=1

bk
i j b

m
klϕ

iϕ j xnxmϕ
l ∈ U(Ig := g∗ ⋊ g)

Differential Ops.We can also interpret̂U(Ig) as tangential differential
operators on Fun(g): ϕ ∈ g∗ becomes a multiplication operator, and
x ∈ g becomes a tangential derivation, in the direction of the action of
adx: (xϕ)(y) := ϕ([x, y]).

→ − ∼
a b a b

⇒= −→
4T

=− − = 0
CP

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506/
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0
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0
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1
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1
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1

2

1

2
0

0

1

1

1

1
2

2

2

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org

;
R

R

R

V

V
=

Algebraic statement (simplified).With r ∈ g∗ ⊗ g the identity element
and withR= er ∈ Û(Ig) ⊗ Û(g) there existV ∈ Û(Ig)⊗2 so thatV(∆ ⊗
1)(R) = R13R23V in Û(Ig)⊗2 ⊗ Û(g)

Unitary statement (simplified).There exists a unitary tangential diffe-
rential operatorV defined on Fun(gx × gy) so thatVêx+y = êxêyV (allo-
wing Û(g)-valued functions)

2-Knot Story

The Full
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Cattaneo

The BF Feynman Rules.For an edgee, let Φe be its
direction, inS3 or S1. Letω3 andω1 be volume forms
onS3 andS1. Then

ZBF =
∑

diagrams
D

[D]
|Aut(D)|

∫

R2
· · ·

∫

R2︸     ︷︷     ︸
S-vertices

∫

R4
· · ·

∫

R4︸     ︷︷     ︸
M-vertices

∏

red
e∈D

Φ∗eω3

∏

black
e∈D

Φ∗eω1

(modulo some IHX-like relations). See also [Wa]

degree= #(rattles)

ground
piece

air
piece

rattle

Issues.• Signs don’t quite work out, and BF seems to reproduce
only “half” of the wheels invariant on simple 2-knots.
• There are many more configuration space integrals than BF
Feynman diagrams and than just trees and wheels.
• I don’t know how to define/ analyze “finite type” for general
2-knots.
• I don’t know how to reduceZBF to combinatorics/ algebra.

BF Following [CR]. A ∈ Ω1(M = R4, g), B ∈ Ω2(M, g∗),

S(A,B) ≔
∫

M
〈B, FA〉.

With κ : (S = R2)→ M, β ∈ Ω0(S, g), α ∈ Ω1(S, g∗), set

O(A,B, κ) ≔
∫
DβDαexp

(
i
~

∫

S
〈β,dκ∗Aα + κ∗B〉

)
.

Rossi

+=VI:

same relations, plus

deg= 1
2 #{vertices}=6

Dror Bar-Natan: Talks: Louvain-1506:
ω :=http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506 Expansions Day 5: Back to 4D — Side 2
w-Jacobi diagrams andA. Aw(Y ↑) � Aw(↑↑↑) is

Knot-Theoretic statement (simplified).There e-
xists a homomorphic expansionZ for trivalent
w-tangles. In particular,Z should respectR4.

Diagrammatic state-
ment (simplified). Let
R = expS ∈ Aw(↑↑).
There existV ∈ Aw(↑↑) so
that:

Question.Does it all extend to arbitrary 2-knots (not necessarily
“simple”)? To arbitrary codimension-2 knots?

Group-Algebra statement (simplified).For everyφ, ψ ∈ Fun(g)G (with
small support), the following holds in̂U(g):

"

g×g
φ(x)ψ(y)ex+y =

"

g×g
φ(x)ψ(y)exey.

(shhh, this is Duflo)

Unitary =⇒ Group-Algebra.
!

ex+yφ(x)ψ(y) = 〈1, ex+yφ(x)ψ(y)〉 =
〈V1,Vex+yφ(x)ψ(y)〉 = 〈1, exeyVφ(x)ψ(y)〉 = 〈1, exeyφ(x)ψ(y)〉 =
!

exeyφ(x)ψ(y).

Convolutions statement (Kashiwara-Vergne, simplified).Convolutions
of invariant functions on a Lie group agree with convolutions of invariant
functions on its Lie algebra. More accurately, letG be a finite dimensio-
nal Lie group and letg be its Lie algebra, and letΦ : Fun(G) → Fun(g)
be given byΦ( f )(x) := f (expx). Then if f , g ∈ Fun(G) are Ad-invariant
and supported near the identity, thenΦ( f ) ⋆ Φ(g) = Φ( f ⋆ g).
Convolutions and Group Algebras(ignoring all Jacobians). IfG is finite,
A is an algebra,τ : G → A is multiplicative then (Fun(G), ⋆) → (A, ·)
via L : f 7→ ∑

f (a)τ(a). For Lie (G, g),

(g,+) ∋ x
τ0=expS //

expU

((P

P

P

P

P

P

P

P

P

P

P

P

P

expG

��

ex ∈ Ŝ(g)

χ

��

(G, ·) ∋ ex τ1 // ex ∈ Û(g)

so

Fun(g) L0 //

Φ−1

��

Ŝ(g)

χ

��

Fun(G) L1 // Û(g)

with L0ψ =
∫
ψ(x)exdx ∈ Ŝ(g) andL1Φ

−1ψ =
∫
ψ(x)ex ∈ Û(g). Given

ψi ∈ Fun(g) compareΦ−1(ψ1) ⋆ Φ−1(ψ2) andΦ−1(ψ1 ⋆ ψ2) in Û(g):

⋆ in G :
"

ψ1(x)ψ2(y)exey ⋆ in g :
"

ψ1(x)ψ2(y)ex+y

u↔ w The diagram on the right explains
the relationship between associators and
solutions of the Kashiwara-Vergne pro-
blem.

KTG a //

Zu

��

wTF

Zw

��

Au α // Aw

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506/
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Dror Bar-Natan: Talks: CMU-1504: Commutators
Abstract. The commutator of two elements x and y in a group
G is xyx−1y−1. That is, x followed by y followed by the inverse
of x followed by the inverse of y. In my talk I will tell you how
commutators are related to the following four riddles:
1. Can you send a secure message to a person you have never

communicated with before (neither privately nor publicly), us-
ing a messenger you do not trust?

2. Can you hang a picture on a string on the wall using n nails,
so that if you remove any one of them, the picture will fall?

3. Can you draw an n-component link (a knot made of n non-
intersecting circles) so that if you remove any one of those n
components, the remaining (n − 1) will fall apart?

4. Can you solve the quintic in radicals? Is there a formula for
the zeros of a degree 5 polynomial in terms of its coefficients,
using only the operations on a scientific calculator?

Definition. The commutator of two elements x and y in a group
G is [x, y] B xyx−1y−1.
Example 1. In S 3, [(12), (23)] = (12)(23)(12)−1(23)−1 = (123)
and in general in S ≥3,

[(i j), ( jk)] = (i jk).

Example 2. In S ≥4,
[(i jk), ( jkl)] = (i jk)( jkl)(i jk)−1( jkl)−1 = (il)( jk).

Example 3. In S ≥5,
[(i jk), (klm)] = (i jk)(klm)(i jk)−1(klm)−1 = ( jkm).

Example 4. So, in fact, in S 5, (123) =

[(412), (253)] = [[(341), (152)], [(125), (543)]] =

[[[(234), (451)], [(315), (542)]], [[(312), (245)], [(154), (423)]]] =

[ [[[(123), (354)], [(245), (531)]], [[(231), (145)], [(154), (432)]]],
[[[(431), (152)], [(124), (435)]], [[(215), (534)], [(142), (253)]]] ].

Solving the Quadratic, ax2 + bx + c = 0: δ =
√

∆; ∆ = b2 − 4ac;
r = δ−b

2a .
Solving the Cubic, ax3+bx2+cx+d = 0: ∆ = 27a2d2−18abcd+

4ac3 + 4b3d − b2c2; δ =
√

∆; Γ = 27a2d − 9abc + 3
√

3aδ + 2b3;

γ =
3
√

Γ
2 ; r = −

b2−3ac
γ +b+γ

3a .

Solving the Quartic, ax4 + bx3 + cx2 + dx + e = 0: ∆0 =

12ae − 3bd + c2; ∆1 = −72ace + 27ad2 + 27b2e − 9bcd + 2c3;
∆2 = 1

27

(
∆2

1 − 4∆3
0

)
; u = 8ac−3b2

8a2 ; v = 8a2d−4abc+b3

8a3 ; δ2 =
√

∆2;

Q = 1
2

(
3
√

3δ2 + ∆1
)
; q = 3√Q; S =

∆0
q +q
12a − u

6 ; s =
√

S ;

Γ = − v
s − 4S − 2u; γ =

√
Γ; r = − b

4a +
γ
2 + s.

Theorem. The is no general formula, using only the basic arithmetic operations and taking roots, for the solution of the quintic
equation ax5 + bx4 + cx3 + dx2 + ex + f = 0.
Key Point. The “persistent root” of a closed path (path lift, in topological language) may not be closed, yet the persistent root of a
commutators of closed paths is always closed.
Proof. Suppose there was a formula, and consider the corresponding “composition of machines” picture:

· · ·
and roots

alternate polys

X1 = C6 X2 = C9

P1

polys

a a

b

c

d

e

fb

c

d

e

f

∆0
∆1

u

R1

δ0 =
n√
∆0

X3 = C10

polys

δ0

· · ·

C

(coeffs)

X0 = C5 \ D

λ1

λ2
λ3

λ4λ5

n
√

X9 = C

rR4P2

Now if γ(1)
1 , γ(1)

2 , . . . , γ(1)
16 , are paths in X0 that induce permutations of the roots and we set γ(2)

1 B [γ(1)
1 , γ(1)

2 ], γ(2)
2 B [γ(1)

3 , γ(1)
4 ], . . . ,

γ(2)
8 B [γ(1)

15 , γ
(1)
16 ], γ(3)

1 B [γ(2)
1 , γ(2)

2 ], . . . , γ(3)
4 B [γ(2)

7 , γ(2)
8 ], γ(4)

1 B [γ(3)
1 , γ(3)

2 ], γ(4)
2 B [γ(3)

3 , γ(3)
4 ], and finally γ(5) B [γ(4)

1 , γ(4)
2 ] (all of

those, commutators of “long paths”; I don’t know the word “homotopy”), then γ(5)�C�P1�R1� · · ·�R4 is a closed path. Indeed,

V.I. Arnold

• In X0, none of the paths is necessarily closed.
• After C, all of the paths are closed.
• After P1, all of the paths are still closed.
• After R1, the γ(1)’s may open up, but the γ(2)’s remain closed.
· · ·
• At the end, after R4, γ(4)’s may open up, but γ(5) remains closed.
But if the paths are chosen as in Example 4, γ(5)�C�P1�R1� · · ·�R4 is not a closed path. �

References. V.I. Arnold, 1960s, hard to locate.
V.B. Alekseev, Abel’s Theorem in Problems and Solutions, Based on the Lecture of Professor V.I. Arnold, Kluwer 2004.
A. Khovanskii, Topological Galois Theory, Solvability and Unsolvability of Equations in Finite Terms, Springer 2014.
B. Katz, Short Proof of Abel’s Theorem that 5th Degree Polynomial Equations Cannot be Solved, YouTube video,
http://youtu.be/RhpVSV6iCko.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMU-1504/ and at
http://www.math.toronto.edu/~drorbn/Talks/Sydney-1708
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Peter Lee

Virtual Braids. PvBn is given by the “braids
for dummies” presentation:〈
σi j | σi jσikσ jk = σ jkσikσi j , σi jσkl = σklσi j

〉

(every quantum invariant extends toPvBn!).
By [Lee], A(PvBn) is〈
ai j | [ai j ,aik] + [ai j ,a jk] + [aik,a jk] = 0 = [ai j ,akl]

〉

Theorem [Lee]. While quadratic,PvBn does not have
a Taylor expansion.
Comment.By the tough theory of quantization of so-
lutions of the classical Young-Baxter equation [EK,
En1], PvTn does have a Taylor expansion. ButPvTn is not a group.

i j

Abstract. It is insufficiently well known that
the good old Taylor expansion has a comple-
tely algebraic characterization, which generali-
zes to arbitrary groups (and even far beyond).
Thus one may ask: Does the braid group have
a Taylor expansion? (Yes, using iterated inte-
grals and/or associators). Do braids on a torus
(“elliptic braids”) have Taylor expansions? (Yes,
using more sophisticated iterated integrals/ associators). Do vir-
tual braids have Taylor expansions? (No, yet for nearby objects
the deep answer is Probably Yes). Do groups of flying rings (braid
groups one dimension up) have Taylor expansions? (Yes, easily,
yet the link to TQFT is yet to be fully explored).

Brook Taylor

Disclaimer.I’m asked to talk in a meeting on “iterated integrals”,
and that’s my best. Many of you may think it all trivial. Sorry.
Expansions for Groups. Let G be a group,K = QG =

{∑aigi : ai ∈ Q, gi ∈ G} its group-ring,I = {∑aigi :
∑

ai = 0}
its augmentation ideal. Let

A = grK :=
⊕̂

m≥0
Im/Im+1.

Note thatA inherits a product fromG.
Definition. A linear Z : K → A is an
“expansion” if for anyγ ∈ Im, Z(γ) =
(0, . . . ,0, γ/Im+1, ∗, . . .), a “multiplicati-
ve expansion” if in addition it preserves
the product, and a “Taylor expansion” if
it also preserves the co-product, induced from the diagonalmap
G→ G ×G.
Example. Let K = C∞(Rn) andI = { f : f (0) = 0}. Then
Im = { f : f vanishes like|x|m} so Im/Im+1 degreem homoge-
neous polynomials andA = {power series}. The Taylor series is
the unique Taylor expansion!
Comment.Unlike lower central series constructions, this genera-
lizes effortlessly to arbitrary algebraic structures.

Pure Braids.TakeG = PBn = π1(Cn = C
n\diags). It

is generated by the love-behind-the-bars braidsσi j ,
modulo “Reidemeister moves”.I is generated by
{σi j − 1} andA by {ti j }, the clas-
ses of theσi j − 1 inA1 = I/I2.
Reidemeister becomes
[ti j + tik, t jk] = 0 and [ti j , tkl] = 0.

Z(γ) =
∑∫

m≥0
0<t1<...<tm<1

1≤i1< j1,i2< j2,...,im< jm≤n

m∏

α=1

tiα jα

2πi
d log(ziα − zjα),

Theorem.Forγ : [0,1]→
Cn, with zi its ith coordi-
nate, the iterated integral
formula on the right defi-
nes a Taylor expansion forPBn.
Comments. • I don’t know a combinato-
rial/algebraic proof thatPBn has a Taylor ex-
pansion.•Generic “partial expansion” do not
extend! • This is the seed for the Drinfel’d
theory of associators!• Confession: I don’t
know a clean derivation of a presentation of
PBn.

QuillenMalcev

Flying Rings.PwBn = PvBn/(σi jσik = σikσi j ) is π1(flying
rings inR3). A(PwBn) = A(PvBn)/[ai j ,aik] = 0, andZ
is as easy as it gets:Z(σi j ) = eai j [BP, BND]. Indeed,
Z(σi jσikσ jk) = eai j eaikea jk = eai j+aikea jk = eai j+aik+a jk =

Z(σ jkσikσi j ).
Comments. • Extends toPwT and generalizes the Ale-
xander polynomial, and even toPwTT and interprets the
Kashiwara-Vergne problem [BND]. • I don’t know an
iterated-integral derivation, or any TQFT derivation, thou-
gh BF theory probably comes close [CR].

Dancson1

Elliptic Braids. PB1
n ≔ π1(C1

n) is generated byσi j , Xi , Yj , wi-
th PBn relations and (Xi ,X j) = 1 = (Yi ,Yj), (Xi ,Yj) = σ−1

i j ,
(XiX j , σi j ) = 1 = (YiYj , σi j ), and

∏
Xi and

∏
Yj are central. [Bez]

impliesA(PB1
n) =
〈
xi, y j

〉
/
(
[xi , x j] = [yi, y j ] = [xi + x j, [xi, y j]] =

[yi + y j, [xi , y j]] = [xi ,
∑

y j] = [y j ,
∑

xi] = 0, [xi, y j] = [x j, yi ]
)
,

and [CEE] construct a Taylor expansion usingsophisticatedite-
rated integrals. [En2] relates this toElliptic Associators.

P.S.(K/Im+1)∗ is Vassiliev/ finite-
type / polynomial invariants.

t1

t2

t3

C

z1 z′1

Knizhnik
Zamolodchikov

Kohno
Drinfel’d

Kontsevich
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Video, links, and more @ Dror Bar-Natan: Talks: Georgetown-1503:
ωεβ≔http://www.math.toronto.edu/ d̃rorbn/Talks/Georgetown-1503 When does a group have a Taylor expansion?

· · ·
n1

· · ·
i j

· · · · · ·

C1
n =

Xi Yj The “Vertex” inTT.
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Abstract. I will describe acomputable, non-commutativeinva-
riant of tangles with values in wheels, almost generalize itto so-
me balloons, and then tell you why I care. Spoilers: tangles are
you know what, wheels are linear combinations of cyclic words
in some alphabet, balloons are 2-knots, and one reason I careis
because quantum field theory predicts more than I can actually
get (but also less).

Why I like “non-commutative”? With FA(xi) the free associative
non-commutative algebra,

dimQ[x, y]d ∼ d≪ 2d ∼ dimFA(x, y)d.

Why I like “computable”?
• Because I’m weird. • Note thatπ1 isn’t computable.
Preliminaries from Algebra.FL(xi)
denotes the free Lie algebra in (xi);
FL(xi) = (binary trees with AS ver-
tices and coloured leafs)/(IHX relations). There an obvious map
FA(FL(xi))→ FA(xi) defined by [a,b] → ab−ba, which in itself,
is IHX.

CW(xi) denotes the vector space of cyclic words in (xi): CW(xi) =
FA(xi)/(xiw = wxi). There an obvious mapCW(FL(xi)) →
CW(xi). In fact, connected uni-trivalent 2-in-1-out graphs with
univalents with colours in{1, . . . ,n}, modulo AS and IHX, is pre-
ciselyCW(xi):

Most important.ex =
∑ xd

d!
andex+y = exey.

Preliminaries from Knot Theory.

ω is practically computable!For the
Borromean tangle, to degree 5, the re-
sult is: (see [BN])

Proof of Invariance.

Further• ω is really the second part of a (trees,wheels)-valued
invariantζ = (λ, ω). The tree partλ is just a repa-
ckaging of the Milnorµ-invariants.
• On u-tangles,ζ is equivalent to the trees&wheels part of the

Kontsevich integral, except it is computable and is defined with
no need for a choice of parenthesization.
• On long/round u-knots,ω is equivalent to the Alexander poly-

nomial.
• The multivariable Alexander polynomial (and Levine’s facto-

rization thereof [Le]) is contained in the Abelianization of
ζ [BNS].
• ω vanishes on braids.
• Related to/ extends Farber’s [Fa]?
• Should be summed and categorified.
• Extends to v and descends to w:
meaning,ζ satisfies ω also satisfies soω’s “true domain” is

Facts

• Agrees with BN-Dancso [BND1, BND2] and with [BN].
• ζ, ω are universal finite type invariants.
• Using Ж : vKn → wKn+1, defines a strong invariant of v-

tangles/ long v-knots. (Ж in LATEX: ωεβ/zhe)

Doesω extend
to balloons?

ex

ey

ez
ex1

ex2

ey

ez

ω ω=

ex1

ex3

e−x4

ey

ez

ex1

ex3

ez

= = u v

OC

=

CP CP

= =

Video, links, and more @ Dror Bar-Natan: Talks: Hamilton-1412:
ωεβ≔http://www.math.toronto.edu/~drorbn/Talks/Hamilton-1412 Tangles, Wheels, Balloons

= −

−

→ −
1 2 1 3 2 2 3

→

Theorem. ω, the connected part of the procedure below, is an
invariant ofS-component tangles with values inCW(S):

− − −

∑

k,l,m≥0

(+)k(−)l(+)m

k!l!m!

eω

k l

+ + + + + +

m

−

∑

k,m≥0

(+)k(−)m

k!m!

eω
a

b

a

b

+

+ + +

+

m
k

−

Need to show:

=

Indeed,

a b a ba b11

= =

(thanks, Ester Dalvit)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamilton-1412/
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yet not
UC:

asOC:

S

S
S

SS

S

S

S
S

S

SS
S

M

M

S

S

S
S

S

S

0

0

0

0

1

1
1

1

1

1

1

1

1
1

2

2

2

2
2

0

0

0

1

1

1
1 1

2
1

22

1

2

1

2
0

0

1

1

1

1
2

2

2

Riddles, in case you are bored.
• Can you find uncountably many distinct subsets{Aα} of Z such

that wheneverα , β eitherAα ⊂ Aβ or Aβ ⊂ Aα?
• Can you find uncountably many distinct subsets{Bα} of Z such

that wheneverα , β the intersectionBα ∩ Bβ is finite?

Satoh
ωεβ/Dal

Dalvit

wK :=PA

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org

−∞

+∞
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= =

UC
OC

=
CP CP

= =

no!

All???
Is this

Cattaneo

The BF Feynman Rules.For an edgee, let Φe be its
direction, inS3 or S1. Letω3 andω1 be volume forms
onS3 andS1. Then

ZBF =
∑

diagrams
D

[D]
|Aut(D)|

∫

R2
· · ·

∫

R2︸     ︷︷     ︸
S-vertices

∫

R4
· · ·

∫

R4︸     ︷︷     ︸
M-vertices

∏

red
e∈D

Φ∗eω3

∏

black
e∈D

Φ∗eω1

(modulo some IHX-like relations). See also [Wa]

degree= #(rattles)

ground
piece

air
piece

rattle

Issues.• Signs don’t quite work out, and BF seems to reproduce
only “half” of the wheels invariant on simple 2-knots.
• There are many more configuration space integrals than BF
Feynman diagrams and than just trees and wheels.
• I don’t know how to define/ analyze “finite type” for general
2-knots.
• I don’t know how to reduceZBF to combinatorics/ algebra.

Video, links, and more @ Dror Bar-Natan: Talks: Hamilton-1412:
ωεβ≔http://www.math.toronto.edu/~drorbn/Talks/Hamilton-1412 Tangles, Wheels, Balloons — 2

=

=→ →=

ωεβ/vX

The Generators

→ →

ωεβ/X“the crossing”

“v-xing”

ωεβ/F

The Double Inflation Procedureδ.

→δ
“cap”

A 4D knot by Carter and Saito [CS]

“broken surface diagram”

w-Knots.

VR3

=

−∞

+∞

R2

VR1

=

M

=

VR2

=

= =
R3

Simple 2-Knots.
Question.Does it all extend to arbitrary 2-knots (not necessarily
“simple”)? To arbitrary codimension-2 knots?

A Big Open Problem.δ maps w-knots onto simple 2-knots. To
what extent is it a bijection? What other relations are required?
In other words,find a simple description of simple 2-knots.

BF Following [CR]. A ∈ Ω1(M = R4, g), B ∈ Ω2(M, g∗),

S(A,B) ≔
∫

M
〈B, FA〉.

With κ : (S = R2)→ M, β ∈ Ω0(S, g), α ∈ Ω1(S, g∗), set

O(A,B, κ) ≔
∫
DβDαexp

(
i
~

∫

S
〈β,dκ∗Aα + κ∗B〉

)
.

Rossi

2-Knot Story

The Full

Rewrites of IHX.

Even better,

= −
−=

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamilton-1412/
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66

66
ALT

101

ALT

101

K = K0 = Q
=
R2

yet not R1/R3

Arnold
Zung

Kn =
Goussarov

Merkov and Vassiliev

Rayman by Ubisoft

Abstract. I will describe my former student’s
Jonathan Zung work on finite type invariants of
“doodles”, plane curves modulo the second Reide-
meister move but not modulo the third. We use a
definition of “finite type” different from Arnold’s
and more along the lines of Goussarov’s “Interdependent Modifica-
tions”, and come to a conjectural combinatorial description of the set
of all such invariants. We then describe how to construct many such in-
variants (though perhaps not all) using a certain class of 2-dimensional
“configuration space integrals”. An unfinished project!

Doodles.

Prior Art. Arnold [Ar] first studied doo-
dles within his study of plane curves and the
“strangeness”St invariant. Vassiliev [Va1,
Va2] defined finite type invariants in a differ-
ent way, and Merkov [Me] proved that they separate doodles.

Def. V is of typen if it vanishes onKn+1. (K0/Kn+1)⋆! Kn/Kn+1

Goussarov Finite-Type.

Knots in 3D. 2-Knots in 4D.

= −

Easy

to

classify!

Goals.•DescribeAn ≔ Kn/Kn+1 using diagrams/relations.•Get many
or all finite type invariants of doodles using configurationsspace inte-
grals.• Do these come from a TQFT?• See ifAn has a “Lie theoretic”
(tensors/relations) meaning.• See if/how Arnold’sSt and the Merkov
invariants integrate in.

ring

join

Chord Diagrams and an Upper Bound onKn/Kn+1

The Primary Snippet.

The Rayman Principle.In Kn/Kn+1,
“joins are irrelevant”

The Subdivision Relations.In Kn/Kn+1,

Rings can be subdivided until
each one participates in just
one “feature”.

Tetrahedron (Tet)
Ring Exchange (RE)

AS: Tet: RE:

“Chord Diagrams”.

Anti-Symmetry (AS)

“Multi-Commutator” (MC) Relations.

Merkov’s

[Me]
Doodles by my former student Jana Archibald

From

(equal rotation
numbers)

doodles anddetours(dnd’s)

=−

(Arnold’s
“strangeness”

is type 3)

Kn/Kn+1

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org

AS
Tet

RE
MC

The reason I care!

Finite Type Invariants of Doodles, 1Dror Bar-Natan: Talks: Fields-1411:

∼
12

3

= + ⇒ ⇒

+

∑

cyclic
perms

±= 0 = 0 =

(sum all commutators
with headA or B and tailB or A)

∑

http://www.math.toronto.edu/˜drorbn/Talks/Fields-1411/
Video and handout at

Goryunov, here

Kn/Kn+1
π

k
l

1 2 3 4

1

4 6 5 7

2 3

1

23

1

2 3 i j

k l k
l

5 6 7

B A

B A

B A

B A

B A

B A

B A

B

A

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/
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2

1

00

± ± ±

− + = 0

IHX:

FS:

+ 5 further terms

+ 4 further terms

= 0

∈ (S1)3

ΦD

)

Feynman Diagrams and a Lower Bound on (K0/Kn+1)∗.
Feynman Diagrams. A blue
“skeleton line” at the bottom.
A magenta“arrow diagram” (di-
rected pairing of skeleton points)
on top, with amagentadot at the
middle of each arrow. Agreen
directed graph on top, with 2-in
1-out antisymmetricgreen ver-
tices, with arbitrary number of
greenedges starting at themagentadots, and with somegreen
edges terminating at distinctblue skeleton points. Thedegreeis
the total valency of themagentadots.
Configuration Space Integrals.

∑∫

C(D)

Φ∗D
(
ω∧3

1

)

The “Partition Function”Z.

K 7→ Z(K) ≔
∑

Feynman
diagrams

∑∫

C(D)

Φ∗D
(
ω∧e(D)

1

)
∈ At ≔ 〈D〉/(∂-relations).

Theorem (90%).Z is an invariant of doodles.
∂-relations. STU, IHX, Foot Swap (FS), Arrow Exchange (AE),
and Combinatorial R2 (CR2):

An unfinished project!
• Nothing is written up.
• We don’t know if T is injective (meaning, if our upper and

lower bounds agree).
• We don’t know if all ofAt is necessary — it is very possible

that it is enough to restrict to thegreen-lesspart ofAt — to
“Gauss Diagram Formulas”.
• We haven’t clarified the relationship with Merkov’s [Me].
• A few further configuration space integrals can be written be-

yond those that we have used. We don’t know what to do with
those, if anything.
• We don’t know the relationship, if any, with algebra.
• We don’t know the relationship, if any, with quantum field the-

ory.
• We don’t know how to do similar things with 2-knots.

Summary Diagram. K
Z

&&N

N

N

N

N

N

N

N

N

N

N

N

��

Dc/MC≕ Ac π
// //

T: 1−1?
55

grK grZ
// At ≔ Dt/FDR

T:

References.The root, of course, is [Ar]. Further
references on doodles include [Kh, FT, Me, Ta,
Va1, Va2]. On Goussarov finite-type: [Go, BN].
[Ar] V.I. Arnold, Topological Invariants of

Plane Curves and Caustics,American
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STU:

+− = 0

AE:

open space for your doodles

ω1 : vol.(S1)

CR2:

=

(also with (may be relaxed?)

Finite Type Invariants of Doodles, 2Dror Bar-Natan: Talks: Fields-1411:
http://www.math.toronto.edu/˜drorbn/Talks/Fields-1411/
Video and handout at

deg=8

deg=10

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/
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Dror Bar−Natan, Toronto November 2014. More atDessert: Hilbert’s 13th Problem, in Full Colour

slope := ∆y
∆x

fill factor := ∆x
size

Abstract. To break a week of deep thinking with a nice colourful
light dessert, we will present the Kolmogorov-Arnold solution of
Hilbert’s 13th problem with lots of computer-generated rainbow-
painted 3D pictures.
In short, Hilbert asked if a certain specific function of three vari-
ables can be written as a multiple (yet finite) composition of con-
tinuous functions of just two variables. Kolmogorov and Arnold
showed him silly (ok, it took about 60 years, so it was a bit tricky)
by showing that any continuous function f of any finite number of
variables is a finite composition of continuous functions of a single
variable and several instances of the binary function “+” (addi-
tion). For f(x, y) = xy, this may be xy = exp(log x + log y). For
f(x, y, z) = xy/z, this may be exp(exp(log y+log log x)+(− log z)).
What might it be for (say) the real part of the Riemann zeta func-
tion?
The only original material in this talk will be the pictures; the
math was known since around 1957.

φ

Fix an irrational λ > 0, say λ = (
√

5 − 1)/2. All
functions are continuous.
Theorem. There exist five φi : [0, 1] → [0, 1] (1 ≤
i ≤ 5) so that for every f : [0, 1] × [0, 1] → R there
exists a g : [0, 1 + λ] → R so that

f(x, y) =

5∑

i=1

g(φi(x) + λφi(y))

for every x, y ∈ [0, 1].

φ × φ

Step 1. If ǫ > 0 and f : [0, 1]× [0, 1] → R, then there
exists φ : [0, 1] → [0, 1] and g : [0, 1 + λ] → R so that
|f(x, y)−g(φ(x)+λφ(y))| < ǫ on at least 98% of the
area of [0, 1] × [0, 1].
The key. “Poorify” chocolate bars.

Hilbert Kolmogorov Arnold (by Moser)

g

http://www.math.toronto.edu/~drorbn/Talks/Fields-1411

rises

∆y

∆x
size= 1

n

the flat

1
3

Re(ζ(x + iy)) on [0, 1] × [13, 17]

g

g(φ(x) + λφ(y))

g(φ(x) + λφ(y))

φ(x) + λφ(y)

z-coloured
φ(x) + λφ(y)

g-coloured

(ξ, η) 7→ ξ + λη

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/
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LIMIT

SPEED
40

LIMIT

SPEED
80

LIMIT

SPEED
100

LIMIT

SPEED
20

LIMIT

SPEED
60

Dessert: Hilbert’s 13th Problem, in Full Colour (Page 2)

How go
least blur?

Step 1 Step 4

Step 2. There exists φ : [0, 1] → [0, 1] so that for every ǫ > 0
and every f : [0, 1]×[0, 1] → R there exists a g : [0, 1+λ] → R
so that |f(x, y) − g(φ(x) + λφ(y))| < ǫ on a set of area at
least 1 − ǫ in [0, 1] × [0, 1].
The key. “Iterated poorification”.

Step 3. There exist φi : [0, 1] → [0, 1] (1 ≤ i ≤ 5) so
that for every ǫ > 0 and every f : [0, 1] × [0, 1] → R
there exists a g : [0, 1 + λ] → R so that

|f(x, y) −
5∑

i=1

g(φi(x) + λφi(y))| <

(
2

3
+ ǫ

)
‖f‖∞

for every x, y ∈ [0, 1].
The key. “Shift the chocolates”. . .

Exercise 1. Do the m-dimensional case.
Exercise 2. Do Rm instead of just Im.

Step 4. We are done.
The key. Learn from the artillery!
Set Tg :=

∑5
i=1 g(φi(x) + λφi(y)), f1 := f , M := ‖f‖, and

iterate “shooting and adjusting”. Find g1 with ‖g1‖ ≤ M
and ‖f2 := f1 − Tg1‖ ≤ 3

4
M . Find g2 with ‖g2‖ ≤ 3

4
M and

‖f3 := f2 − Tg2‖ ≤ ( 3
4
)2M . Find g3 with ‖g3‖ ≤ ( 3

4
)2M and

‖f4 := f3 − Tg3‖ ≤ ( 3
4
)3M . Continue to eternity. When done,

set g =
∑

gk and note that f = Tg as required.

Propaganda. I love handouts! • I have nothing to hide and you
can take what you want, forwards, backwards, here and at home.
• What doesn’t fit on one sheet can’t be done in one hour. • It
takes learning and many hours and a few pennies. The audience’s
worth it! • There’s real math in the handout viewer!

. . . then iterate.

g2

φ(x) + λφ(y)

g2-coloured φ(x) + λφ(y)

φ0,1,2

g1

g1-coloured φ(x) + λφ(y)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/
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«| Dror Bar-Natan: Talks: Treehouse-1410: Video, handout, links at
The 17 Tiling Patterns: Gotta catch 'em all! http://drorbn.net/Treehouse
Treehouse Talks, Friday October 17, 2014, Beeton Auditorium, Toronto Reference Library, 789 Yonge Street, 6:30PM

Abstract. My goal is to get you hooked, captured and unreleased
until you find all 17 in real life, around you.
We all know know that the plane can be filled in different periodic
manners: floor tiles are often square but sometimes hexagonal,
bricks are often laid in an interlaced pattern, fabrics often carry
interesting patterns. A little less known is that there are precisely
17 symmetry patterns for tiling the plane; not one more, not one
less. It is even less known how easy these 17 are to identify in the
patterns around you, how fun it is, how common some are, and
how rare some others seem to be.
Gotta catch 'em all!

Reading. An excellent book on the
subject is The Symmetries of Things
by J. H. Conway, H. Burgiel, and
C. Goodman-Strauss, CRC Press, 2008.
Another nice text is Classical Tessellations
and Three-Manifolds by J. M. Montesinos,
Springer-Verlag, 1987.
Question. In what ways can you make $2
change, using coins denominated 1

2 ,
2
3 ,

3
4 ,

4
5 ,

5
6 , etc.?

Answer. 2 = 1
2 + 1

2 + 1
2 + 1

2 = 2
3 + 2

3 + 2
3 = 3

4 + 3
4 + 1

2 = 5
6 + 2

3 + 1
2 ,

and that’s it.

|5
rotation-reflection

3
rotation only

The Basic Features.

G
free glide-reflection

M
free mirror-reflection

Video, handout, links at drorbn.net/Treehouse

Gotta
catch
'em
all!

Theorem. There are precisely 17 patterns with which to tile the
plane, no more, no less. They are all made of combinations of
the 10 basic features, 2, 3, 4, 6, |2, |3, |4, |6, M, and G, as follows:

Dror’s Conway’s crystallo
-graphic

crystallo
-graphicDror’s Conway’s

2222 p2
p3
p4
p6

pmm
p3m1
p4m
p6m
p4g

p31m
cmm
pmg
pm
cm
pg
pgg
p1

333
442
632
|2 |2 |2 |2
|3 |3 |3
|4 |4 |2
|6 |3 |2
4 |2

3 |3
2 |2 |2
22M
MM
MG
GG
22G

∅

2222
333
442
632

*2222
*333
*442
*632
4*2

3*3
2*22
22*
**
*o
oo
22o
0

X X

« Dror Bar-Natan, October 2014

Tilings worksheet. Classify the following pictures according to the following possibilities: 2222=2222, 333=333, 442=442,
632=632, |2 |2 |2 |2=*2222, |3 |3 |3=*333, |4 |4 |2=*442, |6 |3 |2=*632, 4 |2=4*2, 3 |3=3*3, 2 |2 |2=2*22, 22M=22*, MM=**, MG=*o, GG=oo,
22G=22o, and ∅=0 (the pictures come in {context, pattern} pairs).

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Treehouse-1410/
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∅

18??

Venus

2
4̄ 2̄

4̄

2̄

3̄
6̄

Tie@Fry’s

Abstract. Back in early 2000, I
got my first digital camera and set
out to take pictures of my kids and
of symmetric patterns in the plane
(ω/Tilings). There are exactly 17
of those, no more, no less. It is an
addicting challenge to walk around
looking at buildings, brick walls, people’s ties, fabrics, what’s
not, and to try figure out which of the 17 is each one.
• What would history look like if we were living on Venus?
• What do the ants on Lou Kauffman’s tie think?

Dror Bar-Natan: Talks: ClassroomAdventures-1408:

The 17 Worlds of Planar Ants

Lou Kauffman’s Tie

Video, handout, links at ω/

ω :=http://www.math.toronto.edu/~drorbn/Talks/ClassroomAdventures-1408

Goal. Get you hooked!

Books.
• J. H. Conway,
H. Burgiel, and
C. Goodman-Strauss, The Symme-
tries of Things, CRC Press, 2008.
• J. M. Montesinos, Classical Tes-
sellations and Three-Manifolds,
Springer-Verlag, 1987.

The Venus Story

The Renaissance Story

ω/DW

The Lake Merrit Story
The Racha Cafe Story

ω/Longtin

M. C. Escher, 1963

Claim. Exactly 10 “features” are possible.
They are M, G, 2, 3, 4, 6, 2̄, 3̄, 4̄, and 6̄.

MM G

ω/Sanderson

3
6

4
4

2

Theorem. There are exactly 17 “tilings” of the
plane: ∅=0, MM=∗∗, MG=∗◦, GG=◦◦, 2222=
2222, 333=333, 442=442, 632=632, 2̄2̄2̄2̄=∗2222,
3̄3̄3̄=∗333, 4̄4̄2̄=∗442, 6̄3̄2̄=∗632, 42̄=4∗2, 33̄=
3∗3, 22̄2̄=2∗22, 22M=22∗, 22G=22◦.

The 230 Worlds of Spacial
Monkeys (The 219 worlds of
Monkeys that Can’t Tell their
Left from their Right)
ω/Crys, ω/CFHT

Video and more at http://www.math.toronto.edu/~drorbn/Talks/ClassroomAdventures-1408/
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asOC:
yet not
UC:

1 32 4

5

7 8 1112

13 14 15 16
6

9

10

1
2

3

4

5
6

1

2

3
4

5
6

Theorem 1. ∃! an invariant γ : {pure framedS-component
tangles} → R× MS×S(R), whereR= RS = Z((Ta)a∈S) is the ring
of rational functions inS variables, intertwining

1.
(
ω1 S1

S1 A1
,
ω2 S2

S2 A2

)
⊔−−−−−→

ω1ω2 S1 S2

S1 A1 0
S2 0 A2

,

2.

ω a b S
a α β θ
b γ δ ǫ
S φ ψ Ξ

mab
c−−−−−→

µ≔1−β


µω c S
c γ + αδ/µ ǫ + δθ/µ
S φ + αψ/µ Ξ + ψθ/µ


Ta,Tb→Tc

,

and satisfying
(
|a; !a b, "b a

) γ−→


1 a
a 1

;
1 a b
a 1 1− T±1

a
b 0 T±1

a

.

Abstract. I will describe some very good formulas for a(matrix plus
scalar)-valued extension of the Alexander polynnomial to tangles,then
say that everything extends to virtual tangles, then roughly to simply
knotted balloons and hoops in 4D, then the target space extends to(free
Lie algebras plus cyclic words), and the result is a universal finite type of
the knotted objects in its domain. Taking a cue from the BF topological
quantum field theory, everything should extend (with some modifica-
tions) to arbitrary codimension-2 knots in arbitrary dimension and in
particular, to arbitrary 2-knots in 4D. But what is really going on is still
a mystery.

Runs.Meta-Associativity

R3

Implementationkey idea:
(ω,A = (αab))↔
(ω, λ =

∑
αabtahb)

ωεβ/Demo

Tangles.

(meta-associativity:mab
a �mac

a = mbc
b �mab

a )
Why Tangles?
• Finitely presented.
• Divide and conquer proofs and computations.
• “Algebraic Knot Theory”: IfK is ribbon,

Z(K) ∈ {cl2(Z) : cl1(Z) = 1}.
(Genus and crossing number a-
re also definable properties).

In Addition, • This is really “just” a stitching
formula for Burau/Gassner [LD, KLW, CT].
• L 7→ ω is Alexander, mod units.
• L 7→ (ω,A) 7→ ωdet′(A− I )/(1− T′) is the
MVA, mod units.
• The “fastest” Alexander algorithm.
• There are also formulas for strand deletion,
reversal, and doubling.
• Every step along the computation is the invariant of something.
• Extends to and more naturally defined on v/w-tangles.
• Fits in one column, including propaganda & implementation.

Weaknesses,•mab
c is non-linear.

• The productωA is always Laurent, but proving this takes indu-
ction with exponentially many conditions.

?

=: wKbh

S,T ST

“Simply-
knotted
balloons
and hoops”

“the generators”

=

= =

==

=
↔

↔↔
↔

=
R3

T

ribbon

Dror Bar-Natan: Talks: Oberwolfach-1405:
ωεβ≔http://www.math.toronto.edu/ d̃rorbn/Talks/Oberwolfach-1405/ Some very good formulas for the Alexander polynomial, 1

. . . divide and conquer!

+ + + +

−−− −

g b

r ⊔

a b
mab

c

c

T

H

balloons/ tails

∞

x y z

u v
	 	

S4

R4

hoops/ heads

Kbh(H; T).

Examples.

Conjecture
Disturbing

=

blue is never “over”

=

u v

“v-xing”

R2

VR1 VR2
VR3

M OC

CP CP
UC

=

x

Dictionary. = =

Kbh =

no!

example

T

trivial

T
T

T

cl1 cl2

simple
embeddings

x
uu x

x

u
t

x

y

Shin Satoh

817

ρ−ux:ρ+ux:

δ
ǫx:

ǫu:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Oberwolfach-1405/
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S

S
S

SS

S

S

S
S

S

SS
S

M

M

S

S

S
S

S

S

0

0

0

0

1

1
1

1

1

1

1

1

1
1

2

2

2

2
2

0

0

0

1

1

1
1 1

2
1

22

1

2

1

2
0

0

1

1

1

1
2

2

2

Definition. lxu is the linking number of hoopx with balloonu.
For x ∈ H, σx ≔

∏
u∈T T lxu

u ∈ R = RT = Z((Ta)a∈T), the ring of
rational functions inT variables.
Theorem 2[BNS]. ∃! an invariantβ : wKbh(H; T) → R ×
MT×H(R), intertwining

1.
(
ω1 H1

T1 A1
,
ω2 H2

T2 A2

)
⊔−−−−−→

ω1ω2 H1 H2

T1 A1 0
T2 0 A2

,

2.

ω H
u α
v β
T Ξ

tmuv
w−−−−−→


ω H
w α + β
T Ξ


Tu,Tv→Tw

,

3.
ω x y H
T α β Ξ

hmxy
z−−−−−→ ω z H

T α + σxβ Ξ
,

4.
ω x H
u α θ
T φ Ξ

thaux

−−−−−→
ν≔1+α

νω x H
u σxα/ν σxθ/ν
T φ/ν Ξ − φθ/ν

,

and satisfying
(
ǫx; ǫu; ρ±ux

) β−→
(

1 x
;

1
u

;
1 x
u T±1

u − 1

)
.

Proposition. If T is a u-tangle andβ(δT) = (ω,A), then
γ(T) = (ω,σ − A), whereσ = diag(σa)a∈S. Under this,mab

c ↔
thaab�tmab

c �hmab
c .

Theorem 3[BND, BN]. ∃! a homomorphic expansion, aka a ho-
momorphic universal finite type invariantZ of w-knotted balloons
and hoops.ζ ≔ logZ takes values inFL(T)H × CW(T).

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org

u

x

v

y

Cattaneo

The BF Feynman Rules.For an edgee, let Φe be its
direction, inS3 or S1. Letω3 andω1 be volume forms
onS3 andS1. Then

ZBF =
∑

diagrams
D

[D]
|Aut(D)|

∫

R2
· · ·

∫

R2︸     ︷︷     ︸
S-vertices

∫

R4
· · ·

∫

R4︸     ︷︷     ︸
M-vertices

∏

red
e∈D

Φ∗eω3

∏

black
e∈D

Φ∗eω1

(modulo someS TU- andIHX-like relations).

degree= #(rattles)

ground
piece

air
piece

rattle

BF Following [CR]. A ∈ Ω1(M = R4, g), B ∈ Ω2(M, g∗),

S(A,B) ≔
∫

M
〈B, FA〉.

With κ : (S = R2)→ M, β ∈ Ω0(S, g), α ∈ Ω1(S, g∗), set

O(A,B, κ) ≔
∫
DβDαexp

(
i
~

∫

S
〈β,dκ∗Aα + κ∗B〉

)
.

Rossi
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Dror Bar-Natan: Talks: Oberwolfach-1405:
ωεβ≔http://www.math.toronto.edu/ d̃rorbn/Talks/Oberwolfach-1405/ Some very good formulas for the Alexander polynomial, 2

If X is a space,π1(X)
is a group,π2(X) is an
Abelian group, andπ1

acts onπ2.
Proposition.The gene-
rators generate.

K � hmxy
z : K � thaux:

u v

x y

u v

z

K:

x y

w
K � tmuv

w :

Connected
Sums.

⊔
Punctures & Cuts

Operations

ζ is computable!ζ of the Borromean tangle, to degree 5:

for trees

+ cyclic colour
permutations,

Proposition[BN]. Modulo all re-
lations that universally hold for
the 2D non-Abelian Lie alge-
bra and after some changes-of-
variable,ζ reduces toβ and the
KBH operations onζ reduce to the formulas in Theorem 2.
A Big Question.Does it all extend to arbitrary 2-knots (not neces-
sarily “simple”)? To arbitrary codimension-2 knots?

Issues.• Signs don’t quite work out, and BF seems to reproduce
only “half” of the wheels invariant.
• There are many more configuration space integrals than BF
Feynman diagrams and than just trees and wheels.
• I don’t know how to define “finite type” for arbitrary 2-knots.

= −

[u, v] cuv cvu= −

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Oberwolfach-1405/
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Dror Bar-Natan: Classes: 1314: AKT-14:

Gaussian Integration, Determinants, Feynman Diagrams

Feynman

Gaussian Integration. (λi j) is a symmetric positive definite matrix and (λi j) is its inverse,
and (λi jk) are the coefficients of some cubic form. Denote by (xi)n

i=1 the coordinates of
Rn, let (ti)n

i=1 be a set of “dual” variables, and let ∂i denote ∂
∂ti

. Also let C ≔ (2π)n/2

det(λi j)
. Then

∫

Rn

e−
1
2λi j xi x j+ ǫ6 λi jkxi x j xk

=
∑

m≥0

ǫm

6mm!

∫

Rn

(λi jk xix jxk)me−
1
2 λi jxi x j

=
∑

m≥0

Cǫm

6mm!
(λi jk∂

i∂ j∂k)me
1
2 λ
αβtαtβ

∣∣∣∣∣∣∣
tα=0

=
∑

m,l≥0
3m=2l

Cǫm

6mm!2ll!

(
λi jk∂

i∂ j∂k
)m (
λαβtαtβ

)l

=
∑

m,l≥0
3m=2l

Cǫm

6mm!2ll!



. . . sum over all pairings . . .

λαlβl

tαl tβl

λα3β3

tα3 tβ3

λim jmkm

∂im ∂ jm ∂km

λα2β2

tα2 tβ2

λi2 j2k2

∂i2 ∂ j2 ∂k2

λα1β1

tα1 tβ1

λi1 j1k1

∂i1 ∂ j1 ∂k1

· · ·

· · ·



=
∑

m,l≥0
3m=2l

Cǫm

6mm!2ll!

∑

m-vertex fully marked
Feynman diagrams D

E(D)

i2

k2

i1

k1

i1
j1
k1 k2j1 j2 j2

i2

etc.
λi1 j1k1λi2 j2k2λ

i1 i2λ j1 j2λk1k2 λi1 j1k1λi2 j2k2λ
i1 j1λk1k2λi2 j2

E E

β1

β2

α3

α2

β3

α1

α2β2

α1

β1α3

β3

= C
∑

unmarked Feynman
diagrams D

ǫm(D)E(D)
|Aut(D)| . Claim. The number of pairings that produce a

given unmarked Feynman diagram D is 6mm!2ll!
|Aut(D)| .

Proof of the Claim. The group Gm,l ≔ [(S 3)m ⋊ S m] × [(S 2)l ⋊ S l] acts on the set of
pairings, the action is transitive on the set of pairings P that produce a given D, and the
stabilizer of any given P is Aut(D). �
Determinants. Now suppose Q and Pi (1 ≤ i ≤ n) are d × d
matrices and Q is invertible. Then

|Q|−1Iǫ,λi j,λi jk,Q,Pi = |Q|−1
∫

Rn

e−
1
2 λi jxi x j+ ǫ6 λi jkxi x j xk

det(Q + ǫxiPi)

=
∑

m,k≥0, σ∈S k

Cǫm+k(−)σ

6mm!k!

∫

Rn

(λi jkxix jxk)mtr
(
σ(xiQ−1Pi)⊗k

)
e−

1
2 λi jxi x j

=
∑

fully marked
Feynman diagrams

Cǫm+k(−)σ

6mm!k!
E



σ ∈ S k

Q−1
Q−1
Q−1

P

P

P



=
∑

Feynman diagrams

Cǫm+k(−)k(−)lE


 ,

where l is the number of purple (“Fermion”) loops.

http://drorbn.net/index.php?title=AKT-14 The Fourier Transform.
(F : V → C)⇒ ( f̃ : V∗ → C)

via F̃(ϕ) ≔
∫

V f (v)e−i〈ϕ,v〉dv. Some facts:

• f̃ (0) =
∫

V f (v)dv.

• ∂
∂ϕi

f̃ ∼ ṽi f .

• (̃eQ/2) ∼ eQ−1/2, where Q is quadratic,
Q(v) = 〈Lv, v〉 for L : V → V∗, and
Q−1(ϕ) ≔ 〈ϕ, L−1ϕ〉. (This is the key
point in the proof of the Fourier inversion
formula!)
Examples.

Perturbing Determinants. If Q and P are
matrices and Q is invertible,
|Q|−1|Q + ǫP| = |I + ǫQ−1P|

=
∑

k≥0

ǫktr
(∧k

Q−1P
)

=
∑

k≥0, σ∈S k

ǫk(−)σ

k!
tr

(
σ(Q−1P)⊗k

)

=
∑

k≥0, σ∈S k

(−ǫ)k(−)#cycles

k!
σ

Q−1
Q−1
Q−1

P P P

|Aut(D)| = 12 |Aut(D)| = 8

The Berezin Integral (physics / math language, for-
mulas from Wikipedia:Grassmann integral).
The Berezin Integral is linear on functions of anti-
commuting variables, and satisfies

∫
θdθ = 1, and∫

1dθ = 0, so that
∫
∂ f (θ)
∂θ

dθ = 0.
Let V be a vector space, θ ∈ V , dθ ∈ V∗ s.t. 〈dθ, θ〉 = 1. Then f 7→∫

f dθ is the interior multiplication map
∧

V → ∧
V:

∫
f dθ ≔

idθ( f )
(
=
∂ f
∂θ

)
.

Multiple integration via “Fubini”:
∫

f1(θ1) · · · fn(θn)dθ1 . . . dθn ≔(∫
f1dθ1

)
· · ·

(∫
fndθn

)
.
∫

f dθ1 . . . dθn ≔ f �idθ1 �· · ·�idθn .
Change of variables. If θi = θi(ξ j), both θi and ξ j are odd, and
Ji j ≔ ∂θi/∂ξ j, then∫

f (θi)dθ =
∫

f (θi(ξ j)) det(Ji j)−1dξ.

Given vector spaces Vθi and Wξ j , dθ =
∧

dθi ∈ ∧top(V∗), dξ =∧
dξi ∈ ∧top(W∗), and T : V → ∧odd(W). Then T induces a map

T∗ :
∧

V → ∧
W and then∫

f dθ =
∫

(T∗ f ) det
(
∂(Tθi)
∂ξ j

)−1

dξ.

Gaussian integration. For an even matrix A and odd vectors θ, η,∫
eθ

T Aηdθdη = det(A),
∫

eθ
T Aη+θT J+KTηdθdη = det(A)e−KT A−1 J.

Berezin

Ghosts. Or else, introduce “ghosts” c̄a and cb, write

Iǫ,λi j,λi jk,Q,Pi =

∫

Rn

dx
∫

R̄d×R̄d

e−
1
2 λi j xi x j+ ǫ6 λi jkxi x j xk+c̄a(Qa

b+ǫx
iPa

ib)cb

and use “ordinary” perturbation theory. c̄ and c

Video and more at http://drorbn.net/?title=AKT-14 (Feb 28 and March 21 classes)
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Abstract. I will describe asemi-rigorous reduction of perturba-
tive BF theory (Cattaneo-Rossi [CR]) to computable combina-
torics, in the case of ribbon 2-links. Also, I will explain how
and why my approach may or may not work in the non-ribbon
case. Weak this result is, and at least partially already known
(Watanabe [Wa]). Yet in the ribbon case, the resulting invariant is
a universal finite type invariant, a gadget that significantly gener-
alizes and clarifies the Alexander polynomial and that is closely
related to the Kashiwara-Vergne problem. I cannot rule out the
possibility that the corresponding gadget in the non-ribbon case
will be as interesting. (good news inhighlight)

Cattaneo Rossi

trees

on wheels,

odd edges

even rattlesdegree= #(rattles)

air
piece

rattle

snake

BF Following [CR]. A ∈ Ω1(M = R4, g), B ∈ Ω2(M, g∗),

S(A,B) ≔
∫

M
〈B, FA〉.

With κ : (S = R2)→ M, β ∈ Ω0(S, g), α ∈ Ω1(S, g∗), set

O(A,B, κ) ≔
∫
DβDαexp

(
i
~

∫

S
〈β,dκ∗Aα + κ∗B〉

)
.

A BF Feynman Diagram.

The BF Feynman Rules.For
an edgee, let Φe be its di-
rection, inS3 or S1. Let ω3

andω1 be volume forms on
S3 andS1. Then for a 2-link
(κt)t∈T ,

ζ = log
∑

diagrams
D

[D]
|Aut(D)|

∫

R2
· · ·

∫

R2︸     ︷︷     ︸
S-vertices

∫

R4
· · ·

∫

R4︸     ︷︷     ︸
M-vertices

∏

red
e∈D

Φ∗eω3

∏

black
e∈D

Φ∗eω1

is an invariant inCW(FL(T)) → CW(T)/∼, “symmetrized cyclic
words inT”.

A 4D knot by Carter and Saito [CS]

Some Examples.

A 4D knot by Dalvit [Da]

∞

∞

∞

Decker Sets (“2D Gauss Codes”).

“a double curve”

“a triple point”

“a branch point”

Roseman [Ro]

“ribbed cigar presentation”
A 2-twist spun trefoilby Carter-
Kamada-Saito [CKS].

A 2-link

“a w-knot”

Dror Bar-Natan: Academic Pensieve: 2014-04: BF2C:
http://drorbn.net/AcademicPensieve/2014-04/BF2C A Partial Reduction of BF Theory to Combinatorics, 1
continueshttp://www.math.toronto.edu/ d̃rorbn/Talks/Vienna-1402

(only double curves
are allowed in
ribbon 2-knots)

Saito

Carter
Banach

Dalvit

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Vienna-1402/
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“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org

−

−

1 1

k l

+ + + + + +

m

Dror Bar-Natan: Academic Pensieve: 2014-04: BF2C:
http://drorbn.net/AcademicPensieve/2014-04/BF2C A Partial Reduction of BF Theory to Combinatorics, 2
Theorem 1 (with Cattaneo, Dalvit (credit, no blame)).In the rib-
bon case,eζ can be computed as follows:

Will the relationship with the Kashiwara-Vergne problem [BND]
necessarily arise here?

Plane curves.Shouldn’t we understand integral/ finite
type invariants of plane curves, in the style of Arnold’s
J+, J−, andSt[Ar], a bit better? Arnold

∑

k,l,m≥0

(+)k(−)l(+)m

k!l!m!

eζ

∑

k,m≥0

(+)k(−)m

k!m!

eζ
a

b

a

b
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Theorem 2. Using Gauss diagrams to represent knots andT-
component pure tangles, the above formulas define an invariant
in CW(FL(T))→ CW(T), “cyclic words inT”.
• Agrees with BN-Dancso [BND] and with [BN2]. • In-practice
computable!• Vanishes on braids.• Extends to w.• Contains
Alexander.• The “missing factor” in Levine’s factorization [Le]
(the rest of [Le] also fits, hence contains the MVA).• Related to
/ extends Farber’s [Fa]? • Should be summed and categorified.

−

− −−

“an associator”

Sketch of Proof. In 4D ax-
ial gauge, only “drop down” red
propagators, hence in the ribbon
case, noM-trivalent vertices.S integrals are±1
iff “ground pieces” run on nested curves as below,
and exponentials arise when several propagators
compete for the same double curve. And then the
combinatorics is obvious. . .

Bubble-wrap-finite-type.
There’s an alternative defini-
tion of finite type in 3D, due
to Goussarov (see [BN1]). The
obvious parallel in 4D involves
“bubble wraps”. Is it any good?

Shielded tangles.In 3D, one can’t zoom in and compute “the
Chern-Simons invariant of a tangle”. Yet there are well-defined
invariants of “shielded tangles”, and rules for their compositions.
What would the 4D analog be?

Goussarov

Finite type.What are finite-type
invariants for 2-knots? What
would be “chord diagrams”?

Chern-Simons.When the domain of BF is restricted to ribbon
knots, and the target of Chern-Simons is restricted to treesand
wheels, they agree. Why?
Is this all? What
about the∨-invariant?
(the “true” triple link-
ing number)

Gnots. In 3D, a generic immersion ofS1 is an
embedding, a knot. In 4D, a generic immersion
of a surface has finitely-many double points (a
gnot?). Perhaps we should be studying these?

2 2

Musings

= +

−

Continuing Joost Slingerland. . .

http://youtu.be/mHyTOcfF99o

http://youtu.be/YCA0VIExVhge

+

+ + +

+

m
k

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Vienna-1402/
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Dror Bar-Natan: Classes: 2014: MAT 1350 — Algebraic Knot Theory: Friday Introduction

What happens to a quantum parti-
cle on a pendulum at T = π

2?

Abstract. This subject is the best one-hour in-
troduction I know for the mathematical techniques
that appear in quantum mechanics — in one short
lecture we start with a meaningful question, visit
Schrödinger’s equation, operators and exponentia-
tion of operators, Fourier analysis, path integrals,
the least action principle, and Gaussian integration,
and at the end we land with a meaningful and inter-
esting answer.

Based a lecture given by the author in the “trivial notions”

seminar in Harvard on April 29, 1989. This edition, January

10, 2014.

1. The Question

Let the complex valued function ψ = ψ(t, x) be a
solution of the Schrödinger equation

∂ψ

∂t
= −i

(
−1

2
∆x +

1

2
x2

)
ψ with ψ|t=0 = ψ0.

What is ψ|t=T=π
2
?

In fact, the major part of our discussion will work
just as well for the general Schrödinger equation,

∂ψ

∂t
= −iHψ, H = −1

2
∆x + V (x),

ψ|t=0 = ψ0, arbitrary T,

where,

• ψ is the “wave function”, with |ψ(t, x)|2 rep-
resenting the probability of finding our par-
ticle at time t in position x.
• H is the “energy”, or the “Hamiltonian”.
• −1

2∆x is the “kinetic energy”.
• V (x) is the “potential energy at x”.

2. The Solution

The equation ∂ψ
∂t = −iHψ with ψ|t=0 = ψ0 formally

implies

ψ(T, x) =
(
e−iTHψ0

)
(x) =

(
ei
T
2

∆−iTV ψ0

)
(x).

By Lemma 3.1 with n = 1058+17 and setting xn = x
we find that ψ(T, x) is

(
ei

T
2n

∆e−i
T
n
V ei

T
2n

∆e−i
T
n
V . . . ei

T
2n

∆e−i
T
n
V ψ0

)
(xn).

Now using Lemmas 3.2 and 3.3 we find that this is:
(c denotes the ever-changing universal fixed numer-
ical constant)

c

∫
dxn−1e

i
(xn−xn−1)

2

2T/n e−i
T
N
V (xn−1) . . .

∫
dx1e

i
(x2−x1)2

2T/n e−i
T
N
V (x1)

∫
dx0e

i
(x1−x0)2

2T/n e−i
T
N
V (x0)ψ0(x0).

Repackaging, we get

c

∫
dx0 . . . dxn−1

exp

(
i
T

2n

n∑

k=1

(
xk − xk−1

T/n

)2

− iT
n

n−1∑

k=0

V (xk)

)

ψ0(x0).

Now comes the novelty. keeping in mind the picture
x

x0

x1

x2

0 T
n

2T
n

kT
n

xk
xn

T t

and replacing Riemann sums by integrals, we can
write

ψ(T, x) = c

∫
dx0

∫

Wx0xn

Dx

exp

(
i

∫ T

0
dt

(
1

2
ẋ2(t)− V (x(t))

))
ψ0(x0),

where Wx0xn denotes the space of paths that begin
at x0 and end at xn,

Wx0xn = {x : [0, T ]→ R : x(0) = x0, x(T ) = xn} ,
and Dx is the formal “path integral measure”.
This is a good time to introduce the “action” L:

L(x) :=

∫ T

0
dt

(
1

2
ẋ2(t)− V (x(t))

)
.

With this notation,

ψ(T, x) = c

∫
dx0ψ0(x0)

∫

Wx0xn

DxeiL(x).

Video and more at http://drorbn.net/?title=AKT-14 (Jan 10 and Jan 17 classes)
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2Let xc denote the path on which L(x) attains its
minimum value, write x = xc + xq with xq ∈ W00,
and get

ψ(T, x) = c

∫
dx0ψ0(x0)

∫

W00

DxqeiL(xc+xq).

In our particular case L is quadratic in x, and there-
fore L(xc + xq) = L(xc) + L(xq) (this uses the fact
that xc is an extremal of L, of course). Plugging this
into what we already have, we get

ψ(T, x) = c

∫
dx0ψ0(x0)

∫

W00

DxqeiL(xc)+iL(xq)

= c

∫
dx0ψ0(x0)eiL(xc)

∫

W00

DxqeiL(xq).

Now this is excellent news, because the remaining
path integral over W00 does not depend on x0 or xn,
and hence it is a constant! Allowing c to change its
value from line to line, we get

ψ(T, x) = c

∫
dx0ψ0(x0)eiL(xc).

Lemma 3.4 now shows us that xc(t) = x0 cos t +
xn sin t. An easy explicit computation gives L(xc) =
−x0xn, and we arrive at our final result,

ψ(
π

2
, x) = c

∫
dx0ψ0(x0)e−ix0xn .

Notice that this is precisely the formula for the
Fourier transform of ψ0! That is, the answer to the
question in the title of this document is “the particle
gets Fourier transformed”, whatever that may mean.

3. The Lemmas

Lemma 3.1. For any two matrices A and B,

eA+B = lim
n→∞

(
eA/neB/n

)n
.

Proof. (sketch) Using Taylor expansions, we see that

e
A+B
n and eA/neB/n differ by terms at most propor-

tional to c/n2. Raising to the nth power, the two
sides differ by at most O(1/n), and thus

eA+B = lim
n→∞

(
e
A+B
n

)n
= lim

n→∞

(
eA/neB/n

)n
,

as required. �

Lemma 3.2.
(
eitV ψ0

)
(x) = eitV (x)ψ0(x).

�

Lemma 3.3.(
ei
t
2

∆ψ0

)
(x) = c

∫
dx′ei

(x−x′)2
2t ψ0(x′).

Proof. In fact, the left hand side of this equality is
just a solution ψ(t, x) of Schrödinger’s equation with
V = 0:

∂ψ

∂t
=
i

2
∆xψ, ψ|t=0 = ψ0.

Taking the Fourier transform ψ̃(t, p) =
1√
2π

∫
e−ipxψ(t, x)dx, we get the equation

∂ψ̃

∂t
= −ip

2

2
ψ̃, ψ̃|t=0 = ψ̃0.

For a fixed p, this is a simple first order linear dif-
ferential equation with respect to t, and thus,

ψ̃(t, p) = e−i
tp2

2 ψ̃0(p).

Taking the inverse Fourier transform, which takes
products to convolutions and Gaussians to other
Gaussians, we get what we wanted to prove. �
Lemma 3.4. With the notation of Section 2 and at
the specific case of V (x) = 1

2x
2 and T = π

2 , we have

xc(t) = x0 cos t+ xn sin t.

Proof. If xc is a critical point of L on Wx0xn , then for
any xq ∈W00 there should be no term in L(xc+εxq)
which is linear in ε. Now recall that

L(x) =

∫ T

0
dt

(
1

2
ẋ2(t)− V (x(t))

)
,

so using V (xc + εxq) ∼ V (xc) + εxqV
′(xc) we find

that the linear term in ε in L(xc + εxq) is
∫ T

0
dt
(
ẋcẋq − V ′(xc)xq

)
.

Integrating by parts and using xq(0) = xq(T ) = 0,
this becomes ∫ T

0
dt
(
−ẍc − V ′(xc)

)
xq.

For this integral to vanish independently of xq, we
must have −ẍc − V ′(xc) ≡ 0, or

ẍc = −V ′(xc).




This is the famous F = ma
of Newton’s, and we have just
rediscovered the principle of
least action!




In our particular case this boils down to the equation

ẍc = −xc, xc(0) = x0, xc(π/2) = xn,

whose unique solution is displayed in the statement
of this lemma. �

Video and more at http://drorbn.net/?title=AKT-14 (Jan 10 and Jan 17 classes)
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yet not
UC:

asOC:

wK :=PA

uK :=PA =
R1 =

R3
=
R2

Satoh
ω/Dal
Dalvit

−∞

+∞ −∞

+∞

no!

CP CP

= ==
OC

=
VR1

=
VR2

=
M

“God created the knots, all else in
topology is the work of mortals.”
Leopold Kronecker (modified) www.katlas.org

ω/CS

3-Colourings. Colour the arcs of a bro-
ken arc diagram inRGB so that every
crossing is either mono-chromatic or tri-
chromatic;λ(K) ≔ |{3-colourings}|.
Example.λ(O) = 3 whileλ(.) = 9; soO , ..
Exercise.Show that the set of colourings ofK is a vector space
overF3 henceλ(K) is always a power of 3.

good badgood

=
R2

=
R3

Abstract.I will describe a few 2-dimensional knots in 4 dimen-
sional space in detail, then tell you how to make many more, then
tell you that I don’t really understand my way of making them,
yet I can tell at least some of them apart in a colourful way.

Dror Bar-Natan: Talks: HUJI-140101:

Knots in Four Dimensions and the Simplest Open Problem AboutThem
Satoh’s Conjecture.(ω/Sat) The “kernel” of the
double inflation mapδ, mapping w-knot diagrams
in the plane to knotted 2D tubes and spheres in 4D,
is precisely the moves R2-3, VR1-3, M, CP and OC listed above.
In other words, two w-knot diagrams represent viaδ the same 2D
knot in 4D iff they differ by a sequence of the said moves.

First Isomorphism Thm:δ : G → H ⇒ im δ � G/ ker(δ)
δ is a map from algebra to topology. So a thing in “hard” topology
(im δ) is the same as a thing in “easy” algebra (wK ).

=

=→ →=

ω/vX

The Generators

→ →

ω/X“the crossing”

“v-xing”

ω/F

2-Knots.

The Double Inflation Procedureδ.

==

UC

“Planar Algebra”:
The objects are “tiles”
that can be composed
in arbitrary planar
ways to make bigger tiles, which can then
be composed even further. . . .

→δ
“cap”

Expansions.Given a “ring” K and an idealI ⊂ K, set
A ≔ I0/I1 ⊕ I1/I2 ⊕ I2/I3 ⊕ · · · .

A homomorphic expansion is a multiplicativeZ : K → A such that
if γ ∈ Im, thenZ(γ) = (0,0, . . . ,0, γ/Im+1, ∗, ∗, . . .).
Example. Let K = C∞(Rn) be smooth functions onRn, and
I ≔ { f ∈ K : f (0) = 0}. ThenIm = { f : f vanishes as|x|m} and
Im/Im+1 is {homogeneous polynomials of degreem} and A is the
set of power series. SoZ is “a Taylor expansion”.
Hence Taylor expansions are vastly general; evenknots can be
Taylor expanded!

Roseman Moves.

2-Knot Story

The Full

u-Knots. “thermographical diagram”

A 4D knot by Carter and Saitoω/CS

“broken surface diagram”

Extendλ to wK by declaring that arcs
“don’t see” v-xings, and that caps are
always “kosher”. Thenλ(�) = 3 ,
9 = λ(CS 2-knot), so assuming Conjec-
ture, the CS 2-knot is indeed knotted.

w-Knots.

Reidemeister’s Theorem.

Proof by a genericity/ “shaking” argument
Kurt Reidemeister

“broken arc diagram”

ω ≔http://www.math.toronto.edu/ d̃rorbn/Talks/HUJI-140101
Handout and links atω/

VR3

=

in R3
xyt

S 1 ֒→ R3
xyz

More at http://www.math.toronto.edu/~drorbn/Talks/HUJI-140101/
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2
21

R3.

1

CP, B,
−−−→
STU ,

−→
AS,

and
−−−→
IHX

relations(2 in 1 out vertices)

=

= =

==

=
↔

↔↔
↔

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org

+

=
TC

=
−→
4T

+

π : 7−→
a b

c d

a b

cd

=
R3

0 =

ζ is computable! ζ of the Borromean tangle, to degree 5:

for trees

+ cyclic colour
permutations,

I have a nice free-Lie
calculator!

= 0
(then connect using
xings or v-xings)

Start from =
R3 key: use

= +

=+++ + + +

+ + + +=

Abstract. On my September 17 Geneva talk (ω/sep) I de-
scribed a certain trees-and-wheels-valued invariant ζ of rib-
bon knotted loops and 2-spheres in 4-space, and my October 8
Geneva talk (ω/oct) describes its reduction to the Alexander
polynomial. Today I will explain how that same invariant
arises completely naturally within the theory of finite type
invariants of ribbon knotted loops and 2-spheres in 4-space.

Finite Type Invariants of Ribbon Knotted Balloons and Hoops
ω :=http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024Dror Bar-Natan: Talks: Geneva-131024:

T

H

balloons/tails

∞

x y z

u v
	 	

hoops/heads

S4

R4

“trees” “wheels”

My goal is to tell you why such an invariant is expected, yet
not to derive the computable formulas.

Conjecture
Disturbing

=

blue is never “over”

=

Expansions

Let In := 〈pictures with ≥ n semi-virts〉 ⊂ Kbh.
We seek an “expansion”

Z : Kbh → gr Kbh =
⊕̂

In/In+1 =: Abh

satisfying “property U”: if γ ∈ In, then

Z(γ) = (0, . . . , 0, γ/In+1, ∗, ∗, . . .).
Why? • Just because, and this is vastly more general.
•

(
Kbh/In+1

)⋆
is “finite-type/polynomial invariants”.

• The Taylor example: Take K = C∞(Rn), I =
{f ∈ K : f(0) = 0}. Then In = {f : f vanishes like |x|n} so
In/In+1 is homogeneous polynomials of degree n and Z is a
“Taylor expansion”! (So Taylor expansions are vastly more
general than you’d think).

Plan. We’ll construct a graded Ãbh, a sur-
jective graded π : Ãbh → Abh, and a fil-
tered Z̃ : Kbh → Abh so that π � gr Z̃ = Id
(property U: if deg D = n, Z̃(π(D)) =
π(D) + (deg ≥ n)). Hence • π is an iso-
morphism. • Z := Z̃ � π is an expansion.

u v

“v-xing”

R2

VR1 VR2
VR3

M OC

CP CP
UC

the semi-virtual

Action 1.

Ãbh = Q

T H
degree=# of arrows

:= i.e. or− −−

=

Deriving
−→
4T .

Action 2.

Z̃ :
a b

cd

a b

ea

=7−→ + +1
2 + · · ·

c d

TC
−→
4T TC

−−−→
STU1: = − = −

−=−

−−−→
STU2:

−−−→
IHX:

−−−→
STU3 =TC:

The Bracket-Rise Theorem.

Abh ∼=

= = −−
Proof.

Corollaries. (1) Related to Lie algebras! (2) Only trees and wheels
persist.

Theorem. Abh is a bi-algebra. The space of its primitives is
FL(T )H × CW(T ), and ζ = log Z.

FL(T )H × CW(T )

Ãbh

π

��
Kbh

Z̃
<<

z
z

z
z

z
z

z
z

Z
// Abh

gr Z̃

OO

Kbh(T ;H)=

ζ

x

Kbh = Q

Dictionary.
Satoh

X.-S. Lin

= 0
CP

=
HC= 0

in In/In+1

using TC

B

Exercise.
Prove prop-
erty U.

= =

Goussarov-Polyak-Viro

ribbon
embeddings

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024/
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asOC:
yet not
UC:

=

ωεβ/antiq-ave

Alekseev

Torossian

vuu v

v v

a cb

newspeak!

u

u v

u

u v

u

u v

u v

y →,
x

. . .

v u
u v

− 22
7

y y

x →

− −

“the generators”

Kbh(T ;H).

“Ribbon-
knotted
balloons
and hoops”

u

x

v

y

S2

b

Riddle. People often
study π1(X) = [S1, X ]
and π2(X) = [S2, X ].
Why not πT (X) :=
[T, X ]?

S1 T

b

b

b

ωεβ:=http://www.math.toronto.edu/~drorbn/Talks/Zurich-130919

Dror Bar-Natan, Zurich, September 2013

Let T be a finite set of “tail labels” and H a finite set of
“head labels”. Set

M1/2(T ;H) := FL(T )H ,

“H-labeled lists of elements of the degree-completed free Lie
algebra generated by T”.

FL(T ) =

{
2t2 − 1

2
[t1, [t1, t2]] + . . .

}/(
anti-symmetry

Jacobi

)

. . . with the obvious bracket.

Trees and Wheels and Balloons and Hoops

15 Minutes on Algebra

Operations M1/2 → M1/2.

Tail Multiply tmuv
w is λ 7→ λ � (u, v → w), satisfies “meta-

associativity”, tmuv
u � tmuw

u = tmvw
v � tmuv

u .

Head Multiply hmxy
z is λ 7→ (λ\{x, y}) ∪ (z → bch(λx, λy)),

where

bch(α, β) := log(eαeβ) = α + β +
[α,β]

2
+

[α,[α,β]]+[[α,β],β]

12
+ . . .

satisfies bch(bch(α, β), γ) = log(eαeβeγ) = bch(α,bch(β, γ))
and hence meta-associativity, hmxy

x � hmxz
x = hmyz

y � hmxy
x .

Tail by Head Action thaux is λ 7→ λ � RCλx
u , where

C−γ
u : FL → FL is the substitution u → e−γueγ , or more

precisely,

C−γ
u : u → e− ad γ(u) = u − [γ, u] +

1

2
[γ, [γ, u]] − . . . ,

and RCγ
u = (C−γ

u )−1. Then C
bch(α,β)
u = C

α�RC−β
u

u �Cβ
u hence

RC
bch(α,β)
u = RCα

u � RC
β�RCα

u
u hence “meta uxy = (ux)y”,

hmxy
z � thauz = thaux � thauy � hmxy

z ,

and tmuv
w �C

γ�tmuv
w

w = C
γ�RC−γ

v
u �Cγ

v � tmuv
w and hence “meta

(uv)x = uxvx”, tmuv
w � thawx = thaux � thavx � tmuv

w .

Wheels. Let M(T ;H) := M1/2(T ;H) × CW(T ), where
CW(T ) is the (completed graded) vector space of cyclic words
on T , or equaly well, on FL(T ):

vu vu

= −

Operations. On M(T ;H), define tmuv
w and hmxy

z as before,
and thaux by adding some J-spice:

(λ;ω) 7→ (λ, ω + Ju(λx)) � RCλx

u ,

where Ju(γ) :=

∫ 1

0
ds divu(γ�RCsγ

u )�C−sγ
u , and

Theorem Blue. All blue identities still hold.

Merge Operation. (λ1;ω1)∗(λ2;ω2) := (λ1 ∪ λ2;ω1 + ω2).

Tangle concatenations → π1 ⋉ π2. With dmab
c := thaab �

tmab
c � hmab

c ,

dmab
c

mab
ca b c

a b cdivu +

γ

λ =M1/2(u, v;x, y) =

Finite type invariants make
sense in the usual way, and
“algebra” is (the primitive part of) “gr” of “topology”.

T

H

balloons / tails

∞

Examples.

x y z

u v
	 	

S4

R4

hoops / heads

More on

satisfies R123, VR123, D, and
no!

• δ injects u-knots into Kbh (likely u-tangles too).
• δ maps v-tangles to Kbh; the kernel contains the above and
conjecturally (Satoh), that’s all.
• Allowing punctures and cuts, δ is onto.

δ

15 Minutes on Topology

If X is a space, π1(X)
is a group, π2(X)
is an Abelian group,
and π1 acts on π2.

K � hmxy
z : K � thaux:

u v

x y

u v

z

K:

x y

w

Properties.
• Associativities: mab

a � mac
a = mbc

b � mab
a , for m = tm, hm.

• “(uv)x = uxvx”: tmuv
w � thawx = thaux � thavx � tmuv

w ,
• “u(xy) = (ux)y”: hmxy

z � thauz = thaux � thauy � hmxy
z .

K � tmuv
w :

Connected
Sums.

∗
Punctures & Cuts

Operations

newspeak!

“Meta-Group-Action”

ribbon
embeddings

x

t

x

y

x

uu x

u

Shin Satoh

ǫx:

ρ−
ux:ρ+

ux:

ǫu:

δδ

δ

δ δ

“v”

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Geneva-130917/, .../Toronto-1303/ and at
.../Chicago-1303/
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ωεβ/meta
With Selmani,

See also ωεβ/tenn, ωεβ/bonn, ωεβ/swiss, ωεβ/portfolio

Repackaging. Given ((x → λux);ω), set cx :=
∑

v cvλvx,
replace λux → αux := cuλux

ecx−1
cx

and ω → eω, use tu = ecu ,
and write αux as a matrix. Get “β calculus”.

Why happy? An ultimate Alexander inva-
riant: Manifestly polynomial (time and si-
ze) extension of the (multivariable) Alexan-
der polynomial to tangles. Every step of the
computation is the computation of the inva-
riant of some topological thing (no fishy Gaus-
sian elimination). If there should be an Alexander invariant
with a computable algebraic categorification, it is this one!
See also ωεβ/regina, ωεβ/caen, ωεβ/newton.

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org

ζ: ; 0

for trees

+ cyclic colour
permutations,

ζ is computable! ζ of the Borromean tangle, to degree 5:

Loose Conjecture. For γ ∈ K(T ;H),∫
DADBe

∫
B∧FA

∏

u

eOγu (B))
⊗

x

holγx
(A) = eτ (ζ(γ)).

That is, ζ is a complete evaluation of the BF TQFT.

Tensorial Interpretation. Let g be a finite dimensional Lie
algebra (any!). Then there’s τ : FL(T ) → Fun(⊕T g → g)
and τ : CW(T ) → Fun(⊕T g). Together, τ : M(T ;H) →
Fun(⊕T g → ⊕Hg), and hence

eτ : M(T ;H) → Fun(⊕T g → U⊗H(g)).

ζ and BF Theory. (See Cattaneo-Rossi,
arXiv:math-ph/0210037) Let A denote a g-
connection on S4 with curvature FA, and B a
g∗-valued 2-form on S4. For a hoop γx, let
holγx

(A) ∈ U(g) be the holonomy of A along γx.
For a ball γu, let Oγu

(B) ∈ g∗ be (roughly) the
integral of B (transported via A to ∞) on γu.

Cattaneo

The Invariant ζ. Set ζ(ǫx) = (x → 0; 0), ζ(ǫu) = ((); 0), and

Theorem. ζ is (log of) the unique homomor-
phic universal finite type invariant on Kbh.

(. . . and is the tip of an iceberg)

; 0

Paper in progress with Dancso, ωεβ/wko

The β quotient is M divi-
ded by all relations that uni-
versally hold when when g is
the 2D non-Abelian Lie alge-
bra. Let R = QJ{cu}u∈T K and
Lβ := R ⊗ T with central R and with [u, v] = cuv − cvu for
u, v ∈ T . Then FL → Lβ and CW → R. Under this,

µ → ((λx);ω) with λx =
∑

u∈T

λuxux, λux, ω ∈ R,

bch(u, v) → cu + cv

ecu+cv − 1

(
ecu − 1

cu
u + ecu

ecv − 1

cv
v

)
,

if γ =
∑

γvv then with cγ :=
∑

γvcv,

u � RCγ
u =

(
1 + cuγu

ecγ − 1

cγ

)−1

ecγ u − cu

ecγ − 1

cγ

∑

v 6=u

γvv


 ,

divu γ = cuγu, and Ju(γ) = log
(
1 + ecγ −1

cγ
cuγu

)
, so ζ is

formula-computable to all orders! Can we simplify?

Trees and Wheels and Balloons and Hoops: Why I Care

May class: ωεβ/aarhus Class next year: ωεβ/1350
Paper: ωεβ/kbh

Moral. To construct an M -valued invariant ζ of (v-)tangles,
and nearly an invariant on Kbh, it is enough to declare ζ on
the generators, and verify the relations that δ satisfies.

β Calculus. Let β(T ;H) be



ω x y · · ·
u αux αuy ·
v αvx αvy ·
... · · ·

∣∣∣∣∣∣∣∣∣

ω and the αux’s are
rational functions in
variables tu, one for
each u ∈ T .





,

tmuv
w :

ω · · ·
u α
v β
... γ

7→
ω · · ·
w α + β
... γ

,

ω1 H1

T1 α1
∗ ω2 H2

T2 α2

=
ω1ω2 H1 H2

T1 α1 0
T2 0 α2

,

hmxy
z :

ω x y · · ·
... α β γ

7→
ω z · · ·
... α + β + 〈α〉β γ

,

thaux :

ω x · · ·
u α β
... γ δ

7→
ωǫ x · · ·
u α(1 + 〈γ〉/ǫ) β(1 + 〈γ〉/ǫ)
... γ/ǫ δ − γβ/ǫ

,

where ǫ := 1 + α, 〈α〉 :=
∑

v αv, and 〈γ〉 :=
∑

v 6=u γv, and let

R+
ux :=

1 x
u tu − 1

R−
ux :=

1 x
u t−1

u − 1
.

On long knots, ω is the Alexander polynomial!

I have a nice free-Lie
calculator!

u x
u

x

x

u
u

x
−

= −

[u, v] cuv cvu= −

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Geneva-130917/, .../Toronto-1303/ and at
.../Chicago-1303/
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Meta−Groups, Meta−Bicrossed−Products, and the Alexander Polynomial, 1
Dror Bar−Natan at Sheffield, February 2013.

1 32 4

5

7 8 1112

13 14 15 16
6

9

10

1 2
3

4

5

6

7

8 9=1

=
R3

=
R2

=
R1

+ + +

− −

Z
(

g+
o g+

u g+
o g−

u g−
o g+

u g+
o g+

u

g−
u g−

o

)

Idea. Given a group G and two “YB”
pairs R± = (g±

o , g±
u ) ∈ G2, map them

to xings and “multiply along”, so that

Z

This Fails! R2 implies that g±
o g∓

o = e = g±
u g∓

u and then R3
implies that g+

o and g+
u commute, so the result is a simple

counting invariant.

± g±
o

g±
u

u v

x y

K � swth
ux

x y

w

K � tmuv
w

u v

z

K � hmxy
z

∗

v

y

u

x
K

http://www.math.toronto.edu/~drorbn/Talks/Sheffield-130206/

“divide and conquer”

A Standard Alexander Formula. Label the arcs 1 through
(n + 1) = 1, make an n × n matrix as below, delete one row
and one column, and compute the determinant:

+ + +

− −

+ + + +

−−− −

+

−

Alexander Issues.
• Quick to compute, but computation departs from topology.
• Extends to tangles, but at an exponential cost.
• Hard to categorify.

(3)

gm12
3 :=sw12�tm12

3 �hm12
3

Bicrossed Products. If G = HT is a group presented as a
product of two of its subgroups, with H ∩ T = {e}, then also
G = TH and G is determined by H, T , and the “swap” map
swth : (t, h) 7→ (h′, t′) defined by th = h′t′. The map sw
satisfies (1) and (2) below; conversely, if sw : T ×H → H ×T
satisfies (1) and (2) (+ lesser conditions), then (3) defines a
group structure on H × T , the “bicrossed product”.

h1t1h2t2 = h1(h′
2t′1)t2 = (h1h′

2)(t
′
1t2) = h3t3

A Group Computer. Given G, can store group elements and
perform operations on them:

mxy
z

. . . so that mxy
u �

muz
v = myz

u � mxu
v

(or muz
v ◦ mxy

u =
mxu

v ◦myz
u , in old-

speak).

Also has Sx for inversion, ex for unit insertion, dx for register dele-
tion, ∆z

xy for element cloning, ρx
y for renamings, and (D1, D2) 7→

D1 ∪ D2 for merging, and many obvious composition axioms relat-
ing those.

G{x,u,v,y} G{u,v,z}

x : g1

v : g3
y : g4

u : g2

v : g3

z : g1g4

u : g2

P = {x : g1, y : g2} ⇒ P = {dyP} ∪ {dxP}
A Meta-Group. Is a similar “computer”, only its internal
structure is unknown to us. Namely it is a collection of sets
{Gγ} indexed by all finite sets γ, and a collection of opera-
tions mxy

z , Sx, ex, dx, ∆z
xy (sometimes), ρx

y , and ∪, satisfying
the exact same linear properties.
Example 0. The non-meta example, Gγ := Gγ .
Example 1. Gγ := Mγ×γ(Z), with simultaneous row and
column operations, and “block diagonal” merges. Here if

P =

(
x : a b
y : c d

)
then dyP = (x : a) and dxP = (y : d) so

{dyP}∪ {dxP} =

(
x : a 0
y : 0 d

)
6= P . So this G is truly meta.

Claim. From a meta-group G and YB elements R± ∈ G2 we
can construct a knot/tangle invariant.

=
(1)

tm12
1 �sw14 =sw24�sw14�tm12

1

(2)
=

H

h4 h4

3

21t1 t2 t1 t2

T

1 2

3

Abstract. I will define “meta-groups” and explain how one specific
meta-group, which in itself is a “meta-bicrossed-product”, gives rise
to an “ultimate Alexander invariant” of tangles, that contains the
Alexander polynomial (multivariable, if you wish), has extremely
good composition properties, is evaluated in a topologically mean-
ingful way, and is least-wasteful in a computational sense. If you
believe in categorification, that’s a wonderful playground.
This work is closely related to work by Le Dimet (Com-
ment. Math. Helv. 67 (1992) 306–315), Kirk, Livingston
and Wang (arXiv:math/9806035) and Cimasoni and Turaev
(arXiv:math.GT/0406269).

−X X − 1 1

−1 1 − X X

c
b

a

c
b

a c

c

a b c

a b c

817

4D

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/, see also .../Sheffield-130206/

and .../Regina-1206/
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www.katlas.org

James

Waddell

Alexander

Meta−Groups, Meta−Bicrossed−Products, and the Alexander Polynomial, 2

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)

1
2

3

4

5
6

1

2

3
4

5
6

T

A Partial To Do List. 1. Where does it more
simply come from?

2. Remove all the denominators.
3. How do determinants arise in this context?
4. Understand links (“meta-conjugacy classes”).
5. Find the “reality condition”.
6. Do some “Algebraic Knot Theory”.
7. Categorify.
8. Do the same in other natural quotients of the

v/w-story.

trivial

ribbon

example

T

A Meta-Bicrossed-Product is a collection of sets β(η, τ) and
operations tmuv

w , hmxy
z and swth

ux (and lesser ones), such that
tm and hm are “associative” and (1) and (2) hold (+ lesser
conditions). A meta-bicrossed-product defines a meta-group
with Gγ := β(γ, γ) and gm as in (3).
Example. Take β(η, τ) = Mτ×η(Z) with row operations for
the tails, column operations for the heads, and a trivial swap.

I mean business!

. . . divide and conquer!

β Calculus. Let β(η, τ) be



ω h1 h2 · · ·
t1 α11 α12 ·
t2 α21 α22 ·
... · · ·

∣∣∣∣∣∣∣∣∣

hj ∈ η, ti ∈ τ , and ω and
the αij are rational func-
tions in a variable X





,

tmuv
w :

ω · · ·
tu α
tv β
... γ

7→
ω · · ·
tw α + β
... γ

,

ω1 η1

τ1 α1
∪ ω2 η2

τ2 α2

=
ω1ω2 η1 η2

τ1 α1 0
τ2 0 α2

,

hmxy
z :

ω hx hy · · ·
... α β γ

7→
ω hz · · ·
... α + β + 〈α〉β γ

,

swth
ux :

ω hx · · ·
tu α β
... γ δ

7→
ωǫ hx · · ·
tu α(1 + 〈γ〉/ǫ) β(1 + 〈γ〉/ǫ)
... γ/ǫ δ − γβ/ǫ

,

where ǫ := 1 + α and 〈c〉 :=
∑

i ci, and let

Rp
ab :=

1 ha hb

ta 0 X − 1
tb 0 0

Rm
ab :=

1 ha hb

ta 0 X−1 − 1
tb 0 0

.

Theorem. Zβ is a tangle invariant (and more). Restricted to
knots, the ω part is the Alexander polynomial. On braids, it
is equivalent to the Burau representation. A variant for links
contains the multivariable Alexander polynomial.

Why Happy? • Applications to w-knots.
• Everything that I know about the Alexander polynomial
can be expressed cleanly in this language (even if without
proof), except HF, but including genus, ribbonness, cabling,
v-knots, knotted graphs, etc., and there’s potential for vast
generalizations.
• The least wasteful “Alexander for tangles”
I’m aware of.
• Every step along the computation is the in-
variant of something.
• Fits on one sheet, including implementation
& propaganda.

=
(1)

Further meta-monoids. Π (and variants), A (and quotients),
vT , . . .

Further meta-bicrossed-products. Π (and variants),
−→A (and

quotients), M0, M , Kbh, Krbh, . . .
Meta-Lie-algebras. A (and quotients), S, . . .

Meta-Lie-bialgebras.
−→A (and quotients), . . .

I don’t understand the relationship between gr and H, as it
appears, for example, in braid theory.

Some
testing

817, cont.

817

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/, see also .../Sheffield-130206/

and .../Regina-1206/

135

http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/
http://www.math.toronto.edu/~drorbn/Talks/Sheffield-130206/
http://www.math.toronto.edu/~drorbn/Talks/Regina-1206/


that’s cool!

www.powerstrike.net/puzzles/

www.geocities.com/jaapsch/puzzles/

www.powerstrike.net/puzzles/

http://lodelnic.free.fr/

Non-Commutative Gaussian Elimination
Prepare a mostly-empty table,

I

I

I

I

(1, 1)

(1, 2)(2, 2)

(1, 3)(2, 3)(3, 3)

(1, n)(2, n)(3, n) (n, n)

...

· · ·

(i, j)
. . .

goes wild afterwards, and

sends “the pivot” i to j and

Space for a σi,j ∈ Sn of the form

(1, 2, . . . , i − 2, i − 1, j, ∗, ∗, . . . , ∗)

So σi,j fixes 1, . . . , i − 1,

σ−1
i,j “does sticker j”.

151413

121110

9

8

7 5

3

2

6

1 4

Can you do categories (groupoids)?
Homework Problem 2.

The Problem. Let G = 〈g1, . . . , gα〉 be a
subgroup of Sn, with n = O(100). Before
you die, understand G:
1. Compute |G|.
2. Given σ ∈ Sn, decide if σ ∈ G.
3. Write a σ ∈ G in terms of g1, . . . , gα.
4. Produce random elements of G.

The Commutative Analog. Let V =
span(v1, . . . , vα) be a subspace of Rn. Be-
fore you die, understand V .
Solution: Gaussian Elimination. Prepare
an empty table,

1 2 3 4 nn−1· · ·

Space for a vector u4 ∈ V , of the form
u4 = (0, 0, 0, 1, ∗, . . . , ∗); 1 :=“the pivot”.

Feed v1, . . . , vα in order. To feed a non-zero v, find its pivotal
position i.
1. If box i is empty, put v there.
2. If box i is occupied, find a combination v′ of v and ui that
eliminates the pivot, and feed v′.

54

3

10 11 12 14 15 18

23 26

33 36

37 38 39

42

48

49 51

1 2

4 5 6

7 8 9

13 16 17

19 20 21 22 24 25 27

28 29 30 31 32 34 35

40 41

4443 45

46 47

50

52 53

Dror Bar-Natan: Talks: Cambridge-1301:

Feed g1, . . . , gα in order. To feed a non-identity σ, find its pivotal
position i and let j := σ(i).
1. If box (i, j) is empty, put σ there.
2. If box (i, j) contains σi,j , feed σ′ := σ−1

i,j σ.
The Twist. When done, for every occupied (i, j) and (k, l), feed
σi,jσk,l. Repeat until the table stops changing.
Claim 1. The process stops in our lifetimes, after at most O(n6)
operations. Call the resulting table T .
Claim 2. Every σi,j in T is in G.
Claim 3. Anything fed in T is now a monotone product in T :

f was fed ⇒ f ∈ M1 :={σ1,j1σ2,j2 · · ·σn,jn : ∀i, ji ≥ i & σi,ji
∈ T}

Non-Commutative Gaussian Elimination and Rubik’s Cubehttp://www.math.toronto.edu/~drorbn/Talks/Cambridge-1301/

Claim 4. If two monotone products are equal,
σ1,j1 · · ·σn,jn = σ1,j′

1
· · ·σn,j′

n
,

then all the indices that appear in them are equal,
∀i, ji = j′

i.
Claim 5. Let Mk denote the set of monotone products
in T starting in column k:

Mk := {σk,jk
· · ·σn,jn : ∀i ≥ k, ji ≥ i and σi,ji

∈ T} .

then for every k, MkMk ⊂ Mk (and so each Mk is a
subgroup of G).
Proof. By backwards induction. Clearly MnMn ⊂
Mn. Now assume that M5M5 ⊂ M5 and show that
M4M4 ⊂ M4. Start with σ8,jM4 ⊂ M4:

σ8,j(σ4,j4M5)
1
= (σ8,jσ4,j4)M5

2⊂ M4M5

3
= ∪jσ4,j(M5M5)

4⊂ ∪jσ4,jM5 ⊂ M4

(1: associativity, 2: thank the twist, 3: associativity
and tracing i4, 4: induction). Now the general case

(σ4,j′
4
σ5,j′

5
· · · )(σ4,j4σ5,j5 · · · )

falls like a chain of dominos.
Theorem. G = M1 and we have achieved our goals.

Can you do cosets?
Homework Problem 1.

O. Schreier C. Sims D. Knuth

See also Permutation Group
Algorithms by Á. Seress,
Efficient Representation of
Perm Groups by D. Knuth.

A Demo Program

In Inuit:

Enter

The Results
Enter

Enter

T
he

G
enerators

43, 252, 003, 274, 489, 856, 000

=
8! 38 12! 212

12

Rubik’s
magic

Based on algorithms by

?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cambridge-1301/, see also
http://www.math.toronto.edu/~drorbn/Talks/Mathcamp-0907/
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Dror Bar−Natan in Oxford, January 2013

Balloons and Hoops and their Universal Finite−Type Invariant,

BF Theory, and an Ultimate Alexander Invariant

asOC:
yet not
UC:

=

ωǫβ/decorationideas

ωǫβ/antiq-ave

,
u

u

u

x

v

y

a cb

Not computable!
(but nearly)

u v

v v

ωǫβ :=http://www.math.toronto.edu/~drorbn/Talks/Oxford-130121

Scheme. • Balloons and hoops in R4, algebraic structure and
relations with 3D.
• An ansatz for a “homomorphic” invariant: computable,
related to finite-type and to BF.
• Reduction to an “ultimate Alexander invariant”.

m

n

balloons / tails

heads

∞

Examples.

Kbh(m,n).

Meta-Group-Action.
If X is a space, π1(X)
is a group, π2(X) is an
Abelian group, and π1

acts on π2.

K � hmxy
z : K � thaux:

u v

x y

u v

z

K:

x y

w

(“�” is newspeak for
“apply an operator”
and for “composi-
tion left to right”)

Properties.
• Associativities: mab

a � mac
a = mbc

b � mab
a , for m = tm, hm.

• Action axiom t: tmuv
w � thawx = thaux � thavx � tmuv

w ,
• Action axiom h: hmxy

z � thauz = thaux � thauy � hmxy
z .

• SD Product: dmab
c := thaab � tmab

c � hmab
c is associative.

K � tmuv
w :

• δ injects u-Knots into Kbh (likely u-tangles too).
• δ maps v/w-tangles map to Kbh; the kernel contains Rei-
demeister moves and the “overcrossings commute” relation,
and conjecturally, that’s all. Allowing punctures and cuts, δ
is onto.

Operations. Set (λ̄1;ω1) ∗ (λ̄2;ω2) := (λ̄1 ∪ λ̄2;ω1 + ω2) and
with µ = (λ̄;ω) define

tmuv
w : µ 7→ µ � (u, v 7→ w),

hmxy
z : µ 7→

((
. . . , x̂ : λx, ŷ : λy, . . . , z : bch(λx, λy)

)
;ω

)

thaux : µ 7→ µ

“stable apply”︷︸︸︷
�� (u 7→ ead λx(ū)) � (ū 7→ u)︸ ︷︷ ︸

µ�CCλx
u

+ (0;Ju(λx))︸ ︷︷ ︸
the “J-spice”

A CCλ
u example.

u
· · ·

· · ·· · ·

u

+

I mean business!

µ λ CCλ
u

1 2 3

1 2
	 	

Connected
Sums.

∗
Punctures & Cuts

Operations

“MGA”

Tangles
(u/v/w).

no!

S4

R4

Meta-associativity.
mab

a � mac
a

= mbc
b � mab

a .

dmab
c

mab
c

Tangle concatenations → π1 ⋉ π2.

a b c

a b c

hoops /

a b c

The Meta-Group-Action M . Let T be a set of “tail labels”
(“balloon colours”), and H a set of “head labels” (“hoop
colours”). Let FL = FL(T ) and FA = FA(T ) be the (com-
pleted graded) free Lie and free associative algebras on gen-
erators T and let CW = CW(T ) be the (completed graded)
vector space of cyclic words on T , so there’s tr : FA → CW.
Let M(T,H) :=

{(
λ̄ = (x : λx)x∈H ;ω

)
: λx ∈ FL, ω ∈ CW

}

Invariant #0. With Π1 denoting “hon-
est π1”, map γ ∈ Kbh(m,n) to the triple
(Π1(γ

c), (ui), (xj)), where the meridian of
the balls ui normally generate Π1, and the
“longtitudes” xj are some elements of Π1.
∗ acts like ∗, tm acts by “merging” two
meridians/generators, hm acts by multi-
plying two longtitudes, and thaux acts by
“conjugating a meridian by a longtitude”:

u1 u2

x1 x2

Failure #0. Can we write the x’s as free words in the u’s?
If x = uv, compute x � thaux:

x = uv → ūv = uxv = uūvv = uuxvv = uuuxvvv = · · ·

Thus we seek homomorphic invariants of Kbh!

. . .

v u
u vu v

x : − 22
7y :, ;=

x

u

ribbon
embeddings

u x

x

u

(Π, (u, . . .), (x, . . .)) 7→ (Π∗〈ū〉/(u = xūx−1), (ū, . . .), (x, . . .))

ǫx:

ǫu:

ρ+
ux:

ρ−
ux:

b
2 4 1

3
δ a

δ δ

δδ

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Oxford-130121/ and at
http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/

137

http://www.math.toronto.edu/~drorbn/Talks/Oxford-130121/
http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/


Selmani & B−N.
In preparation,

Balloons and Hoops and their Universal Finite−Type Invariant, 2

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified) www.katlas.org

Alekseev Torossian

u

u v

u

u v

u

u v

divu +

λ

ζ and BF Theory. Let A denote a g-connection
on S4 with curvature FA, and B a g∗-valued 2-
form on S4. For a hoop γx, let holγx

(A) ∈ U(g)
be the holonomy of A along γx. For a ball γu, let
Oγu

(B) ∈ g∗ be the integral of B (transported via
A to ∞) on γu.

Loose Conjecture. For γ ∈ K(T,H),
∫

DADBe
∫

B∧FA

∏

u

eOγu (B))
⊗

x

holγx
(A) = eτ (ζ(γ)).

That is, ζ is a complete evaluation of the BF TQFT.
Issues. How exactly is B transported via A to ∞? How does
the ribbon condition arise? Or if it doesn’t, could it be that
ζ can be generalized??

Cattaneo

β Calculus. Let β(H,T ) be



ω x y · · ·
u αux αuy ·
v αvx αvy ·
... · · ·

∣∣∣∣∣∣∣∣∣

ω and the αux’s are
rational functions in
variables tu, one for
each u ∈ T .





,

tmuv
w :

ω · · ·
u α
v β
... γ

7→
ω · · ·
w α + β
... γ

,

ω1 H1

T1 α1
∪ ω2 H2

T2 α2

=
ω1ω2 H1 H2

T1 α1 0
T2 0 α2

,

hmxy
z :

ω x y · · ·
... α β γ

7→
ω z · · ·
... α + β + 〈α〉β γ

,

thaux :

ω x · · ·
u α β
... γ δ

7→
ωǫ x · · ·
u α(1 + 〈γ〉/ǫ) β(1 + 〈γ〉/ǫ)
... γ/ǫ δ − γβ/ǫ

,

where ǫ := 1 + α, 〈α〉 :=
∑

v αv, and 〈γ〉 :=
∑

v 6=u γv, and let

R+
ux :=

1 x
u tu − 1

R−
ux :=

1 x
u t−1

u − 1
.

On long knots, ω is the Alexander polynomial!

Repackaging. Given ((x : λux);ω), set cx :=
∑

v cvλvx, re-
place λux → αux := cuλux

ecx−1
cx

and ω → log ω, use tu = ecu ,
and write αux as a matrix. Get “β calculus”.

Why bother? (1) An ultimate Alexander
invariant: Manifestly polynomial (time and
size) extension of the (multivariable) Alexan-
der polynomial to tangles. Every step of the
computation is the computation of the in-
variant of some topological thing (no fishy
Gaussian elimination!). If there should be an Alexander in-
variant to have an algebraic categorification, it is this one!
See also ωǫβ/regina, ωǫβ/gwu.

Why bother? (2) Related to A-T, K-V, and E-K, should
have vast generalization beyond w-knots and the Alexander
polynomial. See also ωǫβ/wko, ωǫβ/caen, ωǫβ/swiss.

ζ:

The Meta-Cocycle J . Set Ju(λ) := J(1) where

J(0) = 0, λs = λ � CCsλ
u ,

dJ(s)

ds
= (J(s) � der(u 7→ [λs, u])) + divu λs,

and where divu λ := tr(uσu(λ)), σu(v) := δuv, σu([λ1, λ2]) :=
ι(λ1)σu(λ2) − ι(λ2)σu(λ1) and ι is the inclusion FL →֒ FA:

Claim. CC
bch(λ1,λ2)
u = CCλ1

u � CC
λ2�CC

λ1
u

u and

Ju(bch(λ1, λ2)) = Ju(λ1) � CCλ2�CC
λ1
u

u + Ju(λ2 � CCλ1

u ),

and hence tm, hm, and tha form a meta-group-action.

Why ODEs? Q. Find f s.t. f(x+y) = f(x)f(y).

A. df(s)
ds = d

dǫf(s + ǫ) = d
dǫf(s)f(ǫ) = f(s)C.

Now solve this ODE using Picard’s theorem or
power series.

Theorem. ζ is (the log of) a universal finite type invariant (a
homomorphic expansion) of w-tangles.

x : −; 0

The Invariant ζ. Set ζ(ρ±) = (±ux; 0). This at least defines
an invariant of u/v/w-tangles, and if the topologists will de-
liver a “Reidemeister” theorem, it is well defined on Kbh.

Tensorial Interpretation. Let g be a finite dimensional Lie
algebra (any!). Then there’s τ : FL(T ) → Fun(⊕T g → g)
and τ : CW(T ) → Fun(⊕T g). Together, τ : M(T,H) →
Fun(⊕T g → ⊕Hg), and hence

eτ : M(T,H) → Fun(⊕T g → U⊗H(g)).

The β quotient, 1. • Arises when g is the 2D non-Abelian
Lie algebra.
• Arises when reducing by relations satisfied by the weight
system of the Alexander polynomial.

The β quotient, 2. Let R = QJ{cu}u∈T K and Lβ := R ⊗ T
with central R and with [u, v] = cuv − cvu for u, v ∈ T . Then
FL → Lβ and CW → R. Under this,

µ → (λ̄;ω) with λ̄ =
∑

x∈H, u∈T

λuxux, λux, ω ∈ R,

bch(u, v) → cu + cv

ecu+cv − 1

(
ecu − 1

cu
u + ecu

ecv − 1

cv
v

)
,

if λ =
∑

λvv then with cλ :=
∑

λvcv,

u�CCλ
u =

(
1 + cuλu

ecλ − 1

cλ

)−1

ecλu − cu

ecλ − 1

cλ

∑

v 6=u

λvv


 ,

divu λ = cuλu, and the ODE for J integrates to

Ju(λ) = log

(
1 +

ecλ − 1

cλ
cuλu

)
,

so ζ is formula-computable to all orders! Can we simplify?

x : + ; 0

Paper in progress: ωǫβ/kbh

u x

x

u
uu

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Oxford-130121/ and at
http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/
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Dror Bar−Natan,
Hamburg, August 2012

A Quick Introduction
to Khovanov

Homology
“equalities”

need

interpretation

“owe”
X1

or

“canceled debts”

or even

With ωǫβ := http://www.math.toronto.edu/drorbn/Talks/Hamburg-1208

ωǫβ/webcrafterz

ωǫβ/onemoretap

ωǫβ/cheat-pcgame

Why Bother?

The Philosophy Corner

Abstract. I will tell the
Kauffman bracket story of
the Jones polynomial as
Kauffman told it in 1987,
then the Khovanov homol-
ogy story as Khovanov told
it in 1999, and finally the
“local Khovanov homology”
story as I understood it in
2003. At the end of our 90
minutes we will understand
what is a “Jones homology”,
how to generalize it to tan-
gles and to cobordisms be-
tween tangles, and why it
is computable relatively effi-
ciently. But we will say noth-
ing about more modern stuff
— the Rasmussen invariant,
Alexander and HOMFLYPT
knot homologies, and the cat-
egorification of sl2 and other
Lie algebras.

Khovanov: K(L) is a chain complex of graded Z-modules;
V = span〈v+, v−〉; deg v± = ±1; qdim V = q + q−1;

K(©k) = V ⊗k; K(!) = Flatten

(
0 → K(H){1}

height 0

→ K(1){2}
height 1

→ 0

)
;

K(") = Flatten

(
0 → K(1){−2}

height −1

→ K(H){−1}
height 0

→ 0

)
;

( )
−→

(
V ⊗ V

m→ V
)

m :

{
v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v− v− ⊗ v− 7→ 0

( )
−→

(
V

∆→ V ⊗ V
)

∆ :

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−

Example: = q + q3 + q5 − q9.

q3(q + q−1)2 −

1

3

2

3q4(q + q−1) + 3q5(q + q−1)2 − q6(q + q−1)3

q4(q+q−1)

V {4}
100

◦
d1⋆0

//

◦

IIIIIIII

d10⋆
$$IIIIIIII

OO

+ ⊕

q5(q+q−1)2

V ⊗2{5}
110 that’s a

cobordism!

d11⋆

$$IIIIIIIIIIIIIIIIII

OO

+ ⊕

q3(q+q−1)2

V ⊗2{3}
000

d⋆00

::uuuuuuuuuuuuuuuuu

d0⋆0

//

d00⋆

$$IIIIIIIIIIIIIIIII

g
o

u
p

fo
r

J
o
n
es

OO

g
o

d
o
w

n
fo

r
K

h
o
v
a
n
o
v

��

q4(q+q−1)

V {4}
010

d⋆10

::uuuuuuuuuuuuuuuuu

◦

d01⋆
$$IIIIIIIIIIIIIIIII

+ ⊕

q5(q+q−1)2

V ⊗2{5}
101

◦
d1⋆1

//

+ ⊕

q6(q+q−1)3

V ⊗3{6}
111

OO

��

q4(q+q−1)

V {4}
001

uuuuuuuu

d⋆01

::uuuuuuuu

d0⋆1

//

��

q5(q+q−1)2

V ⊗2{5}
011

d⋆11

::uuuuuuuuuuuuuuuuuu

��
K(&)0

d0
// K(&)1

d1
// K(&)2

d2
// K(&)3

P

|ξ|=0

(−1)ξdξ

��

P

|ξ|=1

(−1)ξdξ

��

P

|ξ|=2

(−1)ξdξ

��

(here (−1)ξ := (−1)
P

i<j ξi if ξj = ⋆) = K(&).
Theorem 1. The graded Euler characteristic of K(L) is J(L).
Theorem 2. The homology Kh(L) of K(L) is a link invariant.
Theorem 3. Kh(L) is strictly stronger than J(L): J(5̄1) = J(10132) yet Kh(5̄1) 6= Kh(10132).
References. Khovanov’s arXiv:math.QA/9908171 and arXiv:math.QA/0103190 and my

http://www.math.toronto.edu/~drorbn/papers/Categorification/.

What is Categorification=Concretization=de-
abstraction? “3” is {cow, cow, cow} and
{pig, pig, pig} and many other things. . .

. . . categorification is choosing which 3 it is!

N. Natural numbers 7→ finite sets, equalities 7→ bi-
jections, inequalities 7→ injections and surjections:(

2n

n

)
=
∑(

n

k

)2

7→
(

X × {1, 2}
|X |

)
↔
⋃(

X

k

)
×
(

X

k

)
.

Z. Negative numbers:

“have”
X0

Weaker Categorification. Do the same in the category of
vector spaces: “3” becomes V s.t. dim V = 3, or bet-
ter, V • = (· · · V r−1 → V r → V r+1 · · · ) s.t. d2 = 0 and

χ(V •) :=
∑

(−1)r dimV r = 3 =
∑

(−1)r dimHr.
Equalities become homotopies between complexes.

Categorifying Z[q±1]. f =
∑

ajq
j be-

comes V =
⊕

Vj s.t. qdimV :=∑
qj dimVj = f , or better,

V • = (· · · V r−1 → V r → V r+1 · · · )
s.t. d2 = 0, deg d = 0, and
χq(V

•) :=
∑

(−1)r qdim V r = f =∑
(−1)r qdim Hr.

Note. Setting
V {l}j := Vj−l, we
get qdim V {l} =
ql qdimV .

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/
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Local Khovanov
Homology (1)

orange: degree shifts
light blue: height shifts
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In Kom(Mat(<Cob> / {S, T, G, NC})) / homotopy

*11

S: T: G:

1

2

1

2

MoreSigns?

crossings? +1 +20 +1

−2 −1−1 0

A cube for each knot/link projection;What is it?

The Jones polynomial: R2

Where does it live?

Kom: Complexes Mat: Matrices
Cob: Cobordisms <...>: Formal lin. comb.

Computable!

"complex simplification"

via

Dror Bar−Natan: Talks: Hamburg−1208

010

100

011

101

110

111

10*

1*0

0*0

*00

*10

*01

0*1

11*

1*1000

001

00*

01*

−6

−5 −4

−3−5

−5

−4

−4

−3

−2 −1

0

Mikhail Khovanov

Cob:

Mat(C):

Morphisms:

A
ll 

ar
ro
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in
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n 
ar

bi
tr

ar
y 

ad
di

tiv
e 

ca
te

go
ry

!

Complexes:

(an outdated overview)

Homotopies:

NC: 2 = +

−1

+1

O′
2

O′
2

O′
1

O′′
1

O′′
2

O1

O2

G F

F21

F22

F23

G11

G21

G31

J : ! 7→ qH− q21, J : " 7→ −q−21 + q−1H,

©k 7→ (q + q−1)k

J : 7→ −q−1 + + − q

= −q−11 +H + (q + q−1)1− q1 = H.

Ω =
(

Ω−n− // Ω−n−+1 // . . . // Ωn+
)

. . . // Ωr−1
0

dr−1
//

F r−1

��

Ωr
0

dr
//

F r

��

Ωr+1
0

//

F r+1

��

. . .

. . . // Ωr−1
1

dr−1
// Ωr

1
dr

// Ωr+1
1

// . . .

Ωr−1
0

dr−1
//

F r−1

��
Gr−1

��

Ωr
0

dr
//

hr

wwppppppppppppp

F r

��
Gr

��

Ωr+1
0

hr+1

wwppppppppppppp

F r+1

��
Gr+1

��

Ωr−1
1

dr−1
// Ωr

1
dr

// Ωr+1
1

F r − Gr = hr+1dr + dr−1hr

The Categorification Speculative Paradigm. • Every ob-
ject in math is the Euler characteristic of a complex.
• Every operation lifts to an operation between complexes.
• Every identity remains true, up to homotopy.

The Main Point. “The cube”, Kh(L), is an up-to-
homotopy invariant of knots and links. It’s Euler charac-
teristic is the Jones polynomial, yet it is strictly stronger
than the Jones polynomial. It is functorial (in the appro-
priate sense) and practically computable.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/
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Local Khovanov Homology (2)
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A more general theory:

(minor further revisions are necessary)

Remove G and NC, add

4Tu:

Kurt
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= #
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Dror Bar−Natan: Talks: Hamburg−1208
Old techniques:

saysIn 1 day

is given by:

Functoriality / cobordisms.

M. Jacobsson

0* *1

*0 1*
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The case of
tangles:

Invariance under R2.

After delooping:

~1,000 years,
~1GGb RAM.

(now down to seconds)
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Visit!

Edit!
Leopold Kronecker (modified)

"God created the knots,

all else in topology is the work of mortals"

I mean business.
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The Reduction Lemma. If φ is an isomorphism then the complex

[C]

0

@

α
β

1

A

//

[
b1

D

]
0

@

φ δ
γ ǫ

1

A

//

[
b2

E

] “

µ ν
”

// [F ]

is isomorphic to the (direct sum) complex

[C]

0

@

0
β

1

A

//

[
b1

D

]
0

@

φ 0
0 ǫ − γφ−1δ

1

A

//

[
b2

E

] “

0 ν
”

// [F ]

http://katlas.org

http://www.math.toronto.edu/~drorbn/papers/Cobordism/

http://www.math.toronto.edu/~drorbn/papers/FastKh/

http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/

J. Rasmussen: Leads to a no-analysis proof of a conjecture by Milnor.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/
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An "infrastructure project" is hard (and sometimes non-glorious) work that's done now and pays 
off later.

An example, and the most important one within knot theory, is the tabulation of knots up to 10 
crossings. I think it precedes Rolfsen, yet the result is often called "the Rolfsen Table of Knots", as 
it is famously printed as an appendix to the famous book by Rolfsen. There is no doubt the 
production of the Rolfsen table was hard and non-glorious.  Yet its impact was and is 
tremendous. Every new thought in knot theory is tested against the Rolfsen table, and it is hard 
to find a paper in knot theory that doesn't refer to the Rolfsen table in one way or another.

A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings. 
Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly 
was: a proof is in the fact that nobody so far had tried to replicate their work, not even to a 
smaller crossing number. Yet again, it is hard to overestimate the value of that project: in many 
ways the Rolfsen table is "not yet generic", and many phenomena that appear to be rare when 
looking at the Rolfsen table become the rule when the view is expanded. Likewise, other 
phenomena only appear for the first time when looking at higher crossing numbers.

But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some 
variation) my own (with Dancso) "WKO" paper:

Studying knots on their own is the parallel of studying cakes and pastries as they come out of 
the bakery - we sure want to make them our own, but the theory of desserts is more about 
the ingredients and how they are put together than about the end products. In algebraic 
knot theory this reflects through the fact that knots are not finitely generated in any sense 
(hence they must be made of some more basic ingredients), and through the fact that there 
are very few operations defined on knots (connected sums and satellite operations being the 
main exceptions), and thus most interesting properties of knots are transcendental, or non -
algebraic, when viewed from within the algebra of knots and operations on knots (see [ AKT-
CFA]).

The right objects for study in knot theory are thus the ingredients that make up knots and 
that permit a richer algebraic structure. These are braids (which are already well -studied and 
tabulated) and even more so tangles and tangled graphs.

Thus in my mind the most important missing infrastructure project in knot theory is the 
tabulation of tangles to as high a crossing number as practical. This will enable a great amount 
of testing and experimentation for which the grounds are now still missing. The existence of such 
a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues 
that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall 
influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen 
table.

Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? 
Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? 
Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, 
etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs?

In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet 
good tabulators would try to tabulate the more general things from which the more special ones can be sieved 
relatively easily, and would see that their programs already contain all that would be easy to implement within 
their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done 
along with the enumeration itself, and so it should.

An even better tabulation should come with a modern front-end - a set of programs for basic 
manipulations of tangles, and a web-based "tangle atlas" for an even easier access.

Overall this would be a major project, well worthy of your time.

K11n150

The interchange of I-95 and I-695,

northeast of Baltimore. (more)

From [AKT-CFA]

From [FastKh]

http://katlas.org/

(Source: http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2012-01/)

The Most Important Missing Infrastructure Project in Knot Theory
January-23-12
10:12 AM

   2012-01 Page 1    

Source at http://drorbn.net/AcademicPensieve/2012-01/#NotebookPages
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Dror Bar-Natan: Academic Pensieve: 2011-11#Other Files:

A Bit on Maxwell’s Equations

Prerequisites.

• Poincaré’s Lemma, which says that on Rn, ev-
ery closed form is exact. That is, if dω = 0,
then there exists η with dη = ω.
• Integration by parts:

∫
ω ∧ dη =

−(−1)degω
∫

(dω) ∧ η on domains that
have no boundary.
• The Hodge star operator ? which satisfies ω∧
?η = 〈ω, η〉dx1 · · · dxn whenever ω and η are
of the same degree.
• The simplesest least action principle: the ex-

tremes of q 7→
∫ b

a

(
1
2mq̇

2(t)− V (q(t))
)
dt oc-

cur when mq̈ = −V ′(q(t)). That is, when
F = ma.

The Feynman Lectures on Physics vol. II, page 18-2

The Action Principle. The Vector Field is a compactly supported 1-form A on R4 which extremizes the action

SJ(A) :=

∫

R4

1

2
||dA||2dtdxdydz + J ∧A

where the 3-form J is the charge-current.

The Euler-Lagrange Equations in this case are d ? dA = J , meaning that there’s no hope for a solution unless dJ = 0,
and that we might as well (think Poincaré’s Lemma!) change variables to F := dA. We thus get

dJ = 0 dF = 0 d ? F = J

These are the Maxwell equations! Indeed, writing F = (Exdxdt+Eydydt+Ezdzdt) + (Bxdydz +Bydzdx+Bzdxdy)
and J = ρdxdydz − jxdydzdt− jydzdxdt− jzdxdydt, we find:

dJ = 0 =⇒ ∂ρ

∂t
+ div j = 0 “conservation of charge”

dF = 0 =⇒ divB = 0 “no magnetic monopoles”

curlE = −∂B
∂t

that’s how generators work!

d ∗ F = J =⇒ divE = −ρ “electrostatics”

curlB = −∂E
∂t

+ j that’s how electromagnets work!

Exercise. Use the Lorentz metric to fix the sign errors.

Exercise. Use pullbacks along Lorentz transformations to figure out how E and B (and j and ρ) appear to moving observers.

Exercise. With ds2 = c2dt2 − dx2 − dy2 − dz2 use S = mc
∫ e2

e1
(ds + eA) to derive Feynman’s “law of motion” and “force

law”.

November 30, 2011; http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2011-11#OtherFiles

Sources at http://drorbn.net/AcademicPensieve/2011-11/#OtherFiles
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Dror Bar−Natan and Peter Lee in Oregon, August 2011

2-Injectivity. A (one-sided infinite) sequence

· · · −−−−→ Kp+1
δp+1−−−−→ Kp

δp−−−−→ · · · −−−−→ K0 = K

is “injective” if for all p > 0, ker δp = 0. It is “2-injective” if
its “1-reduction”

· · · −−−−→ Kp+1

ker δp+1

δ̄p+1−−−−→ Kp

ker δp

δ̄p−−−−→ Kp−1

ker δp−1
−−−−→ · · ·

is injective; i.e. if for all p, ker(δp ◦ δp+1) = ker δp+1. A pair
(K, I) is “2-injective” if its singularity tower is 2-injective.

The X Lemma (inspired by [Hut]).
A0

α0

%%KKKKKK
C0

B

β0
99ssssss

β1

%%KKKKKK

A1

α1
99ssssss

C1

If the above diagram is Conway (1) exact, then its two
diagonals have the same “2-injectivity defect”. That is,
if A0 → B → C0 and A1 → B → C1 are exact, then
ker(β1 ◦ α0)/ kerα0 ≃ ker(β0 ◦ α1)/ kerα1.

Proof.
ker(β1◦α0)

ker α0

∼−−−−→
α0

ker β1 ∩ imα0

= kerβ0 ∩ imα1
∼←−−−−
α1

ker(β0◦α1)
ker α1

.

M
ic
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h
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g
s

K = PvBn
Thm S

by Peter

Any
(K, I) 2-local Quadratic

2-injective

Prop
1

Hutchings’
Criterion

Prop 2

foots & refs on PDF version, page 3

http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/

Let K be a unital algebra over a field F with char F = 0, and

let I ⊂ K be an “augmentation ideal”; so K/I
∼−−−−→
ǫ

F.

Definition. Say that K is quadratic if its associated graded
grK =

⊕∞
p=0 I

p/Ip+1 is a quadratic algebra. Alternatively,

let A = q(K) = 〈V = I/I2〉/〈R2 = ker(µ̄2 : V ⊗ V →
I2/I3)〉 be the “quadratic approximation” to K (q is a lovely
functor). Then K is quadratic iff the obvious µ : A → grK
is an isomorphism. If G is a group, we say it is quadratic if
its group ring is, with its augmentation ideal.

Why Care?
• In abstract generality, grK is a simplified version of K and
if it is quadratic it is as simple as it may be without being
silly. • In some concrete (somewhat generalized) knot theo-
retic cases, A is a space of “universal Lie algebraic formulas”
and the “primary approach” for proving (strong) quadratic-
ity, constructing an appropriate homomorphism Z : K → Â,
becomes wonderful mathematics:

K
u-Knots and
Braids v-Knots w-Knots

A
Metrized Lie
algebras [BN1] Lie bialgebras [Hav]

Finite dimensional Lie
algebras [BN3]

Z
Associators
[Dri, BND]

Etingof-Kazhdan
quantization
[EK, BN2]

Kashiwara-Vergne-
Alekseev-Torossian
[KV, AT]

The Overall Strategy. Consider the “singularity tower” of
(K, I) (here “:” means ⊗K and µ is (always) multiplication):

· · · I :p+1 µp+1−−−−→ I :p µp−−−−→ I :p−1 −−−−→ · · · −−−−→ K

We care as im(µp = µ1 ◦ · · · ◦ µp) = Ip, so Ip/Ip+1 =
imµp/ imµp+1. Hence we ask:

• What’s I :p/µ(I :p+1)? • How injective is this tower?

Lemma. I :p/µ(I :p+1) ≃ (I/I2)⊗p = V ⊗p; set π : I :p → V ⊗p.

The Pure Virtual Braid Group is Quadratic1

Abstract Generalities

Conclusion. We need to know that (K, I) is
“syzygy complete” — that every diagrammatic syzygy
is also a topological syzygy, that ker(π ◦ ∂) = ker(∂).

The Hutchings Criterion [Hut].
The singularity tower of (K, I) is
2-injective iff on the right, ker(π ◦
∂) = ker(∂). That is, iff every
“diagrammatic syzygy” is also a
“topological syzygy”.

Rp
∂

&&MMMMMMM I :p−1

I :p

µp 88qqqqqq

π
&&NNNNNN

I :p+1

µp+1
88pppppp

V ⊗p

Proposition 2. If (K, I) is 2-local and 2-injective, it is
quadratic.
Proof. Staring at the 1-reduced sequence

I :p+1

ker µp+1

µp+1−−−−→ I :p

ker µp

µp−−−−→ · · · −−−−→ K, get Ip

Ip+1 ≃
I :p/ ker µp

µ(I :p+1/ ker µp+1)
≃ I :p

µ(I :p+1)+ker µp
. But I :p

µ(I :p+1) ≃ (I/I2)⊗p, so

the above is (I/I2)⊗p
/∑(

I :j−1 : R2 : I :p−j−1
)
. But that’s

the degree p piece of q(K).

Proposition 1. The sequence

Rp :=
⊕p−1

j=1

(
I :j−1 : R2 : I :p−j−1

) ∂−−−−→ I :p µp−−−−→ I :p−1

is exact, where R2 := kerµ : I :2 → I; so (K, I) is “2-local”.
The Free Case. If J is an augmentation ideal in K = F =
〈xi〉, define ψ : F → F by xi 7→ xi + ǫ(xi). Then J0 := ψ(J)
is {w ∈ F : degw > 0}. For J0 it is easy to check that R2 =
Rp = 0, and hence the same is true for every J .
The General Case. If K = F/〈M〉 (where M is a vector space
of “moves”) and I ⊂ K, then I = J/〈M〉 where J ⊂ F . Then
I :p = J :p

/∑
J :j−1 :〈M〉 :J :p−j and we have

J :p
µF

1-1
//

πponto
��

J :p−1

πp−1 onto
��

I :p = J :p /
∑
J : :〈M〉 :J : µ

// I :p−1 = J :p−1 /
∑
J : :〈M〉 :J :

So2 ker(µ) = πp

(
µ−1

F (ker πp−1)
)
= πp

(∑
µ−1

F (J : :〈M〉 :J :)
)
=∑

πp

(
J : :µ−1

F 〈M〉 :J :
)
=

∑
I : :R2 :I : =:

∑p−1
j=1 Rp,j.

Flow Chart.

R2 is simpler than may seem! It’s
an “augmentation bimodule” (IR2 =
0 = R2I thus xr = ǫ(x)r = rǫ(x) = rx
for x ∈ K and r ∈ R2), and hence
R2 = π2(µ

−1
F M).

J :2
µF

1-1
//

π2

��

J ⊃M
π1

��

I :2
µ

// I = J/〈M〉

Rp is simpler than may seem! In Rp,j = I :j−1 : R2 : I :p−j−1

the I factors may be replaced by V = I/I2. Hence

Rp ≃
p−1⊕

j=1

V ⊕j−1 ⊗ π2(µ
−1
F M)⊗ V ⊗p−j−1.

Claim. π(Rp,j) = Rp,j; namely,

π
(
I :j−1 : R2 : I :p−j−1

)
= V ⊗j−1 ⊗R2 ⊗ V ⊗p−j−1.

More at http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/
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σ23σ13σ24σ14σ12σ34

σ23σ24σ13σ14σ12σ34

σ23σ24σ13σ14σ34σ12

σ23σ24σ34σ14σ13σ12 σ34σ24σ23σ14σ13σ12 σ34σ24σ14σ23σ13σ12

σ34σ24σ14σ12σ13σ23

σ34σ12σ14σ24σ13σ23

σ34σ12σ14σ13σ24σ23

σ12σ34σ14σ13σ24σ23

σ12σ13σ14σ34σ24σ23σ12σ13σ14σ23σ24σ34

σ23σ24σ13σ14C
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24σ14σ12σ34
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Ȳ234σ14σ13σ12 σ34σ24C
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σ34σ24σ14Y123
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σ34σ12σ14C̄
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13σ23

C12
34σ14σ13σ24σ23

σ12Y134σ24σ23

σ12σ13σ14Y234σ12σ13C
23
14σ24σ34

σ23σ13Ȳ124σ34

Generators:

Relations:

A Syzygy:

i

j

k

l

=

=

σjkσikσij

i

j

k
σijσikσjk

σklσijσijσkl

σij

Cij
kl:

Yijk:

Dror Bar−Natan and Peter Lee in Oregon, August 2011

Goussarov-Polyak-Viro

[GPV]

k j ik j i

+ + +

+ + − − −

http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/

K =

Example.

I =

(goes back to [Koh])

The Pure Virtual Braid Group is Quadratic, II
Examples and Interpretations

T. Kohno

An = q(PvBn).

I = with Q = σ̃ij = σij − 1 = ! −P,
the “semi-virtual crossing”.

V = I/I2 =
〈

v-braids
with one Q〉/

(! = P)

= 〈aij〉1≤i6=j≤n

The Main Theorem [Lee]. PvBn is quadratic.

PvBn is the group

〈σij : 1 ≤ i 6= j ≤ n〉
/

σijσikσjk = σjkσikσij

σijσkl = σklσij

of “pure virtual braids” (“braids when you look”,
“blunder braids”):

L. Kauffman

[Kau, KL]

σ24 = R3: =

i j k

An = TV/〈[aij , aik] + [aij , ajk] + [aik, ajk], c
ij
kl = [aij , akl]〉,

i j k

I :p.

=

− − −−

Yijk :=

a24 =

yijk =

Syzygy Completeness, for PvBn, means:

Rp =
⊕p−1

j=1 Rp,j
∂−−−−→ I :p π−−−−→ V ⊗p

{
σ̃12 : Y345 : σ̃67 : . . .

}
−→

{σ̃12 : Y345 : σ̃67 : . . .} −→ {a12y345a67 . . .}
Is every relation between the yijk’s and the cijkl’s also

a relation between the Yijk’s and the Cij
kl’s?

R2(PvBn) is generated as a vector space by Cij
kl and

James Gillespie’s Sightline #2
(1984) is a syzygy, and (ar-
guably) Toronto’s largest sculp-
ture. Find it next to University
of Toronto’s Hart House.

Theorem S. LetD be the free associative algebra generated by
symbols aij , yijk and cijkl, where 1 ≤ i, j, k, l ≤ n are distinct
integers. Let D0 be the part of D with only aij symbols and
let D1 be the span of the monomials in D having only aij

symbols, with exactly one exception that may be either a
yijk or a cijkl. Let ∂ : D1 → D0 be the map defined by

yijk 7→ [aij , aik] + [aij , ajk] + [aik, ajk],

cijkl 7→ [aij , akl].

Then ker ∂ is generated by a family of elements readable from
the picture above and by a few similar but lesser families.

(K/Ip+1)⋆ = (invariants of type p) =: Vp

(Ip/Ip+1)⋆ = Vp/Vp−1 V = 〈tij |tij = tji〉 =
〈 〉

ker µ̄2 = 〈[tij , tkl] = 0 = [tij, tik + tjk]〉 = 〈4T relations〉

A = q(K) =

(
horizontal chord dia-
grams mod 4T

)
= 4T

Z: universal finite type invariant, the Kontsevich integral.

= −

More at http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/
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Footnotes

1. Following a homonymous paper and thesis by Peter Lee [Lee]. All serious work here is his and was extremely
patiently explained by him to DBN. Page design by the latter.

2. The proof presented here is broken. Specifically, at the very end of the proof of the “general case” of Propo-
sition 1 the sum that makes up ker πp−1 is interchaged with µ−1

F . This is invalid; in general it is not true that
T−1(U + V ) = T−1(U) + T−1(V ), when T is a linear transformation and U and V are subspaces of its target
space. We thank Alexander Polishchuk for noting this gap. A handwritten non-detailed fix can be found at
http://katlas.math.toronto.edu/drorbn/AcademicPensieve/Projects/Quadraticity/, especially under
“Oregon Handout Post Mortem”. A fuller fix will be made available at a later time.
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More on Chern-Simons Theory and Feynman Diagrams
Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107

Lecture 2 Handout

   2011-07 Page 1    

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/
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The Basics of Finite-Type Invariants of Knots
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Low and High Algebra in the "u" Case
Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107
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Dror Bar−Natan at Swiss Knots 2011

( )( )

( ) ( )

Facts and Dreams About v−Knots and Etingof−Kazhdan, 1

(+more)

I =

Presentation. KTG is generated by ribbon twists and the

tetrahedron ,, modulo the relation(s):

Claim. With Φ := Z(,), the
above relation becomes equiva-
lent to the Drinfel’d’s pentagon of
the theory of quasi-Hopf algebras.

:= Φ ∈ A(↑3)

A U(g)-Associator:

(AB)C
Φ∈U(g)⊗3

−−−−−−→ A(BC)

satisfying the “pentagon”,

Φ1 · (1∆1)Φ · 1Φ = (∆11)Φ · (11∆)Φ

(∆11)Φ

(11∆)ΦΦ1

((AB)C)D (AB)(CD)

A((BC)D)

A(B(CD))(A(BC))D

(1∆1)Φ 1Φ

K̂ A

= −
Penrose

d

a b
c

e
f

Abstract. I will describe, to the best of my understanding, the
relationship between virtual knots and the Etingof-Kazhdan
[EK] quantization of Lie bialgebras, and explain why, IMHO,
both topologists and algebraists should care. I am not happy
yet about the state of my understanding of the subject but I
haven’t lost hope of achieving happiness, one day.

http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/

Abstract Generalities. (K, I): an algebra and an
“augmentation ideal” in it. K̂ := lim←−K/I

m the

“I-adic completion”. grI K :=
⊕̂
Im/Im+1 has

a product µ, especially, µ11 : (C = I/I2)⊗2 →
I2/I3. The “quadratic approximation” AI(K) :=

F̂C/〈kerµ11〉 of K surjects using µ on grK.

The Prized Object. A “homomorphic A-expansion”: a ho-
momorphic filterred Z : K → A for which grZ : grK → A
inverts µ.
Dror’s Dream. All interesting graded objects and equations,
especially those around quantum groups, arise this way.

Peter Lee

Example 2. For K = QPvBn =
“braids when you look”, [Lee]
shows that a non-homomorphic
Z exists. [BEER]: there is no
homomorphic one.

Why Prized? Sizes K and shows it “as big” as A; reduces
“topological” questions to quadratic algebra questions; gives
life and meaning to questions in graded algebra; universalizes
those more than “universal enveloping algebras” and allows
for richer quotients.

K =

T. Kohno

Example 1.

Z

General Algebraic Structures1.

• Has kinds, elements, operations, and maybe constants. All
• Must have “the free structure over some generators”. still
• We always allow formal linear combinations. works!

Example 3. Quandle: a set K with an op ∧ s.t.
1 ∧ x = 1, x ∧ 1 = x = x ∧ x, (appetizers)

(x ∧ y) ∧ z = (x ∧ z) ∧ (y ∧ z). (main)
A(K) is a graded Leibniz2 algebra: Roughly, set v̄ := (v− 1)
(these generate I!), feed 1 + x̄, 1 + ȳ, 1 + z̄ in (main), collect
the surviving terms of lowest degree:

(x̄ ∧ ȳ) ∧ z̄ = (x̄ ∧ z̄) ∧ ȳ + x̄ ∧ (ȳ ∧ z̄).

Drinfel’d

n

elements
of kind 3

o

=

K

K3 K4

K1

•1
K2

•σ

ψ3

ψ4

ψ2

ψ1

Example 5 - Knotted
Trivalent Graphs.

Operations.

Foots & refs on PDF version, page 3.

D. Thurston [Th]

A(↑2):=
Given a

metrized g U(g)⊗2

(deg = 1
2
#{trivalent vertices})

= −

AS,

dim g∑

a,b,c,d,e,f=1

fabcfdceXaXdXf ⊗XbXfXe

g = 〈Xa〉

=d2

[Dr1,2]

Cvitanovic

a σ
=◦B1 B2

B1

B2

GT ASS GRT

This is an overview with too many and not enough details. I apologize.

Example 4. Parenthesized braids make a category with some
extra operations. An expansion is the same thing as an An-
associator, and the Grothendieck-Teichmüller story3 arises
naturally.

6

12

9

11

14

15

19 25

= −

(K/Im+1)⋆ = (invariants of type m) =: Vm

(Im/Im+1)⋆ = Vm/Vm−1 C = 〈tij |tij = tji〉 =
〈 〉

kerµ11 = 〈[tij , tkl] = 0 = [tij, tik + tjk]〉 = 〈4T relations〉

A = An =

(
horizontal chord dia-
grams mod 4T

)
= 4T

Z: universal finite type invariant, the Kontsevich integral.

=

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/
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asOC:
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UC:
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Unzip along a diskUnzip along an annulus

www.katlas.org

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
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Facts and Dreams About v−Knots and Etingof−Kazhdan, 2

Help Needed!

W

W

W

W

WW
W

unzipdelete

=

no!

→ =→ =

;
V · (∆ ⊗ 1)(R) = R13R23V in Aw(↑3)

→

V · ∆(ω) = ω ⊗ ω in Aw(Z2)

α αee

T

T T T

Tuuuu

= 0 =AS,

= =

The w-relations include R234, VR1234, D, Overcrossings Commute
(OC) but not UC:

Trivalent w-Tangles.

The Main Example.

Alekseev-Torossian [AT] (equivalent to Kashiwara-Vergne [KV]).
There are elements F ∈ TAut2 and a ∈ tr1 such that

F (x+ y) = log exey and jF = a(x) + a(y)− a(log exey).

Theorem. That’s equivalent to a homomorphic expansion for wTT.

Kashiwara-Vergne-Alekseev-Enriquez-Torrosian

Theorem. There exists a homomorphic expansion Z for wTT. In
particular, Z respects R4 and intertwines annulus and disk unzips:

Example 6 - Ribbon 2-Knots.
Also, “movies of flying rings”.

Why Should We Care?

• A gateway into the forbidden territory of “quantum groups”.

• Abstractly more pleasing: We study the things, and not just
their representations.

• Av is sometimes easier than Au: Alexander, say, arises easily
from the 2D Lie algebra4.
• Potentially, Av has many more “internal quotients” than

there are Lie bialgebras. What are they and what are the
corresponding theories?
• My old5 Algebraic Knot Theory dream:

V → Φ1-loop after [AT].wTT = PA

〈
w-

generators

∣∣∣ w-

relations

∣∣∣ unary w-

operations

〉
= CA

〈
same

w/o G〉

Forbidden Theorem [EK, Ha, ?]. There exists a homo-
morphic expansion Z for vTT.

Why Forbidden (to me)?

• Minor statement details may be off.

• No fully written proof.
• I don’t understand the proof.

• There isn’t yet a knot-theoretic view of the proof, like
there is in the w-case.

Kazhdan

Etingof

Haviv

Φ → V after [AET]. In Kw allow tubes and strands and tube-
strand vertices, allow “punctures”, yet allow no “tangles”.

=

T

The generators of Kw can be written in terms of the generators of
Ku (i.e., given Φ, can write a formula for V ). With T any classical
tangle, esp. or , consider the “sled”

“U(g) ≃ U(g+)⊗M−”

vTT= PA
R234, VR234, D,

yet not UC, OC
unzips = C̃A

〈
same

w/o G〉

Ohtsuki

The Polyak-Ohtsuki Description of Av [Po].

Av ≃

w/ similar STU, VI
acyclic only

Polyak

Av pairs with Lie bialgebras. Let g+ be a Lie bialgebra with basis
Xa, bracket [·, ·], cobracket δ, dual g− = g⋆

+, dual basis Xa for g−,
double g = g+ ⊕ g−, structure constants [Xa, Xb] =

∑
bcabXc and

co-structure constants δ(Xa) =
∑
cbca Xb ⊗Xc. Then

Alexander is easy! Many kinds of virtuals!In Chicago, [BN4]

−→
dimg∑

a,b,c,d,e,f=1

bcdec
ba
c XaX

dXf ⊗XbX
fXe ∈ U(g)⊗2d e

f

= −

a b
c

+

or

or

or

or

→

V V ∗ = I in Aw(↑2)

30

33

36

39

42

45

50

Basic: Better:

strand

“cut and cap” is well-defined(!) on Ku

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/
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Footnotes
1. I probably mean “a functor from some fixed “structure multi-category” to the multi-category of sets, extended to formal

linear combinations”.

2. A Leibniz algbera is a Lie algebra minus the anti-symmetry of the bracket; I have previously erroneously asserted that
here A(K) is Lie; however see the comment by Conant attached to this talk’s video page.

3. See my paper [BN1] and my talk/handout/video [BN3].

4. See [BN5] and my talk/handout/video [BN4].

5. Not so old and not quite written up. Yet see [BN2].
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Plan
1. (8 minutes) The Peter Lee setup for (K, I), “all interesting graded equations arise in this way”.

2. (3 minutes) Example: the pure braid group (mention PvB, too).

3. (3 minutes) Generalized algebraic structures.

4. (1 minute) Example: quandles.

5. (4 minutes) Example: parenthesized braids and horizontal associators.

6. (6 minutes) Example: KTGs and non-horizontal associators. (“Bracket rise” arises here).

7. (8 minutes) Example: wKO’s and the Kashiwara-Vergne equations.

8. (12 minutes) vKO’s, bi-algebras, E-K, what would it mean to find an expansion, why I care (stronger invariant, more
interesting quotients).

9. (5 minutes) wKO’s, uKO’s, and Alekseev-Enriquez-Torossian.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/
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*
the red star is your eye.

*

*

* * * count
with
signs

(signs)

chopsticks
vertical
Σ

oriented verticesN := # of stars
c := # of chopsticks
e := # of edges of D

:=Span
& more relations
AS: + =0

I H X

The IHX Relation

*

C.F. Gauss

lk( ) =

A plane moves over an
intersection point −
Solution: Impose IHX,

(see below)

An intersection line cuts
through the knot −
Solution: Impose STU,

(similar argument)

The Gauss curve slides
over a star −
Solution: Multiply by
a framing−dependent
counter−term.

== − −

(not shown here)

Carl Friedrich Gauss

Creation of Adam

Michelangelo Theorem.

D. Thurston

Victor Vassiliev

Mikhail Goussarov

The Cast
in rough historical order

Tomotada Ohtsuki

Jun Murakami

Thang Le

Clifford Taubes

Raoul Bott

Maxim Kontsevich

Edward Witten

The Neolithic People

H

X

I

O

K=D=

Cosmic Coincidences and Several Other Stories, 1 Dror Bar−Natan at the University of Tennessee
March 4, 2011, http://www.math.toronto.edu/~drorbn/Talks/Tennessee−1103/

number
linking
Gaussian
The

Disclaimer
We’ll concentrate on the beauty

and ignore the cracks.

The generating function of all cosmic coincidences:

When deforming, catastrophes occur when:

Modulo Relations, Z(K) is a knot invariant!

,

A(	)

Abstract. In the first half of my talk I will tell a cute and sim-
ple story — how given a knot in R3 one may count all possible
“cosmic coincidences” associated with that knot, and how this
count, appropriately packaged, becomes an invariant Z with val-
ues in some space A of linear combinations of certain trivalent
graphs.
In the second half of my talk I will describe (rather sketchily, I’m
afraid) a part of the story surrounding Z and A: How the same
Z also comes from quantum field theory, Feynman diagrams,
and configuration space integrals. How A is a space of universal
formulas which make sense in every metrized Lie algebra and
how specific choices for that Lie algebra correspond to various
famed knot invariants. How Z solves a universal topological
problem, and how solving for Z is solving some universal Lie-
algebraic problem. All together, this is the u-story.
In the remaining time I will mention several other Z’s and A’s
and the parallel (yet sometimes interwoven) stories surrounding
them — the v-story, and w-story, and perhaps also the p-story.
Each of these stories is clearly still missing some chapters.

〈D, K〉- :=

(
The signed Stonehenge
pairing of D and K

)
:

= -
Z(K) := lim

N→∞

∑

3-valent D

〈D, K〉-D

2cc!
(
N
e

) ·




framing-
dependent

counter-term


∈ A(	)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tennessee-1103/ and at
http://www.math.toronto.edu/~drorbn/Talks/Caen-1206/#Colloquium
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The Miller Institute knot

=

"Low Algebra" and universal formulae in Lie algebras.

[[x,y],z] [y,[x,z]]

x y x y x

yxxy[x,y]

y

z

x y

z

x y

z

x y

[x,[y,z]]

=

=

=

= −−

−−

is finite type (Vassiliev, Goussarov) if it vanishes onDefinition.

Theorem.

Conjecture.

Theorem.

(sketch: to dance in many parties, you need many feet).

V
sufficiently large alternations as on the right

All knot polynomials (Conway, Jones, etc.)
are of finite type.

(Taylor’s theorem) Finite type invariants
separate knots.

Z(K) is a universal finite type invariant!

S
ophus Lie

or
delete unzip

miles
away

or

connect

Hyperbolic
geometry

Drinfel’d

?

Xab
��
 fab
r�a
r
b�r�
�Wg;R :Wg;R Æ Zg = sl(2)g = sl(N)g = so(N)

a β
b c

α

γ

4

2

3

1

3

4

2 1

mysterymore gaps then explainscould explain, gaps remaincould explainsketchedexplained

ud

Cosmic Coincidences and Several Other Stories, 2 Dror Bar−Natan at the University of Tennessee
March 4, 2011, http://www.math.toronto.edu/~drorbn/Talks/Tennessee−1103/

is often interesting:

The Jones polynomial

The Kauffman polynomial

The HOMFLYPT polynomial

Przytycki

Witten

Feynman

Vassiliev

Goussarov

Counting Coincidences
Conf. Space Integrals

Graph
Homology

Quantum Field
Theory

v
-K

n
ots

w
-K

n
ots

p
-O

b
jects

u
-K

n
ots

More precisely, let g = 〈Xa〉 be a Lie algebra with an
orthonormal basis, and let R = 〈vα〉 be a representation.
Set

fabc := 〈[Xa,Xc],Xc〉 Xavβ =
∑

γ

rβ
aγvγ

Chern-Simons-Witten theory and Feynman diagrams.

∫

g-connections
DA holK(A) exp


 ik

4π

∫

R3

tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)


−→
∑

D: Feynman
diagram

Wg(D)
∑∫

E(D) −→
∑

D: Feynman
diagram

D
∑∫

E(D)

Theorem (∼, “High Algebra”). A homomorphic
Z is the same as a “Drinfel’d Associator”.

Knots are the wrong objects to study in knot theory!
They are not finitely generated and they carry no
interesting operations.

Topology Combinatorics Low Algebra High Algebra

The usual Knotted
Objects (KOs) in
3D — braids, knots,
links, tangles,
knotted graphs, etc.

Chord diagrams and
Jacobi diagrams,
modulo 4T , STU ,
IHX, etc.

Finite dimensional
metrized Lie
algebras,
representations, and
associated spaces.

The Drinfel’d theory
of associators.

Likely, quantum
groups and the
Etingof-Kazhdan
theory of
quantization of Lie
bi-algebras.

Finite dimensional
Lie bi-algebras,
representations, and
associated spaces.

Arrow diagrams and
v-Jacobi diagrams,
modulo 6T and
various “directed”
STUs and IHXs,
etc.

Virtual KOs —
“algebraic”, “not
embedded”; KOs
drawn on a surface,
mod stabilization.

Ribbon 2D KOs in
4D; “flying rings”.
Like v, but also
with “overcrossings
commute”.

Like v, but also
with “tails
commute”. Only
“two in one out”
internal vertices.

Finite dimensional
co-commutative Lie
bi-algebras (g ⋉ g∗),
representations, and
associated spaces.

The Kashiwara-
Vergne-Alekseev-
Torossian theory of
convolutions on Lie
groups / algebras.

No clue.

No clue.

No clue.

No clue.

“Acrobat towers”
with 2-in many-out
vertices.

Poisson structures. Deformation
quantization of
poisson manifolds.

Today’s work. Not
beautifully written,
and some
detour-forcing cracks
remain.

Perturbative
Chern-Simons-
Witten theory.

Probably
related to 4D
BF theory.

Configuration space
integrals are key, but
they don’t reduce to
counting.

Work of
Cattaneo.

No clue.

The
“original”
graph
homology.

Studied.

Studied.

The u→v→w & p Stories

Knotted Trivalent Graphs

Algebraic
Knot

Theory

and then

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tennessee-1103/ and at
http://www.math.toronto.edu/~drorbn/Talks/Caen-1206/#Colloquium
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"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)

Dror Bar−Natan, Chicago, September 2010 http://www.math.toronto.edu/~drorbn/Talks/Chicago−1009/

R3 VR3 D OC

UC

Crossing
Vertices

Virtual crossing

Broken surface

Movie

2D Symbol

singular

Dim. reduc.

Cap Wen
W

smooth

and
−−−→
IHX

−−−→
STU ,

−→
AS,

relations

(2 in 1 out vertices)

+ − +

− = = −
j i j i j i j ij i

t3h3

t3h3

R23, OCTC
−→
4T TC

0 =

s ss −esφ1 = (1−esφ1)

s = s

From the ax + b Lie Algebra to the Alexander Polynomial and Beyond

Abstract. I will present the simplest-ever “quantum” formula
for the Alexander polynomial, using only the unique two di-
mensional non-commutative Lie algebra (the one associated
with the “ax + b” Lie group). After introducing the “Euler
technique” and some diagrammatic calculus I will sketch the
proof of the said formula, and following that, I will present a
long list of extensions, generalizations, and dreams.
The 2D Lie Algebra. Let g = lie(x1, x2)/[x1, x2] = x2, let
g∗ = 〈φ1, φ2〉 with φi(x

j) = δj
i , let Ig = g∗ ⋊ g so

[φi, φj ] = [φ1, x
i] = 0 while [x1, φ2] = −φ2 and [x2, φ2] = φ1.

Let r = Id = φ1 ⊗ x1 + φ2 ⊗ x2 ∈ g∗ ⊗ g ⊂ Ig ⊗ Ig.
Let U = {words in Ig}/ab − ba = [a, b], degree-completed
with respect to deg φi = 1 and deg xi = 0 (so U ≡
(power series is 4 variables)). Let R = exp(r) ∈ U ⊗ U .

Near Theorem. Z is invariant, and it is essentially the Alexan-

der polynomial; with N = exp(
−→
l φix

i +
←−
l xiφi) =: exp(SL),

Z(K) = N ·
(
A(K)(eφ1)

)−1
(1)

+ − +

φi xi

φixi

φi xi

−Z−1+Z−1

+Z−1

Some Relations. φix
i, xiφi, φ1 are central, xiφi − φix

i = φ1,
[xj , φi] = δj

i φ1 − δj
1φi or

so

?
= SL
−φ1 tr

(
M−1 d

dφ1
M(eφ1)

)

Z

The Invariant. Define Z :
{long knots} → U by mapping
every ±-crossing to R±1:

(φ2φ1)(φ2φ1φ2)(x
2x1)(x1)(x2x1x2)(φ1)+ · · ·· · ·+ 1

2!
(−1)3

3!
1
1!

Near Proof. Let λαj be a red ar-
row with tail at aα and head just
left of hj . Let Λ = (λαj). Then
roughly RΛ = φ1I so roughly,
Λ = R−1φ1. The rest is book-keeping that I haven’t finished
yet, yet with which my computer agrees fully.

An Alexander Reminder.
Number the arrows 1, . . . , n,
let tj , hj be the tail and head
of arrow j, and let sj ∈ ±1 be
its sign. Cut the skeleton into
arcs aα by arrow heads, and
let α(p) be “the arc of point p”. Let R ∈ Mn×(n+1) be the
matrix whose j’th row has −1 in column α(hj) and 1 −Xsj

in column α(tj) and Xsj in column α(hj) + 1, and let M be
R with a column removed. Then A(X) = det(M).

31

]( ]( ](( )a1 a2 a3 a4

-2

0

@

1−X+(−1) X 0 0
1 − X−1 0 −1 X−1

0 −1 X 1−X

1

A

An Euler Interlude. If you know brackets, how do you test
exponentials? When’s eAeB = eCeD?
Bad Idea. Take log and use BCH. You’ll want to cry.
Clever Idea. Let E be the Euler derivation, which mul-
tiplies each element by its degree (e.g. on QJφK, Ef =
φ∂φf , so Eeφ = φeφ). Apply Ẽζ := ζ−1Eζ: Ẽ(eAeB) =
e−Be−A

(
eAAeB + eAeBB

)
= e−BAeB +B = e− ad B(A)+B.

The Euler Prelude. Apply Ẽζ := ζ−1Eζ to (1):

Invariance. “The identity is an invariant tensor”:

31

]( ]( ](( )a1 a2 a3 a4

λ12

-2

−

−

−

“Uninterpreting” Diagrams. Make Zw : Kw → Aw → U , with

== = =

R23, VR123, D, OC

=
Kw = CA

= PA

Zw is a UFTI on w-knots! It extends to links and tangles,
is well behaved under compositions and cables, and remains
computable for tangles. It contains Burau, Gassner, and
Cimasoni-Turaev in natural ways, and it contains the MVA
though my understanding of the latter is incomplete.

Alexander

and the famed “tails commute” (TC):

w-Knots.

Aw =

= − = −

−=−

−−−→
STU1:

−−−→
STU2:

−−−→
IHX:

−−−→
STU3 =TC:

Dream. Zw extends to virtual knots as Zv : Kv → Av, with
good composition and cabling properties and plenty of com-
putable quotients, more then there are quantum groups and
representations thereof.

There’s 1D in 4D, non-trivial given 2D, and there are ops...
I don’t understand the Alexander polynomial!

I don’t understand quantum groups!

= φ1

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/
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18 Conjectures
Dror Bar−Natan, Chicago, September 2010

www.katlas.org

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)

bang!

=+ +++

= 0+

Vn = (vK/In+1)∗

is one thing we measure. . .

DnRD
n

the u case

fails in
R◦ = {8T, etc.}vK = CAQ

Abstract. I will state 18 = 3 × 3 × 2 “funda-
mental” conjectures on finite type invariants of
various classes of virtual knots. This done, I will
state a few further conjectures about these con-
jectures and ask a few questions about how these
18 conjectures may or may not interact.

Following “Some Dimensions of Spaces of Finite
Type Invariants of Virtual Knots”, by B-N, Ha-
lacheva, Leung, and Roukema, http://www.math.
toronto.edu/˜drorbn/
papers/v-Dims/.

Theorem. For u-knots, dimVn/Vn−1 = dimWn for all n.
Proof. This is the Kontsevich integral, or the “Fundamental Theorem of
Finite Type Invariants”. The known proofs use QFT-inspired differential
geometry or associators and some homological computations.

Two tables. The following tables show dimVn/Vn−1 and dimWn for n =
1, . . . , 5 for 18 classes of v-knots:

relations\skeleton round (©) long (−→) flat (! = ")

standard mod R1 0, 0, 1, 4, 17 • 0, 2, 7, 42, 246 • 0, 0, 1, 6, 34 •
R2b R2c R3b no R1 1, 1, 2, 7, 29 2, 5, 15, 67, 365 1, 1, 2, 8, 42

braid-like mod R1 0, 0, 1, 4, 17 • 0, 2, 7, 42, 246 • 0, 0, 1, 6, 34 •
R2b R3b no R1 1, 2, 5, 19, 77 2, 7, 27, 139, 813 1, 2, 6, 24, 120

R2 only mod R1 0, 0, 4, 44, 648 0, 2, 28, 420, 7808 0, 0, 2, 18, 174
R2b R2c no R1 1, 3, 16, 160, 2248 2, 10, 96, 1332, 23880 1, 2, 9, 63, 570

18 Conjectures. These 18 coincidences persist.

+ −

exact?

+

−

τ

τ

R1:

R2b:

R3b:

R2c:

RD =

Wn = (Dn/RD
n )∗ = (An)∗ is the other thing we measure. . .

The Polyak Technique

+ + + + + +=8T:

vK =

RD
n

vK/In+1

In/In+1

degree n
“bottoms” of

relations in R◦

CA≤n
Q 〈X〉/R◦≤n

Dn

This is a computable space!



Warning! 6=

Comments. 0, 0, 1, 4, 17 and 0, 2, 7, 42, 246. These are the “stan-
dard” virtual knots.

LRHB by Chu

The True

Count One bang! and five compatible
transfer principles.

Bang. Recall the surjection τ̄ : An = Dn/RD
n → In/In+1. A

filtered map Z : vK → A =
⊕An such that (grZ) ◦ τ̄ = I is

called a universal finite type invariant, or an “expansion”.
Theorem. Such Z exist iff τ̄ : Dn/RD

n → In/In+1 is an
isomorphism for every class and every n, and iff the 18 con-
jectures hold true.

The Big Bang. Can you find a “homomorphic expansion” Z
— an expansion that is also a morphism of circuit algebras?
Perhaps one that would also intertwine other operations, such
as strand doubling? Or one that would extend to v-knotted
trivalent graphs?
• Using generators/relations, finding Z is an exercise in solving
equations in graded spaces.
• In the u case, these are the Drinfel’d pentagon and hexagon
equations.
• In the w case, these are the Kashiwara-Vergne-Alekseev-
Torossian equations. Composed with Tg : A → U , you get
that the convolution algebra of invariant functions on a Lie
group is isomorphic to the convolution algebra of invariant
functions on its Lie algebra.
• In the v case there are strong indications that you’d get the
equations defining a quantized universal enveloping algebra
and the Etingof-Kazhdan theory of quantization of Lie bi-
algebras. That’s why I’m here!

τ

Vogel

2, 7, 27, 139, 813. These best match Lie bi-algebra. Le-
ung computed the bi-algebra dimensions to be ≥
2, 7, 27, 128.
•••. We only half-understand these equalities.
1, 2, 6, 24, 120. Yes, we noticed. Karene Chu is proving all about
this, including the classification of flat knots.
1, 1, 2, 8, 42,258, 1824, 14664, . . ., which is probably http://www.

research.att.com/˜njas/sequences/A013999.
What about w? See other side.
What about v-braids? I don’t know.

Infineon HYS64T64020HDL-3.7-A 512MB RAM

Circuit Algebras

Definitions

A J-K Flip Flop

Kauffman

“arrow diagrams”

Goussarov-Polyak-Viro

CAQ

or

or
RT

=
R1

=
R3b

= =
R2b R2c

=

I = I = −

= −

= −

= 0

= 0+
+ − =

:=

=
R2b

=
R2c

=
R2b

=
R2c

In/In+1CAn ,=

Vn/Vn−1

duality

What about flat and round?

Likely fails!

(new)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/

158

http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/


"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
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Crossing Virtual crossing

Broken surface

Movie

2D Symbol

The w−generators.

Dim. reduc.

Dror Bar−Natan, Montpellier, June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier−1006/

I understand Drinfel’d and Alekseev−Torossian, I don’t understand
Etingof−Kazhdan yet, and I’m clueless about Kontsevich

Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

u v w

"An Algebraic Structure"

www.katlas.org

Just for fun.

u

d

as
yet not
UC:

OC:

A Ribbon 2-Knot is a surface S embedded in R4 that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D1 in the interior of B and
a disk D2 with D2 ∩ ∂B = ∂D2, modulo isotopies of S alone.

=

The w-relations include R234, VR1234, D, Overcrossings
Commute (OC) but not UC:

no!

1. proj Kw(↑n) ∼=j U ((an ⊕ tdern) ⋉ trn)

Cans and Can’t Yets.(
arbitrary algebraic

structure

)
projectivization

machine
//

(
a problem in

graded algebra

)

• Feed knot-things, get Lie algebra things.
• (u-knots)→(Drinfel’d associators).
• (w-knots)→(K-V-A-E-T).
• Dream: (v-knots)→(Etingof-Kazhdan).
• Clueless: (???)→(Kontsevich)?
• Goals: add to the Knot Atlas, produce a work-
ing AKT and touch ribbon 1-knots, rip benefits
from truly understanding quantum groups.

u-Knots (PA :=Planar Algebra){
knots

&links

}
=PA

〈 ∣∣∣∣R123: = , = , =

〉

0 legs

v-Tangles and w-Tangles (CA :=Circuit Algebra){
v-knots

& links

}
= CA

〈 ∣∣∣∣R23: = , =

〉

=PA

〈
,

∣∣∣∣
VR123:

R23
= , = , = ; D: =

〉

{w-Tangles} = v-Tangles

/
OC: =

Infineon HYS64T64020HDL-3.7-A 512MB RAM

Circuit Algebras

A J-K Flip Flop

Homomorphic expansions for a filtered algebraic structure K:

opsUK = K0 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ . . .
⇓ ↓Z

opsU grK := K0/K1 ⊕ K1/K2 ⊕ K2/K3 ⊕ K3/K4 ⊕ . . .

An expansion is a filtered Z : K → grK that “covers” the
identity on grK. A homomorphic expansion is an expansion
that respects all relevant “extra” operations.
Reality. grK is often too hard. An A-expansion is a graded
“guess” A with a surjection τ : A → grK and a filtered Z :
K → A for which (grZ)◦τ = IA. An A-expansion confirms A
and yields an ordinary expansion. Same for “homomorphic”.

{
objects of

kind 3

}
=

• Has kinds, objects, operations, and maybe constants.
• Perhaps subject to some axioms.
• We always allow formal linear combinations.

O

O3 O4

O1

•1

O2

•σ

ψ3

ψ4

ψ2

ψ1

Filtered algebraic structures are cheap and plenty. In any
K, allow formal linear combinations, let K1 = I be the ideal
generated by differences (the “augmentation ideal”), and let
Km := 〈(K1)

m〉 (using all available “products”). In this case,
set projK := grK.

K =

K/K1 K/K2 K/K3 K/K4

· · ·

An expansion Z is a choice of a
“progressive scan” algorithm.

← ← ← ←

· · ·
Adjoin

K1/K2 K3/K4 K4/K5 K5/K6 · · ·⊕ ⊕ ⊕ ⊕ ⊕K/K1

R

K2/K3⊕

=

ker(K/K4→K/K3)

=adjoin

=

(
The set of all
b/w 2D projec-
tions of reality

)

Rotate
Crop

crop
rotate

Examples. 1. The projectivization of a group is a graded
associative algebra.
2. Pure braids — PBn is generated by xij , “strand i goes
around strand j once”, modulo “Reidemeister moves”. An :=
grPBn is generated by tij := xij −1, modulo the 4T relations
[tij , tik + tjk] = 0 (and some lesser ones too). Much happens
in An, including the Drinfel’d theory of associators.
3. Quandle: a set Q with an op ∧ s.t.

1 ∧ x = 1, x ∧ 1 = x, (appetizers)
(x ∧ y) ∧ z = (x ∧ z) ∧ (y ∧ z). (main)

projQ is a graded Leibniz algebra: Roughly, set v̄ := (v − 1)
(these generate I!), feed 1 + x̄, 1 + ȳ, 1 + z̄ in (main), collect
the surviving terms of lowest degree:

(x̄ ∧ ȳ) ∧ z̄ = (x̄ ∧ z̄) ∧ ȳ + x̄ ∧ (ȳ ∧ z̄).

— All Signs Are Wrong! —

Kashiwara, Vergne,
Alekseev, Enriquez,
Torossian.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/
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Z.

1
2

1 2

Penrose Cvitanovic

R3.

The Alexander Theorem.

no isolated purple)
(2 in 1 out vertices,

and
−−−→
IHX

−−−→
STU ,

−→
AS,

relations

−→
AS,

−−−→
IHX

labels in 1, . . . , n, repeats allowed

2i1o vertices, no circular edges

=

R3: =+ +++

ϕi ϕj xn xm ϕn ϕl

= −

= −

1

12

3

2

3 1

1

3

13

DmRm

(Vm/Vm−1)
∗

+ −

exact?

+

−

τ

τ

“arrow diagrams”

= −

= −
Im/Im+1CAm ,=

1. proj Kw(↑n) ∼=j U ((an ⊕ tdern) ⋉ trn), continued.

Goussarov-Polyak-Viro

Imperfect Thumb-Rule. Take R3 (say), substitute ! → P +

, keep the lowest degree terms that don’t immediately die:

R = R2: = 0+
+ −

OC:

=+ +−→
4T :

= − = −−−−→
STU1:

−−−→
ST U2:

−−−→
IHX:= −0

−−−→
STU3 =TC:

Z ea e−a ea

21 4 3

e−a

TC
−→
4T TC

The Bracket-Rise Theorem. Aw(↑1) is isomorphic to

= = −−
Proof.

Corollaries. (1) Related to Lie algebras! (2) Only wheels and
isolated arrows persist.

To Lie Algebras. With (xi) and (ϕj) dual bases of g and g∗

and with [xi, xj ] =
∑

bk
ijxk, we have Aw → U via

i j

k

lmn

bm
klbk

ji

dimg∑

i,j,k,l,m,n=1

bk
ijb

m
klϕ

iϕjxnxmϕl ∈ U(Ig := g∗ ⋊ g)

Theorem (PBW, “U(Ig)⊗n ∼= S(Ig)⊗n”). As vector spaces,
Aw(↑n) ∼= Bn, where

Kontsevich

Bn =

Wheels and Trees. With P for Primitives,

0 //〈wheels〉 ι //PAw(↑n) π //〈trees〉 //

l
mm

uqq

0 ,

with

2

2

21

(u,l)−−−−→




1 2

,
21


.

So projKw(↑n) ∼= U (〈trees〉 ⋉ 〈wheels〉).

Thm. Z ≻ A,
maybe ≻≻.

Some A-T Notions. an is the vector space with basis
x1, . . . , xn, lien = lie(an) is the free Lie algebra, Assn =
U(lien) is the free associative algera “of words”, tr : Ass+n →
trn = Ass+n /(xi1xi2 · · ·xim = xi2 · · ·ximxi1) is the “trace” into
“cyclic words”, dern = der(lien) are all the derivations, and

tdern = {D ∈ dern : ∀i ∃ai s.t. D(xi) = [xi, ai]}
are “tangential derivations”, so D ↔ (a1, . . . , an) is a vec-
tor space isomorphism an ⊕ tdern

∼=
⊕

n lien. Finally, div :
tdern → trn is (a1, . . . , an) 7→ ∑

k tr(xk(∂kak)), where for
a ∈ Ass+n , ∂ka ∈ Assn is determined by a =

∑
k(∂ka)xk,

and j : TAutn = exp(tdern) → trn is j(eD) = eD−1
D · div D.

Theorem. Everything matches. 〈trees〉 is an ⊕ tdern as Lie
algebras, 〈wheels〉 is trn as 〈trees〉 / tdern-modules, div D =
ι−1(u − l)(D), and euDe−lD = ejD.

Differential Operators. Interpret Û(Ig) as tangential differen-
tial operators on Fun(g):
• ϕ ∈ g∗ becomes a multiplication operator.
• x ∈ g becomes a tangential derivation, in the direction of
the action of ad x: (xϕ)(y) := ϕ([x, y]).
Trees become vector fields and uD 7→ lD is D 7→ D∗. So
div D is D − D∗ and jD = log(eD(eD)∗) =

∫ 1

0 dtetD div D.

Special Derivations. Let sdern = {D ∈ tdern : D (
∑

xi) = 0}.
Theorem. sdern = πα(proj u-tangles), where α is the obvious
map proj u-tangles → projw-tangles.
Proof. After decoding, this becomes Lemma 6.1 of Drinfel’d’s
amazing Gal(Q̄/Q) paper.

This is the ultimate Alexander invariant! computable in poly-
nomial time, local, composes well, behaves under cabling.
Seems to significantly generalize the multi-variable Alexander
polynomial and the theory of Milnor linking numbers. But
it’s ugly, and much work remains.

3−
−1−

− 2−
+ 4−

+

5+
−

6+
+ 8+

+7+
−

Sanderson

Tij = |low(#j) ∈ span(#i)|,
si = sign(#i), di = dir(#i),
S = diag(sidi),
A = det

(
I + T (I − X−S)

)
.

· · · span(#3)· · ·

T=




0 1 1 1 1 0 1 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0
0 1 0 1 0 1 1 1
0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0




,

X−S=diag( 1
X , X, 1

X , X, X, 1
X , X, 1

X ).

Conjecture. For u-knots, A is the Alexander polynomial.
Theorem. With w : xk 7→ wk = (the k-wheel),

Z = N expAw

(
−w

(
logQJxK A(ex)

))
mod wkwl = wk+l,

Z = N · A−1(ex)

and a little prince.

trees atop a wheel,

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/
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miles

away

or

forget unzip

connect

or

W

Challenge.

Do the

Reidemeister!

Reidemeister Winter

I understand Drinfel’d and Alekseev−Torossian, I don’t understand
Etingof−Kazhdan yet, and I’m clueless about Kontsevich2. w−Knots, Alekseev−Torossian, and

baby Etingof−Kazhdan Dror Bar−Natan, Montpellier, June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier−1006/

Crossing

The w−generators.

Cap

Wen

as
yet not
UC:

OC:

W W

W

as

but
W

Unzip along a diskUnzip along an annulus

T
he

 u
na

ry
w

−
op

er
at

io
ns

no!

:= :=

Trivalent w-Tangles.

wTT = CA

〈
w-

generators

∣∣∣ w-

relations

∣∣∣ unary w-

operations

〉

singular vertex

The w-relations include R234, VR1234, D, Overcrossings
Commute (OC) but not UC, W 2 = 1, and funny interactions
between the wen and the cap and over- and under-crossings:

→ = → =

w-Jacobi diagrams and A. Aw(Y ↑) ∼= Aw(↑↑↑) is

+= TC:

− −STU:

VI:

deg= 1
2#{vertices}=6

−→
4T : + = +

W

=

= 0 = + = 0

Knot-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:;(1)

(2) → (3) →

Diagrammatic statement. Let R = expS ∈ Aw(↑↑). There
exist ω ∈ Aw(W) and V ∈ Aw(↑↑) so that

(1) = V

V WW

W

V

(2) (3)unzip unzip

V

ω ω ω

V

R

R

R

Alekseev-Torossian statement. There are elements F ∈ TAut2
and a ∈ tr1 such that

F (x + y) = log exey and jF = a(x) + a(y) − a(log exey).

Theorem. The Alekseev-Torossian statement is equivalent to
the knot-theoretic statement.
Proof. Write V = eceuD with c ∈ tr2, D ∈ tder2, and ω = eb

with b ∈ tr1. Then (1) ⇔ euD(x + y)e−uD = log exey,
(2) ⇔ I = eceuD(euD)∗ec = e2cejD, and
(3) ⇔ eceuDeb(x+y) = eb(x)+b(y) ⇔ eceb(log exey) = eb(x)+b(y)

⇔ c = b(x) + b(y) − b(log exey).

(2) V V ∗ = I in Aw(↑↑) (3) V · ∆(ω) = ω ⊗ ω in Aw(ZZ)

(1) V · (∆ ⊗ 1)(R) = R13R23V in Aw(↑↑↑)

The Alekseev-Torossian Correspondence.

{Drinfel’d Associators} ⇆ {Solutions of KV}.

We need an even bigger algebraic structure!(
green knotted trivalent

graphs in R3 (u)

)
αe−→

(
blue tubes and red
strings in R4 (w)

)

(∆11)Φ

(11∆)ΦΦ1

((AB)C)D (AB)(CD)

A((BC)D)

A(B(CD))(A(BC))D

(1∆1)Φ 1Φ

The hexagon? Never heard of it.

An Associator:

(AB)C
Φ∈U(g)⊗3

−−−−−−→ A(BC)

satisfying the “pentagon”,

Φ1·(1∆1)Φ·1Φ = (∆11)Φ·(11∆)Φ

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/

161

http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/


isotopy

isotopiesunzip forgetunzips

3 421

31 2 4

1

2

3

1

2

3

4

4

and the tetrahedron :

plant

agents

connect

them

Modulo the relation(s):

=

=

(+more)

Proof.

Using moves, KTG is generated by ribbon twists All strands
here are green

2. w−Knots, Alekseev−Torossian, and baby Etingof−Kazhdan, continued.

:= Φ ∈ A(↑3)

= (Φ ⊗ 1) · (1 ⊗ ∆ ⊗ 1)(Φ) · (1 ⊗ Φ) ∈ A(↑4)

= (∆ ⊗ 1 ⊗ 1)(Φ) · (1 ⊗ 1 ⊗ ∆)(Φ) ∈ A(↑4)

=
EK

makes sense,

and CA ops can

be emulated

T
T

T

T

=

T

Introduce “Punctures”.

Kw. Allow tubes and strands and tube-strand vertices
as above, yet allow only “compact” knots — nothing
runs to ∞.

Kw ↔ Kw equivalence. Kw has a homomorphic ex-
pansion iff Kw has a homomorphic expansion.
=⇒ Puncture A and Z:

⇐=

Ku → Kw.
α αe

e

Theorem. The generators of Kw can be written in
terms of the generators of Ku (i.e., given Φ, can write
a formula for V .
Sketch.

Claim. With Φ := Z(,), the above relation becomes equiv-
alent to the Drinfel’d’s pentagon of the theory of quasi-Hopf
algebras.

.

Note.

,

“the sled”

strand

So where means

and 0.

“Cut and cap is well-defined on u”

Better:Light:

Punctures expand to
the nearest Y-vertex:

and

so enough to write any . Here go:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/
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u v w

"An Algebraic Structure"

Just for fun.

K

J

CP
Q

Q’

as
yet not
UC:

OC:

Crossing Virtual crossing

Broken surface

Movie

2D Symbol

The w−generators.

Dim. reduc.

Day 1 − u, v, w: topology and philosophy
Dror Bar−Natan, Goettingen, April 2010 http://www.math.toronto.edu/~drorbn/Talks/Goettingen−1004/

u, v, and w−Knots: Topology, Combinatorics and Low and High Algebra

Also see http://www.math.toronto.edu/~drorbn/papers/WKO/
www.katlas.org

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)

O3 O4

O1

•1

O2

•σ
ψ1

ψ3

ψ4

ψ2

Examples. 1. The projectivization of a group is a graded
associative algebra. 2. Quandle: a set Q with an op ∧ s.t.

1 ∧ x = 1, x ∧ 1 = x, (appetizers)
(x ∧ y) ∧ z = (x ∧ z) ∧ (y ∧ z). (main)

projQ is a graded Leibniz algebra: Roughly, set v̄ := (v − 1)
(these generate I!), feed 1 + x̄, 1 + ȳ, 1 + z̄ in (main), collect
the surviving terms of lowest degree:

(x̄ ∧ ȳ) ∧ z̄ = (x̄ ∧ z̄) ∧ ȳ + x̄ ∧ (ȳ ∧ z̄).
Our case(s).

K Z: high algebra−−−−−−−−−−−−−→
solving finitely many
equations in finitely
many unknowns

A :=
projK

given a “Lie”
algebra g−−−−−−−−−−→

low algebra: pic-
tures represent
formulas

“U(g)”

K is knot theory or topology; projK =
⊕ Im/Im+1 is finite

combinatorics: bounded-complexity diagrams modulo simple
relations.

Homomorphic expansions for a filtered algebraic structure K:

opsUK = K0 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ . . .
⇓ ↓Z

opsU grK := K0/K1 ⊕ K1/K2 ⊕ K2/K3 ⊕ K3/K4 ⊕ . . .

An expansion is a filtration respecting Z : K → grK that
“covers” the identity on grK. A homomorphic expansion is
an expansion that respects all relevant “extra” operations.

Filtered algebraic structures are cheap and plenty. In any
K, allow formal linear combinations, let K1 = I be the ideal
generated by differences (the “augmentation ideal”), and let
Km := 〈(K1)

m〉 (using all available “products”).

O =

{
objects of

kind 3

}
=

• Has kinds, objects, operations, and maybe constants.
• Perhaps subject to some axioms.
• We always allow formal linear combinations.

K =

K/K1 K/K2 K/K3 K/K4

· · ·

An expansion Z is a choice of a
“progressive scan” algorithm.

← ← ← ←

· · ·
Adjoin

K1/K2 K3/K4 K4/K5 K5/K6 · · ·⊕ ⊕ ⊕ ⊕ ⊕K/K1

R

K2/K3⊕
=

ker(K/K4→K/K3)

=adjoin

=

(
The set of all
b/w 2D projec-
tions of reality

)

Rotate
Crop

crop
rotate

no!

w-Tangles

{w-Tangles} = v-Tangles

/
OC : =

A Ribbon 2-Knot is a surface S embedded in R4 that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D1 in the interior of B and
a disk D2 with D2 ∩ ∂B = ∂D2, modulo isotopies of S alone.

=

The w-relations include R234, VR1234, M, Overcrossings
Commute (OC) but not UC:

Plans and Dreams(
arbitrary algebraic
structure

)
projectivization

machine
//

(
a problem in
graded algebra

)

• Feed knot-things, get Lie algebra things.
• Feed u-knots, get Drinfel’d associators.
• Feed w-knots, get Kashiware-Vergne-Alekseev-Torossian.
• Dream: Feed v-knots, get Etingof-Kazhdan.
• Dream: Knowing the question whose answer is 42, or E-K,
will be useful to algebra and topology.

u-Knots (PA :=Planar Algebra){
knots

&links

}
=PA

〈 ∣∣∣∣R123: = , = , =

〉

0 legs

v-Knots (CA :=Circuit Algebra){
v-knots

& links

}
= CA

〈 ∣∣∣∣R23: = , =

〉

0 legs

= PA

〈
∣∣∣∣∣∣∣∣

VR123: = , = , = ;

R23; D: =

〉

0 legs

Infineon HYS64T64020HDL-3.7-A 512MB RAM

Circuit Algebras

A J-K Flip Flop

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Goettingen-1004/
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#

Day 2 − u, v, w: combinatorics, low and high algebra
Dror Bar−Natan, Goettingen, April 2010
http://www.math.toronto.edu/~drorbn/Talks/Goettingen−1004/

Z.

R3.

Penrose Cvitanovic

Vertices

singular

smooth

R4

and
−−−→
IHX

−−−→
STU ,

−→
AS,

relations

(2 in 1 out vertices)

+=VI:

=− −

ϕi ϕj xn xm ϕn ϕl

= =

R

R

R

V

Unitary =⇒ Group-Algebra.
∫∫

ex+yφ(x)ψ(y) =
〈1, ex+yφ(x)ψ(y)〉 = 〈V 1, V ex+yφ(x)ψ(y)〉 =
〈1, exeyV φ(x)ψ(y)〉 = 〈1, exeyφ(x)ψ(y)〉 =

∫∫
exeyφ(x)ψ(y).

Convolutions statement (Kashiwara-Vergne, simplified). Con-
volutions of invariant functions on a Lie group agree with con-
volutions of invariant functions on its Lie algebra. More ac-
curately, let G be a finite dimensional Lie group and let g be
its Lie algebra, and let Φ : Fun(G) → Fun(g) be given by
Φ(f)(x) := f(expx). Then if f, g ∈ Fun(G) are Ad-invariant
and supported near the identity, then Φ(f) ⋆Φ(g) = Φ(f ⋆ g).

w-Jacobi diagrams and A. Aw(Y ↑) ∼= Aw(↑↑↑) is

same relations, plus

deg= 1
2 #{vertices}=6

Kashiwara

Vergne

Alekseev

Torossian

The Bracket-Rise Theorem. Aw is isomorphic to

= − = −−−−→
STU1:

−−−→
STU2:

= −−−−→
IHX:= −0

−−−→
STU3 =TC:

Corollaries. (1) Related to Lie algebras! (2) Only wheels and
isolated arrows persist.

The Finite Type Story. With X := /−G
set Vm := {V : wK → Q : V (X>m) = 0}.

⊕
(Vm/Vm−1)

∗

0
⊕〈Xm〉/〈Xm+1〉

m arrows

D =

arrow diagrams
TC

π (grZ) ◦ π = I

Aw := D/R wK
Z

grZ

(filtered)

=
TC

= ⇒

in this box

I take pride⇒=
−→
4T

−→
4T

Z

21 4 3

TC
−→
4T TC

e−a

ea e−a ea

Low Algebra. With (xi) and (ϕj) dual bases of g and g∗ and
with [xi, xj ] =

∑
bkijxk, we have Aw → U via

i j

k

lmn

bmklbkji

The Scheme. Topology → Combinatorics → Lie Theory via

K Z: high algebra−−−−−−−−−−−−−→
equations, unknowns

A = projK =⊕
Im/Im+1

Tg: low algebra−−−−−−−−−−−−−→
pictures → formulas

“U(g)”

1+1 = 2, on an abacus, implies
Duflo’s U(g)g ∼= S(g)g (with
T. Le and D. Thurston).

dim g∑

i,j,k,l,m,n=1

bk
ijb

m
klϕ

iϕjxnxmϕl ∈ U(Ig := g∗ ⋊ g)

Knot-Theoretic statement (simpli-
fied). There exists a homomorphic
expansion Z for trivalent w-tangles.
In particular, Z should respect R4.

;
Diagrammatic
statement (sim-
plified). Let
R = expS ∈
Aw(↑↑). There
exist V ∈ Aw(↑↑)
so that

V=

Algebraic statement (simplified). With r ∈ g∗⊗g the identity
element and with R = er ∈ Û(Ig) ⊗ Û(g) there exist V ∈
Û(Ig)⊗2 so that V (∆ ⊗ 1)(R) = R13R23V in Û(Ig)⊗2 ⊗ Û(g)

Convolutions and Group Algebras (ignoring all Jacobians). If
G is finite, A is an algebra, τ : G → A is multiplicative then
(Fun(G), ⋆) → (A, ·) via L : f 7→ ∑

f(a)τ(a). For Lie (G, g),

(g,+) ∋ x
τ0=expS //

expU

((P

P

P

P

P

P

P

P

P

P

P

P

P

expG

��

ex ∈ Ŝ(g)

χ

��

(G, ·) ∋ ex τ1 // ex ∈ Û(g)

so

Fun(g)
L0 //

Φ−1

��

Ŝ(g)

χ

��

Fun(G)
L1 // Û(g)

with L0ψ =
∫
ψ(x)exdx ∈ Ŝ(g) and L1Φ

−1ψ =
∫
ψ(x)ex ∈

Û(g). Given ψi ∈ Fun(g) compare Φ−1(ψ1) ⋆ Φ−1(ψ2) and
Φ−1(ψ1 ⋆ ψ2) in Û(g): (shhh, L0/1 are “Laplace transforms”)

⋆ in G :

∫∫
ψ1(x)ψ2(y)e

xey ⋆ in g :

∫∫
ψ1(x)ψ2(y)e

x+y

Unitary statement (simplified). There exists a unitary tan-
gential differential operator V defined on Fun(gx ×gy) so that

V êx+y = êxêyV (allowing Û(g)-valued functions)

Unitary ⇐⇒ Algebraic. Interpret Û(Ig) as tangential differ-
ential operators on Fun(g): ϕ ∈ g∗ becomes a multiplication
operator, and x ∈ g becomes a tangential derivation, in the
direction of the action of adx: (xϕ)(y) := ϕ([x, y]).

Group-Algebra statement (simplified). For every φ, ψ ∈
Fun(g)G (with small support), the following holds in Û(g):∫∫

g×g

φ(x)ψ(y)ex+y =

∫∫

g×g

φ(x)ψ(y)exey.

(shhh, this is Duflo)

R =

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Goettingen-1004/
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Crossing Virtual crossing

Broken surface

Movie

2D Symbol

Tubes in 4D.

Dim. reduc.

1
1

2

2

http://www.math.toronto.edu/~drorbn/Talks/Luminy−1004/

w−Knots from Z to A
Dror Bar−Natan, Luminy, April 2010

Winter

w−Knots.

D

Z.

R3.

The Alexander Theorem.

www.katlas.org

"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)

UC

as
yet not
UC:

OC:

R3 VR3 OC

Proof.

(2 in 1 out vertices)

and
−−−→
IHX

−−−→
STU ,

−→
AS,

relations

=− −

no!

Abstract I will define w-knots, a class of knots wider than
ordinary knots but weaker than virtual knots, and show that
it is quite easy to construct a universal finite invariant Z of
w-knots. In order to study Z we will introduce the “Euler
Operator” and the “Infinitesimal Alexander Module”, at the
end finding a simple determinant formula for Z. With no
doubt that formula computes the Alexander polynomial A,
except I don’t have a proof yet.

=

wK = CA R23, OC

= PA

The Finite Type Story. With X := /−G
set Vm := {V : wK → Q : V (X>m) = 0}.

⊕Vm/Vm−1

0
⊕〈Xm〉/〈Xm+1〉R =

m arrows

D =

arrow diagrams
TC

(grZ) ◦ τ = I

Aw := D/R wK
Z

grZ

(filtered)

R23, VR123, D, OC

=

=
TC

= ⇒

in this box

I take pride

A Ribbon 2-Knot is a surface S embedded in R4 that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D1 in the interior of B and
a disk D2 with D2 ∩ ∂B = ∂D2, modulo isotopies of S alone.

⇒=
−→
4T

−→
4T

Habiro - can you do better?

The Bracket-Rise Theorem. Aw is isomorphic to

= − = −−−−→
STU1:

−−−→
STU2:

= −−−−→
IHX:= −0

−−−→
STU3 =TC:

Corollaries. (1) Related to Lie algebras! (2) Only wheels and
isolated arrows persist.

3−
−1−

− 2−
+ 4−

+

5+
−

6+
+ 8+

+7+
−

isi

di

Sanderson

Tij = |low(#j) ∈ span(#i)|,
si = sign(#i), di = dir(#i),
S = diag(sidi),
A = det

(
I + T (I − X−S)

)
.

· · · span(#3)· · ·

T=

0

B

B

B

B

@

0 1 1 1 1 0 1 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0
0 1 0 1 0 1 1 1
0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0

1

C

C

C

C

A

,

X−S=diag( 1
X , X, 1

X , X, X, 1
X , X, 1

X ).

Conjecture. For u-knots, A is the Alexander polynomial.
Theorem. With w : xk 7→ wk = (the k-wheel),

Z = N expAw

(
−w

(
logQJxK A(ex)

))
mod wkwl = wk+l,

Z = N · A−1(ex)

So What? • Habiro-Shima did this already, but not quite. (HS: Finite
Type Invariants of Ribbon 2-Knots, II, Top. and its Appl. 111 (2001).)
• New (?) formula for Alexander, new (?) “Infinitesimal Alexander
Module”. Related to Lescop’s arXiv:1001.4474?
• An “ultimate Alexander invariant”: local, composes well, behaves
under cabling. Ought to also generalize the multi-variable Alexander
polynomial and the theory of Milnor linking numbers.
• Tip of the Alekseev-Torossian-Kashiwara-Vergne iceberg (AT:
The Kashiwara-Vergne conjecture and Drinfeld’s associators,
arXiv:0802.4300).
• Tip of the v-knots iceberg. May lead to other polynomial-time
polynomial invariants. “A polynomial’s worth a thousand exponentials”.

Also see http://www.math.toronto.edu/˜drorbn/papers/WKO/

Proof Sketch. Let E be the Euler operator, “multiply anything by
its degree”, f 7→ xf ′ in QJxK, so Eex = xex and

We need to show that Z−1EZ = N ′ − tr
`

(I − B)−1TSe−xS
´

w1,

with B = T (e−xS − I). Note that aeb−eba = (1−ead b)(a)eb implies

so with the matrices Λ and Y defined as

we have EZ − N ′′ = tr(SΛ), Λ = −BY − Te−xSw1, and Y =
BY + Te−xSw1. The theorem follows.

τ

duality

0s−s −s (1−esx) ss

s− ss (esx −1) s−s s(1−esx)

0s−s −s (esx −1) ss

s− ss (esx −1) s−s s(1−esx)

= =

= =

= =

= =

− =− = with x3

=

= = =

Z ea e−a ea

21 4 3

e−a

TC
−→
4T TC

EZ = + −
+ + −+ + −+ + −

:=

Y

1

2

j

i

Λ 1 2

1

2

j

i

1 2

− −

−−

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/
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Crossing
Vertices

Virtual crossing

Broken surface

Movie

2D Symbol

The w−generators.

singular

Dim. reduc.

Cap Wen
W

smooth

Challenge.

Do the

Reidemeister!

Reidemeister Winter

Unzip along a diskUnzip along an annulus

T
he

 u
na

ry
w

−
op

er
at

io
ns

Just for fun.

Convolutions on Lie Groups and Lie Algebras and Ribbon 2−Knots "God created the knots, all else in
topology is the work of mortals."

Leopold Kronecker (modified)Dror Bar−Natan, Bonn August 2009, http://www.math.toronto.edu/~drorbn/Talks/Bonn−0908

[1]

as
yet not
UC:

OC:

as

but

W

W

W

W

"An Algebraic Structure"

[1] http://qlink.queensu.ca/~4lb11/interesting.html
Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

www.math.toronto.edu/~drorbn/Talks/KSU−090407

Knot-Theoretic
statement

Free Lie
statement

Torossian
statement

Alekseev

The Orbit
Method

Convolutions
statement

Group-Algebra
statement

Algebraic
statement

Diagrammatic
statement

sian, Meinrenken
Alekseev, Toros-

Unitary
statement

Subject
flow chart

True

no!

→ ==→

=

(
The set of all
b/w 2D projec-
tions of reality

)

K1/K2 K3/K4 K4/K5 K5/K6 · · ·⊕ ⊕ ⊕ ⊕ ⊕K/K1

R

K2/K3⊕

=

ker(K/K4→K/K3)

=adjoin

crop
rotate

K =

K/K1 K/K2 K/K3 K/K4

· · ·

An expansion Z is a choice of a
“progressive scan” algorithm.

← ← ← ←

· · ·
Adjoin

Crop
Rotate

O3 O4

O1

•1

O2

•σ
ψ1

ψ3

ψ4

ψ2

Disclaimer:
Rough edges

remain!

The Bigger Picture... What are w-Trivalent Tangles? (PA :=Planar Algebra){
knots

&links

}
=PA

〈 ∣∣∣∣R123 : = , = , =

〉

0 legs

{
trivalent

tangles

}
=PA

〈
,

∣∣∣∣∣R23, R4 : = =

∣∣∣∣
→

〉

{
trivalent

w-tangles

}
=PA

〈
w-

generators

∣∣∣ w-

relations

∣∣∣ unary w-

operations

〉wTT=

A Ribbon 2-Knot is a surface S embedded in R4 that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D1 in the interior of B and
a disk D2 with D2 ∩ ∂B = ∂D2, modulo isotopies of S alone.

=

The w-relations include R234, VR1234, M, Overcrossings
Commute (OC) but not UC, W 2 = 1, and funny interactions
between the wen and the cap and over- and under-crossings:

Our case(s).

K Z: high algebra−−−−−−−−−−−−−→
solving finitely many
equations in finitely
many unknowns

A :=
grK

given a “Lie”
algebra g−−−−−−−−−−→

low algebra: pic-
tures represent
formulas

“U(g)”

K is knot theory or topology; grK is finite combinatorics:
bounded-complexity diagrams modulo simple relations.

Filtered algebraic structures are cheap and plenty. In any
K, allow formal linear combinations, let K1 be the ideal
generated by differences (the “augmentation ideal”), and let
Km := 〈(K1)

m〉 (using all available “products”).

Homomorphic expansions for a filtered algebraic structure K:

opsUK = K0 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ . . .
⇓ ↓Z

opsU grK := K0/K1 ⊕ K1/K2 ⊕ K2/K3 ⊕ K3/K4 ⊕ . . .

An expansion is a filtration respecting Z : K → grK that
“covers” the identity on grK. A homomorphic expansion is
an expansion that respects all relevant “extra” operations.

Example: Pure Braids. PBn is generated by xij , “strand i
goes around strand j once”, modulo “Reidemeister moves”.
An := grPBn is generated by tij := xij − 1, modulo the 4T
relations [tij , tik + tjk] = 0 (and some lesser ones too). Much
happens in An, including the Drinfel’d theory of associators.

Alekseev

Torossian

Kashiwara

Vergne

O =

n

objects of
kind 3

o

=

• Has kinds, objects, operations, and maybe constants.
• Perhaps subject to some axioms.
• We always allow formal linear combinations.

29/5/10, 8:42am

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/
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Vassiliev

Goussarov

Penrose Cvitanovic

Convolutions on Lie Groups and Lie Algebras and Ribbon 2−Knots, Page 2

Polyak

R

V
R

R

V V

ω ω ω

Diagrammatic statement. Let R = expS ∈ Aw(↑↑). There
exist ω ∈ Aw(W) and V ∈ Aw(↑↑) so that

(1) = V

(2) (3)

WW

W

V

unzip unzip

(2) (3) →→

Knot-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:;(1)

:= :=

−→
4T : + = +

=

w-Jacobi diagrams and A. Aw(Y ↑) ∼= Aw(↑↑↑) is

+= TC:

− −STU:

VI:

W

= 0 = + = 0

deg= 1
2#{vertices}=6

Unitary ⇐⇒ Algebraic. The key is to interpret Û(Ig) as tan-
gential differential operators on Fun(g):
• ϕ ∈ g∗ becomes a multiplication operator.
• x ∈ g becomes a tangential derivation, in the direction of
the action of adx: (xϕ)(y) := ϕ([x, y]).
• c : Û(Ig) → Û(Ig)/Û(g) = Ŝ(g∗) is “the constant term”.

Convolutions and Group Algebras (ignoring all Jacobians). If
G is finite, A is an algebra, τ : G → A is multiplicative then
(Fun(G), ⋆) ∼= (A, ·) via L : f 7→ ∑

f(a)τ(a). For Lie (G, g),

(g,+) ∋ x
τ0=expS //

expU

((P

P

P

P

P

P

P

P

P

P

P

P

P

expG

��

ex ∈ Ŝ(g)

χ

��

(G, ·) ∋ ex τ1 // ex ∈ Û(g)

so

Fun(g)
L0 //

Φ−1

��

Ŝ(g)

χ

��

Fun(G)
L1 // Û(g)

with L0ψ =
∫
ψ(x)exdx ∈ Ŝ(g) and L1Φ

−1ψ =
∫
ψ(x)ex ∈

Û(g). Given ψi ∈ Fun(g) compare Φ−1(ψ1) ⋆ Φ−1(ψ2) and
Φ−1(ψ1 ⋆ ψ2) in Û(g): (shhh, L0/1 are “Laplace transforms”)

⋆ in G :

∫∫
ψ1(x)ψ2(y)e

xey ⋆ in g :

∫∫
ψ1(x)ψ2(y)e

x+y

Unitary =⇒ Group-Algebra.

∫∫
ω2

x+ye
x+yφ(x)ψ(y)

=
〈
ωx+y, ωx+ye

x+yφ(x)ψ(y)
〉
=

〈
V ωx+y, V e

x+yφ(x)ψ(y)ωx+y

〉

=〈ωxωy, e
xeyV φ(x)ψ(y)ωx+y〉=〈ωxωy, e

xeyφ(x)ψ(y)ωxωy〉
=

∫∫
ω2

xω
2
ye

xeyφ(x)ψ(y).

ϕi ϕj xn xm ϕn ϕl

dimg∑

i,j,k,l,m,n=1

bk
ijb

m
klϕ

iϕjxnxmϕl ∈ U(Ig)

Diagrammatic to Algebraic. With (xi) and (ϕj) dual bases of
g and g∗ and with [xi, xj ] =

∑
bkijxk, we have Aw → U via

i j

k

lmn

bmklbkji

Group-Algebra statement. There exists ω2 ∈ Fun(g)G so that
for every φ, ψ ∈ Fun(g)G (with small support), the following
holds in Û(g): (shhh, ω2 = j1/2)∫∫

g×g

φ(x)ψ(y)ω2
x+ye

x+y =

∫∫

g×g

φ(x)ψ(y)ω2
xω

2
ye

xey.

(shhh, this is Duflo)

Unitary statement. There exists ω ∈ Fun(g)G and an (infinite
order) tangential differential operator V defined on Fun(gx ×
gy) so that

(1) V êx+y = êxêyV (allowing Û(g)-valued functions)
(2) V V ∗ = I (3) V ωx+y = ωxωy

Algebraic statement. With Ig := g∗ ⋊ g, with c : Û(Ig) →
Û(Ig)/Û(g) = Ŝ(g∗) the obvious projection, with S the an-
tipode of Û(Ig), with W the automorphism of Û(Ig) induced
by flipping the sign of g∗, with r ∈ g∗⊗g the identity element
and with R = er ∈ Û(Ig) ⊗ Û(g) there exist ω ∈ Ŝ(g∗) and
V ∈ Û(Ig)⊗2 so that
(1) V (∆ ⊗ 1)(R) = R13R23V in Û(Ig)⊗2 ⊗ Û(g)
(2) V · SWV = 1 (3) (c⊗ c)(V∆(ω)) = ω ⊗ ω

Convolutions statement (Kashiwara-Vergne). Convolutions of
invariant functions on a Lie group agree with convolutions
of invariant functions on its Lie algebra. More accurately,
let G be a finite dimensional Lie group and let g be its Lie
algebra, let j : g → R be the Jacobian of the exponential
map exp : g → G, and let Φ : Fun(G) → Fun(g) be given
by Φ(f)(x) := j1/2(x)f(expx). Then if f, g ∈ Fun(G) are
Ad-invariant and supported near the identity, then

Φ(f) ⋆ Φ(g) = Φ(f ⋆ g).

From wTT to Aw. grm wTT := {m−cubes}/{(m+1)−cubes}:

forget

topology

−− −

We skipped... • The Alexander
polynomial and Milnor numbers.
• u-Knots, Alekseev-Torossian,
and Drinfel’d associators.

• v-Knots, quantum groups and
Etingof-Kazhdan.
• BF theory and the successful
religion of path integrals.

• The simplest problem hyperbolic geometry solves.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/
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More at http://www.math.toronto.edu/~drorbn/Talks/Trieste-0905/
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The Miller Institute knot

=

or

forget unzip

miles

away

or

connect

Torossian

Alekseev

McCool
Goldsmith

Fenn
Rimanyi

Rourke
Satoh

Brendle
Hatcher

Vassiliev

Goussarov

Haviv LeungPenrose Cvitanovic Vogel

Witten

Chern−Simons BF Theory

Cattaneo

Reidemeister0 legs

0

0 Kauffman

Polyak

The 6T Relation (and a hidden 4T):

Etingof Kazhdan

Drinfel’d

Related to "movies
of flying rings"
to knotted tubes
in 4−space, and to
"basis conjugating
automorphisms of
free groups".

1

4

3

2

5
7

8

11

1213

10

6

9

4

2

3

1

3

4

2 1

Similar
with Lie bi−algebras

replacing arbitrary Lie algebras

Similar
with metrized Lie algebras

replacing arbitrary Lie algebras

u−knots v−knots w−knots
to

po
lo

gy
co

m
bi

na
to

ric
s

lo
w

 a
lg

eb
ra

hi
gh

 a
lg

eb
ra

VR1

M

=PA

=PA

=CA

{w−knots}={v−knots}/(OC)

where OC is Overcrossings Commute:

w is for welded, weakly v, and warmup:v−knots are virtual knots:

u−knots are usual knots:

"Tails Commute (TC)":

Theorem.

&TC

(u, v, and w knots) x (topology, combinatorics, low algebra, and high algebra)
Dror Bar−Natan, Kansas State April 7 2009, http://www.math.toronto.edu/~drorbn/Talks/KSU−090407

ud

"God created the knots, all else in
topology is the work of mortals."

Leopold Kronecker (modified)

yet

fatten this column.
Dror’s Dream: Straighten and

An Idle Question.
Is there physics in this column?

1−1 onto

=

= Knots on surfaces, modulo stabilazation:

DBN, data by Brian Gilbert, http://www.math.utoronto.ca/~drorbn/Gallery/KnottedObjects/Candies/

=

=

=

=

=

=

=

R123
VR123
M

R1

R2

R3

“Knots in R3”

R123

R123

R123

Extend any V : {u-knots} → A to “singu-
lar u-knots” using V ( ) := V (!)−V ("),
and think “differentiation”.
Declare “V is of type m” iff V (m+1) ≡ 0,
think “polynomial of degree m”.
W = V (m) roughly determines V ; W ∈
A⋆

m = (Km/Km+1)
⋆ with

Am :=





m chords





/
4T

Need an expansion Z : {u-knots} → A =⊕Am.

All the same, except
V (Q) := V (!) − V (P)
V (R) := V (P) − V (")
Av := {“arrow diagrams”}/6T

Need a Z : {v-knots} → Av.

All the same, except

Aw := Av/TC

Need a Z :
{w-knots} → Aw.

++

Aw ∼= Awt :=

only

=

=

=

−

−

Knots are the wrong objects to study in knot
theory! They are not finitely generated and
they carry no interesting operations.

Theorem (∼). A homomorphic Z is
the same as a “Drinfel’d Associator”.

Knotted Trivalent Graphs

Switch to w-knotted trivalent tangles,

wKTT := CA
〈!,", Y

〉
.

Theorem (∼). A homomorphic Z is equiv-
alent to proving the Kashiwara-Vergne
statement.
Statement (∼, KV, 1978) (proven
Alekseev-Meinrenken, 2006). Convolu-
tions of invariant functions on a group
match with convolutions of invariant
functions on its Lie algebra: for any finite
dim. Lie group G with Lie algebra g,

(Fun(G)Ad G, ⋆) ∼= (Fun(g)Ad G, ⋆).

(Closely related to the “orbit method” of
representation theory).

w
= 6=

OC UC

=

+ +

This screams, if you speak the language, LIE ALGEBRAS.
And indeed we have
Theorem. Given a finite dimensional Lie algebra g, there
is T : Aw → U(Ig) := U(g ⋉ g⋆

ab).

Z is a Quantum Group?

More precisely, a ho-
momorphic Z ought to
be equivalent to the
Etingof-Kazhdan theory
of deformation quantiza-
tion of Lie bialgebras.

So Far: Invariants for any (g, R):

{knots} Z−−−→
high

A Tg−−→
low

U(g) TrR−−−→ C
m 1 2 3 4

dim Av
m 2 7 27 139

dim Liem 2 7 27 ≥ 122

in K4

in A4

More at http://www.math.toronto.edu/~drorbn/Talks/KSU-090407/
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More at http://www.math.toronto.edu/~drorbn/Talks/Bogota-0902/
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More at http://www.math.toronto.edu/~drorbn/Talks/Copenhagen-081009/
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More at http://www.math.toronto.edu/~drorbn/Talks/Copenhagen-081009/
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The Penultimate Alexander Invariant

"God created the knots,

all else in topology

is the work of mortals"

Leopold Kronecker (paraphrased)

Visit!

Edit!
http://katlas.org

Dror Bar−Natan: Talks: Sandbjerg−0810:

A Definition of the MVA

Relations by J. Murakami

The Naik−Stanford Double Delta Relation

This handout and further links are at
http://www.math.toronto.edu/~drorbn/Talks/Sandbjerg−0810/

Joint with
Jana Archibald

* Have "circuits" with "ends",
* Can be wired arbitrarily.

Circuit Algebras

* May have "relations" − de−Morgan, etc.
Example

Flip Flop

A J−K

K

J

CP
Q

Q’

A Relation by
A. Vaintrob

A Relation by H. Murakami There’s Lots More!

Why Works?

c b

xy
a

c

yx
a b

(From [Ar])

a b c
c −1 1 − x y

a b c
c −y x − 1 1

A =
(−)i+jdet(Mj

i )

wi(ti−1)

∏
k t

rot(k)−µ(k)
2

k

(From [MJ])

(From [NS])

xy(1 − y + y2)

(From [MH])
(From [Va])

H. Murakami

J. Murakami

S. Naik T. Stanford

image
not
found

Our Goal. Prove all these relations uniformly, at maximal
confidence and minimal brain utilization.
⇒ We need an “Alexander Invariant” for arbitrary tangles,
easy to define and compute and well-behaved under tangle
compositions; better, “virtual tangles”.

V T = CA
〈!,"〉

/R23 = PA
〈!,",P〉

/R23, VR123, MR3

Reminders from linear algebra. If X is a (finite) set,

Λk(X) := 〈k-tuples in X , modulo anti-symmetry〉

Λtop(X) := 〈|X|-tuples in X , modulo anti-symmetry〉
Λ1/2(X) := 〈(|X|/2)-tuples in X , modulo anti-symmetry〉 .

If Y ⊂ Xm, the “interior multiplication” iY : Λk(X) →
Λk−m(X) is anti-symmetric in Y .

Definition. An “Alexander half density with input strands
X in and output strands Xout” is an element of

AHD(X in, Xout) := Λtop(Xout) ⊗ Λ1/2(X in ∪ Xout).

Often we extend the coefficients to some polynomial ring
without warning.
Definition. If αi ⊗ pi ∈ AHD(X in

i , Xout
i (for i = 1, 2), and

G = (X in
1 ∪X in

2 )∩ (Xout
1 ∪Xout

2 ) is the set of “gluable legs”,
the “gluing” in AHD(X in

1 ∪ X in
2 − G, Xout

1 ∪ Xout
2 − G) is

iG(α1 ∧ α2) ⊗ iG(p1 ∧ p2).

Claim. This makes AHD a circuit algebra.

Definition. The “Penultimate Alexander Invariant” is de-
fined using

pA :
k j!
l i

7→ (j ∧ k) ⊗
(

l ∧ i + (ti − 1)l ∧ j − tll ∧ k
+i ∧ j + tlj ∧ k

)

pA :
l k"
i j

7→ (k ∧ l) ⊗
(

tji ∧ j − tji ∧ l + j ∧ k
+(ti − 1)j ∧ l + k ∧ l

)

Challenge. Can you categorify this?

Weaknesses. Exponential, no understanding of cablings,
no obvious “meaning”. The ultimate Alexander invariant
should address all that...

Every “rook arrangement” in the above picture must have
exactly l rooks in the yellow zone and l rooks in the purple
zone. So for T1 we only care about the minors in which
exactly l of the 2l middle columns are dropped, and the
rest is signs...

More at http://www.math.toronto.edu/~drorbn/Talks/Sandbjerg-0810/
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We Mean Business
Dror Bar−Natan: Talks: Sandbjerg−0810: The Penultimate Alexander Invariant:

More at http://www.math.toronto.edu/~drorbn/Sandbjerg−0810/pA.nb

Does this specify

the Alexander

polynomial?

Question.

1 (* WP: Wedge Product *)

2 WSort[expr_] := Expand[expr /. w_W :> Signature[w]*Sort[w]];

3 WP[0, _] = WP[_, 0] = 0;

4 WP[a_, b_] := WSort[Distribute[a ** b] /.

5 (c1_. * w1_W) ** (c2_. * w2_W) :> c1 c2 Join[w1, w2]];

6
7 (* IM: Interior Multiplication *)

8 IM[{}, expr_] := expr;

9 IM[i_, w_W] := If[FreeQ[w, i], 0,

10 -(-1)^Position[w, i][[1,1]]*DeleteCases[w, i] ];

11 IM[{is___, i_}, w_W] := IM[{is}, IM[i, w]];

12 IM[is_List, expr_] := expr /. w_W :> IM[is, w]

13
14 (* pA on Crossings *)

15 pA[Xp[i_,j_,k_,l_]] := AHD[(t[i]==t[k])(t[j]==t[l]), {i,l}, W[j,k],

16 W[l,i] + (t[i]-1)W[l,j] - t[l]W[l,k] + W[i,j] + t[l]W[j,k] ];

17 pA[Xm[i_,j_,k_,l_]] := AHD[(t[i]==t[k])(t[j]==t[l]), {i,j}, W[k,l],

18 t[j]W[i,j] - t[j]W[i,l] + W[j,k] + (t[i]-1)W[j,l] + W[k,l] ]

19
20 (* Variable Equivalences *)

21 ReductionRules[Times[]] = {};

22 ReductionRules[Equal[a_, b__]] := (# -> a)& /@ {b};

23 ReductionRules[eqs_Times] := Join @@ (ReductionRules /@ List@@eqs)

24
25 (* AHD: Alexander Half Densities *)

26 AHD[eqs_, is_, -os_, p_] := AHD[eqs, is, os, Expand[-p]];

27 AHD /: Reduce[AHD[eqs_, is_, os_, p_]] :=

28 AHD[eqs, Sort[is], WSort[os], WSort[p /. ReductionRules[eqs]]];

29 AHD /: AHD[eqs1_,is1_,os1_,p1_] AHD[eqs2_,is2_,os2_,p2_] := Module[

30 {glued = Intersection[Union[is1, is2], List@@Union[os1, os2]]},

31 Reduce[AHD[

32 eqs1*eqs2 //. eq1_Equal*eq2_Equal /;

33 Intersection[List@@eq1, List@@eq2] =!= {} :> Union[eq1, eq2],

34 Complement[Union[is1, is2], glued],

35 IM[glued, WP[os1, os2]],

36 IM[glued, WP[p1, p2]]

37 ]] ]

38
39 (* pA on Circuit Diagrams *)

40 pA[cd_CircuitDiagram, eqs___] := pA[cd, {}, AHD[Times[eqs], {}, W[], W[]]];

41 pA[cd_CircuitDiagram, done_, ahd_AHD] := Module[

42 {pos = First[Ordering[Length[Complement[List @@ #, done]] & /@ cd]]},

43 pA[Delete[cd, pos], Union[done, List @@ cd[[pos]]], ahd*pA[cd[[pos]]]]

44 ];

45 pA[CircuitDiagram[], _, ahd_AHD] := ahd

Comments online 2. W[i1,i2,...] represents
i1 ∧ i2 ∧ . . .. To sort it we Sort its arguments and
multiply by the Signature of the permutation
used. 3. The wedge product of 0 with anything
is 0. 4-5. The wedge product of two things in-
volves applying the Distributeive law, Joining
all pairs of W’s, and WSorting the result. 8. Inner
multiplying by an empty list of indices does noth-
ing. 9-10. Inner multiplying a single index yields
0 if that index is not pressent, otherwise it’s a sign
and the index is deleted. 11-12. Aftwrwards it’s
simple recursion. 15-18. For the crossings Xp and
Xm it is straightforward to determine the incom-
ing strands, the outgoing ones, and the variable
equivalences. The associated half-densities are
just as in the formulas. 21-23. The technicalities
of imposing variable equivalences are annoying.
26. That’s all we need from the definition of a
tensor product. 27-28. Straightforward simplifi-
cations. 29. The (circuit algebra) product of two
Alexander Half Densities: 30. The glued strands
are the intersection of the ins and the outs. 32-
33. Merging the variable equivalences is tricky
but natural. 34-35. Removing the glued strands
from the ins and outs. 36 The Key Point. The
wedge product of the half-densities, inner with
the glued strands. 40-45. A quick implementa-
tion of a “thin scanning” algorithm for multiple
products. The key line is 42, where we select the
next crossing we multiply in to be the crossing
with the fewest “loose strands”.
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“w-knots”

(The program also prints “False”
when appropriate, and computes Alexander polynomials)
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miles

away

or
unzip

unzip

delete

connect

delete

Projectivization, w−Knots, Kashiwara−Vergne and Alekseev−Torossian

Alekseev Torossian

{ ,...}

Vassiliev

Goussarov

Dror Bar−Natan: Talks: MSRI−0808: "An Algebraic Structure"

Algebraic

Projectivization?

Graded Equations Examples

So What?

This is just a part of the Alekseev−Torossian work!

Knotted Trivalent Graphs

Knot
Theory

X−S. Lin

O3 O4

O1

•1
O2

•σ
ψ1

ψ3

ψ4

ψ2

O(,) =

The Categorification Speculative Paradigm.
• Every object in math is the Euler characteristic of a complex.
• Every operation in math lifts to an operation between complexes.
• Every identity in mathematics is true up to homotopy.

• Has kinds, objects, operations, and maybe con-
stants.
• Perhaps subject to some axioms.
• We always allow formal linear combinations.

Defining projO. The augmentation “ideal”:

I = IO :=

{
formal differences of ob-
jects “of the same kind”

}
.

Then In :=

{
all outputs of algebraic
expressions at least n of
whose inputs are in I

}
, and

projO :=
⊕

n≥0

In/In+1

(
has same kinds and opera-
tions, but different objects
and axioms

)
.

n
objects of

kind 3

o
=

The Projectivization Tentative Speculative Paradigm.
• Every graded algebraic structure in mathematics is the projec-

tivization of a plain (“global”) one.
• Every equation written in a graded algebraic structure is an

equation for a homomorphic expansion, or for an automorphism
of such.

• e(x+ y) = e(x)e(y) in Q[[x, y]].
• The pentagon and hexagons in A(↑3,4).
• The equations defining a QUEA, the work of Etingof and Kazh-

dan.

• Related to the Kashiwara-Vergne Conjecture!
• Will likely lead to an explicit tree-level associator, a linear equa-

tion away from a 1-loop equation, two linear equations away from
a 2-loop associator, etc.!
• A baby version of the QUEA equations; we may be on the right

tracks!

sder↔ tree-level A
tder↔ more

• The Alekseev-Torossian equations
in U(sdern) and U(tdern).

F ∈ U(tder2); F−1e(x+ y)F = e(x)e(y) ⇐⇒ F ∈ Sol0

Φ = ΦF := (F 12,3)−1(F 1,2)−1F 23F 1,23 ∈ U(sder3)

Φ1,2,3Φ1,23,4Φ2,3,4 = Φ12,3,4Φ1,2,34 “the pentagon”

t =
1

2
(y, x) ∈ sder2 satisfies 4T and r = (y, 0) ∈ tder2 satisfies 6T

R := e(r) satisfies Yang-Baxter: R12R13R23 = R23R13R12

also R12,3 = R13R23 and F 23R1,23(F 23)−1 = R12R13

τ(F ) := RF 21e(−t) is an involution,Φτ(F ) = (Φ321
F )−1

Solτ0 := {F : τ(F ) = F} is non-empty; for F ∈ Solτ0,

e(t13 + t23) = Φ213e(t13)(Φ231)−1e(t23)Φ321

and e(t12 + t13) = (Φ132)−1e(t13)Φ312e(t12)Φ

Theorem. KTG is generated by the unknotted , and the Möbius
band, with identifiable relations between them.
Theorem. Z(,) is equivalent to an associator Φ.

Theorem. {ribbon knots} ∼ {uγ : γ ∈ O(@), dγ =©©}.
Hence an expansion for KTG may tell us about ribbon knots, knots
of genus 5, boundary links, etc.

O =

Knot Theory Anchors.
• (O/In+1)? is “type n invariants”.
• (In/In+1)? is “weight systems”.
• projO is A, “chord diagrams”.

Warmup Examples.
• The projectivization of a group is a graded as-

sociative algebra.
• A quandle: a set Q with a binary op ∧ s.t.

1 ∧ x = 1, x ∧ 1 = x ∧ x = x, (appetizers)
(x ∧ y) ∧ z = (x ∧ z) ∧ (y ∧ z). (main)

projQ is a graded Lie algebra: set v̄ := (v − 1)
(these generate I!), feed 1+x̄, 1+ȳ, 1+z̄ in (main),
collect the surviving terms of lowest degree:

(x̄ ∧ ȳ) ∧ z̄ = (x̄ ∧ z̄) ∧ ȳ + x̄ ∧ (ȳ ∧ z̄).
An Expansion is Z : O → projO s.t. Z(In) ⊂
(projO)≥n and ZIn/In+1 = IdIn/In+1 (A “univer-
sal finite type invariant”). In practice, it is hard
to determine projO, but easy to guess a surjec-
tion ρ : A → projO. So find Z ′ : O → A with
Z ′(In) ⊂ A≥n and Z ′In/In+1 ◦ ρn = IdAn :

O Z′ //

Z

""FF
FF

FF
FF

F A
ρ

²²²²

oo // An

projO oo // (projO)n

Z′
In/In+1

OO Can you make
this diagram
less confusing?

Homomorphic Expansions are expansions
that intertwine the algebraic structure on
O and projO. They provide finite / com-
binatorial handles on global problems.
The Key Point. If O is finitely presented, finding
a homomorphic expansion is solving finitely many
equations with finitely many unknowns, in some
graded spaces.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MSRI-0808/
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We Mean Business

Visit!

Edit!
http://katlas.org

Leopold Kronecker (paraphrased)

"God created the knots,

all else in topology is the work of mortals"

R3 R4 VR3 OC UC

Dror Bar−Natan: Talks: MSRI−0808: Projectivization, w−Knots, Kashiwara−Vergne and Alekseev−Torossian:

http://www.math.toronto.edu/~drorbn/Talks/MSRI−0808/
This handout and further links are at

Trivalent (framed) w−tangles:

Circuit Algebras
* Have "circuits"
  with "ends"
* Can be wired arbitrarily.
* May have "relations" − de−Morgan, etc.

w−braids describe flying rings:

D

Flip Flop

A J−K

K

J

CP
Q

Q’
Flip Flop

= = = = =

= PA R1234, F, VR1234, D, OC.

Partial Dictionary.

+7→The Map α : Atreen → Accn :

Theorem. α is an injection on Atreen
∼= U(sdern). Further-

more, there is a simple charactarization of im α, so we can
tell “an arrowless element” when we see it.

Disclaimer. Orientations, rotation numbers, framings, the ver-
tical direction and the cyclic symmetry of the vertex may still
make everything uglier. I hope not.

further operations: delete, unzip.

w-knotted objects
describe ribbon
surfaces in R4.

(and π1 is preserved)

R123, R4 (for vertices), F, OC.

(=tangles in thick surfaces, modulo stabilization)

=

wTT = CA

For the Experienced
(and sharp-eyed)

The Main Theorem. (approximate, false as stated) F ’s in Solτ0
are in a bijective correspondance with tree-level associators for
ordinary paranthesized tangles (or ordinary knotted trivalent
graphs) / with homomorphic expansions for trivalent w-tangles
/ with solutions of the Kashiwara-Vergne problem.
Extra. Restricted to knots, we get precisely the Alexander
polynomial.

The “Chord Diagrams” — Awtn .

The “Jacobi Diagrams” — Accn .

Theorem. Awtn is Accn is U(tdern).

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MSRI-0808/
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Kontsevich
Integral

The weight

systems

{

The Kontsevich Integral for Braids

Dror’s Dream / Obsession:
"Unify" quantum groups − find one object that contains all.

Example:

solution in
Why care?

Quantum groups
computable
invariants

make!

Visit!

For now, a "deformation of the trivial"

katlas.org

The Magnus and Exponential Expansions

What’s "An Expansion"?

Think duals! (Quasi?) Natural Expansions

Virtual Braids

http://www.math.toronto.edu/~drorbn/Talks/Hanoi−0708/; thanks to Jana Comstock, Peter Lee, Scott Morrison, Dylan Thurston.

Dror’s Guess:
on virtual braids?
groups as (quasi?)−natural expansions

L. Kauffman

One invariant to rule them all:

{ } chord
diagrams

mod
relations

HOMFLY,
Jones,

Alexander,

Kauffman
and All{ } { }

Easy! Universal! A Morphism! Unique! An Isomorphism!

of the major equations:

A unified object exists; we’ll need:
1. Expansions as in Lin / universal finite type invariants.
2. Naturality / functoriality.
3. Knotted graphs, especially trivalent.
4. Associators following Drinfel’d.
5. The work of Etingof and Kazhdan on bialgebras.
6. Virtual braids / knots / knotted graphs.
7. Polyak (LMP 54) & Haviv (arXiv:math/0211031) on arrow diagrams.

Drinfel’d Etingof Kazhdan Haviv

modulo

Reidemeister
moves,

but the linkages between
crossings are "virtual":

Crossings,

Can you interpret quantum

No, but the effort
will be worthwhile. Leopold Kronecker (modified)

"God created the knots,
all else in topology is the work
of mortals"

Note the relation:

or or

Riverside, April 2000

Dror Bar−Natan: Talks: Hanoi−0708:

What is a "Quantum Group"?

Dror’s Guess:

Question

Expansions for Groups

Kyoto, September 2001

Following Lin:

crossings are real, strands go virtual

Understand quantum groups (I don’t).
The bigger quest:

(and when construction ends, we’ll dump the scaffolding)

Edit!

(light)
(heavy)

So all
expansions

are
"equivalent"

Vaughan’s Hierarchy
(generalized, unauthorized)

Computation

Formula

Dream

Theory

Proof

P
t1

t2

t3

C

z1 z′1

=

(∆⊗ 1)∆ = (1⊗∆)∆ R−1∆R = ∆op

(∆⊗ 1)R = R23R13 (1⊗∆)R = R12R13

U(g))⊗∗[[~]]

Z1,2 : Gn =

(
free group

on
X1, . . . , Xn

)
→ Ân =




completed free
associative
algebra on
x1, . . . , xn




by Xi 7→ 1 + xi or exi

X−1
i 7→ 1− xi + x2

i − . . . or e−xi .

CG = I0 ⊃ I1 ⊃ I2 ⊃ I3 ⊃ · · ·
C(G) := lim←−k CG/I

k → · · · → CG/I2 → CG/I → 0

isomorphism Z : C(G)→ A(G) where

is filtered by FmC(G) := lim←−k>m I
m/Ik and

A(G) := grC(G) = ⊕̂Im/Im+1.

C(G)? are “finite type invariants”.
A(G)? are “weight systems”.
Z is a “universal finite type invariant”.

ZK

∑∫

m, t1<...<tm

P={(zi,z′i)}

DP

(2πi)m

m∧

i=1

dzi − dz′i
zi − z′i

A :=

4T:

loc:

M. Kontsevich

G 7→ C(G) and G 7→ A(G) are functors. Can you choose a ((quasi?) natural)
Z satisfying C(G1)

C(∆)
//

Z(G1)

²²

C(G2)

Z(G2)

²²

G1
∆ // G2




quasi: A′(∆) =
J−1

∆ A(∆)J∆ ?
D∆A(∆) ?




A(G1)
A(∆) // A(G2)

Perhaps just on a subcategory of Groups? Perhaps Braids with strands
addition, deletion and doubling:

=

two diagrams

of v21

modulo loc and “6T”:

+ +=

+ +

++

=

M. Polyak

Definition. Lie bialgebras.
The g in a sum g⊕ g?

which in itself is a Lie
algebra with subalge-
bras g and g?, and
in which the tautolog-
ical metric is invari-
ant.
Why bother?
Their deforma-
tions are quantum
groups, and their
diagrammatic univer-

salization is
−→A .

1. ι is automatic.

2. ρ is well-defined.

7. grZ2 is the identity.

6. ρ is surjective.

5. Define Z2.

4. Z0 descends to Z1.

3. Z0|Im ⊂ FmAn.

T. Ohtsuki

With Z0 = Z1 or Z0 = Z2:

Gn
Z0

//

ι

²²

Ân

ρ
xi
↓

Xi−1²²
C(Gn)

Z1

::uuuuuuuuuu
Z2

// A(Gn)

9. ρ is an isomorphism.

8. Z2 is an isomorphism.

I := {∑ aigi :
∑
ai = 0} ⊂ CG

A filtration-preserving

(as well as a few minor equations).

Polyak’s
−→A .

= =

See Lin’s “Power Series Expansions and Invariants of Links”,
1993 Georgia International Topology Conference, AMS/IP
Studies in Adv. Math. 2 (1997) 184–202.

Z1,2 are Expansions.

Everything generalizes, step 2
sometimes becomes tricky.

Which other groups / groupoids /

categories have expansions?

More at http://www.math.toronto.edu/~drorbn/Talks/Hanoi-0708/

178

http://www.math.toronto.edu/~drorbn/Talks/Hanoi-0708/


unzip

delete

Knotted Trivalent Graphs (KTG’s):

The 5−term relation:

=

=

� := Z(,);Claim. With the above relation
is equivalent to the Drinfel’d’s pentagon equation.

:= � 2 A("3)
1

2

3

4

3 421

3

1

2

4

31 2 4

= (�
 1) � (1
�
 1)(�) � (1
�) 2 A("4)
= (�
 1
 1)(�) � (1
 1
�)(�) 2 A("4)

Proof.

Dror’s Dream Map of Quantum Groups        Knot Theory

Night Time
Dreams

Day Time
Dreams

K = KTG

This is the Drinfel’d

theory of Associators!

KV = K(T)VG

translucent
vertices

K

C  A  T  E  G  O  R  I  F  I  C  A  T  I  O  N

specific

quantum 

groups

#

A La Carte Drawings

K̂ gr K̂

A

U(sl(2))

U(sl(n))

Wsl(2)

Wsl(n)

A /tv

gr K̂ /tv

K̂ /tv

Z /tv

−→A

gr K̂V

K̂V

http://www.math.toronto.edu/~drorbn/Talks/Kyoto−0705Dror Bar−Natan: Talks: Kyoto−0705

Drinfel’d, Etingof−Kazhdan

Hallucinations

about

Khovanov

Etingof − Kazhdan

about

about Reshetikhin

− Turaev & quasi

triangular quasi

Hopf algebras

Reality
of associators, FT

invariants and

co−commutative

quasi−Hopf

algebras

Generators

Knotted Trivalent Graphs

with operations: GT

The unipotent completion

GRT

Z

etc.

Relations

A 5 term relation,
a 6 term relation,
and lesser ones.

Why should we care?
1. Usefulness!
2. Beauty!
3. Guidance!
4. Confidence!
5. Grothendieck−Teichmuller!

virtual knots

Knotted (trivalent?)

Some harsh reality.

EK mix tangles and braids

and algebras and Verma modules

W

Gens and rels?

u

d

Genus g knots, ribbon knots, boundary links and more...

Definable subsets:

Prehistoric

Etingof Kazhdan J. Murakami Ohtsuki Kauffman Goussarov Polyak Viro D. Thurston HavivDrinfel’d

Fushimi−Inari

More at http://www.math.toronto.edu/~drorbn/Talks/Kyoto-0705/
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More at http://drorbn.net/index.php?title=07-1352/Class_Notes_for_February_13 and at
http://www.math.toronto.edu/~drorbn/Talks/Aarhus-1305/ (day 2)
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D. Eisenbud

L. RozanskyM. Khovanov
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1
d :=

0
x

y

Dror Bar−Natan at UIUC, March 11, 2004, http://www.math.toronto.edu/~drorbn/Talks/UIUC−050311/

d :=
0

with:Likewise, set

or

Local Differentials and Matrix Factorizations

Quantum algebra:

Claim. If thenba=qab

, , , , ,V=

where Conjecture: (I. Frenkel, though he may disown this version)
1. Every object in mathematics is the Euler

characteristic of a complex.
2. Every operation in mathematics lifts to an

operation between complexes.
3. Every identity in mathematics is true up

to homotopy at complex−level. I. Frenkel

1 2

d

Q=d

See Khovanov and Rozansky, arXiv:math.QA/0401268

direct sums and tensor products.
A category, with "complexes", morphisms, homotopies,

Set P=dExample:

Matrix factorizations:

(Kh−Ro) Taking homology and then the graded Euler

= [n−1]

Enseignement Math. 44 (1998)
[MOY] := Murakami, Ohtsuki, Yamada,

++ =

= + [n−2]

= [2]=

characteristics, we get the [MOY] relations:
Theorem:

4

Set L=d

3

21

; ...;

Local state spaces:

π
y

x
1

x

=(x−y)
0

(*),+.-0/21�3 14 57698;:'< =?>A@ ) 5 -B1DC 5 EGF
HJILKNMPORQTSUQ$V#V#VWQTSWXDY'Z\[EGF
H7]^IUK_M`E2OaHJIWE*bAH2IdcececeEfFgH2Ih[i F j'k I K_M EfFgH\]lIE j H\]lIWEfFnm j H\]lI V

0

3x:=

01101100

Tagged doodles:

o�prq^shtvu2wyx

=0 =

where

d

z^{}|
~����a�L�����}��,��� �'�

d

dd=

Local differentials:

(deg d = n+1)

per+2

2−n−n3−2n−1

1−n0
(degrees in orange)

(deg d = n+1)

More at http://www.math.toronto.edu/~drorbn/Talks/UIUC-050311/
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L. Rozansky

V

M. Khovanov

U

:

UU

UU

U

U

U

U

U

U

U

U

−n

10

+1−n

A computation example:

1 dy

dx

dz

dx^dy

dx^dz

dy^dz

dx^dy^dz
^dy

^dx

^dz

++

+
+ +

+

−
−

+
−

+

000

001

010

100

011

110

101 111

00*

0*0

*00

0*1

*01

01*

*10

10*

1*0

*11

1*1

11*

:

More
crossings?

Signs?

1

0

2

3

+3−3n

+2−3n +1−3n

−3n

4. Is this computable?
3. Can you take the Euler characteristic before taking homology?
2. Where is the relationship with gl(n), representations and intertwiners?
1. The ugly formulas for L, Q, U, V; from where they come?

Why am I happy?

(height in blue)Crossings.

Dror Bar−Natan at UIUC, March 11, 2004, http://www.math.toronto.edu/~drorbn/Talks/UIUC−050311/
The Khovanov−Rozansky Complex
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00*

001

000 1*1

11*

0*1
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*00

0*0

*11

1*0

10*

111

110

101

011

100

010

except the physics
(Almost) all is understood,

(ordinary Khovanov homology)
The Jones/Kauffman case.

See my paper "Khovanov homology for tangles and cobordisms",

http://www.math.toronto.edu/~drorbn/papers/Cobordism/

−

+n−1+n

0−1

I

I I

II

II I I

I
I

I

"God created the knots, all else in topology is the work of mortals."

I

I

Leopold Kronecker (modified)

I

II

II

II

I I

I

More at http://www.math.toronto.edu/~drorbn/Talks/UIUC-050311/
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**

*

the red star is your eye.

lk=2

number
linking
Gaussian
The* count

with
signs

** lk(
2
1 (signs)

chopsticks
vertical

) = Σ
Carl Friedrich Gauss

]�^6_a`8b�cedgfihkjmlFnpo�q�rTsFnutwv�x�y)sknLlFnusFr)nzk{ q�|�q�sFrCyH} ^ { skt ` ~ d

:=Span
oriented vertices

& more relations
AS: + =0

Theorem. Modulo Relations, Z(K) is a knot invariant!

When deforming, catastrophes occur when:
A plane moves over an
intersection point −
Solution: Impose IHX,

(see below)

An intersection line cuts
through the knot −
Solution: Impose STU,

(similar argument)

The Gauss curve slides
over a star −
Solution: Multiply by
a framing−dependent
counter−term.

== − −

(not shown here)

���U�\�
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W
itten

This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto−0407

XHI

The IHX Relation

*

It all is perturbative Chern−Simons−Witten theory:

Thus we consider the generating function of all stellar coincidences:

D:= # of edges ofe
:= # of chopsticksc
:= # of starsN

Oporto Meeting on Geometry, Topology and Physics, July 2004

Dror Bar−Natan, University of Toronto

From Stonehenge to Witten Skipping all the Details

H
O

I

X

K=D=

It is well known that when the Sun rises on midsummer’s morning
over the "Heel Stone" at Stonehenge, its first rays shine right
through the open arms of the horseshoe arrangement. Thus
astrological lineups, one of the pillars of modern thought, are
much older than the famed Gaussian linking number of two knots.

Recall that the latter is itself an astrological construct: one of
the standard ways to compute the Gaussian linking number is to
place the two knots in space and then count (with signs) the
number of shade points cast on one of the knots by the other knot,
with the only lighting coming from some fixed distant star.

James H SimonsShiing−shen Chern

(modified)

is the work of man."
all else in topology

Dylan Thurston

"God created the knots,

Leopold Kronecker

Richard Feynman

More at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/
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:=Span
oriented vertices

& more relations
AS: + =0

Z(K) is a knot invariant!Modulo Relations,Theorem.

sufficiently large alternations as on the right
All knot polynomials (Conway, Jones, etc.)
are of finite type.
(Taylor’s theorem) Finite type invariants
separate knots.
Z(K) is a universal finite type invariant!

Related to Lie algebras

[[x,y],z] [y,[x,z]]

x y x y

The Miller Institute knot

x

St
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]_^U`\a

yxxy
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Sophus Lie

− −

− −=

=

=

=
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Dror Bar−Natan, University of Toronto

Oporto Meeting on Geometry, Topology and Physics, July 2004

From Stonehenge to Witten − Some Further Details

This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto−0407

We the generating function of all stellar coincidences:

N := # of stars
c := # of chopsticks
e := # of edges of D

y

[x,y]

* * * count
with
signs

When deforming, catastrophes occur when:
A plane moves over an
intersection point −
Solution: Impose IHX,

An intersection line cuts
through the knot −
Solution: Impose STU,

The Gauss curve slides
over a star −
Solution: Multiply by
a framing−dependent
counter−term.

== − −

is finite type (Vassiliev, Goussarov) if it vanishes onDefinition.

Theorem.

Conjecture.

Theorem.
(sketch: to dance in many parties, you need many feet).

V

K=D=

(ab)(cd)

a((bc)d)
((ab)c)d

(ab)(cd)

a(b(cd))

((ab)c)d

a((bc)d)

a(b(cd)) Turaev

Yang

Baxter

Reshetikhin

the Jones polynomial
Kauffman’s bracket and

Planar algebra and the Yang−Baxter equation

Drinfel’d

Parenthesized tangles, the pentagon and hexagon

The Kauffman polynomial

The Jones polynomial

"God created the knots, all else in topology is the work of man."

Przytycki
The HOMFLYPT polynomial

is often interesting:

γ

α

cb
βa
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b ca

Dylan Thurston

d e f

b ca

d e f

h
i

j
i

j
h

2

4

Goussarov

Vassiliev

a(bc)

More precisely, let be a Lie algebra with an
orthonormal basis, and let be a representation. Set

and then

(ca)b

(ac)b

a(cb)(ab)c

(a(bc))d

c(ab)

(a(bc))d

a(b(cd))((ab)c)d

More at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/
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light blue: height shifts
orange: degree shifts

4Tu−2

The Reduction Lemma. If φ is an isomorphism then the complex

[C]

0

@

α
β

1

A

//

[
b1

D

]
0

@

φ δ
γ ε

1

A

//

[
b2

E

] “

µ ν
”

// [F ]

is isomorphic to the (direct sum) complex

[C]

0

@

0
β

1

A

//

[
b1

D

]
0

@

φ 0
0 ε − γφ−1δ

1

A

//

[
b2

E

] “

0 ν
”

// [F ]

=0

=2

G
en

er
al

C
ro

ss
in

gs

+1 +20 +1

−2 −1−1 0

4TuS:

T:

11*

Jeremy Green

standard data:

H

Some functors.

Gad Naot

(Lee’s spectral sequence and Rasmussen’s invariant also recoverable)

+1

−1

The work of Green.

Delooping:

Kurt Reidemeister

http://www.math.toronto.edu/~drorbn/Talks/UQAM−051001/

The work of Naot.

The case of
tangles:

10

11

01

00

1**0

*10*

July 10, 2005
The work of Vulcan

Invariant!

Kom(Mat(<Cob> / {S, T, 4Tu})) / homotopyIn 

classical

<−>
<+> <+>

<−>2
<0> <0>

0

reduced Lee

<−>
<+> <+>

<−>2

2

<0>
<2>

<−2>

<2>
<0>

<−2>

?
−

−

+

+

h

2t−h

2

o
i

−3 −2 −1
−9
−7
−5
−3
−1

0

<...>: Formal lin. comb.Cob: Cobordisms

(and the invariant of the 48 crossing T(8,7) is computable in minutes...)

H −20−2−3 −6−8
0

−1

Mat: MatricesKom: Complexes
Where does it live?

0

−1−2

−3

−4

−4

−5

−5 −3

−4−5

−6
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01*

00*

001

000 1*1

0*1

*01

*10

*00

*11

0*0

1*0

Dror Bar−Natan: Talks: UQAM−051001:

010

100

011

101

110

111

10*

Let      denote a tube to

(the curtain), and let H denote

A Shrek surface with 7 boundaries
(one distinguished), 3 handles and

2 tubes

... so the invariant is valued in complexes over a category with just

−H

one object and morphisms in Z[H]; all is graded and degH=−2.

<surfaces>/4Tu is freely generated by Shrek surfaces

0

2

1

3

The universal invariant of the left−handed trefoil is

4

5

6

a handle on the curtain. Then

the distinguished component

More at http://www.math.toronto.edu/~drorbn/Talks/UQAM-051001/
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4Tu AND THE “TRUE” SKEIN KHOVANOV HOMOLOGY

DROR BAR-NATAN

4Tu :

S : T :

What is it good for?

(1) Cutting necks:

2

(2) Recovers the good old Khovanov theory,

F(#) = ε :
{

1 7→ v+ F(N) = η :

{
v+ 7→ 0

v− 7→ 1

F( ) = ∆ :

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−
F( ) = m :

{
v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v− v− ⊗ v− 7→ 0.

(3) Trivially extends to tangles.
(4) Well suited to prove invariance for cobordisms.
(5) Recovers Lee’s theory,

∆ :

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v− + v+ ⊗ v+

m :

{
v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v− v− ⊗ v− 7→ v+.

(6) Leads to a new theory (over Z/2 and with deg h = −2),

∆ :

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+ + hv+ ⊗ v+

v− 7→ v− ⊗ v−
m :

{
v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v− v− ⊗ v− 7→ hv−.

(7) Trivially extends to knots on surfaces.
(8) Non-trivially recovers Khovanov’s c,

ε :
{

1 7→ v+ η :

{
v+ 7→ 0

v− 7→ −c

∆ :

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+ + cv− ⊗ v−
v− 7→ v− ⊗ v−

m :

{
v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v− v− ⊗ v− 7→ 0.

(Added June 29, 2004: what appeared to work didn’t quite. The recovery of Khovanov’s c remains open).

“God created the knots, all else in topology is the work of man.”

Leopold Kronecker (modified)

URL: http://www.math.toronto.edu/~drorbn/papers/Cobordism (and see the ‘‘GWU’’ handout)

Date: May 30, 2004.
1

More at http://www.math.toronto.edu/~drorbn/Talks/GWU-050213/
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A Quick Reference Guide to Khovanov’s Categorification of the Jones Polynomial
Dror Bar-Natan, June 12, 2002

The Kauffman Bracket: 〈∅〉 = 1; 〈©L〉 = (q + q−1)〈L〉; 〈0〉 = 〈 1
0−smoothing

〉 − q〈 H
1−smoothing

〉.
The Jones Polynomial: Ĵ(L) = (−1)n−qn+−2n−〈L〉, where (n+, n−) count (!,") crossings.
Khovanov’s construction: JLK — a chain complex of graded Z-modules;

J∅K = 0→ Z
height 0

→ 0; J©LK = V ⊗ JLK; J0K = Flatten

(
0→ J1K

height 0

→ JHK{1}
height 1

→ 0

)
;

H(L) = H (C(L) = JLK[−n−]{n+ − 2n−})
V = span〈v+, v−〉; deg v± = ±1; qdimV = q + q−1 with qdimO :=

∑

m

qm dimOm;

O{l}m := Om−l so qdimO{l} = ql qdimO; ·[s] : height shift by s;

( )
−→

(
V ⊗ V m→ V

)
m :

{
v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v− v− ⊗ v− 7→ 0

( )
−→

(
V

∆→ V ⊗ V
)

∆ :

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+
v− 7→ v− ⊗ v−
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Example: Â q−2 + 1 + q2 − q6 ·(−1)n−qn+−2n−
−−−−−−−−−−−−−−−→
(with (n+, n−) = (3, 0))

q + q3 + q5 − q9.

(q + q−1)2 −

1

3

2

3q(q + q−1) + 3q2(q + q−1)2 − q3(q + q−1)3

q(q+q−1)

V {1}
100

◦
d1?0

//

◦

HHHHHHHH

d10?
$$HHHHHHHH

OO

+ ⊕

q2(q+q−1)2

V ⊗2{2}
110 that’s a

cobordism!

d11?

$$IIIIIIIIIIIIIIIIII

OO

+ ⊕

(q+q−1)2

V ⊗2

000

d?00

;;vvvvvvvvvvvvvvvvv

d0?0

//

d00?

##HHHHHHHHHHHHHHHHH
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/
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OO
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r
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h
o
v
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o
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²²

q(q+q−1)

V {1}
010

d?10

::vvvvvvvvvvvvvvvvv

◦

d01?
$$HHHHHHHHHHHHHHHHH

+ ⊕

q2(q+q−1)2

V ⊗2{2}
101

◦
d1?1

//

+ ⊕

q3(q+q−1)3

V ⊗3{3}
111

OO

²²

q(q+q−1)

V {1}
001

vvvvvvvv

d?01

::vvvvvvvv

d0?1

//

²²

q2(q+q−1)2

V ⊗2{2}
011

d?11

::uuuuuuuuuuuuuuuuuu

²²
J&K0 d0

// J&K1 d1
// J&K2 d2

// J&K3

P
|ξ|=0

(−1)ξdξ

²²

P
|ξ|=1

(−1)ξdξ

²²

P
|ξ|=2

(−1)ξdξ

²²

(here (−1)ξ := (−1)
P

i<j ξi if ξj = ?) = J&K ·[−n−]{n+−2n−}−−−−−−−−−−−−−−→
(with (n+,n−)=(3,0))

C(&).

Theorem 1. The graded Euler characteristic of C(L) is Ĵ(L).
Theorem 2. The homology H(L) is a link invariant and thus so is KhF(L) :=

∑
r t

r qdimHr
F(C(L)) over any field F.

Theorem 3. H(C(L)) is strictly stronger than Ĵ(L): H(C(5̄1)) 6= H(C(10132)) whereas Ĵ(5̄1) = Ĵ(10132).
Conjecture 1. KhQ(L) = qs−1

(
1 + q2 + (1 + tq4)Kh′

)
and KhF2(L) = qs−1(1 + q2)

(
1 + (1 + tq2)Kh′

)
for even

s = s(L) and non-negative-coefficients laurent polynomial Kh′ = Kh′(L).
Conjecture 2. For alternating knots s is the signature and Kh′ depends only on tq2.
References. Khovanov’s arXiv:math.QA/9908171 and arXiv:math.QA/0103190 and DBN’s

http://www.ma.huji.ac.il/∼drorbn/papers/Categorification/.
More at http://www.math.toronto.edu/~drorbn/Talks/UWO-040213/
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Khovanov Homology

:
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Cob: Cobordisms
Mat: Matrices

Jones/Kauffman?

Why is it interesting?

Where does it live?

What is it?

M. Jacobsson

takes it to a
complex whose graded
Euler characteristic is the Jones polynomial.

Mikhail Khovanov

(from knots and cobordisms to

:

=I

T:

=

S:<...>: Formal lin. comb.
Kom: Complexes

Kom(Mat(<Cob> / {S, T, 4Tu})) / homotopyIn 

Signs?

one
I

and
= preciselyEdges: All fillings of

Vertices: All fillings of 

A cube for each knot/link projection; +
−
+

−
−

+

+

I

+
+

+ +

^dz

.

^dx
^dy

dx^dy^dz

dy^dz

dx^dz

dx^dy

dz

dx

dy1

More
crossings?

Dror Bar−Natan, Warszawa, July 2003.

canopoly?
A

See

for R−II and R−III)

(With similar proofs

But is it invariant?

complexes and morphisms)

http://www.math.toronto.edu/~drorbn/papers/Cobordism

A functor?

4Tu

3. Jacobsson, Khovanov: It is a functor!!!
f. Does it work for "virtual knots"?

−

finite−type invariants?

.

e. Is there a relation with

d. Does it work for manifolds
and for knots in manifolds?

quantum invariants?
c. Does it also work for other
b. Does it have a "physical" interpretation?
a. Does it have a topological interpretation?

0�132
// 4 0 13576 0 13586 0 195�:<;-=�>

// 4 0 6 0 6 0 :�;@?�>
//

0 135�;!A�>
4CBEDFB-G3H : 2 A B�4IBJDFB-G3H : 5 A B 5 4CBEDFB-G3H : B 2 4CBEDFB-G3H : 5

2. It is less understood than the Jones polynomial:
1. It is stronger than the Jones polynomial.

R2

R2

R2

R2

R22

R3

R3

R3

R3

More at http://www.math.toronto.edu/~drorbn/Talks/UWO-040213/
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