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Dror Bar-Natan: Talks: PhuQuoc-2506:

Thanks for inviting me to Vietnam!

The Strongest Genuinely Computable Knot Invariant in 2024

wef:=http://drorbn.net/v25 E £ E

[=]

IAbstract. “Genuinely computable” means we have co-
mputed it for random knots with over 300 crossings.
“Strongest” means it separates prime knots with up to
15 crossings better than the less-computable HOMFLY-
IPT and Khovanov homology taken together. And hey,
it’s also meaningful and fun.

Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint w-

ith van der Veen.
IAcknowledgement. This work was supported by NSERC grants RGPIN-2018-
04350 and RGPIN-2025-06718 and by the Chu Family Foundation (NYC).

van der Veen

‘land the edges are marked with a running index

¥ Model T Traffic Rules.

Preparation. Draw an n-crossing knot K as a
diagram D as on the right: all crossings face up,

ke {l,...,2n + 1} and with rotation numbers .

Cars always drive fo-
rward. When a car crosses over a sign-s brid-
ge it goes through with (algebraic) probability

¥ ~ 1, but falls off with probability
1 -T° ~ 0. At the very end, cars
fall off and disappear. On various ed-

@4 =-1

Strongest. Testing ® = (A, 6) on prime knots up to mirrors and
reversals, counting the number of distinct values (with deficits in

image credits:
diamondtraffic.com

ges traffic counters are placed. See
also [Jo, LTW].
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parenthesis): (pi: [Rol, Ro2, Ro3, Ov, BV1]) [= 1t
knots (H,Kh) | (A,p1) | ®=(A,0) | together -L\ L J’
reign 2005-22 | 2022-24 2024- — o7 2 } ‘K | image ere Py
ing <

e L 200 [ 200 T2 0 emidon. he e neion 6 = 5. i,

xing < 12 | 2,977 14) ©5) (19 {as) the Gree.n function or the two-point functlon) is

xing < 13 | 12,965 | (1,77D) (959) (194) (185) the reading of a traffic counter at S, if car traffic @ &3

Xing <14 59,937 (10,788) (6,253) (1,118) (1,062) is injected at a (lf a = ,8, the counter is after the injection pOiIlt).

xing < 15 | 313,230 | (70,245) | (42,914) (6,758) (6,555) here are also model-7, traffic functions G, = (g,ep) for v =
Genuinely Computable. Here’s © | |2 Example.
on a random 300 crossing knot (from pzo(l= T)" =7"! R L7t
[DHOEBLY]). For almost every other 1 @/\0 = [0 T-! 1]
invariant, that’s science fiction. —_ — 0 0 1
IFun. There’s so much more to see in Dﬂn’t L00k
2D pictures than in 1D ones! Yet al- Fl(c)=s[1 12 — g3i + Trgrag2ji — T583ji82ji — (T3 —1)g3ii82ji
most nothing of the patterns you see +(T3—1)g2)ig3ji — 81ii82jj + 283ii82jj + 81:83)j — g2iig3jj]
we know how to prove. We’ll have s . s s
fun with that over the next few years. T [T3=007; (sssi815 = 210815+ Ti125)
Would. you join? . . +(T5-1) (g3ji — T581ii83ji + 82ij83ji + (Tzs—z)gzjjgﬂi)
Meaningful. 6 gives a genus bqund (unprovep yet with .conﬁ— (T IT3+ 1T Dgui g3,-,-]
dence). We hope (with reason) it says something about ribbon ST = D)(TS = 181183
knots. Fa(co,c)= 71 (TSngi,io +82j1jo = T5°82jis = g2i,j0)
Conventions. 7, T, and T2 are indeterminates and 7 T\T5. Fa(p, k) = o(=1/2 + gaw)
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/PhuQuoc-2506.
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Theorem [BV3]. With ¢ = (s,i,)), co =
(50, I0> o), and ¢; = (s1,1;, j1) denoting cros-
sings, there is a quadratic F1(c) € Q(T))[gvap : [; ) (
anB € {lv J}]s a cubic FZ(CO, Cl) € Q(Tv)[gvaﬁ La, ﬁ E
{io, jo,11, j1}], and a linear F3(¢, k) such that 6 is a knot invariant:

s=-—1

AK 1

0D) = Mt Z R+ D Faleo,en) + Z Fpe b .

normallzatlon c . ~ 4
see later e "
eg gugy) (D @y ©E Eon8liie82irio
\/ \/
C/ Q N = \
S i j &= [0 )0 =, D)

This picture gave the invariant its name
If these pictures remind you of Feynman diagrams, it’s because

they are Feynman diagrams [BN2].

Questions, Conjectures, Expectations, Dreams.

Question 1. What’s the relationship between ® and the
Garoufalidis-Kashaev invariants [GK, GL]?

Conjecture 2. On classical (non-virtual) knots, 8 always has he-
xagonal (Dg) symmetry.

Conjecture 3. 6 is the €' contribution to the “solvable appro-
ximation” of the s/3 universal invariant, obtained by running the
quantization machinery on the double D(b, b, €6), where b is the
Borel subalgebra of sl3, b is the bracket of b, and  the cobracket.
See [BV2, BN1, Sch]

Conjecture 4. 6 is equal to the “two-loop contribution to the Kon-
tsevich Integral”, as studied by Garoufalidis, Rozansky, Kricker,
and in great detail by Ohtsuki [GR, Rol, Ro2, Ro3, Kr, Oh].
[Fact 5. 6 has a perturbed Gaussian integral formula, with inte-
gration carried out over over a space 6 F, consisting of 6 copies of

Lemma 1. The traffic function gaﬁ is a “relative invariant™:

he space of edges of a knot diagram D. See [BN2].

Conjecture 6. For any knot K, its genus g(K) is bounded by the
T'-degree of 0: 2g(K) > degy, 6(K).

Conjecture 7. 8(K) has another perturbed Gaussian integral for-
mula, with integration carried out over over the space 6H;, con-
sisting of 6 copies of H{(X), where X is a Seifert surface for K.
I[Expectation 8. There are many further invariants like 6, given by
Green function formulas and/or Gaussian integration formulas.
One or two of them may be stronger than 6 and as computable.
Dream 9. These invariants can be explained by  FREETOPOLOGY
something less foreign than semisimple Lie alge- 7
bras.

X

ChatGPT image

TYRANNY or OF
QUANTUM ALGEBRA

Dream 10. With Conjectu-
re 7 in mind, 8 will have

Lemma 2. With k* = k + 1, the “g-rules” hold
mear a crossing ¢ = (s, 1, j):

j+“\/’i+
VN

s =8ip+0js 8 =T 8p+(1=T")gjp+0is 8oump=0up

Sait = nga/i + Oqi+ 8ajt = &aj T a- Ts)gm‘ + 6&]*‘ 8a,1 = 611,1
Corollary 1. G is easily computable, for AG = I (= GA), with A
the (2n+1)x(2n+1) identity matrix with additional contributions:

A ‘ col it col j*
c=(s,i,j)r—» rowi | -T* T°-1
IFor the trefoil example, we have: row.J 0 -1
1 -T 0 0O T-1 0 0
0 1 -1 0 0 0 0
0 O 1 -T 0 0 T-1
A=]10 0 1 -1 0 0 s
0O 0 T-1 O 1 -T 0
0 0 0 0 0 1 -1
0 0 0 0 0 0 1
1 T 1 T 1 T 1
1 T T T2
0 1 T2-T+1 T2-T+1 T>-T+1  T?-T+1 1
0 0 T2 : 1 72 . 1 72 . 1 T2T Tl
G=|0 0 1_—§'+ _1T+ _1T+ _7T+ 1
T2-T+1 T2—T+JT T2-T+1  T2-T+1
0 0 1-T _r-n 1 1
T2-T+1 T2-T+1 T2-T+1 T2-T+1
0 o0 0 0 0 1 1
0 0 0 0 0 0 1

something to say about rib-
bon knots.
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/PhuQuoc-2506.
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Corollary 2. Proving invariance is easy:

Invariance under R3

This is Theta.nb of http://drorbn.net/v25/ap.
©O0nce[<< KnotTheory™ ; << Rot.m; << PolyPlot.m];

©OT3=T1Ty;
®CF[& ] := Expand@Collect[s, g , F] /. F > Factor;
OF1[{s_, i_: J_}] =

CF|

S (1 /2-gsis +T5 8143 8241 - 811 8245 -
(T§ = 1) 82ji 83ii *+ 2 8255 83ii — (1 = T;) 82ji 83ji -
82ii 8355 - T2 8241 8355 + B1ii 8353 +
((T2-1) 8131 (T2° 8251 - T3 8235 + T 8333) +
(T3-1) g3ss
(1-T3gus- (T3-1) (T3+1) g5 +
(T3-2) g253 v 8213)) / (T2-2)) 5
®F;[{so_, i0_, jO_}, {s1_, i1_, j1_}] :=
CF[s1 (T3°-1) (73" -1)7* (75" - 1) £1,71,10 83, o, 11
( (757 82,11,10 - 82,11,50) = (T3° 82,571,106 - 82,71,50) ) |
©F3[¢ , R.1=-0/2+¢83k;
©®6;_,; :=If[i===7,1,0];
gRs ,i,; :={
8y js »8Bvits+ 6z,
8y ip = Tsy 8vitp + (1 - Ti) 8.tz *+Oigs
8 o it T Brai+ baits
8y ajt > 8rajt (1 - Tf,) 8vai + 6,5+
}
©DSum[Cs__ ] :=Sum[F;[c], {c, {Cs}}] +
Sum[F,[cO, cl1], {cO, {Cs}}, {cl, {Cs}}]
lhs = DSum[{1, j, k}, {1, i, k*}, {1, i, "},
{s, m, n}1 //. 8Ry 5,k UBRy, i i* UBRy, i+ 4+5
rhs =DSum[{1, i, j}, {1, i*, k}, {1, j*, k™},
{s, my n}] //.8Rq ;i U8Ry s+ ik UBRy, 5+ ,k*5
Simplify[1lhs == rhs]

O True

The Main Program

pr— ) o)
4N ©e[K ] := Module[{Cs, ®, n, A, A, G, ev, 6},
2 {Cs, ¢} =Rot[K]; n = Length[Cs];
s = (s A = IdentityMatrix[2n+1];
A h Cases[Cs, {s_,1_,3J }=»
m n m n
S S

- / / (Aneis 3, tie1, Gemyne= (T 1H))]s

A = T(-Total[o]-Total [CS[ALL,1]1) /2 pat [A];

G = Inverse[A];
evi& ] :=
Factor[& /.8, ,a,s » (Gla, A1 /.- T>T,)1;

o = ev[Z':=1 F1[CsOKkI1];

6 += ev[Z‘:1=1 22:1 F2[Cs[k1], Cs[k211];
o +=ev[) 2" Falolkl, k1];
Factore
{8, (B/.ToTy) (A/.T>Ty) (A/.T>Ts) e}];

The Trefoil, Conway, and Kinoshita-Terasaka

B
6\\2
®© GraphicsRow[PolyPlot[@[Knot[#]]] & /@

L2
Vay)

{"3_1", "K11n34", "K11n42"}] </
"I I

Qo

(Note that the genus of the Conway knot appears to
be bigger than the genus of Kinoshita-Terasaka)

©®®©e[Knot[3, 1]] // Expand
1 1 1 1 1
g{—1+—+T, ———Ti——z— 2 2+—2+
T T, T1T3 T1T5

ik

10T T

P 2T T3 T T - T TR
TT, T, T

Some Torus Knots

® GraphicsRow[ImageCompose [
PolyPlot[®[Torusknot @ee #], ImageSize - 480],
TubePlot [TorusKnot @e #, ImageSize - 2490],
{Right, Bottom}, {Right, Bottom}
1&/e{{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

°. o HitEB O

sEossan”
o*oe()é%{w‘f"% %_\‘So
* LGN
,, 4 R &
"s%‘auooo \St\’i”

o Heee

Video and more at http://www.math.toronto.edu/~drorbn/Talks/PhuQuoc-2506.
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The 132-crossing torus knot 72,7: (many more at wefB/TK)
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Random knots from [DHOEBL], with 50-73 crossings:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/PhuQuoc-2506.
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Dror Bar-Natan: Talks: Bonn-2505: wep:=http://drorbn.net/bo25 E =]
Knot Invariants from Zero-Dimensional QFT O]

Happy birthday, dear Stavros!

HAPPY B ‘ =

ChatGPT image, wef/chat

IAbstract. For the purpose of today, an “I-Type Knot
[nvariant” is a knot invariant computed from a knot
diagram by integrating the exponential of a pertur-
bed Gaussian Lagrangian which is a sum over the
features of that diagram (crossings, edges, faces) of
locally defined quantities, over a product of finite di-
mensional spaces associated to those same features.
Q. Are there any such things? A. Yes.

joint with
R. van der Veen

b~ |-

‘ (

BIRTHDAY 28

Theorem. Z is a knot invariant.

A

STAVROS
GAROUFALID

e

Proof. Use Fubini.

t

//

Q. Are they any good?  A. They are the strongest we know per

CPU cycle, and are excellent in other ways too.
Q. Didn’t Witten do that back in 1988 with path integrals?

FREE TOPOLOGY

A. No. His constructions are infinite dimensional
and far from rigorous.

Q. But integrals belong in analysis!

A. Ours only use squeaky-clean algebra.
Dreams. Given a knot K with a Seifert surfa-
ce X, we dream that there is a 0D Lagrangian .
ILs: 6H;(Z;R) — R whose coefficients are (low
degree) finite type invariants of graphs represe-
nting multiple homology classes, such that

| ChatGPT image

7 =

6H, (Z:R) = -
is the invariant 8 presented below. We dream the formulas are
simple and natural, and that they have a universal generalization.

Sweet. Even sweeter: l ’ H

exp (Ls)

ribbon knots!

_Solution. Set Z;(x) := A2 f
? Then Z1(0) is what we want, Zo(x) = (det A)~"/? exp V(x), and

(Alternatlve) Gaussian Integration.

f dxexp (—Ea fx,xj + V(x))
Rn

Gauss ’

2/
y /,N

1 ..
dyexp (—ﬁa”y,-yj + V(x+ y)) .

Goal. Compute
if convergent)

n

ith g;; the inverse matrix of a”/ and noting that under the dy

1
zgijax,»asz,z(x)

/l—n/2 1 ..

2 f dy 8ij(0x,—0y,)(0x,—dy,) exp (—ﬁa”yiyj +V(x+ y))
Az i 1
szdy(gua alyuyj - Agija’ )CXP(—ﬁa Yi}’j"'v(x"')’))

/l—n/Z ; 1 .
=57 Ln dy (a Iy — /ln) exp (_ﬁa Tyiyj+ V(x+ y))
. = 0, Za(x).
Hence (%) 0aZalx) = Egijax,aij/l(x)a

A
and therefore Za(x) = (detA)~1/? exp (Egi 03,0 ,-) exp V(x).

May say something about
The sl/ © Example. With T an indeterminate and with €? =

Rou  —= f L)L) LK LC, )
4
n Rll’?"i measure on R is (27)~'/?-standard
I s
3| where L(X;j) = TS/2(BL(X,'_,') and L(C:P) —
LEH| Tel2eMCD and
e L(X})) = xi(pis1 = ) + Xj(Pjr1 = P))
+(T° = Dxi(pis1 = Pj+1)
P22 €s (T% = Dxip;
L(CY) = xi(piv1 — pi) + €p(1/2 = xipy)
So Z = T §e"dp,...dprdx...dx;, where L(Q) =

ZZ:fCi(PiH—Pi) + (T-D(x1(p2 = pe)+x6(p7 = p3)+x3(pa = ps))
x1(p1 = ps) (T = Dxips + 2(1 = x5ps)) = 1

€| +x6(pe — p2) (T — Dxgp2 + 2(1 — x2p2)) — 1

2| +x3(p3 — p) (T = Dxzp7 + 2(1 — x7p7)) — 1

+2)C4p4 -1
_ -1 ~1
and so Z = (T - 1 + T~H™! exp(e- %) =
A~ exp (e . ”_22#) Here A is the Alexander polynomial and

o1 is the Rozansky-Overbay polynomial
[R1, R2,R3, Ov, BV1, BV2].

We’ve just witnessed the birth of “Feynman Diagrams”.
I[Even better. With Z; = log( VdetAZ,), by a simple
substitution into (*) we get the “Synthesis Equation”:

Zo=V, 9Zi=5 3 8 (0unZa+ @200 Z0) =
an ODE (in 1) whose solutlon is pure algebra.

IPicard Iteration (used to prove the existence and u-
niqueness of solutions of ODEs). To solve d,f;
F(f) with a given fy, start with fp, iterate f >
fo + _K F(fdA, and seek a fixed point. In our cases,
it is always reached after finitely many iterations!
Definition. f : The result of this process, ignoring the converge-
nce of the actual integral.

Strong. The pair (A, p;) attains 270,316 distinct values on the
313,230 prime knots with up to 15 crossings (a deficit of 42,914),
whereas the pair (H = HOMFLYPT polynomial, K& = Khovanov
Homology) attains only 242,985 distinct values on the same knots
(a deficit of 70,245). The pair (A, 6), discussed later, has a deficit
of only 6,758, and the triple (A, 6, p»), of only 6,341.

'Yet better than (H, Kh) and other Reshetikhin-Turaev-Witten i-
nvariants and knot homologies, A, p;, p» and 6 can be computed
in polynomial time (and hence, even for very large knots).

So ugly as the formulas may be (and 6’s formulas are uglier),
these invariants are possibly the best we have!

A
~ \

Fcynman

= F(Z)

Q

Picard

Acknowledgement. This work was supported by NSERC grants
RGPIN-2018-04350 and RGPIN-2025-06718 and by the Chu Fa-
imily Foundation (NYC).
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.
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Implementation (see IType.nb of wef/ap). R 1 (X1, X2} - ( ab
2

b C)'{Xl.v X2} + {€1, £2} . {X1, X2}

®O0nce[<< KnotTheory™ ; << Rot.m];

O Loading KnotTheory™ version ©z12 = J.]E [L] d{X1, X2}
of October 29, 2024, 10:29:52.1301.
Read more at http://katlas.org/wiki/KnotTheory. —G—]E[ cf LS B N ach ]
A 2 (—b2+a c) b2-ac 2 (—b2+a c)
O Loading Rot.m from http://drorbn.net/AP/Talks/Bonn-2505
to compute rotation numbers. \J-b%+ac . ..
Guido Fubini
©CF[w . & E] :=CF[w] «CF /@ &5} © {21 = ﬁE [L] d{x;}, Z12 == j21d{xz}}
CF[& List] :=CF /@ &; (0222¢) 2 )
(] -b%+ac) x b &
CF[& ] := Module[{vs, ps, c}, = E[* 2 2 - X2§1+*1+X2§z]
. { a a 2a Tr‘ue}
3
vs =Cases[&, (x| p|E|n|8) ,»]U{e}; Ja
Total[CoefficientRules [Expand[£], vs] /. Qg = Normal[ +0[e]13] &; _flE [_¢2/2 ve ¢3/6] a{s}
(ps_ »c_) =» Factor[c] (Timeseevs™)] |;
o - ST - R O 5¢2 5¢e* 1105e¢® 565¢® 82825¢'® 19675 c1?
ntegration using Picard iteration. e core is in yellow an [7 o+ + + + ]
g N & y 24 16 1152 128 3072 96
hacks are in pink.
O@E/:E[A ]~E[B_ ] :=E[A+B]; From https://oeis.org/A226260:
© $7r = Identity; (+ The Wisdom Projection x) 91362% THE ON-LINE ENCYCLOP@];:DIA
' OF INTEGER SEQUENCES
®© Unprotect [Integrate]; B2Tn )
founded in 1964 by N. J. A. Sloane
Jw_. IE[L_] dl(VS_L'iSt) = [ ][Search]m
(Greetings from The On-Line Encyclopedia of Integer S )
umerators of mass formula for connected vacuum graphs on 2n nodes for a phi”3 field theory.
Module [ {I"I, LO, Q’ A, G’ Z@, Z’ A»‘ DZ-‘ DDZ’ A2216,265(i s, 111;5, sss,t 82825, 19675, 1282031525, ste727925, 16g854i9621835, 13299845155, ’ feor
2239646759308375, 19739117098375, 6320791709083309375, 32468078556378125, 38362676768845045751875,
FZ, a, b} 9 281365778405032973125, 2824650747089425586152484375, 776632157034116712734375 (list: graph; refs: listen:

history: text: internal format)

n = Lengthevs; LO=L /. e > 0;
Q = Table[ (-8,spap,vsoy @) /. Thread[vs » 0] /.

(p|x) -0, {a, n}, {b, n}]; The Right-Handed Trefoil.
If[ (A =Det[Q]) == 0, Return@"Degenerate Q!"]; ®K = Mirror@Knot[3, 1]; Features[K]
7=170=CFe$n[L +vs.Q.vs /2]; G=Inverse[Q]; O Features[7, C4[-1] Xg,5[1] X3,7[1] Xe,2[1]]
FixedPoint[(DZ = Table[d,Z, {V, vs}]; ©LI[X: ,; [s_1]1 :=T"2E][

Xi (Pi+1 = Pi) + X5 (Pj+1 - Pj) +
(T°-1) Xi (Pisz - Pjua) +
(es/2)x
(xi (Pi-pj) ((T°-1) xipj+2 (1-x5p5)) -1)]

DDZ = Table[8,DZ, {u, vs}];
FZ = Sum[G[a, b] (DDZ[a, b] + DZ[a] »DZ[b]) ,
{a, n}, {b, n}1/2;

Z CF[ZO+J:$71'[FZ] du]) &, z];

1
L[Ci [¢ 1] := TWZE[Xi (Pis1-Pi) +te@ (E - X Pi)]

PowerExpand@Factor [~ A™'/?]

E[CF[Z/.A»1/. Thr‘ead[vs-»O]]]]; (0 ] 8 TR J LA FES T} T

VS[K ] :=

Protect[Integrate]; Joinee Table[{p;i, Xi}, {i, Features[K][1]}]

©J]E[—ux2/2+i§x] a(x) © {vs[KI, LIK]}
—D—{{pl) X1, P25 X2, P35 X3, Pas Xa, Ps, X5, Pes X5 P75 X7}J

Q_E[_i]

_ L 2upd T]E[*2€*P1X1+€P1X1+Tp2X1—€p5x1+(17T)p5x1+

Ju 1 1 o
) 5 (-1+T) €P1P5X1+5 (1-T) epsX] - P2 Xa+P3Xy—P3Xs+

@FO'FG = JIE[— U (x - a)2/2 + 1 §x] d{x} Joseph Fourier

1
) ) €P3X3+TPaxs-€prXs+ (1-T) pgxa+— (-1+T) ep3pyx3+
QE[n(Zawn&g] 2
2u 1 2,2
—\/; E(1*T)€P7X3*P4X4+6P4X4+P5X4*P5X5+P5X5*

©jF0fGE[—i§X] a6y € P1Ps Xy Xs + € Pt X1 Xs — € P2 X + (1-T) P31X6—I36X5+
ep5x6+Tp7x5+ep§x2x6—6p2p5x2x6+f (1-T) epgxé+
gIE[—E(a—X)Zu] 1 , ’ .
So w%’ve tested and nearly proven the Fourier inversion formula! 2 (AT P2 PoXe = P77 PaX7 m € PsPra X7t € PTG X7H

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.
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©$r = Normal[# + 0[e]?] &; JL[K]dlvs[K] ©1hs
jau} J.lT]E{— (’I*T)2(1+T2)6:| o
(1-7+712)2 3e
- 1-T+T2 _7+]'1T2p2~ini—jl(_1+T)Tp2+j7Ti+]iT25p2+j7Ti—i(—1+T)p2+k77i+
A faster program to compute p;, and more stories about it, are iTepakrm 73 (-1+T) T € paui Parj 7 +% (-1+T) Tepd -
at [BV2].

1
(-1+T) T2 € pasi Pk 7 + 3 (-1+T)2T e payj Pak 75 +

Invariance Under Reidemeister 3. (-14T) Tep /2 + i TPy 5 - i Tepaymy—1i (-1+T) Pty +

FNIRr NP

j top variables (-1+2T) €Pauk 7§ + T € Paei Parj 7T 7Ty —Tsepg.jﬂi 7y -

(=14 T) T2 € Paui Pk 73 71§ + (=1 + T)2 T € Pa.y Pauk 71y 715 +
2 1 2 1 2 2
(—1+T)Tep2,k7Tisz—E (—1+T)Tep24jp24knj+5 (—1+T)Tep2,k7rj+

middle variables 1Py 7tk = 21 € Pork 7k + T2 € Pari Park i 7k = (=14 T) T € Pavg Pavk 7Ti 7k —

Reidemeister Te p;k T3 T + T € Pa.j P2k 7§ 7Tk — T € Pik USTRALS

Invariance under the other Reidemeister moves is proven in a si-

k  bottom variables milar way. See IType.nb at wef3/ap.

©1hs = j(z /@ (Xi,5[1] Xi1,k [1] Xiu1,k01[11))
There’s more! To get sl, invariants mod €, add the following

d {Pi+1: Pj+1s Pk+1s Xisis Xj41s Xks1} 3 + _ " .
to L(Xl.j), L(Xl.j), and L(C7), respectively (and see More.nb at w-

rhs = J(L /@ (X4, [1] Xi,ks2 [1] Xi41,542[1])) ep/ap for the verifications):
d X4 i+ j+ + X5+ X+ 5
{Xi+1s Pis1s PJ 15 Pk+1s Jj+1» k+1}3 ©€2l‘2[1, i, J]
lhs === rhs
D False ol

EGZ (—Gpixi+6pjxi—3 (-1+3T) piij§+

3(-1+3T)p5xi+4 (-1+T)pipyxi-2(-1+T) (5+T) psp;x; +
2 (-1+T) (3+T) p§x§+18pipjxixj—18p§xixj—6pfpjx§xj+
©1hs = j(z: /@ (Xi,511] Xira,k [1] Xju1,k02 [11)) 6 (2+T) pipixixj -6 (1+T) p3xi x5 -6p;p;xs x5 +6p3x;x5)

Invariance Under Reidemeister 3, Take 2.

d{xi, X5, X i i X; X5 X H 2 PR
{ iy Ajs Ako Pi+1s P3+1: Pk+1s Xis1s j+1s k+1}) ®e r‘z[—l, i, J]

rhs = J(-C /@ (X5, [1] Xi,k+2[1] Xiya,542[11))

a! € (-6 T2 pixs +6T>pyx; +
A {Xis Xj5 Xks Xi+1s Pi+1s Pje1s Pk+1s Xje1s Xke1}s 1212
1hs === rhs 3(-3+T)Tpipsxi-3(-3+T)Tpixi-4 (-1+T)Tpipjx;+
2(-1+T) (1+5T) psp3x3-2 (-1+T) (1+3T) pixi+
QTrue 18T2pipjxixj—18T2p§xixj—6T2p§pjx§xj+6T(1+2T) pip§x§xj—
©1hs 6T (1+T) p?—xij—6T2pip§xix§-+6T2p§xix§)

O Degenerate Q! .
€ ©e*yalo, i]

Invariance Under Reidemeister 3, Take 3. ol
_E €Y PiXi

© 1ns - J(]E [L7t5 ps + R 7r5 pj + L pr] <L /@ (Xi,5[1] Xiwa,k [1] X5ua,k2[1]))

@{Pis Pys Pis Xis X35 Xis Pivis Pyets Phsds Xisds Xje1s Xina}s Even more! e The s, formulas mod €* are in the last page of the
rhs = J(E [4 75 ps + 375 pj + L7 P L /@ (X5, [1] Xi,k21[1] Xi41,5:2[1]1))  handout of [BN3].

@{Pis P3s P Xis X35 Xics Pists Pjets Piots Xirds Xja1s Xiaa}s e Using [GPV] we can show that every finite type invariant is
lhs == rhs I—Type.
OTrue o .
e Probably, (Reshetikhin-Turaev) c (I-Type) efficiently.
e Possibly, (Rozansky Polynomials) c (I-Type) efficiently.
e Knot signatures are I-Type, at least mod 8.

e We already have some work on s/3, and it leads to the strongest
genuinely-computable knot invariant presently known.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.
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The slég2 Example [BV3]. Here we have two formal variables T1@ F1[{s_, i_, _}1 := CF|

and T», we set T3 := T1T», we integrate over 6 variables for each

edge: pii, P2, P3i> X1i» X2i, and x3;.
©T3 =Ty Ty;
$7 =
(CFeNormal[# +0[e]?] /.
{nis__ =B Tissy Xis = B! Xiss Pis__ B pis} /.

€eB> /;b<0-50/.B>1) &;

st . y .
1_ t=1+1;

©vs;_ :=Sequence[py, i, P2,i» P3,is X1,is X2,is X3,i]3
Flis__1:=E[Sum[m, i p,,i, {1, {i5}}, {v, 3}11;
L[K ] :=CF[L£ /@Features[K][211];
VS [K ]
Union @e Table[{vs;}, {i, Features[K][1]}]
The Lagrangian.

®© L[X;_,; [5_1] := T3 E[CFePlus|
2:1 (%vi (Pvit = Pvi) *Xyj (Pyj* = Pvs) + (TS = 1) Xui (Pyir = Pys*) ) s
(Ti = 1) P3j X1i (Ti X2i = ij) B
es (T3-1) p1j (Pai - P2y) Xa: / (T3-1),
€s (1/ 2 + T3 p1i P2j X1i X2i — P1i P2j X1t X257 — P3i X3i —
(T2 -1) P2j P3i Xai Xai + (T3 - 1) P2j P3j Xai Xai +
2 P2j P3i X25 X3i + P1i P3j X1i X35 = P2i P3j X2i X35 -
T3 P25 P3j Xai X35 +
(15 -12) pajxai (T3° P2y Xai = T3 P2j X2j -
(T3+1) (T5-1) psjX3i + T5 p3j Xa5) +
(T5-1) psjXai (1 - T3 Pri Xai + P2i Xa5 + (T3 - 2) PajXaj)) /
(12-1))11
©LIC [¢.1]1:=T3E [Z‘s:lxvi (Pyi* - Pvi) +€ @ (P3iX3i -1/2)]
Reidemeister 3.

©Short[
lhs = jf[i: 3, k1< £ /@ (Xi,5[1] Xi*,k [1] X4+, [1])
d{VSi, VSj, VS, VSj+, VSj+, VSk+}]
amnT;
3e )
E [7 + T1 P1,2+i 71,1 — (’1 +Tq) Ty p1,2+j TT1,i + <<15@>>}
©rhs = Jf[lJ js klxL/e (X4,k [1] Xy, k+ [1] Xs+ 5+ [1])

d{VSi, VSj, VSk, VSi+, VSj+, VSi+};

1lhs == rhs
OTrue
The Trefoil.

OK = Knot[3, 1]; IL[K] d vs[K]

= —

o-((i1373
E[-((e (1-Ty+T3-To,- T3 T+ T3+ T 75 -
T+ TITs-T3T5+T973) ) / ((1-
(1-Tp+T3) (1-Ty T+ T573))) )
((1-Te+T]) (1-Tp+T3) (1-Ty T+ TiT3))

s (172-gsii +T; 81ii 825i - B1ii 8255 - (T2 - 1) 8a2ji B3ii +
28555 83ii - (1 = T;) 8251 83ji — B2ii 8357 - T3 8251 8355 +
81ii 8355 +
((T1-1) 8151 (T3° 825: - T3 8255 + T3 8355) +
(T; - 1) 837i (1 - T5 81ii - (Ti - 1) (T; + 1) 81ji +
(T2-2) 825+ 8215)) / (T2 - 1)) ]
©Fy[{s6_, i0_, jO_}, {s1_, i1_, ji_}] :=
CF[s1 (13°-1) (73" -1)* (75" - 1) 81,51, 10 83, 50,11
( (73° 82,11,i0 - 82,11,50) - (T3 82,j1,i0 - B2,51,50) ) |
©F3[¢ , R.]1=08wxk-¢/2;
We call the invariant computed 6:
©e[K ] :=0[K] =Modu1e[{x, @, n, A, A, G, ev, 6},
{X, ¢} =Rot[K]; n = Length[X];
A = IdentityMatrix[2n +1];
Cases[X, {s_,1 ,7J }»

(Anets 3, tiet, Gemes (00T

A = T(-Total[¢]-Total[X[ALL,111) /2 pat [A];

)1

G = Inverse[A];
ev[& ] :=Factor[& /.8, ,a,5 = (GIa, A1 /. T->T,)1;

6 = ev[Z’::lH[XIIk]l]]i
6 += ev[21=122=1 F2 [XIk1D, XOk211];
6 += ev[Z::1 F3[okD, k1];
Factor@e{a, (A/.T->Ty) (A/.T>Ty) (A/.T>T;3) 6}
Son!(; Knots.
© Expand [@ [Knot[3, 1]1]]

{

1
.
LERE

1
T, T3

o

2
,Tl

1 1
-1+ —=4+T, -— - — - +
T T2 T

1
TZT,

T1
— +

L

;
2T T - T3 T TR T TR
1

+

® (* PolyPlot suppressed «x)

© GraphicsRow[PolyPlot [©[Knot[#]], C/ED O\v
Labeled - True] & <6§ @)

/@ {"3 1", "K11n34", "K11n42"}]

Kl11n34

K11n42

So 6 detects knot mutation and se-

A faster program, in which the Feynman diagrams
are “pre-computed” (see theta.nb at wef/ap):

parates the Conway knot K11n34
from the Kinoshita-Terasaka knot
K11n42!

’HOTO
NOT
AVAILABLE

Terasaka

Conway Kinoshita

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.
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© GraphicsRow [ImageCompose [ Unproven Fact. For any knot K, twice its genus g(K) bounds the
The 48-crossing Gompf-
Scharlemann-Thompson GST4g

PolyPlot[©[TorusKnot @e #], ImageSize - 480], T degree of 6: degy, 0(K) < 2g(K).
knot [GST] is significant because a a

TubePlot [TorusKnot @e #, ImageSize - 240],
it may be a counterexample to the  Gompf Scharlemann Thompson

{Right, Bottom}, {Right, Bottom}
1&/e{{13, 2}, {17, 3}, {13, 5}, {7, 6}}]
lice-ribb jecture:
I IIII‘!:!!’I’III I I!"I.!OI“!I I slice-r1iobon conjecture

o

The torus knot T;,7:

OO0 MM IIIIEIIINIIIE R B O OO
OO O WM IWIIIIVIINII T B B W O OO

QOO0 @ EH MMV R O OO %
TRV NITATAINENDDD Y [
T OO WANTVINVTON BB ST Y
TXILTEBEORRNWTWOTOTOTDDOOHO % % % L =

" & EEEREBRRFOWVHDDVDDDDIDE S '5.'.' _ _ _
IR bt i A A A A A S A A © GSTag = EPD[X1a,1, X2,205 X3,405 Xa3,a5 X26,55 Xe,055 Xos,7, X13,85 Xo,285

X10,415 Xa2,115 X27,125 X3e,15> X16,615 X17,72> X18,835 X19,34> Xs9,205
X21,025 X79,225 Xes,23> X57,245 X25,565 X62,31> X73,325 Xsa,335 Xso,355
X36,815 X37,70> X38,505 X39,545> Xaa,ss» Xss,a5> Xeo,a6> Xsge,a7> Xag,015
Xoo0,295 Xs1,82> Xs2,715 Xs3,605 Xe3,745> Xea,85> X76,65> X87,66> X67,945
i75,35.‘ Yss,77: i7:;,93]§

AbsoluteTiming [PolyPlot [©45 = ©@GST,4g, ImageSize - Small]]

N

L)
..
oY

®
W
S
®
a®

TR ONN NN
QO OO0 @ ® & MM IDIDE I B0 00

QOO0 HHHIIIIIIINIIE B R OO

Next, a random 300 crossing knot from [DHOEBL] (more
at wefB/DK):

© {Exponent [©43[[1]], T], Floor [Exponent [©,45[2], T>] / 2]}
0{8, 10}
So ® knows things about GST4g that A doesn’t!

o o A Y/
Ohtsuki ~ Garoufalidis ~ Rozansky Kricker Schaveling Kashaev
Prior Art. 6 is probably equal to the “2-loop polynomial” stu-
died by Ohtsuki [Oh2] (at greater difficulty, with harder compu-
tations), continuing B-N, Garoufalidis, Rozansky, Kricker, and
Schaveling [BNG, GR, R1, R2, R3, Kr, Sch]. 6 is related, but
probably not equivalent, to the invariant studied by Garoufalidis—

Kashaev [GK].

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.
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The Rolfsen Table of Knots.
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. ®

®
&
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*®
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&
#
b @
*
©
2O
B i
&

DEeee @

BOOB*RBODOROIGFBO

Where is it coming from? The most honest answer is “we don’t
know” (and that’s good!). The second most, “undetermined co-
efficients for an ansatz that made sense”. The ansatz comes from
the following principles / earlier work:

Morphisms have generating functions. Indeed, there is an iso-
morphism

G: Hom(Q[x;], Qly;1) — Qly;ll&1,
and by PBW, many relevant spaces are polynomial rings, though
only as vector spaces.
Composition is integration. Indeed, if f € Hom(Q[x;], Qly;])
and g € Hom(Q[y;], Q[zx]), then

Ggof)= fe‘y"’fgdydn

Use universal invariants. These take values in a universal enve-
loping algebra (perhaps quantized), and thus they are expressible
as long compositions of generating functions. See [La, Ohl].
“Solvable approximation” ~» perturbed Gaussians. Let g be
a semisimple Lie algebra, let b be its Cartan subalgebra, and let
b* and b’ be its upper and lower Borel subalgebras. Then b* has
a bracket 3, and as the dual of b it also has a cobracket ¢, and in
fact, g ® h = Double(b,3,5). Let g} := Double(b*, 3, €6) (mod
e?*1 it is solvable for any d). Then by [BV3, BN1] (in the case
of g = sip) all the interesting tensors of U(g}) (quantized or not)
are perturbed Gaussian with perturbation parameter € with with
understood bounds on the degrees of the perturbations.

[BN1] D. Bar-Natan, Everything around sl5, is DoPeGDO. References.
So what?, talk given in “Quantum Topology and Hyperbolic Geometry Con-
ference”, Da Nang, Vietnam, May 2019. Handout and video at wef3/DPG.

[BN2] D. Bar-Natan, Algebraic Knot Theory, talk given in Sydney, September
2019. Handout and video at weB/AKT.

[BN3] D. Bar-Natan, Cars, Interchanges, Traffic Counters, and some Pretty
Darned Good Knot Invariants, talk given in “Using Quantum Invariants to
do Interesting Topology”, Oaxaca, Mexico, October 2022. Handout and vi-
deo at wef/Cars.

[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky
conjecture, Invent. Math. 125 (1996) 103-133.

[BV1] D.Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial,
Proc. Amer. Math. Soc. 147 (2019) 377-397, arxiv:1708.04853.

[BV2] D. Bar-Natan and R. van der Veen, A Perturbed-Alexander Invariant,
Quantum Topology 15 (2024) 449-472, wef/APAL

L 4
e
&
e
&
*
&

#
OB

4%

0 #R8QeeR

o

™
@
®

b 4

L L L boal

)

o
‘e

-
#*
#
&
i

S8B00

*»
@)
& %
@ 52
ae =
@ @
@
&

i@@%‘t

&
@
L
*
*
#®
®‘
#
&

ol 58
H8OO0®
B8 %0
oeed
&

EBROO
LA 48 4
& @
eHDE =
&

&
el

0@

DO88ESEH0S

[BV3] D. Bar-Natan and R. van der Veen, A Very Fast, Very Strong, Topologi-
cally Meaningful and Fun Knot Invariant, in preparation, draft at wef3/Theta.

[BV3] D.Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Fu-
nctions for Universal Knot Invariants, axiv:2109.02057.

[BG] J. Becerra Garrido, Universal Quantum Knot Invariants, Ph.D. thesis,
University of Groningen, wef3/BG.

[DHOEBL] N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattachary-
ya, D. Lei, and others, Random Knots: A Preliminary Report, lecture notes
at wef/DHOEBL. Also a data file at wef3/DD.

[GK] S. Garoufalidis and R. Kashaev, Multivariable Knot Polynomials from
Braided Hopf Algebras with Automorphisms, arxiv:2311.11528.

[GR] S. Garoufalidis and L. Rozansky, The Loop Expansion of the Kontsevich
Integral, the Null-Move, and S -Equivalence, arxiv:math.GT/0003187.

[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and
Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectu-
res, Geom. and Top. 14 (2010) 23052347, arxiv:1103.1601.

[GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants
of classical and virtual knots, Topology 39 (2000) 1045-1068, arXiv:
math.GT/9810073.

[Kr] A. Kricker, The Lines of the Kontsevich Integral and Rozansky’s Rationa-
lity Conjecture, arxiv.math/0005284.

[La] R.J. Lawrence, Universal Link Invariants using Quantum Groups, Proc.
XVII Int. Conf. on Diff. Geom. Methods in Theor. Phys., Chester, England,
August 1988. World Scientific (1989) 55-63.

[LV] D. Lépez Neumann and R. van der Veen, Genus Bounds from Unrolled
Quantum Groups at Roots of Unity, axiv:2312.02070.

[Oh1] T. Ohtsuki, Quantum Invariants, Series on Knots and Everything 29,
World Scientific 2002.

[Oh2] T. Ohtsuki, On the 2—Loop Polynomial of Knots, Geom. Topol. 11-3
(2007) 1357-1475.

[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial,
Ph.D. thesis, University of North Carolina, August 2013, wef/Ov.

[R1] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones
Polynomial and Witten’s Invariant of 3D Manifolds, I, Comm. Math. Phys.
175-2 (1996) 275-296, arxiv:hep-th/9401061.

[R2] L. Rozansky, The Universal R-Matrix, Burau Representation and the
Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math.
134-1 (1998) 1-31, arxiv:q-alg/9604005.

[R3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality
Conjecture, arxiv:math/0201139.

[Sch] S. Schaveling, Expansions of Quantum Group Invariants, Ph.D. thesis,
Universiteit Leiden, September 2020, wef3/Scha.

Thanks for bearing with me!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-2505.
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Dror Bar-Natan: Talks: Pitzer-250308: wef:=http://drorbn.net/pi25
A Seifert Dream

Thanks for inviting me to Pitzer College!

IAbstract. Given a knot K with a Seifert surface X, I dream
that the well-known Seifert linking form Q, a quadratic form on
IH (%), has plenty docile local perturbations P, such that the for-
mal Gaussian integrals of exp(Q + P,) are invariants of K.

In my talk I will explain what the above means, why this dream
is oh so sweet, and why it is in fact closer to a plan than to a
delusion. Joint with Roland van der Veen.

With

The Seifert-Alexander Formula.

P, 0 € Hi (%),

O(P,G) = T"*Ik(P*,G) - T~
A(K) = det(Q)

dp dx exp Q(p, x) = det(Q)"'
2H (%)

(where = means “ignoring silly factors™).

121k(P,G*)

IPerturbed Gaussian Integration. We say ==\
that P, € eQ[x1,...x,][€] is M-docile (for B
in P. we have deg, . (m) < M(deg.(m)).

Theorem (Feynman). If Q is a quadratic in xi,..., X, and P, is
docile, set Z, = fRn dxy---x, exp(Q + P¢). Then every coeffi-
cient in the e-expansion of Z, is computable in polynomial time

in n. in fact, @ @ @

AV2Z, = <eXP Q_1 (0x,), exp Ps> = sum over all pairings

B(T, 1) is like that! With €2 = 0, P, P,

Sk

some M: N — N) if for every monomial m From Mexico City. tarifls exemp

IDream. There is a similar perturbed Gaussian integral formu-
la for 6, but with integration over 6H;(X). The quadratic Q will
be the same as in the Seifert-Alexander formula (but repeated 3
times, for each 7,). The perturbation P, will be given by low-
degree finite type invariants of curves on X (possibly also depen-
dent on the intersection points of such curves, or on other infor-
mation coming from X).

I[Evidence. Experimentally (yet undeniably), deg 6 is bounded by
the genus of . How else could such a genus bound arise? Further

fivery strong evidence comes from the conjectural (yet undeniable)

junderstanding of 6 as the two-loop contribution to the Kontsevich

dlintegral [Oh] and/or as the “solvable approximation” of the uni-
\versal sl3 invariant [BN1, BV2].

hy so sweet? It will allow us to prove the aforementioned ge-
Inus bound and likely, the hexagonal symmetry. Sweeter and dre-
amier, it may allow us to say something about ribbon knots!

=+ @+

'What’s “local”? How will we compute? The Bedlewo Alexan-
der formula: Let F be the faces of a knot diagram. Make an F' X F
matrix A by adding for each crossing contributions

-1-120 1 -100
x 00 00 x 00 00
1/Jj |0 1 -10 l 121 10
! 1 0-10 1 0-10

——Z= L(XTS)L(X&)L(X§7)£(C41)

I’x"z

where L(X,-Sj) = LX), L(CH) = M,

L(X};) = xi(piv1 — pi) + xj(pje1 — D))

+(T° = Dxi(pis1 — Pj+1)
es( (I =Dxip; \_
+ 2 (xl(pl Pj)( +2(1 - xjpj)) 1)

L(CY) = xi(piv1 — pi) + €p(1/2 = xip))
0(T,, T>) is likewise, with harder formulas

and integration over 6F.

X

at rows / columns (i, J,k ). Then A = det’ (T1/2A T" 1/2A)/2
(’x/\ P _/—\

aave el o @

{2 _/,\\ 0 I J\
IExpect the like for 8! Expect more like 9! Topology first! Resist

(the Selfert algomhm by Emily Redelmeler)
the tyranny of quantum algebra!

O 0O HHHIIIIIIIIIIII B B D DD
LI IR RT SRR L
00 BEMHERIHINIMNEHH S 000

LR AR K R K 2 L EALLIolh i B A B

T RO D OB S T Y

#‘-PJQ'QQQ&“OI{WQ”NNQWG!Q‘L&‘S

Right. The 132-crossing torus knot 7,7 (more at wef/TK).
Below. Random knots from [DHOEBL], with 101-115 crossings
more at wef3/DK).

G

S SO E SRR DDDDBE T 'b
J‘ & PR EEEERRIRDTDDDDER S ‘b
s P EEOSSNRBDDODBD DS D Y

LRV UBDUWRNNOLW
%% NN D000 MMMIIIIN.
& B 0% W N MWRTLvITaY
IR R R KRR R ITELILR R S bt
R R RN I TRY RN

OO D W DI ERE B e T b e B

I I L T T T I T I

2025/03/11@09:3

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Pitzer-250308.
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weBi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

These slides and the code within are online at wef:=http://drorbn.net/ktc25

The Strongest Genuinely Computable Knot
Invariant Sinee In 2024

The First International On-line Knot Theory Congress
February 1-5, 2025 (I'll post the video there too)

(I wish all speakers were making their slides available before / for their talks).

Dror Bar-Natan

A paper-in-progress is at weP/Theta.
Abstract. “Genuinely computable” means we have computed it for random knots
with over 300 crossings. “Strongest” means it separates prime knots with up to 15
crossings better than the less-computable HOMFLY-PT and Khovanov homology If you can, please turn your video on!
taken together. And hey, it's also meaningful and fun.
Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint with van der Veen.

weBi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

Acknowledgement.

Happy birthday, dear Lou!

This work was supported by NSERC grant RGPIN-2018-04350 and by the Chu
Family Foundation (NYC).

Lou Kauffman at MSRI, March 1991

weBi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

Strongest.

Testing © = (A, 0) on prime knots up to mirrors and reversals, counting the

The Strongest Genuinely Computable Knot number of distinct values (with deficits in parenthesis): (p1: [Rol, Ro2, Ro3, Ov, BV1])
Invariant Sinee In 2024

knots | (H,Kh) | (A,p1) ©=(A,0) | (A,0,p2) | all together

|
reign | | 2005-22 | 2022-24 2024 | 2025- |

xing <10 | 249 | 248 (1) | 249 (0) 249 (0) 249(0) 249 (0)

xing <11 | 801 | 771 (30) | 787 (14) 798 (3) | 798 (3) | 798 (3)

Strongest? Genuinely Computable? xing <12 | 2,977 | (214) (95) (19) (10 (10
xing <13 | 12,965 | (1,771) | (959) (194) (169) (169)
xing < 14 | 50,937 | (10,788) | (6,253)  (1,118) (982) (981)

xing < 15 | 313,230 | (70,245) | (42,914)  (6,758) (6,341) (6,337)

weBi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

Genuinely Computable. Here's ©
on a random 300 crossing knot (from
[DHOEBL]). For almost every other knot
invariant, that's science fiction.

Gukov: Should take 300 years if Moore's
law persists.

Us: A few hours on a laptop, 0 GPUs.

Fun. There's so much more to see in
2D pictures than in 1D ones! Yet almost
nothing of the patterns you see we know
how to prove. We'll have fun with that
over the next few years. Would you join?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Random knots (from [DHOEBL]) with 101-115 crossings:

The Rolfsen Table:
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The torus knots TKi3/p, TKi7/3, TKizss, and TKyje:

wePi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

B ”

O HEtE O

The torus knot TKyy)7:

weBi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

Meaningful. Convention.

0 gives a genus bound (unproven yet with confidence). We hope (with reason) it

R \ T, T1, and T are indeterminates and T3 := T7 T».
says something about ribbon knots.

wePi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

—
-
image credits:
Bl E

diamonS A o p=1-T°
o o
7 Model T Traffic Rules. Cars always drive forward. When a car crosses over a
Preparation. Draw an n-crossing knot K 5 4 !: sign-s bridge it goes through with (algebraic) probability 7° ~ 1, but falls off with

0 “ho probability 1 — 7° ~ 0. At the very end, cars fall off and disappear. On various

as a diagram D as on the right: all cros- edges traffic counters are placed. See also [Jo, LTW].

sings face up, and the edges are marked
with a running index k € {1,...,2n+ 1} 1y T-11_ 71

1-T T 1 1
and with rotation numbers . J‘?/L L\/{ ,Q g
Ve e o

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Given crossings ¢ = (s, 1,), co = (S0, fo,Jjo), and ¢1 = (s1, i1, /1), let

D \/
\/; Fi(c) = s[1/2 — gsii + T5guigzji — 583582 — (T3 — 1)83ii&2ji
= H(T35 — V)evjigsji — 81ii&2j + 283i82j + 81ii&3jj — £2ii&3jj)
s
Definition. The traffic function G = (gas) (also, the Green function or the T (T3 = 1)T5 (g3jig1)i — &2jiguji + T581ji&2ji)
two-point function) is the reading of a traffic counter at 3, if car traffic is injected 2 s ; .
at a (if @ = 3, the counter is after the injection point). There are also model-T, + (T3 — 1) (g3ji — T3guiigsji + &2ijgzji + (T5 — 2)g2jig3)i)
traffic functions G, = (guap) for v =1,2,3. — (T3 = 1)(T5 + 1)(T5 — 1)gujigsjil
Example. s(TO — 1)(TS — 11,830
Falco, ) = 2= DUTS" — Daiogsin (T3 2ivio + 82juio — T3 824 — 82ivjo)

-1
> pzo(l— T) =T 2

1 7Tt 1
1 o 7! 1) F3(ok, k) = @ilgsin — 1/2)
% H\:@* H\J\QQ-F (0 0 1

(Computers don't carel)

weBi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25
Main Theorem. Lemma 1.
The following is a knot invariant: (the A, are normalizations discussed later)
0(D) = A1AsA3 <Z Fi(c) + Z Fa(co, c1) + Z Fa(px, k ) ) The traffic function g,z is a “relative invariant”:
c 0,C1

W\W

(There is some small print for R1 and R2 which change the numbering of the edges and sometimes

collapse a pair of edges into one)

If these pictures remind you of Feynman diagrams, it's because they are Feynman
diagrams [BN2].

weB:=http://drorbn.net/ktc25 weP:=http://drorbn.net/ktc25

Proof. Lemma 2.

j+‘/l‘+
With k* : " " ; oy i/ N

=k + 1, the “g-rules” hold near a crossing ¢ = (s, 1, ):
1-TP+T1-T)L1-T)T LT?
gis =8&p+0jp &ip= T grp+ (1= T°)gp+dip Gt p=02np

ait = T°8ai + 0ait  Baj+ = Baj + (1= T°)8ai + dajr a1 = da1

UL

weB:=http://drorbn.net/ktc25 weB:=http://drorbn.net/ktc25

Corollary 1.

G is easily computable, for AG = | (= GA), with A the (2n+1) x (2n+1)
identity matrix with additional contributions: And so,
A |col it col j*

c=(sij)— rowi| —T° T°_-1 rro1 T = Lot
row j 0 -1 01 7T+l TP—T+1  TP—T+1 T2}§+1 1
For the trefoil example, we have: 7& c— 0 0 2—7_"_+1 T2—1T+1 T2,1T+1 TLTT+1 1
- 0 0 —T+1 T(QFTIJS%_ T2-T+1 T?—TT+1 1
17 - 1
(1) _17- 01 8 TO_ 1 8 g Y 0 0 = e s s S s ES I ca =5
= o ho | 00 0 0 1
o0 1 =T 0 0 T-1 > i 00 0 0 0 0 1
A= 0 0 0 1 -1 0 0 s 3 3
0 0 T—=1 0 1 =T 0 A
0 0 0 0 0 1 -1
o0 o o o0 o0 1 1,

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Note.

The Alexander polynomial A is given by

A = TEPM/2 det(A),

c,a:ngk, W:ZS.
k c

We also set A, := A(T,) for v = 1,2,3. This defines and explains the
normalization factors in the Main Theorem.

with

weBi=http://drorbn.net/ktc25

Invariance under R3

This is Theta.nb of http://drorbn.net/ktc25/ap.
Once[<< KnotTheory™ ; << Rot.m; << PolyPlot.m];

Loading KnotTheory™ version of October 29, 2024, 10:29:52.1301.
Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/ktc25/ap to compute rotation numbers.

Loading PolyPlot.m from
http://drorbn.net/ktc25/ap to plot 2-variable polynomials.

T3 =Ty Ty;
CF[&.] := ExpandeCollect[&, g, F] /. F - Factor;

weBi=http://drorbn.net/ktc25

8i ,j :=If[i===7,1,0];

8Rs i 5 t={
8y s P Byits*+6i5s Byis T Euirs+ (1-T) B jrs+ Siss
8 ait T, 8rai+6ai%s By a j* > Braj + (1 - Tsy) 8rai + 8aj*

}

weB:=http://drorbn.net/ktc25

The Main Program
O[K ] := Module[{CS, @, n, A, A, G, ev, 6},
{Cs, ¢} =Rot[K]; n=Length[Cs];
A = IdentityMatrix[2n+1];
5 5 9 4 5 a -T° T° -1
Cases|[Cs, {s_, i, j_} = (A[{l, G}, {i+1, J+1}] += ( o 1 ))],
A = T(-Total[¢]-Total[CS[ALL,1]1) /2 pat [A];

G = Inverse[A];
ev[& ] :=Factor[& /.8, ,u,s » (Gla, A1 /.T-T,)1;

o= ev[Z=1 F[CskD1]s
6 += ev[21=122=1 F2[Csk1], CsEk211];

6 4= ev[Z'::ngw[[k]], k1]s

Factor@{s, (A/.T-T1) (A/.ToTy) (A/.T>Ts) e}];

weBi=http://drorbn.net/ktc25

Corollary 2.

Proving invariance is easy:

k= Jt i D D
L i+ ?
' )= s
N N
m n m n
j Nk

weBi=http://drorbn.net/ktc25

Fil{s_, 1., 7 }1=
cF[
S (1 /2 - g3ii + T3 8aii 824 — B1ii 8255 — (Ti = 1) 82ji 83ii + 2 B2jj B3ii -
(1 = T§) 8241 8341 - 821 8335 — T3 824 833 + Baii 8345 +
((73-1) gags (T2° 8230 - T3 8235 + T3 €3y3) +
(T5-1) 8351 (- T3 8111 - (T3 -1) (T3 +1) gagi + (T3 - 2) 8255 + 8215) ) /
(13-2))1s
F[{s6_, i0_, jo_}, {s1_, 11_, j1_}] :=
CF[s1 (T37-1) (T3 -1)™* (75" - 1) £1,1,10 83, 50,12
( (Tig 82,i1,i0 - gz,u,je) = (Tie 82,j1,i0 - Sz,j1,je) ) ]

F3[o_, k.1 =-0/2+¢83k;

weBi=http://drorbn.net/ktc25

D

DSum[Cs__ ] :=Sum[Fy[c], {c, {Cs}}] +
sum[F,[c@, cl1], {c@, {Cs}}, {cl, {Cs}}]

lhs = DSum[{1, j, k}, {1, i, k"}, {1, i*, %}, {s, m, n}1 //.
8R1,5,k UBRy, i, k+ UBRy,i+,5+5

rhs = DSum[{1, i, j}, {1, i*, k}, {1, 3", k™}, {s, m, n}1 //.
8Ry,1,5 U8Ry, 1%,k U8Ry, j+,1+3

Simplify[lhs == rhs]

True

weB:i=http://drorbn.net/ktc25

The Trefoil Knot

©[Knot[3, 1]] // Expand
1 1 1 1 1 1 T. T
{71+—+T,777T§777 + + +J+J+T§T27T§+T1T§7T§T§}
T LK TOTT T3 T, T, Ty
PolyPlot[@[Knot[3, 1]], ImageSize - Tiny]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.

16


http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502

weB:=http://drorbn.net/ktc25 weB:=http://drorbn.net/ktc25

The Conway and Kinoshita-Terasaka Knots
The Torus Knots TK13/2, TK17/3, TK13)5, and TK7’6

C/Z\ /A(—\ GraphicsRow[ImageCompose [
PolyPlot[@[Torusknot ee #], ImageSize - 480],
Q\) (\,\) TubePlot [TorusKnot @@ #, ImageSize -» 240],
{Right, Bottom}, {Right, Bottom}
GraphicsRow[PolyPlot[@[Knot[#]], ImageSize » Tiny] & /e 1 &/e@{{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

s L LTI LR RN

«

(Note that the genus of the Conway knot appears to be bigger than the genus of
Kinoshita-Terasaka)

weBi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

Question 1.

What's the relationship between © and the Garoufalidis-Kashaev invariants
[GK, GL]?

Questions, Conjectures, Expectations, Dreams.

weBi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

Conjecture 2. Conjecture 3.

# is the €' contribution to the “solvable approximation” of the sk universal
invariant, obtained by running the quantization machinery on the double

D(b, b, €d), where b is the Borel subalgebra of sh, b is the bracket of b, and ¢ the
cobracket. See [BV2, BN1, Sch]

On classical (non-virtual) knots, 6 always has hexagonal (D) symmetry.

weBi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

Conjecture 4.

Fact 5. 6 has a perturbed Gaussian integral formula, with integration carried out
over a space 6E, consisting of 6 copies of the space of edges of a knot diagram D.

See [BN2].
0 is equal to the “two-loop contribution to the Kontsevich Integral”, as studied by
Garoufalidis, Rozansky, Kricker, and in great detail by Ohtsuki Conjecture 6. For any knot K|, its genus g(K) is bounded by the Ti-degree of 6:
[GR, Rol, Ro2, Ro3, Kr, Oh]. 2g(K) > degr, 0(K).

Conjecture 7. 0(K) has another perturbed Gaussian integral formula, with
integration carried out over over the space 6H;, consisting of 6 copies of H;(X),
where ¥ is a Seifert surface for K.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Question 8.

Is there a direct quantum field theory derivation of §7 Perhaps using the
e-expansion (at constant k!) of Chern-Simons-Witten theory with gauge group
g5 = D(b, b, €d) with some Seifert-surface-dependent gauge fixing?

weB:=http://drorbn.net/ktc25

Dream 10.

These invariants can be explained by something less foreign than semisimple Lie
algebras.

weBi=http://drorbn.net/ktc25

Thank You!

weBi=http://drorbn.net/ktc25
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Math., 126 (1987) 335-388.

[Kr] A. Kricker, The Lines of the Kontsevich Integral and Rozansky's Rationality Conjecture,
arXiv:math/0005284.

[LTW] X-S. Lin, F. Tian, Z. Wang, Burau Representation and Random Walk on String Links, Pac.
J. Math., 182-2 (1998) 289-302, arXiv:q-alg/9605023.

[Oh] T. Ohtsuki, On the 2—loop Polynomial of Knots, Geom. Top. 11 (2007) 1357-1475.

[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, Ph.D. thesis,
University of North Carolina, Aug. 2013, weB/Ov.

[Rol] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones Polynomial and
Witten's Invariant of 3D Manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:
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[Ro2] —, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the
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[Ro3] —, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:
math/0201139.

weBi=http://drorbn.net/ktc25

Expectation 9.

There are many further invariants like 6, given by Green function formulas and/or
Gaussian integration formulas. One or two of them may be stronger than 6 and as
computable.

weB:=http://drorbn.net/ktc25

Dream 11.

0 will have something to say about ribbon knots.

weBi=http://drorbn.net/ktc25
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Dror Bar-Natan: Talks: USC-240205: Thanks for allowing me at USC! [E%[E]
Shifted Partial Quadratics, their Pushforwards, and Signature Invariants for Tangles http://drorbn.net/usc24 E-,‘%ﬁ
Abstract. Following a general discussion of the co- “ ashaey —p ture [Ka] For links, 0'kas = 20771
mputation of zombians of unfinished columbaria (with i S&RLiu’s Theorem [Li].
examples), I will tell you about my recent joint work S l8A Partial Quadratic (PQ) on V is a quadratic Q defined only on
w/ Jessica Liu on what we feel is the “textbook” exten- il a subspace Do C V. We add PQs with Dy, 19, = Do, N Dy,
sion of knot signatures to tangles, which for unknown iven a linear ¢: V — W and a PQ Q on W, there is an obvious
reasons, is not in any of the textbooks that we know. Jessica Liu pullback y*Q,aPQon V.
i + N R . Q Theorem 1. Given a linear ¢: V — W and a PQ Q on V, there is
: . _ | =2 'V‘ > __la unique pushforward PQ ¢.Q on W such that for every PQ U on
B i | x W, ov(Q +¢*U) = O'ker(ﬁ(Qlkerq}) +ow(U + ¢.0).
Gl o \SAN G 5 (If you must, D(¢.Q) = ¢(anng(D(Q) N ker ¢)) and (¢.Q)(w) = O(v),
(Columbaria in an Ea Sydnéy Ceete Jacobian, Hamiltonianl, Zomt‘)ianWhere viss.t. ¢(v) = w and Q(v, rad Qlier ¢) =0).
Prior Art on signatures for tangles / braids. = Gambaudo |Gist of the Proof. . W
and Ghys [GG], Cimasoni and Conway [CC], Conway [Col, . 001 o = 0@l
Merz [Me]. All define signatures of tangles / braids by firstclo-|| 4 | g rz)l“r?/glol 0 =l |
sing them to links and then work hard to derive composition pro- ? o 'ol ¢

perties. BT |U

'Why Tangles? e Faster!

e Conceptually clearer proofs of invariance
(and of skein relations).

|

|
W W 0 |CT|U+F
\/‘/V\J )

i . .. and the quadratic F =: ¢, Q is well-defined only 6

. [Exactly what we want, if the Zombian is the signature!
e Often fun and consequential: 2012 4 Q2 L VI < 1 V: The full space of faces |
. I . . wilw | w | w W
o The Jones Polynomial M‘:Fhe Tf.:mperley Lieb A,l,gebra. W: The boundary, made of gaps. —l
° Khovanov Homology ~» “Unfinished complexes”, complexes | the known parts
hm a categc?r};; 1 ' U: The part yet unknown. *: face %
o The Kzntsech Integra | g R . FELEFEY 0, (Q + ¢*(U)): The overall Zombian. s W U
Hl_:;( ss(());/l[azt}ois. b | ‘é W@ay U\J 0 (Qlkerg): An internal bit. U + ¢.Q: A boundary bit.
o ~> , type D, d . . _
type A, A, ... :M gy IAnd so our ZPUC is the pair S = (0(Qlkerg), 9+ Q).

Zombies: FreepikcomA Shifted Partial Quadratic (SPQ) on V is a pair § = (s €
7, Q a PQ on V). addition also adds the shifts, pullbacks keep the
shifts, yet ¢..S = (5 + Tker(Qlierg), ¢+ Q) and o(§) = s + o(Q).

Theorem 1’ (Reciprocity). Given ¢: V — W, for SPQs S on
V and U on W we have oy(S + ¢*U) = ow(U + ¢..S) (and this
haracterizes ¢..S ). Note. ¥* is additive but ¢, is not.
heorem 2. ¥* and ¢, are functorial. Y<w

& Theorem 3. “The pullback of a pushforward scene is #y .7 Vv
il pushforward scene”: If, on the right, 8 and ¢ are ar- 14 7 VA

L bitrary, Y = EQ(B,y) = V&, W ={(v,w): Bv = yw} and u and v
..are the obvious projections, then y*B, = v,u*.

Computing Zombians of Unfinished Columbaria.

e Must be no slower than for finished ones.

e Future zombies must be able to complete the
computation.

e Future zombies must not even know the size &2 & #uii 484
of the task that today’s zombies were facing.

e We must be able to extend to ZPUCs, Zombie
Processed Unfinished Columbaria!

I[Example / Exercise. Compute the determinant

of a 1,000 x 1,000 matrix in which 50 entries " e

are not yet given. Columbarium near Asse

Homework / Research Projects. e What with ZPUCs? e Use 82 SPQ S
Definition. S8  &i)]:=
this to get an Alexander tangle invariant. — : “lon{g) )
signature
Reminders. {links} =3 {matrices / quadratic forms} e, 7 Theorem 4 {S(eyclic sets)} is a
2 o .
i s planar algebra, with compositions
. o, B S(D)(S)) = ¢PWH(ED;S ), where
A=A - -1 _(;-f——;:+s Wp: {fi) = {gqi) maps every face of D
o _ to the sum of the input gaps adjacent to Connection Diagram
. _it and ¢”: () — {(g;) maps every face to the sum of the output

. = - o - vste ] )
With |w[=1,7=1—w,r=1+1,v=Re(w), and u = Re(w'’?): lgaps adjacent to it. So for our D, Yp: fi = g, fo = g31+814+824+833»

|

Xoijht I —r =t 2t I\ : v u 1 u if3 g, fa P &L fs o gi3t8s fo & 83, f1 — gin+g» and ¢D:
NG S U R U A VAR I BT jlfir gL o g+8 0, fim g, 500, fo g5, 1584

- j =157 7 w = -

! \] b 0 e L | I u v ulkTheorem 5. TL and Kas, defined on [Js
A7 N 8= t 0 -t 0)1 s—=1w 1 u 1)1 > ye & g 3

S T Y il o 7’;7f7J7iXanans before, extend to planar E L E E

Xoijkt | -0 7 oli 1 || ; @lgebra morphisms {tangles} — {S}. % 2 o £ ¥
SNET A= S R L I ; :

J ; | 2 ¢t r ik, 1 u v ulkRestricted to links, TL = oy, and Kas = 0 kgs.
SN s=0 e 0 e o)rse=1w 1 w1

Video: http://wuw.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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Implementation (sources: http://drorbn.net/icerm23/
ap). I like it most when the implementation matches the math
perfectly. We failed here.

Once[<< KnotTheory  ];
Loading KnotTheory™ version
of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.
Utilities. The step function, algebraic numbers, canonical forms.
6[x_]1 /; NumericQ[x] := UnitStep[x]
w2[v_][p_] :=Module[{q = Expand[p], n, c},
If[q===9, 0,
c = Coefficient[q, w, n = Exponent[q, w]];
cv'+w2[vl[g-c (w+0™)"]]];
sign[&_] :=Module[{n, d, v, p, rs, e, k},
{n, d} = NumeratorDenominator[&];
{n, d} /= wExponent[n,w]/2+Exponent[n,w,Min]/2;
p = Factor[w2[v]e@nxw2[v]@d /. v > 4u®-2];
rs = Solve[p == @, u, Reals];
If[rs === {}, Sign[p/.u-0],
rs = Union@ (u /. rs);
Sign[ (-1)°=BPonentl®:ul coefficient[p, u, e]] + Sum[
k =0;
While[ (d = RootReduce[dy, ,si3P /- U>r])
If[EvenQ[k], @, 2Sign[d]] *6[u-r],

{r, rs}l

= 0];

]
]

SetAttributes[B, Orderless];
CF[b _B] := RotateLeft[#, First@eOrdering[#] -1] & /@
DeleteCases[b, {}]
CF[&_] :=Module[{ys = UnioneCases[&, ¥_| ¥ , «]},
Total[CoefficientRules[&, ¥s] /.
(ps_ > c_) = Factor[c] « Times @@ ys™] |
CFL{}] ={};
CF[c List] :
Module[ {¥s = Union@Cases[C, ¥ , @], ¥},
CF /@DeleteCases[0] [
RowReduce[Table[d,r, {r, ¢}, {¥, ¥5}1].¥s] 1
()"
r_Rule*

=5/ {¥>v ¥~ w- w0, c_Complex > c*};
={r, r*}
RulesOf[y; +rest_.]
CF[PQ[C¢ , g_1] :=Module[{nC =CF[C]},
PQ[nC, CF[g /. Union @@ RulesOf /@nc]] ]
CF[2p [0, PG_1] = Zcrpy [0, CF[Pq]]

t= (yi » -rest)”;

Pretty-Printing.

Format[Z, z[o_, PQ[C_, g 111
¥S = ¥» & /@Joineeb;
Column[ {TraditionalForme o,

TableForm[Join[
Prepend[""] /@ Table[TraditionalForm[d.r],
{r, ¢}, {¢, ¥s}l,
{Prepend[""] [
Join ee
(b/. {L_,m __
{DisplayForm@RowBox [ {" (", L}],
m, DisplayForm@RowBox[{r, ")"}1}) /.
1_Integer = ¥; 1},
MapThread [Prepend,
{Table[TraditionalForm[d.,.q], {r, ¥s*},
{c, ¥s}1, ¥s*}]
1, TableAlignments - Center]
}, Center] ]1;

:= Module[{¥s},

s P} >

The Face-Centric Core.
Zp1 [o1_, PQICL_, q1_1]1®%p; [02_, PQ[C2_, q2_]] ":=
CF@zJo1n[b1 b2] [(71 + 0'2 PQ[a U 6’2 ql + q2] ] H

GT for Gap Touch: T %

Ti ,5 @Bsrqti i ,ri___},{lj___,3_.ri__ _alas
PQ[C , q_1] :=
CF@Zg (ri,Li,j,rj,L5,i},b5] [T PRIC U {¥i - ¥j}» 911

cor-don < (kerdn) NG, 2 =N
THEEREEDICTIONARY
n. [BY FARLEX ]
l, 1. Aline of people, military posts, or ships stationed around
an area to enclose or guard it: a police cordon.
2. Arope, line, tape, or similar border stretched around an

area, usually by the police, indicating that access is

restricted.
use ¢, to kill its row and
(0 |¢ Crest Ap ¢, #0 column, drop a ((1)(1)) summand
il 6 |—
CL 107 Arest ¢=0,1#0 use Atokill , let s += sign(1)
¢=0,1=0 append 6 to Cre-
Cordon; @Zgr¢ii i ,ri___3,bs___100 5 PQLC_, q_1] :=

Module[{¢ = 8,,C, A = 85,,4;4s NO = 0, NG, nq, P},
{p} = FirstPosition[(# =!=0) & /@ ¢, True, {0}];
{nc, nq} = Which|

p >0, {¢,q} /. (yi~»-clpl/olp])" /.
=1=0, (no +=sign[];
{6’, q/. (vi- —(G;iq)/l)+ /. (xi>0)'}),
A===0, {cU{67,9},9/- (¥i>0)'}];
CF@Zgmoste(ri,Li},bs] [NT)
PQ[NC, nq] /. (Yiastetri,Li} = YFirste(ri,Li}) ] ]

(¥i>0)",

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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Strand Operations. c¢ for contract, mc for magnetic contract: Reidemeister 3.

8 9
2,
Ci 5 @t Bapi it 3t i3, 1[__1:= R3L = PD[X_2,5,4,-15 X_3,7,6,-55
t // GTj rirsteqri,Liy // Cordon; X_6,9,8,-4]13 ‘o
4

R3R = PD[X_ _2s X_ _ /
Ci,;@t:Zg i .5, 3, 1[__1:=Cordon;et [X-3,5,4,-25 X-4,6,8,-15

X.s5,7,9,-613

C-,:_,j_@t . EB[(j_,___,i_),___] [__] o= cof'donj@t
{TL@R3L == TL@R3R, Kas@R3L == Kas@R3R}

Ci ,j@et:Zg j.,i, 3, 1[__]:=Cordon;et

Ci ,j @t :Zgi, ,i3, 1[__1:=Cordon;et {True, True}

mc[& ] :=85//. KaseR3L
20(u-2%)-20(u+t)-2

t : EB[(___;":_:__._}:{__._)j_:._._._):_.__] [——] | (v-3 Y7 ( ng) ( 2) 8 Y1 ¥-2)
Bere__,ii,_de_ L 21 I e, iy, _a[__1 /5 v L s o i wmawn aeas
1+ j =0 Ci,j@t v z“u :uzzi 1 ‘zi:u‘zz:; ‘z:‘:‘u‘zzz‘m Y l‘lwzu.l‘ Y] 1““4 "2 ll‘zu.l

Yo N 1 u(au? 3 2u? (4u?-3) u(au?-3 N 1 N 2u
The Crossings (and empty strands). B e Een gem e gungen o gen ey e e
RE] T 2u1) 2ue1) T 2u1) 2ue) 2u-1) @uD) Qu-l) @l 2u-1) (Zael T 2u1) 2u)
KaseP; ,; :=CF@Zg((i,j;[0, PQ[{}, O]1; Vi mmmm mmw wmmmw | e Zodr bl
TL@P; ,; := CF@Zg((i,j;;[0, PQ[{}, @]] ve S s oithw wmmww el o)

Kas[x :X[1_,J , k , L 1] :=

. — Reidemeister 2. 56
Kas@I-F[P051t1veQ [X1, X_i,5,k,-Ls X_j,k,L,_i]; _
_ ) TL@PD[X_2,4,3,-15 X_4,6,5,-3 =
Kas[(x:X|X)fS__] :=Modu1e[{v=2u -1, p, ¥s, m}, 0
¥S =¥z &/@{fs}; p= (x===X); 1 0 -1 2 2
vu1lu vu1lu (¥-2 Y6 ¥s Y-1)
ulul ulul Y-2 0 0 0 0
m=I-F[p, 1uvu’_1uvu]’ Ye 0 0 2} )
ulul ulul s 0 0 0 %]
Y-1 7] (] (7] (7]

CFeZa((so)) [IF[P, -1, 11, PQL{}, ¥s*.m.¥s]]] -
{TL@PD[X_;,4,3,-15 X_4,6,5,-3] == GTs, ,@TL@PD[P_y 5, P_5 6],
TLix:X[i_ ,J ,k , L 11 := _ Kas@PD[X_3,4,3,-15 X-4,6,5,-3] = GTs,_,@Kas@PD[P_y s, P_; 6]}
TL@If[PositiveQ[x], X_i,j,r,-1s X_j,k,,-i]
_ {True, True}
TL[(x DX | x)fs__] iz Module[{t =1-w, r, ys, m},

r=t+t*; ys =y, &/@ {fs}; Reidemeister 1. A{ )
{TL@PD[X_3,3,2,.1] = TL@P_y, -
m=If[x=== 9 3,3,2,-1 1,2 s
Kas@PD [X_3,3’2,_1] == KaS@P—l,Z} 1 1
-r -t 2t t* [ -t -2t* t*
~t* @ t* o _t* o t* 0 ] {True, True}
* * -‘ * ;
2t o-r ot -2t ro-t A Knot.
t e -t o t (%) -t (%)

f = TLSig[Knot[8, 5]]
CFezg((rs); [0, PQL{}, 75*.m.ws]]]

20[- L ] e[ ]
Evaluation on Tangles and Knots. 2 2
Kas[K_] := Fold[mc[#1®#2] &, Zg(;[@, PQ[{}, @11, 20u- ©-0.63.. | +20[u- @eo.630..
List @@ (Kas /@ PD@K) ];
KasSig[K ] := Expand[Kas [K] [1] / 2] Plot[f, {u, -1, 1}] = 5

TLIK ] :=
Fold[mc[#1&® #2] &, Zg[; [0, PQ[{}, O]],
List @e (TL /@PD@K)] /.
6[c_+u] /; Abs[c] 21> 0[C];
TLSig[K ] := TL[K][1]

Video: http://wuw.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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The Conway-Kinoshita-
Terasaka Tangles.

T1=PD [Y-s,2,7,-1: X_2,8,3,-75

Conway

e
(7
o
hiloe

Kinoshita Terasaka

4 10
X_s,4,9,-35 X-11,6,12,-5> :\
X-4,11,5,-1a] 5 )5
T2 = PD [X-5,2,7,_1: X_2,8,3,-75 2
X_g,4,9,-35 i-12,6,13,-51 e ’ >2\

X_a,12,5,-115 X_10,15,11,-145 X_15,10,16, -9]

Columne@ {TL[T1], Kas[T1]}

729(:47%) +29(u+%3) _1

11

(¥-10 Yo -1 Y12)
Y-10 2] 1-w (] w-1
= w-1 2w w-1 2w
o o W2-wsl e T w?wn
Y- 2] w-1 2] 1-w
- -1 20 -1 2
Y12 T 2, o 2 1
(¥ 10 Yo -1 Y12)
¥-10 2 (u-1) (u+1) (4u®-3) 0 “2(u-1) (u+1) (4u®-3) [
_ 1 1
Yo 0 2 (au?-3) 0 2 (4u?-3)
Y “2(u-1) (u+1) (4u*-3) 0 (u-1) (u+1) (4u®-3) [’}
— -1 1
Y12 ] 2 (4u2-3) e 2 (au?-3)
Columne@ {TL[T2], Kas[T2]}
2]
(¥ 14 Y16 Y1
Y-14 [} 1-w [}
- w-1 B 2 (w-1)20 w1
Y16 w w?-3034502-3 041 ©
Y 2] w-1
- _ w1 2 (0-1)20 -1
Y13 w 303502 3001
1
(¥-14 Y16 -1 Y13)
Y1 5 (-16ut+280u7 -13) 0 3 (16u* - 2807 +13) 0
- _2(u-1) (u+l) 2 (u-1) (u+1)
Y16 e 16u4-28u?-13 e 16u4-28u?-13
Y1 2 (16u* - 2807 +13) 0 1 (-16u*+ 2802 -13) 0
Y13 9 2 (u-1) (u+1 9 _ 2 (u-1) (u+l)

16 u*-28u?+13

Examples with non-trivial co- 4 )7
dimension. D
Bl = PD[X_s,2,6,-15 X_8,3,9,-25 2

6

9
X_11,4,12,-35 X_12,10,13,-9>
_ 3
X—13,7,14,-6] H
B2 = PD[X-S 2,6,-15 X-9,3,10,-2> 2 "
PRl s 37 El ] \5 8

X_10,7,11,-65 X-12,4,13,-35> X_13,8,14,-7]

Columne {TL[B1], Kas[B1]}

]

1 ) 1 ) 2 )
o ) ) -1 2 )
(¥-11 Ya Y1e Y7 Y14 Y-1
Yu [ o o 0 0 [
Ya ) 0 o o el 0
Y10 [ o o 0 -ed [
12
7 0 0 ] 0 — o
Y1a 0 -((w-Hw)  w-1 (w-1)2 ) -t
Y 0 o o [ w-1 o
Ys ° (w-1) w 1-w  -(w-1)2 1-w ot
Ts [ o o 0 0 [
°
1 0 1 0 1 o
(¥-11 Ya Y1e Y7 Y14 Y-
Y [ 0 0 ) o o
Va 0 0 0 -1 “u o
Y10 ] ] ] u 1-2u? 2]
Y7 2] -1 u 2u?-3 u -1
Y1a ] -u 1-2u2 -u -1 -u
Ya [ 0 0 -1 —u o
Y5 2} u 2u? -1 [} -2 (u-1) (u+1) u
Ts [ 1 u 1 u 1

16 u-28u?+13

14k

I N5
- °
. N
Y-s ¥-8)
o °
e °
et )
w-1)2
1 0
o [
1-w 0
(w-1)2 )
o °
1
Y-s
o
u
2u?-1

]

2(u-1) (u+1)

u
4u®-3
)

<
NORESRSRO,EO®

.
|

<

o

Columne {TL[B2], Kas[B2]}

Lk

© o oo o o o of

A B\ dewy (I A7'B 1 I A"'B Roughly, det(A) is “det on ker”,
Cc U cC U 0 U-CA™'B) S A B\,
A B —CA™'Bis “a pushforward of c ul”
— — -1
so det (C U) = det(A)det(U — CA™'B). (what if #1417

Questions. 1. Does this have a topological meaning? 2. Is the-
re a version of the Kashaev Conjecture for tangles? 3. Find all
solutions of R123 in our “algebra”. 4. Braids and the Burau re-
presentation. 5. Recover the work in “Prior Art”. 6. Are there
any concordance properties? 7. What is the “SPQ group”? 8. The
jumping points of signatures are the roots of the Alexander poly-
nomial. Does this generalize to tangles? 9. Which of the three
Cordon cases is the most common? 10. Are there interesting e-
xamples of tangles for which rels is non-trivial? 11. Is the pg
part determined by I'-calculus? 12. Is the pg part determined by
finite type invariants? 13. Does it work with closed components
/ links? 14. Strand-doubling formulas? 15. A multivariable ver-
sion? 16. Mutation invariance? 17. Ribbon knots? 18. Are there
“face-virtual knots”? 19. Does the pushforward story extend to
ranks? To formal Gaussian measures? To super Gaussian measu-
res?
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Some Rigor. (Exercises hints and partial solutions at end)
Exercise 1. Show that if two SPQ’s S| and S, on V satisfy (S 1+ U) =
o(S, + U) for every quadratic U on V, then they have the same shifts
and the same domains.

Exercise 2. Show that if two full quadratics Q; and Q satisfy o(Q; +
U) = 0(Q> + U) for every U, then Q; = Q».

Proof of Theorem 1°. Fix W and consider triples (V,S,¢: V — W)
where S = (s,D, Q) is an SPQ on V. Say that two triples are “push-
equivalent”, (V1,5 1,¢1) ~ (V2,8 2, ¢2) if for every quadratic U on W,

oy, (S1+91U) = 0y, (S2 + ¢, U).

Given our (V, S, ¢), we need to show:

1. There is an SPQ S’ on W such that (V, S, ¢) ~ (W, S, I).

2. fE(W,S", 1) ~(W,S”,I)then §" =S".

Property 2 is easy (Exercises 1, 2). Property 1 follows from the follow-
ing three claims, each of which is easy.

Claim 1. If ve ker¢ N D(S), and A := Q(v,v) # 0, then (V, S, ¢) ~

(V). (s+sign(0), D(S)/(v), Q=27 Q(=,v) ® (v, =), /(V))..

So WlOg Q|ker¢ =0 (meanin& Q|ker¢®ker¢ = 0) m
Claim 2. If Qlkerp = 0 and v € ker¢ N D(S), let V' = ker Q(v, —) and
then (V,S,¢) ~ (V', S|y, dlv) so wlog Olveker p+kergav = 0. m|

Claim 3. If Qlvgker p+kergev = 0 then S = ¢*S’ for some SPQ S’ onim ¢
and then (V, S, ¢) ~ (W, S’, ). oo
Proof of Theorem 2. The functoriality of pullbacks needs no proof.
Now assume V BN Vi i) V, and that S is an SPQ on V. Then

for every SPQ U on V, we have, using reciprocity three times, that
oB.a.S +U) = o(a.S +p°U) = o(S +a*BU) = (S + (Ba)U) =

o((Ba).S + U). Hence B.a.S = (Ba).S. m]
Definition. A commutative square as on the right is called yLw
admissible if y*3, = v, u*. wy ANy
Lemmal fV=W=Y=ZandBf=y=u=v=1the V=2
square is admissible. O p

Lemma 2. The following are equivalent:

1. A square as above is admissible.

2. The Pairing Condition holds. Namely, if S is YLwas,
an SPQ on V (write S| + V) and S, + W, then uy V7

oS +v'S2) =0 (B.S1 + y.S2). S\ rV—=Z
3. The square is mirror admissible: 8*y, = p.v*. B y Lw
Proof. Using Exercises 1 and 2 below, and then using re-  u} . {y
ciprocity on both sides, we have VS| y*8.S| = v.u'S1 & V=7

VS 1VS20(y*B:S1+S2) = oc(vuui*S1+52) © VS 1VS20(B.5 1 +y*§'2) =
o(u'S1 +v'S,), and thus 1 & 2. But the condition in 2 is symmetric

under 8 < y, u & v, soalso 2 & 3. O
Lemma 3. If the first diagram below is admissible, then so is the se-
cond. Y =W Yy —=W o
wy 7 \y w7 ye0
V—>2Z VisZ®F
B B0

Lemma 4. A pushforward by an inclusion is the do nothing operation
(though note that the pushforward via an inclusion of a fully defined
quadratic retains its domain of definition, which now may become par-
tial). O
Lemma 5. For any linear ¢: V — W, the diagram V—_-VecC

on the right is admissible, where ¢ denotes the inclu- 4 .7 Jger
sion maps. w —L> WeaeC

Proof. Follows easily from Lemma 4. m

Definition. If S is an SPQ with domain D and quadratic Q, the radical
of S is the radical of Q considered as a fully-defined quadratic on D.
Namely, rad S :={u € D: Vv e D, Q(u,v) = 0}.

Lemma 6. Always, ¢(radS) C rad ¢..S.

Proof. Pick w € ¢(rad S) and repeat the proof of Theorem 1’ but no-
w considering quadruples (V, S, ¢, v), where (V, S, ¢) are as before and
v € rad S satisfies ¢(v) = w. Clearly our initial triple (V, S, ¢) can be
extended to such a quadruple, and it is easy to repeat the steps of the
proof of Theorem 1° extending everything to such quadruples. O
We have to acknowledge that our proof of Lemma 6 is ugly. We wish
we had a cleaner one.

Exercise 3. Show that if two SPQ’s S| and S, on V & A satisfy
A c radS; and (S| + 7*U) = o(S, + n*U) for every quadratic U
onV,where r: V@A — V is the projection, then S| = 5.

Exercise 4. Show that if ¢: V — W is surjective and Q is a quadratic
on W, then o(Q) = o(¢* Q).

Exercise 5. Show that always, ¢.¢™S = S|img.

Lemma 7. For any linear ¢: V — W, the dia- ¢t

gram on the right is admissible, where ¢* := ¢®1 v Ef ¢ _”)7W iBﬁC
and « and 8 denote the projection maps. (YV w
Proof. Let S be an SPQ on V. Clearly C C

B¢.S . Also, C C rad @*S so by Lemma 6, C = ¢*(C) C ¢*(rad a*S) C
rad ¢7 @*S. Hence using Exercise 3, it is enough to show that o(¢} @*S +

BU) = (8.8 +B°U) for every U on W. Indeed, o(¢*a*S +5°U) &

cB.¢7a*S+U) € o(poa.aS+U) L o(.5 +U) L (B (.5 +U))
(B ¢.S +B*U), using (1) reciprocity, (2) the commutativity of the dia-
gram and the functoriality of pushing, (3) Exercise 5, (4) Exercise 4,

and (5) the additivity of pullbacks. m|

Lemma 8. If the first diagram below is admissible, then so are the other

two. Y+ w YoELw Y 2L worF
wy Ay poly 7 v my LT el

Proof. In the diagram

YOE—">Y—>W—>WeF
por{  Tul T Ny T el

with 7 marking projections and ¢ inclusions, the left square is admissi-
ble by Lemma 7, the middle square by assumption, and the right square
by Lemma 5. Along with the functoriality of pushforwards this shows
the admissibility of both the left and the right 1 X 2 subrectangles, and

these are the diagrams we wanted. O
Proof of Theorem 3. DecomposeZ = A@E®F —=A®CoF
A®B®Co®D, where A = imBNimy, ¥ Ty
imB=A®B,andimy = A®C. Write A®BOE—>A®BoCo®D

V ~ A®@B®E with3 = Ion A®ByetS = Oon E, and write W ~ A®@C®F
withy =TonA®Cyety=0onF. ThenY =V, W=2ASESDF
and our square is as shown on the right, with all maps equal to / on
like-named summands and equal to 0 on non-like-named summands.
But this diagram is admissible: build it up using Lemma 1 for the A’s,
and then Lemma 8 for E and C, and then again Lemma 8 along with
the mirror property of Lemma 2 for B and F, and then Lemma 3 for D.

O
To prove Theorem 4, given three! SPQ’s S|, S, and S5, we need to
show that planar-multiplying them in two steps, first using a planar con-
nection diagram D; (I for Inner) to yield S¢ = S(D;)(S2,S3) and then
using a second planar connection diagram D¢ (O for Outer) to yield
S(Dp)(S1,S6), gives the same answer as multiplying them all at once
using the composition planar connection diagram Dg = D¢ o D; (B for
Big) to yield S(Dg)(S 1,S2,53).2 An example should help:

'Truly, we need the same for any number of input SPQ’s that are divided into two groups, “multiply in the first step” and “multiply in the second step”. But

there’s no added difficulty here, only an added notational complexity.

2Aren’t we sassy? We picked “6” for the name of the product of “2” and “3”.

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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1M

""""" U

9

In this example, if you ignore the dotted green line (marked “6”), you
see the planar connection diagram Dpg, which has three inputs (1,2,3)
and a single output, the cycle 0. If you only look inside the green line,
you see Dj, with inputs 2 and 3 and an output cycle 6. If you ignore the
inside of 6 you see Dy, with inputs 1 and 6 and output cycle 0.

Let Fp (Big Faces) denote (MD)
the vector space whose ba-
sis are the faces of Dg, let
F; (Inner Faces) be the spa-
ce of faces of Dy, and let Fp
(Outer Faces) be the space
of faces of Dy. Let G, G2, G3, Gg, and Gy be the spaces of gaps (ed-
ges) along the cycles 1,2,3,6, and 0, respectively. Let ¢ = yp, and
¢ = ¢P# be the maps defining S(Dp) and let y := yp, and § = @20
be the maps defining S(Dy). Further, let @ := yp,: F; — G, ® G3 and
B = ¢P": F; — Gg be the maps defining S(Dy), and let @, = I ®  and
B* = I®p be the extensions of @ and B by an identity on an extra factor
of Gy, so that 8f o} = I, ® S(Dy). Let u map any big face to the sum of
G gaps around it, plus the sum of the inner faces it contains. Let v map
any big face to the sum of the outer faces it contains. It is easy to see
that the master diagram (M D) shown on the right, made of all of these
spaces and maps, is commutative.

G

4 O‘

b
Fg——Fp

e b

G1$G2®G3f:G1®F1?G1$G6

Claim. The bottom right square of (M D) is an Fp—">F,

equalizer square, namely Fp ~ EQ(8",v). He- u vy

nce viu" =y Bl Gi®F; > G 8Ge
Proof. A big face (an element of F) is a sum of outer fades f, and a
sum of inner faces f;, and it has a boundary g, on input cycle 1, su-
ch that the boundary of the outer pieces f, is equal to the boundary
of the inner pieces f; plus g;. That matches perfectly with the defini-
tion of the equalizer: EQ(B",7) = (g1, fir f): B (g1, f) = ¥(f)) =
(g1, fis Jo) : ¥(fo) = (g1, BUN}. o

Proof of Theorem 4. With notation as above, with the example abo-
ve (which is general enough), and with the claim above, and also u-
sing functoriality, we have S(Dp) = ¢.y* = d.v.ual = 6.y Bral =
S(Do) o (I, ® S(Dy)), as required. |
Proof of Theorem 5. We need to verify the Reidemeister moves and
that was done in the computational section, and the statement about the
restriction to links, which is easy: simply assemble an n-crossing knot
using an n-input planar connection diagram, and the formulas clearly
match. |

Further Homework.

Exercise 6. By taking U = 0 in the reciprocity statement, prove that
always o (¢.S) = o(S). But that seems wrong, if ¢ = 0. What saves the
day?

Exercise 7. By taking S = 0 in the reciprocity statement, frove that
always o(¢*U) = o(U). But wait, this is nonsense! What went wrong?
Exercise 8. Given ¢: V — W and a subspace D C V, show that there
is a unique subspace ¢.D C W such that for every quadratic Q on W,

o(¢*0lp) = o(Qlg.p)-

Exercise 9. When are diagrams as on the ri- Y
ght equalizer diagrams? What then do we learn \
from Theorem 3? v

- >

> -

N<o
<=~

w
¥
0

Exercise 10. There are 11 types or irreducible commutative squares:
1-0, 0=1, 00, 0=0, 1=1, 0=1, O0=1, 0=0,
A S S A A T T T T S S L A NN B

0=0 0=0 1=0 0=1 0=0 O0=1 O0=1 11

O0=1, 1=1,and 1=1. Show that pushing commutes with pul-
Vv oty viny
1-=1 1=0 1=1
ling for all but four of them. Compare with the statement of Theorem 3.
Exercise 11. Prove that a square is admissible iff it is an equalizer squa-
re, with an additional direct summand A added to the Y term, and with
the maps i and v extended by 0 on A.
Exercise 12. Prove that the direct sum of two admissible squares is a-
dmissible. Warning: Harder than it seems! Not all quadratics on V, &V,
are direct sums of quadratics on V| and on V;.
Exercise 13. Given a quadratic Q on a space V, let 7 be the projection
V — V/rad(Q) and show that 7,Q = Q/ rad(Q), with the obvious defi-
nition for the latter.
Exercise 14. Show that for any partial quadratic Q on a space W the-
re exists a space A and a fully-defined quadratic ' on W & A such
that 7.FF = Q, where 1: W @ A — W is the projection (these are
not unique). Furthermore, if ¢: V — W, then ¢*Q = m.¢ F, whe-
reg, = ¢p®I1: V®A — W A and r also denotes the projection
VeA—-V.
Solutions / Hints.
s 9281 19dio adi jon 3ud sn0 Yo aismob sdi i 10109v 8 01O .1 101 IniH
.omisagie ol 1owol 10 9zist lliw 1sdi 3 101 sulsv 2nosgso
.0 = |Q buas [snogsib 2i |Q DOIW <101 1aiH
S = (O)Q diiw J Jenisgs 1661 3291 o1 dguons 231 .2 10t 1niH
() ai 2,010 1nsq “ttide” odT .0 10t 30iH
brs) “§ i oo 0 oilsibsup Wwivwng o 231 0 1'mei 2, .V 101 10iH
[(ovidosqmwe 2i § 1t (U)o = (U*9)o bosbai

10 00 10

<1l <01 0o 918 2n0iiqooxs odT .01 10t 10iH

11 saiorexd 92U L1 10t 1niH

1
-1 bos

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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Dror Bar-Natan: Talks: Tokyo-230911: Thanks for inviting me to UTokyo! _E [=]

Rooting the BKT for FTI wep:=http//drorbn.ne/tok2309faj

“erant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

Acknowledgement. This work was partially supported by NSERC

IAbstract. Following joint work with Itai Bar-Natan, Iva Halache-
iva, and Nancy Scherich, I will show that the Best Known Time

lief before, namely about n¢.

(BKT) to compute a typical Finite Type Invariant (FTI) of type d |
on a typical knot with n crossings is roughly equal to n%/2, which
is roughly the square root of what I believe was the standard be- |

My Primary Interest. Strong, fast, homomorphic knot and tan-
ele invariants. wef/Nara, wef/Kyoto, wef/Tokyo

Conventions. e n :={1,2,...,

ignore constant and logarithmic terms: n? ~ 2023d!(log n)%n>.

n}. e For complexity estimates we |

A Key Preliminary. Let Q C
n’ be an enumerated subset, with
l < g =|0| <n Intime ~ g
we can set up a lookup table of
size ~ ¢ so that we will be able
to compute |Q N R| in time ~ 1,
for any rectangle R C n'.

[Fails. e Count after R is prese-
nted. e Make a lookup table of
|O N R| counts for all R’s.

>

\Unfail. Make a restricted loo-
kup table of the form

{ dyadic lQ m Rl }

e Make the table by running
through x € Q, and for each
one increment by 1 only the
entries for dyadic R > x (or
create such an entry, if it di-
dn’t exist already) This takes

g - (log, ) ~ g ops.

"'The [GPV] Theorem. A knot invariant is fi-

- K
for some w € G%,

e -_';Our Main Theorem. On an n-arrow Gauss diagram, ¢, can be
-:* computed in time ~ n/%/?1.

+Proof. Withd = p + I (p for “put”, [ for “lookup”), pick p arrows

" “and look up in how many ways the remaining / can be placed in

nite type of type d iff it is of the form w o ¢4

Goussarov-Polyak-Viro
L@ & is easy; = is hard and IMHO not well understood.

® .4 is not an invariants and not every w gives an invariant!

""o The theory of finite type invariants is very rich. Many knot
invariants factor through finite type invariants, and it is possible
that they separate knots.

~e We need a fast algorithm to compute ¢ !

between the legs of the first p:

N

e Entries for empty dyadic R’s are not needed and not created

e Using standard sorting techniques, access takes log, g ~ 1 ops.

e A general R is a union of at most (2log, n)! ~ 1 dyadic ones,
so counting |Q N R| takes ~ 1 ops.

Generalization.  Without changing the conclusion, replace
counts |Q N R| with summations Y 6, where #: n’ — V is suppor-
ted on a sparse Q, takes values in a vector space V withdim V ~ 1,

To reconstruct D = P#,L from P and L we need a non-decreasing
“placement function” A: 2] — 2p + 1.

-1
d
SEEDWEWEDY I
DE((j) Pe(i) "anjjﬁ L-E(PAL(E')(E;IRPA('))
Define g : 2n* — G by

DN N

WA P70 s o - BN s N8 N >SN NN e

and in some basis, all of its coefficients are “easy”. L if(Ly,...,Ly) are the ends of some L c G
- (Li,.... Ly .
Gauss Diagrams. 0 otherwise
G 8/> \‘“
+ + U ,\ and now ¢4(G) = ( ) Z Z P#, O
I 2 3 456 78 Gauss Pe(y) At TiCPa-1-Puo)
Here’s |G| = n = 100 s gr ) 1 —
(signs suppressed): = can be computed in time ~ n” + n'. Now take p = [d/2]. |
e Question ([BBHS], wep/
[Fields). For computations,

planar projections are better

Definitions. Let G = Q(Gauss Dlagrams) with G, / §<d the
diagrams with exactly / at most d arrows. Let ¢;: G — G, be

wa: G — Z D = Z D, andletcp<d = Do<d Pe-

than braids (as likely [ ~ n3/?).
But are yarn balls better than

Length L
planar projections (here likely n ~ L*/3)?

n crossings  length /|

‘ References.

DCG, |Dl=d Dpe(©)

Naively, it takes ( d) ~nd
ops to compute @,. g

®3

[BBHS] D. Bar-Natan, I. Bar-Natan, I. Halacheva, and N. Scherich, Yarn Ball Knots and
Faster Computations, J. of Appl. and Comp. Topology (to appear), arXiv:2108.10923.
[GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants of classical and

3Dy 4 Dy 5 Ds 6 Dy 7 Dj

2 D

Dy 1 D,

023/09/11@06:00

virtual knots, Topology 39 (2000) 1045—1068, arXiv:math.GT/9810073.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tokyo-230911/
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University of Toronto: Dror Bar-Natan: Talks: Nara-2308:

Thanks for inviting me to Nara!

Cars, Interchanges, Traffic Counters, and some Pretty Darned Good Knot Invariants More at wef/APAI @jin

wef:=http://drorbn.net/na23 E =

Abstract. Reporting on joint w-
ork with Roland van der Veen, I'll | & Ak
tell you some stories about P1, an Rozﬁsky Overbay 6hfsuk‘i van der
easy to define, strong, fast to compute, homomorphic,  Veen
and well-connected knot invariant. p; was first studied by Ro-
zansky and Overbay [Rol, Ro2, Ro3, Ov] and Ohtsuki [Oh2],
it has far-reaching generalizations, it is elementary and domina-
ted by the coloured Jones polynomial, and I wish I understood it.
Common misconception. Dominated, elementary = lesser.

Formulas Draw an n-crossing knot K as on the ri-
ght: all crossings face up, and the edges are marked
with a running index k € {1,...,2n + 1} and with
rotation numbers ¢;. Let A be the 2n+1)x(2n+1)
matrix constructed by starting with the identity ma-

¢4 =~1

\We seek strong, fast, homomorphic knot and tangle invariants.
Strong. Having a small “kernel”.
[Fast. Computable even for large knots (best: poly time).

.

Plccmllo

Q@

i YO

L

U
%n,

Homomorphic. Extends to tan-

I

=

Gompf—Scharlemann—
Thompson

eles and behaves under tangle
operations; especially gluings \\ \N
and doublings:

trix /, and adding a 2 X 2 block for each crossing:

'Why care for “Homomorphic”? Theorem. A knot K is ribbon
iff there exists a 2n-component tangle 7" with skeleton as below
such that 7(T) = K and where 6(T') = U is the untangle:

UUU U ‘U

(n=3) K
[Hear more at wef3/AKT.

s=+1 s=-1
s j*yA A |coli+] col j+1
— = rowi -T° T -1
J / row j 0 -1
Let G = (g45) = A~ For the trefoil example, it is: Burau
1 -T 0 0O T-1 0 0
0 1 -1 0 0 0 0
0 0 1 -T 0 0 T -1 Alexander
A=l 0 O 1 -1 0 0 s
0O 0 T-1 O 1 -T 0
0o 0 0 0 0 1 -1
0o 0 0 0 0 0 1
1 T 1 T 1 T 1
1 T T 72
0 1 T2-T+1 T2-T+1 T2-T+1  T°-T+1 1
0 0 1 T T T 1
TrTel T+l T2oT+l T2+
G=|0 0 = 1
T2-T+1 THL TT+l 1T+
00 5 -4 ! L1
T2-T+1 T2—T+1 T?-T+1 T?-T+1
0 0 0 0 0 1 1
@ 0 0 0 0 0 0 1
“The Green Function” Blanchfield|

Note. The Alexander polynomial A is given by

IAcknowledgement. This work was supported by NSERC grant
RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

A =T der(d),  withg =) g, w=> s
k c

Classical Topologists: This is boring. Yawn.

[BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot References.
Polynomial, Proc. Amer. Math. Soc. 147 (2019) 377-397, arXiv:1708.04853.

[BV2] D. Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Functions for
Universal Knot Invariants, arXiv:2109.02057.

[Dr] V.G. Drinfel’d, Quantum Groups, Proc. Int. Cong. Math., 798-820, Berkeley, 1986.

[Jo] V. E R. Jones, Hecke Algebra Representations of Braid Groups and Link Polyno-
mials, Annals Math., 126 (1987) 335-388.

[La] R.J. Lawrence, Universal Link Invariants using Quantum Groups, Proc. XVII Int.
Conf. on Diff. Geom. Methods in Theor. Phys., Chester, England, August 1988. World
Scientific (1989) 55-63.

[LTW] X-S. Lin, F. Tian, and Z. Wang, Burau Representation and Random Walk on
String Links, Pac. J. Math., 182-2 (1998) 289-302, arxiv:q-alg/9605023.

[Oh1] T. Ohtsuki, Quantum Invariants, Series on Knots and Everything 29, World Scie-
ntific 2002.

[Oh2] T. Ohtsuki, On the 2—loop Polynomial of Knots, Geom. Top. 11 (2007) 1357-1475.

[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, Ph.D. thesis,
University of North Carolina, August 2013, wef3/Ov.

[Rol] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones Poly-
nomial and Witten’s Invariant of 3D Manifolds, I, Comm. Math. Phys. 175-2 (1996)
275-296, arXiv:hep-th/9401061.

I[Formulas, continued. Finally, set

Ri(c) =5 (gji (gj+1,j + 81 g,-,-) — &ii (gj,j+1 -

1)-1/2)
p1 = A (Z Ri(c) - ZSOk (8rk — 1/2)]-
c k

In our example p; = -T2 + 2T — 2+ 2T~ - T72,
Theorem. p; is a knot invariant.

Classical Topologists: Whiskey Tango Foxtrot?

Proof: later.

Cars, Interchanges, and Traffic
Counters. Cars always drive forw-
ard. When a car crosses over a bridge
it goes through with (algebraic) pro-
bability 7° ~ 1, but falls off with probability 1 — 7° ~ 0*. At the

Jones Lin Tian  Wang

[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation
and the Melvin-Morton Expansion of the Colored Jones Polynomial,
Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.

[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Ra-
tionality Conjecture, arXiv:math/0201139.

[Sch] S. Schaveling, Expansions of Quantum Group Invariants, Ph.D.
thesis, Universiteit Leiden, September 2020, wef3/Scha.

p=1-T°

* In algebra x

very end, cars fall off and disappear. See also [Jo, LTW].

A et v

~ 0 if for every y in the ideal generated by x, 1 — y is invertible.

image credits:

imaﬁe credits:
diamondtraffic.com all-E

Video: http://wuw.math.toronto.edu/~drorbn/Talks/0axaca-2210. Handout:
http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.
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Preliminaries
This is Rho.nb of http://drorbn.net/oa22/ap.

Once[<< KnotTheory™ ; << Rot.m];

Loading KnotTheory™ version
of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/1la22/ap

to compute rotation numbers.

The Program
Ril[s_,1_,7_1 :=
S (8ji (8j5+,5 + 84,5+ — 8ij) — 8ii (85,5+-1) -1/2);
Z[K ] := Module[{Cs, @, Ny A, S, i, s ks A, G, o1},
{Cs, ¢} =Rot[K]; n = Length[Cs];
A = IdentityMatrix[2n +1];

Cases[Cs, {s_,1_,J_}»

(prcts 3, civn genne= (0T )]s
A= T(-Total[az]—Total[CSlIAll,l]]])/Z Det[A];
G = Inverse[A];
pl= " Ri@@CsIk] - »"" o[k (g -1/2);
Factore
{2, 0201 /. a *»a+1/.g,,; »6Gla, /3]1}];

The First Few Knots
TableForm|[Table[Join [{K[1l«gy}, Z[K1],
{K, AllKnots[{3, 6}]}], TableAlignments - Center]

1-T.T2 (-1+1)2 (1472
3, 11Tt Rttt iy}
T Tz
2
4 _13T.7? o
T
s 1T.72 13,74 (-14T)2 (1+T2) (2+T2+2 T4)
1 —_—
Tz T4
5374272 (-1+T)2 (S—4T+5 TZ)
5, 231212 (D7 (5-4Te5TT)
T T2
(-24T) (-1+27T) (-1+T)2 (1—4T+T2)
6, _L2T) (1e2T) DT AT
T 12
6 1-3T+3T72_3 73,74 (-14T)2 (1—4T+4T2—4T3+4 T4—4T5+T6)
2 2 4
- 2 43,4
65 13T+5TTst T 0

Fast!

Timinge
Z[GST48 = EPD [X14,1: X2,205 X3,205 Xa3,2, X26,55 Xe,055

Xoe,75> X13,85 Xo,285 X1e,415 Xa2,115 X27,125> X30,15»
X16,615> X17,725 X18,835 X19,3a5 Xgo,205 X21,925
X79,225 Xeg,235> Xs7,245 X25,565 Xe2,315 X73,325
Xga,33> Xs0,35, X36,815 X37,705> X3g,505 X39,545 Xaa,ss,
Xsg,45, Xe9,465 Xso,47, Xag,015 Xoe,205 Xs1,825 Xs52,715
Xs3,60> Xe3,74> Xea,855> X76,655> Xg7,665 X67,945

i75,86: i88,77: i78,93]]
{170.313, {*i (71+2T—T2,T3+2T47T5+T8>
T8

(F1+T 2T TP T8 277 4 T8, %
(-1+T)% (5-18T+33T2-32T>+27*+427° -62T° -
8T  +166 T8 -242T° + 108 T*® + 132 T - 226 T2 +
148 T2 -~ 11T - 36T - 11 7% 1+ 148 TV - 226 T8 &
13279 +108T7%° - 242 T2 + 166 T2 -8T2 - 62T +

4272 272 3277 43378 1872+ 5T3°)}}

Strong!
{NumberOfKnots[ {3, 12}],
Lengthe
UnioneTable[Z[K], {K, AllKnots[{3, 12}]}],
Lengthe
Union@Table[ {HOMFLYPT[K], Kh[K]},
{K, AllKnots[{3, 12}]}1}

(2977, 2882, 2785}

So the pair (A, py) attains 2,882 distinct values on the 2,977 prime
knots with up to 12 crossings (a deficit of 95), whereas the pair
(HOMFLYPT, Khovanov Homology) attains only 2,785 distinct
values on the same knots (a deficit of 192).

-\
Hoste Ocneanu Millett

Video: http://www.math.toronto.edu/~drorbn/Talks/0Oaxaca-2210. Handout:
http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.
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Theorem. The Green function gz is the
reading of a traffic counter at 8, if car traffic

PLOS

is injected at @ (if @ = B, the counter is after =)
the injection point).
[Example.
2,»0(1 Ty =T"! - [1 7! 1]
0 7' 1
*/@ 4 0O 0 1

Proof. Near a crossing ¢ with sign s, incoming upper
edge i and incoming lower edge j, both sides satisfy the

g-rules: %}
gp=0pp+ T ginip+ (1 =T"gj15 &ip=0j+8&1p

and always, g, 2,+1 = 1: use common sense and AG = I (= GA).
Bonus. Near c, both sides satisfy the further g-rules:

8ai = T "(8ais1 = Oais1),  8aj = 8ajrl — (1 = T7)goi — O ju1-

Heisenberg
Drinfel’d
Lawrencel

'Y
Wearing my Quantum Algebra hat, I spy a Heisenberg

algebra H = A(p, x)/([p, x] = 1): E
cars © p traffic counters & x HEISENBERE
‘Where did it come from? Consider g, = sls, = L{y,b,a,x)

with relations
[b,x] = ex, [b,y]l=—-€y, [b,a]l]=0
[a,x] =x, [a,y]l=-y, [x,y]=0b+e€a.
IAt invertible €, it is isomorphic to sl plus a central factor, and
it can be quantized a la Drinfel’d [Dr] much like s/, to get an
algebra QU = A(y, b, a, x) subject to (with g = &"€):
[b,al =0, [b,x]=ex, [b,y]=—ey,

Invariance of p;. We start with the hardest, Reidemeister 3:
T(-T)

| 1-T

2 J@%T(l—ﬂ

= Overall traffic patterns are unaffected by Reid3!

= Green’s g,4 is unchanged by Reid3, provided the cars injection
site @ and the traffic counters 3 are away.
= Only the contribution from the R; ¥
terms within the Reid3 move matters, and
using g-rules the relevant g,z’s can be pu-
shed outside of the Reid3 area:

61’_,j_ :=I'F[i j, 1, 0];

gRules

\
i

S_51 53
{gi/j_ B 5i/j +T° 8i+,p + (1 - Ts) 8j*,5s 8ip ¥ 6_7-/; + 8+, 55
ga, (8a,i* = 64,i*) »
8a i Bayit = (1-T°) Bai - 64,5+ }
lhs =Ry [1, j, k] +Ry[1, i, k*] +Ry[1, i*, "1 //.
gRulesl)jJk U gRulesLi)k», U gRulesl,i+,j+;
rhs =R;[1, i, j] +Ry[1, i*, k] +Ry[1, §*, k™1 //.
gRulesljiJj U gRulesLi»,,k U gRulesl,j+,k+;
Simplify[lhs == rhs]

-5
i:_)T

True

Next comes Reidl, where we use results from an earlier example:
1T1Tt1
eT 11

Ri[1, 2,1] -1(822-1/2) /. Ba,s H[
001

][[a: Ve

=1

&

141

1 T

1
T2 T T

Invariance under the other moves is proven similarly.

—

1= 7h(b+ea)
la.x]=x [ay]=-y, xyp—qu=——.
Now QU has an R-matrix solving Yang-Baxter (meaning Reid3),
R Z V'O ® (ha)" (hix)"
m![n],!

,  ([n]y!is a “quantum factorial)

and so it has an associated “universal quantum invariant” a la
I[Lawrence and Ohtsuki [La, Ohl], Z.(K) € QU.
Now QU = U(ge) (only as algebras!) and U(g.) represents into
H via

y— —tp—e€-xp’,
(abstractly, g acts on its Verma module

U(g) /(U@ y, a, b — €a — 1)) = Q[x]
by differential operators, namely via H), so R can be pushed to
ReHeH.
[Everything still makes sense at € = 0 and can be expanded near
€ = O resulting with R = Ry(1 +€R; +- -+ ), with Ry = e/*P®1-x®P)
and R, a quartic polynomial in p and x. So p’s and x’s get crea-
ted along K and need to be pushed around to a standard location
(“normal ordering”). This is done using

P DRy =Ro(T(p 1)+ (1 -T)1& p)),

(1® p)Ro = Ro(1® p),
and when the dust settles, we get our formulas for p;. But QU
is a quasi-triangular Hopf algebra, and hence p; is homomorph-
ic. Read more at [BV1, BV2] and hear more at wef3/SolvApp,
weB/Dogma, wef/DoPeGDO, wef/FDA, wefi/AQDW.
|Also, we can (and know how to) look at higher po-
wers of € and we can (and more or less know how
to) replace sl, by arbitrary semi-simple Lie algebra
(e.g., [Sch]). So p; is not alone!
These constructions are very similar to Rozansky-Overbay [Rol,
Ro2, Ro3, Ov] and hence to the “loop expansion” of the Kontse-
vich integral and the coloured Jones polynomial [Oh2].

b—>t+e-xp, a—xp, x—2x

Schaveling

If this all reads like insanity to you, it should (and you haven’t
seen half of it). Simple things should have simple explanations.

Hence, Homework. Explain p; with no reference to quantum
voodoo and find it a topology home (large enough to house ge-

Wearing my Topology hat the formula for R;, and
even the idea to look for R, remain a complete my-
stery to me.

‘s .

neralizations!). Make explicit the homomorphic properties of p;.
[Use them to do topology!

IP.S. As a friend of A, p; gives a genus bound, sometimes better
than A’s. How much further does this friendship extend?

Video: http://wuw.math.toronto.edu/~drorbn/Talks/0axaca-2210. Handout:
http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.
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A Small-Print Page on p;, d > 1.

Definition. {f(z;), h({i))iz) = f(agi)h|(i=0, SO (pzxz, @8y = 2g2.
Baby Theorem. There exist (non unique) pow-
er series rf(pLprnxix) = Ta€ri(ppnxix) €
QIT*!, p1, p2, x1, x2][[€]] with deg r; < 2d + 2 (“docile”) such
that the power series Z” = 3, phe? =

exp Z r*(pi, Pj» Xi» X)) |, €xp Z 8oBTaép
¢ ap {Pa,xp}

is a bnot invariant. Beyond the once-and-for-all computation of
8op (@ matrix inversion), 7zl is computable in on?) operations in
the ring Q[T*!].
(Bnots are knot diagrams modulo the braid-like Reidemeister mo-
ves, but not the cyclic ones).
Theorem. There also exist docile power series y¥(p,x) =
Ya€ly € QIT*!, p,x][e] such that the power series Z =
Y pae? =

exp er(Pi,Pj,xi,xj)+Z’Y“’k(ﬁk,56k) ,
k

c

exXp Z gaﬁ(ﬂ'af + ﬁ’a)(fﬁ + EB) + Z ﬂtté_:a
a, a
is a knot invariant, as easily computable as Z”.
Implementation. Data, then program (with output using the
Conway variable z = VT - 1/ \NT ), and then a demo. See Rho.nb
of wef/ap.

Veyy,, [k.]1 =0 (1/2-PX); Vexa,, [k ] =-0>P Xy /2;
veys,, [k.]:=-0"P,%./6

{plt»ﬁ(laxﬁsxﬁ}

very,s [i_,7_] :=

S(-1+2pix;i-2pjxi+ (-1+T°) pipjxf+(1—T5)p§x§—2p‘-pjxixj+2p§x1~xj)/2

very [i_, J_] :=

(-6pixi+6pjxi-3(-1+3T) pipj X2 +3 (-1+3T) p§x§+4(-1+7) p2p; X -
2(-1+T) (5+T)pip3x3+2 (-1+T) (3+T) p3xd +18p; p; x; X5 -
18p§x,-xj—5p§pjx§xj+6(2+T) pipﬁxij—6(1+T) p;xij—
6pi p3 x: X% + 63 x; X3) /12

very, 1[i_, 7 ] :=

(-6T2pix; +6T?pix; +3 (=3+T) Tp;p; X2 -3 (-3+T) Tp3x} -
4(-1+T)Tplp;x3+2 (-1+T) (1+5T) p;pixi-2(-1+T) (1+3T) p3xd+
18sz,-pjxix]-—lasz?xixj—6szfpjx§xj+6T(1+2T)pip§x§xj—
6T (1+T) p3xix; -6T%p; pix; X5 + 6T p} x; x3) / (12 7%)

Z,[GST48]
{1-42"-612"-2072°-2962° - 2102 - 772" - 14 2™ - 2%,

« takes a few minutes

vers[i_, J_] :=
(4pixi-4p;x;+2(5+7T) pip;xi-2(5+7T) p3x} -4 (-5+6T) pZp;x;+
4(-16+17T+27T?) p;p3x3 -4 (-11+11T+2T?) p3x} +3 (-1+T) pp;xi -
3(-1+T) (4+3T) pipixt+ (-1+T) (13+22T+T%) p; pj x} -
(-1+T) (4+13T+7%) p?xt - 28 p; p; Xi X; + 28 p X; X; + 36 p7 p; X2 X; -
12 (9+27T) p; pix2 X5 +24 (3+T) p3 xZ x5 - 4p? p; X3 x; + 28T p? p? x3 x; -
4(-6+17T+T2) pipixix; +4 (-5+10T + 1) p}x? x; + 24 p; pJ x; x5 -
24p3x; X% -24pipixix%+6 (10+T) pip3x3x% -6 (6+T) pfxix} -
4pip;xix§+4p;xix;)/24
vers i[i_,J_] :=
(-8 pix; +4T2pix; -2T* (7+5T) pip; X2 +2T2 (7+5T) pi xi -
4T (-6+5T) pip; X} +4T (-2-17T+16T%) p; p3x3 -
4T (-2-11T+117%) p3x3+3 (-1+T) Tpip;xt -3 (-1+T) T (3+4T) ppixt+
(-1+T) (1+22T+137%) p;pixi- (-1+T) (1+13T+4T?) pixi+
28 T2 p; pjxi X; - 28 T2 p? x; x; - 36 > pZ p; X2 x; + 12 T2 (2+97T) p; p3 X x; -
2412 (1+37T) p3xix; + 4T pdp;x3 x; - 28 T2 p? p? xI x; -
4T (-1-17T+6T?) pip}xix;+4T (-1-10T+5T%) pix3x; -
24T p; pixi x5 +24 T2 pix; x5+ 24 T2 p2 pi xix3 - 6 T2 (1+107T) p; p3 i x5 +
6T (1+6T) pixix2+4T p;pix; x3-4T pix;x3) / (24 T°)
P X, P Xy = {m & 7%, &} (2 )" i= (243
Zip,y[5.] := &5
Zip, .. ,[&] :=
(collect[s // Zip(,sys 2] /. f_. 2% » (DIf, {2*, d}])) /. 2" > @
gPair([fs ,w ] :=
gPair([fs, w] =
Collect [ZiPJaineeTaMe[{pa,ia,xa,?a),{a,w)] [
(Times @@ (V /@ fs))
Exp[Sum[g.,s (7o + 7o) (€ +Es)s {5 W}, {Bs w}] - Sum[Ea 7oy {5 w3]]]s
g Factor-]
T2z[p_] := Module[{q = Expand[p], n, c},
If[q === 0, 0, c = Coefficient[q, T, n = Exponent[q, T]];
cz?"+T2z[q-c (T2 -T%)2"]]];

Z, [K_] :=Modu1e[{Cs, 0, n, A, s, i, j, k, A, G, d1, z1, 72, z3},
{Cs, ©} =Rot[K]; n =Length[Cs]; A = IdentityMatrix[2n+1];
q q 9 o 3 5 -T°T° -1
Cases[Cs, {s_>1_,7J_}» |AL{1, J}, {1 +1, J+1}] += o _a ];

{4, G} = Factore{T(Totl[?1-Total[CIALLAID /2 pet @A, InverseeA};
Z1 =
Exp[Total[Cases[Cs, {s_, i_, j_} » Sum[e™ ra; . [1, 71, {d1, d}]]] +
sum[e™ ya,opq [k15 {k, 20}, {d1, d}] /. ¥_e[_1>0];
Z2 = Expand[F[{}, {}] xNormal@Series[Z1, {e, @, d}]] //.
FIfs_, {es___}1x (f: (P |¥)ps [is__1)P- =
F[Join[fs, Table[f, p]], DeleteDuplicates@{es, is}];
Z3 = Expand[Z2 /. F[fs_, es_] =» Expand [gPair[
Replace[fs, Thread[es » Range@Lengthees], {2}], Lengthees
1/.8a,s »Gleslal, es[A111 15
Collect[{a, 23 /. " - p! A“’e"}, e, T2z] ];

1+ (382%+2552% + 1696 2° + 16281 2° + 86952 2'® + 259994 z'? + 487372 2** + 615066 2'® + 543148 2'® + 341714 2% +

153722 2% + 48983 2" + 10776 2°° + 1554 2°° + 1322%° + 52%) e +

(-8 -484 2% + 9709 z* + 165952 2° + 1590491 z° + 16 256 508 2'° + 115341797 z'? + 432685748 z'* + 395838354 2'° - 4017557792 2*° - 23300064167 2*° -
70082264972 z%2 - 142572271191 z** - 209475503 700 z2° - 221616 295 209 z2® - 151502 648428 z>° - 23700199243 732 +
99462146328 z>* + 164920463074 z° + 162550825432 z>® 1+ 119164 552296 z*° + 69153062 608 z*? + 32547596 611 z** + 12541195448 2% +
3961384155 z*° + 1021219696 2°° + 212773106 2°% + 35264 208 z°* + 4537548 z°° + 436 600 z°° + 29536 z*° + 1252 2% + 25 %) €%}

TableForm[Table [Join[{K[1lgy}s Z5[K1], {K, AllKnots[{3, 6}]}], TableAlignments - Center]

3 1422

4 1-22

51 1+322+2%

52 1+222

61 1-222 1+ (-22242% e+ (-4+422.252% -82°.22%) 2
6 1-22-2*

63 14224 2%

» takes a few minutes =«

1+ (222+2%) e+ (2-422+32%+42°+2%) e?+ (-12+742% - 272" - 202° + 82° + 621% + 212) &3

1+ (-2+22%) ¢

1+ (1022 +212%+122°+22%) e+ (6-2822+332%+3642°+6552°% + 5362%% + 2272'2 + 482 + 42%%) €2 + (-60 + 970 2% + 645 z* - 3380 2° - 3280 2° + 7470 2'° + 19475 2'? + 20536 2% + 12564 2° + 4774 2% 1 1109 2%° + 144 222 . 8 2%%) &3
1+(62°+52%) e+ (4-202°+432% +642°+262%) €? + (-36+ 49827 - 883 2° + 100 2° + 816 2° + 556 2'° - 146 212 &>

(124154 2% - 223 2° - 608 2° + 100 2° - 522%° + 10 212) &3

1+ (-222-32°+22%+2%) e+ (-2-422+292%+282°+422°% - 82° - 22'2:42121%) 2+ (12 + 16627 + 1552° - 194 2° - 2453 2° - 1622 2'° - 1967 212 - 258 2'* + 49 21° - 3021® + 22° ; 6 2%% + 2% &3
1+ (2+822-162°-242%-162° - 221%) &2

Video: http://wuw.math.toronto.edu/~drorbn/Talks/0axaca-2210. Handout:
http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.
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Dror Bar-Natan: Talks: Ottawa-2306: Thanks for inviting me to Ottawa! wef:=http://drorbn.net/ott23 _E [x]
Computing the Zombian of an Unfinished Columbarium confession. Its about 50% of what I do.

Apology. It’s a 20 minutes talk. Necessarily, it will be superficial. [Knots and Tangles. “Nautical Knots”

IAbstract. The zombies need to compute a quantity, the zombian, @@ [ 1—9 @ % 25 sy e
. . e "' 4.

that pertains to some structure — say, a columbarium. But un- s ;% (RO .\\ '}%"
fortunately (for them), a part of that structure will only be known @;«\a & £

A : NS £ A
in the future. What can they compute today with the parts they @ %) @, @ @ &\\M'%%,i;:,, @ C i‘;@{éw

already have to hasten tomorrow’s computation?

That’s a common quest, and .I will illustrate it with a feW exa- @%@ @@@ @@ o

mples from knot theory and with two examples about matrices — 2% AR
determinants and signatures. I will also mention two of my dre- @5 @@ @@@
ams (perhaps delusions): that one day I will be able to reproduce, '

and extend, the Rolfsen table of knots using code of the highest Why Tangles? e As common as knots! @

X ©

i !
level of beauty. e Faster computations!

e Conceptually clearer proofs of invariance Z
ML (and of skein relations). 22 4 12 4V < pn
e Often fun and consequential:
N 2L kot © The Alexander polynomial ~> Zombian = det.

Columbaria in an East Sydney Cemetery Jacobian, Hamiltonian, Zombian| © Knot signatures ~» Pushforwards of quadratic forms.

Computing Zombians of Unfinished Columbaria. =™ """ o The Jones Polynomial ~ The Temperley-Lieb Algebra.
e Future zombies must be able to complete the o Khovanov Homology ~» “Unfinished complexes”, complexes
computation. in a category.
e Must be no slower than for finished ones. o The Kontsevich Integral ~» Drinfel’d Associators.
194 "4 (One more story is left to tell, of knot tabulation.

'wo slides from R. Jason Parsley’s wef/history:

e Future zombies must not even know the size
of the task that today’s zombies were facing.
e We must be able to extend to ZPUCs, Zombie §§
Processed Unfinished Columbaria! :
[Exercise 1. Compute the sum of 1,000 num- &

\ Brief History of (Prime) Knot Tabulation Brief History of Knot Tabulation 111

Gauss knew and thought about knots — 1833 integral formula
for linking number. Before him, Vandermonde (1771) wrote a @ Conway (1964)
seminal paper on topology & discussed knots. Knots to 11 crossings, links to 10 crossings; errors.
@ Rolfsen (1976)  Knots to 10 crossings. 1 error.

@ Caudron (1978) - knots to 11 crossings correctly.

Atomic model [Kelvin, late 1800's]
Atoms are knotted vortices in the ether.

bers the laSt 50 Of Wthh are Stlll unknown This theory, albeit vastly incorrect, led to the first serious work ggz‘rlf/%o:;:)(g\ge'r:ted af’l‘\?\z‘:tdu‘:‘:z:s‘s(\]n‘;r:ssmgs
Exercise 2. Compute the determinant of a  Columbaiumear Asen 7 <ok 1479, colesgue o Kewin koo 17 cosige O s oo 28 coning otornind hiaty
1,000 x 1,000 matrix in which 50 entries are not yet given. © Lt (1585, sk _toets oo coneings PRt R —
I[Example 3. Same, for signatures of matrices / quadratic forms. AR ARl vt Alofteso arefor prime kaots oyt

A quadratic form on a v.s. V over C is a quadratic Q: V — €, [ees 2o Burton's tabilation to 19 crossings &cf/Burton, and Khesin's K250, arxXiv: 170510319,

or a sesquilinear Hermitian (-,-) on V X V (so {x,y) = (y, x) and Embarrassment 1 (personal). I don’t know how to reproduce
Q(y) = (y,y)), or given a basis 7; of V*, a matrix A = (a;;) with the Rolfsen table of knots! Many others can, yet I still take it on
A = AT and Q = Y a;;fm;. The signature o of Q is o — o_, [faith, contradicting one of the tenets of our practice, “thou shalt
where for some P, PTAP = diag(1, 701,-1,77,-1,0,..). not use what thou canst not prove”.

A Partial Quadratic (PO) on V is a quadratic Q defined only on I[t’s harder than it seems! Producing all knot diagrams is a mess,

a subspace Dy C V. We add PQs with D0, = Do, N Do,. 1dent1fy1ng all available R-eldemel§ter moves is a mess, and you
sometimes have to go up in crossing number before you can go

Given a linear : V — W and a PQ Q on W, there is an obvious .
lback v* 0. a P V. own again.
?Llaeoifemwl %w?th (Jze:;ica Liu). Given a linear ¢: V — mbarrassment 2 (communal). There isn’t anywhere a tabu-
W and a PQ O on V, there is a'unique push forwc;r 4 PQ ation of tangles! When you want to test your new discoveries,
’ ?
»..Q on W such that for every PQ U on W, here do you go?
Uy = (Olers) + w(U + 6.0) ream. Conquer both embarrassments at once. Reproduce the
Tv(Q+¢ = TkerglLlkerg) T Ow ¢+ Q). olfsen table, and extend it to tangles, using code of the highest

Gist of the Proof. T W fessica Ll hovel of beauty. The algorithm should be so clear and simple that
simul. 0| 0 |—= Qe anyone should be able to easily implement it in an afternoon wi-
A | B|roweol |7 _EN__|___ thout messing with any technicalities.
L ‘ L
ops 0 0 C

B" |U
.. and the quadratic F' =: ¢..Q is well-defined only on D = ker C.

()<

|
|

Wl 0 |CT|U+F
1

<\

_

(more at wef/icerm.) . . R-moves
Acknowledgement. This work was partially supported by We don’tevenneed tolo-  The dreaded slide moves, which go are tangle

. ok at all knot diagrams! up in crossing number, are parame- .
dNS;ER((? I\Ig;agl; RGPIN-2018-04350 and by the Chu Family Foun- twized by tangles! | equalities!
ation . A n

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0Ottawa-2306/
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Dror Bar-Natan: Talks: LesDiablerets-2208: Thanks for inviting me to Les

Tangles in a Pole Dance Studio: A Reading of Massuyeau, Alekseev, and Naef

Diablerets!

wep:=http://drorbn.net/1d22/ =]
DR

[Preliminary Definitions. Fix p €e Nand F = Q/C.
Let D, := D*\(p pts), and let the Pole Dance Studio
be PDS, == D, X I.

Abstract. I will report on joint work |4
with Zsuzsanna Dancso, Tamara
Hogan, Jessica Liu, and Nancy Sche-
rich. Little of what we do is original,
and much of it is simply a reading of Massuyeau [Ma] and Alek-
seev and Naef [AN1].

We study the pole-strand and
strand-strand double filtration on
the space of tangles in a pole
dance studio (a punctured disk
cross an interval), the correspon-
ding homomorphic expansions,

Dancso Hogan Liu  Scheric

relation. When the strands are transparent or nearly transparent

Goldman-Turaev Lie bi-algebra.

-
PDS; Eﬂ

and a strand-only HOMFLY—PT Jessica, I;Iancy, Tamara, Zsuzsi, & Dror in PDS.

to each other we recover and perhaps simplify substantial parts [
of the work of the aforementioned authors on expansions for the |;

Other Passions. With Roland van der Veen, I use “so-
Ivable approximation” and “Perturbed Gaussian Differe-
ntial Operators” to unveil simple, strong, fast to compu-
te, and topologically meaningful knot invariants near the

lexander polynomial. (C polymath!)

(€225

Definitions. Let 7 := FG(X1, ..., X)) be the free group (of defor-
mation classes of based curves in D)), 7 be the framed free group
(deformation classes of based immersed curves), || and |77| deno-
te F-linear combinations of cyclic words (|x;w| = |wx;|, unbased
curves), A := FA(xy,...,x,) be the free associative algebra, and
let [A| .= A/(x;w = wx;) denote cyclic algebra words.

y SO 4 . =—
Theorem 1 (Goldman, Turaev, Massuyeau, Alekseev, Kawazu-
mi, Kuno, Naef). || and |A| are Lie bialgebras, and there is a
“homomorphic expansion” W: || — |A|: a morphism of Lie bial-
igebras with W(IX;) =1 + [x;| + .. ..

E and A; (namely if there are A with Z2i(y)) = A (W(y))), then
- | 7 will have a compatible algebraic companion r:

Key 1. W: |7 — |Alis Z) : K/ (O) — AL (O).

Key 2 (Schematic). Suppose Ay, 4 : |7 — K(QO) are two ways

of lifting plane curves into knots in PDS,, (namely, P o 4; = I).

Then for y € |r], Lemma 1. “Division by %" is well-defined.
) = o) — a)/h € K (OO) = 7l @ Il

and we get an operation 7 on plane curves. If Kontsevich likes A

7'(@) = (A(@) — A (@)/h € AR (OO) = A ® Al
IFor indeed, in ﬂg we have AW (n(y)) = hZ(n(y)) = Z(Ap(y)) —
Z(1(y) = Ag(W(y) — AL W(y)) = hn“(W(y)).

Further Definitions. K = %K = K = K(S) :=
F(framed tangles in PDS,,). <§¥

e K :=(the image via X — X — X of tangles in PDS,
that have ¢ double points, of which s are strand-strand).

Il

Most important, K "(O) = |7l, and there is
P: KO — |7
o A= [ K,/ Kin, A = [1KG/KS CA,_A® = AJA.

E.g.,

x20) = () ) 7. X - -

o KI5 = K/K".

B Cxample 1. With 71,7, < —

|7l (or |7) set Ao(y1,y2) =
Y1 y2and 41(y1,72) =92 -

dman bracket! Note that here Ay and A; are not well-
defined, yet 7 is.

[Example 2. With y;,y, € « (or &) and with
o, A1 as on the right, we get the “double bra-
cket’m:r@r > (OrT®T — TR T).

Example 3. With y € 7 and R

[Fact 1. The Kontsevich Integral is an “expansion” Z: K — A,
compatible with several noteworthy structures.

[Fact 2 (Le-Murakami, [LM1]). Z satisfies the strand-strand
[HOMFLY-PT relations: It descends to Zy : Ky — Ay, where

Ky = K /(/ N = (@2 - e ). <)

Ap = A== or |—{=h==)
and deg7 = (1, 1).

Wo(y) its ascending realization

s a bottom tangle and A;(Y) itS (. niing  descending
descending realization as a bottom tangle, we get

ms: 7 — 7 ®|n]. Closing the first component and

anti-symmetrizing, this is the Turaev cobracket.

¢ !
ascending descending

Proof of Fact 2. Z(7) — Z(X) = X - (72 - e7"72)
=%. (th/Z _ e—hX/Z) — ((Bh/2 _ (B—h/2) 5. O

Le, Murakami

[Example 4 [Ma]. With y € & and Ay(y) its

ascending outer double and A,(y) its ascen-

ding inner double we getns: 7 —» T® 7. A-

fter some massaging, it too becomes the Tu-

raev cobracket.

The rest is essentially Exercises: 1. Lemma 1? 2. A?
3. Fact2? 4. A''? Especially, A/'(Q) = |A|! 5. Explain
why Kontsevich likes our ’s. 6. Figure out ¢, i =1,...,4.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/
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Kontsevich in a Pole Dance Studio. (w/o poles? See [Ko, BN])

[Unignoring the Complications. We need Ay and A, such that:
1. A,(y) is obtained from Ay(y) by flipping all self-intersections
from ascending to descending.

+.. = XXX @ [yx| — xxyx @y + ...

| |

1

Z I( D*PD dZ‘ dz’ cA - LS . :
Qriyn P Z 3 2. gp to conjugation, A;(y) is obtained from Ay(y) by a global
il ip.
. | Pl 3. Z(A(y)) is computable from W(y) and Z/' (4:(y)) = W(y).
1|
| —— D .
\ ] D
: s e i
> e o 0 AL
24, 4 / graded by the number of chords View from above:
filtered by the number of ss chords o
Comments on the Kontsevich Integral. Ruitting needles .—Ej . .
1. In the tangle case, the endpoints are fixed at top and bottom. Yarn N
2. The (- --)~ means “a correction is needed near the caps and the
cups” (for the framed version, see [LM2, Da]). 1. Is there more than Examples 1-4? Homework
3. There are never pp chords, and no 47T, and 4T, relations. | 2. Derive the bialgebra axioms from this perspective.
4. Z is an “expansion”. 3. What more do we get if we don’t mod out by HOMFLY-PT?
5. Z respects the ss filtration and so descends to Z/*: K/* — A/*. | 4. What more do we get if we allow more than one strand-strand
Comments on A. In A’! legs on poles commute, Iﬁa f, interaction? y 21 B
so A'N(O) = |A]! A EP\J ;%H 5. In this language, recover Kashiwara- AN
ety \ Vergne [AKKN1, AKKN2]. o
In Ay we have: Y == kool 6 How is all this related to w-knots? Kashiwara Vergne
I:i: }—% =h H - H—< ) NP 7. Do the same with associators. Use that to derive formulas for
- - solutions of Kashiwara-Vergne.
Example 1% n(lxyxyl, lxyx) = 8. What’s the relationship with the Habiro-Massuyeau invariants
| H :O of links in handlebodies [HM] (different filtration!).
4l %3 :\/ N 9. Pole dance on other surfaces!
| ’ 10. Explore the action of the mapping class group.
’ Acknowledgement. This work was partially supported by NSERC
grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).
X X [ also wish to thanks A. Alekseev, F. Naef, and M. Ren for listening to
y y an earlier version and catching some bugs, and Dhanya S. for the dance
- | _ #Q + - . studio photos. And of course, thanks for listening!
g\] = [AKKNI1] A. Alekseev, N. .Kaw.azumi, Y..Kuno, & F. Naef, Refer.ences
The Goldman-Turaev Lie Bialgebra in Genus Zero and the Kashiwara-
y —lyyxyxl | Vergne Problem, Adv. Math. 326 (2018) 1-53, arXiv:1703.05813.
_J x +... [AKKN2] A. Alekseev, N. Kawazumi, Y. Kuno, & F. Naef, Goldman-Turaev
Example 34, Ignoring complications, n‘g(xxyxyx) — ];?));rlr\llall?])zm(;]l)l]tgg Kashiwara-Vergne, Quant. Topol. 11-4 (2020) 657--689,
— — [AN1] A. Alekseev & F. Naef, Goldman-Turaev Formality from the Knizhnik-
1 ry ™\ Zamolodchikov Connection, Comp. Rend. Math. 355-11 (2017) 1138-1147,
=n'( 1] - %)— 4+ =0 ;ﬁ] +... | arXiv:1708.03119.
L - [BN] D. Bar-Natan, On the Vassiliev Knot Invariants, Top. 34 (1995) 423-472.
[Da] Z.Dancso, On the Kontsevich Integral for Knotted Trivalent Graphs, Alg.

Geom. Topol. 10 (2010) 1317-1365, arXiv:0811.4615.

[HM] K. Habiro & G. Massuyeau, The Kontsevich Integral for Bottom Tangles
in Handlebodies, Quant. Topol. 12-4 (2021) 593-703, arXiv:1702.00830.
[Ko] M. Kontsevich, Vassiliev’s Knot Invariants, Adv. in Sov. Math. 16(2)
(1993) 137-150.

[LMI1] T. Q. T. Le & J. Murakami, Kontsevich’s Integral for the HOMFLY
Polynomial and Relations Between Values of Multiple Zeta Functions, Top.

IProof of Lemma 1. We partially prove Theorem 2 instead:
Theorem 2. gr* Ky = F[A] @ (K')o.

Proof mod 7°. The map « is obvious. To go —, map Ky —
F[7] ® K/ using 22 - X + 2)Cand X - X — 2 Cand apply the
ffunctor gr®.

and its Appl. 62-2 (1995) 193-206.

[LM2] T. Q. T. Le & J. Murakami, The Universal Vassiliev-Kontsevich Inva-
riant for Framed Oriented Links, Comp. Math. 102-1 (1996) 41-64, arXiv:
hep-th/9401016.

[Ma] G.Massuyeau, Formal Descriptions of Turaev’s Loop Operations, Quant.
Topol. 9-1 (2018) 39-—117, arXiv:1511.03974.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/
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http://drorbn.net/cms21

Kashaev's Signature Conjecture

CMS Winter 2021 Meeting, December 4, 2021
Dror Bar-Natan with Sina Abbasi

Agenda. Show and tell with signatures.

Abstract. | will display side by side two nearly identical computer programs whose
inputs are knots and whose outputs seem to always be the same. I'll then admit,
very reluctantly, that | don't know how to prove that these outputs are always the
same. One program | wrote mostly in Bedlewo, Poland, in the summer of 2003 and
as of recently | understand why it computes the Levine-Tristram signature of a
knot. The other is based on the 2018 preprint On Symmetric Matrices Associated
with Oriented Link Diagrams by Rinat Kashaev (arXiv:1801.04632), where he
conjectures that a certain simple algorithm also computes that same signature.

If you can, please turn your video on! (And mic, whenever needed).
http://drorbn.net/cms21

Bed(K_, v ] := Kas[k_, w_] :=

mdule[((, r, XingsByArmpits, bends, faces, p, A, is},
t=l-w; r=tet’;
XingsByArmpits =
List@ePD(K] /. x 1 X[i , j ,k , L 1=
If[PositiveQ[x], X.[-1, J, ky =L1, X_[=J, k, L, =115
bends = Times @@ XingsByArmpits /.
_IXILA_s b_y €_y A1 Po,-d Pby-0 Peyob Puy-c3
faces = bends //. Px_y Py ,z_  Pry,ci
A = Table[@, Lengthefaces, Lengthefaces];
DO[)S = Position[faces, #][1, 1] & /@ List 6@ x;

Alis, is] += If[neaa[x] === X,,

Module[(u, v, XingsByArmpits, bends, faces, p, A, is},
u=Re[s¥*]; v = Re[s];
XingsByArmpits =
List@@PD[K] /. x : X[i_, J_, k , L ]
If[PositiveQ[x], X, [-1, J, ks L1, X-[=J, ks L, =111
bends = Times @@ XingsByArmpits /.
_[X1la_, b_, c_, d_] *Pa,-a Pv,-a Pc,-b Pa,-c3
faces = bends //. Px_,y Py_,z_ = P,y
A= Table[0, Lengthefaces, Lengthefaces];
no[is = Position[faces, #][1, 1] & /e Listeex;

A[is, is] += If[Head[x] ===X,,

D e
e

,t.]'
-t e

L I 2
-t* @ t* e
-2t t r

)

-r -t
-t* o
2t t -r

t e

vuilu vua1l
ulua1 ulu
Tuvul”’[1uv ]’
ulu1 ulu

x, XingsByArmp)ts)];
(MatrixSignature[A] - Writhe[K]) /2 ] B

ReRc

It X)ngsEyArmplts)];

MatrixSignature[A] | ;

http://drorbn.net/cms21

Bed(K_, ] := Kas(k_, v ] :=

mdule[(t, r, XingsByArmpits, bends, faces, p, A, is}, Module[(u, v, XingsByArmpits, bends, faces, p, A, is},
t=l-w; r=tet’;
XingsByArmpits =
List@ePD(K] /. x 1 X[i , j ,k , L 1=
1f[PositiveQ(x], X, [-1, J» ks ~L1, X_[~F, ks L, =111
bends = Times @@ XingsByArmpits /.
_IX10a_, b_y €y @_1  Pay-a Pby-a Pe,-b Pa,-c3
faces = bends //. Px_y_Py_,z_  Pr,y,z
A = Table[®, Lengthefaces, Lengthefaces];
DO[)S = Position[faces, #][1, 1] & /@ List @@ x;

u=Re[4']; v=Re[s];
XingsByArmpits =
ListeePD[K] /. x:X[i_, j ,k , L ]
If[PositiveQ([x], X, [-1, J, ky =L1, X [-J, ky L, =1]15
bends = Times @@ XingsByArmpits /.
_[X1la_, b_, c_, d_] *Pa,-a Pv,-a Pc,-b Pa,-c

_oy_Py_,z_ ™ Px,y,z3
A= Table[@, Lengthefaces, Lengthefaces];
no[is = Position[faces, #][1, 1] & /e Listeex;

Allis, is] += If["eadm === X,, Allis, is] += If[Head[x] ===X,,

-r -t 2t t° oot 2ttt vuilu vuilu

[»t' o t* a]’ -t* @0 t* a]]’ [ulul] _[ulul]]
2t t -r -t* -2t t r  -t* Tuvul?Tl1uvull
t e -t @ t e -t o ulu1 ulu1

It X)ngsEyArmplts)]; x> XingsByArmp)ts)];

MatrixSignature[A] ] 5 (MatrixSignature[A] - Writhe[K]) /2 ] H

http://drorbn.net/cms21

Label everything!

13

11

10

PD[X[10,1,11,2], X[2,11,3,12],...] ~ {X_[-1,11,2,—10], X_[-11,3,12,-2],...}

http://drorbn.net/cms21

These slides and all the code within are available at http://drorbn.net/cms21.

(I'll post the video there too)

http://drorbn.net/cms21

Why am | showing you (gcode(y?
» | love code — it's fun!

> Believe it or not, it is more expressive than math-talk (though I'll do the
math-talk as well, to confirm with prevailing norms).

» It is directly verifiable. Once it is up and running, you'll never ask yourself “did
he misplace a sign somewhere"?

http://drorbn.net/cms21

Verification.

Once[<< KnotTheory" ]

Loading KnotTheory™ version of February 2, 2020,
Read more at http://katlas.org/wiki/KnotTheory.

10:53:45.2097.

MatrixSignature[A_] :=
Total[Sign[Select[Eigenvalues[A], Abs[#] > 10712 &]11s
Writhe[K_ ] := Sum[If[PositiveQ[x], 1, -1], {x, ListeePDeK}];
Sum[w = et fendomieal (0,271 ged [k, w] = Kas[K, w], {10},
{K, AllKnots[{3, 10}]}]
+ KnotTheory: Loading precomputed data in PD4Knots"
2490 True

http://drorbn.net/cms21

3
3
Lets run our code line by line. .. 2 11
PD[8,] = PD[X[10, 1, 11, 2], >
X[2, 11, 3, 12], X[12, 3, 13, 4],
X[4, 13, 5, 14], X[14, 5, 15, 6], 10
X[8, 16, 9, 15], X[16, 8, 1, 7],
X[6, 9, 7, 10]1]; 5 4
9 7
K= 8;;
16
8

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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XingsByArmpits =
Liste@PD[K] /.
X:X[1_,J s,k , L 1>
If[PositiveQ[x], X,[-1, j, k, -L],
X_[-J, k, L, -1]]

(X_[-1, 11, 2, -1@], X_[-11, 3, 12, -2],
X_[-3, 13, 4, -12], X_[-13, 5, 14, -4],
X_[-5, 15, 6, -14], X, [-8, 16, 9, -15],
X.[-16, 8, 1, -7], X_[-9, 7, 18, -6]}

A = Table[0, Lengthefaces, Lengthefaces];

A // MatrixForm

© 000 0000600
© 0 000000O0O0
© 0 000000O0O0
© 000000000 O0
© 000000000
0 000000000
0 0000000600
© 000000O0O0O0
© 000000000
© 000000000

X = XingsByArmpits[1]
X [-1, 11, 2, -10]
faces

P-13,4,-13 P-11,2,-11 P-5,14,-5 P-3,12,-3 Ps,16,8 P6,-15,-9,6
P9, -16,7,9 P1e,-7,-1,10 P-10,-2,-12,-4,-14,-6,-10 P1,-8,15,5,13,3,11,1

is = Position[faces, #][1, 1] & /@ Listeex

{8, 10, 2, 9}

Do[is = Position[faces, #][1, 1] & /@ Listee x;

A[[is, is] += If[Head [x] === X,,

)

IR Rest@xingsByArmpits}]

cC B o<
B o RrCc
€< c R
R e RCc
cC »m o<
B o RrCc
€< c R
R e RCc

http://drorbn.net/cms21

http://drorbn.net/cms21

http://drorbn.net/cms21

http://drorbn.net/cms21

bends = Times @@ XingsByArmpits /.
_[Xl[a_,b_ ,c_ ,d ]
Pa,-d Pb,-a Pc,-b Pd,-c
P-16,7 P-15,-9 P-14,-6 P-13,4 P-12,-4 P-11,2
P-10,-2 P-9,6 P-8,15 P-7,-1 P-6,-10 P-5,14
P-4,-14 P-3,12 P-2,-12 P-1,10 P1,-8 P2,-11
P3,11 Pa,-13 Ps,13 Ps,-15 P7,9 P8, 16 P9,-16
Pie,-7 P11,1 P12,-3 P13,3 P14, -5 P1s,5 P1s,8
faces =bends //.px ,, Py ,2 #Pxy,z
P-13,4,-13 P-11,2,-11 P-5,14, 5 P-3,12,-3
Ps, 16,8 Ps,-15,-9,6 P9,-16,7,9 P10,-7,-1,10

P-1e,-2,-12,-4,-14,-6,-10 P1,-8,15,5,13,3,11,1

Do|is = Position[faces, #][1, 1] & /@ List @@ x;

A[is, is] += If|Head[x] === X,,
vVvudilu Vvudlu
ulul ulul J
1uvu|’ 1uvu l’
ulul ulul

{x, XingsByArmpits)J H

A[is, is] += I'F[Head[x] === X,,
vulu vulu
ulul ulul .
Tuvul’ [1uvu ]’
ulul ulul
A // MatrixForm
© 0 00000 0 0 0
0 -v 0 00006 -1 -u-u
© 0 00000 ©0 0 0
© 0 00000 @ 0 0
O 0 00000 0 0 0
O 0 00000 0 0 0
© 0 00000 ©0 0 0
0 -1 00000 -v -u-u
© -u©® 00600 -u-1-1
© -u®e oo -u-1-1
A // MatrixForm
-2v @ -1 -1 0 ] )
] -2v 0@ -1 0 ] )
-1 e -2v o 2] -1 2]
-1 -1 2] -2v © 0 )
] ) 2] 2] 2 1 2u
] ) -1 2] 1 1-2v )
] ) ) 0 2u ) -1+2v
2] -1 2] 2] 1 -1 0
-2u -2u -2u -2u @ -2u -1
-2u -2u -2u -2u 2u 0 2

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/

34

http://drorbn.net/cms21

http://drorbn.net/cms21

http://drorbn.net/cms21

Recall, is = {8,10,2,9}

http://drorbn.net/cms21
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http://drorbn.net/cms21

Plot[w = e**; u=Re[w'?]; v=Re[w];

(MatrixSignature[A] - Writhe[K]) /2,

{t, 0, 27\'}]
ol
3l
o
4L
1 2 3 4 5 6

http://drorbn.net/cms21

Kashaev for Mathematicians.

For a knot K and a complex unit w set u = R(w/2), v = R(w), make an F x F
matrix A with contributions

v

v

and output 3(c(A) — w(K)).

http://drorbn.net/cms21

Why are they equal?

| dunno, yet note that

» Kashaev is over the Reals, Bedlewo is over the Complex numbers.
» There's a factor of 2 between them, and a shift.

...s0 it's not merely a matrix manipulation.

http://drorbn.net/cms21

Thank You!

http://drorbn.net/cms21

Plot[Bed[Knot [8, 2], e*‘], {t, @, 27}]

4

http://drorbn.net/cms21

Bedlewo for Mathematicians.

For a knot K and a complex unit w set t =1 —w, r = 2R(t), make an F x F
matrix A with contributions

(conjugate if going against the flow) and output o(A).

http://drorbn.net/cms21

Theorem. The Bedlewo program com-
putes the Levine-Tristram signature of K
at w.

(Easy) Proof. Levine and Tristram tell e e P
us to look at o((1 — w)L + (1 — w*)LT), ( )
where L is the linking matrix for a Seifert
surface S for K: Lj = Ik(v,7;") where
7 run over a basis of Hy(S) and ~;"
is the pushout of 7;. But signatures
don't change if you run over and over-
determined basis, and the faces make
such and over-determined basis whose
linking numbers are controlled by the
crossings. The rest is details.

Art by Emily Redelmeier

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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Warning. The second formula on page (—2) “Conclusion” is

silly-wrong. A fix will be posted here soon: some of the numbers Yarn-Ball Knots
written in this handout are a bit off, yet the qualitative results remain [K-OS] on October 21, 2021
exactly the same (namely, for finite type, 3D seems to beat 2D, with Dror Bar-Natan with Itai Bar-Natan, Iva Halacheva, and Nancy Scherich

the same algorlthms). Agenda. A modest light conversation on how knots should be measured.
Abstract. Let there be scones! Our view of knot theory is biased in favour of
pancakes.

Technically, if K is a 3D knot that fits in volume V' (assuming fixed-width yarn),
then its projection to 2D will have about V4/3 crossings. You'd expect genuinely
3D quantities associated with K to be computable straight from a 3D presentation
of K. Yet we can hardly ever circumvent this V4/3 > V “projection fee”.
Exceptions include linking numbers (as we shall prove), the hyperbolic volume, and
likely finite type invariants (as we shall discuss in detail). But knot polynomials and
knot homologies seem to always pay the fee. Can we exempt them?

More at http://drorbn.net/kos21

Thanks for inviting me to speak at [K-OS]!

A recurring question in knot theory is “do we have a 3D understanding of our
Most important: http://drorbn.net/kos21 invariant?”

> See Witten and the Jones polynomial.
» See Khovanov homology.
See also arXiv:2108.10923. I'll talk about my perspective on the matter. ..

If you can, please turn your video on! (And mic, whenever needed).

We often think of knots as planar dia-
grams. 3-dimensionally, they are embed-
ded in “pancakes”. Knot by Lisa Piccirillo, pancake by DBN

But real life knots are 3D! A Yarn Ball

The difference matters when

"

» We make statements about “random knots".

‘Connector’ by Alexandra Griess and Jorel Heid (Hamburg, Germany). Image from > We figure out computational complexity.
www.waterfrontbia.com /ice-breakers-2019-presented-by-ports/. Let’s try to make it quantitative. . .

Video and more at http://www.math.toronto.edu/~drorbn/Talks/K0S-211021/
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VL3
n = xing number ~ [2[% = [* = V43

(“~" means “equal up to constant terms
and log terms™)

Theorem 1. Let /k denote the linking number of a 2-component link. Then
Ci(2D, n) ~ n while Ci(3D, V) ~ V, so Ik is C3D!
Proof. WLOG, we are looking at a link in a grid, which we project as on the right:

SR
SO

PPN

200

&
250525¢

/green

And here's a bigger knot.

This may look like a lot of in-
formation, but if V is big, it's
less than the information in a pla-
nar diagram, and it is easily com-
putable.

So 212 times we have to solve the problem “given two sets R and G of integers in
[0, L], how many pairs {(r,g) € R x G: r < g} are there?". This takes time ~ L
(see below), so the overall computation takes time ~ L3.

Below. Start with rb = cf = 0 (“reds before” and “cases found”) and slide V from
left to right, incrementing rb by one each time you cross a e and incrementing cf
by rb each time you cross a e:

EQ—.—Q—Q—Q—.—Q—OX:.H-.—H—H-Q—Q—H—Q%
0 L

Conversation Starter 1. A knot invariant  is said to be Computationally 3D, or
C3D, if
C:(3D, V) < C(2D, V*73).

This isn’t a rigorous definition! It is time- and naiveté-dependent! But there's
room for less-stringent rigour in mathematics, and on a philosophical level, our
definition means something.

Here's what it look like, in the case of a knot:

F1
Fa F3
Fa
0. . X 4
There are 2L= triangular “cross- X %
ings fields” Fy in such a projec- V77,5 Q7,2 AN
tion. NN
o s NV
RN
WLOG, in each Fy all over /) % N5
strands and all under strands are N/
oriented in the same way and all ’
green edges belong to one com-
ponent and all red edges to the
other. F32

In general, with our limited tools,
speedup arises because appropri-
ately projected 3D knots have
many uniform “red over green"”
regions:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/K0S-211021/
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Great Embarrassment 1. | don't know if any of the Alexander, Jones,
HOMFLY-PT, and Kauffman polynomials is C3D. | don't know if any
Reshetikhin-Turaev invariant is C3D. | don't know if any knot homology is C3D.

Or maybe it's a cause for optimism — there’s still something very basic we don't
know about (say) the Jones polynomial. Can we understand it well enough
3-dimensionally to compute it well? If not, why not?

Next we argue that most finite type invariants are probably C3D...
(What a weak statement!)

All pre-categorification knot polynomials are power series whose coefficients are
finite type invariants. (This is sometimes helpful for the computation of finite type
invariants, but rarely helpful for the computation of knot polynomials).

Gauss diagrams and sub-Gauss-diagrams:

T s _
C %>+ N
I 2 3 45 6 7 8
® _—

P I

Let g4 {knot diagrams} — (Gauss diagrams) map every knot diagram to the sum
of all the sub-diagrams of its Gauss diagram which have at most d arrows.

Under-Explained Theorem (Goussarov-Polyak-Viro). A knot invariant  is of type
d iff there is a linear functional w on (Gauss diagrams) such that { = w o ¢g4.

Proof of Theorem FT2D.

S S

We need to count how many times a diagram such as the red appears within a
bigger diagram, having n arrows. Clearly this can be done in time ~ n3, and in
general, in time ~ n9.

Conversation Starter 2. Similarly, if 7 is a stingy quantity (a quantity we expect
to be small for small knots), we will say that 7 has Savings in 3D, or “has S3D" if
M, (3D, V) < M, (2D, V*/3).

Example (R. van der Veen, D. Thurston, private communications). The hyperbolic
volume has S3D.

Great Embarrassment 2. | don’t know if the genus of a knot has S3D! In other
words, even if a knot is given in a 3-dimensional, the best way | know to find a
Seifert surface for it is to first project it to 2D, at a great cost.

Theorem FT2D. If  is a finite type invariant of type d then C¢(2D, n) is at most
~ nl3d/4) With more effort, C¢(2D, n) )

< n(3+
Note that there are some exceptional finite type invariants, e.g. high coefficients of
the Alexander polynomial and other poly-time knot polynomials, which can be

computed much faster!

Theorem FT3D. If ( is a finite type invariant of type d then C:(3D, V) is at most
~ V/6d/TH1/T With more effort, C.(2D, V) < V()9

Tentative Conclusion. As

p3d/A (V4/3)3d/4 —V> V/69/7+1/7
these theorems say “most finite type invariants are probably C3D; the ones in
greater doubt are the lucky few that can be computed unusually quickly”.

n2d/3 (\/4 3)24/ 3 — y8d/9 > V4d/5

Theorem FT2D. If  is a finite type invariant of type d then C¢(2D, n) is at most
~ nl3d/4] With more effort, Co(2D, n) < n(3799,

o LKL

2

With an appropriate look-up table, it can also be done in time ~ n? (in general,
n9=1). That look-up table (T552) is of size (and production cost) ~ n* if you
are naive, and ~ n? if you are just a bit smarter. Indeed

p1.p2 — 70.p2 _ 70.p1 _ 0,p2 0,p1
Tq1=q2 - TO,qz TO,qz TO,q1 + T0,<11 ?

and (T&';) is easy to compute.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/K0S-211021/


http://www.math.toronto.edu/~drorbn/Talks/KOS-211021/

Note that this counting argument works equally well if each of the d arrows is
pulled from a different set!

N It follows that we can compute ¢q in time ~ nl3d/4],

N NN O
With multiple uses of the same lookup table, what naively takes ~ n® can be With bigger look-up tables that allow looking up “clusters” of G arrows, we can
reduced to ~ nd. reduce this to ~ (399,

Od

In general within a big d-arrow diagram we need to find an as-large-as possible
collection of arrows to delay. These must be non-adjacent to each other. As the
adjacency graph for the arrows is at worst quadrivalent, we can always find [%}
non-adjacent arrows, and hence solve the counting problem in time

~ nd=T91 = pl3d/4]

An image editing problem:

On to

Theorem FT3D. If ( is a finite type invariant of type d then C¢(3D, V) is at most
~ V6d/TH/T With more effort, C:(2D, V) < V()9

(Yarn ball and background coutesy of Heather Young)

The line/feather method: The rectangle/shark method:

Accurate but takes forever. Coarse but fast.

In reality, you take a few shark bites and feather the rest ...
The structure of a crossing field.

...and then there's an optimization problem to solve: when to stop biting and There are about log, L “generations”. There are 2 bites in generation g, and the
start feathering. total number of crossings in them is ~ L2/28. Let's go hunt!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/K0S-211021/
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Multi-feathers and multi-sharks.

. . 84
For a type d invariant we need to count d-

tuples of crossings, and each has its own 83
“generation” g;. So we have the "multi-

generation” 2>
&1
g=(g,---.84)
Let G = > g be the “overall gen-
eration”.  We will choose between a

“multi-feather” method and a “multi-
shark” method based on the size of G.

Conclusion. We wish to compute the contribution to ¢4 coming from d-tuples of
crossings of multi-generation g.

» The multi-shark method does it in time

L jediige

~ (no. of bites) - (time per bite) = L2926 . SminE

(increases with G).
» The multi-feather method (project and use the 2D algorithm) does it in time

d 13d]
~ (no. of crossin s)L%dJ = I I LZL—2 4 < i
: & —\4 T2 (26)3/4
i=

(decreases with G).

Of course, for any specific G we are free to choose whichever is better, shark or
feather.

If time — a word about braids.

Thank You!

The effort to take a single multi-bite is tiny. Indeed, :11
12
Lemma Given 2d finite sets B; = {t;1, tj2,...} C [1..L3] and a ti3
permutation m € Sy, the quantity tig
2d o1 t2 123 14
N = 1|4 (bj) € H B;: the b;'s are ordered as m
i=1
131
can be computed in time ~ > |B;j| ~ max|B;|. t32
t:
Proof. WLOG 7 = Id. For ¢ € [1..2d] and 8 € B := UB; let 3
ta1 t42 ta3
L
N,z = H(b,-)eHB,-: by <by<... <bbgﬁ} .
i=1 ts51
t50
We need to know Ny max 8; compute it inductively using N, g =
N, g + N,_1 4, where 3 is the predecessor of 3 in B. O t61 t62

The two methods agree (and therefore are at their worst) if 2¢ = L7 and in
that case, they both take time ~ L79+7 = V7d+7,

i i (3+e)d i (3+e)d
The same reasoning, with the n's feather, gives V5

Video and more at http://www.math.toronto.edu/~drorbn/Talks/K0S-211021/
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| Still Don’t Understand the Alexander Polynomial
Dror Bar-Natan, http://drorbn.net/mo21
Moscow by Web, April 2021

Abstract. As an algebraic knot theorist, | still don't understand the Alexander
polynomial. There are two conventions as for how to present tangle theory in
algebra: one may name the strands of a tangle, or one may name their ends. The
distinction might seem too minor to matter, yet it leads to a completely different
view of the set of tangles as an algebraic structure. There are lovely formulas for
the Alexander polynomial as viewed from either perspective, and they even agree
where they meet. But the “strands” formulas know about strand doubling while
the “ends” ones don't, and the “ends” formulas know about skein relations while
the “strands” ones don't. There ought to be a common generalization, but | don't
know what it is.

| use talks to self-motivate; so often | choose a topic and write an abstract when |
know | can do it, yet when | haven't done it yet. This time it turns out my abstract
was wrong — I'm still uncomfortable with the Alexander polynomial, but in slightly
different ways than advertised two slides before.
My discomfort.

» | can compute the multivariable Alexander polynomial real fast:

— (vww) Y2 (u—1)(v — 1)(w — 1).

VISR,
Rl

. Virtual Skein Theory Heaven

Definition. A “Contraction Algebra” assigns a set 7 (X, X) to any pair of finite
sets X = {£...} and X = {x, ...} provided |X| = |X|, and has operations
> “Disjoint union” U: T(X,X) x T(Y,Y) = T(XUY,XUY), provided
xXny=Xny=40
> “Contractions” cx¢: T(X,X) = T(X\ & X\ x), provided x € X and € X.
> Renaming operations o5: T(X U {¢}, X) = T(X U {n}, X) and
oy T(X, XU{x}) = T(X, XU {y}).
Subject to axioms that will be specified right after the two examples in the next
three slides.
If R is a ring, a contraction algebra is said to be “R-linear” if all the T(X, X)'s are
R-modules, if the disjoint union operations are R-bilinear, and if the contractions
Cx,¢ and the renamings o are R-linear.
(Contraction algebras with some further “unit” properties are called “wheeled
props” in [MMS, DHR])

Note 3. A contraction algebra morphism out of 7 is an invariant of virtual tangles
(and hence of virtual knots and links) and would be an ideal tool to prove Skein
Relations:

Thanks for inviting me to Moscow! As most of you have never seen it, here's a
picture of the lecture room:

If you can, please turn your video on! (And mic, whenever needed).

This talk is to a large extent an elucidation of the Ph.D. theses of my former
students Jana Archibald and lva Halacheva. See [Ar, Hal, Ha2].

Also thanks to Roland van der Veen for comments.

A technicality. There's supposed to be fire alarm testing in my building today.
Don't panic!

& G2

Example 1. Let T(X, X) be the set of virtual tangles with incoming ends (“tails”)
labeled by X and outgoing ends ( “heads”) labeled by X, with Ll and o the obvious
disjoint union and end-renaming operations, and with ¢, ¢ the operation of
attaching a head x to a tail £ while introducing no new crossings.

Note 1. 7 can be made linear by allowing formal linear combinations.

Note 2. 7 is finitely presented, with generators the positive and negative
crossings, and with relations the Reidemeister moves! (If you want, you can take
this to be the definition of “virtual tangles™).

Example 2. Let V be a finite dimensional vector space and set

V(X, X) = (V*)®¥ ® VEX, with Ll = ®, with ¢ the operation of renaming a
factor, and with c, ¢ the operation of contraction: the evaluation of tensor factor £
(which is a V*) on tensor factor x (which is a V).

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/

41


http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/

Axioms. One axiom is primary and interesting,
» Contractions commute! Namely, ¢, ¢/cy.n = ¢y n//cxc (or in old-speak,
Cyn © Cxg = Cx,e © Cy ).
And the rest are just what you'd expect:

> Ll is commutative and associative, and it commutes with c.. and with o'
whenever that makes sense.

- " . . _ 13
> c..is "natural” relative to renaming: cx¢ = o /foy/cy,,.

> gg =of=1d, ai//azf = ag, oy/loy = o}, and renaming operations commute
where it makes sense.

2. Heaven is a Place on Earth

(A version of the main results of Archibald's thesis, [Ar]).

Let us work over the base ring R = Q[{ T*'/2: T € C}]. Set
A(X, X) ={w e A(X UX): degy w = degy w}

(so in particular the elements of A(X, X) are all of even degree). The union
operation is the wedge product, the renaming operations are changes of variables,
and ¢, ¢ is defined as follows. Write w € A(X, X) as a sum of terms of the form
uw’ where u € A(§,x) and w' € A(X \ &, X\ x), and map u to 1 if it is 1 or x¢
and to 0 is if is £ or x:

xw' — 0, xéw' = w'.

1w — w, &w' =0,

Proposition. A is a contraction algebra.

We construct a morphism of coloured contraction algebras A: 7 — A by declaring

XS, T] — T Yexp ((E/ &) ((1) ! _TT> (Z))
~ —1
XS, T = T exp <(5f &) (1 T (1)) Cf) )

Pi[T] = exp(&ix;)
N N j
Y4 AN
XS, T]  PylT]

Xijw[S, T]

with

(Note that the matrices appearing in these formulas are the Burau matrices).

3. An Implementation of A

If I didn't implement | wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Alpha.nb at
http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are
plain. We start with an implementation of elements (“Wedge") of exterior algebras,
and of the wedge product (“WP"):

WP [Wedge[u_ ], Wedge[v___]] :=Signature[{u, v}] xWedge @@ Sort[{u, v}];
WP[@, _] =WP[_, @] = 0;
WP[A , B ] :=

Expand [Distribute[A *x B] /.
(a_. x u_Wedge) xx (b_. » v_Wedge) :»abWP[u, v]];
WP [Wedge[,] + Wedge[a] -2baa, Wedge[,] - 3Wedge[b] +7 cad]
Wedge[] + Wedge[a] - 3Wedge[b] ~arb+7cad+7anrcad+1d4danbrcnad

Comments.
» We can relax |X| = |X]| at no cost.
» We can lose the distinction between X and X and get “circuit algebras”.

> There is a “coloured version”, where T (X, X) is replaced with T(X, X, \, /)
where A: X — C and /: X — C are “colour functions” into some set C of
“colours”, and contractions c, ¢ are allowed only if x and & are of the same
colour, /(x) = A(€). In the world of tangles, this is “coloured tangles”.

Alternative Formulations.

where ¢. denotes interior multiplication.

Crew = /exiw dédx.

> Cy¢ represents composition in exterior algebras! With X* := {x*: x € X}, we
have that Hom(AX,AY) =2 A(X* U Y) and the following square commutes:

> CgW = stxexéw,

» Using Fermionic integration,

Hom(AX,AY) @ Hom(AY,AZ) I Hom(AX,AZ)

1

AX*,Z)

I Cyoy*

AX* UYL Y LZ)—=r

> Similarly, A(X LU X) = (H*)®Y @ H®X where H is a 2-dimensional “state
space” and H* is its dual. Under this identification, c.¢ becomes the
contraction of an H factor with an H* factor.

Theorem.

If D is a classical link diagram with k components coloured Ti,..., Tx whose first
component is open and the rest are closed, if MVA is the multivariable Alexander
polynomial of the closure of D (with these colours), and if p; is the
counterclockwise rotation number of the jth component of D, then

AD) =T 2(To 1) [T T2 ) - MVA- (1 + € A our)-
j

(A vanishes on closed links).

We then define the exponentiation map in exterior algebras (“WExp") by summing
the series and stopping the sum once the current term (“t") vanishes:
WEXp[A_ ] := Module[{s = Wedge[,], t = Wedge[,], k = @},

While[t =1=0, s += (t = Expand[WP[t, A] / (++k)])1; s]
WExp[aab+cad+eanf]

Wedge[] +arb+crd+enf+anbrcrdranbrenfrcadrenfranbrcadrent

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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Contractions!
Cx_,y_[w_Wedge] := Module[{i, i,
{i} = FirstPosition[w, x, {0}]1; {j} = FirstPosition[w, y, {0}];
w (i=0)A (j=0)
(-1) #IHHED03 pelete [w, {{i}, {j}}] (i>@) A (j>0)
s
Cx ,y [E.]1 := & /. w_Wedge » cy,, [W]
WExp[aab+2cad]
Cy,c@WExp[aab +2cad]
Wedge[] +anb+2cad+2asbacad
-Wedge[] -a~b

The negative crossing and the “point”:

l\\/k Tz’
SN T,

XipalS, T] P;[T]
A[Xi 5k, [S_5 T_1] := a[(i, J¥s {Rs L}, <|&i > S, §5 > Ts Xe > S, X0 > T|>,

lf—:"l :]-(Xm XL)] /e Ea Xp > §a'\xb]]]}

Expand [ 7/ WExp [Expand [ (€, &)} - [
‘ﬂ[ii,:j,.k,,g] :=-ﬂ[ii,j,k,L[ti: tj]];
ALP: 5 [T 11 := AL{i}, {J}, <I€i > T, X5 > T|>, WEXp[E:1 2 %5115
AlPi_,5 1 := A[Py,;[zi]]

The union operation on A’s (implemented as “multiplication”):
A/: A[isl_, 0s1_, cs1_, wl_] xA[1s2_, 0s2_, cS2_, w2_] :=

A[is1|Jis2, osi|Jos2, Join[cs1, cs2], WP[wl, w2]]
Short[A[Xa,a,3,1[S, T11 * A[Xs,4,6,515 5]

711, 2,3,4), (3, 4,5, 6),

\/Ta Wedge ]

<12 =S, Xa > T, X355, E4>T, 35 T3, E4- Tas X = T3, Xs > Tal>,

\/?
X3 A Xg A Xg A
REZE Lt DY, N N o R L7E. L1 S 8. L1 08
NT VT VT
Xg A £3 VT X3aXs A XgnExnésniy WXBAXSAX5A§ZA§3A§47

—— + <<40>> + -
\/?VIA \Ta N Ta
XgrXsaXenE1nE3nEy . \/?X3AX4AX5AX5A§1A§ZA§3A§4]

VT Va Vta

Automatic and intelligent multiple contractions:
c@A[is_, 0s_, cs_, w_] :=Fold[Csx, 2 [#1] &, A[1S, 0s, cS, W], is(0s]
A[{A_#A}] :=c[A];
A[{Al_A, As__A}] :=Module[{A2},
A2 = First@MaximalBy[ {As}, Length[A1[[1] N #[2]] + Length[A1[2] N #[11] &];
A[Join[{c[A1A2]}, DeleteCases[{As}, A2]]1] ]
ALOs_List] 1= A[A /@ 0s]
c[AX2,4,3,1[S5 T1]1 *A[X3,a,6,51]
AL{L, 2}, {5, 6}, <1&225, E1>T, X6 > S, Xs > Th,
Wedge [] - X5 &1 - Xe A &x — X5 4 Xe A &1 &3]
A@{A[X2,4,3,1[S5 T11, AlX3,4,6,51}
AL{1, 2}, {5, 6}, <1&2 2S5, E1-T, X6 >S5S, Xs > TP,
Wedge[] ~ X5 7 &1~ Xe A &x — X5 4 Xg A &1 &3]

Alis,os,cs,w] is also a container for the values of the A-invariant
of a tangle. In it, is are the labels of the input strands, os are the
labels of the output strands, cs is an assignment of colours (namely,
variables) to all the ends {&;}icis LI {Xj}jcos, and w is the “payload:
an element of A ({&;}icis U {Xj}jcos)-

AlXi_,j e, [S_, T 11 := ﬂ[(L; 1} {Js R} <|Ei S, X5 5Ty Xg S, E,>T|>,
11-T7
e T

%
VAN

Xiju[S, T]

Expalnd[T’:”2 NExp[Expand[{gL, §i}.( ).{xj_, xk)] /e &q Xp > §,,Axb]]];

A[X1,2,3,a[U, V]]

A4, 11, (2,3}, 461U, X0 5V, X3 5 U, £V,

Wedge[] Xp4 & X3 A &,
%*%*WXBA&*%* VX3A§4+WX2AX3A§1’\§4]

ALK L5,k ,0 1 1= ALK, 5,60 [Tis T]]

The linear structure on A's:

A/: a xA[is_, 0s_, cs_, w_] := A[ls, os, cs, Expand[a w] ]

A/: Alis1l_, 0s1_, cs1_, wl_] + A[is2_, 0s2_, cs2_, w2_] /;
(Sort@isl == Sort@is2) A (Sort@os1 == Sort@os2) A

(Sort@Normal@csl == Sort@Normal@cs2) := A[isl, osl, cs1, wl +w2]
Deciding if two A's are equal:
A/: Alisl_,0s1_, _,wl_] =HA[is2_,0s2 , , w2 ] :=

TrueQ[ (Sort@isl === Sort@is2) A (Sort@osl === Sort@os2) A
PowerExpand [w1 == w2] ]

Contractions of .A-objects:
Ch_,t @A[is_, 0s_, cs_, w_] i= A[

DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, {X;, £:}1, Cxyy, 60 [W]

] 7. If[MatchQ[cs[€:], T 1, €S[&:] » cs[Xnl, €5[X5] > €s[€:115
54,4[3[)(2,4,3,1[5; T11 -W[is,::,s,s]]
A(1,2,3), (3,5, 6}, 16255, %55, E15T, &35 13, Xe - T3, Xs > Th,
Xer &1 Xgr &3
_

T T

TX3aXsAnE1nEr—XznXen&E1aEa+TXgaXenE1nEr+X3aXgnrEgnEs—
X3aXer &1 &3 X5 A Xg A E1n s
% -X3AX5A§2A§3—%

Wedge[] - X312 E1 +TX3AE1 - TX3nEr —Xsn &g - Xe A &1 +

“X3AXsAXgrE1nErnls

4. Skein relations and evaluations for A

Al (1,23, (5, 6}, <1625V, X5 5 U, E15 U, X > VI,

\?‘@{ia,l,a,s [v, ul, 73,2,5,:]’

Vuxsagr  Vuxsaé, VWV X6 1 &1
Nu AV Wedge[] - — 2 4 — 22222 U AV xga &y b ————F AU AV XA €
N N RN N 61 €1
WXGA&_\/UXSAXGA&Agz_WXSAXGA&A&+\NWXSAX5A§1A§Z}
Vu v Vu

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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Reidemeister 2

A@{X2,4,3,1[S5 T1, X3,a,6,5} = A@{P1,5[T], P2,6[S1}
True
A@{X3,1,2,4[S5 T1, Xe,5,3,4} = A@{P1,5[T], Ps,2[S]}

True

Reidemeister 1

/k 2 p 2 X 2
= 7171/2 [\/ﬁ\ 711/2 &@ 71—1/2
3 | 3 \ | / 3 |

{R@(X3,3,2,1} = TTV2 A@ (P12}, A@{Xy,2,3,3) = 1'% A@(Py,2),

A@{Xy,3,3,2} = 2 A@{P1,5}, A@{X3,1,2,3} = 73’2 -ﬂ@(PLz}}

Sk
—
3 1

{True, True, True, True}

(So we have an invariant, up to rotation numbers).

Overcrossings Commute but Undercrossings don't

A@{X2,7,5,15 X3,4,6,7} = A@{X3,7,6,15 X2,4,5,7}
True
«ﬂ@{il,zn,s: i7,3,4,6} = «9‘@{?1,3,7,6: i7,1,4,5}

False

Conway's Second Set of Identities

(see [Co])

/yo /\%}o 5 M6 Q) 2 s % 5 |2
W/D + % = ()2 4 ()2 12 + %: ((u/ )2 + (ufv) ™)
1 \Tu’ I(I Yl) 1 713 1 (N/ 1{1 6 1 6

A@{Xz,4,3,1[Vs U], Xa,6,5,3} + A@{X1,2,4,3[Us V], X3,4,6,5} =
(u:./z V72, g2 V—1/2) A@(Py,s[ul, Paslv]}
True

7@{Xa,1,6,3[V5 Uls X3,2,5,4} + A@{X1,6,3,a[U; V], Xo,5,2,3} =
(ullz v»l/z + u»l/z v1/2) \ﬂ@{Pl,S [u] N PZ,S [V] )

True

Reidemeister 3

A@{X2,5,4,1[ T2, T1l, X3,7,6,5[ T35 T1l, X6,9,8,4} =
A@{X3,5,4,2[ T3, T21, Xa,6,8,1[T35 T1], X5,7,9,6}

True

The Relation with the Multivariable Alexander Polynomial

MVA = u™¥2y 1212 (y_1) (v-1) (Ww-1);
A = {X1,12,2,13[U, V1, X13,2,6,35 X8,4,9,35 Xa,10,5,95 X6,17,7,16 [V> W],
X1s,8,16,7> X14,10,15,115 711,17,12,14]' // A // Last // Factor
(-1+u)2 (-1+v) (-1+w) (Wedge[] - X5~ &)
uv
A=u? (u-1) P v 2 w2 MVA (Wedge[,] - Xs A &1)
True

The Conway Relation (see [Co])

N 73 s
_ — T—1/2 _ T1/2 > <
1/322 1%2 ( )1 2

A@{Xz,3,4,1[T> T1} - A@{X1,2,3,4[T, T1} = (T2 - T2) @@ {P1,4[T], P2,3[T1}

True

Virtual versions (Archibald, [Ar])

3 Jw 3 M

=@+t

2 1

e

1W,z (14

A@{Xz,3,4,1} + A@{Xz,1,4,3) = (11/2 + 1;1/2) A@{P1,3, P3,4}
True
A@{X1,2,3,a} + A@{X1,4,3,2} = (f;/Z + 1551/1) A@{P1,3, Pz,4}

True

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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Conway's Third Identity (see [Co])

Virtual version (Archibald, [Ar])

7 7
+
™ 56
=)
2 3
A@{Xe,4,9,15 Xa,5,7,85 Yz,a,s,s} + A@{Xa,4,5,15 Xa,3,7,65 Xe,8,9,5} = 7@ {Xs,7,6,0, X7,2,45} + ﬂ@{xfaﬁ'l’ Xs,5,6,7) =
-W@{Yi,s,a,m Xs,7,8,45 Xs,s,s,z} + \ﬂ@{il,z,a,s; X3,7,6,45 i5,5,»3,9} A@{X3,7,6,25 X7,4,5,1} + ‘ﬂ@{xl'zﬂ’s’ x3"’6’7}
True True
Jun Murakami's Fifth Axiom (see [Mu])
3 s Virtual versions (Archibald, [Ar])
5 2 4}y _ V5(1-7) 5
VT 2
T‘l 1 =(T-Y2 -T2 —0
T 3
,\/g 1-T) 1 T|1
A@{Xq1,4,2,5[T5 S1, Xa,3,5,2} = T A@{Py,3[T]}
T
A@ {X S, T1} = (T¥2-TY2) @@ (P, [T
True {X3,2,3,1[S, T1} = ( ) #@{P1,,[T]}
True
A@{Xq,3,2,3}
AL{1}, {2}, <&1-> T, X2 > 11>, @]
Jun Murakami's Third Axiom (see [Mu]) The Naik-Stanford Double Delta Move
/ﬁ» 4 yn t\ 5 o 1 t’. 6 T U Y
i
7 N3 T N2 3 1 11 3 1 2 Wi 1 2 3
212 1122 i 2 0
FAr112 = A@{X3,8,7,25 X7,10,9,15 X10,11,4,95 X8,6,5,11} 3
F1221 = A@{X2,8,7,15 X3,10,9,85> X10,6,11,95 X11,5,4,7} 3
A = AR {X: X X X 5 P 7 -
211 X5,8,7,25 X8,6,9,75 X5,11,30,15 X13,5,4,10} 5 Timing [ﬂ@{xs,le,za,u[w; V], X28,3,20,19 [W5 V], X26,20,27,19 [W> V], X27,23,11,24 [W, V],
HA1122 = A@{X3,8,7,15 X8,9,4,75 X3,11,10,95 X11,6,5,10} 5 - -
@ e (X ;( ; b o ’ @ (X ’ X Py a} X1,12,13,30 [Us W], Xi3,5,14,25 [Us W], X17,26,18,25 [Us W], Xig,29,8,30 [Us W],
11 = 2,8,7,15 X8,5,4,75 P3,6}5 22 = 3,8,7,25 X8,6,5,7> P1,4}5 X. X.
’ ’ ’ ’ ’ ’ Xa,7,22,15 [V5 Ul, X22,2,23,16 [V, U], X20,17,21,16 [Vs U], X21,14,9,15 [V, u]} =
S = A@{P,4, Pa,ss Pse}s a@{x W, V], X; [w, V], X [w, v], X: [w, V]
g 121 1= 22 4 27M25 g [z ] 1= 2M? - V2 ) 5,9,25,11[ s ] )7 25,4,25,12[ s ] ;x zs,z;,;e,zz[ B ] ,i 39,29,11,;;1 ,] N
u, w u, w u, w u, w
8.+ [t1] 8-[72] A2112 - 8-[72] 8. [T3] FA1221 - 8-[T3/ T1] (FA2211 + F1122) + 2,11,16,27 15> W1» 716,6,17,28 17> Wl s T14,29,15,28 LTy W1»> 45,26,7,27 15> Wl
g [t2t3/ta] 8. [T3] Faa - . [Ta] 8- [Ta T2/ T3] Azp = 8- [3/ 03] Ap X3,8,19,18 [V> U], X19,1,20,23[V> U], X23,14,24,13 [V U] 5 X24,17,10,28 [V, u]}]
True {190.422, True}
Virtual Version 2 (Archibald, [Ar])
Virtual Version 1 (Archibald, [Ar])
-ﬂ@{ize,gm,u [V ul, X3,14,19,13 [Vs> U], Xaa,11,15,21 [Us W], Xas,6,7,22 [Us W],
A@{X4,8,11,3 [Us V1, X11,2,22,7[Us V]I, Xa2,20,13,4 [Us W], Xi3,5,6,0[U, W]} = X2,12,16,22 [Us W] 5 X16,5,17,21 [Us W], Xis,17,5,18 [Vs U], Xa,8,20,28 [V5 ul} =
A@{X1,10,11,a [Us W], X11,5,12,0 [Us W], X12,8,13,3[Us V1, Xi3,2,6,7 [, V1} A@{X1,11,13,21 [Us W], X13,6,14,22 [Us W] 5 X0,14,10,25 [V5 U], X3,7,19,15 [V, U,
True X19,2,9,16 [V U], Xa,17,20,16 [V> U], X17,12,18,22 [Us W], Xig,5,8,21 [U, W] }

True

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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5. Some Problems in Heaven

Unfortunately, dim A(X, X) = dim A(X, X) = 4| is big. Fortunately, we have the
following theorem, a version of one of the main results in Halacheva's

thesis, [Hal, Ha2]:

Theorem. Working in A(X U X), if w = we’ is a balanced Gaussian (namely, a
scalar w times the exponential of a quadratic A = >y ,cx ¢,2(2), then
generically so is cx,ge/\.

(This is great news! The space of balanced quadratics is only |X||X|-dimensional!)

[-calculus.

Thus we have an almost-always-defined “I'-calculus”: a contraction algebra
morphism T (X, X) = R x (X ®g/r X) whose behaviour under contractions is
given by

Ceclw. A = 4 mx+ &y + agx) = (1 — a)w, j+ny/(1 - a)).

(T is fully defined on pure tangles — tangles without closed components — and
hence on long knots).

Multiplying and comparing I objects:
Tr/:T[isl_,o0s1_,csl_, wl_, A1_] xT[is2_, 0s2_, cs2_, w2_, A2_] :=
T[is11is2, os1|Jos2, Join[csl, cs2], wl w2, A1 + A2]
r/:r[isl_,osl_, _,wl_, A1_] =T[is2_, 052 , _, w2_, A2_] :=
TrueQ[ (Sort@isl === Sort@is2) A (Sort@osl === Sort@os2) A
Simplify [l = w2] A CF@.il = CFe.i2]

No rules for linear operations!

The crossings and the point:
T[Xi 5,k [S_5T_1] := I‘[(L; 1}, {Js RYs <1€i 2 S, X5 T, X, 2S5, &> T)>,

2, k[t g (g 17T ) 00 ] ]

T[Xi 5,0 1S5 T_1] 2= T[{d, J}s {ky L} <€ S5 &5 To X > S, X > Tl
Tl e

1_7__11)-{)(;“ XL)]];

T2, CF[ (&0 §j}.(
TIXi ,j e, 1 :=T[Xi,j,kclTi> Tll5
TXi i 6,0 ] ==I'[Yi,j,h,L[ti: rj]]i
T[Pi ,; [T_11 :=T[{i}, {J}, <I€i> T, X; T, 1, & %515
T[P; ,; ] :=T[Pij[ti]];

Proof. Recall that ¢, ¢: (1,£, x,x§)w’ — (1,0,0,1)w’, write
A= p+nx+ &y + afx, and ponder e* =

...+%(u+r]x+§y+a£x)(u+nx+£y+a§x)-~-(,u+nx+£y+a§x)+....

k factors

Then cxyge)‘ has three contributions:
> e#, from the term proportional to 1 (namely, independent of ¢ and x) in e
> —aet, from the term proportional to x£, where the x and the & come from the
same factor above.
» nyet, from the term proportional to x¢, where the x and the £ come from
different factors above.
So et =et(l—a+ny)=(1—a)e*(1+ny/(1—a))=(1- a)ereny/(1-a) —
(1 — a)ertmy/(-a),
|

. An Implementation of I'.

If | didn't implement | wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Gamma.nb at
http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are
plain. We start with canonical forms for quadratics with rational function
coefficients:
CCF[& ] := Factor[&];
CF[5_] := Module[{vs = UnioneCases[s, (£ |x)_, =]},

Total[ (CCF[#[2]] (Times eevs“I')) & /@ CoefficientRules[s, vs]]];

Contractions:
Cn_,t @T[is_, 0s_, cs_, w_, A_] :=Module[{a, n, y, u},
a=6§t,x"}; u=Aa/.& | xp->0;
n=0x,A /.5 >0; y=0g2/.%X;-0;
Tl
DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, {X,, §:}1,
CCF[(1-a) w], CF[u+ny/ (1-a)]
1 /. If[MatchQ[cs[&¢], T ], €S[&] » cs[xp], €5[Xp] > C$[§t]]]}
cer(is_, os_, cs_, w_, A_] := Fold[Cu, 2 [#1] &, T[1s, 0s, CS, w, 2], is0s]

Automatic intelligent contractions:
T{>.7}] :=clxr];
T[{»1_ I, ys__I'}] :=Module[{¥2},

¥2 = FirsteMaximalBy[{s}, Length[»2[1] N #[2]] + Length[»1[2] N #[1]] &];

r[Join[{c[»Z ¥2]}, DeleteCases[{»s}, ¥2]1]11]
T[os_List] :=T[T /@ 0s]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/
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Conversions A < - The Naik-Stanford Double Delta Move (again)

T@A[is_, 05 _, cs_, w_ ] :=Module[{i, j, w = Coefficient[w, Wedge[,]1},
r'[is, os, cs, w, Sum[Cancel[-Coefficient[w, x;4&;] & X5/ w],
{i, is}, {3, 0s}1]
15
A@T[1iS_, 05_,CS_, w_, A ] :=
Alis, os, cs, Expand [« WEXp [Expand[1] /. &, Xp = E4aXp]11135

The conversions are inverses of each other:
¥ =T[{1, 2, 3}, {1, 2, 3}, {X1 > T1, X2 = T2, X3 > T3, &1 - T1, &2 > T2, &3 T3},

Timing[T@{Xe,10,28,24 [Ws V15 X28,3,20,29 [Ws V1, X26,20,27,19 [Ws V1, Xz7,23,11,24 [W, VI,
W, A13 X3 €1+ 312 Xz €1+ 313 X3 §1 + A1 Xg §2 + A2 X2 §2 + A23 X3 §2 + A31 X3 §3 + [ { N e e P

a3x Xp €3 + a3z X3 &3] X1,12,13,30 [Us W1, X13,5,14,25 [Us W1, X17,26,18,25 [Us W], X1s,29,8,30 [Us W],
TefAe@y =y Xa,7,22,15 [V5 Ul X22,2,23,16 [V> U], X20,17,21,16 [V> U], X21,14,0,25 [V, U] } =
True r@{xs,s,zs,n['ﬂ’: V1, Xz5,4,26,22 [Ws V1, Xz9,23,30,22 [W, V1, X30,20,12,21 [W, V],
The conversions commute with contractions: X2,11,16,27 [Us W15 Xi6,6,17,28 [Us W15 X1a,29,15,28 [Us W], X1s,26,7,27 [Us W],
T'ec;,3@A@y = C3,3@Y% X3,8,19,18 [V5 U], X19,1,20,13 [V5> U], X23,14,24,23 [V, U], X24,17,10,18 [V, U] }]
True {0.703125, True}
Conway's Third Identity What | still don’t understand.

> What becomes of ¢, ¢€" if we have to divide by 0 in order to write it again as
an exponentiated quadratic? Does it still live within a very small subset of
ANX U X)?

» How do cablings and strand reversals fit within A?

v

Are there "classicality conditions” satisfied by the invariants of classical
tangles (as opposed to virtual ones)?

Sorry, ' has nothing to say about that...’

A M. Markl, S. Merkulov, and S. Shadrin, Wheeled PROPs, Graph Complexes

Ref and the Master Equation, J. Pure and Appl. Alg. 213-4 (2009) 496-535,
ererences arXiv:math/0610683.

J. Archibald, The Multivariable Al der Pol! jal on Tangles, University of . . .
E Torornctol ;h D tﬁesisu égigah:tp-e;jgr:;bxf {lr;ir;;aoQin/A;ng ©8, Lniversity o A J. Murakami, A State Model for the Multivariable Alexander Polynomial,

g Pacific J. Math. 157-1 (1993) 109--135.
J. H. Conway, An Enumeration of Knots and Links, and some of their . . .
Algebraic Properties, Computational Problems in Abstract Algebra (Proc. [ S. Naik and T. Stanford, A Mc?\{e on Diagrams that Generates S—Equ/va/ence

Conf., Oxford, 1067), Pergamon, Oxford, 1970, 320358 of Knots, J. Knot Theory Ramifications 12-5 (2003) 717--724, arXiv:
a h ' ' ' ' ' ’ math/9911005.

Z. Dancso, |. Halacheva, and M. Robertson, Circuit Algebras are Wheeled .

Props, J. Pure and Appl. Alg., to appear, arXiv:2009.09738. B Wolfram Language & System Documentation Center,

' ' ' https://reference.wolfram.com/language/.

& 1. Halacheva, Alexander Type Invariants of Tangles, Skew Howe Duality for

Crystals and The Cactus Group, University of Toronto Ph.D. thesis, 2016,
http://drorbn.net/mo21/HT.

[ . Halacheva, Alexander Type Invariants of Tangles, arXiv:1611.09280.

Thank You!
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Dror Bar-Natan: Talks: LearningSeminarOnCategorification-2006:

The Alexander Polynomial is a Quantum Invariant in a Different Way

Thanks for inviting me to speak in my basement! [E]}[E]
wef:=http://drorbn.net/cat20/ Emﬁ

P On a chat window here 1 saw a
comment “Alexander is the quantum
ig/(1|]1) invariant”. I have an opinion
about this, and I'd like to share it. First,
some stories.

I left the wonderful subject of
Categorification nearly 15 years ago.
[t got crowded, lots of very smart people
had things to say, and I feared I will have
nothing to add. Also, clearly the next
step was to categorify all other “quantum

invariants”. Except it was not clear what
“categorify” means. Worse, I felt that
[ (perhaps “we all”) didn’t understand

“quantum invariants” well enough to try
to categorify them, whatever that might
imean.

I still feel that way! I learned a lot since
2006, yet I’m still not comfortable with
quantum algebra, quantum groups, and
quantum invariants. I still don’t feel that
[ know what God had in mind when She
created this topic.

Yet I'm not here to rant about my
philosophical quandaries, but only about
things that I learned about the Alexander
polynomial after 2006.

Yes, the Alexander polynomial fits
within the Dogma, “one invariant for
every Lie algebra and representation”
(it’s gI(1|1), T hear). But it’s better to
think of it as a quantum invariant arising
by other means, outside the Dogma.

Alexander comes from (or in)
practically any non-Abelian Lie algebra.
[Foremost from the not-even-semi-
simple 2D “ax + b” algebra. You get
a polynomially-sized extension to tangles
using some lovely formulas (can you
categorify them?). It generalizes to
higher dimensions and it has an organized
family of siblings. (There are some
questions too, beyond categorification).

I note the spectacular existing
categorification of Alexander by Ozsvéth
and Szabd. The theorems are proven and
a lot they say, the programs run and fast
they run. Yet if that’s where the story
ends, She has abandoned us. Or at least
abandoned me: a simpleton will never be
able to catch up.

If you care only about categorification,
the take-home from my talk will be a
challenge: Categorify what I believe is
the best Alexander invariant for tangles.

The Yang-Baxter Technique. Given an algebra U (typically some

‘[I(g) or ﬂq(g)) and suitable elements R, C, K
R:Z a;®bje U U with R*:Za,-@i;i and C,C7! I
- —_ | \_
form Z(K) = Y a;,C 'biab; @ bjay. oy, @b
g,; ! ! ! \a‘/_l/
IProblem. Extract information from Z. 77'_,-
1

The Dogma. Use representation theory. In principle finite, but slow. 2
Example 1. Let a := L{a, x)/([a, x] = x), b := a* = (b, y), and | Gentle’s Agreement.
g :=Db>a="Db®awith [¢,x] = x, [a,y] = =, [b,-] = 0, and | Everything converges!
[x,y] = b and with deg(y, b, a, x) = (1,1,0,0). Let U = U(g) and

R:=e"®"® c U U orbetter R;j:=e" ™% eclU;®U; and C;=ce ">
Theorem 1. With “scalars”:=power series in {b;} which are rational functions in {b;} and

(B; = &b}, With Roland
van der Veen

the “i over j” categority us!

linking numbers scalars

(integers)\ \ ]

Z(K) = Oypay (@' & P05 (1 eP) + Py + )
y —

L o
a scalar; if K is a long knot,
the Alexander poly A(T) categorify me!

a tangle w/o
closed components

a docile perturbation for other
Lie algebras; semisimple algebras
have a hidden parameter €!

Continues

« P Lev Rozansky
normal ordering

at ybax order

R+
[Example 2. Let b := A{p, x)/([p, x] = 1) be Theorem 3. Full evaluation via
the Heisenberg algebra, with C; = «'/* and 1 |x  x
Rij = om0, R (4, ) = a0 T ST (o
Clalm le = @px ((B(et_l)(Pi_pj)xj). p] 0 1- Ti
Theorem 2. Z(K) = O, (w‘le‘fjp"xi) where wiwy [ X1 Xo
w and the ¢'/ are rational functionsin T = ¢!, K1 U K2 = P1 | A 0 2o
In fact w and wq”/ are Laurent polynomials Py |0 A
(categorify us!). When K is a long knot, w | w ‘ Xp Xj -
is the Alexander polynomial. pila B 0 il
. . m pily 6 € — 3)
Packaging. Write O, (w’lce’] pix; ) as N
w ‘ X1 X2 ¢ w =
pild" ¢ (1+yw | Xk
Eppon, [0, 01 & ) | 21 g2 o 11— = a)(l T g4 (11—+ay>e
S : (1-8)¢ 6)¢ = _ ge
U+ T Tvy
The “First Tangle”. Z(K) = “T-calculus” relates via A <> I—A” and has
E [27—1 (T—l)(Pl—Pz)(Txl—xz)] slightly simpler formulas: w — (1 — B)w,
e 2T-1 K
L a B 0 y+ 2% e+ %
2-7! X1 X \J y 6 €|— 1-p ﬁ
+ g,
— raTr-1 1-T ¢ Y E ¢ 1-B8 =T 13 -B
I 20 U B ¥ g | : I
Ta-T) 71— Why Should You Categorify This? The
P2 | 2101 271 .
Tangl G Ty 2.1 implest and fastest Alexander for tangles,
(v-)Tangles. enerated by { easily generalizes to the multi-variable
case, generalizes to v-tangles and w-
tangles, generalizes to other Lie algebras.
In fact, it’s in almost any Lie algebra,
and you don’t even need to know what
is g/(1|1)! But you’ll have to deal with
stltchlng { denominators and/or divisions!
Note. Example 1 «~» Example 2 via g < b(7)
There’s also strand doubling and reversal. .. via (v, b, a, x) & (=tp,t, px, x).

Video and more at http://www.math.
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The PBW Principle Lots of algebras are isomorphic as vector
spaces to polynomial algebras. So we want to understand arbi-
trary linear maps between polynomial algebras.

Convention. For a finite set A, let z4 = {Zi}iea and let
Lo =2} = Lidiea. (p,x)" = (m,¢)
The Generating Series G: Hom(Q[z4] — Q[zg]) — Q[[{4, z5]-
Claim. L € Hom(Q[z4] — Q[zg]) ? Qlzplllgall > £ via

n
G = Z %L(ZX) = L(‘BZ”EA (az,,) =L = geekLiatin’
neNA
G OW) = (Pl L), _, forpeQlzal

Claim. If L € Hom(Q[z4] — Qlzgl), M € Hom(Q[zg] —
Qlzcl). then G(LJM) = (G(L)lzy-5, GM),,
Examples. ¢ G(id: Q[p, x] — Q[p, x]) = ™+,
« Consider R;; € (b; ® b;)[7] = Hom (Q[1 - Qlpi, xi, pj» x,1) [£].
Then G(R;j) = e®@=D@i—p)xj — (T=1)(pi—ppx;_
Heisenberg Algebras. Let b = A(p,x)/([p,x] = 1), let
O;: Qlpi, xi1 — b; is the “p before x” PBW normal ordering map
and let im/ be the composition

©k
br Qlpk, xk].

0:80;
Qlpi, xi, pj»xj] — bh;®Y;
Then Q(hm;(]) = @ éimj+ (A ) pr+(EirE x|
Proof. Recall the “Weyl CCR” ef*e™ = e "™ ¢t*, and find
Q(hm;(j) — @ﬂipi+§ixi+”jpj+§jxj//Oi ® ©j//m;¢j//©/:1
— (Bﬂiﬂiefixieﬂ/n/@fjxj//m;cf//@;l — eﬂipkefixk®ﬂjﬂk®§jxk//@l:1

— e—fﬂje(ﬂi‘*—ﬂj)me(fﬁfj)xk//@]:l — e—fiﬂj+(ﬂi+ﬂj)l7k+(-fi+-fj)xk_

GDO := The category with objects finite sets and
mor(A — B) = {L = weQ} C Qliga, z8ll,
where: e w is a scalar. e Q is a “small” quadratic in {4 U zp.

e Compositions: L/M = (.£|z,-—>6;,. M)

Compositions. In mor(A — B),

4i=0"

0= Z Ejjdizj + Z Fijdidj + Z Gijzizj, S\
i€A, jeB 1]EA tjeB R. Feynman
(remember eF=1+x+xx/2+xxx/6+...)

HONEHE

N = Z E\(F2G)'E;

r=0

E1E2+E1F26 Ez
+EF>,G F,GE,

ldtm

greek ldtln
where @ E = E\(I-F2G\) 'E; o F = Fy + E{F>(I - G1Fy)'ET
¢ G =Gy +EIG|(I- F,G))'E; e w = wywy detI — F,G1)™'/?
Proof of Claim in Example 2. Let ®; := ¢P~P)% and
D, = O, (" DPPIY) = O(P). We show that @y = P, in
(b;®b )] by showing that both solve the ODE 9,® = (p;—p;)x;®
with @|;—9 = 1. For @, this is trivial. ®;|,—¢9 = 1 is trivial, and
9, @2 = 0(3,¥) = O(e'(pi — p)x,;¥)

(Pi—pj)xjP2 = (pi—px;0O) = (pi—p;)O(x;¥ — 8,,¥)
=0 ((p,-—pj)(xj‘I’ + (03[ - l)ley)) = (O)((Bt(pi_pj)xj\{}) a

greek

Implementation. Without, don’t trust!

CF = ExpandNumerator@xExpandDenominator@+PowerExpand@x Factor;

Epz_ sp1_ [@1_, Q1_]1 Epz 42 [@2_, Q2_] ~:= Eayazepays2 [#1 2, Q1 + Q2]
(Epz_p1 [@1_, Q1_1 // Epz o2 [w2_, Q2_]1) /5 (B1* === A2) :=
Module[{i, i, E1, F1, G1, E2, F2, G2, I, M = Table},
I = IdentityMatrixeLengtheBi;
El=M[9:,501, {i, A1}, {J, B1}]; E2 = M[01,502, {i, A2}, {], B2}1;
F1=M[8:,5Q1, {i, A1}, {j, A1}]1; F2 =M[04,502, {i, A2}, {j, A2}];
Gl = M[04,5Q1, {i, B1}, {j, B1}]; G2 = M[94,5Q02, {i, B2}, {J, B2}];
En1ss2 [CF[wl w2Det[I - F2.611%2], CF@Plus[

If[Al === {} VB2 === {}, @, AL.E1.Inverse[I - F2.G1].E2.B2],
1 .
I-F[Al === (3, 0, S AL (F1+E1.F2.Inverse[I - G1.F2].E1') .Al],
1 .
I-F[Bz === {}, O, ;BZ.(GZ+E2 .Gl.Inverse[I—F2.Gl].E2).BZ”]]

A_\B_ :=Complement[A, B];
(Epz_ 1 [@1_, Q1_1 // Epz 42 [@2_, Q2_]1) /5 (B1* =1=A2) :=
E a1y (a2\g1*) 81082+ [#15 Q1 + sum[&* &, {&, A2\B1*}1]1 //
Epz+yazsp2y (s2\az*) [#2, Q2 + sum[z* z, {z, BI\A2*}]]

{p*s X*5 7, §%} = {7, &, Py X}5 (U_i )" = (U")4;
L_List* := #* & /@ L;
Rii 2= Ega{prxipnx} [T (1-T) pix;+ (T-1) pix;];

R 5 Bomipurcns) [ (1272 b+ (1-2) po]
Ci = Eqagpuxn [T% 0]

o= 1/2 o
Ci = Egupx [TV 0]

hmi 5 or t= E (n, 61,7765} (poxe) [1s = €1 7 + (i + 715) Pr + (&1 + §5) Xkl
]E()avsi[”n:_) Q_1h := Module[{ps, xs, M},

ps = Cases[vs, p_]; xs = Cases[vs, X_];

M = Table[«i, 1 + Lengtheps, 1 + Lengthexs];

MI2 55, 2550 = Table[CF[ai,jQ]: {i, ps}, {J, xs}1;

MI2 55, 11 = ps; M[1, 2 53] = xs;

MatrixForm[M],]

Proof of Reidemeister 3.
(R1,2 Ra,3Rs,6 // hmy 4,3 hmy 5,5 hms 6,3) ==

(R2,3 R1,6 Ra,s // hmy 4,3 hmy 5,5 hms 6,3) i — L

True O
The “First Tangle”.

Factor /@
(2 =R1,6 C3R7,4Rs,2 // hmy,3,1 // hmy 451 // hmy 5,1 // hmy 6,1 // hmz,7-.z)

“1+2T  (-1+T) (p1-Pp2) (TX1-Xa)
E(H(PLPLXLXN[ T > 1427 ]

z, ‘k
1:27T 2
e X X

-T+T2 1-T

P1 12T 1427 %
P T-12 “14T
2 Troat 121 /h

The knot 8.
z = Ru2,1 Ry7 Re3 R4, 11 Rue, 5 Re,13 Rua, Rio,153
Table[z = z // hmyy, {k, 2, 16}] // Last

—_— | +—2
1-4T+8T2-11T>+8T4-4T5+T° i
E ()= p1,xa) [ T s 9]
Proof of Theorem 3, (3).
a B 6
{ YL = E()o(p1,x1,p2,%2,P3,%3) [‘": (P15 P25 P3}-| ¥ S € ] s X, x3}]] ’
¢ ¥ B h
(¥17// hm1,z->e)h}
W X1 X2 X3 w+Yw Xe X3
0By +BY+6-08 €-0E+O+Y O
{ pr a B © s Pe 1y T }
P2 ¥ 6 € -8 d+Uiy U E+yE-€ 0
ps ¢ ¥ E/n P3 1oy 1oy h 0
References. On weP=http://drorbn.net/cat20

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/

49


http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/

n-strand (pure) virtual braids with (< m)-xing:

SUE—— m\n 2 3 4 5 6 General n
0 1 1 1 1 1 1
1 5 13 25 41 61 2n% —2n +1
2 1 145 529 1361 2881 |20t +4n® —18n2 +12n + 1
3 53 1561 10873 43121 | 127021 | 1 (4n® +36n° — 2n* — 546n° + 10660 — 558n + 3)
4 161 16717 | 222289 1351481 | 5484721

S 5 | 485 | 178873 4540201
o 6 1457 1913737
Gl L) 5] e 9.3m _1

6

-
e

58 [

URL: http://drorbn.net/t1dt20| Credit to N
Zoom Etiquette: If you can see and Chterental!
N me I should be able to see you!

R

—

E)N D 1/
" Tl ool braid T ( ) - UUeOO UeOUO OUU«000 OU«OUOO OOUU«0000
n-strand classical braids with (< m)-xing:
] 2 3 1 [ 5 [ 6 [Generaln Over then Under Tangles
0 1 1 1 1 1 1
1 3 5 7 9 11 |2n-1 Trends in Low-Dimensional Topology, online, May 5 2020, noon. 1
2 5 17 33 53 7T |2m?+om -7 )
3 7 47 131 259 439 |4 (4n® +18n2 — 22n — 63) (n > 2) || Abstract. Brilliant wrong ideas should not be buried and forgotten. Instead, they — \ -
4 9 115 469 | 1143 | 2233 should be mined for the gold that lies underneath the layer of wrong. In this paper /
5 11 263 1579 | 4743 | 10603 we explain how "over then under tangles" lead to an easy classification of knots, and
6 13 577 5121 | 18941 | 48209 under the surface, also to some valid mathematics: an easy classification of braids A
7 15 1233 16219 73817 213119 and virtual braids, an understanding of the Drinfel'd double procedure in quantum 2 E— DN Vs
8 | 17 2589 50581 | 283165 | 924825 algebra, and more. = N
9 19 5371 Based on a paper in preparation with Zsuzsanna Dancso and Roland van der Veen. ' I3 ' 3
m |2m+1]12.2m —2F,.5—2m —17
Handout: EGOU.html, EGOU.png. 4
*\ N 4 =N 7~
ppNER Tulk Video o N ’ =
éﬁ KT}Q . |
Pensieve.
112 i N2 1 2 %
Not what I do, but the tangent I was on for the last few Rb o ’)

~

weeks. But first, the tangent to the tangent I was playing |® Enriquez’ universal quantization of Lie bi-algebra.

with over the last few days. Possibly an embarrassment!|® All else about quantization of Lie bi-algebra.

e PBW / normal ordering.

e Audoux-Meilhan “Characterization of the Re-
duced Peripheral System of Links”.

/

=B
&)

| +1 ]|

Every braid (classical or virtual) has a directed finite
graph associated with it. These are cool!

o
—

This is Demo.nb at
http://drorbn.net/ap/Talks/TrendsInLDT-2005/.

BR(5, (1,2,3,4,1,2,3,1,2,1}] //
ExtractionGraph

e B-N’s “Balloons and Hoops” paper.

BR[4, {1, 2, 3, 1, 2, 1}] // ExtractionGraph

-

BR[3, {1, 2, 1}] // ExtractionGraph

Knot([4, 1] // BR // Echo // ExtractionGraph | Knot[6, 1] // BR // Echo // ExtractionGraph

5 KnotTheory: The minimum braids representing the knots | BR[4, {-1, -1, -2, 1, 3, -2, 3}]
2 with up to 10 crossings were provided
by Thomas Gittings. See

-3 arXiv:math.GT/0401051
1

BR[3, (-1, 2, -1, 2}]

Knot[8, 1] // BR // Echo // ExtractionGraph Knot[6, 3] // BR // Echo // ExtractionGraph

BR[3, (-1, -1, 2, -1, 2, 2}]

20

>
.y
)
\\a

BR[5, {-1, -1, -2, 1, -2, -3, 2, 4, -3, 4}]

BRI3, {1, -2, 1}] // ExtractionGraph  Iypop1s 5 5. L, 0nes Ga2s Oais Oas

5 2 1 o 03,15 0s,3] // ExtractionGraph
1 3t =

“summation” bond

S
<o
P

j/ al

BR[3, {1, -2, 1, -2}] // ExtractionGraph

s 5 2 1 o

Subsets.
Supersets.

Subsets of supersets.
Completions.
Quotients.

Images.
Completions of sub-
sets of supersets. . .

Video and more at http://www.math.toronto.edu/~drorbn/Talks/TrendsInLDT-2005//
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T[vd_vD] := FixedPoint [RlZReduce@*r, vd, Zs]

T[T_] /; Head[T] =t=VD := T[VD[T]]

UUeOO UeOUO OUU«OOO OUsOUOO O0UU«OO00
n-strand (pure) virtual braids with (< m)-xing:
m\n| 2 3 4 5 6 General n
0 1 1 1 1 1 1
1 5 13 25 41 61 2n? —2n+1
2 17 145 529 1361 2881 20 4 4n® — 1802 + 12n + 1
3 53 1561 10873 43121 127021 |  (4n® + 36n° — 20" — 5460 + 1066n? — 558n + 3)
4 161 16717 222289 | 1351481 | 5484721
5 485 | 178873 | 45640201
6 | 1457 | 1913737
% -1 N el e
: 7 P
i _— RS
— === : : o
ko [ R R _
Lo
9 / ) A J—
N -1 o} P 1 P
— Uk (R Ul_j 2
\ [ -1
s o A A
4 —k o
Gk kT o i

% VPB[n_, {os___}] :=VPB[n, os];

VD /: vdi_VD %%vd2_VD := Module[{esl, es2, m2},
esl = Cases[vdl, EOS[i_] = i];
m2 = Max[es2 = Cases [vd2, EOS[i_] = i]];
Tidy [
vd1|JReplace [DeleteCases [vd2, _EOS],
i_ > i/m2-1+eslil+Countf[es2,e_/; i>ell, {2}]]

1
VD[VPB[n_]] :=VDee (EOS /@Range[n]) ;
VD[VPB[n_, oi_,; ]] := Tidy@Append[VD @@ (EOS /@ Range[n]), X,1[1-©.5, j-0.5]];
VD[VPB[n_, T; ,; 1] := TidyeAppend [VD @@ (EOS /@Range[n]), X_1[1-©.5, j -0.5]];
VD[VPB[n_, o , os__1] :=VD[VPB[n, o]] »*x VD[VPB[n, os]]
VPBGenerators[n_] :=

VPBGenerators [n] =

FlatteneTable[{oi,j, 53,5}, {i, n}, {j, DeleteCases [Rangeen, i]}];

OVER THEN UNDER TANGLES

DROR BAR-NATAN, ZSUZSANNA DANCSO, AND ROLAND VAN DER VEEN

ABSTRACT. Brilliant wrong ideas should not be buried and forgotten. Instead, they should
be mined for the gold that lies underneath the layer of wrong. In this paper we explain how
“over then under tangles” lead to an easy classification of knots, and under the surface, also
to some valid mathematics: a separation theorem for braids and virtual braids, a topological
understanding of the Drinfel’d double construction of quantum group theory, and more.

/( ProudFollowers[n_, o; ,j ] := ProudFollowers[n, oi,;] = Module[{p, q, S},
Flattene{oi,;, oj,i, Tj,i,

( \\ Table[{0p,q5 Oa,ps Op,as Ta,p}s {Ps {1, 7}}, {q, Complement [Range[n], {i, 7}1}1,
Table[{0op,qs Tp,q}s {P, Complement [Range[i +1, n], {j}1},

SetAttributes [VD, Orderless]

Tidy[vd VD] := Module[{ps = Unionee (List eee vd)},
Replace[vd, Thread[ps -» Range@Length@ps], {2}] ]

R12Reducel[vd VD] := Tidy@Module[{R2s, R2}, Which[

Length[R2s = Cases[vd, X; [i_, j_ 1= X [i+1, j+1]]1 N (Listeevd)] >0,
Complement [vd, VD[R2 = First@R2s, R2 /. X. [i_, j_1=»X.[i-1, j-1]1]11,
Length[R2s = Cases[vd, Xs [1_, j_ ] = Xs[t+1, j-1]]1() (Listeevd)] > @,
Complement [vd, VD[R2 = First@R2s, R2 /. Xs [i_, j_] =»Xs[1-1, j+1]1]1,

True, DeleteCases[vd, X_[i_, j_] /5 Abs[i-3j] =1] 1]
R12Reduce[vd_VD] := FixedPoint [R12Reducel, vd]

¥[vd_VD] := Module[{js, si, i1, j1, s2, i2, j2},
js = Cases[vd, X [_, j_1=JjlNCases[vd, X [i_, _]=1-1];
If[Length[js] ==0, vd,
j1 = RandomChoice[js]; i2 = j1+1;
Cases[vd, X; [i_, j1] =» (sl=s3;il=1)];
Cases[vd, X; [12, J_] = (s2=5s;32=73)1;
Tidy@Join[Complement [vd, VD[Xs; [i1, §11, Xs2[12, j2111,
VD[Xs2[J1, 321, Xs1[i1, i2], Xs152[i1-51/3, j2+52/3],
Xos1s2[i1+s1/3, j2-5s2/3]]
111

T[vd_VD] := FixedPoint[y, vd, 2°]

T[7_] /3 Head[T] =1=VD := T[VD[T]]

{9, Complement [Range[n], {i, j, p}1}]
315
ProudFollowers[n_, &; ,j ] :=
ProudFollowers [n, &;,;] = ProudFollowers [n, oi,;] /. 0i,; = &i,;

ProudVPBs [n_, @] := {VPB[n]};
ProudVPBs[n_, 1] := VPB[n, #] & /@ VPBGenerators[n];
ProudVPBs[n_, m_] /3 m>1 :=
Flatten [ProudVPBs[n, m-1] /.
VPB[n, os s @1 = (VPB[n, os, o, #] &/@ProudFollowers[n, o])]

CountOUForms[n , m ] := Module[{k),
LengtheUnioneFlatteneTable [Tevpb, {k, @, m}, {vpb, ProudVvPBs[n, k]}]]

e Subsets.
) Akr,\ T t j\ t t ,L e Supersets.
- e Subsets of supersets.
( ) ( ) %\T ( K ) ) e Completions.
17 N2 13 17 N2 13 1 2 1 2 |e Images.
L o

Enriquez’ universal quantization of Lie bi-algebra.
All else about quantization of Lie bi-algebra.
PBW / normal ordering.

.
L]
L]
e Audoux-Meilhan “Characterization of the Re-

s Completions of sub-
\/ . sets of supersets. ..
‘Ii;l' o _as tangles : : : glide - R2 _ | _T_JCredit to Manturov
|| (notyet OU) moves - moves | ¢ 1 Jand Chterental!
iU ) i L
\ ) \ ) NP7 !
AN N ANV N AN —
NS . N7 AN \/4;\2 ‘ *)2\/\\/
NN O /) - (/“/\\QD/) Z Eam— i
\// S’
/{ N4 \u /{ o <2 /{ \\ N4 <2 13 3
N N |See http://drorbn.net/moQO,l
UeOO OU«OO0O 0O0U«O000
vt y o
P I\ X [
0ij | T < T o> _ T al’jl [ I )
R R o
i j j i 1 é?z ( \2 1 t

duced Peripheral System of Links”.
e B-N’s “Balloons and Hoops” paper.
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Audio and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2004//

51


http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2004//

Dror Bar-Natan: Talks: Toronto-1912:

Thanks for inviting me to the Chord Diagrams %;IE
Everywhere session / Winter 2019 CMS meeting! E

Chord Diagrams, Knots, and Lie Algebras oe:=http://drorbn.net/to19

Abstract. This will be a service talk on ancient mate-
rial — I will briefly describe how the exact same type of
chord diagrams (and relations between them) occur in a
natural way in both knot theory and in the theory of Lie
algebras.

While preparing for this talk I realized that I've done it
before, much better, within a book review. So here’s that
review! It has been modified from its original version:
it had been formatted to fit this page, parts were high-
lighted, and commentary had been added in green italics.

[Book] Introduction to Vassiliev
Knot Invariants, by S. Chmutov, S.
Duzhin, and J. Mostovoy, Cambridge
University Press, Cambridge UK,
2012, xvi+504 pp., hardback, $70.00,
ISBN 978-1-10702-083-2.

Merely 30 36 years ago, if you had
asked even the best informed math-
ematician about the relationship be-
tween knots and Lie algebras, she

P

Pitch Axis

+ Pitch

Roll Axis

Yaw Axis
+Roll

= OBPYWEEHH MO0 00

Center of

Gravity

XY= 1/0 -i
[Y.Z]=X Y:<. )
[ZX]=Y i 0

+Yaw

would have laughed, for there isn’t
and there can’t be. Knots are flexi-
ble; Lie algebras are rigid. Knots are
irregular; Lie algebras are symmet-
ric. The list of knots is a lengthy
mess; the collection of Lie algebras

S PBw RUxBed
D FErepsmey 7 77

&P L0580 TR Pn OO OO,

A knot and a Lie algebra, a list of knots and a list of Lie
algebras, and an unusual conference of the symmetric and

is well-organized. Knots are useful
for sailors, scouts, and hangmen; Lie

the knotted.

algebras for navigators, engineers, and high energy physicists. Knots are blue collar; Lie algebras are white. They
are as similar as worms and crystals: both well-studied, but hardly ever together.

Then in the 1980s came Jones, and Witten, and
Reshetikhin and Turaev [Jo, Wi, RT] and showed that
if you really are the best informed, and you know
your quantum field theory and conformal field theory
and quantum groups, then you know that the two dis-
joint fields are in fact intricately related. This “quan-
tum” approach remains the most powerful way to get
computable knot invariants out of (certain) Lie algebras
(and representations thereof). Yet shortly later, in the
late 80s and early 90s, an alternative perspective arose,
that of “finite-type” or “Vassiliev-Goussarov” invariants
[Val, Va2, Gol, Go2, BL, Kol, Ko2, BN1], which made
the surprising relationship between knots and Lie alge-
bras appear simple and almost inevitable.

The reviewed [Book] is about that alternative perspec-
tive, the one reasonable sounding but not entirely trivial
theorem that is crucially needed within it (the “Funda-
mental Theorem” or the “Kontsevich integral”), and the

2010 Mathematics Subject Classification. Primary 5STM25.

many threads that begin with that perspective. Let me
start with a brief summary of the mathematics, and even

before, an even briefer summary.
In briefest, a certain space A of chord diagrams is the

dual to the dual of the space of knots, and at the same
time, it is dual to Lie algebras.

The briefer summary is that in some combinatorial
sense it is possible to “differentiate” knot invariants, and
hence it makes sense to talk about “polynomials” on
the space of knots — these are functions on the set of
knots (namely, these are knot invariants) whose suffi-
ciently high derivatives vanish. Such polynomials can
be fairly conjectured to separate knots — elsewhere in
math in lucky cases polynomials separate points, and in
our case, specific computations are encouraging. Also,
such polynomials are determined by their “coefficients”,
and each of these, by the one-side-easy “Fundamental
Theorem”, is a linear functional on some finite space of

Published Bull. Amer. Math. Soc. 50 (2013) 685-690. TgX at http://drorbn.net/AcademicPensieve/2013-01/CDMReview/,
copyleft at http://www.math. toronto.edu/~drorbn/Copyleft/. This review was written while I was a guest at the Newton Institute,
in Cambridge, UK. I wish to thank N. Bar-Natan, I. Halacheva, and P. Lee for comments and suggestions.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/
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2

graphs modulo relations. These same graphs turn out to
parameterize formulas that make sense in a wide class of
Lie algebras, and the said relations match exactly with
the relations in the definition of a Lie algebra — anti-
symmetry and the Jacobi identity. Hence what is more
or less dual to knots (invariants), is also, after passing to
the coeflicients, dual to certain graphs which are more or
less dual to Lie algebras. QED, and on to the less brief

summary'.
Let V be an arbitrary invariant of oriented knots in ori-

ented space with values in (say) Q. Extend V to be an
invariant of 1-singular knots, knots that have a single sin-

gularity that locally looks like a double point >< using

the formula
(1) viX) = v - vOND.

Further extend V to the set K™ of m-singular knots (knots
with m such double points) by repeatedly using (1).
Definition 1. We say that V is of type m (or “Vassiliev of
type m”) if its extension V|ym+1 to (m + 1)-singular knots
vanishes identically. We say that V is of finite type (or
“Vassiliev”) if it is of type m for some m.

Repeated differences are similar to repeated derivatives
and hence it is fair to think of the definition of V|~ as
repeated differentiation. With this in mind, the above
definition imitates the definition of polynomials of de-
gree m. Hence finite type invariants can be thought of
as “polynomials” on the space of knots®. It is known
(see e.g. [Book]) that the class of finite type invariants
is large and powerful. Yet the first question on finite type

invariants remains unanswered:
Problem 2. Honest polynomials are dense in the space

of functions. Are finite type invariants dense within the
space of all knot invariants? Do they separate knots?
The top derivatives of a multi-variable polynomial
form a system of constants that determine that polyno-
mial up to polynomials of lower degree. Likewise the

mth derivative® V™ = Vg = V(><m>’<) of a type m
invariant V is a constant in the sense that it does not see

the difference between overcrossings and undercrossings
and so it is blind to 3D topology. Indeed

V(XmX“/:)—V(XmXN) = V(X’.”T.l}() _a

Also, clearly V™ determines V up to invariants of
lower type. Hence a primary tool in the study of finite

lPartially self-plagiarized from [BN2].

type invariants is the study of the “top derivative” V™,
also known as “the weight system of V.

Blind to 3D topol-

ogy, V™ only sees the 4 3
combinatorics of the 5 —
circle that parameter- 1

izes an m-singular knot.
On this circle there are m pairs of points that are pairwise
identified in the image; standardly one indicates those by
drawing a circle with m chords marked (an “m-chord di-
agram”) as above. Let D,, denote the space of all formal
linear combinations with rational coefficients of m-chord
diagrams. Thus V™ is a linear functional on D,,.

I leave it for the reader to figure out or read in [Book,
pp- 88] how the following figure easily implies the “47
relations of the “easy side” of the theorem that follows:

}

E% SR

)
{ a
Theorem 3. (The Fundamental Theorem, details in
[Book]). .

e (Easy side) # >~ A0 T A
Ifvisa PR e A
rational val- : '
ued type m invariant then V™ satisfies the “4T” rela-
tions shown above, and hence it descends to a linear
functional on A, := D,,/4T. If in addition V™ = 0,
then V is of type m — 1.

o (Hard side, slightly misstated by avoiding “fram-
ings”) For any linear functional W on ‘A, there is a
rational valued type m invariant V so that V™ = W.

Thus to a large extent the study of finite type invariants
is reduced to the finite (though super-exponential in )
algebraic study of ‘A,,.

Much of the richness of finite type invariants stems
from their relationship with Lie algebras. Theorem 4

below suggests this relationship on an abstract level and
Theorem 5 makes that relationship concrete.

~
_J

2Keep this apart from invariants of knots whose values are polynomials, such as the Alexander or the Jones polynomial. A posteriori

related, these are a priori entirely different.

3As common in the knot theory literature, in the formulas that follow a picture such as X-"'.X’Z indicates “some knot having m double
points and a further (right-handed) crossing”. Furthermore, when two such pictures appear within the same formula, it is to be understood
that the parts of the knots (or diagrams) involved outside of the displayed pictures are to be taken as the same.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/
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A Jacobi diagram in a circle

Theorem 4. [BN1] The space A, is isomorphic to the
space A, generated by “Jacobi diagrams in a circle”
(chord diagrams that are also allowed to have oriented
internal trivalent vertices) that have exactly 2m vertices,
modulo the AS, STU and I[HX relations. See the figure
above.

The key to
the proof of
Theorem 4 is
the figure above, which shows that the 47 relation is a
consequence of two ST U relations. The rest is more or
less an exercise in induction.

Thinking of internal trivalent vertices as graphical
analogs of the Lie bracket, the AS relation becomes the
anti-commutativity of the bracket, STU becomes the
equation [x,y] = xy — yx and /HX becomes the Jacobi
identity. This analogy is made concrete within the fol-
lowing construction, originally due to Penrose [Pe] and
to Cvitanovi¢ [Cv]. Given a finite dimensional metrized
Lie algebra g (e.g., any semi-simple Lie algebra) and
a finite-dimensional representation p : ¢ — End(V) of g,
choose an orthonormal basis® {Xa}gi:“}g of g and some basis
(ve}imV of V, let fy. and rzﬁ be the “structure constants”

a=1

defined by
fabc = ([ Xa, X1, Xo)

PN S o 7 S o

S N Y /%i/’;?

N N NG e

and

PX)p) = D" 1wy,
Y

Now given a Jacobi diagram D label its circle-arcs with

Greek letters a, 8, ..., and its chords with Latin letters a,

b, ..., and map it to a sum as suggested by the following

example:

4
— fabc”fw Tool cp
ab,c.a By
(internal vertices go to f ’s,)

circle-vertices to r’s

Theorem 5. This construction is well defined, and the
basic properties of Lie algebras imply that it respects the
AS, STU, and IHX relations. Therefore it defines a lin-
ear functional Wy, : A,, — Q, for any m.

The last assertion along with Theorem 3 show that as-
sociated with any g, p and m there is a weight system and

“This requirement can easily be relaxed.

3

hence a knot invariant. Thus knots are indeed linked with
Lie algebras.

The above is of course merely a sketch of the beginning
of a long story. You can read the details, and some of the
rest, in [Book].

What I like about [Book]. Detailed, well thought out,
and carefully written. Lots of pictures! Many excel-
lent exercises! A complete discussion of “the algebra
of chord diagrams”. A nice discussion of the pairing of
diagrams with Lie algebras, including examples aplenty.
The discussion of the Kontsevich integral (meaning, the
proof of the hard side of Theorem 3) is terrific — detailed
and complete and full of pictures and examples, adding
a great deal to the original sources. The subject of “as-
sociators” is huge and worthy of its own book(s); yet in
as much as they are related to Vassiliev invariants, the
discussion in [Book] is excellent. A great many further
topics are touched — multiple {-values, the relationship
of the Hopf link with the Duflo isomorphism, intersec-
tion graphs and other combinatorial aspects of chord di-
agrams, Rozansky’s rationality conjecture, the Melvin-
Morton conjecture, braids, n-equivalence, etc.

For all these, I’d certainly recommend [Book] to any
newcomer to the subject of knot theory, starting with my
own students.

However, some proofs other than that of Theorem 3 are
repeated as they appear in original articles with only a su-
perficial touch-up, or are omitted altogether, thus missing
an opportunity to clarify some mysterious points. This in-
cludes Vogel’s construction of a non-Lie-algebra weight
system and the Goussarov-Polyak-Viro proof of the exis-
tence of “Gauss diagram formulas”.

What I wish there was in the book, but there isn’t.
The relationship with Chern-Simons theory, Feynman di-
agrams, and configuration space integrals, culminating in
an alternative (and more “3D”’) proof of the Fundamental
Theorem. This is a major omission.

Why I hope there will be a continuation book, one
day. There’s much more to the story! There are finite
type invariants of 3-manifolds, and of certain classes of 2-
dimensional knots in R*, and of “virtual knots”, and they
each have their lovely yet non-obvious theories, and these
theories link with each other and with other branches of
Lie theory, algebra, topology, and quantum field theory.
Volume 2 is sorely needed.
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Vi e 2 Vet (t-1) van der Veen
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(e + 85,5 (- 1) (uj - u0)) ucwg), Gassner motifs

Up_ > U + 8,5 (B0 -1) (uj-ui),

Adjoint-Gassner
We_ 3 W + (84,5 = 6r,1) (ti*-1) w;} // Expand

bas3 = {Va, V2, Vs, Va,15 V1,25 Vi35 Va1 V2,25 V2,35 Va5
V3,2 V3,35 U Way U W2, U W, Us Uz W, Uy U2 Wz, U U W,
Ug Us W, Ug U3y, Up Uy Wy, U3 W, U3 Wa, U3 W3, Uz U3ws,
Uz U3 W, Uz U s, U3, U, U3wa}s
M (bas3 // TGy,3 // TGy, // T6z,3) == (bas3 // TGy,3 // T6a,3 // T61,2)

bas3 // 812 // 813 // Bas

[vi, vi—tvi+tvy, vi-tvistvy -t vy« tvs)
bas3 // B2 // Bys // By

[vi, vi-tvistvy, vi-tvistvy-tvy« tvs)
[, acts on R" by permuting the v; so the Burau
representation extends to vB,, and restricts to B,,.
ith this, y; maps v; = vigy, Viep = v H1-Hvig,
fand otherwise vy > vy.

/o Ve V48,5 (t=1) (vs-v;) // Expand ‘;;'“"” [True Like Gassner, TG is also a representation of PB,,.
o urau . .
(bas3 = (va, va, V3}) // Brz I have no idea where it belongs!
(Vi) Vi tvietva, vs My talk tomorrow, at the chord diagrams everywhere session: More Dror: wefftalks
1 10 tva, Vi) N

KS‘

More Dror: wefftalks

Picture credits: Rope from “The Project Gutenberg eBook, Knots, Splices and Rope Work, by A. Hyatt Verrill”, http://www.
gutenberg.org/files/13510/13510-h/13510-h.htm. Plane from NASA, http://www.grc.nasa.gov/WWW/k-12/airplane/

rotations.html.
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Dror Bar-Natan: Talks: Toronto-1912:
Geography vs. Identity

Thanks for inviting me to the Topology session!

wef:=http://drorbn.net/to19/

IAbstract. Which is better, an emphasis on where things happen
or on who are the participants? I can’t tell; there are advantages
and disadvantages either way. Yet much of quantum topology

S

Geography view:

n=A 11 n=l A

SO X 1S y3.

Identity view:

3 At x strand 1 crosses strand 3, so x is 03.

=l | A

seems to be heavily and unfairly biased in favour of geography.
Geographers care for placement; for them,
braids and tangles have ends at some distin-
iguished points, hence they form categories

whose objects are the placements of these
points. For them, the basic operation is a binary ‘“stacking of (a

“ Nl
o

[(T) € Rs X M5 (Rs) = {%’%} with Ry == Z({T,,: a € S}):

The Gold Standard is set by the “I'-calculus” Alexan-
 der formulas (wefi/mac). An S-component tangle 7' has

etc. See wef/reg, wef/kbh.

tangles”. They are lead to monoidal categories, braided monoidal Sz 0 4
categories, representation theory, and much or most of we call |_¢ | ¢ b S ab (U -Bw ‘ c S )
“quantum topology”. ala g 0 e c v+ % €+ 1%
Identiters believe that strand ide- o om® (e g Yy 0 ; To, Ty —> T S b+ % =4 %
ntity persists even if one crosses or ¢ ¥ E -

is being crossed. The key opera- t T t T T~ [The Gassner Representation of AB, acts on V = ?
on i stohi : R" == Z[£F, ..., t:1]" = R(v1,...,v,) by

tion is a unary stitching operation 1 n

m?, and one is lead to study meta-monoids, meta-Hopf-algebras, Oijvk = Vi + 0kt — 1)(v; — vy). Betty Jane

G'i._,j_ [£]1:=&/. Vi > Vi + 6k,j (ti -1) (V5 = Vi) // Expand  Gassner

GB = (y,) (%'Vk = .'}’k’}/," v_vhgn |7 —k| > 1) - B
YiYi+1Yi = Yi+1YiYi+1

[dentity:
IB = <0’,‘j> Tj0kl = OO ij when |{l, j, k., l}l =4
0j0i0 jx = O ooy when |{i, j, k}| = 3
Theorem. Let S = {7} be the symmetric group. Then 1B is both
PBxS = BxS [(yr=1y; whenti=j, 7(i+ 1) = (j+ 1))

n’t see topology very well).

map o; = (j—1j-2 ...
A

vB views of o7

[...

The Burau Representation of AB, acts on R"
Z[']" = R(vy,...,v,) by

OijVk = Vg + (Skj(t - 1)(Vj - V,‘).
s /: 5{_,)‘_ = I'F['i. == j, 1, 0];
Bi ,j [£1:=¢&/.Ve 2 Vp+6k,; (t-1) (vj-vi) // Expan
(bas3 = {vi, V2, V3}) // B1,2

wef/code

Burau

Braids. « (bas3 // G1,2 // Gi,3// Ga,3) = (bas3 // Ga,3 // Gu,3// Gu2) . oie
t N \ t (\ True famous

<. W el W S IS, acts on R" by permuting the v; and the t;, so the Gassner re-
joko1od ! j presentation extends to 1B, and then restricts to B, as a Z-linear
Geography: (better topology!) |co-dimensional representation. It then descends to PB, as a finite-

(captures quantum algebra!)

| - e

(and so PAB is “bigger” then B, and hence quantum algebra does-

IProof. Going left, y; — o,1(i i + 1). Going right, if i < j
Dyj1@i+1 ... j)yandif i > juse

d Werner

deserves to|

rank R-linear representation, with lengthy non-local formulas.
Geographers: Gassner is an obscure partial extension of Burau.
[dentiters: Burau is a trivial silly reduction of Gassner.

The Turbo-Gassner Representation. With the same

R and V, TG acts on V& (R" ® V) & (S?V ® V*) =

R(Vi, Vik, uitt jwy) by

TGi ,; [&.] := & /. { |
Vi 2 Vi + 8p, 5 ((ti=1) (V5= Vi) +Vij=-Vii)+ ﬂ

With Roland
van der Veen

Sk,i (Uj - Ui) U Wy,
Vi ,e = Vie+ (i -1)
(6k,j (Vi,5 - Vi,i) + (5L,i - 61,5t tj)
(Up + 8p,5 (ti -1) (uj —ui)) u; Wj) 5
Up_ = Ug + 8,5 (ti -1) (uj -u;),
Wy > W + (k5 = 6k,1) (ti*-1)w;} // Expand
bas3 = {Vn V2, V3, V1,15 V1,25 V1,35 V2,15 V2,25 V2,3, V3,1,

2 2 2
V3,25 V3,3, Uy W1, Uy Wy, Uy W3, Uz Uz W1, Uj Uy Wp, Up U W3,

Gassner motifs

Adjoint-Gassner

Uz U3 Wy, Uz U3 Wz, Up U3 W3, U% W1, U% W2, U% W3, Uz U3z Wy,

Uz Uz Wa, Up Us W3, U3 Wi, USWa, U] W3};
(bas3 // TGy, // TGy,3 // TGa,3) = (bas3 // TGy,3 // TGa,3 // TGy,5)
Like Gassner, TG is also a representation of PB,,.
I have no idea where it belongs!

True

{Vi, Vi —tvy +tvy, vi}

bas3 // B1,z // B1,3 // 32,3

{vl, vi-tvy+tvs, vl—tv1+tv2—t2v2+t2v3}
bas3 // Ba,3 // B1,3// Ba,2

{Vi, vi-tvi+tvy, vi-tvi+tvy-tP vy« tvs}
IS, acts on R" by permuting the v; so the Burau
representation extends to vB,, and restricts to B,,.
IWith this, y; maps v; B Vi1, Viel B i 1-)vii1,
and otherwise v; — vy.

My talk tomorrow, at the chord diagrams everywhere session:

More Dror: wef/talks
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Dror Bar-Natan: Talks: Columbia-191125:

v . ‘With Roland
Some Feynman Diagrams in Pure Algebra van der veen

Thanks for allowing me in Columbia U!
wepB:=http://drorbn.net/col9/
Slides w/ no handout/URL should be banned!

Abstract. I will explain how the computation of compositions
of maps of a certain natural class, from one polynomial ring into
another, naturally leads to a certain composition operation of
quadratics and to Feynman diagrams. I will also explain, with
very little detail, how this is used in the construction of some
very well-behaved poly-time computable knot polynomials.

The PBW Principle Lots of algebras are isomorphic as vector
spaces to polynomial algebras. So we want to understand arbi-
trary linear maps between polynomial algebras.

Gentle Agreement. Everything converges!

Convention. For a finite set A, let z4 = {z;}ieca and let
$a =1z} = Jiliea. O, b,a,x)" =(.B, @, &)
The Generating Series G: Hom(Q[z4]— Q[zg]) — Qllla, z51l-
Claim. L € Hom(Q[za] — Qlzg]) —;—> Qlzplll{all > £ via

$hn -
G(L) = zN;A n_/;L(ZA) = L(ezaEA a a) =L= greek'Elatin’
G OW = (P, £),_, forpeQlal
Claim. If L € Hom(Q[z4] — Q[zg]), M € Hom(Q[zp] —
Qlzc)). then G(LJM) = (G(L)lz,—a, G(M), -
Basic Examples. 1. G(id: Q[y, a, x] — Q[y, a, x]) = @W+aa+ex,

2. The standard commutative prod- my!
uct m;’ of polynomials is given by Qlzl; ® Qlzl; — Qlzlk
Hence G(m) = ” ij ”

Zi»Zj ™ Zk- my
Qlzi» zj] —— Qlzx]

m;‘{j(efizﬁéjzj') = @i+l

3. The standard co-commutative co- Al
product A;k of polynomials is given Qlz]l: — Qlz]; ® Qlzlk
by zi — zj + z. Hence G(AY) = ” AL ”
Ai_k(efiz,') — ®évi(Z/+zk). Q[Zi] _>Q[Zja Zk]

J

Heisenberg Algebras. Let H = (x,y)/[x,y] = h (with /i a
scalar), let O;: Q[x;,y;] — Hj is the “x before y” PBW order-
ing map and let hmzj be the composition

0i®0; my! o'
Qlxi, yi» xj,y;] — H; @ Hj Hy Qlxk, ykl-
Then G(hm) = e, where Ay = —hniéj+(Ei+E ) xi+@i+n,)Y.-
Proof 1. Recall the “Weyl form of the CCR” ePeéf* =
e MEeEXeY | and compute
g(hmzj) = @EXitYitE XY //@i ® O j//mj(j //(O),:1
— (Bf,-xi(Bmy,-efjxj@n,yj-//m;;j//@;l — (Bé?iXkem)’k(ijXk@myk//@;l

= @ mi&j p&itéNxe ®(m+77,')yk//©]:1 = M,

Proof 2. We compute in a faithful 3D representation p of H:
o108 00 0 001 (wep/hm)
{i: [a 0 a],9= [e 0 n],é: [a o e]};
000 00 0 0 00
(R.9-9.8 =08, R.&=2.%, 9.8 = 2.9}
{True, True, True}

A=-hni&jc+ (Ei+&5) Xk + (N1 +75) Yis
SimplifyeWith[{E = MatrixExp},

E [f( §i] E [9 771] E [)? §j] E [9 T7j] ==
(% 0] £ [ 0y 8] .5 [¢ 00, ]

True

| [=15[=]
2 i

- [=]7%
A Real DoPeGDO Example (DoPeGDO:=Docile Perturbed
Gaussian Differential Operators). Let si5, = L(y,b,a, x) sub-
jectto [a, x] = x, [b,y] = —€y, [a,b] =0, [a,y] = —y, [b, x] = €x,
and [x,y] = ea + b. Sot = ea — b is central and if e,
sls, = sh @ (t). Let CU = U(slS,), and let cm;/ be the com-
position below, where O;: Qly;, b;, a;, x;] — CU,; be the PBW
ordering map in the order ybax:

my
CU; & CU;, cu;
T@i,.f em! T@’k
Qlyi, bi,ai, xi, ¥}, bj, aj, x;1 —— Qlyi, by, ax, xi]

Claim. Let

(all brawn and no brains)

e~ i~ <Pi log (1 + en &)
A= (775 + —— b+
€

j
s )Yk + (ﬁi +Bj+

g—“.f—fﬁjg.
(ai +a;+ log(l + enjgi))ak + (T}]é’l +§j)xk
Jot
Then (Bi],’y,’+ﬁ,‘b,‘+(l,'a,‘+§,‘)€,’+7]_,'y/'+B/'bj+(Yja_,'+§jx_,'//©i’j//cm;cj — (BA//O]{,
A

and hence Q(cmij ) = eh.
Proof. We compute in a faithful 2D representation p of CU:

(9-(28).6-(5 %) a=(5 )%= (2 3)) ©BH1
{3.%-%.8=%, 8.9-9.4==-9,b6.9-9.6=-€9,
b.%-%.b=eX, X.§-9.% = b+ea)

{True, True, True, True, True}
SimplifyeWith[{E = MatrixExp},

E[n:9].E[B: B] ‘E[a; 8] .E[&: R].E[n; 9] . E[B; B] .
E[a;a].E[&5 X] = E[Y oy, a].E [B op A].E[80,.4].
£[% 0ua] ]

True
Series[A, {e, 0, 2}]
(ak (o +a5) +Yk (ni+e “ng) +

b (Bi+B5+nj&i) + Xk (€793 &1 +&5)) +
1 .
(ak N3 i - 5 b U% E-eykny (Bi+nj&i) -

e i xx &1 (By+n5 51)) € +

1 1 1 .
(-5 el Sbendel e e iyiny (B} 2puny e 203 ed) +

—ots

1
Se Ixi s (B3 +2B5n;5 §i+2n§§§)) e2+0[e]?

Note 1. If the lower half of the alphabet (a, b, @, 8) is regarded
as constants, then A = C + Q + > 1> €*P® is a docile perturbed
Gaussian relative to the upper half of the alphabet (x,y,&,n): C
is a scalar, Q is a quadratic, and deg P® < 2k + 2.

Note 2. wt(x,y,&,n5a,b,a,8;¢) =(1,1,1,1;2,0,0,2; -2).

Quadratic Casimirs. If r € g ® g is the quadratic Casimir of a
semi-simple Lie algebra g, then &, regarded by PBW as an ele-
ment of S®2 = Hom (S(g)®0 — S(g)®2), has a latin-latin domi-
nant Gaussian factor. Likewise for R-matrices.

(Baby) DoPeGDO := The category with objects finite sets'! and
mor(A — B) = {L = wexp(Q + P)} € Qlla, z8, €ll,
where: o w is a scalar.™ e Q is a “small” e-free quadratic in

ZaUzp. T3 @ Pisa“docile perturbation”: P = 3;.; €P®, where

deg P® < 2k+2.7 o Compositions: T® LM = (L|zi_,5(i M){:O.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/
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So What? If V is a representation, then V®" explodes as a func-
tion of n, while in DoPeGDO up to a fixed power of ¢, the ranks
of mor(A — B) grow polynomially as a function of |A| and |B|.

Compositions. In mor(A — B)

0= Z tj{lzj 2 Z Flj[lgj 2 Z GzJZsz,

i€A, jeB i,jEA i,jeB
and so (remember, ¢* = 1 + x + xx/2 + xxx/6 + ...)
A w B B L[)'z”"”'}c ch
E, ; P E 0 E
ANZINE E\E + E\FyG\E
CJFL G : Fz +E,F>G F>GE>
P T ; = Z E\(F2G1) Es

greek

latin

where @ E = E;(I — F2G1) ' E».

e F=F +EF,I-GFy)'El

G =G+ EIGi(I - F,G)'Es.

o w wlwzdet(l—FzGl)_l.

e P is computed as the solution of a
messy PDE or using “connected Feyn-
man diagrams” (yet we’re still in pure
algebra!). Docility is preserved.

DoPeGDO Footnotes. Each variable has a “weight”’e {0, 1, 2},
and always wtz; + wt{; = 2.

T1. Really, “weight-graded finite sets” A = Ag LI A; Ll Aj.

+2. Really, a power series in the weight-0 variables™.

3. The weight of QO must be 2, so it decomposes as Q
0>0+Q11. The coeflicients of Qs are rational numbers while
the coeflicients of Q1; may be weight-0 power series’.
Setting wte = —2, the weight of P is < 2 (so the powers of
the weight-0 variables are not constrained)>.

In the knot-theoretic case, all weight-O power series are ra-
tional functions of bounded degree in the exponentials of the
weight-0 variables.

There’s also an obvious product

mor(A; — By)Xmor(A; — By) — mor(A| LA, — BjUB)).

4.

T5.

T6.

Questions. e Are there QFT precedents for “two-step Gaussian
integration”?

e In QFT, one saves even more by considering ‘“‘one-particle-
irreducible” diagrams and “‘effective actions”. Does this mean
anything here?

e Understanding Hom(Q[z4] — Q[zg]) seems like a good cause.
Can you find other applications for the technology here?

QU = Uy(sl5,) = A(y,b,a, x)[[h]] with [a, x] = x, [b,y] = —ey, [a,b] =0,
[a,y] = =y, [b, x] = €x, and xy—qyx = (1-AB)/h, where g = e, A = e,
and B = e. Also A(y,b,a,x) = (v + B1y2, b + by, a; + az, x; + A1 x2),
S(,b,a,x) = (—=B~'y,—=b,—a,—A"'x), and R = Y W/**y/b/ ® a-ka/j![k]q 1.
Theorem. Everything of value regrading U = CU and/or its

quantization U = QU is DoPeGDO:

- ™ ™
/ cap
N J \
ReQU ® QU C*'eQU m:UU—-U A:U-UQU
s 1 N6 N O N ™
N\ J - U J )
S: U—-U tr: U—U/wx=xw DeCU®? JeCU ® CU

also Cartan’s 6, the Dequantizator, and more, and all of their
compositions.

Solvable Approximation. In 4D Metrized Lie Algebras
sl,, half is enough! Indeed Ivabl
solvable
sy ®a,; = DN, b,6). Now algebras
define sl;, = DN, b,ed).

Schematically, thisis [, N] = N,
[, N e, and [N,1\]
I\ + e\. The same process works
for all semi-simple Lie algebras,

the Abelian
algebra

algebras isomorphic

Full DoPeGDO. Compute com- 1 e
positions in two phases:

e A 1-1 phase over the ring of
power series in the weight-0 vari-
ables, in which the weight-2 vari-
ables are spectators.

e A (slightly modified) 2-0 phase
over Q, in which the weight-1
variables are spectators.

Analog. Solve 0
Ax =a, Bx)y=»>b

and at ! = 0 always yields a o sh = sh + 1D
solvable Lie algebra.
EeEENSEE ] () =k et - N
~ bh 1?11 ~ o, }1 b))~ 8: N - @
Conclusion. There are lots of poly-time-computable well-

behaved near-Alexander knot invariants: e They extend to tan-
gles with appropriate multiplicative behaviour. e They have ca-
bling and strand reversal formulas. we/akt
The invariant for sl / (€2 0) (prior art: wef/Ov) attains
2,883 distinct values on the 2,978 prime knots with < 12 cross-
ings. HOMFLY-PT and Khovanov homology together attain
only 2,786 distinct values.

knot ny Alexander’s w® genus / ribbon | knot ny Alexander’s w® genus / ribbon | knot ny Alexander’s w® genus / ribbon
diag D" unknotting # / diag (M unknotting # / diag D" unknotting # /
) ) )
oy 1 0/v 30 T-1 1/%X 4¢ 3-T 1/%X
© 0 0/ @ T 1/X @ 0 1/
0 3731272 +26T-38 T4 -373 1572 +74T 110
@ 59 T?-T+1 2/ X @ 55 2T-3 1/X% @ 6{ 5-2T 1/v
2T3+3T 2/% 5T-4 1/% T-4 1/X%
ST7—2070+5575 — 1207 +21773 —33872 +4507 -510 1074 +12073 —48772 + 10547 — 1362 1474~ 1673 ~29372 +10987 — 1598
65 T?+3T-3 2/X 64 T?-3T+5 2/X 7 T3-T*+T—1 3/X
@ T3 —4T?>+4T -4 1/% @ 0 1/ @ 373 +5T3+6T 3/X%
3782177 +49TC + 1575 — 43374 + 154373 ~343172 +5482T — 6410 4783377 4121702037~ 1 117*+ 149973 —421072 +7186T —8510 7T 28710 47779 — 16878 +32277 —5607° +89175 — 13107 +
177773 ~223872 +2604T —2772

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/
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Dror Bar-Natan: Talks: Macquarie-191016:

wef:=http://drorbn.net/mac19/ El [=]

Strand Doubling and Reversal.

though they are yet to be explored and utilized.

Algebraic Knot Theory EFE wla s | b c s
: : . . . ] b | (oa—ala—vT)/u Ty — DTev/p Ty = DTO/p

Abstract. This will be a very “light” talk: I will explain why g Z = c (Te — Vv/u (@—0uT,—vT)u  (Te—1)0/u
about 13 years ago, in order to have a say on some problems in S ¢ ¢ E
knot theory, I’ve set out to find tangle invariants with some nice dS"lTﬁTJ '
compositional properties. In other talks in Sydney (wep/talks) I | aw/ou| a s ] Wh‘;“re o aS{SI‘T’“S to ey @ € (S 5 L‘i“;’“ “(‘0“0’

. . . . . a 1/ 0/ mial o, in {fy}pes subject to o (7,, N,) = (@ —
have explained / will explain how such invariants were found - e ‘ —bla @E—¢0ja ) b — £, o(Ty U T>) = o(Ty) U o(Ts), and

ofmi® = (o \{a, b)) U (¢ = Tuop)l;, 1, -

o

(v-)T: les.
v-)Tangles ’ U
b

[Strand
doubling:

b -~ Strand
c .~ reversal:

a
AYL a a

Genus. Every knot is the boundary of an orie-
ntable “Seifert Surface” (wef3/SS), and the least
of their genera is the “genus” of the knot.

Claim. The knots of genus < 2 are precisely the
images of 4-component tangles via :

T SaaWS g\

a (meta-associativity: (w, A = (ag)) © € 7: T(@1D, AL T (@, 22T := Flanwe?, Al+321; 7 7 ©
— ab ab ffpxc — pobe ffax ’ b, b wc [Fle_, A1] := Module[(a, B, ¥, 6, 0, &, ¢, ¥, B, u},
1 4 mg n, //my =m //m‘ ) (a),/l — Z aabtahb) I —_ —_ n,/E a5 23
E 3 T “stitching” (tangles are generated ! %16 8l|= | P mat Bigppst O | 7 (t|h).=0;
s g by 7 i S R 4 < | = [0 m Gumt 00| /. Y
y >Z and ) [Feollect(rle, 1] := riSimplify[«], 6 ¥ = O, A On, 2 2

(8//mizs1 // My3,1) == (8 // mp3,2 // mMiz,1)

'Vo’s Thesis [Vo]. A proof of the Fox-Milnor theorem for
ribbon knots using this technology (and more).
Implementation key idea:

wefl/AlexDemo

Collect[, h_, Collect[#, t_, Factor] &11; |

5 50
211 := Module[(s, M}, yrasan snagnn

p+ay/u E+ye/u
/. {T.>T., Tp-»T.) // TCollect];

lFormat [T (o, rlw=1-ma, (e, 1}.( )-ne, 1]

S = Unionecases[T[v, A1,

M = Outer|[Factor|on,.:,, 1] &, s, s] |
M = Prepend[M, t. & /@ S] // Transpose; L 11-T, 9
M = Prepend[M, Prepend[h.& /@ S, &]]; Bp, ., := r[l' {tas t‘\)’(o | )‘{h‘“ h"}] 4
M // MatrixForm] ; b = RPap /. Ta1/Ta;
Meta-Associativity Q11 G12 %13 61 Runs,
a1 Oz Q3 6
e-ro, {t, t2, ta, ts}. o |-h1, h2, b3, Be}];
¥ 31 Q32 OA33 3
¢1 P2 @3 E

,,,,,, R3
{Rms; Rmgy Rp3y // Migs1 // mps,2 // m36,3,

... divide and conquer!

<o

a ribbon singularity  a clasp singularity

A Bit about Ribbon Knots. A “ribbon knot” is a knot that can be
presented as the boundary of a disk that has “ribbon singularities”,
but no “clasp singularities”. A “slice knot” is a knot in S> = dB*
which is the boundary of a non-singular disk in B*. Every ribbon
knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon.

I[Fox-Milnor. The Alexander polynomial of a ribbon knot is always
of the form A(¢) = f(©)f(1/1). (also for slice)

Rpg; Rmyg RMzs // Mugas1 // Mps,2 // M3es3}

\4///

1 hy h, hs 1 hy h
T T

t 2 0 0 t =2 0
T2 T2

= 4T -1+T

ty aaily: At 0 ’ ty —Lb T 1
T2 T3 T2 T3

ts “1+T3  -1eTy g ts - ~1+T3 -1+T3
T2 T3 T2 T3

z = Rm;p,; Rmpy7 Rmgs Rmy, 11 RPig,5 RP6,13 RP14,9 RP10,157

Dol[z = z // mx.1, {k, 2, 16}];
- =] 1
1,4 _ 8
11-T—3+T—2-T—-8T1+4T§-T§ hy e f—2
1 1 1 —
ty 1

Fact. I is better viewed as an invariant of

Theorem. K is ribbon iff it is k7" for a tangle 7 for which 77 is
the untangle U.

N MU Lol Ko~ i Gompf, Schar-
R e R a@n‘“ Tho-
[ T (R K R ’ mpson [GST]
UeT, 1 €A, [ﬁ'
7_ / z ﬂ z With‘RZ: g :H‘\ ﬂ
RN T KT § LI 24 W T
ribbon K € 77 z(K) e RC A, X
! |%

Faster is better, leaner is meaner!

a certain class of 2D knotted objects in R* ¥
[BND, BN].

Fact. I is the “O-loop” part of an inva-
riant that generalizes to “n-loops” (1D tangles
only, see further talks and future publications
with van der Veen).

Speculation. Stepping stones to categorifica-
tion?

M. Polyak & T. Ohts
@ Heian Shrine, Kyoto

Ask me about geography vs. identity!

[BN] D. Bar-Natan, Balloons and Hoops and their Universal References.

The Gold Standard is set by the “T-calculus” Alexan-

7 der formulas [BNS, BN]. An S-component tangle 7" has

[(T) € Rs X Mgxs(Rs) = {%%} with Rs = Z({T,: a € S)):

wla)z‘Sl S2

TiuUuT, > S Aq 0

So 0 A

(A-Puw | ¢ _ 569\

- c 7+l"TB €+ 15
TaTp = T S $+15 E+i5

[For long knots, w is Alexander, and that’s the fastest
lAlexander algorithm I know!  Dunfield: 1000-crossing fast.

Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, o-
eB/KBH, arXiv:1308.1721.

[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Ob-
jects I: w-Knots and the Alexander Polynomial, Alg. and Geom. Top. 16-2
(2016) 1063—-1133, arXiv:1405.1956, weB/WKOI.

[BNS] D.Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products,
and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10
(2013), arXiv:1302.5689.

[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and
Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures,
Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.

[Vo] H. Vo, Alexander Invariants of Tangles via Expansions, University of To-
ronto Ph.D. thesis, wef3/Vo.

A

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org Tre ‘%nczf»

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/
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Proof of the Tangle Characterization of Ribbon Knots
AN 1L e 1‘%/"542'7
EE'EE“QEEEE%'EHES"”""“I
e e R e A n=x

Theorem. A knot K is ribbon iff there exists a tangle T whose 7 closure is the untangle and whose
K closure is K.

Proof. The backward <= implication is easy:

/—\ (_\ Saurgr ot fop

e R - - B
Sl O

\i

For the forward implication, follow the following 5 steps:

jmnge

Step I: In-situ cosmetics. ,
At end: D is a tree of chord-and-arc polygons. 3

Sioe

Step 2: Near-situ cosmetics.
At end: D is tree-band-sum of n unknotted disks.

Step 3: Slides. 3
At end: D is a linear-band-sum of n unknotted disks.

25 0=y
Step 4: Exposure!

The green domain is contractible - so it can be shrank,
moved at will (with the blue membrane following along),
and expanded back again.

At end: D has (n-1) exposed bridges which when turned,
make D a union of n unknotted disks.

Step 5: Pulling bottom handles
avoiding the obstacles.
At end: Theorem is proven.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/
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Dror Bar-Natan: Talks: UCLA-191101:

Everything around s/, is DoPeGDO. So what?

Thanks for inviting me to UCLA!

[w] Continues Rozansky [Rol, ’
Ro2, Ro3] and Overbay [Ov], §
joint with van der Veen [BV]. i&F

wef:=http://drorbn.net/l1al9/

o
More at wef3/talks [=]

Abstract. I’ll explain what “everything around” means: classical
and quantum m, A, S, tr, R, C, and 6, as well as P, @, J, D,
and more, and all of their compositions. What DoPeGDO means:
the category of Docile Perturbed Gaussian Differential Operators.

| Knot theorists should rejoice because all this leads to very po-
. werful and well-behaved poly-time-computable knot invariants.
| Quantum algebraists should rejoice because it’s a realistic play-
| ground for testing complicated equations and theories.

i ) L .
And WhE.lt sl5, means: a solvable approximation of the semi- [Gonventions. 1. For a set A, let 24 = (z)ea and let
simple Lie algebra s,. L = {2} = {i}iea.™" 2. Everything converges!
- N Less Abstr i i i
ess Abstract DoPeGDO := The category with objects finite
™ sets™? and mor(A — B):
5 {F = wexp(Q + P)} € Qll{a, 25, €]
m: U®U—-U Where: o w is a scalar.™ e Q is a “small” e-free
(9 R 4D Metrized Lie Algebras quadratic in 4 U z3.™ e P is a “docile perturba-
tion”: P = Y5, €P®, where deg P® < 2k+2.7
S?lv‘t’)ble e Compositions:®

=/ ) U J K F F F F
tr: U=U/wx=xw  ReQU ® QU C*'eQU /G =G°F = (g lei—a )z,-=0_ ( -0, G )4-:0'
Y [ NV ( Cartans . Cool! (V*)®% @ V® explodes; the ranks of qua-
the dratics and bounded-degree polynomials grow
Hz?dui?:éamr’ loebras . slowly!™”  Representation theory is over-rated!
. S J ageoras Boro s Cool! How often do you see a computational to-

(DECU®3 JeCU ® CU to AZZ+ = Alz + 1D y p

olbox so successful?

Our Algebras. Let si5, L(y, b, a, x) subject to [a, x] = x,
[b,y] = —ey, [a,b] = 0, [a,y] = -y, [b,x] = €x, and [x,y] =
€a +b. So t := ea — b is central and if Je~!, 55, /(t) = sl,.

U is either CU U(sIE )R] or QU Un(sEs,)
Ay, b, a, x)[h] with [a, x] = x, [b,y] = —€y, [a,b] = 0, [a,y] =
—y, [b,x] = ex, and xy — gyx = (1 — AB)/h, where ¢ = &,
A =ce" and B=e". SetalsoT = A™'B = ¢™.

[The Quantum Leap. Also decree that in QU,

Ay, b,a,x) = (y1 + B1y2, b1 + by, a1 + az, x1 + A1xz),

wef/oa

Compositions (1). In mor(A— B), 0= Y E

i€A, jeB

1 1
ii6izi+ 3 X Filidi+ 3 2. Gijuiz)
i,jeA i,jeB

composition

S(y,b,a,x) = (-B"'y,~b,—a,-A""x), Where e E = E(I - F2G1)711E2‘T
and R = Y, hi*kykbi @ alxk/ jik],. oo =F B =GiFy) T Ey
o G =G+ E2G1(1 - F,G) ' E>.
Mid-Talk Debts. ¢ What is this good for in quantum algebra? |g°7, = (, Lws det(I — F2Gy)7 L.
e In knot theory? ‘ . . " e P is computed using “connected Feyn-
e How does the “inclusion” D: Hom(U®* — U®") ~ inan diagrams” or as the solution of a messy

IPDE (yet we’re still in algebra!).

IDoPeGDO Footnotes. {1. Each variable has a “weight”e {0, 1,2}, and
always wtz; + wt; = 2.
. Really, “weight-graded finite sets” A = Ag LI A; U A;.

2

® Proofs that everything around s/ really is DoPeGDO.
e Relations with prior art.
Theorem ([BG], conjectured [MM], [5s _ : = Morton
elucidated [Rol]).  Let Ju(K) be J88 Ol MR Garoutaidis
representation of sl,. Writing

' —q"")Ja(K)

DoPeGDO work?
e The rest of the “compositions” story.
Melvin,
the coloured Jones polynomial of K, in the d-dimensional
g2 — gdi2

= > a(Kdin",

Jj,m=0

g=e"
“below diagonal” coeflicients vanish, a;,(K) =
0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:
Yo Gmm(KY™) - w(K)(eM) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

' -q* [1 L3 l)kpk(m(qd)}
k=1

Ja(K)(q) =

3.
4

Really, a power series in the weight-0 variables™.

. The weight of Q must be 2, so it decomposes as Q = Oz + Q11. The
coefficients of Q,( are rational numbers while the coefficients of Qy;
may be weight-0 power series™.

. Setting wte = -2, the weight of P is < 2 (so the powers of the
weight-0 variables are not constrained™).

. There’s also an obvious product

mor(A; — Bj) X mor(A; — B;) = mor(A; LI A, — By U By).

. That is, if the weight-0 variables are ignored. Otherwise more care
is needed yet the conclusion remains.

.Hom(U®* — U®) ~> mor({n;, Bi, 71.i, Eties. = (Vi bis 11,0, Xilies ),
where wt(n;, &, yi, xi) = 1 and wt(B;, 7.a;; bi, 11, a;) = (2,2,0;0,0,2).

. For tangle invariants the wt-O power series are always rational fu-

nctions in the exponentials of the wt-0 variables (for knots: just one

variable), with degrees bounded linearly by the crossing number.

—F —F —F

(g - ¢ Hw(K)(g)) w*(K)(gqh)
Video and more: http://www.math.to

ronto.edu/~drorbn/Talks/CRM-1907,

http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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D: Hom(U®* — U®) - Qllns, Bs, as. &, ys. bs, as, xs 1. The
PBW theorem for CU (always in the ybax order), or its quantum
analog for QU, say that if U = CU or QU then U®S is isomor-
phic as a vector space to Q[y;, b;, a;, xilies [7]; so it is enough to
understand Hom(Q[z4] — Q[zg]) for finite sets A and B.

Claim. ' € Hom(Q[za] — Qlz5]) ? Qlzplll{all > F via

D(F) = Z & SR (@) =

nENA

DNINP) = (Pl 7)o forp€Qlzal.
Claim. Assuming convergence, if F e Hom(Q[z4] — QIzz]),
G € Hom(Q[zg] — Qlzc]), ¥ = D(F), and G = D(G), then

DF)G) = (Fl:-2,6), -
And so the title of the talk finally makes sense!
Example. D(id: U — U) = eW*Pbraa+éx,
Example. Let cAl: CUPY — C U®U# be the standard co-
product, given by cAj.k(y,-, bi,ai,x;)) = OVj+ye, bj+b,aj+ap, xj+
xr). Then
D(CA;/() — CA;_k(eni)'i‘l'ﬁfbi‘l'dfai‘hfixf)

= @Oty +Bibj+b+aiajra+&i(xj+xg)

( DacA gaza) = 7—',

Example. The standard commutati- mf
ve product m;’ of polynomials is gi- Qlzl; ® Qlz]; — Qlzlk

ven by z;,z; — zx. Hence D(mj{’) = | il ”
m;;j(efili+§j1j) — Wt Qlzi» 2j] — Qlz]

A real DoPeGDO Example. Let cm;'cj: CU;®CU; - CUy be
“classical multiplication” for sl5, , and let O;: Qlyi, bi, ai, xi] —
CU, be the PBW ordering map.

i
"y

CUy

fo

Qlyx, b, ax, xk]

(all brawn and no brains)

log (1 + en&)
Lo,

CU;® CUj
T@i..i
Qli, bis ai, xi, yj, bj, aj, x;]
Claim. Let

e i—€Bip .
ST

+
1 +en k

A=(1’]i+

e—wj—Eﬁjéji

(CU,' taj;+ lOg(l + ET]jé"l')) ay + (TE?]J{:, + fj) Xk

Then @Yithibitaiart&ixitn;y+Bibj+a ai+éix; j0), j//cm;;j = ¢"//Oy, and
hence D(cm)) = * and em!! is DoPeGDO.
Proof. We compute in a faithful 2D representation z — Z of CU:
(wep/cm)
HL[& ] := Style[&, Background -» If[TrueQes, [, [1]1;
N 0 0 ~ 0 o a 10 s 01 .
{7=(06)8=(o L) 3=(g0)%=(00)bs
HL/@{a X-%.4=%, 4.9-9.8a=-9,b.9-9.b=-€9,
b.X-%.b=€X, X.§-9.8=b+ead}
{True, True, True, True, True}
HLesimplifyeWith[{E = MatrixExp},
E [T]i 9] E [131 B] E [ai é] E [§1 )’Z] E [T]j 9] E [BJ B] .
E[a;8].E[&5R] =E[Y 0y, A] .E[b oy ] .E[30,.4].
E[& 0x.4]]

True
Series[A, {€, 0, 1}]
(ak (3 +05) + Yk (Ni+e *ing) +
b (Bi+B5+n5&i) +Xk (99 &1 +&5)) +

1 .
aknj i - Ebkf@fil*e’alw ny (Bi+njé&i) -

eI xk & (By+n3&i) | e+0[el?

(Shame, but this technique fails for QU).

Claim. In QU, R is DoPeGDO.
Proof. Recall that with ¢ = &€,

R = nkp @ alxk/ jilk],! = O (™ ey ).

N d ™ £ o
ow expand ;' * in powers of € using:
Faddeev’s Formula (In as much as we can tell, first appea-
red without proof in Faddeev [Fa], rediscovered and proven

in Quesne [Qu], and again with easier proof, in Zagier [Za]).
q"-1

With [n]q _1 . with [n],! = [1]4[2],- - [n], and with e} =
D0 [n]q!, we have
1 — g)kxk 1 —g)%x2
log e} = ( q)k ¢ q);c
& k(1 —q%) 2(1 —g%)
(Bq KB

Proof. We have that 7 = pre —i— (“the g-derivative of e
= (l + (1 — g)x)ey, and
= log(1 + (1 = g)x) + log e.

itself”’), and hence e
log eq
= Y1 axxk and comparing powers of x, we get
d-g*
k(1-¢5)"
Compositions (2). Recall that with all indices i running in some
set B,
)G = (FlantyG), , = e>*%(FO)|
=0 £i=0
so in general we wish to understand
Ly p.

[F: &l :=e? Zijes Fij05% 5 and (F:&)p = [F: ElBlyy—0>
where & is a docile perturbed Gaussian. The following lemma
allows us to restrict to the case where & has no B-B quadratic
part:

Lemma 1. With convergences left to the reader,

<F: &z Zijen Giﬂfzf'> = det(1 - GF)™">(F(1 - GF)™": S)B .
B

Writing log e,

q"ak =—(1- q)k/k—i- ag, or a; = m]

(1) Strictly speaking,
true only when

zi=6i=0°  Bn@UCO) =0.

The next lemma dispatches the case where & has a B-linear part:
Lemma 2. (F: &eXiesi@) = @3 ijes Fivivj <F: SIZB—>ZB+FyB>
Finally, we deal with the docile perturbation case:

Lemma 3. With an extra variable A, Z, := log[AF : e satisfies
and is determined by the following PDE /IVP:

Zo=P and 9\Z = Z Fij(0:,0:, 20 + (0,209, Z0))..
l]EB

] G2 e -
[ [
Je Je

Lemma 1 Lemma 2

B

eAF/2

{ part glue
Z, =

Lonnec,ted

diagrams
Lemma 3

Complexity to ek, for an n-xing width w knot (by [LT],

w € O(yn)), is Om*w**?logn) = Om**3 logn) integer opera-
tions.

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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A Partial To Do List. o Understand the braid group representations that arise.

e Understand tr and links. e Relate with finite-type (Vassiliev) invariants.

e Implement @, J. Determine the appropriate wt-0 ground ring. e Find a topological interpretation/foundation. The Garoufalidis

e Implement the “dequantizators”. - Rozansky “loop expansion” [GR]?

e Understand c.ienf)minators and get rid of them. e Figure out the action of the Cartan automorphism.

° glllp lerglent z1pping at(;he ll(zg_'lfvg ient e Understand “the subspace of classical knots / tangles”.

e Clean the program and make it efficient. . . . .

e Run it for I2111 fmall knots and links, at k = 3, 4. ° Plsprove the r1bb(.)n—s11ce conjecture!

e Understand the centre and figure out how to read the output. * Figure out thi & ction of the-We.yl giroup.

e Is the “+” really necessary in si5 7 Why? e Useto stud?/ Severa quantlza.tlon ) ) ]

e Extend to s/ and beyond. e Do everything at the “arrow diagram” level of finite-type inva-

e Describe a genus bound and a Seifert formula. riants of (rotational) virtual tangles.

e Obtain “Gauss-Gassner formulas” (wep/NCSU). e Find “internal” proofs of consistency.

e Relate with the representation theory dogma, with Melvin-  What else can you do with the “solvable approximations™?
Morton-Rozansky and with Rozansky-Overbay. o And with the “Gaussian compositions” technology?

Warning. Some implementation details match earlier versions of ~{t7> b%> ¥, a% x*, 2} = {z, B, 1, @, &, £};
{t*, B*s 0", a*, §, 8} = {t, b, y, a, x, 2};

the theory.
; 3 (u_i )™ 2= (u*)q;
The Zipping Theorem. If Phasa  ¢* H}l Lol |
finite {-degree and g is the inverse j ¥ T T
matrix of 1 — g: (6 — qi)qj =5 P n T, j I e ¢ o Uppertolowerand lowerto Upper:
TN J’ 1k k> B S o A
then s | ex |
<P(Z' é,]')(Bcﬂ]"z;+yj{j+q§.z,-4’j> u2l = {B’i’:' 2> @ PRYPi P iy @ PBYD LI
v TP > @P B, A o P YN, P s e’”“};
i~k : . -
= |glecTT e <P (67{'((1]( + Y1), ¢ + n’q?)). 12U = {e Pithr o BN @f, @b Pre: 5 BT/ () @,
1 ec_. t; +d_. ooy Tg/ﬂ ed, e+ t+d_. . TC/A‘) ed’
i T :
The “Speedy” Engine Jengi e Tt oy AT o, o S oy AT o,
U')SB englne eZ eExpand@S};

Internal Utilities

Canonical Form:
CCF[& ] := Derivatives in the presence of exponentiated variables:
PPccr @ExpandDenominatore
ExpandNumerator @PProgether @TOgether [PPey, |

Expand([&] //. e & »e ™ /. & e FI]]; Do[f ] :=Opf-nyBOsf; Dp; [f ] :=0bf-nyBidsf;

CF[& List] := CF /@ &; De[f ] :=0cf +ATOrf; Dy; [f.] :=0¢;f+0Ti0nf;
CF[sd_SeriesData] := MapAt[CF, sd, 3]; Do[f_] := Oaf +¥ AOaf; Da; [f_] i= 0 f +¥ HAida;f3
CF[&.] := PPcr@Module[ D, [f 1 :=0uf5 Dy e [f 1 :=F; Dylf ] :=F;
te s tEEslay 7 (|1 el g el & o=l D{v_,n_tnteger} [f_1 := Dy [Dgv,n-13 [F115
a1, B2 2,361 B, 5 &5 £3)5 D{c_tist,ts__} [f_] :=Dpis) [DLIFIT;

Total [CoefficientRules [Expand[&], vs] /.
(ps_ -»c_) = CCF[c] (Times @@ vs"®)]
1 Finite Zips:
CF[& E] :=CF /@ &;
CF[Es, [&s___ 1] :=CF/@E[&s];
The Kronecker & collect[sd_lieriesData, &2 8=
MapA d 3
K& /: Ké; ,; :=If[i===7,1,0]; apAt[collect[#, &1 &, sd, 31;
. .. . . collect[& , & 1 := PPcorlect@Collect[s, £1;
Equality, multiplication, and degree-adjustment of Zip, [P_] :=P;
— b 3
perturbed Gaussians; E[L, Q, P] stands for e-*¢ P: Zip,. [Ps_List] :=Zip, /@Ps;
E/:E[L1 ,Q1 ,P1 ]=E[L2 ,Q2 ,P2 ] := -
CF[L1 == L2] ACF[Q1 == Q2] A CF[Normal[P1 - P2] == 0] ;
E/:E[L1_,Q1_,Pl ]xE[L2_,Q2 ,P2 ] :=
E[L1+L2, Q1+Q2, P1%P2];
E[L_,Q ,P lg :=E[L, Q, Series[NormaleP, {e, 0, $k}11;

2ipie oy [P_1 i= PPz
(collect[P // Zip(sy, &1 /+ f_. & o (D(er,aq1[F1)) /.
50 /. ((&/.{b>B, t>T, a-» A}) _,1)]

Zip and Bind QZip implements the “Q-level zips” on E(L, Q, P) = -2 P(€).
Variables and their duals: Such zips regard the L variables as scalars.

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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QZipy 1ist@E[L_, Q_, P_] :=
PPgzip@Module[ {&, z, zs, ¢, ys, ns, qt, zrule, Zrule, out},
zs = Table[Z&*, {&, &5}1;
c =CF[Q /. Alternativesee (s |Jzs) » 0] ;
ys = CF@Table[d, (Q /. Alternatives @@ zs - 0) ,
{8, &5}
ns = CF@Table[d, (Q /. Alternatives ee ¢s » @), {z, zs}];
gt = CFeInversee@Table [KS, o - 9,,-0, {&, &5}, {z, 25}];
zrule = Thread[zs » CF[qt. (zs+ys)1];
Zrule = Thread[Zs » &5 +ns.qt];
CF /@ E[L, c +ns.qt.ys,
Det[qt] Zips [P /. (zruleJZrule)]] ]1;

LZip implements the “L-level zips” on E(L, Q, P) = Pe"*C. Such zips
regard all of Pe? as a single”P”. Here the z’s are b and a and the
{sare Banda.

LZip_z:’s_List@]E[L_) Q_) P_] =
PP zip@Module[ (g, z, zs, Zs, C, ys, s, 1t, zrule,
Zrule, Zrule, Q1, EEQ, EQ},
zs = Table[Z*, {&, &5}];
Zs=25/.{b>B,t>T, a- A};
c=L/.Alternativesee ({s(Jzs) -0 /.
Alternatives @@ Zs - 1;
ys = Table[d: (L /. Alternatives @@ zs » 0), {&, £5}];
ns = Table[d, (L /. Alternatives ee s » 0), {z, zs}];
1t = Inverse@Table[KS, -~ - 8,,-L, {&, &5}, {z, z5}];
zrule = Thread[zs -» 1t. (zs +ys) ];
Zrule = Join[zrule,
zrule /.
r Rule:» ((U=rf1] /. {b>B, t>T, a-» A}) »
(U/.U21/.r //.12U))1;
Zrule = Thread[{s » &5 +ns.1t];
Q1 =Q /. (Zrule{ Zrule) ;
EEQ[ps___1] :=
EEQ[ps] =
PP ggor@ (CF [e_Ql Drhread[ {zs, {ps}}] [te] ] /.
{Alternatives @@ zs » @, Alternatives @@ Zs -» 1}) 8
CF@E[c +ns.1lt.ys,
Q1 /. {Alternatives @@ zs » @, Alternatives ee Zs -» 1},
Det[1t]
(Zips[(EQe@zs) (P /. (ZruleJgrule))] /.
Derivative[ps  J[EQ][___] = EEQ[ps] /.
_EQ->1) 1];

Bi[L_sR_] :=LR;
B{is_}[L_E, R_E] := PPg@Module[{n},
Times[
L/.Table[(v:b |B|t|T|a|X]|y)i= Vieis
{i, {is}}1,
R/.Table[(v:B|T|a|RA|E[nN)i-> Viei, {1, {i5}}]
1 // LZipjoineeTable[(fneistneisaneils {is{is}}] 7/
QZiP3oineetable[ (£ne1-vrei)s {1 {is}}] |3

Bis_ [L_, R_] :=B(is}[L, R];

E morphisms with domain and range.

Bis rist [Eq1 »r1 [L1_, Q1_, P1_1, Eaz »r2 [L2_, Q2_, P2_]] :=
E (d1complement [d2,is] )~ (r2UComplement [r1,is]) @@
Bis[E[L1, Q1, P1], E[L2, Q2, P2]];
Ed1 sz [L1_, Q1_, P1_] // Eaz 5r2 [L2_, Q2_, P2_]
Bringz [Edisr1 [L1, @1, P1], Ea2sr2[L2, @2, P2]];
Egz »r2 [L1_, Q1 _, P1_] =Ea 4r2 [L2_, Q2_, P2_] ":=
(d1 ==d2) A (r1=r2) A (E[L1, Q1, P1] = E[L2, Q2, P2]);
Eq1 »r1 [L1_, Q1_, P1_]1Eg ,r2 [L2_, Q2_, P2_] ":=
E (d1yd2)»(r2ur2) @@ (E[L1, Q1, P1] xE[L2, Q2, P2]);
Egr [L_, Q5 P_lgr :=Eaq @REI[L, Q, Plgs
E_[&__1[1_1:={&}011;
E[A]
]Edr_ [4] :=
CFeModule[{L, A0 = Limit[4, € » @]},
Eg[L=40 /. (n]y|&|X)_-»0,0-L, e""“’]sk /. 12U]

Exponentials as needed.
Task. Define Exp,,; ([Pl to compute @®") to €Xin the using the m; ;,;
multiplication, where P is an e-dependent near-docile element,
giving the answer in E-form.
Methodology. If Py := Pe—g and ! ") = O(e*™ F(A)), then
F(A=0)=1and we have:
(D(e"PO(PO F(A) +6AF)) = O(aAeAPO F(/\)) = .
8,0(e*"0 F(A)) = 6,62 9P = 2 O O(P) = O(e*™0 F(A)) O(P)
This is a linear ODE for F. Setting inductively Fy = Fj_; + € @ we find
that Fy = 1 and solve for ¢.
(* Bug: The first line is valid only if O (e")==e®®o). x)
Expy ,i ,e[P_1 := Module[{LQ = NormaleP /. € -» 0},
E[LQ/. (x|y)i=»0, LQ/. (b]a|t);-»0,1]];
EXp, ,i ,» [P_] := Block[{$k = k},
Module[(Pe, A, ¢, ¢s, F, j, rhs, eqn, pows, ato, ata},
PO = NormaleP /. € -» 0;
F = NormalelLast@Exp,, i .-1[1P];
While [
rhs =
mi,jai[
E.(i}[AP0 /. (x|y): >0, AP0 /. (b]a|t); >0,
Flr soi,i@E (. (1} [O, 0, Plk] 7/ Last // Normal;
eqn = CF[ (8,F) + POF - rhs];
eqn =!=0, (*dox)
pows = First /@ CoefficientRules[eqn, {yi, bi, ai, Xi}1;
F += Sum[e” ojs [1] Times @@ {y:, b, ai, X:}7°,
(ds, pows}];
rhs =
mi,j-»i[
E.(i}[AP0 /. (x|y): >0, AP0 /. (b]a|t); >0,
Flk S0i.j@E (1} [0, @, P];] // Last // Normalj;
eqn = CF[ (8,F) + POF - rhs];
¢s = Table[pjs [A], {Js, pows}];
ato = Table[¢;s[@] = @, {Js, pows}];
atA = (#:=20) &/@
(pows /. CoefficientRules[eqn, {yi, bi, ai, Xi}1);
F=F /. DSolve[Andee (at@|JatA), ¢s, A][1]
1s
E.(i}[PO /. (X|y)i>@, PO /. (b|a]|t); -0,
F+0[e]™ /. 2>1]] ]

“Define” Code

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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Define[lhs =rhs, ...] defines the lhs to be rhs, except that rhs is
computed only once for each value of $k. Fancy Mathematica not

for the faint of heart. Most readers should ignore.
SetAttributes [Define, HoldAll];
Define[def , defs__1] (Define[def]; Define[defs];);

Define[op_is =6&_] :=

Module[{SD, ii, jj, kk, isp, nis, nisp, sis},
Block[{i, J, k},
ReleaseHold [Hold |
SD [OPnisp,$k_Integers PPBoot@Block [{i, j, K}, 0pisp,sk = &3
OPhnis,$k] 15

SD[0pisps OP{is},sk]5 SD[OPsis__s OP(sis}] 3
] /. {SD - SetDelayed,
isp> {is} /. {i»i_,j-»>3j_,k->k_},
nis » {is} /. {i»1ii, j-» jj, k- kk},
nisp » {is} /. {i-»ii_, j-»jj_, k> kk_}

1]

Define[aS; = (aoi,2 Ry,1) // P1,2,
aS; = E{i){i} [-a1 @i, -Xi FAi i,
1+If[$k =0, 0, (aS(i},sk1)sk[3] -
((aSqi},e) sk /7 @Si /7 (3S(a},sk-1) k) [31]] ]
Define[bsi =boi,iRi,2 // @Sy // P12,
bS; = boi,1Ri,2 // @S, // P12,

aliLj,k = (Ra,jRa,k) // bmg 5,3 // P3 s,
bAiLj,k = (Ry,1Rk,2) // amy 2,3 // Pi,s]

AT

a4 4 b
. i ~ J
The Drinfel’d double: p—= l S l 4+
b k a
Define |
dm; 5,k =

((SYi-.a,4,1,1 // abis1,2 // abys,3 // gs)

wef/objects

The Objects
Symmetric Algebra Objects

SMi_,j ok 3=

E{i,5}>{r} [Dr (Bi + Bj) + tr (Ti+T5) +ak (@i +aj) +
Ye (i +Nn5) +Xe (§i+&5) 13

SAi_sj_k_

E{i}s{5,r} [Bi (bj +br) + Ti (tj +te) +ai (aj +ak) +
ni (Vi +Ye) +&i (X5 +Xe) 15

$Si 1= E(i}s{i}[-Bibi-titi-aiai-niyi - §i Xil;

sei 1= Eq,({}[0];

sni_ = E{i}, [0]5

SOi 55 = E(i}s{j}[Bibj+ Titj +ai a5 + ni Y5 + §i X515

SYi oj k ,l,m 2= Efi}sfj,r,t,m} [Bibe + Ti te + @z @ + 0y Y5 + &i Xnl 5

The CU Definitions

e Y%i-€B;i nj

Log[1 i &3
CA=[,,i+ )yk+(3i+ﬁj+w)bk+
l+yen;é&i
q (= -¥yaj-€By g,
(ai+aj+Log[1+7en3§1])ak+(e §1+§j)xk§
Y l+yenjéi

Define [cm;, j k = E(i,j}-{k} [cA] ]
Define[coi,j = S0i,j /. Ti » 0@, Ce; = S€j, Cn; = SN;,
CAjisj,k = SAisg,ks
CS; =SSi // SYisa,2,3,4 // CMa,3,3 // €My 25: // €myja4i]5
Booting Up QU
Define [aai_,j = E{i}a{5} [35 as + X5 €11,
boi.j = E(i}.(3) [bj Bi + Y3 nil]
Define [am;,j x = E{i,i}-{k} [ (o +aj) ax + (.ﬂgl &+ &5) x|
bms, ok = Efi,5)-{k} [ (B + Bj) b + (n1 + e *Pin;) yi]]
$k+l (1 - e‘léﬁ) k (Byi x3) k

Define[Ri,j = ]E()—»{i,j} [ﬁ a5 b; + kz . (1 B ekyeh)
=l

B
Ri,j = CF@E (), (1,5} [-Bajbi, ~-fX;yi/Bi,

1+If[$k =0, 0, (R(i,j},sk-1) sk [3] -

( ( (ﬁ{i,j},a)sk Ri,2 (R_(s,A),sk_1)sk) // (bmii,; amj 2,5) //
(bms,3,; amj,455) ) [31] ],
Pi,j = E{i,j}-0) [/31 aj/h, ni§5/0,
1+ If[$k =0, 0, (P{i,j},sk-1)$k[3] =
(Re2 77 ((Pi3p0) i (Piuzpsca) ) ) 131]]]

Video and more: http://www.math.t

(SYj5-1,-1,-4,-4 // bA_1,1, 2 // bA-z-.-z,-z)) //

(P_1,3 P_3,1 amy, _4,x bmg, _5,i) ]

Define[doi_.j = a0i,j bO’i_,j,

de; = se;, dn; = sns,
dS; = SYi,1,1,2,2 // (BS1aSz) // dmg,1.s,
dS; = SYi,1,1,2,2 // (bS13S3) // dmg,1.5,

dAsLg,k = (bAiL3,18A1,2,4) // (diz,ay dmg,2,5) ]

Define[C; = Ey,(:} [0, 0, Bi?e™%/2]
G = E()o(1) [9’ o, B{”z ensai/z]sk’
Kink; = (R1,3C2) // dmy,2,1 // dmy,3.s,
Kink; = (51,3 Cz) //dmyg 5,1 // dm1,3->i]

Note.t==€a-ybandb==-t/y+e€aly.

Define[bzti =Ef}s{i}[aiai +Bi (€ai-ti) /¥y +Ei X +n1Yil,
t2b; = E(s), (i} [as @i + Ts (a3 -y bs) + 1 x5 + M3 Y1l ]

The Knot Tensors

De‘Fine[kRi,j =Ri,j // (b2t; b2ty) /. 1:i|;i -,
kRi,j = Ri,j // (b2t; b2tj) /. {tijj->1t, Ti;->T},
kmi,j—)k = (t2b; t2bj) // dmi,j—vk //

b2tc /. {tk->t, Tk > T, Ty 0},
kCi =C; // b2ty /. Ti T,
Ei_:(_:i //b2t; /. Ti>T,
kKink; = Kink; // b2t; /. {ti»>t, Ti > T},
KKink; = Kink; // b2t; /. {ti->t, Ti>T}]

Some of the Atoms.
With A; = e% and B; = e ™%,

PP_:= Identity; $k=1; A=y =1;
Column|[
(# > (&= ToExpression[#];
Normal@Simplify[&E[1] + &[2] + Loge&[3]])) & /@
{"dmy, 5", "daig,k", "dSi", "Ri5", "Pi,"}]

oronto.edu/~drorbn/Talks/CRM-1907,

http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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Yk 1§ Xg €5
dm; 5ok = ak (g + o) + bi (B + B5) +Ykni+%+ﬁf"+ﬂj§i-
i j

aoymy© (23 (2xu 8+ A (281 + (1-3B0) 03 &) +

Bk 1y &1+
Ai & (Xk (-4B5+2(1-3Bk) ny&i) +
A5ng (4akBe+ (1-4Bk+3BE) nj&i))) + Xk &5
dAi L,k > ajoq +akas + by By + bk Bi+Yjni+Bjykni+
Xjfi*xk§i+§€ (BijYkﬁ*Xk-fi (*Zaj*xjgi))

dS; - —a; aj - by Bi - A (Yi 77i*(’W1';Bi (x4+n3)) &5)
i

ﬁEﬂi (ﬂil’]% (2y§—6yi§i+3§§) +B§§i (4aixi+2x§$i§i+
i

2x3 (2Bi+AinNi Ei) +Ni (-4 +4Bi+FiniEi)) +
2Bini (Yi (-2+2B1+2Xi A3 E3 + A1 N1 1)
i (-2+2@;+2B1+3X3 A EL +2A N5 1)) )
Ri,j—)ajbi'f'iji“ieX%y%

1,_.2c2
Pi,j > o3 B1+ni &5+ €Nicy

A Quantum Algebra Example. wef/qa
Proto-Proposition™ (with Jesse Frohlich and Roland van der Ve-
en, near [Ma, Proposition 1.7.3]). Let H be a finite dimensional
Hopf algebra and let U = H**°? ® H be its Drinfel’d double, with
R-matrix R € H* @ H c U ® U. Write R™! = Y p, ® r;, and let
(-|-y: H* ® H — F be the duality pairing. Then the functional
f € U* defined by

f p&xi= ) (gpl? | 2

is a right™ integral in U*. (Meaning A’jk//fj = fi//ek in
Hom(U®W — yelkhy),
10 A “proto-proposition” is something that will become a proposition once you
figure out the correct statement. 11 Or did we want it to be R/S?? Or R}/S3?
12 Oris it p,¢? 13 Or is it r,x? 74 Or maybe “left”?
inp=E,y[3a1 by, 5x1y1, 1] /7 dmy 1,55
Table[

HL@TrueQ[

(inp // (SYisa,1,2,2RR) // BM // AM // P15 ) dej =
(inp // AA /7 (SYis1,1,2,2RR) // BM// AM // P1,2) 1,

(AA, {dAi—»i,j) dAi—)j,i})) {AM) {dm2,4—>2’ dm4,2—»2)})

{BM, {dmq, 3,1, dm3,1,1}},

{RR, {R3,a, R3,a // dS3 // dS3, R3,4 // dS4 // dS4a}}

1 // MatrixForm

(False False False) (False False True )
False False False False False False
(False False False) (False False False)
False False True False False False

A Knot Theory Example. wef/kt

e

$k = 2;
Simplify [
R1,s Re,2 Rs,7 Ca Kinkg Kinks Kinkae // dmy 21 // dmy3,1 7/
dm1,4_.1 // dm1,5_,1 // dml)s_,l // dm1,7_.1 // dml,s_,l //
dmg, 9,1 // dm1,1a_.1] /e V_ 1>V

B
1-B+82

B(-B+2B?+2B*+a (-1+B-B>+B*) -2xy-B% (3+2xy))e
(1-B+82)3

E(- [0’ 9,

+

1
2 (1-B+8B?)°
B(4B%+a’ (1-B+B*)? (1+B-6B>+B>+B*) +6B° x*y*+

2xy (-2+3xy) -B’ (11+4xy) -2B* (1+6x>y*) -

2B* (1-2xy+6x°y*) +B (1+8xy+6xy*) +

B® (6 +8xy+6x*y’) +B* (4+4xy+30x7y?) +

2a (1-B+B%) (2B%+2xy+8B% (1+xy) -5B> (1+2Xxy) -

2B° (1+2xy) -B* (7+2xy) +B (2+4xy))) e*+0[e]?
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KiW 43 Abstract (wef/kiw). Whether or not you like the for-
mulas on this page, they describe the strongest truly computable

knot invariant we know.

Observations. e Separates the Rolfsen table; does better than

Khovanov plus HOMFLY-PT on knots with up to 12 crossings
(not tested beyond). e The degrees are bounded by the genus!

e p; vanishes for amphichiral knots. e Has a chance of detecting

non-ribbonness (wef/akt)!

378 2177 +49T0 + 1575 —433T4 + 154373 343172 + 54827 - 6410

4783377 + 12176 -2037° ~ 11174 +149973 —42107% +7186T -8510

knot 7 Alexander’s w® genus /ribbon [knot  nj  Alexander’s w® genus /ribbon [knot — 7j  Alexander’s w® genus / ribbon
diag )" unknotting # / amphi? | diag )" unknotting #/ amphi? |diag (1 unknotting # / amphi?
(05" " (o)
0f 1 0/v 3¢ T-1 1/% 4 3-T 1/%
© 0 0/v @ T 1/% @ 0 1/v
0 3731272426738 7437315724747 -110
5¢ T?-T+1 2/%X 5§ 2T-3 1/% 6¢ 5-2T 1/v
@ 273+3T 2/ X% @ 5T-4 1/% @ T-4 1/%
ST7-2070+5575 12074 +21773 ~33872 +450T =510 1074 +12073 ~48772 +1054T ~ 1362 1474 1673 ~29372 + 10987 — 1598
65 —T*+3T-3 2/ % 65 T*-3T+5 2/% 79 TP-T*+T-1 3/X%
@ T3 —4T?+4T -4 1/% @ 0 /v @ 3T3+5T3+6T 3/%

77" 287104777~ 16878 +32277 ~56070 +89175 ~1310T*+177773 -
223872426047 —2772

—18T8 +264T7 154870 +568075 151077 +3115273 5147672 +
692527 —76414

3783577 +12870+105T5-2610T4+1122573-2803172+47186T—55946

75 3T-5 1/X 74 2T?-3T+3 2/X 74 4AT-17 1/X

@ 14T -16 1/X% @ OT34+8T? 16T +12 2/X @ 32-24T 2/X%
12974 + 117773 ~442172 +9226T 11718 —18784208T 79177042666 T5-6049T4+1128373-1767172423356T-25736 35274 +361673 — 1437872 +307007 39188

75 2T?—4T +5 2/ X% 75 T?+5T—7 75 T>-5T+9 2/%X

@ 9T3—16T*+29T 28 2/X @ T3 -8T2+19T-20 1/X% @ 8-3T 1/X

4785577 +3107°-805T5 +86T* +6349T3 —2268672 +43610T —53622

54T8-344T74865T0~650T-2723T4+12243T3-28461T2+45792T-53540

5T12-397 11 412871018279 ~274T8 +2476T7 ~8642T° +215177° —
4292474 +7171973 — 10244872 + 1264807 — 135628

8 T7-3T 1/% 85 —T3+3T?-3T+3 3/X 8 9-4T 1/X
@ 5T-16 1/X% @ 273 —8T*+10T3 127> +13T—12 2/X @ 0 2/v
4274421573 —2542T2 +7562T - 10542 5T12-39711 411971013979 —24978 + 166077 —4959T¢ + 1113175 - 2247422473 ~391072 + 141007 —20364
208137 +3359573 ~4752172 +58988T ~63556
@ 84 2T?+5T-5 2/X @ 8¢ —T3+3T?-4T+5 3/X @ 8¢ 2T%+6T -7 2/ X
373 -8T%+6T -4 2/%X DT +8T*—13T3+20T>-22T+24 2/X 5T3-20T%+28T-32 2/%X

3878 —21677 + 11270 +28807 — 147877 +42444T3 ~85415T2% +
1284067 — 146916

87 T3-3T>+5T-5 3/X
TP +4T*—10T3+12T> - 13T +12 1/X%
871275711 +343710-9797 + 182178 — 178277 - 1623T° + 1208377 —

&

8% 2T?—6T+9 2/v
“T34+4T>-12T +16 2/ %
6278 —504T7 +1736T0 —2408T5 ~3717T* +26492T3 - 6849372 +

e

85 —T3+3T>-5T+7 3/v
0 1/v
97128771 +417710 130577 +2858T8 413477 +2114T° +8285T —

&b

871275711 4362710 -11227 +230678 ~ 254077 ~2198T° + 1881777 —
5438074+ 11010373 — 17569472 +2300807 —251346

3878 —26477 +30170+35147° ~21716T* +687857 — 1468987 +
2278287 -263172

3300174 +6459973 — 10119472+ 1314047 — 143216 1134187 -133180 3192574 +6923573 — 11277372+ 1485087 — 162396
81, T°-3T7+6T—7 3/X 8T 2T7+7T-9 27X 87, T°-71T+13 27X
TS AT —11T3+16T2-21T+20 2/X ST3-24T2+39T —44 1/X 0 2/v

4T8-77T7+583T0-1991T°+987T4+1731 1 T3-7180272+147914T-185846

8¢, 2T*-TT+11 2/ X
—T34+4T?— 14T +20 1/%

627859277 +235170-391875 —423574 +4007973 — 11153372 +

&

1915007 —227432

84 2T7+8T—11 2/ X
5T3-28T*+57T -68 1/X%
3878 —31277 +444T0 +5096T5 ~34777T* +11636873 —25575072 +
4016327 - 465478

&

8(s 3T-8T+11 2/%
2173 -64T*+120T — 140 2/%

—12378 +212877 1524170 +661207° 19999974 +45191273 —

@

79241472+ 11017207 — 1228222

86 T3>—4T?+8T -9 3/%
T —6T*+17T3-28T%+35T-36  2/X
8712100711 +598710 220579 +529278 —7164T7 —2380T° +431007° —

@

13731474 +29175073 —478742T2 +636488T — 698666

8%, T +4T>-8T+11 3/X
0 1/v
971211671 +722710 284379 +7656T5 1366877 + 1111770+
2196873 —113086T* +273778T3 —47562272 +649064T 717954

@

84, —T3+5T7°-10T+13

18

3/%
2/v
9712145711 41075710 - 48427 + 1450478 2856077 +27957T0 +
3519573 ~2252047* +573797T3 — 102164172 + 14114847 — 1567262

°

8, T -T7+1 3/X
BT5—4T?-3T 3/%

7T 19710467 +48T8 5277 ~91T0 + 21175 + 1674 -431T3 +289T% +

@

5367 —1060

85, 1°-2T+3 2/V
4T -4 1/%

4782277 +66T0 ~124T5 +52T% +478T3 — 165272 +3014T —3640

&

8y, T7+4T-5 2/X
T3 —8T2+16T 20 1/X

378 -28T7 +49T0 35275 —2489T* + 816473 — 1753072 +27092T ~31226

i

13177972 +152840T — 160976

26712429671~ 1311710 +38387° 886778 + 1761377 3140770 +510617 ~76085T* +10429773 —

knot 7} Alexander’s w* genus /ribbon [knot 7}  Alexander’s w* genus / ribbon
diag (o))" unknotting # / amphi? |diag (o))" unknotting # / amphi?
(05" (5"
99 T-T*+T*-T+1 4/% 95 4T-17 1/%
@ AT +7T3+9T3+10T 4/% @ 307 -40 1/%
9713 —36T14+99713 -2167 12 +4147 "1 ~7207 10+ 117077 - 180073 +2630T 7 —3662T° +4853T> 61427 + ~728T* +6088T 21946 +44788T — 56420
742373 ~857272 +94207 ~9780
9% 2T°-3T*+3T-3 3/% 9% 3T°-5T+5 2/%
@ —1373+12T*-25T3+20T%-32T +24 3/% @ 23T3-28T%+46T —44 2/%

21978 +199977 —83897° +237997° — 5283574 +9672373 — 14912172 + 1946987 — 213338
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Dror Bar-Natan: Talks: Ohio-1901:

Computation without Representation

Thanks for inviting me to Ohio!
wef:=http://drorbn.net/o19/

[=

-

:| Follows Rozansky [Rol, Ro2, Ro3] and
Overbay [Ov], joint with van der Veen.
=] More at [BV] and at wef/talks.

IAbstract. A major part of “quantum topology” is the defini-
tion and computation of various knot invariants by carrying out
computations in quantum groups. Traditionally these computa-
tions are carried out “in a representation”, but this is very slow:
one has to use tensor powers of these representations, and the
dimensions of powers grow exponentially fast.

n my talk, I will describe a direct method for carrying out such
computations without having to choose a representation and ex-
plain why in many ways the results are better and faster. The two
key points we use are a technique for composing infinite-order
“perturbed Gaussian” differential operators, and the little-known
fact that every semi-simple Lie algebra can be approximated by
solvable Lie algebras, where computations are easier.

The (fake) moduli of Lie alge-
bras on V, a quadratic variety in
(V*)®2®V is on the right. We ca-
re about s/t = sI¢, /(€' = 0).
Solvable Approximation. In gl,, half is enough! Indeed g/, ®
a, = DN, b, 0):

pERERy Ci] b =b: NeN - N
Saigints b.o ] b~ 61— e
Now define gl;, := D(\, b, €6). Schematlcally, thisis [\, N] =

[N, N] = b, and [N, D] = N\ + eN. The same process works for
all semi-simple Lie algebras, and at €*! = 0 always yields a
solvable Lie algebra.

~>

KiW 43 Abstract (wef/kiw). Whether or not you like the formu-
las on this page, they describe the strongest truly computable knot

invariant we know. (experimental analysis @ wef3/kiw)

CU and QU. Starting from sl,, get CU, = (y,a,x,t)/([t,—] =
0, [a,y] = =y, la,x] = x, [x,y] = 2ea — t). Quantize using

standard tools (I'm sorry) and get QU. = (y,a,x,t)/([t,—] =

Knotted Candies wef/ke

C NN IPBW Bases. The U’s we care about always have “Poincaré-
@ :‘@ Birkhoff-Witt” bases; there is some ﬁnitg set B = {y,x,...} of

, la,y] = -y, [a,x] = x, xy — ehfyx = (1 — Te 2 /).

“generators” and isomorphisms O, :

ordering monomials” to some fixed y, x, ... order. The quantum
group portfolio now becomes a “symmetric algebra” portfolio, or
a “power series” portfolio.

Operations are Objects. F € Homg(S(B) = S (B)

e The Yang-Baxter Technlque Given an al-

b;_ ai” gebra U (typically ‘L[(g) or (L(q(g)) and ele-
\ ments
b a R=>a®becUgU and CeU,
\ form Z = Z Caibjakczb,-ajbkc.
ijik
b/{ Ak Problem. Extract information from Z.

The Dogma. Use representation theory. In
\ C principle finite, but slow.

Ras B = {Z;k = 4': Zi € B}, I
<Z?ns§in>:6mnn!a S(B)*® S(B’)
121169 = [onan:
in general, for f € S(z;) and g € S(£)), S(B)®S(B')
1
= a : = 8 . .
(f.8) = [@)8,_o = 8@0Nf|,_, S LB
The Composltlon Law. If I
S(B) —— s(B) —— S(B) feQls,z)]
feQlziz) 8eQlg; 1

then <%>=(§owf)=(glgﬁaz} f) » (flz 0, )

A Knot Theory Portfolio. L]“anglmds and Operations

A~ cuap CZ!

e Has operations LI, m/, A’Jk, Si. : stitching
e All tangloids are generated by | "% ___
R*! and C*! (so “easy” to pro- | doub_iing (é igva;(sjal S,
duce invariants). | Al \ l
e Makes some knot properties | ) AN -
(“genus”, “ribbon”) become sm;?}“g 4/\
“definable”. | ¢

B A
. <1 cuap C*!
crossing R i

1. The 1-variable identity map I: S(z) — S(z) is Examples
given by I} = @ and the n-variable one by [, = @351+ +aéu:
I = + * +1 : +% * +
2. The * archerjrpél mﬁrlrtrphcatlorl 777777 S(Z,,ZJ) — S(z)”

has m — ezk(é’l"’{j)'

A “Quantum Group” Portfolio consists of a vector space U

along with maps m )

(and some axioms. . .

3. The “archetypal coproduct A;k: S(zi) — S(zj,z)”, given by

Zi—> i+ orAz=z® 1+ 1®z has A = @@t

- ® Al ,
e ol ————— oLk y _ ~e0 W R-matrices tend to have terms of the form @' € U, @ U,.
Q=0 et {elik} Q=0 - a a a
T The “baby R-matrix” is R = &* € S(y, x).
b X i QX Ve X e 13 . : . 2"
T@O [@)""" Al T S TQO 5. The “Weyl form of the canonical commutation relations” sta-
Jk . ) _ .
A A SN R A tes that if [y,x] = #I then e®*e® = ePef e’ So with
NO) S(B) S(Bj. B)~———3(0) b, ] N
Jk Our Way. For certain algebras, — _
m work in a homomorphic poly- CS(y x) "L{(y x) we have SW = @HEx-nét
U—- Si dimensional “space of formulas”. @W

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0Ohio-1901
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The Real Thing. In the algebra QU., over Q[%] using the yaxt
order, T =&, T =T, A = %, and A = AL, we have
R;; = ehOwitha) (1 + eh (aiaj - hzyizx?/4) + 0(62))

in S(B;, B;), and in S(B7,

= (B(al+a2)a+772§1(l—T)/h+(§1.‘fIz+§2)x+(771+772.7(1)y (1 +el+ 0(62)),

B;, B) we have

where 1 = 2any&iT + 11362 (312 = 4T + 1) /4h — np&3 3T — 1)xAa/2
—n2& (3T — Dy A, [2+1m:€ xyh A Ay
[Finally,
A = @ UHD)+nG1+T1y2)+a(ar+a2)+£(x+x2) (1 + O(¢e)) € S(B*, B}, B,),
and § = @ 7w E(I=-DA-TyAEA (1 1 O(e)) € S(B*, B).

[Real Zipping is a minor mess, and is done in two phases:
‘ Ta-phase ‘ &y-phase
T a & y
a |x 7
)Already at € = 0 we get the best known formulas for the Alexan-
der polynomial!

{-like variables
z-like variables

Generic Docility. A “docile perturbed Gaussian” in the variables
(zi)ies over the ring R is an expression of the form

iy i,
el WP = @1 % [Z EkPk] ,

k=0
where all coefficients are in R and where P is a “docile series”:

The Zipping Issue

(between unbound and

bound lies half-zipped).

Zipping. If P({/,z) is a polynomlal or W enever otherwi-

se convergent, set <P({/ z, azj z, .(E.g,if P =

@ -
> @7 then (PY; = 3 @y 012" |Z=0 =y n!a,,,,).

deg Py < 4k.

Our Docility. In the case of QU,, all invariants and operations are

of the form eX*2P, where

e L is a quadratic of the form }; /,z{, where z runs over {f;, @;}jes
and  over {7;, a;}ics, with integer coeflicients /.

e Q is a quadratic of the form } g.z{, where z runs over

The Zipping / Contraction Theorem. If P = P({/,z) has a
finite {-degree and the y’s and the ¢’s are “small” then

<Pec'+niZf+yj(f+f1ifo£j> =) >

& ;

' &)

- 493, =

%= @+yi)

where g is the inverse matrix of 1 — g: ((53

{xi,ni}ies and { over {&;, yi}ies, With coeflicients g, in the ring
Rg of rational functions in {7}, A;}cs -

e Pis adocile power series in {y;, a;, x;, n;, &i}ies With coefficients
in Rg, and where deg(y;, a;, x;, n;, &) = (1,2, 1, 1, 1).

Docililty Matters! The rank of the space of docile series to € is

polynomial in the number of variables |S].

i~k
= det(g)e T <P /
[Exponential Reservoirs. The true Hilbert hotel is exp! Remove
one x from an “exponential reservoir” of x’s and you are left with
the same exponential reservoir:
XXXXX XXXXX

ﬁh X\ __ X
120 ]—>[+ 120 ..]—((B)—(B,
and if you let each element choose left or right, you get twice the

(Ex

e At ez =0 we get the Rozansky-Overbay [Rol, Ro2, Ro3, Ov]
invariant, which is stronger than HOMFLY-PT polynomial and
Khovanov homology taken together!

e In general, get “higher diagonals in the Melvin-Morton-

Rozansky expansion of the coloured Jones polynomial” [MM,

BNG], but why spoil something good?

same reservoir: B D ¢
: S
. X X+X, e = @Y le)'rpl V € p
YeYey A
A Graphical Proof. Glue n9nen
top to bottom on the right, ICL’I 11494 »
in all possible ways. Several A c “the g e
scenarios occur: machine”

1. Start at A, go through the g-machine £ > 0O times, stop at B.
Get (P (¢, X0 4'2)) = (P (£,2).

. Loop through the g-machine and swallow your own tail. Get
exp (Z qk/k) =exp(—log(l — @) =g 3....
By the reservoir splitting principle, these scenarios contribute
multiplicatively. O
Implementation. wef/Zip
Zipgs 1ist@E[Q_, P_]
Module[{&, z, zs, c, ys, s, qt, zrule, Zrule},
zs = Table[Z*, {&, £5}1;
c=0Q/.Alternativesee (£s|Jzs) » 0;
ys = Table[d: (Q /. Alternatives @@ zs » @), {&, ¢5}];
ns = Table[d, (Q /. Alternativesee s -» 9), {z, zs}];
qt = Inverse@Table [KS, o+ - 9,,:0, {&, &5}, {z, z5}];
zrule = Thread[zs » qt. (zs +ys) ];
Zrule = Thread[{s » &5 + ns.qt];
Simplify /e
E[c+ns.qt.ys, Det[qt] Zip [P /.

(E[Q, P] means ¢2P)

(zrulegrule)1] 1;
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~ “God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org 71t

Video and more at http://www.math.

toronto.edu/~drorbn/Talks/0Ohio-1901
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The Algebras H and H".
(a, x)/([a, x] = yx) with
A=, Su(a,A,x) = (-a,A™',-A"" ),
Ap(a,A,x) = (a1 + a2, A1A2, x1 + A1 x2)
and dual H* = (b, y)/([b,y] = —€y) with
B=e ™  By=gqyB, Su(b,B,y)=(-b,B',—yB™),
Ap+(b,B,y) = (b1 + b2, B1 B2, y1 By +y2).
Pairing by (a,x)* = (b,y) (= (B,A) = ¢g) making (y'b', a/x*) =
. _ w Ybiealx*
5,16](1_]'[](][/' SOR = Z ]'T]q'
The Algebra QU. Using the Drinfel’d double procedure,
QUy = H*P®H with (¢/)Wg) = (1S~ )3, fi)(@¥2)(f28)
and S(y,b,a,x) = (—B 'y, —b,—a,-A"'x),
Ay, b,a,x) = (y1 + y2B1, b1 + b2, a1 + az, x1 + A1 x2).
Note also that ¢ := ea — yb is central and can replace b, and set

QU = QUe = QU e.
The 2D Lie Algebra. One may show™ that if [a,x] = yx then

Let g =c" and set H =

XA = qAx,

e e = ee® "¢ Ergo with
O)(IX
SWax CS(a, X) U(a, x)
©Xa
we have SW,, = 2ate”%éx,

* Indeed xa = (a — y)x thus xa" = (a — y)"x thus xe® = @@ Vx = e x
thus X"e% = (e 7?)"x" thus e¥*e® = e®e® "¢,

Faddeev’s Formula (In as much as we can tell, first appe-
ared without proof in Faddeev [Fa], rediscovered and proven
in Quesne [Qu], and again with easier proof, in Zagier [Za]).
With [n], = q{:%ll, with [n],! = [114[2], - - - [n], and with eZ =

b

ano Wq!’ we have

x (1 -t (1- g%
logey =2 20— ~ " 20
= k(1 -4") 2(1-¢%

el —e}

Proof. We have that e; = —-—
and hence ¢f" = (1 + (1 — g)x)e}, and

(“the g-derivative of e is itself”),

loged™ = log(1 + (1 — g)x) + log ;.

Writing log ey = Xis1 a;x* and comparing powers of x, we get

L—a)
dar = —(1 = @tk + ar, or a = {2 o
A Full Implementation. wef/Full
Utilities

CF[sd_SeriesData] := MapAt[CF, sd, 3];

CF[& ] := ExpandDenominator@ExpandNumer‘ator@Together[

Expand[&] //. e~ e~ » e /. & »eTl];

K& /: Ké; ,; :=If[1i===7,1,0];
E/:E[L1 ,Ql ,P1 ]=E[L2 ,Q2 ,P2 ] :=

CF[L1 ==L2] ACF[Q1 == Q2] ACF[Normal[P1 - P2] ==0];
E/:E[L1_,Q1_,Pl_]E[L2 ,Q2 ,P2 ] :=

E[L1+L2, Q1+Q2, P1%xP2];
E[L_,0Q ,P lg :=E[L, Q, Series[NormalePr, {e, 0, $k}]1;
Zip and Bind
{t*.! b*) y*) a*: X*J Z*} ={z, 3: ns a, §: §};
{t*, B*, n*, a*, £, £*} = {t, b, y, a, X, z};
(u_i )™ 2= (u*)q;

collect[sd_SeriesData, & ] :=
MapAt [collect[#, ] &, sd, 3];
collect[& , £ ] := Collect[s, &5
Zip [P_]1 :=P; Zip(p o 3[P_1 :=
(collect[P // Zip(py, &1 /+ f_. & A+, a)f) 1. &0
QZipy 1ist@E[L_, Q_, P_] :=
Module[{&, z, zs, c, ys, ns, qt, zrule, Zrule},
zs = Table[Z*, {&, £5}]1;
c =CF[Q /. Alternativesee ({s|Jzs) » 9] ;
ys = CF@Table[d: (Q /. Alternatives @@ zs » 0) , {&, ¢5}];
ns = CFeTable[d, (Q /. Alternativesee s -» 0), {z, zs}];
qt = CFeInversee@Table [KS, o+ - 0,,:0, {&, &5}, {z, z5}];
zrule = Thread[zs » CF[qt. (zs +ys)]];
Zrule = Thread[{s » &S +ns.qt];
CF /@ E[L, c +ns.qt.ys,
Det[qt] Zip [P /. (zruleJZrule)1] 1;
U2l = {Bf-" » P70, B 5 e PP, T 5 PR,
TP-- > eP2Y, \ﬂ‘i’:' > eP¥%, gl e”‘"};
120 = {% Pirh 55 B PV e, e P 15 BT/ BN g,
e-" ty +d_. Tg/h ed, ef-- trd_. ., pc/n ed,

d

ai_+d_. ony ‘ﬂc/y e,

- mg/y ed’ et a+d_.

Expand@&} .
3

e(.'_.
e~ e
LZipy 1ist@E[L_, Q_, P_] :=
Module[{&, z, zs, ¢, ys, ns, 1t, zrule, L1, L2, Q1, Q2},
zs = Table[&*, {&, £5}1;
c=L/.Alternativesee (s |Jzs) -» 0;
ys = Table[d: (L /. Alternatives @@ zs » @), {&, ¢5}];
ns = Table[d, (L /. Alternatives ee ¢s - ), {z, zs}];
1t = Inversee@Table [KS, o+ - 0,,cL, {&, &5}, {z, 25}];
zrule = Thread[zs » 1t. (zs +ys) ];
L2 = (L1 =c+ns.zs /. zrule) /. Alternatives @ee zs - 0;
Q2= (Q1=0Q/.U21 /. zrule) /. Alternatives @e zs - 0;
CF /@ E[L2, Q2, Det[1t] ™%
Zip,[e*% (P /. U21 /. zrule)]] //. 12U ];
By [L_,R.] :=LR;

B{is_} [L_E, R_E] := Module[{n}, Times [

L/.Table[(v:b|B|t|T]a|X]|y)i->Viei, {1, {i5}}],

R/.Table[(v:B |t |a|A|E|N)i> Viei, {i, {i5}}]
1 /7 LZipjoineetable[{fne;:cneisaneils {is{is}}] 7/
QZiP3oineetable[ (61 -vneils (is{is}}] |3
Bis__[L_» R_] :=Byis}[L, R1;
E morphisms with domain and range.
Bis 1ist [Eq1 »r2 [L1_, Q1_, P1_]1, Eaz 5r2 [L2_, Q2_, P2_]] :=
E (d2Ucomplement [d2,is] )~ (r2Ucomplement[ri,is]) ee
Bis[E[LI, 01, P1], E[L2, Q2, P2]];
Edz »rz [L1_, Q1_, P11 // Egz 5r2 [L2_, Q2 , P2_] :=
Brindz [Ed1-r1 [L1, Q1, P1], Egz2,r2[L2, @2, P2]];
Eg1 or1 [L1_, Q1_, P1_]1 =Eg ,r2 [L2_, Q2_, P2_] ":=
(d1==d2) A (r1=r2) A (E[L1,Q1, P1] =E[L2, Q2, P2]);
Egr »r2 [L1_, Q1_, P1_] Eaz »r2 [L2_, Q2_, P2_ ] ":=
E (d1yd2) - (r1ur2) @@ (E[L1, Q1, P1] E[L2, Q2, P2]);
Eg or [L_, Q5 P_lgr :=Eg,r@E[L, Q, Plg;
E_[& __1[1_] :={&}[11;
“Define” code
SetAttributes [Define, HoldAll];
Define[def , defs__]1 := (Define[def]; Define[defs];);

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0Ohio-1901
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Define[op_is =6&_] :=
Module[{SD, ii, jj, kk, isp, nis, nisp, sis},
Block[{i, J, k},
ReleaseHold [Hold |
SD[opnisp,sk_Integer: Block[{i, j, k}, OPisp,3k = &3
OPhis,sk] 13
SD[0pisps OP{is},sk]5 SD[OPsis__s OP(sis}] 3
] /. {SD - SetDelayed,
ispo> {is} /. {i»i_,j-»>3j_,k->k_},
nis » {is} /. {i-»ii, j » jj, k » kk},
nisp » {is} /. {i»ii_, j - ji_, k » kk_}

1]

The Fundamental Tensors

Define[ami,j_,k = Efi,j}a{k} [ (@i + a3) Ak, (€77 &5 + &5) X, L]k

e €Bi_ .
bm; .k = E{i,5}-{k} [ (Bi + B5) bks (i +1n5) Yks e( 1-1) n y'(]sk]

Define [Ri,j =

e e st |
4 k (1-ekven) $k
Define[Ri,j = Eqy(1,5) [-B aj bi, -B Xjyi/Bi,
1+If[$k =0, 0, (R(i,j},sk-1) sk [3] -
(((R{1,3},0) sk Ra,2 (Riz,a3,96-2) s) /7 (bMs, 1. amy o.5) //
(bms, 3,5 amj,a55) ) [31]]5
Pi,j = E{i,j}-0) [Bi aj/h, ni&5/n,

IE:{)_,{i,j} [ﬁ aj b;, A Xj Vis e’ [

Define [
dms, .k =
(]E{i,j}-»{i,j} [Bibi + ajaj, niyi+ &5 X5, 1]
(38is1,2 /7 @Bas2,3 // @S3) (bAj,_1,-2 // b5y 2,3)) //
(P_1,3 P_3,1 amy j,k bmi, >.k) »
dS; = E(i},(1,2) [Bi b1 + @i @z, ni Y1 + €1 X2, 1] // (bS12S2) //
dmy,1,i,
dAjLj,k = (bAis3,1@0i,2,4) // (dms g4k dml,Zaj)]
Define[C; = E(;.(i} [0, @, Bi/?e™%/2] ,
Ci =Eg.qi [0, 0, B2 e"2/%]

Kink; = (R1,3G) /7 dmy,2,1 // ding 3.,
Kink; = (R1,3C2) // dmy,2,1 7/ dmg, 3,5
Define [

b2t; = E(i}. (i} [ai @i - Bi ti /¥, §iXi +miyi, e Pi3/7]
t2b; = E(s). (i} [ai @i - Ti ¥y bi, §iXi + N1 yi, @ F1%]g]
Define[kRy,j = Ri,j // (b2t; b2tj) /. tijj->t,
kRi,j = Ri,j // (b2t; b2ty) /. {tijj->1t, Tijj > T},
kmi,jak = (t2b; thj) // dmi,jﬁk //
b2ty /. {tk»t, T«k->T, Tilj - 0},
kC; =C; //b2t; /. Ty T, kC;=C; //b2t; /. T3> T,
kKink; = Kink; // b2t; /. {ti-=t, Ti > T},
kKink; = Kink; // b2ty /. {ti>t, Ti>T}]
The Trefoil
$k = 2; Z = kRq,s kRe, 2 kR3,7 kC4 kKinkg kKinkg kKinkjej;
DO[Z = Z~By, ~kmyq, 41, {r, 2, 10}];

1+ If[$k =0,0, (P{i,j},$k—1)$k[3] =
(Ru2 7/ ((Pfa.3).0) g (Piasz)sia) ) ) [31]]]
Define[aS; = Ri,j~Bi~Pi,j,
aS; = E(i){i} [-21 @i, -Xi Fi i)
1+If[$k==0, O, (aS(i},9k-1) sk [3] -
((3S(i},0) sk~Bi~aSi~Bi~ (aS(i},sk-1) s) [31]]]
Define[bS; = Ri,1~B1~aS1~B1~Pi,1,
bS; = Ri,1~B1~aS;~B1~Pj 1,
(R1,jRa,k) // bmy 5,3 // P3 s,
(Rj,1Rk,2) // amy,2,3 // Ps3]

alhjLg,k =
bA;j i,k =

Simplify /@Z /. v_y vV

T

E(}501) [9: 9,

4
1-T+T?

(1-T+12)3

T(-1+2T-3T2+2T%) y-2 (1+T) xyvyh) e+

-
2(1-7+72)°

Th(2a (-1+T-T>+T%) +

Th? (422 (1-T+T2)? (1+T-6T2+ T2+ T%) +

43 (1-T+T%) v (T(2-5T+8T2-7T>-2T*+27T°) -
-1-2T+5T2-4T+T*+27T°) xyh) +

¥

2 (

T(1-2T+4T2-2T+6T°-11T°+47T7) +
4 (-1+2T+T>+T*+278-T") xyn+
6

1—T+T2)2 (1+3T+T2) Xzyth)) €24{0['5]3]

. n; Alexander’s w* genus / ribbon | . n Alexander’s w* genus / ribbon | . n; Alexander’s w* genus / ribbon
diagram Today’s p} unknotting # / amphi? diagram Today’s p; unknotting # / amphi” diagram Today’s p7 unknotting # / amphi?’
07 1 0/v 3 -1 1/x 47 3 -t 1/x
@ 0 0/v @ t 1/% @ 0 1/v
50 F—t+1 2/% 55 2t-3 1/x 6f 5-2t 1/v
@ 263 + 3¢ 2/ % 5t—4 1/X @ t—4 1/%
65 - +3r-3 2/X 65 £ -3t+5 2/ X 70 P - +r—1 3/X
@ £ -4 +41-4 1/% 0 1/v @ 365 + 563 + 6t 3/%
75 3t-5 1/x 74 205 =3t+3 2/% 78 4r-17 1/x
14t - 16 1/% @ -9 + 82 — 16t + 12 2/% @ 32 —24¢ 2/X
74 26 —4r+5 2/X 78— +5t-7 2/ X 74 £ —5t+9 2/X
@ 9 — 161> + 29t — 28 2/% @ £ =8+ 19t —20 1/% 8 -3¢ 1/%
8 T-3t 1/x 8 £ +3r-3r+3 3/% 8 9—4t 1/x
5t-16 1/% @ 20 —8t* + 108 =122 + 13t - 12 2/ X 0 2/v
@ 8 -2 +5t-5 2/% @ 8L —+3r —4r+5 3/% 8¢ 27 +61—7 2/%
3 -8R +6r—4 2/X 2 +8t* — 138 +202 — 22+ 242/ X @ 58 —207% + 28t — 32 2/%
8 £ -3r+5-5 3/% 8¢ 2P —6r+9 2/v 8, —P+3r —5t+7 3/v
@ P +4 =108 + 122 - 13t +12 1/ X @ -8B +42 - 12t + 16 2/% 0 1/v
8, -3 +6r-7 3/X 8, 2 +T7t-9 2/x% 8, r—-Tt+13 2/%
@ -+ 4 =118 + 1682 =21t +20 2/ X 56 — 241> + 39t — 44 1/% @ 0 2/v
@ 8, 27 —Tr+11 2/% 81, -2 +8r—11 2/% @ 8y 3r —8r+11 2/%
- + 417 — 14t + 20 1/% @ 56 — 281> + 57t — 68 1/% 218 — 641 + 120t — 140 2/%
8l r—4r +8-9 3/X 8 —r +4r -8+ 11 3/% 8y, —r +5 —10r+13 3/%
P -6t +17 - 282 +35t—-36 2/X @ 0 1/v 0 2/v
8, £ —r+1 3/% 8y, F-2+3 2/v 8y, - +4r-5 2/%
@ -3 — 48> - 3¢ 3/% @ 4r—4 1/% @ £ — 8 + 16t — 20 1/x

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0Ohio-1901
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Do Not Turn Over Until Instructed

[=] 1 [=]

Dror Bar-Natan: Talks: MAASeaway-1810:
My Favourite First-Year Analysis Theorem

Thanks for inviting me to the fall 2018 MAA Seaway Section meeting!

[=]

Handout, video, links at wef:=http://drorbn.net/maal8/

\Abstract. Whatever it may be, it should say something useful
and exciting and it should not be *about* rigour, yet it should
*demand* rigour. You can’t guess. You probably think it the
dreariest. You are wrong.

14 The Fundamental Theorem of Calculus.

If f is integrable on [a, b] and f = g’ for some function g, then

b
® f f=8b) - g

Contents ®

Several excerpts here are from

Spivak’s “Calculus” ®. I believe | TWe€tS Tweets & replies x16 7 is Irrational.
Prologue they fall under “fair use”.
1 Basic Properties of Numbers 3 @ Dror Bar-Natan @drorbarnatan - 2 Apr 2013
2 Numbers of Various Sorts 21 mn=a/b, f(x)=x~n(a-bx)An/n!, n large => 0<V=[(0,mf(x)sin(x)dx<1. Repeated
. CALCULUS integration by parts & f(x)=f(rt-x) => VEZ. So T is irrational.
Foundations CALCULO INFINITESIMAL
3  Functions 39 O 1 0 Q
Segunda edicion Michael Spivak
4 Graphs 56 20 Approximation by Polynomial Functions.
5 Limits 90 | 7 \‘ Suppose that f is a function for which ' For example for f(x) = sin(x)
6 Continuous Functions 113 | \_J fl@,..., @@ rata =0, f® =sin, cos, — sin,
7 Three Hard Theorems 120 : | qll exist. Let ) | —cos, sin, .. ., SO
8 Least Upper Bounds 142 @="—— O0=k=n | COEDE e dd
Derivatives and Integrals and define - = K
9 Derivatives 147 ?}.la(x) =a+aix —a) +---+a.x —a). 0 k even
10 Differentiation 166 ¢ i L0 = Paa® _ i
11 Significance of the Derivative 185 A ® :
12 Inverse Functions 227 TV ]Ry 0ddQ[R]
(1= @ == { H
13 Integrals 250 e EVERO (E]
14 The Fundamental Theorem of Calculus 282 Plot[EvaluateAppend |
15 The Trigpnometric Functions 300 Table[‘_abeled[ia‘ X, n] L, (1,3, 5, 7}}]’
«16 g is Irrational 321 c& e
«17 Planetary Motion 327 Labeled[Sin[x], Sin]
g : . ], {x, -27, 27}, PlotRange - {-1.5, 1.5)]
18 The Logarithm and Exponential Functions 336 | |
19 Integration in Elementary Terms 359 .
Infinite Sequences and Infinite Series 1
20 Approximation by Polynomial Functions 405

for every ¢ > 0 there is § > 0 such that, for all x,
if 0 <|x—al <3, then |f(x)— f(a)| <e.
If f and g are continuous at a, then
(1) f + g is continuous at a,
(2) f-gis continuous at a.

®

6 Continuous Functions|

[f f is continuous on [a, b] and f(a) < 0 < f(b), then there 1s some x in [a, b]
such that f(x) =0. ®

7 Three Hard Theorems.

o1

3= Columne@Table [k - N[ay 157*], {k, {@, 3, 9, 13, 29, 35, 157, 223, 457} } ]
2 -0.
3 -644982.
9 >1.59711x 101
13 - 5.65477 x 10'°

Some sizes (in multiples of the diameter of
a Hydrogen atom:

S
11 Significance of the Derivative. bugs 29 > 5.42689 x 10%2 A red blood cell 1.56 1?3
N 35 . 6.95433 x 10% The CN Tower 1.11 x 10
q=X"-x 157 > 4.86366 x 1055 The rings of Saturn 5.6 x 10"
/ 223 -5 -1.94045 x 195! The Mllky Way galaxy 1.89 x 1031
Y=3x"-| ! 457 - 4.87404x 10 16 The observable universe | 1.76 x 10%7
T
= (WI-H)(EZ—I) ~ N3 457 457
- t 0 t )= {N[Zak 157“] s Y IN[a 157*]}
| |
>0 X>\//3 | | Py pary
L i ! bu | -0.0795485, 5.10624 x 10°°)
— ]<0 & <x<\V7% i i
>0 IC"WE f increasing =:‘ f decreasing :!: f increasing )= N@Sin[157]
/ I | louysi= -~ ©.8795485

Do Not Turn Over Until Instructed

Video and more at http://www.math.toro
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The Taylor Remainder Formulas. Let f be a §
smooth function, let P, ,(x) be the nth order Tay- =g
lor polynomial of f around a and evaluated at x,
so with a; = f®(a)/k!,
Pra(x) = Y ax(x = a),

k=0
and let R, ,(x) := f(x) — P, 4(x) be the “mistake”
or “remainder term”. Then

Brook Taylor

(1) (4
Ruaw = [ arl— By, 0
or alternatively, for some ¢ between a and x,
f(n+1)(l) o
Rua(x) = —a)y"™. 2
D = G @) 2)

(In particular, the Taylor expansions of sin, cos, exp, and of seve-
ral other lovely functions converges to these functions everywhe-

re, no matter the odds.) e R
IProof of (1) (for adults; I lear- 1 a X
ned it from my son Itai). The, ~ R
fundamental theorem of calcu- | a X X
lus says that if g(a) = O then | =_ R’ _
lg(x) = f dx g(x;). By design, ‘ a X X X
Ria(@) = 0for 0 < k <n. The-| = '
refore S : : : °
x : a t Xn X2 X1 X
Rn,a(x) = f dle;, a(xl) : f("+1)(l‘) (x _ t)”/nl

f dxlf dszna(XZ)
= f dx f dx; ... f dx, f dt RUD (1)
X X X !
=f dxlf dxz...f dxnf dr V@),

when x > a, and with similar logic when x < a,

f f(n+1)(t) — ft dtf(n+1)(t) f 1

at<x,<..<x1<x 1<x,Z...2x1Zx
(n+1)t (n+1)
f w0 [ l—fdtf D _ o

Xn)€E[1,x]"
de-Fubini (obfuscation in the name of simplicity).
Prematurely aborting the above chain of equalities,
we find that for any 1 <k<n+ 1,

(x1

® l‘)k_l

R(x) = dt R (1) ———.

= [ aroS=

But these are easy to prove by induction using inte-

igration by parts, and there’s no need to invoke Fubini.

Guido Fubini

artial Derivatives Commute. Make Fubini Smile Again!
If f: R> - Ris C? near a € R?, then fi»(a) = fo1(a).
roof. Let x € R? be small, and let R := [a;, a1 +x1]1x[aa, az+x2].

77777777 .~ 1 e
flz(a)NﬁL\fm:ﬁf dty (fi(ti, az + x2) — fi(t1, a2))
( flar + x1,a2 + x2) — far + x1,a2) )
|R| —f(ay,a; + x2) + f(ai, a2) ’

But the answer here is the same as in
1 1 A+ X2
Hi(a) ~ — ff21 = —f dt (fr(ar + x1, 1) = folar, b))
IRl Jr IR|
( flai +x,a2 + x2) — f(ay, a + x2) )
T —flai + x1,a2) + f(ay, a2) ’

and both of these approximations get better and better as x — 0.
O

92 7(0)

The Mean Value Theorem for Curves (MVT4C).
If y: [a,b] — R? is a smooth curve, then there is
some t; € (a, b) for which y(b) — y(a) and y(¢;)
are linearly dependent. If also y(a) = 0, and

y = (f;) and 7 # 0 # 7 on (a, b), then

Eb) _ &) _ &)
m = A1) when lucky, = @ R ‘
g y(a) de l’Hépal
IProof of (2). Iterate the lucky MVT4C as follows:
Riax) R, ) RV )
(x—ay*'  (m+ Dt —-a T m+ D! (m+ D
J.H. Lambert

it is Irrational following Ivan Niven, Bull.
IAmer. Math. Soc. (1947) pp. 509:

Theorvm: 77 is (rrwfional,
Peoof : Asswmt T =%} and consider the Po.{;nw-(
p(0)= XU o quity forge. Chaky

P(%) IS Po.n tit yet
Smadl; huncy =-‘£F(sc)ﬂhx.£x
Sat3éas O< T D
othur hand, (mmmimmiimmmmtis o0h) it
ratfon Inj pacts  §hows Hat

I = (Fomd) £ [ plri(x)casxdx, The Stamd

tum (¢ O brcaase P 1% ﬂ_ﬁaanomm/ of Jg_gfu

SRy F—CEHNTEMIC. BT/T7 DT
ERFELLRELBA I EEL,

Be Sure to read the End User License Agreement
betore opaning this packet.

Avant douviir cefte pachetia, velillaz ire attentivernent
le Contrat de Licence d'Utilisateur. —

W, anl The Fmd' fom 5 an infe9er For r:ﬁwéj
pw[o) I¢ an iNfo9Lr, For PIT-X )= Péc/
hunce _SM'\b is frar Form PEIAT) and For sin
cog of o i'ﬂ“ wr all m-,l@ad Er9o
== . . L s an inhg
" bttwavn o an/ l
h thse are r”m
N N, Ja)]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/
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Dror Bar-Natan: Talks: Matemale-1804:

Solvable Approximations of the Quantum s/, Portfolio

With Roland van der Veen
wef:=http://drorbn.net/mm18/

See also [BV]

anig

W.LP.

U |

2]

B >
= 1
£
s .

ae

Our Main Theorem (loosely stated). Everything that matters in
the quantum s/, portfolio can be continuously expressed in terms
of docile perturbed Gaussians using solvable approximations. O
Our Main Points.

e What’s the “quantum s/, portfolio”?

®

What in it “matters” and why? (the most important question)

e What’s “solvable approximation”? What’s “continuously”?
‘What are “docile perturbed Gaussians™?
Why do they matter?

How proven?

(2" most important)

(docile)
How implemented? (sacred; the work of unsung heroes)
e Some context and background.

e What’s next?

EI%EI
[a],

VO N [ | ag’a Gompf, Schar-
ot - Ly A S lemann, 0-
i f \ Y T K U \J I mpson [G;:F]
UeT, 1eA, '
. =il
g = T
RN T KT LA 1 T
ribbon K € 77 z(K) e RC A, L
! l I

Faster is better, leaner is meaner!
The Gold Standard is set by the “I'-calculus” Alexander
2l formulas [BNS, BN1]. An S-component tangle 7" has

I(T) € Rs x Mss(Rs) :{ ? i }withRS = Z({t,: a € S)):

wlwz\Sl S2

The quantum s/, Portfolio
includes a classical universal m
enveloping algebra CU, its

quantization QU, their tensor R,s € {QU®S} {CU®S}
powers CU®5 and QU®5 with the “tensor operations” ®, their
products m;(j , coproducts Ai‘k and antipodes S;, their Cartan auto-
mophisms CO: CU — CU and Q0: QU — QU, the “dequanti-
zators” AD: QU — CU and SD: QU — CU, and most impor-
tantly, the R-matrix R and the Drinfel’d element s. All this in any
PBW basis, and change of basis maps are included.

®m NS 1.0 @ ALLS 1,0

AD, SD
_—

TiuT, > S A 0

So 0 A

b w  (A=-Pw| ¢ S
B Me 7 N
) ty tp — t, ¢ I l_f c ltng
@ ¢ S ¢+q L+q

(Roland: “add to A the product of column b and row a, divide by (1 — Au),

delete column b and row a”.)
[For long knots, w is Alexander, and that’s the fastest -
|Alexander algorithm I know! Dunfield: 1000-crossing fast.

(v-)Tangles.

o

o [5)) - o[
b

a (meta-associativity:
1 - me mel i = mie fmi)
G 3 T “Stitching” (tangles are generated
by > and X)

Strand
doubling:

Aj. b -~ Strand

¢ _ reversal:

a

Genus. Every knot is the boundary of an orie-
ntable “Seifert Surface” (wef3/SS), and the least
of their genera is the “genus” of the knot.

Claim. The knots of genus < 2 are precisely the g
images of 4-component tangles via

o - (GEREERL

Jrormat[r(s , 211 := Module[(s, M}, I

w ‘ b c N
b | (Gu—aTa—vTolu  (Tp- DIovip Ty — DT/
c (Te — yv/u (@—0,T,—vTo)/p  (Te—1)0/pu
S ¢ =2
aw/o, ‘ a S Where o assigns to every a € S a Laurent mono-
a 1/a 0/a ] mial o, in {f}pes subject to o’(a‘/Ib,bZ\'a) = (a >
S ‘ —¢la (@E-¢O)/a ) 1,b — ), o(T1 U T2) = o(T1) U o(T), and

ofme® = (o \ {a. b)) U (¢ = 0a0b)li 1y

IVo’s Thesis [Vo]. A proof of the Fox-Milnor theorem for
ribbon knots using this technology (and more).

MImplementation key idea: wef/AlexDemo
(@A = () o e e
a_b_-c @y . = . o, By ¥, 0,9, €, G TS
- TV N ((,4), A= Z a’abtahb) : «p e Oeum, A Oeimy A O,
B _ o o o o o ________ [7{ 5 s] = [atl,,ma Bty my A B, A | /. (E|h), 05
411 := T(Simplify[e], 1 ¥ = O, A O, 2

Collect[1, Factor] &]1; |

, Collect[#, t_, y+ad/u e+d6/u
b+ray/u E+yO/u
/. {T.>T., Tp->T} // !‘Collect];

11-7,

rlw=1-m o, (e, 13

)- e,

1)]
s = Unionecases[T[v, 2], (h|t), = a, »];|
M = Outer[Factor[dn,,t,, 1] &, s, s]; |

' \/ X . example [BN2]

a ribbon singularity  a clasp singularity

A Bit about Ribbon Knots. A “ribbon knot” is a knot that can be
presented as the boundary of a disk that has “ribbon singularities”,
but no “clasp singularities”. A “slice knot” is a knot in S = 9B*
which is the boundary of a non-singular disk in B*. Every ribbon
knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon.

IFox-Milnor. The Alexander polynomial of a ribbon knot is always
of the form A(¢) = f(t)f(1/1). (also for slice)

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified)

M = Prepend[M, t. & /@ S] // Tran ; L .
oy S e ol (3257 ),
M // MatrixForm] ; klm 5 = Rp., /. T.->1/T.;
Meta-Associativity Q11 @12 13 61 Runs,|
Q21 Q22 Q23 62
§=I‘[w, {t1, t2, t3, ts}. -{hllh21h3lhs}];
Q31 Q32 A3z O3
b1 b2 P3 =

(8 //miz,1 // my3,1) == (£ // ma3,2 // mi2,1)

,,,,,, R3 ... divide and conquer!
{Rms; Rmgy Rp3y // Mygs1 // mps,2 // m3es3,
Rpg; Rmpg Rmas // myga,1 // mps,2 // M3es3}

m//-*/
h, hs

1 hy h, hs 1 hy
T T
ty =3 0 0 ty =3 0
T2 T2
~1+T ~1+T
{ t, +T2 A ’ ts +T2 a
T2 T3 T2 T3
14T 14T 14T 14T
ty - —3 —3 1 ty - —32 3
T2 T3 T2 T3

Zz = Rm;,1 Rmy7 Rmgs Rmy, 11 RP36,5 RP6,13 RP14,9 RP10,157

Do[z=z // mk,1, {k, 2, 16}];

=

11-L2+4 8 gr.a12-13 0 — [ —
T3 T2 Tl B N 1 o ! - ’
i 0m

t1 1

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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C _C._ The Yang-Baxter Technique. Given an al-
b i gebra U (typically U(g) or U, (g)) and ele-
/\ ments
b a R=>a@bhcUgU and Cel,
/\ form Z = Z Ca,-bjakCzbiajbkC.

ijik
b ax Problem. Extract information from Z.
The Dogma. Use representation theory. In

C \ Cc ' principle finite, but slow.

Definition. A “docile perturbed dOC-ile
Gaussian” in the variables (z;);cs over ‘/ dasal/
the ring R is an expression of the

(ClOX JGICIE

ladjective

ready to accept control or instruction; submissive

fform a cheap and docile workforce”_ _ _ _ _ _
i iy
@q ZIZ!P = @q % (Z ekpk} B
k=0
where all coefficients are in R and where P is a ‘“docile series’:
deg Py < 4k.

Docililty Matters! The rank of the space of docile series to €X is

The (fake) moduli of Lie alge-
bras on V, a quadratic variety in
(V*)®2®V is on the right. We ca-
re about sl := si5 /(e = 0).

olynomial in the number of variables |S|.
Melvin,

Theorem ([BNG], conjectured [MM], @
g : \‘L 2 Morton,
i "

elucidated [Rol]). Let J;(K) be the co- Garoufalidis
lloured Jones polynomial of K, in the d-dimensional representa-

Solvable Approximation. A quantized universal enveloping al-
gebra (aka “quantum group”) is an co-dimensional inverse limit.

untrimmed ———= hqlfwayd- —_— afllllIlll(}),S_t
1 trlmime trimmed
t00 hard “solvable approximation” g .. e-type”

(a parameter is hidden)
IRecomposing g/,. Half is enough! gl, @ a,, = D, b, 6):
[ Db b(\) =b: NN — N

b ;’Lf*— b(N) ~ §: N - UeN

Now define gl§ = D(N, b, €5). Schematically, thisis [N, N] = N,
[N, N] = eb, and [N,N] =N + e\. In detail, it is

: L [eij, enl =6 jxeiq — Suer;  Lfsjs ful = €6 fiu — €61ifi
il h e; | Leijs ful =06 ju(€6 jreir + Sulhi + €81)/2 + bi>1fi)
. —0ii(€bk<jerj + Orj(h; + €g;)/2 + Oi>jfij)
i I 8 Lgi el = (Bij — Side ji [hi, e ] = €(6ij — din)e i

Lgi» fix]=(0ij — 6ur) fix [A:, fix]=€(6ij — Su) fix

tion of s/,. Writing

(q"? — g7 "' Ju(K)
qd/2 _ q—tl/2

= > am(K)d'n",
J:m=0
“below diagonal” coeflicients vanish, a;,(K) =
O if j > m, and “on diagonal” coeflicients
give the inverse of the Alexander polynomial:
(Zpezo @mm (KON - w(K)(") = 1.
“Above diagonal” we have Rozansky’s Theorem [Ro03, (1.2)]:
q' g (1 . i (g - 1>’<pk<K>(qd)J.
(g — g Hw(K)(g" i WwHk(K)(gD)
IPrior art. Some amazing computations by 'E Rozansky,
IRozansky and Overbay in [Ro2, Ro3] and
in [Ov]. S
Quesne

g=e"

Ja(K)(q) =

Overbay

[Faddeev’s Formula (In as much as we
can tell, first appeared w/o proof in Fad-
deev [Fa], rediscovered and proven in
Quesne [Qu], and again with easier proof,
in Zagier [Za]). With [n], :== £=L, with [n],! = [1],[2],- - - [n],

Faddeev

Zagier

Solvable Approximation (2). At € = 1 and modulo 2 = g, the
above is just gl,. By rescaling at € # 0, g/ is independent of e.
We let gl’,‘, be gl;;, regarded as an algebra over Qlel/e! = 0. Tt is
the “k-smidgen solvable approximation” of g/,,!

[Recall that g is “solvable” if iterated commutators in it ultimately
ivanish: g, = [a, 9], 93 = [82,092], ..., gz = 0. Equivalently, if it
lis a subalgebra of some large-size \ algebra.

INote. This whole process makes sense for arbitrary semi-simple
ILie algebras.

==
. .
and with e} = 3,59 ﬁq!, we have

1 — g)kx* 1 — g)*x?
loge = ( q)k _ .. ¢ q);c
o k(1 = g) 2(1 =g
Proof. We have that e} = e;;i" (“the g-derivative of ey, is itself™),

and hence e = (1 + (1 — g)x)e;, and
loged" = log(l + (1 — g)x) + loge;.

Writing log ey, = i arx* and comparing powers of x, we get

=g

Kok o

¢*ax = —(1 — @)% /k + ay, or ay. =

GDO-Categories. Given g with basis B = {x,y,...}, consider
the following diagram:

A
Q = U (Bya) —Z— Ui (9) ____ Uiy (D, 0)

T O(xy...: ~)( j@(yxm: -) T@(ylxp..@yzxz“.: -)
A
S z SB_____S(B1,B)
SWry

Hence Z, SW,,, m, A, (and likewise S and 6) are morphisms
in the completion of the monoidal category ¥ whose obje-
cts are finite sets B and whose morphisms are morg(B, B) =
Homg (S(B) — S(B’)) = S(B*,B’) (by convention, x* &,
y* = n, etc.). Ergo we need to consolidate (at least parts of)
said completion.

Aside. “Consolidate” means “give a finite name to an infini-
te object, and figure out how to sufficiently manipulate such
finite names”. E.g., solving f” = —f we encounter and set

— 1)k 2k — 1)k (2k+1 .
Z% ~> COS X, Z% ~> sinx, and then cos®x +
sin? x = 1 and sin(x + y) = sin xcos y + cos xsin y.

The Composition Law. If

SBy) —L— SB)) —, SBy)
1feQl[{oi.z1] 12€Ql[{1 .22k ]l
then ‘(f/) = "¢ ) = (ela, -, f)
21=
Examples. ,

1. The 1-variable identity map 7: S(z) — S(z) is given by

I, = @¥ and the n-variable one by I,, = @¥41**nln,

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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2. The “z; — z; variable rename map 0';.: S(zi) — S(zj) be-
comes ’o-j. = @%%, and it’s easy to rename several variables
simultaneously.

3. The “archetypal multiplication map mj(j 1 S, zj) — S
has 'm = %+,

4. The “archetypal coproduct Aj.k: S(zi) — S(zj,zx)”, given by
Zi—>zj+zkorAz=z® 1+ 1 ®z has 'A = @4,

5. R-matrices tend to have terms of the form @Zy " eU,®@U,.
The “baby R-matrix” is ‘R = e™* € S(y, x).

Proposition. If F: S(B) — S(B’) is linear and “continuous”,

then 'F = exp (Zz,-eB {iZi) JF.

The Heisenberg Example. The “Weyl form of the canonical

commutation relations” states that if [y, x] = ¢ and ¢ is central,

then ef*e™ = e™ef*e . Thus with

Oxy
SWay CS(I, ¥, X) Uy, x)
Oyx

we have 'SW,, = @ &gt
The Zipping Issue (be-
tween unbound and

bound lies half-zipped). w @

Zipping. If P(¢/,z;) is a polynomial, or whenever otherwise
convergent, set

(P@.20) ) = P(0)|, -

(E.g., if P = 3 apu"Z" then (P); = X nlay,).
The Zipping / Contraction Theorem. If P has a finite {-degree
and the y’s and the ¢’s are “small” then

- pheEtyi - 4y, D@ Gt
(PG he 00 = (PG + yi e )
(proof: replace y; — #y; and test at z = O and at J;), and
<P(Zi §j)ec+’7iz"+yf§j+"§z"5j>
@hH
_ ~ ~k TN €T G @ yi)
= det(§) (P} (zx + y), e K ><<f)
where g is the inverse matrix of 1 — g: (6;. — q;)quC = 6;; (proof:
replace ¢, — fig'; and test at 7i = 0 and at J).

Implementation. wef/ZipBindDemo
K& /: K&; ,j :=1If[1===7,1,0];

{Z*: x*, y*} ={&, &, n}; {gﬁx £*, 77*} ={z, X, ¥};

(u_; )* := (U")i;

Zip, [P_] :=P;

Zipiy o 3[P_1 :=
(Expand [P // Zipsy] /- . &% 0 8(*,a)f) /. &* > @
Zipiey [(ag®+8+3) (2°e*+72) +99b]
7+720a+99b
Zipe, [E6 1 e
a’b®>+9a?b?c+18abc?+6c?
(* E[Q,P] means e%% x)
E /: Zipgs 1ist@E[Q_, P_] :=
Module[{;‘, z, zs, ¢, ys, ns, qt, zrule, Q1, Q2},
zs = Table[Z*, {&, ¢5}1;
c=0Q /. Alternativesee (s |Jzs) -» 0;
ys = Table[8¢ (Q /. Alternatives @@ zs -» @) , {&, £5}1;
ns = Table[8, (Q /. Alternatives @@ s - ©), {z, zs}];
qt = Inverse@Table [K&,, - - 8,,-0, {&, &5}, {z, z5}];
zrule = Thread[zs » qt. (zs +ys) ];
Ql =c+ns.zs /. zrule;
Q2 = Q1 /. Alternatives @e zs -» 0;
Simplify /@ E[Q2, Det[qt] e ¥ Zip. [e® (P /. zrule)]] |;

ax+by+cxy]

Eh = E [h iiam ivg Xi €55 ifi [X1, X2, X3] 51]}
i

is13-1
El=Eh /. h->1
E[a11 X1 1 + @21 X2 €1 + @31 X3 1 + A12 X1 &2 +
Q22 Xz &2 + @32 X3 £2 + @13 X1 €3 + A3 X2 £3 + A33 X3 €3,
&1 f1[X1, X2, X3] + &2 F2[X1, X2, X3] + &3 F3[X1, X2, X3]]
Short[lhs = Zips, ¢, @E1l, 5]
E{( (@13 ((-1+az2) @31 - @ @s2) +ai2 (-az3 a@z1 + az asz) +

(=1 +a11) (azzas2 - (-1+a) as)) X3&3) /
(=1 +ai2az -au1 (-1+az) +azx),
<<17>> + az; <<1l>>

(-1+apax -an (-1+ax) +ax)?
lhs == Zip(¢,,@Zip s, @EL == Zip((,,@Zip ¢, @E1
True
Short [
1lhs = Normal[Eh /. E[Q , P ] = Series[PeQ, {h, o, 3}]] /7
Zip(ey, 605 5]
haiz &3 F1[0, ©, x3] + 2h* a3 a13 &3 1[0, 0, x3] +
3h®a}; a13 3 1[0, 0, x3] +2h% a1, a13 821 £3 F1(0, 0, x3] +
h? a;3a2 E3F1(0, 0, X3] + <<337>> +

1 1
s h? a3, x3 &5 3399 [0, 0, x3] + > h3a, as; x3 £, 329 [0, 0, x3] +

% h*ad; 3 £2,>2% [0, 8, x3] + % h* a3 £, %% [0, 0, x3]
rhs =
Normal[Zip s ,¢,3@Eh /. E[Q_, P_] > Series[Pe?, {h, @, 3}]];
Simplify[lhs == rhs]
True
E/:E[Ql , Pl 1E[Q2 , P2 ] :=E[Q1+Q2, P1xP2];
Bindys 1ist[L_E, R_E] := Module[{n, hidegs, hidezs},
hidefs = Table[{S[1i]] » Lreis {1, Length@ls}];
hidezs = Table[ZS[i]* - Znei, {1, Length@ s} ];
ZiP e/ pidees [ (L /. hidezs) (R /. hideZs)] 1;
Bind g [E[£ (X1 +X2), 1], E[&2 (X2 +X3), 1]]
E[E (X1 + X2 +X3), 1]
Bind gy [E[ (£2 + £3) X2, 1], E[ (&1 + &2) X, 1]1]
E[X (§1+ &2+ &E3), 1]
The 2D Lie Algebra. Clever people know™ that if [a, x] = yx
then ef*e?® = e*@e® "¢, Ergo with

OHX
SWax CS(CI, X) U(a, x)
@xa

we have '‘SW,, = e¥@re77¢x,
+ Indeed xa = (a — y)x thus xa" = (a — y)"x thus xe® = @@ Vx = e 7%e%x
thus X" = (e 7?)"x" thus e¥*e = e™e® "¢*,
The Real Thing. In QU/(€* = 0) over Q[A] using the yax
order, 7 = ™, T = T~!, A = &, and A = A~', we have
'Ri; = efOixi—tiaily) (1 + €h (a,-aj/y = yhzyl.zxi/él))
in S(B;, Bj), and in S(B7, B;, B) we have
i = @@ +@)atnaé A=T) i+ Fa+tE)x+m+mADY (1 4€1,,).
where A, = 2am&T+iyn3el (3T2—4T+1) /h—SymE 3T - DxAy
—Iyp& BT — Dy A +ymé xyh A A,.  Similar formulas delight us
for ’A and 'S .
A generic morphism.
L: Q: X X X P: X a X
t
>K
3 &

\ﬁy
[e3 ﬁs
@
3 3 &

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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Implementation.

QZipys rist,simp @E[L_, Q_, P_] :=
Module[{(Z, z, zs, c, ys, ns, qt, zrule, Q1, Q2},
zs = Table[Z*, (&, ¢5}];
c=0Q/.Alternatives @e (s |Jzs) - 0;
ys = Table[d. (Q /. Alternatives @@ zs —» 0), {Z, £5}1;
ns = Table[d, (Q /. Alternatives @@ ¢s » 9), {z, zs}];
qt = Inverse@Table[KS;, .+ - 9,,:0, {&, &5}, {z, 25}];

LZipys rist,simp @E[L_, Q_, P_] :i=

Module[{Z, 2z, zs, ¢, ys, ns, 1t, zrule, L1, L2, Q1, Q2},
zs = Table[Z*, (&, &5}];
c=L/.Alternativesee (¢5Jzs) » 0;
ys = Table[d: (L /. Alternatives @@ zs » 0), {&, ¢5}];
ns = Table[&, (L /. Alternatives @@ s » @), {z, z5}];
1t = Inverse@Table[KS,, -+ - 8.,-L, {&, &5}, {z, 25}];
zrule = Thread[zs -» 1t. (zs +ys)]1;
L2 = (L1 =c+ns.zs /. zrule) /. Alternatives @@ zs - 0;
Q2= (Q1=0Q/. T2t /. zrule) /. Alternatives @@ zs -» 0;

wef/SL2Portfolio

Bind [L_, R_] :=LR;
Bind(i; }[L_E, R_E] := Module[{n},
Times [
L/.Table[(v:T|t]|a|X]|y¥)i- Vieis {i, {i5}}],
R/.Table[(v:z|a|&|n)i= Vieis {i, {is}}]
1 // LZipriatteneTable[(cneisanei)s {1, {is}}] 77/

zrule = Thread[zs -» qt. (zs +ys)]; simp /@

Q2= (Q1l=c+ns.zs /. zrule) /. Alternatives @@ zs -» 0;
simp /@ E[L, Q2, Det[qt] e ® Zip [e® (P /. zrule)]] |;

QZipss rise = QZipss,crs LZipys rise 2= LZipes,crs

A Partial To Do List.

e Complete all “docility” arguments by identifying a “contai-
ned” docile substructure.

e Understand denominators and get rid of them.

See if much can be gained by including P in the exponential:
®L+QP ~ ®L+Q+P?

Clean the program and make it efficient.

Run it for all small knots and links, at k = 2, 3.

Understand the centre and figure out how to read the output.
Execute the Drinfel’d double procedule at E-level (and thus
get rid of DeclareAlgebra and all that is around it!).
Extend to s/3 and beyond.

e Do everything with Zip and Bind as the fundamentals, wi-
thout ever referring back to (quantized) Lie algebras.
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The Complete Implementation. wef/SL2Portfolio
An even fuller implementation is at wef/Fulllmp.
Initialization / Utilities
$p = 2; $k =1; $U =QU; $E := {$k, $p};
$trim := {#°— /; p>3$p->0, € /; k> $k > 0};
an = e”°%;
T2t = {T’;—’:' > PRt TP-- ep“};
£2T = {EC*' ti +b_. .o Tg/h eb, @t t+b_. . Tc/n eb, e oo eExpand@&};
SetAttributes [SS, HoldAll];
SS[& , op_] := Collect[
Normal@Series[If[$p >0, &, & /. T2t], {h, O, $p}]1,
h, op];
SS[& ] :=SS[&, Together];
Simp[& , op ] := Collect[&, _CU | _QU, op];
Simp[&£ ] := Simp[&, SS[#, Expand] &];
K& /: K&; ,j :=1If[1===7,1,0];

c_Integery ipteger := € +0[e]®*?;

E[L2, 02, Det[lt] e™*"%*
Zipy [@*® (P /. T2t /. zrule)]] //. t2T];

QZiPriatteneTable | (£neirvnesds {1, {is}}] 13

B, 1ist :=Bind,; Bis = Bind(‘»c);
Bind[& E] := &;
Bind[Ls__, ¢&s List, R_] := Bind. [Bind[Ls], R];

e Prove a genus bound and a Seifert formula.

e Obtain “Gauss-Gassner formulas” (wef3/NCSU).

e Relate with Melvin-Morton-Rozansky and with Rozansky-
Overbay.

e Understand the braid group representations that arise.

Find a topological interpretation. The Garoufalidis-Rozansky

“loop expansion” [GR]?

Figure out the action of the Cartan automorphism.

Disprove the ribbon-slice conjecture!

Figure out the action of the Weyl group.

Do everything at the “arrow diagram” level of finite-type i-

nvariants of (rotational) virtual tangles.

What else can you do with the “solvable approximations”?

e And with the “Gaussian zip and bind” technology?

[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Com-
mun. Math. Phys. 169 (1995) 501-520.

[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial,
University of North Carolina PhD thesis, wef/Ov.

[Qu] C. Quesne, Jackson’s q-Exponential as the Exponential of a Series, ar-
Xiv:math-ph/0305003.

[Rol] L. Rozansky, A contribution of the trivial flat connection to the Jones
polynomial and Witten’s invariant of 3d manifolds, I, Comm. Math. Phys.
175-2 (1996) 275-296, arXiv:hep-th/9401061.

[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the
Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math.
134-1 (1998) 1-31, arXiv:q-alg/9604005.

[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationa-
lity Conjecture, arXiv:math/0201139.

[Vo]l H. Vo, Alexander Invariants of Tangles via Expansions, University of
Toronto Ph.D. thesis, in preparation.

[Za] D. Zagier, The Dilogarithm Function, in Cartier, Moussa, Julia, and Va-
nhove (eds) Frontiers in Number Theory, Physics, and Geometry II. Sprin-
ger, Berlin, Heidelberg, and wef3/Za.

CF[& ] := ExpandDenominatore
ExpandNumeratore
Together[Expand[&] /1. @& e /. & = el ];
Unprotect[SeriesData];
SeriesData /: CF[sd _SeriesData] := MapAt[CF, sd, 3];
SeriesData /: Expand[sd SeriesData] :=
MapAt [Expand, sd, 3];
SeriesData /: Simplify[sd SeriesDatal]
MapAt [Simplify, sd, 3];
SeriesData /: Together[sd SeriesDatal]
MapAt [Together, sd, 3];
SeriesData /: Collect[sd SeriesData, specs ] :=
MapAt [Collect[#, specs] &, sd, 3];
Protect[SeriesData];

DeclareAlgebra

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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Unprotect [NonCommutativeMultiply];
Attributes [NonCommutativeMultiply] = {};
(NCM = NonCommutativeMultiply) [x ] := x;
NCM[x_, Vv , z ] = (X*%xY) **x Z;
Oxx _=_%%x0=0;
(X_Plus) *xy_ := (#**xy) &/@x;
X_ %% (V_Plus) := (x*%x #7) & /@y;
B[x_,Xx_]1=0; B[X_,Y ] = X**xy -y *%X;
B[X_: v se_]:= B[x, Vv, el = B[x, v1s
DeclareAlgebra[U_Symbol, opts__Rule] :=
Module[{gp, sr, g, cp, M, CE, k =@,
gs = Generators /. {opts},
cs = Centrals /. {opts} /. Centrals -» {}},
(#y = Uer) &/@gs;
gp = Alternativese@@gs; gp =gp | gp_; (* gens =)
sr = FlatteneTable[{g » ++k, gi - {i, k}}, {8, 85}1;
(* sorting - =*)
cp = Alternativese@cs; (+ cents =)
SetAttributes[M, HoldRest]; M[@, _] = 0;
M[a_, x_] :=ax;
CE[& ] := Collect[&, U, Expand] /. $trim;
Ui [6]1:=8/.{t:cpmti, u U (# & /@u};
Ui [NCM[]] = Ue{} =1, = U[];
B[Ue (x_): , Ue(y_)i ] :=U;@eB[Uex, Uey];
BlUe(x_): ,Ue(y_); 1 /5 i=1=7 := @5
B[Uey , Uex_ ] :=CE[-B[Uex, Uey]];
X_ %% (c_.1y) :=CE[cx]; (c_.1y) »*x_ :=CE[cXx];
(a_. ULxx___, x_1) #* (b_. ULly_, yy___1) :=
If[OrderedQ[{x, v} /. srl,
CE@M[ab /. $trim, U[xx, x, ¥, yy11,
U@xX **
CE@M[ab /. $trim, Uy »x» U@x + B[U@x, U@y, $E]] **
veyy];
ve{c_.x* (L:gp)"-, r___} /; FreeQ[c, gp] :=
CE[c UeTable[L, {n}] »*xU@{r}l;
ve{c_ .»L:gp,r___} := CE[cU[L] »*»U@{r}];
ve{c_, r___} /; FreeQ[c, gp] := CE[cU@{r}];
ve{lL_Plus, r___} := CE[U@{#, r}& /@ L];
ve{lL_,r___} := Ue{Expand[L], r};
U[&_NonCommutativeMultiply] :=U /@ &;
Oy[specs___, poly_]1 := Module[{sp, null, vs, us},

sp = Replace[{specs}, L_List > Ly1, {1}1;
vs = Joinee (First /@ sp);

us =Joinee@ (sp /. L_s =» (L/.x_ i »Xxs5));
CE[Total[

CoefficientRules[poly, vs] /. (p_ - c_) = cUe (us’)

11 /7« X_pui1 = X135
oulspecs___, E[L_, Q_, P_1] :=
ou[specs, SS@Normal [P e“q] ]_;
Ors___[C_.%u_U] :=
(c /. (t:cp); = tj/.(rsy) U[List@@ (u /. v_j = Vi (rs3) 15
mj L. [C_.*xu_U] :=
CE[((c /. (t:cp); - ty) DeleteCases[u, _jr]) **
Uee Cases[u, w_; > W] *x U@@ Cases [u, _r]];
U /: c_.xu_Uxv_U := CE[CU**V];
Si [c_.*u_U] :=
CE[((c /. Si[U, Centrals]) DeleteCases[u, _i]) *=*
U; [NCM @@ Reverse@Cases [u, x_; » S@U@x]]1];
Ai 45,k [C_.*u_U] :=
CE[((c /. bisj,r[U, Centrals]) DeleteCases[u, _i]) **
(NCM @e Cases [u, x_; = 01,5,2-r@A@U@xX] /.
NCM[] - U[1) 15 ]

DeclareMorphism
DeclareMorphism[m_, U - V_, ongs_List, oncs_List: {}] :=
Replace[ongs, {(g_ - img_) = (m[U[g]] = img),
(g_ = img_) » (m[U[g]] :=img /. $trim)}, {1}];
m[1ly] = 1v;
m[U[g_:_ 11 := Vi[m[Ueg]];
m[U[vs__1] := NCMee (m/@U /@ {vs});
m[&_ 1 := Simp[& /. oncs /. u_ Us>»m[ull /. $trim; )
Meta-Operations
ors __[&_Plus] := oqs /@55
m; ,; = Identity; m; .. [@] = ©;
m; ., [& Plus] := Simp[mj,. /@ &];
Mis i ,j -k [E] i=mje@mis ;@55
Si [& Plus] := Simp[S; /@ &];
Ais  [& Plus] := Simp[Ais /@ &];
Implementing CU = Z(sl¥*)

DeclareAlgebra[CU, Generators » {y, a, x}, Centrals -» {t}];

B[acus Ycul = =¥ Ycus B[Xcus acul = -¥ Xcus
B[Xcus Yeul = 2€acy - t 1cys
(S@ycy = -Ycu; S@acy = —acy; S@Xcy = -Xcus)

Si [CU, Centrals] = {t; » -t;};

A@ycy = CU@y; + CURyY,;; A@acy = CU@a; + CUe@a,;
A@Xcy = CU@X; + CU@X;;

Ai L5 ,r [CU, Centrals] = {tj » tj + tk};

Implementing QU = U, (sl5€)
DeclareAlgebra[QU, Generators - {y, a, x},
Centrals » {t, T}];
B[agus Youl = =¥ You; B[Xqu, aqu]l = -¥ Quex;
B[Xqu> Youl :=SS[qn - 1] QUe{y, x} +
O [{a}, SS[(1-Te?°?") /a]];
(Seyqu := 0qu[{a, ¥y}, SS[-T*e"*?y]]; Seaq = -aw;
Sexq := Oqu[{a, x}, SS[-e"?x]];)
S: [QU, Centrals] = {ti > -t;, Ti->Ti'};
A@Yqu := Oqu[{Y1s @1}1s {Y2}2s SS[y1+ Tie ¢ y,]];
A@ag = QU@a; + QUea,;
A@Xqu := Oqu[{a1, Xa}tas {Xa}as SS[x1+ e x,]];
Ai L5 ,r [QU, Centrals] = {tj » t5 + tx, Ti » T5 Tk};

The representation p

P@Yycy = p@Yq = (: g);p@acu=9@aqu= (Y 6);

1930 e (2 e ),
P@Xcy (0 g)’ P@Xqu (] ’
p[e™] :=MatrixExp[p[£]11];
ple] :=
(5/.T2t/.t->‘t€ /-
(U:CU | QuU)[u_

tSwW

Goal. In either U, compute F = e~'M e e e~%*. First compute

1> Fold[pot, (1 °),p/@U/@{u}])

o 1

G = e ye %, a finite sum. Now F satisfies the ODE
0pF = 8,(e~ @1°) = —yF + FG with initial conditions F(n=0) = 1. So

we set it up and solve:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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SWyy [U_, RR_] :=
SWyy [U, RR] = Block[{$U = U, $k = Rk, $p = kk},
Module[{G, F, fs, f, bs, e, b, es},

G = simp[Table[&"“ /kt, (k, @, $k+1}].
NestList[Simp[B[xy, #]] & yu, $k+1]1];

fs = FlatteneTable[f;,i,j,c[n], {1, @, $k}, {i, @, 1},
(j) 9) l}) {kJ e) 1}];

F=fs. (bs =fs /. fi_,i ,5 ,k [N] > et U@{yi, a’, Xk});

es = Flatten[Table[Coefficient[e, b] == O,
{e, {F-1y/.n->0, FxxG-y,*xF -0,F}},

{b, bs}11;
F=F /.DSolve[es, fs, n][1];
E[O,

Ex+ny+ (U /. {CU>-tné&, QU n&(1-T) /Aa}),
F+0@y /. {e- »>1, U-> Times}
1 /7. (vin|&€|t|Tlyla]|Xx)>vy
115
tSWyy ,i ,5 +k =
SWyy [$U, $k]1 /. {12 Eis ma->nj, (Vit|T|y|a]|Xx)s->Ve};
tSWya,i ,j -k = E[ajar, @ ¥% & Xk, 113
tSWay,i ,j -k = E[a; ar, @ Y% n;ye, 1];
Exponentials as needed.
Task. Define Expy,,[¢, Pl which computes %9 to €Xin the algebra
U;, where £ is a scalar, X is x; or y;, and P is an e-dependent near-
docile element, giving the answer in E-form. Should satisfy
U@Expy, L&, Pl == Sy[eé*, x> O(P)].
Methodology. If Py := Pezo and &4 %P) = Qe F(¢)), then F(§=0) =1
and we have:
O(e4Po(Po F(E) +8¢F) = O8¢50 F()) = .
650(65"0 ,_-(";)) — agefw’) = e5xP) O(P) = @(efPo F(§)) O(P)
This is an ODE for F. Setting inductively F = Fy_; + € ¢ we find that
Fo =1 and solve for ¢.
(* Bug: The first line is valid only if 0 (efe)==e®®e). «)
(* Bug: & must be a symbol. =x)
Expy ; ,e[<_, P_] := Module[{LQ = NormaleP /. e - 0},
E[SLQ/. (X]|y)i>0, £LQ/. (t]a);>0,1]];
Expy , ,r [£., P_] :=Block[{$U = U, $k = k},
Module[{Pa, 0, ¢s, F, j, rhs, ato, atg},
PO = NormaleP /. € -» 0;
¢s = Flatten@Table[¢;1,42,53[<], {12, O, R},
{j1, 0, 2k +1-3j2}, {j3, 0, 2R +1-3j2-3j1}];
F e Nor‘mal@Last@Expui,k_l[f, Pl +
e ps. (qJS /. 0js [£] > Times @@ {yi, ai, xi}{js})i
rhs =
Normale
Laste
mi, i [E[£PO /. (X|Yy); >0, £PO /. (t]|a); >0, F+0,]
m;,;@E[0, O, P+0,]];
ate = (#==0) & /@
Flattene@eCoefficientList[F-1 /. £ 50, {yi, ai, Xi}1;
até = (#:==0) & /@
FlatteneCoefficientList[ (8-F) + POF - rhs,
{yi, @i, Xi}1;
E[£PO /. (X|y); >0, £PO /. (t|a); >0, F+0,] /.
DSolve [And @@ (at@ | atE), ¢s, £101] |]

Zip and Bind

E/:E[L1_,Q1 ,P1_]=E[L2 ,Q2_,P2 ] :=
CF[L1 ==L2] ACF[Q1 == Q2] ACF[Normal[P1 - P2] == O] ;
E/:E[L1_,Q1_,Pl_]E[L2_,Q2 ,P2 ] :=
E[L1I+L2, Q1 +Q2, P1%xP2];
{t*, y*, a*, x*, z"} = {t, n, a, §, E};
{t*, n*s a*, §, "} = {t, ¥y, a, x, z};
(Uu_i )* = (U") s
Zip [P_] :=P;
Zipe e y[P_1 :=
(Expand [P // Zipisy1 /- f_- & 2 0(ex,a)f) /. &* > @
QZip implements the “Q-level zips” on E(L, Q, P) = Pe**?. Such
zips regard the L variables as scalars.
QZip;‘siList,simpi@E[L_: Q_: P_] =
Module[{Z, z, zs, ¢, ys, ns, qt, zrule, Q1, Q2},
zs = Table[Z™, {&, 5}
c=0Q /. Alternativesee (s |Jzs) -» 0;
ys = Table[d, (Q /. Alternatives @@ zs -» @), {&, &5}1];
ns = Table[d, (Q /. Alternativesee 25 -» 0), {z, zs}];
qt = Inverse@Table [KS,, - - 8,0, {&, &5}, {2z, 25}1];
zrule = Thread[zs » qt. (zs +ys) ];
Q2= (QL=c+ns.zs /. zrule) /. Alternatives @@ zs - 0;
simp /@ E[L, Q2, Det[qt] e % Zip. [e® (P /. zrule)]] |;
QZipss rist 1= QZipss,crs
LZip implements the “L-level zips” on E(L, Q, P) = Pe**?. Such zips
regard all of Pe? as a single”P”. Here the z’s are t and a and the {’s
aretanda.
LZip;s_List,simp_@IE[L_) Q. ,P1 :=
Module[{g, z, zs, c, ys, ns, 1t, zrule, L1, L2, Q1, Q2},
zs = Table[Z*, {&, ¢5}1;
c =1L /. Alternativesee (s |Jzs) -» 0;
ys = Table[d¢ (L /. Alternatives @@ zs -» @), {£, £5}1];
ns = Table[d, (L /. Alternatives @e s - 9), {z, zs}];
1t = Inverse@Table [KS&,, -+ - 9;,-L, {&, &5}, {z, z5}];
zrule = Thread[zs » 1t. (zs +ys) ];
L2 = (L1 =c+ns.zs /. zrule) /. Alternatives @@ zs -» 0;
Q2= (Q1L=Q /. T2t /. zrule) /. Alternatives @@ zs - 0;
simp /@
E[L2, Q2, Det[1t] e "*"%
Zipy[e*% (P /. T2t /. zrule)]] 7/. t2T];
LZip s pist ¢= LZipss,crs
Bindg [L_, R_] :=LR;
Bind(is_}[L_E, R_E] := Module[{n},

Times [
L/.Table[(v:T|t|a]|Xx]|y)i—>Vneis {i, {i5}}],
R/.Table[(v:t|a]| &]|n)i—> Viei, {i, {i5}}]
1 // LZipriattenetable[(z q;isaneits{i{is}}] /7

QZipriatteneTable[(£naisvneids (1»{is}}] 13

B, 1ist :=Bind;; Bis  :=Bind(ig};
Bind[& E] := &
Bind[Ls , &s List, R ] := Bindu [Bind[Ls], R];

Tensorial Representations
tn =t =E[0, O, 1+04];
tm; ,; ,r = Module[{tk},
E[(Ti+Tj) the+aidr+ajar, Ni Yr + §5 Xk, 1]
(tSWxy,i,jotk /7« {tek > trs Tk = Trs Yik > @7 %1y,
Atk > Ars Xtk > @ ¥ Xp}) 15

m; ,p [& E] i= &~Bj p~tmj, p ks

tmy, 2,3

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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E|lasog +azax +ts (t1 + T2),

(1-T3) n2&1

ysni+e " ysny + e T2 x3 &1+ -

+ X3 E2,

1
1v o mé (8hasTs+4e ™™ 2y h?x3y;+2e " yhysn; -

6e " yhTsysn+2e "2 yhx3& -6e "2 yhTyxs &+
YN2E1-4yTama E1+3yTin&1) e +0[e]?
S[U , kk_] :=S[U, kk] = Module[ {OE},

OE = m3,2,151 [EXPquy,$k [17, S1[QULY1]] /. QU - Times]
EXPqu,,sk [@s S2[QU[a2]] /. QU -» Times]
EXPous,sk [€5 S3[QU[X3]1] /. QU -» Times]];

E[-t; ts + OE[1], OE[2], OEM37] /.

{n->m, a0, £ &111;

tSi :=S[$U, $k] /. {(v:iT |n|a]| &)1~ Vi,
(vit|Tlyl|a]|x)1->Vi};

tS;

]E{—alotl—tl T1,

e’ hyim-e"™ hTiXi&1+e"™ &1 -e’™ 1 Timé&
ATy ’

1+

1
4nT?
4e"%1 12 a T% X181 -4 yhTin&1+8e” ™ ha;Ting &1+
4e 1y hTiN1 &1-4e® My Tixay1 i &1+6e>7 ™y
hyini&1-2e*" My hTiyini &1 -2y B2 T X] &1 +
6?7 My nTixym &l -2 " My hTixgni &1 -3e?" 1 ynisi+
4e2 1y Tint &l -e? 1y Tin&l) e+ 0[e)?]
A[U_, Rk_] := A[U, kR] = Module[ {OE},
OE = Block[{$k = kk, $p = Rk + 1},
my,3,5,1@
my 4,652@Times[ (+ Warning:
wrong unless $p>$k+1!
ReplacePart[1 -» 0] @
EXPquy, sk [775 £151,2[QU[Y1]1] /. QU -» Times],
ReplacePart[2 -» 9] @
EXPqus, sk [@s A3.3,4[QU[a3z]] /. QU —» Times],
ReplacePart[1 -» 0] @
EXPqus, sk [€5 A545,6 [QU[X5]] /. QU —» Times]
1 /7. {n>m, a»o1, §-&1}1;
E[zy (t1+t2) +ai (a1 +az), OE[2], OE[31111];
tAi__.j_,k_ S
A[$U, $k] /. {(v:iT|n|a]| &)1 Vi,
(vit|Tlyla|Xx)s>Vj, (vit|T|y]|a]|Xx)z—>Ve};

(4ev™ YA Tiyim-4e’ ™ n?ayTiyin -2e* " yn?ying -

*)

tA1,1,2

E{(alJraz) o1+ (ty+1t2) Ta, Yana +Ta Y21+ Xy &1+ X2 E1,
1
1+z (-2haiTiy,m+vhTiyiyani-2harxa E1+ v h Xy X2 £7) € +
ore1?|

The Faddeev-Quesne formula:
kel (1 _ gy 3 x3

==eA[Z

eq ,r_ [Xx_] . -
o 23 (-a)

]; €q [x_1 := eq,3k [X]

R[QU, kk_] :=

a; tp

h
R[QU, kR] = E['T’ BX2y1,

Series [en ¥ ltiaz-nyix
(e”®22 eqy, ke [B Y1 X2] /. by » ¥ (ea1-t1)),
{e, @, kr}]] 5
tRi ,; :=

R[$U, $k] /. {(v:t | T|y|a]|Xx)1-> Vi,
(vit|Tlyl]a]|Xx);->Vj};

tR; ,; :=tRi,j = tRi,;j~B;~tS;;
{tR1,2, TRy,2}
hasty haja; 1
{E[_—Jhxzyl)l‘*'(—__YhBX%y§)e+o[e]2])
Y 4
hayt hx 1
]E{ 2 1) B 2y1’ 14 Z
Y T1 4y T3
(-4naja;Ti-4yhn*aiTixayr -4y h?a; Tixay1 - 3v2 2% X3 yi)

e+0[e]2]}

tC is the counterclockwise spinner; tCis its inverse.
tC; :=E[0, 0, TH2e™ %" +04];
T :=E[0, 0, Ti? e +04];
Block [ {$k = 3}, {tC1, TG}
{]E[O, e,
1 1
VT —haiVTr e+ Ehz a2 /Ty €2 - Z (n?al V1) e3+0[e]4],
2 52 2 3 43 -3
1 . haze . h*ase . h” a3 e +0[e]4]}
VT2 VT2 2T, 6T,
Kink [QU, kRR_] :
Kink [QU, kk] =
BlOCk[{$k = Rk}, (tR1,3 'Ez) ~B1,2~tm1,z-.1~B1,3~tm1,3-.1]S
tKink; :=Kink[$U, $k] /. {(v:t | T |y |a|Xx);>Vi};
Kink [QU, kR_] :
Kink [QU, kk]
BlOCk[{$k = Rk}, (ﬁ1,3 tcz) ~B1,2~tm1,2-.1~B1,3~tm1,3-.1]S
tKink; :=Kink[$U, $k] /. {(v:t | T |y |a|Xx)s >V}

]E[O, e,

Alternative Algorithms
Aait,r_[CU] := If[k = @, 1, Module|[{eq, d, b, c, so},
eq = p@ef*W pee’YU == pee Y, pee” (t1cu - 2eacu) .p@e’Xcu;
{so} = Solve[Thread[Flatten /@ eq], {d, b, c}] /.
Cel - 0;
Series[e-ny-g‘xu—,§t+ct+dy—25ca+bx /. so, {e, 0, k}]]]}

The Trefoil
Block [ {$k = 1},
Z = tRy,s tRe,2 tR3,7 TC4 tKinkg tKinke tKinkie;
DO[Z = Z~By,k~tmy,iu1, (K, 2, 10}]; Z]

T
((-2ha1Ta-yhATi+2ha1Ti+2yhTi-3yhTi-2hay Tt +

2yhTi+2har T3 -2y Tixay:1 -2y h* Tixaya) €) /

(1-3T1+6T3-7T7+6T4-3T5+7T5) +0[e)?]

]E[@, o,

. n,  Alexander’s w® genus / ribbon . ny Alexander’s w® genus / ribbon
diagram Today’s / Rozansky’s p  unknotting number / diagram Today’s / Rozansky’s pi  unknotting number /

@ oy 1 0/v 3¢ -1 1/x%
0 0/ t 1/X
@ 49 3¢ 1/% 52—+l 2/%
0 1/ 21% + 3t 2/X
@ 54 20-3 1/X @ 64 5-21 1/v
S5t—4 1/X t—4 1/X

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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Dror Bar-Natan: Talks: LesDiablerets-1708:
The Dogma is Wrong fuller writeup [BV2]. More at wef/talks.

Follows Rozansky [Rol, Ro2, Ro3] and Overbay [Ov],
joint with van der Veen. Preliminary writeup [BV1],

[m]5. (=]

i

Happy Birthday Anton!
5, wef:=http://drorbn.net/1d17/

|Abstract. It has long been known that there are knot invariants
associated to semi-simple Lie algebras, and there has long been
a dogma as for how to extract them: “quantize and use repre-
sentation theory”. We present an alternative and better procedu-
re: “centrally extend, approximate by solvable, and learn how to
re-order exponentials in a universal enveloping algebra”. While
equivalent to the old invariants via a complicated process, our i-
mvariants are in practice stronger, faster to compute (poly-time vs.
exp-time), and clearly carry topological information.

Theorem ([BNG] conjectured [MM], e- 1 Moron.

lucidated [Rol]). Let J4(K) be the co- A Garoufalidis

loured Jones polynomial of K, in the d- dlmensmnal representa-

tion of sl,. Writing

(q'2 = g7")Ja(K)
g2 — gdi2

= Z am(K)d’R",
g=e"  jm>0
“below diagonal” coefficients vanish, a;,(K) =

0 if j > m, and “on diagonal” coefficients

KiW 43 Abstract (wefi/kiw). Whether or not you like the formu-
las on this page, they describe the strongest truly computable knot
invariant we know.

[Experimental Analysis (wef/Exp). Log-log plots of computation
time (sec) vs. crossing number, for all knots with up to 12 cros-
sings (mean times) and for all torus knots with up to 48 crossings:

e 10t
1000
100

10

50

20

IPower. On the 250 knots with at most 10 crossings, the pair
(w, p1) attains 250 distinct values, while (Khovanov, HOMFLY-
IPT) attains only 249 distinct values. To 11 crossings the numbers
are (802, 788, 772) and to 12 they are (2978, 2883, 2786).

Genus. Up to 12 xings, always p; is symmetric under ¢ < 1.
'With p}" denoting the positive-degree part of p;, always deg o
2g — 1, where g is the 3-genus of K (equality for 2530 knots).
This gives a lower bound on g in terms of p; (conjectural, but
undoubtedly true). This bound is often weaker than the Alexander

bound, yet for 10 of the 12-xing Alexander failures it does give

8 10 12

< [The (fake) moduli of Lie alge-

give the inverse of the Alexander polynomial:

(S0 @mm(KOR™) - w(K)(e") = 1.
“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

q' - (¢ = D*pu(K)(g*)
TG = ( Z (K (g
C_ _ € The Yang-Baxter Techmque Given an alge-
bi_ a;i ’ bra U (typically U(g) or U, 4(9)) and elements
\ R=> a®hecUsU and Cel,
by aj form
\ Z = Z CaibjakczbiajbkC.
b o Problem. Extrl;ft information from Z.

\ The Dogma. Use representation theory. In
C C  principle finite, but slow.
The Loyal Opposition. For certain algebras, work in a homomor-

phic poly-dimensional
“space of formulas”. "% (T AFs) ———= Uy )

bras on V, a quadratic variety in
(V*)®2®V is on the right. We ca-
re about slk = sl,/ (€1 = 0).

Recomposmg gl,,. Half is enough! gl, ® a,, =

DN, b, 6):

the right answer. Ribbon Knots.

' X . ample [BN]

a ribbon smgularlty a clasp singularity

€X

\ \ \ f\ l i Gompf, Schar-
HEEY A S P lemann, Tho-
i i i i T i i i i ﬂe h mpson [GST]
UedT, 1e A,
T2 — A \ \ \
SN PN

ribbon K € 77 z(K) e RC A,
[Vo]: Works with R := K(T_l(]))
ffor Alexander! ¥ At =427 — 5 -2 + 5t3 —22 -7t +13
or =50 — 181" + 33713 — 32112 + 21" + 42110 — 6277 — 81% + 16617 — 2425+

Faster is better, leaner is meaner!  108£° + 132¢* — 22613 + 1482 — 111 — 36

s S b)) = b NN - N
~ @if_f—: ~ ] by~ 8 S e
Now define gl := D(N, b, €6). Schematically, thisis [N, N] = N
[N,IN] = el and [N,\] = N\ + e\. In detail, it is
: . [xijs Xl =0 juxin — Onixj  [Vij> Yl = €0 jxyir — €01 Vx
il Nl x| DX Ykl =0 u(€6 jarxin + 6i(bi + €ai)[2 + Si>ryin)
, —0i(€0x<jxyj + Ok j(bj + €a;)[2 + Ois jyij)
I NG ai, Xl = (61 = 6u)x [bi, xjx] = €(6;j — Sir) X ji
[ai, yjrd=(6ij — 0i)Y ji [Di,yjx] =€(6ij — Our)y ju
The Main s/, Theorem. Let ¢¢ = (t,y,a,x)/([t,:] = 0, [a,x] =
i, [a,y] = =y, [x,y] = t—2€a) and let g; = a€/(e¥*1 = 0). The g-
invariant of any S -component tangle K can be written in the form

Z(K) = O (we“Q*P: Xjcs y,-a,x,), where w is a scalar (a ratio-
nal function in the variables #; and their exponentials 7; =

Ordering Symbols. O (poly | specs) plants the variables of poly in
S(@;g) on several tensor copies of U(g) according to specs. E.g.,

o (a?ylaze”xg | x3a ®y1y3a2) =@ @ ye'a € U(g) ® U(g)

This enables the description of elements of T/(g)®® using com-
mutative polynomials / power series.

where L = ] [;;tia; is a quadratic in #; and a; with integer coef-
ficients /;;, where Q = 3’ g;;y;x; is a quadratic in the variables y;
and x; with scalar coefficients g;;, and where P is a polynomial in
{€,vi, a;, x;} (with scalar coefficients) whose €?-term is of degree
at most 2d + 2 in {y;, +/a;, x;}. Furthermore, after setting #; = r and
T; = T for all i, the invariant Z(K) is poly-time computable.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1708/
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The PBW Problem.

yax-order.

Z=0(f =

In U(g%), bring Z = ya’x* - y?a’x to

In other words, find g € Z[e,1,y,a,x] such that

32,22

VIV3a1a3X1 %21 y1a1xiy2aaxz) = O(g: yax).

Solution, Part 1. In ¥(g¢) we have

X mmané = €

71 MY @1 a(Bflxethenzy(B

— ertenyeaaefx

where 1,7, @, £ are ugly functions of 71, n;, @;, &;:

log(1 — en2é1)

arza(szx

= Y‘r,n,a,fa

o 6 5o,
T=T1+72— :T|+T3+I]3§‘]+§I’]§(S]2+....
€
n=n + _etm N+ e g + ee Vn2E; +
= = ; > P 3¢
(1 — enér) -

a =a1+ay +2log(l —enpé1) = ) +an — 2emé) + ...,
e & . —an. 2
= —+H =0 P+ T mME + .

(1 —en2&1)
. . . 8
Note 1. This defines amapping D: Rn,m,a],-fl omands RT’W%:.
Proof. g€ has a 2D representation p:
t-(1 0), _(e e),
pt = 0 1)’ Py = _e 0]’

[ (1+1/€)/2 0 . . (@1
pa‘( 0 -(1-1/e)/2)"°x‘(a e)’
Simplifye {pa.px - pX.pa == pX, pa.py - py.pa = -py,

PX.pYy - py.pX = pt - 2 € pa}

{True, True, True}
It is enough to verify the desired identity in p:
ME = MatrixExp;
Simplify[
ME[z1 pt] .ME[n1pYy].ME[a1 pa] .ME[&§1 pX] .ME[T; pt].
ME[n2 py] -ME[a; pa] .ME[&; pX] ==
ME [zo pt] .ME[ne py] -ME[ag pa] .ME[Ep oX] /.
{T_e_,_t_ozll—_zrzzj;l+t1+r2, ne_,m,,%rm,
-en2é1
- %24

% > 2Log[l-enz&1] + a1+ ay, S0 T +§2}]
True
Solution, Part 2.  But now, with Dy = f(z = 8;) =

3 92 92 92 92
83,02,02 92,02 0,

1&g

Z= DfXTl,771,&1,fl,‘rzaﬂz,(lzafz|vs:() = DfYT,U,a,§|VS:0

27 Q2

=0 (Dfaa”qenye‘mef"hszo : yax) =0(g: yax) :

Expand [a{n1,3} O1a1,2) 91(£1,2) O(n2,2) Orz,2) O 62,11 EXP [

]

2att?xy?+4txPy*-16atx?y*+24a2tx?y*-16att x>yt +

(_Qﬂl—_erz&u,,t“_tz)t,,(m,,&m)y,,

e l-en2é1

(2log[l-em &l vauvar) a+ (4 &

l-en2é1
/o (zinlal€)z-0]

4a*tx?y*+16x3y°-32ax?y’+24a2x3y’-8atx®y* +at x>y’ +

2a*txy’e-8a’txyle+8x?y*c-40ax’y*e+80atx’yte-
80a’x’y*ec+40a*x?y*e-8a’x®’y*e-4a°xy’e?+8axy3e?

Note 2. Replacing f — (T, a0, & V
Dy (and likewise g — T2, 12, @2, 82) ~_

D), we find that D, = Dy X > ponentals
0]
(D*Df \L 7 A

Note 3. The two great e- Dy %
vils of mathematics are w U(g°)
non-commutativity and

non-linearity. We traded one for the other.

Note 4. We could have done similarly with e™/e7Ve®19ef1¥ =
(B‘rt+ny+cm+§x’ and with S((Erltemy@ala@‘flx), A(e‘rlternyealaefl)c)’
1—[[_521 @7l @Y pid p&ix

Fact. Rj» — exp (6,18(12 + aylaxz) (1 + Y41 €pa), where the py
are computable polynomials of a-priori bounded degrees.

Moral. We need to understand the pushforwards via maps like @
of (formally co-order) “differential operators at 0, that in them-
selves are perturbed Gaussians. This turns out to be the same
problem as “O-dimensional QFT” (except no integration is ever

needed), and if €*! = 0, it is explicitly soluble.
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dOg ‘ma (dég'me, ddg*-) The Free Dictionary, wep/TFD

n. pl. dog-mas or dog-ma-ta (-ma-ts)
1. A doctrine or a corpus of doctrines relating to matters such as morality and
faith, set forth in an authoritative manner by a religion.
2. A principle or statement of ideas, or a group of such principles or statements,
especially when considered to be authoritative or accepted uncritically: "Much
education consists in the instilling of unfounded dogmas in place of a spirit of
inquiry" (Bertrand Russell).

diagram 7 Alexander’s " genus / ribbon diagram . Alexander’s w* genus / ribbon
Today’s / Rozansky’s p{ unknotting number / Today’s / Rozansky’s p7  unknotting number /
@ 0f 1 0/v 3 -1 1/%
0 0/ t 1/X
@ 49 3¢ 1/X 5S¢ P2 —t+1 2/%
0 1/ 2 + 3¢ 2/X
@ 54 23 1/X @ 60 5-21 1/v
S5t—4 1/% t—4 1/%
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Dror Bar-Natan: Talks: Toulouse-1705:

The Dogma is Wrong

Follows Rozansky [Rol, Ro2, Ro3] and

[Ov], joint with van der Veen. More at wef/talks.

=

Thanks for the invitation! E
wef:=http://drorbn. net/Toulouse 1705/ E|

Overbay

|Abstract. It has long been known that there are knot invariants
associated to semi-simple Lie algebras, and there has long been
a dogma as for how to extract them: “quantize and use repre-
sentation theory”. We present an alternative and better procedu-
re: “centrally extend, approximate by solvable, and learn how to
re-order exponentials in a universal enveloping algebra”. While
equivalent to the old invariants via a complicated process, our i-
mvariants are in practice stronger, faster to compute (poly-time vs.
exp-time), and clearly carry topological information.

Theorem ([BNG] conjectured [MM], e- mz‘r‘t’(‘)‘r‘l

lucidated [Rol]). Let J4(K) be the co- , Garoufalidis

loured Jones polynomial of K, in the d-dimensional representa-

tion of sl,. Writing

(q'2 = g7")Ja(K)
g2 — gdi2

= Z am(K)d’R",
g=e"  jm>0
“below diagonal” coefficients vanish, a;,(K) =

0 if j > m, and “on diagonal” coefficients

KiW 43 Abstract (wefi/kiw). Whether or not you like the formu-
las on this page, they describe the strongest truly computable knot
invariant we know.

give the inverse of the Alexander polynomial:

(Zimo amm(KOR™) - w(K)(e") = 1.
“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

[Experimental Analysis (wef/Exp). Log-log plots of computation
time (sec) vs. crossing number, for all knots with up to 12 cros-
sings (mean times) and for all torus knots with up to 48 crossings:

e 10t
1000
100

10 o2,

20

IPower. On the 250 knots with at most 10 crossings, the pair
(w, p1) attains 250 distinct values, while (Khovanov, HOMFLY-
IPT) attains only 249 distinct values. To 11 crossings the numbers
are (802, 788, 772) and to 12 they are (2978, 2883, 2786).

Genus. Up to 12 xings, always p; is symmetric under ¢ < 1.
'With p}" denoting the positive-degree part of p;, always deg o
2g — 1, where g is the 3-genus of K (equality for 2530 knots).
This gives a lower bound on g in terms of p; (conjectural, but
undoubtedly true). This bound is often weaker than the Alexander

bound, yet for 10 of the 12-xing Alexander failures it does give

8 10 12

< [The (fake) moduli of Lie alge-

q' - (¢ = D*pu(K)(g*)
TG = ( Z (K (g
C_ _ C_ The Yang-Baxter Techmque Given an alge-
bi_ a;i ’ bra A (typically U(g) or ﬂq(g)) and elements
\ R=) ai®hcA®A and CeA,
by aj form
\ Z = Z CaibjakczbiajbkC.
b g Problem. Extrl;ft information from Z.

\ The Dogma. Use representation theory. In
C C  principle finite, but slow.
The Loyal Opposition. For certain algebras, work in a homomor-

phic poly-dimensional
“space of formulas”. m (> (Fs} ———= {A®} @m

bras on V, a quadratic variety in
(V*)®2®V is on the right. We ca-
re about s/ = sIS /(! = 0).

the right answer. Ribbon Knots.

| I .

a ribbon s1ngular1ty a clasp s1ngular1ty

example

Gompf, Schar-

'Why are “solvable algebras” any good? Contrary to common
beliefs, computations in semi-simple Lie algebras are just awful:

b : . -
d)] // FullSimplify // MatrixForm

'Yet in solvable algebras, exponentiation is fine and even BCH,
z = log(e*e®”), is bearable:

MatrixExp [ ( :

a ble?-e%)

HE L AL = i lemann, Tho- B ab B
A T T U ﬂ% h mpson GST) otrtxexp| (g )] /7 watrsxcorm o i ]
UeT, 1 e A, a; by - a; b,
|24 . ‘ 1l *l Matr-lexp[( 1)] .Matr-lexp[ ( )] /7
Ton N : ﬂZn \ | \ MatrixLog // PowerExpand // Simplify //
. “ W MatrixForm
-
ribbon X' € 7, Z(K) eERCA Recomposing gl,. Half is enough! gl @ a, = DN, b, 0):
[Vo]: Works ! with R := K(T_l(])) = i
ffor Alexander! M At = S 127 5 _of 4 5t3 22 71+ 13 o _H EBLL' 1 ! LL : b(\) =b: NN - N
ot = 5115 — 1871 + 33113 — 32012 4+ 211 + 42410 — 62[9 — 8% + 16617 — 24215+ i b5 il BB~ 6 N = NN
Faster is better, leaner is meaner!  108£° + 132¢* — 22613 + 1482 — 111 — 36 ) o
dog-ma | (@ogme. dogn) Now define gl := D(N, b, €6). Schematically, thisis [N, N] = N
6g'ma, dog'- st e
gtme, €69 The Free Dictionary, wef/TFD [\ N ] = eh, and [N, IN] = N + €N, In detail, it is
in. pl. dog-mas or dog-ma-ta (-ma-ta) i j
1. A doctrine or a corpus of doctrines relating to matters such as morality and leij, ex] =0 jei — Ouiex;  fij» frl = €0 jx fu — €0uifx;
faith, s‘et florth inan authoritati.ve manner by a religion. o h) e [eij, fkl] =6jk(56j<k€il + &;(h; + egi)/2 + 6i>lfil)
2.A p.r|n0|ple or staternent of ideas, or a .grolup of such prlnolple§ lor statements . —5li(65k<jekj + 5kj(hj + Egj)/z + 5k>jfkj)
especially when considered to be authoritative or accepted uncritically: "Much | j| = fji gj _ _
. R . - [gi» el =(0ij — din)eji [hi, el =€(6ij — dir)eju
education consists in the instilling of unfounded dogmas in place of a spirit of
inquiry” (Bertrand Russell). [gi> fix) = (bij = 6it) S [hi, fix] = €(6ij = 6 f

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toulouse-1705/
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The sl, Example. Let g¢ = <(h,e,l, f)/([h,-] = 0, [e,]] =
—e, [f.11 = f, e, f1 = h — 2€l) and let g; = g¢/(e*! = 0).

The Main g; Theorem. The gg-invariant of any S -component tan-
gle T can be written in the form

Z(T) = O| we+e+r: ®e,~l,~f,- ,
ieS

where w is a scalar (meaning, a rational function in the variables
h; and their exponentials #; := ), where L = Y a; jhil; is a bala-
nced quadratic in the variables /; and /; with integer coefficients,
where Q = 3 b;je; f; is a balanced quadratic in the variables e;
and f; with scalar coeflicients b;;, and where P is a polynomial in
{e, ei, I;, f;} (with scalar coefficients) whose €?-term is of degree
at most 2d + 2 in {e;, VI;, f;}. Furthermore, after setting h; = h
and t; = ¢t for all i, the invariant Z(T') is poly-time computable.

The Main g; Lemma. The following “re-ordering relations” hold:

O (e le) = O (e"*"F¢: el)  (and similarly for fI — Lf),
0 (eﬁe+(yf+é‘ef: fe) =0 (V®V(—aﬁh+ﬁe+rx.f+é‘ef)+/lk(e,e,l,f,a/,ﬁ,&) . elf) ,

with v = (1 + hé)‘1 and where Ai(€, e, 1, f, @, B,0) is some fixed
polynomial of degree at most 2k + 2 in €, e, \/7, f.a,B,0, with
scalar coefficients.
Demo Programs.
CF[&.] := Module[{vars = UnioneCases[&, e |1 |f , =]},
If[vars {}, Factor[&],
Total[CoefficientRules[&, vars] /.

(p_ - c_) = Factor[c] Times @@ (vars”)] 11;

CF[& E] :=CF/@s;

wef/Demo

Formatting

E[i,Jj ,s.] :=E[1, (-1)°1;, (-t)°e;fj,
t°ei Ligusy iosj Fi+ (-1)° 1 15+ (-t?)° e} £3/4];
E[i ,s ] := E[1,0,0, s1;];
E/:E[1,L1 ,Q1 ,P1 ]E[1,L2 ,Q2 ,P2 ] :=
E[1, L1+L2, Q1+ Q2, P1+P2];

Preparation

z1= (E[1, 11, 0] E[4, 2, -1] E[15, 5, @]
E[6, 8, -1] E[9, 16, 0] E[12, 14, -1]
E[3, -1] E[7, +1] E[10, -1] E[13, +1])

Preparing the Trefoil

E(1, -1, +1s - 1g + 111 - 134 + 136,

eq fo eg fg e12 f14
" +es fs - m + ey fi - t +eg fi6,

ezg F%

\
=1

2 2

1.2 £2 €fF 1 .22 ehfls 1202

- + =~ e e - + = e1f{ - + ~egfig+epfi1ly+
412 2 S15T5 2 2 S1T1 412 2 €9 T16 1T11 41

af212 13151441, + 6818 1015 4 @9 Fig 1o - Lag +
13 141 + 193 + glLf?_lm =11y 1ia + €15 f5 135 + 15 135 + 19 116]
DPyx b, ,y sp; [P_1Lf_1 = Differential Polynomials

Total [CoefficientRules[P, {x, y}] /. (Implementing P(8,,385)(f))
({m_, n_} »c_) »cD[f, {a, m}, {5, n}]]

sljf (x:e|f)t—»k, [E[ew_, L_,Q_ ,P_1] :=
With[{x = d1,L, = 0x,0, 9= e’ Bxp+¥ 1}, CF[
E[w, L /.11 thaxe+ (Q/. xi > 0),

@ 1 DP1,,,x;05 [P1[€"] /. {B>a/w, ¥ > rLog[t]}] ]];

le and fl Sorts

AfkR_] := ((t-1) (2(aB+6u)?-aB?) -de,l, 87 12 -
6 (1+u) (fRa®+efp?) -e} 26 (1+3 ) - The Adyog
2(a/3+26u+ekfk<52 (1+2p) +21k6u2) (fra+e,pB) -
4(1ku2+e,,f,,5(1+u)) (aB+8u)) (1+1t) /4;

Sti ej ok [E[w 5 L, Q , P 1] := fe Sorts
With[{q= ((1-t) aB+Bey+af,+se,fr) /u}, CF[
E[pw, Lyuwq+u(Q/. fi|e;»0),
ut e DP¢, 0,4, e;05 [P1 [@7] + a/4A[k]] /.u->1+(t-1)6/.
{a» o (07,0/.0j50), B> ™ (8e,0/. fi > 0),
6t afi»ejq}]]3
Mi_,j »x [Z_E] := Module[{x, z}, Elf Merges
CF[(Z 77/ S ejox 11 S1;exmx 11 St1jmx) 1+ Z_i|jix = Zk] ]

(Do[zl =21 // my,ks15 {k, 2, 16}]; z1) Rewriting the Trefoil

(-1+1) (1-t+42)2 (1-t:212)

(by merging 16 elves)

1-tet?
e[ 155, 0,0,

3
2 (1+1) (1-t42)3 e f1 2 (-1+1) (1+1) (1-6412)3 1
t4 B 4 }
Readout
[E[ b1 CF[t((P/.e_|1_|-F_->e)_tgﬁ(atw))]
@y _s _s P i=

P1 s _5 _ T -
p1[2z1] // Expand p131)
1t
t
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Today’s / Rozansky’s p7 unknotting number / Today’s / Rozansky’s p7 unknotting number /
@ 0¢ 1 0/v @) 3¢ t-1 1/X
0 0/ t 1/%
@ 4 31 1/X @ 5 P21+ 2/%
0 1/ 263 + 3t 2/%

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toulouse-1705/
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Dror Bar-Natan: Talks: McGill-1702:

What else can you do with solvable approximation

Joint with Roland van der Veen

wef:=http://drorbn.net/McGill-1702/

s? Thanks for the invitation! [=]J3

g

IAbstract. Recently, Roland van der Veen and myself found that
there are sequences of solvable Lie algebras “converging” to any
given semi-simple Lie algebra (such as sl, or sl3 or ES). Certain
computations are much easier in solvable Lie algebras; in particu-
lar, using solvable approximations we can compute in polynomial
time certain projections (originally discussed by Rozansky) of the
knot invariants arising from the Chern-Simons-Witten topologi-
cal quantum field theory. This provides us with the first strong
knot invariants that are computable for truly large knots.

But s/, and s/3 and similar algebras occur in physics (and in
mathematics) in many other places, beyond the Chern-Simons-
Witten theory. Do solvable approximations have further applica-
tions?

Chern-Simons-Witten. Given a knot y(¢) in
[R? and a metrized Lie algebra g, set Z(y) :=

Recomposing g/,. Half is enough! gl, ® a, = D(N, b, 6):
[ ‘ bt b(N)=b: @Y - ¥

b ;L b)) ~ 6: N - VoY

Now define gl .= D(N, b, €6). Schematically, thisis [N, N] = N,
[N, D] = e, and [N,N] = N\ + €. In detail, it is

~> ~>

i J
leij> exi] =0 jei — Suiexj  Lfij» fiul = €0 jufir — €61 fij
i| N ey | L€ Jul =6 (€6 ke + Sulhi + €81)/2 + 6i>1 fin)
7, ‘ —81i(€k<jer; + Oj(hj + €8,)/2 + Sk fi))
I N[ g el =@ = e [hiex] =€ = Swes

Lgi> fix]=(0ij — i) fix [hi, fix]=€(6ij — 6i) fix

f DA (Bik CS(A)PExpy(A), Ril
AQ!(R3,9)
where cs(A) = & [, tr(AdA + 24%) and 'St \
1
PExp,(A) = [_[ exp(y*A) € U = U(g), R*!
0 Cil Cil
and U(g) = (words in g)/(xy — yx = [x,y]). \/
n a favourable gauge, one may hope that this ¢
computation will localize near the crossings C . c
and the bends, and all will depend on just two bi i
quantities, /\
R:Zai(@bieﬂ@w and CeU. by aj
This was never done formally, yet R and C
can be “guessed” and all “quantum knot inva- I \
riants” arise in this way. So for the trefoil, Ko
7= CabjarChiabC. <
Z JCk J%k c \ c

i,j.k

But Z lives in U, a complicated space. How do you extract infor-
mation out of it?

Solution 1, Representation Theory. Choose a finite dimensional
representation p of g in some vector space V. By luck and the

Solvable Approximation. At € = 1 and modulo & = g, the above
is just gl,. By rescaling at € # 0, gl is independent of €. We
let glX be gl¢ regarded as an algebra over Q[e]/€*! = 0. It is the
“k-smidgen solvable approximation” of gl,,!

Recall that g is “solvable” if iterated commutators in it ultimately
vanish: g, = [g, ], 93 == [92,82], ..., 94 = 0. Equivalently, if it
is a subalgebra of some large-size N algebra.

INote. This whole process makes sense for arbitrary semi-simple
LLie algebras.

wisdom of Drinfel’d and Jimbo, p(R) € V'@ V*® V® V and
p(C) € V* ® V are computable, so Z is computable too. But in

exponential time! j

il T 11|

Solution 2, Solvable Approximation. Work directly in T/(g;), w-

Gompf, Schar-
lemann, Tho-
mpson

Why are “solvable algebras” any good? Contrary to common
beliefs, computations in semi-simple Lie algebras are just awful:

here g slg (or a similar algebra); everything is expressible
using low-degree polynomials in a small number of variables, h-
ence everything is poly-time computable!

MatrixExp[(: :)] // Fullsimplify // MatrixForm Enter

'Yet in solvable algebras, exponentiation is fine and even BCH,
z = log(e*e”), is bearable:

a__c

b (e?-eC)
MatrixExp [ ( ab ) ] // MatrixForm [ e’ ac ]
9 c c
Q e
MatrixExp [ ( a1 by ) ] MatrixExp[ ( 3 b ) ] 1/
Q0 ¢, ). 0 ¢
MatrixLog // PowerExpand // Simplify //
MatrixForm

Example 0. Take gy = slg = Q(h,e,l, f), with h central and
[f.1] = f. e, 1] = —e, [e, f] = h. In it, using normal orderings,

h—1
® ef)|€®lf)’ and,
@(eﬁe.f |fe) =0 (V®V6ef.| €f) withv = (1 + h6)_1‘

R= @(exp (hl +

[Example 1. Take R = Qlel/(e? = 0) and g; = slé = R{h,e,l, f),
with A central and [f,I] = f, [e,l] = —e, [e, f] = h — 2€l. In it,

= = =

0(e™ | fe) = O (v(1 + ev6A/2)e™? | elf), where A is
135262 2+ 3V he? [ + 82 e f + 4262 he f +4vSelf —2vSh +4l.

Question. What else can you do with solvable approximation?
Chern-Simons-Witten theory is often “solved” using ideas from
conformal field theory and using quantization of various moduli
spaces. Does it make sense to use solvable approximation there
too? Elsewhere in physics? Elsewhere in mathematics?

See Also. Talks at George Washington University [wep/gwu],
[ndiana [wef/ind], and Les Diablerets [wef3/1d], and a University
of Toronto “Algebraic Knot Theory” class [wef/akt].

IFact. Setting h; = h (for all i) and ¢ = e”, the g, invariant of any
tangle 7 can be written in the form

Z,(T)=0 (w-le”LW‘Q(l +ew™P) | X eil; f)

where L is linear, Q quadratic, and P quartic in the {e;, ;, f;} with
w and all coefficients polynomials in z. Furthermore, everything
is poly-time computable.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/McGill-1702/
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Dror Bar-Natan: Talks: GWU-1612:

On Elves and Invariants

d ] q
m

Follows Rozansky [Rol,
Overbay [Ov], joint with van der Veen.

Ro2, Ro3] and weP:=http://drorbn.net/GWU-1612/ E E

Work in Progress! Fluid! Help Needed! [m]

Abstract. Whether or not you like the formulas on this page, they
describe the strongest truly computable knot invariant we know.

Rule 5, fe Sorts. Provided k introduces no clashes, given
.. fiej... |lw; L; Q; P), decompose Q = Q. fiej+ Qrfi+ Q.+

Three steps to the computation of p;: .
p . . p p1 : Knot K
1. Preparation. Given K, results ‘

Kelf ...

| preparation
, , elf || wo; Lo; Qo; Po)
2. Rewrite rules. Make the word sim- | | rewrite rules
pler and the formulas more complica- | (elf | w; —; —; P)
ted, until the word “elf” is reached. | | readout

(long word || simple formulas).

Q write P = P(f;, e;) (with messy coeflicients), set u = 1+(t—1)6
and g = (1 — HapB + Bex + afi + dex fr)/ 1, and output

< ‘ pw; L; pewg + pQ'; >
...ekfk...

WAy + € 1P(9,, dp)(e9)
where A, is the Adyog, “a principle of order and knowledge”:
= 1( S+ 1)(Be +afY) - 8Cu+ el f2
— 2 (Bex + afe) (aff + 20 + 6*(2u + Dexfi + 201°ly)

9
a0 /w,fQe 0,
6=0y,/w

k=

3. Readout. The invariant p; is read | 01(K) = p1(w, P)

from the last formulas. :

Preparation. Draw K using a O-framed O-rotation K

planar diagram D where all crossings are poin-

ting up. Walk along D labeling features by %}?

1,...,min order: over-passes, under-passes, and /£

right-heading cups and caps (“+-cuaps”). If x is Qa\l S\é

axing, let i, and j, be the labels on its over/under /

strands, and let s, be O if it right-handed and —1

otherwise. If ¢ is a cuap, let i, be its label and s, be its sign. Set
2502 2

)

(L Q:P) = > (=) |1 Peifys (<0 eidrimiosify + bl +
x: (i,),8)
+ Z(O; 0; s-1).
c: (i,8)

This done, output {ei!; fiealo fo - - - emlmfin || 1; L; Q; P).

— 4B + o) (6(u + Dewfic + 1) — 46° 1 e filk

+(t = 1) (2B + op)* - *B?) )
elf merges, mg, are defined as compositions ~ =y 7

f,w Iex// ){xl =
e'l- el j———> ellexfxl fi—— eexl Ly fxfj
i,j,x—k
— el fi
Readout. Given {elf || w; —; —; P), output

t(P|elf—>O - tw,aﬁ)
K) = =
p1(K) (e

(w is the Alexander polynomial, L and Q are not interesting).

Experimental Analysis (weB/Exp). Log-log plots of computation
time (sec) vs. crossing number, for all knots with up to 12 cros-

In formulas, L is always Z-linear in {/;}, Q is an R-linear combina-
tion of {e;f;} where R = QI#*'1, and P is an R-linear combination

of {1, l;, lil}, eif;, eiljfi, eiejfifi)- (The key to computability!)

sings (mean times) and for all torus knots with up to 48 crossings:

20 1000

Rewrite Rules. Manipulate (word|| formulas) expressions u-
(e1l1 fi |l w; —; —; P). Output (w, P).

Rule 1, Deletions. If a letter appears in word but not in formulas,
you can delete it.

Rule 2, Merges. In word, you can replace adjacent v;v; with v
(for v € {e,l, f}) while making the same changes in formulas
(provided k creates no naming clashes). E.g.,

(cooeiej  NZy = (ooepe N Zlesej—e)-
Rule 3, le Sorts. Provided k introduces no clashes, given
(...ljej...|lw; L; Q; P), decompose L = Al; + L', Q = ae; + Q'

write P = P(e;, [;) (with messy coefficients), set g = €”Bey + vy,
and output

(. ek Nws; Ll tae; + Qs @ P, 0,) s sa /.y togt ) -
Rule 4, fl Sorts. Provided k introduces no clashes, given
(.. fil;...|lw; L; Q; P), decompose L = Al; + L', Q = afi + O,

write P = P(f;,[;) (with messy coeflicients), set ¢ = e”Bf; + vy,
and output

sing the rewrite rules below, until you come to the form .

10
100

Power. On the 250 knots with at most 10 crossings, the palr
(w, p1) attains 250 distinct values, while (Khovanov, HOMFLY-
PT) attains only 249 distinct values. To 11 crossings the numbers
are (802, 788, 772) and to 12 they are (2978, 2883, 2786).
Genus. Up to 12 xings, always p; is symmetric under ¢ < !
With p7 denoting the positive-degree part of p;, always deg p <
2g — 1, where g is the 3-genus of K (equallity for 2530 knots).
This gives a lower bound on g in terms of p; (conjectural, but
undoubtedly true). This bound is often weaker than the Alexander
bound, yet for 10 of the 12-xing Alexander failures it does give
the right answer.

10 12

Why Works? The Lie algebra g; (below) is a “solvable approxi-
mation of si,”.
Theorem. The map (as defined below)

wllw; L; Q; Py O(w_leLl"g”‘“le(l +ew™P): w) € Uy

(...lkfk U L|wk,t afk+Q ® ‘1P<aﬁ, )P arjiry 10 1) -
Q Q g w2 B 3 Happy Birthday,
5T T ’_ﬂ‘ R Scott!

F1N I

F18

is well defined modulo the sorting rules. It maps the initial prepa-
ration to a product of “R-matrices” and “cuap values” satisfying
the usual moves for Morse knots (R3, etc.). (And hence the result

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified)

www.katlas.org Teekret.

epresentation theory!).

s a “quantum invariant”, except computed very differently; no

Video and more at http://www.math.toronto.edu/~drorbn/Talks/GWU-1612/
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1-Smidgen sl, Let g; be the 4-dimensional Lie algebra g; =
(h,é’',1, f) over the ring R = Qlel/(e* = 0), with h central and
with [f,1] = f, [¢/,1] = —¢’, and [¢’, f] = h — 2¢€l. Over Q, g;
is a solvable approximation of sl>: g1 D (h, €', f, eh,ee’, el,ef) D
(h,eh,ee’,el,efy D 0. Pragmatics: declare deg(h,e’,l, f,e) =
(1,1,0,0,1) and set ¢ := e"and e = (t— e’ /h.
How did it arise? sl = b" @ b™/h = sl;/h, where b* =
L YIS, 11 = f is a Lie bialgebra with 6: b* — b™ ® b* by
6: (I, f) = (0,1 A f). Going back, sl = D(Ob*) = (b")* @b =
(W,e' 1, f)]---. Idea. Replace § — €8 over Q[e]/(€*! = 0). At
k=1 get[f,ll = f, [f,.0i'] = —€f, [LLe] =€, [I.,e] = —e€,
[#',1] =0, and [¢, f] = I’ — el. Now note that i’ + €l is central,
so switch to & := i’ + €l. This is g;.
Ordering Symbols. O (poly | specs) plants the variables of poly in
S(EBig) along fl(g) according to specs. E.g.,

0(e1e”Bhf; | fslieresh) = fPee’l € U(g).

This enables the description of elements of U(g) using commu-
tative polynomials / power series. In g7, no need to specify A/ t.
Algebras and Invariants. Given any unital algebra A (even better
if A is Hopf; typically, A ~ U(g)), appropriate ReA®A,
get an A®S -valued invariant of pure

S -component tangles:

with
® ¢
~oex] fi
h
X y

What we didn’t say (more, including videos, in wef3/Talks).
e p; is “line” in the coloured Jones polynomial; related to
Melvin-Morton-Rozansky.

e p; extends to “rotational virtual tangles” and is a projection of
the universal finite type invariant of such.

e p; seems to have a better chance than anything else we know
to detect a counterexample to slice=ribbon.

e pj leads to many questions and a very long to-do list. Years of
work, many papers ahead. Have fun!
Demo Programs.
CF[&_] := Module[{vars = UnioneCases[&, e |1 |f , =]},
If[vars {}, Factor[&],
Total[CoefficientRules[&, vars] /.
(p_ - c_) = Factor[c] Times @@ (vars®)]11;
CF[& E] :=CF/ecs;

wep/Demo

Formatting
(prints differ ®)

E[i,j_,s.] :=E[1, (-1)°1;, (-t)°e;fj,
t°ei Ligusy iosj Fi+ (-1)° 1 15+ (-t?)° e} £3/4];
E[i_,s_] :=E[1, 0, 0, s1;];
E/:E[1,L1 ,Q1_,P1_1E[1,L2 ,Q2_,P2 ] :=
E[1, L1+L2, Q1+ Q2, P1+P2];

Preparation

z1= (E[1, 11, @] E[4, 2, -1] E[15, 5, @] Preparing the Trefoil
E[6, 8, -1] E[9, 16, 0] E[12, 14, -1] E[3, -1] E[7, +1]
E[10, -1] E[13, +1])

]E[1, “1,+1s - 1g + 111 - 1yg + Lug,

eq f ep f epp f
-5 v egs fs - 6B v ey iy - H12H4 4 eg e,

2 62 262 2 g2
egfs 1.2 f2_efs 1242 _efly  1,24p2
—aT raesfs - PF e ey - 2G4 v egfigren fin 1y 4

eaf2dy 15 1515+ 1; + 818 1015 4 @9 Fig 1o - 1ag +

1y g + 1yg + ®12F18018 _ 155 154 + 45 5 1as + 1s 1as + 1g Lae

DPx s, ,y_sps [P_TIF_1 := Differential Polynomials
Total[CoefficientRules[P, {x, y}] /. (Implementing P(0a,dp)(f))
({m_, n_} »c_) =»cD[f, {a, m}, {5, n}]]
S1; (x:e|f)i_—>k7[]E[/-'/_J L ,0Q ,P_1]:=
With[{x = O1,L, o= 0,0, 4 =e"Bxk +¥ 1}, CF[
]E[w, L/olj»1,, thax,+ (Q/. xi»0),
e DP1jup,, ;05 [P1[€"] /2 {B >/ w, ¥ > ALloglt]}] ]];

le and fl Sorts

AfR_] := ((t-1) (2(aB+6u)?-0?B?) -de,l, fr 6" P -
6 (1+u) (fRa®+efp?) -e} f26° (1+3 ) - The Adyog
2 (a/3+26u+ekfk62 (1L+2p) +21k51-12) (Fra+epB) -
4 (Lo +erfe6 (Lep)) (aB+6u)) (1+t) /45
St es ok [E[w 5 L_, Q5P 1] :=
With[{q= ((1-t) aB+Be,+af,+se,fr) /u}, CF[
E[pw, Lyuwq+p (Q/. fi|ej>0),
ut e DP¢, 204,05 [P] [€] +d*A[R]] /o u> 1+ (E-1) 67/,
{a» ot (0r,0/.e520), B> (0e;0/. Fi > 0),
6w or,e,0} 5
Mi_,j - [Z_E] :=Module[{x, z}, Elf Merges
CF[(Z 77 S ejox 11 S1yemx 17 St1jmx) /o Z_ijjx = Zk] |

fe Sorts

(Do[zl =21 //my,ks15 {k, 2, 16}]5 2z1) Rewriting the Trefoil

(-1+t) (1-t+12)2 (1-t2282) (by merging 16 elves)

_tit2
E[%,e,e,

3
2 (1+t) [1tt2)3eg f1 2 (<10 (1st) (1-tt2)3 1
t4 - e }
Readout
[E[ b1 CF[t((P/.e_|1_|f_—>e)_ta}(atw))]
7 i=
P1 s s s P (t_l)zwz
p1[z1] // Expand 0131)
% +t
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diagram ni Alexander’s w* genus / ribbon diagram ni Alexander’s w* genus / ribbon
Today’s / Rozansky’s p7 unknotting number / Today’s / Rozansky’s p7 unknotting number /

@ 00 1 0/v @ 3 -1 1/X

0 0/ t 1/X%

@ 4 3-t 1/% @ 59 P-r+1 2/ %

0 1/ 263 + 3t 2/X

Video and more at http://www.math.toronto.edu/~drorbn/Talks/GWU-1612/
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Dror Bar-Natan: Talks: MIT-1612:  (thanks for accepting my invitation!)

A Poly-Time Knot Polynomial Via Solvable Approximation

wef:=http://drorbn.net/MIT-1612/
Work in Progress! Fluid! Help Needed!

&

IAbstract. Rozansky [Ro2] and Overbay [Ov] described a
spectacular knot polynomial that failed to attract the at-
tention it deserved as the first poly-time-computable knot
polynomial since Alexander’s [Al, 1928] and (in my opi-

mion) as the second most likely knot polynomial (after
lAlexander’s) to carry topological information. With Ro-
land van der Veen, I will explain how to compute the Ro-
zansky polynomial using some new commutator-calculus
techniques and a Lie algebra g; which is at the same time

Overbay
solvable and an approximation of the simple Lie algebra si5.

DM L LYy Gompt.
- _Een=
[ | \ \ \ \ [GST]
UeT, 1 €A,
72 ﬂ
with R := ‘ L
T2n K\ ﬂZn\ K(T 1(1)) H\ /
ribbon K € 77 z(K) e RC A, % (
Faster is better leaner is meaner!
AT =8 +207 10— 20 + 56 -2 - Tt + 13

32612 4+ 26 4+ 4210 — 627 — 818 + 16617 — 24215+
1087 + 132¢* — 2267° + 1487 — 111 — 36

oy =5t — 181‘14 +33¢13 -

Theorem ([BNG], conjectured [MM], e- @ T"“ ﬁz::;

lucidated [Rol]). Let J,(K) be the co- [

loured Jones polynomial of K, in the d-dimensional representa-

tion of sl,. Writing

q"? =g ") Ju(K)
g2 — g2

= > aK)dn",

Jjsm=0

g=e"
“below diagonal” coeflicients vanish, a;,(K) =
0 if j > m, and “on diagonal” coeflicients
give the inverse of the Alexander polynomial:
(Sov_o @ (KOR™) - A(K)(eM) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

q' - ( Z (q- 1)kRk<K>(qd>]'

Ja(K)(q) =

(g - q‘l)A(K)(qd) AK(K)(q?)

A Garoufalidis|

The Gold Standard is set by the “T’-calculus” Alexander
formulas [BNS, BN1]. An S-component tangle 7 has

F(T) € Ry X Myws (Rs) = {%} with Rs = Z({1a: a € S)):

w1y ‘ S1 S2

(70 ) = T \uT,— S, |A 0
S, | 0 A,
b w  ((A=Po| ¢ S )

B e a5 R

c Ytip €tijp

0 lastp = 1Ic S ¢+% ':+¢_0

v -8 — 715

(Roland:
delete column b and row a”.)

“add to A the product of column b and row a, divide by (1 — Ag),

[For long knots, w is Alexander, and that’s the fastest A- -

Why “spectacular”? Foremost reason: OBVIOUSLY. Cf. proving
(incomputable A)=(incomputable B), or categorifying (incomputable ).
|Also, will bound genus and may dlsprove {ribbon} = {slice}.

(meta-associativity:

ab//m XC — mbc//max)

by *and X)

' \/ x . xample [BN2]
a ribbon singularity  a clasp singularity ‘

IA bit about ribbon knots. A “ribbon knot” is a knot that can be
presented as the boundary of a disk that has “ribbon singulari-
ties”, but no “clasp singularities”. A “slice knot” is a knot in
IS3 = AB* which is the boundary of a non-singular disk in B*.
[Every ribbon knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon.

IFox-Milnor. The Alexander polynomial of a ribbon knot is alw-
ays of the form A(?) = f(£)f(1/1). (also for slice)

(tangles are generated -

exander algorithm I know! Dunfield: 1000-crossing fast.

(There are also formulas for strand doubling and strand reversal).
_ [Theorem [EK, Ha, En, Se]. There is a “homomorphic expansion”
S -component

AS:
¢ {(v/b—)tangles \/+??= '

ey
T» : ~. | 1 o ’\_<: K_ K
1 g B @ l | Qj x: IH?

Etingof ~ Kazhdan

|Algebras and Invariants. Given any unital algebra A (even better
if A is Hopf; typically, A ~ U(g)), appropriate Re A®A,
get an A®S -valued invariant of pure

Haviv  Enriquez  Severa

IS -component tangles:
with
[ ]
[ ]
[ ]

y
Good News. In theory, enough to know R, and stitch-
ing/multiplication m TA®A; — Ay

IProblem. Extract 1nf0rmat10n out of Z.

Textbook Solution. Use representation theory .. works, slowly.

“God created the knots, all else in
topology is the work of mortals.”

K
L

Leopold Kronecker (modified) www.katlas.org The ket

== {loday’s Solution (with van der Veen). For some speci-

for elements of U(5)®S:

¢ g’s, work in a space of “formulas of a specific type”

ordered perturbed
Gaussian formulas

{

} - U™

=

van der Veen

This is http://www.math.toronto.edu/~drorbn/Talks/MIT-1612/. Better videos at ..

. /Indiana-1611/,

.. /LesDiablerets-1608/

8
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1-Smidgen s/, Let g; be the 4-dimensional Lie algebra g; =
(b, c,u,w) over thering R = QI€l/(€* = 0), with b central and wi-
th [w,c] =w, [c,u] = u, and [u,w] = b — 2ec, with CYBE r;; =
(bi — eci)cj+uwjin U(g, Yelelt Over Q, g; is a solvable approxi-
mation of sl: g1 D (b,u,w, €b, ec, eu, ew) D (b, €b, ec, €u, ew) D
0. (note: deg(b, c,u,w,€) = (1,0,1,0, 1))

he Big g; Lemma. Parts T and 6 are the same, yet
5.0 (e”w+ﬁ”+5”wlwu) =0 (v(l + evA)e"(_b"B+“W+5“+6“W)Iucw)
Here A is for Adyog, “a principle of order and knowledge”, a ba-
lanced quartic in «, B, u, ¢, and w:
A = — b(@*BV? + 4aBsv + 26%)/2 + X6V (b6 + 2)u? /2
+ 8V (3b6 + HuPw? /2 + BS*V (2b6 + 3w

0-Smidgen s/, ©. Let g9 be g1 at € = 0, or Q¢b, ¢, u, w)/([b, ] =
0, [c,u] = u, [c,w] = —w, [u,w] = b with r;; = bic; + ujw;. It is
b* > b where b is the 2D Lie algebra Q(c, w) and (b, u) is the dual
basis of (¢, w). For topology, it is more valuable than g, / sl,, but
topology already got by other means almost everything go gives.

+ @8>V (2b6 + 3)uw? + 26V (b6 + 2)(aBy + 8)uw
+ 0261/3(196 + 2)w2/2 + 2(afv + 6)c + 2Bovuc + 28%vuew
+ 2a6vew + Y2 (afy + 28)u + av? (afv + 26)w.

IProof. A lengthy computation. (Verification: wef3/Big)

How did these arise? sl, = b* @ b™/h) = si;/b, where b* =
(c,w)/[w, c] w is a Lie bialgebra with §: b* — b* ® b* by
0: (c,w) = (0,c A w). Going back, sl = D(") = (b")" & b*
(b,u,c,w)/---. Idea. Replace § — €6 over Q[e]/(e"! = 0). At
k =0, get go. Atk =1, get [w,c] = w, [w, D] = —ew, [c,u] = u,
[6/,u] = —eu, [b',c] = 0, and [u,w] = b’ — ec. Now note that
b’ + ec is central, so switch to b := b’ + ec. This is g;.

IProblem. We now need to normal-order perturbed Gaussians!
Solution. Borrow some tactics from QFT:

O(eP(c, u)e”**|uc) = O(eP(d,, dp)e” P |uc) =
and likewise O(eP(Dy, dp)e™* lcu),
@) (eP(u, w)e"w+ﬁ“+6uwlwu) =0 (EP(O,B, Ba)ve"(_b‘wmww’“&"w)Iucw)
[Finally, the values of the generators >, N, 7, and u, are set by
solving many equations, non-uniquely.

Ordering Symbols. O (poly | specs) plants the variables of poly in
S(@;8) on several tensor copies of U(g) according to specs. E.g.,

@(C?M1C26u3wg|xl WiCl, Vi u1u3cz)=w9c3®ue”c € U(g)®@U(g),

This enables the description of elements of (LAl(g)®S using com-
mutative polynomials / power series.

IPragmatic Simplifications. Set ¢ := e?, work with v := (t — Du/b,
and set E(w,L,Q,P) = O (w‘le“Q/“’(l +ew™P): (i: v,c,-w,-)).
Now w € Ry = Z[t;, 17 '] is Laurent, L = 3} [;;log(#;)c; with [;; €
Z, Q = 3 qijviw; with g;; € Ry, and P is a quartic polynomial
in v;, ¢, wi with coefficients in Rg. The operations are lightly

0-Smidgen Invariants. r Id € b~ ® b* solves the CYBE
[r12, 713] + [r12, 723] + [113, 723] = 0 in U(g0)®* and, by luck,
+

AT PR

| = Rij =i = eb,-c,-+uiwj- € (L{(go,i @ g(),j)
solves YB/R3.

O UW ¢ bi 1 . .
Lemma. R;;= ebicituvi = (exp (b,-cj + "b—l_u,-wj) li:u;, j: cjwj)
b’mn(ebi_])n
IExample. Z(Ty) = =2 U ® W

e 31
7 M3W6) |

“ucw form”
X:ciwilp, y: M3C4W4u506W6) = O({Ix: UrCxWy, V' uycywy)

bs _ by _
@( exp (b56‘1 + %Mswl +bycy+ %u2W4—b3C6+

imodified, and the Adyog and the values of the generators become
somewhat simpler, as in the implementation below.

B
imate, after #, — t. n: Xing 5 24 wrdyd 2 =
number; w: width, maybe AHITETTE G

~ y/n. A: go over stitchings in order. B: multiplication ops per
IN“™i, d: deg of u;,w; in P. E: #terms of deg d in P. F: ops per
term. G: cost per polynomial multiplication op.

[Experimental Analysis (weB/Exp). Log-log plots of computation
time (sec) vs. crossing number, for all knots with up to 12 cros-
sings (mean times) and for all torus knots with up to 48 crossings:

o 0t

Rough complexity esti-
mw* e [nd,n"]

Goal. Write £ as a Gaussian: we’*2 where L bilinear in b; and c;

with integer coeflicients, Q a balanced quadratic in u; and w; with
coefficients in Rg := Q(b;, €%, and w € Ry.

50 wn,

bo . 1000

100

The Big g9 Lemma. Under [c, u] = u, [c,w] = —w, and [u, w] = b: |°

la. N := O(e”*PUuc) = O(e”+**"Pu|cu)
1b. N¥¢ == Q(e”“**|wc) = O(e?*"®|cw)  ...in the {ax + b} group)
2. O(e®™*Pulwu) = Qe boBraw+Bu|yy) (the Weyl relations)
3. O™ |wu)el" = P O(ewu), with v = (1 + bo)™"

(a. expand and crunch.  b. use w = bX, u = 0,.
4. @(eéuw|wu) = @(V6V6”W|uw) (same techniques)
5. NWu = @(eﬁtt+aw+6uwlwu) ;’ @(Vefbvaﬁ+vaw+vﬁu+v5uw|uw)

6. N]f"cj = 0(Llcic)) = 0 /(ci cj — cpler)

Sneaky. @ may contain (other) «’s, 8 may contain (other) w’s.

(means ePe?® = ¥ P!

c. use “scatter and glow”.)

ea,  ®©3 ma
10 " @a
2 5.2, o

10

Conjectdre (checbked 0;1 themsar‘ﬁe collecfions). Givenma knot K)O
with Alexander polynomial A, there is a polynomial p; such that
P A t-1%p +2Quvw+ (1 -0 - 2c))AA’.

1 -nt
[Furthermore, A and p; are symmetric under ¢t — 1, solet A* and
7 be their “positive parts”, so e.g., p1 (1) = p; (1) +p} (™) —p}(0).
IPower. On the 250 knots with at most 10 crossings, the pair

Strand Stitching, m/, is defined as the composition

N:’i uj N:[M // N:.X[j

UiCiWiLj CiWj — Ui Cilly WxCjW; ———— > Uilly CxCx WxW;
i,j,x—k
— > WiCWi

(A, p1) attains 250 distinct values, while (Khovanov, HOMFLY-
IPT) attains only 249 distinct values. To 11 crossings the numbers
are (802, 788, 772) and to 12 they are (2978, 2883, 2786).

Genus. Up to 12 xings, always degp] < 2g — 1, where g is

On to 1-smidgen invariants, where much is the same. ..

the 3-genus of K (equallity for 2530 knots). This gives a lower
bound on g in terms of p; (conjectural, but undoubtedly true).
This bound is often weaker than the Alexander bound, yet for 10
of the 12-xing Alexander failures it does give the right answer.
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Demo Programs for 0-Co. wef/Demo

Rs,i ,; :=E[b;ic;+bi* (e -1) u;w;]; The R-matrices

Ro,i ,j =E [—bi Cj+ b{l (e_bi - 1) u; Wj];

CFlz_ . E[Q_]] := Simplify[«] E[Simplify[0Q]]; Utilities
E /: E[QI_]E[Q2 ] := CFRE[QI +02];

vl .E[Q1 ] = w2 .E[Q2 ] := Simplify[«l = w2 A Q1 = Q2];

Nocwin g ez ok [4_ E[Q_1] Normal Ordering Operators

VE[e¥axp+¥Ch+ (Q/. ¢ | xi»@)] /. {¥-9c;0, a8x0}];
Nu; uj -6 [ - E[Q_]] := CF[
VOE[-byvaB+VBU,+VaW, +VSEU W, + (Q/.W; |u; »0)] /.
v > (1+bk,<5)_1 /.
{a»0u0/7.uj>0, B>08,,0/. Wi >0, 6-0du,u;0}];

1= CF[

mi i ok [Z_] := Module[{x, z}, Stitching

CF[(Z 7/ Nugujox /7 Negugx 7/ Nugciox) 7+ Z_ap51x = 2] ]

To = R§,5,1 R3,2,4 Ra,3,6 Some calculations for 7

(—1+eb5) us w1 (—1+eb2) uz wg (—1+e’b3) u3 we ]
bs * by * bs
To // My,2,1 // M3,4,3 // M3,5,3 // M3,6,3

]E[bsc1+b2c4—b3c6+

1

WE[b3C1+b1C3—b3C3+

eP3 (14eP1) (~14€P3) upwy
(-eP1-eP3.eP17P3) by

eb1 (—1+eb3) u3z wi

(,1+(71+eb1) (—1+eb3)) b3

e 3 (-1:eP3) uzwz e P3 (-14eP1) (~eP3 b3ug+ebl (-14¢P3) byuz) ws ]
b3 N b1 (b3 (-1+eP1) (-1+eb3) b3)

Verifying meta-associativity
Q0 = E[Sum[f; ci, {i, 3}] +Sum[f; ju;w, {i, 3}, {j, 3}]1]
E[fcifi+cafa+cafarurwgfia+uiwyfio+upwsfyz+upwfoq+
Uy Wy fa,2 + Uz w3 fp 3 +uUzwy F3,1 +uswy f3,5 +usws f3 3]
(Q0 // my,2,1 // My,351) = (QO // Mz 3,5 // My 251)

True

Testing R3

t1 =Rg,1,2R5,3,4 Ra,5,6 // M3,55x // My 6sy // M2,asz

ebx (71<ebY) uywz (71+ebx) ux (wy+wz) }

E|bxcy+bxcz+byc,+ by ™

tl= (R3,1,2R5,3,aRa,5,6 // M1,35x // My,55y // Mg,6.2)

True

I L o
12 8| |

z1 = Rp,12,1 Ra,2,7 Ra, 8,3 Ra,4,11 R4, 16,5 Re, 6,13 Ro,14,9 R3, 10,155
Do[zl = (z1//Myn1) /- b_ b, {n, 2, 16}];
{CF@z1, KnotData[{8, 17}, "AlexanderPolynomial™][t]}

{7 3bEle)
1-4ebi8e2P 11e3b,gedb 450,

esb,ll—t%+£i2—%—8t+4t2—t3}

Demo Programs for 1-Co. wef/Demo

A[R_] i= ((te-1) (2 (a/3+6u)2-a2/32)-4vkckwk62 3o
6 (L+p) (who?+vEp%) -viwio® (1+3p) -
2 (@B+26u+VeWe 8 (1+2p) +2Cr 6 p%) (Wea+ Vi B) -
4 (cku®+Vewe s (1+p)) (@B+6u)) (1+1t) /45 The Adyog

R%
Ri

. 2.2 .
i i=E[1, Log[t:] cj, ViWj, Vi CiW; +C; C; +Viws /4];

A Z=]E[1, —LOg[ti] Cj, —t{lvi Wy,
titviciwy - cicj-tPviwi/4];

(uri_ :=E[t;"%, 0, 0, c; t7%]; nri_:=E[t{?, 0, 0, -c; t];)

The Generators

Differential Polynomials
DPX,-'Dai,,V,-'D/fi [P_1[f_] := (* means P[84,05] [f] *)
Total[CoefficientRules [P, {x, y}] /.

({m_, n_} »c_) =»cD[f, {a, m}, {5, n}]]
CF[&_E] := Expand /@ Together /@ &;
E/:E[el ,L1 ,Q1 ,P1 1E[w2_,L2 ,Q2 ,P2 ] :=
CFeE|[wl w2, L1+12, w2Q1 + 1Q2, w2*P1+ w1*P2];

Utilities

Normal Ordering Operators
Ne, (aviw; »+ [E[@ L, @, P_1] := With[{q = " Bxk + ¥ cx}, CF[
]E[a.l, ¥C+ (L/.Cj>0), we*Bxr+ (Q/. xi > 0),
@ 9DPcp,,x;05 [P1[€71] /. {3 > 0c;L, B> & 05,0}]]5
Nu; vj or [E[e_, L_,Q ,P_1] :=
With[{q = ((1-tkr) aB+BVe+aWe+6VeWe) /u}, CF[
E[pw, Ly uwq+p (Q/.wi | Vj->0),
pt e DPy; 40,05 [P] [€7] + SALR]] /o> 1+ (te-1) 6/,
{a-» o (0w,0/.vi>0), B> o (6y,0/. Wi > 0),
8- o Buy,v;0}] ]
mi_,5 ¢ [Z_FE] :=Module[{x, z}, Stitching
CF[(Z 7/ Nugvjox /7 Neguox 77 Ny cix) /o Z_i 5% = Zk] ]

22 = Rj 13 R 5 nr3 Ri5 5 Rg g Ury RS 16 Nrie Ry 14 Ur13;
(Do[22 = 22 // my,k51, {k, 2, 16}];
22 =22 /. a_; > Q)

The 0-Framed
Trefoil

Questions and To Do List. e Clean up and write up. e Implement
well, compute for everything in sight. e Why are our quanti-
ties polynomials rather than just rational functions? e Bounds on
their degrees? e Their integrality (Z) properties? e Can everyth-
ing be re-stated using integrals ( f )? e Find the 2-variable version
(for knots). How complex is it? e What about links / closed
components? e Fully digest the “expansion” theorem; include
cuaps. e Explore the (non-)dependence on R. e Is there a canoni-
cal R? e What does “group like” mean? e Strand removal? Strand
doubling? Strand reversal? e Say something about knot genus.
e Find the EK/AT/KV “vertex”. e Use as a playground to study
associators/braidors. e Restate in topological language. e Study
the associated (v-)braid representations. e Study mirror images
and the b* < b~ involution. e Study ribbon knots. e Make preci-
se the relationship with I'-calculus and Alexander. e Relate to the
coloured Jones polynomial. e Relate with “ordinary” g-algebra.
e k-smidgen sl,, etc. e Are there “solvable” CYBE algebras not
arising from semi-simple algebras? e Categorify and appease the
Gods.

]E[—1+%+t, 0, 0,
16+i7f—t%—%+t%+%—%—%—18t+8ct+
14t2-10ct?-7t3+6ct?+2t*-2ct*+2vw-

2VW , AVW _ 6VW , 2VW —6tvw+4t2vw—2t3vw]
4 t3 t2 t
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@i n Alexander’s A, genus / ribbon @i n;, Alexander’s A, genus / ribbon
lagram Today’s / Rozansky’s p{ unknotting number / amphicheiral tagram Today’s / Rozansky’s p; unknotting number / amphicheiral
0f 1 0/v 3¢ t-1 1/%
0 0/v t /%
4 31t 1/% 54 fP—r+1 2/ X%
0 1/v 283 + 3t 2/%
55 2t-3 1/% 6f 5-2t 1/v
5t—4 1/% t—4 1/X
65 —1*+3r-3 2/% 65 -3t+5 2/%
£ -4 +41-4 1/% 0 1/v
7 P -r+r-1 3/X 74 3t-5 1/%
3 + 568 + 6t 3/X 14t — 16 1/%
74 22 -3r+3 2/% 7% 4r-17 1/%
93 + 812 — 16t + 12 2/% 32 — 24¢ 2/ X%
74 22 —4r+5 2/% 74— +51-17 2/%
913 — 161% + 29t — 28 2/% £ — 82 + 191 - 20 1/%
74 2 -5t+9 2/% 8 T7-3t 1/x
8 — 3¢ 1/% 5t—16 1/%
8 —rP+37-3r+3 3/X 8 9-4t 1/%
2 — 8 + 1063 — 1272 + 131 - 12 2/% 0 2/
8 -2 +5t-5 2/% 8¢ £ +3°P-4r+5 3/%
35 -8 +6r—4 2/% -2 + 8t — 1383 + 201> — 22t + 24 2/%
8¢ 217 +6t—7 2/% 8 -3~ +5t-5 3/%
563 — 201 + 28t — 32 2/% — + 4 — 108 + 122 — 13t + 12 1/%
8¢ 2P —61+9 2/v 8 —r+3°7-51+7 3/v
—£ +42 - 12t + 16 2/% 0 1/v
84, P =3 +6t—7 3/% 8, 2P +Tt-9 2/%
— + 41 — 118 + 1687 = 211 + 20 2/X 56 — 241 + 39t — 44 1/%
84, #-Tt+13 2/% 8y 20 —Tr+11 2/ %
0 2/v —3 + 412 — 141 + 20 1/x
8¢, -2 +8r—11 2/% 8¢5 32 —8r+11 2/ %X
5 — 281> + 57t — 68 1/% 217 — 641> + 120t — 140 2/ %
84, -4 +8r—9 3/% 84, —rP+4r -8t+11 3/%
£ —6* + 176 — 281> + 35t - 36 2/% 0 1/v
8l —r+57—-10r+13 3/X 8, rP-r+1 3/%
0 2/v =3 — 44> -3t 3/%
81, 1 -2+3 2/V 8y —1*+4r-5 2/ %X
4r—4 1/% 2 — 82 + 161 — 20 1/x
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The Hardest Math I’ve Ever Really Used, 1

Dror Bar—Natan at the CMS Niagara Falls Meeting
http://drorbn.net/n16 December 2016

IAbstract. What’s the hardest math I've ever used in real
life? Me, myself, directly - not by using a cellphone or a
GPS device that somebody else designed? And in “real
life” — not while studying or teaching mathematics?

[ use addition and subtraction daily, adding up bills or cal-
culating change. I use percentages often, though mostly it
is just “add 15 percents”. I seldom use multiplication and
division: when I buy in bulk, or when I need to know how
many tiles I need to replace my kitchen floor. I've used pow-
ers twice in my life, doing calculations related to mortgages.
[’ve used a tiny bit of geometry and algebra for a tiny bit of
non-math-related computer graphics I've played with. And
for a long time, that was all. In my talk I will tell you how
recently a math topic discovered only in the 1800s made a
brief and modest appearance in my non-mathematical life.
There are many books devoted to that topic and a lot of
active research. Yet for all I know, nobody ever needed the
actual formulas for such a simple reason before.

Hence we’ll talk about the motion of movie cameras, and
the fastest way to go from A to B subject to driving speed
limits that depend on the locale, and the “happy segway
principle” which is a the heart of the least action principle
which in itself is at the heart of all of modern physics, and
finally, about that funny discovery of Janos Bolyai’s and
INikolai Ivanovich Lobachevsky’s, that the famed axiom of
parallels of the ancient Greeks need not actually be true.

Dror Dar-Natan: Talke:
Matheamp-0907:

Non-Commutative Gaussian Elimination and Rubik’s Cube ot seudy with

Teni B Natan
[The Problem. Let G = (g1,..-,da) be a rators

1]2]3
subgroup of S,, with n = O(100). Before 456 Inl1]:= gs = {
Jou die, understand G: 7Ts]o purple = P[18,27,36,4,5,6,7,8,9,3,11,12,13,14,15,16,17,
2 ¢ a1l 15[ iE]  45,2,20,21,22,23,24,25,26,44,1,29,30,31,32,33,34,35,43,
1. Compute |G|. oal2sl2alos[z6j27|  37-38.39.40,41,42,10,19,28,52,49,46,53,50,47,54,51,48], |
2. Given o € S, decide if 0 € G. 1ls2lsslaalas[s6] “hite = P[1,2,3,4,5,6,16,25,34,10,11,9,15,24,33,39,17,
B X 18,19,20,8,14,23,32,38,26,27,28,29,7,13,22,31,37,35,36,
P iite &g € G in t'erms of g1, ga- 12,21,30,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54] ,
. Produce random of G. NS green = P[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
The Commutative Analog. Let V = 19,20,21,22,23,24,25,26,27,31,32,33,34,35,36,48,47,46,
span (v 2 ElbEDas " Be- 39,42,45,38,41,44,37,40,43,30,29,28,49,50,61,52,53,54] , 3
pan(vy, . . ,0,) be a h\ll)b})dce of R". Be blue = P[3,6,9,2,5,8,1,4,7,54,53,62,10,11,12,13,14,15,
ore you die, understand V. 19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
[Solution: Gaussian Elimination. Prepare | Based 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,18,17,16] ,
an_empty table. red = P[13,2,3,22,5,6,31,8,9,12,21,30,37,14,15,16,17,
127311 pry i 18,11,20,29,40,23,24,25,26,27,10,19,28,43,32,33,34,35,
| | ‘ 36,46,38,39,49,41,42,52,44,45,1,47,48,4,50,51,7,53,54],
yellow = P[1,2,48,4,5,51,7,8,54,10,11,12,13,14,3,18,27,
e 36,19,20,21,22,23,6,17,26,35,28,29,30,31,32,9,16,25,34,
@mco e LY O ‘Otto Schreler 37,38,15,40,41,24,43,44,33,46,47,39,49,50,42,52,53,45)
a 4 s See als: %
ug=(0,0,0,1,%,..., #); 1 :="the pivot”J | Alsorithms by .
1=(0,0,0.1, ) P — Theorem. G = M. 61 is more funt
[Feed vy, ..., v, in order. To feed a non-zero v, find its pivotal a

osition i =My:={01,,025, O, Vi, j; > iand 0;;, € T}.
1. If box 7 is empty, put v there.
2. If box i is occupied, find a combination v’ of v and u; that

leliminates the pivot, and feed v'.

Proof. The inclusions M; C G and {g;,..., 9.} C M,
are obvious. The rest follows from the following
Lemma. M is closed under multiplication.
Proof. By backwards induction. Let

My = {0k, Onj,: Vi > k,j; >iand 0y, € T}.
Clearly M, M, C M,. Now assume that M;M; C Ms
and show that MM, C M;. Start with og; My C Mj:

INon-Commutative Gaussian Elimination
[Prepare a mostly-empty table,

Space for a o; ; € S, of the form

) (L2 i— 20— 1G4k %) ) )
T 50 00y B0 1,...rE— 1, 08,0452 Ms) = (08,550 My & MM

sends “the pivot” 7 to j and 3 0y (MsMs) é g0 Ms C M,

[(1: associativity, 2: thank the twist, 3: associativity
and tracing 4y, 4: induction). Now the general case

)

(3. 4)

[Feed gy, ..., o in order. To feed a non-identity o, find its pivotal
position i and let j := o(i).
1. If box (4, j) is empty, put o there.

goes wild afterwards, and
T,
a;; “does sticker 5.
(04,j405,35 )04 05,45+ +-

falls like a chain of dominos.

Problem Solved!

2. If box (i,7) contains o; ;, feed o’ := d,fj‘a.

[The Twist. When done, for every occupied (4, j) and (k,1), feed /A Demo Program

R . 1 In[2]:= (3R nLinit = 2°16;
0i.j0k.. Repeat until the table stops changing. 9 :[:54; ecursiontinit
Jlaim. The process stops in our lifetimes, after at most O(n°) | 3 P /: p.p #x Pla__] :
operations. Call the resulting table 7. 4 ;“Z‘E‘E;"iﬂ: P °? ]“] gt
i . . . . 5 o oln]] := Null;
Jlaim. Anything fed in 7" is a monotone product in 7': 6 Feed[p_P] ::nslodn]e[(i, it
was fed = f € My:={0y,005, - 00;,:Vi,j; 2i & 0;;, €T} 7 Forli = 1, pl[il] == i, ++il;
8 j = pLLl);
Homework Problem 1. Homework Problem 2. 9 TffHeadlsli, j11 === b,
(Can you do cosets? Can you do categories (groupoids)? 10 Feed[Inv(s(i, j]1 ** pl,
- 11 (+ Else *) sli, j] = p;
719]2]5 12 DolIf[Head[s[k, 111 == P,
A 13 Feed[s[i, j] ** s(k, 111;
1141813 14 Feed([s(k, 1] ** s[i, jl]
6 |10{11 |12 15 {k, n}, {1, n}]
3114 Rubik’s |16
13 14][15]

I could be a mathematician ...

[The Results
In(3]:= (Feed[#]; Product[1 + Length[Select[Range[n], Head[s[i, #]] ===

s coolt
ﬁ:i, 1)) & /6 gs
Out[3]= {4, 16,

0

http://www.math.toronto.edu/~drorbn/Talks/Mathcamp-0907/ and links there

...0r an

% b

environmentalist.

er capiza respansibility for curent antarapagenic COZ i the stmosphare (inc Lding [nc-use changel

100

Goal. Find the least-blur path to
go from Mona’s left eye to Mona’s
right eye in fixed time. Alterna-
tively, fix your blur-tolerance, and
find the fastest path to do the same.
For fixed blur, our camera moves at
a speed proportional to its distance
from the image plane:

SPEED

40

LIMIT

[=] 5 =]

[=]=

1L erlad
ICTITTYyUT TISIITTYT

http://drorbn.net/n16

The Mona Plane

Video at http://www.math.toronto.edu/~drorbn/Talks/RCI-110213/, more at

http://www.math.toronto.

edu/~drorbn/Talks/Niagara-1612/
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A Picture credits. Mona: Leonrado; Al Gore: Futurama; Map 1: en.vikipedia.org/wiki/Greenhouse gas;
B Smokestacks: gbuapcd.org/complaint.htm; Penguin: brentpabst.com/bp/2007/12/15/BrentGoesPenguin.
The Hardest Math I've Ever Really USEd, 2 |are Map 2 fiigmepesia.ors: Semway: coscarcmiacon.vorapross. con/2008/10; Lobachevaky: on.

wikipedia.org/wiki/Nikolai Lobachevsky; Eschers: www.josleys.com/show_gallery.php?galid=325;

‘Q\ Fermat’s Principle The Brachistochrone
P38 § p

<

¢ ~ 300, 000
¢ ~ 250, 000

29383°

Bernoulli on Newton. “I recognize the lion by his paw”.

The Least Action Principle. Everywhere in physics,
576 a system goes from A to B along the path of least
252 action.

167 With small print for quantum mechanics.
131

112 |ParametricPlot3D[{

103 sin[u] Cos[v],

100 Sin[u] Sin[v],

103 Cos[u]

112 ). fu, 0, 7}, fw,. 0, 2x)]

Maw\‘.p ffé.mnoo Aires

The Happy Segway ParametricPlot3D[{

Prineiple Sech[u] Cos[v], X / /|
A Segway is happy iff Sechjul] Sin[w]; iy
Y both its wheels are }1'1 Efa’;h [:: S | /
& / K The Bolyai-Lobachevsky Plane
i;@g : happy unhappy Two parallels

-ﬂ ok

7, ,\\é\ Happy camera-carrying Segways above the Mona Plane through

N one point
Further Fun Facts. e In small scale, 7 — 7. In large scale, 7 — oo.
e The sum of the angles of a triangle is always less than w. In fact,
sum+area= 7, so the largest possible area of a triangle is . e If your
friend walks away, she’ll drop out of sight before you know it. e There
are so many places just a stone throw away! But you’d better remember
your way back well!
The Actual Code
Happy
Segways
y| 0.9y

AL

p3.y = p2.y + b*x3p;

x = pl.x-p2.x; y = pl.y-p2.y;

di = pl.d; d2 = p2.d;

norm = sqrt(x*x + y*y);

a = x/norm; b = y/norm;

x1lp = a*xx + bx*y;

x0 = (x1p + (d1*d1-d2*d2)/x1p)/2;
r = sqrt((x1p-x0)*(x1p-x0)+d1x*d1) ;
x1pp = (x1p-x0)/r; x2pp = -x0/r;
thetal = acos(xlpp);

theta2 = acos(x2pp);
The Mona Plane t1l = log(tan(thetal/2));
— ; - t2 = log(tan(theta2/2));
Some further ba- Finding the Centre P'(Iu'amctrlzatlon £3 = t1 + sk(t2-t1);
sic geometry also | 0'(t) = sin0(t) theta3 = 2*atan(exp(t3));
: | x3pp = cos(theta3);
oceurs: Ops used. +
! 4 d3pp = sin(theta3); 7P‘X el
: 6 = 2arctan e’ *x3p = %0 + r¥x3pp; CO’S, S7in', ,ta\L{:
! N p3.d = r*d3pp; arccos, arctan,
p3.x = p2.x + a*x3p; log, exp.

Video at http://www.math.toronto.edu/~drorbn/Talks/RCI-110213/, more at
http://www.math.toronto.edu/~drorbn/Talks/Niagara-1612/
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The Brute and the Hidden Paradise

[Work in Progress!

IFor long knots, w is Alexander, and that’s the
fastest Alexander algorithm I know!

|Abstract. There is expected to be a hidden paradise of poly-time
computable knot polynomials lying just beyond the Alexander
polynomial. I will describe my brute attempts to gain entry.

Dunfield: 1000-crossing fast.

Why “expected”? Gauss diagram #(K) = Z
formulas [PV, GPV] show that Yex(K0, |¥l=d

f)

that there are no others. But Alexander shows it nonsense:

d‘2 3 4 5 6 7 8
known invts* in O(nd)‘ 1 oo 3 4 8 11

This is an unreasonable picture! *Fresh, numerical, no cheating.
So there ought to be further poly-time invariants.

IAlso. e The line above the Alexander line in the Melvin- Rozansk
Morton [MM, Ro] expansion of the coloured Jones polyno-

imial. @ The 2-loop contribution to the Kontsevich integral. £

4]

finite-type invariants are all poly-time, and tempt to conjecture |’

Theorem [EK, Ha, En, Se]. There is a “homomorphic expansion”
S -component

{(V/b—)tangles } ' V??

\
:‘] ¥ "3 E/ STU:K: Ki K
AREE o s

cobra‘c\kcl
(it is enough to know Z on >< and have disjoint union and stitching
formulas) .exponential and too hard!
[dea. Look for “ideal” quotients of Ay that have poly-sized de-
scriptions; . specifically, limit the co-brackets.

7 :

Haviv Severa

Etingof

Enriquez

Why “paradise”? Foremost answer: OBVIOUSLY. Cf. pro-
iving (incomputable A)=(incomputable B), or categorifying (incomputable C)

Second Answer. The second answer hs (0 do with “Algebraic Knot Theory”, so let me start with that. Somewhat

informally, a * iece of a knot, or a “knot with endpoints” (an example is on the right). Knots can
be assembled cther the strands of several tangles, o the different strands of a single tangle. Some
intresting classes of knots can be defined algebraically using tangles and these stitching operations. Here is the most

d interesting example
(exten to Definition 1. A “ribbon knot” is a knot K that can be presented as the boundary of a disk D which is allowed to have

ribbon singularities” but not “clasp singularities”. Sece Figure 2. Figure 1. A tangle
tangles,

Figure 2. A ribbon singularity, a

clasp singularity, and an example of

a ibbon knot.
L,

A S

Definition 2. Let 75, denote the set of all tangles T with 2u compo-
nents that connect 2 points along a “top end” with 2u points along |
a “bottom end” inducing the identity permutation of ends (an exam-

ple is the tangle in Figure 1). Given T € T, let (T) be the result

of stitching its components at the top in pairs as on the right — it is

an n-component tangle all of whose ends are at the bottom, and we
(somewhat loosely) denote the set of all such by 75, 50 7: 72, — 7. Likewise let &(T) be the result of stitching T both at the top and at the
bottom, also as on the right. So k(T) is a 1-component tangle, which is the same as a knot, and x: 7o = T

Theorem 1 (I have not seen this theorem in the literature, et it is not difficult to prove). The set of ribbon knots is the set of all knots K that
can be written as K = k(7' for some tangle T for which r(T) is the untangled (crossingless) tangle U

perhaps detect

mon-slice
ribbon knots)

T K

T T
| e

gives T, == 7o, ——=7

Moral. Need
“stitching™:

{ribbon knots) = (&(T): T € Tz, and o(T) = U € T,)

Now suppose we have an invariant Z: Tj = A of tangles, which takes values in some spaces Ax
Suppose also we have operations 74z Az — Ay and ka: Az, — Ay such that the diagram on the right is
commutative. Then

Z({ribbon knots)) € Ry = (ka(0): £ € Az and Ta(() = 14 € Ay) € Ay, @ Ay Ay

where 1 = Z(U) € A,. If the target spaces Ay are algebraic matrices, matrices of polynomials, etc.) and 4 and
ka are algebraic maps between them (at this stage, meaning just “have simple algebraic formulas”), then R is an algebraically defined set
Hence we potentially have an algebraic way to detect non-ribbon knots: if Z(K) ¢ Ra, then K is not ribbon.

As it turns out, it i valuable to detect non-ribbon knots. Indeed the Slice-Ribbon Conjecture e
(Fox, 1960 asertsthat every sice knot (a knot in 5™ that can be presented as the boundary ofa ([T~ ——111
disk embedded in B*) is ribbon. Gompf, Scharlemann, and Thompson [GST] describe a family of (N - ; ]
slice knots which they conjecture are not ribbon (the simplest of those is on the right). With the \ u ¢
b el st are e v oo et e ST s i [ ] (
non-ribbon, thus disproving the Slice-Ribbon Conjecture ==

What would it take? — | —

C1. An invariant Z which makes sense on tangles and for which diagram (1) commutes.

C2. Z cannot be a simple extension of the Alexander polynomial to tangles, for by Fox-Milnor [FM] the Alexander polynomial does not
detect non-ribbon slice knots.

C3. Z cannot be computable from finitely many finite

C4. Z must be computable on at least the simplest [GS

C5. Ttis better if in some meaningful sense the size of the spaces Ay grows slowly in k. Indeed in (2), if A, is much bigger than A, and 4,
then at least generically R will be the full set 4, and our condition will be empty.

ariants, for this would contradict the results of Ng [Ngl.!
. which has 48 crossings.

No invariant that I know now meets these criteria. Alexander and Vassiliev fail C2 and C3, respectively. Almost all quantum invariants
and knot homologies pass C1-C3, but fail C4. Jones, HOMFLY-PT and Khovanov potentially pass C4, yet fail C5. We must come up with
something new.

[FM] R. H. Fox and J. W. Milnor, Singularities of 2-Spheres in 4-Space and Cobordism of Knots, Osaka J. Math. 3 (1966) 257-267

[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon
Conjectures, Geom. and Top. 14 (2010) 2305-2347.

[Ngl K. Y.Ng, Groups of ribbon knots, Topology 37 (1998) 441-458, arXiv:q-alg/9502017 (with an addendum at arXivmath. GT/0310074)

1-co and 2-co, aka TC and
TC?, on the right. The pri- I 1—_00 0 2—_COY Y
i N
>9/ }A<<< /ﬁ &5 ‘ E[}UE
> > S

mitives that remain are:
.manageable but still exponential!

4 The 2D relations come from the relation with 2D
Lie bialgebras:

TS e

We let A>? be A" modulo 2-co and 2D, and z>? be the projection
of log Z to P*? := nP", where PV are the primitives of A".
Main Claim. z>? is poly-time computable.

Main Point. $%? is poly-size, so how hard can it be? Indeed, as a
module over Q[[b;], $*? is at most

i b; = 9@

, 0

AN

i i

, 0

J 7 J o

Why “brute”? Cause it’s the only thing I know, for
now. There may be better ways in, and it’s fair to
hope that sooner or later they will be found.

- OO

Claim. R, = e“*eP* is a solution of the Yang-Baxter / R3 equa-

1 a;j 19 Cj (S(l,’/' Ca;j 6(1,'_,‘(1/([

The Gold Standard is set by the formulas [BNS, BN]
| for Alexander. An S-component tangle 7" has I'(T') €

RS XMgys(Rs) = {%’%} withRg = Z({t,: a € S}):

wlwz‘Sl Sz
T1|_|T2—) Sl A] 0
S» 0 A

(A-Pow |

c

mab

_—
Ia, Ip — 1

IHelp Needed! Disorganized videos of talks

lin a private seminar are at wef3/PP.

Vo, Halacheva, Dalvit, Ens, Lee
(van der Veen, Schaveling)

tion R13R13R23 = Ry3R13R 1, in exp P2,2’ with Pjk =

' cdj Sapa )  Pbp(b) _ daja
V) b b2 T g0 \ T Ty )

and with ¢(x) * -1 —x + x%/2 — ..., and Y(x)
(x+2)e*=2+x)/2x) = x2/12 — x3/24 + .... (This already
lgives some new (v-)braid group representations, as below).

Problem. How do we multiply in exp(#*?)? How do we stitch?
IBCH is a theoretical dream. Instead, use “scatter and glow” and
“feedback loops™: * *

The Euler trick:
With Ef = (deg f)f get Ee* = xe*
and E(e*e’e’) =
xe‘eet + etye'et + efedzer.

1

Feedback loop

Cherenkov radiation

Video and more at http://www.math.tor

9

onto.edu/~drorbn/Talks/Greece-1607/
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Dror Bar-Natan: Talks: Greece-1607: weP:=http://drorbn.net/Greece-1607/ (bas // TGi,2 // TGi,3) - (bas // TG1,3 // TGy,2) ...0(Q

IWork in Progress! The Brute and the Hidden Paradise

ILocal Algebra (with van der Veen) Much can be re-
formulated as (non-standard) “quantum algebra” for the
4D Lie algebra g = (b, c, u, w) over Qlel/(e* = 0), with
b central and [w, c] = w, [c, u] = u, and [u, w] = b—2ec.

{0, —f[t1, t2, t3] wiuzws+ £[t1, t2, t3] trur vz w3+
flt1, t2, t3
-f[t1, t2,
flt1, t2,
flt1, t2, t3

Jurusws - £[t1, t2, t3] t1uiusws,
t3] uruzwe + £[t1, t2, t3] tiuruz wz +
t3] ur uz wp -

]
] tiuiuswz, 0, 0, 0, 0, 0, 0}

d

The key: a;; = (b; — ec;)c; + uw; in U(@)*/). vander Veenln /: n[i_12=0; n/:n[i_1n[i_1=0; Turbo-Burau (new!)
Some (new) representationss of the (v-)braid groups.  wef/RepsTB:_,;_[<]1 :=
Bi ,j [£1:=&/.vjm (L-t)vi+tvy Burau (old)| Expand[< /. {

Columne {lhs = {vi, V2, v3} // B1,2 // B1,3// By,3, ...testing R3

rhs = {v1, V2, Vv3} //B2,3//B1,3//B1,2,
lhs - rhs // Expand}

{vi, (L-t)vi+tvy, (1-t)vi+t ((1-t)va+twvsz)}
{vi, (1-t) vi+tvz,

(1-t) ((L-t)vi+tva)+t ((1-t)vi+tvs)}

{0, 0, 0}

Gi j [€£1 =&/ vim (L-ts) Vit tiv; Gassner (0ld)(bas // TB,,, // TBy,3) - (bas // TBy,3 // TBy,2) . oQ
... Overcrossings Commute (OC):

Columne@ {1lhs = {v1, vz, v3} // G1,2 // G1,3,
Expand[lhs - ({vi, V2, V3} // G1,3// G1,2)]}

{vi, (1-t1) vi+tivy, (1-t1) vi+tyvs}
{0, 0, 0}

rhs = {v1, v2, v3} // G2,3// G1,3,
lhs - rhs // Expand}
{vi, v2, (1-t1) vi+ts ((1-t2) va+tavs)}

{vi, v2, (1-t2) va+tz ((1-t1) vi+tivs)}
{0, 0, vi—-t1vi-tovi+titovi-vo+tivo+trve-tytrvy}

Gassner Plus (new?)[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Inva-

GP; ,; [<] :=Expand[§/. {uj = (1-t;) u;+tiuy,

£ .ovim» E(l-ty) vi+ Ft;vy+ (t;-1) (ti O, £ -t O f) u; + 1308.1721.

ft;u; }],
bas = {f[t1, t2, t3] v1i, £[t1, t2, t3] vz, £[t1, t2, t3] v3,

uy, uz, us};

Short[lhs =bas // GP1,» // GP1,3 // GP3,3, 2] ...R3 (left) conjecture, Invent. Math. 125 (1996) 103-133.

{f[t1, t2, t3] vi, £t1, t2, t3] t1ur + £[t1, t2, t3] v1 -
flti, ta, t3] t1vi+ <<6> +tfu £1:00 £y, ty, t3],
<<l>> + <«<19> + <«<1>>, <<1>>, u; -t;u; +tyuy,

uy -tiur+tiux -ty toux+ty trus}

(bas // GPy,3 // GPy1,3 // GPy,2) - 1hs ...R3 (rest)

{0, 0, 0, 0, 0, 0}
(bas // GP1,2 // GPy1,3) - (bas // GPy,3 // GPy,2)
{6, 0, 0, 0, 0, 0}

Question. Does Gassner Plus factor through Gassner?

KSi_,;j_ :=KroneckerDelta[i, j]; Turbo-Gassner (new!)

TGi_ ,;_ [£.] := Expand[¢& /. {
£ . Vi :-)Plus[ka /. v (1-t;) vi+tivy,
(1-t3") (£:0e; £-1t50¢,£) %
(up /. u5-> (1-t;) u; +t;uy) »u;wy,
Kéy,: £ (uj -u;) u:‘.Wj],
uj - (1-t;) u;+t;uy,
wi>wi+ (1-t3h) wy, wyotitw;}];
bas = {£[t1, t2, t3] vi, £[t1, tz, ts] v2, £[t1, t2, t3] vs,

up, Uz, Uz, Wi, W2, W3};

Satisfies R3...

) rem. A knot is rib- —
... Undercrossings Commute (UC):pon iff it is the re-
Columne@ {lhs = {vy, vz, v3} // Gi1,3// Gz,3, sult of n-petal flower ﬂw /[Q
< L

.OC| of classical and virtual knots, Topology 39 (2000) 1045-1068, arXiv:

£ .vy »Plus[fvy/.v;> (1-t-n[i]) vi+ (E+n[i]) v,
(t-1) (Coefficient[f, n[i]] - Coefficient[f, n[j]l]) *
(U /. u;-> (1-t)u;+tuy) vu; wy,
Kék,: (£/._n-0) (uj-u;)u;w;l,
uj-»> (1-t)u;+tuy,
wiowi+ (-t 1) w;, wyj>tlw;}]s
£f = fo+ £1n[1] + £2n[2] + £31[3];

2 2 .
bas = {ff vy, £ffv,, £fv3, uywy, uywz, uy, Uz, us, Wi, Wz, W3};

{0, —-fouruz w3+t fousuxws+fgus uzws-t foususzws,
—~fouiruzwz +t fouyguxwe+ fouruswz -t foul uswe,
o, 0, o, 0, 0, 0, O, 0}

[Flower Surgery The-

surgery (from thin pe-
tals to wide petals) on
an n-componenet un-
link, for some n. Colin, you happy?

=)

N
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“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified)

Video and more at http://www.math

.toronto.edu/~drorbn/Talks/Greece-1607/
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Dror Bar-Natan: Talks: NCSU-1604: wep:=http://drorbn.net/NCSU-1604/
Gauss-Gassner Invariants, What?

[Work in Progress!

The (Burau-)Gassner Invariant.

IAbstract. In a “degree d Gauss diagram formula” one produces
a number by summing over all possibilities of paying very close
attention to d crossings in some n-crossing knot diagram while
observing the rest of the diagram only very loosely, minding only
its skeleton. The result is always poly-time computable as only
(3) states need to be considered. An under-explained paper by
Goussarov, Polyak, and Viro [GPV] shows that every type d knot
invariant has a formula of this kind. Yet only finitely many integer
invariants can be computed in this manner within any specific
polynomial time bound.

I suggest to do the same as [GPV], except replacing “the skele-
ton” with “the Gassner invariant”, which is still poly-time. One
poly-time invariant that arises in this way is the Alexander poly-
momial (in itself it is infinitely many numerical invariants) and I
believe (and have evidence to support my belief) that there are
more.

aa

=

\
@)~ B

The QUILT Target. QUick Invariants of Large Tangles, for little
had been found since Alexander (and if they’re there, how can we
not know all about them?), and for {ribbon} # {slice}:

- L}t Gompf,

Scharlemann,

Ly
- ‘e

R T R [GST]
UeT, 1eA, —l
T T \ (NN

T 7L T, M

™ RN \

ribbon K € T 2(K) € A, l

Faster is better, leaner is meaner!

Burau
Theorem 1. A! an invariant z: {pure framed S - component
tangles} — I'(S) := Msys(Rys), where Ry = Z((T)ges) 1S
the ring of rational functions in S variables, intertwining ‘“’“'“‘"LE
|S1 |S2 L S S» Gassner
Si A S, |A Sijdr 0,
1| A 2 | Az S, 0 A
a b S
ala B 6 m?b ( ¢ S )
bly 6 € ﬁ) l cly+ad/u €+9/u |,
— telb ™l | Sl p+a Z+y0
Sle v 2 =1-8 ¢ +ay/u Yo/u
and satisfying (|a; PR ) i>

See also [LD, KLW, CT, BNS].

Theorem 2. With k = 1 and F4 defined by

s Y22Y33 — Y23Y32
FA(—)’ 7) = 5
Y33 T Y13Y32 — Y12V33 1,51
s Y13Y32 — V12733
Fyle—,y)=s ,
Y32 —Y23Y32 + Y2Y33 7,51

GG r,(K) is aregular isotopy invariant. Unfortunately, for every

(just QUILK, today)

@xﬁ
#

Goussarov-Polyak-Viro

Gauss Dlagrams

+ +

1 2 3 4 5 6 7 8
Gauss Diagram Formulas [PV, GPV]. If g is
a Gauss diagram and F an unsigned Gauss

diagram, (F, g)pv = > (=1 6(F, ):

s \ Under-Explaind The-
® \ orem [GPV]. Every
 finite type invariant

+
W r @ : arises in this way.

= V VN ={(F,K)=wK) “______________

3% +2/7 ) ;i \"\ + rotations

= (F3,K) = 6v3(K)

F3 =

knot K, GG, r,(K) — T% log A(K)(T) € Z, where A(K) is the
|Alexander polynomial of K.

Expectation. Higher Gauss-Gassner invariants exist . . .
(though right now I can reach for them only wearing my exoskeleton)

,J
i

..and they are the “higher dlagonals in the MMR expansion of

Jones, Melvin,
Morton, Rozansky,
Garoufalidis

*************** the coloured Jones polynomial J,.

Theorem ([BNG], conjectured [MM], elucidated [Ro]). Let
J.(K) be the coloured Jones polynomial of K, in the d-
dimensional representation of s/(2). Writing

(q"? = g7 Ja(K) »
q4? — =42 = Z ajm(K)d'H",
Jsm=0

g=e"
“below diagonal” coefficients vanish,
ajm(K) = 0if j > m, and “on diagonal”
coefficients give the inverse of the Alexander

Gauss-Gassner Invariants. Want mo-
re? Increase your environmental aw-
areness! Instead of nearly-forgetting l +>/
v¢, compute its Burau/Gassner inva-
riant (note that y is a tangle in a Swiss cheese; more easily, a
virtual tangle):

GGrr(®9)= ), FO.200 = ), F(.x(s cutneary)),

y<8, ylsk y<g. lylsk

where k is fixed and F(y, y) is a function of a list of arrows y and
a square matrix y of side [y|+ 1 < k + 1.

>

polynomial: (Z::o amm(K)h’”)-A(K)(eh) =1

I'm slow and feeble-minded.

@ Help Needed

Video and more at http://www.math.toronto.edu/~drorbn/Talks/NCSU-1604/
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Dror Bar-Natan: Talks: NCSU-1604: Gauss-Gassner Invariants, Wherefore?

weP:=http://drorbn.net/NCSU- 1604/
Slides w/ no URL should be banned!

Warning. Conventions on this page change randomly from line to
line.

7"/2. The GGA story is about Z"/?: K — A"/?, defined on
arrows a by +a — exp(xa):

e k!l!'m!

Where the target space A"/? is the space of unsigned arrow dia-
grams modulo

AT VAN JENRT

(Z2*/? is a reduction of the much-studied Z" [BND, BN]).

! m

The Euler Trick. How best do non-commutative algebra with ex-
ponentials? Logarithms are from hell as e/ef = ¢*M/®) but Eu-
ler’s from heaven: Let E be the derivation E f := (deg f)f (= xf,
in Q[x]) and let EZ := Z"'EZ (= x(log Z)’ in same). If deg x = 1
then Ee® = xand if F = ¢/ and G = €8, then E(FG) is

(FG) \((EF)G+F(EG)) = G(EF)G+EG = ¢ ™% EF)+ EG.

Scatter and Glow. Apply E to Z(K). EZ is shown:

Tail scattering. The algebra Q[b;]{a;;)
modulo [a;;,ay] = 0 (oc), [a;j,ax] =
0 (TO), and [ag,ap] = -—laj,ap] =
bjajx — bjaj (CH and éﬁ)"), acts on V
QlbilKxi = ajco) by laij, xi] = 0, [aj, x;]

adajj .. — adajj . —
b,'.Xj - bjx,-. Hence ¢ YXip = X, e X =

JC:;

1 2 3 4
aj2di3dandyn

ehixj + l};_j(l — eP)x;. Renaming % = x;/b;, T; = e, get
L 1 1-T; .
[edda sz, = (O T, ’). Alternatively,
i Yil _ _
Vi Yi = X

)_)j = (1 —T,'))_C,'-I- Tl')_Cj

Xi

Linear Control Theory.

If (y) = (: ¢)(x)’ and we further
Yn 0 af\x,

impose x, = y,, then y = Bx where

(R I
L

n
JZB

B ==+

. This fully explains

—a
the Gassner formulas and the GGA formula!

All that remains now is to replace TC by something more intere-
sting: with €2 = 0,

laij, ai] = €(cjaix — craij).
Many further changes are also necessary, and the algebra is a lot
more complicated and revolves around “quantization of Lie bial-
gebras” [EK, En]. But the spirit is right.
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Dror Bar-Natan: Talks: NCSU-1604: Gauss-Gassner-Alexander Demo

wep:=www.math. toronto.edu/~drorbn/Talks/NCSU-1604/
source notebook: we/GGAD.

<< KnotTheory" Loading KnotTheory *

Loading KnotTheory' version
2014, 13:37:37.2841.
Read more at http://katlas.org/wiki/KnotTheory.

of September 6,

GD[g GD] := g;
GD[L ] := GDeePD[L] /.
X[i , 7., k_, 1_] =» If[PositiveQeX[i, j, k, 1],

Ap;,;, Amj ;];

Gauss Diagram Utilities

Draw[g GD] := Module[{n = Max@Cases[g, _Integer, =]},
Graphics|[{
Line[{{0, 0}, {n+1, 0}}],
Listee@g /. (ah_); ,; = {
Arrow[BezierCurve[{{i, 0}, {i+ j, Abs[j-1i]}/2,
{7, 0}}11,
Text[ah /. {Ap->"+", Am-> "-"}, {i, 0.3}1},
Table[Text[i, {i, -0.5}], {i, n}1}]11]

Draw /@ GD /@ AllKnotse {3, 5} Some Gauss Diagrams

KnotTheory:loading : Loading precomputed data in PD4Knots".

2 3 4 5 6 7 8

N

2 3 45678 910

123 456 7 8 910 1

GD /@ AllKnotse {3, 5} Some Gauss Diagrams, 2

{GD[Amgs,1, Ame,3, Amz,s5], GD[ApP1,4, ApPs,g, Ams, s, Amy,z],
GD[Amg,1, Amg,3, Amio,s, Amp,7, Amg,9],
GD[Amg,1, Amg,3, Amio,s, Ame, 9, Amz,7]}

CF[g GD] := Sort[
g /. Thread[Sort@Cases[g, _Integer, «] »
Range[2 Length[g]]]1];
PV[F GD, g GD] /; Length[F] > Length[g]
PV[F GD, g GD] /; Length[F] < Length[g]
PV[F, y], {y, Subsets[g, {Length[F]}]}];
PV[F_GD, g GD] /; Length[F] == Length[g] := If]
CF[F] ===CF[g /. BAp | Am - A], (-1)Cuntls,an_] o];
V2[g_ 1 := Vz2[g] = PV[GD[A3,1, A2,4], GD[g]];

V, Definition

0;

Sum [

Format[Knot[n_, k_]] :=
Table[K -» V,[K], {K, AllKnotse@ {3, 7}}]

Computing V;

ny;

{31>1, 41»>-1, 5153, 5252, 61>-2, 60->-1, 63->1,
71 -6, 7253, 73>5, 7454, 7s >4, 7T6>1, 77> -1}

Table[K -» V5[K], {K, AllKnots@{3, 7}}] Computing V3
{31 >-1, 4150, 51 5-5, 5, 5-3, 6151, 6251, 630,
71—>~14, 72—)~6, 73—)11, 74—)8, 75—>~8, 76_)‘21 77—>~1}

PV[FI_+F2 , g ] := PV[F1, g] +PV[F2, g];

PV[c xF GD, g ] := cPV[F, g];

ox [g.]1 :=g/. i_Integer»Mod[i-k, 2Lengtheg, 1];
5

F3= ) (30:@GD[A1,5, 4,2, Rs,3] +20c@CD[A1,4, Bs 2, R36l);
k=0

V3[K ] :=

V3 Definition

V3[K] = PV[F3, GD@K]/6;

Histogram3D [
Table[{V;[K], V5[K]},
{1}]

Willerton’s Fish
{K, AllKnots@ {3, 10}}],

G[A 1a ,5 :=0t,,n, A7
G /: Factor[G[A_]] :=
G[Collect[1, h_, Collect[#, t_, Factor] &]];
Format@) G :=Module[{S = Union@Cases[y, (h| t), »a, o]},
Table[y.,», {a, S}, {b, S}] // MatrixForm] ;

Gassner Utilities

G/:G[Al_]G[A2 ] :=
M. 5 e [G[A 1] :=

G[A1+ 2] ; The Gassner Program
Module[{a, B, ¥, 6,6,€,9¢, ¥, =, u},

a p e Ota,na A Oty np A O A

€ Oty ha A OtpnpA Oep A | /. (E|h)ap>0;
¢ Y E Oh, A Oy, A P
u=1-5;
o[e=[(T)-(Gaurh 22veri) - (YN 7wz vy
Factor];
re. s o= o[ () (5 *2)- (w0
Rm, », := Rp.p /. Ta->1/T.;

GG[g GD, k_, F_, BB ] := The Gauss-Gassner-Program
Module[{n = 2 Length@g + Length@BB, y, cuts, rr, ¥0, v},
¥0 =G[ths1 1] Times@@g /. {Ap » Rp, Am - Rm};
¥0 %= G[Sum[B.,» ta hy, {a, BB}, {b, BB}]];
Sum[ ¥ = ¥0;
cuts = Cases[y, _Integer, o] J{n+1};
rr = Thread[cuts » Range[Length@cuts]];
Do[If[! MemberQ[cuts, j], ¥ =% //mj 5.155.1]1, {J, n}];
Fly /. ¥ /o (V.)a > Vasee],
(#overx) {y, Subsets[Listeegqg, k]}]1;
GG[g GD, k , F 1 := GG[g, k, F, {}];

rr,

Video and more at http://www.math.toronto.edu/~drorbn/Talks/NCSU-1604/
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GG[GD@Knot[4, 1], {1}, F]

Example: 4,

_ Z1+Tp-Ty Tp+T3-T) T3-Tp T3+T; Tp T (=1+T7) (1-Tp+Tq Tp) (-1+T3) _ (=14T7) (-1+Tp)
T1 T3 T1 T3 T1
_ (=14Tp) (~1+T3) —14T{+Tp-T1 Tp+T3-Tp T3+T] Ty T3 _ -leTy
F[{Aml,Z}l T, T3 T, T3 T, +
T, (-1+T3) (-14T1) Ty (-1+T3)
T - T T2
3 3
1 e _o1eTy) ((1eTp)?
T2 ~T1-Tp+T1 T2 To (=T1-T2+Ty T2)
F{{Amz,l}, S14Ty  1-2T9-Tp+Ty Tp  (-1+Tp) (-14T;+Tp-2T; Tp-T3+T; T3) ] +
T2 -T1-T2+T1 T2 To (-T1-Tp+Ty T)
0 0 T2
12Ty Toety T (c1471)2 (<1475 1 {LsTy) (1-2Tp-T34Tp T3) _ (-1+T1) (-1sTp)
- T T 0 ~14T5+T3 ~14T5+T3
F[{A ) . (11Tf o (1 i o) ] F[{A ) 0 T (1-2Tp-T3+Tp T3) Tp (-1+Tp) ]
14 Ty 2Tos 4 _
iz }1+T +T2 - 711+T +2T =0 Prz iy ~i+ToT3 ~i+T2+T3
1+T3 1+T2 0 Ty (-1+T3) T3
O O 1 —1+T2+T3 —1¢T2+T3
FA[{x_}, ».] := Simplify[ The Alexander Functional Draw /@ {R3L = GD[Ap,,s, AP3,s, APs,0]/ Invariance

Switch[x, Ap , 1, Am_ , -1] *
- 2,2 73,3~ 22,3 73,2
73,3+ 21,3 73,2~ 71,2 73,3 ’
71,3 73,2 - 71,2 73,3 ] /T > T];
73,2 - 22,3 73,2+ 22,2 73,3 -
GGA[K , bb__ ] GG[GD@K, {1}, FA, bb];

Switch [x, 1,2/

2,1/

Simplify@With[{K = Knot[4, 1]}, Example: 4
{GGA[K], Alexander[K][T], T drLog[Alexander[K][T]]}]

R3R = GD[Aps,s, AP2,9, AP3,6]}

{M’

12 3 4 5 6 7 8 9

P

vy +
12 3 4 5 6 7 8 9

Simplify[
GGA[R3L, {1, 4, 7, 10}] ==GGA[R3R, {1, 4, 7, 10}] /.

T(3:27) 3 _ 1 _q _-la12 Bio,p_ 1 -B1,5-Ba,b-B7,b]
1-37+72 ' T ! 1-3T+T2
True
Table[ Testing for up to 7 crossings
K-> Simplify[GGA[K] - T Oy Log[Alexander [K] [T]]],
{K, AllKnots@ {3, 7}}]
{31->-1, 4151, 51>-2, 5, >-2, 6150, 6250, 630,
71 ->-3, T2>-3, 713>4, 7454, 7s > -3, T¢ > -1, 77> 2}
GG[GD@Knot[4, 1], {1, 2}, F] /. F[y_List, y_G] :» F[Columney, ¥] Example: Degree 2 GauSS_Gassner for 41
_ Z14Tp-Ty Tp4T3-Ty T3-Tp T3+Ty T T (=14T9) (1-Tp+Ty Tp) (-14T3) _ (2147y) (-14Tp)
Ty T3 T1 T3 T
_ (=14Tp) (-14T3) -14T1+To-T) To+T3-Tp T3+T3 To T, _ Z1+Tp
F[ Am1, 2, T1T3 T17T3 1 *
T2 (fl'Tz) _ (=1+T ) To (71»1‘3) T
T3 T3 ’
1 -1+T _ (=1+Ty) (fl‘Tz)2 _1-2T-Ty+Ty T (-14T7)2 (-1+Tp) 0
T2 “T1-T2+T1 T2 T2 (-T1-T2+Ty T2) “14T1+T2 ~1+T1+T2
F[Am2,1 , S1+Tp  1-2T9-To#Ty Tp _ (-14Tp) (-14T34Tp-2T) Tp-T3+T) T3) ] + F[ Apy,2 , Tp (-1+Tp) oI (AT -2Tp+Ty To) +
T, ~T1-Tp+Tq Tp Ty (-T1-T+T1 Tp) -1+T1+T2 ~1+Ty+T2
0 0 T2 0 0 1
a1 _ ol 0 0 1 _oleTy 0 -l (lemp)
(=14T1) (1-2 Tp-T34T» T3) (-14T1) (-1+T5) Ta 4 4 T2
“14T1) (1-2T5-Ty+ _(1emy) (<14 B B L B
1 Temyets ETTovrN 0o 1 itz U e 0 . 0 i) 0
T (1-2T5-T34Tp T3) Ty (-14Tp) Amg,3 2 2 Apy,2 - ‘o 2
Flap,2, |0 Eroves Eprovs |+ ¥ amar | 0 o - o S ]+ F[Ap3,4 oo ey -am o
Tp (-14T3) T3 _14 14 _ -
0 Ty T STy g | (L) (LeTg) 0 0 T3 (-1+Ty) 0 T3 0
T4 Tq Tq T2
0 0 0 0 T3 0 0 0 1
1 0 1-1, 0 0 1 0 1-7, - (-1+T7) (-1+T3) (-1+T7) (-1+T3) (-1+Ty4)
O ltlg-Tp T4eTs-Tp Tg-Ty Ts+TpTg T 0 S14Tp  _ (-1+Tp) (-14+T4) 0 N . ;‘3 TO3
T2 Ts T2 T2 T,
F AP1,3, 0 0 T, 0 0 ] +F[Ap1,3, 0 o Ty (<14T3) Ty (<14Ta) (~14T4) .
Amz, 4 0 _ {=14Tg) (-14Ts) 0 1 _ Z1sTg Amg, 2 B T3 - Ty
T2 Ts T2 T2 0 -14Ty 0 a1 -1+Ty
Tg (-14T5) T T Tt
0 - 0 0 Ty 4 3 3
5 0 0 0 Ty
L e B -1eT (-1+T7) (-1+T5) 0o o0
ta T b T3 ED - T2 T3
_ (-14Tp) (-1+4T4)  -1eTy+Tp-Ty Tp+Ty-Tp Tg+Ty Tp Ty 0 1-7, 0 0 N Ty (~1+T5) 1T o
Ty Ty 1 e -T2
Ap2, 4 N Ap2,4q T2
Amy s’ 0 0 = 0 0 +F Ams,1 | ZifTa | (C1eTy) (S14Ta) LTy eTpoTy TpoTy Ty-Tp Ty+Ty Tp T 0 0
' Tp (-1+T4 1479) Ty (<1474 : ' T3 T3 T2T3
(;4» ) _ -1+ >T41— +T4) 0 T, 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1

Video and more at http://www.math.toronto.edu/~drorbn/Talks/NCSU-1604/
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Dror Bar-Natan: Talks: Leiden-1601:

The Kashiwara-Vergne Problem and Topology

w :=http://www.math.toronto.edu/~drorbn/Talks/Leiden-1601 E

Handout, video, and links at w/

Abstract. I will describe the general “expansions” machine
whose inputs are topics in topology (and more) and whose
outputs are problems in algebra. There are many inputs
the machine can take, and many outputs it produces, but I
will concentrate on just one input/output pair. When fed
with a certain class of knotted 2-dimensional objects in 4-
dimensional space, it outputs the Kashiwara-Vergne Prob-
lem (1978 w/KV, solved Alekseev-Meinrenken 2006 w/AM,
elucidated Alekseev-Torossian 2008-2012 w/AT), a problem
about convolutions on Lie groups and Lie algebras.

The Kashiwara-Vergne Conjecture. There exist

two series F' and G in the completed free Lie
algebra FL in generators x and y so that Kashiwara

z+y—logele” = (1—e MO F(e*Y—1)G i r
and so that with z = loge®e¥, Vergne

tr(ad )0, F + tr(ad y)9yG  in cyclic words
1 ( adz ady ad z > Alekseev
= —{r — —1
2 eadx_l eady_]_ eadz _ 1 \

L d
Implies the loosely-stated convolutions state- -

ment: Convolutions of invariant functions on a  Meinrenken
Lie group agree with convolutions of invariant

functions on its Lie algebra. Torossiang

The Machine. Let G be a group, K = QG = {>_ a;g;: a; €

“v-xing

X-$8-

“the crossing”

@ -Is¥e)-
e l-
=E S g jthet
>>/ :OQ: vertex
/<< w/vX co: A oo

Q, g; € G} its group-ring, Z = {>_aigi: > a; =0} C K its
augmentation ideal. Let P.S. (IK/T™+1)* is Vassiliev
~ / finite-type / polynomial in-

A=grK:= @m>01—m/zm+l' variants.
Note that A inherits a product from G.
Definition. A linear Z: K — A is an “expansion” if for any
vy E€TI™ Z(v)=(0,...,0,7/Z™* ! %,...), and a “homomor-
phic expansion” if in addition it preserves the product.
Example. Let K = C*(R") and Z = {f: f(0) = 0}. Then

The Double Inflation Procedure.

/D @ | What band, inflated,
glves the “Wen”?

Riddle.

™ = {f: f vanishes like |x|™} so Z™/Z™"! is degree m ho- W
mogeneous polynomials and A = {power series}. The Taylor
series is a homomorphic expansion!

Just for fun. = projections of re-

]C/]C1<— ’C/’CQ{— ]C/]Cg% ]C/]C4<—

“progressive scan” algorithm.

wiC :=PA

The set of all ZL)) ,,,,,,,,,

Algebra”:

§%§ )
(Wikimedia Commons image, w/WM) Py o

objects

Rotate arbitrary planar ways to make blgger‘ _
olour Correct Ellfsi 77777777777777 \ 77777777777777777
Adjoin & 4

T no!
oc s D e /@ il 7

\L An expansion Z is a choice of a

phic expansions for wkC and the set of solutions
of the Kashiwara-Vergne problem. This is the tip |
of a major iceberg! Dancso, w/ZD

Rotate K/K1 ®@K1/K2®K2/Ks® Kz /Ka®Ka/Ks®Ks/Ke® - -+ E?é I >> ‘ ‘
olour Corl.re.ct I I ! ‘g
Adjoin @3 ker(K/Ka—K/Ks) 2= & /) \\ H H
In the finitely presented case, finding Z amounts to solving Tz Unzip along an annulus Un21p along a disk
a system of equations in a graded space. The Machine general-|"" ke 2 Kot \ Kerg and morc!
Theorem (with Zsuzsanna Dancso, w/WKO). izes to arbitrary alge- |« o vork ‘ / (given g)
There is a bijection between the set of homomor- braic structures! \ e 2 Au,/ N Ren)

. “God created the knots, all else

: _ topology is the work of mortals.”

Leopold Kronecker (modified)

in

www.katlas.org :fh,e Kt olas

Edit

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Leiden-1601/
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Dror Bar-Natan Talks MoscowByWeb-1511
Video and more abeB:=http://drorbn.net/mbw

Crossing the CrossingE E

I/Abstract. The subject will be very close to Manturov’s repre§Baek to /K. The “crossing the crossings” ma:
tation of\B, into Aut(FG,.1) — I'll describe how | think about it : VI, — Wl .1 is defined by the picture belg

in terms of a very simple minded magf’ from n-component viv. Equally well, it is/K : VB, — wBp,1. Better, it isE
tangles to 1§ + 1)-component w-tangles. It is possible that yow#ll: v, — (nv + Iw)T or /K : B, — (nv + 1w)B.

know this already. Possibly my talk will be very short — it W@laims.

words, and if this is little, so be it.

AN
be as long as it is necessary to descrilfeand say a few mord. /& is well defined. y (- /
2. On u-links,/K “factors”. AN y a\

All you need is/&... e« What is

its domain?e What is its target? - - y =
e Why should one care? AN
\

v+ 1w

N T/ 4. JK recovers Manturov'¥G andu: VG(K) = m (WK (K)), u =
/laN

3. K does not respe@C.
K o ¢ = ¢k

to an invariant of virtual knots. in particular, there is aeeit

relations; globally, who cares? So,
VT = CA(*2,: RLR2,R3)  CA = “Circuit Algebra”

\Virtual Knots. Virtual knots are the algebraic structure underlyyégued “non-commutative” invariant as in BN] and DBN:
the Reidemeister presentation of ordinary knots, Withbattb--l-a|ks. Hamilton-1412next page)

pology. Locally they are knot diagrams modulo the Reidemeiﬁkely, the various “2-variable Alexander polynomials” for Vi

tual knots arise in this way.

Flying Pogsfor v2; and for §7:

Manturov

Proof of 1.
2304 XX X

Everything slides out!
Proof of 2. The net “redJ9 J

flow” into every face is 0,
so the red arrows can
paired. They form cycle
that can hover f the pi-
cture.

No proof of 3. Well, there
simply is no proof thaOC
is respected, and it's easy
to come up with counter:

VT = PA(“/Z,Z\’,X: R1,R2,R3,VRL, VR2, VR3, M>,

wrong!

No! Note that also (with PA=“Planar Algebra”

examples.

X%yq W= X

Yy

X > OXi1g
Xiy1 — q_lxiq '

X > XXXt

O'iZXiI—){
Xit1 P> X

Ti=><il—){

to
v {Yi - Vg yiagy ! %, {yi - Yirl
Yis1 > Qyigqt Yisr P Yi

yi - ayigt
Tij lad 11 .
yi — Y lalyay;

My moment of reckoningManturov'sVG(K): [Ma, BGHNW]
z w zZ= XyX_l W, z zZ= x_lyx z w zZ= q_lyq

NX_’ W= X X><y_’ w = gxq}

Manturov’su: B, — Aut(F(Xg,..., Xs, Q)): [Ma, BGHNW]

Easy resolutionSettingy; := g'xq~', we find thaiu is equivalen

and to me, virtual braids are anyways always pure. So really

But why does itexist?  Especially, whereforeB, — WBy.1?|Ma] V. O. Manturov,On Invariants of Virtual Links, Acta Ap-

Beferences.

[BN] D. Bar-Natan,Balloons and Hoops and their Universal Fi-
nite Type Invariant, BF Theory, and an Ultimate Alexander |-
nvariant, Acta Mathematica Vietnamic#-2 (2015) 271-329
arxXiv:1308.1721

[BGHNW] H. U. Boden, A. |. Gaudreau, E. Harper, A. J. |
cas, and L. WhiteVirtual Knot Groups and Almost Classical
Knots, arXiv:1506.01726

ity is defined omT; Artin’s representatiow is defined omB,,.

-Tangleswr := VI /OC where “Overcrossings Commute” is:| plicandae Mathematicz2-3 (2002) 295-309.
~ _ < orbetter, . % 4. _ _i. /i |Prejudices should always be re-evaluated! —

Even betteryK pulls backany invariant of 2-component w-knots

s ] o Proof of 4. A simple verification, except my conventions are
but I have a prejudice, or a deeply held belief, tirag is morallyl,g

Z
=

ﬁ not?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-1511/
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Dror Bar-Natan: Talks: Cornell-150925:
w :=http://drorbn.net/C15

Knots in Three and Four Dimensions

Abstract. Much as we can understand 3-dimensional objects
by staring at their pictures and x-ray images and slices in 2-
dimensions, so can we understand 4-dimensional objects by
staring at their pictures and x-ray images and slices in 3-
dimensions, capitalizing on the fact that we understand 3-
dimensions pretty well. So we will spend some time star-
ing at and understanding various 2-dimensional views of a 3-
dimensional elephant, and then even more simply, various 2-
dimensional views of some 3-dimensional knots. This achieved,
we’ll take the leap and visualize some 4-dimensional knots by
their various traces in 3-dimensional space, and if we’ll still have
time, we’ll prove that these knots are really knotted.

A further 2-knot.

Warmup: Flatlanders View an Elephant.

w/g wfr w/b coords from w/Jeff2207

,,,,,,,,,,,,,,,,

Some Unknots ['(("/\7
R

(€]

.

with Ester Dalvit

i

w/Dal

Formally, “a differentiable embedding of S lin R3
modulo differentiable deformations of such”.

A

“broken curve diagram”

O

w/M2

@

Thistlethwaite’s unknot

Scharein’s relaxation Haken’s unknot

Reidemeister’s Theorem. (a) Every knot has a
“broken curve diagram”, made only of curves and
“crossings” like ><. (b) Two knot diagrams repre-
sent the same 3D knot iff they differ by a sequence |

R1

Kurt Reidemeister

2-Knots / 4D Knots.  Formally, “a differentiable embedding of S? in R*
modulo differentiable deformations of such”.

A 4D knot by Carter and Saito w/CS

Carter, Banach, Saito

of “Reidemester moves”: K
Topology is locally analysis and globally algebra
3-Colourings. Colour the arcs of a bro- \/ \/ \/
ken arc diagram in RGB so that ever
£ ' YN NN
chromatic. Let A(K) be the number of
such 3-colourings that K has. C / )
Riddle. Is A(K) always a power of 3? @
Proof sketch. It is enough to show that for each Reidemeister
colourings of the two sides. E.g.:
k / \ L N
A N N
, “God created the knots, all else in |V e
~ topology is the work of mortals.”

N N )
U ral § 0
T AN \
N N
crossing is either mono-chromatic or tri- “6464" “good  bad
Example. 1(O) = 3 while A(&) = 9; 500 # 6.
move, there is an end-colours-preserving bijection between the
/J o C
Leopold Kronecker (modified)

N - m SO
www.katlas.org Teekret Jilas

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cornell-150925/. Similar talks at

.../CUMC-1307/,

.../CUMC-1307/
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Dror Bar-Natan: Talks: Cornell-150925:
w :=http://drorbn.net/C15

Knots in Three and Four Dimensions, 2

Theorem. Every 2-knot can be represented by a “broken surface
diagram” made of the following basic ingredients,

...and any two representations of the same knot differ by a se-
quence of the following “Roseman moves™:

A Stronger Invariant. There is an assigment of groups to knots /
2-knots as follows. Put an arrow “under” every un-broken curve
/ surface in a broken curve / surface diagram and label it with the
name of a group generator. Then mod out by relations as below.

= X =Yz

Facts. The resulting “Fundamental group” m;(K) of a knot / 2-
knot K is a very strong but not very computable invariant of
K. Though it has computable projections; e.g., for any finite G,
count the homomorphisms from 7 (K) to G.

Exercise. Show that | Hom(r(K) — S3)| = A(K) + 3.

“long w-knot diagram”
Satoh’s Conjecture.  (Satoh,
Virtual Knot Presentations of
Ribbon Torus-Knots, J. Knot Theory and its
Ramifications 9 (2000) 531-542). Two long w-
knot diagrams represent via the map ¢ the same
simple long 2D knotted tube in 4D iff they differ

—= “simple long knotted 2D tube in 4D”

1

Shin Satoh
by a sequence of R-moves as above and the “w-moves” VR1—

VR3, D and OC listed below:

T
(1) () O

w/WwM

Q)

A Knot
Table

There are many
more!

w/KT

Some knot theory books.

e Colin C. Adams, The Knot Book, an Elementary Introduction
to the Mathematical Theory of Knots, American Mathematical
Society, 2004.

e Meike Akveld and Andrew Jobbings, Knots Unravelled, from
Strings to Mathematics, Arbelos 2011.

e J. Scott Carter and Masahico Saito, Knotted Surfaces and
Their Diagrams, American Mathematical Society, 1997.

e Peter Cromwell, Knots and Links, Cambridge University
Press, 2004.

e W.B. Raymond Lickorish, An Introduction to Knot Theory,
Springer 1997.

Knots Unravelled
"

EHE

KNOT

WB. Raymond Lickorish

An Introduction
to Knot Theory

BOOK

COLIN C. ADAMS

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cornell-150925/. Similar talks at
.../CUMC-1307/, .../CUMC-1307/
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Dror Bar-Natan Talks LesDiablerets-1508

[=] 5 [=]

Work in Progress o
weP:=http://www.math. toronto. edu/~drorbn/Talks/LesDiablerets-1508/

Polynomial Time Knot Polynomials,

Abstrant.The value of things is inversely correlated with th
computational complexity. “Real time” machines, such as
brains, only run linear time algorithms, and there’s stibawe

[=]2%%:

exponential things must be beautiful or philosophicallynpelling to deserve.
attention. Values further diminish and the aesthetictalegophical bar fur-
ther rises as we go further slower, or un-computable, or Bf&- intrinsically|
infinite, or large-cardinalish, or beyond.

| will explain some things | know about polynomial time knatlpnomials and

explain where there’s more, within reach.
(v- )Tangles
M e
mpS/ma’)

A

Why Tangles?
o Finitely presented. (meta-associativitymg"/méc =
e Divide and conquer proofs and computations.
e “Algebraic Knot Theory”: IfK is ribbon, cly =
SHSIREEN
tr|V|aI cl: ribbon KeT1

ZK) € {cla(Q): ch(?) = 5 57
(Genus and crossing number‘

are also definable propertles) Faster is better, leaner is meang
Theorem 1. 3! an invariantz: {pure framedS-componen
tangles$ — T'o(S) = Rx Msys(R), whereR = Rs = Z((Ta)acs) IS
the ring of rational functions i® variables, intertwining

wiwz |[S1 S,

-l

don’t know. Anything we learn about things doable in lingamné is truly va- %1 92 03 =

luable. Polynomial time we can in-practice run, even if weent wait; thesg(E // Miz21 // Mi3s1) = (8§ // M35 // miz.1)

things are still valuable. Exponential time we can play wittiat just a little, and oo oo ToTTTTT T ot
9 p play | e - R3 .. divide and conquer

ai;p 013 61
Oz O3 63
a3y 033 63

a1
021
Qas1

Meta-Associativity

ouTlo, {ti, t2, ta, ts}. ~{hi, Bz, hs, hs}|;

[{Rms; Rmgy RP3y // Mygs1 // Mps,p // M3es3, o

Rpg; Rmpg Rmzs // myg,1 // mps,o // m3es3} 1/
1 hl hz h3 1 hl h2
I3 I3
{ + -1+To 1 ’ t -1+Tp 1
2 T2 T3 2 T2 T3
~1+T3  -1+T3 -1+T3  -1+T3
ts T2 T3 ! ts T2 T3

z = Rmyp 1 Rmy7 Rmgs Rmy, 11 RPy6 5 RPg,13 RP14,9 RP10,157
Do[z= 2z // my.1, {k, 2, 16}];

£ _gry+412-13 ny )
T1

t1

z

1
11- =+

3

1

4
2
T

1

Closed Componentd.he Halacheva tracectsatisfiem@b// tre =

mP3/ tr. and computes the MVA for all links in the atlas, but
dqmaln is not understood: T
w|c S (
t tre uw | S 1
cla 6 =+ 0l) N
Halacheva
tre [Tlo_, A_]] := Module[{a o, ¥, ),

a Secnet Ouc 4V
(w:)’[ahcl )/ (t[h)e~0; C D FN
Flw(l-a), E+¥*6/ (1-a)] // FCollect] /\ﬂ\

(8 // Mz // tx1) = (8 // mp1a1 // tx1) cly: trivial C|2 ribbon example

True

Weaknessese m2® and tg are non-linear.e The productwA is
always Laurent, but my current proof takes induction witpe
nentially many conditionss | still don’t understand t; “unita-
rity”, the algebra for ribbon knots< \Where does it come from

w1 |S1 w2 S U

> S A 0,

(81|A S A S;‘Ol 2

wla b S

ala B 0 P ((pw c S )

bly 6 € TaTooTs [C y+ad/u e+ 0b/u J

—_ a b_) Cc S + =4+ 0

S|l¢ vw B pu=1-p ¢+ ay/u wh/u
1|a b

and satisfyinda; /b,b;\)ﬁ) %%; al1 1=7a
bjo Tz

In Addition e The matrix partis just a stitchi

formula for BurayGassnerl[D, KLW, CT].

e K — w is Alexander, mod units.

oL - (w,A) — wdet(A-1)/(1-T) is thegas

MVA, mod units.

e The fastest Alexander algorithm | know.

e There are also formulas for strand deletlon : '
M. Polyak & T. Ohtsuki

reversal, and doubling.

@ Heian Shrine, Kyoto
e Every step along the computation is the invariant of somejth
e Extends to and more naturally defined gwatangles.

e Fits in one column, including propaganda & implementatio

{ Let 7 == (—X). ThenA" :=

/RZ

w2 XY o ; /)E}E{j&j

)88 | G

[11"/1™1 =“universalt{(Dg)®>" =

\ / - Y = \/ + \»r/ (Also IHX)

VALY A [N oY
Fine print: No sources no sinks, AS vertices, internallycticy deg= (#vertices)?2.

Elkely Theorem. [EK, En] There exists a homomorphic exp4d

n

Implementatiorkey idea: wef/Demo
_ T 7% Tlo1, 2101 Tlaz, J27) T=Tlwiwa?, AT+22T: " ~ ~
(w, A= (aap)) & b, b e [Tle, 211 := Module[(a, B, v, 6,0, ¢, 6, ¥, 2, K},
— I
(a),/l =2 a’abtahb) | (@ B ey (Otmd dem,A O,
,,,,,,,,,,,,,,,, 4 [1 s s] = |06, n,2 Oty m, 2 at,,/1] /. (€] B) .- 0;
[Pcollect[T[«_, A_]] := T[Simplify[«], ¢ ¥ = On, A Ony, A P

!
Collect[2, h_, Collect[#, t_, Factor] &]];

| y+ab/u e+é6/u

sion (universal finite type invarian®): vI — A". (issues suppresseq

[Too hard!Let’s look for “meta-monoid” quotients.
The w Quotient | ‘

D

Format[r(s_, 2.]] := Module[(s, M}, | I‘[(u=1—l3)w, {t;,1)~(¢+my/“ 3+ws/p)‘{h"1}]
S = Uni onocases[r[ 21, (|t > a, ]
¥ = outex[Factor[dy,,.., 4] &, S, ] | /o (T, To T} // Toellect];
- ; ! 11-T,
M = Prepend[M, t. & /@ S] // Transpose; .
MRt A TR CAE CHR S B P R
M // MatrixForm]; Rm, , := Rp,, /. Ta-1/T.;

AV = UFL(S)S C\N(S))

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/
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Dror Bar-Natan Talks LesDiablerets-1508
lweB:=http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/

Workin Progress op glynomial Time Knot Polynomials,

Theorem 2[BND]. 3! a homomorphic expansion, aka a |
momorphic universal finite type invariadt' of pure w-tangles
2" = log Z" takes values ifrL(S)S x CWS).

efinition. (Compare BNS, BN]) A | The Abstract Contex
meta-monoid is a functdvl : (finite sets, '

—

injections)-(sets) (think ‘M(S) is quantunGS”, for G a group)

7 is computablez of the Borromean tangle, to degreeBN]:

T <

+ cyclic colour
permutatlons
for trees

SOCO0DDDDC

(I have a fancy free-Lie calculator!).€p/FL Nice, but too hard

meta-monoid’oy(S) =

along with natural operations M(S1) x M(S2) —» M(S;1 U S»)
wheneverS; NS, = 0 andmi®: M(S) — M((S\{a b}) U {c})
whenever # b € S andc ¢ S\{a, b}, such that

meta-associativity: me2/mi® = mpS/maP
meta-locality: mg%/mi® = mfe/mgP
and, withe, = M(S — S U {b}),
meta-unit: e,/me® = I1d = &,/m2,

Claim. Pure virtual tangle®VT form a meta-monoid.
" Theorem.S I'o(S) is a meta-monoid angy: PVT — T is a
morphism of meta-monoids.
Strong Conviction. There exists an extension b§ to a bigget
['o(S) xI'1(S), along with an extension ¢
7o t0 Zp1: PVT — Ty, With

D)
Propositio{BN]. Modulo all re- \/

lations that universally hold for
the 2D non-Abelian Lie alge- ¢ =
[u. V]

variable,z" reduces tay.

Ii(S)=VeVZeV=3ae S (V)®  (withV = Rs(S)).
Furthermore,upon reducing to a single variable everything
polynomial size and polynomial time.

FurthermoreTly,; is given using a “meta-2-cocyct€® overly”
In addition tomg® — mg, there areRs-linear mé2: I'y(S u

bra and after some changes-of-
Back to v — the 2D “Jones Quotient”.

Contains the Jones and
Alexander polynomials,

.yet

swinging still too hard!

3 I'1(S) Rs-linear in the first variable, and a first ordeftérential
- operator (oveRs) o2 To(S U {a, b}) — I'1(S U {c}) such that

{a, b}) — T'1(S U {c}), a meta-right-action?®: I'y(S) x ['o(S) —

Likely related to ADO]

= 0, only one co-bracket is allowed.
Everything should work, and everything is being worke

U The OneCo Quotient.
(.

References.
[ADO] Y. Akutsu, T. Deguchi, and T. Ohtsukinvariants of Colored Links].

of Knot Theory and its Ramificatioris2 (1992) 161-184.
[BN] D. Bar-Natan,Balloons and Hoops and their Universal Finite Type
nvariant, BF Theory, and an Ultimate Alexander Invarianig3/KBH,
arXiv:1308.1721

jects I-Il, weB/WKO1, wef/WKO2, arXiv:1405.1956arXiv:1405.1955
[BNS] D. Bar-Natan and S. Selmanileta-Monoids, Meta-Bicrossed Produc]
and the Alexander Polynomial, of Knot Theory and its Ramificatio22-10
(2013),arXiv:1302.5689

[CT] D. Cimasoni and V. TuraeW Lagrangian Representation of Tanglés;

[BND] D. Bar-Natan and Z. Dancs@;inite Type Invariants of W-Knotted O*Every ribbon knots is clearly slice, yet,

pology 44 (2005) 747-767arXiv:math.G70406269 2 ) e

[En] B. Enriquez,A Cohomological Construction of Quantization Functors_—"éf’ag)‘ 7 } ‘ T
Lie BialgebrasAdv. in Math.197-2 (2005) 430-479arXiv:math0212325 |g £ e

[EK] P. Etingof and D. KazhdanQuantization of Lie Bialgebras, lSeIecta_cC‘E § | 1
Mathematica (1996) 1-41arXiv:g-alg9506005 =5 ‘ . } /

[GST] R. E. Gompf, M. Scharlemann, and A. ThompsbBipered Knots anc_;c3 %?/ ‘ =] | ’ +1 ‘
Potential Counterexamples to the Property 2R and SlicésétlConjectures,qy <
Geom. and Topl4 (2010) 2305-2347arXiv:1103.1601 % §

[KLW] P. Kirk, C. Livingston, and Z. WangThe Gassner Representation far ‘= 1 |
String Links,Comm. Cont. Math3 (2001) 87—136arXiv:math9806035 =8 | ‘ |- L

[LD] J.Y. Le Dimet, Enlacements d’Intervalles et Représentation de Gas%er, \ | (I
Comment. Math. Helv67 (1992) 306-315. - i

(G, C1)/E® = (o/mBe. (1. Lo}/ @™ + ZofpE)
What's done?The braid part, with still-ugly formulas.
What's missingA lot of concept- and detail-sensitive work to
ardsme®, o, andp2®. The “ribbon element”.

/ X
a rlbbon singularity  a clasp singularity Stein)
A bit about ribbon knots A “ribbon knot” is a knot that can b
presented as the boundary of a disk that has “ribbon sing
ties”, but no “clasp singularities”. A “slice knot” is a knat
S3 = 9B* which is the boundary of a non-singular disk B.
Conjecture Some slice knots are not ribbon.

on Milnor. The Alexander polynomial of a ribbon knot is al
ays of the formA(t) = f(t) f(1/t). (also for slice

I m slow and feeble-minded.

. “God created the knots, all else in
. topology is the work of mortals.”

Leopold Kronecker (modified)

www.katlas.org Thenm /Im

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/
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(p472.c0) iy = ~ ' . ﬁ:j
ke Mlh)o RGO FE fo R D Folkf] | - 2Rl M’gj

— B3 83, ey ) 1B bt | )
= VeV \er (I PRS2 ()

Mﬂ \/\/L\C/C @// {JC}J —/
Lﬂ\{ Jro 5/\45% /51/(4/ (5 AnJP ) L(’LF/_ Qym/f‘m[z (I—f—,l Q—\X’Nozﬂ,_l./
—(Adwﬁ ﬂ‘\% ﬁv"‘ 5/;/1/// - j a1 Q/Z/: /‘“"QZR’“”“’

Stitchng 1t ol psalh, bid T il
bt~ hrvt  weplicst Forrmdas |

2015-08 Page 1
Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/
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Dror Bar-Natan: Talks: LesDiablerets-1508: FreelLie‘ Demo see especially wef/FLD, wef/WKO4, and wef/PP.

Loading, initializing variables, setting default degree to 6.
(The Mathematica packages FreeLie‘ and AwCalculus‘ are at we3/WKO4).

path = "C:/drorbn/AcademicPensieve/";

Meaningless calculations.
{b[F, G], try[F]}

SetDirectory[path <> "2015-08/LesDiablerets-1508"];

Get[path <> "Projects/WKO4/FreeLie.m"]; { [0 0, - 1 < - %V
FEed i 2 XYY/ —55 XYY Yy

Get[path <> "Projects/WKO4/AwCalculus.m"];

x=LWe"x"; y=LWe"y"; u=LWe"u";

1 TVY - L x %V -
720 BE XYY T 50 X XYY Y

) XY EYy _ _1 [y I M= XX XYYy
$SeriesShowDegree = 6; 1440 700 XRY XY - S0 XYY VY 1440
o 1 T 7
FreelLie' implements / extends mxxyy YY*EXY XYV VY- X?SB\(;W+ W288VOV' R
{*, +, *%, $SeriesShowDegree, (), J, =, ad, Ad, adSeries, AllCyclicWords,
¥ ¥y XX XYY VY. XXYY RYXY XYVY AAAY
AllLyndonWords, AllWords, Arbitrator, ASeries, AW, b, BCH, BooleanSequence, CWS[ r 247 180 + 80 - 360 - 180 + 240 - 240 1440 '
BracketForm, BS, CC, Crop, cw, CW, CWS, CWSeries, D, Deg, DegreeScale, _ m + XXXVY _ RXYXY + 2 XXYVY _ XYXVY + XYYVY + VARAR
DerivationSeries, div, DK, DKS, DKSeries, EulerE, Exp, Inverse, j, J, JA, 5040 6720 1120 945 336 6720 10080
LieDerivation, LieMorphism, LieSeries, LS, LW, LyndonFactorization, Morphism, ng:gv X)1(>:;4Z(V - X;>2(4ZV + X;OT;(V 1312)(()\’8)2)Vy X)l(z8;v B
New, RandomCWSeries, Randomizer, RandomLieSeries, RC, SeriesSolve, Support, t, o= T - S <
tb, TopBracketForm, tr, UndeterminedCoefficients, aMap, ', ¢, A, O, b, —, ,\} 3780 - 840 5040 2240 + 6720 + 60480 }}
FreeLie® is in the public domain. Dror Bar-Natan is committed to . . . . )
. A
support it within reason until July 15, 2022. This is version 150814. (AISO lmplemented‘ a/l and derlvatlons n general’ tb’ e and
. . . . . N
AwCaleulus implements / extends morphisms in general, div, j, Drinfel’d-Kohno, etc.)

{x, *x, =, dA, dc, deg, dm, dS, dA, dn, do, E1, Es, hA, hm, hS, hA, hn,
ho, RandomElSeries, RandomEsSeries, tA, tha, tm, tS, ta, tn, to, T', A}.

The [BND] “vertex” equations.
AwCalculus’ is in the public domain. Dror Bar-Natan is committed to

support it within reason until July 15, 2022. This is version 150814. L X
- . LU }’i = and _u .
BCH[x, y] (* Can raise degree to 22 «x) W ) \ By !
T vz T yz % Y z ) z y T y x v

LS[?%—?, E, 1 XXy L L XYY, Lxx—y'y, a=LS[{x, y}, as]l; B=LS[{x, y}, Bsl;
2 2 ¥ =CWS[{x, y}, ¥sl’

1 pr— 1 — 1 —_— 1 = V=Es[{(x-a, y=>B), ¥];
- XX XX + — - XX X + —— X X + —— X X +
720 Y 180 YY" Tao YY Y+ 5 XY XYY x = CWS[{x}, xs]; Cap =Es[(x > LS[0]), x];
Rs[a_, b_] := Es[(a—> LS[0], b>LS[LWea]), CWS[0]];

1 1

pr— Faaa 1 —
Jeo XXV XY - 0 XYY VY, - T 4 g XX XYY V4 RaEqn = Vs (Rs[x, z] // dA[x, x, y]) = Rsly, z] #xRs[x, 2] xxV;
UnitarityEqn =
% XRY XYy + %o XXXV XY - X—?—Eﬂ, ... (V% (V//dR) = Es[(x>LS[0], y-LS[0]), CWS[0]]);
CapEqn = ((V** (Cap // dA[x, x, y]) // dec[x] // de[y]) =
KV Direct. (Cap (Cap // do[x, yl) //de[x] //dec[y]));
{F=LsS[{x, y}, Fs], G=LS[{x, y}, Gs]}; Fs["y"1=1/2;  Bs["x"]=1/2; Bs["y"] =
SeriesSolve[{F, G}, SeriesSolve[{a, B, ¥, x},
(A ! R4Eqn) A UnitarityEqn A CapEgn];
n-l (LS[x+y] -BCH[y, x] = F-G-Ad[-x] [F] +Ad[y] [G]) /\ ~, x

divx[F] +divy[G] =

tru [adSer:Les [

tting: In degree 1 arbitrarily setting {«ks[x] - 0}.
: In degree 3 arbitrarily setting {as[x, y, y] - 0}.
: In degree 5 arbitrarily setting {as[x, x, X, y, y] = 0}.

=d = , %] [ul + adSerles[ =d — y] [ul -

adSer:Les[ =ad — » BCH[x, y1][ul ]] ;

{F, G} (* Can raise degree to 13 %) B ) . . .
Further output of SeriesSolve:ArbitrarilySetting will be suppressed during this calculation. >

— e 1xx%y _ 1xEyy , Evy
7 1 = 1 — 1 — [ — ES[ X —>LS[0, ->r, 0, - + , 0,
LS[l S A Sl xwYv o+ x X % { 24 5760 5760 1440
{ S 6 ! 24 YYor 180 Yy 80 Yy 360 YY Y
—— — — _3lxxxx%y  3lxxx®yy _ 83xx¥yyy _31xXYEYy _ xxEVEY
20 X X xyy +$xxyy y+$xy XYYy +% XXy XY — 967 680 483840 967680 725760 645120
13xXVVy + 101XV Xy + 52Tx XYYV X AN
_— —_— _— — — PR
XY , XXX XX _ XXX XVVY 13xx X + 1 er—y- T}/‘y + 241920 1451520 5806080 60480
1440 5040 1344 15120 840 — -
J—— e, — x XV 1 —_— 1 —
— — — — = voLs|E, -EL, 0, BEEL - L xXyy + oo XYY Y,
XXXV XY | XEJY XY EY + XEVV XY Fa v
- PR — = —
3360 6720 1260 1680 10080 xx XYy _ XXV XY _ XXX XEY 23xxxXyy _ 13XxXxXyvy XXV XYY _
J— 1 1 1 1 3840 6912 ' 645120 483840 161280 22680
LS|0, ¥, = % -— XXXy +—=-xX + = X R R
' 127 24 YY, 360 y 120 Yy 180 YY Y —] — _— —
41 X XXV XY XXVY V+Tyﬁ V' J1xXVYXY _ XYY VVY }
1 1 — 1 — I 580608 15120 12096 483840 30240 " ] [!
- XXXYYV + - XXYYV+ - XYXRYY + = XRY XY - e
720 240 240 720 CWS[O _E g, BEY , EZXW , Dy ZWY |,
48 2880 2880 5760 2880
v p— e ey s o I T T _ _ yy _ YXy YYyy _ yy _
XYY VY = XXX XXY _ XXXXVY | XXXVYY 4 XXV XVY , XXXVXY , 120960 ~ 120960 120960 120960 241920 120960
1440 10080 2016 1890 1120 5040 -
— _ XXYVVV _ XYXVYXY VXY _ v
— 120960 120960 3628380 120960 241920 120960 ' H’
XXYY VY l % XXYVXY  EVYVYVYVY xR REXX KHXKER
+ —— XYy X + - .. - X -
2520 ga0 XY XYV Y 1260 5040 ' CWS[O' 96 ! 0 11520 0 725760 7 ° ]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/
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From V to F to KV following [AT].
A[VI[1] // do[{x, ¥y} - {y, x}];
logF // EulerE // adSeries [ eﬂdd.1 , logF, tb]

al

logF =

[~

= ¥ == v _ 1 w4 L = Bl
<X4)LS|:2, 6 ! 4ny, 180xxxy+80xxyy+360 XYY Vs

N

1 - 1 =T 1l oo 1 - o
- - XXX + - XX + - X X + - XX X -
720 Yy 240 yyy 240 Y vy 720 Y b
XYV V , XXX XX _ XXXX + 13xx’ﬁvv+ 1 XTyTyy +
1440 5040 1344 15120 840

XxXYRY  xXYyyy  EYRYvy  xEYVRY _ EYVVYVY

]

3360 6720 1260 1680 10080 '
— 1 e r—— — 1 ==
%LS[O v o L'x - XXXy + - XX + = X
Y r o o4 YYr =350 Y+, YY * 750 YY ¥r
-1 XX X + L X X + L X X + L XX X -
720 Yy 240 Yyy 240 Y Yy 720 Y Y
XYV YV XXX XK _ XXXX XX XY V+xﬂ'x +xx’)Wx
1440 ' 10080 2016 1890 1120 5040
xETvyy 1L e xXVY X % ]
+ X X + ..
2520 840 Yy EYYyYy 1260 5040 '

8s[2, 1] =&s[3, 1] =&s[3, 2] = 0; Solving for an associator ®@.
®s[3, 1, 2] =1/24; & =DKS[3, &s];
SeriesSolvel[&,

(§a[3,2,1] = -3) A

(8 % $0[1,23,4] 44 902,3,4] = $0[12,3,4] 44 §a[1,2,34])];

& (» Can raise degree to 10 x)

Tti13tij3to3t
5760

_ tiztyztyztos
1440 ’

_1tiatoatoatey |
5760

DKS|0, - Ti3tzs, O,

157 t13t13togtoz gty
1935360

t23tp3

0 31t33tr3to3ty
! 967 680

31 t13to3ti3tr3ztrztog _ 31 t13ti3to3ztrztrztog +

387072 483840
11t13t13%13¢p3%813853 | 31t13%13€p313¢3¢03 | 83t13t13%13€p3 303
290304 725760 967680

tiztiztiztiztiztos
60480 !

13t13t13t13 83 p3tp3
241920

]

The “buckle” Zg, from O.

T zf/a/q
~ /L .
|

R = DKS[t[1l, 2]/2];

ZB = (_§)0[13,2,4] *% §a[1,3,2] *% Ro[2,3] *% (_§)0[1,2,3] *%
gol12,3,4] ;

Zp@ {4}

DKS %3*, —i tiztos - i tiatog + i Tigtag + 11*2 tos tag,

f1ataatos t L oti3Tistast
- Sl ead Bas +
1920 720 C13Ti3ztasztas

Ttigtiat3atzs
5760

1 T t.._ Ttiatigatoatog
—— tiztiztiztos - +
7,0 t13tiztistes 5760

t1atoat3at3s
5760

t14t14at14t34
1440

ISVASVRSVASY! 1 e———
+ - - —— ti1atigtogtzg +
1440 560 Cl4at1at2atsg

t1gtogtogt
5760

o ——  toatraTogtag
560 toatog taatas 5760 ’

V from Zp, following [AET, BND].
(E1[2s // oMap[l, 2, 3, 4], CWS[O]1] // T // tn* // tn3 //
hn? // hn* // ho[{3} » {2}] // to[{2, 4} » {1, 2}])I

1]
12 711712 71122 1222
1-1s[o, -Z, o - 0
< " 24" T 5760 5760 1440 " 7
231111172 311117122 831171222 _ 31172722 _ 311172712
967 680 483840 967 680 725760 645120
13112222 1017271222 | 527112272 _ 122222
241920 1451520 5806080 60480 " "]’
T 12 1172 1 T 17y

- =, == - + —

2-18 2/ 12’0’ 5760 7201122 720 1222,

_ 11172 11722 _ 172172
7680 3840 6912 '

_ 11117172 23111722 _ 13117222 112722 _ 411172712
645120 483840 161280 22680 580 608
172222 1212 71172272 _ 122222 }

15120 1 483840 30240 7 T

The Borromean tangle.
Rs[a_, b_] := Es[(a—>LS[0], b-» LS[LWea]), CWS[O0]];

iRs[a_, b_] := Es[(a—>LS[0], b-» -LS[LWe@a]), CWS[0]];
€= iRs[r, 6] Rs[2, 4] iRs[g, 9] Rs[5, 7] iRs[b, 3] Rs[8, 1];

b

Do[f = £ // dm[z, k, x], {k, 1, 3}]; L XN
Do[8 = & // dm[g, k, g], {k, 4, 6}]; 2

Do[f = £ // dm[b, k, b], {(k, 7, 9}]1; /\J
{€M1]1.@{5}, &M2]@{5}} // Print —

%bb—rrJr%bgg—rJr%bgTr—bngJr
%bﬁgg—2bﬂgg+%bﬁrr+%ﬁb'ﬁ—

1 1 —— 1
bgbrg -~ bbgbg->bgrgr+ = bgggg, ]

bbgbr + bbggr + bbgrg + bbgrr + bbrbg _ 3 bbrgr + bgbrr _ 3 bggbr + bgggr _
2 2 2 2

2 2 2 2 3
bggrg , bggrr , bgrgg _ 3bgrrg 4 bgrrr | brggr _ brgrr , brrgr ;.. ]}
2 2 2 2 3 2 2 2
References.

[AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture
and Drinfeld’s associators, Annals of Mathematics 175 (2012) 415-
463, arXiv:0802.4300.

[AET] A. Alekseev, B. Enriquez, and C. Torossian, Drinfeld’s associa-
tors, braid groups and an explicit solution of the Kashiwara-Vergne
equations, Publications Mathématiques de L’IHES, 112-1 (2010)
143-189, arXiv:0903.4067

[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of
W-Knotted Objects I-1V, weB/WKOI1, wep/WKO2, we/WKO3,
wef/WKO4, and arXiv:1405.1956, arXiv:1405.1955, arXiv:
not.yetx2.

Warning. Fidgety!
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Dror Bar-Natan: Talks: Louvain-1506: ] _w:=http:drorbn.net/Louvain-1506 ) o
Day 3: Chern-Simons, Gaussian Integration, Feynman Diagra Cosmic Coincidences

Recall. K = {knotg, A = grA = D/rels=

o (D.K). = (The signed Stonehen)g_e * *  count
. r 4 K = > /1~ \pairing of D andK AN 7 with
e _" p I, , o N } signs
X L AN R ~ L |D= @ K= @) 3 U L
X I T~ = H—-X S | R
SeekZ: K — A such that ifK is n-singular,Z(K) = Dy +... The k(X)) = Z (signs)
. given a “Lie” Gaussian .
Z: high algebra Igebrag — vertical >
K solvin finitely man: A= gﬂ( low :Ig:brr:" ic- “ﬂ(g)” Imkmg chopsteke A:":‘
equati%ns in fini);ely mar¥y tures r?apres'enffJ for- number = < O—O, @ >ﬁ C.F. Gauss
unknowns mulas
P (13 The generating function of all cosmic coincidences: E

p——-*— ?
— \ . D,K)sD
D“ - 3 *) _ Z(K) := lim D:ReD 4
j C-D ([‘ﬁf S'[ N— o0 3—V§ntD ZCC!(N) D. Thurston
_gf Claim. It all comes from the Chern-Simons-Witten theor

Theorem Given a parametrized knetin R3, up to renormal- 5 ﬁ
izing the “framing anomaly”, DAtrghol, (A) exp| — ftr (A ANDA+ ZAANAA A) ,
AcQL(R3,g) 3 E. Witten
C(D)D : LR2 ) “ s
Z(y) = Z AUL(D)] /\ P € A whereQ*(R?, g) is the space of al§-valued 1-forms orR? (really,
pep Y Co(®) ecE(D) connections)k is some large constariR is some representation gf

is an expansion. Het® is the set of all “Feynman diagramsénd tk is trace inR, andhol, (A) is the holonomy ofA alongy.

E(D) is the set of internal edges (and chordsPoiCh(R?,y) References. Witten’s Quantum field theory and the Jones
is the configuration space of placementsDbbryaroundy, polynomia) Axelrod-Singer's Chern-Simons perturbation the-
¢: Co(R3,y) — (S?)HP) is the “direction of the edges” mapyry I-Il, D. Thurston’s arXiv:math.QA990111Q Polyak’s
andw is a volume form org?. arX|v.math.G'l70406251 and my videotaped 2014 clasgAKT .
Gaussian Integratior(4;;) is a symmetic positive definite matrix andll( is its inverse, The Fourier Transform.

and @) are the cofficients of some cubic form. Denote bxi)(1 , the coordinates of (F:V—-C)= (F V* — C)

R", let (t)[, be a set of “dual” variables, and l@tdenoteg. Also letC := @I Then viaF(y) = [, f(v)e'“Vdv. Some facts:

- det(/l.
f(O) f f(v)dv.
fe L)X+ € A XXX _ f(/lukXXJ k)me L% xd ° \/
Z 6mm! )

o F orart
o — ~ .
R Feynman s | O f~ v

o e (e97) ~ Q2 whereQ is quadratic
j akym a3 9%t,t _ C; aiajak\M ([ yaB I o (e¥/2) ~ € , W q )
Z 6Mm |(/l'lka‘9‘9) e ’ - — 6™mi2!1 (’l'lkaaa) (/l Loty Q(v) = (Lv,v) for L: V — V* and

— > - _ . .

L=0 Ql¢) = (p,L7'p). (This is the key

r ks Q0282 03 08 point in the proof of the Fourier inversion
formulal)
m m m m Examples.
_ Z Ce™ .sum over all pairings .
3m=2|
Aizjrky Aigjaky Aimmjrmken |Aut(D)| = 12 |Aut(D)| = 8

5 Monsters left to Slay.
SO e Convergence. 00
i ) e Proof of invariance.
3 p1
&

e The framing anomaly.

Cem
=2 emmI21t >, &)
m|>0

* mvertex fully marked

3m=2| Feynman diagram® /lili1k1/lizjzkz/liliz/ljljz/lklk2 /li1J'1k1/lizJ'zkz/lilj1/7.k1k2/1i2j2 ® Unll/ersalllty; .
mO)&(D) e d doesn't really exist, Faddeev-
€ . - . T
=C “ATUDY - Claim. The number of pairings that produce aPopov, determinants, ghosts, Berezin in-
unmarked FeynmanlAUL(P)) given unmarked Feynman diagrddris Sm2l tegration.
diagramsD [Aut(D)| o Assembly.

Proof of the Claim. The groupGp, := [(S3)™ > Sp] x [(S2)' = S|] acts on the set of
pairings, the action is transitive on the set of pairifgthat produce a giveD, and the
stabilizer of any giverP is Aut(D). O

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506/
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Dror BarNatan: Talks: Louvain-1506: Ofrs0|
Knotted Trivalent Graphs, Tetrahedra and Associators =

w :=http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506 Handout, video, and links at/ E

)

Goal: Z:{knots}—>{chord diagrams}/4T so that

D
2 ) <\ %,/,,T\ (+more)
1 Claim. With @ = Z(A), the above relation becomes equi
alent to the Drinfel'd’s pentagon of the theory of quasi Hopf
The Miller Institute knot — algebras.
Pr oof.
Extend to Knotted Trivalent Graphs (KTG’s):
L[] e

SN
e AN L

Easy, powerful operations:

v -
—_—
forget

miles 1
@ ey )~ N
L

Using operations, KTG is generated by ribbon twis ? N
and the tetrahedro% :

A @ =(A® 18 1)(@)(1®1® A)®) € A(14)

3 4

|sotopy unzip isotopies
@ @ @ Ribbon Knotsand Algebraic Knot Theory.

| 5)‘ \\//\/ R ~ (uy: y € K, dy = Up)
R AN SUAN o (o) WSS €3

|
|

2

S>>
S>>

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506/
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Dror Bar-Natan: Talks: Louvain-1506:
lw :=http://www.math.toronto.edu/~drorbn/Talks/Louvain- 1506

Expansions Day 5: Back to 4.5' [w]

one dimension up, in 4D. Surprisingly, there’s more room[in
and things get easier, at least when we restrict our attendip
"w-knots", or to "simply-knotted 2-knots". But even thereth

completely confused.

Abstract. We will repeat the 3D story of the previous 3 talkge Finite Type Story.

are intricacies, and we try to go beyond simply-knotted, wes

S XX < H b 5

@ﬁQ%ﬂ%T”

Recall.
given a “Lie”

Z: high algebra algebray

= grK “U()

[Topology  solving finitely many equations Comblnatorlcs Iow algebra:pictures
in finitely many unknowns represent formulas

RS3.

Simple 2-Knots. ‘

EERE

The Bracket-Rise TheorenA" is isomorphic to

The Generators E cO E i *y

A i}

K- R e

thecrossing’ @ wx ¥ EOOE w
FOOE .
“weom-R

VV-XiHQ%Eo‘%E

— e

The Double Inflation Procedure

O (2in 1 out vertices) STy, A—S),
andIHX
Y\ relations

o N i s VL

v ) *\ [ =Y -\ [-X

STl =TC: - _ TAx: ~ _ r/

e m - X

Corollaries.(1) Only wheels and isolated arrows persist:

AY(Tn) = UFL(N), < CWN)) and ¢ :=logZ e FL(n)" x CW(n)
has completely explicit formulas using natuiFdl/ CWoperationsBN].
(2) Related to f.d. Lie algebras!

Low Algebra. With (x) and (') dual bases ofy and g* and with
[x, ] = 3. b %, we haveA" — U via

K
bji k byl -
'/ﬁ \ ﬁ m ﬁ
u . L
- - Penrose Cvitanovic
N A ‘

dimg
—_—

D BbRe el X! € U(lg 1= g" 4 g)
i,j,kl,mn= 1

w-Knots.

WPA</><I>

/R2

o /RVE}{%%
& |
Is this (H AF<> i cp

All?2? =

OC:\/R\_\MESW\A oﬁy‘T

II"’

yetn
UcC:

Differential Ops.We can also interpret{(l ) as tangential dierential
operators on Funj: ¢ € g* becomes a multiplication operator, 4
X € g becomes a tangential derivation, in the direction of théoaaf
adx: (x)(y) = e([x. Y]).

[Too easy so far¥et once you add “foam vertices”, it gets related to
Kashiwara-Vergne problenkK)/] as told by Alekseev-TorossiaAT]:

. )/Lertices /f

A Big Open Problem.§ maps w-knots onto simple 2-knots.
what extent s it a bijection? What other relations are rexl#t In

auchi [Ka] may already know the answer.

other wordsfind a simple description of simple 2-knots Kaw-| =

\/\ |
TsmguI:rmit\j / % /O )\ Qi

v
Kashiwara Alekseev

Torossian &

Vergne

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506/
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Dror Bar-Natan: Talks: Louvain-1506:
:=http://www.math.toronto.edu/~drorbn/Talks/Louvain- 1506

Expansions Day 5: Back to 4D — Side

w-Jacobi diagrams and. AY(Y T) = AY(TTT1) is

.

same relations, plus

oYY

deg= J#{vertice=6

‘simple”)? To arbitrary codimension-2 knots?

BF Following [CR]. A € QXM = R4, g), B € Q4(M, g*),
S(A,B) = f (B, Fa).
M

I0TO
NOT
AVAILABLE

Knot-Theoretic statement (simplifiedfhere e-
Xists a homomorphic expansi@hfor trivalent /

%

w-tangles. In particulaZ should resped®4.

Diagrammatic state-
ment (simplified). Let
R = expH e AY(T).
There existvV € AY(T1) so
that:

R

Algebraic statement (simplified\With r € g* ® g
and withR = € € U(lg) ® U(g) there exisV € U(1g)** so thatV(A
1)(R) = RV¥R?3V in U(16)*? ® U(g)

the identity element

Unitary statement (simplified)There exists a unitary tangentlalfﬁd:
rential operatoWV defined on Funf x gy) so thatvexy = eV (allo-
wing ﬂ(g) -valued functions)

With «: (S = R2) > M, 8 € Q°(S, g), @ € QY(S, g*), set RS
i
O(A,B,k) = f DBDa exp(ﬁ f (B, e pa + K* B)). @
S B
The BF Feynman RulesFor an edge, let @ be it
direction, inS® or S1. Letws andw; be volume forms d \
onS3 andSl Then L _ Cattaneo
maon o) o).
ZBF = (O3 w3 D, w1
dlagramsIAUt(D)l n ¢ ]b;l ¢
S vertices M vertices
(modulo some IHX-like relations). See alavd]
M \&
aa \s% f“sé\s/f w
f; S s M2 g
1
S
S

Group-Algebra statement (simplifiedfror everyg, i € Fun@)® (with
small support), the following holds i/(g):

[[ #utre - f [ suee.

gxg (shhh, this is Duflo

degree= #(rattles)

Issues.e Signs don’t quite work out, and BF seems to reprod
only “half” of the wheels invariant on simple 2-knots.

Unitary = Group-Algebra. ffex+y¢(x)1//(y) =
(VL VEYo(Xu(y)) (L, €eVe(X)y(y))
] e€'(x)u ().

(L eYp(uly) =
(L ep(Xu(y))

_le There are many more configuration space integrals tha
- Feynman diagrams and than just trees and wheels.
e | don’t know how to defing analyze “finite type” for genera

nal Lie group and leg be its Lie algebra, and I& : FunG) — Fun()
be given by®d(f)(x) := f(expx). Theniff,g € Fun@G) are Ad-invarian
and supported near the identity, the(f) x ®(g) = ©(f x Q).

Convolutions statement (Kashiwara-Vergne, SlmpllflG@)]hVOlUthhSiz'knOts- ) )
of invariant functions on a Lie group agree with convolusiafinvariante | don’t know how to reduc&gr to combinatoricg algebra.
functions on its Lie algebra. More accurately,&be a finite dimensidreferences.

[AT] A. Alekseev and C. TorossianThe Kashiwara-Vergne conjecture a
[ Drinfeld’s associators, Annals of Mathematics175 (2012) 415-463
arXiv:0802.4300

Convolutions and Group Algebréignoring all Jacobians). [& is finite,
Ais an algebrar : G — A is multiplicative then (Fur®), x) — (A,)
viaL: f — Y f(a)r(a). For Lie G, g),

To=€XPs

(3, +) > X e e S(g) Fun@) —— S(g)
LEXR; EXPy l)( (o) o1 lX
G.) 5 & & e DU(q) FunG) —2— (g

with Loy = [y (x)edx € S(g) andL1®d~Yy = [y(x)eX € U(g). Given
Wi € Fun(s) compareb=1(y1) * ©~(y2) andd1(y1 * y) in U(a):

sinG: [[nuapee  «ina: [[nauamie

pe Invariant, BF Theory, and an Ultimate Alexander Invatian/KBH,
arXiv:1308.1721

[BND1] D. Bar-Natan and Z. Dancséjnite Type Invariants of W-Knotted O
jects I: W-Knots and the Alexander Polynomiaf\WKO1, arXiv:1405.1956

[BND2] D. Bar-Natan and Z. DancsoFinite Type Invariants of W
Knotted Objects II: Tangles and the Kashiwara-Vergne Reabku/WKO2,
arXiv:1405.1955

[CS] J. S. Carter and M. Sait&Knotted surfaces and their diagramislath.
Surv. and Mono55, Amer. Math. Soc., Providence 1998.

[CR] A. S. Cattaneo and C. A. Rossliilson Surfaces and Higher Dime
sional Knot Invariants,Commun. in Math. Phys256-3 (2005) 513-537
arXiv:math-pti0210037

[KV] M. Kashiwara and M. VergneThe Campbell-HausdgiFormula and -

u < w The diagram on the right explains kTG —2 = WTF

nvariant Hyperfunctiondnvent. Math.47 (1978) 249-272.

2-Knot Story

~ “God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Louvain-1506/
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Question.Does it all extend to arbitrary 2-knots (not necessarily

uce

n Bl

[BN] D. Bar-Natan, Balloons and Hoops and their Universal Finite Ty-

h lati hip betw iat d [Ka] A. Kawauchi, A Chord Diagram of a Ribbon Surface-Link,
el rt|e ":: |Onf5ﬂ|1p Ke helsvn ?Siloc;lanors ran o u http://www.sci .os.aka—c_u. ac. jp/~kawauchi/.
solutions ot thé Kashiwara-vergne pro- [Wa] T.WatanabeConfiguration Space Integrals for Long n-Knots, the Alexan-
blem. der Polynomial and Knot Space Cohomologig. and Geom. Top7 (2007)
47-92,arXiv:math0609742
The Full
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http://www.math. toronto.edu/~drorbn/Talks/CMU-1504/
Dror Bar-Natan: Talks: CMU-1504:

Abstract. The commutator of two elements x and y in a group

Commutators

Example 2. In S 54,

G is xyx~'y~!. That is, x followed by y followed by the inverse
of x followed by the inverse of y. In my talk I will tell you how
commutators are related to the following four riddles:

[(ijk), GkD] = (i jR)GED k)™ GRD™ = (D k).
Example 3. In S 55,

[ jk), (kIm)] = (i jl)(klm)(i jk) ™ (kim)™" = (jkm).
Example 4. So, in fact, in S5, (123) =
[(412),(253)] = [[(341), (152)], [(125), (543)]] =
[[[(234), (4511, [(315), (542)11, [[(312), (245)], [(154), (423)]]] =
[ [[[(123), (354)1, [(245), (53 D11, [[(231), (145)], [(154), (432111,
[[[(431), (152)], [(124), (43511, [[(215), (534)], [(142), 253)11] 1.

1. Can you send a secure message to a person you have never
communicated with before (neither privately nor publicly), us-
ing a messenger you do not trust?

2. Can you hang a picture on a string on the wall using » nails,
so that if you remove any one of them, the picture will fall?

3. Can you draw an n-component link (a knot made of n non-
intersecting circles) so that if you remove any one of those n
components, the remaining (n — 1) will fall apart?

Solving the Quadratic, ax> + bx+c¢ = 0: 6 = VA; A = b? —4ac;
d-b b
.
2a
Solvmg the Cubic, ax® +bx%+cx+d = 0: A = 27a*d*>—18abcd +
dac® + 4b3d — b*c*; 6 = VA; T = 27a%d — 9abe + 3 V3ad + 2b°;

b 3ar

4. Can you solve the quintic in radicals? Is there a formula for
the zeros of a degree 5 polynomial in terms of its coefficients,

using only the operations on a scientific calculator? y = +h+7

3a
Solvmg the Quartlc ax* + b3 +ex? +dx+e = 00 Ay =

3
r cr=—

Definition. The commutator of two elements x and y in a group

o ome 12ae — 3bd + % Ay = —T2ace + 27ad’ + 27b%e — 9bed + 27
; = TyT _ 1 2 3 _ 8ac-3b-. _ 8d*d—4abc+b® _ .

is [x,y] = xyx"'y ) I Ay = 5 (A2 - 4A0), u = 8a=n. = Sediddberh 5, = /Ay,

Example 1. In S3, [(12),(23)] = (12)(23)(12)71(23)"! = (123) Py

and in general in S 53, 0 = %(3\/562+A1); g = V0 S = Lt s = VS;

L), (R = (ijk). F=-Y—4S -2u;y= VEir=-L2+3+s

Theorem. The is no general formula, using only the basic arithmetic operations and taking roots, for the solution of the quintic
equation ax’> + bx* + cx® + dx®> +ex+ f = 0.

Key Point. The “persistent root” of a closed path (path lift, in topological language) may not be closed, yet the persistent root of a
commutators of closed paths is always closed.

Proof. Suppose there was a formula, and consider the corresponding “composition of machines” picture:

Al a e a e
N C c P, Ao c R, 5 P, alternate polys R, .
4 2 | d — d A|— —= e —
P (coeffs) i polys | u 0o = VA polys and roots an
5 f b f
XQZCS\D =C6 X2=C9 X3:CIO ngc
Now if y(l) (1), cees y , are paths in Xy that induce permutatlons of the roots and we set 7(2) [y(ll) Y (1, y(z) = [721) , 741) 1, .

(2) = (1) (1) G ._ 1,2 ] (3) . (2) (3) @) ._

4 3 4
= [0y WLy = 20 Y = PR = PO = ),74 ], and finally y® = [y\", ("] (all of
those commutators of “long paths”; I don’t know the word “homotopy”), then y(s)//C //P 1//R1// - - - /R4 is a closed path. Indeed,

e In Xy, none of the paths is necessarily closed.
e After C, all of the paths are closed.

e After Py, all of the paths are still closed.
e After Ry, the y(1’s may open up, but the y»’s remain closed.

e At the end, after Ry, Y s may open up, but ¥ remains closed. V.I. Arnold
But if the paths are chosen as in Example 4, y®)/C//P1//R1// - - - /R4 is not a closed path. ]

i
E:

References. V.I. Arnold, 1960s, hard to locate.

V.B. Alekseev, Abel’s Theorem in Problems and Solutions, Based on the Lecture of Professor V.I. Arnold, Kluwer 2004.
A. Khovanskii, Topological Galois Theory, Solvability and Unsolvability of Equations in Finite Terms, Springer 2014.
B. Katz, Short Proof of Abel’s Theorem that 5th Degree Polynomial Equations Cannot be Solved, YouTube video,
http://youtu.be/RhpVSV6iCko.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMU-1504/ and at
http://www.math.toronto.edu/~drorbn/Talks/Sydney-1708
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ideo, links, and more @ Dror Bar-Natan: Talks: Georgetds03:
lwelB:=http://www.math. toronto.edu/~drorbn/Talks/Georgetown-1503

Abstract. It is insuficiently well known thaf™s
the good old Taylor expansion has a complgs
tely algebraic characterization, which gene
zes to arbitrary groups (and even far beyo
Thus one may ask: Does the braid group lav
a Taylor expansion? (Yes, using iterated in
grals angdor associators). Do braids on a to

(“elliptic braids”) have Taylor expansions? (Yes,Brook Taylor

e |

tual braids have Taylor expansions? (No, yet for nearbyahf
the deep answer is Probably Yes). Do groups of flying ringeidk
groups one dimension up) have Taylor expansions? (Yedyg
et the link to TQFT is yet to be fully explored).

Disclaimer.I'm asked to talk in a meeting on “iterated integra
and that's my best. Many of you may think it all trivial. Sarry
Expansions for Groups.Let G be a group,X QG
(Y agi:a €Q g €G}its group-ring,7 = {Yagi: Xa =0}
its augmentation ideal. Let _ o
- P.S.(K/I™1)* is Vassiliev/ finite-
A=grK = 0_Z'm/]m““l_ type/ polynomial invariants.
Note thatA inherits a product fron®.
Definition. A linearZ: K — A is an
“expansion” if for anyy € 7™, Z(y) =
O,...,0, y/]m+1, *,...), a“multiplicati-
ve expan3|on "if in addltlon it preserv
the product, and a “Taylor expansion”

Malcev

uillen
it also preserves the co-product, induced from the (%agmmj

G —->GxG.

Example. Let K = C*(R") and1 = {f: f(0) = Then
™ = {f: f vanishes likgx|™} so 7M/7™1 degreem homoge
neous polynomials andl = {power series The Taylor series i
the unique Taylor expansion!

Comment.Unlike lower central series constructions, this gen
lizes dfortlessly to arbitrary algebraic structures.

When does a group have a Taylor expansi

using more sophisticated iterated integyadssociators). Do vit

[=]

Pure BraidsTakeG = PB, = m1(C, = C"\diags). It F' =
is generated by the love-behind-the-bars braigs| 1
modulo “Reidemeister moves’I is generated b_E
oij — 1} andA by {tj;}, the clas- o L
ses of therj; — 1in Ay = 7/72. Q
Reidemeister becomes el ool R
[tij + tik,tjk] =0and Eijatk|] =0. 1 i j n
heorem.Fory: [0,1] — s
., With z its ith coordi- Z(y) = I 1_[ J dIog(z. -z,),

bieate, the iterated integral

O<ti<.. <tm<1
formula on the right defi- 1<i;<jyiz<jz.im<jmsn
3a$ a Taylor expansion f&B,.
Comments. e | don’t know a combinato- KC\ ] /
gal/algebralc proof thaPB, has a Taylor ex- 7
pansion.e Generic “partial expansion” do not

.....

extend! e This is the seed for the Drinfel'd
theory of associatorsé Confession: | dont
know a clean derivation of a presentation
PB,.
Knizhnik
Zamolodchiko
Kohno
Drinfel'd
Kontsevich g 5 '

Flying Rings. PV\/B1 PvBh/(o-.,o-.k = oikaij) is m(flying €
rings inR3). APWR,) = AMPB,)/[aj,ax] = O, andZQ>
is as easy as it get<Z(oy;) = €% [BP, BND]. Indeed,
Z(a',Jo'lko-]k) — Righkglk — @Ajtakglk — @Ajtaktak —
Z(0 kTik i)

Comments. e Extends toPwWT and generalizes the Al
xander polynomial, and even fwTI'T and interprets th
Kashiwara-Vergne problenBND]. e | don’t know an
ierated-integral derivation, or any TQFT derivation,uh
gh BF theory probably comes closeR].

&£
\ =4

1

O'ij v

n

o o]

Elliptic Braids. PB} := n1(C}) is generated byij, X, Y,, WI
th PB, relations and X, X)) = 1 = (Y;,Y)), (%.Y)) = o},
(XX, oij) =1 =(YiYj, oij), and[] X; and]] Y; are central. BeZ

implies A(PBY) = <Xa,y1> /(D% %] = [y yi] =[x+ %5, [%. Y]] =

[yi + i, 1% il = [ 2yl = [y, 2x] = 0, 6.yl = [x5, %),
and [CEE] construct a Taylor expansion usisgphisticatedte-
rated integrals.EnZ relates this tcElliptic Associators

. e

. oD

cocL®OOO
The “Vertex”inTT. Dancso
References. Paper in ProgressseB/ExQu

o

[BND] D. Bar-Natan and Z. DancsodFinite Type Invariants of W-Knotte
Objects |: Braids, Knots and the Alexander Polynomialg3/WKO1,
arXiv:1405.1956 and Il: Tangles and the Kashiwara-Vergne Proble
weB/WKO2, arXiv:1405.1955

[BP] B. Berceanu and S. Papadimaniversal Representations of Braid a
Braid-Permutation GroupsJ. of Knot Theory and its Ramificatiork8-7
(2009) 973-983arXiv:0708.0634

[Bez] R.BezrukavnikovKoszul DG-Algebras Arising from Configuration Sy
ces,Geom. Func. Anal-2 (1994) 119-135.

m,

nd

Da-

\Virtual Braids. PyB, is given by the “bralds
for dummies” presentation:

§0'ij | 0ijOiKT jk = T KOKTij, Oijokl = U'kla'lj
every quantum invariant extends RB,!).
By [Led, A(PVR,) is

(2 | [aj, aud + @, ad + [a, ax] = 0 = [a), &)
Theorem Leg. While quadraticPvB, does not have
a Taylor expansion.
Comment By the tough theory of quantization of s
lutions of the classical Young-Baxter equatidikK], Peter Lee

Jeeus!

J|
F

En1], PVT,, does have a Taylor expansion. BAT,, is not a group.

[CEE] D. Calaque, B. Enriquez, and P. Etingbfniversal KZB Equations ||
The Elliptic CaseProg. in Math269 (2009) 165-266arXiv:math0702670
[CR] A. S. Cattaneo and C. A. Rosslilson Surfaces and Higher Dime
sional Knot Invariants,Commun. in Math. Phys256-3 (2005) 513-537|
arXiv:math-pti0210037
[En1] B. EnriquezA Cohomological Construction of Quantization Functor:
Lie Bialgebras Adv. in Math.197-2 (2005) 430-479arXiv:math0212325
[En2] B. Enriquez Elliptic Associators,Selecta Mathematica0 (2014) 491+
584,arXiv:1003.1012
[EK] P. Etingof and D. KazhdanQuantization of Lie Bialgebras, ISelectd
Mathematica2 (1996) 1-41arXiv:q-alg9506005
[Lee] P.Lee,The Pure Virtual Braid Group Is Quadrati§electa Mathematiqg
19-2 (2013) 461-508arXiv:1110.2356

Nn-

5 of

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Georgetown-1503/
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ideo, links, and more @ Dror Bar-Natan: Talks: Hamiltort24
lweB:=http://www.math. toronto.edu/~drorbn/Talks/Hamilton-1412

Tangles, Wheels, Balloor@

[=]

Abstract. | will describe acomputable, non-commutatiiava-
riant of tangles with values in wheels, almost generalize #o-
me balloons, and then tell you why | care. Spoilers: tangte
you know what, wheels are linear combinations of cyclic ve
in some alphabet, balloons are 2-knots, and one reason Isc
because quantum field theory predicts more than | can ay:
get (but also less).

Why | like “non-commutative? With FA(X) the free associatw
non-commutative algebra,

dimQ[x,ylg ~ d < 29 ~ dimFA(X, y)q.
\Why | like “computable™?
e Because I'm weird. ¢ Note thatr; isn't computable.

w is practically computableFor the

Borromean tangle, to degree 5, the

sultis: (seeBN])

N -X-Y< XXX
00 O0CO
200900

o™

D

ooﬁﬁ@

Preliminaries from AlgebraFL(x) — T

denotes the free Lie algebra iR ) = H - X
FL(x) = (binary trees with AS ver-—

tices and coloured leaf)HX relations). There an obvious m
FA(FL(x)) — FA(x) defined by §, b] — ab-— ba, which in itself,

1 1 a b

Proof of Invariance.

AR

1\((
CW(Xx) denotes the vector space of cyclic wordsxp):(CW(x;) =
FA(X)/(xw = wx). There an obvious magWFL(x)) —
CW(X).
univalents with colours ifl, .. .,

n}, modulo AS and IHX, is pre
cisely CWX):
/\ /

=\ {\? ’ﬁ? @ 3

In fact, connected uni-trivalent 2-in-1-out graphs wi

Need to show: w< A'::D = a)< FI:D
aPndeed,
e
—& ] ! & .
e o= &
e i
| N TL ]
ith ex il
) & L]
= —&€ - - e -
e ] Fe%[]
el
‘ (thanks, Ester Dalvit)

Most important.e* = Z — ande*y = e*¢'.

Preliminaries from Knot Theory.
RS S SaRR I R

Theorem. w, the connected part of the procedure below, ig
invariant of S-component tangles with values@GWMS):

k1.m>0 ES N i e
N k
m
a
R OIS = )

Kiml E 1] J

b Km0 %
b

5 410 need for a choice of parenthesization.

e wisreally the second part of a (trees,wheels)-valudgelrther
invariant = (4, w). The tree parfl is just a repa-  Facts
ckaging of the Milnomu-invariants.

e On u-tangles( is equivalent to the trees&wheels part of
Kontsevich integral, except it is computable and is definid

the
W

e On longround u-knotsw is equivalent to the Alexander pol
nomial.

e The multivariable Alexander polynomial (and Levine’s fag
rization thereof [e]) is contained in the Abelianization
7 [BNS].

e w vanishes on braids.

e Related tg extends Farber'sHd?

e Should be summed and categorified. boesYextend

e Extends to v and descends to w: to balloons?

meaning/ satisfies w also satisfies so’s “true domain” is

V '\P\j Eﬁ?@

e Agrees with BN-Dancsc§ND1, BND2] and with [BN].
e [, w are universal finite type invariants.
e Using 2K: vK,, — WXK,,1, defines a strong invariant of

oj

—

HO

tangleg long v-knots. K in IATEX: wef3/zhe

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamilton-1412/
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ideo, links, and more @ Dror Bar-Natan: Talks: Hamiltorit24

weB:=http://www.math. toronto.edu/~drorbn/Talks/Hamilton- 1412 Tangles, Whee|S, B&”OOHS — 2

Question.Does it all extend to arbitrary 2-knots (not necessarily
‘'simple”)? To arbitrary codimension-2 knots?

‘.T‘f( BF Following [CR]. A € QLM = R%,q), B € Q2(M, ¢°),
S(A.B) = f (B.F. (o
M -
ith k: (S =R2) - M, B e Q0%S,g), @ € QXS,g), set 1S

O(A,B,k) = fZ),BZ)a' exp(% f (B, de-pex + K* B)) .
s

The BF Feynman Rulesror an edges, let @, be itg
direction, inS® or S*. Letws andw; be volume forms |
onS® andS;. Then | Cattaneo

2o = 2 pron oo J L L] [T

dlagram

T

: / S vertices M vertices

| (modulo some IHX-like relations). See alavd]
|

) M
: %‘aei[?e QK?E\G F\g\sﬂf
r rattle ) w
| f; S S Mi2
oo .

: +00 S

|

I <

|

|

|

|

|

Simple 2-Knots.

| Dalvit

’ Satoh wef3/Dal
The Generators @
S ¢

“the crossing” weB/X

/ 3

9

degree= #(rattles)

Olo

Issues.e Signs don't quite work out, and BF seems to reproduce

only “half” of the wheels invariant on simple 2-knots.

e There are many more configuration space integrals than Bl

Feynman diagrams and than just trees and wheels.

e | don’t know how to defing analyze “finite type” for genera

2-knots.

e | don’t know how to reduc&gg to combinatoricg algebra.

References.

[BN] D. Bar-Natan,Balloons and Hoops and their Universal Finite Type
nvariant, BF Theory, and an Ultimate Alexander Invariarig3/KBH,
arXiv:1308.1721

[BND1] D. Bar-Natan and Z. DancsoFinite Type Invariants of W-
Knotted Objects I: W-Knots and the Alexander Polynomiad(3/WKO1,

The Double Inflation Procedure
w-Knots. /R2

m:=PA<x S TYE \R:/
5 DR e < 2

”””””””” ST T AT T T TS T T T T T T aa 27| arXivi:1405.1956
oc: =X as 5"; N <\< yet not} >’ ! [BND2] D. Bar-Natan and Z. Dancsdsinite Type Invariants of W-Knotted
A >~ — uc: — S Objects II: Tangles and the Kashiwara-Vergne Problemg/WKO2,

/A Big Open Problem.s maps w-knots onto simple 2-knots. [ToarXiv:1405.1955

P S atianD - m[BNS] D. Bar-Natan and S. Selmanileta-Monoids, Meta-Bicrossed Produdts,
what extent is I.t a blje_ctlon. Wh"?‘t cher re_latlons are and the Alexander Polynomial, of Knot Theory and its Ramificatio22-10
In other wordsfind a simple description of simple 2-knots (2013),arXiv:1302.5689

[CS] J. S. Carter and M. Saité&snotted surfaces and their diagramilath.
Surv. and Mono55, Amer. Math. Soc., Providence 1998.
[CR] A. S. Cattaneo and C. A. Rosslilson Surfaces and Higher Dimen-
4 sional Knot Invariants,Commun. in Math. Phys256-3 (2005) 513-537,
f arXiv:math-p0210037
[Fa] M. FarberNoncommutative Rational Functions and Boundary Lia;
. th. Ann.293(1992) 543-568.

[Le] J. Levine, A Factorization of the Conway Polynomialilomment. Math|
T Helv. 74 (1999) 27-53arXiv:g-algl9711007
_—'>/ ‘ :/ /’— ‘ - // (J

The Full

2-Knot Story

Rewrites of IHX.

[Wa] T.WatanabeConfiguration Space Integrals for Long n-Knots, the Alexan-
s s der Polynomial and Knot Space Cohomologilg. and Geom. Top7 (2007)
| M 47-92 arXiv:math0609742
A_H://' ! i

T
|
|
| Even better,
|
|

:  “God created the knots, all else in
_ topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org Thekneo

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamilton-1412/
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ideo and handout at Dror Bar-Natan: Talks: Fields-1411y—: - .
http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/ Flnlte Type Invarlants Of DOOdIeS!El E
ra

IAbstract. | will describe my former student’ Chord Diagrams and an Upper Bound &R/ %1

Jonathan Zung work on finite type invariants 8 W8 Loeifine Rayman Principldn %,/%n1,

he Rayman Principldn %,/ %1, E
“doodles”, plane curves modulo the second Rej “joins are irrelevant”

meister move but not modulo the third. We uggia®™s w

definition of “finite type” diferent from Arnold’s T %W 2 1
and more along the lines of Goussarov’'s “Interdependentifidad ~ ~

tions”, and come to a conjectural combinatorial descriptid the se %

of all such invariants. We then describe how to constructynsaith in- gayman by Ubisoft

\variants (though perhaps not all) using a certain classaﬁhﬁensionaﬁ-ﬁé Subdivision Relationsn K,/ Kos, 77T
‘configuration space integrals”. An unfinished projectl n/ A+l

Doodles. { Rings can be subdivided until
R2 | Easy = + = each one participates in just =
K=Ko=Q }i = > < | to one “feature”.
| . |
yet not R?KRS | “ classify! Anti-Symmetry (AS)

Prior Art. Arnold [Ar] first studied doo- Q= @ '@ Tetrahedron (Tet) ——= Kn/Kn+1
dles within his study of plane curves and tg : P 3 Ring Exchange (RE)

“strangeness’St invariant. Vassiliev Yal, - - T

- . T -
\Va2] defined finite type invariants in aft@r- yerkov and Vassiliev i }Tet' T3 ;RE'
ent way, and MerkowvNle] proved that they separate doodles. + - 0;2 + @ = 0: @ = @
Goussarov Finite-Type. (cyelic | .
|

ring \perms

> ['Chord Diagrams”.
e | AS
I = = - Goussaray, Tet n
n-— (equal rotation RE — = Ki/Kn1
i numbers) 1 2 3 4 5 6 7 )/ MC
] doodles andletours(dnd’s)
r ~

Def. V is of typen if it vanishes ok, ;. (Ko/Kns1)* e Ko/ K1l
\WL Z

Knots in 3D. 2-Knots in 4D.

B ATNA
A
The reason | carg!(sum all commutators - B3 B/ s TNA
with headA or B and tailB or A) X TRReng

Goals.e DescribeA, := K., /Knh+1 Using diagramselations.e Get many
or all finite type invariants of doodles using configuratiepsce inter
grals.e Do these come from a TQF®?See if A, has a “Lie theoretic
(tensorgrelations) meanings See ifhow Arnold’s Stand the Merko

invariants integrate in. (

The Primary Snippet.

L

(Arnold’s
“strangeness
is type 3)

Goryunov, he

From / %v
Merkov’s /
[Me] \a««(/\
\g >/ Doodles by my former student Jana Archibald

.Y

“God created the knots, all else in N
. topology is the work of mortals.” o\ i
Figure 3. A non-trivial 1-doodle and its arrow diagram Leopold Kronecker (modified) www.katlas. org 7“7/7 Kl‘{bv/‘ll“}fli

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/
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Xliio/a;v?w:a;ggﬁt f(t)ronto.edu/~drorbn/Talks/Fie1ds— 1411/ bror BarNatan: Talks: F'eld5'1411F|n|te Type |nval’lantS Of DOOdleS’ 2
| __ Feynman Diagrams and a Lower Bound ((%x:1)". _ _ _|Summary Diagram. K

Feynman Diagrams. A blue z

“skeleton line” at the bottom. deg-8 ﬂ \

A magentdarrow diagram” (di- DC/MC =: A® " grk R D'/FDR

rected pairing of skeleton point: T~ T2 7

on top, with anagentadot at the A

middle of each arrow. Agreen deg-10 @i @“—“ m
directed graph on top, with 2-in 1 2 3 2 1 2 3 %2 1% 3% 32 3°%4
1-out antisymmetricgreen ver- _[

IAn unfinished project!

tices, with arbitrary number of « Nothing is written up.

greenedges starting at theagentadots, and with SOmereen, \ve qont know if T is injective (meaning, if our upper and
edges terminating at distinblue skeleton points. Thdegreeis '

h | val f th a lower bounds agree).
E 7e7t9t7a7 yq gr]qy707 E 76:1@9767”;7 70!87 77777777777 LAl o1y i We don’t knOW |f a” 011?{t |S neceSsary _ |t |S Vel’y pOSS|t

that it is enough to restrict to thgreen-lespart of A' — to

2 </ \ \ > € (sY)? | “Gauss Diagram Formulas”.
6; e We haven't clarified the relationship with Merkov®Ig].

¢ A few further configuration space integrals can be written| be

e

L yond those that we have used. We don’t know what to do with
X x %I @ (wy®) those, if anything.
o) e We don’t know the relationship, if any, with algebra.
The “Partition Functionz. ~ 777 e We don’'t know the relationship, if any, with quantum field-the
— « ( Ae(D) t._ _ ; ory.
K Z(K) = Feyzm;an o (w;*)) € A = (D)/(9-relations) o We don’t know how to do similar things with 2-knots.
diagramsC(D)
Theorem (90%)Z is an invariant of doodles. ReferencesThe root, of course, isAr]. Further
- erences on doodles includgH, FT, Me, Ta, University
a-rglgtlons_. STUZ IIHFz(Z, Fcost2 S.wap (FS), Arrow Exchange (A 1, VaZ]. On Goussarov finite-typeo, BN].
an ombinatoria ( ): [Ar] V.. Arnold, Topological Invariants of

Plane Curves and CausticsAmerican
Mathematical Society, 1994.

[BN] D. Bar-NatanBracelets and the Goussarov
filtration of the space of knots, Invariants  Topological mvariants
of knots and 3-manifolds (Kyoto 200Ge- s
ometry and Topology Monographis1—-12, ——_
arXivimath.G70111267

[FT] R.Fennand P. Taylomtroducing Doodles,

in Topology of Low-Dimensional Mani-
folds, Proceedings of the Second Suﬁ
Conference, 197 Springer 1979.

[Go] M. Goussarov/nterdependent modifications of links and invariants of
finite degreeTopology37-3 (1998) 595-602.
+ 5 further terms [Kh] M. Khovanov, Doodle Groups,Trans. Amer. Math. Soc349-6 (1997)
2297-2315.
+ =0 [Me] A.B. Merkov, Vassiliev Invariants Classify Plane Curves and Doodles,
Sbornik: Mathematic494-9 (2003) 1301.
+ 4 further terms [Ta] S. Tabachnikovlnvariants of Smooth Triple Point Free Plane Curves,

CR2: g Jour. of Knot Theory and its Ramificatiobs4 (1996) 531-552.
[Val] V.A. Vassiliev, On Finite Order Invariants of Triple Point Free Plane
— m = / : i \ Curves, 1999 preprintarXiv:1407.7227
[Va2] V.A. Vassiliev,Invariants of OrnamentsAdv. in Soviet Math.21 (1994)
(alsowith /7 ) (may be relaxed?) ~ 225-262.

open space for your doodlgs

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/
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Dessert: Hilbert's 13th Problem, in Full Colour

Dror Bar—Natan, Toronto November 2014. Mord

IAbstract. To break a week of deep thinking with a nice colourful
light dessert, we will present the Kolmogorov-Arnold solution of
Hilbert’s 13th problem with lots of computer-generated rainbow-
painted 3D pictures.

[n short, Hilbert asked if a certain specific function of three vari-
bles can be written as a multiple (yet finite) composition of con-
tinuous functions of just two variables. Kolmogorov and Arnold
showed him silly (ok, it took about 60 years, so it was a bit tricky)
by showing that any continuous function f of any finite number of
variables is a finite composition of continuous functions of a single
variable and several instances of the binary function “4” (addi-
tion). For f(z,y) = xy, this may be zy = exp(logz + logy). For
If (x,y,z) = ¥ /2, this may be exp(exp(log y+loglog z)+ (—log 2)).
What might it be for (say) the real part of the Riemann zeta func-
tion?

[The only original material in this talk will be the pictures; the
math was known since around 1957.

http://www.math.toronto.edu/~drorbn/Talks/Fields-1411

A
“‘ﬂ‘“‘ SN
——r"{“““}_“:“g"“‘
Aot

et e N

1 Re(¢(z +iy)) on [0, 1] x [13,17]

Fix an irrational A > 0, say A = (v/5 — 1)/2. All
functions are continuous.

Theorem. There exist five ¢; : [0,1] — [0,1] (1 <
; < 5) so that for every f :[0,1] x [0,1] — R there
exists a ¢ : [0,1 4+ A] — R so that

-

Hilbert Kolmogorov

Arnold (by Moser)

flz,y) = Z 9(di(x) + Api(y))

for every x,y € [0, 1].

Step 1. If e > 0 and f : [0, 1] x [0, 1] — R, then there
exists ¢ : [0,1] — [0,1] and ¢ : [0,14 A] — R so that
|f(x,y) —g(éd(z) +Ap(y))| < € on at least 98% of the
area of [0, 1] x [0, 1].

The key. “Poorify” chocolate bars.

slope :=

fill factor :

g-coloured
[ o(y)

z-coloured”

o(z) + Ad(y)

04

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/
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Dessert: Hilbert’s 13th Problem, in Full Colour (Page| 2)
Step 2. There exists ¢ : [0, 1] — [0, 1] so that for every e > 0
and every f: [0,1]x[0,1] — R thereexistsa g : [0, 1+A] — R
so that |f(z,y) — g(é(z) + Ap(y))| < € on a set of area at
least 1 — € in [0, 1] x [0, 1].

(The key. “Iterated poorification”.

[ o o o o
1 o e o
L
Ooo0ooOoooogo,
Ooo0oooooogo)
OOoo0oooooooo,
OOoo00oooooooo
1 o e o
L
Ooo0ooOoooogo,
Ooo0oooooogo)
000000000000

)

Ul

| AL L
) ga-coloured ¢(z) + Ao(y)

Step 3. There exist ¢; : [0,1] = [0,1] (1 <7 <5) so
that for every € > 0 and every f :[0,1] x [0,1] = R
there exists a ¢g : [0,1+ A] — R so that

) = Y atate) + 20l < (5 +€) Il

for every x,y € [0, 1].
The key. “Shift the chocolates”. ..

...then iterate.

T T

f H ropaganda. I love handouts! e T have nothing to hide and you
é@ ? @r /::’2; _"T" L1 | fcan take what you want, forwards, backwards, here and at home.
1+ | ||l® What doesn’t fit on one sheet can’t be done in one hour. e It
Step 4. We are done. | takes learning and many hours and a few pennies. The audience’s
The key. Learn from the artﬂlery! worth it! e There’s real math in the handout viewer!
Set Tg = 327_, 9(¢i(z) + Abi(y)), fr := f, M = ||f]|, and T100]
iterate “shooting and adjusting”. Find g1 with |g1]] < M LIMIT E E
and [|f2 := fi — Tg1| < 2M. Find go with ||g2| < 3M and I —l 3
I fs :=fo = Tgol| < (3)>M. Find gs with ||gs|| < (3)°M and 160]
| fs := fs — Tgs|| < (2)®>M. Continue to eternity. When done, LimIT
ket g = > gr and note that f = Tg as required. ;‘5 E
xercise 1. Do the m-dimensional case. 129,
[Fxercise 2. Do R™ instead of just ™.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Fields-1411/
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©| Dror Bar-Natan: Talks: Treehouse-1410: Video, handout, links at
The 17 Tiling Patterns: Gotta catch ‘em alll http://drorbn.net/Treehouse

Treehouse Talks, Friday October 17, 2014, Beeton Auditorium, Toronto Reference Library, 789 Yonge Street, 6:30PM

Abstract. My goal is to get you hooked, captured and unreleased Reading. An excellent book on the e

until you find all 17 in real life, around you. subject is The Symmetries of Things SYMMETRIES

by J. H. C . H. Burgiel, d 4
We all know know that the plane can be filled in different periodic Cy Goo dman-S(‘Z?;Vjs}; CRC Pgsilewog " ‘

manners: floor tiles are often square but sometimes hexagonal, Another nice text is Classical Tessellations
bricks are often laid in an interlaced pattern, fabrics often carry and Three-Manifolds by J. M. Montesinos
interesting patterns. A little less known is that there are precisely
17 symmetry patterns for tiling the plane; not one more, not one

less. It is even less known how easy these 17 are to identify in the change, using coins denominated 1, 2, 3
patterns around you, how fun it is, how common some are, and 41 5 2 5 i

TuaiNnGgs

Springer-Verlag, 1987.
Question. In what ways can you make $2

ete.?
50 6
how rare some others seem to be. Answer. 2 — %_'_ % +%+% _ %+%+% —
Gotta catch ‘em alll and that’s it.

Video, handout, links at drorbn.net/Treehouse Theorem. There are precisely 17 patterns with which to tile the
THeBasid Febtures- plane, no more, no less. They are all made of combinations of
Gotta

$ catch
a\\'
rotation only rotation-reflection *
* treehouse
* ” SFCConSe

W S

MI*IG

free mirror-reflection free glide-reflection E

® Dror Bar-Natan, October 2014

Tilings worksheet. Classify the following pictures according to the following possibilities: 2222=2222, 333=333, 442=442,
632=632, 22P2=*2222 $33="333, 442="442, G32=*632, 4P=4%2, 3$=3*3, 292=2%22 22M=22% MM=** MG=*0, GG=oo0,
22G =220, and ()=0 (the pictures come in {context, pattern} pairs).

B AgaKhan -5 B - AgaKhan-6

AnteaterCage

BathroomTiles

BethlehemRoadTiles,

AgaKhan-3 - AgaKhan-4 AgaKhan-4 AgaKhan-5

Alhambra

Alhambra, ArchStreetFence ArchStreetFence

BedCoverAndMitzie

w

BicycleReflector

AnteaterCage

AshbyTiles BedCoverAndMitzie

BathroomTiles

AshbyTiles

BethEIQuilt BethEIQuilt_ BethElISidewalk BethEISidewalk_ BethlehemRoadTiles BicycleReflector

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Treehouse-1410/
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Dror Bar-Natan: Talks: ClassroomAdventures-1408: w :=http://www.math.toronto.edu/~drorbn/Talks/ClassroomAdventures-1408 EI

The 17 Worlds of Planar Ants Goal. Get you hooked! — Video handout, links at w/

Abstract.  Back in early 2000, I - — Books.
got my first digital camera and set ¥ SV Cossic:l e J. H.  Conway,
out to take pictures of my kids and | Piaksias Somsis.s H. Burgidl,  and

. . - Manifolds C. Goodman-Strauss, The Symme-
of symmetric patterns in the plane b tries of Things, CRC Press, 2008.
(w/Tilings). There are exactly 17 ::;: e J. M. Montesinos, Classical Tes-
of those, no more, no less. It is an * sellations  and  Three-Manifolds,
addicting challenge to walk around  Lou Kauffman’s Tie Springer-Verlag, 1987.
looking at buildings, brick walls, people’s ties, fabrics, what’s

not, and to try figure out which of the 17 is each one.
e What would history look like if we were living on Venus?
e What do the ants on Lou Kauffman’s tie think?

The Renaissance Story w/Longtin

,

w/DW

S

ik

Claim. Exactly 10 “features” are possible.
They are M, G, 2, 3, 4, 6, 2, 3, 4, and 6.

w/Sanderson

Brian Sanderson's Pattern Recognition Algorithm

1s the maximum rotation order 1,2,3,4 or 6? Is there a mirror (m)? Is there an indecomposable glide reflection (g)?
Is there a rotation axis on a mirror? Is there a rotation axis not on a mirror?

00 pg K w2 pm A *0 cm M

pl
N
632
pébm
D632
: 5 o
= @ > 1 Q‘ & - < p6 ! rotation | D3333
e1e N ' order 2222
Theorem. There are exactly 17 “tilings” of the| ., 34

an axis on

n
a mirror?,
y

plane: (=0, MM=xx, MG=xo0, GG=o0o0, 2222= .

2222, 333=333, 442=442, 632=632, 2222=+2222, on'a mirror?

— T o - - < 3%3 >
333=+333, 112=x442, (32=4632, 42=4%2, 33= 7
3%3, 222=2x%22, 22M=22x%, 22G=220. - n
442

333 p3  $333 4%2 pdg D42 pim D442

22%
pmg
D22
2#22
cmm
D222

an axis not
on a mirror?

y, n

The 230 Worlds of Spacial «¥fws<%55
Monkeys (The 219 worlds of ,olue o iz ge 442: The Conway-Thurston notation, as used in my tilings page.
Monkeys that Can’t Tell their _jg==%-3 i
onkeys that Lan e. ewr g ) N p4:  The International Union of Crystallography notation.
Left from their Right) R ;:;'\\i J S442: The Montesinos notation, as in his book Classical Tesselations and Three Manifolds
w/Crys, w/CFHT A\‘\@ Ry

Video and more at http://www.math.toronto.edu/~drorbn/Talks/ClassroomAdventures-1408/
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Dror Bar-Natan: Talks: Oberwolfach-1405:
weB:=http://www.math. toronto.edu/~drorbn/Talks/Oberwolfach-1405/

Some very good formulas for the Alexander polynomig

Z(K) € {clx(2): cl1(2) = 1} mdlm C|2
(Genus and crossing number a- i 7 | \\
re also definable properties). i N
rivial nbbon example

Theorem 1. 3! an invarianty: {pure framedS-componen
tangle$ - Rx Msys(R), whereR = Rs = Z((Ta)acs) is the ring
of rational functions irS variables, intertwining

e L — w is Alexander, mod units.
oL (w,A) - wdet(A-1)/(1-T")isth
MVA, mod units.

“Simply-
S S wiw [S1 Sy knotted V . 4
1 w1 | 1 W2 | 2 u S A O ball simple R
NS A S | A 1 1 ’ afloons e em6eddmg§
1 S, 0o A and hoops”
wla b S
e e o o
, ajla B 0 g C |y +ad/u €+d0/n ' hoops/ heads
bly 0 € wrs | g | grap/u =+u6)
S|l v = Ho= H )t 1,51, EXamples.
& _Xo j
. . N :
and satisfyindla; 5% ,™,) — @
y
In Addition, e This is really “just” a stitching Pix b Pux
formula for BurayGassnerl[D, KLW, CT]. X

i Disturbing

IAbstract. | will describe some very good formulas for(matrix plusMeta-Associativity Z“ Z“ 213 21 Runs.
scalar)yvalued extension of the Alexander polynnomial to tanglesnpy = r[w, {t1, t2, t3, ts}. aai aii ai ez .{h1, hy, h3, hs}];
say that everything extends to virtual tangles, then roughisimply 61 ¢, ¢35 E
knotted balloons and hoops in 4D, then the target spacedsteffree
Lie algebras plus cyclic wordsand the resultis a universal finite typelOf // ™21 // ™a321) == (¥ // o302 [/ mazn) i
the knotted objects in its domain. Taking a cue from the BBlogicalrrue | R3 . divide and conquer
quantum field theory, everything should extend (with somealifica- |{Rms1 Rmex Rpsy // M1as1 // Mas.2 // M3es3, o
tions) to arbitrary codimension-2 knots in arbitrary direiem and in Rpg, Rmyg Rmss // Mygs1 // Masso // M3ess)} -
particular, to arbitrary 2-knots in 4D. But what is reallyigg on is still 3
1 hl hz h3 1 hl
a mystery.
ty g—z 0 0 t1 i—i
Tangles. { e, 1 , 1,
r ] 2 Ty T3 ta Ty
t -1+T3 -1+T3 1 t -1+T3
, k7737;722777}377777777377}2 77777777777777777
a e ¥ = Rmjp 3 Rmy7 Rmgz Rmy, 11 RPjg,5 RPg,13 RP14,9 RP10,157
g { Do[y = ¥ // mx.1, {k, 2, 16}];
]
Why Tangles? ¥
e Finitely presented. (meta-associativitym"/mé® = mp%/mgP) 1-4T1+8T7-11 1348 T§-4 7778 h
e Divide and conquer proofs and computations. B T3 1
e “Algebraic Knot Theory”: IfK is ribbon, t 1

Weaknesses, mg® is non-linear.
e The producwA is always Laurent, but proving this takes ing
ction with exponentially many conditions.

ﬂ ﬂ balloong/ tails
T{ S

KON(H; T).

“the generators”

\
Conjectur W = )
e The “fastest” Alexander algorithm. : 5 A= .
e There are also formulas for strand deletion, gcbh 2 N [ Q":ﬂ iéﬁ ‘ E}{:%{j
reversal, and doubling. . /
e Every step along the computation is the invariant of somethi Eyﬂ (XT}{)
e Extends to and more naturally defined gmatangles. X ) ps <
e Fits in one column, including propaganda & implementation. . ___ ‘' ________ Il PN + “ UG e
Implementatiorkey idea: meemochtlonary / M T =]
_ T 7: Tlw1~, A1) T[@2, A27) ==rlwi+w2,” AT+22]; — ~ ‘ _ < 7
(w’A_ (a'ab)) < b, b o [Tle_, 211 := Module[{a, B, v, 6,6, ¢, 6, ¥, 2, K}, o : \_><
(@4 =Yawtah) | L e oo "vxing’ ~. >
e:dhxahxax . ap=0;
;co;m:t[;[;,,ixj]]i:ir[;a;.o;[m]i, T 4‘ (; i :] [ O, A Ony, A 2 om ° ><(—) ~_
bermntri 31 oo sial s, e O L L B I A A ¢ ~_ blue is never i‘qvfefr’j WK
S = UnionecCases|[r[«, x]x,] (h|t), ],., a, m];‘ /o {Taos T, Too T} /) I‘Collect] \/ S i . [nTow T
st A) & S, S]i et No
- /e 51 // Transpose; ‘RPA,A; . r[l (ta, £}, (1 1- ) (h., B )] OcC: m ~— X as W ~— /< N )LIJC: f
e P PN N =

|

ju-

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0Oberwolfach-1405/
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Dror Bar-Natan: Talks: Oberwolfach-1405:
lweB:=http://www.math. toronto. edu/"drorbn/Talks/Oberwolfach 1405/

Some very good formulas for the Alexander polynomig

L

Operations
Punctures & Cuts

If X is a spacemi(X)

T
' Connected
Sums.

Theorem 3IBND, BN]. 3! a homomorphic expansion, aka a |
momorphic universal finite type invariaftof w-knotted balloon
and hoops¢ =

no-
5

log Z takes values ifrL(T)" x CWT).

is a group,r2(X) is an
Abelian group, andr;
acts onm,.
Proposition.The gene-
rators generate.

K / tha':

3

Definition. ly, is the I|nk|ng number of hoom with balloonu.

¢ is computablel of the Borromean tangle, to degree 5:

, 1
.2
2

+ cyclic colour
permutations,
for trees

( >

Forx e H, ox == [1ger TeeR=Rr = Z((Ta)aet), the ring of
rational functions inl" variables.
Theorem 2[BNS]. 3! an invariantg: wkK®'(H;T) — R x

wiwy | H1 Hp

w1|H1

Propositior[BN]. Modulo all re-1

lations that universally hold for
the 2D non-Abelian Lie alge-
bra and after some changes-of-

variable,/ reduces tg3 and thewL
KBH operations ori reduce to the formulas in Theorem 2.

[u.V]

Mty (R), intertwining
) U

2 | Ha
1'(T1|A1’
w H

T, |AL O
T2 0 A

E

A Big Question.Does it all extend to arbitrary 2-knots (not ne
sarily “simple™)? To arbitrary codimension-2 knots?

Ces-

tmy’

—_—

T2|A2
Wl la+p
T

hmg”

N

—
—

1
]Tu»Tv_’Tw

w| z

T |a+0'xﬂ
vo | X
u | oxa/v

T ¢/v

and satisfying(e,; eu; pi,) 2

w

X RIX N™ K
m|T

T <
T T

tha!*
—_—
vi=1l+a

E

ox0/v
E—¢0/v
1[x . 1]

“ul u|TL’fl—1)'
Proposition. If T is a u-tangle angB(sT) (w,A), then
¥(T) = (w,0 — A), whereo = diag@a)acs. Under this,mi® «
thal®/tmg®/hirg®,
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o]

S R

X

BF Following [CR]. A€ QYM = R4 g), B e Q(M, g*),

With «: (S =
O(A,B,k) = fZ),BZ)a' exp(% f(ﬁ, deaa + £ B)).
s

The BF Feynman RulesFor an edge, let @, be itg
direction, inS3 or S'. Letws andw; be volume forms
onS3 andSl Then |

(modulo somes T U- andIHX-like relations).

P

rattle

ph-

ts,

S}
n- S
S

Issues.e Signs don’t quite work out, and BF seems to repro
only “half” of the wheels invariant.

e There are many more configuration space integrals thg
f—‘eynman diagrams and than just trees and wheels.

b

I0TO
AVAILABLE

S(A.B) := f (B, Fa).

Rossi

pg, TN

Cattaneo

R?) — M, B € Q°(S, q), a € Q(S, g), set

,,,,,,,,

f 1—[ Dews 1—[ Dewr

black

_ bl

Zer = JAut(D)|

dlagram

Lo b Lok

S vertices M -vertices

M

air
piece

r‘li\eﬂg

S

£ s

degree= #(rattles),

duct
n B

don’t know how to define “finite type” for arbitrary 2-knots

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified)

www.katlas.org Theknot Jilas

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0Oberwolfach-1405/
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Dror Bar-Natan: Classes: 1314: AKT-14: http://drorbn.net/index.php?title=AKT- 14
Gaussian Integration, Determinants, Feynman Diagrams

The Fourier Transform.
(F: V>0 = (f: V' -0

Gaussian Integration. (4;;) is a symmetric positive definite matrix and (1") is its inverse,
and (4;j) are the coeflicients of some cubic form. Denote by (x') the coordinates of

R, let (#;)_, be a set of “dual” variables, and let o' denote ‘9 . Also let C =& i

det(;)) "
A € X i i —L A iy
fe S+ E Al ok E 'f(/lijkxlxjxk)me 3 Aijx'x
m=>0 R?

Then

6"m

R? Feynman | g
Ce™ AN ] i
_ tjkm—/l"ﬁtl,tﬁ _Z (”ljk)(afﬂ )
Z o (A,Jkaa &) e (0@ 9)" (11t
m=0 f,=0  ml20
3m=21
N4181 N%282 N1%3P3 L
_ Z Ce" . sum over all pairings ..
- PRIt
oyt 6"m!2!]!
3m=2[
Aiyjiky Aiy ok im jmkm
Ce™
=D G2y D)
6"m!24]!
m, >0 m-vertex fully marked
=21 iagrs P . .
" Feynman diagrams D Aiyjiky Aig ol V2P g g Ay i AN AR 2122
e"DE(D) . .
=C _—. Claim. The number of pairings that produce a
[Aut(D)| . - i 6"mi2ll
unmarked Feynman given unmarked Feynman diagram D is 7ot
diagrams D |Aut(D)]

Proof of the Claim. The group G,,; = [(S3)" > S,] X [(S »)! = §,] acts on the set of
pairings, the action is transitive on the set of pairings P that produce a given D, and the
stabilizer of any given P is Aut(D). O

| o) =
0 ) = (p,L7'¢).

via F(p) = f‘/f(v)e‘i<‘/”v>dv. Some facts:
o f(0) = [, fv)dv.

o (e977) ~ 22 where Q is quadratic,
(Lv,v) for L: V — V*, and
(This is the key
point in the proof of the Fourier inversion
formula!)
Examples.

[Aut(D)| = 12 [Aut(D)| = 8
Perturbing Determinants. If Q and P are
matrices and Q is invertible,

|0I"'1Q + €P| = |l + €Q™'P|

- eu(N o)
> -

k( )(r
0,0€S

=k2 T (@' P)*)

(_e)k(_)#cycles »
k!

k>0, €S

Determinants. Now suppose Q and P; (1 < i < n)ared X d
matrices and Q is invertible. Then

Ly iy € ik .
|Q|_1IE,/I,-J-,/I,-jk,Q,Pi — |Q|—l fe—i/lijx x7+g/l,‘,kx ¥/ xk det(Q + lePi)

Rn

Feynman diagrams

Z C€m+k(_)k(_)18
Feynman diagrams

where [ is the number of purple (“Fermion”) loops.

Jij = 691/6{:1, then

g

.
&

c¢and ¢

29 =

Ghosts. Or else, introduce “ghosts” ¢, and c?, write

L R EQ X X a a ) b

Leagmor = f dx f o AT+ Ayt V4T ( Qe P e
C R ROR

and use “ordinary” perturbation theory. ;

f " Mdgdn = det(A),

The Berezin Integral (physics / math language, for-
mulas from Wikipedia:Grassmann integral).

The Berezin Integral is linear on functions of anti-
commuting variables, and satisfies f 0d6 = 1, and

[1d6 =0, so that [ 24946 = 0.

f fd@ is the interior multiplication map AV — AV: f fdo =

- &k?o f (Aijex' x )"t (o-(x o'p; )®’<) -34x [Let V be a vector space,
m,k>0, oS i
iao(f) (= %)-
Cemth(—\r Multiple integration via “Fubini”: f f1(6y) - -
B = f,;) (f £1d6r)--- ([ £,d6,). [ fd6y ...d6
fully marked mik:

Change of variables. If 6; = 6;(£;), both 6; and &; are odd, and

f f(6)do = f F(6:(&))) det(J;) " de.

Given vector spaces Vj, and Wg,, d0 = A\dO; € APCP(V*), dé =
Adéi € NP(W), and T: V — A°Y(W). Then T induces a map
T.: ANV — AW and then

ffde:

Gaussian integration. For an even matrix A and odd vectors 6, 7,

Berezin

Qe V,dde Vst (d0,0) = 1. Then f

- £(6,)d6, .. .d6
n :f//idgl//"'//iden'

AT6)\™"
f (T*f)det( 5, ) dé.

fegTA'”HT“KT"den — det(A)e—KTA"J.

Video and more at http://drorbn.net/?title=AKT-14 (Feb 28 and March 21 classes)
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oD/ Aot net/ ACaqens cPensiover 2014- 04 B2 A Partial Reduction of BF Theory to Combinatorics

continueshttp://www.math.toronto.edu/~drorbn/Talks/Vienna- 1402

Abstract. I will describe asemi-rigorous reduction of perturbal'€ BF Feynman Ruleor [=] [=]
tive BF theory (Cattaneo-Ross<CR]) to computable combina®" €dgee, Igt De Pe its di- .

torics, in the case of ribbon 2-links. Also, | will explain w@&Ction, inS”or S*. Letws — & ) TICA | |:

and why my approach may or may not work in the non-ribBgf @1 be volume forms on - ** ) (e [m] =25
case. Weak this result is, and at least partially already kngwvrdS1. Thenfora 2-link ™ e, Rossi
(Watanabe\lVa]). Yet in the ribbon case, the resulting invarian feheT

a yniversal finit'e' type invariant, a gadget thgt signifio,aggner— ¢ = log Z f f f f Qiws | | Diwr
alizes and clarifies the Alexander polynomial and that isely diag,amJAUt(DN black

related to the Kashiwara-Vergne problem. | cannot rule bet t ° s vertices M -vertices =
possibility that the corresponding gadget in the non-ribbasdis an invariant inCWFL(T)) — CWT)/~, “symmetrized cyclic

will be as interesting. (good news irhighlight) Wwords inT”.
BF Following [CR]. A€ QYM = R%,4g), B € Q?(M, g*), ‘

S(A,B) = f (B, Fa).
With x: (S=R?) — M,B ¢ (hl/lo(S, q), @ € Q(S, g*), set
O(A,B,k) = f DBDa exp(% fs (B, A pax + K*B)).
Decker Sets (“2D Gauss Codes))/

A BF Feynman Diagram.

YA,
air ;’2\? }o
rattle

trees
on wheels,

Rl S g | odd edges

: : : : even rattles
| ! [ | I
| — | P N S I (only double curves

‘ : : | : are allowed in

B L__L___ ribbon 2-knots)

a double curve”

r— - 7: - T 7‘ r— -7

| - | |

| 2 !

I : I

oo s | e |

| : |

| 2 : I

Lo _i__. L

a triple point

,,,,,,, “a branch point”
Some Examples. -

“ribbed éigar preééntatio

Kamada-SaitoCKS].

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Vienna-1402/
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Dror Bar-Natan: Academic Pensieve: 2014-04: BF2C:

http://drorbn.net/AcadenicPensieve/2014-04/BF2C A Partial Reduction of BF Theory to Combinatoricg, 2
heorem 1 (with Cattaneo, Dalvit (credit, no blamé) the rib-1 ~—_ Sketch of Proof. In 4D ax----- (~~--
bon caseg¢f can be computed as follows: 1 Hi ial gauge, only “drop down” red | ; 1
1 propagators, hence in the ribboni ' | K
- 1 Z>/ \ case, ndVi-trivalent vertices.S integrals aret1
K ! mr iff “ground pieces” run on nested curves as below
L J ! and exponentials arise when several propagatol
e HEO' M J ; ! ) compete for the same double curve. And then the
Cokime | combinatorics is obvious. ..
A — 21 @ . @
_ il ke O O o8 s @5 o8
K VESIRY, L Oa 6 VST
a i - \7{7
&, 3 DK™ asH—
b L K EE ~_________ Musings |
b::@@@ij Chern-Simons.When the domain of BF is restricted to ribbpon
_ ‘ knots, and the target of Chern-Simons is restricted to taeels
RS >/9 T vy | =3 wheels, theyagree. Why?
! Is this all? What 5 o
Theorem 2. Using Gauss diagrams to represent knots &ngbout thev-invariant? < N
component pure tangles, the above formulas define an imigtige “true” triple link- > —
in CWFL(T)) — CWT), “cyclic words inT". ing number) Q G D .
e Agrees with BN-Dancso§ND] and with BN2]. e In-practice,. _ _ ______ >~ S Y ______ S S
computable!s Vanishes on braidse Extends to w.e ContainsGnots. In 3D, a generic immersion @& is an
Alexander.e The “missing factor” in Levine’s factorizatiorLf] embedding, a knot. In 4D, a generic immersig
(the rest of Le] also fits, hence contains the MVAd.Related taof a surface has finitely-many double points
extends Farber's{g? e Should be summed and categorifiedgnot?). Perhaps we should be studying these?
References. Finite type. What are finite-type
[Ar] V. I. Arnold, Topological Invariants of Plane Curves and Caustigsii- jnvariants for 2-knots? What
versity Lecture SerieS, American Mathematical Sogiety_ 1994. ould be “chord diagrams”?
[BN1] D. Bar-Natan,Bracelets and the Goussarov filtration of the space of_ _ _ _ _ _ _ _ _ _ _ ~_ __ _ _________“"________%¥7 __
knots, Invariants of knots and 3-manifolds (Kyoto 200Ggometry andBubble-wrap-finite-type
Topology Monographd 1-12,arXiv:math.G70111267 here’s an alternative defin
BN2] D. Bar-Natan, Balloons and Hoo n heir Universal Fi
[ nit]e Type Invaria’nt, BF Theory, andpsar?l (:Jltitmzte li\lexziger- lon of finite type in 3D, due
variant, http://www.math.toronto.edu/~drorbn/papers/KBH/, 0 Goussarov (SeBNl]) The
arXiv:1308.1721 obvious parallel in 4D involves
[BND] D. Bar-Natan and Z. Dancso,Finite Type Invariants of Wrbubble wraps”. Is it any good* =
Knotted Objects: From Alexander to Kashiwara and Vergne - - - - - - - — - _ _ _ ____________ M ___TF _____
Shielded tangles.In 3D, one can’t zoom in and compute “the

http://www.math.toronto.edu/~drorbn/papers/WKO/.
[CKS] J. S. Carter, S. Kamada, and M. Salfgagrammatic Computations f

[CS] J. S. Carter and M. Sait&notted surfaces and their diagramiglathe-
matical Surveys and Monographs, American Mathematical Society, Pr
idence 1998.

[Da] E. Dalvit,http://science.unitn.it/~dalvit/.

[CR] A. S. Cattaneo and C. A. Rosdlilson Surfaces and Higher Dimen-
sional Knot Invariants,Commun. in Math. Phys256-3 (2005) 513-537
arXiv:math-p0210037

[Fa] M. Farber, Noncommutative Rational Functions and Boundary Li

hat would the 4D analog be? I
@ “an associator” .

SiII the relationship with the Kashiwara-Vergne probleBND]

Math. Ann.293 (1992) 543-568. necessarily arise here?
[Le] J. Levine, A Factorization of the Conway Polynomialomment. MathiPlane curves.Shouldn’t we understand integrafinite
[RC|>_]| elg/. Eigt?fl)z?l;;jse?;ﬁ;?-'IzjllgIz?I\icl)\(/)gZ for Surfaces in Four Dimensu%,ge invariants of plane curves, in the style of ArnoldiSs
‘ P J-, andSt[Ar], a bit better? )

SpaceKnot Theory, Banach Center Publicatiofs(1998) 347-380.

[Wa] T.WatanabeConfiguration Space Integrals for Long n-Knots, the Alexa
der Polynomial and Knot Space Cohomolagig. and Geom. Top7 (2007) aX)a(>X) a¥) | OO O @ @ @ "

47-92,arXiv:mathf0609742 1 0 0 0 0 1 2
— . 0 2 0 0 0 -2 —4
Continuing Joost Slingerland. .. 0 0 -2 -1 0 -3 -6

http://youtu.be/YCAOVIExVhge gy

; “God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified)

e (>

LA

http://youtu.be/mHyTOcfF990

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Vienna-1402/
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hern-Simons invariant of a tangle”. Yet there are welltuzdi
Quandles and Cocycle Knot InvarianSontemp. Math318 (2003) 51-74.nvariants of “shielded tangles”, and rules for their corsigions,.
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Dror Bar-Natan: Classes: 2014: MAT 1350 — Algebraic Knot Theory:

What happens to a quantum parti-
cle on a pendulum at T'=7%

Abstract. This subject is the best one-hour in-
troduction I know for the mathematical techniques
that appear in quantum mechanics — in one short
lecture we start with a meaningful question, visit
Schrodinger’s equation, operators and exponentia-
tion of operators, Fourier analysis, path integrals,
the least action principle, and Gaussian integration,
and at the end we land with a meaningful and inter-
esting answer.

Based a lecture given by the author in the “trivial notions”
seminar in Harvard on April 29, 1989. This edition, January
10, 2014.

1. THE QUESTION

Let the complex valued function ¢ = ¢(t,x) be a
solution of the Schrodinger equation

o 1 1,
i —ZAL =
at < ptr T ot
What is ¢|t:T:§?

In fact, the major part of our discussion will work
just as well for the general Schrédinger equation,

O

o~ T

1

lico = Yo, arbitrary T,

where,

e ¢ is the “wave function”, with |4 (¢, z)|? rep-
resenting the probability of finding our par-
ticle at time t in position x.

H is the “energy”, or the “Hamiltonian”.
—%Am is the “kinetic energy”.

V(z) is the “potential energy at x”.

2. THE SOLUTION

The equation % = —iH with ¢, = ¢ formally
implies

U(T,2) = (7o) (w) = (357 TV ) (@)

By Lemma 3.1 with n = 10°®4-17 and setting z,, = «
we find that ¢(T, x) is

T T T T
(wn% LV i A =itV A -

TV ) (@)

> ¢ with  tl=o = 0.

Friday Introduction

Now using Lemmas 3.2 and 3.3 we find that this is:
(¢ denotes the ever-changing universal fixed numer-
ical constant)

/d:vn e’

(zn Tn—1 )2
2T /n e

/d:cle
/dxoe

Repackaging, we get

c/dmo...dxn_l
e Iy
< -
P Z2n
k=1

() )

—iLV(zn_1) o

(wo—z?
%T/rlL e—l%v(wl)

( )2
Z%ng e~ ]E (o) 1/)0(350)

Now comes the novelty. keeping in mind the picture
T

kT T t

n n n

oi?

and replacing Riemann sums by integrals, we can
write

Ta:—c/dato/
W.

zQTn

oo (i [ a3 <>—v<x<t>>))wo<xo>,

where W, denotes the space of paths that begin
at xg and end at x,,,

={z:[0,T] = R: 2(0) = xg, 2(T) =z, },

and Dux is the formal “path integral measure”.
This is a good time to introduce the “action” L:

/0 " @:ﬁ(t) - V(w(t))) .

With this notation,

o(T0) =c [ doun(oo) [ Dl

Lvéozn

xoxn

L(z):=

Video and more at http://drorbn.net/?title=AKT-14 (Jan 10 and Jan 17 classes)
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fet z. denote the path on which £(z) attains its
minimum value, write * = x. + x4 with , € Wy,
and get

¥(12) =c [ daown(ao) [

Woo

D:chew (etq),

In our particular case £ is quadratic in x, and there-
fore L(z. 4+ x4) = L(x) + L(z,) (this uses the fact
that z. is an extremal of £, of course). Plugging this
into what we already have, we get

Y(T,z)=c / daoto(zo) / DLl +iLlea)

Woo
=c / dxoz/)g(:yg)ew(xc) / quew(xq).
Woo

Now this is excellent news, because the remaining
path integral over Wy does not depend on xg or zy,
and hence it is a constant! Allowing ¢ to change its
value from line to line, we get

(T, z) = C/dxolbo(ﬂfo)em(%)-

Lemma 3.4 now shows us that z.(t) = zgcost +
Tpsint. An easy explicit computation gives L(x.) =
—oxn, and we arrive at our final result,

w(gwx) = C/dl'o'(/)o(l'o)e_ixoxn.

Notice that this is precisely the formula for the
Fourier transform of ¢)y! That is, the answer to the
question in the title of this document is “the particle
gets Fourier transformed”, whatever that may mean.

3. THE LEMMAS

Lemma 3.1. For any two matrices A and B,

A+B (eA/neB/n>n .

e = lim
n—oo

Proof. (sketch) Using Taylor expansions, we see that
A
e“n and eA/meB/n differ by terms at most propor-
tional to ¢/n?. Raising to the nth power, the two

sides differ by at most O(1/n), and thus
AT = lim (eAJrTB>n = lim (eA/neB/n)n,

n—oo n—oo
as required. O

Lemma 3.2.

(€™ o) () = eV Wy (z).

Lemma 3.3.
. (z—2')2
<€Z%A1/JQ> (z) = c/dx/e’( " Yo(a').

Proof. In fact, the left hand side of this equality is
just a solution (¢, x) of Schrodinger’s equation with
V=0

oy i
. 7A;Z? ) =0 — .
ot 9 ¢ ¢|t 0 '@Z)O
Taking ‘ the Fourier transform 1Z(t7 p) =
7= [ e P(t, w)dz, we get the equation
oy p*- _
Friaialrad Pli=0 = Yo.

For a fixed p, this is a simple first order linear dif-
ferential equation with respect to ¢, and thus,

~ _tp? ~
U(t,p) = e Yo(p).
Taking the inverse Fourier transform, which takes

products to convolutions and Gaussians to other
Gaussians, we get what we wanted to prove. O

Lemma 3.4. With the notation of Section 2 and at
the specific case of V(z) = 322 and T =%, we have
z(t) = g cost + x, sint.

Proof. 1f z. is a critical point of £ on Wy, , then for

any x4 € Wy there should be no term in £(z.+€ex)
which is linear in €. Now recall that

L(z) = /0 " (;jﬂ(t) - V(x(t))) ,

so using V(z. + exq) ~ V(z.) + exyV'(x.) we find
that the linear term in € in £(z. 4 exq) is

T
/ dt (Zetq — V' (xc)zq) -
0

Integrating by parts and using z,(0) =
this becomes

T
/ dt (=i — V'(zc)) zq.
0

For this integral to vanish independently of x4, we
must have —i. — V'(x.) =0, or

This is the famous F = ma
of Newton’s, and we have just
rediscovered the principle of
least action!

In our particular case this boils down to the equation

ie=-V'(x.).

Fo=—te,  x(0) =m0,  T(T)2) =,
whose unique solution is displayed in the statement
of this lemma. d

Video and more at http://drorbn.net/?title=AKT-14 (Jan 10 and Jan 17 classes)
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Dror Bar-Natan: Talks: HUJI-140101:

Knots in Four Dimensions and the Simplest Open Problem Albbam

w =http://www.math.toronto.edu/~drorbn/Talks/HUJI- 140101
Handout and links at/ r

yet | can tell at least some of them apart in a colourful way.

Abstract.| will describe a few 2-dimensional knots in 4 dimersatoh’s Conjecture.(w/Sat) The “kernel” of therJh
sional space in detail, then tell you how to make many moes tHouble inflation ma@, mapping w-knot diagram
tell you that | don’t really understand my way of making thef

,the plane to knotted 2D tubes and spheres in 4D, ;
is precisely the moves R2-3, VR1-3, M, CP and OC listed a

u-Knots. @ “thermographical diagram

n other words, two w-knot diagrams represent&ithe same 2D
knot in 4D iff they difer by a sequence of the said moves.
First Isomorphism Thmé: G > H = imé = G/ ker(5)
¢ is a map from algebra to topology. So a thing in “hard” topglog

(im§) is the same as a thing in “easy” algelbna/().

/—'
/.
“broken arc diagram”

&
2

Satoh

R2

Reidemeister's Theorem. .
R3 4

Proof by a genericity “shaklng” argument

3-Colourings. Colour the arcs of a brox_
ken arc diagram irRGB so that every/\
crossing is either mono-chromatic or tflyo04 “good ~ bad
chromatic;A(K) = |[{3-colouring$l.

Example.1(O) = 3 while (&) = 9; soO # 6. Lf;
IExercise. Show that the set of colourings &f is a vector spa
overF3; hencel(K) is always a power of 3.

17,¢ :=PA<

Kurt Reidemeister

o

The Generators

R

“the crossing”

/

The Double Inflation Procedure

Extend A to wK by declaring that arcs
don't see” v-xings, and that caps are>< ><

always “kosher”. Them(e—e) = C.//D

9 = A(CS 2-knot), so assuming Conjec—
ture, the CS 2-knot is indeed knotted.

The Full

2-Knot Story

w-Knots.

ool ><T>

“Planar Algebra™:
The objects are “tiles”

/R2

in arbitrary planar
ways to make bigger tiles, which can then
be composed even further L

B

. 1 “God created the knots, all else in
_ topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org %}} K

[Taylor expanded!

ExpansionsGiven a “ring” K and an ideal c K, set
A=1%1a11?701%/1% 0

A homomorphic expansion is a muItipIicati\Ze K — Asuchthat
if y € 1™, thenZ(y) = (0,0,...,0,y/1™2 x %, ...).
Example. Let K C°°(R”) be smooth functions oRR", and

= {f € K: f(0) = 0}. ThenI™ = {f: f vanishes a™} and
I"‘/I"‘*1 is {homogeneous polynomials of degmagand A is the
et of power series. Sois “a Taylor expansion”.
ence Taylor expansions are vastly general; events can b

More at http://www.math.toronto.

1

edu/~drorbn/Talks/HUJI-140101/
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Dror Bar-Natan: Talks: Geneva-131024:

w :=http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024 E FL

Finite Type Invariants of Ribbon Knotted Balloons and Hoops

scribed a certain trees-and-wheels-valued invariant ¢ of rib-
bon knotted loops and 2-spheres in 4-space, and my October 8

polynomial. Today I will explain how that same invariant
arises completely naturally within the theory of finite type
invariants of ribbon knotted loops and 2-spheres in 4-space.

balloons /tails
A@ @ - e

= 7

T

Abstract. On my September 17 Geneva talk (w/sep) I delAction 1.

Geneva talk (w/oct) describes its reduction to the Alexander fth — @

—— L/\H/—\J
degree=+# of arrows

d d c
¢ )2\: (then connect using -
H —
W b y xings or v-xings)

=

o

A Q) O 27 <1
hOOpS / heads “trees” “wheels”

My goal is to tell you why such an invariant is expected, yet
not to derive the computable formulas.

/R2

AR o e
R A e

ribbon  R* ¢ _—
g ECW oddings ” Derlvnslgt; Z?f . ym /
art from

key: use

=+

m

oussarov-Polyak-Viro

Conjecrn] WX | )
ool NQ szz” E}%Kf
2 x @i@ (ﬁ%@

Satoh ’ . cp

-l

Action 2

DZC RS

Exercise.
F D= Prove prop-
—= TC erty U.

“v-xing”

X“@fi > ¢ S
blue is never “over”

e = K A K|
the semi-virtual = N i.e. N or N

Let Z" := (pictures with > n semi-virts) C xcbh,
‘We seek an “expansion”

Dictionary. / >/<< m 7‘ \/ >< 7

Z: KM — gr KM = GBI"/I“'Irl = A%
satisfying “property U”: if v € Z", then

A

v\ T

77777777777777777777 Y = >{ The Bracket-Rise Theorem.

(2 in 1 out vertices)

Y <\ [N mY ) X

CP, B,
STU, A3,
and THX

relations

e -\ [N w0 X

yi Corollaries. (1) Related to Lie algebras! (2) Only trees and wheels
Z(A/) = (07 s 7 77/1'7’7,—‘1-17 * K, ) X.-S. Lin persist.

Why? e Just because, and this is vastly more general.
° (leh /I"+1)* is “finite-type/polynomial invariants”.

Theorem. A is a bi-algebra.
FL(T)® x CW(T), and ¢ = log Z.

The space of its primitives is

e The Taylor example: Take K = C®(R"), T =
{f € K: f(0) =0}. Then Z™ = {f: f vanishes like |z|"} so
7" /I"*! is homogeneous polynomials of degree n and Z is a
“Taylor expansion”! (So Taylor expansions are vastly more
general than you’d think).

Plan. We'll construct a graded .%Ibh, a sur- bk
jective graded m: Abh o AbR, and a fil- 7 )
tered Z: K" — AP so that 7 |/ gr Z = Id /ﬂ\ngZ
(property U: if degD = n, Z(n(D)) = o — )
z
m(D) + (deg > n)) Hence e 7 is an iso-
h —

 “God created the knots, all else i in
. topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas. org The Kn Al N

¢ is computable! ¢ of the Borromean tangle, to degree 5:

Y ( cyclic colour)
2 1
oz

permutations,
for trees

25 -0[n]®

have a nice free Lie
calculator'

€
oohm

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024/
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Trees and Wheels and Balloons and Hoops
Dror Bar-Natan, Zurich, September 2013 i
©eB:=http://www.math.toronto.edu/~drorbn/Talks/Zurich-130919

15 Minutes on Algebra i
Let T be a finite set of “tail labels” and H a ﬁnlte set of
“head labels”. Set

M, )5(T; H) = FL(T)"

“H-labeled lists of elements of the degree-completed free Lie

ICoh (T H).

15 Minutes on Topology

algebra generated by T7.
anti-symmetry )

i) = (a0 S+ /(b

. with the obvious bracket.

u v v uu v
Ml/Q(“ﬂ’%%l/)Z A:G%Y,y%lg\?/ )

balloons / tails
| “Ribbon- T{ ﬁ 0
J| knotted
balloons V V . 4
and hoops” 00 ( emrlke)boirlllgsz R
%: Q @ hoops / heads
xamples. A 5
€xi I ’ N/Q\ = .,
t '
€y

ZED S U \/@

“the generators

T
1
!
!
|
1
!
!
!
|
!
!
!
|
|

Operations My, — My 5.

(Tail Multiply tm% is A — X J/ (u,v — w), satisfies “meta-
associativity”, tmk? J tmi™” = tmI¥ ) tml".

Head Multiply hmz? is A = (A\{z,y}) U (z = bch(Ag, Ay)),
where

(8] | [as[aBll+[[en8],5]

beh(a, ) = log(e”e?) = a+ 5+ 2 + - LEI

More on \
e L =

satisfies R123, VR123 D, and

N - g Ry w1 KT

X»%?y 2o

“ b))

oc: TN — as
N

satisfies beh(beh(a, B),7) = log(e®e’eY) = beh(a, beh(B,7))
and hence meta-associativity, hmz” J hm®* = hm}® || hmz".

Tail by Head Action tha® is A + X\ J RC}:, where

® § injects u-knots into ICbh (likely u-tangles too).
e § maps v-tangles to XC?; the kernel contains the above and
conjecturally (Satoh), that’s all.

e Allowing punctures and cuts, J is onto.

C.": FL — FL is the substitution ©u — e Yue", or mor
precisely,

Cu_’yl —[’}/,U]-Fl’)/,[’)/,u]]—

u— e ™V(u) =u 2[

cey

RCLPF) = RCS ) RCYIFYE hence “meta u™ = (u™)y”,

hmZY ] tha"® = tha"® )| tha"¥ || hmZY,
and tm )/ cytme = cyIRC pony tm and hence “meta,
(uv)® = uFv®? tml ) tha™® = tha"® || tha™ [ tmYy.

and RCY = (O 7)), Then CL@®) — ¢/ RC" 1 08 hencel

Operations I Coonnected e N e 9
Punctures & Cuts | Sums. )0 — OO
If X isaspace, m (X) K: K Jtme:

m2(X)
is an Abelian group,
and 71 acts on mo.

is a group,

Wheels.  Let M(T;H) = M,;(T;H) x CW(T'), where
CW(T) is the (completed graded) vector space of cyclic words

on T, or equaly well, on FL(T)

’:o
v
L3

Riddle. People often:
study m (X) =[S, X]:
and 5 (X) = 5%, X].
Why not mp(X) = K ) tha"*:

T, X]?

e N ()

S S2 T V ‘ V

“Meta-Group-Action” " e e

IProperties.

Operations. On M (T; H), define tm“’ and hm:’ as before,

msﬁ/anth ave
and tha"® by adding some J-spice:

e Associativities: m2 J/ m2¢ = mbe ) ma, for m = tm, hm.
o “(uv)® = uTv™: tmi [ tha"* = tha* // tha [| tmby

2)) || ROy
/ds div, (v RC) ) C, 7, and

(Aiw) = (A w + Ju(A

)

where Jy,(

v

u
u dlvu &/ &/
Y

Theorem Blue. All blue identities still hold.

Alekseev

To rossian|

o “ul™y) = (y®)¥7: hmzy /) tha'* = tha'® || tha®¥ || hm
With dm@ := tha® |}

u

TR W

angle concatenations — 7 X To.

ab // hmab

a

9]

)
.

W g g—

[Finite type invariants make
sense in the usual way, and

Merge Operation. (A1;wi)*(Ao;wa) := (A1 U Xo;wi + wa).

“algebra” is (the primitive part of) “gr” of “topology”.

Video and more at http://www.math.toronto.edu/~dro

rbn/Talks/Geneva-130917/, .../Toronto-1303/ and at

../Chicago-1303/
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Trees and Wheels and Balloons and Hoops: Why 1 Care

IMoral. To construct an M-valued invariant ¢ of (v-)tangles

and nearly an invariant on K%, it is enough to declare ¢ on|
the generators, and verify the relations that § satisfies.
The Invariant ¢. Set {(e;) = (x — 0;0), {(ex) = (();0), and

;‘0>

u

o I = (| 0)

Theorem. ( is (log of) the unique homomor-
phic universal finite type invariant on %"
(... and is the tip of an iceberg) |

Paper in progress with Dancso, wef/wko |

— (ks

X

, The

ILg := R® T with central R and with [u,v] = c,v — cyu for
Ju,v €T. Then FL — Lg and CW — R. Under this,
| p= (Ae)iw) with A = Y Aygu,  Ayasw € R,

(divy, v = cuyu, and Jy(vy) = log (1+ el
"formula-computable to all orders! Can we 51mphfy

£ quotient is M divi-
ded by all relations that uni-
versally hold when when g is
the 2D non-Abelian Lie alge-
bra. Let R = Q[{cu}uer] and !

Y9¥

[u, v]

ueT

C

elu — Cy

1

Cy + Cy
bch(u,v) — prT— < o

fv=>" v then with ¢, := > vycy,

-1
) e“u— ¢y

u + e

)
v b

Z YU

vF£u

Cy

e —1 e —1

J RCY = <1 + CuVu
¥ Cy

o). 0 € 3

IRepackaging.

Given ((z — Auz)i;w), set ¢z == >, CoAua,

efr—1

See also weﬁ /tenn, weB/ bonn mo)eﬁ /swiss, wef/portfolio

eCu

replace Ayz — Quz = Cyluz
and write ay, as a matrix. Get

and w — e¥, use t, =
‘8 calculus”.

( is computable! ¢ of the Borromean tangle, to degree 5:

( \ + cyclic coloun
Yizé ?,y,zy B (permutations,) w | z Yy w and the ay;’s are
‘ for trees‘ U | Quz  Quy rational functions in
L 2%—3?—6?—2?’%«?’4«?’ U | Quz  Quy variables t,, one for [’
‘ each u e T. Wi g mand
R w N
o vl a wlo Ti|ar Th|a
zy’lsz%& 6?'?’ 4‘?P’G'§P 4'?, HRRE I 777X T wl|a+p , wiwo | H, Hy; ,
. w ; L = T o 0
@O QT E hwveanic el v K |0 a
w | T Yy w | z
OGO WDOC | . | . ,
Tensorial Interpretation. Let g be a finite dimensional Lie a B PlatBt{a)f oy
algebra (any!). Then there’s 7 : FL(T) — Fun(®rg — 9) wl|x we | x
end 7 : CW(T) — Fun(®rg). Together, 7 : M(T;H) —{ thq: u|a B — u |a(l+(y)/e) BA+(7)/e) |
Fun(®7g — ©pg), and hence o N ~/e §—~B/e
T M(T;H) — Fun(®rg — U™ (g)). where € := 1+ a, {(a) := Z oy, and (y) =37, ., T, and ley
( and BF Theory. (See Cattaneo-Rossi, 1 T 1 T
arXivimath-ph/0210037) Let A denote a g- Ry, = T’ﬁ R, = =1
connection on S* with curvature F4, and B a ¢ | On 1 Kknot . t1;1 Al d | .ul‘
g*-valued 2-form on S%*  For a hoop ~,, let  #u /) 11 Jong xhows, W 1s the Alexahder polyhotmas

5 Calculus. Let 8(T; H) be

hol,, (A) € U(g) be the holonomy of A along ~,. '

Cattaneo
For a ball v,, let O, (B) € g* be (roughly) the "
integral of B (transported via A to c0) on 7.
Loose Conjecture. For v € K(T; H),
/ DADBel PA [T 9B (R hol,, (A) = e (¢(v)).

That is, ¢ is a complete evaluation of the BF TQFT.

s
~ “God created the knots, all else in

Why happy?
riant:
ze) extension of the (multivariable) Alexan
der polynomial to tangles. Every step of the
computation is the computation of the inva-~
riant of some topological thing (no fishy Gaus-
sian elimination).

"See also wef/regina, wef/caen, wef/newton.

An ultimate Alexander inva-
Manifestly polynomial (time and si-j

If there should be an Alexander invariani

with a computable algebraic categorification, it is this one!

& _ topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org 'l'Y)’r‘l;G‘iffﬁv/ as|

Tay class: wef/aarhus Class next year: «eB/1350
Paper: wef/kbh

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Geneva-130917/,

./Chica

./Toronto-1303/ and at
go-1303/
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Meta—Groups, Meta—Bicrossed—Products, and the Alexander Polynomial, 1
Dror Bar—Natan at Sheffield, February 2013. http://www.math.toronto.edu/~drorbn/Talks/Sheffield-130206/

4 Alexander Issues. 2k
Q & ’ e 3%" %} e Quick to compute, but computation departs from topology
- c‘ e Extends to tangles, but at an exponential cost.

IAbstract. I will define “meta-groups” and explain how one specifiq® Hard to categorify.
meta-group, which in itself is a “meta-bicrossed-product”, gives riseeq. Given a group G and two “YB”

e 1es . . ’ . + 4
to an “ultimate Alcgandcr 1r%var1.ant of tangloo, that contains thopalrs RE — (go 79u) c G2 map them AN Z . gt
lAlexander polynomial (multivariable, if you wish), has extremely =

o o . . to x1ngb and ‘multiply along”, so that
lgood composition properties, is evaluated in a topologically mean-
ingful way, and is least-wasteful in a computational sense. If you

believe in categorification, that’s a wonderful playground. /> 93939;9;9;92—92—9;

This work is closely related to work by Le Dimet (Com- \J 9z 95 )

ment. Math. Helv. 67 (1992) 306-315), Kirk, Livingston

and Wang (arXiv:math/9806035) and Cimasoni and Turaev| X

(arXiv:math.GT/0406269). This Fails! R2 implies that ¢gF¢gF = ¢ = gTgT and then R3]

implies that g} and g;” commute, so the result is a simplé
counting invariant.
A Group Computer. Given G, can store group elements and
perform operations on them:
T ma e
..so that my? //
my* = my [ my*
(or my* omi? =

my“ om¥*, in old-
speak).

lAlso has S, for inversion, e, for unit insertion, d, for register dele-
tion, A7, for element cloning, pj for renamings, and (D1, D2)
D1 U D5 for merging, and many obvious composition axioms relat
ing those. P={x:91,y:92} = P ={d,P}U{d,P}
A Meta-Group. Is a similar “computer”, only its internall
structure is unknown to us. Namely it is a collection of setg
{G,} indexed by all finite sets 7, and a collection of opera-
tions mzY, Sy, es, dz, A7, (sometimes), pj, and U, satisfying
the exact same linear properties.

Example 0. The non-meta example, G := G7.

Example 1. G, := M,x(Z), with simultaneous row and|
column operations, and “block diagonal” merges. Here if

Pz(gzj': . fz) then dyP = (z : a) and dzP = (y : d) 59

RS/ ~N .
w /= {d,P}U{d, P} = (Zj g 2) # P. So this G is truly meta.
. ; . pE
A Standard Alexander Formula. Label the arcs | throughClaim. From a meta-group G amd_ YB elements R™ € Gz wq
(n+ 1) = 1, make an n X n matrix as below, delete one rowCa1 construct a knot/tangle invariant.
and one column, and compute the determinant: Bicrossed Products. If G = HT is a group presented as &
N U “ b - product of two of its subgroups, with H N7 = {e}, then als
N\ = 1 1-x x G = TH and G is determined by H, T, and the “swap” map|
koo (t,h) — (R,t") defined by th = h/t’. The map su
N 7 a b c satisfies (1) and (2) below; conversely, if sw : T'x H — H X T|
af_ o =X X-1 1 satisfies (1) and (2) (+ lesser conditions), then (3) defines 4
P T T T T group structure on H x T, the “bicrossed product”
-1 x 0 0 0 o 1-x o | ey ARRAAS SRR A
o -1 x 0 1-x 0 0 0 fa ha ity it
Xx-1 0 -x 1 0 0 0 0
0 1-x 0 -1 x 0 0 o |[[[777,2::711 /7 Def (1) (2)
0 0 0 0o -x 1 0 x-1 (3)
0 0 1-x 0 o -1 x 0
° 0 0 x-1.0 ° X 1 t’rn1 //5w14—sw24//5w14//tm : qrn,3 —swlz//tm 2//hm
-1 +4x-8%2+11x3-8%x4+4%°-X%° : "}iiii}iéié';hl(hgt@fz = (h1hb)(tt2) = hatg]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/, see also .../Sheffield-130206/
and .../Regina-1206/
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Meta—Groups, Meta—Bicrossed—Products, and the Alexander Polynomial, 2

3 A B - iness! > e a1
IA Meta-Bicrossed-Product is a collectlon of sets B(n, 7) and]l mean business! NS R
. - Factor; Se ributes [BCollec is el; By oz [Ble, 411 := Module
operations tm’, hm2¥ and sw!? (and lesser ones), such Shat e e S T et el o L([:A; m :]a> st ’h;];[,/;,zgdxl.a::]u; o,
tm and hm are “associative” and (1) and (2) hold (+ lesser] cortect[1, ?g'ftlch['{{ o pssne] )] B A e emietn pv 00
conditions). A meta-bicrossed-product defines a meta-group| :. - vaion[cases[stu, 41, &,  u, ineinity]]; _ s=asimie 05
. . hs = Union|Cases|B[«w, 4], h, = x, Infinit; ;
with G'Y = B(’Y ’7) and gm as 1 (3) M= O'utaz[LSxmp[£oef£i.ci.ent[A, hus 1] &, Zl]s] ts]; ;:,‘:;y)/()h’t“ :Zi‘ﬁ?;!r)t”
Example. Take 3(n,7) = Mrxy(Z) with row operations for] Preeerdmoli @ /e =l @ st c e e, o11s mfiﬁ’i’[jj"{fjf’/; o ) o 1 s
the tails, column operations for the heads, and a trivial swap, Mes=emeal, = =00 /:BloL, LBlez. 2] i Bleteaz, aresn);
[Format(s B, S;;ndardFo;n]_ ::‘ 5Fom[ﬂj :l Rm,» i= B[1, (xP-1) taho]s
3 Calculus. Let B(n,7) be
w|h  hy - e b e q B {B= Blw, Sum[azos.s ts hy, {i, {1, 2, 3}}, {3, {4, 5}}11,
ty o o - | S TH ST, ARG W al (B // tmizsy // swia) = (B // swaa // swis // tmiz,1)}
to | a1 awoe - |the ayj are rational func- o,
. . . h hs
. tions in a variable X W N
: . . . { t, Q14 Ous True (1) Some
tz Qg Qs | testing
w |- w1|771 w2|772 Q34 O35
w -
+muY w | & s tw |+ B | {Rms1 Rmgz Rps, // gy, // gMys,y // gMze,s,
w to | B ’ 3/ Rpgy Rmzgq Rmgs // gmyy,y // gMys,, // gMze,s}
: Y
0 hy hy 1 h hy
—1+X 0 t, - =l 0
han®Y - w|hz hy UJ| h %1 71i(x _-1+Xx ’ £ 71i<x _-14X
mZ'Z‘ B H‘+6+<>5 ’ X X 3 X X
e v e o v . divide and conquer!
w | hy - we | hy e B = lez,1 Rmy7 Rmg3 Rmy, 11 RP16,5 RPg,13 RP14,9 RP10,15 817
swih o tu| a B sty |a(l+()/e) BA+{/e) |1 n n hs hy hy  hin his his
—14X
v 5 '}//6 6 _ 75/6 ts 0 0 0 % 0 0 0 0
tg 0 0 0 0 0 =X 0 0
where € := 14+ a and (¢) := >, ¢;, and let te 0 o 0 o o o _1.x% o
-1+X
1 | hq hy 1 | ha hy ts o -5 0 0 0 0 0 0
RE = "t, | 0 X —1 wi= ta| 0 X T—1. |[[fo 0 0 0 0 0 0 0 ~ixx
t 0 0 t 0 0 tiy - - x+ 0 0 0 0 0 0 0
tia O 0 0 0 -1+X 0 0 0
Theorem. Z# is a tangle invariant (and more). Restricted to[\ tig 0 0 -1+x 0O 0 0 0 0
knots, the w part is the Alexander polynomial. On braids, itP°l# = B // gmuca. {k, 2, 10317 B 817, cont.
is equivalent to the Burau representation. A variant for links 1 hy hi1 his his
contains the multivariable Alexander polynomial. £y - 10y (1-X+X%) (-1+X) (1-X+X?) -1+X
Why Happy? e Applications to w-knots. t12 S 0 0 0
o Everything that I know about the Alexander polynomial|t,, -1:+x %ﬂ 7%ﬁl 0
can be expressed cleanly in this language (even if without . . Lx (-1 +%)2 - L 0
proof), except HF, but including genus, ribbonness, cabling,- -~ -------------------—--——— -~ - - -~ —- - - - - - —— —
v-knots, knotted graphs, etc., and there’s potential for vast James Do[B = B // gmy,:, {k, 11, 16}];
generalizations. Waddell ( _1-4x+8x2-11x3+8x%-4%x5:+%6 )
@ The least wasteful “Alexander for tangles” Alexander x3
I = . . .
I'm aware of. LT E A Partial To Do List. 1. Where does it more

e Every step along the computation is the in-
variant of something.
@ Fits on one sheet, including implementation®
& propaganda.

simply come from?

=2. Remove all the denominators.

. How do determinants arise in this context?

. Understand links (“meta-conjugacy classes”).
. Find the “reality condition”.

trivial

™

[Further meta-monoids. II (and variants), A (and quotlents)

wl', ... 6. Do some “Algebraic Knot Theory”. ;
Further meta-bicrossed-products. Il (and variants), j (and7. Categorify. ﬁbbon
quotients), My, M, Kb, Kroh . 8. Do the same in other natural quotients of the
Meta-Lie-algebras. A (and quotients), S, v/y—story. - /\/VM\/
IMeta-Lie-bialgebras. (and quotients), i i "God created the knots, all else in ENRE \/\f\/\
[ don’t understand the relationship between gr and H, as it . topology is the work of mortals." ;

appears, for example, in braid theory. Leopold Kronecker (modified) www.katlas.org . example

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/, see also .../Sheffield-130206/
and .../Regina-1206/
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Dror Bar-Natan: Talks: Cambridge-1301:
http://www.math.toronto.edu/~drorbn/Talks/Cambridge-1301/

Non-Commutative Gaussian Elimination and Rubik’s Cube

The Problem. Let G = {(g1,...,9a) be a
subgroup of S, with n = O(100). Before
you die, understand G':

1. Compute |G|.

2. Given o € 5, decide if 0 € G.

3. Write a ¢ € G in terms of g1, ..., ga-
4. Produce random elements of G.
The Commutative Analog. Let V =

span (v, ...,v,) be a subspace of R™. Be-
fore you die, understand V.

Solution: Gaussian Elimination. Prepare
an empty table,

NN 1

A
pace for a vector uy € V', of the form
uy = (0,0,0,1,%,...,%); 1 :=“the pivot”.

1 2 3 n=54;
g1 = Cycles[{{1, 18, 45, 28}, {2, 27, 44, 19}, {3, 36, 43, 10}, {46, 52, 54, 48}, H
4156 {47, 49, 53, 51}}1; =
71819 gz = Cycles[{{7, 16, 39, 30}, {8, 25, 38, 21}, {9, 34, 37, 12}, {13, 15, 33, 31}, @
{14, 24, 32, 22}}]; Q
13]14|15]16]17]18 gs = Cycles[{{28, 31, 34, 48}, {29, 32, 35, 47}, {30, 33, 36, 46}, {37, 39, 45, 43}, g
22|23|24|25(26|27 (38, 42, 44, 40}}]; 2
« « gs = Cycles[{{1, 3, 9, 7}, {2, 6, 8, 4}, {10, 54, 16, 13}, {11, 53, 17, 14}, 5
31]32[33]34[35]36 ey i %
gs = Cycles[{{1, 13, 37, 46}, {4, 22, 40, 49}, (7, 31, 43, 52}, {10, 12, 30, 28}, =
{11, 21, 29, 19}}]: v
= ge = Cycles[{{3, 48, 39, 15}, {6, 51, 42, 24}, {9, 54, 45, 33}, {16, 18, 36, 34},
(17, 27, 35, 25}}1; Enter
Claim 4. If two monotone products are equal,
O1j1 """ Ongjn = 0L """ Onjls
Based on algorithms by  then all the indices that appear in them are equal,

O. Schreier C. ims D. Knuth|
See also Permutation Group
Algorithms by A. Seress,
Efficient Representation of

Perm Groups by D. Knuth.

Claim 5. Let M} denote the set of monotone products
in T starting in column k:

Mk = {O’ka cOngp - Vi Z k‘,jZ Z 7 and Ti.j; S T} .
then for every k, MM, C M (and so each M is a

Feed vy, .
position 2.
1. If box 7 is empty, put v there.

eliminates the pivot, and feed v’.

.., U in order. To feed a non-zero v, find its pivotal

2. If box i is occupied, find a combination v’ of v and u; that

subgroup of G).

Proof. By backwards induction. Clearly M, M, C
M,,. Now assume that MzMs; C My and show that
M4M4 C M4. Start with 0'&jM4 C M4Z

1 2
03,j(04,5, Ms) = (05,j04,3,) Ms C MyMs

Non-Commutative Gaussian Elimination
Prepare a mostly-empty table,

(1,2)((2,2)
I

(1,3)[(2, 3)[(3, 3)‘
I

[CF))

n)l2,n)3,n

n,n
.. T

Space for a o;; € S, of the form
(1,2,...,0— 20— 1§, %, %, ..., %)

So 0;; fixes 1,...,1—1,

sends “the pivot” ¢ to j and

goes wild afterwards, and

—1 « el -39
o;,; ‘“does sticker j7.

—

_J

position ¢ and let j := o(3).

1. If box (i, 7) is empty, put o there.
1

operations. Call the resulting table T'.
Claim 2. Every o;; in T is in G.

Feed g1, ..., g in order. To feed a non-identity o, find its pivotal

2. If box (4, j) contains oy ;, feed o' := 0, ;0.

The Twist. When done, for every occupied (4, 7) and (k,1), feed
00k, Repeat until the table stops changing.

Claim 1. The process stops in our lifetimes, after at most O(n°)

Claim 3. Anything fed in 7" is now a monotone product in 7"
[ was fed = f € Mi:={01;02 " 0Onj,: Vi,ji =i & 0;;, € T}$Recursionlimit = «;

i U]‘O'4’j(M5M5) é Uj0‘4va5 C M4

(1: associativity, 2: thank the twist, 3: associativity
and tracing 44, 4: induction). Now the general case
(043,055 W04, 05,55 - - )

falls like a chain of dominos.

Theorem. G = M; and we have achieved our goals.

A Demo Program

o oz := PermutationProduct][:z,
Feed[Cycles[{}]] :=Null;

Feed[z ] :=Module[{i, j, k, 1},
i = Min[PermutationSupport[z]];

z];

ol;

j = PermutationReplace[i, www.geocities.comvjaapsch/puzzles/

If[Head[o;,5]
Feed[InversePermutation[o; ;] ° 7],

Cycles, »

O a
PR D ¢ L
% o
&= )
ZA 'k ;
\ 2OV

V‘

(xElsex) 05,5 =7;

For[k =1, k<n, ++k,
For[l=k+1, 1<n, ++1, www.powerstrike.net/puzzles/
If[Head[ok,1] === Cycles,

Feed[o;,;°0x,1]; Feed[ox,1°0;:,5]]
11
11

Enter

ic.freefr/

Homework Problem 1. The Results

Can you do cosets?

Table[Feed[g,]; [[f.; (1 + Count[Range[n],
{4, 16, 159993501696000, 21119142223872000, 43252003274489856000, 43252003274489856000}

j_ /; Head[o:, ;] == Cycles]), {a, 6}]

_dy

¢

719125
. 114|813
ROTARY GIRCLE 6 1011|122
www.powerstrike.net/puzzles/ 131141115

Homework Problem 2.
Can you do categories (groupoids)?

= \
=" /_///7
that’s cool!

43,252, 003, 274, 489, 856, 000

8!13% 121212
12

&= In Inuit:

ACVRRTANTRVWANG 5 5 5

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Cambridge-1301/, see also
http://www.math.toronto.edu/~drorbn/Talks/Mathcamp-0907/
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Balloons and Hoops and their Universal Finite—Type Invariant,
BF Theory, and an Ultimate Alexander Invariant

Dror Bar—Natan in Oxford, January 20 &

wef :=http://waw.math. toronto.edu/~ drorbn/Talks/Oxford-130121 [m]pyFa o

computable,

Scheme. o Balloons and hoops in R?, algebraic structure and
relations with 3D.

e An ansatz for a “homomorphic” invariant:
related to finite-type and to BF.

e Reduction to an “ultimate Alexander invariant”.

=mbe ) mav.

Meta-associativity. =
VI T =
~_ @ =

mg® /) mae
a C

Tangle concatenations — 7 X mo.

ab

a c

m

I (m, n).

balloons / tails

ribbon R4
embeddings g4

OISO

&

o

| &P

dmg®

Thus we seek homomorphic invariants of !

[nvariant #0. With II; denoting “hon- ‘ ‘
h \\/~ i

est 71”7, map v € K% (m,n) to the triple
(I11(v¢), (ui), (x;)), where the meridian of

S O —z—

oc: \7\\/ — /\\é as W — % {ﬁ;“mbyéé f

eB/accorationideas hgg SS the balls u; normally generate II;, and the ul u2
[Examples. 5w T mean business) longtitudes” x; are some elements of I1;.
€t {/ memmis s s 0 +« acts like *, tm acts by “merging” two @ @
;b/\>> R G meridians/generators, hm acts by multi- o —
€u LD N ewapagtnl 1w plying two longtitudes, and tha“® acts by Not computable!
. “conjugating a meridian by a longtitude”: (but nearly)
Pua: bx (11, (u, .. .), (@, ...)) — (Tx(@)/(u = zaz"Y), (4@, ...), (z,...))
_ [Failure #0. Can we write the z’s as free words in the u’s?
Puz’ 4 V o e e, I = wv, compute x J/ tha®:
Lot (o) 1206 (o 215 o T = un — G — 1t — 0 — w0y = " Yy = ..
2:?/1;3/1&5) x L % >< L )%;%( = )%;&(The Meta-Group-Action M. Let T be a set of “tail labels”

(“balloon colours”), and H a set of “head labels” (“hoop
colours”). Let FL = FL(T) and FA = FA(T) be the (com-
pleted graded) free Lie and free associative algebras on gen-

e & injects u-Knots into K" (likely u-tangles too).

e 5 maps v/w-tangles map to K®; the kernel contains Rei-
demeister moves and the “overcrossings commute” relation,
and conjecturally, that’s all. Allowing punctures and cuts, |
is onto.

erators 7" and let CW = CW(T) be the (completed graded)
vector space of cyclic words on 7', so there’s tr : FA — CW.
Let M(T,H) := {(A = (2 : \g)zen;w) : Ay € FL, w € CW}

|

u v v w u vy v 27
CRGTREAC AN o I ) S
vV

“MGA”
K ) hmZv: K J tha"*:

e Associativities: m2 ) m2 = mbe ) m2, for m = tm, hm.

e Action axiom t: tmlY J tha® = tha"* j| tha"® J/ tmly,
e Action axiom h: hmz? J/ tha** = tha*® |/ tha"¥ [/ hm3Y.
e SD Product: dm@ := tha® [/ tm2 J hm is associative.

(«

“apply an operator”

is newspeak for

and  for “composi-

tion left to right”)

IProperties.

. e 3 4 T
OI)(‘/I ations : Connected e 9 *k e e B _ v B wepB/antig-ave
Punctures & Cuts | Sums. O/ O - O O [Operations. Set (A1;w1) * (Ag;w2) := (A1 U Ag; w1 + w2) and
Meta-Group-Action. K- K )t with 1 = (A;w) define
If X is a space, 7 (X) “ a e . M s s ) (v e w),
is a group, ma(X) is an -
lAbelian group, and m V V “ hmZ¥ : p— (( ST A, Y P Ay, ., 2 bch()\z,)\y)) ;w)
acts on mo. “stable apply”
e e e uxr ad Az [~ —
tha" : e p ) (u— e (@) /(@ — u) + (05 Ju (X))

the “J-spice”

w)CCre
A CC; example.

(%VV>%\/\V
—y Ny

Video and more at http://www.math.toronto

.edu/~drorbn/Talks/0xford-130121/ and at

http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/
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Balloons and Hoops and their Universal Finite—-Type Invariant, 2

The Meta-Cocycle J. Set J, () := J(1) where
J(0) =0, Xs = A ) CC3A,

dJ(s)
ds

and where divy A := tr(uoy(N)), 0w (V) := duw, ou([A1, A2])
L(A1)ow(A2) — t(A2)ou (A1) and ¢ is the inclusion FL < FA:

=

Claim. ce) ) CCA;//CC’ " and
Ju(bch(M, A2)) = Ju(A1) J CCXICCE 1 g Ny ) CCM),

and hence tm, hm, and tha form a meta-group-action.

= (J(s) J/ der(u > [As,u])) + divy Ag,

chch()\l,)\g

The 8 quotient, 2. Let R = Q[{cy}uer] and Lg := R ® T]
with central R and with [u, v] = ¢,v — cyu for u,v € T. Then|
'L — Lg and CW — R. Under this,

w— (Aw) with A = Z Az UL,  Ayg,w € R,
xeH,ueT
Cu __ 1 Cy __ 1
bch(u,v) — Cu + Cy ‘ u+ e v,
eCutcv — 1 Cu Cy
if A = > A\yv then with ¢y = >_ A\ycy,
e —1 —1

Z A |

vFEU

-1
) ey — cu

div, A = cy Ay, and the ODE for J integrates to

Cx

w)CC) = (1 + cudu

—1
Culu

Ju(\) = log (1 + £

I

NVhy ODEs? Q. Find fs.t. f(z+y) = f(x)f(y).

df (s
A L2 — s+ ) = £f(s)f(0) = f(s)C.
INow solve this ODE using Picard’s theorem or
ower series.

Alekseev Torossian|

Jjand write oy, as a matrix. Get

o ( is formula-computable to all orders! Can we simplify?

Repackaging. Given ((z : Aug);w), set ¢g 1= >, CpApgz, Te€-
place Az — Quz = Cyduz s 271 and w — logw, use t, = e,
“B calculus”.

The Invariant ¢. Set ((p*) = (du,;0). This at least defines
an invariant of u/v/w-tangles, and if the topologists will de-
liver a “Reidemeister” theorem, it is well defined on K?".

¢ UL =) R )

(Theorem. ¢ is (the log of) a universal finite type invariant (a|
homomorphic expansion) of w-tangles.

[Tensorial Interpretation. Let g be a finite dimensional Lie
algebra (any!). Then there’s 7 : FL(T) — Fun(®rg — 9)
and 7 : CW(T) — Fun(®rg). Together, 7 : M(T,H) —
Fun(®rg — ©mg), and hence

e M(T,H) — Fun(®rg — U (g)).

( and BEF Theory. Let A denote a g-connection
on S* with curvature Fu, and B a g*-valued 2-
form on S%. For a hoop 7., let hol, (A) € U(g)
be the holonomy of A along ~,. For a ball ~,,, let
O, (B) € g* be the integral of B (transported via 4
A to 00) on .

Loose Conjecture. For v € K(T, H),

/ DADBeS P T] e ) @ ol (4) = 7 (¢(1):

Cattaneo

w | Y w and the augy’s are
U | Qyg Quy rational functions in
V| Quz Oy variables t,, one for [’
each u € T'. S e,
1| Ha U2 | Hy
« _ Th | @] T | a2
tm%v v | B — W@ + 8 R wiwe | H1 Ha
¥ = T1 (e5] 0
vy 1> 0 a2
wlxz y w z
hmZY | . | )
‘a By 1‘a+5+<a>5 0%
w|x we | T
tha*: w|a By u |a(l+(y)/e) 5(1+< )/e)
vy 6 v/€ 5 —B/e
where € := 1+ a, () 1= >, ay, and (y) := >, ,, Yo, and let
1 x 1 x
+ . - .
Rux“ﬂﬁ Bug o= = e =1
On long knots, w is the Alexander polynomial!

5 Calculus. Let 8(H,T) be

That is, ¢ is a complete evaluatlon of the BF TQFT.
[ssues. How exactly is B transported via A to co? How does
the ribbon condition arise? Or if it doesn’t, could it be that
C can be generalized??

The S quotient, 1.
ILie algebra.

e Arises when reducing by relations satisfied by the weight,
system of the Alexander polynomial.

e

e Arises when g is the 2D non-Abelian|

"God created the knots, all else in
. topology is the work of mortals."

Leopold Kronecker (modified) www.katlas.org

der polynomial to tangles.
computation is the computation of the in-
variant of some topological thing (no fishy

7~iSee also wepB/regina, weB/gwu.

have vast generalization beyond w-knots and the Alexande

Why bother? (1) An ultimate Alexander
invariant: Manifestly polynomial (time and
size) extension of the (multivariable) Alexan-
Every step of the

Gaussian elimination!). If there should be an Alexander in
variant to have an algebraic categorification, it is this one/

Why bother? (2) Related to A-T, K-V, and E-K, should

Paper in progress: wef3/kbh

Z polynomial.

See also wef/wko, wef/caen, wef/swiss.

Video and more at http://www.math.toronto

.edu/~drorbn/Talks/0xford-130121/ and at

http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/Newton-1301/
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With wef := http://www.math.toronto. edu/drorbn/Talks/Hamburg—1208‘ 7. Negative numbers: The PhﬂOSOphV COI‘HCI"

A QUiCk Introduction What is Categorification=Concretization=de-

abstraction? “37 is  {cow,cow,cow} and
to Khovanov {pig, pig, pig} and many other things. . : or even

Homol ogy .. categorification is choosing Wthh 3 it 1s'
''''''''''''''''''''''''''''''''''''' « “canceled debts”
IN. Natural numbers > finite sets, equalities — bi- have

Dror Bar-Natan, jections, inequalities — injections and surjections: ‘equalities”
Hamburg, August 2012 |/925, n\ 2 : need
n> = k> —> mterpretatlon
IAbstract. 1 will tell thel X x {1,2} X W( aker Categorification. Do the same in the category of
[Kauffman bracket story of] ( |X| ) U <k> <k> vector spaces: “3” becomes V s.t. dimV = 3, or bet-
the Jones polynomial as tter, VO = (V"L 5 VP 5 Vil ) st d2 = 0 and
[Kauff told it in 1987 *) =3 (-1)"di T=3= —1)"dim H".
atfiipan Joic¢ 1t 1 Khovanov: K (L) is a chain complex of graded Z-modules; xX(v ) . 2 (1) dimV . 2.(—1)" dim
then the Khovanov homol- . 1 Equalities become homotopies between complexes.
V =span{vg,v_); degvy ==+1; ¢dimV =q+q ~; | T T

ogy story as Khovanov told|

it in 1999, and finally thegr (k) — yek g (30) = Flatten [0 — KO O{1} » K(<){2} = 0

Categorifying Z[¢T!]. f =Y a;¢’ be-
comes V = @V; st. ¢dimV :=

“local Khovanov homology” height 0 height 1 S ¢f dim V; _ f or better
story as I understood it in| Ve — (.”]Vrfl N V;‘ N Vr+1.”),
2003. At the end of our 90 K (X) = Flatten (0 - K(X){-2} > KOO{-1} — O> ; ¢ 2 = 0 deed = 0 d
minutes we will understand| height —1 height 0 St T e e

Ve) = —1)" ¢dim V" = =
what is a “Jones homology”, xo(V9) 2 )f(lnll)r gdim I{V

how to generalize it to tan—( ) V vy e ®@uvo v vy Quy vy N .
( ) ——= ( ) : te. Sett
gles and to cobordisms be- ® ) m Vv v v Qu_—0 V(El;- v ez lilvi
J o ’

tween tangles, and why it get qdimV{l} =
is computable relatively eﬂi-( <><> Q0 Q Q ) V Ave V) A {v+ UL QU V- Uy ¢! qdim V
ciently. But we will say noth-| Vo U QU '
ing about more modern stuff]
I— the Rasmussen invariant[Example: = q+¢+¢ -4
IAlexander and HOMFLYPT
knot homologies, and the cat{ ¢*(¢+ ¢~ *)? - 3¢'(g+q7") + 3¢°(q+q7")? - *lg+q")?
A

A A A

a*(¢+q™ ") %) () a(a+a™)?
vi1) - Ve (5}
100 140 w 110 that’s a

egorification of sls and other
[Lie algebras.

Why Bother?

_go up for Jones

- cobordism!
5 @)
: 00
+i e
dxo00 : di1x
—1\2 1 .5 . —152 Q 6: —1,3
= a®(g+q™ ") a*(g+a™ ") q°(¢+q~ ") 10) () data )
v®2{3} —> V®2{5} v®3{6}
7 000 doso O 101 dier Q O 111
o o
5 P 00 :
51 d T P f 5
/W eberafterz, § 00 o
Oh no! Taxicab has been sent to jall. <) H H
=
< a*(g+qa™ ") Q% @®(g+q™')?
2 Vi4} ve{s} :
% ; 001 d“g*l Q 011 ;
T - : - :
o : : : :
* &d : Z1)¢ : )
‘330( 1)%de \5\21(_ 1)%dy \&\232( 1)%de
.
d d d
K(&)° K(@)! K(&)? K(&)3
(here (—1)% := (—1)2i<i & if & = %) = K(&).
Theorem 1. The graded Euler characteristic of K (L) is J(L).
Theorem 2. The homology Kh(L) of K (L) is a link invariant.
Theorem 3. Kh(L) is strictly stronger than J(L): J(51) = J(10132) yet Kh(5;) # Kh(10;32).
References. Khovanov’s arXivimath.QA /9908171 and arXiv:math.QA /0103190 and my
wef3/cheat-pcgame http://www.math.toronto.edu/ drorbn/papers/Categorification/.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/
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Dror Bar-Natan: Talks: Hamburg-1208 Thea jones polynomial: Ok — (q + q_l)k )
Local Khovanov J: X (= 2%, J X —q 2+ ¢ b J:Q — —q‘1m+§§+0—qﬂ
Homology (1) 01

(an outdated overview) 001 011 =
(o) —> () .
) 2

SlgnS?dxﬁ dx~dy More

% N crossings?

1+ dy dx"dz—=—= dx"dy"dz
d

z—== dy"dz

Where does it live?

In Kom(Mat(<Cob> /{S, T, G, NC})) / homotopy Complexes:
Kom: Complexes Mat: Matrices Q= (an, — sl ... Y o VN )
Cob: Cobordisms <...>: Formal lin. comb.

. Morphisms: _
Cob: ‘.‘ r—1 d" 1 rd" r+1
D B [ o
=) -l el
- Qvlﬂfl ar! Qr dr Q?l“Jrl .
Mat(C): ’ Homotopies:
G11 —’///; O = r—1 dr—1 r d" r+1
of\ |-~ % i %
-7 i Oy -1 -1 h” r . W +1 +1
RS e e L A
- - o! _ dar—1 dr
2 Q?l“ 1 Q71‘ Q7£+1

All arrows in an arbitrary additive category! |~~~

el F
Fr—Gr = hr+1dr 4 dr—lhr
St @ =0 T @ =2 G g =0 The Main Point.  “The cube”, Kh(L), is an up-to-

homotopy invariant of knots and links. It’s Euler charac-

NC: 2 = @9 + O> teristic is the Jones polynomial, yet it is strictly stronger
' , than the Jones polynomial. It is functorial (in the appro-

Computable! 1 priate sense) and practically computable.
2

O>/ @ \ The Categorification Speculative Paradigm. e Every ob-
via — - ject in math is the Euler characteristic of a complex.

1
L= "D q

e Every operation lifts to an operation between complexes.
"complex simplification” 2 e Every identity remains true, up to homotopy.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/
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Dror Bar—Natan: Talks: Hamburg-1208 i
Local Khovanov Homology (2) Old techniques:
~1,000 years,
The case of 7 ~1GGb RAM.
tangles. :@ ( dim; H (now down to seconds)
i>JJ01 2 3 456 78 9101112131415 16 17 1819
57 | | 1 1
55 11
A NI 53 1:2 11
00 51 11 21
A i s 1.1 ]
47 3 3 31 1i
- 45 : 2: 12 :
¢ | 43 : 1 12
| | 41 1 12 1
| | 39
} . 37 111
N ’ 35 1
- - - - 33 1 :
The Reduction Lemma. If ¢ is an isomorphism then the complex 3101
( a ) ) 29 |1
B by v e byl (1 v)
oL [y [y
is isomorphic to the (direct sum) complex
(3) e
153 by 0 e—vyop~ 1o by ( 0 v )
A= (IR
Invariance under R2. oL - XX
~ 8 )
— X ) < o N 0N __|® N - @ N~ ® 0 o~
\C A= AN e e
4 ‘ N : N ! N
N R2 \'/\\ N R2 N R3 \'(\‘ v R3
@ D @ T o~ © S ©
Vg >O< NN ~ N 7 N S~
~ AN CROX AKX 2
l < l I l/ R3 =\ R2 N Rzlf_\
Q j J. Rasmussen: Leads to a no-analysis proof of a conjecture by Milnor.

> (X

After delooping:

O«

NN\S
VSN

(xxg Y A E(xx)
|

Kurt

Reidemeister

A more general theory: Remove G and NC, add

ON _
NG G

1 2
4Tu: @%+

AN

(minor further revisions are necessary)

http://www.math.toronto.edu/ drorbn/papers/Cobordism/
http://www.math.toronto.edu/ drorbn/papers/FastKh/
http://www.math.toronto.edu/ drorbn/Talks/Hamburg-1208/

"God created the knots,

all else in topology is the work of mortals"

Leopold Kronecker (modified) 8

http://katlas.org

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/
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The Most Important Missing Infrastructure Project in Knot Theory

anuary-23-12
10:12 AM

An "infrastructure project" is hard (and sometimes non-glorious) work that's done now and pays
off later.

An example, and the most important one within knot theory, is the tabulation of knots up to 10

crossings. | think it precedes Rolfsen, yet the result is often called "the Rolfsen Table of Knots", as

it is famously printed as an appendix to the famous book by Rolfsen. There is no doubt the

production of the Rolfsen table was hard and non-glorious. Yet its impact was and is (KnotFlot image)
tremendous. Every new thought in knot theory is tested against the Rolfsen table, and it is hard
to find a paper in knot theory that doesn't refer to the Rolfsen table in one way or another.

A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings.
Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly \

9_42 is Alexander Stoimenow's favourite

was: a proof is in the fact that nobody so far had tried to replicate their work, not even to a
smaller crossing number. Yet again, it is hard to overestimate the value of that project: in many

ways the Rolfsen table is "not yet generic", and many phenomena that appear to be rare when )_/
looking at the Rolfsen table become the rule when the view is expanded. Likewise, other
phenomena only appear for the first time when looking at higher crossing numbers. /

K11n150

But as | like to say, knots are the wrong object to study in knot theory. Let me quote (with some
variation) my own (with Dancso) "WKQ" paper: (Knotscepe imags)

Studying knots on their own is the parallel of studying cakes and pastries as they come out of
the bakery - we sure want to make them our own, but the theory of desserts is more about
the ingredients and how they are put together than about the end products. In algebraic
knot theory this reflects through the fact that knots are not finitely generated in any sense
(hence they must be made of some more basic ingredients), and through the fact that there
are very few operations defined on knots (connected sums and satellite operations being the
main exceptions), and thus most interesting properties of knots are transcendental, or non -
algebraic, when viewed from within the algebra of knots and operations on knots (see [ AKT-
CFA]).

The right objects for study in knot theory are thus the ingredients that make up knots and
that permit a richer algebraic structure. These are braids (which are already well -studied and
tabulated) and even more so tangles and tangled graphs.

The interchange of 1-95 and 1-695,

Thus in my mind the most important missing infrastructure project in knot theory is the northeast of Baltimore. (more)

tabulation of tangles to as high a crossing number as practical. This will enable a great amount

of testing and experimentation for which the grounds are now still missing. The existence of such C@ 4 Q@ j - @

a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues

that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall From [AKT-CFA]
influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen A 0 e 1) B Man g
i -
table. | =
L; ri)
Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? o3 -
Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? Mok
Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, | Obiect Tos
etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs? j o o
o . o . (][] Destinstion
In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet i e I

good tabulators would try to tabulate the more general things from which the more special ones can be sieved From [FastKh]
relatively easily, and would see that their programs already contain all that would be easy to implement within . L2t N1
their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done - y
along with the enumeration itself, and so it should.

An even better tabulation should come with a modern front-end - a set of programs for basic
manipulations of tangles, and a web-based "tangle atlas" for an even easier access.

i he Kn;( /I(In

Overall this would be a major project, well worthy of your time. hitp://katlas.or

(Source: http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2012-01/)

2012-01 Page 1

Source at http://drorbn.net/AcademicPensieve/2012-01/#NotebookPages
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Dror Bar-Natan: Academic Pensieve: 2011-11#Other Files:

A Bit on Maxwell’s Equations

Prerequisites.

e Poincaré’s Lemma, which says that on R™, ev-
ery closed form is exact. That is, if dw = 0,
then there exists n with dn = w.
Integration by parts: Jw A dn
—(=1)48« [(dw) A n on domains that
have no boundary.

The Hodge star operator x which satisfies w A
*1 = (w,n)dxy - - - dx, whenever w and 7 are
of the same degree.

The simplesest least action principle: the ex-
tremes of ¢ — f; (3mg>(t) — V(q(t))) dt oc-
cur when m§ = —V'(q(t)). That is, when
F = ma.

The Action Principle.

Table 18-1 Classical Physics

Maxwell's equations

I V-E= (L’u (Flux of E through a closed surface) = (Charge inside)/«q

L vxE=-28

5 (Line integral of E around a loop) = — g{(Flux of B through the loop)

M. v-B=20 (Flux of B through a closed surface) = 0

V. v X B= Tj + a—ﬂf *(Integralof B around aloop) = (Current through the loop)/ e
0
3
‘o (Fluxof E through the loop)

Conservation of charge

Vi=- ?T'; {Flux of current through a closed surface) = — :r (Charge inside)
Force law
F=glE+vX B
Law of motion
d my N N " . N .
—(p) = F, where P = (Newton's law, with Einstein's modification)
@ V1 — v2/e?
Gravitation
Feu-gMhf,

2

The Feynman Lectures on Physics vol. II, page 18-2

The Vector Field is a compactly supported 1-form A on R* which extremizes the action

S;(A) :

1
/ §HdAH2dtdxdydz +JAA
R4

where the 3-form J is the charge-current.

The Euler-Lagrange Equations in this case are
and that we might as well (think Poincaré’s Lemma

d*dA = J, meaning that there’s no hope for a solution unless dJ = 0,
!) change variables to F' := dA. We thus get

[dJ =0

dF =0 dxF=J|

These are the Maxwell equations!

Indeed, writing F' = (Eydzdt + E,dydt + E.dzdt) + (Bydydz + Bydzdz + B.dxdy)

and J = pdrdydz — j,dydzdt — j,dzdxdt — j.dxdydt, we find:

0
dJ =0= a—f +divj=0 “conservation of charge”
dFF =0 = divB =0 “no magnetic monopoles”

0B
curl B = ~ that’s how generators work!
d«F=J—= divE = —p “electrostatics”
0E . ,
curl B = ~ +j that’s how electromagnets work!

Exercise. Use the Lorentz metric to fix the sign errors.

Exercise. Use pullbacks along Lorentz transformations to figure out how E and B (and j and p) appear to moving observers.

2
Exercise. With ds? = c2dt? — dz? — dy? — d2? use S = mc f:l (ds + eA) to derive Feynman’s “law of motion” and “force

law”.

November 30, 2011; http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2011-11#0therFiles

Sources at http://drorbn.net/AcademicPensieve/2011-11/#0therFiles
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The Pure Virtual Braid Group is Quadratic!
Abstract Generalities

Dror Bar—Natan and Peter Lee in Oregon, August 2
http://www.math.toronto.edu/ drorbn/Talks/Oregon-1108/

ILet K be a unital algebra over a field F with char F = 0, and
so K/I —— T,

Definition. Say that K is quadratic if its associated graded
or K = ©,2, 17/ IP*1 is a quadratic algebra. Alternatively,
let A = q(K) = (V = 1/I*)/(Ry = ker(fip : VRV —
12/1%)) be the “quadratic approximation” to K (g is a lovely
functor). Then K is quadratic iff the obvious p: A — gr K
is an isomorphism. If G is a group, we say it is quadratic if

let I C K be an “augmentation ideal”;

Why Care?
e In abstract generality, gr K is a simplified version of K and
if it is quadratic it is as simple as it may be without being
silly. e In some concrete (somewhat generalized) knot theo-
retic cases, A is a space of “universal Lie algebraic formulas”
and the “primary approach” for proving (strong) quadratic-
ity, constructing an appropriate homomorphism 7 : K — A
becomes wonderful mathematics:

foots & refs on PDF version, page 3

im pP / im P!, Hence we ask:
e What’s I'P/pu(I'PT1)?
Lemma. I'P/p(IPH1) ~ ([/]2)®p = V®P, set 7

e How injective is this tower?
[P s /%P,

A R T L u-Knots and
its group ring is, with its augmentation ideal. K| Braids v-Knots w-Knots
The Overall Strategy. Consider the “singularity tower” of Metrized  Lie TFinite dimensional Lie
(K, I) (here “” means ®k and p is (always) multiplication): | A| algebras [BN1] |Lie bialgebras [Hav] |algebras [BN3]
Etingof-Kazhdan Kashiwara-Vergne-
Lopprl Bty opp He oopped K Associators quantization Alekseev-Torossian
Z| [Dri, BND]  |[EK, BN2] [KV, AT]
We care as im(uP? = pj 0 ---op,) = IP, so IP/IPH =

2-Injectivity. A (one-sided infinite) sequence

é, é.
C— Kpp — ? Ky=K

Ky

IFlow Chart.

IProposition 1. The sequence

A 8

Kp+1 Serl Kp 512 Kp,l

utchm s’ ker 0,41 ker 6, kerd, 1
Mms m A P " |
by Peter is injective; i.e. if for all p, ker(d, o 6p11) = kerdp11. A paiy

if

“injective” if for all p > 0, kerd, = 0. It is “2-injective”
“l-reduction”

(K, TI) is “2-injective” if its singularity tower is 2-injective.

@P 1 ([J L.y, . [Pi— 1) O , pp _#» , pp—1 Proposition 2. If (K,I) is 2-local and 2-injective, it is
o ] ., quadratic.
is exact, where Ry :=ker p: I'* — I; so (K,I) is “2-local”. |pyoof. Staring at  the l-reduced sequencd
The Free Case. If J is an augmentation ideal in K = F =| p»+: Bt Ir o K, get 4o o
(), define ¢ : F' — F by x; — x; + €(x;). Then Jy := ¢(J) kcr*ﬁr/lkew ker 1y o I:p7 Ip2+1®
is {w € F :degw > 0}. For Jy it is easy to check that Ry =[u(T7+1/ker ppr) p(TP ) ker i, ° But (77T ~ (I/1%)*P, so
MR, = 0, and hence the same is true for every J. the above is (I/I1%)¥P /3" (I''71: Ry : IP79~1) . But that’

the degree p piece of g(K).

The General Case. If K = F/(M) (where M is a vector space
of “moves”) and I C K, then I = J/(M) where J C F. Then
P = JP /5 JI7L:(M): JP7J and we have

1222

The X Lemma (inspired by [Hut]).

for x € K and r € Ry), and hence

&%

6o 0 2

JP o Jp—l \ B / =
onto l Tp Tp—1 lonto V % zf

. . . . A g
1P =J?r Jo(M)y:J —Es pp-t = gt J(M):J = ’

) /2 <71> . /Z < > If the above diagram is Conway (X) exact, then its two
So” ker(u) =, (MF (kerﬂ—p—l)) =Tp (Z PE (J':<M>:J')) =diagonals have the same “2-injectivity defect”. That is|
Sy (Jipp (M) J) =3 IR I = §;}mpj. if A - B — Cp and Ay — B — () are exact, then
Mo is simpler than may seem! It’s J2 L ]\4ker(61 Okg?gé}je)r @o N: ker(fo o al?/ker al-
an “augmentation bimodule” (IR = - l Proof. —eray a—0> ker 81 N im g

= Mol thus zr = e(x)r = re(x) = ro l 2 ! — ker By N im ay ; ker;((eﬁroaolal)

12 ——1=J/(M)

MRy = 7T2(/J,;‘1M).
PR, is simpler than may seem! In 3R, ; = I3 Ry [PI-
the I factors may be replaced by V = I/I%. Hence

p—1
R, ~ P VI @ my(up' M) @ VEPITL

,[The singularity tower of (K,I) is

The Hutchings Criterion [Hut]. N, -1
7] Hp
\I:p/

P‘V X

B V®pr

2-injective iff on the right, ker(wo
0) = ker(0). That is, iff every
“diagrammatic syzygy” is also a
“topological syzygy”.

j=1
Claim. w(R, ;) = R, ;; namely,

7 (I Ry TP ) = VO g Ry @ VEPIL,

Conclusion. We need to know that (K, I) is
“syzygy complete” — that every diagrammatic syzygy|
is also a topological syzyey, that ker(mw o 9) = ker(9).

More at http://www.math.toronto.

edu/~drorbn/Talks/Oregon-1108/
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Examples and Interpretations

The Pure Virtual Braid Group is Quadratic, II

Dror Bar—Natan and Peter Lee in Oregon, August 2

http://www.math.toronto.edu/ drorbn/Talks/Oregon-1108/

(goes back to [Koh])

SN

[Example.
T. Kohno /\

&

(K/IP™)* = (invariants of type p) =: V),
(PP =V V= @1 =% = (| FH)
ker fig = ([tY, K] = 0 = [tV ' 4 t7¥]) = (4T relations)

horizontal chord dia-
grams mod 4T

A=Q(K)=(

)-\FEH) -

Z: universal finite type invariant, the Kontsevich mtegral

PuB,, is the group

., 0ii0ik0ik = OikOikTij

<Uij:]-§'57éj§n> 1jOik0 jk JkOikO1j
OijOkl = ORpi0ij

L. Kauffman

. . . Kau, KL

of “pure virtual braids” (“braids when you look”, [Kau, KL]

“blunder braids”):

024 =

The Main Theorem [Lee]. PuB,, is quadratic
A, = q(PuBy,)
%\ Gous.s‘arov Polyak-Viro
the “semi-virtual crossing”.
_ I/IQ v-braids >/ (2 = X)
Wlth one ¥ a9y =
= (aij)1<izj<n

Ap = TV/{[aij, ai] + [aij, aju] + i, aze], ¢ = [aij, am)),

= A N R R W o e

Ro(PuBy,) is generated as a vector space by C}] and

—Syzygy Completeness, for PuB,, means:

0

s

[P V®P

_mpr1
{5’12 : Y345 1067 - } —
{612 : Yau5 : Go7 ¢ ...} — {a12y345a67 -
I[s every relation between the y;;.’s and the ckl ’s also
a relation between the Y;;;’s and the C”’

/ o / —
= =
/ > =E / L — /\/_/ —
s —\
mmmziam“ omnem
012013023014024034 012013014023024034 012013014034024023
— /_\ =
T | Vizsonaozao 12181021023 | _ ST
- 1T The Group PuB, 12%184024023 | —=
T -
4 s ~ ‘ — — — —
o N Generators: 0y —= ;> o
0 >
023013012011021031 ! 012034014013024023
T - ! Relations: -~ -
i{i o201V 12105 : Clloomion | LR
i T S >3
/N (/kl. —
— S s
> T T e
023013024014012034 Yijr: ¢ — -_— - 031012011013024023
j =2 =
= _ [ x N —
> . y — =
N 023033 014012034 Tk k 031012011CHi 023 \/:/\/\
- _
O - —_—
_— _— T RTiTij —_ /\‘C
_ _— J— A Syzygy: e Y

7
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.

James Gillespie’s Sightline #2
(1984) is a syzygy, and (ar-
guably) Toronto’s largest sculp-
ture. Find it next to University
of Toronto’s Hart House.

g [Jijk OT & Ckl Let 9 : D1 — Dg be the map defined by

SO

-—
]
034024C33013012

ﬁ\_’
R ——

023021031014013012

/

031021023014013012 031021014023013012

Theorem S. Let D be the free associative algebra generated by
symbols a;j, y;;x and cgp where 1 < 4,5, k,l < n are distinct]
integers. Let Dy be the part of D with only a;; symbols and
let D1 be the span of the monomials in D having only a;;
symbols, with exactly one exception that may be either a

Yijk = [aij, air) + [aig, aji] + [ai, aji],
czjl = [aij, ag)-

Then ker 0 is generated by a family of elements readable from|
the picture above and by a few similar but lesser families.

011

More at http://www.math.toronto.edu/~drorbn/Talks/0Oregon-1108/
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Footnotes

1. Following a homonymous paper and thesis by Peter Lee [Lee]. All serious work here is his and was extremely
patiently explained by him to DBN. Page design by the latter.

2. The proof presented here is broken. Specifically, at the very end of the proof of the “general case” of Propo-
sition 1 the sum that makes up ker m,_; is interchaged with u}l. This is invalid; in general it is not true that
T-Y U+ V)=T"YU) +T V), when T is a linear transformation and U and V are subspaces of its target
space. We thank Alexander Polishchuk for noting this gap. A handwritten non-detailed fix can be found at
http://katlas.math.toronto.edu/drorbn/AcademicPensieve/Projects/Quadraticity/, especially under
“Oregon Handout Post Mortem”. A fuller fix will be made available at a later time.
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Lecture 2 Handout More on Chern

-Simons Theory and Feynman Diagrams
Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107
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"God created the knots. all else in
_ topology is the work of mortals."
Leopold Kronecker (modified)
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2011-07 Page 1
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149


http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107/

Lecture 3 Handout

The Basics of Finite-Type Invariants of Knots

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107
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Lecture 4 Handout Low and High Alg

ebra in the "u" Case

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107
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Facts and Dreams About v—Knots and Etingof-Kazhdan, 1

This is an overview with too many and not enough details. I apologize.

Dror Bar—Natan at Swiss Knots 20

http://www.math.toronto.edu/ drorbn/Talks/SwissKnots-1105/

IAbstract. I will describe, to the best of my understanding, the|
relationship between virtual knots and the Etingof-Kazhdan|
[EK] quantization of Lie bialgebras, and explain why, IMHO,
both topologists and algebraists should care. I am not happy]|
ivet about the state of my understanding of the subject but I
haven’t lost hope of achieving happiness, one day.

Abstract Generalities. (K, ): an algebra and an g
“augmentation ideal” in it. K := LK/I"L the
“I-adic completion”. gr; K := G}Im/lm+l has
b product p, especially, pi: (C = I/1%)%? — g
1%2/13. The “quadratic approximation” A;(K) :=

Peter Lee

fE’/(ker p11) of K surjects using p on gr K.
(The Prized Object. A “homomorphic A-expansion”: a ho-
momorphic filterred Z: K — A for which grZ : gr K — A
inverts f.

IDror’s Dream. All interesting graded objects and equations,
especially those around quantum groups, arise this way.

Foots & refs on PDF version, page 3.

[Example 1.

/

K- 5 1={ = )

(K/I™1)* = (invariants of type m) =: Vp,
(I I =V, €= (1 = 09y = (| )
ker puyq = ([t¥,t*] = 0 = [t¥, "% + t7*]) = (4T relations)
horizontal chord dia- 4‘
A=A (grams mod 4T ) ‘

Z: universal finite type invariant, the Kontsevich integral.

Why Prized? Sizes K and shows it “as big” as A; reduces
“topological” questions to quadratic algebra questions; gives|
life and meaning to questions in graded algebra; universalizes

those more than “universal enveloping algebras” and allows
for richer quotients.

shows that a non-homomorphic
7 exists. [BEER]: there is no
homomorphic one.

[Example 2. For K = QPuB,, = Y,
k/\
General Algebraic Structules

“braids when you look”, [Lee]

[Example 5 - Knotted —
TerdlE)nt Graphs. \[/>}< < / \\\
) S\
(X ( ™)
7 Q) Y
9) B4
D. Thurston [Th] \\ \/4/

Operation
o ><% D < -
forget /

elements miles \

of kind 3 - away \ AN
e Has kinds, elements, operations, and maybe constants. All - 3 3 : N
e Must have “the free structure over some generators”. sty [Presentation.  KTG is generated by ribbon twists and the
e We always allow formal linear combinations. works! tetrahedron \, modulo the relation(s

[Example 3. Quandle: a set K with an op A s.t.
INz=1, zANl=x=xAzx, (appetizers)
(xAYyY)ANz=(xAN2)A(yAz). (main)
LA(K) is a graded Leibniz? algebra: Roughly, set © := (v —1)
(these generate I!), feed 1+, 1 + g, 1 + z in (main), collect
the surviving terms of lowest degree:
(EANGGNANZ=(FNZ)ANGHITNA(GAZ).

[Fxample 4. Parenthesized braids make a category with some|
extra operations. An expansion is the same thing as an A,,-
associator, and the Grothendieck-Teichmiiller story® arises|

naturally. o ﬁTB’%L\ ’ / X

B OBQ_L%%_F[
®Q %QZ‘SfiT
 (Cr==

A

(0o (o0

A

Drinfel’d
[Dr1,2]

fv oY A X“ Ea

(+more)
Claim. With & : A), the
above relation becomes equiva- A* A } ~ ’
lent to the Drinfel’d’s pentagon of —®c A(ty)
the theory of quasi-Hopf algebras.
IA U(g)-Associator: ((AB)C)D(M?)@(AB)(CD)
®3

e « . (A(BO)D A(B(CD))
satisfying the “pentagon”, (1A1)<N A
P1-(1A1N)P - 1P = (A11)P - (11A)D A((BC)D)

==X
AS, I u X metrlzedg

#{trivalent vertices})

i

leen a

U(g)®?

Amb:%fﬁ

(deg = 3#

2 Penrose
Cvi'qgnovic
dim g | 4
Z fabcfdceXaXde ®XbeXe

a,b,c,de, f=1

Video and more at http://www.math.toron

to.edu/~drorbn/Talks/SwissKnots-1105/
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Facts and Dreams About v—Knots and Etingof-Kazhdan, 2

[Forbidden Theorem [EK, Ha, ?7]. There exists a homo-

/_

Example 6 - Ribbon 2- KIIOtb I ——

lao, movwa of flying rings”

/>§< >“<>§<>§<ka

1W

morphic expansion Z for vTT.

Why Forbidden (to me)?

e Minor statement details may be off.
e No fully written proof.

e I don’t understand the proof.

Etingof

Haviv

The w-relations include R234, VR1234, D, Overcrossings Commute

(OC) but not UC: N
oc: /\e\/aswe% yetnoM

T %7T7

e There isn’t yet a knot-theoretic view of the proof, like
there is in the w-case.

Why Should We Care?

e A gateway into the forbidden territory of “quantum groups”.

e Abstractly more pleasing: We study the things, and not just
their representations.

e AY is sometimes easier than A“: Alexander, say, arises easily
from the 2D Lie algebra®.

—_
' v —
+W N— _/
as e 44 [ \ T
a§
1 A_)D . ﬂ H
S @
Lo
£2 ‘N
= UnZ|p along an annulus Unzip along a disk

e Potentially, A” has many more “internal quotients” than
there are Lie bialgebras. What are they and what are the
corresponding theories?

e My old® Algebraic Knot Theory dream:

Trivalent w-Tangles.

=D

“cut and cap” l-defined(!) on K*

= AP
@ delete @ unzip

V. — oloor after [AT).

particular, Z respects R4 and intertwines annulus and disk unzips:

A A (

V- (A®1)(R) = R¥®R*®V in A% (13) =TI in A" (T2)

w- Ww- unary w- same
wTT = PA | — CA
< generators | relations operations> < w/o X >
[Theorem. There exists a homomorphic expansion Z for wT'T. In|

]
Basic: @ — @ Better: @ — @

© — V after [AET]. In K% allow tubes and strands and

tube-

—

V- -Alw) =w®win AY(12)

Kashlwara-Vergne Alekseev-Enriquez-Torrosian|

IAlekseev-Torossian [AT] (equivalent to Kashiwara-Vergne [KV]).
There are elements F' € TAuts and a € tr; such that

F(x+y) =loge®e? and jF =a(x)+ a(y) — a(loge®e?).
[Theorem. That’s equivalent to a homomorphic expansion for wT'T

strand vertices, allow “punctures”, yet allow no “tangles”.
’7 <

@Y @\

U(g+) @ M

The generators of K% can be written in terms of the generators of
K (i.e., given @, can write a formula for V). With T any classical

tangle, esp. @ or @, consider the “sled”

T T

The Main Example.

X >< R234, VR234, D,

/j\ Y yet not UC, OC

vTT= PA unzips) — ({\< same

w/o X

ja

SRR

The Polyak-Ohtsuki Description of A" [Po].

AS, Y =0="7

- LX<

w/ similar STU, VI

AU

R

A

acyclic only

O}{tsuki

Polyak

(X, bracket [-, -], cobracket 0, dual g_ = g%, dual basis X* for g_,
double g = g4+ @ g_, structure constants [X,, X,] =

co-structure constants §(X,) = > %X, ® X.. Then
dimg
— > b5 X XX @ X, XT X e U(g)®?
a,b,c,d,e, f=1

A" pairs with Lie bialgebras. Let g4 be a Lie bialgebra with basis| |

> b8, X and B

lAlexander is easy!

Many klnds of v1rtuals‘

In Chicago, [BN4]

~ "God created the knots, all else in
. topology is the work of mortals.”
Leopold Kronecker (modified)

www.katlas.org

Help Needed!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/
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Footnotes
1. I probably mean “a functor from some fixed “structure multi-category” to the multi-category of sets, extended to formal
linear combinations”.

2. A Leibniz algbera is a Lie algebra minus the anti-symmetry of the bracket; I have previously erroneously asserted that
here A(K) is Lie; however see the comment by Conant attached to this talk’s video page.

3. See my paper [BN1] and my talk/handout/video [BN3].
4. See [BN5] and my talk/handout/video [BN4].
5. Not so old and not quite written up. Yet see [BN2].
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Plan

. (8 minutes) The Peter Lee setup for (K, I), “all interesting graded equations arise in this way”.
. (3 minutes) Example: the pure braid group (mention PuB, too).

3 minutes) Generalized algebraic structures.

1 minute) Example: quandles.

4 minutes) Example: parenthesized braids and horizontal associators.

8 minutes) Example: wKO’s and the Kashiwara-Vergne equations.

®» NS e W e

12 minutes) vKO’s, bi-algebras, E-K, what would it mean to find an expansion, why I care (stronger invariant, more

(
(
(
. (6 minutes) Example: KTGs and non-horizontal associators. (“Bracket rise” arises here).
(
(
interesting quotients).
(

5 minutes) wKO’s, uKO’s, and Alekseev-Enriquez-Torossian.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/
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Cosmic Coincidences and Several Other Stories, 1

Dror Bar—Natan at the University of Tennes%e

IAbstract. In the first half of my talk I will tell a cute and sim-
ple story — how given a knot in R? one may count all possible
“cosmic coincidences” associated with that knot, and how thig
count, appropriately packaged, becomes an invariant Z with val-
ues in some space A of linear combinations of certain trivalent]
graphs.
In the second half of my talk I will describe (rather sketchily, I'm
afraid) a part of the story surrounding Z and 4: How the samd
7 also comes from quantum field theory, Feynman diagrams
and configuration space integrals. How A is a space of universal

March 4, 2011, http://www.math.toronto.edu/—drorbn/TaIkslTennessee—léAIS

formulas which make sense in every metrized Lie algebra an
how specific choices for that Lie algebra correspond to various
famed knot invariants. How Z solves a universal topological
problem, and how solving for Z is solving some universal Lie-
algebraic problem. All together, this is the u-story.
In the remaining time I will mention several other Z’s and A’s
and the parallel (yet sometimes interwoven) stories surrounding
them — the v-story, and w-story, and perhaps also the p-story.
IEach of these stories is clearly still missing some chapters.
Creation of Adam

Disclaimer
< ﬂl

f | We'll concentrate on the beauty
. and ignore the cracks.

Michelangelo

_ [ The signed Stonehenge) = * *  count
(D, K)q == (pairing of D and K ) ’ = . P with (
""""""" ‘ signs (
D= = @ e (
The k(X)) = (S|gns)
Gaussian vertlcal \‘“ﬂ
linking chopsticks \
number < O—O ®>ﬁ C.F. Gauss
The generating function of all cosmic coincidences:
framing- (
1 <D7 K>D‘EID
Z(K) = ]\/11_13100 Z W . dependent E D Thurston
3-valent D e counter-term
N = #of stars (0) oriented vertlces(
c :=#of chopsticks — ._gpap AS: 7T =0 (

e :=# of edges of D

& more relations (

When deforming, catastrophes occur when:

‘ s
, The Gauss curve slides
| over a star -

‘ Solution: Multiply by
Theorem. Modulo Relations, Z(K) is a knot invariant!

| f . .
A plane moves over an | An intersection line cuts

intersection point — I through the knot —
Solution: Impose IHX, ‘ Solution: Impose STU,

IHXXUX

(see below) ‘ (similar argument) ‘ (not shown here)

The IHX

\ a framing—dependent
‘ counter—term.
The Cast (
in rough historical order (

Relation

<@®> the

L[]

red star is your eye.

The Neolithic People

Carl Friedrich Gauss
Edward Witten
Victor Vassiliev

Mikhail Goussarov

Maxim Kontsevich

@

Raoul Bott

Clifford Taubes

Thang Le

b

D

Jun Murakami

ATNTNTN TN TN TN TN TN TN TN TN TANNN NN ANANANNTNN

O

Tomotada Ohtsuki

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tennessee-1103/ and at
http://www.math.toronto.edu/~drorbn/Talks/Caen-1206/#Colloquium
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) Cosmic Coincidences and Several Other Stories, 2 Dror Bar-Natan at the University of Tennes

March 4, 2011, http://www.math.toronto.edu/~drorbn/Talks/Tennessee—

"Low Algebra" and universal formulae in Lie algebra: Chern-Simons-Witten theory and Feynman diagrams.

YUY T X
xyl = xy — yx [Ixylz]=[xly,zl] dy.[x.z]]

More precisely, let g = (X,) be a Lie algebra with an
orthonormal basis, and let R = (v,) be a representation.

DA holk (A) exp i—k /tr (A NdA + ;AAAAA)
0
Set — Z Wy ( Zié'

g-connections
D 2 E(D
fabc = <[XaaXc]aXc> Xavﬁ = E 7"571)7 D: Feynman D: Feynman <
d th ~ diagram diagram Feynman
an en

a snydos

Witten

R3

Definition. V is finite type (Vassiliev, Goussarov) if it vanishes on
Y, B sufficiently large alternations as on the right
Wo.r: — Z fabcr'gwrb”arfg Theorem.  All knot polynomials (Conway, Jones, etc.)
‘ abeaBy are of finite type.
o

Conjecture. (Taylor's theorem) Finite type invariants
separate knots.

Theorem. Z(K) is a universal finite type invariant!
(sketch: to dance in many parties, you need many feet).

Wy,ro Z is often interesting: B
§ Vassiliev

The Jones polynomial

The HOMFLYPT polynomial

Goussarov

W Przytycki

The Kauffman polynomial

The Miller Institute knot —

Knots are the wrong objects to study in knot theory! Algebraic QO
They are not finitely generated and they carry no| 10t @ g4 u N\
interesting operations. Theory < >
Knotted Trivalent Graphs > <
delete unzi
m||es P
\) away -

@@ % Theorem (~, “H1gh Algebra”). A homomorphlc
7 is the same as a “Drinfel’d Associator”. Drinfetd
The u—mv—w & p Stories [EXpiained ['sketched| could explain  could explain, gaps remain  more gaps then explains  [mystery

Low Algebra High Algebra H(?I’Irl?) (])agy

Topology Combinatorics

NN O C O O C O  C  C  C O O O O O O O C U O O O O C O O O O O e O e e e

= The
IN “original”
5— graph
& homology.
Virtual KOs — Arrow diagrams and | Finite dimensional | Likely, quantum
< | “algebraic”, “not v-Jacobi diagrams, | Lie bi-algebras, groups and the
5 embedded”; KOs modulo 67" and representations, and | Etingof-Kazhdan
S | drawn on a surface, | various “directed” associated spaces. theory of
“ | mod stabilization. STUs and [HXs, quantization of Lie
| ete. bi-algebras.
\l/ Ribbon 2D KOs in | Like v, but also Finite dimensional | The Kashiwara- Probably Studied.
= | 4D; “flying rings”. with “tails co-commutative Lie | Vergne-Alekseev- related to 4D
5 Like v, but also commute”. Only bi-algebras (g x g*), | Torossian theory of BF theory.
S | with “overcrossings | “two in one out” representations, and | convolutions on Lie
| commute”. internal vertices. associated spaces. groups / algebras.
v “Acrobat towers” Poisson structures. | Deformation Configuration space Studied.
g with 2-in many-out quantization of integrals are key, but 1
3 vertices. poisson manifolds. they don’t reduce to Work of -
=% . g Hyperbolic
& counting. Cattaneo. | geometry ?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tennessee-1103/ and at
http://www.math.toronto.edu/~drorbn/Talks/Caen-1206/#Colloquium
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From the ax + b Lie Algebra to the

Dror Bar—-Natan, Chicago, September 2010

Alexander Polynomial and Beyond
http://www.math.toronto.edu/~drorbn/Talks/Chicago—1009/

Abstract. I will present the simplest-ever “quantum” formula
for the Alexander polynomial, using only the unique two di-
mensional non-commutative Lie algebra (the one associated
with the “ax + b” Lie group). After introducing the “Euler
technique” and some diagrammatic calculus I will sketch the
proof of the said formula, and following that, I will present a
long list of extensions, generalizations, and dreams.

An Alexander Reminder.
Number the arrows 1,...,n,
let t;, h; be the tail and head

ﬁth
(a1 Jazlas) as

of arrow j, and let s; € &1 be /1-x+4(-1) X o0 0
its sign. Cut the skeleton into ( 1—x-1 0 -1 Xx-!
arcs ao by arrow heads, and 0 -1 X 1-X

The 2D Lie Algebra. Let g = lie(z!,2?)/[z!, 2?] = 22, let
g° = (f1,¢2) with ¢;(z7) = o], let Ig = g X g S0
[9i, ¢5] = [#1,2"] = 0 while [z, ¢o] = —¢o and [2?, $2] = ¢1.

Let r = Id = ¢ @z + o ®22 € g8 ®g C Ig® Ig.
Let U = {words in Ig}/ab — ba = [a,b], degree-completed
with respect to dego; 1 and degm' = 0 (soU
(power series is 4 variables)). Let R = eXp )eURU.

let a(p) be “the arc of point p”. Let R € M, (n41) be the
matrix whose j’th row has —1 in column a(h;) and 1 — X%
in column «(t;) and X% in column a(h;) + 1, and let M be
R with a column removed. Then A(X) = det(M).

An Euler Interlude. If you know brackets, how do you test
exponentials? When’s e4ef = e“el?

Bad Idea. Take log and use BCH. You’ll want to cry.

The Invariant. Define Z
{long knots} — U by mapping ﬁ i
. 5 Alexander [ ( } [ ;

every —+-crossing to R*!:
+ 2' 1|(¢2¢1X¢2¢1¢2X9€2x1 B(z?xta?) (¢

Clever Idea. Let E be the Euler derivation, which mul-
tiplies each element by its degree (e.g. on Q[¢], E f =
00,f. s0 Be® = ge?). Apply EC = (TUEG: B(efe?) =
e Be 4 (eh4eP + eePB) =e PAeP+ B=¢e" adB(A)—l—B.

KW — AY — U, with

“Uninterpreting” Diagrams. Make Z%

Near Theorem. Z is invariant, agd it is es(s_entially the Alexan-

der polynomial; with N = exp( [ ¢;z* + [ 2°¢;) =: exp(SL),
-1

Z(K) = N - (A(K)(e™)) (1)

—
O (2 in 1 out vertices) | STU, R,
AV = N and IH

relations

/ NI

“The identity is an invariant tensor”:

o

Invariance.

+ D=

at

+ D=

TC

Y -\ LMY -\ X
RV GO EP

The Euler Prelude. Apply E¢ := (~1EC to (

P s e fﬁ?ﬁ

LSL
— g tr (M‘ld%lM(e%))

—ca{ /) [ ras, oc 5
N (4]
—pa{ X /) re3 vri23, D, OC ><uc><

QIR R TR S

Z" is a UFTI on w-knots! It extends to links and tangles,
is well behaved under compositions and cables, and remains

Some Relations. qbzx x gbz, ¢1 are central, x ¢l
(27, 6] = 67 p1 — 6 or

SO

¢Zx - ¢1a
)

N s a2 4

computable for tangles. It contains Burau, Gassner, and
Cimasoni-Turaev in natural ways, and it contains the MVA
though my understanding of the latter is incomplete.

/
(e ) [=a-e) (P (7 =
and the famed “tails commute” (TC): m - m /
row with tail at a, and head just

left of hj. Let A = (Aq;). Then

A = R7'¢;. The rest is book- keeplng that I haven t ﬁmshed
vet, yet with which my computer agrees fully.

Near Proof. Let Ao; be a red ar-
/{?ﬁjt&
roughly RA = ¢11 so roughly, az|( a4
_ I don’t understand the Alexander polynomiall

~~Dream. Z" extends to virtual knots as Z" :

w-Knots. y = O )p Brokensurface EOO =
Q N g @O & />2DWOI: ol
y = - y - O -
\( - @ - >2/<< - ) -
% >/*<<: > & > B

Dim. reduc.
Crossing = (0 © £ virtual crossing Moviel & O &
T . Vertices /g\

)& Smoot|

singular ‘ '

There’s 1D in 4D non-trivial given 2D, and there are ops..

KV — AV, with

7 | "God created the knots, all else in
=2 topology is the work of mortals.”

good composition and cabling properties and plenty of com-
“putable quotients, more then there are quantum groups and

Leopold Kronecker (modified) o N
www.Kkatlas.org The ket Tilas

et Itbsrepresentations thereof. T don’t understand quantum groups!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/
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18 Conjectures Theorem. For u-knots, dim V,,/V,,—1 = dimW,, for all n.
Dror Bar-Natan, Chicago, September 2010 Proof. This is the Kontsevich integral, or the “Fundamental Theorem of
http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/[Finite Type Invariants”. The known proofs use QF T-inspired differential
Abstract. I will state 18 = 3 x 3 x 2 “funda- [geometry or associators and some homological computations.
mental” conjectures on finite type invariants of 55 Tles. The following tables show dim V,,/V,_1 and dim W, for n =
ivarious classes of v1rtua-l knots. This done, I will .5 for 18 classes of v-knots:
state a few further conjectures about these con-

. . relations\skeleton round (Q) long (—) flat (X =X)
Jfgi‘éﬁi?gigi};}fe:; ?;:;;%%2512&232 t}.mW these | = dard mod R1 [0,0,1,4,17 o [0,2,7,42,246 «  [0,0,1,6,34 |
Following “Some Dimensions of Spaces of Finite R2b R2c R3b |no R1 1,1,2,7,29 2,5, 15, 67, 365 L0280
Type Invariants of Virtual Knots”, by B-N, Ha-| | Praid-like mod R1 |0,0,1,4,17 e |0,2,7,42,246 = 0,0,1,6,34 o
lacheva, Leung, and Roukema, http //WWW math. R2b R3b no R1 1,2,5,19,77 2,7,27,139,813 1,2,6,24, 120 |
toronto.edu/~drorbn/ g R2 only mod R1 |0, 0,4, 44, 648 0,2, 28, 420, 7808 0,0,2,18,174
bapers/v-Dims/. R2b R2c no R1__|1,3,16, 160, 2248 |2, 10,96, 1332, 23880 |1,2,9,63, 570

LRHB by Chu 18 Conjectures. These 18 coincidences persist.

Circuit Algebras

Comments. 0,0,1,4,17 and 0,2,7,42,246. These are the “stan-
dard” virtual knots.

J
cpP Q 2,7,27,139,813. These best match Lie bi-algebra. Le-
K Q ung computed the bi-algebra dimensions to be >

2,7,27,128.
A J-K Flip Flop Infincon HYS64T64020HDL-3.7-A 512MB ram |[@®®. We only half-understand these equalities. Vogel
1,2,6,24,120. Yes, we noticed. Karene Chu is proving all about
his, including the classification of flat knots.

IDefinitions

R1 ~7 _~R3b~_"
v}C = /\ p > /\/ = /\)1 N1, 1,2,8, 421258, 1824, 14664, ..., which is probably http://www.
N 4 research.att.com/ njas/sequences/A013999.
\ > <R2b> R2c>® O or / What about w? See other side. What about flat .and round?
What about v-braids? I don’t know. Likely fails!
NN\
R/// OTK \/\ The True [......|.......]....... )
Yy = (/T Count " One bang! and five compatible

I=1 =N _ . . - AT | transfer principles.
N is one thing we measure. . .

G I “arrow diagrams” Vi /Vin-1
B 4 \ Bang. Recall the surjection 7 : A, = D,,/RY — 77 /T"T1. A
N «‘ duality

(Coussarov-Polyak-Viro filtered map Z : v — A = @ A, such that (grZ) o7 =1 is

}2{ =X called a universal finite type invariant, or an “expansion”.
REP — D, =CAx H H> I" /I Theorem. Such Z exist iff 7 : D,/RE — /77! is an

— A n
R/———J S XXX isomorphism for every class and every n, and iff the 18 con-

7
exact’ jectures hold true.

RI: —_'_Q—_: 0 R2c: >< = The Big Bang. Can you find a “homomorphic expansion” Z
R2b: |»|—|—|9|= 0 ¢ — an expansion that is also a morphism of circuit algebras?

_ Perhaps one that would also intertwine other operations, such
R3b: + - }_H + H_, + as strand doubling? Or one that would extend to v-knotted

=N |ﬁ| +|(_|_ 0 trivalent graphs?
N 7 - .

e Using generators/relations, finding Z is an exercise in solving

W, = (D /RE)* = (A,)* is the other thing we measure. .. [equations in graded spaces.
The Polyak Technique e In the u case, these are the Drinfel’d pentagon and hexagon

5 fails in |jequations.
vk = CAqg < EZZ >/ R° = {8T,etc.} iheycase |o In the w case, these are the Kashiwara-Vergne-Alekseev-

Torossian equations. Composed with 7y : A — U, you get
that the convolution algebra of invariant functions on a Lie
group is isomorphic to the convolution algebra of invariant

<n( o<n i1 [functions on its Lie algebra.
s Js 2 computable space! { CAg )R —vk/T e In the v case there are strong indications that you’d get the

B /r /r equations defining a quantized universal enveloping algebra
qoosree T and the Etingof-Kazhdan theory of quantization of Lie bi-
RD == bottoms” of D I"/I”_H
n relations in R° n algebras. That’s why I'm here!

Warning! > <R2b> ch}@ > R2b> < R_2c>@’
~N

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/

RP =

74 "God created the knots, all else in
"=  topology is the work of mortals."
) Leopold Kronecker (modified)

www.katlas. org ne Krcr’/ s

Edi
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L. proj K (1) =; U ((a,, & tder,) X tr,)
All Signs Are Wrong!

| understand Drinfel’d and Alekseev—-Torossian, | don’t unders|
Etingof-Kazhdan yet, and I'm clueless about Kontse

Dror Bar- Natan Montpelller June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier:

Cans and Can’t Yets.
arbitrary algebraic a problem in
( structure ) (graded algebra)
e Feed knot-things, get Lie algebra things.
o (u-knots)— (Drinfel’d associators).
e (w-knots)— (K-V-A-E-T).
e Dream: (v-knots)— (Etingof-Kazhdan).
e Clueless: (777)—(Kontsevich)?
e Goals: add to the Knot Atlas, produce a work-

&
ing AKT and touch ribbon 1-knots, rip benefits @
from ¢ruly understanding quantum groups.

projectivization
machine

Tre

¢ Can Fid

WWW. katlas or

@

| "An Algebraic Structure"

g

o~ (&
etzer- (o= Cory

e Has kinds, objects, operations, and maybe constants.
e Perhaps subject to some axioms.
e We always allow formal linear combinations.

objects of
kind 3

\%
\
—

omomorphic expansions for a filtered algebraic structure K:

ops—=K = Ky D K1 DO K

J 1z
OpSGgI"C = ’Co/’C1 [S2) ICI/’CQ [S2) ICQ/’C3 (&%) IC3/’C4 b ...

An expansion is a filtered Z : K — gr K that “covers” the

D K3 D ...

(PA :=Planar Algebra)

KX

0 legs

identity on gr K. A homomorphic expansion is an expansion
that respects all relevant “extra” operations.
Reality. gr K is often too hard. An A-expansion is a graded

Circuit Algebras

J Q
cpP
K Q

A J-K Flip Flop

Infineon HYS64T64020HDL-3.7-A 512MB RAM

“guess” A with a surjection 7 : A — gr and a filtered 7 :
KC — A for which (gr Z)or = I4. An A-expansion confirms A
and yields an ordinary expansion. Same for “homomorphic”.

Just for fun.

v-"Tangles and w-"Tangles (CA :=Circuit Algebra)
v-knots

{&links}:CA<\ ><X=X>
—pa (X YR J0o) -) R - K-)

R23
{w-Tangles} = v-Tangles /OC: //Q = /é//\

|R23: 0=

e

b/w 2D projec
IC/’Cl < ’C/IC2<— ’C/K:3<— IC/’C4<—

tions of reality
—
NEkaaax
i

K/K1®K1/Ka® K2 /K3® K3/ Ka®Ka/Ks®Ks5/Ke® - -+

| I
R ker(lC/lC4—>lC/lC3)

An expansion Z is a choice of a
“progressive scan” algorithm.

crop
rotate
adjoin

IThe w—generator\i. = O ) Brokensurface =OO =
Q NE @O /._>20$ymbo|: > &
y | | p - @ |
\{ = @ = >>/2< = ] =
% >>‘<<: > & N-

Dim. reduc.
Crossing & (09 £ Virtual crossingvovies & O &

iltered algebraic structures are cheap and plenty. In any
KC, allow formal linear combinations, let 'y = Z be the ideal
generated by differences (the “augmentation ideal”), and let
Ko = ((K1)™) (using all available “products”). In this case,
set proj K := gr K.

xamples. 1. The projectivization of a group is a graded

A Ribbon 2-Knot is a surface S embedded in R* that bounds
lan immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
Whose preimages in B are a disk D; in the interior of B and

%

*

%%

y\
\:

associative algebra.
2. Pure braids — PB, is generated by z;;, “strand ¢ goes
around strand j once”, modulo “Reidemeister moves”. A, :
gr PB,, is generated by t;; := x;; — 1, modulo the 47T relations
|[tij, tix + tjx] = 0 (and some lesser ones too). Much happens
in A,, including the Drinfel’d theory of associators.
3. Quandle: a set Q with an op A s.t.

INz=1, zANl=u=x, (appetizers)

I
I
I
Tie w-relations mclude R234, VRI234

Commute (OC) but not UC:

, D, Overcrossings

(xAyY)Az=(xAz)A(YyA=z). (main)
proj @ is a graded Leibniz algebra: Roughly, set 7 := (v — 1)
(these generate I!), feed 1 +Z, 1+, 1 4+ Z in (main), collect
the surviving terms of lowest degree:

- "God created the knots, all else in
.2  topology is the work of mortals.”
- Leopold Kronecker (modified)

x/\z)/\y-l—:c/\(y/\z)
Kashiwara, Vergne,

Also see http://www.math.toronto.edu/~dr0rbn/papers/\/1/

¥ Alekseev, Enriquez,
. Torossian.

Ko/

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/

159


http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/

1. proj K*(Tn) =5 U ((ay, ® tder,) X try,), continued.

'Wheels and Trees. With P for Primitives,

&i a “arrow diagrams” (Vi /Vim-1)"
Gouss;r§v-Polyak-Viro ‘4 \\
L= e
Fom ‘w EESTRvEvalE
exact?

0——(wheels) —>PA" (1) = (trees) —=0,
2 . —
with 2 LGN
1 -~ 2 1 - (‘
trees atop a wheel

So proj K% (1,) = U ((trees) x (wheels)).

and a little prince

Imperfect Thumb-Rule. Take R3 (say), substitute X — X +
ﬁ, keep the lowest degree terms that don’t immediately die:

R3: H%LHH%: |+ [+ FH
o o [ =h<
@ e

R:

o

Some A-T Notions. a, is the vector space with basis
T1,...,%n, lie, = lie(a,) is the free Lie algebra, Ass, =
U(lie,,) is the free associative algera “of words”, tr : Ass! —
tr,, = Ass /(i i, - - 1i,, = T4y - -1y, T, ) is the “trace” into
“cyclic words”, det,, = det(lie,,) are all the derivations, and
toer, = {D € e, : Vi Ja; s.b. D(w;) = [z, a4)}

are “tangential derivations”, so D <« (ai,...,ay) is a vec-
tor space isomorphism a, @ toer,, = €, lie,,. Finally, div :
toer,, — tv, is (a1,...,an) — >, tr(zx(Okar)), where for

R3.

+

Thm. Z = A,
maybe >>. TC

(OC
-

a € Ass), Opa € Ass, is determined by a = >, (Jra)zy,
and j : TAut,, = exp(tder,) — tr,, is j(eP) = eDfl -div D.
Theorem. Everything matches. (trees) is a, 69 toer,, as Lie
algebras, (wheels) is tr,, as (trees) / tder,-modules, divD =
.~ (u —1)(D), and e*Pe=tP = £IP,

Differential Operators. Interpret (Ig) as tangential differen-
tial operators on Fun(g):

® © € g* becomes a multiplication operator.

The Bracket-Rise Theorem. AY (1) is isomorphic to

STU, A3,
and ITH
relations

(2 in 1 out vertices,
no isolated purple)

C OO
TSRO

e r € g becomes a tangential derivation, in the direction of
the action of ad z: (z¢)(y) := ¢([z,y]).

Trees become vector fields and uD +— ID is D — D*.
div D is D — D* and jD = log(e” (eP)*) = fol dtetP div D.
Special Derivations. Let sder,, = {D € tder,, : D (D ;) = 0}.
Theorem. sdet,, = wma(proju-tangles), where « is the obvious
map proju-tangles — proj w-tangles.

Proof. After decoding, this becomes Lemma 6.1 of Drinfel’d’s
amazing Gal(Q/Q) paper.

So

i,7,k,l,m,n=1

N
5TU3 =TC: 0 = - THX: /l\ = >~\ - X The Alexander Theorem. Tij_: |19w(#j) S spa_n(#i)|, ’
s; = sign(#1), d; = dir(#i),
Pl“OOf. . ) S diag(szdz)a
L AN~ L oo =N = /NN — KN | A=det (1+T(1 - x9)).
Corollaries. (1) Related to Lie algebras! (2) Only wheels and 157 § é (i) El)) i § ((1)) §
isolated arrows persist. 7—| 01001010
: 01010111 [
To Lie Algebras. With (z;) and (¢7) dual bases of g and g* 9e1e0d0
and with [2;, z;] = Z bfja:k, we have AY — U via x- S—dlag(%o (;{0;0;’ g{?%,)g 1),
bk by
Conjecture. For u-knots, A is the Alexander polynomial.
/X\ . ﬁ Theorem. With w : ¥ + wy, = (the k-wheel),
Z = N exp _gquw <—w (lo o1 A(e” )) mod wiw; = Wi,
Penrose Cvitanovic pA ngI ]] ( ) Z =N - A_l((:rm)
dlmg This is the ultimate Alexander invariant! computable in poly-
Z bfjbgigoiwjxnxm(pl € U(Ig = g* x g) nomial time, local, composes well, behaves under cabling.

Seems to significantly generalize the multi-variable Alexander

~

Theorem (PBW, “U(Ig)®™
LAY (1,,) = B,,, where

S(Ig)®"”). As vector spaces,

Kontsevich E

I%ﬁ
- X

\/\
AN

2ilo vertices, no circular edges
N3 3¢ 1¢ 1
( =~ )
,n, repeats allowed

B,

AN il

2
labels in 1, ...

polynomial and the theory of Milnor linking numbers. But

it’s ugly, and much work remains.

PG Eo 2R L & o & S
8 & 2PEH ARI& 5

£

‘ a

s
5
\\

RS e 3”&0&3934‘ - HE

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/
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2. w—Knots, Alekseev-Torossian, and
baby Etingof-Kazhdan

Dror Bar—Natan, Mon

| understand Drinfel’d and Alekseev—-Torossian, | don’t unders
Etingof-Kazhdan yet, and I'm clueless about Kontse
tpellier, June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier:

rivalent w-Tangles.

not-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:

wTT = CA < w- W.— ‘ unary' w- >
generators | relations | operations
The w-generators. , E o (OF ﬂ )\ )/&
Q NE @OF T '
Y YECSh- Cap. )
% >\/<<: @) : V smgular vertex
Crossing 5 (O © : }a E éﬂé

—

1)

A X

%

The w-relations include R234, VR1234, D, Overcrossings

L-)(

Commute (OC) but not UC, W2 = 1, and funny interactions
between the wen and the cap and over- and under-crossings:

e\/as%y[ej/@

no'

yet not1 /&1

Challenge.

24 l\: Do the

1

_T_ o T

\EL | >>

Diagrammatic statement. Let R = expH € A*Y(11). There

exist w € AY(T) and V € AY(11) so that

? Reldemelster'
4
Reldemelster Winter
[%)
>5
[¢]
[CR=%
£e \
B Un2|p along an annulus Unzip along a disk
w-Jacobi diagrams and A. A% (Y 1) = A¥ (1) is

it [ L

(2) VV* =TI in A*(11)

B)V - Alw)=w®uwin A¥(11?

VY Y el
)by LN YA

W%

Alekseev-Torossian statement. There are elements F' € TAutg
and a € tv; such that

D

deg=1#{vertices}=6

Do A et

F(x+vy)
Theorem. The Alekseev-Torossian statement is equivalent to
the knot-theoretic statement.

roof. Write V = e®*P with ¢ € try, D € tdery, and w = €°

=loge®eY and jF =a(x)+ a(y) — a(loge®eY).

IAn Associator: (AB)C)D —= (AB)(CD)

(A11)®
(AB)C A(BC) (A(BC))D A(B(CD))

with b € tvr;. Then (1) < e*P(x + y)e 4P =

(2) & I = eevP(evP) et = e2¢e/P | and
(3) © eceuDeb(e+) 2 M) +bu) o eeeblioge™e’)  gb(a)+b(y)
= ¢ =b(z) + b(y) — b(loge®e?).

= loge®eY,

satisfying the “pentagon”, (1A1)<I\ / P
A((BC)D)
D1 (1A1)® 10 = (A11)D-(11A)D

The hexagon? Never heard of it.

The Alekseev-Torossian Correspondence.
{Drinfel’d Associators} = {Solutions of KV}.
'We need an even bigger algebraic structure!

e, blue tubes and red
strings in R* (W)

nu en knotted trlvalent
graphs in R3 (

)

/\\ Cx
X))

(X

YA@

\\ (X
\v\/ %)

>@<% Pl =
miles

away

/
AN

connect

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/
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2. w—Knots, Alekseev—-Torossian, and baby Etingof-Kazhdan, continued.
Using moves, KTG is generated by ribbon twists All strands Introduce “Punctures” |

and the tetrahedron A : here are gre e -
strand

plant connect |sotopy ..
agerty hem So W=| —= WhereY means .

Punctures expand to R -
the nearest Y-vertex:

unZ|p ISOIOpIeS gms w [\
Note. \/ = \ - i
g o )

IC”. Allow tubes and strands and tube-strand vertices

as above, yet allow only “compact” knots — nothing
Modulo the relatlon(s) = i runs to oo.
K% <+ KY equivalence. K% has a homomorphic ex

pansion iff ¥ has a homomorphic expansion.
— -~ I (+more) — Puncture A and Z:
Clalm Wlth ® := Z(A), the above relation becomes equiv- \/% — >/ and >g —= 0.

alent to the Drinfel’d’s pentagon of the theory of quasi-Hopf

makes sense
<— ‘o ’
algebras. @ <and CA ops can>
Proof. be emulated
vy KW “Cut and cap is well-defined on u”

Light: @ é @ Better: @ i @

Theorem. The generators of K% can be written in
terms of the generators of K" (i.e., given ®, can writd
a formula for V.

Sketch.
| M= (1) ana /\\9@
‘ ] , i so enough to write any . Here go:
- 1 P ¢=(¢®1>-(1®A®1)(¢>-(1®¢>)eA(m
L '
B

“the sled” S/ & ®

—>>s—
—>>>—

—

VNN
| i

\ v
N L 2 N 1 2 3 4

=(A®121)(?)- 11 A)(P) € A(Ty)
Solk v} -*52&} Ssogator(” j Trviid = A +drad dror
hag 4 Verticts.

[/ @\/_GSJL/E)
So /7L /:S A_ Sap
ofF l/u’lt/‘oo-feﬁi

+ LS.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/
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Day 1 — u, v, w: topology and philosophy
Dror Bar—Natan, Goettingen, April 2010

u, v, and w—Knots: Topology, Combinatorics and Low and High Alg
http://www.math.toronto.edu/~drorbn/Talks/Goettingen—10Q

lans and Dreams

(

@ Feed knot-things, get Lie algebra things.

@ Feed u-knots, get Drinfel’d associators.

e Feed w-knots, get Kashiware-Vergne-Alekseev-Torossian.

® Dream: Feed v-knots, get Etingof-Kazhdan.

e Dream: Knowing the question whose answer is 42, or E-K,
will be useful to algebra and topology.

arbitrary algebralc) projectivization a problem in
machine graded algebra

structure

"An Algebraic Structure"
O = U1
— =
@M\r-
e (o D<o

e Has kinds, objects, operations, and maybe constants.

objects of
kind 3

w

—=

¢

._\

e Perhaps subject to some axioms.

e We always allow formal linear combinations.
[Homomorphic expansions for a filtered algebraic structure K:

(PA :=Planar Algebra)

(=)

lu-Knots
knots

{ &links } =PA < >

0 legs

OpSGIC = Ko D ICq D Ko D K3 D ...
4 1z
opngrlC = ICQ/’C] EBK:l/KQ @’CQ/ICS @’C3/’C4 D ...

IAn expansion is a filtration respecting Z : K — grC that
“covers” the identity on gr/C. A homomorphic expansion is

Circuit Algebras
J

an expansion that respects all relevant “extra” operations.

- 1

KK KK K/ Ka — K/Ka

e set o
b/w 2D prOJeC—
tions of reality

Just for fun.

Q
CP
K Q
A J-K Flip Flop
Iv-Knots (CA :=Circuit Algebra)

{oe) - WX
vz Jo-5 )X
(3 N >

--’ TLL

K/K1 ®K1/KaDK2/Ks® K3/ Ka®DKa/Ks®Ks/Ke®

Il Il
R ker(K/KCa—K/KC3)

An expansion Z is a choice of a
“progressive scan” algorithm.

w-Tangles

{w-Tangles} = v-Tangles / ocC :

F'iltered algebraic structures are cheap and plenty. In any
/C, allow formal linear combinations, let Xy = Z be the ideal
igenerated by differences (the “augmentation ideal”), and let

7N Ko = ((K1)™) (using all available “products”).

The w-generators. | B & ( ) [ Brokensurface Eoo A [Examples. 1. The projectivization of a group is a graded

N = = = = lassociative algebra. 2. Quandle: a set Q with an op A s.t

- , (E a5 ¢ O E g .2 : p .t

Q o " 2D lebol :ﬁ: INz=1, zN1l=uwzx, (appetizers)
Y = © & = S A (zAyY)ANz=(xA2)N(YA=2). (main)

% >\/<< 5o f Dirm reduc = OQ = proj @ is a graded Leibniz algebra: Roughly, set v := (v — 1)
Crossing = O & Vinual crossingvovies © O & (these generate I!), feed 1 +Z, 1 + 4, 1 + Z in (main), collect

IA Ribbon 2-Knot is a surface S embedded in R? that bounds
lan immersed handlebody B, with only “ribbon singularities”;
la ribbon singularity is a disk D of trasverse double points,
Whose preimages in B are a disk D7 in the interior of B and

the surviving terms of lowest degree:
@EAYDAZ=@ZAD)AGHTA(GAZ).

Our case(s).
Z: high algebra
K .

given a “Lie”
A = algebra g
solving finitely many proj K
equations in finitely
many unknowns

IC is knot theory or topology; proj KK = @ Z™ /™! is finite
combinatorics: bounded-complexity diagrams modulo simple

ccu(g)ﬂ

low algebra: pic-
tures represent
formulas

The w-relations include R234, VR1234 M, Overcrossings
Commute (OC) but not UC:

oc:?ﬁey%asye%yem

P €

Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

relations.

. "God created the knots, all else in
. topology is the work of mortals."”
Leopold Kronecker (modified)

www.katlas.org?lg\f.,(,, :

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Goettingen-1004/
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Day 2 — u, v, w: combinatorics, low and high algebra
Dror Bar—Natan, Goettingen, April 2010
http://www.math.toronto.edu/~drorbn/Talks/Goettingen—1004/

tw-Jacobi diagrams and A. AY(Y 1) = AY(T11) is

he Scheme. Topology — Combinatorics — Lie Theory via

Z: high algebra A= proj K= Ta: “u(g)”

low algebra

K

1+ 1 = 2, on an abacus, implies

same relations, plus

vi YT Y

deg=13 #{vertices}=6

Ve

equations, unknowns @I""/I""+1 pictures — formulas
Duflo’s U(g)? = S(g)? (with

T. Le and D. Thurston). O O @

IKnot-Theoretic statement (simpli-
fied). There exists a homomorphic

[The Finite Type Story. With X := X=X @V, /V;m_1)*
set Vp, i ={V:wK — Q: V(X~=™) = 0}.
arrow diagrams

>9D <M>9 B ™)/ () =0

Z < > i; ﬁ Kmmows %Z (grZ)om =1
TC A" :=D/R (filtered) wk

A X

expansion Z for trivalent w-tangles.
[n particular, Z should respect R4.

lagrammatic
statement (sim-
plified). Let
R expH €
LA™ (11). There
exist V. e AY(T1)
so that

[Algebraic statement (simplified). With r» € g* ® g the identity

\1 I take pride
p-_ 7, \(’ in this box
Z

R3.

Az

lement and with R = e” € U(Tg) ® U(g) there exist V' €
4(1g)®? so that V(A ® 1)(R) = RPR?V in U(19)®? @ U(g)

[Unitary statement (simplified). There exists a unitary tan-
gential differential operator V' defined on Fun(g, x g,) so that

Verty = ¢revV (allowing U (g)-valued functions)

Unitary < Algebraic. Interpret U(Ig) as tangential differ-
ential operators on Fun(g): ¢ € g* becomes a multiplication

[The Bracket-Rise Theorem. A" is isomorphic to
(2 in 1 out vertices)

o

Y LN Y A
AWER'E ﬁI >ﬁ\*/ .

Corollaries. (1) Related to Lie algebras! (2) Only wheels and
isolated arrows persist.

STU A3,
and I H
relations

<

STU3 =TC: 0 = =

perator, and x € g becomes a tangential derivation, in the
direction of the action of ad z: (z¢)(y) := ¢([z,y]).

Group-Algebra statement (simplified). For every ¢, ¢ €
Fun(g)® (with small support), the following holds in 2/(g):

[ e@vwe = [[o@vwerer.

gaxg gxg (shhh, this is Duflo)

[Unitary == Group-Algebra. [ e o(z)y(y)
(1, e" o (z)(y)) (V1,VerTe(x)i(y))
(Le"e? Vo (x)p(y)) = (1, eevp(x)b(y)) = [[e 6”¢(5€)1/)(y)

Convolutions statement (Kashiwara-Vergne, simplified). Con-
ivolutions of invariant functions on a Lie group agree with con-
ivolutions of invariant functions on its Lie algebra. More ac-

ILow Algebra. With (x;) and (¢?) dual bases of g and g* and
with [z, ;] = 37 b, @1, we have A" — U via

urately, let G be a finite dimensional Lie group and let g be
its Lie algebra, and let ® : Fun(G) — Fun(g) be given by
D(f)(x) := f(expx). Then if f,g € Fun(G) are Ad-invariant

bfz k bit T and supported near the identity, then ®(f) x ®(g) = ®(f xg).
i ™ ! - Convolutions and Group Algebras (ignoring all Jacobians). If
[\‘7 ﬁ N G is finite, A is an algebra, 7 : G — A is multiplicative then
g e - pra— ponoce ouitanoie|(FUD(G), %) — (A,g via L: f+— Y f(a)r(a). For fie (G,9),
Ln Lm 0=e€x ~ N
dim g (9, +) >z s e e S(g) Fun(g) —— S(g)
K i ~J l R ex
— > Vb wnane' € U(Ig = g* X g) le lx so lqu lx
i,9,k,l,m,n=1 R R
' Vertices < R4 (G,)se* — 1 s eo ¢ U(g) Fun(G) L—1>Zj{(g)
1 R ~
)/& Smoou N \ \ /l\ o8 with Loy = [WU(z)e*dr € S(g) and L1 @~y = [¢(z)e” €
’ \ /d\ O - - U(g). Given v; € Fun(g) compare ®~'(11) x D! (1)2) and
smgular // - A A @71(1#1 * 1/)2) in L{(g) (shhh, Lo/, are “Laplace transforms”)
s = Kashiwara ..‘ Alekseev . )
. = . ﬁ pin G [[n@uawee wing: [[un@ua@e
= ergne / orosslan an s

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Goettingen-1004/
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w—-Knots from Z to A @ — The Bracket-Rise Theorem. A" is isomorphic to Prof.
Dror Bar—-Natan, Luminy, April 2010 <
http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/

@ (2 in 1 out vertices)

IAbstract T will define w-knots, a class of knots wider than STU ) ﬁ,
ordinary knots but weaker than virtual knots, and show that % BXe and I_H—)_(Z
it is quite easy to construct a universal finite invariant Z of relations
Operator” and the “Infinitesimal Alexander Module”, at the \ / - y
end finding a simple determinant formula for Z. With no

w-knots. In order to study Z we will introduce the “Euler V4
o
doubt that formula computes the Alexander polynomial A, 70y -1 0 \ i - — \l/ _ >Q< - X

I
pFATARL NS a W

except I don’t have a proof yet. PN
Tubes in 4D. < B o OOF sroensriace = O O [ [Corollaries. (1) Related to Lie algebras! (2) Only wheels and
Q g /\ =X 2D>Sy§‘bol: QO . isolated arrows persist. Habiro - can you do better?
- N S = . >>/ 5o E The Alexander Theorem.  T;; = |low(#j) € span(#i)|,
@, >\ S E /<< oS- 1 s; = sign(#i), d; = dir(#1),
% /<< g = Dim. reduc. [ O - S = diag(s;d;),
Crossing 2 (02 £ Virtual crossingvovies © O £ A=det(I+T(I—-X%))
IA Ribbon 2-Knot is a surface S embedded in R* that bounds 91111010
an immersed handlebody B, with only “ribbon singularities”; . 919014998
& ribbon singularity is a disk D of trasverse double points, R E R Rk
whose preimages in B are a disk D in the interior of B and 99010100
a disk Dy with Ds N 0B = 0D2, modulo isotopies of S alone. X~ S=diag(L, X, L, X, X, L, X, &

\/\( 3 \<< \<< >>/ Conjecture. For u-knots, A is the Alexander polynomial.
>\/<< >\ >>\ - /<< Theorem. With w : ¥ +— wy, = (the k-wheel),
Z = N exp _guw <—w (logQ[[z]] A(e’”))) mod wpw; = W4,

7>>/<< yet nov/ Z=N-A"'(e")
OC: R e Ay as [ ~ /& Proof Sketch. Let E be the Euler operator, “multiply anything by

its degree”, f — zf’ in Q[z], so Ee® = ze® and

WKnOtSCA</>/R23OC ><>< gm_%ﬁﬁfz»%\?\*/m

'We need to show that Z7'EZ = N’ — tr ((I — B)flTsefmS) w1,
= PA (X Y7 )/ R23, VRI23,D,0C " [with B=T(e " -1). Note that ac’—e’a = (1-¢"*)(a)e" inpplies
N ) 7 )

y y \ ;e -0 Al s
SR SR S G 2 S s
ifsz_ _&)S:_, 0 _ovh ol udE )

The Finite Type Story. With X := X —-X BV /Vim_1 NS N N N NS
et Vi o= {V: wK — Q: V(%>™) = 0. ifsf:_—_&)f:_#e”—lrfi_ s B e S e Vg W

arrow diagrams Q Q (P ﬂﬂ ﬂﬂ (P with 3 >\ — ><:;/
m m—+1 - = - = R — e
< > —=D <_£m_> —= D)/ (= ) =0 so with the matrices A and Y defined as

m arrows /Z (01 A) g IL\ 3J 1 2 Yli
§< >§Tc}i KA”-D/R wk - LN | - AN

ﬁltered)

L AT N\ L AN N\
; 2 2
Q__ﬁ ?\;1 \;“ \Z \; o '”M( - TSN e A | A
in 1 118 $
4 " lwe have EZ — N = tx(SA), A = —BY — Te~

wl, and Y =
BY + Te *%w;. The theorem follows.

So What? e Habiro-Shima did this already, but not quite. (HS: Finite
Type Invariants of Ribbon 2-Knots, II, Top. and its Appl. 111 (2001).)
o New (?) formula for Alexander, new (?) “Infinitesimal Alexander
Module”. Related to Lescop’s arXiv:1001.44747

o An “ultimate Alexander invariant”: local, composes well, behaves
under cabling. Ought to also generalize the multi-variable Alexander

R3 — D= b= ipolynomial and the theory of Milnor linking numbers.

% duality

e Tip of the Alekseev-Torossian-Kashiwara-Vergne iceberg (AT:
-l The Kashiwara-Vergne conjecture and  Drinfeld’s associators,
7 larXiv:0802.4300).
< | Tip of the v-knots iceberg. May lead to other polynomial-time
2N polynomial invariants. “A polynomial’s worth a thousand exponentials”.
www.katlas.org The ket il Also see http://www.math.toronto.edu/ drorbn/papers/WKO/

#¢ "God created the knots, all else in
‘=  topology is the work of mortals."
Leopold Kronecker (modified)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/
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Vergne Torossian

-

2

Convolutions on Lie Groups and Lie Algebras and Ribbon 2—Knbtglaimer: | "God created the knots, all else @ﬁ
Rough edges topology is the work of mortals. S =g |
Dror Bar—Natan, Bonn August 2009, http://www.math.toronto.edu/~drorbn/Talks/Bonn—0908:emain! Leopold Kronecker (modified) 4
{;;.“““““"‘"“‘“‘”‘m gl sl gl =i M The Bigger Picture... hat are w-Trivalent Tangles? (PA :=Planar Algebra)
- N R knots N \ 4 S\
[ ey et 4 S )0) ! lvlhkm = {v-knotsJHOC) _ . _ — —
{@'}/R &’K‘%;“(““\‘?‘”“’“%”gz Convolutions The Orbit { &links =PA N R123: /\> >7 >\ 5 // : Yo ¢
? an (3 5 [ [ Sor™ T NEA statement |, 77 Method 0 legs
i L XSl m | trivalent . |
P : Group-Algebra Subject { ] }:PA /\7 )\ R23, R4 : @ _/K_K
o statement flow chart tangles v

% é X
£ Unitary wTT=
il stat t .

' sta cr?cn Free Lie trivalent PA W- ‘ ’ unary w-
; i Algebvraic statement w-tangles [ generators | relations | operations
E :L L“ X"
: . 34 staten:lent Aleklseev The w—generatons\. e O H Broken surface = OO =
W 1 D v Torossian Q N\ = ®:> . @ 2D Symbol ] CJC) ]

v lagr ammatice— R @
H statement statement \( = @ - >z/<< 5 N =
% i ‘ % >\/<< : O) = Dim. reduc : Q:) :
. ||[Knot-Theoretic True . > L ’
. ‘ i statement  Aleksgev, Toros: Crossing 5 (O @ £ Virtual crossing Movier © O &
www.math. toronto edu/~drorbn/TaIksIKSU 090407 Cap Wen " Vertices
- A
Kashiwara Alekseev
smoot

omomorphic expansions for a filtered algebraic structure K:

ops—=K = Ko D K1 D Ko
I 1z
ops—grkC := /Co//C1 D ]C1/IC2 SP) ]Cz//Cg D /Cg//C4 D ...
IAn expansion is a filtration respecting Z : K — grC that
“covers” the identity on gr/C. A homomorphic expansion is
lan expansion that respects all relevant “extra” operations.

D K3 Do,

A Ribbon 2-Knot is a surface S embedded in R* that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D; in the interior of B and

/-4 %R %

%

iltered algebraic structures are cheap and plenty. In any
IC, allow formal linear combinations, let K; be the ideal
generated by differences (the “augmentation ideal”), and let
ICom, := ((K1)™) (using all available “products”).

he w-relations include R234, VR1234, M, Overcrossings
Commute (OC) but not UC, VVQ =1, and funny interactions
between the wen and the cap and over- and under-crossings:

"An Algebraic Structure"
0= Y1
— T
objects of
kind 3

s [ = jA\— yet ”%

- (o) Cors

e Has kinds, objects, operations, and maybe constants.
e Perhaps subject to some axioms.
e We always allow formal linear combinations.

“ R
Challenge.
Le— ,T, as_ﬂ_e %%Dothe
: ! Reidemeister!
<|W | W
_nwbi$.j
! Reidemeister Winter
=5 <
TOCITA 2
L
£ O
. I; Unzip alon;\\a\n annulus Unzip alor:;;:;sk

xample: Pure Braids. PB,, is generated by z;;, “strand ¢
goes around strand j once”, modulo “Reidemeister moves”.
A, := gr PB,, is generated by ¢;; := z;; — 1, modulo the 47T
relations [ti;, i +t;x] = 0 (and some lesser ones too). Much
happens in A,, including the Drinfel’d theory of associators.

The set of all
b/w 2D projec-

tions of reality

Just for fun.

7\

K:/’Cl% ]C/K:Q(— ]C/K:g(f K:/]C4<—

Our case(s).
Z: high algebra

given a “Lie”
algebra g

A=
griC

“Z/l (9)77
solving finitely many
equations in finitely
many unknowns

/C is knot theory or topology; gr/C is finite combinatorics:
bounded-complexity diagrams modulo simple relations.

low algebra: pic-
tures represent
formulas

l?uﬂﬂﬂ

K/K1 K1/K2®Ko/K3B Ka/Kab Ka/KsP Ks/Ke®

An expansion Z is a choice of a
“progressive scan” algorithm.

[1] http://glink.queensu.ca/~4lb11/interesting.html 29/5/10, 8:42am|
IAlso see http://www.math.toronto.edu/~drorbn/papers/WKO/

I Il
R ker(K/Ks—K/Ks)

Video and more at http://www.math.to

ronto.edu/~drorbn/Talks/Bonn-0908/
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Convolutions on Lie Groups and Lie Algebras and Ribbon 2—-Knots, Page 2

not-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:

K
X

(1)

—

From wTT to A*. gr,, wI'T := {m—cubes}/{(m+1)

forget
topology
Polyak

w-Jacobi diagrams and A. A*(Y 1) =2 A% (T11) is

A HHE - H

cubes}

Vassiliev

Goussarov

—

Diagrammatic statement. Let R = expH € AY(11). There

exist w € A (T) and V € AY(17) so that

Y el
N AN,

O] 20 44 44

deg=13#{vertices}=6
Diagrammatic to Algebraic. With (z;) and (¢7) dual bases of
g and g* and with [aci7acj] > bF;xy, we have A — U via

{(Ig)/U( g) = S(g*) the obvious projection, with S the an-
tipode of U (Ig), with W the automorphism of U (Ig) induced
by flipping the sign of g*, with r € g* ® g the identity element
and with R = e” € U(Ig) ® U(g) there exist w € S(g*) and
V e U(Ig)®? so that

(1) V(A®1)(R) = R®R?V in U(Ig)®% @ U(g)

(2) V- -SWV =1 (3) (e® ‘)(VA(w)):wé'Qvu

k \ . ﬁ
T T /><\ Penrose Cvitanovic
d1m g
- Z bi o' wprm ' € U(Ig)
i’j»k7l7m’n:1
Unitary <= Algebraic. The key is to interpret & (Ig) as tan-
Algebraic statement. With Ig := g* x g, with ¢ : U(lg) — gential differential operators on Fun(g):

® © € g* becomes a multiplication operator.

e r € g becomes a tangential derivation, in the direction of
the action of ad z: (z¢)(y) = ¢([z,y]).

o c:U(Ig) — U(Ig)/U(g) = S(g*) is “the constant term”.

Unitary = Group-Algebra. // w3+yer+y¢(x)1/)(y)
= <w:z:+ya W:1;+yew+y¢(x)w(y)>:<Vw~’1f+:!/7 V€$+y¢(m)w(y)w:1:+3/>

Unitary statement. There exists w € Fun(g)” and an (infinite
order) tangential differential operator V defined on Fun(g, x
g,) so that

(1) Verty = ¢xevV (allowing U(g)-valued functions)
(2) Vv (3) Vwyiy = way

= (wawy, €YV (2)P(y)wa 1 y) = (Waty, e e?d(x) Y (y)wswy)
[ieers@iw.

Convolutions and Group Algebras (ignoring all Jacobians). If
G is finite, A is an algebra, 7 : G — A is multiplicative then

Group-Algebra statement. There exists w? € Fun(g)® so that

for every ¢, w € Fun(g)¢ (with small support), the following

holds in (g (shhh, w? = j1/2)
2 z+y _ y
//¢ Wity € //¢ veve
gxg axg (shhh this is Duflo)

Convolutions statement (Kashiwara-Vergne). Convolutions of
invariant functions on a Lie group agree with convolutions
of invariant functions on its Lie algebra. More accurately,
let G be a finite dimensional Lie group and let g be its Lie
algebra, let 7 : ¢ — R be the Jacobian of the exponential
map exp : g — G, and let ® : Fun(G) — Fun(g) be given
by ®(f)(z) := ]1/2( ) f(expx). Then if f,g € Fun(G) are
IAd-invariant and supported near the identity, then

Q(f)x2(g9) = ©(f x9).

(Fun(G),x) =2 (A,-) via L: f — > f(a)(a). For Lie (G, g),
(9. +) 22 25 o7 ¢ S(g) Fun(g) —>—> S(g)
e f e e )
(G,) 3 e — =% € U(g) Fun(G) ——U(q)
with Loty = [4(z)edr € S(g) and Lid ' = [1(z)e

Z)(g) Given ¢; € Fun(g) compare o1

d—1 ( 1*’(#2 II’IZ/{( )

w in G : //wl Vb (y)e®e? *in g: /¢1 2 (y)e® TV

(1) » @1 (¢2) and

(shhh, Lg/; are “Laplace transforms”)

We skipped... e The Alexander e v-Knots, quantum groups and
polynomial and Milnor numbers. Etingof-Kazhdan.

o u-Knots, Alekseev-Torossian, ® BF theory and the successful
and Drinfel’d associators. religion of path integrals.

® The simplest problem hyperbolic geometry solves.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/
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DrorBar-Natan: Talks: Trieste-0905: Day 3

u—knots

——
e =

_—

v—knots o

i = w—knots S

PSS RESOSHV

u—knots are usual knots:

O ;x;m

BHEDEETIC EST iﬁ'&gﬁ
9_5 aﬁwyga @'I‘-'oﬂ"@mdk o ffgﬁgﬂg

\ %—@}

v—knots are virtual knots:

RY23 >O >
5%&&

M

en (M

w is for welded, \AP\HV v, and warmu 1p:
{ w=knots }={ v=knots }/(OC)

where OC is Ov elumsmgw Commuts.

AR

HMOC N - \,..f" Related 10 "movies
= — i: = o \.‘ of “\.“t rnn
k\k ) ~ \ TR =CA / IW23 m E < ) E N /7~ 1o knotted tubes
KuulTrman " (o) = Q\ o 4y in 4=space, and o
i — = & #" "basis conjugating
= Knots on surfaces, modulo stabilazation: - - P 2 =
Rm m (92 R A automorphisms of
=PA P T 9 Al -y - b free groups”.
» ] & , & ECO o BN ) N grouj
“Knots in R‘ kT L M i ™™ iyt Beendle

+<U\.
Exy ansrm WS +£.

E: JU\SIn e
Sﬁfan*ﬁw?ck m*t).m! 2‘“‘

No hmwnofil'l i<

V¥ fan 5100

(XD

4T
H+ =
]

I
% )@C

Far oy n Thd
F) Lie M__ﬁ)e. é/’c?\v (ﬂ

( KO

FH% H""'FHZ;[

llH”th/Jr -

U(Y,09_1P°

For MY FRdLie Likpjté/ﬂ_

9=92Y_

Homamor Pl" ¢ Z2Y
oigts )

[
'1/':} A
- Al
0"]':1- — Q

—— = =

—>

V%
ﬁw
//

TC
07

T 2= 5
g
[t + (75

= L+ s

l gi—'h.l
U(T9)" "

For ANy Cd. L1¢

ﬁlﬂj NS g

More at http://www.math.toronto.edu/~drorbn/Talks/Trieste-0905/
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(u, v, and w knots) x (topology, combinatorics, low algebra, and high algebia] created the knots, all else]
Dror Bar—Natan, Kansas State April 7 2009, http://www.math.toronto.edu/~drorbn/Talks/KSU-090407

topology is the work of mortals,

Leopold Kronecker (mOdIerd

Ip:

[¢]

low algebra

replacing arbitrary Lie algebras

an g

Penrose Cvitanovic ~ Vogel Haviv

replacing arbitrary Lie algebra]

B

AT

l (vjt:t:: Simons u- knOtS l T V_knOtS onto W_knOtS BE:I:ZZT;Z@
DYGH BT @ PRFP v—knots are virtual knots: 3 | wis for welded, weakly v, and warm
- . , , U
P85 280BD V5P 5 G e Y
s Y Mc«q@@ "A"%‘JS{;% >O=> 4 {w-knots}={v—knots}/(OC
b 2N
DBN, data by Brian Gilbert, VRl . .
u-knots are usual knots U >}<\ %/X% \%( v\vher/e OC is Overcrossings Commute:
e NN
= et
= > R R123 /& NCA Y VAN
o =PA R123 ocC UC
8 - R2 O N Related to "movi
= O - elated to "movie
e \ g = /\ of flying rings"
_ \ / R3 | =CA R123 -BN- ~V to knotted tubes
AN 0 Kaiman | = () = in 4-space, and tg
i = Knots on surfaces, modulo stabilazation: = B at:j?g'ri g%wggggg%
_PA R123 "o & free groups".
0 legs Reidemeister] = |
“KHOtS in R3” \_ MeCoql asmith” ™ Rimanyi "€ satoh 2" Hatcher
[Extend any V : {u-knots} — A to “singu- T“EM‘"E”“S"‘“‘E knot AH the same, except 6 BN AL the same, except
lar u- kpots 1.1$1ng VA( ) V(X)=V(X), 4 V(R) := V( ) — V(>§) 5 AY = A°/TC 7
and think “differentiation”. V(X)) =V (X) - V(X) PolyaK
o [Declare “V is of type m” iff V(m+1) = q, A" = {“arrow diagrams” } /6T Need a Z y
-2 fthink “polynomial of degree m”. Need a Z : {v-knots} — A". {w-knots} — A".
@] — m i
IS W= v roughly determines Vi W € The 6T Relation (and a hidden 4T): "Tails Commute (TC)":
c W = (K /Kmt1)* with ! .
po) in Ay ! ! ] + ] +
CE> 4T e \ = ——
3 Mm = ﬁ _ -
m chords + [ + [
Need an expansion Z : {u-knots} — A = — —
Vassiliev @ Am ) J
ﬂ GoussaroA}.‘ ~ ( ( W A~ wt
10 9 Theorem. A* = A% .= 8
Similar Similar <\V4 ﬁ 2\ Y
with metrized Lie algebras with Lie bi-algebras only —

Leung

IAnd indeed we

3 4
27 139
27 > 122

[This screams, if you speak the language, LIE ALGEBRAS|

Theorem. Given a finite dimensional Lie algebra g, there
iiT cAY = U(Ig) =

:Jix &TC

have

Ulg X g5p)-

high algebra

m 1 2

Trn dimAY, 2 7

{k“"ts} il A5 U(g) T, C dim Licw, 2 7
~

Knots are the wrong objects to study in knot
theory! They are not finitely generated and
they carry no interesting operations.

C@@DQ

>forge<
away
E connect

Knotted Trivalent Graphs

%@@

—

LA AN

Theorem (~). A homomorphic Z is

unzlp

Drinfel'd ,&

the same as a “Drinfel’d Associator”.

13

Z is a Quantum Group?

More precisely, a ho-
momorphic Z ought to
be equivalent to the
Etingof-Kazhdan theory
of deformation quantiza-
tion of Lie bialgebras.

Etingf Kazhdan

Dror’s Dream: Straighten and
fatten this column.

An Idle Question.

Is there physics in this column

\SWitCh to w-knotted trivalent tangles,] 2

wKTT :=CA <X, X, Y> .
Theorem (~). A homomorphic Z is equiv-
alent to proving the Kashiwara-Vergng
statement.
Statement (~, KV, 1978) (proven
IAlekseev-Meinrenken, 2006). Convolu
tions of invariant functions on a group
match with convolutions of invariant]
functions on its Lie algebra: for any finite
dim. Lie group G with Lie algebra g,

(Fun(G)A4, ) = (Fun(g)*4 <, %).
(Closely related to the “orbit method” of]
representation theory). . Alekseev

Torossla

P

More at http://www.math.toronto.edu/~drorbn/Talks/KSU-090407/
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Dror Bar-Natan, Bogota, February 23 2009

10 Minutes on H0m0|0gy http:/ fwww.math.toronto .edu/~drorbn/Talks/Bogota-0902

and hitp://katlas.math.toronto.edu/drorbn/AcademicPensieve/2009-02
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Dror Bar—Natan: Talks: Sandbj 0810:

The Penultimate

Al

A Definition of the MVA  (From [Ar])
AN b a b c
/Aa - -1 1—2 y
a b c
= c¢|—-y x—1 1

A

YNy Joint with

Jana Archibald

A — (—)i+7det(4\/flj) rot (k) —p(k)

exander Invariant

wi(t;—1) k "k

ay az as ay ars
a; ly—1 0 0 0 1—x

a, as | 1—y 0 0 —1

— l|as| —y O 1 y—1 0
ay 0 0 —y 1 y—1

x as 0 0 y—1 —y 1

— ay(l-y+y?)

Relations by J. Murakami (From [MJ])

@&M@@ﬁ

J. Murakami

abc abec a b c abec
Lo Lo L1 Laoia Ly Looo

The Naik- Stanford Double Delta RelatlorﬁFrom [NS])

Our Goal. Prove all these relations uniformly, at maximal
confidence and minimal brain utilization.

= We need an “Alexander Invariant” for arbitrary tangles,
easy to define and compute and well-behaved under tangle
compositions; better, “virtual tangles”.

J

Circuit Algebras Q AJ-K
* Have "circuits" with "ends", EP o
* Can be wired arbitrarily. Flip Flop

* May have "relations" — de—Morgan, etc.
Example VT =CA <X, X} /R23 = PA <X, X, ><> /R23,VR123, MR3

Reminders from linear algebra. If X is a (finite) set,
A*(X) := (k-tuples in X, modulo anti-symmetry)
A*P(X) := {|X|-tuples in X, modulo anti-symmetry)
AY2(X) := ((]X|/2)-tuples in X, modulo anti-symmetry) .

If Y ¢ X™, the “interior multiplication” D ARX) —
AF=™(X) is anti-symmetric in Y.

iy

Definition. An “Alexander half density with input strands
X' and output strands X°"” is an element of

AHD(X™, X)) 1= A™P(X°") @ AV2(X™ U X)),
Often we extend the coefficients to some polynomial ring
without warning.

Definition. If a; ® p; € AHD(X™, X¢% (for i = 1,2), and
G = (XU XM N (XU X9W) is the set of “gluable legs”,
the “gluing” in AHD(Xi" U Xi* — G, X{W U X9 — G) is

Z'G(O/l N Olz) & Z'G(pl AN pg)

Claim. This makes AHD a circuit algebra.
Definition. The “Penultimate Alexander Invariant” is de-

fined using

k j

pA:lX_»—>(j/\k)® INi+ (i —1DING =l Nk

NG+t AK

tii Nj—tii AL+ Ak

Ik
= y image pAsz'_)(k/\l)@( +(tz—1)]/\l+k/\l )
‘ ?cifnd Why Works? - 1
\ X S. Naik T. Stanford —ﬁm Dj //U\' T“zin
—ridf / ﬁ ,// D, m, reys
‘ 1 , kA Vs 7,

1 J gk H. Murakaml C :70 U\( _ dowrn ///f o < f AL
e[| T] Silpbi=s i
o . . £ /

H . A Relation by it M, oS
' : A. Vaintrob T %////f E
[E—— i

e 11
+ (he — ki) (hibg + %)W, =0

ik

A Relation by H. Murakami

"God created the knots,
all else in topology
is the work of mortals”

Leopold Kronecker (paraphrased

http://katlas.org

This handout and further links are at
http://www.math.toronto.edu/~drorbn/Talks/Sandbjerg—0810/

(From [Va])

There’s Lots More!

“rook arrangement” in the above %iqcture must have
exactly [ rooks in the yellow zone and [ rooks in the purple
zone. So for T} we only care about the minors in which
exactly [ of the 2/ middle columns are dropped, and the
rest is signs...

Every

Weaknesses. Exponential, no understanding of cablings,
no obvious “meaning”. The ultimate Alexander invariant
should address all that...

Challenge. Can you categorify this?

More at http://www.math.toronto.edu/~drorbn/Talks/Sandbjerg-0810/
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Dror Bar-Natan: Talks: Sandbjerg—0810: The Penultimate Alexander Invariant: Comments online 2. W[il1,i2,...] represents

We Mean Business i1 ANia A. ... To sort it we Sort its arguments and
L (x WP: Wedge Product *) multiply by the Signature of the permutation
2 WSort[expr_] := Expandl[expr /. w_W :> Signature[w]*Sort[wl]; . .

3 WwPlo, 1 = wpl_, 0] = 0; used. 3. The wedge product of 0 with anything
4 wpla_, b_] := WSort[Distributela ** bl /. is 0. 4-5. The wedge product of two things in-
2 (cl_. * wi W) sx (e2_. x w2 W) :> cl c2 Joinfwl, w2]l; volves applying the Distributeive law, Joining
7 (* TM: Tnterior Multiplication %) all pairs of W’s, and WSorting the result. 8. Inner
8 IMI{}, expr_] := expr; multiplying by an empty list of indices does noth-
9 IM[i_, w_W] := If[FreeQlw, il, O, ing. 9-10. Inner multiplying a single index yields

10 -(-1)"Position[w, i]l[[1,1]]*DeleteCases[w, il 1; 0if that ind . " £ otl ise it’ .

11 IM[{is. . i}, w.W] := IM[{ic}, TM[i, w]]; if that index is not pressent, otherwise it’s a sign
12 IM[is_List, expr_] := expr /. w_W :> IM[is, w] and the index is deleted. 11-12. Aftwrwards it’s
13 simple recursion. 15-18. For the crossings Xp and
14 (* pA on Crossings *) Xm it is straightforward to determine the incom-
15 pAlXpli_,j_,k_,1_1] := AHD[(t[il==t[k]) (t[jl==t[11), {i,1}, W[j,k], | S stralg ware ’ )

16 WIL,i] + (e[31-1DWI1,j] - t[1IWLL,k] + Wli,31 + t[21Wlj,k] 1; ing _strands, the outgomg ones, and the _Vfarlablc
17 pAlm[i_,j_,k_,1_1] := AHD[(t[il==t[k]) (¢[jI==t[1]), {i,j}, Wlk,1], equivalences. The associated half-densities are
1595 t03IWEE, 3 - ¢[3IWEL,1] + Wi,k + (e[i)-1W(j,1] + Wik, 1] ] just as in the formulas. 21-23. The technicalities

20 (* Variable Equivalences %) of imposing variable equivalences are annoying.

21 ReductionRules[Times[]1] = {}; 26. That’s all we need from the definition of a

22 ReductionRules[Equalla_, b__1] := (# -> a)& /@ {b}; tensor product. 27-28. Straightforward simplifi-
23 ReductionRules[eqs_Times] := Join @@ (ReductionRules /@ List@@egs) . . .

o1 cations. 29. The (circuit algebra) product of two
25 (* AHD: Alexander Half Densities *) Alexander Half Densities: 30. The glued strands
26 AHD[egs_, is_, -os_, p_] := AHD[egs, is, os, Expand[-pl]; are the intersection of the ins and the outs. 32-
27 AHD /: Reduce[AHD[eqgs_, is_, os_, p_1] := . . . s .

28 AHD[eqgs, Sort[is], WSort[os], WSort[p /. ReductionRulesl[eqs]]]; 33. Merglng the variable e_zqulvalences 18 trley
20 AHD /: AHD[eqsl_,isl_,osi_,pl_] AHD[eqs2_,is2_,o0s2_,p2_] := Module[ but natural. 34-35. Removing the glued strands
30 {glued = Intersection[Union[isl, is2], List@@Union[osl, o0s2]]}, from the ins and outs. 36 The Key Point. The
31 Reduce [AHD [ sy : :
39 eqsiteqs? //. eql_Equalreq2 Equal /; wedge product of the half derlsljmesz inner with
33 Intersection[List@@eql, List@@eq2] =!= {} :> Unionl[eql, eq2], the glued strands. 40-45. A qUJCk 1mplomcnta—
34 Complement [Union[is1, is2], glued], tion of a “thin scanning” algorithm for multiple
35 IMlglued, WPlos1, os2]], products. The key line is 42, where we select the
36 IM[glued, WP[p1l, p2]] . . . .
37 11 1 next crossing we multiply in to be the crossing
38 with the fewest “loose strands”.

39 (* pA on Circuit Diagrams *) = Overcrossings Commute

40 pAlcd_CircuitDiagram, eqs___] := pAlcd, {}, AHD[Times[eqs], {}, W[l, W[11]; S ay N yn

41 pAlcd_CircuitDiagram, done_, ahd_AHD] := Modulel d >'\/’f; ,Z», /’H{‘\/\% Hence

42 {pos = First[Ordering[Length[Complement [List @@ #, donel] & /@ cdll}, /\—;//\/ T ‘{/\\/\ - “w-knots”

43  pA[Deletelcd, pos], Union[done, List @@ cd[[pos]]], ahd*pAlcd[[pos]]]] ! K Lo

44 ]; m‘alrE:a[zizcuxtn,\agxam[xpll 7,4,6], Xp[2, 3,5, 7111

45 pA[CircuitDiagram[], _, ahd_AHD] := ahd PA[CirouitDiagram(Xp(2, 7, 5, 61, Xp(l, 3, 4, 71111

nf10]:=

Quif10}=

[t 1]=

outf11i=

oursj= True

= Commutators Commute
N ¥

L 9 i 7
&y ~ >l - = /“\?C\\\\ // 77 2
Z e X =
o N IN .
R s/ %/‘\7\\35 . ﬁ/// Question.
Ae N J
Z Fhe 3 14/{ Does this specify
. i the Alexander
; ins}= Equal[
! : pA[CircuitDiagram[Xp[1, 2, 11, 8], Xm[11, 3, 12, 7], polynomial?
_“ﬁf/ " & Xp[12, 4, 13, 10], Xm[13, 5, 6, 9]], t[2] =t[3], t[4] = t[5]], X

PA[CircuitDiagram[Xp[1l, 4, 11, 10], Xm[11l, 5, 12, 9],
Xp[12, 2, 13, 8], Xm[13, 3, 6, 7]], t[2] =t[3], t[4] =t[5]]]

Timing[resd = pA[#, (t[1] = t[6]) (t[11] = t[16]) (t[21] = t[26])] & /@ {
CircuitDiagram[ outis}= True
¥m[19, 1, 20, 2], ¥p[11, 3, 12, 2], ¥p[3, 30, 4, 29], ¥m([4, 21, 5, 22],
¥p[6, 23, 7, 22], ¥m[7, 28, 8, 29], ¥m[12, 8, 13, 9], ¥p[18, 10, 19, 9],
¥m[27, 13, 28, 14], ¥p[23, 15, 24, 14], ¥m([24, 16, 25, 17], ¥p[26, 18, 27, 17] References
1.
e . i [Ar] J. Archibald, The Weight System of the Multivariable Alexander
¥p[1, 28, 2, 27], ¥m[2, 23, 3, 24], ¥m[17, 3, 18, 4], ¥p([13, 5, 14, 4], . .
¥m([14, 6, 156, 7], ¥p[16, 8, 17, 7], ¥p[8, 25, 9, 24], ¥m([9, 26, 10, 27], Polynomzal, arXiv:0710.4885.
¥m[29, 11, 30, 12], ¥p[21, 13, 22, 12], ¥m[22, 18, 23, 19], ¥Xp[28, 20, 29, 19] . . . . .
1 [MH] H. Murakami, A Weight System Derived from the Multivariable Con-
1 way Potential Function, Jour. of the London Math. Soc. 59 (1999)
A very large output was generated. Here is a sample of it 698-714, arXiv:math/9903108.
{9.86, (AHD[(t[1] = £[2] = t[3] = £[4] = £[5] = £[6] = £[7] = £[8] = £[3] = £[10]) [MJ] J. Murakami, A State Model for the Multi-Variable Alexander Poly-
(£[11] = £[12] = £[13] = £[14] = £[15] = £[16] = £[17] = £[18] = £[19] = £[20]) ial. P J f Math. 157-1 (1993) 109-135
©[21] = £[22] = £[23] = t[24] = £[25] = £[26] = £[27] = £[28] = £[29] = £[30]), noomial, Pac. Jour. of Math. - —135.
{1, 6, 11, 16, 21, 26}, <<1i>, . .
Ce[11% £[1112 £[2112W[1, 5, €, 11, 15, 21] + <<2574>>1, <111 [NS] S. Naik and T. Stanford, A Move on Diagrams that Generates S-
Show Less) [Show More] [Show Full Qutput][Set Size Limic.] Equivalence of Knots, J01.1r4 of Knot Theory and its Ramifications
12-5 (2003) 717-724, arXiv:math/9911005.

Equal66 (Tast: /6 read) I e wmaren 1]|| [Va] AL Vaintrob, Melvin-Morton Conjecture and Primitive Feynman Di-

R (Th rogram also prints “False i

rrue when appropriate, and computes Alexander polynomials) 1l agrams, Inter. J. Math. 8 (1997) 537-553, arXiv:q-alg/9605028.
More at http://www.math.toronto.edu/~drorbn/Sandbjerg—0810/pA.nb

More at http://www.math.toronto.edu/~drorbn/Talks/Sandbjerg-0810/
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Dror Bar—Natan: Talks: MSRI-0808: "
Projectivization, w—Knots, Kashiwara—Vergne and Alekseev—Torossigr /9P Structure
The Categorification Speculative Paradigm. O = P1
e Every object in math is the Euler characteristic of a complex. -
e Every operation in math lifts to an operation between complexes. @ W
e Every identity in mathematics is true up to homotopy. s
The Projectivization Tentative Speculative Paradigm. Projectivization? objects of @ e
e Every graded algebraic structure in mathematics is the projec- { kind3 J © R
tivization of a plain (“global”) one.

e Every equation written in a graded algebraic structure is an
equation for a homomorphic expansion, or for an automorphism

e Has kinds, objects, operations, and maybe con-
stants.
e Perhaps subject to some axioms.

of such.
. e We always allow formal linear combinations.
o c(x+y) =e(x)e(y) in Q[[z, y]]. Graded Equations Examples Y « .
e The pentagon and hexagons in A(13.4). Defining proj O. The augmentation “ideal”:
e The equations defining a QUEA, the work of Etingof and Kazh- formal differences of ob-
dan. _ _ I'=lo:= {jects “of the same kind” }
° The Alekseev-Torossian equations sder <> tree-level A all outputs of algebraic
in U (sder,) and U (tder,,). tder <> more Then I" := {expressions at least n Of}, and
F e U(tdery); Fle(x+y)F =e(x)e(y) <= F €Soly whose inputs are in

D = Pp = (F123)"L(F12)"1 2B P23 ¢ 14(sder;) proj © := EDIn/InH

PL23PHL24H234 _ Ppl2.34gpl2,34

tions, but different objects

(has same kinds and opera—)
and axioms

“the pentagon” n>0

1 Knot Theory Anchors assiliev
= f(y, x) € sdery satisfies 4T and r = (y,0) € tders satisfies 67" o (O/I""1)* is “type n invariants”. ﬂ/

e (Im/I™1)* is “weight systems
= e(r) satisfies Yang-Baxter: R'?R¥R?»* = R® R R'? e proj @ is A, “chord diagrams”. Goussaro&‘
also R12 3 R13R23 and FQSRl 23(F23) 1 RIQRIS \)\Tarmul) EX‘dInpleS.
o 20 4 e 39181 e The projectivization of a group is a graded as-
7(F) := RF*e(—t) is an involution,®,(z = (P3) sociative algebra.
Solfy := {F': 7(F') = F'} is non-empty; for F' € Solg, e A quandle: a set () with a binary op A s.t.
e(t'® 4+ t23) = OB (t13) (O3 e (1) 3! 1ANz=1, zAl=zAz=uzx, (appetizers)

and  e(t12 4 ¢13) = (@192)le(11%) 0% 2e(112) ﬂ (xAyY)Nz=(xAN2)N (YA =z). (main)

o ) | proj @ is a graded Lie algebra: set v := (v — 1)
Alekseev This is just a part of the Alekseev—Torossian work! TorOSSIan(thCSC generate 1), feed 147, 147, 1+Z in (main),

e Related to the Kashiwara-Vergne Conjecture! So What?collect the surviving terms of lowest degree:
e Will likely lead to an explicit tree-level associator, a linear equa- (EAGAZ=(FAZDAGHTA (GAZ)
tion away from a 1-loop equation, two linear equations away from An Exp‘lnzi()n is Z-0 ;Jroj O s ,;y Z(I”) c

a 2-loop associator, etc.! ( . .
. ’ L . proj O)>p and Zn m+1 = Idm/m+ (A “univer-
e A baby version of the QUEA equations; we may be on the right sal finite type invariant”). In practice, it is hard

!
tracks! to determine proj @, but easy to guess a surjec-

Knotted Trivalent Graph
notted Trivalent Graphs >_< > < N tion p: A — proJO So find Z': O — A with
delete BTN Z’(I”) c A>n and Z}. uir © pn = Ida,:

oo {&h}
miles
- = @ g@ An Can you make
e connect \ i this diagram

n /rn+1 N P
Theorem. KTG is generated by the unknotted A and the Mdobius Zim T less confusing?
band, with identifiable relations between them. proj O <—= (proj O)n - L
Theorem. Z(A) is equivalent to an associator ®. Homomorphic Expansions are expansions |[Rie=sg
Algebraic that intertwine the algebraic structure on

SN\ O and proj O. They provide finite / com- e ‘
= = Knot
delete unzip ( _\_J: ) Theory binatorial handles on global problems.
The Key Point. If O is finitely presented, finding

Theorem. {ribbon knots} ~ {uy: v € O(oo), dy = OO}. a homomorphic expansion is solving finitely many
Hence an expansion for KTG may tell us about ribbon knots, knots equations with finitely many unknowns, in some
of genus 5, boundary links, etc. graded spaces.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MSRI-0808/
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Dror Bar-Natan: Talks: MSRI-0808: Projectivization, w-Knots, Kashiwara-Vergne and Alekseev-Toross@a: it Algebras 2 9 AIK
We Mean Business * Have "circuits” %

2 Fiip I
Trivalent (framed) w—tangles: further operations: delete, unzip. with "ends" PP
S \ . * Can be wired arbitrarily.
wl'T = CA < /\ ( Y > / R123, R4 (for vertices), F, OC. * May have "relations" — de—Morgan, etc.
= PA <>< y\ :/ Y > / R1234, F, VR1234, D, OC. w-braids describe flying rings:
(=tangles in thick surfaces, modulo stabilization) oo \ OCDD

R ey B B o e L OCEE
Partial Dictionary. &
REICS (2, 0) Ghsd, )

RQRG R.BZ RQBRBKQ- T— /\-\\\ = \\/\/ knot‘?cd obJ(‘cts s
FFr =1 2 ><2% Y ogibe Hgen
F’le(XJ—H)F:((z)e[j) @ =
) '-A\ — Q_\ P

F_z_s K I',Q_%ﬁ R;‘LKJSF-?‘S < (and 71 is preserved)

For the Experienced
(and sharp-eyed)

The “Chord Diagrams” — AY?

12,3 :3K23
K As we did  for
\A“"Jﬂtf) sabeti tudte

R’ I
/—-\
(0 < /\ ‘\’L// !
N
2 2, — X+ (V=
FJ ’312}2',3 - KB KQBF ? d ~ wto ‘f{fvrmj ma\f».r( to g:.—lr n_)q’//aﬂf /ﬂfc _ru;fcé

unforbidlng BI poakes Ml automti t g digne bongeamy & - e S ot
( J A cts _5 u -"C) /_X\ u —> K’ K -{wk CM%'{}

- H f’é‘{ uatly
KF_ME(-%) == & 2 n /’_f/g Zﬁﬁ"ﬁ* v\‘fh "Obé!(vffﬂv(m@)
| 7

I

The “Jacobi Diagrams” — A$S Prvtin & whidy

Theorem. A" is A is U(tdern). Q_‘g )
o

Hurt /A/,,C 11,,‘,4[‘/,71 direchd 4y

N o

- ‘-r' l‘;Z
)€Y e
:71(,7’"/“\.}\&{/&,' - bickat”
m o oy possith 5%

b e /7 o &
@.GS v 6—9 é\- k /_’. K’ K +nﬂ$o THX M#W%)( ”‘Xvﬁ”%

R Yesotond, this is

w/f; 4ﬂ6 2-in |-out
VIS 2>
faﬁf

Co~Cofm.Hzrf/1/p Lo biche

/ z\b Fl.n'}'& ) MJ 'ﬁ\?. %joﬁ Fo.gé?o'-\/ Vfﬂ; e The Map a: A/ — +
Theorem. « is an ln_]ectlon on A;’”‘p = U(sdery ). Further-
M fﬂﬁ v ‘I‘WU-‘) F"rol"’_] f“\'ﬂl Gﬂ,cf— % WE h‘l/ L M more, there is a simple charactarization of im «, so we can
tell “an arrowless element” when we see it.

U'U\‘?jf" LL}‘I“*\/MJ m‘fo‘r"""% of t—T&_S The Main Theorem. (approximate, false as stated) F’s in Solj
are in a bijective correspondance with tree-level associators for
ordinary paranthesized tangles (or ordinary knotted trivalent
graphs) / with homomorphic expansions for trivalent w-tangles

. .../ with solutions of the Kashiwara-Vergne problem.

Visit! Extra. Restricted to knots, we get precisely the Alexander

Edit! pt?lync?mial. . . . .

Disclaimer. Orientations, rotation numbers, framings, the ver-

This handout and further links are at httpr//katlas.org .41 direction and the cyclic symmetry of the vertex may still

http://www.math.toronto.edu/~drorbn/Talks/MSRI-0808/ make everything uglier. I hope not.

"God created the knots,

all else in topology is the work of mortals™

hr Knot ~/I clas
Leopold Kronecker (paraphrased Ingore Car Edi

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MSRI-0808/
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Dror Bar-Natan: Talks: Fields-0709:

A Very Non-Planar Very Planar Algebra (ol) work with Dyha Tinstn)

Theorem. There exists a skeletal (very) planar algebra D(,lef lon, A P /tmqf A_[:)(éf ~_ il‘is
of “shielded tangles” with:

Spaces /o/c./a-//.ms /q,lcxcp/ é\\jﬂ'd
(D)D) O /D (25

wen ofs.

y(J end brovn A7t M; “kno/—laélt') E X«m,IU l %'FM/WN‘?— 7LnnJ/qs

m\al with (@ @ ) q_(@

Pf(@) % well makes Rudemester’s Theorem into jcnj/q/f

W) P =< O@>/BF)), B X;

and 2. “Skehtons”: Dep, A skddy 7 ¢ \

ﬂ(@j ( > @) c- @/@ &=1®F el sy

L{ ’Fmgor‘ CAOOSCH

F«( @ )=(Xz {3 '{‘%f @ H“"J o

rq Icn_;
AI/ m& ¢ In -
gense l/)
GO~ (®,€) L ITE

P/ODF key /)om?’

e baed oF .ckcdn’ms e

U)~ (A 3% 3,

- v (o knothorass move) araunc ) well bl . ...and 78 are nogpy A\ (\
5. |

, Thee 15 no phar- alyra-strudn s Dides/btarmv/
—respectsa :m;t/t/f't( an‘o /:7/1, jnwant PO%/PONZI aAre Lvi 14 V
~elin UT,sTy, A an Yow abways Syac crith
[ — VL oy
. But thre iz om.Aij shiell) -fm *an’v[g;u l}/;n 4olmé"‘*2
Shrdfle ack AT picTets lon9 5
dz . *Mjﬁs} — <®>/ refs. 2. Hendouts art 60.300
3. This 2 pProvies a Roidimstor contixt for 1o Every Aing’s alm
kon‘f'go\/wA /r)‘fc:?ffxﬂl b 4o 5 IJ Me in FfatﬂpeF N 2td
onsl, (2 ) ~ or °
H. A consin of 2k el of ‘Afsggh\';‘o/.f It wAn “9"1\3'9 ¢ Erexot Aidas

2 wﬂi “God created the knots,

K Gk sty il bl For chot ok

|| all else in topology is the VlSlt'
and will provide a %DA’KUI(‘/ fnfer Pft'/‘—tf/on of A g work of mortals” katlas.org
“univvsd Quantam 9revp”.  See .../ Talks /Hanoi- 0708 R beorold Kronecker Edit!

http://www.math.toronto.edu/drorbn/Talks/Fields-0709/
More at http://www.math.toronto.edu/~drorbn/Talks/Fields-0709/
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Dror Bar-Natan: Talks: Hanoi-0708: Following Lin:  Vaughan’s Hierarchy Dror’s Dream / Obsession: The bigger quest:

Expansions for Groups (generalized, unauthorized) ¥ : Understand quantum groups (I don’t).
— e © computation "Unify" quantum groups — find one object that contains all.
: g Fo”“f“'a Example One invariant to rule them all:
Proo

® Theory Algxander,
G 2o ones,
Rlver5|de April 2000 Kyoto, September 2001 © Dream HOMFLY,
See Lin’s “Power Series Expansions and Invariants of Links”, t\ Kaugfm?n
1993 Georgia International Topology Conference, AMS/IP S l?g%rp)s an
Studies in Adv. Math. 2 (1997) 184-202. Easy! Universal! A Morphism! Unique! An Isomorphism!
The Magnus and Exponential Expansions What is a "Quantum Group™? For now, a "deformation of the trivial"
completed free solution in /(g))®*[[h]] of the major equations:
free group R associative A (g)l) A[[*” 16 AVA ! gflAR _ Ao Why care?
Zip:Gn = x on X = An = algebra on (Aela= (23 ®13 ) —12 13 nggéupmutg{)?gps
1y+-+yAn _ _
by Xi > 1+ z; or e Tl o (A®E=R"R (1®A)R=R"R invariants

makeI

(as well as a few minor equations).

Xt l—w+a?— .. ore %, s . i i
- PR . . Dror’s Guess: A unified object exists; we’ll need:
What S An Expansion™ A filtration-preserving ;. Expansionsasin Lin / universal finite type invariants.
isomorphism Z : C(G) — A(G) where 2. Naturality / functoriality.
I:={>ag;: > a;=0} CCG 3. Knotted graphs, especially trivalent.

4. Associators following Drinfel’d.
‘ . ) 5. The work of Etingof and Kazhdan on bialgebras. :
C(G) = lim, CG/I* = --- = CG/I* = CG/I 20 6. Virtual braids/ knots/ knotted graphs. Edit!

_ 70 1 2 3
CG=1°>1">I"D>I°D katlas.org

all
is filtered by F7,C(G) = lim, _ I™/I% and expansions (- Polyak (LMP 54) & Haviv (arXiv:math/0211031) on arrow diagrams.
A(G) == gr O(G) = &I™ /T, are (and when construction ends, we’ll dump the scaffolding)
. "equivalent" ) .
Think duals! C(G)* are “finite type invariants”. (Quasi?) Natural Expansions
A(G)* are “weight systems”. G — C(G) and G — A(QG) are functors. Can you choose a ((quasi?) natural)
Z is a “universal finite type invariant”. Z satisfying  C(Gy) T C(Ga)
Z 9 are Expansions.  With 20 =27, or Z° = Zy: A quasi: A'(A) =
1. ¢ is automati PN 7(G1) G —G2 262 | JRNAA) A ?
. ¢ is automatic. G, A, DaA(A) ?
i _ z; A(A)
2. p is well-defined. , 71 o AG) —— 20 A(Gy)
3. Z0|1m C FnA,. ) X;—1 Perhaps just on a subcategory of Groups? Perhaps Braids with strands
z - . .
_Z addition, deletion and doubling;:
4. Z9 descends to Z1. C(Gn) A(Gn) , , & ,,  Not the relation:
5. Define Z2. 8. Z? is an isomorphism. Q — Q or \ | = | b& y = | y o y |
( ( ¢ ( AN N N
6. p is surjective. 9. p is an isomorphism. . . . .
’ 2 : ; . EV(ﬁ'VthillU goneralri)zcs step 2 Virtual Braids crossings are real, strands go virtual
7. grZ*= is the identity sometimes becomes tricky. Definition. “\ \/ Polyalk’s j Li}(lé bialgebras.
- _ yax's A. The g in a sum g® g*
The Kontsevich Integral for Braids Crossings, N S which in itself is a Lie

J N\ | algebra with subalge-
Ty modulo L .

§ }—\ Reidemeister \ = bras g and g%, anfi

moves, 7 AN in which the tautolog-

ts N N ical metric is invari-

/\ dz; — dZ but the linkages between ant.
27TZ m P P crossings are "virtual": modulo loc and “GT” Why bother?

v | Their deforma-
\m\ RINE

tions are quantum
m ‘ N ‘ ‘ ‘ ‘ groups, and their
diagrammatic univer-

| ‘ two dlagr ams ! M. Polyak salization is j
: ‘ ‘ ‘ ‘ of v2,;
A= i | 6 é i & E

L. Kauffman T. Ohtsuki Drinfeld Etingof Kazhdan Haviv
.4

P={(2:,2))}

,_
Q
a
Il

i L+ [ H =+

Question Can you interpret quantum
groups as (quasi?)—natural expansions

- e ] 1 on virtual braids?
§ : Which other groups / groupoids / Dror’s Guess.  No, but the effort
M. Kontsevich categories have expansions? will be worthwhile.

http://www.math.toronto.edu/~drorbn/Talks/Hanoi—0708/; thanks to Jana Comstock, Peter Lee, Scott Morrison, Dylan Thurston.

"God created the knots,
all else in topology is the work
. of mortals”

Leopold Kronecker (modified)

More at http://www.math.toronto.edu/~drorbn/Talks/Hanoi-0708/
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Dror Bar—Natan: Talks: Kyoto—0705 http://www.math.toronto.edu/~drorbn/Talks/Kyoto—0705

Dror’s Dream Map of Quantum Groups < Knot Theory

Drinfel’d, Etingof—Kazhdan Prehistoric
Hallucinations Some harsh reality.
about f\% EK mix tangles and braids
Khovanov o4 and algebras and Verma modules
Night Time i
IC translucent ¢
—= K/t
about /vertices / Y —_— _A‘/‘
tv
Etingof — Kazhdan 4\ /F Z [tv 4\
Dlgy Time Kv =KT)VG grKv W specific
reams . ¢ I uantum
about Reshetikhin ~ 0€ns and rels? —=> Knotted (trivalent?) — Kv _ — 4q
. virtual knots z groups
— Turaev & quasi
triangular quasi
Hopf algebras
WSZ(Z)
. > ~ > —_
Reality Generators —=> K =KTG — K —= gk — U(sl(2))
of associators, FT Knotted Trivalent Graphs U 4 // GrT) Waim)
invariants and @ with operations: \ A Ul(sl(n))
potent completion

co—commutative > < The uni etc.
quasi—Hopf A >_< - delete This is the Drinfel’d
algebras v theory of Associators!

Relations YATRN Why should we care?
i 1. Usefulness!

A 5 term relation,
a 6 term relation, 2. Beauty!

and lesser ones. g % 3. Guidance!
Definable subsets: 4. Confidence!

Genus g knots, ribbon knots, boundary links and more... 5. Grothendieck—Teichmuller!

A La Carte Drawings Proof.
Knotted Trivalent Graphs (KTG’s): - -

%@ﬁAA

‘s}-
The 5—term relation: R — =

AAAA I V*

Claim. With ® := Z(4), the above relation
is equivalent to the Drinfel’d’s pentagon equation.

Fushimi—Inari

} =o€ A(Ts)

=(A®1®1)(®)- 112 A)(P) € A(T1)

JSL a 9 /
v Vo =
¢

Drinfel’d Etingof Kazhddn J. Murdkdml Ohtsuki Kauffman Goussarév Polyak Viro D. Thurston Haviv

More at http://www.math.toronto.edu/~drorbn/Talks/Kyoto-0705/
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Math 352 /4’3@17/'\/& Krot 'lecofJ — The Knizhnik-Zamobodchkor Lonmertion
Thortml, The Folls k/y?l\? K An imartant of beads 1) Rex{ 2 (Fixed udﬂqqﬁg)

Z(8)= #(_L)"’ "'2’:’;, in - A1, (—é"’ 1«1¢J\<n>Af,;J;z;;O

4. "i .tm f“‘*‘f‘”ﬂ"‘o

X horizontl dmls) /L{ 7

" d)o/./ ot - 9 amms For bra IJS

sz‘mp é:ﬂq 1(64
k( wVaTu .

JVAJIJ unrialf,

Lt JLE ) Im, j with J‘JJl——I Proof2 Lt M T %7, =M, DT s

@J f?’hs) 2

Y:[a0=T—>M_  induces * m_ "
¢ AN = {O<t, _ <.[lmg{}___a/vlm .( l/l '{go'/l Jol@fﬁ J@"/L /Lq__g

I8
511— }1005[-“/) p""f_ﬁ/l’ #ﬁ%’) A Z"l( ’)kﬂl(ﬂ..;JlA AF*(JJ‘LA AK‘\ﬂ,

l\bfe. m » * Ixg™
v L= A“"/\T’;)'/L A e birtay?

'ﬁ\ooﬂm. T E_'“JJl*jZ"/l’OJ Bm= ié@f/l + @'UZ +%( )< @"Jlm
Tn hof(R) 15 invarkqt ugder Pl e ' g Yt
Und~pornt preses l//@ hmﬁ’r‘goF Y.

= K\ man. AT ) ATTE
The K& comactron. g Ijn"" ). A

M= [n\{c”w] ) ;‘(T:A( [ 7]1 )7 M W SA7 1’\‘] edescopic fmm{;n&
A ﬂ:ZzuksM. where wi= _«_Ji:_i&, Jon(z2;) Proof oF ,

e “M’ gml fake 17
Cafwv#e F— o‘\ﬂ_"'./mﬂ. Jk/,-\,- =0 o dy =9 s /:rf 2,
\Aﬂl/L Z %Uihpwm L\/([ _’A +8+C b\/Ab/C Y" ’ﬂ“’ b/kla
< I{iJH}f-:L 3 oy
"A=C =0 NS E‘f"“l‘dj-’o (€ [l\\kf]/ LorY and \A,’ the k#
B= Z. [+ 'f”_]b\[(#/\ Wy + Cyehi perrs ggﬁﬁg’i’; Connectror.

= BV (Wegh Wit Cyc porrs) =O_ o b ,
% W ( 4 jcp‘/’t)__/’*Ao S ¥ Dror Get-Ndwn, Fib 13, 3007

More at http://drorbn.net/index.php?7title=07-1352/Class_Notes_for_February_13 and at
http://www.math.toronto.edu/~drorbn/Talks/Aarhus-1305/ (day 2)

180


http://drorbn.net/index.php?title=07-1352/Class_Notes_for_February_13
http://www.math.toronto.edu/~drorbn/Talks/Aarhus-1305/

=
ﬂ M. Khovanov

Quantum algebra:

Claim. If ba=gab then

where
(n)g:=1+q+...+¢"",

(n)!g := (1)¢(2)g - - - (n)g,

Local Differentials and Matrix Factorizations
Dror Bar—Natan at UIUC, March 11, 2004, http://www.math.toronto.edu/~drorbn/Talks/UIUC-050311/

Conjecture:
1. Every object in mathematics is the Euler
characteristic of a complex.

L. Rozansky n
d
*
et IR

(I. Frenkel, though he may disown this version)

" /n 2. Every operation in mathematics lifts to an
" = kbnfk: .
(a+b)" = k a n (n)!, operation between complexes.
=0 k = L)l AT . Every identity in mathematics is true up
k q 3.E dentit th t t
q ( )q(n - )‘(1 t 1. Frenkel
o homotopy at complex—level.
Local state spaces: < J JJ J k \_\ k > Likewise, set Q=d x with: ; 5
T Do W ><
- .- 0 Uz -uU 4 3
In@l= Q := B W 0 @
u -vi 0 0
V®(4X5) = ; {vi, va} = {x1+x2-%3-%g, X1 X2 -X3Xq}’
6= gs_, p_] :=
(n+l) /2 j i
s™l 4 (n+1) <) Binomial[n-i, i-1] s™1-2ipi;
Local differentials: el
glx+vy, xvy] // Expand
d - + d + d + + outfsl= x> + v
d d (7= {uy, uz} =
where Cancel[{g[xl+x2' X1 X2] - g[X3 + Xg, X1 X2] ,
~N N N\ Vi
d2 ‘:\*)\*j‘ =0 or d2 ‘\\ ’(‘*:‘ = glxa+xq, X1 %2] - g[X3+Xq, X3Xq] }]
- - Vz
Tagged doodles: out[7]= {X% - X1 Xp + xg + X1 Xg + Xp X3 + x% + X1 Xg +Xp Xg +2 Xg Xg + x:fl ,
X { -3 (B3 +%4)}
Inf8l= w = u3 v + up vy // Expand
n@]:= Simplify[Q.Q == w IdentityMatrix[4]]
/ = { — /}
7 out[9]= True In[10]:=
a 0 0 X -Xg Xp —X3
d){ = )og *X =(x—-y) )OZ d% )Z Example: Set P=d 3¢ | o 0 P
y e T,y Xy - X3 0 0
n+l _ - 0 0
;= n=2; m; 4 := Cancel = e il ;T2 1 2 Tz AL
il ’ i
Xj - X3 In[11]:=
Simplify [P.P == w IdentityMatrix[4]]
Qut[1]= X% + X1 X + Xg 4 3 Out[11]=
True
. _ 0 X1 - X2 . .
ntat=: L = (7?3”2 0 ) 2 Set L=d ‘ 7 Theorem: (Kh-Ro) Taking homology and then the graded Euler

Expand[L.L] // MatrixForm
Qut[3)/MatrixForm=
{ x3 - %3

3 _ sl
0 Xy — X3

Matrix factorizations:

O A MO A Ml B MO
o-(34) o 2l
AB=BA=wl N —2X 12 Z

A category, with "complexes", morphisms, homotopies,
direct sums and tensor products.

D. Eisenbud

characteristics, we get the [MOY] relations:

(RED.C G Q) SR
\><<>< /\ +in=2l > <

1EE‘<><>§E><

[MOY] := Murakami, Ohtsuki, Yamada,

See Khovanov and Rozansky, arXiv:math.QA/0401268

More at http://www.math.toronto.edu/~
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m - The Khovanov—Rozansky Complex B

Dror Bar—Natan at UIUC, March 11, 2004, http://www.math.toronto.edu/~drorbn/Talks/UIUC-050311/ s
Crossings. (height in blue) In[12]:=
X4 - Xz 0 0 1 0 0
P U uj+x4qup-ny 3 1 0 uj+xy Uup-7p 3 X, -%5 0
? é U= xq -xy S ] xXg-%x3 r
/\ < 0 X > 0 0 x5 -x o] 0 1 x3
0 0 -1 1 0 0 1 x

\/49 XL}_{ Simplify[{U.P==Q.U, V.Q == P.V}]
h -1 0 out[12]=

{True, True}

001

/
S
=

g
i)

010

/

NS
101 1%1 111
Py
o
SP
110
= PO

"God created the knots, all else in topology is the work of mortals."

o
dx’\dy 100

p
@@
i

Signs?

M
/\dy
\"'
Why am I happy?
1. The ugly formulas for L, Q, U, V; from where they come?
2. Where is the relationship with gl(n), representations and intertwiners?

3. Can you take the Euler characteristic before taking homology?
4. Is this computable?

More
crossings?

/\7 dx’\dz ——= dx"dyNdz
K /

i

dz —= dy\dz

Leopold Kronecker (modified)

The Jones/Kauffman case. 0*1 011 (Almost) all is understood,

(ordinary Khovanov homology) 010.0 except the physics
*01

000

o1+
o) "z @
H=D

IU*

010.0

tq jr=0r l =2jr=3lr=4jr=5r=6r="7r=8r=9jr=10r=11jr=12r=1 .:]4r:\51:\6r:]7y:l$y:\9r:20r:2\

=63 [ T i T T [ T T g

See my paper "Khovanov homology for tangles and cobordisms", = e
=571 T

http://www.math.toronto.edu/~drorbn/papers/Cobordism/ =5 L E ]

j;l : 1 1
LA VA WA Wi Wa W W / = M T
A NN NN N— —_—= = ‘
A computation example: NNOOOO00 =5 i - ‘ —

=311 [ [

111

More at http://www.math.toronto.edu/~drorbn/Talks/UIUC-050311/
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Stonehenge

It is well known that when the Sun rises on midsummer’s morning
over the "Heel Stone" at Stonehenge, its first rays shine right
through the open arms of the horseshoe arrangement. Thus
astrological lineups, one of the pillars of modern thought, are
much older than the famed Gaussian linking number of two knots.

. [ The signed Stonehenge
(D, K} = (pairing of D and K ) )

Thus we consider the generating function of all stellar coincidences:

1 framing-
Z(K):= lim ———(D,K)zD - | dependent |e A(0)
N—o0 QCC!( )
3-valent D e counter-term

Theorem. Modulo Relations, Z(K) is a knot invariant!

When deforming, catastrophes occur when:

A plane moves over an An intersection line cuts The Gauss curve slides
intersection point — through the knot — over a star —
Solution: Impose IHX, Solution: Impose STU, Solution: Multiply by
_ _ _ _ a framing—dependent
X iﬁ U X counter—term.
(see below) (similar argument) (not shown here)
AN The THX Relation /

<@> the red star is your eye.

o

It all is perturbative Chern—Simons—Witten theory:

/ DA holk (A) exp
g

-connections

ﬁ/tr (A/\dA+2A/\A/\A>]
47 3
3

R
5 Y waYem» ¥ Dig(p)

D: Feynman D: Feynman
diagram diagram
Rk 3
ﬁ
;
Shiing—shen Chern James H Simons

Oporto Meeting on Geometry, Topology and Physics, July 2004

%/ DR

From Stonehenge to Witten Skipping all the Details

LETV

Dror Bar—Natan, University of Toronto

Recall that the latter is itself an astrological construct: one of

the standard ways to compute the Gaussian linking number is to
place the two knots in space and then count (with signs) the
number of shade points cast on one of the knots by the other knot,
with the only lighting coming from some fixed distant star.

The Lk( OQ )= %Z (signs)

Gaussian

. . vertical

linking chopsticks

number

Carl Friedrich Gauss lk=2
Dylan Thurston

N :=# of stars . A(©) oriented vertices

:= # of chopsticks :=Span AS: \?/.FY =0
e :=#ofedgesof D & more relations

' Vidor Space Tn our case,

dvt Lebesguts mtasare on V.
Q = A quadiatic Forn on 7
Q) =<Ly;v> Whee

¥Q isd, S0 Q@ is an
Viquu\,(.l opsrator.

Sy Ty T
Compdfs I [H¢ ¥ H s e hofononry, ittt
»_o anL’. e - PI')CQ/Q, A _Sum oF in)‘,ﬁlj t‘v
n:.o . - ‘i@qfw Ak km* K'
P EArI T
W=Q=r=) B
,,,,, =S PR
l"l,ibol —— ) / Y=o %( vha Ao Jut Q{{éf,

The Founrrer Transkors: e 317" 2{ K)Z
(e V=sO)=2(F:W—e) ¢, !VH(V)cﬁqu'/ ,

via Flo= et "y, g
) ~ (7). l/y, ;
5m/¢ Facls: is : = = g

I_Flo)=J Fridv. A (TN T ED

= —~ e P ) L A

Y a2 %‘{4?’%@3%

= -@

3 (&)~ 0 =2 ctv) '-"'5"',"%“)
whr QY=Y LY Dimy-ns A4 o H
(Acds e burt o The H—a ,
Foxeivr Townssion F;nulo). 7 S P @

. = - et A\
O‘ﬁﬂlﬂ‘lﬂﬂ’ﬂ QOJ P@ifmﬁg: P Richard Feynman
X3y 2057 b
78,‘?3:, =3 J ,MJ“/’ "God created the knots,

% 3“ ?f & %‘I all else in topology

» = Ry is the work of man."

X X X Aoy
(Nixg3a ) () s

D TS 77T

2 possill
Leopold Kronecker

=J) (modified)

This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto—0407

More at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/
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From Stonehenge to Witten — Some Further Details
Oporto Meeting on Geometry, Topology and Physics, July 2004

Stonehenge
UMM

Dror Bar—Natan, University of Toronto

We the generating function of all stellar coincidences: Dylan Thurston

framing-
1 N :=# of stars A(O . -
Z(K):= lim Z (D, K)zD - | dependent | e A(O) . ©) oriented vertices
N0 2¢ !( ) ¢ :=# of chopsticks =S AS: -0
3-valent D e counter-term o ofed cp pan : \T/+ =
e -=wotedgeso & more relations
(D,K)g := (Th.e.SIgnedeS tonjl;nge) : * . * count When deforming, catastrophes occur when:
pairiig © an s \F‘; e - with A plane moves over an An intersection line cuts The Gauss curve slides
intersection point — through the knot — over a star —
D= - Solution: Impose IHX, Solution: Impose STU, Solution: Multiply by

— _ — _ a framing—dependent
X éﬁ U X counter—term.
Wy(D) i D i

R3 D: Feynma.n D: Feynman
diagram diagram

Theorem. Modulo Relations, Z(K) is a knot invariant!

/DAholK(A)exp i—k/tr (A/\dA+§A/\A/\A) —
o T

-connections

Related to Lie algebras

T U T K

w

ar snydog

xyl = xy — yx [Ixylzl=[xly.zll=[y.[x.z]]
>< 1 More precisely, let g = (X,) be a Lie algebra with an
2 orthonormal basis, and let R = (v,) be a representation. Set
4 = ([a, b],c Xavg = ™ v
The Miller Institute knot — Fate {la. b)) o Z e
and then B

Definition. V is finite type (Vassiliev, Goussarov) if it vanishes on
sufficiently large alternations as on the right v B
Theorem. All knot polynomials (Conway, Jones, etc.) Wg, R: ah — Z fabcTﬁ T; Taﬂ
,: av'ba’ c

are of finite type.
yp ‘ abeafy

Conjecture. (Taylor’s theorem) Finite type invariants Goussarov o

separate knots.
Theorem. Z(K) is a universal finite type invariant! Planar algebra and the Yang—Baxter equation
(sketch: to dance in many parties, you need many feet). Vassiliev

Wy,r o Z is often interesting:

\/b
c/ d

g=sl(2) — = & The Jones polynomial

' } The HOMFLYPT polynomial
< Przytycki

The Kauffman polynomial

RiLRIS R = Ry RIS RY

W Reshetikhin
a(b(ed)) (ab)(cd) ’ Turaev u
a(b(cd)) / \
o @b ““ﬁ 7"“‘“” Kauffman’s bracket and
(a(be))d . . P = A
(e (o the Jones polynomial C/ﬂ ” T( )\ ) - :)"/ ) ()

<X D= <V> AL S Tadusd,

- }n-"u

ca)b
\//7 c(a) ac‘)b <Ok>: (q+q_;)l< <D\ > =<J2\J> - qfﬁ)
(ab)c a(b( a(cb) Drmfeljd j"{L )= & - qn;zn_ <L > v;?q/<?9\> +9 </2\$ >

(Nen) count  (32,57) fird =-9)(>

"God created the knots, all else in topology is the work of man." This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto—0407

Parenthesized tangles, the pentagon and hexagon

More at http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/
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Dror Bar—Natan: Talks: UQAM-051001:

4Tu-2

o)

38 X=X 2 (¢
= 2

SS K—=(D( % X
The case of

tangles: {;@ (

~

The work of Naot.

<surfaces>/4Tu is freely generated by Shrek surfaces

A Shrek surface with 7 boundaries
(one distinguished), 3 handles and
2 tubes

Let ® denote a tube to

the distinguished component

(the curtain), and let H denote
a handle on the curtain. Then

a7

Delooping:

ORI [
... so the invariant is valued in complexes over a category with just
one object and morphisms in Z[H]; all is graded and degH=-2.

0*1

%d

011

101

*01
0'0)

111

0=
o1+

*10

E=))

July 10, 2005
The work of Vulcan

110 P
@ 6 =g

Where does it live? In Kom(Mat(<Cob> / {S, T, 4Tu})) / homotopy
Kom: Complexes Mat: Matrices Cob: Cobordisms <...>: Formal lin. comb.

=~ L
/lri/

)

1%0

Invariant! >
) -A & T
- <

The Reduction Lemma. If ¢ is an isomorphism then the complex
() 157)
D

is isomorphic to the (direct sum) complex

(o4

B

o 0
vo€ by

€] "

[F]

](MV)

( 0 ) @ 0
8 by 0 e—np 18 by ( 0 v )
ot [y bemly) o),
The work of Green. standard data: - 7rrr ‘o
The universal invariant of the left—handed trefoil is - 7;7 N ';7 b . :
@ I

0

Jeremy Green
(and the invariant of the 48 crossing T(8,7) is computable in minutes...)

Some functors.

classical reduced Lee
>
H <+>2\<+> <0> 0> 2 _ <>
<> <> 0 <—>72 <>

(Lee’s spectral sequence and Rasmussen’s invariant also recoverable)

http://www.math.toronto.edu/~drorbn/Talks/UQAM-051001/

More at http://www.math.toronto.edu/~drorbn/Talks/UQAM-051001/
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4Tu AND THE “TRUE” SKEIN KHOVANOV HOMOLOGY

DROR BAR-NATAN

4Ty

AR, ON _ BN, 0
NSRS

What is it good for?
(1) Cutting necks:

oD () &

(2) Recovers the good old Khovanov theory,

vy — 0
F(X)=e€: {1 > FQ)=n:{ T
(=) U+ ©) = {v_ — 1
Fle) = A - Vy = U QUu_ +v_ vy Floo) =m : Vy QU_ = v_ Uy QUi Uy
Vo V- QU Vo @uy = v - ®@uo = 0.
(3) Trivially extends to tangles.
(4) Well suited to prove invariance for cobordisms.
(5) Recovers Lee’s theory,
A Vp = U QU_ +U_ Q@ ug Vp @U_ = U_ Uy @Uy > Uy
: m:
Vo = U_ Q@ U_ + vy @ Ug Vo Q@Uy =V V- Q@U_ — V.

(6) Leads to a new theory (over Z/2 and with degh = —2),

A Uy = U1 QU+ v vy + huy @ vy - Vy QU_ = V- Uy @Uy = vy
B O =R N ®vy vl v ®@uo = ho_.

(7) Trivially extends to knots on surfaces.
(8) Non-trivially recovers Khovanov’s c,

UJ,_P—)O
9l :
{ro {rt,

A - Vp = Vy QU_ +0_ Q@ vy +cv_ Qu_
N = v @

U+®U7'—>U, U+®’U+'—>’U+
V@ Uvp v v- @uo = 0.

(Added June 29, 2004: what appeared to work didn’t quite. The recovery of Khovanov’s ¢ remains open).

“God created the knots, all else in topology is the work of man.”

Leopold Kronecker (modified)

URL: http://wuw.math.toronto.edu/ drorbn/papers/Cobordism (and see the ¢‘GWU’’ handout)

Date: May 30, 2004.
1

More at http://www.math.toronto.edu/~drorbn/Talks/GWU-050213/
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A Quick Reference Guide to Khovanov’s Categorificatio

Dror Bar-Natan, June 12, 2002
The Kauffman Bracket: () =1; (OL) = (¢+q¢ )(L); (X)=(

The Jones Polynomial: .J(L) = (—1)"~¢"+ 2"~ (L), where (n,,n_
Khovanov’s construction: [L] — a chain complex of graded Z-modules;

~
—~

O0—smoothing

n of the Jones Polynomial

)(

1—smoothing

) — af

) count (X, X) crossings.

M =0— Z —0 [OL] =V & [L]; [X] =Flatten |0 — [X] — DJ{1} = 0|;
height 0 height 0 height 1
H(L) = H(C(L) = [L][-n_]{ns — 20_})
V = span{v;,v_); degvy = £1; qdimV = ¢+ ¢! with ¢dimO := Z q™ dim O,,;
O{l}m := Opy so  qdim O{l} = ¢! ¢dim O; -[s] :  height shift by s;
VUV @U_ = v VUV @ Uy = U = i ;
(OO=CD) = Wevsy)  m 20 mo mSmme o 122
Vo @Uy > v- v_Qu_ 0 S‘&:g:
=
Q0 ) vy UL @Uo +U- ®uy 22re
C = == V Ayvev A 23
( QQ ) {1}»—>U®U 535
n_ 'n.+ 2n _ .
Example P i1+ -0 2D a+¢+4¢"—¢°
(with (n4,n_) = (3,0))
(q+ 12 alg+q7") + 3¢°(g+q1)? - ¢*lg+q1)?
A A A
= O
E a(g+q™") a*(a+q~1)?
| i ey i
E 100 10 w 110 that’s a
n cobordism!
=]
= O
g & QO
% dx00 di1s
@tﬁql)2 & @l(tﬁ—ql) a*(g+q71)? QQO a*(g+q~1)*
ve? V{1} V®2{2} V®3{3}
000 T do 010 O 101 din Q O 111
&, 3 |
00
N + e
g doox dy11
2 a(g+q™ ") &5 a*(a+q™ ")
= v{1} 1 ve2io}
g 001 o1 Q 011
S N N
: : :
&0 1éd S 1\¢ 1)¢d
\5\27(: )Sde 3 (—1)%de ‘§|Z2( )= de
v jo v dvl v jz v
[]° [&]! o] [
(here (—1)¢ = (—1)Ze<s &6 if & = %) = [e] —Lrltremed o),

Theorem 1.
Theorem 2.

The graded Euler characteristic of C(L) is J(L).

The homology H(L) is a link invariant and thus so is Khy(L) :=

(with (ny,n_)=(3,0))

>t qdimHE(C(L)) over any field F.

Theorem 3. H(C(L)) is strictly stronger than .J(L):
Conjecture 1. Kho(L) = ¢* 1 (1+¢2
s = s(L) and non-negative-coefficients laurent polynomial Kh' = Kh'(L).

Conjecture 2. For alternating knots s is the signature and Kh' depends only on tg?.

H(C(51

)) # H(C(10132)) whereas .J(5;) =
+(1+1tq")KN) and Khg, (L) = ¢*'(1 + ¢°) (1+ (1+ tg*) KI) for even

J(10432).

References.

Khovanov’s arXiv:math.QA /9908171 and arXiv:math.QA /0103190 and DBN’s
http://www.ma.huji.ac.il/~drorbn/papers/Categorification/.

More at http://www.math.toronto.edu/~drorbn/Talks/UW0-040213/
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Khovanov Homology
0*]

o) (o) —== )

00* @ @ 1Mikhai1 Khovanov
000 90 010 - \ 101 1 111
G- E EH-Eo D

& =4
SYSISTSISTS w G w -~ ER @
O *@ @ cr1<\)/[s(;§clgs7

xé dx"dy

Signs?
What is it? A cube for each knot/link projection; / / \

1 é dy dxNdz —= dx"dy"dz

Vertices: All fillings of = ) with ) ( or with :: . \ \ /

dz —= dy/\dZ

and
or ~~—
Edges: All fillings oflxﬁ=@ with 1% ) ( =@ with 7% =@ precisely
-7 v one

Where does it live? In Kom(Mat(<Cob> /{S, T, 4Tu})) / homotopy -
. > Ao ‘ T
Kom: Complexes  Cob: Cobordisms @ & Q —

<...>: Formal lin. comb.  Mat: Matrices @ =0 T @ =2 % ﬂ w

s
Jones/Kauffman? ves (VE2 V82 6 VE2) {1} — > (V @ V & V){2} — > €23} 2
A takes ittoa ;| 4-1)3 3q(g+q7")? 3¢*(g+q ") la+q')? :
complex whose graded
Euler characteristic is the Jones polynomial. But is it invariant? /j_ DJZ P ﬂ_ ]
The key point: Q V= (vy,v_), deguy = %1 (With similar proofs ; ==y ’
for R—IT and R—III) _— g - i EE I
g-dimV = g+ qil /Q‘_—]:;_——;//) O MY —~
Why is it interesting? A functor?
1. It is stronger than the Jones polynomial. yﬁhy
2. It is less understood than the Jones polynomial: \& T \
a. Does it have a topological interpretation? e n
b. Does it have a "physical" interpretation? w
c. Does it also work for other X
quantum invariants? / j'
d. Does it work for manifolds - 2
i i 2/ T \!
and for knots in man.lfolds. K/} ﬂ — /X
e. Is there a relation with | W ® X I N
finite—type invariants? © —m
f. Does it work for "virtual knots"? —X
3. Jacobsson, Khovanov: It is a functor!!! R
(from knots and cobordisms to u e X

complexes and morphisms)

See M. Jacobsson \[J‘\\g\//y

http://www.math.toronto.edu/~drorbn/papers/Cobordism

Dror Bar—Natan, Warszawa, July 2003.

More at http://www.math.toronto.edu/~drorbn/Talks/UW0-040213/
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