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2-Injectivity. A (one-sided infinite) sequence

· · · −−−−→ Kp+1
δp+1

−−−−→ Kp
δp

−−−−→ · · · −−−−→ K0 = K

is “injective” if for all p > 0, ker δp = 0. It is “2-injective” if
its “1-reduction”

· · · −−−−→ Kp+1

ker δp+1

δ̄p+1

−−−−→ Kp

ker δp

δ̄p

−−−−→ Kp−1

ker δp−1
−−−−→ · · ·

is injective; i.e. if for all p, ker(δp ◦ δp+1) = ker δp+1. A pair
(K, I) is “2-injective” if its singularity tower is 2-injective.

The X Lemma (inspired by [Hut]).
A0

α0

%%KKKKKK
C0

B

β0
99ssssss

β1

%%KKKKKK

A1

α1
99ssssss

C1

If the above diagram is Conway (1) exact, then its two
diagonals have the same “2-injectivity defect”. That is,
if A0 → B → C0 and A1 → B → C1 are exact, then
ker(β1 ◦ α0)/ kerα0 ≃ ker(β0 ◦ α1)/ kerα1.

Proof.
ker(β1◦α0)

ker α0

∼
−−−−→

α0

ker β1 ∩ imα0

= kerβ0 ∩ imα1
∼

←−−−−
α1

ker(β0◦α1)
ker α1

.
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Let K be a unital algebra over a field F with char F = 0, and

let I ⊂ K be an “augmentation ideal”; so K/I
∼

−−−−→
ǫ

F.

Definition. Say that K is quadratic if its associated graded
grK =

⊕∞
p=0 I

p/Ip+1 is a quadratic algebra. Alternatively,

let A = q(K) = 〈V = I/I2〉/〈R2 = ker(µ̄2 : V ⊗ V →
I2/I3)〉 be the “quadratic approximation” to K (q is a lovely
functor). Then K is quadratic iff the obvious µ : A → grK
is an isomorphism. If G is a group, we say it is quadratic if
its group ring is, with its augmentation ideal.

Why Care?
• In abstract generality, grK is a simplified version of K and
if it is quadratic it is as simple as it may be without being
silly. • In some concrete (somewhat generalized) knot theo-
retic cases, A is a space of “universal Lie algebraic formulas”
and the “primary approach” for proving (strong) quadratic-
ity, constructing an appropriate homomorphism Z : K → Â,
becomes wonderful mathematics:

K
u-Knots and
Braids v-Knots w-Knots

A
Metrized Lie
algebras [BN1] Lie bialgebras [Hav]

Finite dimensional Lie
algebras [BN3]

Z
Associators
[Dri, BND]

Etingof-Kazhdan
quantization
[EK, BN2]

Kashiwara-Vergne-
Alekseev-Torossian
[KV, AT]

The Overall Strategy. Consider the “singularity tower” of
(K, I) (here “:” means ⊗K and µ is (always) multiplication):

· · · I :p+1 µp+1

−−−−→ I :p µp

−−−−→ I :p−1 −−−−→ · · · −−−−→ K

We care as im(µp = µ1 ◦ · · · ◦ µp) = Ip, so Ip/Ip+1 =
imµp/ imµp+1. Hence we ask:

• What’s I :p/µ(I :p+1)? • How injective is this tower?

Lemma. I :p/µ(I :p+1) ≃ (I/I2)⊗p = V ⊗p; set π : I :p → V ⊗p.

The Pure Virtual Braid Group is Quadratic1

Abstract Generalities

Conclusion. We need to know that (K, I) is
“syzygy complete” — that every diagrammatic syzygy
is also a topological syzygy, that ker(π ◦ ∂) = ker(∂).

The Hutchings Criterion [Hut].
The singularity tower of (K, I) is
2-injective iff on the right, ker(π ◦
∂) = ker(∂). That is, iff every
“diagrammatic syzygy” is also a
“topological syzygy”.

Rp
∂

&&MMMMMMM I :p−1

I :p

µp 88qqqqqq

π
&&NNNNNN

I :p+1

µp+1
88pppppp

V ⊗p

Proposition 2. If (K, I) is 2-local and 2-injective, it is
quadratic.
Proof. Staring at the 1-reduced sequence

I :p+1

ker µp+1

µp+1

−−−−→ I :p

ker µp

µp

−−−−→ · · · −−−−→ K, get Ip

Ip+1 ≃
I :p/ ker µp

µ(I :p+1/ ker µp+1)
≃ I :p

µ(I :p+1)+ker µp
. But I :p

µ(I :p+1) ≃ (I/I2)⊗p, so

the above is (I/I2)⊗p
/
∑

(

I :j−1 : R2 : I :p−j−1
)

. But that’s
the degree p piece of q(K).

Proposition 1. The sequence

Rp :=
⊕p−1

j=1

(

I :j−1 : R2 : I :p−j−1
) ∂
−−−−→ I :p µp

−−−−→ I :p−1

is exact, where R2 := kerµ : I :2 → I; so (K, I) is “2-local”.
The Free Case. If J is an augmentation ideal in K = F =
〈xi〉, define ψ : F → F by xi 7→ xi + ǫ(xi). Then J0 := ψ(J)
is {w ∈ F : degw > 0}. For J0 it is easy to check that R2 =
Rp = 0, and hence the same is true for every J .
The General Case. If K = F/〈M〉 (where M is a vector space
of “moves”) and I ⊂ K, then I = J/〈M〉 where J ⊂ F . Then
I :p = J :p

/
∑

J :j−1 :〈M〉 :J :p−j and we have

J :p
µF

1-1
//

πponto
��

J :p−1

πp−1 onto
��

I :p = J :p /
∑

J : :〈M〉 :J : µ
// I :p−1 = J :p−1 /

∑

J : :〈M〉 :J :

So2 ker(µ) = πp

(

µ−1
F (ker πp−1)

)

= πp

(
∑

µ−1
F (J : :〈M〉 :J :)

)

=
∑

πp

(

J : :µ−1
F 〈M〉 :J

:
)

=
∑

I : :R2 :I : =:
∑p−1

j=1 Rp,j.

Flow Chart.

R2 is simpler than may seem! It’s
an “augmentation bimodule” (IR2 =
0 = R2I thus xr = ǫ(x)r = rǫ(x) = rx
for x ∈ K and r ∈ R2), and hence
R2 = π2(µ

−1
F M).

J :2
µF

1-1
//

π2

��

J ⊃M

π1

��

I :2
µ

// I = J/〈M〉

Rp is simpler than may seem! In Rp,j = I :j−1 : R2 : I :p−j−1

the I factors may be replaced by V = I/I2. Hence

Rp ≃

p−1
⊕

j=1

V ⊕j−1 ⊗ π2(µ
−1
F M)⊗ V ⊗p−j−1.

Claim. π(Rp,j) = Rp,j; namely,

π
(

I :j−1 : R2 : I :p−j−1
)

= V ⊗j−1 ⊗R2 ⊗ V
⊗p−j−1.
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A Syzygy:
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Goussarov-Polyak-Viro

[GPV]

k j ik j i

+ + +

+ + − − −
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K =

Example.

I =

(goes back to [Koh])

The Pure Virtual Braid Group is Quadratic, II
Examples and Interpretations

T. Kohno

An = q(PvBn).

I = with Q = σ̃ij = σij − 1 = ! −P,
the “semi-virtual crossing”.

V = I/I2 =
〈

v-braids
with one Q〉/

(! = P)

= 〈aij〉1≤i6=j≤n

The Main Theorem [Lee]. PvBn is quadratic.

PvBn is the group

〈σij : 1 ≤ i 6= j ≤ n〉

/

σijσikσjk = σjkσikσij

σijσkl = σklσij

of “pure virtual braids” (“braids when you look”,
“blunder braids”):

L. Kauffman

[Kau, KL]

σ24 = R3: =

i j k

An = TV/〈[aij , aik] + [aij , ajk] + [aik, ajk], c
ij
kl = [aij , akl]〉,

i j k

I :p.

=

− − −−

Yijk :=

a24 =

yijk =

Syzygy Completeness, for PvBn, means:

Rp =
⊕p−1

j=1 Rp,j
∂

−−−−→ I :p π
−−−−→ V ⊗p

{

σ̃12 : Y345 : σ̃67 : . . .
}

−→

{σ̃12 : Y345 : σ̃67 : . . .} −→ {a12y345a67 . . .}

Is every relation between the yijk’s and the cijkl’s also

a relation between the Yijk’s and the Cij
kl’s?

R2(PvBn) is generated as a vector space by Cij
kl and

James Gillespie’s Sightline #2
(1984) is a syzygy, and (ar-
guably) Toronto’s largest sculp-
ture. Find it next to University
of Toronto’s Hart House.

Theorem S. LetD be the free associative algebra generated by
symbols aij , yijk and cijkl, where 1 ≤ i, j, k, l ≤ n are distinct
integers. Let D0 be the part of D with only aij symbols and
let D1 be the span of the monomials in D having only aij

symbols, with exactly one exception that may be either a
yijk or a cijkl. Let ∂ : D1 → D0 be the map defined by

yijk 7→ [aij , aik] + [aij , ajk] + [aik, ajk],

cijkl 7→ [aij , akl].

Then ker ∂ is generated by a family of elements readable from
the picture above and by a few similar but lesser families.

(K/Ip+1)⋆ = (invariants of type p) =: Vp

(Ip/Ip+1)⋆ = Vp/Vp−1 V = 〈tij |tij = tji〉 =
〈 〉

ker µ̄2 = 〈[tij , tkl] = 0 = [tij, tik + tjk]〉 = 〈4T relations〉

A = q(K) =

(

horizontal chord dia-
grams mod 4T

)

= 4T

Z: universal finite type invariant, the Kontsevich integral.

= −
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Footnotes

1. Following a homonymous paper and thesis by Peter Lee [Lee]. All serious work here is his and was extremely
patiently explained by him to DBN. Page design by the latter.

2. The proof presented here is broken. Specifically, at the very end of the proof of the “general case” of Propo-
sition 1 the sum that makes up ker πp−1 is interchaged with µ−1

F . This is invalid; in general it is not true that
T−1(U + V ) = T−1(U) + T−1(V ), when T is a linear transformation and U and V are subspaces of its target
space. We thank Alexander Polishchuk for noting this gap. A handwritten non-detailed fix can be found at
http://katlas.math.toronto.edu/drorbn/AcademicPensieve/Projects/Quadraticity/, especially under
“Oregon Handout Post Mortem”. A fuller fix will be made available at a later time.
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K =

K/K1 K/K2 K/K3 K/K4

· · ·

An expansion Z is a choice of a
“progressive scan” algorithm.

← ← ← ←

· · ·
Adjoin

K1/K2 K3/K4 K4/K5 K5/K6 · · ·⊕ ⊕ ⊕ ⊕ ⊕K/K1

R
3

K2/K3⊕

=

ker(K/K4→K/K3)

=adjoin

=

(

The set of all
2D projections
of reality

)

Rotate
Crop

crop
rotate

Just for fun.
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The Pure Virtual Braid Group is Quadratic, III

Figuring out R2 and R2.

kerµ = π2

(

µ−1
F (M)

)

is in principle computable, and
then R2 follows as V ⊗2 =
(I/I2)⊗2 = I :2/µ3(I

:3).

J :2
µF

1-1
//

π2

��

J ⊃M

π1

��

I :2
µ

// I = J/〈M〉
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