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The notion of finite type invariants of virtual knots introduced in [GPV] leads to the

study of ~An, the space of diagrams with n directed chords mod 6T (also known as the

space of arrow diagrams), and weight systems on it. It is well known that given a Manin

triple together with a representation V we can construct a weight system.

In the first part of this thesis we develop combinatorial formulae for weight systems

coming from standard Manin triple structures on the classical Lie algebras and these

structures’ defining representations. These formulae reduce the problem of finding weight

systems in the defining representations to certain counting problems. We then use these

formulae to verify that such weight systems, composed with the averaging map, give us

the weight systems found by Bar-Natan on (undirected) chord diagrams mod 4T ([BN1]).

In the second half of the thesis we present results from computations done jointly with

Bar-Natan. We compute, up to degree 4, the dimensions of the spaces of arrow diagrams

whose skeleton is a line, and the ranks of all classical Lie algebra weight systems in all

representations. The computations give us a measure of how well classical Lie algebras

capture the spaces ~An for n ≤ 4, and our results suggest that in ~A4 there are already

weight systems which do not come from the standard Manin triple structures on classical

Lie algebras.
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Chapter 1

Introduction

This thesis is about the space of directed chord diagrams modulo 6T (from now on the

space is referred to as the space of arrow diagrams) and functions mapping it to Lie

algebra-related spaces. Such functions are called weight systems, which have roots in

the study of finite type invariants of virtual knots ([GPV]). The first chapter is a review

of the notions of arrow diagrams and weight systems. Topics include arrow diagrams,

acyclic directed trivalent diagrams, finite type invariants of virtual knot diagrams, weight

systems coming from Manin triples and r-matrices, and construction of Manin triples from

simple Lie algebras. In chapter 2 we present combinatorial formulae of weight systems

coming from Manin triples constructed from classical Lie algebras (gl, so and sp), and

their defining representations. In Chapter 3 we present results of computations done

jointly with Dror Bar-Natan. The results tell us how well these classical Manin triples

capture the space of arrow diagrams when the skeleton is an oriented line and when the

degree is low. We cover all representations in our computations by working with the

universal enveloping algebras of the Manin triples.

This thesis is intended for an audience with background in finite type invariants.

Standard references include [BN2] on finite type invariants of classical knots and [GPV]

on finite type invariants of virtual knots.
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1.1 Directed chord diagrams modulo 6T

A directed chord diagram with skeleton Γ (which is usually a disjoint union of oriented

circles and lines) is a diagram with oriented chords joining distinct points of Γ. The

space we study in this thesis is the space of directed chord diagrams modulo 6T. The

6T relation is as shown in figure 1.1. The solid lines are parts of the skeleton while the

dotted arrows are the directed chords. (The solid line segments may come from the same

connected component of the skeleton.) The pictures only show the part of the diagrams

where they are different. The parts which are not shown are the same for each diagram.

We make the following definition:

Figure 1.1. The 6T relation.

Definition 1.1.1. ~A(Γ) is the vector space which is the span of directed chord diagrams

with skeleton Γ modulo 6T relations. From now on we will use “arrow diagrams” to refer

to equivalent classes in ~A(Γ). A linear functional on ~A(Γ) is called a weight system. In

this thesis we will also refer to functions from ~A(Γ) to Lie algebra-related spaces (the

universal enveloping algebra of a Lie algebra g, or the tensor product of multiple copies

of g, its dual g∗ and a representation) as weight systems.

In this thesis Γ is either a circle or a straight line. ~A(Γ) is isomorphic to a space with

a different presentation. We define a “directed Jacobi diagram” with skeleton Γ to be

a directed graph whose vertices are either univalent or trivalent so that all its univalent

vertices are attached to distinct points on Γ, and each trivalent vertex comes with an

orientation (i.e., a cyclic order of the three edges incident at the vertex). A directed

Jacobi diagram with skeleton Γ is called acyclic if the underlying directed graph (i.e., the

diagram without Γ) does not contain any cycle.
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Definition 1.1.2. Let
−→
NS and

−−−→
STU be the relations as shown in figures 1.2 and 1.3.

~AAJ(Γ) (“AJ” stands for “acyclic Jacobi”) is the span of acyclic directed trivalent graphs

on Γ modulo
−→
NS and

−−−→
STU .

Figure 1.2. The
−−→
NS relation. We quotient out by any diagram which contains one

of the pictures above as a subdiagram.

Figure 1.3. The
−−−→
STU relation. Each equation only shows the parts of the diagrams

which are different.

~A(Γ) and ~AAJ(Γ) are related by the following theorem:

Theorem 1.1.1. (See Polyak’s [Po1], Theorem 4.7, Proposition 4.8 and Theorem 4.9)

The inclusion map ι : ~A(Γ) → ~AAJ(Γ) induces an isomorphism between ~A(Γ) and

~AAJ(Γ). The relations
−→
AS and

−−−→
IHX also hold in ~AAJ(Γ).

The reason we introduce ~AAJ(Γ) is because of their similarity diagramatically to Lie

bialgebras. More details will be presented in section 1.4.
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Figure 1.4. The
−→
AS relation. The arrows may be oriented anyway so long as they

match at o1, o2 and o3. This corresponds to the reversal of a cylic order of the

incident edges.

Figure 1.5. The
−−−→
IHX relation.

Let ~A(↑) denote the space ~A(Γ) where Γ is an oriented line. There is a coproduct

structure ∆ : ~A(↑)→ ( ~A(↑))⊗2 which we are going to use in chaper 3. It is given by the

following formula.

Definition 1.1.3. Let D be an arrow diagram whose skeleton is a line. ∆(D) is the sum∑
D1⊗D2, where the sum is over all ways to decompse D into two subdiagrams D1 and

D2. (See fig 1.6 for an example.) We extend D to all of ~A(↑) by linearity.

Proposition 1.1.1. ∆ is well defined on ~A(↑).

Proof of Proposition 1.1.1. Consider the 6T relation as given in figure 1.7. We have to

show ∆ maps the left hand side to 0. This can be done by direct computation. In
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Figure 1.6. An example of a coproduct. The upper strand represents the first

component while the lower strand represents the second component.

Figure 1.7. The 6T relation with all non-zero terms on one side.

particular given any (n− 2)-tuple (i1, . . . , in−2) so that each ij = 1 or 2, we consider all

summands in the image under ∆ of the left hand side such that each arrow aj which

does not participate in 6T appears in the (ij)
th component. Since we have four ways to

decide where to put the two arrows which participate in 6T , we have 6 × 4 = 24 such

summands. Out of these 24, consider those in which the arrows which participate in

6T appear in different components. There are 12 of them and each term in figure 1.7 is

responsible for two. We notice that the two coming from the first term cancel the two

from the second term. Similarly the two coming from the third term cancel the two from

the fourth, and the two from the fifth term cancel the two from the sixth. What we are

left with, therefore, are those summands where the two arrows which participate in 6T

appear in the same component, but this means we have a sum of a 6T relation in the

first component and a 6T relation in the second component, which is 0 in ( ~A(↑))⊗2.

1.2 Relations between finite type invariants and weight

systems

This section is a review of the notion of finite type invariants of virtual knots and cor-

responding weight systems introduced in [GPV]. Also we consider the relation between
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weight systems and finite type invariants of oriented virtual knots modulo “braid-like”

Reidemeister moves (see [BHLR] and below), which are Reidemeister moves where the

part of the knot involved is locally a braid. We say an invariant of virtual knots is of

type n if it vanishes on all virtual knot diagrams with more than n semi-virtual crossings.

(The smallest such n is called the degree of the invariant.) A semi-virtual crossing is the

difference between a real crossing and a virtual crossing. On the level of Gauss diagrams

we use solid arrows to represent real crossings and dotted arrows to represent semi-virtual

crossings (figure 1.8). An invariant is said to be of finite type if it is of type n for some

n.

Figure 1.8. The semivirtual crossing. On the right are representations of semivir-

tual crossings in Gauss diagrams. The sign above each arrow is the sign of the

corresponding crossing.

We may also think of figure 1.8 as representing a change of basis, so given a virtual

knot diagram we can always express it as a linear combination of virtual knot diagrams

with only semi-virtual and virtual crossings. Equivalently, given a Gauss diagram with

solid arrows we can always turn it into a linear combination of Gauss diagrams with only

dotted arrows. Reidemeister II and III expressed in this new basis can be seen in figures

1.9 and 1.10. On the level of Gauss diagrams the moves are given as relations in figures

1.11 and 1.12. A type n invariant can therefore be considered as a function of Gauss

diagrams which respects these relations and vanishes on all diagrams with more than n

dotted arrows.

Reidemeister II and III moves come in two types, the braid-like ones and the non-
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braid-like ones (figures 1.9 and 1.10). Braid-like Reidemeister moves are ones in which

the orientations of the participating strands define a consistent ordering on the two (or

three) crossings involved, i.e., the move takes place on a part of a braid.

Figure 1.9. Reidemeister II in terms of semivirtual crossings. The braid-like ones

are the ones where both strands go up or both strands go down, so that both strands

visit the crossings in the same order.

Figure 1.10. Reidemeister III in terms of semivirtual crossings. The non-braid-like

ones are ones in which the middle strand goes up (respectively, down) while the

other two strands go down (respectively, up). All the other ones are braid-like,

i.e., the orientations on the strands order the crossings consistently. All braid-like

Reidemeister III moves are consequences of braid-like Reidemeister II moves and the

braid-like Reidemeister III move where all crossings have the same sign, i.e., where

all the strands above go up or go down.

We make the following definition.

Definition 1.2.1. The space of (long) braid-like virtual knots is the space of (long)
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Figure 1.11. Reidemeister II in terms of Gauss diagrams for any sign σ. For

braid-like Reidemeister II both strands go up or both strands go down.

Figure 1.12. The 8T (“eight-term”) relation, which is the Reidemeister III move

represented with Gauss diagrams with only semivirtual crossings. The vertical strands

may be oriented any way. The non-braid-like Reidemeister moves are ones in which

the middle strand goes up (respectively, down) while the other two strands go down

(respectively, up). The signs of the arrows are dictated by the orientation of the

strands and figure 1.10. All other orientations give us braid-like Reidemeister III.

Figure 1.13. A different way of drawing 6T. The 6T relation can be obtained from

the braid-like 8T relation where all arrows have the same signs by modding out by

degree-(n+ 1) diagrams.

virtual knot diagrams modulo braid-like Reidemeister II and braid-like Reidemeister III.

Invariants of type n of braid-like virtual knots are those which vanish on diagrams with
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more than n semi-virtual crossings.

By the result of the computations presented in [BHLR], the space of braid-like virtual

knots is not isomorphic to the space of virtual knots. (This also follows from Theorems

1.1 and 1.2 of Polyak’s [Po2].) Let Vn be the space of all invariants of type n. If we

consider an element in the space Vn/Vn−1, each equivalence class can be represented by

a function on diagrams with exactly n arrows. Let φ be such a function, then φ vanishes

on diagrams with n+ 1 semi-virtual crossings, so it vanishes on the term with two shown

arrows in figure 1.11 if we assume the rest of the diagram contains n − 1 arrows. This

means that if D is a diagram with n arrows and D′ is a diagram obtained from D by

making a negative arrow (if one exists) positive, then φ(D) = (−1)φ(D′). Therefore, if D

is a diagram with q negative arrows and D+ is the diagram obtained from D by making

all negative arrows positive, φ does not distinguish between D and (−1)qφ(D+), so signs

of arrows are superfluous. Also φ must vanish on the two terms with three arrows shown

in the braid-like 8T relation (figure 1.12) if we assume the rest of the diagram contains

n− 2 arrows. In particular, if all arrows carry the same sign, this gives us precisely the

6T relation above. Therefore any element of Vn/Vn−1 gives us a weight system on ~An.

It remains open, however, if every weight system is the weight system induced by some

element of Vn/Vn−1. That is, it remains open if all weight systems satisfy consequences of

the 8T relations where all the diagrams involved have either degree n or n−1, and where

all degree-(n − 1) diagrams cancel and only degree-n diagrams remain. Computational

results presented in [BHLR] (up to degree 5) suggest that all weight systems on ~An(↑)

integrate to finite type invariants of long braid-like virtual knots.

Note. We restrict ourselves to only the braid-like Reidemiester II and III here for

the following reasons. If we were to introduce cyclic Reidemiester II, we will have to

impose extra relations (called “XII” in [BHLR]) on the arrow diagrams. If we were to

introduce cyclic Reidemeister III, we then lose the correspondence (suggested by compu-

tational results presented in [BHLR]) between weight systems and finite type invariants.
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(Cyclic Reidemeister III moves generate the same 6T relations but, by Theorems 1.1 and

1.2 of Polyak’s [Po2], are not consequences of braid-like Reidemeister II and III moves.

Therefore they reduce the dimensions of the spaces of finite type invariants.)

1.3 Standard Manin triple structures on simple Lie

algebras

In this section we review Manin triples and the closely related notion of Drinfeld doubles.

We follow chapter 4 of [ES] to construct Manin triples from simple Lie algebras. One

word about notation: throughout this thesis we use the Einstein summation notation,

i.e., all indices which appear twice in an expression (once as an upper index and once

as an lower index) are summed over. The reader may refer to chapter 3 of [ES] for

background in Lie bialgebras, especially those which are cobounary, quasitriangular, or

triangular.

Definition 1.3.1. A Lie bialgebra (g, [, ], δ) is a Lie algebra (g, [, ]) with an antisymmetric

cobracket map δ : g→ g⊗ g satisfying the coJacobi identity

(id+ τ + τ 2)((δ ⊗ id)δ(x)) = 0

and the cocycle condition

δ([x, y]) = adx(δy)− ady(δx),

for any x, y ∈ g, where τ is the cyclic permutation on g⊗3.

Definition 1.3.2. A finite dimensional Manin triple is a triple of finite dimensional

Lie algebras (g̃, g+, g−), where g̃ is equipped with a metric (a symmetric nondegenerate

invariant bilinear form) (., .) such that

1. g̃ = g+ ⊕ g− as a vector space and g+, g− are Lie subalgebras of g̃.
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2. g+, g− are isotropic with respect to (., .), i.e., (g+, g+) = 0 = (g−, g−).

Given a Manin triple (g̃, g+, g−), g̃ is also called the Drinfeld double of g+ and is denoted

Dg+.

As a consequence, g+ and g− are maximal isotropic subalgebras. Suppose (g̃, g+, g−)

is a Manin triple. The metric then induces a nondegenerate pairing g+ ⊗ g− → C, and

hence a Lie algebra structure on g∗+
∼= g−. Let δ be the induced coalgebra structure on

g+. We can check by direct computation (section 4.1, [ES]) that the cocycle condition is

satisfied. (g+, [., .], δ) is therefore a Lie bialgebra.

In fact the process can be reversed. Given a Lie bialgebra g, we may define a symmet-

ric nondegenerate bilinear form (., .)g⊕g∗ on g⊕ g∗, by ((e, f), (e′, f ′))g⊕g∗ = f(e′) + f ′(e).

If {ei} is a basis of g and {f i} is the corresponding dual basis of g∗, then we can define a

Lie algebra structure on g⊕ g∗ by making g and g∗ Lie subalgebras and setting, for any

f ∈ g∗ and e ∈ g,

[f, e] = ad∗ef − ad∗fe.

The above definition is motivated by invariance. Since, for any f, f ′ ∈ g∗ and e, e′ ∈ g,

we must have ([f, e], e′)g⊕g∗ = (f, [e, e′])g⊕g∗ and ([f, e], f ′)g⊕g∗ = −(e, [f, f ′])g⊕g∗ , the g∗

componenent and the g component of [f, e] must be ad∗ef and −ad∗fe, respectively. In

terms of the structure constants (with [ei, ej] = ckijek and [f r, f s] = γrst f
t) the relation

above can be written as

[f r, es] = crstf
t − γrts et. (1.1)

(See section 1.3 of [CP].) (g⊕ g∗, g, g∗) is therefore a Manin triple.

There is a standard way to obtain Manin triples from simple Lie algebras, and those

are the ones we are going to use in chapters 2 and 3. The construction below follows

Chapter 4 of [ES]. Given a simple Lie algebra g over C with metric (., .), we fix a Cartan

subalgebra h and consider a polarization of the roots ∆+ ∪ ∆− (with n+ and n− the
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corresponding root spaces). For each root α we consider eα ∈ gα and fα ∈ g−α (where

g±α are the root spaces corresponding to ±α) such that (eα, fα) = 1. Let hα = [eα, fα].

We consider the Lie algebra

g̃ = n+ ⊕ h(1) ⊕ h(2) ⊕ n−

where h(1) ∼= h ∼= h(2) and with bracket defined by:

[h(1), h(2)] = 0, [h(i), eα] = α(h)eα,

[h(i), fα] = −α(h)fα, and [eα, fα] = 1
2
(h

(1)
α + h

(2)
α ).

We define the following metric on g̃:

(x+ h(1) + h(2), x′ + h′(1) + h′(2))g̃ = 2((h(1), h′(2))g + (h(2), h′(1))g) + (x, x′)g

We can check that (g̃, n+⊕h(1), n−⊕h(2)) is a Manin triple. In fact g̃ is a Lie bialgebra

with r-matrix

r̃ =
∑
α∈∆+

eα ⊗ fα +
1

2

∑
i

k
(1)
i ⊗ k

(2)
i ,

i.e., δ(x) = adx(r̃), where {ki} is an orthonormal basis of h with respect to (., .). We

define the projection π : g̃→ g where

π|n+⊕n− = Id π(h
(1)
α ) = hα = π(h

(2)
α )

This map endows g with a quasitriangular Lie bialgebra structure with r matrix

r =
∑
α∈∆+

eα ⊗ fα +
1

2

∑
i

ki ⊗ ki, (1.2)

so δ(x) = adx(r). The Lie subalgebras b+ = n+⊕h and b− = n−⊕h are Lie subbialgebras.

Note that the map π is a Lie algebra homomorphism. In particular if g is given as a

matrix Lie algebra then π is a representation, and we call it the defining representation

of g̃.
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Definition 1.3.3. Let g be one of the classical Lie algebras and (g̃, g+, g−) be the corre-

sponding Manin triple constructed as above, we call the map π the defining representation

of the Manin triple (g̃, g+, g−).

It is worth noting that we have an easier way to describe g̃. If we define

hCα =
1

2
(h(1)

α + h(2)
α ), hZα =

1

2
(h(1)

α − h(2)
α ),

where C stands for “Cartan” and Z stands for “zentral” (“central”), and let hC be the

space spanned by all hCα ’s, then we have

[hC , fα] = −α(h)fα, [hC , eα] = α(h)eα,

[hC , hC ] = 0, [hZ , g̃] = 0, and [eα, fα] = hCα .

Therefore we can write g̃ ∼= g⊕ hZ , where the direct sum is a direct sum of Lie algebras.

The map π is given by π(eα) = eα, π(fα) = fα, π(hCα ) = hα and π(hZα) = 0.

1.4 Directed trivalent graphs and Lie tensors

In this section we follow section 3.2 of [Ha] to construct elements of tensors of Lie algebras

out of diagrams from ~A(Γ) and ~AAJ(Γ). First we notice that equation (1.1) immediately

suggests a relation between Lie bialgebras and ~A(Γ). Given a Lie bialgebra g we consider

its Drinfeld double g⊕ g∗. If {ei} is a basis of g and {f i} is the corresponding dual basis

of g∗, we follow [Ha] and put f i at the end of an arrow and ei at the head. (See figure

1.15.) We then move along fragments of the skeleton to get a tensor product of letters,

picking up an f i or an ei whenever we encounter the tail of the head of an arrow. If we

do the above to figure 1.1, we get figure 1.14, which is a diagrammatic representation of

the following equation in (Dg)⊗3:

f i ⊗ [ei, f
j]⊗ ej = [f j, fk]⊗ ek ⊗ ej + f i ⊗ fk ⊗ [ek, ei].

13



Figure 1.14. The 6T relation with each arrow labelled by f i ⊗ ei.

(By equation (1.1) we can check that the equation holds as both sides are equal to

γjki (f i ⊗ ek ⊗ ej)− cjik(f i ⊗ fk ⊗ ej).)

Given that ~A(Γ) and ~AAJ(Γ) are isomorphic, we use the
−−−→
STU relations to interpret

the trivalent vertices in elements of ~AAJ(Γ). Given
−→
NS we only have two types of

vertices (“two in, one out” and “one in, two out”). The
−−−→
STU relation suggests that a

vertex corresponds to a bracket in Dg. The first two relations in figure 1.3 suggest that

the “two in, one out” vertex should correspond to the bracket in g, while the “one in,

two out” vertex should correspond to the bracket in g∗, or the cobracket in g. Once this

correspondence is established, the last two relations in the same figure then just become

a diagrammatic version of equation (1.1).

These are exactly the tensors Haviv introduced in his paper ([Ha]). To complete the

picture we assign a representation Dg→ End(V ) to each connected piece of the skeleton,

so that the tail of a piece of the skeleton corresponds to a copy of V ∗ while the head of

the skeleton corresponds to a copy of V .

Figure 1.15. The arrow.

In more details the cobracket tensor is given by f i ⊗ f j ⊗ [ei, ej] = ckij(f
i ⊗ f j ⊗ ek) ,

while the bracket tensor is given by f i ⊗ δ(ei) = γjki (f i ⊗ ej ⊗ ek), where ckij and γjki are
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the structure constants for the bracket and the cobracket, respectively. (See figure 1.16.)

It is worth noting that under this interpretation, the 3-term IHX relations become the

Jacobi and coJacobi identities, and the 5-term IHX becomes the cocycle identity.

Figure 1.16. The bracket (two in, one out) tensor (left) and the cobracket (one in,

two out) tensor (right).

To assign a tensor to a directed graph, we break it down into subgraphs with 0 or 1

vertex, assign tensors to these elementary pieces, and at the points of gluing along the

dotted edges we contract these tensors using the metric. When we glue pieces of the

skeleton we contract the corresponding pieces of V and V ∗.

Given a representation R : g̃ → End(V ) where V is given a specified basis b =

{v1, ..., vd}, if the skeleton is part of the picture, we assign Greek letters ranging over

{1, ..., d} to each section of the skeleton. For example in figure 1.17, we assign

R(ei)⊗ f i ∈ End(V )⊗ g̃,

or

(vβ(R(ei)(vα)))(vα ⊗ vβ ⊗ f i) ∈ V ∗ ⊗ V ⊗ g̃

to the picture on the left. Also we assign

R(f i)⊗ δ(ei) ∈ End(V )⊗ g̃⊗ g̃,

or

vβ(R(f i)(vα))(δei) = γjki v
β(R(f i)(vα))(vα ⊗ vβ ⊗ ej ⊗ ek) ∈ V ∗ ⊗ V ⊗ g̃⊗ g̃
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to the picture on the right. Note, since vβ = 〈vβ, .〉 where 〈., .〉 is the inner product of

Cd with respect to the given basis, the same values can be written as 〈vβ, R(ei)(vα)〉f i

and 〈vβ, R(f i)(vα)〉δei. Here we do not distinguish R(f i) or R(ei) from its matrix with

respect to the basis b.

Figure 1.17. We assign a representation to the skeleton. The diagrams correspond

to (R(ei))
β
αf i and (R(f i))βα(δei), respectively. (R(ei))

β
α ((R(f i))βα) is the entry in

the βth row and the αth column of the matrix of R(ei) (R(f i)) with respect to the

given basis.

If we restrict ourselves to the case where the skeleton is a circle, we can see that the

construction above gives us the trace of the tensor in the given representation. Note, how-

ever, if we don’t specify a representation we have a weight system from arrow diagrams

to the universal enveloping algebra U(g̃) (for ~A(↑)) or U(g̃)/{xw−wx : x ∈ g̃, w ∈ U(g̃)}

(for ~A(©)).

CYBE Weight Systems. Here we briefly introduce a different class of weight

systems called CYBE weight systems. (CYBE stands for classical Yang-Baxter equation.

See chapter 2 of [CP] and sections 3.2 and 3.3 of [Po1].) We recall figure 1.13, which

is a different way of drawing 6T . It is a diagrammatic way of writing the Classical

Yang-Baxter Equation (CYBE)

[r12, r13] + [r12, r23] + [r13, r23] = 0.

If we take an r-matrix, we get a map ~A(Γ)→ U(g) which is called a CYBE weight system.

Note that a triangular Lie bialgebra g (chapter 3, [ES]) gives us both a Drinfeld double
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weight system and a CYBE weight system. (For the Drinfeld double weight system we

associate to each arrow the element in g⊗g∗ which corresponds to the identity map on g,

while for the CYBE weight system we associate to each arrow the r-matrix, an element

in g ⊗ g.) The two resulting weight systems, however, may have different ranks. One

easy example is that given any non-trivial Lie algebra, we can define a triangular Lie

bialgebraic structure on it by letting r = 0. In this case the CYBE weight system would

be 0, but the Drinfeld double weight system would not be 0.
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Chapter 2

Combinatorial Formulae in the

Defining Representations

In this chapter we will present combinatorial formulae for weight systems coming from

Manin triples constructed from classical Lie algebras, following chapter 1, and their

defining representations. These formulae turn the problem of finding weight systems in

the defining representation into certain counting problems. The metric in each of the Lie

algebras is (A,B) = tr(AB). Throughout this chapter mij or mij is the matrix whose

ij-th entry is 1 and zero everywhere else. Given a matrix M , the term Mβ
α is the entry

in the βth row and αth column of M . Let π be the defining representation as given in

section 1.3 (i.e., the map which identifies the two copies of the Cartan subalgebra), we

let xi = π(ei) and ξi = π(f i).

2.1 gl(N)

We begin with gl(N), the Lie algebra of all N × N matrices. Note that gl(N) is not

simple, but our construction in section 1.3 can be applied to sl(N). One decomposition
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of sl(N) into positive and negative root spaces is

n+ = span{mij : i < j}

n− = span{mji : i < j}

h = span{mii −mi+1,i+1 : 1 ≤ i < n}

Applying the procedure in section 1.3 results in the Manin triple (s̃l, sl+, sl−), where

sl+ = n+ ⊕ h(1) and sl− = n− ⊕ h(2). Let s be the commutative Lie algebra of scalar

matrices. We define

gl+ = sl+ ⊕ s(1)

and

gl− = sl− ⊕ s(2)

where s(1) and s(2) are two distinct copies of the (commutative) algebra of scalar matrices,

and the direct sums above are direct sums of Lie algebras.

We define a Lie algebra g̃l which as a vector space is gl+⊕ gl−, and whose metric and

bracket are as follows. The metric is given by

(x+ s(1) + s(2), x′ + s′(1) + s′(2))g̃l = 2((s(1), s′(2)) + (s′(1), s(2))) + (x, x′)s̃l

where x, x′ are arbitrary elements in s̃l, while s(1), s′(1) are arbitrary elements in s(1) and

s(2), s′(2) arbitrary elements in s(2). We define the bracket so that s̃l is a Lie subalgebra

of g̃l (i.e., [s̃l, s̃l]g̃l = [s̃l, s̃l]s̃l) and

[s(i), x]g̃l = 0 for i = 1, 2 and any x ∈ g̃l,

where (., .)s̃l and [., .]s̃l are the metric and the bracket in s̃l, respectively.

We consider the Manin triple (g̃l, gl+, gl−). In this thesis we use gl(N) instead of

sl(N). Note that {eij}i≤j forms a basis of n+⊕ s(1) and {f ij}i≤j forms the corresponding

dual basis of g∗ ∼= n−⊕s(2). The map π is as given in section 1.3. We have xij = π(eij) =
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mij and ξij = π(f ij) = mji. Following the previous chapter we put ξij at the tail and xij

at the head of each arrow. By equation (1.2) we multiply by a factor of 1
2

when i = j.

We consider the tensor in figure 2.1. It corresponds to the map:∑
i<j

ξij ⊗ xij +
1

2

∑
i

ξii ⊗ xii : V ⊗ V → V ⊗ V.

In tensor form we can write it as T βναµv
α⊗vµ⊗vβ⊗vν . What we mean by a combinatorial

formula in this thesis is a combinatorial description of T βναµ in terms of its indices.

Figure 2.1. The simplest subdiagram in an arrow diagram.

We now find the coefficient T βναµ . Since xij = mij and ξij = mji, the coefficient is

given by

T βναµ =
∑
i<j

(mji)βα(mij)
ν
µ +

1

2

∑
i

(mii)βα(mii)
ν
µ

=
∑
i<j

δjβδiαδ
ν
i δjµ +

1

2

∑
i

δiβδiαδ
ν
i δiµ

=


δβµδ

ν
α for α < β

1
2
δβµδ

ν
α for α = β

0 otherwise.

=


1 for α = ν < β = µ

1
2

for α = ν = β = µ

0 otherwise.

The result can be expressed more clearly using a diagram as in figure 2.2, where we

connect two Greek letters if they are required to be equal if T βναµ is to be non-zero. The

double headed arrow is a shorthand for the relation above (i.e., the coefficient is 1 when
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the side from the tail of the double-headed arrow is bigger and 1
2

when the two sides of

the double-headed arrow are equal).

Figure 2.2. A diagrammatic representation of the gl(N) tensor.

Direct verification that the above formula satisfies 6T . Here we include a

direct verification that the above formula satisfies the 6T relation.

Considering figure 1.1, let ζ1 be the index corresponding to the free end of the skeleton

in the top left corner, and let the indices corresponding to the other free ends be ζ2, ..., ζ6

counting counterclockwise (figure 2.3). By figure 1.1, the coefficient of vζ1 ⊗ vζ2 ⊗ vζ3 ⊗

vζ4 ⊗ vζ5 ⊗ vζ6 is possibly non-zero only if, for some α, β, γ, σ, µ and ν,

1. ζ1 = ζ6 = γ, ζ2 = ζ3 = α and ζ4 = ζ5 = β, or

2. ζ1 = ζ4 = σ, ζ2 = ζ5 = µ and ζ3 = ζ6 = ν for some α, β, γ, µ, ν, σ.

The gl tensor further dictates that α ≥ γ and β ≥ γ, and µ ≥ ν and µ ≥ σ.

Figure 2.3. The terms of the 6T relation, with free ends of the skeleton labelled as

described in the body of the text. Ln (respectively, Rn) is the n-th term on the left

(respectively, right) in figure 1.1

Suppose only one of the conditions above are satisfied, we prove that the coefficients

of vζ1⊗ vζ2⊗ vζ3⊗ vζ4⊗ vζ5⊗ vζ6 on both sides of 6T are equal. In the following table the
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Figure 2.4. The terms of the 6T relation, with relations imposed on the indices by

the gl tensor. Ln (respectively, Rn) is the n-th term on the left (respectively, right)

in figure 1.1

column Ln (Rn) represents the contribution of the nth term on the left (right) hand side

of 6T to the coefficient of vγ ⊗ vα⊗ vα⊗ vβ ⊗ vβ ⊗ vγ (if relation 1 above is satisfied) for

different values of α, β, γ. If relation 2 is satisfied we give the contribution of each term

to the coefficient of vσ ⊗ vµ ⊗ vν ⊗ vσ ⊗ vµ ⊗ vν for different values of µ, ν, σ. In all cases

the total contribution from the left equals to the total contribution from the right.

Order Relation satisfied L1 L2 R1 R2 R3 R4

α > β > γ 1 only 1 0 1 0 0 0

α > β = γ 1 only 1
2

0 1
2

0 0 0

α = β > γ 1 only 1 0 1
2

0 1
2

0

β > α = γ 1 only 1 0 0 0 1 0

β > α > γ 1 only 1
2

0 0 0 1
2

0

µ > ν > σ 2 only 0 −1 0 −1 0 0

µ = ν > σ 2 only 0 −1
2

0 −1
2

0 0

µ > ν = σ 2 only 0 −1 0 −1
2

0 −1
2

µ = σ > ν 2 only 0 −1
2

0 0 0 −1
2

µ > σ > ν 2 only 0 −1 0 0 0 −1

All ζi’s equal 1 and 2 1
4
−1

4
1
4
−1

4
1
4
−1

4

Note that if both conditions 1 and 2 above are satisfied, we have ζ1 = ζ2 = ζ3 = ζ4 =

ζ5 = ζ6, hence the last row in the table.
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2.2 so(2N)

One decomposition of so(2N) into positive root spaces, negative root spaces, and Cartan

subalgebra is as follows:

n+ = span{mij −mj+N,i+N : 1 ≤ i < j ≤ N} ∪

span{mi,j+N −mj,i+N : 1 ≤ i < j ≤ N}

n− = span{mji −mi+N,j+N : 1 ≤ i < j ≤ N} ∪

span{mj+N,i −mi+N,j : 1 ≤ i < j ≤ N}

h = span{mii −mi+N,i+N : 1 ≤ i ≤ N}

For s̃o(2N) (with two copies h(1), h(2) of the Cartan subalgebra, see section 1.3) we

use the basis {eijk} for n+ ⊕ h(1) and {f ijk} for n− ⊕ h(2), where 0 ≤ i ≤ j ≤ N and

k = 1, 2, such that if we let xijk = π(eijk) and ξijk = π(f ijk), we get

xij1 = mij −mj+N,i+N , where i ≤ j

xij2 = mi,j+N −mj,i+N , where i < j

ξij1 =
1

2
(mji −mi+N,j+N), where i ≤ j

ξij2 =
1

2
(mj+N,i −mi+N,j), where i < j

The arrow is, by equation (1.2), identified with the element

∑
1≤i<j≤N

k=1,2

ξijk ⊗ xijk +
1

2

∑
1≤i≤N

(mii −mi+N,i+N)⊗ (mii −mi+N,i+N).

T βναµ in this case is given by
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T βναµ =
∑
i<j

k=1,2

(ξijk)βα(xijk)
ν
µ +

1

2

∑
i

(mii −mi+N,i+N)βα(mii −mi+N,i+N)νµ

=
∑
i≤j

((
1

2
)δ

ij+1(δβjδiα − δβ,i+Nδj+Nα )(δνi δjµ − δνj+Nδi+N,µ)

+(
1

2
)δ

ij+1(−δβ,i+Nδjα + δβ,j+Nδiα)(δνi δj+N,µ − δνj δi+N,µ))

In the expression above the first summand is given by the case when k = 1 while the

second product corresponds to the case k = 2. We consider the first product. Letting A

be the set {1, 2, ..., N} and B the set {N + 1, N + 2, ..., 2N}, we can assign a tag A or

B to each of α, β, µ and ν to indicate which set it belongs to. The four combinations

that correspond to the four ways to expand the first summand in the last equation are

as given in figure 2.5.

Figure 2.5. Four ways to assign A and B to α, β, µ and ν.

Starting at the top left corner and going clockwise the four pictures correspond to

δβ,jδiαδ
ν
i δjµ, δβ,jδiαδ

ν
j+Nδi+N,µ, δβ,i+Nδj+Nα δνj+Nδi+N,µ and δβ,i+Nδj+Nα δνi δjµ, respectively. If

we remove the arrow and join two Greek letters to indicate that they are equal (or equal

modulo N , if one comes from A and the other from B), then the first summand can be

expressed diagramatically as in figure 2.6.

The double headed arrow here indicates that the value of the coefficient is 1 when

the side from the tail of the double-headed arrow is bigger than the side from the head

when we mod out by N , and 1
2

when the two sides of the double-headed arrow are

equal. Now we look at the product corresponding to the case k = 2. The only possible
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Figure 2.6. The so(2N) tensor when k = 1.

combination of tags is given in figure 2.7. Similarly we can represent the second summand

diagramatically. See figure 2.8.

Figure 2.7. The only possible assignment of A and B when k = 2.

Figure 2.8. The so(2N) tensor when k = 2.

In this case the equality may be weighted with any factor because when α = β = µ = ν

we get zero. If we choose the factor to be 1
2
, as we did in the beginning of this subsection,

diagramatically the coefficient T βναµ may be expressed as in figure 2.9. Note the last four

terms in figure 2.9 can be simplified to figure 2.10, by the property of the double headed

arrow. What this means is that for the particular combination of tags shown in the

diagram, the coefficient is 1 whenever α = ν and β = µ, regardless of the relative order

between α and β.
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Figure 2.9. The so(2N) tensor.

Figure 2.10. The last four terms from figure 2.9 can be simplified to this figure.

2.3 sp(2N)

One decomposition of sp(2N) into positive root spaces, negative root spaces, and Cartan

subalgebra is as follows:

n+ = span{mij −mj+N,i+N : 1 ≤ i < j ≤ N} ∪

span{mi,j+N +mj,i+N : 1 ≤ i ≤ j ≤ N}

n− = span{mji −mi+N,j+N : 1 ≤ i < j ≤ N} ∪

span{mj+N,i +mi+N,j : 1 ≤ i ≤ j ≤ N}

h = span{mii −mi+N,i+N : 1 ≤ i ≤ N}

For s̃p(2N) (with two copies h(1), h(2) of the Cartan subalgebra, see section 1.3) we

use the basis {eijk} for n+ ⊕ h(1) and {f ijk} for n− ⊕ h(2), where 0 ≤ i ≤ j ≤ N and
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k = 1, 2, such that if we let xijk = π(eijk) and ξijk = π(f ijk) we get:

xij1 = mij −mj+N,i+N , where i ≤ j

xij2 = mi,j+N +mj,i+N , where i ≤ j

ξij1 =
1

2
(mji −mi+N,j+N), where i ≤ j

ξij2 = (
1

2
)δ

ij+1(mj+N,i +mi+N,j), where i ≤ j

The arrow is, by equation (1.2), identified with

∑
1≤i<j≤N

k=1,2

xijk ⊗ ξijk +
1

2

∑
1≤i≤N

(mii −mi+N,i+N)⊗ (mii −mi+N,i+N).

If we look at the coefficient T βναµ we get:

T βναµ =
∑

1≤i<j≤N

(ξij1)βα(xij1)νµ +
∑

1≤i≤j≤N

(ξij2)βα(xij2)νµ

+
1

2

∑
1≤i≤N

(mii −mi+N,i+N)βα(mii −mi+N,i+N)νµ

=
∑
i≤j

((
1

2
)δ

ij+1(δβ,jδiα − δβ,i+Nδj+Nα )(δνi δjµ − δνj+Nδi+N,µ)

+(
1

2
)δ

ij+1(δβ,i+Nδjα + δβ,j+Nδiα)(δνi δj+N,µ + δνj δi+N,µ))

The extra factor of 1
2

in the second product is due to the fact that (xii2, ξ
ii2) = 4.

Like in the case of so(2N) we assign tags A and B to the four corners to indicate which

set each of α, β, µ and ν belongs to. The only possible labellings are the same as the

ones for so(2N). (See figures 2.5 and 2.7 for the cases k = 1 and k = 2, respectively.)

Following the same steps as in the so(2N) case we can see that the sp(2N) tensor may

be given as in figure 2.11. Note that it is almost the tensor for so(2N) except for some

sign difference. The last four terms in figure 2.11 can be simplified to figure 2.12, by the

property of the double headed arrow.
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Figure 2.11. The sp(2N) tensor.

Figure 2.12. The last four terms from figure 2.11 can be simplified to this figure.

2.4 so(2N + 1)

In this section, given a (2N + 1) × (2N + 1) matrix we count the rows and columns

starting from 0.

n+ = span{mi,0 −m0,i+N : 1 ≤ i ≤ N} ∪

span{mi,j −mj+N,i+N : 1 ≤ i < j ≤ N} ∪

span{mi,j+N −mj,i+N1 ≤ i < j ≤ N}

n− = span{m0,i −mi+N,0 : 1 ≤ i ≤ N} ∪

span{mj,i −mi+N,j+N : 1 ≤ i < j ≤ N} ∪

span{mj+N,i −mi+N,j : 1 ≤ i < j ≤ N}

h = span{mi,i −mi+N,i+N : 1 ≤ i ≤ N}

We fix a basis of s̃o(2N + 1): ei0, f i0, eij1, f ij1, eij2 and f ij2, where 0 ≤ i ≤ j ≤ N .

Letting x = π(e) and ξ = π(f) we have:
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xi0 = mi,0 −m0,i+N

xij1 = mi,j −mj+N,i+N , where i ≤ j

xij2 = mi,j+N −mj,i+N , where i < j

ξi0 =
1

2
(m0,i −mi+N,0)

ξij1 = (
1

2
)δ

ij+1(mj,i −mi+N,j+N), where i ≤ j

ξij2 = (
1

2
)δ

ij+1(mj+N,i −mi+N,j), where i < j

The coefficient T βναµ is then given as

T βναµ =
∑

1≤i≤N

(ξi0)βα(xi0)νµ +
∑
i<j

k=1,2

(ξijk)βα(xijk)
ν
µ

+
1

2

∑
i

(mii −mi+N,i+N)βα(mii −mi+N,i+N)νµ

=
∑
i≤j

(
1

2
(−δβ,i+Nδ0

α + δβ,0δiα)(δνi δµ,0 − δν0δµ,i+N)

+(
1

2
)δ

ij+1(δβ,jδiα − δβ,i+Nδj+Nα )(δνi δj,µ − δνj+Nδi+N,µ)

+(
1

2
)δ

ij+1(−δβ,i+Nδjα + δβ,j+Nδiα)(δνi δj+N,µ − δνj δi+N,µ))

Using U , A and B to denote the sets {0}, {1, ..., N} and {N + 1, ..., 2N} respectively,

we can follow the same steps as in so(2N) to get a diagrammatic representation of T βναµ .

The result is given in figure 2.13. Like for so(2n) the last four terms can be simplified to

the two terms in figure 2.10.
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Figure 2.13. The so(2N + 1) tensor.

2.5 Composing the weight systems with the averag-

ing map

Let an unoriented chord diagram with skeleton Γ be a diagram with unoriented chords

joining distinct points of Γ, andA(Γ) be the space of (unoriented) chord diagrams modulo

4T .

Figure 2.14. The 4T relation. Like in the figure for the 6T relation the part of the

diagram which is not shown is the same for all terms.

We define the averaging map from A(Γ) to ~A(Γ) as follows:

Definition 2.5.1. The averaging map a takes a chord diagram to an arrow diagram by

summing over all possible ways to direct each chord. (See figure 2.15 for an example.)

It can be shown that a is well-defined, i.e., a maps the 4T relation to a linear combi-

nation of the 6T relation.
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Figure 2.15. The averaging map.

Let A(Γ) be the vector space of unoriented chord diagrams on Γ modulo the 4T

relations. We know that metrized Lie algebras give us weight systems on A(Γ). (See

[BN1] and [BN2].) If we have a weight system on ~A(Γ), then composing it with the

averaging map a gives us a weight system on A(Γ). (4T is a consequence of 6T by

repeatingly applying the averaging map.)

Since a complex simple Lie algebra g has both a metric and a standard Manin triple

structure, it gives us both a weight system on A(Γ) and a weight system on ~A(Γ). Haviv

([Ha]) proved that composing the latter with the averaging map gives us the former at

the universal enveloping algebra level. In the rest of this section we compose the formulae

we obtained in the previous sections with the averaging map to show the following.

Formulae. Composing our combinatorial formulae from the previous sections with the

averaging map gives us the formulae for weight systems on chord diagrams mod 4T found

in Bar-Natan’s [BN1].

We will look at each case separately. For gl the unoriented tensor is calculated as in

figure 2.16. Note the absence of restrictions on the values of unconnected Greek letters

give us the weight system as given in [BN1].

For sp(2N) we have figure 2.17, which again is the weight system given in [BN1].

For so(2N), we have figure 2.18. We consider a new basis wj so that vj = M(wj) of

C2N , where

M =
1√
2

 iI −iI

−I −I

 (2.1)
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Figure 2.16. The unoriented gl(N) tensor.

Figure 2.17. The unoriented sp(2N) tensor.

Figure 2.18. The unoriented so(2N) tensor.

and I is the N ×N identity matrix.

Note M is a unitary matrix, so wj := w∗j = 〈wj, .〉 where 〈., .〉 is the inner product
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〈
∑
civi,

∑
c′ivi〉 =

∑
c̄ic
′
i. We therefore have the following relations for 1 ≤ j ≤ n:

vj = 1√
2
(iwj − wj+N) (2.2)

vj+N = 1√
2
(−iwj − wj+N) (2.3)

vj = 1√
2
(〈iwj − wj+N , ·〉) = 1√

2
(−iwj − wj+N) (2.4)

vj+N = 1√
2
(〈−iwj − wj+N , ·〉) = 1√

2
(iwj − wj+N). (2.5)

We consider this change of basis diagramatically. Consider, for example, figure 2.19.

It gives us the tensor ∑
i,j

vi ⊗ vi+N ⊗ vj+N ⊗ vj.

Expressed in the new basis, we have

1

4

∑
i,j

(−iwi − wi+N)⊗ (iwi − wi+N)⊗ (−iwj − wj+N)⊗ (iwj − wj+N),

which can be expanded into a sum of 16 terms by distribution. Expressed diagramatically

the sum above becomes the sum of the 16 diagrams in figure 2.20, where constants may

be factored out of the diagram (figure 2.21). If we allow for “distribution of tags”, the

sum in figure 2.20 can be contracted to one diagram, as shown in figure 2.22.

Figure 2.19. One of the term that appears in the so(2N) weight system.

Following this procedure, whenever an A appears at the head of an arrow which is

part of the skeleton we can replace it by iA′−B′. Similarly we can replace B by −iA′−B′.

If they appear at the tail of an arrow that is part of the skeleton, however, we replace

A and B by −iA′ −B′ and iA′ −B′, respectively, by equations (2.11) and (2.12) above.

If we expand each of the diagrams linearly we obtain the same result as in [BN1]. See

figure 2.23.
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Figure 2.20. The diagram in figure 2.19 after a change of basis.

Figure 2.21. Constants may be factored out of a diagram.

Figure 2.22. The sum in figure 2.20 expressed as one diagram if we allow for

“distribution of tags”.

For the case so(2N + 1) we use the change of basis matrix

M =
1√
2


√

2 0 0

0 iI −iI

0 −I −I

 (2.6)
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Figure 2.23. Calculating the unoriented so(2N) tensor in the new basis. The third

line is obtained from the seond line by expansion and cancelling. The fourth line

is obtained from the third line by realizing that the latter is the former broken into

cases.
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The change of basis is therefore given by

v0 = w0 (2.7)

vj = 1√
2
(iwj − wj+N) (2.8)

vj+N = 1√
2
(−iwj − wj+N) (2.9)

v0 = w0 (2.10)

vj = 1√
2
(〈iwj − wj+N , ·〉) = 1√

2
(−iwj − wj+N) (2.11)

vj+N = 1√
2
(〈−iwj − wj+N , ·〉) = 1√

2
(iwj − wj+N). (2.12)

Like for so(2N), we replace A and B at the heads of arrows which are parts of the

skeleton by iA′ − B′ and −iA′ − B′, respectively. If they appear at the tail of an arrow

that is part of the skeleton, we replace them by −iA′ − B′ and iA′ − B′, respectively.

All U ’s are replaced by U ′’s. The change of basis can be expressed diagramatically as in

figure 2.24. We get the same expression as in Bar-Natan’s [BN1].
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Figure 2.24. Calculating the unoriented so(2N + 1) tensor and expressing it in the

new basis.
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Chapter 3

Dimensions of ~An(↑) and of Their

Images in Classical Lie Algebras

In this chapter we present results from computations, done jointly with Dror Bar-Natan,

of the dimensions of ~An(↑), for 1 ≤ n ≤ 4, and of the ranks of weight systems coming

from all classical Lie algebras (using their standard Manin triple structures) and all

representations. These ranks measure how well the standard Manin triple sturctures on

classical Lie algebras capture ~An(↑). To consider all representations, instead of fixing

a representation V and considering a weight system as a map from ~An(↑) to End(V ),

we do not choose a particular representation and we take our weight systems to be

maps from ~An(↑) to U(g̃), where g̃ is the Drinfeld double obtained through the standard

construction presented in chapter 1. To do our computations for all classical Lie algebras

gl(N), so(2N), so(2N +1) and sp(2N) for all N , we construct intermediate spaces where

the parameter N does not appear but through which each weight system factors. We

will explain how this is done in the following section.

In this chapter we use the Poincare-Birkhoff-Witt Theorem and the notion of a PBW-

basis. The reader may refer to chapter 17 of [Hu] which covers these topics.
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3.1 What to do with N?

3.1.1 gl(N)

We first define a map TU(g̃l(N)) from ~An(↑) to U(g̃l(N)). Let D be an element of ~An(↑).

We find TU(g̃l(N))(D) as follows. At the tail and the head of the mth arrow (how the

arrows are ordered is not important) we put the letters f imjm and eimjm , respectively, so

in the end we have a word where each of the letters f i1j1 , . . . , f injn , ei1j1 , . . . , ein,jn appear

exactly once, with the understanding that for each k, ik ≤ jk. To get TU(g̃l(N))(D) we

sum over all possible values of the indices to find TU(g̃l(N))(D). For example, for D in

figure 3.1, the word is f i1j1ei1j1f
i2j2ei2j2 . Let Wi1j1i2j2 denote the word. We have

TU(g̃l(N))(D) =
∑

1≤im,jm≤N
im≤jm

(
1

2
)qWi1j1i2j2 ,

where q is the number of m such that im = jm. (The factor 1
2

is due to such an element

being in the Cartan subalgebra.)

Figure 3.1. A diagram in ~A2(↑).

Once a PBW basis is fixed (for example, gl+ before gl−, with pairs of indices ordered

in lexicographic order), each summand in Tg̃l(D) can be PBW-reduced, and we can

calculate the dimension of the image of Tg̃l. We observe that in g̃l reduction to PBW

basis is independent of the actual indices; rather what is of material is the order of the

indices relative to each other.

Example 3.1.1. The PBW reduced word for e13f
24e56 can be obtained from the PBW

reduced word for e15f
36e78 by replacing 3 by 2, 5 by 3, 6 by 4, 7 by 5, and 8 by 6.

This motivates our definition of the following vector space.
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Definition 3.1.1. Let V be the space spanned by generators 〈k〉W where the following

conditions are satisfied:

1. W is a string of letters of the form f 〈ij〉 or e〈ij〉, where i, j are natural numbers

greater than or equal to 1 and i ≤ j.

2. k is greater than or equal to the largest index which appears in W .

V (g̃l) is the space V modulo relations between generators. The relations are

〈k〉S1(e〈ij〉e〈pq〉)S2 − 〈k〉S1(e〈pq〉e〈ij〉)S2 = crsij,pq〈k〉S1(e〈rs〉)S2,

〈k〉S1(f 〈ij〉f 〈pq〉)S2 − 〈k〉S1(f 〈pq〉f 〈ij〉)S2 = γij,pqrs 〈k〉S1(f 〈rs〉)S2, and

〈k〉S1(f 〈ij〉e〈pq〉)S2 − 〈k〉S1(e〈pq〉f
〈ij〉)S2 = cijpq,rs〈k〉S1(f 〈rs〉)S2 − γij,rspq 〈k〉S1(e〈rs〉)S2,

where S1 and S2 can be any pair of strings of letters (which may even be empty). The

constants crsij,pq and γij,pqrs are structure constants from U(g̃l(N)) so that

[eij, epq] = crsij,pqers and [f ij, fpq] = γij,pqrs f rs.

Equivalently,

crsij,pq = δjpδ
r
i δ
s
q − δqiδrpδsj and γij,pqrs = δiqδprδ

j
s − δpjδirδqs .

Note. By thinking of 〈k〉e〈ij〉 and 〈k〉f 〈ij〉 as regular elements in g̃l(k) we can see that as

a vector space V (g̃l) is isomorphic to

∞⊕
k=1

U(g̃l(k)),

where the 〈k〉 in front of W indicates which U(g̃l(k)) the word W belongs to. It is worth

noting that we do not want to identify the sum of two words 〈k〉W1 + 〈k〉W2 with the

same tag 〈k〉 with

〈k〉(W1 +W2).
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(Such a term is not even an element of V .) Nor do we want to define multiplication in

V by juxtaposition

(〈k〉W1) · (〈k〉W2) = 〈k〉W1W2,

where W1W2 is the concatenation of the two words W1 and W2. Such a multiplication

would not commute with the interpretation map ιN defined below.

The relations are symbolically the same as the bracket relations in g̃l. Like in a

universal enveloping algebra we can define a PBW basis for V (g̃l). (Consider the vector

space isomorphism between V (g̃l) and
⊕∞

k=1 U(g̃l(k)).) The interpretation of an element

W ∈ V (g̃l) is that it represents the sum of all words in U(g̃l(N)) such that the relative

order of indices inside angled brackets are observed. To be more precise, given any N we

can define an interpretation function ιN from V (g̃l) to U(g̃l) as outlined in the following

paragraph.

Let W〈n1,...,np〉 be a generator of V (g̃l) whose set of indices is (in ascending order and

with repeating indices listed only once) {n1, ..., np} and Wn1,...,np be the corresponding

word in U(g̃l). (That is, Wn1,...,np is obtained from W〈n1,...,np〉 with angled brackets around

indices removed.) We define an “interpretation function” ιN from V (g̃l) to U(g̃l(N))

which is given by

ιN : 〈k〉W〈n1,...,np〉 7→
∑
f

Wf(n1),...,f(np). (3.1)

The sum ranges over all functions f : {1, . . . , k} → {1, . . . , N} such that i ≤ j ⇔ f(i) ≤

f(j). If k > N we sum over an empty set and get 0. Such a function can be thought of

as giving actual values to the abstract indices while observing their relative order.

Proposition 3.1.1. For each N , ιN : V (g̃l)→ U(g̃l(N)) is well-defined, i.e., a relation

in V (g̃l) is mapped to a relation in U(g̃l(N)).

Proof. Take, for example, the relation

〈k〉S1(e〈ij〉e〈pq〉)S2 − 〈k〉S1(e〈pq〉e〈ij〉)S2 = crsij,pq〈k〉S1(e〈rs〉)S2.
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The function ιN takes the left hand side to

∑
f

(Sf1 (ef(i)f(j)ef(p)f(q))S
f
2 − S

f
1 (ef(p)f(q)ef(i)f(j))S

f
2 )

(where the sum is over all functions f : {1, . . . , k} → {1, . . . , N} such that i ≤ j ⇔ f(i) ≤

f(j), and Sf1 and Sf2 are obtained from S1 and S2 by removing the brackets around the

indices and replacing each index i by f(i) ). The right hand side is mapped to

∑
f

crsij,pqS
f
1 (ef(r)f(s))S

f
2 . (3.2)

Note that, since each f we sum over is an injection, we have

crsij,pq = δjpδ
r
i δ
s
q − δqiδrpδsj = δf(j)f(p)δ

f(r)
f(i) δ

f(s)
f(q) − δf(q)f(i)δ

f(r)
f(p)δ

f(s)
f(j) = c

f(r)f(s)
f(i)f(j),f(p)f(q).

Therefore we can rewrite (3.2) as

∑
f

c
f(r)f(s)
f(i)f(j),f(p)f(q)S

f
1 (ef(r)f(s))S

f
2 .

and ιN maps the relation

〈k〉S1(e〈ij〉e〈pq〉)S2 − 〈k〉S1(e〈pq〉e〈ij〉)S2 = crsij,pq〈k〉S1(e〈rs〉)S2

to

∑
f

(Sf1 (ef(i)f(j)ef(p)f(q))S
f
2 − S

f
1 (ef(p)f(q)ef(i)f(j))S

f
2 ) =

∑
f

c
f(r)f(s)
f(i)f(j),f(p)f(q)S

f
1 (ef(r)f(s))S

f
2 ,

which is a relation in U(g̃l(N)). We have similar proofs for the other relations.

Equivalently ιN can be given as

ιN : 〈k〉W〈n1,...,np〉 7→∑
m1<...<mp

(
m1 − 1

n1 − 1

)(
m2 −m1 − 1

n2 − n1 − 1

)
· · ·
(
mp −mp−1 − 1

np − np−1 − 1

)(
N −mp

k − np

)
Wm1,...,mp

(3.3)
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In the definition above it is understood that whenever m < n,
(
m
n

)
= 0. Note that

in the process of PBW reduction some indices may disappear. For example, f 23e13 =

e13f
23 − e12, where 3 does not appear in the second term on the right. We therefore add

an extra piece of data 〈k〉 to keep track of the number of distinct indices we started with.

This information is not superfluous. For example, when mapped to U(g̃l(7)), the index

2 in ι7(〈2〉e〈12〉) can take on the value 7 in some of the summands, while the index 2 in

ι7(〈3〉e〈12〉) never takes on the value 7. The coefficients on the right in equation (3.3)

above are there to represent the number of possible ways we have in choosing the value

of the indices which get hidden in the process of PBW reduction. In what follows we

summarize how we find the image of a diagram with n arrows in V (g̃l). First we make a

definition.

Definition 3.1.2. An order type on a set S is a function τ : S → N\{0} such that if

n1 < n2 and n2 ∈ τ(S), then n1 ∈ τ(S).

We can think of an order type on S as an ordering of elements in S, such that for any

s1, s2 ∈ S, s1 ≤ s2 iff τ(s1) ≤ τ(s2). (Different elements of S may be considered equal

in a particular ordering.) This function is minimal in the sense that there are no gaps in

the image of τ .

Definition 3.1.3. The function TV (g̃l) : ~An(↑)→ V (g̃l) is given as follows. (Steps A1 to

A5.)

A1. We label the arrows a1, . . . , an.

A2. For each arrow am we put the letter f im,jm at its tail and the letter eim,jm at its

head.

A3. Given that the skeleton is an oriented line, we follow the orientation to string

together the letters from the previous step to form a word W .
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A4. We consider the sum ∑
τ

cτ 〈pτ 〉Wτ

where the sum is over all order types on the set {i1, j1, . . . , in, jn} such that for each

m, τ(im) ≤ τ(jm). Wτ is obtained from W by replacing each eij by e〈τ(i),τ(j)〉 and

each f ij by f 〈τ(i),τ(j)〉. The term pτ is max({τ(i1), τ(j1), . . . , τ(in), τ(jn)}) which is

the number of distinct values that the indices take on. The term cτ is given by (1
2
)q

where q is the number of m’s such that τ(im) = τ(jm). (The factor 1
2

is due to such

an element being in the Cartan subalgebra.)

A5. We reduce each Wτ to a linear combination of PBW basis elements.

We compare the above with the algorithm which finds TU(g̃l(N))(D).

Definition 3.1.4. The function TU(g̃l(N)) : ~An(↑) → U(g̃l(N)) (the “universal g̃l(N)

weight system”) is given as follows. (Steps B1 to B5.)

B1. We label the arrows a1, . . . , an.

B2. For each arrow am we put the letter f im,jm at its tail and the letter eim,jm at its

head.

B3. Given that the skeleton is an oriented line, we follow the orientation to string

together the letters from the previous step to form a word W .

B4. We consider the sum ∑
φ

cφWφ

where the sum is over all functions φ : {i1, j1, . . . , in, jn} → {1, . . . , N} such that

for each m, φ(im) ≤ φ(jm). Wφ is obtained from W by replacing each eimjm by

eφ(im),φ(jm) and each f imjm by fφ(im),φ(jm). The term cφ is given by (1
2
)q where q

is the number of m’s such that φ(im) = φ(jm). (The factor 1
2

is due to such an

element being in the Cartan subalgebra.)
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B5. We reduce each Wφ to a linear combination of PBW basis elements.

Each word Wφ obtained in step B4 corresponds to exactly one word 〈pτ 〉Wτ obatined

in A4. (τ is the unique order type on {i1, j1, . . . , in, jn} for which τ(im) (or τ(jm)) is less

than or equal to τ(im′) (or τ(jm′)) if and only if φ(im) (or φ(jm)) is less than or equal to

φ(im′) (or φ(jm′)). The tag pτ is then the cardinality of the image of φ.) Given U(g̃l(N)),

cφWφ is one of the summands of ιN(cτ 〈pτ 〉Wτ ) (See step A4). We therefore have the

commutative diagram:

~An(↑)
T

U(g̃l(N))

��

T
V (g̃l)

zzttttttttt

V (g̃l) ιN
// U(g̃l(N))

By considering the map
N⊕
m=1

ιm : V (g̃l)→
N⊕
m=1

U(g̃l(m)),

and the direct sum of weight systems

N⊕
m=1

TU(g̃l(m)) : ~An(↑) −→
N⊕
m=1

U(g̃l(m)),

we have

~An(↑)⊕N
m=1 TU(g̃l(m))

��

T
V (g̃l)

vvmmmmmmmmmmmmmm

V (g̃l) ⊕N
m=1 ιm

// ⊕N
m=1 U(g̃l(m))

From this diagram we have, for each N ,

rank(TV (g̃l)) ≥ rank(
N⊕
m=1

TU(g̃l(m))). (3.4)

In section 3.2 we will show that for N ≥ 2n the inequality above becomes an equality.

3.1.2 The Other Classical Lie Algebras

Let g̃ be a Manin triple of type s̃o(even), s̃o(odd) or s̃p. We define V (g̃) in a similar

manner. In the definition below each e〈r〉 or e〈s〉 stands for e〈i〉0 (for V (s̃o(odd)) only),
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e〈ij〉1 or e〈ij〉2. (e〈ij〉1, for example, stands for eij1 where the only information we keep is

the relative order of i and j, between themselves and with respect to indices from other

letters in the same word. The reader may refer to chapter 2 for an explanation of the

notations ei0, eij1 and eij2.) Similarly each f 〈r〉 or f 〈s〉 stands for f 〈i〉0 (for V (s̃o(odd))

only), f 〈ij〉1 or f 〈ij〉2. The terms ctr,s and γr,st are corresponding structure constants.

Definition 3.1.5. Let V be the space spanned by generators 〈k〉W where the following

conditions are satisfied:

1. W is a string of letters of the form f 〈r〉 or e〈s〉, where i, j are natural numbers

greater than or equal to 1.

2. k is greater than or equal to the largest index which appears in W .

V (g̃) is the space V modulo relations between generators. The relations are

〈k〉S1(e〈r〉e〈s〉)S2 − 〈k〉S1(e〈s〉e〈r〉)S2 = 〈k〉S1(ctr,se〈t〉)S2,

〈k〉S1(f 〈r〉f 〈s〉)S2 − 〈k〉S1(f 〈s〉f 〈r〉)S2 = 〈k〉S1(γr,st f 〈t〉)S2, and

〈k〉S1(f 〈r〉e〈s〉)S2 − 〈k〉S1(e〈s〉f
〈r〉)S2 = crs,t〈k〉S1(f 〈t〉)S2 − γr,ts 〈k〉S1(e〈t〉)S2,

where S1 and S2 can be any (even empty) string of letters.

Like in the g̃l case, the relations are symbolically the same as the bracket and cobracket

relations. We define functions ιN which map V (s̃o(even)), V (s̃p) and V (s̃o(odd)) to

U(s̃o(2N)), U(s̃p(2N)) and U(s̃o(2N + 1)), respectively, in a way similar to the g̃l case.

(The maps ιN take an element from V to the sum of all ways to assign actual values

to indices within brackets while respecting their relative order. The proof that such

maps are well defined is similar to the proof of Proposition 3.1.1.) The following is the

algorithm for finding TV (g̃)(D) given D ∈ ~An(↑).

Definition 3.1.6. The function TV (g̃) : ~An(↑)→ V (g̃) is given as follows. (Steps A1 to

A5.)
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A1. We label the arrows a1, . . . , an.

A2. For each arrow am we put the letter f im,jm,km at its tail and the letter eim,jm,km at

its head. (If km = 0, then jm is empty.)

A3. Given that the skeleton is an oriented line, we follow the orientation to string

together the letters from the previous step to form a word W .

A4. We consider the sum ∑
τ,km

cτ 〈pτ 〉Wτ

where the sum is over all order types on the set {i1, j1, . . . , in, jn} such that for

each m, τ(im) ≤ τ(jm) and km = 1, 2 (for s̃o(even) and s̃p) or km = 0, 1, 2 (for

s̃o(odd), keeping in mind that jm is empty when km = 0). Wτ is obtained from

W by replacing each eijk by e〈τ(i),τ(j)〉k and each f ijk by f 〈τ(i),τ(j)〉k. The term pτ

is max({τ(i1), τ(j1), . . . , τ(in), τ(jn)}), which is the number of distinct values that

the indices take on. The term cτ is given by (1
2
)q where q is the number of m’s such

that km = 1 and τ(im) = τ(jm). (The factor 1
2

is due to such an element being in

the Cartan subalgebra.)

A5. We reduce each Wτ to a linear combination of PBW basis elements.

Like in the last section we compare with the following algorithm which maps a diagram

D to actual universal enveloping algebras. If we let g̃ be a Lie algebra of type s̃o(even),

s̃p, or s̃o(odd), we use g̃(N) to denote s̃o(2N), s̃p(2N), or s̃o(2N + 1), respectively.

Definition 3.1.7. The function TU(g̃(N)) : ~An(↑)→ U(g̃(N)) is given as follows. (Steps

B1 to B5.)

B1. We label the arrows a1, . . . , an.

B2. For each arrow am we put the letter f im,jm,km at its tail and the letter eim,jm,km at

its head. (If km = 0, then jm is empty.)
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B3. Given that the skeleton is an oriented line, we follow the orientation to string

together the letters from the previous step to form a word W .

B4. We consider the sum ∑
φ,km

cφWφ

where the sum is over all functions φ : {i1, j1, . . . , in, jn} → {1, . . . , N} such that

for each m, φ(im) ≤ φ(jm) and km = 1, 2 (for s̃o(2N) and s̃p(2N)) or km = 0, 1, 2

(for s̃o(2N + 1), keeping in mind that jm is empty when km = 0). Wφ is obtained

from W by replacing each eijk by eφ(i),φ(j),k and each f ijk by fφ(i),φ(j),k. The term cφ

is given by (1
2
)q where q is the number of m’s such that km = 1 and φ(im) = φ(jm).

(The factor 1
2

is due to such an element being in the Cartan subalgebra.)

B5. We reduce each Wφ to a linear combination of PBW basis elements.

Like in the g̃l case any word Wφ obtained in B4 corresponds, through ιN , to exactly

one word 〈pτ 〉Wτ obtained in A4. We therefore have the commutative diagram

~An(↑)⊕N
m=1 TU(g̃(m))

��

TV (g̃)

vvmmmmmmmmmmmmmm

V (g̃) ⊕N
m=1 ιm

// ⊕N
m=1 U(g̃(m))

.

The above implies

rank(TV (g̃)) ≥ rank(
N⊕
m=1

Tg̃(m)). (3.5)

When N ≥ 2n, as in the g̃l case, the inequality above becomes an equality. This is

the topic for the next section. After that, in section 3.3, we will present results of our

computations on the rank of the map

~An(↑)→ V (g̃l)⊕ V (s̃o)⊕ V (s̃p).
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3.2 The Rank of TV and the Rank of the Weight

Systems

In this section we relate the rank of TV to the ranks of the actual weight systems. The

first step is the following proposition.

Proposition 3.2.1. Let VK be the subspace of V spanned by elements 〈k〉W such that

k ≤ K. The map
⊕K

n=1 ιn restricted to VK is injective.

Proof. We fix a positive integer K and consider a linear combination of distinct words

∑
i

αi〈ki〉Wi (3.6)

such that each ki ≤ K. Let k = min{ki}. We consider the map

K⊕
n=1

ιn : V (g̃l)→
K⊕
n=1

U(g̃l(n))

and suppose

ι1 ⊕ . . .⊕ ιK(
∑
i

αi〈ki〉Wi) = 0.

This implies, in particular, that

ιk(
∑
i

αi〈ki〉Wi) = 0.

By our choice of k, if ki 6= k, ki > k. By (3.1), the above is given by

∑
i for which ki=k

αiιk(〈ki〉Wi) =
∑

i for which ki=k

αiιk(〈k〉Wi).

If Wi is a word whose list of indices is {n1, . . . , np} (we denote it by W〈n1,...,np〉), then we

have

ιk(〈k〉Wi) = Wn1,...,np ,

where Wn1,...,np ∈ U(g̃l(k)) is the word obtained from W〈n1,...,np〉 by removing all brackets

around indices. We denote the word obtained from Wi in such a manner by W ′
i and we
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have ∑
i for which ki=k

αiW
′
i = 0.

Since the W ′
i ’s are distinct PBW-reduced words in U(g̃l(k)), we must have all αi = 0,

whenever ki = k. By induction all αi’s in the word given in (3.6) must be 0. Therefore⊕K
n=1 ιn must be injective when restricted to VK .

If D is a diagram in ~An(↑), since each arrow is responsible for at most two distinct

indices, TV (D) contains only terms of the form 〈k〉W where k ≤ 2n. The function⊕2n
m=1 ιm therefore maps the image of TV injectively to

⊕2n
m=1 U(g̃l(m)). This together

with (3.4) give us the following corollary.

Corollary 3.2.1. The rank of TV (g̃l) on ~An(↑) equals to the rank of the direct sum of

weight systems
2n⊕
m=1

Tg̃l(m) : ~An(↑) −→
2n⊕
m=1

U(g̃l(m)).

An important implication of the corollary above is that the weight systems coming

from g̃l(1), . . . , g̃l(2n) capture the FULL strength of all g̃l(N) weight systems on ~An. The

corollary above was proved for g̃l, but by similar arguments and (3.5) we can also show

the following.

Corollary 3.2.2. 1. The rank of TV (s̃p) on ~An(↑) equals to the rank of the direct sum

of weight systems

2n⊕
m=1

Ts̃p(2m) : ~An(↑) −→
2n⊕
m=1

U(s̃p(2m)).

2. The rank of TV (s̃o(even)) on ~An(↑) equals to the rank of the direct sum of weight

systems
2n⊕
m=1

Ts̃o(2m) : ~An(↑) −→
2n⊕
m=1

U(s̃o(2m)).
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3. The rank of TV (s̃o(odd)) on ~An(↑) equals to the rank of the direct sum of weight

systems
2n⊕
m=1

Ts̃o(2m+1) : ~An(↑) −→
2n⊕
m=1

U(s̃o(2m+ 1)).

3.3 Results

In this section we present our computational results. We consider the direct sum of all

classical Lie algebra weight systems:

TV = TV (g̃l) ⊕ TV (s̃o(even)) ⊕ TV (s̃o(odd)) ⊕ TV (s̃p).

Given a diagram D ∈ ~An(↑), TV takes D to V (g̃l)⊕ V (s̃o(even))⊕ V (s̃o(odd))⊕ V (s̃p).

The rank of TV on ~An(↑) measures the dimensions of ~An(↑) seen by the standard Manin

triple structures on classical Lie algebras. To get a better strength out of the weight

systems, we compute the rank of (TV ⊗TV )◦∆. For the reader’s reference we also present

the rank of the g̃l weight systems alone. Our results are contained in the following table.

n 1 2 3 4

Number of generating diagrams 2 12 120 1680

Number of 6T -relations 0 6 120 2520

dim( ~An(↑)) 2 7 27 139

dim(TV (g̃l)(
~An(↑))) (no coproduct) 2 7 27 118

dim(TV (g̃l) ⊗ TV (g̃l)) ◦∆( ~An(↑))) 2 7 27 122

dim((TV ⊗ TV ) ◦∆( ~An(↑))) 2 7 27 125

Comments:

1. In computer programming bugs are always a possibility. We therefore welcome and

appreciate independent verification of our numbers.

2. The third row of the table contains the number of all 6T -relations generated using

our algorithm. They are not the number of independent 6T -relations.
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3. The doubled Cartan is necessary to get the dimensions listed above, i.e., we do not

want to take the further step π : U(g̃)→ U(g). In particular, the subspace of ~A2(↑)

seen without the doubled Cartan has dimension 6. The kernel is spanned by the

diagram in figure 3.2.

Figure 3.2. Without the doubled Cartan subalgebra this non-trivial element of

~A2(↑) is mapped to 0.

4. Since 125 < 139, our results suggest that the standard Manin triple structures on

classical Lie algebras do not detect all diagrams of degree 4.

5. For degree n = 4 the rank 125 can be obtained just by using Manin triples of type

g̃l and s̃o(2N). In other words, including s̃p and s̃o(2N + 1) does not lead to a

higher rank.

6. We also computed the weight system arising from the triangular Lie bialgebra

structure on sl(2), with r-matrix H ∧ E (Example 2.1.8, [CP]). The image of

this weight system on ~A4(↑) has dimension 20. When restricted to the kernel of

the classical weight systems, its image has dimension 3. We also computed the

CYBE weight system on all degree-4 diagrams, and the resulting dimension is 1.

This provides evidence with non-trivial r that, given a triangular Lie bialgebra, the

CYBE weight system is different from the Drinfeld double weight system.
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Appendix A

Sample Calculations in the Defining

Representations

Figure A.1. Calculating the gl(N) weight system.

Figure A.2. Calculating the gl(N) weight system.

We now do some sample calculations. In this section the skeleton is always a circle

oriented counterclockwise. First we calculate the two diagrams shown in figures A.1

and A.2, using the gl(N) weight system. For the first picture, each triple (α, β, µ) ∈
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{1, ..., N}3 such that α ≤ β ≤ µ gives us a value of either 1, 1
2

or 1
4
, depending on

whether α = β or β = µ. Therefore the diagram should have weight a+ 1
2
b+ 1

4
c, where a

is the number of triples (α, β, µ) such that α < β < µ, b is the number of triples (α, β, µ)

such that α < β = µ or α = β < µ, and c is the number of triples (α, β, µ) such that

α = β = µ. The number is

(
N
3

)
+
(
N
2

)
+ N

4
.

Using a similar argument we know the weight of the picture in figure A.2 is

2
(
N
3

)
+ 2
(
N
2

)
+ N

4
,

so the gl(N) weight system is capable of telling the two diagrams apart.

Figure A.3. Calculating the so(2N) weight system. The first line gives us the only

possible combinations of tags.

Now we calculate the so(2N) weight of the picture in figure A.3. We assign tags A,B

to each arc following the rules from section 2.2 (see figure A.3). (We want the combination
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of tags around each arrow to give us non-zero tensors.) For each assignment we have

one or four ways to resolve the diagram, and for a resolution with k loops we count the

number of k-tuples in {1, ..., N} such that the inequalities as denoted by the double-

headed arrows are satisfied, bearing in mind that each equality comes with a weight 1
2
.

The weights of the first two diagrams and the last two diagrams on the right hand side

of the first equation in figure A.3 are therefore 1
4
(N

4
) and 1

4
(−N

4
− N

4
+ N

4
+ (
(
N
2

)
+ N

4
)),

respectively. The weight of the diagram is therefore

N
8

+ 1
2

(
N
2

)
.
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Appendix B

A Partial Sample Calculation of

T
V (g̃l)

on an Element of ~A2(↑)

Figure B.1. A sample diagram in ~A2(↑).

Let D be the degree-2 diagram shown in figure B.1. We have

TU(g̃l(N))(D) =
∑

i≤j,k≤l
1≤i,j,k,l≤N

(
1

2
)δij+δklf ijeijf

klekl.

Given the restriction i ≤ j, k ≤ l, all possible relative orders on i, j, k, l are listed in
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table B.1. We can therefore write the following.

TV (g̃l)(D) = (
1

2
)δij+δklf 〈ij〉e〈ij〉f

〈kl〉e〈kl〉

=
1

4
〈1〉f 〈11〉e〈11〉f

〈11〉e〈11〉 +
1

4
〈2〉f 〈11〉e〈11〉f

〈22〉e〈22〉 +
1

4
〈2〉f 〈22〉e〈22〉f

〈11〉e〈11〉

+
1

2
〈3〉f 〈11〉e〈11〉f

〈23〉e〈23〉 +
1

2
〈2〉f 〈11〉e〈11〉f

〈12〉e〈12〉 +
1

2
〈3〉f 〈22〉e〈22〉f

〈13〉e〈13〉

+
1

2
〈2〉f 〈22〉e〈22〉f

〈12〉e〈12〉 +
1

2
〈3〉f 〈33〉e〈33〉f

〈12〉e〈12〉 +
1

2
〈3〉f 〈23〉e〈23〉f

〈11〉e〈11〉

+
1

2
〈2〉f 〈12〉e〈12〉f

〈11〉e〈11〉 +
1

2
〈3〉f 〈13〉e〈13〉f

〈22〉e〈22〉 +
1

2
〈2〉f 〈12〉e〈12〉f

〈22〉e〈22〉

+
1

2
〈3〉f 〈12〉e〈12〉f

〈33〉e〈33〉 + 〈4〉f 〈12〉e〈12〉f
〈34〉e〈34〉 + 〈4〉f 〈13〉e〈13〉f

〈24〉e〈24〉

+〈4〉f 〈14〉e〈14〉f
〈23〉e〈23〉 + 〈4〉f 〈23〉e〈23〉f

〈14〉e〈14〉 + 〈4〉f 〈24〉e〈24〉f
〈13〉e〈13〉

+〈4〉f 〈34〉e〈34〉f
〈12〉e〈12〉 + 〈2〉f 〈12〉e〈12〉f

〈12〉e〈12〉 + 〈3〉f 〈12〉e〈12〉f
〈13〉e〈13〉

+〈3〉f 〈12〉e〈12〉f
〈23〉e〈23〉 + 〈3〉f 〈13〉e〈13〉f

〈12〉e〈12〉 + 〈3〉f 〈13〉e〈13〉f
〈23〉e〈23〉

+〈3〉f 〈23〉e〈23〉f
〈12〉e〈12〉 + 〈3〉f 〈23〉e〈23〉f

〈13〉e〈13〉 (B.1)

Each term can now be PBW reduced by the relations of V (g̃l) given in Definition 3.1.1.
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Relative order on indices τ(i) τ(j) τ(k) τ(l)

i = j = k = l 1 1 1 1

i = j < k = l 1 1 2 2

i = j > k = l 2 2 1 1

i = j < k < l 1 1 2 3

i = j = k < l 1 1 1 2

k < i = j < l 2 2 1 3

k < l = i = j 2 2 1 2

k < l < i = j 3 3 1 2

k = l < i < j 2 3 1 1

k = l = i < j 1 2 1 1

i < k = l < j 1 3 2 2

i < j = k = l 1 2 2 2

i < j < k = l 1 2 3 3

i < j < k < l 1 2 3 4

i < k < j < l 1 3 2 4

i < k < l < j 1 4 2 3

k < i < j < l 2 3 1 4

k < i < l < j 2 4 1 3

k < l < i < j 3 4 1 2

i = k < j = l 1 2 1 2

i = k < j < l 1 2 1 3

i < j = k < l 1 2 2 3

i = k < l < j 1 3 1 2

i < k < j = l 1 3 2 3

k < i = l < j 2 3 1 2

k < i < j = l 2 3 1 3

Table B.1. A table listing all possible orders of i, j, k, l given i ≤ j and k ≤ l.
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