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Abstract The well-known Bernstein–Kushnirenko theorem from the theory of
Newton polyhedra relates algebraic geometry and the theory of mixed volumes.
Recently, the authors have found a far-reaching generalization of this theorem to
generic systems of algebraic equations on any algebraic variety. In the present note
we review these results and their applications to algebraic geometry and convex
geometry.
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1 Introduction

The famous Bernstein–Kushnirenko theorem from the theory of Newton polyhedra
relates algebraic geometry (mainly the theory of toric varieties) with the theory
of mixed volumes in convex geometry. This relation is useful in both directions.
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On the one hand it allows one to prove the Alexandrov–Fenchel inequality (the
most important and hardest result in the theory of mixed volumes) using the Hodge
inequality from the theory of algebraic surfaces. On the other hand, it suggests new
inequalities in the intersection theory of Cartier divisors analogous to the known
inequalities for mixed volumes (see [Teissier, Khovanskii-1]).

Recently, the authors found a far-reaching generalization of the Kushnirenko
theorem in which instead of the complex torus (C∗)n, we consider any algebraic
variety X , and instead of a finite-dimensional space of functions spanned by
monomials in (C∗)n, we consider any finite-dimensional space of rational functions
on X .

To this end, first we develop an intersection theory for finite-dimensional
subspaces of rational functions on a variety. It can be considered a generalization
of the intersection theory of Cartier divisors to general (not necessarily complete)
varieties. We show that this intersection theory enjoys all the properties of the mixed
volume [Kaveh–Khovanskii-2]. Then we introduce the Newton-Okounkov body,
which is a far generalization of the Newton polyhedron of a Laurent polynomial. Our
construction of the Newton-Okounkov body depends on the choice of a Zn-valued
valuation on the field of rational functions on X . It associates a Newton-Okounkov
body to any finite-dimensional space L of rational functions on X . We obtain a direct
generalization of the Kushnirenko theorem in this setting (see Theorem 11.1).

This construction then allows us to give a proof of the Hodge inequality using
elementary geometry of planar convex domains and (as a corollary) an elementary
proof of the Alexandrov–Fenchel inequality. In general, our construction does
not imply a generalization of the Bernstein theorem, although we also obtain a
generalization of this theorem for some cases in which the variety X is equipped
with a reductive group action.

In this paper we present a review of the results mentioned above. We have omitted
most of the proofs in this short note. A preliminary version together with proofs
can be found in [Kaveh–Khovanskii-1]. Refined and generalized versions appear
in the authors’ more recent preprints: [Kaveh–Khovanskii-2] is a detailed version
of the first half of [Kaveh–Khovanskii-1] (mainly about the intersection index), and
[Kaveh–Khovanskii-3] is a refinement and generalization of the results in the second
half of [Kaveh–Khovanskii-1] (mainly about Newton-Okounkov bodies).

After these results had been posted on arXiv, we learned that we were not the
only ones working in this direction. Firstly, A. Okounkov (in his interesting papers
[Okounkov1,Okounkov-2]) was a pioneer in defining (in passing) an analogue of the
Newton polyhedron in the general situation (although his case of interest is that in
which X has a reductive group action). Secondly, R. Lazarsfeld and M. Mustata,
based on Okounkov’s previous works, and independently of our preprints, have
come up with closely related results [Lazarsfeld–Mustata]. Recently, following
[Lazarsfeld–Mustata], similar results and constructions have been obtained for line
bundles on arithmetic surfaces [Yuan].
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2 Mixed Volume

By a convex body we mean a convex compact subset of Rn. There are two operations
of addition and scalar multiplication on convex bodies: Let Δ1, Δ2 be convex bodies.
Then their sum

Δ1 +Δ2 = {x+ y | x ∈ Δ1, y ∈ Δ2}
is also a convex body, called the Minkowski sum of Δ1, Δ2. Also, for a convex body
Δ and a scalar λ ≥ 0,

λ Δ = {λ x | x ∈ Δ}
is a convex body.

Let Voln denote the n-dimensional volume in Rn with respect to the standard
Euclidean metric. The function Voln is a homogeneous polynomial of degree n on
the cone of convex bodies, i.e., its restriction to each finite-dimensional section of
the cone is a homogeneous polynomial of degree n. More precisely, for any k > 0,
let Rk

+ be the positive octant in Rk consisting of all λ = (λ1, . . . ,λk) with λ1 ≥
0, . . . ,λk ≥ 0. The polynomiality of Voln means that for any choice of the convex
bodies Δ1, . . . ,Δk, the function PΔ1,...,Δk defined on Rk

+ by

PΔ1,...,Δk(λ1, . . . ,λk) = Voln(λ1Δ1 + · · ·+λkΔk),

is a homogeneous polynomial of degree n.
The coefficients of this homogeneous polynomial are obtained from the mixed

volumes of all the possible n-tuples Δi1 , . . . ,Δin , of convex bodies for any choices
of i1, . . . , in ∈ {1, . . . ,n}. By definition, the mixed volume of V (Δ1, . . . ,Δn) of an
n-tuple (Δ1, . . . ,Δn) of convex bodies is the coefficient of the monomial λ1 · · ·λn in
the polynomial PΔ1,...,Δn divided by n!.1 Several important geometric invariants can
be recovered as mixed volumes. For example, the (n− 1)-dimensional volume of
the boundary of an n-dimensional convex body Δ is equal to (1/n)V(Δ , . . . ,Δ ,B),
where B is the n-dimensional unit ball. Indeed, it is easy to see that the (n− 1)-
dimensional volume of the boundary and the number (1/n)V(Δ , . . . ,Δ ,B) are both
equal to the derivative ∂/∂εVoln(Δ + εB) evaluated at ε = 0. Many applications of
the theory of mixed volumes can be found in the book [Burago–Zalgaller].

The definition of mixed volume implies that it is the polarization of the volume
polynomial, i.e., it is the unique function on the n-tuples of convex bodies satisfying
the following:

(i) (Symmetry) V is symmetric with respect to permuting the bodies Δ1, . . . ,Δn.
(ii) (Multilinearity) It is linear in each argument with respect to the Minkowski

sum. Linearity in the first argument means that for convex bodies Δ ′
1, Δ ′′

1 , and
Δ2, . . . ,Δn, we have

V (Δ ′
1 +Δ ′′

1 , . . . ,Δn) =V (Δ ′
1, . . . ,Δn)+V(Δ ′′

1 , . . . ,Δn).

1The notion of mixed volume was introduced by Hermann Minkowski (1864–1909).
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(iii) (Relationship to volume) On the diagonal, it coincides with volume, i.e., if
Δ1 = · · ·= Δn = Δ , then V (Δ1, . . . ,Δn) = Voln(Δ).

The above three properties characterize the mixed volume: it is the unique
function satisfying (i)–(iii).

The following two inequalities are easy to verify:

1. Mixed volume is nonnegative. That is, for any n-tuple of convex bodies
Δ1, . . . ,Δn, we have

V (Δ1, . . . ,Δn)≥ 0.

2. Mixed volume is monotone. That is, for two n-tuples of convex bodies Δ ′
1 ⊂

Δ1, . . . ,Δ ′
n ⊂ Δn, we have

V (Δ1, . . . ,Δn)≥V (Δ ′
1, . . . ,Δ

′
n).

The following inequality, attributed to Alexandrov and Fenchel, is important
and very useful in convex geometry. All its previously known proofs are rather
complicated. For a discussion of this inequality the reader can consult the book
[Burago–Zalgaller] as well as the original three papers of A. D. Alexandrov cited
therein.

Theorem 2.1 (Alexandrov–Fenchel). Let Δ1, . . . ,Δn be convex bodies in R
n. Then

V (Δ1,Δ2, . . . ,Δn)
2 ≥V (Δ1,Δ1,Δ3, . . . ,Δn)V (Δ2,Δ2,Δ3, . . . ,Δn).

Below, we mention a formal corollary of the Alexandrov–Fenchel inequality.
First we need to introduce a notation for when we have repetition of convex bodies
in the mixed volume. Let 2≤ m ≤ n be an integer and k1+ · · ·+kr = m a partition of
m with ki ∈ N. Denote by V (k1 ∗Δ1, . . . ,kr ∗Δr,Δm+1, . . . ,Δn) the mixed volume of
the Δi, where Δ1 is repeated k1 times, Δ2 is repeated k2 times, etc., and Δm+1, . . . ,Δn

appear once.

Corollary 2.2. With the notation as above, the following inequality holds:

V m(k1 ∗Δ1, . . . ,kr ∗Δr,Δm+1, . . . ,Δn)≥ ∏
1≤ j≤r

V kj (m∗Δ j,Δm+1 . . . ,Δn).

3 Brunn–Minkowski Inequality

The celebrated Brunn–Minkowski inequality concerns volumes of convex bodies
in Rn.

Theorem 3.1 (Brunn–Minkowski). Let Δ1, Δ2 be convex bodies in Rn. Then

Vol1/n
n (Δ1)+Vol1/n

n (Δ2)≤ Vol1/n
n (Δ1 +Δ2).
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The inequality was first found and proved by Brunn toward the end of nineteenth
century in the following form.

Theorem 3.2. Let VΔ (h) be the n-dimensional volume of the section xn+1 = h of a

convex body Δ ⊂ R
n+1. Then V 1/n

Δ (h) is a concave function in h.

To obtain Theorem 3.1 from Theorem 3.2, one takes Δ ⊂ Rn+1 to be the convex
combination of Δ1 and Δ2, i.e.,

Δ = {(x,h) | 0 ≤ h ≤ 1, x ∈ hΔ1 +(1− h)Δ2}.
The concavity of the function

VΔ (h)
1/n = Vol1/n

n (hΔ1 +(1− h)Δ2)

then readily implies Theorem 3.1.
For n = 2, Theorem 3.2 is equivalent to the Alexandrov–Fenchel inequality (see

Theorem 4.1). Below we give a sketch of its proof in the general case.

Proof (Sketch of proof of Theorem 3.2).

(1) When the convex body Δ ⊂ Rn+1 is rotationally symmetric with respect to the
xn+1-axis, Theorem 3.2 is obvious: the section xn+1 = h of the body Δ at level

h is a ball (or empty), and V 1/n
Δ (h) is a constant times the radius, which is a

concave function of h, since Δ is a convex body.
(2) Now suppose Δ is not rotationally symmetric. Fix a hyperplane H containing

the xn+1-axis. Then one can construct a new convex body Δ ′ that is symmetric
with respect to the hyperplane H and such that the volume of sections of Δ ′ is
the same as that of Δ . To do this, just think of Δ as the union of line segments
perpendicular to the plane H. Then shift each segment along its line in such a
way that its center lies on H. The resulting body is then symmetric with respect
to H and has the same volume of sections as Δ . The above construction is called
the Steiner symmetrization process.

(3) It will now be enough to show that by repeated application of Steiner sym-
metrization, we can make Δ as close as we wish to a rotationally symmetric
body. This can be proved as follows: First, we show that given a non-rotationally
symmetric body, there is always a Steiner symmetrization making it “more
symmetric.” Then we use a compactness argument on the collection of convex
bodies inside a bounded closed domain to conclude the proof. �	

4 Brunn–Minkowski and Alexandrov–Fenchel Inequalities

We recall the classical isoperimetric inequality, whose origins date back to antiquity.
According to this inequality, if P is the perimeter of a simple closed curve in the
plane and A is the area enclosed by that curve, then

4πA ≤ P2. (1)
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Equality is obtained when the curve is a circle. To prove (1), it is enough to prove
it for convex regions. The Alexandrov–Fenchel inequality for n = 2 implies the
isoperimetric inequality (1) as a particular case and hence has inherited the name.

Theorem 4.1 (Isoperimetric inequality). If Δ1 and Δ2 are convex regions in the
plane, then

Area(Δ1)Area(Δ2)≤ A(Δ1,Δ2)
2,

where A(Δ1,Δ2) is the mixed area.

When Δ2 is the unit disk in the plane, A(Δ1,Δ2) is one-half the perimeter of
Δ1. Thus the classical form (1) of the inequality (for convex regions) follows from
Theorem 4.1.

Proof (Proof of Theorem 4.1). It is easy to verify that the isoperimetric inequality
is equivalent to the Brunn–Minkowski inequality for n = 2. Let us check this in one
direction, i.e., that the isoperimetric inequality follows from Brunn–Minkowski for
n = 2:

Area(Δ1)+ 2A(Δ1,Δ2)+Area(Δ2)

= Area(Δ1 +Δ2)

≥ (Area1/2(Δ1)+Area1/2(Δ2))
2

= Area(Δ1)+ 2Area(Δ1)
1/2Area(Δ2)

1/2 +Area(Δ2),

which readily implies the isoperimetric inequality. �	
The following generalization of the Brunn–Minkowski inequality is a corollary

of the Alexandrov–Fenchel inequality.

Corollary 4.2. (Generalized Brunn–Minkowski inequality) For any 0 < m ≤ n and
for any fixed convex bodies Δm+1, . . . ,Δn, the function F that assigns to a body Δ
the number F(Δ) = V 1/m(m ∗Δ ,Δm+1, . . . ,Δn) is concave, i.e., for any two convex
bodies Δ1,Δ2, we have

F(Δ1)+F(Δ2)≤ F(Δ1 +Δ2).

On the other hand, the usual proof of the Alexandrov–Fenchel inequality deduces
it from the Brunn–Minkowski inequality. But this deduction is the main part (and the
most complicated part) of the proof (see [Burago–Zalgaller]). Interestingly, the main
construction in the present paper (using algebraic geometry) allows us to obtain the
Alexandrov–Fenchel inequality as an immediate corollary of the simplest case of
the Brunn–Minkowski inequality, i.e., the isoperimetric inequality.
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5 Generic Systems of Laurent Polynomial Equations in (C∗)n

In this section we recall the famous results due to Kushnirenko and Bernstein on the
number of solutions of a generic system of Laurent polynomials in (C∗)n.

Let us identify the lattice Zn with Laurent monomials in (C∗)n: to each integral
point k ∈ Zn, k = (k1, . . . ,kn), we associate the monomial zk = zk1

1 · · · zkn
n , where

z = (z1, . . . ,zn). A Laurent polynomial P = ∑k ckzk is a finite linear combination of
Laurent monomials with complex coefficients. The support supp(P) of a Laurent
polynomial P is the set of exponents k for which ck 
= 0. We denote the convex
hull of a finite set A ⊂ Zn by ΔA ⊂ Rn. The Newton polyhedron Δ(P) of a Laurent
polynomial P is the convex hull Δsupp(P) of its support. With each finite set A ⊂ Zn

one associates a vector space LA of Laurent polynomials P with supp(P)⊂ A.

Definition 5.1. We say that a property holds for a generic element of a vector space
L if there is a proper algebraic set Σ such that the property holds for all the elements
in L\Σ .

Definition 5.2. For a given n-tuple of finite sets A1, . . . ,An ⊂ Zn, the intersection
index of the n-tuple of spaces [LA1 , . . . ,LAn ] is the number of solutions in (C∗)n of a
generic system of equations P1 = · · ·= Pn = 0, where P1 ∈ LA1 , . . . ,Pn ∈ LAn .

Problem: Find the intersection index [LA1 , . . . ,LAn ]. That is, for a generic element
(P1, . . . ,Pn) ∈ LA1 ×·· ·×LAn , find a formula for the number of solutions in (C∗)n of
the system of equations P1 = · · ·= Pn = 0.

Kushnirenko found the following important result, which answers a particular
case of the above problem [Kushnirenko].

Theorem 5.3. When the convex hulls of the sets Ai are the same and equal to a
polyhedron Δ , we have

[LA1 , . . . ,LAn ] = n!Voln(Δ),

where Voln is the standard n-dimensional volume in Rn.

According to Theorem 5.3, if P1, . . . ,Pn are sufficiently general Laurent polyno-
mials with given Newton polyhedron Δ , the number of solutions in (C∗)n of the
system P1 = · · ·= Pn = 0 is equal to n!Voln(Δ).

The problem was solved by Bernstein in full generality [Bernstein]:

Theorem 5.4. In the general case, i.e., for arbitrary finite subsets A1, . . . ,An ⊂ Zn,
we have

[LA1 , . . . ,LAn ] = n!V(ΔA1 , . . . ,ΔAn),

where V is the mixed volume of convex bodies in Rn.
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According to Theorem 5.4, if P1, . . . ,Pn are sufficiently general Laurent polyno-
mials with Newton polyhedra Δ1, . . . ,Δn respectively, then the number of solutions
in (C∗)n of the system P1 = · · ·= Pn = 0 is equal to n!V(Δ1, . . . ,Δn).

6 Convex Geometry and the Bernstein–Kushnirenko Theorem

Let us examine Theorem 5.4 (which we will call the Bernstein–Kushnirenko
theorem) more closely. In the space of regular functions on (C∗)n, there is a natural
class of finite-dimensional subspaces, namely the subspaces that are stable under
the action of the multiplicative group (C∗)n. Each such subspace is of the form LA

for some finite set A ⊂ Zn of monomials.
For two finite-dimensional subspaces L1, L2 of regular functions in (C∗)n, let us

define the product L1L2 as the subspace spanned by the products f g, where f ∈ L1,
g ∈ L2. Clearly, multiplication of monomials corresponds to the addition of their
exponents, i.e., zk1zk2 = zk1+k2 . This implies that LA1LA2 = LA1+A2 .

The Bernstein–Kushnirenko theorem defines and computes the intersection index
[LA1 ,LA2 , . . . ,LAn ] of the n-tuples of subspaces LAi for finite subsets Ai ⊂ Zn. Since
this intersection index is equal to the mixed volume, it enjoys the same properties,
namely (1) positivity, (2) monotonicity, (3) multilinearity, and (4) the Alexandrov–
Fenchel inequality and its corollaries. Moreover, if for a finite set A ⊂ Zn we let
A = ΔA ∩Zn, then (5) the spaces LA and LA have the same intersection indices. That
is, for any (n− 1)-tuple of finite subsets A2, . . . ,An ∈ Zn, we have

[LA,LA2 , . . . ,LAn ] = [LA,LA2 , . . . ,LAn ].

This means (surprisingly!) that enlarging LA �→ LA does not change any of the
intersection indices we have considered. Hence in counting the number of solutions
of a system, instead of support of a polynomial, its convex hull plays the main role.
Let us denote the subspace LA by LA and call it the completion of LA.

Since the semigroup of convex bodies with Minkowski sum has the cancellation
property, we get the following cancellation property for the finite subsets of Zn: if
for finite subsets A,B,C ∈ Zn we have A+C = B+C, then A = B. And we have the
same cancellation property for the corresponding semigroup of subspaces LA. That
is, if LA LC = LB LC, then LA = LB.

The Bernstein–Kushnirenko theorem relates the notion of mixed volume in
convex geometry with that of intersection index in algebraic geometry. In algebraic
geometry, the following inequality about intersection indices on a surface is well
known:

Theorem 6.1 (Hodge inequality). Let Γ1,Γ2 be algebraic curves on a smooth
irreducible projective surface. Assume that Γ1,Γ2 have positive self-intersection
indices. Then

(Γ1,Γ2)
2 ≥ (Γ1,Γ1)(Γ2,Γ2),

where (Γi,Γj) denotes the intersection index of the curves Γi and Γj.
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On the one hand, Theorem 5.4 allows one to prove the Alexandrov–Fenchel
inequality algebraically using Theorem 6.1 (see [Khovanskii-1, Teissier]). On the
other hand, Theorem 5.4 suggests an analogy between the theory of mixed volumes
and the intersection theory of Cartier divisors on a projective algebraic variety.

We will return to this discussion after stating our main theorem (Theorem 11.1)
and its corollary, which is a version of the Hodge inequality.

7 An Extension of the Intersection Theory of Cartier Divisors

Now we discuss general results, inspired by the Bernstein–Kushnirenko theorem,
that can be considered an analogue of the intersection theory of Cartier divisors
for general (not necessarily complete) varieties [Kaveh–Khovanskii-2]. Instead
of (C∗)n, we take any irreducible n-dimensional variety X , and instead of a
finite-dimensional space of functions spanned by monomials, we take any finite-
dimensional space of rational functions. For these spaces we define an intersection
index and prove that it enjoys all the properties of the mixed volume of convex
bodies.

Consider the collection Krat(X) of all nonzero finite-dimensional subspaces
of rational functions on X . The set Krat(X) has a natural multiplication: the
product L1L2 of two subspaces L1,L2 ∈ Krat(X) is the subspace spanned by all the
products f g, where f ∈ L1, g ∈ L2. With respect to this multiplication, Krat(X) is a
commutative semigroup.

Definition 7.1. The intersection index [L1, . . . ,Ln] of L1, . . . ,Ln ∈ Krat(X) is the
number of solutions in X of a generic system of equations f1 = · · ·= fn = 0, where
f1 ∈ L1, . . . , fn ∈ Ln. In counting the solutions, we neglect the solutions x for which
all the functions in some space Li vanish as well as the solutions for which at least
one function from some space Li has a pole.

More precisely, let Σ ⊂ X be a hypersurface that contains (1) all the singular
points of X , (2) all the poles of functions from any of the Li, (3) for any i, the
set of common zeros of all the f ∈ Li. Then for a generic choice of ( f1, . . . , fn) ∈
L1 ×·· ·×Ln, the intersection index [L1, . . . ,Ln] is equal to the number of solutions
{x ∈ X \Σ | f1(x) = · · ·= fn(x) = 0}.

Theorem 7.2. The intersection index [L1, . . . ,Ln] is well defined. That is, there
is a Zariski-open subset U in the vector space L1 × ·· · × Ln such that for any
( f1, . . . , fn) ∈ U, the number of solutions x ∈ X \ Σ of the system f1(x) = · · · =
fn(x) = 0 is the same (and hence equal to [L1, . . . ,Ln]). Moreover, the above number
of solutions is independent of the choice of Σ containing (1)–(3) above.
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The following properties of the intersection index are easy consequences of the
definition:

Proposition 7.3. (1) [L1, . . . ,Ln] is a symmetric function of the n-tuples
L1, . . . ,Ln ∈ Krat(X) (i.e., it takes the same value under a permutation of
L1, . . . ,Ln).

(2) The intersection index is monotone (i.e., if L′
1 ⊆ L1, . . . ,L′

n ⊆ Ln, then
[L1, . . . ,Ln]≥ [L′

1, . . . ,L
′
n].

(3) The intersection index is nonnegative (i.e., [L1, . . . ,Ln]≥ 0).

The next two theorems contain the main properties of the intersection index.

Theorem 7.4 (Multilinearity). (1) Let L′
1,L

′′
1 ,L2, . . . ,Ln ∈ Krat(X) and put L1 =

L′
1L′′

1 . Then

[L1, . . . ,Ln] = [L′
1, . . . ,Ln]+ [L′′

1, . . . ,Ln].

(2) Let L1, . . . ,Ln ∈Krat(X) and take 1-dimensional subspaces L′
1, . . . ,L

′
n ∈Krat(X).

Then
[L1, . . . ,Ln] = [L′

1L1, . . . ,L
′
nLn].

Let us say that f ∈ C(X) is integral over a subspace L ∈ Krat(X) if f satisfies an
equation

f m + a1 f m−1 + · · ·+ am = 0,

where m > 0 and ai ∈ Li for each i = 1, . . . ,m. It is well known that the collection
L of all integral elements over L is a vector subspace containing L. Moreover,
if L is finite-dimensional, then L is also finite-dimensional (see [Zariski–Samuel,
Appendix 4]). It is called the completion of L. For two subspaces L,M ∈ Krat(X) we
say that L is equivalent to M (written L ∼ M) if there is N ∈ Krat(X) with LN = MN.
One shows that the completion L is in fact the largest subspace in Krat(X) that
is equivalent to L. The enlarging L → L is analogous to the geometric operation
A �→ Δ(A) that associates to a finite set A its convex hull Δ(A).

Theorem 7.5. (1) Let L1 ∈ Krat(X) and let G1 ∈ Krat(X) be the subspace spanned
by L1 and a rational function g integral over L1. Then for any (n− 1)-tuple
L2, . . . ,Ln ∈ Krat(X) we have

[L1,L2, . . . ,Ln] = [G1,L2, . . . ,Ln].

(2) Let L1 ∈ Krat(X) and let L1 be its completion as defined above. Then for any
(n− 1)-tuple L2, . . . ,Ln ∈ Krat(X) we have

[L1,L2, . . . ,Ln] = [L1,L2, . . . ,Ln].

The proof of Theorem 7.5 is not complicated. If X is a curve, statement
(1) is obvious, and one can easily obtain the general case from the curve case
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(see [Kaveh–Khovanskii-2, Theorem 4.25]). Statement (2) follows from (1).
Alternatively, statement (2) follows from the multilinearity of the intersection
index and the fact that L and L are equivalent.

As with any other commutative semigroup, there corresponds a Grothendieck
group to the semigroup Krat(X). Let K be a commutative semigroup. The
Grothendieck group G(K) of K is defined as follows: two elements x,y ∈ K are
called equivalent, written x ∼ y, if there is z ∈ K with xz = yz. The Grothendieck
group G(K) is the collection of all formal fractions x1/x2, x1,x2 ∈ K, where two
fractions x1/x2 and y1/y2 are considered equal if x1y2 ∼ y1x2. There is a natural
homomorphism φ : K → G(K). The Grothendieck group has the following universal
property: for any group G′ and a homomorphism φ ′ : K → G′, there exists a unique
homomorphism ψ : G(K)→ G′ such that φ ′ = ψ ◦φ .

From the multilinearity of the intersection index it follows that the intersection
index extends to the the Grothendieck group of Krat(X). The Grothendieck group
of Krat(X) can be considered an analogue (for a not necessarily complete variety X)
of the group of Cartier divisors on a projective variety, and the intersection index on
this Grothendieck group an analogue of the intersection index of Cartier divisors.

The intersection theory on the Grothendieck group of Krat(X) enjoys all the
properties of mixed volume. Some of those properties have already been discussed
in the present section. The others will be discussed later (see Theorem 12.3 and
Corollary 12.4 below).

8 Proof of the Bernstein–Kushnirenko Theorem
Via the Hilbert Theorem

Let us recall the proof of the Bernstein–Kushnirenko theorem from [Khovanskii-2],
which will be important for our generalization.

For each space L ∈ Krat(X), let us define the Hilbert function HL by HL(k) =
dim(Lk). For sufficiently large values of k, the function HL(k) is a polynomial in k,
called the Hilbert polynomial of L.

With each space L ∈ Krat(X), one associates a rational Kodaira map from X
to P(L∗), the projectivization of the dual space L∗: to any x ∈ X at which all the
f ∈ L are defined, there corresponds a functional in L∗ that evaluates f ∈ L at x. The
Kodaira map sends x to the image of this functional in P(L∗). It is a rational map,
i.e., defined on a Zariski-open subset in X . We denote by YL the closure of the image
of X under the Kodaira map in P(L∗).

The following theorem is a version of the classical Hilbert theorem on the degree
of a subvariety of the projective space.

Theorem 8.1 (Hilbert). The degree m of the Hilbert polynomial of the space L is
equal to the dimension of the variety YL, and its leading coefficient c is the degree of
YL ⊂ P(L∗) divided by m!.
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Let A be a finite subset in Zn with Δ(A) its convex hull. Denote by k ∗A the
sum A+ · · ·+ A of k copies of the set A, and by (kΔ(A))C the subset of kΔ(A)
containing points whose distance to the boundary ∂ (kΔ(A)) is bigger than C. The
following combinatorial theorem gives an estimate for the set k ∗A in terms of the
set of integral points in kΔ(A).

Theorem 8.2 ([Khovanskii-2]). (1) One has k ∗A ⊂ kΔ(A)∩Zn.
(2) Assume that the differences a−b for a,b ∈ A generate the group Zn. Then there

exists a constant C such that for any k ∈N, we have

(kΔ(A))C ∩Z
n ⊂ k ∗A.

Corollary 8.3. Let A ⊂ Zn be a finite subset satisfying the condition in Theorem
8.2(2). Then

lim
k→∞

#(k ∗A)
kn = Voln(Δ(A)).

Corollary 8.3 together with the Hilbert theorem (Theorem 8.1) proves the
Kushnirenko theorem for sets A such that the differences a−b for a,b ∈ A generate
the group Zn. The Kushnirenko theorem for the general case easily follows from
this. The Bernstein theorem, Theorem 5.4, follows from the Kushnirenko theorem
(Theorem 5.3) and the identity LA+B = LALB.

9 Graded Semigroups in N⊕Zn and the Newton-Okounkov
Body

Let S be a subsemigroup of N⊕Zn. For any integer k > 0 we denote by Sk the
section of S at level k, i.e., the set of elements x ∈ Zn such that (k,x) ∈ S.

Definition 9.1. (1) A subsemigroup S of N⊕Zn is called a graded semigroup if
for any k > 0, Sk is finite and nonempty.

(2) Such a subsemigroup is called an ample semigroup if there is a natural m such
that the set of all the differences a− b for a,b ∈ Sm generates the group Zn.

(3) Such a subsemigroup is called a semigroup with restricted growth if there is a
constant C such that for any k > 0, we have #(Sk)≤Ckn.

For a graded semigroup S, let Con(S) denote the closure of the convex hull of
S∪{0}. It is a cone in R

n+1. Denote by S̃ the semigroup Con(S)∩ (N⊕Z
n). The

semigroup S̃ contains the semigroup S.

Definition 9.2. For a graded semigroup S, define the Newton-Okounkov set Δ(S) to
be the section of the cone Con(S) at k = 1, i.e.,

Δ(S) = {x | (1,x) ∈ Con(S)}.
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Theorem 9.3 (Asymptotics of graded semigroups). Let S be an ample graded
semigroup with restricted growth in N⊕Zn. Then:

(1) The cone Con(S) is strictly convex, i.e., the Newton-Okounkov set Δ(S) is
bounded.

(2) Let d(k) denote the maximum distance of the points (k,x) from the boundary of
Con(S) for x ∈ S̃k \ Sk. Then

lim
k→∞

d(k)
k

= 0.

Theorem 9.3 basically follows from Theorem 8.2. For a proof and generaliza-
tions, see [Kaveh–Khovanskii-3, Sect. 1.3].

Corollary 9.4. Let S be an ample graded semigroup with restricted growth in N⊕
Z

n. Then

lim
k→∞

#(Sk)

kn = Voln(Δ(S)).

10 Valuations on the Field of Rational Functions

We start with the definition of a prevaluation. Let V be a vector space and let I be a
set totally ordered with respect to some ordering <.

Definition 10.1. A prevaluation on V with values in I is a function v : V \ {0}→ I
satisfying the following:

(1) For all f ,g ∈V \ {0}, v( f + g)≥ min(v( f ),v(g))
(2) For all f ∈V \ {0} and λ 
= 0, v(λ f ) = v( f )
(3) If for f ,g ∈ V \ {0} we have v( f ) = v(g) then there is λ 
= 0 such that v(g−

λ f )> v(g).

It is easy to verify that if L ⊂V is a finite-dimensional subspace, then dim(L) is
equal to #v(L\ {0}).
Example 10.2. Let V be a finite-dimensional vector space with basis {e1, . . . ,en},
and let I = {1, . . . ,n} with the usual ordering of numbers. For f = ∑i λiei, define

v( f ) = min{i | λi 
= 0}.

Example 10.3 (Schubert cells in the Grassmannian). Let Gr(n,k) be the Grassman-
nian of k-dimensional planes in Cn. In Example 10.2, take V =Cn with the standard
basis. Under the prevaluation v above, each k-dimensional subspace L ⊂ Cn goes to
a subset M ⊂ I containing k elements. The set of all the k-dimensional subspaces
that are mapped onto M forms the Schubert cell XM in the Grassmannian Gr(n,k).
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Similar to Example 10.3, the Schubert cells in the variety of complete flags can
also be recovered from the prevaluation v above on Cn.

Next we define the notion of a valuation with values in a totally ordered abelian
group.

Definition 10.4. Let K be a field and Γ a totally ordered abelian group. A
prevaluation v : K \ {0} → Γ is a valuation if it further satisfies the following: for
any f ,g ∈ K \ {0} we have

v( f g) = v( f )+ v(g).

The valuation v is called faithful if its image is all of Γ .

We will be concerned only with the field C(X) of rational functions on an n-
dimensional irreducible variety X and Zn-valued valuations on it (with respect to
some total order on Zn).

Example 10.5. Let X be an irreducible curve. Take the field of rational functions
C(X) and Γ = Z. Take a smooth point a on X . Then the map

v( f ) = orda( f )

defines a faithful valuation on C(X).

Example 10.6. Let X be an irreducible n-dimensional variety. Take a smooth
point a ∈ X . Consider a local system of coordinates at a with analytic coordinate
functions x1, . . . ,xn. Let Γ = Zn

+ be the semigroup in Zn of points with nonnegative
coordinates. Take any well-ordering ≺ that respects the addition, i.e., if a ≺ b, then
a+ c ≺ b + c. For a germ f at the point a of an analytic function in x1, . . . ,xn,
let cxα( f ) = cxα1

1 · · ·xαn
n be the term in the Taylor expansion of f with minimum

exponent α( f ) = (α1, . . . ,αn) with respect to the ordering ≺. For a germ F at the
point a of a meromorphic function F = f/g, define v(F) as α( f )− α(g). This
function v induces a faithful valuation on the field of rational functions C(X).

Example 10.7. Let X be an irreducible n-dimensional variety and Y any variety
birationally isomorphic to X . Then the fields C(X) and C(Y ) are isomorphic, and
thus any faithful valuation on C(Y ) gives a faithful valuation on C(X) as well.

11 Main Construction and Theorem

Let X be an irreducible n-dimensional variety. Fix a faithful valuation v : C(X) \
{0}→ Zn, where Zn is equipped with a total ordering respecting addition.

Let L ∈ Krat(X) be a finite-dimensional subspace of rational functions. Consider
the semigroup S(L) in N⊕Zn defined by
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S(L) =
⋃

k>0

{(k,v( f )) | f ∈ Lk \ {0}}.

It is easy to see that S(L) is a graded semigroup. Moreover, by Hilbert’s theorem,
S(L) is contained in a semigroup of restricted growth.

Definition 11.1 (Newton-Okounkov body for a subspace of rational functions).
We define the Newton-Okounkov body for a subspace L to be the convex body
Δ(S(L)) associated to the semigroup S(L).

Denote by s(L) the index of the subgroup in Zn generated by all the differences
a−b such that a, b belong to the same set Sm(L) for some m > 0. Also let YL be the
closure of the image of the variety X (in fact, the image of a Zariski-open subset of
X) under the Kodaira rational map ΦL : X → P(L∗). If dim(YL) is equal to dim(X),
then the Kodaira map from X to YL has finite mapping degree. Denote this mapping
degree by d(L).

Theorem 11.1 (Main theorem). Let X be an irreducible n-dimensional variety.
Then:

(1) The complex dimension of the variety YL is equal to the real dimension of the
Newton-Okounkov body Δ(S(L)).

(2) If dim(YL) = n, then

[L, . . . ,L] =
n!d(L)
s(L)

Voln(Δ(S(L))).

(3) In particular, if ΦL : X → YL is a birational isomorphism, then

[L, . . . ,L] = n!Voln(Δ(S(L))).

(4) For any two subspaces L1,L2 ∈ Krat(X) we have

Δ(S(L1))+Δ(S(L2))⊆ Δ(S(L1L2)).

The proof of the main theorem is based on Theorem 9.3 (which describes
the asymptotic behavior of an ample graded semigroup with restricted growth)
and Hilbert’s theorem (Theorem 8.1). A sketch of a proof can be found in
[Kaveh–Khovanskii-1]. For a complete proof as well as generalizations, see
[Kaveh–Khovanskii-3, Sect. 4.5]. Also see [Kaveh–Khovanskii-3, Sect. 2.2] for
an example of two spaces L1,L2 ∈ Krat(X) and a valuation on X such that the
inclusion in (4) is not the identity.
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12 Algebraic Analogue of the Alexandrov–Fenchel Inequality

Part (2) of the main theorem (Theorem 11.1) can be considered a far-reaching
generalization of the Kushnirenko theorem, in which instead of (C∗)n, one takes
any n-dimensional irreducible variety X , and instead of a finite-dimensional space
generated by monomials, one takes any finite-dimensional space L of rational
functions. The proof of Theorem 11.1 is an extension of the arguments used
in [Khovanskii-2] to prove the Kushnirenko theorem (see also Sect. 8). As we
mentioned, the Bernstein theorem (Theorem 5.4) follows immediately from the
Kushnirenko theorem and the identity

LA+B = LALB.

Thus the Bernstein–Kushnirenko theorem is a corollary of our Theorem 11.1.
Note that although the Newton-Okounkov body Δ(S(L)) depends on a choice

of a faithful valuation, its volume depends on L only: after multiplication by n!, it
equals the self-intersection index [L, . . . ,L].

Our generalization of the Kushnirenko theorem does not imply the generalization
of the Bernstein theorem. The point is that in general, we do not always have an
equality Δ(S(L1))+Δ(S(L2)) = Δ(S(L1L2)). In fact, by Theorem 11.1(4), what is
always true is the inclusion

Δ(S(L1))+Δ(S(L2))⊆ Δ(S(L1L2)).

This inclusion is sufficient for us to prove the following interesting corollary.
Let us call a subspace L ∈ Krat(X) a big subspace if for some m > 0, the Kodaira

rational map of the completion Lm is a birational isomorphism between X and its
image. It is not hard to show that the product of two big subspaces is again a big
subspace and that thus the big subspaces form a subsemigroup of Krat(X).

Corollary 12.1 (Algebraic analogue of Brunn–Minkowski). Assume that L,G ∈
Krat(X) are big subspaces. Then

[L, . . . ,L]1/n +[G, . . . ,G]1/n ≤ [LG, . . . ,LG]1/n.

Proof. Replacing L and G by Lm and Gm, for any m > 0, does not change the
inequality (see Theorems 7.4 and 7.5). Thus, without loss of generality, we can
assume that the Kodaira maps of L and G are birational isomorphisms onto their
images. From statement (4) in Theorem 11.1 we have Δ(S(L)) + Δ(S(G)) ⊆
Δ(S(LG)). So Voln(Δ(S(L))+Δ(S(G))) ≤ Voln(Δ(S(LG))). Also, from statement
(3) in the same theorem we have

[L, . . . ,L] = n!Voln(Δ(S(L)),

[G, . . . ,G] = n!Voln(Δ(S(G)),
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[LG, . . . ,LG] = n!Voln(Δ(S(LG)).

To complete the proof, it is enough to use the Brunn–Minkowski inequality. �	
In fact, it is shown in [Kaveh–Khovanskii-3, Theorem 4.23] that the above

Brunn–Minkowski inequality holds without the assumption that L,G are big.

Corollary 12.2 (A version of the Hodge inequality). If X is an algebraic surface
and L,G ∈ Krat(X) are big, then

[L,L][G,G] ≤ [L,G]2.

Proof. From Corollary 12.1, for n = 2, we have

[L,L]+ 2[L,G]+ [G,G] = [LG,LG] ≥ ([L,L]1/2 +[G,G]1/2)2

= [L,L]+ 2[L,L]1/2[G,G]1/2 +[G,G],

which readily implies the Hodge inequality. �	
Thus Theorem 11.1 immediately enables us to reduce the Hodge inequality to

the isoperimetric inequality. In this way, we can easily prove an analogue of the
Alexandrov–Fenchel inequality and its corollaries for intersection index:

Theorem 12.3 (Algebraic analogue of the Alexandrov–Fenchel inequality). Let
X be an irreducible n-dimensional variety and let L1, . . . ,Ln ∈ Krat(X) be big
subspaces. Then the following inequality holds:

[L1,L2,L3, . . . ,Ln]
2 ≥ [L1,L1,L3, . . . ,Ln][L2,L2,L3, . . . ,Ln].

In fact, we can show that in Theorem 12.3, it is enough to assume only that
L3, . . . ,Ln are big subspaces (see [Kaveh–Khovanskii-3, Theorem 4.27]).

Corollary 12.4 (Corollaries of the algebraic analogue of the Alexandrov–
Fenchel inequality). Let X be an irreducible n-dimensional variety.

(1) Let 2 ≤ m ≤ n and k1 + · · ·+kr = m with ki ∈N. Take big subspaces of rational
functions L1, . . . ,Ln ∈ Krat(X). Then

[k1 ∗L1, . . . ,kr ∗Lr,Lm+1, . . . ,Ln]
m ≥ ∏

1≤ j≤r

[m∗Lj,Lm+1, . . . ,Ln]
k j .

(1) (Generalized Brunn–Minkowski inequality) For any fixed big subspaces
Lm+1, . . . ,Ln ∈ Krat(X), the function

F : L �→ [m∗L,Lm+1, . . . ,Ln]
1/m

is a concave function on the semigroup of big subspaces.
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As we saw above, the Bernstein–Kushnirenko theorem follows from the main
theorem. Applying the algebraic analogue of the Alexandrov–Fenchel inequality to
the situation considered in the Bernstein–Kushnirenko theorem, one can prove the
Alexandrov–Fenchel inequality for convex polyhedra with integral vertices. Out of
this one can easily complete the proof of Alexandrov–Fenchel for general convex
bodies: the homogeneity gives the inequality for convex polyhedra with rational
vertices. But each convex body can be approximated arbitrarily well with polyhedra
with rational vertices. The statement now follows from the continuity of mixed
volume.

Thus the Bernstein–Kushnirenko theorem and the Alexandrov–Fenchel inequal-
ity in algebra and in geometry can be considered corollaries of the main theorem
(Theorem 11.1).

13 Additivity of the Newton-Okounkov Body for Varieties
with a Reductive Group Action

In this section we announce some results that the authors are currently writing up.
They will be presented in a forthcoming paper.2

While the additivity of the Newton-Okounkov body does not hold in general, we
recall, as mentioned in Sect. 8, that it does hold for the subspaces LA of Laurent
polynomials on (C∗)n spanned by monomials. The subspaces LA are exactly the
subspaces that are stable under the natural action of the multiplicative group (C∗)n

on Laurent polynomials (induced by the natural action of (C∗)n on itself). It turns
out that the additivity generalizes to some classes of varieties with a reductive group
action.

Let G be a connected reductive algebraic group over C (in other words, the
complexification of a connected compact real Lie group). Also let X be a G-variety,
that is, a variety equipped with an algebraic action of G.

The group G naturally acts on C(X) by (g · f )(x) = f (g−1 · x). A subspace L ∈
Krat(X) is G-stable if for any f ∈ L and g ∈ G we have g · f ∈ L.

A G-variety X is called spherical if a Borel subgroup of G has a dense orbit.
Toric varieties, flag varieties, and group compactifications are well-known examples
of spherical varieties.

Theorem 13.1. Let X be an n-dimensional spherical G-variety. Then there is a
naturally defined faithful valuation v : C(X)\ {0}→ Zn such that for any G-stable
subspace L ∈ Krat(X), the Newton-Okounkov body Δ(S(L)) is in fact a polyhedron.

Definition 13.2. Let V be a finite-dimensional representation of G. Let v = v1 +
· · ·+ vk be a sum of highest-weight vectors in V . The closure of the G-orbit of v in
V is called an S-variety.

2While the present volume was under preparation the related papers [Kaveh-Khovanskii-4] and
[Kaveh-Khovanskii-5] appeared.
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Affine toric varieties are S-varieties for G = (C∗)n. One can show that any S-
variety is spherical.

Theorem 13.3. Let X be an S-variety for one of the groups G= SL(n,C), SO(n,C),
SP(2n,C), (C∗)n, or a direct product of them. Then for the valuation in Theorem
13.1 and for any choice of G-stable subspaces L1,L2 in Krat(X), we have

Δ(S(L1L2)) = Δ(S(L1))+Δ(S(L2)).

Corollary 13.4 (Bernstein theorem for S-varieties). Let X be an S-variety for one
of the groups G= SL(n,C), SO(n,C), SP(2n,C), (C∗)n, or a direct product of them.
Let L1, . . . ,Ln ∈ Krat(X) be G-stable subspaces. Then for the valuation in Theorem
13.1, we have

[L1, . . . ,Ln] = n!V (Δ(S(L1)), . . . ,Δ(S(Ln))),

where V is the mixed volume.

Another class of G-varieties for which the additivity of the Newton polyhedron
holds is the class of symmetric homogeneous spaces.

Definition 13.5. Let σ be an involution of G, i.e., an order-2 algebraic automor-
phism. Let H =Gσ be the fixed-point subgroup of σ . The homogeneous space G/H
is called a symmetric homogeneous space.

Example 13.6. The map M �→ (M−1)t is an involution of G = SL(n,C) with the
fixed-point subgroup H = SO(n,C). The symmetric homogeneous space G/H can
be identified with the space of nondegenerate quadrics in CPn−1.

Any symmetric homogeneous space is an affine spherical G-variety (with the left
G-action).

Under mild conditions on the Li, analogues of Theorem 13.3 and Corollary 13.4
hold for symmetric varieties. Finally, the above theorems extend to subspaces of
sections of G-line bundles.
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paper.
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